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FOREWORD

The Nineteenth Symposium on Naval
Hydrodynamics, held in Seoul, Korea, from August
23-28, 1992, was organized jointly by the Office of
Naval Research (Fluid Dynamics Program), the
National Research Council (Naval Studies Board),
and the Society of Naval Architects of Korea. This
international biennial symposium promotes the
exchange of naval research developments of common
interest to the countries of the world. The forum
encourages both formal and informal discussion of
the presented papers, and the occasion provides an
opportunity for direct communication between
international peers.

More than 200 participants from 13 countries
attended the symposium. Ranging from newly
graduated students to researchers of established
international repute, the attendees represented a mix
of experiences and expertise. They presented 48
papers in seven topical areas—nonlinear ship motions,
viscous ship hydrodynamics, hydrodynamics in ship
design, wave and wake dynamics, cavitation and
bubbly flows, propulsor hydrodynamics and
hydroacoustics, and frontier experimental
techniques—chosen because of recent advances made
in these areas. Examples of significant advances
presented in the papers are the numerical solution of
the nonlinear equations for time-dependent ship
motions, the prediction of vorticity flux from surface-
piercing accelerating bodies, the design of a movel
foil catamaran ship, the emerging understanding of
free-surface interactions with vorticity, explanations
of acoustic emission from cavitation bubble breakup,
the prediction of viscous flow around propellers, and
the use of quantitative visualization of large-scale
wake structures for a free-running body.

The success of this timely symposium was
the result of hard work on the part of many people.
The Organizing and Paper Selection Committee
consisted of Mr. James Fein, Dr. Patrick Purtell, and
myself (Office of Naval Research), Mr. Lee Hunt
(National Research Council), Prof. Robert Beck
(University of Michigan), Prof. Choung Lee (Pohang
Institute of Science and Technology), Prof. Kwang-
June Bai (Seoul National University), and Dr.
William Morgan and Dr. Justin McCarthy (David
Taylor Model Basin). The contribution of this
committee was certainly the comerstone of the
symposium’s success. However, the organizers
would also like to thank Mrs. Susan Campbell and
Mrs. Mary Gordon of the Naval Studies Board for
their valuable administrative and editorial production
support and to express special appreciation to the
symposium’s host, Prof. Jong-Heul Hwang, chairman
of the Local Organizing Committee.

Edwin P. Rood
Office of Naval Research
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Jong-Heul Hwang
Chairman, Local Organizing Committee

Ladies and gentlemen, welcome to the
Nineteenth Symposium on Naval Hydrodynamics and
to Seoul, Korea.

On behalf of the Local Organizing
Committee, I would like to express our thanks to the
Office of Naval Research and the National Research
Council of the United States of America for their
kind cooperation for holding this symposium in
Seoul.

We are very proud to host the symposium
with 36 years of history in providing a forum for
frontier subjects in marine hydrodynamics. As all of
you will agree with me, the Naval Hydrodynamics
Symposia have contributed in the past to inspiring
new ideas and approaches to fundamental and
challenging problems in marine hydrodynamics,
which have been proven by the numerous papers for
doctoral dissertation presented in the past symposia.

The present symposium provides a valuable
opportunity for the ship hydrodynamics research
community in Korea to have direct access to the
current state-of-the-art information in marine
hydrodynamics research, as well as an opportunity to
be acquainted with fellow investigators from all over
the world.

We feel very happy, also, for offering a
place for our friends from abroad to remew their
acquaintance with the friends from other countries
who have a common goal of learning more about
marine hydrodynamics.

Our sincere gratitude goes to the authors,
session chairmen, and participants who will together
make the Nineteenth Symposium another successful
forum to advance our knowledge in marine
hydrodynamics. I would like to take this opportunity
to express our appreciation for the support rendered
by the Korea Science and Engineering Foundation,
the Korean Registry of Shipping, Korea Research
Institute of Ships and Ocean Engineering, and the
three major shipbuilding companies, namely Hyundai,
Daewoo, and Samsung.

Lastly, I wish all of you an enjoyable stay in
Korea. Let us know if we can do anything to help
make your stay in Korea more pleasant.

Thank you.




Ladies and gentlemen, good morning and
welcome to the Nineteenth Symposium on Naval
Hydrodynamics. It is my pleasure to see this large
number of participants from so many countries. In
spite of economic problems in many parts of the
world, this participation reflects the recognized need
for continuing research and for the exchange of
research information in the engineering sciences
applicable to marine vehicle technology. It will be
demonstrated in the papers to be presented and
discussed in this symposium that it is a challenge to
predict and control vehicle-related hydrodynamics,
and that research must continue in recognition of
future naval needs.

As Deputy Chief of Naval Research and
Technical Director of the Office of Naval Research
(ONR), I am responsible for the basic research effort
in the United States that supports the Navy. Naval
hydrodynamics is one of the most important of these
areas of research, and I have a keen interest in
encouraging advancement in this field. I am looking
forward to hearing firsthand at this symposium the
latest achievements in predicting and controlling
marine vehicle hydrodynamics. The Office of Naval
Research supports basic research because in the long
term there is a direct benefit to naval warfighting
capabilities. ONR provides the stability that scientific
efforts need to produce beneficial results, even if the
outcome cannot be foreseen at the beginning. Itis in
this spirit that ONR supports this symposium.

The symposium is unique. It is international
in character, alternating in location between the
United States and a host country other than the
United States. This is the nineteenth meeting of the
symposium since it began in 1956. As always, the
symposium is sponsored by the Office of Naval
Research, the National Research Council, and a host
institution, in this case the Society of Naval
Architects of Korea.

I know this is a long trip for many of us, but
it is well worth the effort. Korea is truly beautiful;
the people are friendly. I know the effort required to
conduct a symposium such as this is immense, and it
appears that our hosts have more than accomplished
the task. If my experience so far is any indication,
the hospitality of our hosts will be unsurpassed.

Fred E. Saalfeld
Deputy Chief of Naval Research and
Technical Director, Office of Naval Research

For this meeting of the symposium, the
international flavor is especially significant. Naval
ship hydrodynamics have obviously been of military
and economic interest for thousands of years.
Certainly the basic engineering information is
understood, and present-day naval and commercial
vessels are efficient and fulfill the purpose for which
they are intended. But, in the future there will be an
increasing need for vessels that are significantly
bigger or faster, and less expensive. There will
continue to be a hydrodynamics challenge. The real
challenge today is focused on affordability: less
expensive to build, operate, and maintain. In our
increasingly interconnected world, new demands for
maritime  transport, together with increased
exploitation of the seas, imply a growth in marine
vehicle construction. With the increase in maritime
activity, there will be an increased need for naval
protection.

Many factors enter a nation’s decision to
design and construct ships. These factors include
technological achievement, labor rates, government
subsidy, and defense priority. We observe in our
world that the nontechnical factors seem to control
national shipbuilding efforts. However, the enabling
factor is always technology achievement. For
example, common to both naval and commercial
interests is the need for fast transports. This requires
basic understanding of, and prediction capability for,
complex turbulent flows and their effects on
performance, including propulsive efficiency, noise,
and vibration. An enabling technology would be the
successful development of useful computer prediction
methods incorporating rational turbulence models
applicable to a wide range of flow geometries.

Naval hydrodynamics problems are
distinguished from aerodynamic problems by the
presence of the free surface, the ingestion of
turbulent flow by the propulsor, and the phenomenon
of cavitation. In spite of the advanced technology
associated with aircraft and aerodynamic flow
predictions, it has been demonstrated that those
methods do not solve naval hydrodynamics problems.
Hydrodynamic problems remain unique, requiring
special assault. The need is to extend the naval
architect’s hydrodynamic tools, largely empirical and




based on historical success, to predict hydrodynamic
performance beyond the current database, and thus to
free the ship designer from the constraints of
traditional geometries and conservative assumptions.

Almost surely hull and propulsor designs in
the future will be much different from those in use
today. The "shaping” of the flow into the propulsor,
for example, will become a common feature. To
accomplish these goals, one could expect computer
predictions that simultaneously consider geometry,
hydrodynamics, and performance. In such a scheme,
the hydrodynamics codes would be different from
those existing today. This is so because the
numerical procedure would "sense” the complexity of
the flow to be predicted, and would automatically
adjust its solution approach consistent with the
required accuracy of the results.

Naval hydrodynamics adds additional
performance requirements to ship design which
demand a broader understanding of the flow physics.
Specialty topics of interest in this area include
prediction and control of surface ship wakes, acoustic
radiation, and the need to design for hydrodynamic
loading in high-sea states.

So, what is new for research opportunities?
Powerful computers have opened the door for
substantial progress in both physical and numerical
experiments. We have entered an age where coupled
laboratory measurements and flow predictions can be
expected to lead quickly to the answer. We are able
to measure the whole flow field at an instant, and to
compare the results with numerical simulations of the
same flow. This gains guidance and validation from
the measurements, and spatial and temporal resolution
with the simulations.

We are in an era where there is a need to
develop technology for the future yet there is a
limited supply of resources to conduct the required
research. There is an answer, and that is to provide
international exchange of information at the basic
research level. We all know that the stakes are high
in the area of national products. But the engineering
science base required to support technology
development can be made affordable and timely
through open exchange of information. It is in this
spirit that ONR sponsors the Symposium on Naval
Hydrodynamics.

Forty-eight papers from ten countries will be
presented and discussed at this symposium. They
were selected from 150 papers submitted for
consideration based on relevance and quality. The
papers address topics in the areas of nonlinear ship
motions, viscous ship hydrodynamics, hydrodynamics
in ship design, wave and wake dynamics, cavitation
and bubbly flows, propulsor hydrodynamics and
hydroacoustics, and frontier experimental techniques.
In keeping with the objectives of this symposium, I
encourage you to participate in the discussion.

I wish you a successful, meaningful
symposium. [ know I will enjoy and profit from
being able to attend this major scientific event.




On behalf of the U.S. National Academy of
Sciences, it is my great pleasure this moming to
welcome each of you to the Nineteenth Symposium
on Naval Hydrodynamics. This symposium series
has now served as an international forum for the
exchange of ideas and research results in the fields of
fluid dynamics and naval architecture for 36 years,
and has been convened in the Netherlands, Norway,
Italy, France, England, Germany, and Japan in
addition to the United States. The success of the
series is fitting testimony to the foresight and
dedication of Philip Eisenberg and Marshall Tulin of
the Office of Naval Research, and the fact that
alternate symposia are held outside the United States
is due to Marshall’s recognition that only in that
manner could the series become truly international.

The standards and the vision established by
Phil and Marshall have been faithfully preserved in
subsequent years by Ralph Cooper, Bob Whitehead,
Chung Lee, and Edwin Rood. I am sure that each of
them would say that their jobs have been made both
easy and pleasant by the cooperation received from
the host countries and the international ship
hydrodynamics community.

In recognizing the antiquity of this
symposium series it is only fitting that the Nineteenth
should be held in a country that can trace its own
history over nearly 4,000 years. Further, in holding
the meeting in the Republic of Korea we pay tribute
to the great strides and contributions this country has
made in hydrodynamic research, in ship design, and
in shipbuilding. And finally, holding this symposium
here in your capital city of Seoul is also a tribute to
the dedication, the tireless energies, and the respect
with which the international community holds Chung
Lee. As you know, we were privileged to bave
Chung serve with the Office of Naval Research prior
to his return to Korea.

The technical sessions for the Nineteenth
Symposium were prepared by a program committee
representing the three organizing institutions—the
Society of Naval Architects of Korea, the Office of
Naval Research, and the National Research Council
of the National Academy of Sciences. On behalf of
the three organizers I would like to express our
appreciation to the Korean sponsors of this week’s
activities: the Korean Registry of Shipping, the

George F. Carrier
Professor Emeritus, Harvard University

Korea Science and Engineering Foundation, the
Korea Research Institute of Ships and Ocean
Engineering, Hyundai Heavy Industries Co. Ltd.,
Daewoo Shipbuilding & Heavy Machinery, Ltd., and
Samsung Heavy Industries. We are most appreciative
for their assistance.

Those of you who attended the Eighteenth
Symposium at the University of Michigan in 1990
will recall that in his opening remarks, Lee Hunt, as
the Academy representative, characterized the period
before us as the Maritime Era. Incidentally, due to
unavoidable conflicts, Lee was unable to attend the
meeting this week. He sends his regards and his
wish for a successful meeting. He saw the Maritime
FEra as being driven by a substantial increase in
international trade, which, in turn, would place
increasing demands not just on shipbuilding, but also
on innovative design changes leading to greater
transport economy. He also saw the growth of
navies to police and protect those shipping fleets.

I not only endorse this vision of the future
for the ship hydrodynamics and naval architecture
community, but also would like to expand upon it.
In the United States, oceanographic research goes
back to Benjamin Franklin’s observations on the Gulf
Stream, and Matthew Fontain Maury’s assembling
vast amounts of data into nautical charts and sailing
directions. But it was not until the 1950s that the
international scientific community began a systematic
study of the oceans. Since that time our knowledge
of the physics, geophysics, geology, chemistry, and
biology of the oceans has increased enormously.
However, as in all fields of scientific endeavor, every
question answered is replaced by two that are yet to
be answered. The one thing we have learned is that
the oceans play an even greater role in the
environment in which mankind lives than we had
earlier imagined.

Up until now, and for lack of a technological
alternative, we have been practicing vertical
oceanography. That is, we have, with limited
exceptions, sampled vertical columns of water and
extrapolated between the columns. Today—thanks in
no small measure to this community—we have the
technology to begin practicing horizontal
oceanography. I refer, of course, to both remotely
controlled and autonomous vehicles capable of




carrying sensor suites to virtually any depths and over
meaningful ranges. I also refer to advances in towed
side-scan sonars capable of mapping the ocean floor
with unprecedented resolution. And I refer to recent
proposals for doing a comprehensive survey of the
Arctic Basin using a nuclear powered submarine.
The technology is here, and the need is
obvious, and I urge the international community of
scientists and engineers to get on with the next phase
of oceanographic research, made possible in no small
measure by the community assembled here this week.
In closing, I would like to make note of the
fact that this is my first visit to the Republic of

Korea. Therefore I am both pleased and honored to
be here this week. I look forward not only to the
technical papers the Program Committee has
assembled for us, but also to observing as much as
time permits of your country, its people, and their
culture.

Thank you, and the very best wishes for a
successful meeting.
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Prediction of Nonlinear Wave/Hull Interactions

on Complex Vessels
B. Maskew (Analytical Methods, Inc., USA)

ABSTRACT

A general numerical flow simulation model is
used to calculate non-linear free surface/hull inter-
actions on arbitrary configurations. The method is
based on a boundary-integral formulation in the
time domain, and treats the free-surface deforma-
tion and general finite amplitude motions of arbi-
trary vessels using a time-stepping, mixed Eulerian/
Lagrangian approach.

The boundary element method uses both
source and doublet singularity panels on the free
surface and on all wetted surfaces of the hull config-
uration, including, if present, ocean floor, towing
tank, etc. The effects of surface boundary layers,
lift and vortex wakes may be included in the calcula-
tion.

Computed results are presented for a sphere in
large amplitude harmonic motion near the free
surface. These calculations compare favorably with
published results. Initial calculations from an on-
going study of a frigate in large amplitude motion
are also presented and include studies of a finite-
amplitude wave generator.

NOMENCLATURE

Cp  Pressure coefficent,( p ~ Prge )/(12 pVier )
ds Element of surface

Fr Froude number, Vm/‘/-gz

g Acceleration due to gravity
L Hull length

NH  Number of active (wetted) panels on the
hull surfaces

NPAN Total number of active panels on the free
surface and hull(s)

i Unit normal to the surface pointing into
the fluid domain

P Static pressure

Prer  Ambient atmosphere pressure

F Position vector in normalized space

Lyer  Reference length, L/2

t Time
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v Normalized perturbation velocity, 7iv,, =
v Perturbation velocity, -V®

Reference speed

Normalized Cartesian coordinates,

x =X/Lyg, etc.

Cartesian coordinates, dimensional

-V

Position vector in dimensional space
Doublet density, ¢/4x

Source density, - (8¢/dn)/4x

Normalized time, ¢ * VppdLper

Water density

Normalized velocity potential, ®/Lypr/Vprr
Velocity potential (units of length?/time)
Angular velocity

DI 80 4 a %

1.0 INTRODUCTION

A general purpose numerical flow simulation
method is being developed for treating complex
hydrodynamic problems associated with arbitrary
vessels moving in or near a free surface. The meth-
od is aimed at conditions experienced by modern
high performance vessels that are beyond the scope
of traditional linearized approaches. The objective
is to avoid small amplitude assumptions and other
linearizing conditions that leave the free surface
essentially flat. Such assumptions would lose the
non-linear effects generated by complex hull shap-
ing, flare, etc., during large amplitude motions in
heavy seastate.

In recent years, there has been a steady pro-
gress towards a non-linear treatment of the hull/
free surface interaction. The early application of
Rankine source panel methods by Gadd (I) and
Dawson (2) provided nominally exact boundary
conditions on the hull and were developed further in
a number of approaches (e.g., Piers (3), Chang and
Dean (4), Xia (5) and Larsson (6), among others).
These approaches still left the free surface essential-
ily flat. A number of researchers pursued a Daw-
son-like approach, but with higher-order terms in



the free surface boundary condition, e.g., Ogiwara
and Masuko (7) and Musker (8). A steady non-lin-
ear ship-wave problem was solved by Jenson,
Soeding and Mi (9), using a simple source distribu-
tion located above the free surface. A similar tech-
nique was used by Cao, Shultz and Beck (10) in a
time-domain method for computing non-linear
waves, due to underwater disturbances. This so-
called "desingularized" approach has several compu-
tational advantages when treating simple bodies, but
may be difficult to apply to more general surface-
piercing bodies having complex lifting appendages.
It may also preclude future extension for simulta-
neous treatment of the air/water regions for sur-
face-effect ship or sailing yacht applications.

Early attempts with panel methods applied to
seakeeping problems in the frequency domain were
inconclusive because of computational limitations.
The recent work by Nakos and Sclavounos (1I) was
more successful, albeit with linearized free surface
boundary conditions. King, Beck and Magee (12)
showed the advantage of a time-domain, rather than
a frequency-domain approach to seakeeping calcula-
tions. More recently, Lin and Yue (13) presented a
time-domain approach, which treats large amplitude
motions of the hull, but again, the free surface con-
ditions are linearized, consequently, effects due to
the changing wetted surface when encountering
finite amplitude waves, is missing.

Zhou and Gu (14) presented a time-domain
non-linear treatment of the free surface that includ-
ed the motion of simple surface-piercing bodies.
The complex problem of the moving water line
cutting the surface panels was treated by an interpo-
lation scheme. The scheme chosen may be difficult
to apply to a complex shape. The non-linear free
surface method presented by Kang and Gong (15)
used curved panels and a high order integration
scheme for the time steps. Results were presented
for a submerged sphere oscillating with large ampli-
tude, however, these results, for a single body, took
about 14 hours of CRAY 2 time. Powlowski and
Bass (16) presented a practical method for treating
large amplitude ship motions in heavy seas. This
uses a method of modal potentials and is based on a
weak scatter hypothesis. The time-domain calcula-
tions use a set of modal amplitudes which must be
predetermined for each vessel and load condition.

For wave/hull interactions in extreme sea state,
the effect of bottom-slamming and possibly bow
flare-slamming, are matters of concern, not only for
predicting vessel behavior, but also for structural
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loads. The time-domain treatment presented by
Troesch and Kang (17) based on a doublet panel
method, showed very good agreement with experi-
mental measurements for the impact load history in
the case of relatively flat bottom-slamming, but gave
an overprediction of the load during flare entry.
This discrepancy is principally due to a simplifica-
tion of the free surface boundary condition. In the
present project, a more general free surface bound-
ary condition is used, however, practical panel den-
sities for the three-dimensional case may mot be
sufficient to resolve the water-jet feature of slam-
ming.

The present approach is based on the USAERO
FSP program (18 19). The basic program (20) is a
time-stepping panel method that has been devel-
oped concurrently with the steady VSAERO pro-
gram (21) over the past 15 years. The method uses
both source and doublet singularity panels on the
free surface and on all wetted surfaces of the con-
figuration, including, if present, ocean floor, towing
tank, etc. Doublet singularity panels, which convect
with the local flow, represent the tramsient mean
surfaces of wakes shed by lifting components of the
configuration; they are also used to model propulsor
slipstream effects.

The objectives of USAERO cover a broad
range of applications, including helicopter rotor/
body interactions, maneuvering aircraft, marine
propeller in nonuniform flow, and high-speed
train/tunnel simulations. USAERO allows multiple
moving frames of reference to be specified, thus
allowing study of such problems as transient effects
due to control deflection and the mutual interaction
of two or more bodies moving relative to each oth-
er. Boundary-layer effects are computed and mod-
eled in the surface boundary condition, using the
transpiration technique. An optional six-degree-of-
freedom flight-path integrator module treats tran-
sient problems such as the response of an aircraft
flying through a gust or the release of a store from
an aircraft, and has been briefly applied to the sink-
and-trim calculation on a Wigley hull started impul-
sively from rest.

Recently, the Free-Surface Program (FSP) was
developed as an extension of the basic code. The
combined program is referred to as USAERO/FSP.
The non-linear free surface treatment uses the
mixed Eularian/Lagrangian approach of Longuet-
Higgens and Cokelet (22) and treats the moving
hull(s) and deformable free surface within the time-
step loop structure of USAERO. The program




automatically repanels the free surface and the local
parts of surface-piercing objects to the changing
water line. The free-surface treatment includes a
finite amplitude wave generator.

An earlier paper (18) presented basic results
for a spheroid and a lifting hydrofoil. Both cases
were run impulsively from rest below the free sur-
face and included boundary layer calculations. Ex-
ploratory calculations for a generic SWATH in a
pitch oscillation and also a series 60 hull in open
water and in a wave tank simulation were also pre-
sented (19).

The ultimate objective of the USAEROQO/FSP
method is to provide a practical, non-linear capabili-

_ty for seakeeping and maneuver predictions. The
current effort is directed towards validation and
evaluation of the method applied to large amplitude
motions. This paper presents results from a discret-
ization sensitivity study based on a sphere oscillating
with large amplitude close to the free surface. For
a more general case, a frigate hull is examined in a
forced, large amplitude harmonic pitch and heave
oscillation. One of the issues in these calculations
concerns the automatic repaneling of the hull and
free surface as the vessel plunges, and particularly
when the fore deck becomes wetted. Two bow
shapes are considered here: a parent shape and one
V3 with a pronounced flare. These are taken from
a set of five bow shapes which have been tested in
model experiments (O’Dea and Walden (23)). As
the present study continues, all five shapes will be
considered, using the wave tank simulation in the
present method. Initial results of the wave tank
simulation are presented here, but further work is
needed to match the wave profiles in the generated
on-coming waves with those of the experiment.

2.0 MATHEMATICAL MODEL

The basic problem to be treated consists of an
arbitrary vessel undergoing large amplitude motions
in or near the free surface. For generality, the
vessel may have fixed or moveable lifting hydrofoils,
control surfaces and propulsors. The flow region
may extend to infinity or it may be bounded locally
in towing tank or canal simulations or in shallow
water. A ground-fixed Cartesian coordinate system
is used with the X and Y axes in the undisturbed
free surface and Z positive upwards, Fig. 1. For the
purpose of developing a practical mathematical
model, it is assumed that the effects of viscosity are
largely confined to thin boundary layers on the mov-
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ing wetted surfaces and that wake vorticity is essen-
tially concentrated in thin vortex sheets and discrete
vortices embedded in the fluid. Diffusion and dissi-
pation of vorticity from the wake surfaces and from
the free surface into the fluid interior are neglected
at this time. Away from the boundaries, therefore,
the fluid is regarded as inviscid and irrotational as
well as incompressible. The fluid motion can, there-

fore, be described by a velocity potential, ®(Rz),
v%i(:ch s%tis%secsnLaplac}é’s equatlc%,p al, ¢E)

Vo = 0 ey

Traditionally, ¢ is broken down into a number of
component parts to aid in the linearizing of bound-
ary conditions. Here, however, since there is no
linearization, ® is left as a whole quantity and will,
therefore, encompass such terms as incident wave
potential, diffraction potential, radiation potential,
etc. The convention adopted here is that the fluid
velocity, ¥, is the negative gradient of the potential,
Le.,

@

(\6’%

'/
2072
Vo aaa

PROPELLER DISK MODEL
Fig. 1. General Reference System.

It is convenient to non-dimensionalize the problem
with respect to certain reference quantities. A ref-
erence length, Ly is used to non-dimensionalize
the geometry and a reference speed, V., is used
to non-dimensionalize velocities. (Lger is usually
chosen as half the hull length, L, and Vg the mean
speed of the vessel relative to the water.) In non-
dimensional space, therefore, we have the quantities,



V= V[Veers

& = O/LpedVasr
t =t VegdLyers
x = X/Lpgp, etc.

At any instant of time, the fluid velocities are com-
puted after applying Green’s Theorem to the func-
tions ¢ and 1/r in the fluid domain, where r is the
distance of any point in the fluid from an observe
velocity point, P. With V?¢ (from Eq. 1), the vol-
ume integral in Green’s Theorem disappears and
the flow is then determined by surface integrals of
é and its normal derivative, d¢/dn, over the sur-
faces bounding the fluid including surfaces enclos-
ing the singularity sheets representing wakes. For
a point P on the wetted side of a surface, the per-
turbation potential can be written:
_ 1 7 vl ¢
¢, 47ts[?f¢n V(r)d5'+2

1 1.
--Z;j[-r-n - VédS

e B

where @ is the outward normal from the surface
and r is the length of the vector from the surface
element, dS, to the point P. Surface, S, includes
all wetted parts of the hull configuration, tank
walls, etc., and free surface. W represents the
mean wake surfaces. S-P signifies that the point P
is excluded from the surface integral, the limiting
process for the singular point when r-~0 yields the

local contribution, ¢ /2.

The first integral in Eq. (3) is the contribution
from a surface distribution of normal doublets of
strength,

n -4 C))

The second integral is the contribution from a
surface distribution of sources of strength,
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The third integral in Eq. (3) is the contribution
from mean wake surfaces, W. The mean surface of
each wake is formed by combining the upper and
lower parts of the surface, enclosing the wake singu-
larity sheet, Fig. 2. The resulting surface takes the

WAKE SURFACE W

WING SURFACE S

Fig. 2. Section through Wing and its Wake.

upward facing normal and a-local strength which is
proportioned to the potential jump across the wake:

- (¢'U - d)]) (6)

P 4%

In combining the wake upper and lower surfaces,
the source term has been discarded, which imples
that there is no normal flow relative to the wake.
In fact, the wake points convect with the flow, so
the wake surface is always aligned with the local
velocity. (The entrainment effect due to turbulent
mixing is neglected for the moment, but could be
modeled by leaving the source term on the wake
panels and using a free-shear layer entrainment
expression.)
Thus, Eg. (3) becomes

ffpﬁ“V(—:—)dS -2mp, +
5-p

f{%ﬁ+f£pwﬁ.V(%)dW=0 0

This is the basic boundary integral equation,
which is solved step by step through time as the
vessel moves (see below). At each step, the instan-
taneous boundaries and their rates of motion are
described relative to the ground-fixed frame. Each
solution provides the instantaneous doublet and
source distribution from which the velocities are




derived. Bernoulli’s equation then provides the
pressure distribution. This may be written in the
form of a pressure coefficient using the non-dimen-
sional quantities.

pP-P
Cp = J—_ = - v2 - —z. <+ 2
12p V2 oy 2

Where p is the local static pressure, pgper is the
reference pressure, which is taken here as the ambi-
ent atmospheric value. p is the water density (con-
stant). z is the height above the undisturbed free

surface and F, represents the Froude number, V0! JgL
where g is the acceleration due to gravity. The
z/Fr’ term represents the hydrostatic pressure coef-
ficient.

Equation (8) gives the pressure coefficient at a
stationary point in the ground fixed frame; the pres-
sure observed at a point moving with velocity ¥,
relative to the ground-fixed frame is
: L,

— 2

S T I
Cp =v, - v P

®

where vy is the fluid velodty relative to the moving
point and d¢/dr is the total derivative of ¢ experi-
enced by the moving point.

Before Eq. (7) can be solved, certain boundary
conditions must be satisfied. For finite time, the
condition at infinity is that V¢ — 0, so the surface
integrals in Eq. (7) are performed on the local
boundaries only. The free surface is truncated at a
"reasonable” distance away from the region of inter-
est. What is a reasonable distance will have to be
established by numerical experiment. Edge condi-

- tions may be required at the truncated free-surface
edge; otherwise, disturbances arriving there may be
reflected. So far, this has not been a problem.

On the boundaries representing the "solid” sur-
faces, the source distribution is determined by the
external Neumann Boundary Condition specifying
the resultant normal velocity of the fluid. The nor-
malized flow velocity relative to the surface is,

Ve =V =V, + 7,

(10)

where V is the perturbation velocity in fixed space
(Eq. (2)). V. is a possible uniform onset flow rela-
tive to the stationary frame; this will be assumed
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zero here, but could be used in the case where the
body frame is held stationary with the flow going
past.

¥, is the velocity of a point on the surface
relative to the stationary frame (Fig. 1),
+Q xKk 1

v: =vb

where V(<) is the body frame velocity and Q) is
the velocity of rotation about an axis in the body

frame. R is the position vector of the point in ques-
tions relative to any point on the rotation axis.

The normal component of the relative flow
is, from Eg. (10),

RoVg=f (-7, 12)

* V) = Vvomw * Var (

where Vyopy 1S the required resultant normal veloci-
ty, which is zero for a solid boundary and positive
or negative, respectively, for outflow/inflow in pro-
pulsor modeling. vy, is the boundary layer displace-
ment effect using the transpiration technique,

v =

2 = = (n3%) (13)

2
as

where v, is the relative flow speed at the edge of the
boundary layer and 6* is the displacement thickness.
The derivative is taken with respect to distance in
the direction of the local external flow. vy, is zero
for stationary boundaries and would be known from
the previous step in a time-stepping calculation.
Using Egs. (2), (5) and (11), the source
distribution on the solid boundaries can be written,

Orom * Vaz * 7

oRM ‘¥, +Q -RxA-7-¥) (14)

4

g =

The basic unknown on solid boundaries, therefore,
is the doublet term which can be obtained from the
solution of Eg. (7) at each step.

The wake doublet distribution, gy, is essentially
known at each step because it is the accumulation
of all previous solutions. Basically, at each step a
new set of wake elements is created along wake-
shedding lines. Each element takes the local jump in
potential across the shedding line (Eq. (6)) and



moves along the local mean velocity vector. This
satisfies the unsteady Kutta condition, which is ob-
tained after specifying equal pressure (Eq. (9))
across the separation line:

d 3
_IJ'!_‘_VH__E;W_ =0
dt as

vy is the mean convection speed and s is measured
in the direction of the local mean flow. py is the in-
stantaneous jump in doublet strength across the
trailing edge (Eq. (6)), i.e., uy is the newly emerging
wake strength. Equation (15) essentially states that
the rate of change of circulation at the trailing edge
must match the transport of circulation into the
wake.

The emerging doublet strength is actually un-
known at the beginning of each step, so each new
wake element is partly involved with the unknown
doublet values on the wake shedding surfaces. The
strength of each wake element, once created, re-
mains constant for all time as the element convects
with the flow. (Diffusion and dissipation are not
modeled at this time.)

On the free surface, the initial boundary condi-
tions are that the ¢ and 3¢/0n (i.e., p and o) are
zero, and that the pressure is uniform (Cp = 0).
The ambient pressure is assumed to be transferred
directly to the fluid across the free surface, i.e., the
effect of surface tension is neglected at this time.
From Eq. (8), therefore,

(15)

9 _

»2
ot (

the kinematic condition on the free surface is satis-
fied by moving the particles with the local flow,
dr

. _Z_]/z (16)
Fr?

dt Y D
Following a particle, the total derivative of ¢ is
ﬂ = @ —v2
dc at
Hence, using Eq. (16),
a¢ [_E_ - vz) /2 (18)
dr Fr?

Assuming for the moment that the free surface
displacement z and perturbation velocity v are
known from the previous step, Eq. (18) can be inte-
grated over a small time step to evaluate the current
doublet distribution on the free surface. Given this,
Egq. (7) can then be solved for the source distribu-
tion (i.e., (i.e., 3d/dn) on the free surface. This,
together with the doublet gradient, provide the
instantaneous perturbation velocity in Eg. (17).
Integrating Eq. (17) then provides the free surface

* displacement for the next step, and so on.
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In summary, the simultaneous solution of Eg.
(7) on the instantaneous locations of the free sur-
face and hull configuration at each time step pro-
vides the complete doublet and source distributions
from which the flow velocities can be computed.
Basically, on the hull the source is known and the
doublet is unknown, while on the free surface the
doublet is known and the source is unknown. On
the wake surfaces, the doublet is essentially known
and the source is zero.

With the flow velocities known, the pressure
distributions can be evaluated using Eq. (9) and can
be integrated over the surface of each part of the
configurations to provide the force coefficient,

Cr = -[[C,7 + CF,|VRldS (19)
S

and moment coefficient,
Cu = [[(Com + CTHIT) x a5 (a0)
s

where 7 is the position vector of a surface element
relative to a selected moment reference point, and
C; is the skin friction coefficient from a boundary
layer analysis based on the current surface velocity
distribution.

Since the geometry has been normalized by
Lyer, the above coefficients are based on an area of
Lyer’ and a moment arm divided the Lyg. They in-

clude the effect of hydrostatic pressure (thez/Fr’
term in Eq. (9), and therefore include the buoyancy
force and moment. The six-degree-of-freedom
response of the vessel to free-surface deformation
can therefore be computed by integrating the equa-
tions of motion over each time step.

The wetted surfaces of surface-piercing objects,
hulls, channel walls, etc. are modified by the de-
forming free surface and by the movement of the
vessel. These effects must be accounted for in the
numerical treatment of the model.




3.0 NUMERICAL PROCEDURE
3.1 General

The numerical procedure for treating hy-
drodynamic problems is outlined in Fig. 3. This is
basically the USAERO program (20), plus a cou-
pled free-surface program, FSP. The combined
program is referred to as USAERO/FSP.

3.2 Matrix of Influence Coefficients

The main part of the numerical procedure
is the treatment of the surface singularity distribu-
tion. Basically, the surface integrals in Eq. (7) are
discretized using quadrilateral panels as finite
surface elements. Uniform doublet and source
distributions are assumed on each surface panel,
while a linear doublet variation (i.e., uniform vorti-
city) is assumed in the streamwise direction over
each wake panel. The surface integrals in Eq. (7)
can then be performed in closed form over each
panel. The resulting panel influence coefficients

Cangar)

/[
INITIAL SETUP

INPUT

are evaluated for all active panels (i.e., configura-
tion surface, free surface and wake surface panels)
acting at a central control point on each active
(ie., wetted) surface panel on the configuration
and free surfaces. Eq. (7) then becomes a sum-
mation over all panels and is satisfied at each
panel center. This forms a set of simultaneous
equations,

NPAN

>

(bg Cr) — 2mn,

k=1K+J
NPAN NWS
+ Y oyBy + Y ppeDp =0, J=1NPAN
£=1 k=1

(21)

where py, oy are the doublet and source densities,
respectively, on panel K.

C,x, Bjx are the influence coefficients, re-
spectively, for the uniform doublet and source on
panel K acting at the control point of panel J (Cy,
and By, are given in Maskew (21). ’
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Fig. 3. USAERO/FSP Method Outline.
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NPAN is the total number of active panels
on all local wetted surfaces, including the free
surface. NWS is the total number of free, cross--
flow wake segments (Fig. 4); this number grows
with time. g,z is the doublet density at the K®
wake segment, and D, is the influence coefficient
for the linearly varying strength distribution over
the pair of wake panels just upstream and just
downstream of the segment. The influences of the
wake segments that are about to be created at the
shedding lines are combined with the local upper
and lower shedding panel influences in the first
term of Eq. (21) since these segment strengths are
unknown at the start of each step. Some influence
coefficients have to be re-evaluated at each time
step--these include all wake panels, moving free--
surface panels, and any hull panels which have
relative motion with other hull panels or which
have been modified by the repaneling procedure.

Collecting together "known" and "unknown"
quantities in Eq. (21), the following can be written,

NH
E ke Cr
K1
(22)
NPAN

+ E Ox By

K=NH+1

+ Ep = 0; J=1,NPAN

C, = -2=m,

NPAN

NH
= E Ox By + E ke Crp
=1 . K=NH+1

WS
+ ; b, Dy, and

NH = number of active panels on the hull.

Although USAERO has a number of ma-
trix solver options, iterative solvers generally have
a problem converging on the free surface equa-
tions (which involve the source influence coeffi-
cient term). The direct solver is therefore used in
this type of analysis. The internal direct solver in
USAERO uses the Purcell (24} vector method;
however, on certain computers, e.g., Cray, Convex,
SGI and IBM, USAERO can be directed towards
a system direct solver which is generally optimized
and vectorized. Thus, the penalty for using a
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direct rather than an iterative solver is not that
great unless the number of panels gets well above
3,000.
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Fig. 4. Panel Influences.

After solution of the singularity values, the
perturbation velocities can be evaluated directly on
each panel:

v, (23)

T

<
I
f
Sy
+
<)

The normal component, v,, is obtained
directly from the panel source value,
(24)

vy = —4no

The tangential component, ¥, is obtained
from the surface gradient of the doublet,

V, = -4nVy (25)

The doublet gradient is evaluated in two
directions over each panel using a second-order
differencing scheme over three panels in each
direction. On the "solid" boundaries, the perturba-
tion velocity is combined with the local velocity,
v, due to body motion to give the resultant veloci-

1y,

VR=V"V:

Hence, the pressure coefficient, Eq. (9), can
be evaluated at each panel center. The d¢/dr




term is evaluated using second-order forward dif-
ferencing based on the current and two previous
solutions.

Forces and moments (Egs. (19) and (20))
are evaluated for each part of the configuration by
summing the member panel contributions; the
pressure and skin friction coefficient are assumed
to be uniform over each panel.

3.3 Boundary Layer Calculations

On the moving solid surfaces, families of
instantaneous streamlines are computed at each
time step using the calculated panel velocity val-
ues. These streamlines provide a basis for integral
boundary layer analyses, which start with a laminar
calculation at the stagnation point or "attachment"
point of each streamline.

Laminar boundary layer calculations follow
the original method of Curle (25), with modifica-
tion to solve the unsteady momentum integral
equation using a Runge-Kutta method. The turbu-
lent boundary layer method is also based on the
unsteady momentum integral equation. Cousteix’s
(26) entrainment relationship and Lyrio/Ferziger’s
(27) skin friction relationship are used for closure.
The details of the method are described in
Maskew and Dvorak (28), together with tests of
the procedure against experimental data and
against other methods. These show good agree-
ment.

The calculations provide the boundary layer
displacement source term and skin friction coeffi-
cient distribution along each of the instantaneous
streamlines. These quantities are then redistribut-
ed onto the surface panels in the attached flow
regions. The skin friction term is included on the
analysis of forces and moments (see Egs. (19) and
(20) above). The calculations also provide the
location of separation on each streamline. The
locus of such points defines separation lines on the
body surfaces. At this time, there is no automatic
coupling of these data with the wake-shedding rou-
tine. Simple cases of separated flow can be treat-
ed, but the user must specify the separation line at
this time based on the boundary layer prediction.

3.4 Free-Surface Treatment

The free-surface deformation is first evalu-
ated by integrating Eq. (17) over a small time step.
A forward Euler scheme is used based on the
computed perturbation velocity (Eq. (23)); i.e.,
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FED = PO 4 81y (26)
The z component of 7, together with the square of
the perturbation velocity, allows evaluation of the
gradient of the potential with respect to time (Eq.
(18)). This can then be integrated over the small
time step to provide the new doublet distribution
on the free surface for the next time step; i.e.,

u(‘!*&‘f) = u(r) + 61(
T

dj(r)) 4

The starting conditions for the free-surface
integration are that the z component of 7 is 0.0
and ¢ is 0.0.

For the objective of seakeeping predictions,
a simple wave generator has been installed which
applies an oscillating doublet term at the upstream
edge of the free surface,

2nT

K(E) = b, sin (7) @

where p, is the doublet amplitude and p the period
of oscillation. (This will later be expanded to in-
clude more Fourier terms.) At this time, because
of edge conditions, only in-tank conditions have
been examined. A simple damper is applied at the
downstream end of the tank to absorb wave ener-

gy.

3.5 Wake Movement

When a solution has been obtained, veloci-
ties are computed at all existing wake points using
a summation of all singularity contributions in the
model. All wake points are then convected along
the local velocity vector for a small time step.
Simultaneously, a new set of wake panels is creat-
ed along the wake shedding lines (Fig. 5).

The current trailing-edge doublet value (the
doublet jump across the wake at the trailing edge)
is transferred to each newly created wake segment.
The doublet strength on each wake segment re-
mains constant for the remainder of the calcula-
tion. The wake vorticity effectively varies in time
and space according to the local stretching or con-
traction of the wake sheet as the wake points con-
vect at the local velocities. When the new config-
uration has been assembled in the ground fixed



CREATED AT EACH TIME STEP

Fig. 5. Wake Model in USAERO.

frame at each step, a routine checks for intersec-
tions of the wake segments with the solid surfaces.
For the most part, the points convect around
downstream obstacles; however, in some cases
intersections are unavoidable, e.g., if propeller
blades are rotating in the presence of stators. The
code deactivates any wake segment (cross-flow or
streamwise) that cuts a downstream solid surface.

3.6 Surface Paneling Routines

In USAERO, the surface panels are assem-
bled into a number of patches which have a regu-
lar row/column arrangement. User input of each
patch requires a number of defining sections to be
described using a set of x,y,z offsets which may be
digitized from sectional drawings or extracted from
a CAD package. A sufficient number of sections
must be defined to adequately describe the surface
curvature. If the surface is flat or conical, only
two sections are required. USAERO will panel up
the patch according to simple user input on panel
density and form of distribution.

The free surface may be represented by
one or more patches facing downwards. When the
wave pattern remote from the vessel is not of
direct interest, it is reasonable to reduce panel
density in the outer regions. Usually, a 3:1 reduc-
tion in panel number is recommended on neigh-
boring rows of panels across a patch junction.
This maintains a correspondence of adjacent panel
centers across the junction. A routine can be
activated which automatically triangulates the pan-
cls on the high-density side, thereby avoiding the
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chance of a hole appearing in the discretized sur-
face. .

The paneling routine in USAERO includes
procedures to compute intersections (e.g., at wing-
body junctions) and to repanel up to the intersec-
tion. This is based on a simple procedure, but is
adequate for reasonable panel densities. An ex-
tension of the procedure is used at each time step
in repaneling the surface-piercing hull elements
and free surface to the instantancous waterline.
This treatment is essential for smooth behavior of
the time histories of surface pressures and forces;
however, the repaneling procedure requires addi-
tional treatment for the evaluation of d¢/0t in E

"g. (9), and a number of surface coefficients have

to be re-evaluated. The repaneling becomes quite
complicated for extreme-amplitude motions (see
later) when the waterline cuts obliquely across a
patch.

In USAERO the surface patches may be
assembled into one or more components for the
convenience of force and moment information.
Each component may be assigned to a different
moving frame of reference for the treatment of
multi-body problems. The reference frames,
themselves, may be assigned to other reference
frames rather than to the ground-fixed frame di-
rectly. This allows individual parts of the vessel to
undergo a prescribed motion relative to the parent
frame (e.g., for rudder deflection, store release,
etc.) during the calculations.

4.0 RESULTS

The following results are from the initial
part of an evaluation of the USAERO/FSP ap-
proach for nonlinear free surface problems. The
evaluation includes validation cases and sensitivity
studies. Results are presented here for a sphere
oscillating near the free surface and for a frigate in
large amplitude motion.

4.1 Sphere
4.1.1 Heave Motion

The force history was computed for a
sphere oscillating in heave beneath the free sur-
face. The sphere has unit radius and the motion

of its center is described by,

z = -2.0 + 0.5 cost wt




where  is the frequency of oscillation and is relat-
ed to the wave number, K, through

K = o'/g
In this case, K = 1.

The calculations were performed using the
y = 0 plane of symmetry. In the results presented
here, two panel densities were used on the half-
sphere: a 10 x 10 array and a 15 x 15 array, see
Fig. 6. The half free surface, which is truncated at
a distance of 16 sphere radii, has 10 panels in the
azimuth and 20 in the radial directions. The cal-
culation used 24 time steps per cycle.

Fig. 6. Sphere Paneling Showing the 10 x 10 and
15 x 15 Arrays.

Figure 7 shows the computed time history
of the heave force, which is nondimensionalized by
pgKaR? R is the radius of the sphere, 1.0 here,
and a is the amplitude of the motion, 0.5. The
symbols in Fig. 7 show the values for the low-pan-
el-density case, and these are in very close agree-

ment with the line for the higher density case.

Cl.
3

B

Y ERY;

3
00 08 1.6 24 32

Fig. 7. Computed Hcave Force History for a
Sphere in Heave Oscillation at one Diame-
ter below Free Surface.

The overall curve agrees very well with that given
by Kang and Gong (15) and, in fact, the first har-
monic terms of 1.846, 264 (cosine, sine, respec-
tively) compare with Kang and Gong’s values of
1.843 and .267. The present results give a small
mean value of about 9% of the first harmonic
magnitude and a sectional harmonic force of 3%.
These are low compared with Kang and Gong’s
values of 1.5% and 6.5%, respectively. As far as
sphere panel density is concerned, the present
results (a range from 25 panels to 400 panels have
been examined separately on the half-sphere)
seem essentially converged up to five harmonics.
The study is continuing and will consider time-step
discretization, free surface discretization, free-
surface truncation distance, and a range of fre-
quencies. Computation times on a Silicon Graph-
ics 4aDGT workstation were 4.5 minutes per cycle
and 10 minutes per cycle, respectively, for the 10 x
10 and 15 x 15 array cases presented here.

4.12 Surge Motion

The two sphere cases were run in surge
motion described by:

x = 0.5 cos wt

The sphere center was at z = -2.0 and the wave
number, K = 1.0. The time histories of the surge
and heave forces are shown in Fig. 8. The sym-
bols show the calculated points for the lower den-
sity case and again, they are essentially on the
curve for the higher density case. The surge force
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Fig. 8. Computed Surge and Heave Force Histo-
ries for a Sphere in Surge Oscillation at
One Diameter Below the Free Surface.



history agrees very well with that calculated by
Kang and Gong (I5), the first harmonic in-phase
term being 1.931, compared with 1.928. The pres-
ent out-of-phase term, however, is .262, compared
with a value of .124 from Ref. 15. The heave
force is small compared with the surge force, and
is dominated by the second harmonic terms. The
present values appear to be about half those given
by Kang and Gong (15). These discrepancies will
be investigated as the study continues.

42. Frigate
42.1 General

Experimental data are available from a
series of tests on a frigate model in steep head
waves (23). The results cover fairly extreme con-
ditions, including water on the deck, and compare
the effects of five bow shapes, Fig. 9. The ongoing
theoretical study, which has just started, will even-
tually consider the full range of shapes; however,
initial calculations for the parent (shown dotted in
Fig. 9) and the increased flare shapes are present-
ed here.

Bow 2

Bow 3 Bow 4
(Shallow Rouckle) (Deep Knuckle)

Fig. 9. Alternate Bow Shapes for the Frigate Ex-
periments.

The conditions of the tests are very difficult
to treat by purely theoretical modeling, and so the
approach has been broken into four steps. First,
the pure radiation condition is considered for the
hull in large amplitude motion with no forward
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speed. A simultaneous pitch and heave motion is
used to accentuate the bow motion which changes
from totally dry to totally wet during the cycle.
Although such a calculation is interesting in itself,
the main objective here is to quickly explore the
behavior of the automatic repaneling procedure in
relatively simple conditions before proceeding with
the more complex cases which take considerably
more computing time.

The second aspect of the problem, which
can be examined separately, is the wave generator
itself. The present numerical model generates a
free-running, finite-amplitude wave system by
applying a sinusoidal potential at the upstream
"edge" of the free surface. This uses input values
for amplitude and period. Just as in a wave tank,
whether or not a "regular" wave train is generated
depends on the balance between the amplitude
and period of the oscillator. Matching an experi-
mental wave pattern is therefore very difficult and
an approximation may have to be accepted.

The third aspect of the problem considered
separately here is essentially the wave excitation.
Again, initial calculations are presented here for
the frigate in forced motion through large ampli-
tude waves. The purpose of these calculations is
to ensure smooth wave excitation forces before
proceeding with the fourth stage, which will let the
frigate move freely.

422 Wave Radiation

The "parent” and "flared” hulls were set in
pitch and heave oscillation with sufficient ampli-
tude for the bow keel to clear the mean free sur-
face, and for the foredeck to become submerged
during the cycle. The period of the oscillation was
equivalent to an incident wave length of 1.2L at Fr
= (.3--a condition which appears critical in the
experimental data (23). The calculation used 60
time steps per cycle and took about 4 bours on the
Silicon Graphics 4DGT workstation. The case
used 1,252 panels on one side of the y=0 plane of
symmetry. Figs. 10(a) through (I) show a general
view of the parent hull case with free surface ele-
vation contours at key steps in the cycle. Blue
indicates a wave peak and red a trough. The mo-
tion starts with a positive pitch motion. Fig. 10(a)
shows the condition as the bow is about to leave
the water. At this stage, the free surface is de-
pressed. As the bow clears the free surface, the
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Fig. 10. Calculated Instantancous Free-Surface Elevation Contours During One Pitch/Heave Cycle of the
(Parent) Frigate Hull at Zero Forward Speed.
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Fig. 10. Concluded.
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depression moves away in a crescent shape, Fig.
10(b), and the free surface under the hull re-
bounds into a peak, Fig. 10(c). As the bow re-
turns, it reinforces the peak, Fig. 10(d), and is
eventually engulfed, Fig. 10(e). Figs. 10(f) and (g)
show the condition shortly after submergence; the
continued downward movement of the bow creates
a local depression in the free surface, and the
original wave peak is now divided and proceeds
outward. The reverse happens when the bow
starts to come back up, Fig. 10(h); the depression
is divided by a central peak over the upcoming
deck. The central upwelling continues (Figs. 10(i)
and (j)) until the deck breaks the surface, Fig.
10(k). The depression in the free surface as the
deck continues upwards, Fig. 10(1), is significantly
more widespread than during the first part of the
cycle (Fig. 10(a)).

During the above calculation, an analysis of
the impact loading was performed for three parts
of the bow shown in Fig. 11.

Fig. 11. View of the Frigate Hull Paneling Show-
ing the Separate Parts used for Force
Integration Details.

Part A is a vertical strip of panels on the side of
the bow and goes down to the keel; Part B is a set
of panels on the deck and Part C is a set of panels
on the side of the bow above the mean free
waterline. The time histories of the integrated
loads on'these pieces are shown in Fig. 12. The
loads are divided by the hull displacement. The
line in Fig. 12 is for the parent hull, while the
symbols are for the flared blow case. A signifi-
cantly higher loading is predicted for the flared
bow, including the Part B or deck. The flared hull
case was repeated with a higher density of panels
on the free surface, but gave essentially the same
load trace.
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Fig. 12. Comparison between the Parent and
Flared Bow Shapes for the Calculated
Loads During Extreme Pitch/Heave Os-
cillation.

Figures 13(a) and (b) show station cuts
through the bow and free surface during the sub-
mergence of the bow. 13(a) shows the bow going
down and the free-surface depression--the symbols
display the ZWAVE height value as a separate
parameter. 13(b) shows the upwelling conditions
as the bow is moving back up. The higher amount
of activity for the flared bow case is apparent in
both cases. The dotted line in both (a) and (b)
shows the free surface location for the flare case
using a 50% higher panel density in the lateral
direction. This gives somewhat more detail, but

ZWAVIEZ
0045 038

PARENT
0.030 0. FLARE v
FLARE ———
(increased density
0.015 04 on free surface)
Nyt
-
000 0.2 / —- v
G
i
0.015 0.0 !
=
iy
-0.030 -0.2L " l
-0.045 -0.4 / Y
0.0 0.4 038 12 16

(a) Downward Motion

Fig. 13. Comparison Between Parent and Flare
Bow Shapes for Computed Wave Profile
at Station Cut through Bow During Ex-
treme Pitch/Heave Motion.
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Fig. 13. Concluded.

does not materially affect the integrated forces.
The panel density is not sufficient to capture the
rapid rise up immediately adjacent to the hull
surface during the downward plunge, and conse-
quently, misses the water jet feature of the slam.
It is very unlikely that a sufficiently high panel
density could be used in a practical case to capture
these features in a fully three-dimensional run
(whereas it is possible in the two-dimensional
case). Should this omission prove important, a
local modeling--somewhat equivalent to a base
wake from a bluff body--may be possible.

423 Wave Generator

A separate wave generator tank model is
run to examine the form of the waves prior to
running the hull model. Basically, the variables
are amplitude and period of the forcing function
on the upstream potential; however, time-step size
and panel discretization may affect the .ensuing
wave form.

Figure 14 shows the time history of the
velocity potential on a line of free-surface panels
running downstream from the generator panel
The oscillating potential is seen to be transferred
smoothly onto the neighboring panel with only a
small loss in amplitude. The ensuing wave pat-
tern, however, suffers some damping and some
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distortion as it progresses down the channel, Fig.
15. Figs. 16(a) and (b) display the Vx and Vz
perturbation velocity contours on the side of the
"tank" in relation to the generated wave some time
after the start of the oscillation. The Vx distribu-
tion, Fig. 16(a), clearly shows an influence of the
tank base presence.
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Fig. 14. Time History of the Velocity Potential
(ie, Doublet) on Several Panels Just
Downstream from the Wave Generator.
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Fig. 15. Computed Wave Profile.
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Fig. 16. Numerical Wave Generator Calculations.

4.2.4 Wave Tank Simulation

The setup for the wave tank simulation is
as follows. The wave oscillator is first started up,
but the hull is left stationary at the downstream
end of the "tank". As the waves become estab-
lished, the hull starts to move up the tank and

I
=Y

eventually encounters the gencrated saves, Fig. 17.
At this time, the motion is forced. This allows the
wave excitation forces to be examined prior to
release of the model for the free pitch and heave
calculations. So far, some details of the repaneling
procedure have caused minor problems with the
d¢/at pressure term, which must be cleaned up

Fig. 17. Initial Calculations for Frigate in Numerical Wave Tank.
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before running the model free. Figs. 18(a) and (b)
show the good behavior of the velocity potential
distribution at two steps during the wave encoun-
ter. The extreme variation of the paneling during
a wave encounter is clearly visible in these two

FRIGATE W e 1o s b tar oy

(a) At a Trough

FIRGATEE I 1F 1T 8o sk 3

(b) At a Wave Peak

Fig. 18. Cutaway View of Calculated Velocity
Potential Distribution During Wave En-
counter.

figures. Fig. 19 shows the time history in the dy-
namic and d¢/dt pressure components on a panel
near the bow during the wave encounter; these are
out of phase with each other. Finally, Fig. 20
shows a station cut through the bow and tank
near the end of the run showing a slightly higher
wave diffraction for the flared bow--as would be
expected. A higher panel density will be employed
for the later runs.
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Fig. 19. Computed Pressure Components on a
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Tank Simulation Comparison between
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5.0 CONCLUSIONS

Encouraging progress on the development
of a general nonlinear numerical method for
wave/hull interaction problems is presented. Basic
validation presented here for a sphere case in
large amplitude motion is in good agreement with
published results, at least for the first harmonic
loads. Discrepancies in the smaller higher har-
monics will be investigated as the study proceeds.
Initial results for a frigate application in large
amplitude motion and in the presence of large
amplitude wave encounters look promising for




future stages of the ongoing study aimed at com-
parisons with experimental data on the model in
steep head waves.
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1 would like to congratulate the author on his
very interesting paper and presentation. As a
comment, I think that "the navy secret weapon,” i.e.,
the ship jumping out of the water during a time
domain motion simulation shown in the presentation,
is probably due to too large a time step used in the
simulation. This may result in an excessive force
impulse. In other words, the resolution of the
modeling of sharp transient loading may, be not
sufficient. As a question, I would like to ask the
author to provide a general description of the
procedure used in the modeling of the water flow on
decks used in his simulations.
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AUTHORS’ REPLY

The computed frigate motions shown during the
presentation are part of a sensitivity study on the
effects of panel size and time step size. The
divergent path calculation referred to by the discussor
is in fact due to too large a time step size as pointed
out in the presentation. An unusually high d¢ term
was in fact calculated at the stern region due mainly
to a poor representation of the transom stern effect at
this time.

The modeling of the water on deck has no special
treatment at this time. It simply evaporates at the
instant the deck recuts the free-surface on the
upstroke. This feature and the current omission of
the jet on bow keel and bow plane entry, need further
consideration in the continued development of the
method.




A Nonlinear Theory of Ship Motion in Waves

J. Pawlowski (National Research Council, Canada)

ABSTRACT

The paper presents a systematic
approach to the formulation of non-
linear boundary value problems of ship
hydrodynamics. The approach is based on
an explicit wuse of fluid domain
transformations. New forms of the
impermeability and free surface
conditions are derived. Perturbation
formulations of Dawson-like and Neumann-
Kelvin problems with steady and unsteady
velocity potentials are developed,
including second order equations for the
latter. A physically justified weak-
scatterer hypothesis is introduced and
applied to obtain a perturbation and
direct formulation of the non-linear
ship-wave interaction problem, for which
solutions can be obtained using existing
computational methods. In the direct
formulation a consistent non-linear flow
matching (radiation) condition on a
contrel boundary is derived.

INTRODUCTION

The aim of the present paper is to
outline a systematic approach to the
formulation of non-linear boundary value
problems of ship hydrodynamics. It
appears that such an approach can be
developed by taking explicitly into
account the change of a fluid domainD
relative to its known reference
configuration D,, which is inherent in
those problems. The explicit inclusion
of the domain variation is accomplished
by defining a one-to-one domain
transformation. The transformation
depends upon time for time dependent
problems. To the domain transformation
there corresponds a transformation of
the scalar, vector and tensor fields
used to define the boundary value
problem in D. An application of both
transformations allows a reformulation
of the governing equations of the
problem so that they are applicable on
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D,. The second section of the paper
describes the domain and fielad
transformations expressible by means of
the exponential operator of the
directional derivative taken along the
domain displacement field which provides
the one-to-one mapping between D and
D,. The results constitute in part a
restatement of arguments presented in
[1] and (2] to justify the usual Euler-
like formulations of the boundary value
problems [3].

In the third section the domain and
field transformations are applied to the
governing equations of an irrotational
flow of the ideal fluid, influenced by
the presence of a free surface, 9D,,and

of the wetted surface ,0D,, of an
impermeable body. The presence of a
control surface, 6&D,, on which the

continuity of the velocity and pressure
fields is required, is also considered.
The transformed Laplace's equation,
kinematic and kinetic conditions on the
free surface, and matching conditions on
the control surface are derived. This
is followed by the development of the

explicit form of the impermeability
condition, applicable on 8D, and dD,.
This form of the impermeability

condition takes explicitly into account
the domain displacement field. The
relation of the explicit condition to
its well known implicit counterpart is
discussed in the fourth section. In
addition, a general form of the
condition, which is applicable on the
surface of an arbitrarily deformable
body, is presented. It is shown that in
general for surface piercing bodies the
application of a body displacement field
in the impermeability condition leads to
an inconsistency in the formulation of
the boundary value problem on the
reference fluid domain.

As described in the fifth section,



a perturbation formulation of a boundary
value problem defined on D is obtained
by assuming the solution to the boundary
value problem transformed to D, in the
form of a perturbation series. The
fifth section presents perturbed
governing equations on D, derived by a
domain transformation. It is shown that
the usual free surface conditions [3],
(4], obtained by the Euler-like
perturbation procedure constitute a
special form of more general equations
which do not depend upon the assumption
of single-valued wave elevation. Next,
perturbations of the double body flow
are considered, and the results are
compared with the formulation presented
in [5 }. The main difference between
the two sets of governing equations
consists in the ©presence in the
equations derived here of additional
terms in the impermeability condition on
the hull surface. Those terms result
from the existance of a waterline for a
free surface piercing Dbody, and
therefore are here referred to as the
waterline correction. A Dawson-like and
Neumann-Kelvin formulation of the
forward speed problem are shown to
follow from two different applications
of the same condition on the free
surface, and both include terms due to
the waterline correction. The Neumann-
Kelvin formulation is continued to the
second order free surface and
impermeability conditions for the steady
and unsteady parts of the velocity
potential.

_ In the sixth section, the weak-
scatterer hypothesis, {6], is introduced
as a physically justified assumption
which makes possible to obtain solutions
to non-linear time dependent problems of
ship hydrodynamics by currently
available numerical methods. First, the
application of the hypothesis is
illustrated in a perturbation
formulation for a ship advancing in
steep waves. A comparison of computed
results with experiment 1is shown
following [6]. Second, the hypothesis
is used to derive a more general direct
formulation of the problem, in which the
solution is sought for directly in an
instantaneous fluid domain D bounded by
a control boundary dD.. on dD. the
solution in D 1is matched with a
perturbation solution in the fluid
domain external to D. The domain
transformation approach leads to a
consistent matching of the velocity and
pressure fields on 0D.. In other words

it allows the construction of a
consistent non-linear wave radiation
condition.
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The presentation throughout the
paper is formal and no discussion of the
existence and uniqueness of solutions to
the considered boundary value problems
is undertaken. The tensor notation used
is analogous to the dyadic notation

explained in ([7]. A non-standard
notatio —_— -, i

n, 5% or 3 is employed for

the gradient operator and & or—gi

ox? ay?

for the Laplace operator.

DOMAIN AND FIELD TRANSFORMATIONS

One of the characteristic features
of boundary value problems of non-linear
ship hydrodynamics is the dependence
upon time of fluid domains on which the
problems are defined. The instantaneous
configuration (position in space) of the
fluid domain boundaries is an unknown in
a typical non-linear time dependent

problem. In general, for an
instantaneous fluid domain D, the
boundaries can be categorized

generically as an impermeable wetted
body surface &D,, free water surface
oD,, and control surface dD.. The
evolution of configurations of 9D, and
oD, in time depends on the motion of the
impermeable body and on the water flow,
and therefore belongs to the solution to
the problem. The evolution of the
configuration of 9D, is prescribed as a
part of the formulation of the problem.

A perturbation solution to a non-
linear ship hydrodynamics problem can
therefore be considered in three steps.
First, a transformation of the governing
equations of the problem is made from
the instantaneous domain D to a
reference domain D, which has a
configuration fixed or given in time.
Second, the solution to the transformed
boundary value problem is sought for in
the form of a perturbation series.
Third, the perturbation solution on D,
is transformed back into domain D, thus
providing a perturbation solution to the
original boundary value problem on D.
The advantage of such an approach
consists in taking explicitly into
account the evolution in time of the
geometry of D.

In this section domain
transformations and corresponding
transformations of scalar, vector and
tensor fields defined on transformed
domains, are discussed. The discussion
aims at establishing tools for the
required transformations of the boundary




value problems. In part the present
discussion restates in a different form
arguments that were described in [1] and
f[23. Those arguments were used to
justify Euler-like approaches to fluid
domain perturbations, in which domain
transformations are not  included
explicitly. Here, however, the purpose
is to give the domain transformations an
explicit consideration. In addition
transformations of surfaces defined in
the reference domain are discussed as a
preliminary step to a formulation of the
explicit impermeability condition.

Let ¥ denote the radius vector in
an instantaneous fluid domain D,X
signify the radius vector in a reference
fluid domain D,, and t be the time

variable. Domain transformations
considered here are one~-to-one mappings
between the two domains, including

corresponding boundaries 8D and dD,.

Such mappings can be expressed in the
form:

y=Xx+7 (X,¢) (1)

where % (X, t) is a domain displacement
field. The domain displacement field is
assumed to be sufficiently smooth to
guarantee the existence of its
derivatives required in further
considerations. It is convenient to
define the exponential operator for

directional derivative 7 - 9

ox

3

2 -2 .1
ax

exp(ﬁ- )=1+r|'-—_+

(2)

where —2= denotes the gradient operator

ax
and dot indicates the scalar multi-
plication multiplication. Using (2)
mapping (1) can be rewritten as:
— —  H\ —
= € b ——
y xp(n ax) x (3)

which defines the domain transformation.

The same transformation by means of
the exponential operator can be applied
to tensor fields defined on D,. With
v (X, t) denoting a scalar component of
a time dependent tensor field on D,, the
relation becomes:

— _ — . 3\ .=
u (y,t) = exp (n 8}?) v(x, t) (4a)
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where u (y,t) is the image of v (X, t) in
D. The assumption is made that v(x,t)
is a real analytic function of X,
although in practice only first few
terms of the expansion on the right hand

side of (4a) are used. Transformation
(4a) has the property:
—. 9
exp (M * ==) 1 v
X =
(4b)

= exp (M, * a—i.{.) ’4 v (X)

for:

LB

=% - X +T(E) (4c)

Relations (4b) and (4c¢) imply that for
a given u(y,t) in (4a) v(X,t) on the
right hand side does not depend on the
choice of domain displacement field 7.

Since governing equations of
boundary value problems are defined in
terms of time and space derivatives of
basic scalar, vector and tensor fields,
such as for instance a velocity
potential, it is necessary to establish
transformation rules applicable to such
derivatives of u(y,t) and v (X t).

From (1), (2) and (3) it is found that:
- dz -+ 9 .0
du = dx (E e n) Fi
(5a)
0 —~. 0 d
+dt(—a—Eﬂ 8—5,_u+a—tu)
and
du—dx-(?+—_—_®n) exp('ﬁ'-%)a—z_{.v
8 . W
rdelgp Weexp(n - o)
— ., 3\ ad
+3XP(11 —3;)%\’]
(5b)

where I denotes the unit tensor, ande
signifies the tensor multiplication.
Since dx and dt are independent
differentials it follows that:
d d a
__u T T
ax) ox

% = expCT . v (6a)



3 yenpfi- 2] 2 v (eb
spuee(i ) gz v (69
In addition, taking é%u =y and
-g%v =v’, (3), (6a) and (6b) give:
&= = & 6c
ot - exp(" a’) s ¥ (69

By mathematical induction formulae (6)
are generalized to:

ak+l¢m¢n
3y dyz dy7 ot ™
(7)
— 3 gk+temen
= exp(n '-==)-—————~—————
X | 3x}oxioxratn
where k, £, m and n are 0, 1,...., and
y; and x;, 1=1,2,3, denote

respectively Cartesian coordinates in D

and D,. This -means that for tensor
fields with components u and v related
by transformation (4a), their
derivatives are related by

transformation (7).

The application of relations (4a)
and (7) in transformations of governing
equations can be generalized by
considering u and v as matrix vectors:

(8a)

u={u, U, .., Wl

= {vll vz/ L Vk} (8b)

of all the scalar field components and

their derivatives occurring in a
particular boundary value problem. On
the basis of (4a) and (7):
u; = exp(n ?T% v, (9a)
ak+!+m+n
dy; 3y; dyy ot ™
(9b)
- a ak+[0mon
= eXP(“ 'a——) Ak Aadaomain Vi
X | 9x;" 0x, 0x3 Ot "
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Let F(u) be an analytic function of the
components of matrix vector u, then:

k
Flu) = exp[z (u; - vy) 33—]5’(\')
in i
(10a)

Using (10a) and (9a) it is found that:

F(u) = exp(ﬁ' . -a%) F(v)

(10b)

The above formula applies in particular
to functions F(u) which are polynomials
with respect to their arguments {u,, u,,

cee, W)

Another type of functions of
special interest in view of the boundary
value problem transformations are
functions which define surfaces in D and
D With:

o0*

F(X) =c¢C
(11a)

defining the reference configuration in
D, of a piece-wise smooth surface, the
corresponding instantaneous configur-
ation of the surface in D is given by:

f(;;/t) _F(}_{) =0
(11b)

This leads to the consideration of
sufficiently smooth functions defined in
D by transformation (1) and relation

(11b). It follows from (11ib) that:
T+ eq- 2
(T gzen) o5t
M .8 . 8 Aax- 2
cdt(Gl gt g E o F

from which:
d -~ 0 .
—8y_f (I taz e n) —ax_.F (12b)

and




3 -__.0q .= 3 =1 . 9
3t at (}“a;?“) Frad
(12¢c)
where (7 + 58; ® n)_ is the inverse of
T+ a_aj'f ® 7. The normal vectors on the
respective surfaces are defined by:
m=2r 2L
oy _Q_f
oy
(13a)
and
F=-2r_1
ox —Q-F
%"
(13b)

Using (12b), the transformation of. the
normals is given by:

F=%-N <
N-T XN
(13c)
with:
= |= 9 -1
K=[I+ — @
ax "
(134d)
and X* denoting the transpose of XK.

When the surface determined by
(1la) is parameterized so that:

F [Z(A,u)] =C
(14a)

w@ere A and y are real parameters, the
differential element of the surface is
defined by:

35 = 3%, A 9%,

(14b)
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with A denoting the vector multi-
plication,
— Ix
axl = —a—l. dl
(14c)
and
— ox
Ox, = — d
%, M u
(144)
The image differential element on the
surface determined by (11b) is:
85; = a;;/\a;;
(15a)

with 0y, and dy,defined similarly to
0x, and 0X,. Using (1) a relation
between 85} and 0S; is established:

—_ - e 3 .
853,—=8XL‘(}+€3{=®n)
= 3 T
i\ I'+-5; ® n) - 9x,
(15b)
By direct calculation feormula (15b)
yields:
- d . =y=_ 9 .=
0Sy = [(1 + = y I Eradil
1 3
+ = A 0S-
2i,j¥<-1 ei]k ) n 3 ne ek] Sx
(15¢c)
with  €;;  denoting the sign of

permutation and €., k=1,2,3, signifying
the unit vectors of the Cartesian system

of reference. Also by direct
computation it can be shown that:

= a —\y -1 1

(I'*g(—@ﬂ) = 3
1+Y J;

Ii=1
o 37-2en
[(1"’-6";'—( ﬂ)I as{.@‘l’]



3
1 2 indies
+ 2;:,_7‘,21:-1 €15k axi'q/\ Fral e,

(154)
so that (15¢) is rewritten as:
- 3 a —\~1 -
853,-=1+ZJ1.(?+—8—}={®11) * 955.
1=1
(15e)
In formulae (154) and (15e)
J;,i=1,,2,3, denote the scalar
invariants of gradient tensor = ®T.

It should be observed that formula (15d)
provides tensor X in a closed form, an

alternative expression for X can be
obtained as the Neumann series:

=l
1
i
1
|

i@ﬁ+(-{%{.®ﬁ)-(§;®ﬁ)+ ..

(16)

which is often more convenient to apply.

Similarly to the differential
surface elements 8_5—}7 and 355,
differential volume elements dVy; and
dvy; can be considered using three space

parameters A, p and y. Then:
dvy = 3%, - (37, A %,
(17a)
and
dvy = dx, - (9x; A 0x,)
(17b)
It follows from (15e) that:
3
dvy =1{1 + Yy J;| dvg
i1
(17¢)

TRANSFORMATIONS OF GOVERNING EQUATIONS

Neglecting viscous flow effects,
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the interaction of a floating body with
surrounding water is determined by the
fields of flow velocity U =u (¥, t) and
pressure g = gy, t). Assuming an
irrotational flow, both are expressed in
terms of a velocity potential? (y, &)
defined on instantaneous fluid domain D:

E=8%'P inD
(18a)
- _.| .8 1|3 gf
- algee 2B on] oo

(18b)

with p denoting water density, g the
acceleration of gravity, the constant
in the Bernoulli's equation taken as O,

and y, coordinate axis directed
vertically upwards. The velocity field
nust satisfy the impermeability

condition on instantaneous wetted body
surface 8D,, whereas the pressure field

generates fluid loads on dD,.

Velocity potential ¥ (¥, t) is
considered to be related to a scalar
field @ (x,t), defined on a reference
fluid domain D,, by transformation (4a):

¥ (7, t) = exp(ﬁ : g’;) & (%, t)

(19a)

Therefore velocity field T and pressure
field g can be expressed by means of
® using formulae (7) and (10b):

TG o) - el L) Lo
u (y, t)—exp('q 87{) a}..f_(I)(J‘:, t)

(19b)
T £ = 7.9, (-p (2
gy, t) = exp (y 3}7) {p[at¢>
: (19c)
2
+%|§a_;¢ + gx]}

In other words it is possible to regard
u(y,t) and g(y,t) in D, respectively as
images of a velocity field Vv (x,t) and
pressure field p(X,t) defined on D:

— _ AT
ul(y,t) —exp(q a)_{_)v (X, t) (20a)




gy, t) = exp(n . —i)p (X, t) (20Db)

ox
with
VX, t) = =9 (X, ¢t) (20c)
ox
and
= __| o 1|3 4
pix, t) = p(EQ + -2-'—(__)—)_(@ + gx3)
(204)

It follows that scalar field @ (Xx,¢)
has the interpretation of a velocity
potential in D,.

The velocity and pressure fields in
D must satisfy a set of governing
equations. The velocity field complies
with the requirement of flow continuity:

J .= P ,
—_— ru=s—% =0 inD
dy y>
(21a)
impermeability of &D,:
d 0 d. -
3 * 5__)7‘1’ 5}:}_)1“ O ondp,
(21b)

where f(y,t) = O is the locus of 9D, in

D, see (11b), and the kinetic condition
on 0Dp:

g=0 on 8D,

(21c)
The velocity and pressure fields satisfy

also the requirement of impermeability
of OD:

on 8D,

(214)

which can as well be written in a form
analogous to (21b). On control surface
6D, the velocity and pressure fields
must be continuous. This leads to
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conditions:

¥-%,=0 on 9D,
(21e)
0r.- 9 (v- -
a—;;f % (¥ -9 =0 on 8D,
(21f)

where ¥_ is the velocity potential for
the flow external to the fluid domain D,
and f = f(y,t) =0 is the 1locus of

0D, in D. For an unbounded D, boundary
dD. is placed infinitely far from the
floating body and the boundary values
imposed by (21e) and (21f) on 8D,
cannot have an effect upon the flow in
D induced by the presence of the ship.

Transformation (10b) applies to the
left hand sides of (21a), (21c), (214)
and (21le). Therefore the transformed
equivalents of these relations become
respectively:

(22c)

on dD,.

exp(ﬁ' . 8—2{_) (@ -®,) =0

(224)

where boundaries 9D, and 8D . are, under
the transformation inverse to (1),
correspondingly the images of boundaries
0D, and dD.. It follows from (4b) and

(4c) that assuming free surface 90D, to



be represented by a single valued wave
elevation defined on the horizontal

plane X, =0, the operatorexp(qm * T%E)'

in (22b) and (22¢) can be replaced by

exp(na-a%) , with 1n, denoting the wave
3

elevation and equations (22b) and (22¢)

applied on x, = 0. On 8D, which is the

image of 9D,, the following condition is
obtained:

3\ d _ 9=
-k el
3 =\t
I+§?-®n) N=0
on 9D,

(22e)

Formula (22e) is derived from (21Db)
using (12b), (12c), (13b) and (1%a). In
the same way relation (21f) gives:

oofi- &) 20 -0

(22f)

It should be noticed that if M and
its first spacial derivatives are

perpendicular to N:

W-N=o, L em)-N-=
n (x®n) e]

(23a)
then (22e) takes the simple form:

[exp(ﬁ'gj_—t —Q]-IV=O on aD,,

(23b)

A similar statement 1is wvalida for

condition (22f):

{exp(’ﬁ' . 8—2?) —a%.(Q -y - N=o0
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if:

(_%(_ ® 'ﬁ) -N=0 ondD,, (24b)

THE EXPLICIT IMPERMEABILITY CONDITION
AND ITS APPLICATION

imposed on
surface oD,

Condition (22e)
reference wetted
corresponds to:

(5-%_)-530

where 7 is the normal vector on dD.

on dD, (25a)

Taking into account that ga—- ‘n
represents the velocity, denoted by

u,, of the instantaneous wetted surface
along its normal, (25a) is reduced to:

urn=u on dDy (25b)

n

which is the well known form of the
impermeability condition. In comparison
with (25b), in (22e) the dependence on
the domain displacement field 7 is made
explicit. An equivalent form to (22e)
is obtained using (15d). Implying this
equivalence, (22e) is named the explicit
impermeability condition.

It is important to notice that in
(22e) displacement field N defines the
instantaneous normal vector and velocity
of wetted surface oD,, and an
instantaneous one-to-one mapping between
dD,, and 3D,. The latter property of7
is used in the term:

u = exp (ﬁ . 8—2?) —(_%(_6 (26)

Although (22e) was derived on the
assumption that n represents a
displacement field defined on the fluid
domain, this assumption is not always
necessary. The displacement field due
to the motion of an arbitrarily
deformable, impermeable body satisfies
the properties required of 3 to impose
(22e) on the wetted surface of the body,
if the body remains entirely submerged.
The condition of " total submergence
ensures that 1 represents a one-to-one
mapping between 8D, and 8D,,.

For a deformable body in motion the




displacement field from a reference
configuration can be written as:

s (X, £) =a(t) + [R(¢) -] - (X-X%)

o

+R(t) -0 (X, b) on D,

(27a)
where D,, denotes the reference
configuration of the body, &« is a
parallel translation field, R (t) is a

tensor of rotation; X, is the radius
vector of the centre of rotation and
Q(x,t) is a field of deformation, both
of them taken in reference configuration
D,z A simple manipulation gives:

T+ L eq) =% (T
_ = . + e
(_ a>?®“8) 3%

Ly

(27b)

Impermeability condition (25a) takes now
the form:

go 25 R (T L o5 7o
(u at"B) 7 (I+ak_®Q N=o0
on 8D,
(27¢c)
with:
a-— —‘ b~ =
EEnB=a+QAR
X-% +0) +3-25
e ot
(27d)

where @ and Q are respectively vectors

of linear and angular velocity of the
body.

Relation (27c) applies on the
instantaneous wetted surface of the body
oD, whether the body remains totally
submerged or not. The condition is

explicit with respect to the body
displacement field n; with  the
exception of the mapping of T. The

quantities in (27c) and (27d) related to
Nz, and N, are determined for X,€dD,p,
that is at points on the boundary of the
reference configuration of the body.
However, fluid velocity u is determined
for ¥y = (X, +My) €dD,=3dDNaD,, the
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instantaneous wetted surface of the
body. If the body remains totally
submerged 0D, =3dD,, that is the
instantaneous wetted surface of the body
and the instantaneous boundary of the
body coincide and both are the image of
oD,y = 0D,; under  transformation 7.
Therefore (27c) can be rewritten as:

3 —

[exP(ﬁa"a%?)'é%Q T 3t s

|

il

+

=l

—_t =1 —
@Q) *N=0 ondD,

S

(28)

This is a form of the impermeability
condition which is explicit with respect
to 7M;.

Without the requirement of total
body submergence transformation ﬁ'a,
used in (28), may lead to instances
where there are points ¥ € 9D, for which
Xy ¢ 9D, or ¥ ¢ 3D, for which X, e dD,,.
In such circumstances the boundary value
problem in D is not transformed into a

boundary value problem in D,, and
therefore transformation:
— — dy o
= | == 29
u exp(n 5 ax) = o (29)

cannot be used in (28). This situation
is illustrated in Fig. 1.

In solutions to boundary value
problems of ship hydrodynamics 7, is
obtained from equations of body motion.
The kinematics of body motion must be
taken into account in the impermeability
condition. The above discussion
indicates that this can be done if the

"Dy
§(§)=§+ﬁ8(£)eaDw a € D,
y(b)=b+n (b)e d, b e g,
Figure 1



solution to a boundary value problem is
sought for directly in the instantaneous
fluid domain D. Then formula (25b) can
be applied. It is convenient to call
such formulations of the boundary value
problems direct formulations. As
explained earlier, boundary value
problems formulated in D are transformed
into corresponding boundary value
problems formulated in D, to find
perturbation solutions. If the
impermeable body remains totally
submerged impermeability condition (28)
is used in the perturbation
formulations. In the opposite case it
is convenient to consider displacement
field M in (22e) as composed of two
displacement fields, one of which is

Nyt

(30a)
with:

Xy = X+ 7, (X, t)

(30b)

where 7, (X, t) is a displacement field
defined on 9D,; . Relations between the
displacement fields and transformations

they define is illustrated in the
following diagram:

. Y =X+ W

3D, > 9D, ¢———>3D',, € 3D,

?E\‘I %,

0Dy < OD,p

:}_{.+ﬁ-
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o

The diagram shows by means of the double
arrows the one-to-one mappings induced
by the displacement fields, together
with their dJomains. In the diagram
oD',, signifies the image of
instantaneous wetted surface 0&Dy, in
reference body boundary oD, generated

by body displacement field 7. It is
clear from the diagram that for
or',, = 0D,, displacement field np

provides a one-to-one mapping between
oD, and dD,,. This is always true if
oD, = dD, and 9D,, = 0D, that is when the
body remains totally submerged, as then
oD',, = 9D, = OD,5.

Similar considerations apply to the

use of condition (22f). It should be
observed that the use of condition (22e¢)
or (22f) is simplified significantly if
formula (23b) or (24a) respectively, can
be employed.

It follows from relations (4b) and
(4c) that ® in the first term in square
brackets in (22e) does not depend on a
choice of domain displacement field 7.
In addition, the outside of the sqguare
brackets term is always co-linear with
normal vector n(y) . Therefore
condition (22e) is also satisfied
independently of the choice of
displacement field. Since by virtue of
(4b) and (4c) the same condition applies
to all the other transformed governing
equations discussed above, solutions to

boundary value problems which are
formulated with the use of those
equations do not depend on domain

displacement fields employed.

PERTURBATION FORMULATIONS OF BOUNDARY
VALUE PROBLEMS

Perturbation formulations of
boundary  value problems of ship
hydrodynamics are obtained by expressing
velocity potential (e and domain
displacement field 7%, in governing
equations (22), by means of perturbation
series. A one parameter perturbation
formulation is defined by series:

n

o=y oW (31a)
i=0
n

7=Y 7@ (31b)
i=1

In (31) indices in brackets indicate
orders of magnitude:

G = o (1)) i=0,1...,n
(31c)
P = O(I;"(i)l) and lﬁ'(i) l = O((I)(i))
i=1,2,...,n

(314)

In addition it is assumed that
differentiation does not change the
orders of magnitude.

By applying series (31a) and (31b)




in field governing equation (22a) it is
found that:

'5% o0 =0 in D,
(32a)
— 0 o° .
_5%22_ oW = W % = &0 in D,
(32b)

Therefore potentials &
Laplace's equation in
i=0,1, ..,n.

satisfy the
Do for

Free surface conditions (22b) and
(22c) assume the form of original
conditions (21c) and (21d), with respect

to @), As a result the Laplace's
equation and the free surface conditions
admit a solution:

Q) = —Ux, in D
(33a)
X, =0 on 9D,,

(33b)
after adjusting the constant in the
p—
= pU=.
5P

conditions (22b)

Bernoulli's equation to Taking

for simplicity U = 0O,
and (22c) yield:

2 I low 34
@ . _1 9 gw
G 9 @ = -5 9 &w
e e YT s 2z 0
? (1) _i _Q (1)
T e ®
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_Q_ _Qi. _EL (1)
ox (atZ g'&%) ®
(34c)
@2 _1:98 g, 1]3 gw
4 5 lop @@ 2,8}.{q>
- 10 g & (1)
g ot ® dx,0t ®
(1)___8___ (1) _a _a (1)
+ (711 axl + Tl2 axz) at ¢ ]
(344)
& Oy a3 = 510
T -
il (2) _Q_ 2y . _ 9 )
ot & = Y e O
_9pmw . 0 o 0 gm . 0 g
=2 = ° =l =2
19w 8 (& 5.8, pw
* gc’it<I> 0x, [(atZ +gax3)<I>
0 g . & (1) 1.0 &
23 e ¥ 5 g
170 gmp_1 0 &m
f oyl ?
P gwy 9 (P, 3w
8x3at:<I> ] ox. (az;2 +g8x3)®
(34e)

on x, = 0. The lengthy expression for
(3)

N;" is omitted. Formulae (34a), (34b),
(34c) and (34e) are identical with the
well known formulae given for instance
in [3] and [4] for freely propagating
waves. However, the present formulae
are derived without making the usual
assumption:

3|

=1, (X%, X,, t) e, onx, =0 (35)

As a result the
elevation n(”

second order wave
determined by expression

(34d) contains terms dependent onn(“
and 14 not found in the usual
formulations. Those terms indicate for



instance that the free surface of a
long-crested wave can be shifted along
the crest without changing the wave
elevation. It should be noticed that

displacement field T does not effect
the dynamic free surface conditions
(34c) and (34e). If assumption (35) is
made the terms dependent on 7, andn,

disappear in (344) and 4% is

interpreted as the single valued wave
elevation in the perturbed domain. Such
an approach is justified by relations
(4b) and (4c).

Considering impermeability
condition (22e) and taking:

o0 = -Usx, + ¢(o) (36a)

in (31a), with ¢‘9 independent of time,
and:

N =N (36b)

the following impermeability conditions
are derived:

= d
N ?;4)“) = UN, on gy (37,)

- _Q_ (1)-_&"(1) = _8_ 0) _ 73
No(5® acn ) T Hgp e - ve)

0 F - g . 9 (9 gt - ve)] - N

Ox 3% 9x
on 4D,
(37b)
T.(9 e - 0 =@y - 1(9 4
_ (9 =@ - 0= . 8=
ve,) - (g7 =" )
= . 9 (9 4() _ . 0 =w
P (e v 2
w2y = . 9y, 8
F AT R &
9 4 0w _ 0 =
(ak—Cb Ue,) + (a}—{-q) i )

9= = . 8 8 ai . F
=N TN Tty

on 9D,,

(37c)

respectively for potentials ¢, o
and ®% ., According to the preceding
discussion of the impermeability
condition, for a totally submerged body
N can be replaced by My in the above
formulae. Then for a rigid bedy in
motion formula (37b) becomes equivalent
to the impermeability condition derived
in {8], whereas formula (37c) represents
its non-linear extension of the highest
order of magnitude.

Impermeability condition (22e)
applied on 0D, in conjunction with
(36a), gives:

i@(o) =0

3, on D, (x, = O)

(38a)

Formula (22b), with the adjusted
Bernoulli's equation constant, results
in:

2
’T%_Q“” -U? =0 on 8D,, (38Db)

However, the construction of a
perturbation set of governing equations
can be continued with a less restrictive
assumption:

2
{-O%Q“” -U? =0 (®W) on 8D,

(38c)

Oon the basis of equations (36a), (37a),
(38a), potential & may be taken as a
solution to the so called double body
problem.

At the next level of approximation,
equations (22b) and (22e), or
alternatively (22b) and (22c) yield:

) 3y . 92 O 1w
NS A -

_ F g (0, 0 me . Oy pw
2w w® e
3

_ 1
=5 2

& oo (|Low@ -uz)
&ﬁ ox

_1 90 @ . 9 _iq)(o)z
;& = lwme

on 0D,

(39a)




and:
w170 , 0 g@. 0 gw
ns sl = w®
2
1
+% '-a—‘i_-@“” -5 U?] on 8D,
(39b)

Equations (39a) and (39b) are applicaple
together with impermeability condition
(37b) and ®(@ taken as the double body
velocity potential. The separation of

®@ into a steady part & and

~ (1)

unsteady part ® |, generates the

following sets of governing equations:

0 3 , 9 9 4
=0 . L (=0 . L
ox 9x (6x ax Y )
_&* q,(o)_a___<p(o) . a__(p[(,l)
ox? 0x
g0 gm o 1 3224,(0) (li__q,(o)z_Uz)
0x;, 2 3x2 ox
1 9 9| d 2
-2 0. L1 pta
2 ox Ox| ox
on 6D,
(40a)
 _ _1 .8 9 g1
=-= (=00 . 9
Nus g axq’v
1] 9 G
+ — __=¢(O)  — 2
2, = > U?) on oD
(40b)
and:
=. 0 & 9 g0 . O =)
Nogm® = (29 W
(1) _Q_ d (o) v
Ny =e? ) N
on oD,
(40c)
for steady potential &f” and steady
boundary displacement field ﬁU. For
= (1)

unsteady velocity potential @ and
- (1)

boundary displacement field 1 , the

corresponding equations are:
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- (1)
d 3 s . G2 - ¢(1
[(-a'E""—a—}——{-q) a}—(—) +gax3]
- (1)
3 (o) d _i (o).i =0
—E{-E(Do(a +a¢I) a}_()q)
on 0D,
(41a)
(1) 1/{8 , 3 g . 8 —
Peolm =T =
on 8D,
(41b)
with:
= -] ~ (1) _ 3 « (1) _ F.] ()
- R Y [N [N -
?ﬁ?n n % ax‘b ) - N
on 6D,
(41c)

The sets of equations (40) and (41)
can be compared with those presented and
used in [5]. Equations (40b) and (41b)
are identical with their respective
counterparts.

Equations (40a) and (41a) differ
from the corresponding equations in the
above mentioned reference not

including terms dependent on — |

which, according to (38c), are of

o(®®), and therefore negligible, in
the present scheme.

Impermeability condition (41c¢) is
formally identical with the unsteady

impermeability condition in [5].
- (1)
However displacement field 7 in (41c)
is composed of unsteady body
- (1)

displacement field 1
B
. - (1)
displacement field 17

and unsteady

on 0D,, as

[~}
explained in the preceding section, see

(30). The impermeability condition in
(5] includes only the unsteady body
displacement field. The resulting

additional term on the right hand side
of (41c):



may be called the waterline correction,
since as discussed in the preceding
section, it appears as a consequence of
the ship not being totally submerged.
For a sufficiently small curvature of
the wetted surface, displacement field

- (1)
n can be considered as essentially

o

tangential to the hull, and therefore
the first two terms in (42a) may be
neglected. The same argument can be
applied to the third term if the
variation of the double body flow
velocity on the hull surface is
sufficiently small or almost tangential
to the hull surface.

The expression on the right hand
side of equation (40c) does not have a
counterpart in the steady impermeability
condition used in [5] or in other
formulations of the steady forward speed
problem based on a perturbation of the
double body flow. Similarly to the
unsteady impermeability condition the
term consists of a contribution from
steady body displacement field Wiy , and
a contribution from steady displacement

field noU, given by:

d g . 0 =w _=w . 0 0 sg@\.¥
(axq’ AL AL -3 -
(42b)

The above comments on expression (42a)
apply with the appropriate
interpretation to (42b). The analogous

to (42b) term in (40c), which 1nvolvesn(”

instead of nég, may express the
influence of sinkage and trim or a
steady structural response of the hull,
or hull form modification.

With ¢‘? (X) in (36a) set equal to
a constant, potential @/? satisfies
conditions (38a) and (38b) on 90D, and
impermeability condition (37a) on 9D,
and impermeability condition (37a) on
dD,, if the following assumption is
made:

UN, = 0(®M) on dD,, (43)

The free surface governing equations
take then the well known forms:

F 0w
(v 5 + gax3) o7’ =0 on 9D,,
(442)
1 0
ny = < Ua—xl oY on 3D,
(44b)

of the Neumann-Kelvin problem, for
steady potential @/, ana:

8 .. Y )
|[75 U&;) * 9,

(45a)
on aD,
) ] - (1)
ﬁ (1) l ( - U—)
glot ox, (45b)
on 9D,

of the linear wave propagation problem,
- (1)

for unsteady potential ® . For steady
potential #) the impermeability
condition on wetted surface 0D,
becones:
V-9 oW - d —w .57
N-(—;;—U =UN, - U a—'ﬂv ‘N

(44c)

- (1)
whereas for unsteady potential & the

same condition gives:

= F) ‘(1)_ a-(l)
N (“a—;“’ FIaL )

(45¢)

Again equations (44c) and (45c) differ
from their well known counterparts by
the presence of free surface corrections
and by the body displacement part of the




second term on the right hand side of
(44c) .

Under the assumption leading to
equations (44) and (45), it is found
that potential &' satisfies the
following governing equations:

, & 9 (2) 9 g
(Ual ga ) B ZUa;?d)U

g (1 _ d g o
6—&q.¢ Y3 1¢ Ox,

(Lo &

2] (1)
+ ) Q
g 3xf y

on dD
a X3 oF

(46a)

(2) _ 1[[1 d o - (n

Nys” = ‘5, 3x, la

4»_:}:.U2

9 P & @
g ox,

Vo exox, U

U( (1)

e 1 _3d )___¢(n]

ﬂuz a ax

1

9 .
ox,

on 6D,

(46b)

and

(46c)

(2)

for ¢g” and 1Ny , the steady parts of

®? and n{¥ respectively, and:

- I 3167 ., 0 gw
(52 Uaxl) +95;3-]<I> =2=@

- (1) 3 - (1)
"U—)Q +2U—=¢

.29
x ot ox, ox

ox

F o (L -vlye” 2

axﬁxa ot 0x, 0x,
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- (2)
for @ and 1%, the unsteady parts of

® 2 and n{? respectively.

Formulae (46) and (47)
complexity of the

illustrate

the second order



interactions on the free surface and
wetted surface. As explained in
connection with formulae (22c) and
(344), the steady and unsteady

(1) (1)

components of 1, and 7, can be set

equal to zero in (46b) and (47b) ifné”

is interpreted as the single valued wave
elevation on Xx; = 0 in the perturbed
domain. In addition, displacement field
7 in impermeability conditions (46c)
and (47c) has the same interpretations
as in impermeability conditions (40c)
and (41c).

In order to implement conditions
(22d) and (22f) on reference control
boundary dD,., it is assumed that oD,
consists of the surface of a vertical
cylinder extending to reference free
surface 0D, on the plane x; = 0. Below
the free surface the cylinder is closed
either by an impermeable bottom, or a
horizontal control surface element
placed sufficiently deep below the free
surface. On the vertical part of ép_,
displacement field W is assumed in the
form:

n=n,8e

(48a)

which satisfies condition (23a). This
implies that the free surface elevation
on dD,. and in its vicinity is single
valued. On the horizontal part ofdD,,

displacement field m is defined to be
equal to O. On the basis of these

assumptions conditions (22d4) and (22f)
give respectively:
@ =9Ponop,., i=0,1,...,n
(48b)
and
2@ -2 -0 onon,,
i=0,1, .
(48c)

THE APPLICATIONS OF THE WEAK SCATTERER
HYPOTHESIS

A Perturbation Formulation
Using the transformation procedures

developed in the preceding sections a
formulation of the boundary value

48

problem which represents a ship-wave
interaction is sought for by considering
the perturbation introduced by the
presence of the ship in the flow of
steep ambient waves. For the ship
advancing with a mean forward speed U,
a reference configuration of the ship is
defined, relative to a correspondingly

advancing coordinate system. This
configuration together with the
undisturbed water surface at x, =0

determine the reference fluid domain D,.

Assuming the ship's hull to be
sufficiently slender, the weak scatterer
hypothesis is imposed in the
perturbation scheme by expressing total
velocity potential &, as:

O =-Ux, + O + BOD L RO

(49a)

where X, coordinate axis points in the

direction of the mean forward velocity
of the ship, with:

N =0 4 g 4 7o 4 (49b)

defining the perturbation of the fluid
domain. In (49a):

G, = QL0 4+ §@O 4 (49c)

represents the velocity potential of the
ambient waves. The following relations
define relative orders of magnitude in
(49a):

$0.1) = o (d)(l,o))
(494d)

& (2.0 = o) (q,(l,o)) ,

and:

o (2.0 = O(@(mlw
(49e)

(@(1,0))2 =0 (q)(z,o)) ,

Analogous relations are applied to terms
in (49b). From relations (49d) and
(49e) it is seen that the weak scatterer
hypothesis consists in assuming that the
induced by the ship disturbance of the

flow of the ambient waves, represented
by velocity potential @1, is
significantly smaller than the

disturbance of the calm water condition




due to the ambient wave flow, &,.
However, the flow disturbance induced by
the ship is not significantly smaller
than the non-linear flow effects in the
ambient wave field, represented by

velocity potential &9,

Starting from formulae (22c) and
(22e) it is found that velocity
potentials ®/'® and &9 satisfy

equations (45a) and (45b), and equations
(47a) and (47b), respectively, with:

- (1) ~(2)

(13} = ¢,0 ) = $29 gnd Q((II) =0

(50a)

and

-0 e -2 o —=(1)
n =1*+% ,qn =1%% and ny =0

(50b)

They also satisfy an appropriate bottom
impermeability condition, or correspond
to a vanishing water velocity at the
infinite depth.

Velocity potential &1, yhich
represents the flow disturbance induced
by the advancing ship, can be considered

as composed of a steady Qéml) and
- (0,1)

unsteady o = oLV (scattering)

part:

(I)(O,l) = Qé}O,l) - q)éo,l) (51a)

with the corresponding fluid domain
perturbation:

ey ~(0,1)

o, - —(0,1)
nY = Jy

+ Ng (51b)

Steady velocity potential ®°'Y is found
to satisfy equations (44) with:

(Dz(ll) = q)l(fo,l) and ﬁt(ll) = ﬁ[(]O,l) (52a)
Scattering velocity potential ¢V
satisfies equations (45a) and (45b)
with:

- (1) -

= oY and n =Y (52b)
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On the reference wetted surface the
scattering potential must fulfil the
impermeability condition:

N- a—(;_@_é"'” = v, on 3D,, (53a)
with
= a d Y=to,1 '
= . —_— - — ’ b
v, =N (at UaXl)'qs + v’ (53b)
and
.. a _ 3 —(1.0) , T(2,0
Vi [(at U’&q) (n T )
- 0 0
- 1,0 . (1,0
(1 +m = =2
(53¢c)

(% _ g 0 yzao . 0 =m0
‘3t “Ua) M ="

3 g0 . 0
ol

_a__JE_ﬁ(l,o) - _éa;_q)(z,o)] N

It follows from (53c) that the weak
scatterer hypothesis is equivalent to
the assumption:

v, = 0 (@)

n

(53d)

if

UN, = O(®'1) (53e)

is satisfied. As a result of adopting
the weak scatterer hypothesis scattering
velocity potential Q;ml) is determined

by the solution to the guasi-linear
radiation problem, with quasi-linear
impermeability condition (53a) imposed
on 0D,, and the linear free surface
condition:

on 0D,

(53f)

applied on x; = 0.

To impose impermeability condition
(53a) in practical computations and to
elucidate its physical meaning it is
noticed that v, can be rewritten as:



va(X) = [1+ 0@ [(V -1,
T+ US - (m-NM] +o[(2*9)2]

(54a)

where the right hand side is determined
at ¥y =x+7, V is the ship velocity
relative to the reference configuration,
T, is the water velocity induced by the
ambient wave field, and n 1is the
instantaneous normal vector at ¥ on dD,.
N represents the normal vector on
op,, at point x. In deriving (54a) use
is made of the relation:

JV % F-N=1+o0(®d10) (54b)

x|

see (13c). On the basis of (53d) and
(54a):
va(® =u,(3 = (-5 -7
- (55)
+ Ug - (T -N)
including all terms up to O(®?). The

weak scatterer hypothesis is therefore
expressed by:

u (7 = 0(®©) (56)

which is the form of the hypothesis
applied in ({6]. Since the velocity
field u, is considered to be given
u,(¥) is easy to determine numerically

on the instantaneous wetted surface in
a ship motion simulation.

The use of u,(¥) in impermeability
condition (53a) requires that u,(y) be
mapped onto the reference configuration
of wetted surface, 8D,,. It is possible

to accomplish such mapping by
approximating u,(y) by a finite series
of linearly independent, square

integrable functions ¥, (y) defined on
the ship's surface:
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where B,;(e), i=1, 2,...m, are
functions of time. Functions¥,, (3

are assumed to satisfy the Lipschitz
condition:

|Tyi (}_’) - ?Ni (}_’ + Aj;)l
_ (57b)
< M|AY] on 8D,
on the ship's surface, and to be

invariant with respect to displacements
of the surface due to the ship motion.
Using (1) and (30) the latter condition
can be expressed as:

Ty (1)

= TNJ’ (3(— +ﬁo) ’ i= 1,2,...m (57(:)

=¥y (x+7)

for xedD,, and yedD,

Formulae (57a), (57b) and (57c¢c) lead to:

VE ) =3 By (8) Ty (B
121 P4 nOE 5aa)

+ 0 (Bi lﬁol)

Since, on account of the weak scatterer
hypothesis B, = o(®©?), i=1,2,...m,
and |n,| = 0(®??), the last term on the

right hand side of (57d) is neglected,
and impermeability condition (53a) takes
the form:

= . 3 4(0.1) -
N - =05 = (E) Py (X)
3% s 121 Bl NI (58)
on 0D,
with B,;(t) determined from approxi-

mation (57a). Applications of condition
(58) lead to the computation of
scattering potential ®°Y py means of

the modal potentials (or equivalent
motion) method, [6].

Following the transformation rules
explained earlier, perturbation

scattering velocity potential plon)

velocity field T®* and pressure field

g{®? in the instantaneous fluid domain

D are given by:




PEY (Fe) = 08 (X, t) (59a)
E;O,l) (J_;, t) = 'ai'f¢é‘°ll) (}—{’ t) (59b)
(0,1) ;= - d gto,1) =
ds (¥, t) = -~p 3E D (%, t)
(5%c)
Forces and moments exerted by the

scattering pressure field on the ship
hull can be found using formulae (15e)
and (27b), which result in:

Fod =R - £V Nds 60a
s faDo,,pS ( )

and

TEY =R+ ps"" (X - %) ANds

Dy

(60Db)

where ® can be replaced by 7, and
F&Y TE2 denote the force and moment

about the instantaneous location of the
centre of gravity, denoted by CG. 1In

addition p{®? is defined by the right

hand side of (59c).

In figure 2 the effectiveness of
the method in predicting scattering
forces is illustrated by an example
taken from [6]. In the figure a Froude-
Krylov and corresponding total (i.e.
including scattering) hydrodynamic pitch
moment, computed using a numerical
implementation of the described
perturbation solution, are compared with
the total pitch moment record derived
from experimental data. The experiment,
[11], and numerical simulation, [6],
were performed for a low L/B stern
fishing trawler advancing unrestrained
at 0.2 Froude number, and 30 degrees
heading, in steep, close to breaking,
periodic waves. As can be seen, the
scattering moment reduces the amplitude
of the Froude-Krylov moment by about
30%, and significantly changes the
pattern of the pitch moment, producing
a close qualitative and quantitative
agreement with the experimental record.
Similar comparisons for the other modes
of motion are described in [6].
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Fig. 2 A comparison of total loads

derived from experiment, [11], with
computed Froude-Krylov and total loads
[6]), *** experiment, computation

A Direct Formulation

The described above method of imposing
a perturbation impermeability condition
on a surface piercing hull can be
simplified by shifting its application
to a simpler, control boundary. To this
end a direct solution to the ship-wave
interaction problem is sought for in a
bounded control domain D and is matched
with a perturbation solution in domain
D,, which is external to D. The wetted

surface of the ship is considered to be
at all times entirely contained in D.
Such an approach leads to a greater
generality of the resulting formulation
because of the complete (in principle)
inclusion of non-linearities in the
vicinity (domain D) of the hull. It
also prompts the development of a
consistent radiation condition on a
control boundary 8D, for the non-linear



time domain boundary value problem.

Instantaneous control domain D is
bounded by control surface 8D.,, which
consists of a vertical cylindrical
surface extending to the instantaneous
free surface 0Dy. Below the free
surface 9D, is closed by a horizontal
surface element at a sufficient depth.
A direct formulation of the problem on
D may be obtained by applying Green's
formula for harmonic functions to
velocity potential P (y,t) at time t:

Q(p,t) (P L) = fam) [Y(P, Q)

53— P (0, t) - F(0,t) = ¥(P,0)]1dS(0)
n, ano

(61a)

with Q(P,t) signifying the angle
subtended at ©point P by boundary
ap(t), ?gf denoting the outward normal
0
derivative taken at point @, and Y(P,Q)
representing the fundamental solution to
Laplace's equation. In addition the
cauchy principal value of the integral
over oD(t) is taken. For point P
located on dD(t), and with Dirichlet,
Neumann, or Robin (mixed) boundary
conditions applied on non-overlapping
parts of 0dD(t), the formula generates
two coupled Fredholm integral equations,
of the second kind for the unknown ¥,
and of the first kind with respect to

the unknown —a-‘?.
on

On the instantaneous wetted surface
of the ship the boundary data in (61l1a)
are determined by impermeability
condition (25b). The unknown locus of
the free surface and required boundary
data on free surface Dp{(t) are obtained
from initial conditions using evolution
equations. The evolution equations can
be cast in a Lagrangian or Eulerian
form. The Eulerian form is used here,
because it imposes the condition of
single valued wave elevation which must
be satisfied at control boundary 9D, to
ensure an appropriate matching with the
external flow. Therefore:

i
|
g
1
|

¢ S ..
3t * oy, EiZa-7
(61b)

where { denotes wave elevation, and:

Ldy--gr- L1 lw:

dt 2 2
3 d
+ (e PY2 - (2. P2
(ay2 ) (‘._Jy3 ) 2]
a 0 0
i —_— '—;T
3y, ayc oy

(61c)

. d
th —
wi aE

derivative at a vertically moving point
on the free surface.

representing the time

Boundary data on control boundary
oD, is determined from matching
conditions (21e) and (21f). In the
application of those conditions velocity
potential of external flow ¥, is
expressed as a transformed potential®,
defined on the reference configurationD,,
of the horizontally unbounded external
domain D_,, which is defined by control
boundary 0D, and the reference free
surface at x; =0. The domain
displacement field 7, is assumed to

satisfy condition (48a). It follows
that matching conditions (21e) and (21f)
give:

v - exp(nw -a-?{-) ®,6=0 onadp,
3

(62a)
and
Sy -N - exp|n S o -N=o0
oy ®3 dx. J dx °
on 0D,
(62b)

Velocity potential ®_, is taken in the
form:

q)e = d);l.o) + Q;o'l) + Q;Z,O) +,
(63a)
with

- (p;1,o) + Qéz,o) .. (63Db)

aw




representing the velocity potential of

an ambient steep wave, and ooV
denoting the scattering
potential in D,.

ials on the right hand side of (63a) are

assumed to satisfy order of magnitude

relations analogous to (49d) and (49e),
whereas displacement field 7 has a
representation analogous to (49b).

Taking into account expression
(63a) and including consistently terms

up to order of magnitude O0(®Z?),
matching conditions (62) give:

¥ = eXp(ne3 ?fz—) ((Dew + q)éo’l))
3

(64a)
on D,
and:
T. 0 g0 _
N a}_c_(be v, on 8D,. (64b)
with:
vp (D) = u, (7 (64c)
and:
-l 2y28¢ |7
u,(y) = 33—_/_‘1’ exp(n,; 8x3) a;gq’ew N
on 8D,
(64d)

The weak scatterer hypothesis consists
in assuming the relation:

v, = 0 (@) (65)

which is satisfied sufficiently far from
the ship hull in a three dimensional
problem. Relations (64a) and (64b) can
be implemented by constructing an
appropriate displacement fieldn,,(X, t)
on 0D,., or by employing a mapping
technique analogous to the one which
leads to relation (58). On reference
wetted surface dD,, scattering potential

@V must satisfy condition (53f) with
U= 0.

A solution to the external

velocity
The velocity potent-

scattering problem may be obtained in
terms of the appropriate Green's
function, for the infinite depth, by
applying the following relation known
from so called body non-linear radiation
problem formulations, (9], [10]:

Q(p,t) OV (p,¢) = —f (Y(P,0)
ap,

o (£)

- Y(P,0)1v,(0, t) ds,

t
- [ 2(P.0, t-%)v,(0,7) dS,ds
, 8D, (1) :

(0,1) N
+fanmd>e (0, t) a%[Y(P,o)

t
- Y(P,0)]ds, + fj;p B2 ()

d 5 _
a_pr(p,;g, t-t) dsS(Q)dr .

lt
"o/,
0

- oY (g, 1) E?(P' 0, t-1) ]

[2(P, 0, t-1) —a"’— oL (0, 1)
T

t)

V(0. T) di (0) dr

(66)
where  x;(0') =x;(0) for i=1,2, and
x, (0) = -x,(0), ?(P,0,t) represents

the memory part of the time dependent
Green's function, [3]), ¢ =238D,.MadD, is
the instantaneous waterline of 8D,., and
Vy(Q,t) denotes the normal velocity of
the waterline, which results from a
prescribed motion of dD.. Formula (66)
provides the missing relation between
the boundary value data on 8D, in the
formulation of the direct boundary value
problem. Therefore relations (61a) and
(66), coupled by means of (64), can be
solved to determine the solution,
starting from appropriate initial value
conditions. It should be noticed that
the matching of velocity and pressure
fields on control boundary dD. is well

defined including terms up to 0O(P2-9) .

CONCLUSION

The above discussion describes and
gives examples of the application of a
technique for the formulation of non-
linear boundary value problems of ship



The examples provided

hydrodynamics.
indicate the usefulness of the technique
in deriving and evaluating formulations
of boundary value problems for specific

applications. In particular it is shown
that consistent formulations of the non-
linear time domain problem of ship-wave
interaction can be obtained using the
described method. The adoption of the
weak scatterer hypothesis allows those
formulations to be effectively
implemented with the application of
existing computational means. Also, the
method provides a basis for the
development of consistent non-linear
flow matching (radiation) conditions on
control boundaries.
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DISCUSSION

J. Wehausen
University of California at Berkeley, USA

This paper provides the underpinnings of the
recent paper by the author and Bass [6]. Because of
the rather impressive results reported in that paper,
this one deserves some detailed study and comment,
more than I can do here. I have not been able to
read the whole paper with attention to detail, but shall
try to describe my understanding of the author’s
approach to the problem of the title and some of the
difficulties that I have encountered.

In deriving the linearized equations for free-
surface flows in the usual Eulerian formulation, one
is confronted with the embarrassing situation that one
expands the velocity components and pressure (or
perhaps a velocity potential if one exists) in a series
about a point that does not lie within the fluid and
where the quantity in question is presumably not
defined. Several ways have been proposed in order
to meet this difficulty. One is to assume that the
region of definition of the quantity can be extended
analytically far enough beyond its natural region of
definition to include the point in question. It is
seldom, however, that anyone really addresses this
problem of analytic extension (but see H. Lewy,
Proc. Amer. Math. Soc., vol. 3 (1952), pp. 111-
113). Nevertheless, one might argue that if one has
proved convergence of the resulting series, one has
by that fact established the legitimacy of the analytic
extension. Such proofs exist in only a few cases. In
2D potential flow, one may avoid the difficulty by
taking (¢,¢) as independent variables and solving for
x(¢,¢) and y(¢,¢) with domain of (¢,¢) known; this
stratagem is, of course, not always available.
Another procedure is the use of a Lagrangian
description of the fluid motion. Then all independent
variables are defined on a given domain and
presumably one can construct a perturbation
approximation without having to leave the reference
domain.

Joseph[1], Lebovitz[2], and the author have
chosen a procedure that they call Lagrange-like.
They start with a given, possibly time-dependent
domain D, as the reference domain (not necessarily
the fluid domain at, say, time t = 0) and introduce
mapping functions from the domain D, to the domain
D(t) of the fluid at time t. The mapping functions
are to be determined in the course of .solving the
problem. Joseph and Lebovitz make it clear from the
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beginning that they are trying to develop an approach
to perturbation approximations that avoids the
puzzling situation mentioned above. Also, one of
their goals is to relate the (usual) Euler-like
procedure to the Lagrange-like one, and indeed they
conclude that the Euler-like procedure can be
justified, at least formally, on the basis of their
approach. Thus, they end up with the same set of
boundary-value problems.

The author’s approach is more elaborate.
Essentially he is developing the Lagrangian equations
for a special reference domain that may depend upon
the time (i.e., one moving with the mean position of
the ship). A perturbation approximation is introduced
only fairly late in the paper. The first part is devoted
to developing the necessary formulas for expressing
the kinematic relationships in terms of the author’s
form for the mapping from the domain D, to the fluid
domain D:y=x+n(x,7), where xeD,, yeD. Unlike its
expression in Joseph [1] or Lebovitz [2], 5 is not
considered to be small. The mapping is expressed by
means of the operator exp() defined in equation (2).
I find the definition ambiguous, for, according to my
understanding,

(1 “3fx)*=(nidjxd)(njd| &) =ni(Injifxi)dfxj +n inj*/dxidxj,

If (3) is to be

correct, one must treat H as a constant in (2). This
is true not only here but also later on when the

operator exp(n3/3x) and §/ax and J/at are taken to
be commutative, as, e.g., in (6ab) and (19bc). One
might think that one motivation for introducing the
operator exp() is to exploit exp(-) as its inverse, but
this doesn’t occur and apparently is not useful. The
operator appears to have been introduced chiefly for
notational convenience.

and similarly for higher powers.

scalar function (possibly a
component of a vector or tensor) W), defined on D,

is mapped into u(y), defined on D, by (4a), i.e., by

An arbitrary

* u@)=ux+n)=vx)+(n YA)+...

The series is defined for J_ceDo, as one wishes. If
also ;+H€Dw then the series is just v(x+1).

Apparently  u(x+n)=v(x+n) when x+neD,, not
necessarily a useful observation since one is really
interested in defining u in D. However, this is



from the similar-appearing

evidently different
mapping used by Lebovitz, who defines u(x+1)=v(x).

I am not able to verify immediately equations
(4b), (4¢), and the ensuing statement. If, in fact, the
proof is not obvious, it would be some comfort to the
reader to be informed of this.

I am interested in the statement that the author
did not assume (35), the "usual assumption,” as he
states. In interpret this to mean that, in fact

#

and indeed, as pointed out by the author, in (34d) the
components 71" and 72! do appear. %3' is determined
on 8D by (34b). It would be interesting to see how
the expressions for these other components are
determined, and under what conditions they are
necessary. Also, how does one extend the definition
of 7 to all D? One of the conclusions of Joseph [1]
and Lebovitz [2] is that the use of domain mappings
leads back to the usual equations derived by an Euler-
like procedure, although by a path that seems to them
more satisfactory. Are the author’s equations really
different from those that would be derived by the
usual Eulerian procedure, and if so, in what way?
Perhaps the author can supply some further insight
into his reasons for choosing the Lagrangian
procedure.

n=nlel+n2e2+n3e3,

The paper by Nakos and Sklavounas [5] also
shows remarkably good agreement between
experiment and theory. Following eq. (41) the
author gives a detailed description of the differences
between his equations and those of [5]. It would be
of practical interest ta have numerical estimates of
these differences, something apparently not too
difficult to provide, since computer programs have
evidently already been prepared. Since [5] is not
presented as a nonlinear theory, are differences
primarily a result of the nonlinear aspects of the
author’s theory?

There is so much detailed analysis in this paper
that one cannot be sure of mot having overlooked
some subtle point or perhaps even an error in
calculation. Nevertheless, the impressive
comparisons between calculation and experiment
shown here in Fig. 2 and more extensively in the
SNAME paper [6] suggest that the paper deserves
intensive study necessary to understand it fully.
There are still many questions to be asked. For
exa