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FOREWORD 

The Nineteenth Symposium on Naval 
Hydrodynamics, held in Seoul, Korea, from August 
23-28, 1992, was organized jointly by the Office of 
Naval Research (Fluid Dynamics Program), the 
National Research Council (Naval Studies Board), 
and the Society of Naval Architects of Korea. This 
international biennial symposium promotes the 
exchange of naval research developments of common 
interest to the countries of the world. The forum 
encourages both formal and informal discussion of 
the presented papers, and the occasion provides an 
opportunity for direct communication between 
international peers. 

More than 200 participants from 13 countries 
attended the symposium. Ranging from newly 
graduated students to researchers of established 
international repute, the attendees represented a mix 
of experiences and expertise. They presented 48 
papers in seven topical areas—nonlinear ship motions, 
viscous ship hydrodynamics, hydrodynamics in ship 
design, wave and wake dynamics, cavitation and 
bubbly flows, propulsor hydrodynamics and 
hydroacoustics, and frontier experimental 
techniques—chosen because of recent advances made 
in these areas. Examples of significant advances 
presented in the papers are the numerical solution of 
the nonlinear equations for time-dependent ship 
motions, the prediction of vorticity flux from surface- 
piercing accelerating bodies, the design of a novel 
foil catamaran ship, the emerging understanding of 
free-surface interactions with vorticity, explanations 
of acoustic emission from cavitation bubble breakup, 
the prediction of viscous flow around propellers, and 
the use of quantitative visualization of large-scale 
wake structures for a free-running body. 

The success of this timely symposium was 
the result of hard work on the part of many people. 
The Organizing and Paper Selection Committee 
consisted of Mr. James Fein, Dr. Patrick Purtell, and 
myself (Office of Naval Research), Mr. Lee Hunt 
(National Research Council), Prof. Robert Beck 
(University of Michigan), Prof. Choung Lee (Pohang 
Institute of Science and Technology), Prof. Kwang- 
June Bai (Seoul National University), and Dr. 
William Morgan and Dr. Justin McCarthy (David 
Taylor Model Basin). The contribution of this 
committee was certainly the cornerstone of the 
symposium's success. However, the organizers 
would also like to thank Mrs. Susan Campbell and 
Mrs. Mary Gordon of the Naval Studies Board for 
their valuable administrative and editorial production 
support and to express special appreciation to the 
symposium's host, Prof. Jong-Heul Hwang, chairman 
of the Local Organizing Committee. 

Edwin P. Rood 
Office of Naval Research 
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Nineteenth Symposium on 

NAVAL HYDRODYNAMICS 

Opening Remarks 



Jong-Heul Hwang 
Chairman, Local Organizing Committee 

Ladies and gentlemen, welcome to the 
Nineteenth Symposium on Naval Hydrodynamics and 
to Seoul, Korea. 

On behalf of the Local Organizing 
Committee, I would like to express our thanks to the 
Office of Naval Research and the National Research 
Council of the United States of America for their 
kind cooperation for holding this symposium in 
Seoul. 

We are very proud to host the symposium 
with 36 years of history in providing a forum for 
frontier subjects in marine hydrodynamics. As all of 
you will agree with me, the Naval Hydrodynamics 
Symposia have contributed in the past to inspiring 
new ideas and approaches to fundamental and 
challenging problems in marine hydrodynamics, 
which have been proven by the numerous papers for 
doctoral dissertation presented in the past symposia. 

The present symposium provides a valuable 
opportunity for the ship hydrodynamics research 
community in Korea to have direct access to the 
current state-of-the-art information in marine 
hydrodynamics research, as well as an opportunity to 
be acquainted with fellow investigators from all over 
the world. 

We feel very happy, also, for offering a 
place for our friends from abroad to renew their 
acquaintance with the friends from other countries 
who have a common goal of learning more about 
marine hydrodynamics. 

Our sincere gratitude goes to the authors, 
session chairmen, and participants who will together 
make the Nineteenth Symposium another successful 
forum to advance our knowledge in marine 
hydrodynamics. I would like to take this opportunity 
to express our appreciation for the support rendered 
by the Korea Science and Engineering Foundation, 
the Korean Registry of Shipping, Korea Research 
Institute of Ships and Ocean Engineering, and the 
three major shipbuilding companies, namely Hyundai, 
Daewoo, and Samsung. 

Lastly, I wish all of you an enjoyable stay in 
Korea. Let us know if we can do anything to help 
make your stay in Korea more pleasant. 

Thank you. 



Fred E. Saalfeld 
Deputy Chief of Naval Research and 

Technical Director, Office of Naval Research 

Ladies and gentlemen, good morning and 
welcome to the Nineteenth Symposium on Naval 
Hydrodynamics. It is my pleasure to see this large 
number of participants from so many countries. In 
spite of economic problems in many parts of the 
world, this participation reflects the recognized need 
for continuing research and for the exchange of 
research information in the engineering sciences 
applicable to marine vehicle technology. It will be 
demonstrated in the papers to be presented and 
discussed in this symposium that it is a challenge to 
predict and control vehicle-related hydrodynamics, 
and that research must continue in recognition of 
future naval needs. 

As Deputy Chief of Naval Research and 
Technical Director of the Office of Naval Research 
(ONR), I am responsible for the basic research effort 
in the United States that supports the Navy. Naval 
hydrodynamics is one of the most important of these 
areas of research, and I have a keen interest in 
encouraging advancement in this field. I am looking 
forward to hearing firsthand at this symposium the 
latest achievements in predicting and controlling 
marine vehicle hydrodynamics. The Office of Naval 
Research supports basic research because in the long 
term there is a direct benefit to naval warfighting 
capabilities. ONR provides the stability that scientific 
efforts need to produce beneficial results, even if the 
outcome cannot be foreseen at the beginning. It is in 
this spirit that ONR supports this symposium. 

The symposium is unique. It is international 
in character, alternating in location between the 
United States and a host country other than the 
United States. This is the nineteenth meeting of the 
symposium since it began in 1956. As always, the 
symposium is sponsored by the Office of Naval 
Research, the National Research Council, and a host 
institution, in this case the Society of Naval 
Architects of Korea. 

I know this is a long trip for many of us, but 
it is well worth the effort. Korea is truly beautiful; 
the people are friendly. I know the effort required to 
conduct a symposium such as this is immense, and it 
appears that our hosts have more than accomplished 
the task. If my experience so far is any indication, 
the hospitality of our hosts will be unsurpassed. 

For this meeting of the symposium, the 
international flavor is especially significant. Naval 
ship hydrodynamics have obviously been of military 
and economic interest for thousands of years. 
Certainly the basic engineering information is 
understood, and present-day naval and commercial 
vessels are efficient and fulfill the purpose for which 
they are intended. But, in the future there will be an 
increasing need for vessels that are significantly 
bigger or faster, and less expensive. There will 
continue to be a hydrodynamics challenge. The real 
challenge today is focused on affordability: less 
expensive to build, operate, and maintain. In our 
increasingly interconnected world, new demands for 
maritime transport, together with increased 
exploitation of the seas, imply a growth in marine 
vehicle construction. With the increase in maritime 
activity, there will be an increased need for naval 
protection. 

Many factors enter a nation's decision to 
design and construct ships. These factors include 
technological achievement, labor rates, government 
subsidy, and defense priority. We observe in our 
world that the nontechnical factors seem to control 
national shipbuilding efforts. However, the enabling 
factor is always technology achievement. For 
example, common to both naval and commercial 
interests is the need for fast transports. This requires 
basic understanding of, and prediction capability for, 
complex turbulent flows and their effects on 
performance, including propulsive efficiency, noise, 
and vibration. An enabling technology would be the 
successful development of useful computer prediction 
methods incorporating rational turbulence models 
applicable to a wide range of flow geometries. 

Naval hydrodynamics problems are 
distinguished from aerodynamic problems by the 
presence of the free surface, the ingestion of 
turbulent flow by the propulsor, and the phenomenon 
of cavitation. In spite of the advanced technology 
associated with aircraft and aerodynamic flow 
predictions, it has been demonstrated that those 
methods do not solve naval hydrodynamics problems. 
Hydrodynamic problems remain unique, requiring 
special assault. The need is to extend the naval 
architect's hydrodynamic tools, largely empirical and 



based on historical success, to predict hydrodynamic 
performance beyond the current database, and thus to 
free the ship designer from the constraints of 
traditional geometries and conservative assumptions. 

Almost surely hull and propulsor designs in 
the future will be much different from those in use 
today. The "shaping" of the flow into the propulsor, 
for example, will become a common feature. To 
accomplish these goals, one could expect computer 
predictions that simultaneously consider geometry, 
hydrodynamics, and performance. In such a scheme, 
the hydrodynamics codes would be different from 
those existing today. This is so because the 
numerical procedure would "sense" the complexity of 
the flow to be predicted, and would automatically 
adjust its solution approach consistent with the 
required accuracy of the results. 

Naval hydrodynamics adds additional 
performance requirements to ship design which 
demand a broader understanding of the flow physics. 
Specialty topics of interest in this area include 
prediction and control of surface ship wakes, acoustic 
radiation, and the need to design for hydrodynamic 
loading in high-sea states. 

So, what is new for research opportunities? 
Powerful computers have opened the door for 
substantial progress in both physical and numerical 
experiments. We have entered an age where coupled 
laboratory measurements and flow predictions can be 
expected to lead quickly to the answer. We are able 
to measure the whole flow field at an instant, and to 
compare the results with numerical simulations of the 
same flow. This gains guidance and validation from 
the measurements, and spatial and temporal resolution 
with the simulations. 

We are in an era where there is a need to 
develop technology for the future yet there is a 
limited supply of resources to conduct the required 
research. There is an answer, and that is to provide 
international exchange of information at the basic 
research level. We all know that the stakes are high 
in the area of national products. But the engineering 
science base required to support technology 
development can be made affordable and timely 
through open exchange of information. It is in this 
spirit that ONR sponsors the Symposium on Naval 
Hydrodynamics. 

Forty-eight papers from ten countries will be 
presented and discussed at this symposium. They 
were selected from 150 papers submitted for 
consideration based on relevance and quality. The 
papers address topics in the areas of nonlinear ship 
motions, viscous ship hydrodynamics, hydrodynamics 
in ship design, wave and wake dynamics, cavitation 
and bubbly flows, propulsor hydrodynamics and 
hydroacoustics, and frontier experimental techniques. 
In keeping with the objectives of this symposium, I 
encourage you to participate in the discussion. 

I wish you a successful, meaningful 
symposium. I know I will enjoy and profit from 
being able to attend this major scientific event. 



George F. Carrier 
Professor Emeritus, Harvard University 

On behalf of the U.S. National Academy of 
Sciences, it is my great pleasure this morning to 
welcome each of you to the Nineteenth Symposium 
on Naval Hydrodynamics. This symposium series 
has now served as an international forum for the 
exchange of ideas and research results in the fields of 
fluid dynamics and naval architecture for 36 years, 
and has been convened in the Netherlands, Norway, 
Italy, France, England, Germany, and Japan in 
addition to the United States. The success of the 
series is fitting testimony to the foresight and 
dedication of Philip Eisenberg and Marshall Tulin of 
the Office of Naval Research, and the fact that 
alternate symposia are held outside the United States 
is due to Marshall's recognition that only in that 
manner could the series become truly international. 

The standards and the vision established by 
Phil and Marshall have been faithfully preserved in 
subsequent years by Ralph Cooper, Bob Whitehead, 
Chung Lee, and Edwin Rood. I am sure that each of 
them would say that their jobs have been made both 
easy and pleasant by the cooperation received from 
the host countries and the international ship 
hydrodynamics community. 

In recognizing the antiquity of this 
symposium series it is only fitting that the Nineteenth 
should be held in a country that can trace its own 
history over nearly 4,000 years. Further, in holding 
the meeting in the Republic of Korea we pay tribute 
to the great strides and contributions this country has 
made in hydrodynamic research, in ship design, and 
in shipbuilding. And finally, holding this symposium 
here in your capital city of Seoul is also a tribute to 
the dedication, the tireless energies, and the respect 
with which the international community holds Chung 
Lee. As you know, we were privileged to have 
Chung serve with the Office of Naval Research prior 
to his return to Korea. 

The technical sessions for the Nineteenth 
Symposium were prepared by a program committee 
representing the three organizing institutions—the 
Society of Naval Architects of Korea, the Office of 
Naval Research, and the National Research Council 
of the National Academy of Sciences. On behalf of 
the three organizers I would like to express our 
appreciation to the Korean sponsors of this week's 
activities:    the Korean Registry of Shipping, the 

Korea Science and Engineering Foundation, the 
Korea Research Institute of Ships and Ocean 
Engineering, Hyundai Heavy Industries Co. Ltd., 
Daewoo Shipbuilding & Heavy Machinery, Ltd., and 
Samsung Heavy Industries. We are most appreciative 
for their assistance. 

Those of you who attended the Eighteenth 
Symposium at the University of Michigan in 1990 
will recall that in his opening remarks, Lee Hunt, as 
the Academy representative, characterized the period 
before us as the Maritime Era. Incidentally, due to 
unavoidable conflicts, Lee was unable to attend the 
meeting this week. He sends his regards and his 
wish for a successful meeting. He saw the Maritime 
Era as being driven by a substantial increase in 
international trade, which, in turn, would place 
increasing demands not just on shipbuilding, but also 
on innovative design changes leading to greater 
transport economy. He also saw the growth of 
navies to police and protect those shipping fleets. 

I not only endorse this vision of the future 
for the ship hydrodynamics and naval architecture 
community, but also would like to expand upon it. 
In the United States, oceanographic research goes 
back to Benjamin Franklin's observations on the Gulf 
Stream, and Matthew Fontain Maury's assembling 
vast amounts of data into nautical charts and sailing 
directions. But it was not until the 1950s that the 
international scientific community began a systematic 
study of the oceans. Since that time our knowledge 
of the physics, geophysics, geology, chemistry, and 
biology of the oceans has increased enormously. 
However, as in all fields of scientific endeavor, every 
question answered is replaced by two that are yet to 
be answered. The one thing we have learned is that 
the oceans play an even greater role in the 
environment in which mankind lives than we had 
earlier imagined. 

Up until now, and for lack of a technological 
alternative, we have been practicing vertical 
oceanography. That is, we have, with limited 
exceptions, sampled vertical columns of water and 
extrapolated between the columns. Today—thanks in 
no small measure to this community—we have the 
technology to begin practicing horizontal 
oceanography. I refer, of course, to both remotely 
controlled   and   autonomous   vehicles   capable   of 



carrying sensor suites to virtually any depths and over Korea.  Therefore I am both pleased and honored to 
meaningful ranges. I also refer to advances in towed be here this week.   I look forward not only to the 
side-scan sonars capable of mapping the ocean floor technical   papers   the   Program   Committee   has 
with unprecedented resolution. And I refer to recent assembled for us, but also to observing as much as 
proposals for doing a comprehensive survey of the time permits of your country, its people, and their 
Arctic Basin using a nuclear powered submarine. culture. 

The technology is here, and the need is Thank you, and the very best wishes for a 
obvious, and I urge the international community of successful meeting, 
scientists and engineers to get on with the next phase 
of oceanograpbic research, made possible in no small 
measure by the community assembled here this week. 

In closing, I would like to make note of the 
fact that this is my first visit to the Republic of 
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ABSTRACT 

A general numerical flow simulation model is 
used to calculate non-linear free surface/hull inter- 
actions on arbitrary configurations. The method is 
based on a boundary-integral formulation in the 
time domain, and treats the free-surface deforma- 
tion and general finite amplitude motions of arbi- 
trary vessels using a time-stepping, mixed Eulerian/ 
Lagrangian approach. 

The boundary element method uses both 
source and doublet singularity panels on the free 
surface and on all wetted surfaces of the hull config- 
uration, including, if present, ocean floor, towing 
tank, etc. The effects of surface boundary layers, 
lift and vortex wakes may be included in the calcula- 
tion. 

Computed results are presented for a sphere in 
large amplitude harmonic motion near the free 
surface. These calculations compare favorably with 
published results. Initial calculations from an on- 
going study of a frigate in large amplitude motion 
are also presented and include studies of a finite- 
amplitude wave generator. 

NOMENCLATURE 

Cp        Pressure coefficient^ p - p^ )/(l/2 pV^) 
dS Element of surface 
Fr Froude number, V^^JgL 
g Acceleration due to gravity 
L Hull length 
NH       Number of active (wetted) panels on the 

hull surfaces 
NPAN  Total number of active panels on the free 

surface and hull(s) 

n Unit normal to the surface pointing into 
the fluid domain 

p Static pressure 
PREF      Ambient atmosphere pressure 

T Position vector in normalized space 
LREP      Reference length, L/2 
t Time 

v Normalized perturbation velocity, ^v^ = -v<f> 
9 Perturbation velocity, -V$ 
VREP      Reference speed 
x,y,z      Normalized Cartesian coordinates, 

x =X/LREF, etc. 
X,Y,Z   Cartesian coordinates, dimensional 

R Position vector in dimensional space 
H Doublet density, <J)/4x 
a Source density, - (3<J>/dn)/47t 

x Normalized time, t ■ V^L^^ 

p Water density 
4> Normalized velocity potential, ^IL^V^^ 

$ Velocity potential (units of length2/time) 
ß Angular velocity 

1.0   INTRODUCTION 

A general purpose numerical flow simulation 
method is being developed for treating complex 
hydrodynamic problems associated with arbitrary 
vessels moving in or near a free surface. The meth- 
od is aimed at conditions experienced by modern 
high performance vessels that are beyond the scope 
of traditional linearized approaches. The objective 
is to avoid small amplitude assumptions and other 
linearizing conditions that leave the free surface 
essentially flat. Such assumptions would lose the 
non-linear effects generated by complex hull shap- 
ing, flare, etc., during large amplitude motions in 
heavy seastate. 

In recent years, there has been a steady pro- 
gress towards a non-linear treatment of the hull/ 
free surface interaction. The early application of 
Rankine source panel methods by Gadd (1) and 
Dawson (2) provided nominally exact boundary 
conditions on the hull and were developed further in 
a number of approaches (e.g., Piers (3), Chang and 
Dean (4), Xia (5) and Larsson (6), among others). 
These approaches still left the free surface essential- 
ily flat. A number of researchers pursued a Daw- 
son-like approach, but with higher-order terms in 
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the free surface boundary condition, e.g., Ogiwara 
and Masuko (7) and Musker (8). A steady non-lin- 
ear ship-wave problem was solved by Jenson, 
Soeding and Mi (9), using a simple source distribu- 
tion located above the free surface. A similar tech- 
nique was used by Cao, Shultz and Beck (10) in a 
time-domain method for computing non-linear 
waves, due to underwater disturbances. This so- 
called "desingularized" approach has several compu- 
tational advantages when treating simple bodies, but 
may be difficult to apply to more general surface- 
piercing bodies having complex lifting appendages. 
It may also preclude future extension for simulta- 
neous treatment of the air/water regions for sur- 
face-effect ship or sailing yacht applications. 

Early attempts with panel methods applied to 
seakeeping problems in the frequency domain were 
inconclusive because of computational limitations. 
The recent work by Nakos and Sclavounos (11) was 
more successful, albeit with linearized free surface 
boundary conditions. King, Beck and Magee (12) 
showed the advantage of a time-domain, rather than 
a frequency-domain approach to seakeeping calcula- 
tions. More recently, Lin and Yue (13) presented a 
time-domain approach, which treats large amplitude 
motions of the hull, but again, the free surface con- 
ditions are linearized, consequently, effects due to 
the changing wetted surface when encountering 
finite amplitude waves, is missing. 

Zhou and Gu (14) presented a time-domain 
non-linear treatment of the free surface that includ- 
ed the motion of simple surface-piercing bodies. 
The complex problem of the moving water line 
cutting the surface panels was treated by an interpo- 
lation scheme. The scheme chosen may be difficult 
to apply to a complex shape. The non-linear free 
surface method presented by Kang and Gong (15) 
used curved panels and a high order integration 
scheme for the time steps. Results were presented 
for a submerged sphere oscillating with large ampli- 
tude, however, these results, for a single body, took 
about 14 hours of CRAY 2 time. Powlowski and 
Bass (16) presented a practical method for treating 
large amplitude ship motions in heavy seas. This 
uses a method of modal potentials and is based on a 
weak scatter hypothesis. The time-domain calcula- 
tions use a set of modal amplitudes which must be 
predetermined for each vessel and load condition. 

For wave/hull interactions in extreme sea state, 
the effect of bottom-slamming and possibly bow 
flare-slamming, are matters of concern, not only for 
predicting vessel behavior, but also for structural 

loads. The time-domain treatment presented by 
Troesch and Kang (17) based on a doublet panel 
method, showed very good agreement with experi- 
mental measurements for the impact load history in 
the case of relatively flat bottom-slamming, but gave 
an overprediction of the load during flare entry. 
This discrepancy is principally due to a simplifica- 
tion of the free surface boundary condition. In the 
present project, a more general free surface bound- 
ary condition is used, however, practical panel den- 
sities for the three-dimensional case may not be 
sufficient to resolve the water-jet feature of slam- 
ming. 

The present approach is based on the USAERO 
FSP program (18, 19). The basic program (20) is a 
time-stepping panel method that has been devel- 
oped concurrently with the steady VSAERO pro- 
gram (21) over the past 15 years. The method uses 
both source and doublet singularity panels on the 
free surface and on all wetted surfaces of the con- 
figuration, including, if present, ocean floor, towing 
tank, etc. Doublet singularity panels, which convect 
with the local flow, represent the transient mean 
surfaces of wakes shed by lifting components of the 
configuration; they are also used to model propulsor 
slipstream effects. 

The objectives of USAERO cover a broad 
range of applications, including helicopter rotor/ 
body interactions, maneuvering aircraft, marine 
propeller in nonunifonn flow, and high-speed 
train/tunnel simulations. USAERO allows multiple 
moving frames of reference to be specified, thus 
allowing study of such problems as transient effects 
due to control deflection and the mutual interaction 
of two or more bodies moving relative to each oth- 
er. Boundary-layer effects are computed and mod- 
eled in the surface boundary condition, using the 
transpiration technique. An optional six-degree-of- 
freedom flight-path integrator module treats tran- 
sient problems such as the response of an aircraft 
flying through a gust or the release of a store from 
an aircraft, and has been briefly applied to the sink- 
and-trim calculation on a Wigley hull started impul- 
sively from rest. 

Recently, the Free-Surface Program (FSP) was 
developed as an extension of the basic code. The 
combined program is referred to as USAERO/FSP. 
The non-linear free surface treatment uses the 
mixed Eularian/Lagrangian approach of Longuet- 
Higgens and Cokelet (22) and treats the moving 
hull(s) and deformable free surface within the time- 
step loop structure of USAERO.    The program 
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automatically repanels the free surface and the local 
parts of surface-piercing objects to the changing 
water line. The free-surface treatment includes a 
finite amplitude wave generator. 

An earlier paper (18) presented basic results 
for a spheroid and a lifting hydrofoil. Both cases 
were run impulsively from rest below the free sur- 
face and included boundary layer calculations. Ex- 
ploratory calculations for a generic SWATH in a 
pitch oscillation and also a series 60 hull in open 
water and in a wave tank simulation were also pre- 
sented (19). 

The ultimate objective of the USAERO/FSP 
method is to provide a practical, non-linear capabili- 
ty for seakeeping and maneuver predictions. The 
current effort is directed towards validation and 
evaluation of the method applied to large amplitude 
motions. This paper presents results from a discret- 
ization sensitivity study based on a sphere oscillating 
with large amplitude close to the free surface. For 
a more general case, a frigate hull is examined in a 
forced, large amplitude harmonic pitch and heave 
oscillation. One of the issues in these calculations 
concerns the automatic repaneling of the hull and 
free surface as the vessel plunges, and particularly 
when the fore deck becomes wetted. Two bow 
shapes are considered here: a parent shape and one 
V3 with a pronounced flare. These are taken from 
a set of five bow shapes which have been tested in 
model experiments (O'Dea and Waiden (23)). As 
the present study continues, all five shapes will be 
considered, using the wave tank simulation in the 
present method. Initial results of the wave tank 
simulation are presented here, but further work is 
needed to match the wave profiles in the generated 
on-coming waves with those of the experiment. 

2.0 MATHEMATICAL MODEL 

The basic problem to be treated consists of an 
arbitrary vessel undergoing large amplitude motions 
in or near the free surface. For generality, the 
vessel may have fixed or moveable lifting hydrofoils, 
control surfaces and propulsors. The flow region 
may extend to infinity or it may be bounded locally 
in towing tank or canal simulations or in shallow 
water. A ground-fixed Cartesian coordinate system 
is used with the X and Y axes in the undisturbed 
free surface and Z positive upwards, Fig. 1. For the 
purpose of developing a practical mathematical 
model, it is assumed that the effects of viscosity are 
largely confined to thin boundary layers on the mov- 

ing wetted surfaces and that wake vorticity is essen- 
tially concentrated in thin vortex sheets and discrete 
vortices embedded in the fluid. Diffusion and dissi- 
pation of vorticity from the wake surfaces and from 
the free surface into the fluid interior are neglected 
at this time. Away from the boundaries, therefore, 
the fluid is regarded as inviscid and irrotational as 
well as incompressible. The fluid motion can, there- 
fore, be described by a velocity potential, Q>(f&), 
which satisfies Laplace's equation, 

V2* = 0 (1) 

Traditionally, $ is broken down into a number of 
component parts to aid in the linearizing of bound- 
ary conditions. Here, however, since there is no 
linearization, <i> is left as a whole quantity and will, 
therefore, encompass such terms as incident wave 
potential, diffraction potential, radiation potential, 
etc. The convention adopted here is that the Quid 
velocity, V, is the negative gradient of the potential, 
i.e., 

V = - V$ (2) 

BODY-FIXED FRAME 

WAKE SURFACES 

FREE SURFACE PANELS 

PROPELLER DISK MODEL 

Fig. 1. General Reference System. 

It is convenient to non-dimensionalize the problem 
with respect to certain reference quantities. A ref- 
erence length, LREP is used to non-dimensionalize 

the geometry and a reference speed, V^, is used 
to non-dimensionalize velocities. (LREF is usually 
chosen as half the hull length, L, and V^ the mean 
speed of the vessel relative to the water.) In non- 
dimensional space, therefore, we have the quantities, 
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4> = QILgjxfVj^; 

x = X/Lxjp, etc. 

At any instant of time, the fluid velocities are com- 
puted after applying Green's Theorem to the func- 
tions <j> and 1/r in the fluid domain, where r is the 
distance of any point in the fluid from an observe 
velocity point, P. With V2<f> (from Eq. 1), the vol- 
ume integral in Green's Theorem disappears and 
the flow is then determined by surface integrals of 
<j> and its normal derivative, d<f>/da, over the sur- 
faces bounding the fluid including surfaces enclos- 
ing the singularity sheets representing wakes. For 
a point P on the wetted side of a surface, the per- 
turbation potential can be written: 

- -L/T - n   -VfydS 
4nJ Js   r 

♦£/£^-»o'-"(7h   (3) 

where n is the outward normal from the surface 
and r is the length of the vector from the surface 
element, dS, to the point P. Surface, S, includes 
all wetted parts of the hull configuration, tank 
walls, etc., and free surface. W represents the 
mean wake surfaces. S-P signifies that the point P 
is excluded from the surface integral, the limiting 
process for the singular point when r-0 yields the 

local contribution, 4)^/2. 
The first integral in Eq. (3) is the contribution 

from a surface distrib'ution of normal doublets of 
strength, 

V4> 

H = T~ 4Tt 
(4) 

The second integral is the contribution from a 
surface distribution of sources of strength, 

47C 
(5)' 

The third integral in Eq. (3) is the contribution 
from mean wake surfaces, W. The mean surface of 
each wake is formed by combining the upper and 
lower parts of the surface, enclosing the wake singu- 
larity sheet, Fig. 2. The resulting surface takes the 

SURFACE NORMAL 

WING SURFACE    S 
WAKE SURFACE    W 

Fig. 2. Section through Wing and its Wake. 

upward facing normal and a local strength which is 
proportioned to the potential jump across the wake: 

47t 
(6) 

In combining the wake upper and lower surfaces, 
the source term has been discarded, which imples 
that there is no normal flow relative to the wake. 
In fact, the wake points convect with the flow, so 
the wake surface is always aligned with the local 
velocity. (The entrainment effect due to turbulent 
mixing is neglected for the moment, but could be 
modeled by leaving the source term on the wake 
panels and using a free-shear layer entrainment 
expression.) 

Thus, Eq. (3) becomes 

dS - 2itu   + 
s-r K   i 

s   ' w v   / 
(7) 

This is the basic boundary integral equation, 
which is solved step by step through time as the 
vessel moves (see below). At each step, the instan- 
taneous boundaries and their rates of motion are 
described relative to the ground-fixed frame. Each 
solution provides the instantaneous doublet and 
source distribution from which the velocities are 
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derived. Bernoulli's equation then provides the 
pressure distribution. This may be written in the 
form of a pressure coefficient using the non-dimen- 
sional quantities. 

Cp = 
P - P REF 

Wp v^ 
=  - v   - z    + 2 Ü   (8) 

Fr* dx 

zero here, but could be used in the case where the 
body frame is held stationary with the flow going 
na<;r past. 

vs is the velocity of a point on the surface 
relative to the stationary frame (Fig. 1), 

v. = v.  + Ü x Ä (11) 

Where p is the local static pressure, p^r is the 
reference pressure, which is taken here as the ambi- 
ent atmospheric value, p is the water density (con- 
stant),   z is the height above the undisturbed free 

surface and Fr represents the Froude number, V^/v/gL 
where g is the acceleration due to gravity. The 
z/Fr term represents the hydrostatic pressure coef- 
ficient. 

Equation (8) gives the pressure coefficient at a 
stationary point in the ground fixed frame; the pres- 
sure observed at a point moving with velocity v 
relative to the ground-fixed frame is 

Cp 
Fr1 d~ 

(9) 

where vR is the fluid velocity relative to the moving 
point and dtydx is the total derivative of <f> experi- 
enced by the moving point. 

Before Eq. (7) can be solved, certain boundary 
conditions must be satisfied. For finite time, the 
condition at infinity is that V<£ -» 0, so the surface 
integrals in Eq. (7) are performed on the local 
boundaries only. The free surface is truncated at a 
"reasonable" distance away from the region of inter- 
est. What is a reasonable distance will have to be 
established by numerical experiment Edge condi- 
tions may be required at the truncated free-surface 
edge; otherwise, disturbances arriving there may be 
reflected. So far, this has not been a problem. 

On the boundaries representing the "solid" sur- 
faces, the source distribution is determined by the 
external Neumann Boundary Condition specifying 
the resultant normal velocity of the fluid. The nor- 
malized flow velocity relative to the surface is, 

v. + v (10) 

where v is the perturbation velocity in fixed space 
(Eq. (2)). v_ is a possible uniform onset flow rela- 
tive to the stationary frame; this will be assumed 

where Vä(T) is the body frame velocity and Q(-r) is 
the velocity of rotation about an axis in the body 

frame. R is the position vector of the point in ques- 
tions relative to any point on the rotation axis. 

The normal component of the relative flow 
is, from Eq. (10), 

c '-) 'NORM '2L 
(12) 

where vNom is the required resultant normal veloci- 
ty, which is zero for a solid boundary and positive 
or negative, respectively, for outflow/inflow in pro- 
pulsor modeling, v^ is the boundary layer displace- 
ment effect using the transpiration technique, 

& (v<5*) 
(13) 

where ve is the relative flow speed at the edge of the 
boundary layer and 5* is the displacement thickness. 
The derivative is taken with respect to distance in 
the direction of the local external flow, v^ is zero 
for stationary boundaries and would be known from 
the previous step in a time-stepping calculation- 

Using Eqs. (2), (5) and (11), the source 
distribution on the solid boundaries can be written, 

(v 5 • R x n - n ■ v _) 
4TZ 

(14) 

The basic unknown on solid boundaries, therefore, 
is the doublet term which can be obtained from the 
solution of Eq. (7) at each step. 

The wake doublet distribution, /tw, is essentially 
known at each step because it is the accumulation 
of all previous solutions. Basically, at each step a 
new set of wake elements is created along wake- 
shedding lines. Each element takes the local jump in 
potential across the shedding line (Eq.  (6))  and 
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moves along the local mean velocity vector. This 
satisfies the unsteady Kutta condition, which is ob- 
tained after specifying equal pressure (Eq. (9)) 
across the separation line: 

(<W 
dx 

+ v„ 
ds 

(15) 

vM is the mean convection speed and s is measured 
in the direction of the local mean flow. /iw is the in- 
stantaneous jump in doublet strength across the 
trailing edge (Eq. (6)), i.e., nw is the newly emerging 
wake strength. Equation (15) essentially states that 
the rate of change of circulation at the trailing edge 
must match the transport of circulation into the 
wake. 

The emerging doublet strength is actually un- 
known at the beginning of each step, so each new 
wake element is partly involved with the unknown 
doublet values on the wake shedding surfaces. The 
strength of each wake element, once created, re- 
mains constant for all time as the element convects 
with the flow. (Diffusion and dissipation are not 
modeled at this time.) 

On the free surface, the initial boundary condi- 
tions are that the <j> and d<j>/dn (i.e., n and a) are 
zero, and that the pressure is uniform (Cp = 0). 
The ambient pressure is assumed to be transferred 
directly to the fluid across the free surface, i.e., the 
effect of surface tension is neglected at this time. 
From Eq. (8), therefore, 

3t Fr2 /2 (16) 

the kinematic condition on the free surface is satis- 
fied by moving the particles with the local flow, 

d? 
dx 

(17) 

Following a particle, the total derivative of <j> is 

d$  _ &}> _v2 
dx       dx 

Hence, using Eq. (16), 

d$ 
dx 

-*- -v2 

{Fr< 
12 (18) 

Assuming for the moment that the free surface 
displacement z and perturbation velocity v are 
known from the previous step, Eq. (18) can be inte- 
grated over a small time step to evaluate the current 
doublet distribution on the free surface. Given this, 
Eq. (7) can then be solved for the source distribu- 
tion (i.e., (i.e., d$/dn) on the free surface. This, 
together with the doublet gradient, provide the 
instantaneous perturbation velocity in Eq. (17). 
Integrating Eq. (17) then provides the free surface 
displacement for the next step, and so on. 

In summary, the simultaneous solution of Eq. 
(7) on the instantaneous locations of the free sur- 
face and hull configuration at each time step pro- 
vides the complete doublet and source distributions 
from which the flow velocities can be computed. 
Basically, on the hull the source is known and the 
doublet is unknown, while on the free surface the 
doublet is known and the source is unknown. On 
the wake surfaces, the doublet is essentially known 
and the source is zero. 

With the flow velocities known, the pressure 
distributions can be evaluated using Eq. (9) and can 
be integrated over the surface of each part of the 
configurations to provide the force coefficient, 

Cr = -//C^ + CfVR\VR\dS (19) 

and moment coefficient, 

c* = f[(cpx + cyR\rR\)xrds   (2o) 
s 

where r is the position vector of a surface element 
relative to a selected moment reference point, and 
Cf is the skin friction coefficient from a boundary 
layer analysis based on the current surface velocity 
distribution. 

Since the geometry has been normalized by 
LREF» the above coefficients are based on an area of 

LREJ:
2
 and a moment arm divided the LREF- They in- 

clude the effect of hydrostatic pressure (thez/Fr2 

term in Eq. (9), and therefore include the buoyancy 
force and moment. The six-degree-of-freedom 
response of the vessel to free-surface deformation 
can therefore be computed by integrating the equa- 
tions of motion over each time step. 

The wetted surfaces of surface-piercing objects, 
hulls, channel walls, etc. are modified by the de- 
forming free surface and by the movement of the 
vessel. These effects must be accounted for in the 
numerical treatment of the model. 
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3.0 NUMERICAL PROCEDURE 

3.1 General 

The numerical procedure for treating hy- 
drodynamic problems is outlined in Fig. 3. This is 
basically the USAERO program (20), plus a cou- 
pled free-surface program, FSP. The combined 
program is referred to as USAERO/FSP. 

2>2  Matrix of Influence Coefficients 

The main part of the numerical procedure 
is the treatment of the surface singularity distribu- 
tion. Basically, the surface integrals in Eq. (7) are 
discretized using quadrilateral panels as finite 
surface elements. Uniform doublet and source 
distributions are assumed on each surface panel, 
while a linear doublet variation (i.e., uniform vorti- 
city) is assumed in the streamwise direction over 
each wake panel. The surface integrals in Eq. (7) 
can then be performed in closed form over each 
panel. The resulting panel influence coefficients 

are evaluated for all active panels (i.e., configura- 
tion surface, free surface and wake surface panels) 
acting at a central control point on each active 
(i.e., wetted) surface panel on the configuration 
and free surfaces. Eq. (7) then becomes a sum- 
mation over all panels and is satisfied at each 
panel center. This forms a set of simultaneous 
equations, 

NPAN 

E    (HrCj*)-2*ny 
k=lJC*J 

NPAN NWS 
+   E   °**JK 

+ E VWKDJK = 0;   J=1,NPAN 
r=i JC=I 

(21) 

where fiK, aK are the doublet and source densities, 
respectively, on panel K. 

CJK, BJK are the influence coefficients, re- 
spectively, for the uniform doublet and source on 
panel K acting at the control point of panel J (CJK 

and BJK are given in Maskew (21). 

START. 0 
iL. 

INITIAL SETUP 
GEOMETRY, 
PANELING, ETC. 

INPUT F0SITI0N/0RIENTAT10N/TIME 
SCHEDULE FOR EACH FRAME 

(  PLOTFILE/ 
'»RESTART DAT, > 

ASSEMBLE CURRENT 
GEOMETRY IN GFF 

<£- 

w 
CHECK FOR 
INTERSECTIONS 
AND REPANEL 

ASSEMBLE I.C. 
MATRIX AND 
SOLVE FOR 
V  OR O 

ON a OFF-BODY 
DATA ANALYSIS 

NO 

NO 

NO 

r~ 

i  

^FPI ON? 

MOVE WAKE 
POINTS 

YES 

OPTIONAL MODULE 
IN USAERO 

1 
6 D.O.F. 
FPI 
RELOCATE 
FRAMES. _ 

I 

4-Jc CHECK FOR WAKE 
IMPINGEMENTS 

MOVE THE 
, FREE SURFACE 

% 

S/L BOUNDARY 
LAYER ROUTINES 

Fig. 3. USAERO/FSP Method Outline. 
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NPAN is the total number of active panels 
on all local wetted surfaces, including the free 
surface. NWS is the total number of free, cross- 
flow wake segments (Fig. 4); this number grows 
with time, /t^ is the doublet density at the .K* 
wake segment, and DJK is the influence coefficient 
for the linearly varying strength distribution over 
the pair of wake panels just upstream and just 
downstream of the segment. The influences of the 
wake segments that are about to be created at the 
shedding lines are combined with the local upper 
and lower shedding panel influences in the first 
term of Eq. (21) since these segment strengths are 
unknown at the start of each step. Some influence 
coefficients have to be re-evaluated at each time 
step-these include all wake panels, moving free- 
surface panels, and any hull panels which have 
relative motion with other hull panels or which 
have been modified by the repaneling procedure. 

Collecting together "known" and "unknown" 
quantities in Eq. (21), the following can be written, 

NH 

E  hrC. 
K-l 

jr 

(22) 
NPAN 

+      E     °KBJK  + EJK  =  Q'    J=V1PAN 
X-NH*l 

where 

-jj 
•2TI, 

direct rather than an iterative solver is not that 
great unless the number of panels gets well above 
3,000. 

CONTROL POINT 

OH PANEL J 

WRKE SEGMENTS 

/      SHED AT EACH TIME STEP 

m3-mzg£^ 

FIELD PATCHES MAY HAVE 

REDUCED PANEL DENSITY 

FREE SURFACE:/* KWCWN 

CT"UNKNOWN 

Fig. 4. Panel Influences. 

After solution of the singularity values, the 
perturbation velocities can be evaluated directly on 
each panel: 

(23) 

The  normal  component,  v^,   is   obtained 
directly from the panel source value, 

■4710 (24) 

NH NPAN 

-JK E°A +    E    H*C. JK 
K-l K-NH'l 

NWS 

+   E »Wr
DJK> and 

JC=1 

NH = number ofactive panels on the hull. 

Although USAERO has a number of ma- 
trix solver options, iterative solvers generally have 
a problem converging on the free surface equa- 
tions (which involve the source influence coeffi- 
cient term). The direct solver is therefore used in 
this type of analysis. The internal direct solver in 
USAERO uses the Purcell (24) vector method; 
however, on certain computers, e.g., Cray, Convex, 
SGI and IBM, USAERO can be directed towards 
a system direct solver which is generally optimized 
and vectorized.    Thus, the penalty for using a 

The tangential component, vr, is obtained 
from the surface gradient of the doublet, 

vr = -4TCVU. (25) 

The doublet gradient is evaluated in two 
directions over each panel using a second-order 
differencing scheme over three panels in each 
direction. On the "solid" boundaries, the perturba- 
tion velocity is combined with the local velocity, 
vs, due to body motion to give the resultant veloci- 

ty, 

v, = v - v. 

Hence, the pressure coefficient, Eq. (9), can 
be evaluated at each panel center. The d4>/dr 
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term is evaluated using second-order forward dif- 
ferencing based on the current and two previous 
solutions. 

Forces and moments (Eqs. (19) and (20)) 
are evaluated for each part of the configuration by 
summing the member panel contributions; the 
pressure and skin friction coefficient are assumed 
to be uniform over each panel. 

33  Boundary Layer Calculations 

On the moving solid surfaces, families of 
instantaneous streamlines are computed at each 
time step using the calculated panel velocity val- 
ues. These streamlines provide a basis for integral 
boundary layer analyses, which start with a laminar 
calculation at the stagnation point or "attachment" 
point of each streamline. 

Laminar boundary layer calculations follow 
the original method of Curie (25), with modifica- 
tion to solve the unsteady momentum integral 
equation using a Runge-Kutta method. The turbu- 
lent boundary layer method is also based on the 
unsteady momentum integral equation. Comtek's 
(26) entrainment relationship and Lyrio/Ferziger's 
(27) skin friction relationship are used for closure. 
The details of the method are described in 
Maskew and Dvorak (28), together with tests of 
the procedure against experimental data and 
against other methods. These show good agree- 
ment. 

The calculations provide the boundary layer 
displacement source term and skin friction coeffi- 
cient distribution along each of the instantaneous 
streamlines. These quantities are then redistribut- 
ed onto the surface panels in the attached flow 
regions. The skin friction term is included on the 
analysis of forces and moments (see Eqs. (19) and 
(20) above). The calculations also provide the 
location of separation on each streamline. The 
locus of such points defines separation lines on the 
body surfaces. At this time, there is no automatic 
coupling of these data with the wake-shedding rou- 
tine. Simple cases of separated flow can be treat- 
ed, but the user must specify the separation line at 
this time based on the boundary layer prediction. 

3.4  Free-Surface Treatment 

The free-surface deformation is first evalu- 
ated by integrating Eq. (17) over a small time step. 
A forward Euler scheme is used based on the 
computed perturbation velocity (Eq. (23)); i.e., 

jKx+tx) fV 6xv (26) 

The z component of r, together with the square of 
the perturbation velocity, allows evaluation of the 
gradient of the potential with respect to time (Eq. 
(18)). This can then be integrated over the small 
time step to provide the new doublet distribution 
on the free surface for the next time step; i.e., 

|l(,tS,)   =   UW   +  5t 
'd^ 

dx 
I An 

The starting conditions for the free-surface 
integration are that the z component of f is 0.0 
and <f> is 0.0. 

For the objective of seakeeping predictions, 
a simple wave generator has been installed which 
applies an oscillating doublet term at the upstream 
edge of the free surface, 

U(T) = jiosin Pf: (27) 

where \K„ is the doublet amplitude and p the period 
of oscillation. (This will later be expanded to in- 
clude more Fourier terms.) At this time, because 
of edge conditions, only in-tank conditions have 
been examined. A simple damper is applied at the 
downstream end of the tank to absorb wave ener- 

gy- 

3.5 Wake Movement 

When a solution has been obtained, veloci- 
ties are computed at all existing wake points using 
a summation of all singularity contributions in the 
model. All wake points are then convected along 
the local velocity vector for a small time step. 
Simultaneously, a new set of wake panels is creat- 
ed along the wake shedding lines (Fig. 5). 

The current trailing-edge doublet value (the 
doublet jump across the wake at the trailing edge) 
is transferred to each newly created wake segment. 
The doublet strength on each wake segment re- 
mains constant for the remainder of the calcula- 
tion. The wake vorticity effectively varies in time 
and space according to the local stretching or con- 
traction of the wake sheet as the wake points con- 
vert at the local velocities. When the new config- 
uration has been assembled in the  ground fixed 
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WftKE PANELS 

ALL PREVIOUS POINTS 
CONVECT 
WITH THE FLUID 

NEW SET OF WAKE PANELS 

CREATED AT EACH TIHE STEP 

Fig. 5. Wake Model in USAERO. 

frame at each step, a routine checks for intersec- 
tions of the wake segments with the solid surfaces. 
For the most part, the points convect around 
downstream obstacles; however, in some cases 
intersections are unavoidable, e.g., if propeller 
blades are rotating in the presence of stators. The 
code deactivates any wake segment (cross-flow or 
streamwise) that cuts a downstream solid surface. 

3.6  Surface Paneling Routines 

In USAERO, the surface panels are assem- 
bled into a number of patches which have a regu- 
lar row/column arrangement. User input of each 
patch requires a number of defining sections to be 
described using a set of x,y,z offsets which may be 
digitized from sectional drawings or extracted from 
a CAD package. A sufficient number of sections 
must be defined to adequately describe the surface 
curvature. If the surface is flat or conical, only 
two sections are required. USAERO will panel up 
the patch according to simple user input on panel 
density and form of distribution. 

The free surface may be represented by 
one or more patches facing downwards. When the 
wave pattern remote from the vessel is not of 
direct interest, it is reasonable to reduce panel 
density in the outer regions. Usually, a 3:1 reduc- 
tion in panel number is recommended on neigh- 
boring rows of panels across a patch junction. 
This maintains a correspondence of adjacent panel 
centers across the junction. A routine can be 
activated which automatically triangulates the pan- 
els on the high-density side, thereby avoiding the 

chance of a hole appearing in the discretized sur- 
face. 

The paneling routine in USAERO includes 
procedures to compute intersections (e.g., at wing- 
body junctions) and to repanel up to the intersec- 
tion. This is based on a simple procedure, but is 
adequate for reasonable panel densities. An ex- 
tension of the procedure is used at each time step 
in repaneling the surface-piercing hull elements 
and free surface to the instantaneous waterline. 
This treatment is essential for smooth behavior of 
the time histories of surface pressures and forces; 
however, the repaneling procedure requires addi- 
tional treatment for the evaluation of d(j>/dt in E 
q. (9), and a number of surface coefficients have 
to be re-evaluated. The repaneling becomes quite 
complicated for extreme-amplitude motions (see 
later) when the waterline cuts obliquely across a 
patch. 

In USAERO the surface patches may be 
assembled into one or more components for the 
convenience of force and moment information. 
Each component may be assigned to a different 
moving frame of reference for the treatment of 
multi-body problems. The reference frames, 
themselves, may be assigned to other reference 
frames rather than to the ground-fixed frame di- 
rectly. This allows individual parts of the vessel to 
undergo a prescribed motion relative to the parent 
frame (e.g., for rudder deflection, store release, 
etc.) during the calculations. 

4.0 RESULTS 

The following results are from the initial 
part of an evaluation of the USAERO/FSP ap- 
proach for nonlinear free surface problems. The 
evaluation includes validation cases and sensitivity 
studies. Results are presented here for a sphere 
oscillating near the free surface and for a frigate in 
large amplitude motion. 

4.1 Sphere 

4.1.1  Heave Motion 

The force history was computed for a 
sphere oscillating in heave beneath the free sur- 
face. The sphere has unit radius and the motion 
of its center is described by, 

z = -2.0 + 0.5 cost cot 
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where Cü is the frequency of oscillation and is relat- 
ed to the wave number, K, through 

K = «7g 

In this case, K = 1. 

The calculations were performed using the 
y = 0 plane of symmetry. In the results presented 
here, two panel densities were used on the half- 
sphere: a 10 x 10 array and a 15 x 15 array, see 
Fig. 6. The half free surface, which is truncated at 
a distance of 16 sphere radii, has 10 panels in the 
azimuth and 20 in the radial directions. The cal- 
culation used 24 time steps per cycle. 

The overall curve agrees very well with that given 
by Kang and Gong (15) and, in fact, the first har- 
monic terms of 1.846, .264 (cosine, sine, respec- 
tively) compare with Kang and Gong's values of 
1.843 and .267. The present results give a small 
mean value of about .9% of the first harmonic 
magnitude and a sectional harmonic force of 3%. 
These are low compared with Kang and Gong's 
values of 1.5% and 6.5%, respectively. As far as 
sphere panel density is concerned, the present 
results (a range from 25 panels to 400 panels have 
been examined separately on the half-sphere) 
seem essentially converged up to five harmonics. 
The study is continuing and will consider time-step 
discretization, free surface discretization, free- 
surface truncation distance, and a range of fre- 
quencies. Computation times on a Silicon Graph- 
ics 4DGT workstation were 4.5 minutes per cycle 
and 10 minutes per cycle, respectively, for the 10 x 
10 and 15 x 15 array cases presented here. 

4.1.2  Surge Motion 

The two sphere cases were run in surge 
motion described by: 

Fig. 6. Sphere Paneling Showing the 10 x 10 and 
15 x 15 Arrays. 

Figure 7 shows the computed time history 
of the heave force, which is nondimensionalized by 
pgKaR3. R is the radius of the sphere, 1.0 here, 
and a is the amplitude of the motion, 0.5. The 
symbols in Fig. 7 show the values for the low-pan- 
el-density case, and these are in very close agree- 
ment with the line for the higher density case. 

Fig. 7. Computed Heave Force History for a 
Sphere in Heave Oscillation at one Diame- 
ter below Free Surface. 

x = 0.5 cos wt 

The sphere center was at z = -2.0 and the wave 
number, K = 1.0. The time histories of the surge 
and heave forces are shown in Fig. 8. The sym- 
bols show the calculated points for the lower den- 
sity case and again, they are essentially on the 
curve for the higher density case. The surge force 

g. 8. Computed Surge and Heave Force Histo- 
ries for a Sphere in Surge Oscillation at 
One Diameter Below the Free Surface. 
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history agrees very well with that calculated by 
Kang and Gong (15), the first harmonic in-phase 
term being 1.931, compared with 1.928. The pres- 
ent out-of-phase term, however, is .262, compared 
with a value of .124 from Ref. 15. The heave 
force is small compared with the surge force, and 
is dominated by the second harmonic terms. The 
present values appear to be about half those given 
by Kang and Gong (15). These discrepancies will 
be investigated as the study continues. 

42. Frigate 

42.1  General 

Experimental data are available from a 
series of tests on a frigate model in steep head 
waves (23). The results cover fairly extreme con- 
ditions, including water on the deck, and compare 
the effects of five bow shapes, Fig. 9. The ongoing 
theoretical study, which has just started, will even- 
tually consider the full range of shapes; however, 
initial calculations for the parent (shown dotted in 
Fig. 9) and the increased flare shapes are present- 
ed here. 

Bow 3 Bow 4 
(Shallow Knuckle)    (Deep Knuckle) 

Fig. 9. Alternate Bow Shapes for the Frigate Ex- 
periments. 

The conditions of the tests are very difficult 
to treat by purely theoretical modeling, and so the 
approach has been broken into four steps. First, 
the pure radiation condition is considered for the 
hull in large amplitude motion with no forward 

speed. A simultaneous pitch and heave motion is 
used to accentuate the bow motion which changes 
from totally dry to totally wet during the cycle. 
Although such a calculation is interesting in itself, 
the main objective here is to quickly explore the 
behavior of the automatic repaneling procedure in 
relatively simple conditions before proceeding with 
the more complex cases which take considerably 
more computing time. 

The second aspect of the problem, which 
can be examined separately, is the wave generator 
itself. The present numerical model generates a 
free-running, finite-amplitude wave system by 
applying a sinusoidal potential at the upstream 
"edge" of the free surface. This uses input values 
for amplitude and period. Just as in a wave tank, 
whether or not a "regular" wave train is generated 
depends on the balance between the amplitude 
and period of the oscillator. Matching an experi- 
mental wave pattern is therefore very difficult and 
an approximation may have to be accepted. 

The third aspect of the problem considered 
separately here is essentially the wave excitation. 
Again, initial calculations are presented here for 
the frigate in forced motion through large ampli- 
tude waves. The purpose of these calculations is 
to ensure smooth wave excitation forces before 
proceeding with the fourth stage, which will let the 
frigate move freely. 

422 Wave Radiation 

The "parent" and "flared" hulls were set in 
pitch and heave oscillation with sufficient ampli- 
tude for the bow keel to clear the mean free sur- 
face, and for the foredeck to become submerged 
during the cycle. The period of the oscillation was 
equivalent to an incident wave length of 1.2L at Fr 
= 0.3~a condition which appears critical in the 
experimental data (23). The calculation used 60 
time steps per cycle and took about 4 hours on the 
Silicon Graphics 4DGT workstation. The case 
used 1,252 panels on one side of the y=0 plane of 
symmetry. Figs. 10(a) through (1) show a general 
view of the parent hull case with free surface ele- 
vation contours at key steps in the cycle. Blue 
indicates a wave peak and red a trough. The mo- 
tion starts with a positive pitch motion. Fig. 10(a) 
shows the condition as the bow is about to leave 
the water. At this stage, the free surface is de- 
pressed. As the bow clears the free surface,  the 
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Fig. 10. Calculated Instantaneous Free-Surface Elevation Contours During One Pitch/Heave Cycle of the 
(Parent) Frigate Hull at Zero Forward Speed. 
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depression moves away in a crescent shape, Fig. 
10(b), and the free surface under the hull re- 
bounds into a peak, Fig. 10(c). As the bow re- 
turns, it reinforces the peak, Fig. 10(d), and is 
eventually engulfed, Fig. 10(e). Figs. 10(f) and (g) 
show the condition shortly after submergence; the 
continued downward movement of the bow creates 
a local depression in the free surface, and the 
original wave peak is now divided and proceeds 
outward. The reverse happens when the bow 
starts to come back up, Fig. 10(h); the depression 
is divided by a central peak over the upcoming 
deck. The central upwelling continues (Figs. 10(i) 
and (j)) until the deck breaks the surface, Fig. 
10(k). The depression in the free surface as the 
deck continues upwards, Fig. 10(1), is significantly 
more widespread than during the first part of the 
cycle (Fig. 10(a)). 

During the above calculation, an analysis of 
the impact loading was performed for three parts 
of the bow shown in Fig. 11. 

PART C 

UPPER BOH 

REGION 

PART A 

ON HULL 

Fig. 11. View of the Frigate Hull Paneling Show- 
ing the Separate Parts used for Force 
Integration Details. 

Part A is a vertical strip of panels on the, side of 
the bow and goes down to the keel; Part B is a set 
of panels on the deck and Part C is a set of panels 
on the side of the bow above the mean free 
waterline. The time histories of the integrated 
loads on these pieces are shown in Fig. 12. The 
loads are divided by the hull displacement. The 
line in Fig. 12 is for the parent hull, while the 
symbols are for the flared blow case. A signifi- 
cantly higher loading is predicted for the flared 
bow, including the Part B or deck. The flared hull 
case was repeated with a higher density of panels 
on the free surface, but gave essentially the same 
load trace. 

a 

Groups of Panels 

Fig. 12. Comparison between the Parent and 
Flared Bow Shapes for the Calculated 
Loads During Extreme Pitch/Heave Os- 
cillation. 

Figures 13(a) and (b) show station cuts 
through the bow and free surface during the sub- 
mergence of the bow. 13(a) shows the bow going 
down and the free-surface depression—the symbols 
display the ZWAVE height value as a separate 
parameter. 13(b) shows the upwelling conditions 
as the bow is moving back up. The higher amount 
of activity for the flared bow case is apparent in 
both cases. The dotted line in both (a) and (b) 
shows the free surface location for the flare case 
using a 50% higher panel density in the lateral 
direction.  This  gives somewhat more detail,  but 

7.WAVEZ 
0045   0.8 

FLARE V 

FLARE                   
(increased density 
on free surface) 

- -T" 
~T 5 —r—- D      'V- 

/i 
—n- l~. 
"i~T71 

1 • 

(a) Downward Motion 

Fig. 13. Comparison Between Parent and Flare 
Bow Shapes for Computed Wave Profile 
at Station Cut through Bow During Ex- 
treme Pitch/Heave Motion. 
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Fig. 13. Concluded. 

does not materially affect the integrated forces. 
The panel density is not sufficient to capture the 
rapid rise up immediately adjacent to the hull 
surface during the downward plunge, and conse- 
quently, misses the water jet feature of the slam. 
It is very unlikely that a sufficiently high panel 
density could be used in a practical case to capture 
these features in a fully three-dimensional run 
(whereas it is possible in the two-dimensional 
case). Should this omission prove important, a 
local modeling-somewhat equivalent to a base 
wake, from a bluff body-may be possible. 

423 Wave Generator 

A separate wave generator tank model is 
run to examine the form of the waves prior to 
running the hull model. Basically, the variables 
are amplitude and period of the forcing function 
on the upstream potential; however, time-step size 
and panel discretization may affect the -ensuing 
wave form. 

Figure 14 shows the time history of the 
velocity potential on a line of free-surface panels 
running downstream from the generator panel. 
The oscillating potential is seen to be transferred 
smoothly onto the neighboring panel with only a 
small loss in amplitude. The ensuing wave pat- 
tern,  however, suffers some damping and  some 

distortion as it progresses down the channel, Fig. 
15. Figs. 16(a) and (b) display the Vx and Vz 
perturbation velocity contours on the side of the 
"tank" in relation to the generated wave some time 
after the start of the oscillation. The Vx distribu- 
tion, Fig. 16(a), clearly shows an influence of the 
tank base presence. 

/■ 
/   / bu <Z> 

/ 0^ c\\ 
^ ̂  

\ 

^ 1 
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TIME 
2.00 

Fig. 14. Time History of the Velocity Potential 
(i.e., Doublet) on Several Panels Just 
Downstream from the Wave Generator. 

^ 

\ 
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Fig. 15. Computed Wave Profile. 
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(a) VX Contours (b) VZ Contours 

Fig. 16.   Numerical Wave Generator Calculations. 

42.4 Wave Tank Simulation 

The setup for the wave tank simulation is 
as follows. The wave oscillator is first started up, 
but the hull is left stationary at the downstream 
end of the "tank". As the waves become estab- 
lished,  the hull starts to move up the  tank  and 

eventually encounters the generated saves, Fig. 17. 
At this time, the motion is forced. This allows the 
wave excitation forces to be examined prior to 
release of the model for the free pitch and heave 
calculations. So far, some details of the repaneling 
procedure have caused minor problems with the 
d<j>/dt  pressure term, which must be  cleaned up 

Fig. 17.  Initial Calculations for Frigate in Numerical Wave Tank. 
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before running the model free. Figs. 18(a) and (b) 
show the good behavior of the velocity potential 
distribution at two steps during the wave encoun- 
ter. The extreme variation of the paneling during 
a wave  encounter is clearly visible in these two 

liptil 

FRIGATE (parent) FR-0.3;USAERO/FSP calc 

Fig. 19. Computed Pressure Components on a 
Panel Near the Bow during the Wake 
Encounters. 

(a) At a Trough 

(b) At a Wave Peak 

Fig. 18. Cutaway View of Calculated Velocity 
Potential Distribution During Wave En- 
counter. 

figures. Fig. 19 shows the time history in the dy- 
namic and d<p/dt pressure components on a panel 
near the bow during the wave encounter; these are 
out of phase with each other. Finally, Fig. 20 
shows a station cut through the bow and tank 
near the end of the run showing a slightly higher 
wave diffraction for the flared bow-as would be 
expected. A higher panel density will be employed 
for the later runs. 

-^V 

T 
1 1 

0.000 -1.2 

STATION CUT X-3.00 

Fig. 20. Computed Wave Elevation for the In- 
Tank Simulation Comparison between 
Parent and Flare Shapes. 

5.0  CONCLUSIONS 

Encouraging progress on the development 
of a general nonlinear numerical method for 
wave/hull interaction problems is presented. Basic 
validation presented here for a sphere case in 
large amplitude motion is in good agreement with 
published results, at least for the first harmonic 
loads. Discrepancies in the smaller higher har- 
monics will be investigated as the study proceeds. 
Initial results for a frigate application in large 
amplitude motion and in the presence of large 
amplitude  wave   encounters  look  promising  for 
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future stages of the ongoing study aimed at com- 
parisons with experimental data on the model in 
steep head waves. 
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DISCUSSION 

J. Pawlowsky 
National Research Council, Canada 

I would like to congratulate the author on his 
very interesting paper and presentation. As a 
comment, I think that "the navy secret weapon," i.e., 
the ship jumping out of the water during a time 
domain motion simulation shown in the presentation, 
is probably due to too large a time step used in the 
simulation. This may result in an excessive force 
impulse. In other words, the resolution of the 
modeling of sharp transient loading may, be not 
sufficient. As a question, I would like to ask the 
author to provide a general description of the 
procedure used in the modeling of the water flow on 
decks used in his simulations. 

AUTHORS' REPLY 

The computed frigate motions shown during the 
presentation are part of a sensitivity study on the 
effects of panel size and time step size. The 
divergent path calculation referred to by the discussor 
is in fact due to too large a time step size as pointed 
out in the presentation. An unusually high d<j> term 
was in fact calculated at the stem region due mainly 
to a poor representation of the transom stern effect at 
this time. 

The modeling of the water on deck has no special 
treatment at this time. It simply evaporates at the 
instant the deck recuts the free-surface on the 
upstroke. This feature and the current omission of 
the jet on bow keel and bow plane entry, need further 
consideration in the continued development of the 
method. 
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A Nonlinear Theory of Ship Motion in Waves 
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ABSTRACT 

The paper presents a systematic 
approach to the formulation of non- 
linear boundary value problems of ship 
hydrodynamics. The approach is based on 
an explicit use of fluid domain 
transformations. New forms of the 
impermeability and free surface 
conditions are derived. Perturbation 
formulations of Dawson-like and Neumann- 
Kelvin problems with steady and unsteady 
velocity potentials are developed, 
including second order equations for the 
latter. A physically justified weak- 
scatterer hypothesis is introduced and 
applied to obtain a perturbation and 
direct formulation of the non-linear 
ship-wave interaction problem, for which 
solutions can be obtained using existing 
computational methods. In the direct 
formulation a consistent non-linear flow 
matching (radiation) condition on a 
control boundary is derived. 

INTRODUCTION 

The aim of the present paper is to 
outline a systematic approach to the 
formulation of non-linear boundary value 
problems of ship hydrodynamics. It 
appears that such an approach can be 
developed by taking explicitly into 
account the change of a fluid domainD 
relative to its known reference 
configuration Da, which is inherent in 
those problems. The explicit inclusion 
of the domain variation is accomplished 
by defining a one-to-one domain 
transformation. The transformation 
depends upon time for time dependent 
problems. To the domain transformation 
there corresponds a transformation of 
the scalar, vector and tensor fields 
used to define the boundary value 
problem in D. An application of both 
transformations allows a reformulation 
of the governing equations of the 
problem so that they are applicable on 

D0. The second section of the paper 
describes the domain and field 
transformations expressible by means of 
the exponential operator of the 
directional derivative taken along the 
domain displacement field which provides 
the one-to-one mapping between D and 
D0. The results constitute in part a 
restatement of arguments presented in 
[1] and [2] to justify the usual Euler- 
like formulations of the boundary value 
problems [3]. 

In the third section the domain and 
field transformations are applied to the 
governing equations of an irrotational 
flow of the ideal fluid, influenced by 
the presence of a free surface, dDF,and 
of the wetted surface , dD„ , of an 
impermeable body. The presence of a 
control surface, dDc, on which the 
continuity of the velocity and pressure 
fields is required, is also considered. 
The transformed Laplace's equation, 
kinematic and kinetic conditions on the 
free surface, and matching conditions on 
the control surface are derived. This 
is followed by the development of the 
explicit form of the impermeability 
condition, applicable on dDF and dDw. 
This form of the impermeability 
condition takes explicitly into account 
the domain displacement field. The 
relation of the explicit condition to 
its well known implicit counterpart is 
discussed in the fourth section. In 
addition, a general form of the 
condition, which is applicable on the 
surface of an arbitrarily deformable 
body, is presented. It is shown that in 
general for surface piercing bodies the 
application of a body displacement field 
in the impermeability condition leads to 
an inconsistency in the formulation of 
the boundary value problem on the 
reference fluid domain. 

As described in the fifth section, 
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a perturbation formulation of a boundary 
value problem defined on D is obtained 
by assuming the solution to the boundary 
value problem transformed to D0 in the 
form of a perturbation series. The 
fifth section presents perturbed 
governing equations on D0 derived by a 
domain transformation. It is shown that 
the usual free surface conditions [3], 
[4], obtained by the Euler-like 
perturbation procedure constitute a 
special form of more general equations 
which do not depend upon the assumption 
of single-valued wave elevation. Next, 
perturbations of the double body flow 
are considered, and the results are 
compared with the formulation presented 
in [5 ]. The main difference between 
the two sets of governing equations 
consists in the presence in the 
equations derived here of additional 
terms in the impermeability condition on 
the hull surface. Those terms result 
from the existance of a waterline for a 
free surface piercing body, and 
therefore are here referred to as the 
waterline correction. A Dawson-like and 
Neumann-Kelvin formulation of the 
forward speed problem are shown to 
follow from two different applications 
of the same condition on the free 
surface, and both include terms due to 
the waterline correction. The Neumann- 
Kelvin formulation is continued to the 
second order free surface and 
impermeability conditions for the steady 
and unsteady parts of the velocity 
potential. 

In the sixth section, the weak- 
scatterer hypothesis, [6], is introduced 
as a physically justified assumption 
which makes possible to obtain solutions 
to non-linear time dependent problems of 
ship hydrodynamics by currently 
available numerical methods. First, the 
application of the hypothesis is 
illustrated in a perturbation 
formulation for a ship advancing in 
steep waves. A comparison of computed 
results with experiment is shown 
following [6]. Second, the hypothesis 
is used to derive a more general direct 
formulation of the problem, in which the 
solution is sought for directly in an 
instantaneous fluid domain D bounded by 
a control boundary dDc. On dDc the 
solution in D is matched with a 
perturbation solution in the fluid 
domain external to D. The domain 
transformation approach leads to a 
consistent matching of the velocity and 
pressure fields on dDc. In other words 
it allows the construction of a 
consistent non-linear wave radiation 
condition. 

The presentation throughout the 
paper is formal and no discussion of the 
existence and uniqueness of solutions to 
the considered boundary value problems 

The tensor notation used 
to the dyadic notation 
[7].    A non-standard 

-5=., is employed for 

is undertaken, 
is analogous 
explained  in 

notation, -« 
ax 

or 
dy' 

the gradient operator and 

for the Laplace operator. 

d2 

35? 
or d2 

Sy2 

DOMAIN AND FIELD TRANSFORMATIONS 

One of the characteristic features 
of boundary value problems of non-linear 
ship hydrodynamics is the dependence 
upon time of fluid domains on which the 
problems are defined. The instantaneous 
configuration (position in space) of the 
fluid domain boundaries is an unknown in 
a typical non-linear time dependent 
problem. In general, for an 
instantaneous fluid domain D, the 
boundaries can be categorized 
generically as an impermeable wetted 
body surface dD„, free water surface 
aDF, and control surface dDc. The 
evolution of configurations of dD„ and 
dDF in time depends on the motion of the 
impermeable body and on the water flow, 
and therefore belongs to the solution to 
the problem. The evolution of the 
configuration of dDc is prescribed as a 
part of the formulation of the problem. 

A perturbation solution to a non- 
linear ship hydrodynamics problem can 
therefore be considered in three steps. 
First, a transformation of the governing 
equations of the problem is made from 
the instantaneous domain D to a 
reference domain D0 which has a 
configuration fixed or given in time. 
Second, the solution to the transformed 
boundary value problem is sought for in 
the form of a perturbation series. 
Third, the perturbation solution on De 
is transformed back into domain D, thus 
providing a perturbation solution to the 
original boundary value problem on D. 
The advantage of such an approach 
consists in taking explicitly into 
account the evolution in time of the 
geometry of D. 

In this section domain 
transformations and corresponding 
transformations of scalar, vector and 
tensor fields defined on transformed 
domains, are discussed. The discussion 
aims at establishing tools for the 
required transformations of the boundary 
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value problems. In part the present 
discussion restates in a different form 
arguments that were described in [1] and 
[ 2 ]. Those arguments were used to 
justify Euler-like approaches to fluid 
domain perturbations, in which domain 
transformations are not included 
explicitly. Here, however, the purpose 
is to give the domain transformations an 
explicit consideration. In addition 
transformations of surfaces defined in 
the reference domain are discussed as a 
preliminary step to a formulation of the 
explicit impermeability condition. 

where u (y, t) is the image of v (x, t) in 
D. The assumption is made that v (x, t) 
is a real analytic function of x, 
although in practice only first few 
terms of the expansion on the right hand 
side of (4a) are used. Transformation 
(4a) has the property: 

     3 
exp {T)  • -=) Jvffl 

dx    i, 

= expdii • -g=) Jv(xl 

(4b) 

Let y denote the radius vector in 
an instantaneous fluid domain D,x 
signify the radius vector in a reference 
fluid domain DB, and t be the time 
variable. Domain transformations 
considered here are one-to-one mappings 
between the two domains, including 
corresponding boundaries dD and dDa. 
Such mappings can be expressed in the 
form: 

y = x + r\  (x, t) (1) 

where r\ (x, t) is a domain displacement 
field. The domain displacement field is 
assumed to be sufficiently smooth to 
guarantee the existence of its 
derivatives required in further 
considerations. It is convenient to 
define the exponential operator for 

rr d directional derivative ^'ar 

exp *•£ = l ♦*■£ dx) ifr-a 

(2) 

for: 

X2   ~ Xl   + *! (x2> (4c) 

Relations (4b) and (4c) imply that for 
a given u(y, t) in (4a) v (x, t) on the 
right hand side does not depend on the 
choice of domain displacement field tf. 

Since governing equations of 
boundary value problems are defined in 
terms of time and space derivatives of 
basic scalar, vector and tensor fields, 
such as for instance a velocity 
potential, it is necessary to establish 
transformation rules applicable to such 
derivatives of u (y, t) and v (x, t) . 
From (1), (2) and (3) it is found that: 

du ■«f^'li" 
dtf^rtf • -jLu+.i-u ■[dt''      3y dt 

and 

(5a) 

where -= denotes the gradient operator 

and dot indicates the scalar multi- 
plication multiplication. Using (2) 
mapping (1) can be rewritten as: 

expjn • £) x (3) 

which defines the domain transformation. 

+ dt[^lT-exp(n-^)^v 

+ exp 
(* "dx)-dt v] 

(5b) 

The same transformation by means of 
the exponential operator can be applied 
to tensor fields defined on Dc. With 
v (x, t) denoting a scalar component of 
a time dependent tensor field on D0, the 
relation becomes: 

where I denotes the unit tensor, and® 
signifies the tensor multiplication. 
Since dx and dt are independent 
differentials it follows that: 

u  (y, t)   = exp /T| ' -g=) v (x, t)    (4a) 
d I-      8 -r= u = exp m • -==. 

dy *\' dx £' (6a) 
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itu-^-lix)Jt*   (6b) 

In  addition,  taking  -^-u * u'      and 

■J- v = v', (3), (6a) and (6b) give: 
dt 

&     u - expfr • JL\ -*£r v  (6c) 
dydt dxj   dxdt 

By mathematical induction formulae (6) 
are generalized to: 

Qk + t*in*n 

dy?dy2dy?dtn 

I-      d oJ: + «*m + n 
(7) 

9x/ dx^d^dx^dt" 

where k, I, m and n are 0, 1,...., and 
yi and xi# i = 1,2,3 , denote 
respectively Cartesian coordinates in D 
and De. This means that for tensor 
fields with components u and v related 
by transformation (4a), their 
derivatives are related by 
transformation (7). 

The application of relations (4a) 
and (7) in transformations of governing 
equations can be generalized by 
considering u  and v  as matrix vectors: 

{uir  u2,   . .,  uk) 

V  =   {v,,   V,,   . .,   vJ 

(8a) 

(8b) 

Let F(u)   be an analytic function of the 
components of matrix vector u,   then: 

F(u) exp 
E  <ui-Vi>7KT 3v, 

F(v) 

(10a) 

Using   (10a)   and   (9a)   it is found that: 

3 F(u)  = exp\r\ • -JLJ F(v) 

(10b) 

The above formula applies in particular 
to functions F(u) which are polynomials 
with respect to their arguments {u,, u2, 
..., uj. 

Another type of functions of 
special interest in view of the boundary 
value problem transformations are 
functions which define surfaces in D and 
Dn.     With: 

Fix) 

(lla) 

defining the reference configuration in 
D0 of a piece-wise smooth surface, the 
corresponding instantaneous configur- 
ation of the surface in D  is given by: 

f(y,t)  - Fix)   = 0 

(lib) 

This leads to the consideration of 
sufficiently smooth functions defined in 
D by transformation (1) and relation 
(lib).  It follows from (lib) that: 

of all the scalar field components and 
their derivatives occurring in a 
particular boundary value problem. On 
the basis of (4a) and (7): 

u_; = exp (*' £)" (9a) 

dx (***•*)•£■ 
dtl-üä • -Lf + -Afl= dx- -LF dt      dy 

from which: 

dt' dx 

(12a) 

dktl1 

dyi
kdyl

2dy?dt» 

I-      3 a**<< 
(9b) 

dxl  dx*dx'2dx?dtn 

W ^fr-TB?'(i2b» 

and 
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(12c) 

p + -5= ® rn  is the inverse of 

J + -==. ® ti.  The normal vectors on the ox 
respective surfaces are defined by: 

1 

where 

By 
By 

f 

(13a) 

with  A denoting the vector multi- 
plication, 

and 

ffic, . f dA 

». - f * 

(14c) 

(14d) 

The image differential element on the 
surface determined by (lib) is: 

and BSp = dyx A By 

dx h' 
(13b) 

(15a) 

with Byx and 9y(1defined similarly to 

Bxx and Bx^. Using (1) a relation 

between 3S^  and ds7  is established: 

Using (12b), the transformation of- the 
normals is given by: oSy  = 3xk ■ (T + JjL ® r\ 

n  = K ■ N 

<JN • KT ■ K ■ N 

(13c) 

A f*-K 
0  ® Ti]3" • dx„ 

(15b) 

with: 
By direct calculation formula  (15b) 
yields: 

* - |T ♦ £ . 1p 

(13d) 

and JC denoting the transpose of K. 

When the surface determined by 
(11a) is parameterized so that: 

F  [xU,u) ] = c 

(14a) 

where X and p are real parameters, the 
differential element of the surface is 
defined by: 

aSj = dxx A &r 

(14b) 

as7-[(i + 7|.*>*-£•* 

i.S-x ■«*4i1lA^,,#e*] "a% 

(15c) 

with       e ijk denoting the sign of 

permutation and ek, £=1,2,3, signifying 
the unit vectors of the Cartesian system 
of reference. Also by direct 
computation it can be shown that: 

(1 + -L ® tf) -1 

ox 
^ + EJi 

[(1 + Jr*)f-Ä^ 
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a - „ - 1  E   <v*-£:**■&:* •^ 

(15d) 

the interaction of a floating body with 
surrounding water is determined by the 
fields of flow velocity ü = U (y, t) and 
pressure  g = q(y, t) . Assuming  an 
irrotational flow, both are expressed in 
terms of a velocity potential? (y, t) 
defined on instantaneous fluid domain D: 

so that (15c) is rewritten as 

d 
BSr, y£J'}F + -af«r'dsz- 

In   formulae   (15d) 
Jt , i=l, ,2,3, denote 

invariants of gradient tensor 

and 
the 

(15e) 

(15e) 
scalar 

d 
dx 

® r\. 

It should be observed that formula (15d) 

provides tensor K  in a closed form, an 

alternative expression for K   can be 
obtained as the Neumann series: 

K=I'W^  +(^0T1)'(^^) + 

(16) 

which is often more convenient to apply. 

Similarly  to  the 

surface elements dS; 

differential 
and   dS%, 

and differential volume elements dVy 
clV^  can be considered using three space 
parameters X,   \i and y .     Then: 

Q =  -P 

dy 

Ay + 1 
dt 2 

in D 

dy 
sry3 

(18a) 

in D 

(18b) 

with p denoting water density, g the 
acceleration of gravity, the constant 
in the Bernoulli's equation taken as 0, 
and y3 coordinate axis directed 
vertically upwards. The velocity field 
must satisfy the impermeability 
condition on instantaneous wetted body 
surface dDw, whereas the pressure field 
generates fluid loads on dDw. 

Velocity potential T (y, t) is 
considered to be related to a scalar 
field <X> (3c, t) , defined on a reference 
fluid domain Dol  by transformation (4a): 

Y (y, t)   = exp(r\ ■h *(*£) 

(19a) 

dVv = dy   ■  (dyx A dy 

(17a) 

Therefore velocity field u  and pressure 
field q  can be expressed by means of 
$ using formulae (7) and (10b): 

and 

dV^  = dx^ ■  (dxx  A dXp) 

It follows from (15e) that: 

dv= 
i-l       ) 

dv^ 

(17b) 

(17c) 

TRANSFORMATIONS OF GOVERNING EQUATIONS 

Neglecting viscous flow effects, 

Ü (y, t) = expfo • -|4 -J* * (x, t) 

(19b) 

q(y, t)   = exp  (tj • j|) {-p [ JL « 
(19c) 

+ A 
&• 

+ gxz]} 

In other words it is possible to regard 
u(y, t) and qiy, t) in D, respectively as 
images of a velocity field v" (x, t) and 
pressure field p(x, t)   defined on D0: 

u (y, t) = exp/ii • A\ v (x, t)   (20a) 
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g (y, t) = exp/ri • JL\p (x, t)  (20b) 
conditions: 

on BD„ 

with (21e) 

v (x, t)  = JL* (x, t) 
ox 

(20c) 

and 

P (x, t) 
■>*■&• ■&• 

(20d) 

It follows that scalar field $ (x, t) 
has the interpretation of a velocity 
potential in D0. 

The velocity and pressure fields in 
D must satisfy a set of governing 
equations. The velocity field complies 
with the requirement of flow continuity: 

By        By 
(W - YJ =0 on BD„ 

(21f) 

where Te is the velocity potential for 
the flow external to the fluid domain D, 
and f = f{y, t) = O is the locus of 
dDc in D. For an unbounded D, boundary 
BDC is placed infinitely far from the 
floating body and the boundary values 
imposed by (21e) and (2If) on BDC 

cannot have an effect upon the flow in 
D induced by the presence of the ship. 

Transformation (10b) applies to the 
left hand sides of (21a) , (21c) , (21d) 
and (21e). Therefore the transformed 
equivalents of these relations become 
respectively: 

i-* o2 

By2 7 in D 

(21a) 

exp (TI • -r=| $ 
I1 Bxj  33P 

in D„ 

(22a) 

impermeability of BDU: 

_3_ 
at By By 

O      on BD„ 

(21b) 

""ff-Kl TC**T Bx 
$ gx2 O 

on BD„ 

(22b) 

where f{y, t)   = O  is the locus of BDW  in 
D, see (lib), and the kinetic condition 
on BDF: 

O on 3z?_ 

(21c) 

The velocity and pressure fields satisfy 
also the requirement of impermeability 
of &DP: 

A + _LY 
at  By 

_a 
3y. 

:)g= o on BD„ 

(21d) 

which can as well be written in a form 
analogous to (21b). On control surface 
BDC the velocity and pressure fields 
must 

expm • -5=.) (——^ $ + g —— O 
Bx]   at2 Bx-, 

+ 2 ^k$ 
ox 

a2 

BxBt 
$ + 

JL    JL * 
Bx      Bx 

dx 
$ 

Bx 
* ) = O 

on 3D„ 

exp ff' *) 

(22c) 

(* " *J on 3D„ 

(22d) 

where boundaries 3DoF and 3DoC are, under 
the transformation inverse to (1), 
correspondingly the images of boundaries 
BDP and BDr It follows from (4b) and 

be continuous.   This leads to    (4c) that assuming free surface BDF  to 
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be represented by a single valued wave 
elevation defined on the horizontal 

plane x3 = 0 , 
      3 

the operator exp(T) • -=) 

in (22b) and (22c) can be replaced by 

expdij-^-), with TI3 denoting the wave 

elevation and equations (22b) and (22c) 
applied on x2 - 0 . On dDotf, which is the 
image of dDw, the following condition is 
obtained: 

/_ a \ a _  a _- 

P
+

<IH~ -
N
-° 

on d£> 

(22e) 

Formula (22e) is derived from (21b) 
using (12b), (12c), (13b) and (19a). In 
the same way relation (21f) gives: 

«*(*'75?) ll <•-•■> 
3 -*■*.$„ a •P + *^) • 

on dD0 

(22f) 

It should be noticed that if r\ and 
its first spacial derivatives are 
perpendicular to N: 

r\  ■ N = O, m^)-N-° 
on dD„ 

(23a) 

if: 

£•„)•*- on dDn (24b) 

THE EXPLICIT IMPERMEABILITY CONDITION 
AND ITS APPLICATION 

Condition   (22e) 
reference   wetted 
corresponds to: 

imposed 
surface 

on 
az?„ 

_  a -i n on dDu    (25a) 

where n   is the normal vector on dD„. 

Taking  into  account that  -§- x) 
at 

n 

represents the velocity,   denoted by 
of the instantaneous wetted surface ua' 

along its normal, (25a) is reduced to: 

u ' n = ur on dD« (25b) 

which is the well known form of the 
impermeability condition. In comparison 
with (25b), in (22e) the dependence on 
the domain displacement field r\ is made 
explicit. An equivalent form to (22e) 
is obtained using (15d). Implying this 
equivalence, (22e) is named the explicit 
impermeability condition. 

It is important to notice that in 
(22e) displacement field x\ defines the 
instantaneous normal vector and velocity 
of wetted  surface dDa and an 
instantaneous one-to-one mapping between 
dDoW  and dDm The latter property ofTi 
is used in the term: 

u  = exp 
*■&■&• 

(26) 

then (22e) takes the simple form: 

exp^-lfe)ll* N = O      on dDn 

(23b) 

A  similar  statement  is  valid  for 
condition (22f): 

«*(*•£)£(•-•.) Sx    dxl N = 0      on dD„ 

(24a) 

Although (22e) was_ derived on the 
assumption that 11 represents a 
displacement field defined on the fluid 
domain, this assumption is not always 
necessary. The displacement field due 
to the motion of an arbitrarily 
deformable, impermeable body satisfies 
the properties required of r^ to impose 
(22e) on the wetted surface of the body, 
if the body remains entirely submerged. 
The condition of total submergence 
ensures that r\ represents a one-to-one 
mapping between dDw and dDoV. 

For a deformable body in motion the 
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displacement field from a reference 
configuration can be written as: 

r\B  (5c, t) =ä(t) + [I(t) -I]   • (x - xB) 

+ R(t)   ■ Q (x, t) on D„ 

(27a) 

instantaneous wetted surface of the 
body. If the body remains totally 
submerged dD„ = aDB, that is the 
instantaneous wetted surface of the body 
and the instantaneous boundary of the 
body coincide and both are the image of 
dD, ow dDoB  under transformation 
Therefore (27c) can be rewritten as: 

where DoB denotes the reference 
configuration of the body, <x is a 

parallel translation field, R (t) is a 
tensor of rotation; xa is the radius 
vector of the centre of rotation and 
Q (3c, t) is a field of deformation, both 
of them taken in reference configuration 
DoB.     A simple manipulation gives: 

(27b) 

Impermeability condition (25a) takes now 
the form: 

dt ,)■!•( 

9  „ ^r1 - I + -k*Q N = O 

on dD, w 

(27c) 

R T . £. öV N on 5D„ 

(28) 

This is a form of the impermeability 
condition which is explicit with respect 
to TJ"B. 

Without the requirement of total 
body submergence transformation r\B, 
used in (28) , may lead to instances 
where there are points y e dD„ for which 
xB f. dDoW or y $ dDw for which xB e dDoW. 
In such circumstances the boundary value 
problem in D is not transformed into a 
boundary value problem in D0, and 
therefore transformation: 

exp[^--h)^      (29) 

with: 

a -  - 
dt 

a +  Q A R 

■   (X  -  X0   + Q)    +  R  ■  A.Q 
at 

(27d) 

where a and Cl   are respectively vectors 

of linear and angular velocity of the 
body. 

Relation (27c) applies on the 
instantaneous wetted surface of the body 
dD„ whether the body remains totally 
submerged or not. The condition is 
explicit with respect to the body 
displacement field x\B with the 
exception of the mapping of ü. The 
quantities in (27c) and (27d) related to 
TIS, and N, are determined for xBedDaB, 
that is at points on the boundary of the 
reference configuration of the body. 
However, fluid velocity ü is determined 
for y   = {xB + T|B) e dDw = dD n dDB,      the 

cannot be used in (28) . This situation 
is illustrated in Fig. 1. 

In solutions to boundary value 
problems of ship hydrodynamics r\B is 
obtained from equations of body motion. 
The kinematics of body motion must be 
taken into account in the impermeability 
condition. The above discussion 
indicates that this can be done if the 

y ( b ) 

y ( I ) = ä + il ( ä ) s 3DW 

y ( b ) = b +nB ( b ) e   3DW b e 9Dr 

Figure 1 
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solution to a boundary value problem is 
sought for directly in the instantaneous 
fluid domain D. Then formula (25b) can 
be applied. It is convenient to call 
such formulations of the boundary value 
problems direct formulations. As 
explained earlier, boundary value 
problems formulated in D are transformed 
into corresponding boundary value 
problems formulated in D0 to find 
perturbation solutions. If the 
impermeable body remains _ totally 
submerged impermeability condition (28) 
is used in the perturbation 
formulations. In the opposite case it 
is convenient to consider displacement 
field rf in (22e) as composed of two 
displacement fields, one of which is 

Ti (x, t)  = r\0 (x, t)  + r\B (xB, t) 

(30a) 

use of condition (22f). It should be 
observed that the use of condition (22e) 
or (22f) is simplified significantly if 
formula (23b) or (24a) respectively, can 
be employed. 

It follows from relations (4b) and 
(4c) that $ in the first term in square 
brackets in (22e) does not depend on_a 
choice of domain displacement field r\. 
In addition, the outside of the square 
brackets term is always co-linear with 
normal vector n(y) . Therefore 
condition (22e) is also satisfied 
independently of the choice of 
displacement field. Since by virtue of 
(4b) and (4c) the same condition applies 
to all the other transformed governing 
equations discussed above, solutions to 
boundary value problems which are 
formulated with the use of those 
equations do not depend on domain 
displacement fields employed. 

with: PERTURBATION FORMULATIONS OF BOUNDARY 
VALUE PROBLEMS 

XB  = X + T)0 (X, t) 

(30b) 

where Tf0 (x, t) is a displacement field 
defined on dDoB . Relations between the 
displacement fields and transformations 
they define is illustrated in the 
following diagram: 

y = xa + n* 

Perturbation formulations of 
boundary value problems of ship 
hydrodynamics are obtained by expressing 
velocity potential _$ and domain 
displacement field if, in governing 
equations (22), by means of perturbation 
series. A one parameter perturbation 
formulation is defined by series: 

$ = £   *<■*> (31a) 

dDB => dD„ <- 

y = x + Ti 

-*dD'oM c dDoB 

x. X  +  Tl0 

dDoH c dDoB 
w = E ^(i) (31b) 

The diagram shows by means of the double 
arrows the one-to-one mappings induced 
by the displacement fields, together 
with their domains. In the diagram 
dD'oW signifies the image of 
instantaneous wetted surface dDw, in 
reference body boundary dDoB, generated 
by body displacement field TJ"a.  It is 

clear from the diagram that for 
dD'oW = dDoW displacement field r\B 

provides a one-to-one mapping between 
dDw and dDoW. This is always true if 
dDB = dD„ and dDoW = dDoB, that is when the 
body remains totally submerged, as then 
Won = dDoW= dDoS. 

Similar considerations apply to the 

In (31) indices in brackets indicate 
orders of magnitude: 

$(i*l) = o  ($(i) ) i =0, 1. ..,n 

(31C) 

*«» = 0( IV*' I )  and  |if(i) | = 0($(i)) 

i=l, 2, . . . ,n 

(31d) 

In addition it is assumed that 
differentiation does not change the 
orders of magnitude. 

By applying series (3la) and (31b) 
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in field governing equation (22a) it is 
found that: 

JL $<°> = o 
85? 

in D„ (34c) 

_iL $(D = -w(i) • JL JL $<o) 

33P       '   3x 83? 

(32a) 

(32b) 

tl3
(2) = -1   [ J- $(2) + A J_ Ad) 

<?   at 2 ax 

- A JL fc«1'    y A<1> 
g at        3x3at 

3xx ax, at 

(34d) 
(JL +g 3 j ^o, = _2 j. a $(1) 
at2  ax. 3x 

Therefore potentials 4>(i> satisfy the 
Laplace's equation in Dic) for 
i =0, 1, .., n. 

Free surface conditions (22b) and 
(22c) assume the form of original 
conditions (21c) and (21d) , with respect 
to $(o) . As a result the Laplace' s 
equation and the free surface conditions 
admit a solution: 

a2   <E>(2> + _L $(2) .   a2   ß(1), 
dxdt dx dxdt 

-A $<D • JL 8 i$d) . _L$(D 
3x     8x   dx     dx 

+ ±4-*a)-£- [(-Ä + ^4-)*!2) 
s^at ax3 dt2 dx. 

0<o) = -c/Xi  . in D0 

x, = O   012 dD„ 

(33a) 

(33b) 

after adjusting the constant in the 

Bernoulli's equation to —pU2.     Taking 

for simplicity U = O,   conditions (22b) 
and (22c) yield: 

£+**! •<».<,    (34a) 

13 
(1) 1    _d_ 

g  dt 
*u> (34b) 

2_L$d) .   a2 0a), 
ax   axBt  J A r JL o<2' 

g L dt 

+ A 1 JL$(i)i2 _i _a_ $(1) 
2 ' 3x   ' g dt 

d2 

dx3dt 
a ( a2 
ax3 at2 

$(D] _ü_ (_ii_ + p-_E_) $(D 
3x, 

(34e) 

on x3 = 0 .  The lengthy expression for 

ti33) is omitted. Formulae (34a) , (34b) , 
(34c) and (34e) are identical with the 
well known formulae given for instance 
in [3] and [4] for freely propagating 
waves. However, the present formulae 
are derived without making the usual 
assumption: 

if = TI3 {xx, x2,   t)  e3  on x3 = 0 (35) 

( JL + a — ) $(2) 
at2 9 BxJ  * -2-1, *d» 

dx 

a2 
1 a 

axat    g  at 

As a result the second order wave 

elevation i\2
2 determined by expression 

(34d) contains terms dependent on^1' 

and T121' not found in the usual 
formulations. Those terms indicate for 
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instance that the free surface of a 
long-crested wave can be shifted along 
the crest without changing the wave 
elevation. It should be noticed that 
displacement field rf does not effect 
the dynamic free surface conditions 
(34c) and (34e). If assumption (35) is 
made the terms dependent on r\t   andii2 

(21     • disappear in (34d) and TI3 is 
interpreted as the single valued wave 
elevation in the perturbed domain. Such 
an approach is justified by relations 
(4b) and (4c). 

Considering   impermeability 
condition (22e) and taking: 

respectively for potentials 4><0), $(1) 

and $(2) . According to the preceding 
discussion of the impermeability 
condition, for a totally submerged body 
r\ can be replaced by rfs in the above 
formulae. Then for a rigid body in 
motion formula (37b) becomes equivalent 
to the impermeability condition derived 
in [8], whereas formula (37c) represents 
its non-linear extension of the highest 
order of magnitude. 

Impermeability condition (22e) 
applied on dDoF, in conjunction with 
(36a), gives: 

$ (0) -Ux1  + (J> (o) (36a) dx, 
$<<>> 0 on dDoF U, = 0) 

(38a) 

in (31a) , with (J>(0) independent of time, 
and: 

N = N (o) (36b) 

Formula (22b), with the adjusted 
Bernoulli's equation constant, results 
in: 

the following impermeability conditions 
are derived: 

JL a«» 
dx 

■u2 = o on dD„F   (38b) 

N ■  jLt))«'' = UN, 
dx 

on dD, 

However,   the   construction   of   a 
perturbation set of governing equations 

°M  (37a)     can be continued with a less restrictive 
assumption: 

N- (±*(1) - 4n(1)) = [(-^4><0) - dx dt ox 
UeJ 

JLrp11 - n(1) • — r-i-d>'°> - (   °  <}>t°)   - Uex)]   ■ N 
dx   dx x 

on dDn 

(37b) 

N- (3 *«) - 4zV2)) = [(4^4>(o) 
dx dt dx 

-U°J   •(^W,-^,1,-^,1,) 

(^<J)<°) - Uex)   +  (^$(1) 

dx dx 
-J.«<1 at Tl(1)) 

a-(1) _-(1, .  dd^W] . ^ 
dx dx dx 

on dD„a 

dx 
$(o) -U2 = 0(«>(1)) on dD„ 

(38c) 

On the basis of equations (3 6a), (37a), 

(38a) , potential 4>(o) may be taken as a 
solution to the so called double body 
problem. 

At the next level of approximation, 
equations (22b) and (22e), or 
alternatively (22b) and (22c) yield: 

3t  dx dx 
L): g-£-\ *(1) dx. 

_ _J1 $(0) (_9_ + _^$(o) • 4L) fc'1' 
dx2 dt       dx dx 

= 1 _£_ $ <°> ( 14L $ <°> |2 -u2 ) 
3xj 

1 

dx 

2   dx 
^$(°) ■ 3_ 1 9_^(Q) I» 

8x 8x 

on 8.DoF 

(37c) (39a) 
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and: 

■ni (i) = -— [(— + -L*(o» • -L) $(1> 

+ 1 
8x 

dt       dx 

Uz] 1   n21 

dx 

on dD„ 

riJL + _^$<°)  .    3 )2 + g   d   ] $ X 
u at    ax ax      y ax3 

. „oLfctc» (JL + .iL<&(o) • _L) $    = o 
a„2 at    ax dx 

on dD, OF 

(39b) (41a) 

Equations (39a) and (39b) are applicable 
together with impermeability condition 
(37b) and <J>(o) taken as the double body- 
velocity potential.  The separation of 

<I>(0) into  a  steady  part Q^ and 
(i) 

unsteady  part  $  ,  generates  the 

following sets of governing equations: 

J^$(°) . , d_ („ a_ $ (o) 
3x 3x    3x s*i"> 

3x2       ax ax 

♦»£•" 
i  a2 

2 ax| 
4>(o) ( 

ax 
$(o) tf2 

- — -ö=$(0' • -^ 2 ax ax 

a-   ax 

°   <T.<o) 
ax 

on 3£„ 

£••"■ 
(40a) 

ax l^1 on 3i?„ 

(40b) 

and: 

^--S^1'   =  (4*(0'  ■■4^' ax 
a   a ^'-i^*^-» 

on az?„ 

(40c) 

for steady potential *^1> and steady 
boundary displacement field r\u.       For 

- (i) 
unsteady velocity potential <J>   and 

- (i) 
boundary displacement field r\      ,    the 

corresponding equations are: 

113   s-\at ax*  axj 

on 3ZJ„ 

(41b) 

with: 

—   a " (1)   a -u)    A 

ax    at     ax 

a - (l)   .(i)   a  a       _ 

ou 323, 

(41C) 

The sets of equations (40) and (41) 
can be compared with those presented and 
used in [5]. Equations (40b) and (41b) 
are identical with their respective 
counterparts. 

Equations (40a) and (41a) differ 
from the corresponding equations in the 
above  mentioned  reference  by  not 

including terms dependent on JL 
dx 

.<& 
dx 

which,  according  to  (38c),  are  of 

o(<J>(1)), and therefore negligible, in 
the present scheme. 

Impermeability condition (41c) is 
formally identical with the unsteady 
impermeability  condition   in   [5], 

- (i) 
However displacement field r\       in (41c) 

is   composed   of   unsteady   body 
- (i) 

displacement field r\ and unsteady 
B 

- (1) 
displacement     field     T| on     dDoB,     as 

o 
explained in the preceding section, see 
(30). The impermeability condition in 
[5] includes only the unsteady body 
displacement field. The resulting 
additional term on the right hand side 
of (41c): 
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(J.T,"(1)  + -!•<«)  --IT," 1 3t ^° dx dx ' 

•<l>   a   a *(0) 

tu 

«       «    $<°>)    .^ 
dx ox 

(42a) 

The free surface governing equations 
take then the well known forms: 

(0» JL + crJL) •£» 
3x? dx, 

on or» 

(44a) 

may be called the waterline correction, 
since as discussed in the preceding 
section, it appears as a consequence of 
the ship not being totally submerged. 
For a sufficiently small curvature of 
the wetted surface, displacement field 

■ (i) 
can be considered as essentially 

tangential to the hull, and therefore 
the first two terms in (42a) may be 
neglected. The same argument can be 
applied to the third term if the 
variation of the double body flow 
velocity on the hull surface is 
sufficiently small or almost tangential 
to the hull surface. 

(i) _ 1 „   d   »tu on dD„ 

(44b) 

of  the Neumann-Kelvin problem,  for 
(l) steady potential <b„   , and: 

(A - u-L) 
[dt dx,) ox, 

- (1) 

$  = 0 
(45a) 

on dD„ 

The expression on the right hand 
side of equation (40c) does not have a 
counterpart in the steady impermeability 
condition used in [5] or in other 
formulations of the steady forward speed 
problem based on a perturbation of the 
double body flow. similarly to the 
unsteady impermeability condition the 
term consists of a contribution from 
steady body displacement field y\lBu , and 
a contribution from steady displacement 

field rilu ,   given by: 

,ox 
3 =r<i> _ =■<!) 

~~fiir\°U Hot/ dx dx 
N 

(42b) 

:(D 
g(dt      U dx,)* (45b) 

on dD„ 

of the linear wave propagation problem, 
- (i) 

for unsteady potential $  . For steady 

potential $uV the impermeability 
condition on wetted surface dDoW 

becomes: 

N--L*},»   = UN,  -  CT-ATÜ" -N 
OX ox. 

The above comments on expression (42a) 
apply with the appropriate 
interpretation to (42b). The analogous 
to (42b) term in (40c) , which involvesTJ"^' 

instead of i\ou i maY express the 
influence of sinkage and trim or a 
steady structural response of the hull, 
or hull form modification. 

With <t>(o) (x) in (3 6a) set egual to 
a constant, potential *(0> satisfies 
conditions (38a) and (38b) on dDoF, and 
impermeability condition (37a) on dDoW, 
and impermeability condition (37a) on 
dD0„ if the following assumption is 
made: 

UN,  = 0(<J>(1)) on Sx> (43) 

(44C) 

(i> 
whereas  for unsteady potential   <E>       the 

same condition gives: 

-   ( 5   " (1) 

»'[is9 a -(1) 

li* 

P . tu   _ 
- - U-£- T]       • N on dDa 

(45c) 

Again equations (44c) and (45c) differ 
from their well known counterparts by 
the presence of free surface corrections 
and by the body displacement part of the 
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second  term  on  the  right  hand   side   of 
(44c). 

Under the assumption leading to 
eguations (44) and (45), it is found 
that potential 0(2) satisfies the 
following governing equations: 

(D* JL  +g*) $<2)   =2U±*y 
dxl dx 

9       dx\        3x3       
V g K dt 

(1) 

- u4r^2 + -3^-] *"'} - u d *<»   d 
dx. dx. dx, *"    ~dx\~ 

1(4- -u-L,   ._ 
9    dt dxj öx3 

^<-S7:-^^-)a*4-]i(1)     onto.. 

(47a) 

öxöx! dxy dx3 

<^^r +-£r)*V en 
dxt dx, 

on dD„ 

(46a) 

_ (2) 
lira 1 [ u _J_ $<2> 

ä^*17 
*•' 

+ lo
2_L*«"    s2 

<7      öXJL dxxdx2 
*£ (1) 

, (i) _3_ 
dx, 

. (i)    3 ♦ *W ^+nS'£>£•£'] 

on to. 

P      ot 3x. dx    a 

-=$      + — 
dx 2 3x 

(1) 

^l^^*"-^-^-)*      ] dt dxx' 

P-   a^   *   dx3   dt    u dx,' * 

in 

+  (flj»    *    + f|<»    *->[<   3   _„   B^ 
dx. 3x2' 

L v dt    w 3xx ' 

-^^,] + (i,S'^-+i,g>4-, 
ÖX, 3x, 

(46b) 

and 

*•£•?'-'P^'-^ 

(^t-u^-)in)
}     ondDoF 

(47b) 

9   r-(2)i 
3x. * £•*" a „in    =■(!> 

HZ1*"   -^ 
— f)     "  (2> 3     - <2» J3      - (2) 

4lJi"' •» on ar> 

(46c) 

for   *^2)    and   r]™ ,   the   steady   parts   of 

$(2)   and  T|32)   respectively,   and: 

ax,11       a?11       ~h~k~^      -as I» ) 3x 

+ £•<»  •i;i)  +ii'11  .J^c» ax ax '        dx dx^u 

-  a -«». a-(1) . a   g ^ 
at 3x 3x 3x 

[(^-^)2 + ^]$<21=-2Ä$(1) 

-    (   -    - ^-=2-)* 
3x    dt dx, 

(1) 
+ 2(7-^=. <D 

dx 

(1) 

dxdx, 3t 
a-?-) $      a 

CXj dx3 

• (1) 

-&-&*pl'*<**>«, 
(47c) 

(2) 

for  $       and  f[3
(2> ,  the unsteady parts of 

$(2>   and   TI3
(2)

   respectively. 

Formulae   (46)   and   (47)   illustrate 
the    complexity    of    the    second    order 
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interactions on the free surface and 
wetted surface. As explained in 
connection with formulae (22c) and 
(34d),   the  steady  and  unsteady 

components of ti^1' and r)^ can be set 

equal to zero in (46b) and (47b) iftl3
(2) 

is interpreted as the single valued wave 
elevation on x3 = O in the perturbed 
domain. In addition, displacement field 
tf in impermeability conditions (46c) 
and (47c) has the same interpretations 
as in impermeability conditions (40c) 
and (41c). 

In order to implement conditions 
(22d) and (22f) on reference control 
boundary dDoc, it is assumed that dDoc 

consists of the surface of a vertical 
cylinder extending to reference free 
surface dDoF on the plane x3 = O. Below 
the free surface the cylinder is closed 
either by an impermeable bottom, or a 
horizontal control surface element 
placed sufficiently deep below the free 
surface. On the vertical part of dDoc, 
displacement field rf is assumed in the 
form: 

problem which represents a ship-wave 
interaction is sought for by considering 
the perturbation introduced by the 
presence of the ship in the flow of 
steep ambient waves. For the ship 
advancing with a mean forward speed U, 
a reference configuration of the ship is 
defined, relative to a correspondingly 
advancing coordinate system. This 
configuration together with the 
undisturbed water surface at x3 = O 
determine the reference fluid domain D0. 

Assuming the ship's hull to be 
sufficiently slender, the weak scatterer 
hypothesis is imposed in the 
perturbation scheme by expressing total 
velocity potential $, as: 

* = - Ux1  + AM
1-0' + (I)«5-1' + $ (2,0) 

(49a) 

where xx coordinate axis points in the 
direction of the mean forward velocity 
of the ship, with: 

n3e3 

(48a) 

which satisfies condition- (23a) . This 
implies that the free surface elevation 
on dDoc and in its vicinity is single 
valued.  On the horizontal part ofdDoc 

displacement field rj is defined to be 
equal to 0. On the basis of these 
assumptions conditions (22d) and (22f) 
give respectively: 

$u> = 911'on dDoc,  i = 0, l n 

(48b) 

r\  =  rf(1'0) + Tj"(°'U  + r\(2'0}  +..   (49b) 

defining the perturbation of the fluid 
domain.  In (49a): 

$  = $(1,0) + $(2,0) +_ [49c) 

represents the velocity potential of the 
ambient waves. The following relations 
define relative orders of magnitude in 
(49a): 

$(2,0) = 0   ($(1,0)) t       $(0,1) _ 0  ($(1,0)) 

(49d) 

and and: 

dN 
($(i) *:*') on dD„ 

i = 0,1, ,n 

(48c) 

THE APPLICATIONS OF THE WEAK SCATTERER 
HYPOTHESIS 

A Perturbation Formulation 

Using the transformation procedures 
developed in the preceding sections a 
formulation  of  the  boundary  value 

($(1,0))2 _ O($(2'0>),    $(2,0) _ O($(0.D) 

(49e) 

Analogous relations are applied to terms 
in (49b) . From relations (49d) and 
(49e) it is seen that the weak scatterer 
hypothesis consists in assuming that the 
induced by the ship disturbance of the 
flow of the ambient waves, represented 
by velocity potential $<°-1> t is 
significantly smaller than the 
disturbance of the calm water condition 
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due to the ambient wave flow, $„. 
However, the flow disturbance induced by 
the ship is not significantly smaller 
than the non-linear flow effects in the 
ambient wave field, represented by 
velocity potential $'2'0) . 

Starting from formulae (22c) and 
(22e) it is found that velocity 
potentials $(1'°> and $(2'°> satisfy 
equations (45a) and (45b), and equations 
(47a) and (47b), respectively, with: 

- (1) - (2) 
$  =$(i.o) i9      =$(2,o) and   ftu> = 0 

On the reference wetted surface the 
scattering potential must fulfil the 
impermeability condition: 

dx 
(0,1) _ 

on dDoW   (53a) 

with 

N 
dt    u dx 

TfJ0'1' + v'„   (53b) 
■1/ 

and 

(50a) 
v'„ = [( 3 - uj-)   (if(1-0) + '(2,0)' 

dt dx, 

and 

- (i) 

n = rfd.O) 
- (2) 

r\{2'0)    and   t^1' = O 

(50b) 

- (i + n(1'0) • 4*) 4=$(1'0) 
ox    ox 

-  (4 -^-slr)n(1-0> ■4i(1-« 

(53C) 

dt dx. 

5 $d,o) . _d_7T<i, 

dx 

dx 
^(1.0) _  O *(2.0)] .N 

dx dx 

They also satisfy an appropriate bottom 
impermeability condition, or correspond 
to a vanishing water velocity at the 
infinite depth. 

Velocity potential $(°-i>, which 
represents the flow disturbance induced 
by the advancing ship, can be considered 
as composed of a steady  $^0,1>  and 

(0,1) 

unsteady   $ = S'0'1' (scattering) 

part: 

$(ci) = $<,°.i> + $«.i>    (51a) 

with the corresponding fluid domain 
perturbation: 

(0,i) _ =-<o.i> . ir(o,i) 
11 rr ^ 11 CT Is (51b) 

Steady velocity potential $£0,1' is found 
to satisfy equations (44) with: 

S> (i) *£ (0,1) and    T\?
}
  = tfa   <52a> 

It follows from (53c) that the weak 
scatterer hypothesis is equivalent to 
the assumption: 

if 

v ' = O  («I»'0'11) 

az^ = o(O<0-1)) 

(53d) 

(53e) 

is satisfied. As a result of adopting 
the weak scatterer hypothesis scattering 
velocity potential $s0,1) is determined 
by the solution to the quasi-linear 
radiation problem, with quasi-linear 
impermeability condition (53a) imposed 
on dDow and the linear free surface 
condition: 

A -a-8- 
dt dx1 3x, 

Si0'1' = o    on dDn 

(53f) 

Scattering velocity potential $^0,1) 

satisfies equations (45a) and (45b) 
with: 

$ = o'0-1' and    Ti * = ^j0'1' (52b) 

applied on x3 = 0 . 

To impose impermeability condition 
(53a) in practical computations and to 
elucidate its physical meaning it is 
noticed that vn can be rewritten as: 
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va<x) = [1 + 0(3>(1-°') ] [(V - uj 

• n + tfei • <n - ÜÖ ] + o[(*(1'0))2] 

(54a) 

where the right hand side is determined 
at y = x + tf, v" is the ship velocity 
relative to the reference configuration, 
U„ is the water velocity induced by the 
ambient wave field, and n _is the 
instantaneous normal vector at y on dDw. 
N  represents the normal vector on 
dD0„    at point x.    In deriving (54a) use 
is made of the relation: 

where   ßi(t),i=l,2,.../n,    are 
functions of time.   FunctionsxFm (y) 
are assumed to satisfy the Lipschitz 
condition: 

|*JB &   " *« (y + Ay) | 

z M | Ay| OU 3P_ 
(57b) 

on the ship's surface, and to be 
invariant with respect to displacements 
of the surface due to the ship motion. 
Using (1) and (30) the latter condition 
can be expressed as: 

\/N K k • N = 1 + 0($!1' (54b) 

see (13c).  On the basis of (53d) and 
(54a): 

v„ {x)  = un(y)  = (v - uM)   • n 

+ Ue1 • (n - ft) 
(55) 

including all terms up to O(*(2'0)) . The 
weak scatterer hypothesis is therefore 
expressed by: 

un(y)   = 0(* (0,1) (56) 

which is the form of the hypothesis 
applied in [6]. Since the velocity 
field ü„ is considered to be given 
un(y) is easy to determine numerically 
on the instantaneous wetted surface in 
a ship motion simulation. 

The use of un(y) in impermeability 
condition (53a) requires that uD(y) be 
mapped onto the reference configuration 
of wetted surface, dDoW. It is possible 
to accomplish such mapping by 
approximating un(y) by a finite series 
of linearly independent, square 
integrable functions 7M (y) defined on 
the ship's surface: 

un(y-1) = Y, Pi(t) 7/ß (^    on 8D
B 

(57a) 

*w<y) = T^U + TI) 

= TJH (x +nc) /  i = 1,2, . ..m   (57c) 

for xe dDoW and ye dDw 

Formulae (57a),   (57b)  and (57c)  lead to: 

i-l 

+ o (Pi |TT0|) 

(57d) 

Since, on account of the weak scatterer 
hypothesis Px = o($

(0-1)) , i = 1,2, . . .m, 
and |rf0| = O(*

tl,0)) , the last term on the 
right hand side of (57d) is neglected, 
and impermeability condition (53a) takes 
the form: 

dx 
N Y: Mt)'«® (58) 

on dD„ 

with ßi(t) determined from approxi- 
mation (57a). Applications of condition 
(58)  lead  to  the  computation  of 

scattering potential *s0,1) by means of 
the modal potentials 
motion) method, [6]. 

(or equivalent 

Following the transformation rules 
explained earlier, perturbation 
scattering velocity potential Ys' , 

velocity field üi0,1' and pressure field 

g]0,1' in the instantaneous fluid domain 
D  are given by: 
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Yj0'1'  (y.t) ^l0'1'   (5c, t)     (59a) 
TRAWLER, FREE RUNNING, FROUDE-KRYLOV LOADS 

Hi0'1» <y,fc) = -^«i0*1' At) (59b) 

si0'1' <y, t) = -P -^ «i0'1' (x, t) 

(59C) 

Forces and moments exerted by the 
scattering pressure field on the ship 
hull can be found using formulae (15e) 
and (27b), which result in: 

and 

Fj0'1' = R • f ps°-vNdS      (60a) 

p(0,l) _ 
1 CSS R • f     Ps0-»   (x -  5^) A NdS 

JdD„. 

(60b) 

where R   can be replaced by I,    and 
F<o,i> , r, (0,1) COS denote the force and moment 
about the instantaneous location of the 
centre of gravity, denoted by CG. In 
addition ps

0,1) is defined by the right 
hand side of (59c). 

In figure 2 the effectiveness of 
the method in predicting scattering 
forces is illustrated by an example 
taken from [6], In the figure a Froude- 
Krylov and corresponding total (i.e. 
including scattering) hydrodynamic pitch 
moment, computed using a numerical 
implementation of the described 
perturbation solution, are compared with 
the total pitch moment record derived 
from experimental data. The experiment, 
[11], and numerical simulation, [6], 
were performed for a low L/B stern 
fishing trawler advancing unrestrained 
at 0.2 Froude number, and 30 degrees 
heading, in steep, close to breaking, 
periodic waves. As can be seen, the 
scattering moment reduces the amplitude 
of the Froude-Krylov moment by about 
30%, and significantly changes the 
pattern of the pitch moment, producing 
a close qualitative and quantitative 
agreement with the experimental record. 
Similar comparisons for the other modes 
of motion are described in [6]. 

TRAWLER, FREE RUNNING, HYDRODYNAMIC LOADS 

Fig. 2 A comparison of total loads 
derived from experiment, [11], with 
computed Froude-Krylov and total loads 
[6], *** experiment,   computation 

A Direct Formulation 

The described above method of imposing 
a perturbation impermeability condition 
on a surface piercing hull can be 
simplified by shifting its application 
to a simpler, control boundary. To this 
end a direct solution to the ship-wave 
interaction problem is sought for in a 
bounded control domain D and is matched 
with a perturbation solution in domain 
Da, which is external to D. The wetted 
surface of the ship is considered to be 
at all times entirely contained in D. 
Such an approach leads to a greater 
generality of the resulting formulation 
because of the complete (in principle) 
inclusion of non-linearities in the 
vicinity (domain D) of the hull. It 
also prompts the development of a 
consistent radiation condition on a 
control boundary dD   for the non-linear 
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time domain boundary value problem. 

Instantaneous control domain D is 
bounded by control surface BDC, which 
consists of a vertical cylindrical 
surface extending to the instantaneous 
free surface dDF. Below the free 
surface dDc is closed by a horizontal 
surface element at a sufficient depth. 
A direct formulation of the problem on 
D may be obtained by applying Green's 
formula for harmonic functions to 
velocity potential T (y, t) at time t: 

Q (P, t)  T (P, t) = f        [Y(P,Q) 
JBDlt) 

£-Y(0, t) - 7 (CO -r-YlP.Q)ldS(Q) 
dn dnr 

(61a) 

with 0 (P, t) signifying the angle 
subtended  at  point  P  by  boundary 

dD{t) ,  ^e- denoting the outward normal 

derivative taken at point Q, and Y(P,Q) 
representing the fundamental solution to 
Laplace's equation. In addition the 
Cauchy principal value of the integral 
over 3£>(t) is taken. For point P 
located on dD(t) , and with Dirichlet, 
Neumann, or Robin (mixed) boundary 
conditions applied on non-overlapping 
parts of dD{t) , the formula generates 
two coupled Fredholm integral equations, 
of the second kind for the unknown T, 
and of the first kind with respect to 

the unknown -=— T. 
dn 

On the instantaneous wetted surface 
of the ship the boundary data in (61a) 
are determined by impermeability 
condition (25b). The unknown locus of 
the free surface and required boundary 
data on free surface DF(t) are obtained 
from initial conditions using evolution 
equations. The evolution equations can 
be cast in a Lagrangian or Eulerian 
form. The Eulerian form is used here, 
because it imposes the condition of 
single valued wave elevation which must 
be satisfied at control boundary dDc to 
ensure an appropriate matching with the 
external flow.  Therefore: 

dt dy, 
3    r . _d_  m 

dy        dy 

d 
dt 

T - ■ -gZ 
1 
2 9

^I 

+ 
3y2 

¥)J -   ( 
3y3 

a 
dy, 

■ T 
dy^ 

.      3    m 
dy 

with   -%-       representing 
dt 

the 

(61C) 

time 

derivative at a vertically moving point 
on the free surface. 

dDc  is 
Boundary data on control boundary 

determined from matching 
conditions (21e) and (21f) . In the 
application of those conditions velocity 
potential of external flow 7e is 

expressed as a transformed potential $8 
defined on the reference configuration£>oe 
of the horizontally unbounded external 
domain De, which is defined by control 
boundary dDc and the reference free 
surface at x3 = 0. The domain 

displacement field TJ"e is assumed to 
satisfy condition (48a). It follows 
that matching conditions (21e) and (21f) 
give: 

expfri, 
8x, *- 0    on 8D^ 

[62a) 

and 

w T • N -  exp\r\e3 
d \ d 

dx3j dx *- • N = O 

on dDc 

(62b) 

Velocity potential $e is taken in the 

form: 

(63a) 

(61b) 
with 

where f denotes wave elevation, and: * ev        ^®        » 
(63b) 
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representing the velocity potential of 
an ambient steep wave, and $(

a
0,1) 

denoting the scattering velocity 
potential in De. The velocity potent- 
ials on the right hand side of (63a) are 
assumed to satisfy order of magnitude 
relations analogous to (49d) and (49e), 
whereas displacement field r\ has a 
representation analogous to (49b). 

Taking into  account expression 
(63a) and including consistently terms 

up to order of magnitude O(<I>^'0)) , 
matching conditions (62) give: 

T -expft^-JL) ($e„ + $>!°'
1>: 

(64a) 

on dD„ 

and: 

*■£*<••»-v, 

with: 

and: 

vn (jf) = un (y) 

on dDoC    (64b) 

(64C) 

scattering problem may be obtained in 
terms of the appropriate Green's 
function, for the infinite depth, by 
applying the following relation known 
from so called body non-linear radiation 
problem formulations, [9], [10]: 

Q (P, t)  ^i0'1' (P,t)   = - f [Y(P,Q) 

- Y[P,Q')] \n{Q,t) dSQ 

t 

- f [        Y(P,Q, t-t) va(0,T) dS0dx 

t 

- Y(P,Q')]dSQ+   ff Jiul(0(T) 
w       1 JdDoCM 

-JL-Y(P,Q,t-:) dS(Q)dx 
dNQ 

\  // lY(P,Q,t-x)  i*r(C,T) 
3  —Hi) 

-  «J°'l) (0,x) -A?(P,0, t-T)] 

Vw(Ö,T)d«{ß)dt 

(66) 

u».(y) = ^-exp.(^ 3,^ AT 

on dDc 

(64d) 

The weak scatterer hypothesis consists 
in assuming the relation: 

v„ = o(9l-") (65) 

which is satisfied sufficiently far from 
the ship hull in a three dimensional 
problem. Relations (64a) and (64b) can 
be implemented by constructing an 
appropriate displacement f ieldtieJ(x, t) 
on dDoC, or by employing a mapping 
technigue analogous to the one which 
leads to relation (58). On reference 
wetted surface dDoF  scattering potential 
410'15 must satisfy condition (53f) with 
u = o. 

A  solution  to  the  external 

where  x^C)   =xi(£>) for i=l,2,   and 

je, (O = -xz(Q) , Y{P,Q,t) represents 
the memory part of the time dependent 
Green's function, [3], { = dDoC D dDoF is 
the instantaneous water line of dDoC, and 
VN(Q, C) denotes the normal velocity of 
the waterline, which results from a 
prescribed motion of dDc. Formula (66) 
provides the missing relation between 
the boundary value data on dDc in the 
formulation of the direct boundary value 
problem. Therefore relations (61a) and 
(66), coupled by means of (64), can be 
solved to determine the solution, 
starting from appropriate initial value 
conditions. It should be noticed that 
the matching of velocity and pressure 
fields on control boundary dDc is well 
defined including terms up to O($2'0)) . 

CONCLUSION 

The above discussion describes and 
gives examples of the application of a 
technique for the formulation of non- 
linear boundary value problems of ship 
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hydrodynamics. The examples provided 
indicate the usefulness of the technique 
in deriving and evaluating formulations 
of boundary value problems for specific 
applications. In particular it is shown 
that consistent formulations of the non- 
linear time domain problem of ship-wave 
interaction can be obtained using the 
described method. The adoption of the 
weak scatterer hypothesis allows those 
formulations to be effectively 
implemented with the application of 
existing computational means. Also, the 
method provides a basis for the 
development of consistent non-linear 
flow matching (radiation) conditions on 
control boundaries. 
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DISCUSSION 

J. Wehausen 
University of California at Berkeley, USA 

This paper provides the underpinnings of the 
recent paper by the author and Bass [6]. Because of 
the rather impressive results reported in that paper, 
this one deserves some detailed study and comment, 
more than I can do here. I have not been able to 
read the whole paper with attention to detail, but shall 
try to describe my understanding of the author's 
approach to the problem of the title and some of the 
difficulties that I have encountered. 

In deriving the linearized equations for free- 
surface flows in the usual Eulerian formulation, one 
is confronted with the embarrassing situation that one 
expands the velocity components and pressure (or 
perhaps a velocity potential if one exists) in a series 
about a point that does not lie within the fluid and 
where the quantity in question is presumably not 
defined. Several ways have been proposed in order 
to meet this difficulty. One is to assume that the 
region of definition of the quantity can be extended 
analytically far enough beyond its natural region of 
definition to include the point in question. It is 
seldom, however, that anyone really addresses this 
problem of analytic extension (but see H. Lewy, 
Proc. Amer. Math. Soc., vol. 3 (1952), pp. 111- 
113). Nevertheless, one might argue that if one has 
proved convergence of the resulting series, one has 
by that fact established the legitimacy of the analytic 
extension. Such proofs exist in only a few cases. In 
2D potential flow, one may avoid the difficulty by 
taking (<£,<£>) as independent variables and solving for 
\(<j>,cp) and y(<£,v?) with domain of (4>,<p) known; this 
stratagem is, of course, not always available. 
Another procedure is the use of a Lagrangian 
description of the fluid motion. Then all independent 
variables are defined on a given domain and 
presumably one can construct a perturbation 
approximation without having to leave the reference 
domain. 

Joseph[l], Lebovitz[2], and the author have 
chosen a procedure that they call Lagrange-like. 
They start with a given, possibly time-dependent 
domain D0 as the reference domain (not necessarily 
the fluid domain at, say, time t = 0) and introduce 
mapping functions from the domain D0 to the domain 
D(t) of the fluid at time t. The mapping functions 
are to be determined in the course of solving the 
problem. Joseph and Lebovitz make it clear from the 

beginning that they are trying to develop an approach 
to perturbation approximations that avoids the 
puzzling situation mentioned above. Also, one of 
their goals is to relate the (usual) Euler-like 
procedure to the Lagrange-like one, and indeed they 
conclude that the Euler-like procedure can be 
justified, at least formally, on the basis of their 
approach. Thus, they end up with the same set of 
boundary-value problems. 

The author's approach is more elaborate. 
Essentially he is developing the Lagrangian equations 
for a special reference domain that may depend upon 
the time (i.e., one moving with the mean position of 
the ship). A perturbation approximation is introduced 
only fairly late in the paper. The first part is devoted 
to developing the necessary formulas for expressing 
the kinematic relationships in terms of the author's 
form for the mapping from the domain D0 to the fluid 

domain D:y=x+r\(x,t), where *eD0, yeD. Unlike its 
expression in Joseph [1] or Lebovitz [2], ij is not 
considered to be small. The mapping is expressed by 
means of the operator expO defined in equation (2). 
I find the definition ambiguous, for, according to my 
understanding, 

(n •a/x)M«3/»Xn/'c,/a*Ö =1 Kdr^lxOd/xj+x] ii\j?ldxidxj, 

and similarly for higher powers.    If (3) is to be 

correct, one must treat r\ as a constant in (2). This 
is true not only here but also later on when the 

operator exp(ri -d/dx) and 3/cfcc and d/dt are taken to 
be commutative, as, e.g., in (6ab) and (19bc). One 
might think that one motivation for introducing the 
operator expO is to exploit exp(-) as its inverse, but 
this doesn't occur and apparently is not useful. The 
operator appears to have been introduced chiefly for 
notational convenience. 

An arbitrary scalar function (possibly a 

component of a vector or tensor) v(x)> defined on D0, 

is mapped into a(y), defined on D, by (4a), i.e., by 

(*) «Ö0="(*+Tl)=v(x)+(r| -d/dx)v+... 

The series is defined for xeDp as one wishes.   If 

also   J+rjeDQ,   then   the   series   is just   v(x+n). 

Apparently a(x+r|)=v(x+r|) when X+TICDQ, not 
necessarily a useful observation since one is really 
interested in defining u in D.    However, this is 
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evidently   different   from   the   similar-appearing 

mapping used by Lebovitz, who defines u(x+r\)=v(x). 

I am not able to verify immediately equations 
(4b), (4c), and the ensuing statement. If, in fact, the 
proof is not obvious, it would be some comfort to the 
reader to be informed of this. 

I am interested in the statement that the author 
did not assume (35), the "usual assumption," as he 
states.   In interpret this to mean that, in fact 

(#) r|=r|lel+r|2e2+r|3e3, 

and indeed, as pointed out by the author, in (34d) the 
components TJI

1
 and -r\2l do appear. iß{ is determined 

on dD0F by (34b). It would be interesting to see how 
the expressions for these other components are 
determined, and under what conditions they are 
necessary. Also, how does one extend the definition 
of 7] to all D0? One of the conclusions of Joseph [ 1] 
and Lebovitz [2] is that the use of domain mappings 
leads back to the usual equations derived by an Euler- 
like procedure, although by a path that seems to them 
more satisfactory. Are the author's equations really 
different from those that would be derived by the 
usual Eulerian procedure, and if so, in what way? 
Perhaps the author can supply some further insight 
into his reasons for choosing the Lagrangian 
procedure. 

The paper by Nakos and Sklavounas [5] also 
shows remarkably good agreement between 
experiment and theory. Following eq. (41) the 
author gives a detailed description of the differences 
between his equations and those of [5]. It would be 
of practical interest to have numerical estimates of 
these differences, something apparently not too 
difficult to provide, since computer programs have 
evidently already been prepared. Since [5] is not 
presented as a nonlinear theory, are differences 
primarily a result of the nonlinear aspects of the 
author's theory? 

There is so much detailed analysis in this paper 
that one cannot be sure of not having overlooked 
some subtle point or perhaps even an error in 
calculation. Nevertheless,     the    impressive 
comparisons between calculation and experiment 
shown here in Fig. 2 and more extensively in the 
SNAME paper [6] suggest that the paper deserves 
intensive study necessary to understand it fully. 
There are still many questions to be asked. For 
example,   is  the  apparent  success  of the  theory 

attributable chiefly to nonlinearity, to the Lagrange- 
like approach, or perhaps instead to the weak- 
scatterer hypothesis? Or are they all intertwined? 

AUTHOR'S REPLY 

I am most grateful to Professor Wehausen for his 
insightful questions and comments which give me the 
opportunity to provide explanations of several topics. 

It seems helpful to answer the questions in 
reversed order, from the more general to the more 
specific, starting with the question about the 
contributions of the Lagrange-like mapping method 
and of the weak-scatterer hypothesis to the 
formulation and implementation of the non-linear 
ship/wave interaction model presented in [6]. 

In the present paper, the Lagrange-like mapping 
is introduced as a general technique for the 
formulation of non-linear boundary value problems of 
ship hydrodynamics. Subsequently, it is shown how 
main known formulations of such problems can be 
derived by means of the mapping technique. Then 
the weak-scatterer hypothesis and its applications in 
the perturbation and direct formulations of the non- 
linear ship/wave interaction problem are derived 
within the previously established framework of the 
mapping technique. 

Therefore, the weak-scatterer formulations do 
not appear as ad hoc developments. They result from 
feasible assumptions which are adopted within the 
framework of the mapping method and in the context 
of the other formulations organized by the same 
framework. The consistency achieved in this way 
cannot be obtained outside of the mapping method. 
It also allows one to understand and evaluate the 
weak-scatterer formulations independently of any 
computational evidence which is always contingent on 
the numerical tools used and on the data available for 
comparison. In that sense, the present paper 
corroborates the results described in [6]. At the level 
of implementation, the established framework of 
problem formulation provided a useful guidance in 
developing the numerical algorithm applied in [6] (see 
also formulae [57] and [58] here). 

In the paper, the derivation of boundary value 
problems based on the perturbation of double body 
flow serves as one of the illustrations of the 
applicability of the mapping method (the others being 
the non-linear wave propagation and Neumann-Kelvin 
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perturbations). The comparison with the work by 
Nakos and Sclavounos [5] is carried out for the 
double body perturbation but not for the weak- 
scatterer perturbation model. The reason is that in 
the weak-scatterer perturbation model forward speed 
effects are modelled using Neumann-Kelvin 
approximation by taking the ambient wave flow as 
the dominant flow feature. In this way, the weak- 
scatterer hypothesis makes it possible to avoid the 
complexity of dealing with conditions (47a) and 
(47c), at the cost of implementing condition (53a). 

In a double body perturbation, a disturbance 
induced by the ship (namely the double body flow) 
constitutes the dominant flow feature and the ambient 
wave flow is included in the linear effects of unsteady 
flow (see equations [41a] and [41c]}. A modelling of 
flow phenomena which are non-linear with respect to 
the unsteady flow requires in a double body flow 
perturbation a consideration of the next, i.e., second, 
order of magnitude equations. Such equations are not 
included in [5] and their complexity is at least 
comparable to that of equations (47a) and (47c). 

However, in the paper, the comparison of the 
double body perturbation formulation with the work 
presented in [5] brings forward the agreement 
between the two formulations on the assumption 
(38c). In the framework of the mapping method, this 
assumption is the necessary assumption of double 
body perturbation formulations. A detailed 
evaluation of double body perturbation formulations 
of the steady flow (wave resistance) problem in the 
framework of the mapping method is a subject of a 
forthcoming PhD thesis. That work will include 
comparisons of computed results with results obtained 
from the formulation described in [5]. 

Let me observe at this point that the above 
discussion illustrates how the methodology outlined in 
the paper provides ground for a meaningful 
comparison and evaluation of existing and possible 
new formulations of problems of ship hydrodynamics. 

Coming to the governing equations of non-linear 
wave propagation, the interpretation by Prof. 
Wehausen that the domain displacement field is 
assumed to contain all three components, none of 
them a priori taken equal to zero even on the 
reference free surface, is correct. In a particular 
application, the three components must be represented 
in a suitable functional (e.g., polynomial) form as 
scalar fields on the reference fluid domain. The 
values which those fields take on the boundaries 

appear then in their functional representations as 
unknown parameters which are determined in the 
course of solving the boundary value problem. This 
is the approach considered by Joseph [2]. However, 
Joseph assumes the mapping between the 
instantaneous and reference configurations of the free 
surface to be determined by the projection along the 
normal to the reference free surface. That 
assumption reduces the mapping field to the vertical 
component only. Other mappings between the 
instantaneous and reference configuration of the free 
surface can be considered and in all of them, 
including the case examined by Joseph, the equations 
for free surface elevation (34b), (34d), etc., impose 
the appropriate constraints on the boundary. 

Considering the domain and field mappings as 
defined in the present paper, they differ from the 

ones examined by Lebovitz [2] in that fields v(x) are 
mapped by analytic expansion from the reference 
fluid domain to the instantaneous fluid domain, in 
parallel   with  domain  points  and   by   the   same 

(exponential)   operator,    to   obtain    «(y)=v(x+Tj). 

Lebovitz, instead, maps fields u(y)=u(x+r\) from the 
instantaneous to reference domain configuration by 

the identity mapping a(y)=v(x) and then expands u(y) 

analytically relative to n in the perturbation process. 
The mapping procedure presented here avoids the 
mixing of the mapping itself with the process of 
arriving at a perturbation solution. This helps to 
define the mapping procedure clearly including e.g. 
the impermeability condition. It may also help to 
address the problem of required analycity of the 
mapped fields although this problem is not discussed 
in the present paper. 

The proof of equations (4b) and (4c) and of the 
ensuing statement depends on the assumption that 

v(x) is an analytic function. Unfortunately, the proof 
is too long to be shown here. I intend to provide it 
in another publication. In addition, the definition of 
the exponential operator (2) is illustrated by equations 

(1) and (3), i.e., indeed field rj is assumed to be 
constant in (2). This is in accordance with the usual 
notation for Taylor's series in which increments of 
independent variables are considered as constant 
although they are functions of the independent 
variables. However, the notation should have been 
made more clear in the paper. 

In  conclusion,  I  would  like to thank  Prof. 
Wehausen again for his discussion. 
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Nonlinear Effects on High Block Ship 
at Low and Moderate Speed 

Y.-H. Kim (David Taylor Model Basin, USA), 
T. Lucas (University of North Carolina at Charlotte, USA) 

ABSTRACT 

A Rankine panel method is used for the solution 
of the fully nonlinear free surface problem, in particular 
for high block ships (CB greater than 0.75). High block 
ships usually have a blunt bow and hence experience 
extreme waves with huge crests followed by deep 
troughs near the bow region. These phenomena are 
nonlinear. A new algorithm has been developed, con- 
sisting of a nested pair of two iterative procedures: an 
inner and outer iteration. The inner iteration is to solve the 
system of nonlinear equations that results from elimi- 
nating the unknown wave height from the kinematic and 
dynamic free surface conditions on the current (outer) free 
surface. The outer iteration is conducted on the free 
surface determined from the converged solution of the 
previous inner iteration. Singularities are distributed on 
the actual wetted ship hull and the updated free surface 
location obtained during the outer iteration. The pre- 
viously reported one parameter family of advection 
methods is also used. The computations for SeriesöO with 
block coefficient 0.80 and Model B at various speeds 
successfully reveal the details of wave profiles at the 
bow, hull, and stem. The computational results illustrate 
the stability, efficiency and accuracy of this approach for 
all tested hull forms and speeds. 

INTRODUCTION 

Rankine panel methods have been popular for the 
solution of steady potential flow problems during the 
previous two decades. The Rankine source method is 
straightforward and can handle the details of a complex 
hull form without numerical difficulties. Gaddfl] and 
Dawson[2] successfully applied the Rankine panel 
method to solve ship problems with a linearized free sur- 
face condition. Since then several researchers including 
Xia[3], Ni[4], and Kim[5] attacked the nonlinear free 
surface problem by applying variations of this method. A 
major focal point has been the problem of convergence, 
which has posed difficulties at higher speeds and different 
hull forms. 

Kim and Lucas[6] proposed an iterative algorithm 
for solving the nonlinear free surface flow problem by 

using a one parameter family of upstream finite difference 
methods. The computational scheme developed suc- 
cessfully gave a converged solution and the results 
demonstrated significantly improved wave profiles as 
well as wave making resistance for the Wigley and Series 
60, CB=0.60 hulls, compared with those obtained by 
linearized free surface solvers. 

During the presentation at the 18th ONR sym- 
posium several discussers suggested investigating the 
application of the new algorithm to high block coefficient 
ships with a blunt bow, a case where the nonlinear effects 
were expected to be more significant. The Series 60, 
CB=0-80 hull which has a half entrance angle of 43 
degrees was selected. At Froude number 0.25 and lower 
we can report that the solution converged. But for Froude 
numbers 0.30 the solution diverged. The wave amplitude 
grew steadily as the iteration continued and after several 
iterations the wave amplitude near the bow exceeded the 
magnitude of the ship draft. Thus modifications are 
required to solve the fully nonlinear problem for a high 
block ship. Also it is desirable to use a wetted hull, an 
improvement that is likely to cause further problems with 
convergence. 

This paper outlines a new algorithm for the 
solution of the nonlinear free surface problem with more 
robust convergence properties, even for high block ships. 
This new approach involves a nested pair of inner and 
outer iterations. The iteration starts from the solution of 
the double body flow. The inner iteration is to solve the 
system of nonlinear equations that results from 
eliminating the unknown wave height from the dynamic 
and kinematic free surface conditions within an arbitrary 
tolerance for a fixed free surface. The outer iteration is 
conducted on the free surface determined from the 
converged solution of the inner iteration. Thus if this 
approach converges, it would give the unique solution to 
both the free surface and the source coefficients for the 
nonlinear equations. This approach has shown high 
accuracy with relatively small computer times as the inner 
iteration consists of rather cheap matrix solutions while 
only the outer iteration involves recomputing the influence 
coefficients at the new free surface. Our computational 
experience is that with the inner iteration logic, usually 
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two to four outer iterations give a solution converged to 
three significant digits in height. In addition to having 
few outer iterations, each outer iteration is much cheaper 
than in the more advanced approach since only source 
terms need be computed, while in the previous approach, 
the relatively expensive z-partial derivative terms are 
required. 

When we were pursuing the new mathematical 
analysis we studied a more rigorous convergence criteria: 
the maximum error in the residual goes to zero (for 
example be less than 1.0E-9). Here the residual is the 
error which is found when the result of the current 
iteration is substituted into the combined kinematic and 
dynamic equations. We evaluate this error at each control 
point both in root mean square norm and the maximum 
norm of the residuals. These measurements of the error 
are used not only to assess the quality of a given iteration, 
but also to dynamically choose the underrelaxation 
parameter X. 

Computations are presented of the wave profiles 
along Series60,CB=0.80 hull and Model B. A com- 
parison of wave profiles is made with Model B 
experiments. The results show that the solution converges 
nicely even for high block ships. Preliminary work is 
begun on the problem of wave resistance. With the 
nonlinear solution over a wavy free surface, the pressure 
is integrated over a wetted hull surface but it is not in final 
form. Early results for the two full hull forms are 
presented. 

MATHEMATICAL FORMULATION 

A Cartesian coordinate system x; = (x,y,z) fixed 
on the ship moves with constant forward speed U0 as 
shown in Figure 1. The positive x-direction points 
upstream, the positive z opposing the direction of gravity, 
and z=0 coincides with the undisturbed free surface. The 
boundary-value problem will be expressed relative to this 
moving coordinate system with the flow at infinity 
consisting of an uniform stream. 

The fluid is assumed to be inviscid and incom- 
pressible and it's motion is irrotational, governed by a 
potential function <«x,y,z) which satisfies the Laplace 
equation in the fluid domain 

V2<}> = 0 (1) 

and the velocity field of the fluid Vj can be defined as 

V(x,y,x) = V<t>(x,y,z) (2) 

On the wetted portion of the ship hull S, the component 
of the fluid velocity normal to S0 is equal to the corre- 
sponding component of the ship velocity U0, or 

On =U0 
(3) 

where ni = (nx, ny, nz) denotes the outward unit normal 
vector on the boundary. The fluid domain is bounded by 
the free surface. The free surface elevation is defined by 
z = £(x,y) and is subject to the the kinematic boundary 
condition 

0*^ + 0^-0, = 0     onz = £(X)y) (4) 

The vanishing of the pressure on the free surface com- 
bined with Bernoulli's equation leads to the dynamic free 
surface condition 

C =  -^-(V<t>-V<{)-US) 
2g (5) 

where g denotes the gravitational acceleration. Elimination 
of £ from (4) and (5) leads to 

V<l>-V ±(Vtf + go* = o 
on z=C(x,y)    (6) 

Finally, energy considerations require that the velocity 
potential approaches the uniform onset flow potential and 
that there be no waves far upstream of the ship, so that 
waves always travel downstream. 

The problem described in equations (1) thru (5) is 
nonlinear. The free surface boundary conditions(4) and 
(5) are nonlinear and furthermore should be satisfied on 
the true free surface C which is unknown a priori and 
should be obtained as a part of the solution. A straight- 
forward linearization makes the problem tractable. This 
can be easily achieved by defining 

E = 4>f + of + Of 
F = Ox-o: + o/o; + oz-o: 

and letting 0 = 0° + (0 - 0° )• Then substituting into (6) 
and dropping all terms of power higher than one in 
(<(>-<{>o) gives: 

i{[o: •£,+«>;■ Ey]+(o - o°), ■ EX+(o - o°)y • Ey} 
+ 0:-(F-E)I + 0/(F-E)y + g0I = O 

which simplifies to: 

^[♦.•E. + VEj + d.t.F. + ^ + gfc = 

o:-Ex+o;-Ey 

an equation linear in <{>. 

(7) 
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The singularity distributions yield equations (1), 
(3), and (7). The inner iteration continues until the 
approximate solution to (7) satisfies the exact nonlinear 
free surface condition (6) to a specified tolerance. The 
outer iteration then updates the wave profiles by (5) and 
another inner iteration can begin. Details are provided in a 
later section. Once the singularity strength distributions 



are determined, the wave resistance can be computed by 

Rw = Us pn* ds 
(8) 

where S is the wetted ship hull surface and the fluid pres- 
sure p is given by the Bernoulli equation 

p =  .£[ (V<|>)2 - U*] - pgz 

NUMERICAL SCHEME 

(9) 

The method used here is a boundary element 
method. Body and free surface are discretized into small 
panels. A simple Rankine source(l/r) is distributed across 
each panel as shown in Figure 2. The velocity potential $ 
at a point p = p(x,y,z) induced by a singularity dis- 
tributed on S is given by 

+ « ~4f£ds 
4KJJS r (10) 

Here 
r = [ß-x)2 + (r|-y)2 + (C-z)2]l/2 

and the singularity strength is assumed to vary linearly 

c&ifl = o„ + cytS+ <V1 (11) 

across the panel, and each panel is approximated as a 
parabolic element 

CfcTO-t+^+C+^+^+^W   (12) 

where (E,,r\&) are orthogonal coordinates local to S. 

The boundary value problem formulated above 
then reduces to a determination of an unknown singularity 
distribution a(x,y,z) over the boundary surface of the 
body and the fluid domain The velocity potential <j> and 
its derivatives <t>x, <|>y, and §z can be expanded in closed 
form by using a combination of closed form calculations 
and recursive relationships. The details are fully included 
in Johnson[7] and Kim et al.[8]. 

An algebraically generated waterline-fitted 
coordinate system, independent of the double model 
streamline coordinate, is used to create the free surface 
panel network. The convective terms in the free surface 
condition involves x and y directional derivatives. A 
number of researchers have experienced the difficulties in 
convergence with the four point or three point operator 
when taking numerical derivatives. Kim and Lucas[6] 
introduced a one parameter family of four point advection 
methods to enhance convergence for the free surface 
problem with great success. This method generalizes both 
the four point and three point schemes which satisfy a 
quadratic exactly, and allow for an arbitrary amount of 
upwind dampening. 
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We have developed a new approach that 
consistendy gives a converged solution to die nonlinear 
free surface problem. This approach involves inner and 
outer iterations. The inner iteration is to solve the 
linearized system of equations (7) that results from 
eliminating the wave height from the dynamic and 
kinematic equations within an arbitrary tolerance for a 
fixed free surface. The free surface as well as the wetted 
hull surface is updated from the converged solution of the 
inner iteration and the outer iteration is applied on the new 
surfaces. The initial iteration starts from a double body 
solution. The following section discusses the Inner-Outer 
Method extensively. 

THE INNER-OUTER METHOD FOR NONLINEAR 
SHIP WAVES 

We wish to simultaneously solve the kinematic 
and dynamic boundary conditions (4) and (5) on an 
unknown free surface z = £(x,y). Our approach is to first 
consider the combined equation (6) on the current free 
surface(z=0 initially). When linearized about an approx- 
imate solution <))0, this gives a new velocity potential of 
the form <|> = §° + &j> which satisfies (7). In practice we 
use a standard nondimensionalization where g is replaced 
by gL/(2U0

2) = l/(2Fn
2). Here L is the ship length and 

Fn is the Froude number. We begin with §° equal to the 
double body solution on the flat free surface. The 
complete inner-outer algorithm is as follows: 

Outer Loop; 

Iterate on the free surface z = C(x,y) until the z 
correction satisfies the condition Azmax < ez, where 
Azmax equals the maximum change in z over all control 
points (one per free surface panel). There is an option for 
recomputing the wetted hull surface. When the option is 
on, the full influence matrix must be computed once for 
each outer iteration. When it is off (only the original calm 
water wetted hull surface is used) again the influence 
matrix must be recomputed, but the part with the 
influence of the body singularity panels on body control 
points may be reused. 

Inner Loop: 

The inner loop consists of two parts. The first part 
solves (7) and obtains the source strength distribution for 
both the ship hull surface and the free surface. In the 
second part, an optimum underrelaxation factor is deter- 
mined for the next iteration. Since the influence coef- 
ficients do not change on a given free surface, it is 
straightforward to consider as a tentative solution the 
previous solution plus any value X times the Newton 
correction. The residuals can be calculated by changing 
X's and an optimum value of the underrelaxation coef- 
ficient can then be determined. The details are as follows: 

Here we iterate on equation(6) as follow: 
- Using the last value of <|> for <)>0, setup the system (7) 
- Solve denoting the result by <(>' 
- Underrelaxation step: 

- For X = 0, 0.1, 0.2,...,1.1, and 1.2, compute X 

<$>(X) = <i>° + X($ - <t>° ) 



- Compute two measures of accuracy for each 

- Maximum residual error (£o) in (6) 
- Root mean square residual error (£2) of (6) 
- Interpolate in X. for the best quadratic fit in 

these two measures, Xo and X-2 
- Select as the tentative Xopt, the average of Xo 

andX.2 
- Force Xopt to be no less than 0.33 and no 

more than 1.2 
- Use <KXopt) as the next underrelaxed solution 

- Compute £o and £2 for <t>(Xopt) 
- If Eo is large, abort for excessive residual 

- Accept <t>(Xopt) 
- If (Eo < 5.0E-5 and Xopt > 0.97) or £0 < l.E-7, 

exit inner loop and compute new C, (from(5)) 
- Otherwise repeat inner loop 

We have found the use of the underrelaxation method in 
the inner loop to be extremely helpful. It is inexpensive 
to use and very efficient in developing converged 
solutions. In practice Xopt starts out small and works up 
to 1 or higher. After the first few outer iterations, the 
inner convergence is rapid. Occasionally we have found 
it helpful to force completion of the inner loop at say 5 
iterations. 

RESULTS AND DISCUSSION 

To facilitate comparisons, the following non- 
dimensionalization has been made: 

cw — 
R, 

c = 
l/2pU2S 

C 
U2/(2g) 

Throughout the computations the ship length is 
always 2.0, x=1.0 at the bow and x=-1.0 at the stem. All 
the length scales are nondimensionalized based on the half 
ship length (L/2), unless otherwise specified. The infinite 
free surface domain is truncated into a finite com- 
putational domain. For all computations we used the same 
free surface domain, i.e., x spans from 2.0 to -2.6 and 
y=1.2. We used both the Cray X-MP/216 at DTMB and 
the Cray Y-MP 8/464 at the NCSC. 

For each outer loop, the wave elevation at each 
free surface control point is computed by using (5) and 
the new free surface panel network nodal points are fitted 
bilinearly. When the wetted hull option is on, the inter- 
section point between the hull and the new free surface at 
each x-station is determined first. The total girth length 
from keel to intersection point is computed and divided 
according to the original panel spacing along the girth. 
The new y- and z- coordinates are determined by cubic 
spline fitting. A high block ship has a long parallel middle 
body with a flat bottom and wall side. A smooth cubic 
spline is not appropriate for this kind of cross section. 
Therefore we divide the ship hull into two sections: lower 
and upper sections. The lower section usually covers 

from hull centerline to about bilge keel and does not 
change during the iteration. The upper section panels are 
changed for each wetted iteration. 

For a high block ship, care in the free surface 
panelling at the bow region is critical to have an accurate 
converged solution. For Model B, the tangential line at 
the bow is vertical leading to numerical difficulties if 
some care is not taken. For this reason, the free surface 
panel network near the bow is algebraicially fitted to be 
close to rectangles with aspect ratios near one. From the 
ship bow and away, the free surface panel spacing grows 
as a geometric series. We have found that other paneling 
arrangements with angles away from right angles, and 
large aspect ratios inhibit convergence for the nonlinear 
problem. 

Table 1 is the computer printed output and shows 
the sample runs for the Wigley hull at Fn=0.408. Though 
the solution converged after the fourth outer iteration, we 
forced the computation until exceeding the time limits to 
see the stability of this method. Table 1 uses the 
following legends: 

out : number of outer loop 
in : number of inner loop 
Fn : Froude number 
Dl : residual of (6) 
D2 : error 
D2a : error. 
ur : optimum underrelaxation factor 1 for next 

iteration 
angle   : source deviation 
change: change in source strength 
size     : total sum of source strength 
cond    : influence matrix condition number when solve 
Cw      : wave making resistance coefficient (x 10^3) 

Define Res the residual of equation(6) and 
superscript "i" stand for the i-th outer iteration and "j" for 
the j-th inner iteration. NB is the total number of body 
panels, NF the total number of free surface panels, and 
NT=NB+NF. 

Dl = Max. (abs(Res)J   k = 1,2, NF 
D2 = Max. {(V«K+1-j)2 - (Vcft1)2 } k = 1,2,...,NF 

D2a = Max. {(Vtf*)2 - (V^1)2 } k = 1,2,...,NF 

angle = cos*1. 
X<^.or- 
k-l  

Vk-i k-l 

2 
change = £ (of - of"' ) 

k-l 
NT 2 

size = £ (GkJ) 
k-l 

140 panels (29 stations and 6 waterlines) are used to 
represent the Wigley hull and 756 panels(63 xl2) for the 
free surface. The computational results show that the 
solution is virtually converged by the fourth outer loop. 
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Table 1. Convergent Test with Wigley Hull 

OUT IN Fn    Dl     D2     D2a   UR ANGLE CHANGE SIZE SC COND CW 
1 1 0.408 0.1E+00 0.8E-01 0.0E+00 0.79 , 2.7159 312. 2.33 
1 2 0.408 0.3E-01 0.1E+00 0.7E-01 0.90 17.48 0.83 2.7602 299. 2.09 
1 3 0.408 0.1E-01 0.1E+00 0.2E-01 0.79 7.99 0.41 2.8720 295. 2.09 
1 4 0.408 0.3E-02 0.1E+00 0.9E-02 0.83 2.28 0.12 2.8844 291. 2.09 
1 5 0.408 0.3E-03 0.1E+00 0.2E-02 1.02 0.40 0.02 2.8847 304. 2.09 
1 6 0.408 0.6E-07 0.1E+00 0.1E-04 1.00 0.02 0.00 2.8847 294. 2.09 

2 1 0.408 0.1E-01 0.1E-01 0.1E-01 0.33 26.49 1.30 2.7468 295. 2.11 
2 2 0.408 0.1E-01 0.2E-01 0.5E-02 0.33 9.07 0.43 2.7541 299. 2.17 
2 3 0.408 0.1E-01 0.2E-01 0.4E-02 0.42 2.05 0.10 2.7702 298. 2.18 
2 4 0.408 0.5E-02 0.2E-01 0.6E-02 0.96 0.85 0.04 2.7796 297. 2.19 
2 5 0.408 0.5E-04 0.2E-01 0.1E-02 1.00 0.39 0.02 2.7841 300. 2.20 

3 1 0.408 0.4E-03 0.6E-02 0.6E-02 0.33 4.50 0.23 2.8514 296. 2.15 
3 2 0.408 0.4E-03 0.9E-02 0.4E-02 0.33 0.16 0.01 2.8535 300. 2.15 
3 3 0.408 0.4E-03 0.1E-01 0.3E-02 0.38 0.07 0.00 2.8545 300. 2.15 
3 4 0.408 0.2E-03 0.2E-01 0.4E-02 0.79 0.04 0.00 2.8550 290. 2.15 
3 5 0.408 0.2E-05 0.2E-01 0.1E-02 1.04 0.02 0.00 2.8554 292. 2.15 

4 1 0.408 0.1E-02 0.8E-02 0.8E-02 0.33 14.52 0.75 3.0001 282. 2.47 
4 2 0.408 0.1E-02 0.1E-01 0.6E-02 0.33 0.80 0.04 3.0058 285. 2.47 
4 3 0.408 0.1E-02 0.2E-01 0.4E-02 0.34 0.32 0.02 3.0093 301. 2.48 
4 4 0.408 0.8E-03 0.2E-01 0.5E-02 0.64 0.14 0.01 3.0112 288. 2.48 
4 5 0.408 0.4E-04 0.3E-01 0.3E-02 1.20 0.09 0.01 3.0126 289. 2.48 

5 1 0.408 0.2E-03 0.2E-02 0.2E-02 0.51 2.13 0.11 3.0017 291. 2.44 
5 2 0.408 0.7E-04 0.3E-02 0.1E-02 0.75 0.03 0.00 3.0019 290. 2.44 
5 3 0.408 0.4E-05 0.3E-02 0.4E-03 1.07 0.01 0.00 3.0020 291. 2.44 

6 1 0.408 0.3E-04 0.1E-02 0.1E-02 0.54 0.64 0.03 2.9938 291. 2.43 
6 2 0.408 0.2E-04 0.2E-02 0.5E-03 0.65 0.00 0.00 2.9939 291. 2.43 
6 3 0.408 0.3E-05 0.2E-02 0.3E-03 1.08 0.00 0.00 2.9939 292. 2.43 

7 1 0.408 0.2E-05 0.3E-03 0.3E-03 0.99 0.11 0.01 2.9934 291. 2.42 

8 1 0.408 0.2E-06 0.7E-04 0.7E-04 0.99 0.02 0.00 2.9929 291. 2.42 

9 1 0.408 0.1E-07 0.2E-04 0.2E-04 1.00 0.01 0.00 2.9929 291. 2.42 

10 1 0.408 0.5E-09 0.4E-05 0.4E-05 1.00 0.00 0.00 2.9929 291. 2.42 

11 1 0.408 0.3E-10 0.8E-06 0.8E-06 1.00 0.00 0.00 2.9929 291. 2.42 

After the fourth outer loop, changes in the wave profiles 
and wave making resistance are hardly noticeable. The 
reported[9] measured wave-making resistance coefficient 
for Fn=0.408 ranges from 0.24 to 0.31. The results 
indicates that the proposed numerical algorithm is 
extremely stable. Figure 3 shows the wave profile com- 
parisons between the experiment, linearized free surface 
computation, and nonlinear free surface computation. The 
nonlinear solver significandy improves its value except 
for a noticeable underestimate near the bow. It is not clear 
why such a nicely converged solution still shows 
noticeable difference, especially at bow where the 
viscosity seems not to play any role at all. 

Series60. Block 0.80 

ToddflO] conducted a methodical series of model 
experiments with Series 60 and the results were systemat- 

ically and extensively tabulated and plotted. The experi- 
mental data are available in terms of the total resistance 
coefficients. We computed the total resistance coefficients 
for this model and compared the computed results with 
the experimental data. For this high block ship the parallel 
middle body extends for more than 50 percent of the hull 
length and at the bow half the entrance angle is 43 
degrees. The experiments covered Froude numbers 
between 0.13 and 0.25. Following Froude's hypothesis, 
the total resistance coefficient consists of the frictional 
resistance coefficient CF and the residual resistance coef- 
ficient CR. CF is estimated from the ITTC 1957 friction 
line for a 2D flat plate. CR includes the wave-making 
resistance coefficient C\y and the form drag coefficient 
CFD- CFD may be considered a correction term: the 
deviation of the hull surface from a flat plate. The 
following equation is used: 
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CFD=[(l+aKp)S/So-l]CF. 

Kp is the partial form factor introduced by Dawson[ll]: 

KP = 

r         f        \3.8046      " 

JJS* 

The parameter a assumes a value of 2.0. The correlation 
allowance CA is assumed to be 0.5xl0"3. S is the actual 
wetted surface computed during the iterations and S0 the 
calm water wetted surface area. 

260 panels (26x10) are used to approximate the 
hull surface and 732 panels (61x12) for the truncated free 
surface domain. Table 2 summarizes the computed results 
for six Froude numbers 0.15, 0.17, 0.18, 0.20, 0.25, 
and 0.30. CFD shows almost a constant value. The wave 
making resistance coefficient becomes significant when 
the Froude number exceeds 0.2. For Froude numbers 
0.25 and higher the Cw dominants in Cj. 

Table 2. Resistance Computation 
Series60, CB = 0.80 

(xlO3 

Fn 

Computation Exp. 

Cw CF CFD cA CT cT 

0.15 0.40 1.658 0.432 0.500 2.990 3.016 

0.17 0.695 1.632 0.435 0.500 3.262 3.108 

0.18 1.310 1.620 0.437 0.500 3.867 3.267 

0.20 2.210 1.598 0.443 0.500 4.751 3.823 

0.25 5.981 1.554 0.450 0.500 8.485 7.835 

0.30 12.661 1.519 0.463 0.500 15.143 N/A 

These results are preliminary for wave resistance 
and further work is needed to integrate the wetted logic 
with the outer iteration and/or to refine the pressure 
integration. Here our approach has been to rewet the hull 
on each outer iteration. After the wave amplitude z change 
was reduced below 1.0E-5 in 9 to 12 outer iterations, Cw 
still oscillated by 1-3 %, and appears not to be reliable. 
The wave on hull results, in contrast, converged readily. 
In Figure 4, the total resistance coefficients are plotted for 
both experiment and computation. The computation 
overpredicted the resistance except for low Froude 
number. Figure 5 depicts the final wetted surface after the 
solution converged and over which the pressure is 
integrated to obtain the wave-making resistance. 

Model B 

Model B is a mathematical hull that Maruo and 
Ogiwara [12] used when they studied the nonlinear free 
surface problem. They measured the resistance and also 
the wave elevations, in particular at the bow and stern of 
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the ship. This happens to be only available measured 
wave data for high block ships. As shown in Figure 6, 
the hull shape is unique having a blunt elliptic bow water- 
line and elliptic frame lines. Also it has a long parallel 
middle body and a stem with a parabolic shape. The body 
is divided into two parts; lower and upper part. The upper 
part covers from the free surface to the half draft and is 
wallsided throughout the hull length. The block coef- 
ficient CB is about 0.75 and the wetted surface area coef- 
ficient is 0.80. 336 panels (28x12), 168 for the lower 
hull and 168 for the upper hull, are used to represent the 
hull surface and 756 panels (63x12) for the truncated free 
surface domain. Experiments were conducted at a Froude 
number range of 0.14 to 0.25. Wave profiles were mea- 
sured for three Froude numbers: 0.183, 0.209, and 
0.235. 

In Figure 7, the measured wave profiles are 
compared with the computed ones. At the fore body the 
agreements are excellent for all three Froude numbers. 
The maximum nondimensionalized wave amplitude is 
over 0.9. This indicates that at the nose the flow velocity 
approaches zero since the wave amplitude is 1.0 at the 
stagnation point. At the aft body, the differences are 
significant. At the stem the computed wave profiles show 
the trend growing up continuously while the measured 
ones seem to level off for all three speeds. For a lower 
block or fine ship, such as Wigley hull or Series 60, 
CB=0.60, the wave profile at the stern usually has the 
same trend as the computation. The differences observed 
for Model B may be attributed to the viscosity neglected 
in the computation. We anticipate that the role of viscosity 
for high block ship and hence the resulting turbulent flow 
at the stem is more significant than for lower block ships. 
Figure 8 shows the initial wetted body and the final 
wetted surface after the solution converged. The 
preliminary computation of wave-making resistance is 
obtained by integrating the pressure over the actual wetted 
surface and the results are compared in Figure 9. 

CONCLUSIONS 

1. A new approach has been proposed for the 
nonlinear free surface problem: in addition to iterating on 
the free surface height, use an inner iteration to first iterate 
to near exactness over the nonlinear algebraic systems 
generated by the current free surface. Combined with the 
one parameter family of advection schemes (Qmul 
method) of Kim and Lucas[6], this approach has been 
shown to converge robustly over a wide range of hull 
forms and speeds. Results for the wave height on hull are 
excellent, but valid wave resistance calculations require a 
new wetted hull logic. 

2. The inner-outer method is inexpensive to apply 
as the new part, the inner iteration, consists primarily of 
cheap matrix solves. We have not found it necessary to 
compute the more expensive z-partial derivative terms 
previously favored by many researchers, although they 
possibly could again be required in future situations. In 
any case, due to the simplicity of implementing the inner- 
outer method, it can readily be applied to other outer 
methods including ones with z-partials. 



3. Preliminary work has been completed on 
adding a wetted hull logic to the above scheme. At any 
stage of the outer iteration, the ship panels can be 
redistributed over the currendy wetted hull area. This 
process has been found to be quite helpful, but we are 
still exploring when in the outer iteration process to rewet 
the hull. One possibility is to rewet once after 2 or 3 outer 
iterations and then again after this process converges in z 
to a specified tolerance. We will report at a later time the 
change introduced by wetting, in order to determine its 
relative significance. Our current results show that it plays 
a more important role for wave resistance then for wave 
heights. 

4. Computer runs were made for two high block ships: 
Model B and Series 60, Block 0.80. For such high block 
ships with large entrance angles, especial care is required 
for the free surface paneling near the bow. In addition a 
run was made for the Wigley hull at Fn=.408. All runs 
converged readily in wave heights. 

5. The highest value required for Qmui was 5. 
This gives a partial answer (negative) to some previous 
concern that for full hull forms the required values of 
Qmul might become unduly large. 

6. Comparison with model experiments of 
Series60, Block 0.80 were made. The wave on hull 
converged readily, but C\v still oscillated, and appears not 
to be reliable. The agreement is poor except for low 
Froude numbers. 

7. Comparison with model experiments of Model 
B for both wave resistance and wave profiles were made. 
Experimental data was available for Froude numbers 
0.183, 0.209 and 0.235 limited to the fore and aft 
regions. In the fore body region the wave profiles 
showed an excellent fit at all three speeds. In the aft 
region the results were fair to good, but it is now an open 
question as to why they were not better. Here the results 
were best at the middle speed, and in general worse near 
the stern. 

8. A run of the Wigley hull with Fn=0.408 was 
made. The wave on hull pattern is the best ever reported, 
but shows a noticeable underestimate near the bow. While 
this effect is common for such codes, an explanation of 
this would be of some interest, as several possibilities 
suggest themselves. 

9. As noted in our previous paper[6], nonlinear 
free surface programs add considerably to the accuracy at 
littie total cost. As they become increasingly successful 
and trusted, interest may well shift to those remaining 
areas where they do not agree well with experiment, in an 
effort to understand the cause/better solution. A related 
question is the timing and payoff in going to codes with 
more physics. 
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DISCUSSION 

H. Raven 
Maritime Research Institute Netherlands 
The Netherlands 

I noticed from your paper that you still use the 
"QmiT parameter to get convergence. This method 
introduces artificial wave damping, which affects the 
final result. Is not it possible to reduce Q^ to zero 
in the last iteration, such that the final solution is not 
unduly damped? 

solution for high block coefficient ship, sometimes 
Q,^, is required to have large value, for example 7, 
and the generated waves are unrealistically damped. 
Currently, we are developing a new finite difference 
operator in hopes of eliminating both numerical 
damping and dispersion problems. We agree with 
you regarding number of panels per wavelength. 

I think the panel density on the free surface is 
insufficient for the lower Froude numbers in your 
calculations. E.g., for the Series 6 hull at Fr = 
0.15, there are only 4 panels, per wavelength, for the 
longest waves in the problem! It is useless to apply 
a nonlinear method with such a lack of resolution, 
since the nonlinearities mainly give rise to higher 
harmonics which are now not resolved. I suggest 
you use at least e.g. 12 (higher order) panels per 
fundamental wave length. 

AUTHORS' REPLY 

We would like to express our thanks to Dr. 
Raven for his interest in our paper. When we were 
developing 0^ parameter to generalize an advection 
method to enhance convergence, one concern was 
how to determine O.^ parameter efficiently and 
effectively. We considered several approaches 
including one similar to determine an optimum under- 
relaxation factor for the next iteration by Newton 
correction reported in this paper. Q^,, controls the 
magnitude of damping, and if Q,,^ increases the wave 
amplitude attenuates accordingly along the 
downstream. If someone is interested in the flow 
characteristics for downstream, this approach may not 
be appropriate to apply. 

When we developed and studied the inner and 
outer iteration scheme, several approaches were 
considered regarding setting O^. Two cases of Q^ 
= 0.0 are tested: (1) Q,^,, was set to zero at the last 
iteration of every inner loop and (2) Qmui = 0.0 at the 
last iteration. For both cases, if solution converged, 
this adjustment showed improvement in wave 
amplitude attenuation along the downstream, but the 
difference in wave-making resistances which is 
obtained by integrating pressure on the wetted hull 
surface was insignificant.     To obtain converged 
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Experimental Determination of Nonlinearities in 
Vertical Plane Ship Motions 

J. O'Dea (David Taylor Model Basin, USA), E. Powers (University 
of Texas at Austin, USA), J. Zselecsky (U.S. Naval Academy, USA) 

ABSTRACT 

Experiments have been conducted in regular and ran- 
dom waves of varying severity (steepness) on a model 
of the standard ITTC hull form. Variation of the heave 
and pitch transfer functions, as wave steepness was var- 
ied, indicate a nonlinear motion behavior for this hull. 
The response has been modelled as a Volterra functional 
expansion carried out to include quadratic and cubic 
terms. The higher order kernels of the expansion have 
been determined from the regular wave data and have 
been confirmed by polyspectral analysis of random wave 
data. The results show how the usual assumption of lin- 
earity of response can lead to incorrect predictions, and 
also show the effect of non-Gaussian random behavior 
in both the input (waves) and the responses. 

NOMENCLATURE 

a Amplitude of first harmonic of waves 

g gravitational constant 
Mti,. ,t„)     Volterra response function, jth. 
H>,, .,ujn) jth order frequency response function. 
k wave number, k= =y 
K(m) Kernel of orthogonal model 
Lpp Ship length between perpendiculars 
s Bow acceleration 
SM Spectral density 
x(t) Time history of system input (excitation) 
XM Fourier transform of x(t) 

y(t) Time history of system response 
YM Fourier transform of y(t) 
z Heave response 
Z(m) orthogonal input vector 
r(m) Coherence spectrum 
n, Normalized bispectrum 
9 Pitch response 
A Wave length 
a Non-dimensional wave frequency, a = w. A22 

Oe Non-dimensional encounter frequency, 
<7 = we,/S2 

V     9 
Wave frequency 
Encounter frequency 

INTRODUCTION 

For many years the primary analytical tool for an- 
alyzing and measuring ship and platform response to 
wave has been linear system theory, coupled with a 
narrow band Gaussian model for ocean waves. This 
approach has been relatively successful in part because 
typical vehicles are at least quasi-linear in their re- 
sponse, and random waves are at least quasi-Gaussian. 
The approach is also followed because it greatly simpli- 
fies the analysis and allows the use of very general re- 
sults applicable to linear systems and Gaussian random 
processes. However, it is also well known that certain 
types of response to waves are not adequately described 
by a linear model. In particular, rolling is known to 
have nonlinear viscous damping and a nonlinear restor- 
ing curve, and lateral plane motions are known to be 
affected by quadratic interactions between the vehicle 
and waves. In contrast to the generalized techniques 
used for linear systems, specialized nonlinear methods 
and approximations have been used to analyze these 
nonlinear cases. 

In the case of rolling motion, the analysis is typically 
simplified by assuming the dynamics can be modelled as 
a single degree of freedom ordinary differential equation 
with constant coefficients and discrete nonlinear terms. 
It is also usually assumed that the wave excitation is 
Gaussian and that the roll response is narrow band. 
Under such assumptions, the statistical properties of 
the nonlinear motion can be estimated(l). In the case 
of lateral plane loads, it has long been recognized that 
there exists a mean value of horizontal force (lateral 
drift force or axial added resistance) which is quadratic 
with respect to wave amplitude, and that there is also 
a quadratic low-frequency component caused by differ- 
ence frequency interactions between pairs of harmonic 
components. The mean value of longitudinal force is im- 
portant in the calculation of total power requirement for 
ships, while the low frequency drift force can cause sig- 
nificant motions for moored platforms, since the moor- 
ing typically results in an underdamped lateral response 
with a very low natural frequency. Recently, attention 
has also been directed at quadratic sum and double fre- 
quency components which are important in the response 
of tension leg platforms. 

For the purpose of calculating responses to random 
waves, it is well known that this quadratic behavior can 
be described as a two-term Volterra functional series(2). 
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In fact, the linear and quadratic behavior of vehicles 
in waves are simply the first two terms of a series ex- 
pansion which, in principle, can be carried to arbitrary 
order. At each level of such an expansion, the hydro- 
dynamic problem is to determine the Volterra kernels 
which describe the response characteristics of a. partic- 
ular geometry, while the statistical problem is to use 
these kernels, together with a proper description of the 
seaway, to predict the statistical nature of the response. 
In practice, the first two terms of the expansion have 
been applied extensively, while there have been rela- 
tively few studies covering the cubic term. The statis- 
tical aspects of system response up to cubic terms has 
been studied by Dalzell(3, 4, 5), while the third-order 
hydrodynamic forces have been calculated for certain 
simple geometries(6, 7). Nevertheless, it is important 
to remember that, in terms of harmonic content of non- 
linear response, the quadratic term of a Volterra expan- 
sion typically accounts for energy outside the frequency 
band of the waves. That is, for a sinusoidal excitation, 
the quadratic term accounts for a mean value and a 
second harmonic, but does not account for any nonlin- 
earity in the first harmonic response. Similarly, ior ran- 
dom waves of moderate bandwidth, the quadratic effect 
accounts for a mean value plus slowly varying (below 
wave frequency band) and high frequency (above wave 
frequency band) harmonic content. If there is nonlinear 
behavior which occurs at the excitation frequency, ei- 
ther a series expansion must be carried to at least cubic 
order, or a fully nonlinear approach without any series 
approximation must be used. 

The motivation for the present series of experiments 
was provided by the observation that, in a series of co- 
operative seakeeping experiments carried out for the In- 
ternational Towing Tank Conference (ITTC) on a stan- 
dard ITTC hull form designated the S175 hull, there 
was a rather large scatter in some of the transfer func- 
tion results for heave and pitch motions in head seas(£). 
On closer examination, it appeared that this effect was 
not simply random scatter, but seemed to be a func- 
tion of wave steepness(S). If this was in fact a vari- 
ation of the ratio of first harmonic response to first 
harmonic wave excitation (the ratio which is usually 
assumed to define the linear transfer function), then a 
Volterra expansion carried to a least the first odd non- 
linear power, i.e. cubic, would be required to describe 
the wave-motion response system. In order to confirm 
this, a systematic series of experiments was carried out 
in 1990 and 1991 at the Hydromechanics Laboratory 
of the U. S. Naval Academy. The experiments included 
both regular and random wave conditions, with system- 
atic variation of wave steepness. Analysis of the results 
included Fourier analysis up to third harmonics for the 
regular wave experiments, and higher order polyspectral 
analysis of the random wave experiments as described 
below. 

The experimental determination of the frequency re- 
sponse functions (FRF) from experimental data is a 
subtle and complex task. For example, to determine cu- 
bic frequency response functions (CFRF) requires work- 
ing in a three-dimensional frequency space. Further- 
more, when analyzing model test data one needs to be 
sensitive to the fact that the recorded time series data 
contains information not only on the nonlinear wave- 
ship interaction but also on other "prior" nonlinearities 
that may have occurred prior to the waves interacting 
with the ship. These latter nonlinearities may arise 
because of nonlinear wave interactions or nonlineari- 
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ties associated with the wavemaker. Prior nonlinear- 
ities manifest themselves as a departure from Gaussian 
random excitation. Unfortunately, the vast majority of 
nonlinear system modeling techniques in the literature 
assume Gaussian excitation, primarily because of the 
associated mathematical simplification, not because it 
is necessarily a good physical assumption. If one er- 
roneously assumes Gaussian wave excitation, when in 
fact it is not, one will develop not only incorrect non- 
linear models but also incorrect predictions based on 
these models. The reason for this is the fact that the 
resulting model includes both the effects of the nonlin- 
ear wave-ship interaction and the prior nonlinearities. 
For the towing tank data used in this investigation, 
the random wave excitation is not sufficiently Gaussian 
to make the simplifying Gaussian assumption. _ (This 
departure from Gaussianity is discussed later in this 
paper.) With nonGaussian random sea wave excita- 
tion, specially developed algorithms experimentally de- 
termine Volterra kernels up to third (i.e. cubic) order. 
These nonlinear models do an excellent job of predicting 
the power spectra of heave and pitch motions, for ex- 
ample, due to random seas. In other words, for a given 
input they predict the correct overall response, power 
spectrum. However, the price paid for the generality of 
nonGaussian wave excitation is that the resulting mod- 
els are nonorthogonal. As will be demonstrated later in 
this paper, the lack of orthogonality makes it difficult to 
decompose the total ship response into its constituent 
linear, quadratic, and cubic components. The recently 
developed new approach (1Q), discussed further in the 
next section, leads to an orthogonal model which is also 
valid for nonGaussian excitation. It allows the clean de- 
composition the ship response, such as heave and pitch, 
into its linear, quadratic, and cubic components. 

Recently, with the availability of more powerful com- 
puters, there has been a trend toward direct solution of 
the fully nonlinear equations in the time domain(U, 12) 
using computational fluid dynamics (CFD). At the 
present time, these CFD codes are typically being used 
to predict response to periodic waves of large ampli- 
tude in order to emphasize nonlinear behavior, includ- 
ing higher harmonic content. It is hoped that the regu- 
lar wave results presented below can be used as a data 
base for validating these codes. Ultimately, if such codes 
are validated, it should be possible to carry out nonlin- 
ear simulations in random waves. However, even in such 
a case, it will be necessary to propose a system model 
for statistical analysis; otherwise very large samples will 
be required in order to establish confidence in statistical 
measures (especially for extreme values). Therefore, for 
both experimental data and for large amplitude time 
domain CFD predictions, it seems reasonable to model 
the behavior with a three-term Volterra series, which at 
least has the potential to describe observed nonlinear 
behavior. It remains to be seen whether higher order 
terms (beyond cubic) will be required to closely approx- 
imate the fully nonlinear results. 

NONLINEAR SYSTEM MODELLING 

The objective of this section is to overview the non- 
linear system identification methodologies utilized to 
model and quantify vertical plane nonlinear ship mo- 
tions. The identification, or modelling, of nonlinear 
systems from excitation and response time series data 
is a state-of-the-art research area in its own right.  For 



example, the quantification of vertical plane motion of 
the S175 hull used in our experimental studies is partic- 
ularly challenging since the random wave excitation is 
nonGaussian and the dominant nonlinearities are cubic. 
Although our initial nonlinear systems model took into 
account the fact that the random sea wave excitation 
was nonGaussian, the model was nonorthogonal. As a 
result, when using such models to estimate the response 
power spectrum of the ship various "interference" terms 
appear in the expression for the response. The pres- 
ence of such terms make it very difficult, and sometimes 
virtually impossible, to decompose the ship's response 
its constituent linear, quadratic, and cubic components. 
This led to our most recent nonlinear system modelling 
advance, namely, an orthogonal model valid for non- 
Gaussian excitation. Since the model is orthogonal, the 
interference terms are eliminated, and we can cleanly 
decompose the ship response into its linear, quadratic, 
and cubic components. All of these points are described 
in greater detail in subsequent sections. 

Volterra Functional Series 

The classical approach to seakeeping is essentially lin- 
ear in nature in that the response of ships in a seaway 
are modelled in terms of a linear frequency response 
function. Knowledge of such a transfer function then 
enables one to predict the linear response of a ship 
to a variety of seawave excitations. St. Denis and 
Pierson(H) pioneered this linear approach for random 
seas. Later Dalzell(ä) suggested using a Volterra series 
to extend the linear approach of St. Denis and Pierson 
to nonlinear seakeeping. In fact, the Volterra series has 
been and continues to be used to model nonlinear sys- 
tems in many areas of science and engineering(14). For 
this reason, we briefly overview the Volterra approach 
in this section. 

Mathematically, the Volterra series representation of 
a cubically nonlinear system is given by 

y(t) = ph(Li)x{l-Li)dti 

+ //M'i,'2)i'(< - ii)x(i - U)dhdU 

■ lW>i{l\-,h,h)x{L ~ h)x{L - U)x{t - t3)dlidt2di2 + 

+ e(0 (1) 

where x(t) and y(t) represent the observed wave excita- 
tion and ship response, respectively. Since no model is 
absolutely perfect e(t) denotes the error associated with 
model. The quantities hi(t), /i2(£i,t2), ^3(^1 >*2)^3) de- 
note the linear, quadratic, and cubic Volterra kernels, 
respectively. There are several observations to be made 
with regard to the RHS of Eq. (1). First note that the 
first, second, and third terms are linearly, quadratically, 
and cubically dependent on the wave excitation x(t). 
Second, note that all the integrals are convolution inte- 
grals. For example, the first term on the RHS is the fa- 
miliar input-output relation for a linear system, namely, 
the output of a linear system is equal to the input x(t) 
convolved with the impulse response hi(t). The second 
and third terms are generalizations of the linear result 
and, thus, lead to the interpretation of /zoffi, ia) and 
h-3{ti,U,t3) as quadratic and cubic "impulse responses" 
respectively.   The range of these impulse responses in 
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one-, two- and three-dimensional temporal space rep- 
resent the memory time of the linear, quadratic, and 
cubic components of the physical system. 

If we Fourier transform Eq. (1) term by term, we 
arrive at the following expression 

Y(u) = #i(u>)X(w) 

+ — //.ff2(u>i, U2)X(ui)X(u2)6(v — u>\ — ui)dw\duj 

+ (Tl2   III■fir3(wi,W2)«3)-X'(wi)A'(w2)A'(W3) 

• S(üJ — u>i — ÜJ2 — u}2)duiidu2dw3 + e(u>) (2) 

where X{u), Y(u) and e(w) denote the Fourier trans- 
forms of x(t), y(t), and e(t) respectively. Furthermore, 
ifi(w), iJ2(wi,w2), and if3(wi,w2,W3) are referred to 
as the linear, quadratic, and cubic frequency response 
functions (LFRF, QFRF, and CFRF) and correspond 
to the one-, two-, and three-dimen-sional Fourier trans- 
forms of /ii(ii), ^2(<ii*2)i and h3(ti,t2,t3). The linear, 
quadratic, and cubic frequency domain Volterra kernels 
represent the linear, quadratic, and cubic features of 
the physical system. Referring to Eq. (2) we observe 
that the response predicted by the Volterra model at 
frequency u> is given by the sum of the following terms. 
The first is the excitation X(u>) times the LFRF ffi(w) 
evaluated at frequency u. If the actual physical sys- 
tem is quadratically nonlinear, then pairs of frequen- 
cies present in the random seawave excitation will mix 
to form sum and difference frequencies in the response. 
This phenomenon is modelled by the second term on 
the RHS of Eq. (2). The double integral and the delta 
function indicate that we must consider all frequency 
pairs in the input wave spectrum that add or subtract 
to the response frequency to. The contribution of any 
given input pair (u>i, o>2) to the response is given by the 
product of their complex amplitudes X(ui)X(u>2) times 
the QFRF ^(w^wo) evaluated at (wi, w2). Thus the 
QFRF is a direct quantitative measure of the "strength" 
of the quadratic nature of the physical system being 
modelled. A similar interpretation holds for the third 
term, except for the fact that if the physical system is 
cubically nonlinear, triplets of frequencies in the exci- 
tation will mix (i.e., add and/or subtract) to contribute 
to the model output response at frequency u>. The 
CFRF is a measure of the "strength" of these cubic 
interactions. In particular, if the input is at a single 
frequency u>, then one component of the cubic kernel, 
if3(w,u;, —w), will result in cubic response at the same 
frequency as the input. 

On the basis of the preceeding discussion we note that 
one significant advantage of the Volterra series model 
is that it provides a logical extension of linear system 
concepts (namely, the frequency response function) to 
higher order. In this sense the Volterra model provides 
a logical framework within which to systematically an- 
alyze and interpret nonlinear seakeeping experimental 
data. Nevertheless, since the Volterra series may be in- 
terpreted as a Taylor series with memory, it is subjected 
to the same limitations of a series model. For example, 
due to the complexity of working in higher-order fre- 
quency space it is not practical, at this point in time, 
to consider models of order greater than three. Such a 
truncation of the series limits us to considering weakly 
nonlinear systems. Fortunately, however, many physi- 
cal systems fall into this category. 



Frequency Response Functions 

The ability to experimentally estimate the linear, 
quadratic, and cubic frequency response functions (i.e. 
the frequency-domain Volterra kernels) is important for 
several reasons. 

1 The linear and nonlinear physics is embedded in 
the FRF's. 

2. The QFRF and CFRF enable us to quantify the 
"strength" of the quadratic and cubic nonlineari- 
ties as a function of frequency. 

3. Knowledge of the QFRF and CFRF enables one to 
track the nonlinear transfer of energy from various 
frequency bands in the random seawave spectrum 
to other bands in the ship response(lä). 

4. Ultimately, knowledge of the Volterra kernels offer 
the promise of being able to predict the linear and 
nonlinear ship response to a variety of random seas. 

There are essentially two approaches to experimen- 
tally determining the FRF's, namely, random and de- 
terministic (usually sinusoidal) signals. For example, it 
is well known that to experimentally determine a QFRF 
one needs to probe the actual physical system with two 
sinusoids at frequency u\ and w2. One then measures 
the amplitude and phase of the resulting sum (and dif- 
ference) frequency response to determine the complex 
value of #2(^1,^2). To determine üTj(wi,w2) over the 
appropriate regions of the bifrequency plane requires 
repeating the experiment for many different pairs of ex- 
citing frequencies, which can be a tedious and time con- 
suming (and hence expensive) process. To determine 
-ff3(wi,w2,w3) one must, of course, probe the system 
with various triplets of input frequencies and measure 
the amplitude and phases of the more than twenty in- 
termodulation products that are generated in the re- 
sponse. This procedure must be repeated over and over 
in order to determine F3(w!,W2,w3) in the appropriate 
regions of three-dimensional frequency space. The reg- 
ular wave experiments discussed below simply identify 
the components of H3 for which the three frequencies 
are equal. 

An alternative approach is to excite the system with 
a broadband random excitation and to record both the 
excitation and the response. The situation is very com- 
plicated, of course, because the total response at any 
given frequency consists of the sum total of a linear 
contribution plus many quadratic frequency-pair contri- 
butions and many cubic frequency-triplet contributions, 
as indicated in Eq. (2). However, using the nonlinear 
system identification techniques based on digital higher- 
order spectral analysis, which are described in the next 
section, we are able to determine the linear, quadratic, 
and cubic frequency response functions. 

Third-Order Volterra System Model 

NonOrthogonal Model for NonGaussian Excitation 

Since we process the observed time-series data of 
wave excitation - ship response digitally, it is custom- 
ary to express the third-order Volterra series model of 

Eq. (2) in discrete notation as follows, 

Y(m) = iJ:(m)X(m) +   £ H2(i,j)X{i)X(j) 
i+j=m 

+     £    H3(p,q,r)X(p)X(q)X(r) + e(m) (3) 
p+q+r=m 

where Y(m), X(m), and e(m) are discrete Fourier 
transforms of the output response y(t) of a ship, the 
input wave excitation z(f-), and the error of the model 
e(t). The quantities Hi{m), H2{i,j), H3{p,q,r) are 
discrete versions of the linear, quadratic and cubic fre- 
quency response functions (LFRF, QFRF, and CFRF), 
respectively. The integer quantities (m, i, ;', p, q, and 
r) denote discrete frequency. To convert to continuous 
frequency, one multiplies the value of the integer quan- 
tities by the frequency interval Aw, where Aw = 2TT/T. 

The quantity T denotes the temporal duration of a data 
record or realization, and is equal to TV (the number of 
samples per realization) times the sampling interval t,. 

X(f) 

Physical Systam Y(m) 

X(m) H^m) 

X(i)X(j) H2(i,j)   i+i=n -e 
X(p)X(q)X(r)^ H3(p,q,r) p+q+r=n 

I e(m) 

Y(m) 

Fig. 1 Third-Order Multi-Input Volterra Model 

Notice that Eq. (3) is linear in terms of the FRF's 
Hi(m), H2{i,j), and H3(p,q,r) though the equation is 
nonlinear with respect to the input wave X(m). Thus, 
regarding X(i)X{j) and X{p)X{q)X{r) as separate in- 
puts, one can treat the third-order nonlinear system as 
a multi-input linear system, as shown in Fig. 1. Uti- 
lizing such an idea, one can rewrite Eq. (3) in a vector 
form, 

Y(m)   =   Y(m) + t(m) 
=   r1(m) + Y2(m) + I3(m) + e(m) 

=   H(m)X(m) + e(m) (4) 

where Y(m) is the total model output which consists of 
the linear, quadratic, and cubic model outputs (Yi(m), 
Y2(m), and Y3{m)). The bold type in Eq. (4) denotes 
a"vector quantity. The row FRF vector H(m) and the 
column input vector X(m) are given by 

H(m) = [H1(m),H2(m),H3(m) (5) 

and 
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X((m) = [Xl(m),X2(m),X3(m)] (6) 



The superscript 'r' is the transpose of a matrix. In 
Eq. (5), Hi(m) is the LFRF, the row vector H2(m) is. 
a collection of QFRF H2{i,j)(m) where i + j = m, 
and the row vector H3(m) is a collection of CFRF 
jj3(p,g,r)(m) where p + q + r = m. In addition, 
Xi(m) is equal to the input X(m), and the column vec- 
tor X2(m) is a collection of quadratic inputs X(i)X(j) 
where i + j = m. The column vector X3(m) is a collec- 
tion of cubic inputs X{p)X(q)X{r) where p+q+r = m. 
Then, the ith-order model output becomes, 

Yi(m) Hj(m)Xi(m)   for t = 1,2, and 3    (7) 

Though we have restricted ourselves to third order in 
this paper, obviously one can extend the model descrip- 
tion to any higher order. 

The FRF's H(m) which minimize the mean square 
error < |e(m)|2 > are 

H(m)   =   < r(m)XA(m) >< X(m)XA(m) >_1 

=   Syx(m)S^(m) (8) 

where < • > is an expected value of a random process, 
and A denotes the Hermitian of a matrix. In Eq. (8), 
Sj,x(m) is the cross-spectral raw vector, and Sxx(m) is 
the input auto-spectral matrix. 

For a linear system, Eq. (8) becomes a scalar quan- 
tity so that one can immediately recover the conven- 
tional expression of the LFRF ifi(m), where Hi(m) = 
Syx(m)S~x(m), that is, the linear transfer function is 
given by the cross-power spectrum divided by the auto- 
power spectrum. For a quadratic Volterra system, the 
optimum solution for Gaussian inputs was first found 
by TickQji), and the general solution of H(m) for non- 
Gaussian inputs was studied later by K. I. Kim and 
Powers(H). For a cubic Volterra system, Hong, Y. 
C. Kim, and Powers(IS) derived the FRF's for Gaus- 
sian inputs. Recently, Nam, Powers and S. B. Kim(lS) 
developed a sophisticated way to solve for the LFRF, 
QFRF, and CFRF for nonGaussian inputs which in- 
clude novel methods to index and sort the matrix ele- 
ments and reduce the matrix size using symmetry prop- 
erties of higher-order spectra. 

One of the key issues in nonlinear system identifica- 
tion is how to decompose the total response into con- 
tributions from linear and nonlinear effects of different 
orders. We will discuss now the spectral decomposition 
problem and derivation of generalized system coherence 
functions for a cubically nonlinear system. 

After the FRF's H(m) are found, one can estimate 
the total system model power spectrum using Eqs. (4) 
and (S), 

Syyim)   =   H(7n)Sxx(m)HA(m) 

=   J2Sil(m) + 2j:Re{Sij(m)}       (9) 
t=l i<j 

where Re[-} denotes the real part of a complex quantity, 
and Sij(m) is given by 

Sij{m)   =   <Yi(m)Yj(m)A> 
=   H;(m)Sx,.x,(m)HA(m) (10) 

for i,j  =   1,2, and   3.    Thus, in this nonorthogonal 
model, the total model output power spectrum consists 

of not only the linear, quadratic, and cubic model power 
spectra (Su{m), .S22(m), and S33(m)), but also inter- 
ference spectra 2Re[Sij(m)], where i £ j, between var- 
ious order terms. Because of these interference spectra, 
which result from the use of functional series built upon 
nonorthogonal basis input vectors, one cannot clearly 
separate the linear, quadratic, and cubic contributions 
from the measured output response, though one may 
write down the output response as in Eq. (4). This is 
not only a problem in experimental data analysis, but 
also in theoretical nonlinear dynamics where couplings 
between different order of nonlinearities are often ne- 
glected. 

One "figure of merit", which is widely used in the 
area of signal processing as an index of goodness of a 
model, is the so-called coherence spectrum. The coher- 
ence spectrum T(m) is defined as the ratio of the model 
output power to the measured output power, 

r(m) =  c   f    \      1 
Syy(m) 

Sei{m) 
Syy{m) (11) 
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where Sec(m) is the error power spectrum. Obviously, 
the coherence spectrum is bounded by zero and one. 
Now one can decompose the total output model coher- 
ence spectrum of a cubic system r^m) using Eq. (9) 
as follows, 

TT(m)   =   H(m)Sxx(m)HA(m)S-1(m) 

=   £r«(m) + 2£Äe[ry(m)]      (12) 
■=i «j 

where Tij(m) is given by 

ry(m) = Hi(m)SX;xy (m)HA(m)S-1(m)        (13) 

In Eq. (12) ru(m), r22(m), and r33(m) are the 
linear, quadratic, and cubic coherence spectra, and 
2Re[Tij(m)}, where i ^ j, are the interference coher- 
ence spectra, respectively. Notice that the interference 
coherence spectra 2Re[Tij(m)] can be negative depend- 
ing on the phase of the interference spectra Sij(m). 
Furthermore, Ta{rn) can be greater than one, even 
though the total system coherence rV(m) is bounded by 
zero and one. This suggests that £n(m), S2i(m), and 
•?33(m) are not necessarily purely linear, quadratic and 
cubic model output power spectra. Such effects cause 
great difficulty in decomposing the output response into 
its linear, quadratic and cubic components, and hinders 
physically meaningful interpretation of the analysis re- 
sults. 

Orthogonal Model for NonGaussian Excitation 

Recently S. B. Kim and Powers(20.) utilized the con- 
cept of conditioned power spectra, which was used pre- 
viously in multi-input linear system analysis(21), and 
extended these concepts to higher-order spectra for non- 
linear Volterra system analysis. Through conditioning 
higher-order inputs using an orthogonalization process, 
they obtained a new orthogonal Volterra system model. 
This is a generalization of Wiener and Barrett orthog- 
onal functional series which are valid only for Gaus- 
sian inputs(22). The new orthogonal model works for 
arbitrary input statistics (nonGaussian and Gaussian) 



and arbitrary spectral shape. Furthermore, after de- 
termining the conditioned input vector, each FRF is 
estimated independently so that one can improve the 
system model successively by adding the next higher- 
order term. 

In general, the input vectors Xi(m), Xj(m) and 
X3(m) are not orthogonal, and thus the cross-spectrum 
of any two input vectors exists. This is true even for 
Gaussian inputs (e. g., (Xi(m)X£(m)) ^ 0). Such 
nonorthogonal input vectors prohibit physically mean- 
ingful decomposition as we discussed before. An alter- 
native orthogonal model can be constructed by replac- 
ing the original input records by ordered sets of condi- 
tioned input records Zx(m), Z2(m) and Z3(m), which 
are orthogonal to each other. 

Consider a third-order Volterra system with non- 
orthogonal input basis vectors X,(m) for t = 1,2, and 3 
as in Eq. (6). Clearly, the system output can be repre- 
sented with new basis vectors Z;(m) for i = 1,2,and 3, 
which are generated from any linear combination of the 
input vectors X;(m). Furthermore, we want the new 
basis vectors Z;(m) be orthogonal each other. Then, 
one can rewrite Eq. (4) as follows, 

Y{m) = H(m)X(m) 
= K{m)Z(m) 
=   K(m)L(m)X(m) (14) 

where K(m) are the new system FRF's based upon the 
orthogonalized input vector Z(m), which are defined as, 

K(m) = [K1(m),K2(Tn),K3(m) (15) 

id 
Z'(m) = [Zl(m),Z2(m),Z3(m)] (16) 

In Eq. (14), L(m) is a lower triangular orthogonal trans- 
formation matrix obtained by Gram-Schmidt orthogo- 
nalizatron process utilizing t-he orthogonal conditions, 
(Zi(m)ZA(m)) = 0, for i ^ j. 

Considering the orthogonal properties of the condi- 
tioned input vectors Z(m), one can easily find the new 
minimum mean square solution of the FRF's K(?n) of 
the conditioned orthogonal system in terms of the or- 
thogonalized input spectral matrices as follows, 

K(m) = Pyz(m)p-1(m) (17) 

On the RHS of Eq. (17) Pyx(m) is a conditioned cross- 
spectral row vector, and P22(m) is a conditioned diag- 
onal auto-spectral matrix. 

Now, one can calculate the total model power spec- 
trum Pyy(m) for the orthogonal Volterra model, which 
becomes 

=   P1(m) + P2(m) + P3(m) (IS) 

where Pi(m), P>(?n), Ps,(m) are the orthogonalized lin- 
ear, quadratic, and cubic model output power spectra, 
and given by 

Pi{m) = Pyi(m)P: i)Ply(m) (19) 

for i =  1,2, and 3.   In Eq. (19), P;,-(m) is the auto- 
spectra of the ith-oider orthogonalized  input vector _R 

Z,(m). Notice that the total model power spectrum 
Pyy(m) for the orthogonal Volterra model is the same 
as the total model power spectrum for the nonorthogo- 
nal Volterra model Syy(m), but without the interference 
spectra. 

Accordingly, the total system coherence function 
7j.(m) based upon the orthogonal model, which was 
defined as Eq. (11), consists of the purely linear 7j (m), 
quadratic jl(m), and cubic 7|(m) coherence spectra 
without the interference terms. 

7r(m) = fl(m) + 72 (m) + fl(m) (20) 

where ff(m) = Pi(m)P~y(m). Notice that each term 
in Eq. (20) is positive definite, and is bounded by zero 
and one. Thus, a physical meaningful decomposition 
is now possible. Furthermore, the total system coher- 
ence function Jxim) based upon the orthogonal model 
is same as the total system coherence function Trim) 
based upon the nonorthogonal model. 

EXPERIMENTS 

The experiments were conducted in the U.S. Naval 
Academy Hydromechanics Laboratory 116 meter long 
towing tank. This facility has a dual-flap hydrauli- 
cally driven wavemaker, and a towing carriage driven 
by shore-mounted electric motors through wire rope and 
sheaves. The model used was the S175 hull form, used 
for comparative studies of the ITTC. Principle charac- 
teristics of the model are shown in Table 1. The model 
was towed in head waves by means of a heave staff with 
a pitch pivot at the center of gravity, as shown in Fig. 2. 
The lateral plane motions were restrained, as was surge. 
Heave and pitch were measured with potentiometers. 
The wave elevation was measured on the tank center- 
line at a point 1 m ahead of the fore perpendicular, 
using an ultrasonic probe mounted to the carriage. A 
vertical accelerometer was installed at a point 0.15 Lpp 
aft of the fore perpendicular. While the acceleration 
can be obtained from the rigid body heave and pitch 
motions, it was felt that an acceleration measurement 
would be a sensitive way to measure higher harmon- 
ics, which would be another indicator of nonlinearity in 
response. 

Length (Lpp) 3.50 m 
Beam 0.51 m 
Draft 0.19 m 
CB 0.572 
Ryv/LpP 0.24 
KG 0.20 m 
Displacement 193.2 kg 

Table 1 S175 model characteristics. 

For regular wave testing, the wavemaker was driven 
by an analog voltage oscillator. The model was towed 
at two carriage speeds, corresponding to Froude num- 
ber = 0.200 and 0.275. The regular wave frequencies 
were as shown in Table 2. The wavemaker gain was 
varied to obtain wave heights (double amplitude) from 
approximately 0.03 to 0.1S m. For random wave testing, 
a computer generated random voltage was generated 
using standard Hydromechanics Laboratory software. 
The Bretschneider two-parameter spectral shape was 
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Fig. 2 Test configuration for S175 model. 

A/Lpp a ae (Fn=0.20) ae (Fn=0.275) 
1.0 
1.2 
1.4 

2.507 
2.288 
2.118 

3.764 
3.335 
3.015 

4.235 
3.728 
3.352 

Table 2 Regular wave conditions. 

used as a target spectrum, with a modal period equal 
to two seconds (peak frequency = 0.5 Hz; or ae = 2.582 
at Fn=0.20). This corresponds to a wavelength of ap- 
proximately l.S times the model length. Because of 
limitations in the wavemaker, the high frequency tail 
of the spectrum was truncated at 1.0 Hz. The wave- 
maker drive signal was composed of seventy sine wave 
components between 0.30 and 1.00 Hz, with random 
phases. The phases were re-randomized before each 
carriage run. Three sets of data were obtained with the 
wavemaker gain set to three levels. The highest level, 
designated 100%, had a standard deviation of 0.042 m, 
corresponding approximately to fully developed seas, 
while the other two were obtained by setting the wave- 
maker gain at 75% and 50% of the highest gain. For 
each of the three conditions, twelve carriage runs were 
made, allowing the collection of data for a total run 
time of approximately 700 seconds. 

Because it was the intention in these experiments to 
measure deviations from linearity of vertical plane mo- 
tions which are at least quasi-linear, it was expected 
that such effects might be an order of magnitude less 
than the dominant linear part of the total measurement. 
For this reason, considerable effort was made to mini- 
mize various sources of error in test conditions and mea- 
surements. The sources of experimental uncertainty are 
discussed in more detail in the Appendix. While sea- 
keeping experiments and correlations to predictions are 
typically considered to have a precision of no better 
than 10-20%(23_), it is felt that meaningful indications 
of nonlinearity have been obtained in the experiments 
reported here, especially for steep waves where signifi- 
cant changes in both magnitude and phase of the fre- 
quency response functions have been observed. 

The accurate measurement of the incoming wave field 
is ,of course at the heart of a seakeeping experiment. 
An ultrasonic probe was chosen because the high de- 
gree of linearity and the fact that is a non-contact de- 
vice, which will not distort the wave at forward speed 
as other probes may. The waves themselves may have 
nonlinear effects (the Stokes wave behavior), appear- 
ing as higher harmonics in both regular and random 
waves. The wave measurements were examined for the 
presence of such effects, as discussed below. The exper- 
iments were done in two series approximately one year 
apart. In Fig. 3 and subsequent figures showing the 
regular wave results, the first series data are shown as 
circular symbols, while the second or more recent series 
data are shown as square symbols. The random wave 
experiments were done only during the second series. 

Regular Wave Measurements 

Regular waves of finite steepness are well known to 
have higher harmonics. The Stokes wave elevation to 
third order is given by, 

1 3 
C(t) = acos(ut) + -ka2 cos(2ujt)+-k2a3 cos(3ojt) (21) 

2 -8 

The measured second harmonic of the wave signal, is 
shown and compared to the Stokes formula in Fig. 3. 
The results are presented as a ratio of the second har- 
monic to the first, as a function of wave steepness ka 
(with a the first harmonic amplitude of the measured 
wave). This provides an indication of the ability of the 
wave probe to resolve a relatively small harmonic in the 
wave. Equation (21) predicts a third harmonic as well. 
However, in both the Stokes formula and the measure- 
ments, this component is less than one percent of the 
first harmonic for the maximum steepness in the exper- 
iments (ka = 0.15). There is also a nonlinear correction 
to the dispersion relationship, 

u>- = gk(l + (ka)2 + ■ • •) (22) 
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For a given wave frequency, this results in a some- 
what longer wave length than the linear dispersion re- 
lationship would predict. The consequence for a sea- 
keeping experiment is that, for a wave measurement 
ahead of the model center of gravity, and a phase cor- 
rection to the motions made on the basis of linear dis- 
persion, there will be a phase lead which increases with 
wave steepness. For the probe location, wavelengths 
and steepnesses used in the regular wave experiments, 
this accounts for less than a 6 degree shift in any motion 
phase measurements. For both this phase shift, and for 
the third harmonic amplitude of the waves, the magni- 
tudes involved are considered to be below the minimum 
threshold for which meaningful results can be obtained 
from these data. 

Random Wave Measurements 

The auto-spectra of the wave measurements at the 
50%, 75% and 100% wavemaker setting are shown in 
Fig. 4, plotted against nondimensional encounter fre- 
quency.   The 1 Hz cutoff frequency in the wavemaker 
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drive signal corresponds to a nondimensional encounter 
frequency,cre = 6.6. A fairly steep attenuation of the 
spectra is seen at this frequency. Higher frequency en- 
ergy may be due to a combination of residual wave 
energy in the towing tank and nonlinear interactions 
among wave components at lower frequencies. 

the nonlinearity, since the PDF of the signal will de- 
viate from Gaussian when there are couplings between 
different spectral components. Thus, a nonGaussian 
distribution of a stochastic process is a very good indi- 
cation that such a process is nonlinear. 

Conventional methods to test the statistics of a sto- 
chastic process do not provide much information on the 
order of the process. Recently, Rao, Hinich, and others 
developed stricter test methods for nonGaussianity and 
nonlinearity of a stochastic process using the bispec- 
trum. Note that the bispectrum in 2-dimensional fre- 
quency domain is zero for a Gaussian process. However, 
this is a necessary condition for a Gaussian process, but 
not a sufficient condition. In our cubic Volterra system, 
we need to estimate up to 6th order spectral moments 
of the wave excitation, but unfortunately there are no 
general test methods for a Gaussian process for such 
high order moments. Naively assuming Gaussian exci- 
tation without examining the details of the higher order 
spectral moments or conditional probability functions 
can lead to misleading Volterra models of a nonlinear 
system(24_). 

We have tested the nonGaussianity of the random 
waves utilized in this experiment by using the test 
statistic developed by Hinich(2ü), which, he states, is 
basically the Subba Rao-Gabr statistic(26_) with the 
asymptotic variance instead of their sample estimate. 
The test statistic £r is proportional to the normalized 
bispectrum nx as indicated below, 

nx  = 

6 

|-BI(w1,w2)| 

yfSx(ui)Sx(u7)Sx(u-i. +w2) 

=   2MILI 

(23) 

(24) 

where Sx(u), Bx(ui,ui), and M denote the auto-power 
spectrum and the auto-bispectrum of the random wave 
excitation, and the number of ensembles used for the 
spectral estimation, respectively. The test statistic £x 

is approximately a central x'2 variate with 2 degrees of 
freedom under a null hypothesis, 2?r(wi,u>2) = 0 for a 
Gaussian process. 

The global statistic gx is defined as the sum of the 
test statistic £„ for v bifrequency pairs, in the principal 
domain, and is approximately distributed x\v- F°r large 
v, Wilson and Hilferty(27) showed that it can be further 
approximated as a normal distribution if one uses a test 
statistic Z, where 

Fig. 4 Wave excitation auto spectra 

Test for NonGaussianity of Wave 

The effect of nonGaussian wave excitation in ship hy- 
drodynamics is, at the first glance, not quite notice- 
able especially for linear problems. For example, in the 
spectral domain, a spectral component at a particu- 
lar frequency in the excitation is linearly transformed 
to the output response at the same frequency, and the 
probability distribution function (PDF) of the output 
is obtained through a linear transformation of the input 
wave PDF. However, when one deals with a nonlinear 
problem, one has to consider couplings between differ- 
ent frequency components via nonlinear interactions. In 
this case the PDF of the signal contains information on 

Z   =   3^ (^/2^-i + i 
9v' 

(25) 
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We have performed the Gaussianity test for three dif- 
ferent levels of wave maker gain settings, namely 100%, 
75% and 50%. We have tested the null hypothesis Z = 0 
for a Gaussian process at the significance level a = 0.01, 
where Za=o.oi = 2.33 for the one-sided test. 

In Table 3, test results for variance, skewness, kurto- 
sis, and the statistic Z for the three different settings of 
the wave maker are tabulated. The bispectrum of the 
encountered random wave is estimated using the data 
length of 228 blocks of 70 points sampled at 12.5 Hz, 
and it is shown in Fig. 5 for the 100% wave setting. If 



the random waves are Gaussian, the bispectrum should 
be ideally zero. In this case it clearly is not zero. The 
tabulted skewness s and the kurtosis k are the differ- 
ences from those of a Gaussian process, where s = 0, 
and k = 3. Thus, we note that these quantities for all 
three different wave settings are not far from the skew- 
ness and the kurtosis of a Gaussian process. However, 
as one can see in Table 3, the Wilson statistic Z for 
the three different cases are consistently greater than 
ZQ=o.oi = 2.33. Thus, one has to reject the null hy- 
pothesis of Gaussian process for random waves. Also, 
notice that Z increases with the wave maker settings. 
This is consistent with the idea that the wave becomes 
more nonGaussian as wave amplitude increases. In con- 
clusion, it is very important to test the higher-order 
statistics in nonlinear system identification in order to 
verify or reject the Gaussian wave assumption. It has 
been our experience in using random excitation in non- 
linear system identification that very few experimental 
random signals are sufficiently Gaussian to make use of 
the simplifying Gaussian assumption( 

Wave Settings 50% 75% 100 % 
Variance (cm2) 4.39 9.87 17.35 
Skewness 0.06 0.09 0.04 
Kurtosis -0.19 -0.27 -0.20 
Statistic    Z 17.5 18.4 27.8 

Table 3 NonGaussianity test statistics of wave. 

Fig.    5 Auto-bispectrum of wave excitation at 100% 
wave maker setting 

Motion Measurements 

First harmonic Frequency Response 

The heave, pitch and bow acceleration measurements 
in regular waves were Fourier analyzed to obtain the 
amplitude and phase of the harmonic components. In 
order to do this, approximately ten complete cycles were 

analyzed for each speed-frequency-amplitude combina- 
tion. The immediate goal has been to confirm the varia- 
tion of transfer function (i.e. the ratio of first harmonic 
response to first harmonic of wave), as a function of 
wave steepness, which was suspected to be the cause 
of variation of data in ITTC comparative studies. For 
this purpose the measured first harmonic results (both 
magnitude and phase) have been plotted against wave 
steepness, ka, for three wave lengths shown in Table 2. 
In computing these quantities, the first harmonic of the 
wave signal has been used. As noted previously, if the 
response is truly linear, then both magnitude and phase 
will be invariant with respect to steepness. 

The first harmonic frequency response functions are 
shown in Fig. 6-17. The magnitudes are in nondi- 
mensional form as follows: heave amplitude divided 
by wave amplitude (z/a), pitch divided by wave slope 
(0/ka), and acceleration is nondimensionalized with re- 
spect to gravity and length to wave amplitude ratio 
(sLpp/(ga)). Phases are defined as leads relative to the 
wave elevation at the LCG, with wave, heave and accel- 
eration defined as positive up and pitch defined as pos- 
itive bow down. In calculating the phase, the measured 
wave phase has been corrected with the linear deep wa- 
ter dispersion relationship. As seen in Fig. 6, the mag- 
nitude of the heave response at Fn=0.200, especially at 
ae = 3.76, exhibits a marked drop over the range of 
wave steepnesses tested. This effect is less pronounced 
for longer waves (lower frequency). At Fn=0.275, this 
effect is again seen at approximately the same encounter 
frequency in Fig. 12 (note that this corresponds to a 
longer wave length in Table 2, due to the increased en- 
counter frequency shift at higher Froude number. In 
all cases tested, the variation of heave phase was small, 
typically not more than 10 degrees, which is not consid- 
ered significant in terms of the uncertainty in measuring 
phase angles. 

For the case of pitch, the variation in magnitude of 
response is shown in Fig. 8 and 14 is less pronounced. 
However, as seen in Fig. 9 and 15, The phase of pitch 
can shift significantly, as much as 30 degrees over the 
range of wave steepnesses tested. The acceleration fre- 
quency response function shows a variation in both 
magnitude and phase as shown in Figs. 10-11 and 16-17. 
This may be expected since the vertical motion at this 
measurement point (0.15 Lpp aft of the fore perpendic- 
ular) is a combination of the rigid body translation and 
rotation. 

Other Harmonic Content 

Another quantity which can be taken as an indica- 
tor of nonlinearity is the presence of higher harmonics. 
These are of course present in the waves themselves as 
discussed above, but in addition can be found in the mo- 
tions themselves. The harmonic analysis of the heave 
and pitch shows the presence of second and third har- 
monics, but they are typically only one or two percent of 
the magnitude of the first harmonic. Thus, the evidence 
for higher harmonics in the rigid body displacements is 
only qualitative. However, the bow acceleration is a 
more sensitive indication of higher harmonics than the 
heave and pitch displacements since the second time 
derivative corresponds to multiplying the displacement 
harmonics by w2, 4w2, and 9w2 for the first, second and 
third harmonics respectively. If the response is prop- 
erly represented by a Volterra functional series, these 
harmonics would be expected to vary as the square of 
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wave amplitude for the second harmonic, cube for the 
third harmonic, etc. Evidence of this is shown in 
Figs. 18 and 19 for the acceleration response at ae = 
3.76 and Fn = 0.200. For this condition, the maximum 
first harmonic of measured acceleration was approxi- 
mately 0.5 g, so that these higher harmonic components 
are a significant percentage of the total. It should also 
be noted that the second harmonic of acceleration is 
explained, at least in part, by the "static" component 
of pitch motion. That is, for the larger values of pitch, 
the accelerometer actually measures the quantity (g + 
heave acceleration ) times the cosine of the pitch an- 
gle, since the accelerometer measurement is perpendic- 
ular to the rotating hull-fixed axis. When pitch is large 
enough for cos 6 to deviate from 1.0, and second har- 
monic will be seen. Finally, the data were examined 
for the presence of mean shifts, relative to steady calm 
water values. The quadratic term of the Volterra expan- 
sion may result in such shifts which may be expected 
to vary as the square of wave amplitude. However, for 
the Si75 hull these shifts were very small, less than 1 
mm for heave and 0.1 degree for pitch. 
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Fig. 19 Acceleration Third Harmonic (G's), Fn = 0.200 
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Fig. 18 Acceleration Second Harmonic (G's), Fn = 0.200 

Random Waves 

The collected data were pre-processed for the third- 
order Volterra system analysis. Twelve runs of data, 
which were originally sampled at 25 Hz, for 50%, 75%, 
and 100% wave maker settings, were used. After remov- 
ing the starting and stopping transients, we collected 
640 data points per each run after decimating the data 
by a factor of 2. Thus, the new sampling frequency be- 
comes 12.5 Hz. We divided the 640 points of data into 
5 blocks (128 points per block) before Fourier trans- 
forming using the FFT (fast Fourier transform) algo- 
rithm. We also overlapped by 50% to increase the num- 
ber of blocks of data. Thus, we have total 108 blocks 
(9 blocks/run x 12 runs) of 128 points data for higher- 
order spectral estimation. 

After the data were Fourier-transformed, we choose 
a frequency band (1 < ae < 15) appropriate for the 
higher-order spectral analysis. Then, higher-order spec- 
tral components were arranged for the estimation of 
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the cross-spectral vector Syx(m) and the auto-spectral 
matrix Sxx(m). For the nonorthogonal model, an in- 
verse of the auto-spectral matrix Sxx(m) was calculated 
using the Cholesky decomposition method in order to 
solve for the FRF's. After the FRF's were obtained, 
the goodness of the model was tested by calculating 
the linear, quadratic, cubic, and interference coherence 
spectra. 

For the orthogonal model, first the input vector 
X(m) was orthogonalized to generate the conditioned 
orthogonal input vector Z(m) using a modified Gram- 
Schmidt orthogonalization procedure. Then, using the 
orthogonal input vector Z(m), we estimated auto- and 
cross- higher-order spectra and found the new FRF's. 
Then, we calculated the system model coherence spec- 
tra (without interference) according to the formula we 
described previously in order to check the goodness of 
the orthogonal model. 

The power spectra for heave, pitch, and bow acceler- 
ation of the Si75 hull are given in Fig. 20 for the 100% 
case. It is very difficult to conclusively identify the 
presence of any nonlinearities through examination of 
the random wave excitation spectrum and the S175 hull 
response auto-spectra themselves. However, it is seen 
that for pitch and acceleration, there is measurable en- 
ergy at frequencies beyond the wave energy band. Also, 
by calculating the higher order spectral components as 
discussed in the section on system modelling it is possi- 
ble to determine the presence of nonlinear components. 

First we processed the time series data for 100% ran- 
dom wave excitation and heave response using a third- 
order Volterra model valid for nonGaussian random 
seas. In Fig. 21 the corresponding linear, quadratic, 
and cubic coherence spectra are plotted and denoted by 
L, Q, C, respectively. Since this model is not orthogo- 
nal, interference coherence spectra are also present and 
are denoted by LQ, LC, and QC respectively. Note 
that the overall model models the heave response quite 
well in that the total coherency T is close to unity in 
the band centered around ae ~ 3 - 4. This indicates 
that the overall third-order Volterra model accounts for 
virtually 100% of the observed heave response in this 
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Fig.   20 Auto-power spectra of the heave, pitch, and 
bow acceleration. 

band. The total coherence T slowly drops off at higher 
frequencies due to the fact that the excitation wave 
spectrum has progressively less energy, and, thus, the 
signal-to-noise ratio decreases, which in turn decreases 
the overall model coherence. Furthermore, observe that 
the quadratic coherence Q is quite small, suggesting 
that quadratic effects do not play a major role in the 
heave response of this hull to random wave excitation. 

Fig. 21 Overall model coherence spectra for the heave 
response (nonorthogonal). 

Next we note the presence of the interference coher- 
ence spectra, particularly LC which takes on relatively 
large negative valves. By comparison the LQ and QC 
interference spectra are fairly small. Observe also that 
the linear L and cubic coherence spectra C often ex- 
ceed unity, when in fact they should ideally lie between 
zero and unity as was discussed previously. Thus we see 
that, although the third-order nonGaussian-excitation 
Volterra model is a good overall model, the presence 

of the interference terms prevent us from decomposing 
the response into its constituent linear, quadratic, and 
cubic components. 

In order to avoid the deleterious interference effects, 
we utilized the orthogonal third-order Volterra model 
valid for nonGaussian excitation as discussed earlier in 
a previous section. The linear (L), quadratic (Q), cubic 
(C), and total (T) model coherency spectra for heave, 
pitch, and bow acceleration are plotted in Fig. 22 to 24, 
for the 100% case. Since we are now dealing with an 
orthogonal model, there are no interference coherence 
spectra. Furthermore, the linear, quadratic, cubic, and 
total model coherence spectra all lie between zero and 
unity. Thus, we may now interpret L, Q, C as the frac- 
tion of power in the observed response accounted for by 
the linear, quadratic, cubic components of the orthog- 
onal Volterra model. Similarly T accounts for the frac- 
tion of power accounted for by the overall model (i.e., 
T = L + Q + C). Some general observations relating to 
Figs. 22 to 24 follow: 

(a) In the band centered at crc ~ 3 - 4, the overall 
model accounts for approximately 95% of the ob- 
served heave, pitch, and bow acceleration response. 
In this same band, the linear model accounts for 
approximately 80-90% of the response, while the 
cubic accounts for 5-10%. 

(b) Below and above <re ~ 3 - 4, cubic effects clearly 
dominate over linear and quadratic effects. In fact 
for ae > 5, cubic effects account for virtually all the 
response in heave and pitch, in that cubic coher- 
ence C is only slightly less than the total coherence 
T. 

(c) Generally speaking quadratic effects are quite 
small, accounting for less than 10% of the ob- 
served response. An exception is the band centered 
around ae ~ 7 in the bow acceleration, where the 
quadratic coherency Q exceeds 10% by a factor of 
four. This component may again be explained by 
the large pitch angles as discussed above. 

MOTION SIMULATION 

The nonlinear response in these experiments on the 
S175 hull, as show in the harmonic components dis- 
cussed above, constitutes overall evidence for nonlin- 
earity without directly indicating the specific physical 
source of the nonlinearity. In order to examine the 
physics which may cause nonlinear effects, in a prelim- 
inary or simplified way, one can begin with the usual 
linear coupled equations of motion for heave and pitch 
in head waves: 

Azzz + Bzzz + Czzz + 
Azee + Bzee + czSe = Fz{t) (26) 

ASzz + B$zz + C6zz + 
Aese + Beee + Cee0   =   M,{t) (27) 

The coefficients Azz, etc. represent the mass plus 
added mass terms, while the B and C coefficients repre- 
sent^ linear wave radiation damping and hydrostatic co- 
efficients respectively. Fz and Ms represent the exciting 
force and moment due to incident and diffracted waves. 

g^    While it is recognized that the added mass terms are not 



Fig. 22 Linear (£), quadratic (Q), cubic (C), and total 
(T) coherence spectra for heave (orthogonal model). 

Fig. 23 Linear (£), quadratic (Q), cubic (C), and total 
(T) coherence spectra for pitch (orthogonal model). 

actually constant but functions of frequency, nonethe- 
less this equation may be solved in the time domain if 
one is only looking at steady periodic motion at one 
frequency. Solving in the time domain also allows the 
addition of discrete nonlinear terms to the equations, 
and a systematic variation of input amplitude to deter- 
mine their effect. Physically, nonlinear damping may be 
the result of viscous damping (usually ignored in ver- 
tical plane motion calculations), while nonlinear static 
coefficients may arise when the hull form at the water- 
line has vertical slope or curvature. A preliminary set 
of time domain simulation calculations with these equa- 
tions with cubic nonlinear terms has indicated the pos- 
sibility of at least qualitatively matching the observed 
nonlinear behavior in the experiments. This is illus- 
trated in Figures 25-26. Here, the linear coefficients 
were obtained from strip theory calculations for Fn = 
0.200 and ae = 3.76. It is found that simply adding 
cubic uncoupled static terms of the form: 

result in a behavior very similar to the experimental 
results. That is, there is a large variation in heave mag- 
nitude and pitch phase at the first harmonic. Further- 
more, the simulated results indicate an extremely small 
third harmonic component in the displacements (on the 
order of one percent of first harmonic for ka = 0.15). 
This is consistent with the experimental results. In 
terms of the Volterra kernels, this means that in the 
three-frequency domain of the cubic kernel, the ker- 
nel Hz{u, w, —u>) constitutes a dominant part of the re- 
sponse,noticeably affecting the first harmonic response, 
while the term H^{u),u,u)) which represents third har- 
monic response is quite small. The apparent reason for 
this is that while there may be quite large cubic, third 
harmonic force or moment components on the left hand 
side of the equations, the dominant effect of the mass or 
inertia terms is to force the system to behave similar to 
a low-pass filter, with small response at high frequency. 
Of course, these sample results are for only a single fre- 
quency of excitation, and do not show how various fre- 
quencies may interact. Furthermore, it would be quite 86 

surprising (and fortunate) if the nonlinear behavior of 
heave and pitch could be modelled simply by accounting 
properly for nonlinear hydrostatics. Nevertheless, this 
simplified model may be useful for efficiently exploring 
the cubic behavior over the complete three-frequency 
space. 

DISCUSSION AND CONCLUSIONS 

The experimental data for motions of the S175 hull 
form clearly indicate the presence of nonlinearities in re- 
sponse. By harmonic analysis of the regular wave data, 
and higher-order statistical signal processing of the ran- 
dom wave data, it is found that the response can be 
represented by a third-order Volterra functional series, 
with cubic effects the dominant nonlinearity. The cubic 
effect appears primarily in the frequency band of the 
waves, due to interaction of frequency triplets. Higher 
harmonic response outside the frequency range of ex- 
citation is also found, particularly in the acceleration 
measurement. 

It has also been shown that the waves themselves 
should not be assumed Gaussian, and a new procedure 
has been developed to identify the Volterra kernels, up 
to cubic, for nonGaussian random inputs. The ability 
to measure the kernels up to third order from random 
wave data eliminates the need to carry out determinis- 
tic experiments with a large matrix of three frequency 
combinations. The ability to obtain these kernels in the 
frequency domain also means that it should be possible 
to construct a third order digital filter model, imple- 
mented as a parallel combination of linear, quadratic 
and cubic digital filters. If the sea wave time series 
is used as an input to this model, the output should 
provide a more accurate prediction of motions than a 
purely linear model, especially for extreme values of mo- 
tion and for acceleration, where the nonlinearities play a 
prominent part. The digital simulation is also expected 
to be a useful tool for studying the effect of nonlineari- 
ties on the statistical nature of response. 

Finally, it should be mentioned that we hope the ex- 
perimental results presented here will form a useful data 
base for validating theoretical hydrodynamic models of 



Fig. 24 Linear (L), quadratic (Q), cubic (C), and total 
(T) coherence spectra for bow acceleration (orthogonal 
model). 

nonlinear wave effects, whether time or frequency do- 
main. It is clear that the standard linear and Gaussian 
assumptions should not be accepted as strictly correct. 
As more exact nonlinear theoretical approaches are im- 
plemented, and a more powerful method of analyzing 
measured data, as described here, becomes available, 
we should be able to provide more accurate predictions 
of extreme ship motions. 
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APPENDIX 

EXPERIMENTAL UNCERTAINTY 

There are a number of factors which contribute to 
the uncertainty of the measured data, including bias 
errors (which are constant within an experiment, but 
which may vary in a subsequent experiment), and pre- 
cision errors which contribute to the scatter of the data 
within an experiment. Several of these sources are iden- 
tified and quantified in this appendix. 

Bias Errors 

Bias errors by their definition are difficult to detect, 
since they may be small and are constant throughout 
an experiment. However, by closely examining various 
test conditions which are assumed to be constant and 
known with high accuracy, it is possible to identify sev- 
eral possible sources of bias: 

Model Construction and Ballasting 

The model was designed with a length of 3.5 m be- 
tween perpendiculars. The hull designation S175 is 
based on a full scale design length of 175 m, thus the 
scale ratio is 1:50. The model was constructed of fiber- 
glass, using an existing wooden model as a mold. When 
delivered, the model was aligned on a granite surface 
plate and measured for accuracy. The overall dimen- 
sional accuracy (relative to design) was found to be 
+0.4% in length, and -1% in beam. In terms of hull 
fairness, the baseline was found to be hogged 3.2 mm, 
while the side was concave 1.6 mm. In ballasting the 
model to achieve a design pitch gyradius (Rj,y) of 0.24 
Lpp, an unusual approach was taken in order to achieve 
maximum accuracy. In normal ballasting of a seakeep- 
ing model, the model is often ballasted to a certain yaw 
gyradius (R;-) by a measurement of the natural yaw 
period in air with a pendulum arrangement, with the 
assumption that this is equivalent to the pitch behav- 
ior. Alternatively, the model may be oscillated in pitch, 
but this often requires supporting the model on a pitch 
table whose inertia may exceed that of the model. In 
the experiments discussed in this paper, the bare hull 
(constituting less than 50% of the fully ballasted mass) 
was suspended and oscillated as a pendulum in air in 
both pitch and yaw. A computer spreadsheet was then 
used to calculate the net weight, pitch and yaw iner- 
tias as ballast weights were added and adjusted. When 
the spreadsheet calculations indicated that the required 
pitch inertia was achieved, the ratio of yaw gyradius to 
pitch gyradius, as calculated by the spreadsheet, was 
1.002. The yaw gyradius of the fully ballasted model 
was then measured in air. The ratio of the measured 
gyradius to the calculated gyradius was 1.0004. This 
check on yaw inertia lends credibility to the calculated 
pitch inertia. Although the yaw and pitch inertias were 
very similar in this particular model, the variation may 
be greater in other test programs, depending on hull 
proportions and detailed placement of ballast. 

Test Environment 

In addition to model construction and ballasting, 
there are a number of parameters which constitute the 
test environment, and are often considered either to 
be constant or to have a negligible effect on the re- on 

suits. Among those checked in these experiments were: 
carriage speed and vibration, the wave dispersion rela- 
tionship, and heave staff friction. The measured car- 
riage speed, corresponding to nominal Froude numbers 
of 0.200 and 0.275, had a total variation of ±0.1%. 
The carriage vibration was measured by observing the 
harmonic content in a drag gage at the bottom of the 
heave staff. The natural frequency was found to be ap- 
proximately 3.6 Hz. This frequency (corresponding to 
<7e = 13.5) corresponds to vibration in the horizontal di- 
rection, but may weakly couple into the vertical modes 
(heave, pitch) at this frequency. As a check on the lin- 
ear, deep water wave dispersion relationship (a;2 = gk), 
the regular wave elevation measured on the moving car- 
riage was used to calculate the actual encounter period. 
This was then used with the assumed dispersion rela- 
tionship to estimate the wave frequency. This estimate 
agreed with the wavemaker oscillator frequency within 
±0.2%, confirming the dispersion relationship. 

In order to check the effect of heave staff friction, a 
load cell was installed at the bottom of the heave staff 
to measure vertical force. In the absence of friction, this 
would simply be the inertial force corresponding to ac- 
celerating the mass of the heave staff. The actual force 
was found to contain a component similar to Coulomb 
friction; that is a force opposing velocity, with a magni- 
tude independent of the velocity magnitude. Different 
heave staffs and bearing arrangements were used in the 
two test series. The magnitude of this damping force 
was approximately 4 N in the first series of experiments, 
and 2 N in the second series. For comparison, the heave 
damping force (due to wave radiation) estimated from 
strip theory is approximately 50-300 N in the range of 
wave frequencies and steepnesses shown in Fig. 6-17. 
A Coulomb friction term was also introduced into the 
simulation discussed above, and appears to explain the 
difference in the results for heave in the two series of ex- 
periments, i.e. aproximately 5% for the smallest values 
of ka, decreasing to approximately 1-2% for the larger 
magnitudes. For comparison to earlier reported results 
on this hull, the first series of experiments included a set 
of runs at ac = 3.55, (\/Lpp=l.l), and the results for 
heave are compared in Fig. 27 to published data from 
Ref. (ä) It should be noted that the results taken from 
Ref. (ä) are for a different scale ratio, and the model was 
self-propelled without a heave staff so that there was no 
additional heave friction introduced and the model was 
free to surge. The slight bias between the data sets in 
this figure is believed to be caused by the heave staff 
friction. 

Precision Errors 

Estimates of precision error can be made based on 
the maximum deviation and standard deviation found 
in the calibrations. Table 4 lists calibration information 
for the various transducers. In order to relate the values 
in this table to the actual ranges of data in the experi- 
ments, it is noted that the largest magnitudes measured 
in the experiments were on the order of 10 cm for waves 
and heave, 6 degrees for pitch and 0.6 g for acceleration. 

In light of light of this information on bias and pre- 
cision errors, but more importantly on the basis of ob- 
served repeatability within each series of experiments, 
and between both series and other reported results on 
this hull form, it is felt that for the regular wave exper- 
iments, observed magnitude changes greater than ten 
percent and phase shifts greater than ten degrees con- 



0.04 0.08 0.12        ka     0.16 

Fig. 27 Comparison of Heave Response to Ref. 9 O) 

Full No. of Calibration Statistics 
Scale Points Maximum Deviation STD. Dev. 

Measurement Units Limit in Cal. (%F.S.) (units) (units) 
Speed cm/s - 29* - 0.1615 0.0427 
Pitch deg 20 11 0.74 0.15 0.070 
Heave cm 25 8 0.31 0.079 0.051 
Wave Height cm 3S 9 0.17 0.066 0.038 
Bow Accel. g's 5 11 0.052 0.0026 0.0013 
* Speed statistics represent deviation in speed between tests. 

Table 4 Instrument calibration precision information. 

stitute firm evidence of nonlinear behavior. For the ran- 
dom wave experiments, it is much more difficult to esti- 
mate the accuracy of results because of the inherent sta- 
tistical variability of finite length records. While guide- 
lines are available for predicting the required length of 
run to obtain a specified confidence level on certain 
quantities, these guidelines are invariably based on the 
assumptions of linear response to Gaussian excitation, 
which are not supported in the data presented in this 
paper. 
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DISCUSSION 

C. Calisal 
University of British Columbia, Canada 

At the University of British Columbia, we are 
currently testing the same hull (S175) as borrowed 
from the University of Michigan in a much smaller 
tank (BCROCC tank). I found your results most 
interesting. I would like to know if the location of 
the sonic wave probe is important and is the 1 m 
distance you use an ITTC recommendation. 
Secondly, in the analysis of your data in regular 
waves I assume you used an FFT package. Could 
you comment if the choice of "windows" was at all 
important in the determination of magnitudes and 
phases of the frequency response function. Is there 
an ITTC recommendation for this procedure? As you 
showed that the system is nonlinear, shouldn't there 
be a set of guidelines for uniformity of tank testing 
and is IIT a suitable process for nonlinear systems. 
Could you possibly comment on these points. 

the analysis is conducted over an exact integer 
number of cycles (±1 digital sampling interval). In 
this case, a rectangular window was used. 

The random wave data were analyzed using FFT 
techniques to estimate the required higher-order 
spectral moments characterizing the random waves to 
sixth order and the wave-ship interaction to fourth 
order. The resulting hierarchy of spectral moments 
was used to estimate the linear, quadratic, and cubic 
Volterra kemals, which in turn, were utilized to 
decompose the ship response into its constituent 
linear, quadratic, and cubic components. 

AUTHORS' REPLY 

The objective of the ITTC comparative 
seakeeping study was to evaluate the level of 
agreement that can be expected when seakeeping 
results from different facilities are compared. The 
study allowed participating facilities to see if their 
techniques produced results in line with the majority 
of other facilities. We agree that there should be 
some specification in future ITTC comparative tests 
to reduce possible variation due to nonlinearity; this 
should take the form of a wave steepness 
specification. 

Regarding the position of our wave probe, we 
moved our probe forward and aft in our earlier 
(1990) test series to determine if the proximity of the 
hull had any effect on the measurements. We found 
no difference between 0.5 and 1.0 m, but 1.0 m is 
conservative. The phase angles plotted in Figures 7- 
17 are based on the wave height as calculated at the 
model's center of gravity using the linear wave 
dispersion relationship. 

The harmonic analysis was carried out using a 
Fourier series (not FFT) program written specifically 
for the purpose. The program identified an integer 
number of cycles in the wave record, using zero 
crossings to determine the end points of the data to 
be analyzed.   The key feature of this method is that 
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Theoretical and Experimental Study of the Nonlinearly 
Coupled Heave, Pitch, and Roll Motions of a Ship in 

Longitudinal Waves 
I. Oh, A. Nayfeh, D. Mook 

(Virginia Polytechnic Institute and State University, USA) 

ABSTRACT 

The loss of dynamic stability and the resulting 
large-amplitude roll of a vessel in a head or 
following sea were studied theoretically and 
experimentally. A ship with three degrees of 
freedom (roll, pitch, heave) was considered. The 
governing equations for the heave and pitch 
modes were linearized and their harmonic 
solutions were coupled with the roll mode. The 
resulting equation, which has time varying 
coefficients, was used to predict the response in 
roll. The principal parametric resonance was 
considered in which the excitation frequency is 
twice the natural frequency in roll. Force-response 
curves were obtained. The existence of jump 
phenomena and multiple stable solutions for the 
case of subcritical instability was observed in the 
experiments and found to be in good qualitative 
agreement with the results predicted by the theory. 
The experiments also revealed that the 
large-amplitude roll is dependent on the location 
of the model in the standing waves. 

1. INTRODUCTION 

More than 100 years ago Froude [1] observed 
that ships have undesirable roll characteristics 
when the natural frequency in pitch is twice the 
natural frequency in roll. Only nonlinear equations 
of motion can explain such behavior; yet the 
theoretical study of nonlinear coupling began as 
recently as the 1950s. Paulling and Rosenberg (2) 
considered a ship (their model) that was only free 
to pitch and roll. By neglecting damping, the effect 
of roll displacement on pitch moment, and 
wave-induced roll moments, and by including 
wave-induced pitch moments and the nonlinear 
effects of pitch displacement on roll moments, they 
found that the roll displacement was governed by 
a Mathieu equation, which they used to find the 
boundary, in the excitation amplitude-frequency 
plane, of the region in which rolling occurs 
spontaneously. Kinney (3) added a linear damping 
term to the roll equation and essentially repeated 
the analysis of Paulling and Rosenberg. Kerwin (4) 

used the same Mathieu equation to include 
wave-excited roll motion. Blocki (5J added 
nonlinear damping and a nonlinear restoring 
moment to the roll equation and used it to 
investigate the probability of capsizing. 

The possibility of large rolling motions 
developing in a head sea consisting of regular 
waves was shown by Grim (6] using a cubic form 
for the restoring moment. Haddara £7) studied the 
rolling motion using a quadratic form for damping 
and a cubic form for the restoring moment. He 
showed that unstable rolling motion can occur in 
irregular waves. 

The studies mentioned above essentially 
involve one degree of freedom. There have also 
been some two-degree-of-freedom models to 
explain the connection between the frequency ratio 
and the undesirable roll behavior mentioned by 
Froude [V^ Nayfeh, Mook, and Marshall, and 
Mook, Nayfeh, and Marshall (8,9) used model 
equations that account for the coupling between 
the pitch mode and the roll mode by including the 
dependence of the pitching moment on the roll 
displacement. With this approach, the pitch motion 
is not prescribed but coupled to the roll equation, 
and consequently, the pitch and roll displacements 
are determined simultaneously as functions of a 
prescribed wave-induced excitation in pitch. They 
clearly showed the significance of the frequency 
ratio. Moreover, they found a "saturation" 
phenomenon, nonperiodic responses to periodic 
excitations, and subcritical instabilities, among 
other    results. Subsequently,     Nayfeh     (10) 
investigated the Hopf bifurcations, which can occur 
under certain conditions, and found 
period-multiplying bifurcations and chaos in the 
predicted response. 

A vessel in a head or following sea may 
experience some control problems such as 
broaching and the loss of course stability, 
especially in following regular waves. Wahab and 
Swaan (11) used a linear formulation of the 
problem       with       constant       coefficients       and 

Froude-Krilov forces as the only wave forces and 
moments     to     consider     the      zero-frequency- 
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of-encounter case. With this fairly simple model 
they were able to demonstrate the directional 
instability when a vessel with fixed controls is 
positioned anywhere over half of the wave cycle, 
but particularly when the center of gravity of the 
vessel is near the steepest part of the wave and the 
stern near the wave crest. This phenomenon is 
familiar to vessel operators. Wahab and Swaan 
also were able to demonstrate analytically that the 
probability of broaching was greater in steeper 
waves. 

Eda and Crane £12) included hydrodynamic 
maneuvering coefficients obtained from 
experiments on models and horizontal plane-wave 
exciting forces and moments obtained from a strip 
theory. They also considered very low frequencies 
of encounter with regular waves and their 
predicted results of maneuvering performance in 
regular following or stern quartering waves was in 
reasonable agreement with model tests on a Series 
60 hull. Eda [13] extended this work and 
demonstrated the same result as Wahab and 
Swaan, that a vessel which is directionally stable 
in calm water may not be stable in regular 
following waves with zero frequency of encounter. 

In similar circumstances, a vessel runs a great 
risk of experiencing large-amplitude motions not 
only in in-plane modes, such as heave and pitch, 
but also in out-of-plane modes, such as roll and 
yaw. The latter phenomenon is caused by the 
nonlinear interactions among the modes of motion 
and is the subject of the present investigation. 

Blocki [5] considered a ship with only two 
degrees of freedom (heave and roll). Such a 
restriction (the elimination of pitch) implies that the 
ship is symmetric with respect to the midship 
section (sometimes called fore-and-aft symmetry) 
and in a beam sea. Attempting to satisfy such 
limitations, Blocki used a cylindrical model in a 
beam sea in his experiments. In his analysis, he 
ignored the wave-induced roll moment, an obvious 
inconsistency but an approximation that is 
reasonable when the slope of the waves is small 
and the wavelength is large compared to the beam. 

Following Blocki's work, Nayfeh and Sanchez 
(14) investigated the qualitative behavior of a ship 
rolling in longitudinal waves. They used an 
analytical-numerical technique based on the 
method of multiple scales to predict the qualitative 
changes taking place as the amplitude and 
frequency of the excitation are slowly changed. 
They confirmed their analytical results by using 
both analog- and digital-computer simulations. 

In the present paper, we describe the real 
situation more accurately than Blocki [5] and 
Nayfeh and Sanchez (14). Specifically, we lift the 
restriction of fore-and-aft symmetry, add a third 
degree of freedom (pitch), and consider head and 

following seas both theoretically and 
experimentally. The heave and pitch motions are 
assumed t,o be independent of the roll motion, an 
assumption that was verified experimentally. Due 
to the heave-pitch-roll coupling, the amplitudes 
and frequencies of the heave and pitch motions 
play the role of an effective amplitude and 
frequency of the parametric excitation. The 
parametric term in the roll equation basically 
accounts for the time-dependent variation of the 
metacentric height. We investigate the principal 
parametric resonance in which the excitation wave 
frequency is twice the natural frequency in roll. 

A much more exhaustive review of the 
literature can be found in the forthcoming doctoral 
dissertation of I. G. Oh (27). 

2. EQUATIONS OF MOTION 

Here we consider a model supported on a 
sting with three degrees of freedom: roll (</>), pitch 
(0), and heave (z). The equations of motion can be 
written in the following form: 

(1) 

(2) 

(3) 

z + 2{zi + co*z = Z(f) 

6 + 2(ge + w]e = ©(f) 

where £, and Co are damping coefficients: o7 <n„ 
and Wj, are the natural frequencies; /J, and /i3 are 
linear and cubic roll damping coefficients, a3 is the 
constant cubic "stiffness" coefficient, and 
K,/,,, K40, Kfc, and K4,„ are the constant coefficients 
of the quadratic coupling terms. Blocki [5] 
considered only heave and roll and ignored the 
kinematic-kinematic coupling; thus, he had only 
one (static-static) quadratic term: K^iz. Here we 
include additional static-static coupling as well as 
kinematic-kinematic coupling terms. 

Assuming simple harmonic wave excitation, we 
write 

Z(t) = Z0 cos D,t 

0(f) = 0O cos{D.t + td) 

(4) 

(5) 

where Q is the frequency of the exciting waves, rrf 
is the phase delay of the pitch moment relative to 
the heave force, Z0 is a measure of the amplitude 
of heave excitation force, and 0O is a measure of 
the amplitude of the pitch excitation moment. 
Z0 and ©o are functions of the wave height as well 
as the position of the mass center in the wave. 
Since (1) and (2) are uncoupled linear equations, 
they are solved as 
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z = az cos(Df + TZ) 

6 = ag cos(Df + T0) 

(6) 

(7) 

where az and a0 are the amplitudes of heave and 
pitch respectively, TZ and x0 are the phase lags of 
heave and pitch relative to the excitation wave, and 
re is a function of (0 and zd. 

We consider the case jn which the ship is in 
longitudinal waves so that K(t) — 0 in equation (3). 
Substituting (6) and (7) into (3), we obtain 

0 + co2^ + 2/i,(/; + 2^303 - a3</;3 

+ [f, cos(af + xz) + /j cos(Qf + T0)]</; (8) 

+ [f2 sin(£2f + TZ) + f4 sin(ßf + T0)]</> = 0 

where 

f,= ^.    >2 = i^z/< 2 ""z'v!Z' 
1 1 

f3 = _ y ae^o>   ^ = y ^-aoKto 
0) 

3. ANALYSIS 

An approximate analytical solution of equation 
(8) can be obtained for small but finite amplitudes. 
The straightforward expansion shows that 
resonances occur when Q/<y««1,2,4, etc. The first 
two cases are known as the fundamental and 
principal parametric resonances, respectively. It 
was concluded by Blocki {5) that the most 
dangerous case is n/w0«2. Nayfeh and Sanchez 
(14) presented the bifurcation diagram in terms of 
the frequency and amplitude of the excitation and 
showed that the principal resonance occur at the 
smallest excitation amplitude. 

We use the method of multiple scales to 
determine a first-order approximation to the 
solution of equation (8). We begin by assuming 
that an approximation to <j> can be written in the 
following form: 

0(f; c) « #0(r0, T,) + e%{T0, Th (10) 

where T0 = t is a fast time scale, characterizing 
motions occurring at the frequency Q.; 7", = r?t is a 
slow scale, characterizing the modulation of the 
amplitude and phase due to the nonlinearity, 
damping, and resonances; and r. is a 
dimensionless measure of the amplitude of the 
motion, which is used solely as a bookkeeping 
device. By writing expansion (10), we have 
"scaled" the amplitude of the response. The 
following analysis provides an approximation that 
is valid for £ < < 1 and, therefore, for small 
amplitudes of the motion. What the analysis does 
not provide is a definition of "small." It is not 
unusual for an analysis such as this one to still be 

quite accurate at amplitudes of 30 or 45 degrees. 
The time derivatives are transformed into 

— *D0 + sD: 

D2 + 2£
2D0D1 

off 

where   Dn = —— 0      37-0 
and   D 

dT< 

(11) 

(12) 

(13) 

and terms of 0(E3) have been neglected. Next we 
must scale the linear damping and forcing so that 
all damping and forcing as well as the static 
restoring moment interact at the same order.   We 

put /i, = E2/}, and f, = rßfi for i = 1,2, 3, and 4. The 
implication of the latter is that small-amplitude 
pitch and heave motions can produce 
large-amplitude rolling. In the experiments we 
observed that waves of very small amplitude did 
produce large-amplitude rolling, an observation 
that is consistent with this assumption. 
Substituting these definitions and equations 
(10)-(12) into equation (8), and then equating 
coefficients of like powers of s, we obtain 

0(0:   D0
2</)0 + coj0o = 0 

0(E3):   D0
2^ + tojtf, = - 200D1(/;0 - 2/11D0</)0 

- 2^3(DO0O)3 + cc3(j>l - f, cos(£« + TZ)(/;0 

A A 

- f2 s\n(Q.t + TZ)DO0O — f3 cos(Q.t -I- T0)</>0 

- fA sin(Hf + TO)DO0O 

The solution of equation (14) can be written as 

0o(7"o. 7i) = A(T,)eh'^ + cc 

(14) 

(15) 

(16) 

where cc stands for the complex conjugate of the 
preceding term. The function -4(7",) is an arbitrary 
complex function of 7", at this level of 
approximation. It is determined by imposing the 
solvability conditions at the next level of 
approximation. 

Because we are considering the principal 
parametric resonance corresponding to C1»2(D.I.. 

we introduce a detuning parameter a according to 

D. — 2a;. + £ a (17) 

Then we substitute equations (16) and (17) into 
equation (15) and find that secular terms are 
eliminated from </>, if 
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2/(6 + /i,B) + (6/>3a^ 

+ ■ 

3a,      0_ 

f    Beht = 0 
(18) 

CO </> 

where the overdot denotes the derivative with 
respect to the original time t, a = Q. — 2w^, B = r.A, 
the unsealed amplitude (here we have eliminated 
F, by rewriting all the variables in their original 
form; r. is no longer needed) and 

= \f\eh< 

*2"Ve T' + f3e U<**eh°) (19) 

Here   f   is   an   effective   amplitude,   due   to   the 
combined influence of heave and pitch, and  is a 
complex function of   K^,     K, <h0, K. 4>z< K, 
a0,    H,    CO0,    TZ and TB [see equation (9)]. 

4>0' a7, 

Next, we express the function B in the following 
polar form: 

S = |ae'" (20) 

where a and ß are the amplitude and phase of the 
response.   It follows that 

a = 
2_3 

P-\a --TV7P4P 
\f\a 
2w, 

sin y 

3a, 
ay = ao + 

4co 
a3-- 

fa 

* 
CO * 

cos y 

(21) 

(22) 

where y = ot — 2ß + x,. It follows from equations 
(20), (16), and (10) and from the relationship 
between A and B that 

«MO ■■ ■ a COS -1 (Qf - y + T,) (23) 

where a and y are given by equations (21) and (22). 
and we have made use of equation (17). 

For steady-state periodic responses, i.e., 
fixed-point solutions, we let a = y = 0. There exist 
two sets of fixed-point solutions:   First, 

a = 0 (24) 

is always a solution which is actually the solution 
of the linearized form of equation (3). Second, 
when a 7t 0, manipulating equations (21) and (22) 
yields a set of algebraic equations which can be 
solved numerically to determine a and y. The 
equation for a is 

c4a4 + 2c2a
2 + c0 = 0 

where 

9      2    4,9 

(25) 

16 
Wj 

3a, 
c2=3^1^3a4 + ^3-c7, Co = 4^1 + ü 

The stability of the various fixed-point solutions 
has been determined by Oh (27). 

Equations (21)-(25) yield two types of 
force-response curves depending on the values of 
parameters: 

Figure 1 shows a typical supercritical-type 
result when ß, = /i3 = 0.04, a3 = 1.0, and a = 0.20. 
As the resultant forcing amplitude \f\ is increased 
from 0, there is only the trivial solution until the 
bifurcation point \f\ =0.2155. At the bifurcation 
point the trivial solution becomes unstable and a 
nontrivial solution appears. As |f| is increased 
further, the roll amplitude grows nonlinearly and 
monotonically. 

Figure 2 shows a typical subcritical-type 
force-response curve, which contains some 
interesting features. The values of the parameters 
are the same as those in Figure 1 except the sign 
of er has been changed. As the effective amplitude 
\f\ is increased from 0, only one solution is 
possible; the trivial solution. As |f| passes 0.0957 
approximately, three solutions are possible, the 
trivial solution and two nontrivial solutions. As 
\f\     passes    0.2155    approximately,    only    two 

solutions are possible, the trivial solution and a 
rather large-amplitude nontrivial solution. An 
analysis of the stability of the various solutions 
[see Oh (27) ] revealed the following: (1) For 
0 < \f\ < 0.2155, the trivial solution is stable. For 
\f\ > 0.2155,      it      is      unstable. (2)      For 
0.0957 < \f\ < 0.2155, the large-amplitude 
nontrivial solution is stable and the 
small-amplitude nontrivial solution is unstable. (3) 
For |f| > 0.2155, the nontrivial solution is stable. 

In an experiment, one would never see motion 
corresponding to the low-amplitude nontrivial 
solution in the range 0.0957 < \f\ < 0.2155. For 
\f\ > 0.2155, one would always see a rolling 
motion. In the range 0.0957 < \f\ < 0.2155, one 
could expect to see one of two possible motions, 
either no roll at all (corresponding to the trivial 
solution), or a rather large-amplitude roll. The 
initial conditions, or external disturbances, 
determine which motion will develop. The 
existence of two stable responses to the same 
excitation is a characteristic of subcritical 
instability and has been observed in many other 
systems (15)-(17). 

As the effective amplitude |f| is slowly 
increased from 0, only nonrolling motion will be 
excited until the bifurcation point |f| = 0.2155 (Q 
is reached. As |f| is increased further, the trivial 
linear  solution   becomes   unstable,   and   the   roll 
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suddenly occurs; i.e., the jump-up phenomenon 
appears. From there, the "rolling" solution is the 
only stable response, and its amplitude increases 
nonlinearly and monotonically as \f\ is increased 
further. 

As |f| is decreased slowly from a large 
enough value, the magnitude of the 
large-amplitude roll motion decreases nonlinearly, 
and rolling continues even after the jump-up 
bifurcation point (O is passed. When |f| reaches 
the second bifurcation point \f\ =0.0957(0, the 
large-amplitude roll motion suddenly disappears 
and the response is roll free; i.e., the jump-down 
phenomenon occurs. 

4. DESCRIPTION OF EXPERIMENTS 

A series of experiments was performed in the 
Ship Dynamics Laboratory at VPI & SU. 

4.1 Experimental Setup 

The towing basin of VPI & SU is approximately 
30m x 1.8m x 2.5m. A plunger-type wavemaker 
made of a flat steel plate is installed at one end. 
A set of wave absorbers is placed behind the 
wavemaker and another set is placed at the other 
end. There is a towing carriage on the rails of the 
basin, which is used as a stationary mounting 
platform for the model in the present experiment. 
The wooden model of the tanker used in the 
experiments is approximately 223.5cm x 29.2cm x 
19.1cm. The weight of the model and ballast is 
approximately 54.5kg. The model is supported in 
such a way that heave, pitch and roll are allowed 
while surge, sway and yaw are constrained. Pitch 
and roll motions are possible up to + 22° each. 

The angular displacements in pitch and roll are 
measured by two Schaevitz R30D RVDTs, and the 
linear displacement in heave is measured by a 
Schaevitz 5000HPD LVDT. The wave heights are 
measured by capacitance-type Davis WL/WP 03 
wave level guages. To control and monitor the 
movement of the wavemaker, a Temposonics 
DCTM-36 LVDT is used and its signal is fed into a 
Tektronix 2230 oscilloscope with the signal from a 
Wavetek 275 function generator. 

A Fluke 8600A digital multimeter, HP 3468A 
digital multimeter, and a Graphtec SR6335 
strip-chart recorder are used to monitor the 
response of the model. A Data Translation DT 2801 
A/D converter is used for digitization, and data 
acquisitions are done by a commercial software 
Labtech Notebook installed in an IBM AT personal 
computer. Most of the analyses of the data are 
done by two microprocessors: an HP 3562A 
dynamic signal analyzer and a Rockland 5820B 
spectrum analyzer. 

More details of the experimental setup are to 
be found in the dissertation of I. G. Oh (27). 

4.2 Experimental Procedure 

Tests were done without a model to map the 
frequencies and amplitudes of the wavemaker that 
produce plane waves in the VPI & SU towing basin. 
From these tests, it was observed that operating 
the wavemaker around the frequency of 0.60 Hz 
produces plane waves for the widest range of 
amplitudes. Because interest is focused on the 
principal parametric resonance, weights were 
distributed inside the model so that the natural 
frequency in roll (0.32 Hz approximately) is about 
half of the frequency of the waves (0.6 Hz 
approximately). 

With the model in place, the wavemaker was 
started at the lowest amplitude available. Then the 
amplitude was increased very slightly to the next 
step in the function generator while the behaviour 
of the model in the waves and various signals were 
continuously monitored. A period ranging from 
half an hour to four hours, depending on the 
amplitude and frequency of waves being 
generated, was required to achieve a steady state. 
After reaching the maximal amplitude of the waves 
available in the present experimental setup, the 
wave amplitude was slowly decreased. 

During this process, the jump-up/down 
phenomena were observed, and the range of wave 
amplitudes where roll motions exist was obtained. 
When the jump up did not occur spontaneously, 
external disturbances of various kinds were 
imposed on the model at each different step of 
wave amplitudes; these disturbances produced 
large-amplitude stable roll motion in many cases. 
Video-tape recordings and/or photographs were 
made during the tests if desired. 

5. RESULTS AND DISCUSSION OF 
EXPERIMENTS 

5.1 General Results 

Figures 3 and 4 are photographs showing two 
views of the model rolling in longitudinal regular 
plane waves. In Figure 4, the view is from the 
absorber end of the towing basin. The rolling 
motion (model heeled to the starboard) in 
longitudinal regular plane waves is clearly evident. 

In the following figures, force-response curves 
are shown. The capital letters are used to denote 
the sweep-up process of wave amplitudes while the 
lower-case letters are reserved for the 
sweep-down process. This practice is followed all 
the way through from Figs. 5 to 8 except Fig. 6. 
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As the wave amplitude slowly increased, 
rolling did not occur until the wave height reached 
a certain critical value (£2). Then large-amplitude 
rolling occurred all of a sudden (the jump-up 
phenomenon). When we increased the wave 
amplitude continuously beyond the jump-up 
bifurcation value (£2), the amplitude of the rolling 
remained almost constant or even decreased 
instead of increasing monotonically as predicted 
by the theory. 

After reaching the maximum wave amplitude 
possible in our experimental setup, we slowly 
reduced the wave amplitude. The large-amplitude 
rolling continued at wave heights below the 
jump-up bifurcation value ((2). When the wave 
amplitude was decreased further to another critical 
value (£t;(i<(2)> tne large-amplitude rolling 
suddenly died out (the jump-down phenomenon), 
and no discernible rolling existed below (,. 

In the range of wave amplitudes between the 
jump up (C2) and jump down ((,) bifurcation values, 
the possibility of a stable nonrolling motion 
coexisted with the possibility of a stable 
large-amplitude rolling motion, which was 
sometimes as large as + 20° in the present 
experiment. When the model was not exhibiting 
any noticeable roll, some disturbances in the roll 
mode could cause a jump up to large-amplitude 
steady-state  rolling anywhere  between {, and  £?• 
The domain of attraction (i.e., the set of 
disturbances) for large-amplitude rolling increased 
as the wave amplitude increased toward (2- This 
subcritical type of instability was observed at all 
the locations of the model in the standing waves 
for a wave frequency of 0.60 Hz in our experiment. 

The coexistence of two possible motions for the 
same wave pattern is further described in Figure 
5, which contains a typical force-response curve. 
The wave frequency is 0.60 Hz at location number 
4 (refer to Fig. 6). The sequence of events is 
marked by arrows from A to H; 
,4->C->D->£->D-+G->W-»,4. The    wave 
amplitude marked at point H corresponds to (,, 
and the one at point C corresponds to (2- Just after 
the wave amplitude passed point C, a sudden jump 
up to point D occurred. Thereafter, the trivial 
solution was unstable and only the large-amplitude 
rolling was stable. 

After arriving at point E, the wave amplitude 
was decreased slowly. The large-amplitude rolling 
existed below point D, where the jump up occurred 
during the sweep up. When the wave amplitude 
was decreased slightly after point G, a sudden 
jump down to point H occurred and rolling 
stopped. Between H and C, two different stable 
motions exist, the nonrolling motion and the 
large-amplitude rolling. The motion that develops 
depends on the initial conditions.  It was surprising 

to observe such large-amplitude rolling of the 
model in waves of such small amplitudes just 
before the jump down, but we recall that the theory 
predicts that small pitch and heave motions can 
excite relatively large rolling. 

The responses in heave and pitch are nearly 
linear during the whole test, regardless of the 
magnitude of the roll response and the occurrence 
of jumps. Figures 5b-d show FFT's and time traces 
corresponding to a few points on the curves in Fig. 
5a. Figure 5b shows the FFT's and corresponding 
time signals at point B. The first harmonic 
components of all the responses of heave, pitch 
and roll are at the same frequency as the wave. 
The roll is not discernible with the naked eye there. 
Figure 5c corresponds to point D. (i.e., just after 
the jump up occurred.) The situation after rolling 
begins is described in Fig. 5c. The roll response 
has the largest peak at half the frequency of the 
waves, which is a dramatic change from Fig. 5b. 
The heave and pitch continue at the same 
frequency as the waves. Figure 5d shows the plots 
of the responses at point H (i.e., just after the jump 
down occurred). The large peak at half of the 
frequency of the waves disappeared and the slight 
rolling returned to the frequency of the waves. The 
magnitude of roll motion decreased drastically and 
was not noticeable with the naked eye. The 
general characteristics of the plots in Fig. 5d are 
similar to those in Fig. 5b. The responses between 
0 and C possess shapes similar to those in the 
plots of Figs. 5b and d, and the responses between 
E and G are similar to Fig. 5c. 

Figures 5e and f are parts of the long-time 
records for heave and roll responses recorded 
continuously on a strip chart recorder. Figure 5e 
clearly shows the sudden jump up of the roll 
motion. After the jump, its magnitude almost stays 
constant while the amplitude of heave varies as the 
amplitude of the wave is varied. Figure 5f shows 
the jump down. The small gap is due to an 
unintentional electric fluctuation that occurred for 
a very short period of time. Electric fluctuations 
occurred often because the duration of one test 
was tremendously long, as much as several days. 
Thus, the whole process had to be monitored. The 
same problems sometimes occurred because of 
thunder storms and automatic cutoff of the electric 
motor due to overheating. 

5.2 Effect of the Location in the Waves 

Experiments were conducted to show the 
dependence of the response on the location of the 
center of gravity of the model along a wavelength 
of the standing waves. These results are relevant 
to the questions of dynamic course instability and 
instability of motion of a ship when it is navigating 
with the same speed as the waves so that its 
encounter frequency is nearly zero.   The jump-up 

98 



and jump-down bifurcation values ((2andO) also 
varied with the different positions of the model in 
the waves. 

These observations are consistent with the 
work of Renilson and Driscoll {18^ They concluded 
from experiments conducted in the large 
circulating water channel (CWC) at the National 
Maritime Institute in Great Britain that the motion, 
the magnitude and direction of the side force, and 
the possibility of a ship broaching while operating 
in slowly overtaking following or quartering regular 
waves are dependent on its longitudinal position in 
the wave system. They actually considered the 
case of zero frequency of encounter. They found 
that a longitudinal wave-induced force can lead a 
ship to a steady-state position relative to the 
waves; at this point, the ship and the "following" 
waves are moving at the same speed. They 
showed that the response of a ship varies over the 
wavelength and the effects of heel angle due to 
rolling motion can lead to course instability such 
as broaching. 

We placed the model at various positions 
along a wavelength of the same standing waves 
with a frequency of 0.60 Hz. The relative locations 
are numbered 1-8 in Fig. 6. The node is numbered 
1, the antinode is 5, and so on. Changing the 
location of the ship along the wavelength changes 
the phase between the pitch and heave motions 

and, hence, changes the effective amplitude of the 
parametric excitation of the roll mode. 

Figures 7a-c show all the responses in each 
mode of heave, roll and pitch with the locations of 
the model as a parameter when the excitation 
wave frequency is 0.60 Hz. Figures 8a-h show the 
responses of heave, roll, and pitch in one set at 
each different location. 

The heave motions shown in Fig. 7a possess a 
systematic order: the heave amplitude is 
proportional to the wave amplitude at a specific 
location along a wavelength of the standing waves, 
which is the linear response as expected. In other 
words, the amplitude of heave response is largest 
at the antinode (location number 5) where the wave 
amplitude is the largest (marks E and e along the 
curve), the heave amplitude is smallest at the node 
(location number 1) where the wave amplitude is 
the smallest (marks A and a), and the heave 
amplitudes at other locations can be arranged in 
proper downward order from antinode to node 
according to the wave amplitudes at specific 
locations. 

The pitch motions, shown in Fig. 7c, also 
demonstrate a systematic order: the pitch 
amplitude is proportional to the wave slope at each 
specific location along a wavelength of the 
standing waves, which is also expected from the 
linear  results.     They  are  generally  opposite  in 

order to the heave responses: The amplitude of 
the pitch motion is largest at the node (location 
number 1) where the wave slope is the largest 
(marks A and a), the pitch amplitude is smallest at 
the antinode (location number 5) where the wave 
slope is the smallest (marks E and e), and the pitch 
amplitudes at other locations can be arranged in 
proper downward order from node to antinode 
according to the wave slopes at specific locations. 

In Figs. 7a and c, the responses in heave and 
pitch exhibit linear behaviour very clearly 
regardless of the existence of jump phenomena 
and the large-amplitude rolling for all the cases. 
These results confirm the assumption in the 
present analysis that roll does not significantly 
influence pitch and heave for the case considered 
here. 

Figure 7b, which shows the variety of 
responses in roll, demonstrates the coexistence of 
multiple stable responses. Some cases in Fig. 7b 
initially did not show the jump up, but then 
imposing disturbances externally typically yielded 
large-amplitude stable rolling. 

The effective amplitude of the parametric 
excitation of the roll mode is produced by the 
combined role of heave and pitch and hence varies 
with the location of the center of gravity in the 
wave form even when the wave frequency is fixed. 

Location number 2 produced the seventh 
largest heave amplitude out of the eight locations 
considered, the second largest pitch amplitude, 
and the largest amplitude of the upper-branch roll 
motion in general. Location number 1 (the node) 
produced the smallest heave, the largest pitch, and 
the second largest roll amplitude. Location 
number 5 (the antinode) produced the largest 
heave, the smallest pitch, and the third largest roll 
amplitude in general. Location number 6 produced 
the second largest heave, the seventh largest 
pitch, and the smallest roll amplitude, and so on. 
Hence, the present study significantly extends the 
work of Blocki |5) and Nayfeh and Sanchez (14). In 
the real motion, the ship will necessarily 
experience pitch; therefore, the pitch mode should 
be included along with the heave in investigating 
the parametric resonance of the roll mode. 

The amplitudes of the upper-branch roll 
motions are about the same for all eight locations 
considered in the present experiments. The 
largest rms amplitude of roll is approximately 9° 
and the smallest is 7° before the decrease of roll 
amplitude begins at higher wave amplitudes. In 
other tests at a wave frequency of 0.80 Hz, the roll 
amplitude reached 20 ° approximately. 

Figures 8a-h show the responses in heave. 
pitch, and roll for each location of the center of 
gravity as the amplitude of wave is varied.    The 
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center of gravity of the model was placed in 
location numbers 1-8 (refer to Fig. 6) along a 
wavelength of standing waves with a fixed wave 
frequency of 0.60 Hz. The large-amplitude roll 
motions exist at all the considered location 
numbers 1-8 except number 3. 

At location number 3, no roll motion was 
observed although a sufficiently long duration (on 
the order of hours) was allowed at each step of 
wave amplitude to obtain the steady-state 
condition of standing waves. No external 
disturbances were imposed in this case, and it is 
possible that there was a subcritical instability with 
(2 beyond the limits of the experiment. Comparing 
this case with the other cases in the neighborhood. 
we expect that rolling would have developed if 
external disturbances had been imposed on the 
model during the sweep-up/down procedure. 

Jump up occurred for the location numbers 1-5 
illustrated in Figs. 8a-e, These correspond to the 
conditions in which the center of gravity of the 
model was located between the node and the 
antinode of the standing waves so that the model 
was positioned "downhill" on the waves. In these 
cases, jump down followed during the process of 
sweep down of wave amplitudes. Location 
numbers 6-8 (Figs. 8f-h, respectively) yielded no 
spontaneous jump up to large-amplitude rolling. 
These correspond to the situation in which the 

center of gravity of the model was located on the 
rear part between the antinode and the node of the 
standing waves so that the model was positioned 
"uphill" on the waves. External disturbances were 
used to produce the jump up in these cases. 

Figure 7b illustrates that the earliest jump up 
occurred at location number 4 (mark D) and the 
latest jump up at location number 1 (mark A) while 
the latest jump down occurred at location number 
5 (mark e) and the earliest jump down at location 
number 8 (node h). In other words, the smallest 
wave amplitude that produces the jump up 
corresponds to the center of gravity of the model 
being at location number 4. The smallest wave 
amplitude for which the jump down occurred 
corresponds to the center of gravity being at 
location number 5. The upper-branch roll motions 
for location numbers 6, 7, and 8, which do not 
show jump up but show jump down only, were 
obtained by imposing the external disturbances at 
each step. 

The sizes of the domains of attraction of initial 
conditions for downhill positions of the model were 
larger than those for uphill positions. The more the 
center of gravity was behind the antinode, the 
harder it was to obtain the upper-branch roll 
motion. 

The largest overhang range of wave 
amplitudes is found for location number 5 (the 
antinode, marks E and e). 

Comparing with the subcritical-type 
force-response curve of the analytical results, we 
see that the shape or tendency of the upper-branch 
shows the largest similarity at location number 2. 
In other cases, moderate similarities are found. 
Generally, after the jump up the amplitude of the 
rolling remains nearly constant for a while and 
then decreases as wave amplitude continues to 
increase. The range where rolling has a constant 
amplitudes varies with the position of the mass 
center. 

Because the wave frequency of 0.60 Hz is 
slightly smaller than twice the roll natural 
frequency (2 x 0.32 Hz), the detuning parameter a 
is negative, and thus the subcritical-type 
force-response curves were obtained in these 
experiments as predicted by the theory (refer to 
Fig. 2). We could not produce a supercritical-type 
instability experimentally. 

5.3 Miscellaneous Observations 

Figure 9 shows the bifurcation wave 
amplitudes of jump up/down as the location of the 
model is varied. Vertically above the jump-up 
curves are the regions where the trivial responses 
are unstable and the large-amplitude roll motions 
are the only stable responses. The intervals 
between the jump-up curves and jump-down 
curves are the regions where two stable responses 
(i.e., the trivial and the large-amplitude roll 
responses) coexist. The regions below the 
jump-down curves are where the trivial roll 
motions are the only stable responses. For 
different wave frequencies, we would expect to find 
results similar to those in Fig. 9. 

If the jump-up bifurcation wave amplitudes are 
not marked it means the jump up to the 
large-amplitude roll motions did not occur during 
the process of sweep up. In such cases, external 
disturbances were imposed at each step during the 
sweep-down process, then the jump down followed 
and its wave amplitude was recorded as shown in 
Figure 9. 

We also observed a penetration phenomenon 
in the case of a nonstationary excitation. If we 
increased the wave amplitude fast enough, the 
jump-up phenomenon occurred at a value of the 
wave amplitude noticeably higher than the 
quasi-steady jump-up bifurcation value (£2). The 
penetration of trivial roll motion into the regime 
where trivial motion is unstable is due to the 
nonstationarity of the wave excitation. The higher 
the sweep rate of wave amplitude was, the deeper 
the   penetration  was.     A   typical   force-response 
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curve theoretically produced by Nayfeh and Asfar 
(19) is listed in Fig. 10. The observations were in 
qualitative agreement with this result. 

In the present experiments capsize never 
seemed imminent in any of the tested cases. This 
can be attributed to having sufficient GM or area 
under the GZ curve. The effect of GM is not simple 
because it affects both the natural roll frequency 
and the static stability. In wave conditions up to 
the limit of the towing basin at VPI & SU, although 
the model did not show capsizing in high waves, 
sometimes the water regularly swept the deck. 

5.4 Discrepancies 

We found good qualitative agreement between 
the theoretical and experimental results. However, 
there exist several discrepancies. 

We note from force-response curves that as the 
wave amplitudes are increased, the magnitude of 
the large-amplitude roll motions decrease for all 
the considered cases here. This has also been 
observed by other investigators; e.g., see Dick, et 
al. (20). In the free model scale experiment 
performed in the real sea, they showed that when 
the model was at zero speed in head seas the roll 
amplitude was almost constant at higher wave 
heights while the pitch amplitude increased 
linearly as the wave heights increased. 

The discrepancies may be due to one or more 
of the following four reasons: First, the hydrostatic 
characteristics of a ship in waves can differ 
markedly from its characteristics in calm water. 
Second, while the roll motion causes relatively 
small waves that reflect from the sidewalls of the 
tank, the heave and pitch motions generate 
relatively large waves that do reflect from the 
sidewalls and form transverse standing waves on 
both sides of the model. The crests of these waves 
are a little aft of the midship section of the model, 
and they always meet the model just before the 
maximum roll angle occurs. Consequently, the 
reflected waves also act to limit the roll motion. 
Third, because the model can pitch as well as 
heave, the difference in the phases of these two 
modes might cause the effective amplitude of the 
parametric excitation to decrease. It is a 
combination of the heave and pitch motions that 
produces the effective parametric excitation in the 
roll equation. Fourth, it is worthwhile to consider 
the work of Eda, ef al. (21) and Taggart and 
Kobayashi (22). They showed that a significant 
coupling of roll and yaw can develop due to the 
asymmetry of the underwater hull form of the 
heeled vessel. This is explained in the following 
way: the asymmetric form acts as a cambered low- 
aspect-ratio lifting body, which, together with the 
forward speed, produces sway forces and roll and 
yaw moments. When a vessel has relatively small 
values of GM, this can lead to dramatic increases 

in roll and yaw motion when the ship is operating 
in waves, a significant example of the nonlinear 
process in the responses of a vessel. Thus, in a 
test when yaw and sway motions are restricted, the 
reaction forces exerted on the vessel from the 
sides of the tank could decrease the roll motion. 

6. CONCLUSIONS 

It has been demonstrated both experimentally 
and theoretically that a ship in a head or following 
sea can spontaneously develop severe rolling 
motion. The energy put into the pitch and heave 
modes by the wave excitation may be fed into the 
roll mode by means of nonlinear coupling among 
those modes. To predict the roll motion, earlier 
investigators have used the single-degree- 
of-freedom roll equation and neglected the 
sometimes pronounced effects of other modes due 
to nonlinear coupling. These coupling effects often 
take the form of a parametric resonance, which can 
lead to a particularly dangerous situation. The 
nonlinear roll equation is linearized by assuming 
harmonic pitch and heave motions, and the 
resulting Mathieu (or Hill) equation is used to 
determine the conditions for the stability of trivial 
solutions. With this procedure, however, the 
predicted roll angle grows exponentially with time, 
which is unrealistic. 

To investigate the loss of dynamic stability and 
the development of large-amplitude rolling motions 
of a vessel, we began with a dynamic system of 
three degrees of freedom (both theoretically and 
experimentally). The present model to describe 
the parametrically excited rolling response of a 
vessel is an improvement over the one used in the 
previous work of Blocki {5] and Nayfeh and 
Sanchez (14). Both the pitch and heave modes are 
used to determine the effective amplitude of the 
parametric excitation of the roll mode. In the 
equation for the roll, the kinematic-kinematic 
nonlinear coupling terms among the three modes 
are included as well as the static-static terms. 
Thus, the present approach is closer to reality 
when the longitudinal asymmetry of a vessel with 
respect to the midship section is taken into 
account. Further, in the experiments, the model 
was placed longitudinally in the towing basin to 
eliminate the possibility of any external excitation 
in roll and hence to produce the pure parametric 
excitation by the regular plane waves. 

The principal parametric resonance was 
considered; the frequency of the wave excitation is 
approximately twice the natural frequency of the 
roll mode. 

In the analysis, the equations for the heave and 
pitch modes were linearized, and their harmonic 
solutions were substituted into the equation for the 
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roll mode. Due to the heave-pitch-roll coupling, 
the amplitudes and frequencies of the heave and 
pitch motions combine to play the role of the 
effective amplitude and frequency of the 
parametric excitation. The parametric term in the 
roll equation basically accounts for the 
time-dependent variation of the metacentric height. 
The resulting nonlinear ordinary differential 
equation with time varying coefficients governs the 
motion of the roll mode. 

The method of multiple scales was used to 
determine a first-order approximation to the 
solution. From the solvability condition, two 
equations were obtained to describe the 
modulations of the amplitude and the phase of the 
approximate solution. These modulation equations 
were used to determine fixed-point solutions and 
their stability for roll responses. These solutions 
were verified by numerically integrating the 
modulation equations using the 5th and 6th order 
Runge-Kutta-Verner scheme. 

Supercritical- and subcritical-type force- 
response curves were obtained. The latter shows 
the coexistence of multiple stable solutions, a 
frequent feature of nonlinear dynamics. Jump 
phenomena were also found, and in the region 
between the two bifurcation points of jump up and 
jump down, two different responses were possible, 
depending on initial conditions. 

The experiments were performed in the towing 
basin of VPI & SU using a tanker model which was 
constrained in surge, sway and yaw but allowed to 
heave, pitch and roll freely. From the basic wave 
tests, it was decided to use wave frequencies 
around 0.60 Hz, which produce plane waves for the 
widest range of amplitudes. The model was 
ballasted so that the natural frequency in roll is 
about half of the wave frequency to produce a 
principal parametric resonance. Wave amplitudes 
were slowly varied with fixed wave frequencies. 

The subcritical instability was found in the 
experiments which involves jump phenomena 
between the multiple fixed-point solutions. The 
amplitude of the roll motion was sometimes as 
large as + 20° in the present experiments. At 
times when the model was not exhibiting any 
noticeable roll motion, some external disturbances 
in the roll mode caused a jump up to a 
large-amplitude stable roll motion in the overhang 
region. The large-amplitude roll motion was clear 
from observations, time traces, and FFT's. 

It was observed that the occurrence of 
large-amplitude roll motion depends on the 
location of the model along a wavelength of the 
standing waves. These results can address the 
cases of dynamic course instability, possible 
broaching, and instability of the motion of a ship 
when it is  navigating in following seas with the 

same speed as waves so that its encounter 
frequency is nearly zero. In this case, both the 
heave and pitch modes played an equally 
combined role, rather than only one of the two 
modes played the more dominant role, to produce 
the effective amplitude in the parametric excitation 
of the roll mode. It was also noted that the 
large-amplitude roll motion occurred more easily 
when the center of gravity of the model was 
located in the front part of the standing wave 
between the node and the antinode. 

The present study of ship motion represents a 
significant extension of the work done by Blocki {5} 
and Nayfeh and Sanchez (14). In the real situation, 
the ship will necessarily experience pitch motion 
and thus the pitch mode as well as heave should 
be included in investigating the parametric 
resonance of the roll mode. 

The penetration phenomenon was also 
observed. The penetration of trivial roll motion 
into the regime where trivial motion is unstable is 
due to the nonstationarity of the wave excitation. 

It was noted that as the wave amplitudes were 
increased, the large-amplitude roll decreased in 
magnitude. Moreover, we were not able to 
produce a supercritical-type instability. Except for 
these, we observed good qualitative agreement 
between the theoretical and experimental results. 

The discrepancies are conjectured to be due to 
one or more of the following four reasons: the 
difference between the hydrodynamic and 
hydrostatic characteristics in and out of waves, the 
reflected waves from the sidewalls of the basin, the 
role of interacting phases between the pitch and 
heave modes in yielding the effective parametric 
excitation in the roll mode, and the reaction forces 
due to the support blocking side motions that 
would result in a completely free model. 

To design more comfortable and safe vessels, 
one must understand the complicated dynamics of 
a ship moving in a general seaway. Included 
among the important dynamic parameters are the 
ratios of natural frequencies and the nonlinear 
interactions among the hydrostatic and 
hydrodynamic forces and moments. The goal of 
the present effort was to contribute some basic 
insight toward an eventual entire understanding. 

The data obtained in our experiments were 
voluminous and only some could be given in the 
present paper. More data and details of the work 
can be found in the forthcoming dissertation of I. 
G. Oh (27). 
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Figure 1.    Force-response    curve    (super-critical 
type)   when   fi, = ii2 = 0.04, a = 0.20.   The 
solid lines (  ) are stable and the 
broken     lines     ( )     are     unstable 
solutions. 

Figure 2. Force-response curve (sub-critical type) 
when fi, = H2 = 0.04, a = -0.20. The solid 
lines ( ) are stable and the broken 
lines ( ) are unstable solutions. 

Figure 3. A photograph of the perspective view of 
the model rolling in the waves. 

Figure 4. A photograph of the rear view of the 
model rolling in the waves (heeled to the 
starboard) 
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Figure 5"(a). A typical experimental force-response curve : The responses of heave 
(inch), pitch (°) and roll (°) versus rms amplitude of the wave when the wave 
frequency is 0.60 Hz and the center of gravity of the model is at location 
number 4. 

Heave 
1 Jl J   1 1 I 
r -j   i - i I i 

[i   ; 1 l 
i     ill   i . I 1 

Roll 

| 1 i     " " T 1 
1 

-- 

'/ ^ r-x/-j-^~ 

j 1 
A I 1 1 

~l 

-I 
 I 

Pitch 

1 ~M 1-A—A -/\-A- 

W M m m 
i 

A-A-A 
1 w AA AA| 

'1   1 1 III —n>— t 
lAfll 

_l 

Wave 

1 [At,ALJ1(h(/ 1_A A _/v A—j\ A /V—A—A-- A—A—| 

[I LU 1L1JL1.U1Ü.LLÜ LuXL \ktklr \M Mi/ W \J 
TTVll 

UAIAAL 
! 1   
1 iv vy VHV|VHy V V  v  |V  V   y 

I 1 rz_JiJ. r I i     1 

Figure 5 (b). The plots of FFT's and time traces of heave, roll, pitch and wave (from 
the top) at point B of Fig. 5(a), just before roll motion is initiated. The wave 
frequency is 0.60 Hz and the center of gravity of the model is at location 
number 4. 105 
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Fiaure 5 (c) The plots of FFT's and time traces of heave, roll, pitch and wave (from 
the top) at point D of Fig. 5(a), just after roll has been initiated. The wave 
frequency is 0.60 Hz and the center of gravity of the model is at location 

number 4. 
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Figure 5 (d). The plots of FFT's and time traces of heave, roll, pitch and wave (from 
the top) at point H of Fig. 5(a), just after the roll motion has vanished. The 
wave frequency is 0.60 Hz and the center of gravity of the model is at 
location number 4. 
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Figure 5 (e). A part of long-time signals of heave (above) and roll (below) recorded 
on the strip chart recorder: shown here are 15 hours out of a total of 52 
hours of the test. The moment of jump up in the roil motion is clearly 
shown. The wave frequency is 0.60 Hz and the center of gravity of the 
model is at location number 4. 

_;....,^^-r^ ... 

Figure 5 (f). A part of long-time signals of heave (above) and roil (below) recorded 
on the strip chart recorder: shown here are 19 hours out of a total of 52 
hours of the test. The moment of jump down in the roll motion is clearly 
shown. The wave frequency is 0.60 Hz and the center of gravity of the 
model is at location number 4. 
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Figure 6. The numbering of the locations of the 
center of gravity of the model in a 
wavelength of a typical standing wave: 
The node is #1, the antinode is #5, etc.. 
The bow is at the left and the stern is at 
the right.  The wave frequency is 0.60 Hz. 
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Figure 7 (a). The responses of heave at various locations of the model in the waves; 
the wave frequency is 0.60 Hz. 
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Figure 7 (c). The responses of pitch at various locations of the model in the waves; 
the wave frequency is 0.60 Hz. 
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Figure 9. The rms wave amplitude where jump 
up/down occurred when the model is at 
various locations. The wave frequency is 
0.60 Hz. 

Figure 10. A typical force-response curve with a 
nonstationary excitation, (from Nayfeh 
and Asfar (19] ) 
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A Localized Finite-Element Method for 
Nonlinear Free-Surface Wave Problems 
K. Bai, J. Kim (Seoul National University, Korea), 

H. Lee (Hyundai Maritime Research Institute, Korea) 

ABSTRACT 

This paper describes a localized finite-element method 
applied to steady nonlinear wave-resistance problems in 
three dimensions. The physical model is taken to 
simulate the towing tank experimental conditions. The 
exact nonlinear free-surface flow problem is formulated 
by a weak formulation. In the numerical procedures, two 
new and notable steps are introduced: the difficulty in 
the numerical treatment of the radiation condition is 
overcome by the introduction of an intermediate 
nonlinear-to-linear transition buffer subdomain. The 
second notable step is the use of modal analysis in the 
final stage of the solution procedures and this enables us 
to save the computation time enormously. As a result, 
the present method can treat much larger free-surface 
domain which was not possible previously. As the 
applications of the present numerical method, we treated 
specifically, a pressure patch on the free surface and a 
submerged hydrofoil. 

1 INTRODUCTION 

The wave-resistance problem is one of the oldest and 
interesting topics in ship-hydrodynamics. The problem 
has been generally formulated in the scope of the 
potential theory. Then the fluid motion can be described 
by the well-known Laplace equation as the governing 
equation and appropriate boundary conditions. However, 
the nonlinear boundary condition on the unknown free 
surface makes an analytic method of solution 
intractable. Due to this difficulty this problem has been 
usually treated by some form of restricted theories where 
the  free-surface conditions are linearized. 

From Kelvin(1886) to Ursell(1960) the qualitative 
features of the downstream wave pattern have been 
investigated based on the linear dispersion theory and the 
method of asymptotic expansions. The first theoretical 
approach to the wave-resistance problem of a ship is the 
celebrated thin-ship theory initiated by Michell(1898). 
Although the applicable range of this theory is restricted 
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because of its basic assumptions on the ship geometry, it 
has provided much information on the wave-making 
phenomena with its rich theoretical results. 

As another effort to apply the linear theory to a more 
realistic ship, the numerical computations for the 
Neumann-Kelvin problem satisfying the exact hull- 
boundary condition has been also made. Many authors 
treated this problem with various numerical methods. To 
name a few, Guevel et al.(1977) used Green's function 
method and Bai(1977) used the localized finite-element 
method. It can be said that the applicable range of this 
theory is not so wider than that of the thin-ship theory 
because of its lack of consistency in treating the free- 
surface condition. 

In the linear theory given above, the basic flow in 
linearizing the free-surface condition is the uniform 
flow. The uniform flow cannot be the only choice for 
the basic flow. For example the flow field generated by 
a double-body model is used in the slow-ship theory. As 
a numerical method for this theory, Dawson(1977) used 
the panel method with the treatment of the convection 
terms by the forward finite-difference operators. The 
introduction of the forward difference operator and the 
resulting numerical damping, make it possible to satisfy 
the radiation condition numerically. The major 
advantages of this method are the consideration of the 
ship geometry in the early stage of the lineariziation and 
the absence of the water-line integral, which causes 
computational difficulties in the Neumann-Kelvin 
theory. However, the numerical damping introduced for 
the radiation condition makes the result of this method 
less meaningful at the far downstream. 

Recently, the direct numerical analyses on the nonlinear 
wave-resistance problem has been attempted along with 
the increasing speed and capacity of the modern digital 
computers. The numerical methods along this line are 
the Rankine- source method, the finite-difference 
method, the finite-element method and the spectral 
method. The Rankine-source method is an extension of 
Dawson's method to a nonlinear problem and already 



shows a wide engineering application as can be seen in 
Ni(1987), Raven(1988) and Kim(1990). But this method 
has a similar drawback as in Dawson's method in 
treating the numerical radiation condition. Miyata and 
Nishimura(1986) introduced the finite-difference method 
for a wave-resistance problem. They solved an unsteady 
Navier-Stokes equation with the complete consideration 
of the ship geometry and the free-surface nonlinearity. 
This method requires an extremely heavy computations 
with the computing power of the super computers. But 
their numerical result shows not so much improvements 
compared to the other methods with more restricted 
assumptions on the governing equations and the 
boundary conditions. Because of the high Reynolds 
number and the complexity of the bow and the stern 
geometries, and the resulting difficulties in the 
turbulence modeling and the mesh size required for a 
high resolution near the hull, there are few numerical 
methods which gives a satisfactory result even for the 
problem, without the free-surface at present. The 
spectral method has been applied to the water-wave 
problems by Dommermuth and Yue(1988). This method 
has shown the efficiency and the accuracy in many other 
applications. This method has been applied to the 
nonlinear wave-resistance problem by an approach in an 
initial-value problem for the steady waves. Thus much 
computational time is required to obtain the steady 
solution. 

From the above review on the various numerical 
methods, we may conclude that a more efficient 
numerical method for a nonlinear wave-resistance 
problem should satisfy the following requirements to 
modify the drawbacks in the previous methods. Firstly, 
a direct treatment of a steady state problem is more 
desirable for the computational efficiency. Secondly, the 
numerical damping should be absent in the treatment of 
the nonlinear free-surface condition. Lastly, the 
numerical radiation condition should be still satisfied 
even after the numerical damping is successfully 
suppressed. For a linear wave-resistance problem, 
Bai(1977) developed a localized finite-element method 
which satisfies the above criteria. In this paper we 
extend the idea of the localized finite-element method to 
a nonlinear problem and develop an efficient numerical 
method for a steady three-dimensional wave-resistance 
problem to simulate a towing tank experiments.. 

As the applications of the present numerical method, we 
treat the steady nonlinear waves generated by a circular 
pressure patch on the free surface and a submerged 
hydrofoil. Since the basic properties of the downstream 
waves generated by the pressure patch do not different 
from that of the real ship, we can observe the general 
features of the nonlinear interactions in the Kelvin wave 
pattern from the results. The shape of the pressure was 
taken as that treated by Dommermuth and Yue(1988) by 
the spectral method.  Because of the efficiency of our 114 

numerical method, we can obtain the steady solution in 
the domain approximately three times larger than theirs, 
which enables us to observe the nonlinear wave patterns 
more clearly in a much larger computed domain. Our 
result shows the same nonlinear effects as that of 
Dommermuth and Yue, that is, the widening of the 
Kelvin angle and the increase in the wave numbers and 
magnitude of the wave profiles. In our computation we 
could confirm that the strong nonlinearity near the 
cuspline is due to the far-field wave interactions. We 
propose an additional simple analysis based on the 
generalized Stokes' correction on the dispersion relation 
and the method of stationary phase. From this analysis 
we could find that the off-diagonal terms in the wave 
interaction kernel is important in predicting the correct 
nonlinear effects along the cuspline. 

There is a growing interest in the hydrodynamic 
phenomena around the submerged hydrofoil as a 
candidate for an application to a high-speed vessel in the 
future. The lifting problem of a hydrofoil submerged 
beneath the free surface has been mainly treated in the 
scope of a linear water-wave theory in the past. 
Nishiyama(1965) used a modified lifting-line theory to 
obtain the hydrodynamic forces acting on the three- 
dimensional flat hydrofoil with a relatively high Froude 
number and submergence. Bai(1978) treated the two- 
dimensional hydrofoil problem with the localized finite- 
element method. His numerical results show good 
agreements with the experimental results of Parkin et al. 
(1956) except a few cases of the extremely shallow 
submergence. Lew et al.(1991) investigated the free- 
surface effect on the cavity and the lift of a two 
dimensional hydrofoil by the lifting surface theory. 

In the nonlinear theory for a hydrofoil problem, two 
lines of the approach have been used. The first line of 
the approach is by the use of a numerical Navier-Stokes 
equation solver, based on a finite difference method. 
In this method the problem is formulated as a transient 
problem. Two-dimensional problem has been treated by 
Cordonnier(1985) and Coleman(1986), and three- 
dimensional problem by Kwag and Mori(1991). In 
general their results do not show a good agreement with 
the experimental results despite of the generality in their 
mathematical formulation and extremely heavy 
computational efforts. The second line of the approach 
is based on the potential theory. We can find the 
examples along this line in Nakatake et al.(1988), Qi 
and Mori(1990) and Bai and Han(1992). Nakatake et.al. 
used the Dawson's method for two-and three- 
dimensional problem and showed an agreement with the 
experiments only for the low Froude numbers. Qi and 
Mori used the boundary-element method for a three- 
dimensional transient problem. Bai and Han used the 
localized finite-element method for a two-dimensional 
problem and showed some improvements to the previous 
linear results of Bai(1977). 



We treat the lifting problem for a submerged hydrofoil 
as the second application of the present numerical 
method. The operating condition of the hydrofoil can be 
characterized by the high speed with the shallow 
submergence. Under this condition, the hydrofoil can be 
effectively modeled by lifting lines, where the chord- 
wise quantities are treated in a mean sense. Specifically 
the computations are made for a uniform and elliptic 
distributions of the sectional circulation. The numerical 
computations are made for several cases by changing the 
Froude number, the depth of submergence and 
magnitude of the circulation. Particularly, we could 
examine the wave field generated by the free-vortex line, 
which cannot be obtained in the linear theory. As a more 
practical application of the present method we calculated 
the nonlinear corrections on the induced velocities on the 
bound-vortex line, and the resulting hydrodynamic force 

components. 

<£(x,y) = 4>(x,y,£) (5.a) 

<Vx<y) =Vi+vrvr *n(x,y,n       (5.b) 

and the nonlinear term N[ <j>, <£n,f] is defined as 

N[. vfl = (6) 

(A+vf-v* r    - 
1+Vf-Vf 

V 4>-V <t> 

The above boundary value problem may be completed 
by imposing the following radiation condition at infinity. 

V<£ | is bounded as x -» + <x (7.a) 

2 MATHEMATICAL FORMULATION 

We consider the wave elevations and the flow fields 
generated by a pressure patch translating with a speed U 
in a towing tank of the depth h and the half width W. 
The fluid contained in the tank is assumed to be inviscid 
and incompressible and its motion irrotational. The 
surface tension on the free surface is neglected. We 
further assume that the flow is a steady state in the 
coordinate system Oxyz fixed to the disturbance. The 
xy-plane is defined as the mean free surface and 
direction of the z-axis opposite to the gravity. In the 

scope of the potential theory, we can describe the fluid 
motion by a boundary-value problem with the governing 
equation and the boundary conditions given as 

V4> | -* 0 as x (7.b) 

V24> = 0, -h < z <  r (1) 

In actual computations, the above radiation condition is 
too abstract to be utilized. We require a more specific 
condition, for example, Dirichlet, Neumann or mixed 
type boundary conditions. However, these types of 
radiation condition are not available for nonlinear water- 
wave problems. For linear problems, however, the 
velocity potential can be expanded by the eigenfunctions 
and the radiation condition can be given as mixed type 
boundary conditions or initial conditions for each 
eigenfunction. Bai(1977) utilized these results and 
developed a localized finite-element method where the 
finite element solution defined in the computational 
domain is matched to the eigenfunction representation in 
the truncated infinite subdomains. In this paper we 
extend the idea of the localized finite-element method to 
the nonlinear problems. 

U 
xx Px(x,y) (2) 

U d „ — — ftrNf ax *n.fl 

u — 1 .„— 
f =7 V^p(x'y) + ;Nr*'*n'fl 0) 

*„ = o, |y| = Wandz = -h (4) 

where <£ and f denote the velocity potential and the wave 
U2 

elevation, respectively, and v is defined as —.    The 

variables 4> and <j>   are defined as the velocity potential 

and its normal velocity on the free surface, i.e., 
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3 METHODS OF SOLUTION 

We use finite element method for the spatial 
discretization to obtain a matrix equation of the discrete 
velocity potential and wave elevations. Unlike the linear 
problem, the coefficients of the matrix equation are no 
longer constants. They are functions of the unknown 
variables due to the nonlinearities in the variable domain 
and on the free-surface. Therefore, it is necessary to 
adopt an iterative scheme in the numerical procedure. 
We use a kind of fixed-point algorithm as the iterative 
scheme in which the terms related to the free-surface 
nonlinearity and the variable domain are evaluated from 
the result of previous step. Then the remaining operator 
to be inverted is that of the Neumann-Kelvin problem 
defined in a separable rectilinear domain. This operator 
can be simply inverted by the use of modal analysis. 
Each mode of the finite element solution resembles the 
exact eigenfunction of the Neumann-Kelvin operator. 



The radiation conditions for these modes can be treated 
as a boundary or an initial condition according to the 
ellipticiry or hyperbolicity of each mode. But this 
treatment requires the absence of the forcing terms at the 
end points. This requirement can be accomplished by the 
introduction of the nonlinear-to-linear transition buffer 
sub-domain, which will be discussed in the following 
sub-section. 

3.1 Nonlinear-to-Linear Transition Buffer 
Sub-domain 

Here we slightly modify the boundary value problem 
given in the previous section for a further treatment of 
the radiation condition. We define a locally-linearizing 
parameter e(x,y) which is a smooth function varying 
monotonically from 0 and 1. The Equations (l)-(3) and 
(5.a,b) are modified to 

v2<£ = 0. -h < z <   £ f 

+   V -— Px(x,y) 
Pg   x 

(8) 

(9) 

--■fuNi *,*_,«ri) g« n 

f   =-7Y- —P(x,y)+?N|7,7n,efl   (10) J 5        X      02 2 " 

disturbances are taken inside the nonlinear subdomain so 
that the problem to be solved in the linear subdomain 
becomes a homogeneous Neumann-Kelvin problem. This 
enables us to treat the radiation condition more 
effectively, which will be discussed in the later sections. 

3.2 Weak Formulation 

The differential equations given in the previous section 
can be equivalently formulated by a weak formulation. 
The construction of a weak form is based on the scalar 
product of functions and the integration by parts. This 
process enables us to choose the candidates for the 
approximate solution from a wider class of functions. 
For example, in our problem, the original differential 
equation requires the velocity potential to have 
continuous second order derivatives whereas the weakly 
formulated equation requires the derivatives up to the 
first order to be square-integrable in any finite region of 
the fluid domain. The original fluid domain is infinite in 
our problem, but the actual computational domain will 
be taken finite after truncating the infinite linear 
subdomain. 

In the present nonlinear problem, the fluid domain is not 
known a priori as so is the surface. It is advantageous to 
transform this moving domain to a fixed domain in the 
numerical computation. For this purpose, we adopt 
following coordinates transformations 

<Mx,y) = 4>(x,y,£f) (ll.a) 

bn  = V1 + V(£f)-V(£f) WWW        (n-b) 

It should be noted in the above equations that the exact 
nonlinear problem can be obtained when s = 1 while the 
well-known linear problem can be recovered when a = 
0. With this in mind, we divide the original fluid 
domain into the following three subdomains according to 
the degree of nonlinearities in each subdomain: 

£(x,y) =   1; 

0 < e(x,y) < 1; 

(12) 

DL :    £(x,y) = 0. 

Here DN and DL denote the nonlinear and linear sub- 

domain, respectively, and Dg is the nonlinear-to-linear 

transition buffer subdomain where the free-surface 
nonlinearities are artificially and monotonically reduced 
to zero as in the linear problem . All the sources of the 

(x,y,z)-(x,y,z'), 

z' = z'(z;ef) 

(13) 

where z' is a continuous and monotonic function of z 
defined in the interval (-h, ef) with the end values 
z'(-h;ef) = -h and z'(£f;£fl = 0. The linear and/or 
piecewise linear functions are used as the transformation 
function here. Examples of these transformations are 
shown in Fig. 1. 

If we denote the space of the admissible solutions as Hp 

and define an auxiliary function space Hp= 

{7(x,y) =^(x,y,0) |<9(x,y,z") E HD }, the weakly 

formulated problem can be stated as follows. 

Find the functions 4>(x,y,z') 

<f>n, f G Hp such that 

: Hj> and 

< <   <p,  <t>   > >£f V <    <p > =    (14.a) 

-^<   <p    P(x,y) >+;<p,£N[*. 
Pg x g        x ,fif] > 
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for all test functions <p(x,y,z') €■ Hrj> and 3.4 Analysis of the Linear Problem 

<  v, 4>n > = << <P, <t> >>ef, (14.b) 

U 
< f>> r> = ~ < <p. ^x 

> (14.c) 

+ - <   <p,  e N| 4>, 4>n,£fJ > 

for all v5 (x,y) £ Hp 

where the brackets are used to define the following 
bilinear functionals. 

<  ip, <t>  > = j j   <p  4> dxdy (15.a) 

r 
<< <?, <^> > > f = |jj V^-V^ dz dxdy (15.b) 

-h 

It can be easily shown that Eq.(14.a) is a weak form of 
Equations (1),(2),(4) and Equations (14.b) and (14.c) 
are related to Equations (3) and (5.b), respectively. The 
details of the derivation of the above equations are 
basically same as that of the linear problem, which can 
be found in Bai(1977). 

It should be noted that Eq.(14.a), which is the main 
equation to solve, is highly nonlinear equation for the 
unknown functions. The nonlinearities are due to the 
nonlinear term, N, in the right-hand side and the 
variable integral domain of the doubly bracketed term. 
As mentioned earlier, -we treat these nonlinear terms by 
an iterative scheme. We rewrite Eq.(14.a) as 

< < <p, 4> > >0 ~ v <  <PX, > = (16) 

— <   <p    P(x,y) > +-<<p ,sN[ <j>, <t> ,£f] > pg X g X 

- {< < <p, <j> > >££ - < < <p, <$> > >o } 

where all the nonlinear terms are on the right-hand side. 
We evaluate the nonlinear terms by the previous results 
or an initial guess. Then we can compute new values of 

the velocity potential  from Eq.(13) and   <£n,  f from 

Eq.(14.a,b). We repeat these iterations until a 
prescribed convergence condition is satisfied. 

The variational equation (16) to be solved in each 
iteration step can be viewed as the Neumann-Kelvin 
problem with a pressure distribution on the free surface 
and source distribution in the fluid domain. This 
problem can be formally given as 

V2^ = -q(x,y,z) ,    -h < z <   0 

+ " 4>xx = fx(x>y)- 0 

(17) 

(18) 

where forcing term q(x,y,z) is originated from the 
domain nonlinearity and f(x,y) from the pressure 
distribution and the nonlinear terms in the free-surface 
condition. The boundary conditions other than the free- 
surface conditions are same as that of the previous 
nonlinear problem and omitted here. If we assume that 
the nonlinear and buffer subdomains are located between 
x = a and x = b, the forcing terms are zero outside this 
region or the linear sub-domain, i.e., 

q(x,y,z) = f(x,y) = 0, (19) 

for x < a or x > b 

The linear problem given above can be formulated as a 
variational problem. Then the above equation can be 
replaced by an equivalent problem of imposing a 
stationary condition on the functional J defined as 

J = | L dx, (20.a) 

L = i  [f ( VJ>-V4> - 2 q<f>) dy dz (20.b) 

-   I (f*x2-f*x) 
dy 

z=0 

where L is a Lagrangian function. 

With the variational formulation given above, we use the 
finite-element method as the spatial discretization. The 
computational domain is discretized by the finite number 
of elements and the velocity potential is approximated by 
the finite-element basis functions. In the present 
problem, the domain is rectilinear and the three- 
dimensional finite-element basis functions can be written 
as a tensor product of the one-dimensional basis 
functions. The velocity potential can be approximated as 

*(x,y,z) =   E   Xi(x) Yj(y) Zfc(z) 4>ijk 
i,j,k 

(21) 
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At this stage, however, we discretize the y- and z- 
direction only for the further analysis. The velocity 
potential is alternatively written as 



Ny   NZ 
tf>(x,y,z) =   I    S   Yj(y) Zk(z) 4>jk«. 

j=lk=l 
(22) 

where Ny and Nz are the number of nodes in y- and z- 
directions. Here, Yj(y) and Zk(z) are the finite-element 
basis functions in each direction. In the present paper, a 
piecewise linear basis functions are taken. Substituting 
this equation into Eq.(20.b) and setting the first variation 
to be zero, we obtain the following linear ordinary 
differential equations of the discrete velocity potential 

E   {-Fy(/  -^Dkl)ö (23) 
j,l 1J U J 

y   z y    z 
+ (G. F + F..G14       =q.,W 

y   kl        ij    kl     jl ik 

fori=l,...,Ny, k= 1,...,N2 

where the tensors are defined as 

F^. = | Y.(y) Y.(y) dy,      F^ = j Z^zJZ^z) dz, 

Gy. = j v!(y) Y (y) dy,    G    = j Z (z) Z (z) dz, 
kl     J    k       1 i        J 

D    = Z (0) Z (0), 
kl        k       1 

q   (x) = \\   q(x,y,z) Y.(y) Z (z)  dy 
ik i        K 

(24.a-f) 

dz 

+ |   f (x,y) Y.(y) Z(0) dy 
J      x i 

The differential equations given in Eq.(23) can be 
viewed as a coupled spring-mass system. They can be 
decoupled by the modal analysis. We can treat the modal 
analysis in the y- and z-direction separately since the 
coefficients are tensor products of each direction. The y- 
directional modes are represented as the cosine function, 
whereas the z-directional modes related to each y-modes 
consist of exponential mode and sinusoidal mode. The 
signs of the eigenvalues {kfe, i=l,...,Ny-, k=l,...Nz} 
are negative for exponential modes and positive for 
sinusoidal modes. We will call them local modes and 
wave modes respectively. The properties of each modes 
are similar to that of the eigenfunctions of the exact 
linear problem. The details of the modal analysis and the 
comparison with the eigenfunction expansion are given 
in Kim(l991). The decoupled equations of each mode, 
say </>(x), can be written as 

where X is the eigenvalue of the mode and q(x) is the 
forcing term originated from f(x,y) and q(x,y,z) terms in 
Eq.(17)andEq.(18). 

The ordinary differential equation, Eq.(25), can be 
easily solved with appropriate side conditions. To make 
the problem well-posed, the side conditions should be 
treated differently for the wave and the local modes. For 
the wave modes, initial-value problem is well-posed for 
the uniqueness. On the other hand, boundary value 
problem is well-posed for the local modes because of the 
stability. From the Eqs.(7.a,b) and (19), which can be 
written as 

$' -*0 as x -* + oo (26.a) 

<j>' is bounded        asx->- <» (26.b) 

q(x)   =0, x < a and x > b (26.c) 

the side conditions are given as 

Local modes ( X > 0 ) : 

<j>'(\) - -\/X4>(x) = 0, x = a (27.a) 

4>\x) + -\/x<Kx) = 0, x = b (27.b) 

Wave modes ( X < 0 ) : 

4>(x) =  <Mx)   =  0, x = a (28) 

The side conditions given above can be obtained from 
the analytical solutions of Eq.(25). The homogeneous 
solutions satisfying the radiation condition can be written 
as 

Local modes ( X > 0 ) : 

m = e'^ x, 

Wave modes ( X < 0 ) 

*(x) =  0, 

x < a 

x > b 

x < a 

(29.a) 

(29.b) 

(30. a) 

4>      +   \(j>   =   q(x) (25) 
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4>(\) = A s\n{\pk x) +B sin(^/rÄ x) 

,x > b (30.b) 

It can be shown that the solutions satisfying the end 
conditions (27) and (28) leads to the homogeneous 
solutions (29) and (30) in the linear subdomain. 



The treatments of the radiation condition are basically 
same as that of the localized finite-element method of 
Bai(1977). The only difference is the fact that Bai used 
the exact normal modes, i.e., eigenfunctions, in the 
truncated infinite subdomain, while the numerical 
normal modes are used in the present method. 

The numerical solution of the ordinary differential 
equation (25) can be easily obtained by the finite- 
element method. The solution of the discretized equation 
can be easily obtained in a closed form if we use the 
uniform mesh in x-direction as shown in Kim(1991). 

The solution procedures described in the previous 
sections can be summarized as follows. 

(a) Evaluate residuals due to the nonlinear terms from 
the results of the previous iteration step. 

(b) Transform the residuals into the normal mode basis 
to obtain the forcing terms of each mode. 

(c) Integrate the linear ordinary differential equations of 
each mode. 

(d) Obtain the new values of the velocity potential by the 
inverse operation of (b) 

(e) Repeat the above operations until the numerical 
solution meets a preassigned convergence criteria. 

The most computational efforts are made for the 
procedure (a),(b) and (d). If we denote the number of 
nodal points in the x-direction as Nx, the number of 

operations is 0(NxNyNz) for the step (a) and 0( 
(Ny + Nz)NxNyNz) for the steps (b) and (d). The 
number of operations for the step (b) and (d) can be 
further reduced to 0( (Log NV + NZ)NXNVNZ), if we use 
the FFT algorithm in the modal analysis in the y- 
direction. The number of operations for the present 
method is much smaller than that in the panel method, 

2 2 
where the number of the operation is 0(N   N ) for the x    y 

3 3 
assembly of the influence matrix   and 0(N   N ) for the x    y 
matrix inversion. 

4 NUMERICAL ACCURACY AND STABILITY 

properties of the finite-element approximate solution for 
this problem are thoroughly investigated in many 
literature. The qualitative properties of the 
approximation can be summarized that the approximate 
eigenvalue gives the upper bound for the exact value and 
the order of accuracy is the second order of the mesh 
size if a uniform mesh is used. The quantitative analysis 
can be found in Bai et al(1989) and Kim(1991). 

It can be shown that the modal analysis in the y-direction 
is related to the following eigenvalue problem. 

<P +   n<p   = 0,    0<y<W (31.a) 

<p' =0, y = 0, W (31. b) 

The exact eigenvales and the eigenfunctions are given as 

2 

Mn = 

*n(y) = 

nx 
W 

J J_ 
W 

n=0,l,2,... (32) 

n =0; 

W 
cos 

nxy 
W 

n=l,2,3, 

The analytic solution for the finite-element discretized 
equation gives the mode shapes with the same nodal 
values of the exact solution given above and the 
eigenvalues as 

cos( 
nx 

Nv 

Mn Ay^ 
2 +cos( 

nx 
(33) 

Nv 

n=0,l,2,...,Ny - 1 

where Ay is defined as the mesh size in the y-direction. 
The maximum eigenvalue, related to the modes with 

2 
wave length 2Ay, has the value 12/Ay   which is about 

2      2 1.2 times larger than that of the exact value, x /Ay . 

The related eigenvalue problem for the modal analysis in 
the z-direction can be written as 

4.1 Linear Analysis 
'^n     +   ( x _ V t   = °>   -h < z < 0;     (34.a) 

The accuracy of the linear solution by the present 
method can be determined from the results of the 
eigenvalues and mode shapes of the numerical normal 
modes. They can be obtained from the eigenvalue 
problem of the second order differential equations. The \\g 

K =0' z = -h; 

$    +\vj,    = 0,       z = 0 rn rn ' 

(34. b) 

(34.c) 



for each n-th y-directional normal modes. The 
eigenvalues consists of the values of opposite sign with 
an exception of n=0. The exact eigenvalues and 
eigenfunctions can be found in Bai(1977). For the 
infinite depth, the negative eigenvalues are given as 

*n0 = 
1+^/1+4 v1^ 

7vl (35) 

The eigenvalues nn and Xno are related to the wave 

number of the wave modes. If we denote the wave 
number vector in the xy-plane as (kx, ky), this can be 

written as 

kx = A/ "xn0' ky = Mn- (36) 

The dispersion relation between the wave number 
components determines the characteristics of the far-field 
wave patterns. We compare the exact and the numerical 
dispersion relation and the mode shapes in Fig. 2(a) and 
2(b), respectively. The numerical test is performed with 
the a uniform mesh in the y-direction and a quadratic 
spacing near the free surface for finer meshes are used 
in the z-direction. The numerical computation are made 
for W=12, h = 2, Ay=0.05 and Nz=13. In the figure, 
the eigenvalues of first fifty wave modes are given. As 
mentioned above the approximate value gives the upper 
bound of the exact value. The difference between 
numerical and exact values is within a few percents in 
the computed results. 

After the modal analysis is performed, the remaining 
equations to be solved is a set of linear ordinary 
differential equations given in Eq.(25). In the previous 
section the analytic properties of these equations are 
investigated. But in the actual computation discrete 
solutions are used. The discretized form of (25) is given 
as 

ß <j>      + lot <$>   + ß <t>. ,   = q. (37) 
i-1 l l-l i 

where 

1        XAx . 1,   XAx 

q. = J Xj(x) q(x) dx (38.a,b,c) 

and Xj(x) is the piecewise linear interpolation function 
with the mesh size Ax. Like the continuous problem, the 
solution method of the difference equation (37) depends 
on the behavior of the homogeneous solutions. The 
homogeneous solutions can be obtained from the 
characteristic equation 

and given as 

ßy2 + lay + ß   =0 

b\ = A 7     + B y  , 

y± = 
a ±^j a2 - ß2 

ß 

(39) 

(40. a) 

(40. b) 

The type of the roots of Eq.(39) depends on XAx , i.e. 

2 
(a) XAx   > 0, 7± are real and 

0 < 7+ < 1,  7. > 1 (41.a) 

2 
(b) -12 < XAx   < 0, 7± are complex and 

|7± I = 1 (41-b) 

2 
(c) XAx   < -12,     7± are real and 

-1 < 7. < 0,  7+ < -1 (41.c) 

From these results we can see that the type of the 
numerical  solution is similar to that of the analytic 
solution for local modes ( X > 0) but that of the wave 

2 
modes ( X < 0) is not.   If the magnitude of XAx   is 
greater that 12, the wave mode treated as an initial-value 
problem does not give the bounded solution.    A good 
approximation for the maximum magnitude of X can be 
obtained   by   substituting   the   maximum   y-directional 

2 
eigenvalue 12/Ay    into Eq.(35). From these results the 
stability condition for the present method can be written 
as 

24 F^    > 1 + -\ / 1 + 48 F4. Ax \j Ay 

where the cell Froude numbers are defined as 

U „ U 
FAx 

V 8 Ax' 
FAv VgV 

(42) 

(43.a,b) 

The   condition   (42)   can   be   simplified   under   the 
assumption that the cell Froude FAy is sufficiently large. 

The result is given as 

Ax 
( 

< 3.5 F N 
41 (44) 
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where I is defined as the length of the disturbance and 

the Froude number Fjvj as U/yJgl. 



With the above stability condition satisfied, the solution 
of the Eq.(37) can be given in the following recurrence 
formulas 

(a) If X  < 0, 

q. - ß <t>- , - 2 a <$>■ 
>i+i=-^—i—i   ^ 

(b) If X  > 0, 

<$>.    + 4>.    , 
l l 

= y. i+i 
lidLL 

' + 

V a2 - ß2 

s=j_ 
•1      sjo^-ß2 

(46.a) 

, (46. b) 

. (46.c) 

4.2 Nonlinear Analysis 

In the present analysis, it suffices to treat only a 
nonlinear homogeneous problem without including any 
source of disturbance, i.e. the pressure distribution on 
the free surface which will be treated in the next section. 
We consider the following nonlinear problem, 

<t>     +   A</>   = N\<f>] (47) 

where <£(x) is a vector form of the normal modes and A 
is the diagonal eigenvalue matrix, and N[^>] is the 
nonlinear terms. In the present numerical method it is 
assumed that the influence of the nonlinear terms, fi[<f>], 
are weak enough such that they can be treated as the 
forcing terms determined from the previous step. For the 
local modes this assumption is thought to be valid since 
they have the elliptic property, that is, the influence of 
the forcing terms is localized. The convergence proof for 
the elliptic problem with a nonlinear forcing is given in 
Courant and Hilbert(1962). 

For the wave modes, however, this assumption causes a 
difficulty. It is well-known that the leading order of the 
nonlinear terms in the wave problem is the third order. 
The dominant feature of the third order nonlinearity is a 
correction in the wave number. It has been known that 
the regular perturbation method applied to this problem 
gives no bounded solution. We faced the same difficulty 
in our numerical method. However, the situation is not 
so serious in our case because of the following reasons. 

The direct analysis of the nonlinear equation (47) is not .„ 

easily tractable due to its complexity. Instead, we 
propose a simplified model where only one wave mode 
is taken into account. But the essential features of the 
nonlinearity in the wave modes is included in the model. 
The mode shape of the wave mode is assumed as 
exponential function in the z-direction, which is the 
exact normal mode for an infinite depth of water. Then 
the reduced nonlinear equation at the downstream, 
accurate up to the third order, can be written as 

( 1 +4>'2 + 4>2)4> = 0. (48) 

after some lengthy algebraic steps and appropriate 
nondimensionalization. The approximate solution 
including the third-order correction can be given as 

<Mx) = y Exp[ i x ( 1 + -l^-) ) + c.c. (49) 

where A is a complex amplitude which can be 
determined in the near field and c.c. denotes the 
complex conjugate of the first term. The perturbation 
solution of Eq. (48) has the same behavior of the Taylor 
expansion of Eq.(49) with respect to A. The complex 
modulation amplitude function of the secular terms can 
be given as a Taylor expansion, 

ixjAT_ n      i Exp[     '    '  3 = 1 

-hi 

x2lA?  ,  x 
384 (50) 

x[Ap 
2 

|AP  .  xVf( 

48 3840 + ... 

The terms up to the 2n-th order in |A| gives an 
approximate complex modulation amplitude of the 
(2n+l)-th order perturbation result or the (n+l)-th 
iteration result of the present method. 

In the perturbation method which concerns the solution 
in the entire domain, the polynomial envelope given in 
Eq.(50) gives an unbounded solution as x increases. In 
the present numerical method, however, the nonlinear 
correction is confined in the finite computational 
domain. Then if we choose a suitable magnitude of the 
disturbance and the length of the nonlinear domain, the 
numerical solution converges within a manageable 
number of iteration. We use the following two 
techniques for the convergence. First, we gradually 
increased the magnitude of the disturbance with the 
length of the computational domain fixed. Second, we 
gradually increased the length of the nonlinear 
subdomain with a given disturbance. In the second 
method, we could save the computational efforts since 
the evaluation of the nonlinear terms are not necessary in 
the converged nonlinear region. In Fig.3 the error of the 
polynomial approximation given in Eq.(50) is shown. 



This can be used as an error estimate of the present 
iteration method. 

5 NUMERICAL RESULTS 

5.1 Pressure Patch 

As an application of the present numerical method, we 
treat first a steady nonlinear wave generated by the 
circular pressure patch. The shape of the pressure patch 
is given as 

P(r) 

Pmax n(r/R), r < R, 
(51.a) 

0, r > R 

7 n(s) =1-462 s°   +1980 s'  - 3465 s°     (51.b) 
+ 3080 s9 -1386 s10  +252 s11 

which is identical to that used in Dommermuth and Yue 
(1988) where the unsteady problem was treated by the 
spectral method. Here r is defined as the distance from 
the center of the pressure patch and R denotes the radius 
of it. Hereafter all the quantities will be non- 
dimensionalized by the combinations of p, g and 2R. 

The locally-linearizing parameter fi(x,y) is taken as 

Table 1   Tested conditions in the numerical computation 
for a pressure patch 

Ax, Ay L* x W 
No. of 

Elements X2-X! 

Al 
0.05 

6x3 86,400 1 

A2 15 X 7 504,000 2 

A3 25 x 12 1,440,000 2 
* L denotes the length of the computational domain 

In Fig. 4 the longitudinal cuts of the wave profiles along 
the center line are shown for three different sizes of the 
computational domain. The amplitude of the pressure 
distribution, Pmax, is 0.015. We can find that the wave 

profiles of each case are indistinguishable in the common 
nonlinear subdomains. In Fig.5 the cuts along the 
cuspline are shown. On the cuspline, the nonlinear 
effects are thought to be most apparent since the decay 
rate of the wave elevation is smaller than the other 
region. But the same agreements of wave profiles are 
found in the nonlinear subdomains. 

In Fig. 6(a) and 6(b) we plotted the computed linear 
momentum flux, Mx(x), defined as 

9       7 
Mx(x) = \ \ \   (<t>   +*z 

4>   ) dydz     (53) 
x 

J   i2«* 

e(x,y) 

1, 

cos 

0, 

2 % X (X - X, 

2 (x2 - Xj) 

x < x. 

X,   <  X <  x~ (52) 

Othewise 

such that the linear and the buffer subdomains are 
located only at the downstream. On the upstream, the 
artificial reduction of the nonlinearity is not necessary 
since only the exponentially decaying local modes exist. 

The Froude number FN is taken as 0.4 and the depth of 

the tank as 2. For this case the maximum wave length of 
the wave modes is about the half of the depth such that 
the effect of the finite depth can be neglected. The 
number of nodes in the z-direction, Nz, is taken as 13 

and a quadratic spacing is used for better resolution near 
the free surface. For the horizontal directions, uniform 
meshes are used. 

One of the major concerns in the present computation is 
the validation of our numerical radiation condition. For 
this purpose, we performed the numerical experiment 
with various size of the computational domain. The 
tested conditions are tabulated in Table 1. 
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for the linear and nonlinear cases with the amplitude of 
the pressure patch Pmax = 0.016. The disturbances are 
located between x = 1 and x=2, and the location of the 
transition buffer subdomain is x,=5 and x2=6 for the 
nonlinear computation. The momentum fluxes at the 
downstream are nearly constant which is slightly lower 
values compared with the computed wave resistances. In 
the nonlinear subdomain, a small amount of fluctuation 
in the momentum flux can be found. The reason of the 
fluctuation can be partially explained by the inaccuracies 

in evaluating the momentum flux by a numerical 
quadrature. The presence of the buffer subdomain, 
introduced for the smooth matching of the nonlinear and 
linear solution, does not seem to affect the mean value 
of the momentum flux. It only smoothes out the 
fluctuation. This is presumably due to the fact that only 
the nonlinearities are gradually weakened in this region 
without any introduction of the numerical damping. 

Based on these results, we may assert that our treatment 
of the numerical radiation condition can be effectively 
applied to the nonlinear water wave problem. This 
treatment of the radiation condition has already been 
applied  to  the  2-dimensional   steady  wave  resistance 



problem and transient axisymmetric problem 
successfully, as can be found in Lee (1990) and Bai and 
Kim(1992), respectively. The absence of the numerical 
damping in the present method enables us to perform the 
calculation in a wider computational domain compared 
to the existing panel methods, which also gives the 
meaningless results at the far down stream because of 

- the numerical damping introduced for the radiation 
condition. 

As mentioned previously, the nonlinear wave resistance 
problem for the circular pressure patch was already 
investigated by Dommermuth and Yue (1988). They 
treated this problem as a transient problem and obtained 
the steady state solution up to the distance from the 
disturbance, r = 8. From the results with the largest 
computational domain of the present computation( A3 in 
Table 1), we obtained steady solution in the region three 
times larger than theirs. As a result we can investigate 
the nonlinear effect on the downstream wave pattern 
with more clarity. 

In Fig.7(a) and 7(b) we show the cuts of the wave 
profiles along the centerline and cuspline, respectively. 
As shown in Fig. 7(a), the nonlinear effects are not 
apparent on the center line except in the region near the 
disturbance. Small amount of phase shift and shortening 
of the wave length can be found in the nonlinear results. 
On the cuspline, however, a significant nonlinear effect 
is  found.   The difference  in  the phase between  the 
nonlinear and the linear wave profiles increases almost 
linearly as the distance from the disturbance does. The 
wave height   also increases with the sharpening of the 
crests in the nonlinear results, which is a distinct feature 
of the nonlinear gravity waves.   The transverse cuts of 
the wave profiles at x - xc =10 and 20 are shown in 

Fig.8(a)-and 8(b),  respectively. The outward shift of the 
wave profiles are found to be more pronounced   with 
increasing distance from the disturbance. 

From the above results, the nonlinear effects on the 
wave patterns near the cuspline can be summarized as 
the outward shift of the wave profiles and the increase of 
the wave number and heights. This results agree well 
with that of Dommermuth and Yue(1988) but differs 
from the far-field perturbation results of Akylas(1987) 
along the cuspline where small differences in the phase 
only were predicted. Dommermuth and Yue argued that 
this discrepancies are due to the absence of near and 
intermediate fields in the analysis of Akylas. In the 
present paper, more information on the nonlinear effects 
are available from the results with the much larger 
computational domain. 

The solutions of the surface wave problem are composed 
of wave modes and local modes, as discussed in the 
previous sections. The nonlinear effects on the 
downstream waves may be explained to be resulted from 

the two sources of interactions: namely, the interaction 
between the wave and the other wave modes, and the 
wave and the local modes. The dominant effects of the 
interaction between the wave and the local modes, are 
refraction of the wave modes under the local convection 
of the local modes. This phenomena have been well 
understood in the ray theory of the water wave problem 
developed by Keller(1979). On the other hand, the 
dominant feature of the interaction between wave modes 
are the nonlinear correction of the dispersion relation, 
which was found by Stokes(1847) and generalized by 
Longuet-Higgins and Phillips(1962) and Benney(1962). 
These interactions result in the phase correction of the 
wave modes but with some distinct properties. The 
wave-local interaction arise in the near field and give the 
first order correction on the phase. The wave-wave 
interaction, on the other hand, prolong up to far-field 
and give the second order correction on the phase. As a 
result, the nonlinearities in the downstream wave pattern 
appear as the mixture of the first order shift of phase and 
the second order correction of the wave numbers. 

The results given in Fig. 7 and 8 show that the latter 
features of nonlinear interaction are dominant for the 
present case. To confirm the result, we also carried out 
the numerical computation with the opposite sign for the 
pressure distribution. The transverse cuts of the wave 
profiles with the positive and the negative pressure 
distributions are compared in Fig.9. The phase shifts are 
in the same direction regardless the signs of the 
pressure. It is evident that the major nonlinear effect in 
the present results are caused by the second order phase 
correction due to the wave-wave interaction. 

The arguments given above suggest that the far-field 
analysis is enough to explain the nonlinear effects of the 
present results, contrary to the Dommermuth and Yue's 
argument. It can be also said that the far-field analysis of 
Akylas has its own defect. As an alternative approach to 
this problem, we propose a far-field analysis based on 
the generalized Stokes correction and the method of 

stationary phase. The details of the analysis can be found 
in Kim(1991) and the results can be summarized below. 

The far-field wave patterns can be represented as a 
Fourier integral 

ftx,y) = e j A(k) Exp[ ix¥(k) ] dk + 0(e2), (53.a) 

¥(k) = G(k) - k -1,2 (53.b) 

where e is now defined as a perturbation parameter, 
which can be interpreted as the magnitude of the 
disturbance. Here, k is defined as the y-component of 
the wave number vector and G(k) is the x-component. 
The   nonlinear   relation   between   the   wave   number 



components, accurate up to the second order, can be 
given as follows. 

G(k) 
lWl+4k'2 

2 
(54) 

+e2 | K(k,k') |A(k')|2dk' 
0 

where the wave numbers are nondimensionalized by 
U2/g. The nonlinear interaction kernel K(k,k') is closely 
related to that of the progressive waves, whose correct 
form is given in Benney(1962). The asymptotic behavior 
of the wave pattern (53.a) can be obtained by the method 
of stationary phase, which enables us to investigate the 
geometrical spreading of the wave fields. Especially, the 
angle of the cuspline can be obtained from the zeroes of 
the second order derivative of the phase function, 
¥"(k). If we denote the value of the zero as kc, the 

cuspline is given as 

G'dcc) x (55) 

and the asymptotic form of wave elevation along the 
cuspline can be written as 

fields near the cuspline can be modeled by a modulated 
wave packet. So only the diagonal part of the interaction 
kernel was taken into account in his analysis. As shown 
previously, the increases in the Kelvin angle and the 
magnitude of the wave profiles are related to the 
derivatives of the interaction kernel whereas the increase 
in the wave numbers are related to the values of the 
interaction kernel itself. As a result Akylas's analysis 
could not show the nonlinear effects other than the 
correction of the wave numbers. 

In Fig. 10 we show the Fourier components of the linear 
and nonlinear wave profiles with k =1^. No apparent 

nonlinear effect on the wave amplitude are found 
although the nonlinear profile along the cuspline shows 
much larger height than that of the linear case in 
Fig. 7(b). This strongly confirms the fact that the 
increase in wave height along the cuspline is due to the 
reduction of the geometrical spreading factor, not to the 
increase in the amplitude of the wave component. 

As the concluding presentation in this section, we show 
the contour plots of the computed wave patterns in Fig 
11(a)— 11(d). The solid lines in the figures are the linear 
cusplines that passes the center of the disturbance. We 
can vividly see the nonlinear corrections on the far-field 
wave patterns explained above. 

r- «■ 
?{\) 

^ 
■A(kc) 

|*'"(kc)l 

as x ■ + 0O. 

Exp[ i*(kc) x], 

(56) 

It can be found that the angle of the cuspline, or Kelvin 
angle, and the geometrical spreading factor on it is 
related to the first and the third derivative of the phase 
functions. The above analysis is formally same as that 
for the linear Kelvin wave pattern, with an exception of 
the nonlinear correction in the dispersion relation (54). 
With a careful numerical inspection on the nonlinear 
interaction kernel K(k,k'), we found that 1^, G(kc) and 
G'(kc) increases but ^"'(k^l decreases by the 
nonlinear correction, independently of the shape of the 
amplitude function A(k). From these results we can 
predict the widening of the Kelvin angle and the increase 
in the wave numbers and magnitude of the wave profiles 
on it. It has been also found that the correction on the 
magnitude of the wave profile is pronounced compared 
to the other quantities. 

The result of a simple analysis given above agrees well 
with the numerical computation, contrary to that given 
by Akylas. The major difference between two analyses is 
the treatment of the nonlinear interaction kernel K(k,k'). 
Akylas considered only the diagonal parts of the 
interaction kernel under the assumption that the wave 

5.2 Lifting Problem 

We treat the lifting problem of a submerged hydrofoil as 
the second application of the present numerical method. 
As a mathematical model for the problem, the hydrofoil 
is replaced by the lifting lines with a prescribed sectional 
circulations. This simplification does not affect the 
general nonlinear features in the far-field downstream 
wave-pattems generated by s hydrofoil. For the near- 
field features, such as the induced velocities and the 
hydrodynamic forces, the simplified model still provides 
a good approximation of the original problem. This is 
due to the fact that the typical operation condition for the 
hydrofoils can be characterized by the high speed and 
shallow submergence, under which the chord-wise 
variation of the physical quantities can be treated in an 
integral or mean sense. 

The lifting lines are expressed as the superposition of the 
horse-shoe vortex system. Specifically, a single horse- 
shoe vortex and the vortex system with an elliptic 
distribution are investigated. The sectional circulation, 
T(y), for these cases can be written as 

r(y) = r0, 

for single horse-shoe vortex and 

-? < y < / (57) 
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T(y) ^ 4 < y < l     (58) 

for an elliptic distribution. Here, To is the mean 

circulation and I denotes the half span. Hereafter, all the 
physical quantities are nondimensionalized by p, U and I. 

For example, the circulation TQ is nondimensionalized 

by U( 

The numerical procedure for the present problem is 
basically same as that for the pressure patch. The 
velocity potential 4> is represented as the linear sum of 
the known analytic potential functions <£v and <j>v[, for 
the horse-shoe vortex potential in the unbounded domain 
and its negative image on the free surface, respectively, 
and the finite-element numerical solution 4>Q to be 
obtained later, i.e. 

<t> =   4>v +   <Kd + <t>0 (59) 

Since the first two analytic functions satisfy the 
governing equation, only the free-surface conditions are 
modified in the newly formulated boundary-value 
problem for the unknown potential <£()• If we treaX tnese 

modified terms as the forcing terms, the boundary value 
problem to be solved in each iteration steps leads to the 
same form of equations (17) and (18). 

To validate the accuracy of the present method, we 
compared the linear numerical results for a single horse- 
shoe vortex with the analytic solution which can be 
given • as the double layer. of the Havelock source 
potential. The agreement in the wave elevation was 
remarkably good, as shown in Lee (1992). 

Table 2 shows the tested conditions. Here the Froude 
number, Fn, is defined as U/-\fgl. The depth of 
submergence, d, was taken as 0.125, or one sixteenth of 
the span. The elliptic sectional distribution is modeled by 
the superposition of 40 horse-shoe vortices over the 
span. The maximum strengths of the mean circulation 
for which we can obtain the converged solutions were 
0.025 and 0.06 for the Froude numbers being 0.5 and 
1.0, respectively. Hereafter, the presented wave 
elevations will be normalized by the mean circulation 

TO- 

Table 2  Tested conditions of the numerical computation 
for the lifting problem 

Froude 
No. Ax, Ay Lxwxh 

No. of 
Elements x2"xl 

0.5 0.05 12 x    6x 3 432,000 1 
1.0 0.10 25 x lOx 6 187,500 1 

In Fig. 12 we present the wave contours of the computed 
linear and nonlinear wave patterns generated by a single 
horse-shoe vortex. The Froude number is 1.0 and the 
mean circulation is 0.06 for the nonlinear case. The 
nonlinear effects shows the inward and downstream-wise 
shift of the wave patterns. These shifts are in the same 
direction of the velocities induced by the free and the 
bound vortices. By changing the sign of the mean 
circulation the direction of the shifts reversed. The 
nonlinear interaction between the wave and the local 
modes, in the vortex system, seems to play a more 
significant role than the wave-wave interactions which 
were dominant in the previous results for the pressure 
patch. The longitudinal cuts along the centerline and the 
free-vortex line, and the transverse cuts along x - xc = 3 

and 6 are shown in Fig. 13(a),(b) and Fig. 14(a),(b), 
respectively, with varying strengths of the mean 
circulation. In these figures the nonlinear effects 
described above can be observed more clearly. It can be 
also found that the nonlinear correction on the phase is a 
first order to the magnitude of the disturbance. It should 
be noted that in the linear theory the disturbances by the 
free-vortex alone do not generate the surface wave since 
the free-vortex induces no streamwise velocity 
component. For a nonlinear case, however, the velocity 
field induced by the free-vortex gives a significant 
nonlinear correction on the wave profiles. 

In Fig. 15 the longitudinal cuts of the results of Fn=0.5 
are plotted. Since the computational domain contains 
more waves than that of the previous case, Fn=1.0, we 
can see the combined feature of the two kinds of 
nonlinear interactions. The direction of the phase shift, 
which is backward near the bound vortex line, gradually 
changes to the forward direction along the downstream. 
The nonlinear corrections from the wave-wave 

interaction and the wave-local interaction in the near- 
field cancels in some degree in this neighborhood. 
However, in the intermediate field the interaction of the 
wave-local disturbance becomes more significant. 

The results of the elliptic distribution show the same 
trend of nonlinear effects on the wave profiles. In Fig. 
16 we compared the longitudinal cuts of the wave 
profiles with that of the single horse-shoe vortex system. 
Some differences can be observed near the bound vortex 
line due to the difference in the vortex distribution, but 
in the up- and down-streams both profiles are almost 
same in magnitude and phase. 

Besides the nonlinear effects of the wave profiles, the 
near-field features such as the induced velocities, the 
induced angle of attack and the resulting hydrodynamic 
force components are also calculated. The definition 
sketches of these are given in Fig. 17. In the following 
we present the computed results of the elliptic 
distribution, which gives the finite induced velocities at 
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In Fig. 18 and 19, the nonlinear effect on the induced 
velocities on the bound vortex line is shown for Fn = 
0.5 and 1.0, respectively. Along the x-direction the 
induced velocity shows relatively high for Fn = 0.5 
where as that is negligibly small for Fn=1.0. It is of 
interest to note that the signs of the nonlinear correction 
are opposite in these two cases of different Froude 
numbers^ For both cases the magnitudes of the nonlinear 
corrections are within a few percents. Fig. 20 shows the 
induced angles of attack and the opposite tendency in 
them between the two cases. Fig.21 shows the sectional 
force ratio, defined as the ratio between the sectional 
forces with and without the free surface. It can be found 
that the free-surface effects are negligible in the lift but 
significant in the drag, with nonlinear corrections within 
a few percents for both force components. Fig. 22 shows 
the nonlinear effects on the hydrodynamic forces. The 
lift decreases as the mean circulation increases for both 
Froude numbers. But drag shows the different tendency 
depending on the Froude number. 

The perspective view of the computed wave patterns for 
Fn = 0.5 are shown in Fig.23. 

In the computation for the case A3 in Table 1, the total 
number of elements being 1,440,000, the CPU time was 
approximately 6 hours for the largest magnitude of the 
pressure by the MIPS RS2030 Workstation. It should be 
noted that the computation time reduces considerably 
when the magnitude of the pressure reduces. 

6 CONCLUSIONS 

The advantages of the present method over the other 
existing methods may be summarized in the following. 

• By the introduction of a more rational matching 
procedures in the nonlinear-to-linear transition buffer 
subdomain between the fully nonlinear and linear 
subdomain, the numerical radiation condition for a 
nonlinear problem could be treated successfully. It 
should be noted in the present matching device that not 
only the fluid domain and the free surface boundary are 
continuous geometrically but also the differential 
operator of the boundary condition on free surface 
boundary is continuous. 

• In the present numerical treatment of the radiation 
condition, the numerical damping is absent. 

• By utilizing the modal analysis partially introduced in 
the computations, the total computation time could be 
reduced drastically. 

• From these major modifications made in the present 
method, the nonlinear steady wave problems could be 
treated for a much wider computational domain 
compared that treated previously. 

The present numerical method could be successfully 
applied to a steady nonlinear wave problem for a 
pressure distribution and a hydrofoil in three 
dimensions. From these computed results our findings 
are a more accurate nonlinear wave patterns in the 
downstream. We also present a simple nonlinear 
analysis which supports our numerical results. 
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Fig. 16 Circulation distribution effect on wave profiles 

(Fn=0.5) 
(a) Center line (Y=0) 
(b) Wing-tip line (Y=l) 

Fi°.17 Definition Sketch (Horseshoe Vortex) 

Fig. 18 Nonlinear effect on induced velocity 
components (Fn=0.5) 

(a) x-direction induced velocity 
(b) z-direction induced velocity 
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Fig. 19 Nonlinear effect on induced velocity 
components (Fn=1.0) 

(a) x-direction induced velocity 
(b) z-direction induced velocity 
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Fig. 20 Nonlinear effect on induced angle of attack 
(a)Fn = 0.5    (b) Fn = 1.0 
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DISCUSSION 

Gerhard Jensen 
The Hamburg Ship Model Basin, Germany 

What is the motivation to use a finite element 
method (FEM) for potential flow problems instead of 
a boundary element method (BEM), as the required 
computational effort seems to be much higher for 
FEM? There are several BEM published which solve 
the nonlinear problem very successfully, like those of 
Ni, Jensen, and Raven. 

AUTHORS' REPLY 

The discussor's comment is partially true in the 
sense that the number of unknowns are much larger 
in FEM than that for BEM. However, the 
computations of the matrix elements are much easier 
for FEM than for BEM where the computations are 
involved with the Green function. As we have 
already discussed in our paper, the required 
computational effort in FEM is not so much. For 
example, the number of operations required to 
evaluate the influence-coefficient matrix is O^NyNJ 
for FEM and 0(N^Nj) for BEM. Thus, less effort is 
required for FEM when Nz< <NxNy. Often this is 
the case in practical computations. When we treat a 
restricted fluid domain, for example, shallow water 
problems, FEM has more advantages than BEM. 
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Numerical Modeling of Short-Time Scale Nonlinear 
Water Waves Generated 

by Large Vertical Motions of Non-Wallsided Bodies 
J.-H. Park, A. Troesch (University of Michigan, USA) 

ABSTRACT 

Various numerical implementations of the boundary 
integral method (BIM) used in solving the bow flare 
slamming problem are examined. In particular, the effects 
on accuracy and numerical stability of different time 
stepping schemes, different Green functions, and different 
radiation conditions are considered. Based upon a linear 
stability analysis using von Neumann or matrix stability 
methods, it is possible to determine the parameter 
combinations of temporal and spatial discretizations that 
lead to stable or unstable behavior. The stability 
predictions, while derived from the linear free surface 
conditions, are shown to be valid for simulations of 
nonlinear waves with small to moderate nonlinearities. 

NOMENCLATURE 

ß 
Ax 
At 
<t>i 

Tl 

[A],[B] 

Phase (kAx) 
Panel length 
Time interval between time step 
Velocity potential of ith location at the nth 
time step 
Source point vector (£,TI,£) 
Free surface elevation of the ith location at 
the nth time step 
Induced influence coefficient matrices 
Green function constant, 

e.g. G2D=G2D + lnc 

{f} Equivalent excitation vector 

FSS Free Surface Stability Number frcg(At)2^ 
I    Ax    J 

G(X;I) 
G 

Green function 
fcn+l / \ 

Magnification factor   fc   / n 

k Wave number 
iB'SB 2-D, 3-D body surface boundary 
If. sf 2-D, 3-D free surface boundary 
U&. 2-D, 3-D far-field boundary 
n Outward unit normal vector on the domain 

boundary 
ü Velocity vector of the fluid particle 
V Velocity vector of the body 
X Field point vector (x,y,z) 

INTRODUCTION 

Nonlinear ship motions are comprised of several time 
scales. The long-time scale problem may be defined as 
large amplitude oscillations at low frequencies. These 
motions generate relatively well behaved waves with small 
to moderate wave slopes. The short-time scale problem is 
characterized by large relative velocities between hull and 
water surfaces where impact, jet-like flows, and breaking 
waves are common. 

Since bow flare impact forces are local and of short 
duration, numerical schemes can be formulated using finite 
domain grids concentrated on the vessel's hull and on the 
near free surface. The attractiveness of the method lies in 
its use of a restricted domain resulting in a substantial 
increase in computational efficiency. This is the approach 
that Troesch and Kang (1988) took when they 
approximated the free surface boundary condition as an 
equipotential (0 = 0) surface and when Kang and Troesch 
(1988) used the complete nonlinear free surface boundary 
condition with bodies oscillating beneath the free surface. 
However, when the nonlinear free surface condition and a 
surface piercing three-dimensional body are used together, 
instabilities in the time-stepping simulation appeared. 

Sawtooth instabilities in free surface calculations of 
steep water waves were first encountered by Longuet- 
Higgins and Cokelet (1976). Since that time numerous 
researchers have presented numerical results that either do 
not contain the instability for the problems solved, or 
contain the instability and have to be smoothed and filtered 
every few time steps. See for example Faltinsen (1977), 
Vinje and Brevig (1981), Yeung (1982), Dommermuth and 
Yue (1987), Hong, et al (1988) or Grilli, et al (1989). 
Some have suggested that the instability is purely numerical 
while others claim that it is a manifestation of the actual 
physics. 

A typical strategy in nonlinear water wave 
computations is to use a mixed Eulerian-Lagrangian 
method where the boundary value problem (BVP) is solved 
at some instant in time and the free surface then time 
stepped to its new position. The procedure is repeated as 
desired. In this work, the instantaneous BVP is solved 
using a Fredholm integral equation of the second kind on 
the body and a Fredholm integral equation of the first kind 
on the free surface. The spacial discretization form of the 
integral equation may be written as: 
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[A] 

dn 

= [B] 
dn 

<p 
(1) 

Generally, the vector on the right hand side of the equation 
is known and the vector on the left hand side is unknown. 
The bold face potentials and bold face normal derivatives of 
the potentials denote the free surface elements. The vector 
{0} on the right side of Eq. (1) is determined through 
temporal differencing schemes such as staggered 
implicit/explicit Euler methods or fourth order Runge-Kutta 
methods. Numerical stability is principally related to the 
the matrices [A] and [B] and the particular differencing 
scheme selected. These matrices are functions of the 
boundary geometry, including the bounding boundary at 
large distances from the body. If the boundaries are 
changing, as in the nonlinear problem, then the matrices are 
also functions of time, implying that the stability is time 
dependent. 

Longuet-Higgins and Cokelet (1976) observed 
"sawtooth instabilities" on the free surface when they 
followed the time history of space-periodic irrotational 
surface waves as can be seen in Fig. 1. This sawtooth 
instability was found when a deep water progressive wave 
of finite amplitude was marched in time. The authors 
speculated that this instability was due, partly, to physical 
reasons and they applied a smoothing technique to remove 

negative values for the case of b = 3.24 . This behavior 
contrasts with that shown in Fig. 1. In Fig. 1, the error has 
a sawtooth shape as if a high frequency wave-like error is 
superposed on the onset flow unlike Fig. 2, where the 
error appears to grow exponentially. These two figures 
suggest that numerical errors can either grow exponentially 
when the error magnification factor is greater than 1.0 and 
pure real, or grow with changing phase when the error 
magnification factor is complex and has a modulus greater 
than 1.0. 

f9f 

as 

-Ji) 
FORCED HEAVE MOTION :A. sinnt 

b.7.73 n)Jf .0.5 

•*J«0.1 . b.5.19 
• t»3.2i 

....-"" 
rvi 

0.3 U) 20 30 

Fig. 2   The vertical force acting on a heaving circular 
cylinder, an example of the instability observed by 
Faltinsen. 'b represents the far-field boundary 
coordinate, and 'a' the radius of the cylinder. 
[Faltinsen(1977)] 

The two examples shown in Figs. 1 and 2 suggest 
that a careful analysis of the numerical schemes used to 
solve nonlinear free surface flows is warranted. The 
purpose of this paper, then, is to 

- evaluate the numerical stability associated with 
various forms of the boundary value problem 
formulation, 

- formulate stable time-stepping algorithims, 
- demonstrate stable nonlinear calculations, and 
- discuss significant modeling problems now that 

numerical stability can be achieved. 

Fig. 1   An example of the sawtooth instability observed 
by Longuet-Higgins and Cokelet for a steady 
progressive wave in deep water computed by 
Pade approximants for Stokes's series (smooth 
curve) and the corresponding time-stepped profile 
(unsmoothed). Number of segments, N = 30. 
The profiles are compared at times (a) t = 0, 
(d) t = TC. [Longuet-Higgins and Cokelet (1976)] 

Faltinsen (1977), in the numerical solution of two- 
dimensional nonlinear transient problems, found that his 
solution procedure sometimes became invalid before the 
surface waves had reached the far-field boundary. To 
demonstrate this phenomena, he performed the calculation 
varying the size of the far-field boundary b. In the 
calculation, he fixed the length of the free surface elements 
to na/14 . As shown in Fig. 2, the force grows rapidly in 

PROBLEM FORMULATION 

The coordinate system used in this work is depicted 
in Fig. 3. The figure represents an infinitely long two- 
dimensional symmetrical body, or a three-dimensional 
axisymmetric body, either of which is forced to oscillate 
vertically on a free surface. The body shape is arbitrary 
and the body motion can be cyclic or linear with constant 
velocity in the z direction. The free surface is given by 
F =(x,t) = 0, where x(x,y,z) is the position vector in the 
right-handed coordinate system. In this system, the z axis 
is defined as positive upwards, while the y axis represents 
the calm water level. The origin is at the intersection of the 
vertical centerline of the body and the undisturbed water 
surface. The fluid is assumed to be incompressible and 
inviscid, and the flow is assumed to be irrotational. 
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Fig. 3    Coordinates and geometry of the free surface. 

The governing equations, boundary conditions, and 
radation condition are given as 

• Governing equation (Laplace's equation) 

V20 = 0 in the fluid domain 

• Kinematic free surface boundary condition 

on z = T](x,y,t) 

• Dynamic free surface boundary condition 

_i- = _g77 + _V0-V0    on z = r\(x,y,t) . 

• Body boundary condition 

V ■ n = V(j) • n  on the body Sß(x,y,z,t) = 0 

• Far-field (radiation) condition 

d<P        A II —— -» 0    as    \r\ —> oo 
dn 

(2) 

(3) 

(4) 

(5) 

(6) 

In the above equations, V is the velocity of the body, n is 
the outward unit normal, and \r\ is the distance from the 
origin. The far-field condition is one of the more difficult 
conditions to apply properly. For the two-dimensional 
problem, especially, this condition needs to be treated 
carefully. The far-field truncation effect, properly 
considered, makes the computational domain finite. 

METHOD OF SOLUTION 

The method used in this work to solve the boundary 
value problem of Eqs. 2 - 6 is called the "mixed Eulerian- 
Lagrangian method" (Longuet-Higgins and Cokelet 
(1976)). The two step approach is adapted here with 
different numerical schemes in each step. In Step 1, the 
governing equation using the Boundary Integral Method 
(BIM) is solved; and in Step 2, the free surface boundary 
conditions are satisfied using several different time- 
stepping schemes. 

Green's second identity is employed in the solution 
of the BIM. The Green function, Gl x; q\, is defined as 

G(*,|) = -^-ln|x-|| = -^-lnr (2-D) 
\      /       2n   '        i       2K 

(7) 

An *-« 

1 
AKT 

(3-D) (8) 

Another solution G* can be obtained by adding any 
analytic homogeneous solution to the particular solution, 
Eq. (7) or Eq. (8). One such set of analytic solutions is 
given as follows 

G*[x;l) = — {lnr + lnc) = -—Inrc   (2-D) 
\      i     2K 2K 

(9) 

-i-fi + I (3-D)     (10) 

where c is some constant used to normalize the two- 
dimensional Green function. The integral equations for the 
velocity potential using G and G* are derived in principal 
value form as 

*<*.<)=-7 J r 
(ID 

or 

*(*0 = ~J IT J 
lnqx-d >dl 

(12) 

in two-dimensions and in three dimensions as 

dip, 

F~€ 

-^•W (13) 

or 

*(*•')=—;/ 
• F - € 

-^■') 

M 
1        1 

■ + - 

F-5 
ji 

dS (14) 

where x      and   ^ e S   ,   and   n   is an outward unit 
normal vector. 

Two different boundary types are considered here: 
the near-field closed boundary problem and the far-field 
open boundary problem. For the near-field closed 
boundary problem, S =SB +SF+SC where Sc is in the 
near-field and comprises of the bounding sides and bottom. 
Either the potential or its normal derivative is given on all 
surfaces.    For the far-field open boundary problem, 
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S = SB+Sjr+Sct,+Sc. The potential takes the form of a 
dipole on S„ and is assumed to be zero on Sc, the closing 
contour at infinity. 

Once the solution to the above equations are found in 
the fluid domain, the normal derivatives of the potentials on 
the free surface and the potentials on the body surface are 
obtained. With this information, the two free surface 
boundary conditions are stepped in time to determine the 
new location of the free surface and estimate the potential 
on that new surface. For the time stepping algorithms in 
this work, three different Euler methods are chosen; 
specifically the explicit, implicit-like, and implicit Euler 
methods. Two different fourth-order Runge-Kutta 
methods are also selected which are the explicit and 
implicit-like methods. 

The various Euler difference approximations for the 
linearized version of Eqs. 3 and 4, the free surface 
boundary conditions, are shown below: 

• Explicit scheme 

.n+1 <p^-2<pn + <t>r -1 ■■-g{Atfd>r 

• Implicit-like scheme 

t,n+l-2<pn + <t>n-l=-g(At)2tf. 

• Implicit scheme 

-s{Atf<pTl 

(15) 

(16) 

(17) 

where the superscripts n-1, n, and «+1 represent the 
values of the potential or its z-derivative at the different 
time steps. Appendix C of Park (1992) derives the general 
form of the fourth-order Runge-Kutta algorithm and its 
discretized forms for the explicit and implicit-like methods. 

To apply the free surface boundary condition in the 
Lagrangian step of the two-step method, the unknown <pn

n 

on the free surface is calculated using the Boundary 
Integral Method (BIM), Eqs. (11)-(14). Discretizing the 
surface with panels (3-D) or line segments (2-D), the 
potential <p at the (i) panel or segment is approximated 
in generic form as ; 

m-z{«L% *'-(£)/*/*"}<I8) 

where     <p;  : known on the free surface 

94>j . 
dn; 

and 

: unknown on the free surface 

dtp 
rj    or   [ -j- I    : one is known and the other 

is unknown on the remaining 

surfaces 

For the linear problem, -^--»-^- on the free surface. 
an       at 

In matrix form, Eq. (18) can be expressed as 

Ay    . 

d± 
dn 

■ = 
Bij 

•           - 

  

or 

dip 

dn 

■ = Cij 

■ 

■ = 

[C] 
M 

[cf 
[cl (19) 

where the first m entries in the left-hand column are the 
unknown potential or unknown normal derivative values 
on the bottom boundary, body boundary, and the far-field 
boundary and the rest of the entries in the left-hand column 
are the unknown normal derivatives of the potential on the 
free surface. The [C] matrix is the multiplication of the 
[A]"1 and the [B] matrices (i.e.[C] = [A]-l[B]). 

A subset of the above matrices is made by retaining 
only the terms needed to complete the time step on the free 
surface: 

f 1 - ¥\ Ml 
= M{iM+[c*]M 

N (20) 

j=f.s. j=7U>nf.s.^ 

where [C*] is the subset of the influence coefficient matrix 
[C] which is related to the free surface only. Qy is the 
influence coefficient of the; free surface panel to the i free 
surface panel. The vector {/} is the multiplication of Cy 
and the known values of <pj or <pn. on all surfaces 
except the free surface. In this way, the vector acts as a 
forcing function and consequently does not play a role in 
determining the linear stability characteristics. This 
summation form, Eq. (20) is substituted to the Eqs. (15)- 
(17) to study the numerical stability characteristics of the 
different time stepping schemes. 

As an example of the matrix formulation, if <j>n is 
given and 0 is unknown on the boundaries excluding the 
free surface, [Ay] and [By] then become 

M 
dn 

& + 

1^'J 
Ax.; 

JGijdlj 
Ax; 

.dn 

(21) 

146 



M J°.A 
At; 

At; 

where /,y is the identity matrix. 

STABILITY ANALYSIS AND ITS 
IMPLICATIONS 

Background 

The BIM and finite difference equations described 
previously will not necessarily converge to the solution of 
the governing equations. Questions about error 
propagation and convergence should be answered prior to 
extensive program use. 

Similar to Longuet-Higgins and Cokelet (1976), 
Baker et al. (1982) also encountered a numerical instability 
when the local waves were steep. They used a smoothing 
operator to reduce the effect of the instability. They also 
found that this instability was reduced remarkably by the 
use of a dipole distribution rather than a vortex distribution. 
There are other researchers who observed no such 
numerical instability. The instability was apparently 
removed by Roberts (1983) in his analysis of a body-wave 
interaction problem using Fourier spectral representations 
for the position and potential of a free shear layer. The 
modeling was accomplished by a simple modification of 
the highest (even) Fourier mode. This method of 
instability removal was also reported by Dold and 
Peregrine(1984) extending the idea of Vinje and 
Brevig(1981) with the addition of the higher time 
derivatives of the complex potential in the Eulerian step. 
Using the resulting time integration scheme, they found no 
apparent short-wavelength instability. Another numerically 
stable scheme was given by Casulli and Cheng (1990) in 
their discussion of the stability and error analysis for some 
finite difference methods of the one-dimensional shallow 
water equations which consist of a system of quasi-linear 
hyperbolic equations. They showed that the explicit 
Eulerian-Lagrangian method with fixed grid is 
unconditionally stable when the Courant-Isaacson-Rees 
method is used as a time-stepping scheme. 

Dommermuth and Yue (1986) and Dommermuth et 
al. (1988) claimed that the instabilities are not physical but 
closely related to the accuracy of the velocity calculation 
for the free surface particles. They postulated that when 
the mixed Eulerian-Lagrangian scheme is used, the high- 
wavenumber instability is caused mainly by the 
concentration of Lagrangian markers in the region of 
higher gradients. This concentration of the markers, they 
said, caused a local Courant condition to be inevitably 
violated for a fixed time step as the waves steepened. They 
developed a regridding algorithm wherein a new set of 
equally spaced Lagrangian points on the free surface is 
created each time step. This regridding algorithm has the 
disadvantage of the loss of resolution near the region of 
high velocity gradients where Lagrangian points would 
otherwise concentrate. Considering another source, Kang 
(1988) speculated that the numerical error at the intersection 
point propagates and could generate saw-tooth instabilities. 

Few researchers have actually established stability 
criteria for water wave problems. Yeung (1982) 
investigated the stability criteria using a simplified von 
Neumann analysis. He assumed <j>(x,y,nAt) to be of the 

form <t>neUa+ky where k is a wave number, thus <p" = k<pn. 
His calculation for the numerical stability criteria is simple 
and easy   to follow. However, his stability criteria is 

(22) independent of the panel length Ax and independent of the 
various boundary conditions. 

Dommermuth et al. (1988) derived the numerical 
stability criteria using a "linearized von Neumann stability 
analysis." They also assumed 0" = k<pn. By this 
assumption and a Taylor-series expansion, they found the 
stability criteria for the explicit fourth-order Runge-Kutta 
scheme and the fourth-order multi-step Adams-Bashforth- 
Moulton predictor-corrector (ABM4) scheme. However, 
by assuming that the normal derivative of the potential on 
the free surface is proportional to the potential, the stability 
will be independent of the BIM algorithm. As will be 
demonstrated in the example sections, the stability criteria 
determined in this manner is neither an upper nor lower 
bound. 

Two different types of traditional stability analyses 
will be discussed here (Richtmyer and Morton (1967) and 
Anderson et al. (1984)). The various methods will be 
illustrated using the simpler Euler difference 
approximations, Eqs. (15)-(17). The fourth-order Runge- 
Kutta methods require a considerable amount of algebraic 
manipulation and the reader is referred to Park (1992) for 
details. 

von Neumann Stability Analysis 

The von Neumann method is well known in the 
literature. Briefly, the numerical solution is considered to 
be composed of the exact value and an error. The error, 
s(x,f), can be assumed to be written as a series of sine and 
cosine terms. The ratio between the error at the (n) time 
step and the error at the (n+1) time step is defined as the 
magnification factor, G. The magnification factor 
G(=e"+i/e") for the (/) point in the computational grid 
should be less than 1 in magnitude for the numerical 
algorithm to be stable. The analysis is only approximate 
since it does not include the effects of the boundaries. The 
method's chief attributes are its relative simplicity of 
implementation and its ability to estimate stability 
characteristics of individual surface elements. By 
examining the stability of separate panels, strategies can be 
developed for variable surface discretizations. 

For the free surface problem then, the potential <j> is 
considered to be composed of an exact value, Qexacu and 
the numerical error, E(x,t). The numerical error can be 
expressed as a Fourier series expansion : 

where 
0 = <$> exact + £(*>0 

and 
m=l m=\ 

£n _ eanAteikmjAx 

(23) 

(24) 

(25) 
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'a' may be complex but km is real. 

Applying Eqs. (23) - (25) to the linearized free surface 
boundary conditions using the various Euler schemes 
results in 



0«+i _ 2<pn + <pn~l = -g(At)2 <pj (26) 

y=n-\      for the explicit scheme 

where        y= n for the implicit-like scheme. 

Y = n + 1      for the implicit scheme 

The potential derivative <pj on the free surface (i.e. the 
right-hand side of Eq. (26)) is obtained through the 
application of the BIM in Eq. (20) such as: 

Mr=[cW+üf (27) 

where <pj = f;exaa + ej, {<pzi}
7 is the potential derivative 

of the (0 panel on the free surface at the n-l, n, or n+l time 
step and [C*] is the submatrix related to the free surface 

potential \<p;\ . The submatrix [C3] forms the equivalent 

of an external exciting function {/}r through the 
multiplication of known values and consequently does not 
affect the linear stability analysis. Substituting Eqs. (23) 
(25) into Eq. (26) and cancelling common terms yields the 
equation for the magnification factor G[= e"+ /£])'■ 

G2 - 2G + (1 - a) = 0 (Explicit scheme) 

G2 - (2 + a)G + 1 = 0 (Implicit-like scheme) 

(1 - a)G2 - 2G + 1 = 0 (Implicit scheme) 

where a is a function of discretized panel length, Ax, 
time-step size, Af and the Green function constant, c. The 
solution of the quadratic equation for the magnification 
factor G above has two roots. These two roots can have 
pure real values or complex values and the moduli of the 
roots are associated with the following stability 
characteristics: 

If  IGI > 1, then the time stepping algorithm is unstable. 
If  IGI = 1, then the time stepping algorithm is neutrally 

stable. 
If   IGI < 1, then the time stepping algorithm is stable. 

The von Neumann numerical stability analysis of the 
linearized free surface boundary conditions can also be 
applied to the fourth-order Runge-Kutta Explicit scheme. 
See Park (1992) for details. 

Matrix Stability Analysis 

The disadvantage of von Neumann's approach is that 
it does not directly include the effects of the boundaries, 
and therefore gives only approximate stability criteria. A 
more general, but more computationally intensive way to 
establish stability criteria is the Matrix Method (Richtmyer 
and Morton (1967) and Anderson et al. (1984)). This 
method will now be applied to the two linear free surface 
boundary conditions: 

on z = 0 . (28) 

The discretized system of the two boundary conditions can 
be written in general matrix form 

n+l    r 

Da 

f0' 

/ 
(29) 

where [D] is a (2Nx2N) matrix and N represents the 
number of panels on the free surface. If any one of the 
absolute values of the 2*N eigenvalues of [D] is larger 
than 1, then the marching scheme is unstable (See 
Richtmyer and Morton (1967) and Anderson et al. (1984).) 
The formation of the [D] matrix is decided according to the 
choice of numerical schemes. It follows that the 
eigenvalues of the [D] matrix have a meaning very similar 
to that of the roots of the magnification factor G in the von 
Neumann analysis. As examples, consider the explicit and 
implicit-like Euler schemes: 

The difference equations using the explicit Euler 
scheme is as follows: 

*?+1 = tf-*/irT7f 
N 

T]f
+1 = r?f+4rXC^ + ^ 

or combined into matrix form: 

(30) 

n+l 1       0 

0 

-gAt 

0 

0 

AtC* 
1 

0 

0 

n ro]B 

f > +< (31) 

As can be seen in Eq. (31), the [D] matrix of the explicit 
Euler scheme is composed of two identity matrices, one - 
gAt*[I] matrix, and the At*[C*] matrix, a subset of the [C] 
matrix. 

The difference equations using the implicit-like scheme are 
as follows: 

with a matrix representation of 

(32) 

"1    0 

0   "-. 

gAt 

0 

0" 

< — 
77 

n+l "   1       0 

o    '•. 
0    0" 

0 '•. 

n 

■   +■ 

'0" 

— > 
/ 0    0 

.0  "-. 

1 

0 

0 
AtC* 

1    0 

o '■•_ 
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To construct the [D] matrix of Eq. (29) using the implicit- 
like Euler scheme, the inverse of the matrix on the left-hand 
side of the above equation should be multiplied on both 
sides. As with the explicit method, the [£>] matrix includes 
the [C*] matrix. 

The fourth-order Runge-Kutta schemes can also be 
put into matrix form. The detailed procedure for the 
derivation and formation of the [D] matrix is given in 
Appendix C of Park (1992). 

APPLICATIONS 

It is possible to find an analytic solution for the 
stability region in some very simple cases. Park (1992) 
derives the closed form expression based upon Eq. (26) for 
the stability criteria of a single free surface panel satisfying 
the linear free surface boundary conditions. The potential 
and its normal derivative are known on all other surfaces. 
This idealized problem is meant as a first step in 
understanding the complicated behavior associated with 
more typical free surface problems. When the number of 
free surface panels is greater than one or when nonlinear 
boundary conditions are used, the stability criteria must be 
determined numerically. 

In the examples given below, the validity of the 
method will be demonstrated by comparing estimated 
stability boundaries with analytical values and the results of 
numerical simulation thus making the extension to more 
complex models straightforward. Since it is not possible to 
obtain an analytic solution for the stability of numerical 
solutions involving the nonlinear free surface boundary, 
the stability analysis begins with the linear boundary 
conditions and linear geometry using the assumption that 
the nonlinear effect on stability is small in the limit of small 
wave slope. Within this assumption, the linear stability 
study becomes the basis for the nonlinear stability analysis. 
The last example in this section will involve the fully 
nonlinear free surface conditions with time dependent 
influence coefficient matrices. This contrasts with the 
linear calculations, where the influence coefficient matrix 
does not change during the time interval of interest. 

Linear Closed Boundary Problem 

z 

n 

free surface 

4>n or 0 

N> 
0n or 0 

<S>n or <t> 

Fij 

<Pn or 0 
. 4 Model for the closed boundary problem. General 

polygonal shape 

The model geometry and the coordinate system are 
depicted in Fig. 4. The free surface boundary condition is 
imposed on top and 0 or </>,, on the other sides. For the 
purpose of simulation, the initial conditions on the free 
surface and other boundaries are given as those of a plane 
progressive wave. This may be thought of as the far-field 
solution to the wave maker problem. 

The first example considered will be a square panel 
with sides 2a. One panel is located on the free surface, one 
panel on the bottom, and one panel on each side. The 
geometry of the boundary and its coordinate system is 
shown in Fig. 5. 

z 

i, 

01 free surface 

02 or 0„2 04  °r <Pn, 

03 or 0„3 

Fig. 5   Geometry of the square panel of the closed 
boundary problem. The potential 0 is given on 
the top panel and 0 or <j)n for the other panels. 

For 0„  given on the side and bottom panels, 
following Eq. (20) the solution for the potential is given as 

^1 = A^L + JB02+C^2+JB03 
On an 

an on 

^=ß01 + C^-4-A^ + D03 
an an 

+E^i+B4>4+A 
On on 

h=B<Pl+cih.+D<s>2+E^ 
an an 

+A+B4>4+C^± 
an on 

(34) 

(35) 

(36) 

04 on on 

dn dn 
+B(S>-i + C-^ + A-^- 

where 
2a 

(lnca-1) 

B = — tan l2 
% 

C = — flnV5ca-l + itan_12 
7cV 2 

D-- -tan    — ll 
2 

(37) 

(38) 

(39) 

(40) 

(41) 
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' = —-tan] lnSca-l + 2tan l- (42) 

In matrix form for the case of [<Pi,<Pn2'^n3'^n4) known 
and (<!>„,,§2'§3>§4) unknown, the equations become: 

dn 

02 

<t>3 

<t>4 

■ = Cij 

07 

d<p2 

dn 
d($>4 

. dn . 

(43) 

where the unknown normal velocity of the free surface 
element is 

^ = Cn<h^C^nj 
dn j=2 

(44) 

and the [Q matrix is the inverse of the (0,,;,02>03>04) 
influence   coefficient    matrix     multiplied   by      the 

<pj, <pn , <pn3, <pn4) influence coefficient matrix. 

Equation (44) is an analytic solution form for <pn on 
the free surface assuming that the given potential on the 
free surface and the normal derivatives on the other 
surfaces are constant over each panel or segment. Recall 

that for the linearized problem, the term X/=2C'7^'1-/ of 

Eq. (44) acts as an exciting force in the stability equation 
and as such plays no role in determining the stability 
characteristics. 

For the explicit Euler scheme, the free surface 
difference equation for the closed boundaries becomes 

Following a von Neumann stability analysis yields the 
quadratic equation for the magnification factor: 

G2-2G + l = -g{At)2Cu 

or      G2-2G + {l + g{At)2Cu} = 0    . (46) 

There is no region where IG I < 1. Therefore, no 
stability region exists and the explicit Euler scheme is 
unconditionally unstable for the square panel of the closed 
boundary problem. 

The difference for the implicit-like Euler scheme is 

0f+2 - 2^f+1 + 0f = -g(At)2 \cntf
+1 + Y.Cljt>nj n+l I 

(47) 

which has the associated quadratic equation for the 
magnification 

G2-2G + l = -g(At)2CnG 

or        G2 -{2 -g(At)2Cn}G +1 = 0. 

The stability region is 

0<iWLcu<2 

(48) 

(49) 

Therefore, the implicit-like Euler scheme is conditionally 
unstable in the region where Eq. (49) is satisfied. 

The term 1/Ax appears explicitly in matrix element 
CJJ.   Define a free surface stability parameter (FSS) as 

2 

-^——. The equations above represent the case of0 
Ax 

given on the free surface and 0„ given on the other sides. 
The approach is quite general and the results for other 
combinations of tp and <j)n are shown in Table 1. Clearly, 
the boundary condition type can play an important role in 
determining the numerical stability limit. 

Case Boundary Condition Type 
Stability Limit 
(FSS number) 

1 01.02.03.04 5.47 

2 01.0/i2.03.04 7.18 

3 01.0*2.03 >0/t4 8.14 

4 01.0«2.0n3>04 10.70 

Table 1:   Stability limits of the square panel with different 
boundary condition types. "Boundary Condition 
Type" represents the known boundary values on 
each panel. The implicit-like Euler scheme is 
used. 

Time simulations of a plane progressive wave 
passing through the square panel are performed for the 
various ranges of the FSS number and typical results are 
shown in Figs. 6 - 9. Fig. 6 is the condition for a very 
small FSS number. In this case, the simulation shows 
both high levels of accuracy with stability. The FSS 
number is increased to the stability limit to investigate the 
transition phenomena from a stable to unstable region (Fig. 
7). Figure 7 shows the sawtooth contamination on the 
crest and trough of the sine curve. With an incremental 
increase in the FSS number, (FSS=7.1S5) the simulation 
diverges drastically as in Fig. 8. In Fig. 9, the FSS 
number is set to a value of 0.01 a highly stable condition, 
but the kAx value, where k is the plane progressive wave 
number, is increased to 2.2. Figure 9 demonstrates that 
stability does not necessarily guarantee accuracy. Without 
presenting the details here, Park (1992) has shown that the 
fully implicit Euler scheme is also conditionally stable and 
that the explicit fourth-order Runge-Kutta scheme has 
approximately double the range of the FSS parameter of the 
implicit-like Euler scheme. 
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squore ponel b (cdx=0.001,FSS=0.4) ot 1, method 2 

0.0 50.0 

squcre pone 1   b (c<ix=0.001,FSS=7.185)  ot   1, method  2 

■■cc.z-. 

i 
11 

50.C- ill 
2 JA 

^aRfflulAIUIIIIIIII 

-50. C- 1 1 1 
0 0            50.0 100.0         ,500        200.0        j50   o         300.0 

TIME 

Fig. 6:    Time simulation of the square panel. Boundary 
conditions given as [i>^<p„2, 0j, 0^) with 
implicit-like Euler scheme for time marching. 
FSS number =0.4. 

Fig. 8:    Time simulation of the square panel. Boundary 
conditions given as (0,, #„2. #j, #-*) with 
implicit-like Euler scheme for time marching. 
FSS number =7.185. 

Fig. 7:     Time simulation of the square panel. Boundary 
conditions given as (<p , 0„,, $3, $4) with 
implicit-like Euler scheme for time marching. 
FSS number =7.180. 

square ponel b (cdx=1.1,FSS=7.18) ot 1, method 2 

400.0 

TIME 

Fig. 9:    Time simulation of the square panel. Boundary 
conditions given as (</>., <pn , ^3, <j>4) with 
implicit-like Euler scheme for time marching. 
FSS number =0.01 and kAx = 2.2. 
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Much of the problem formulation and the resulting 
mathematical equations are the same for the polygonal 
domain with N panels on the free surface. The geometry 
of the domain is shown in Fig. 4. For the explicit Euler 
scheme, the difference equations are found by substituting 
Eq. (27) into Eq. (26) to find 

N 

m=f.s. 

--g(At)2      X    Cl{K    or    <J 
m=non f.s. 

(50) 

Following the von Neumann stability analysis, the 
quadratic form of the magnification factor equation is 

GJ-2Gj+l + g{AtY 
N 

m=f.s. 

\ 
i(m-j)ß = 0 (51) 

with roots 

Gj=l±   -g(At) 
\m=f.s. 

(52) 

where ß = kAx and k is the wave number of the Fourier 
component of the error. The magnitude of at least one of 
the two roots is larger than 1 (IGI >1); therefore, no region 
of stability exists. The explicit- Euler scheme is 
unconditionally unstable for the multi-panel closed 
boundary problem, similar to the single-panel closed 
boundary problem discussed previously. 

The implicit-like Euler scheme has the following 
difference equations for the multi-panel boundary: 

<pJ^-2<t>]+l
+g(Atf   £    CjX+1 + *£ = 

m-f.s. 

-8(Atf      XC^-^^C1)   • 
m=non f.s. 

(53) 

Based upon a von Neumann analysis, the quadratic form of 
the magnification factor equation is 

GJ-h-g(Aty 
N 

{m=f.s. 
'jm" 

i(m-j)ß \Gj + 1 = 0    (54) 

At the (/) panel, the magnification factor Gj, is easily 
shown to be 

= 1-1^ y  C* e^m~^ 
{.m=f.s. 

g(*r 
N 

m=f.s. 

*W N 
1/2 

{.m=f.s. 
(55) 

The stability region has to be numerically calculated. 
Therefore, the implicit-like Euler scheme is conditionally 
stable in the region where Eq. (55) is satisfied. Equation 
(55) can be used to search for the stable region of each 
panel on the free surface. For each panel, the local 
maximum FSS number (i.e. the largest FSS number before 
the calculation becomes unstable) is calculated. The 
smallest FSS number among the local maximum FSS 
numbers is taken to be the stability limit for entire free 
surface. As an example, Table 2 shows the distribution of 
the maximum FSS numbers along the free surface panels 

40*9*41   RIGHT   TRIANGLE: (20011)    BOUNDARY  CONDITION 
with  Implicit-like Euler  scheme 

************************************************** 

panel no. 51 FSSmax = 0 50327953521990E+01 

panel no. 52 FSSmax - 0 46935572888574E+01 

panel no. 53 FSSmax - 0 46657763639911E+01 

panel no. 54 FSSmax - 0 46647364292390E+01 

panel no. 55 FSSmax - 0 46654495985777E+01 

panel no. 56 FSSmax - 0 46645214740659E+01 

panel no. 57 FSSmax - 0 46653739332471E+01 

panel no. 58 FSSmax - 0 46646326873699E+01 

panel no. 59 FSSmax - 0 46652636309610E+01 
panel no. 60 FSSmax - 0 46647314596044E+01 

panel no. 61 FSSmax - 0 46651773814673E+01 
panel no. 62 FSSmax - 0 46648066659406E+01 

panel no. 63 FSSmax - 0 46651111359308E+01 

panel no. 64 FSSmax - 0 46648658877095E+01 

panel no. 65 FSSmax - 0 46650572343171E+01 

panel no. 66 FSSmax - 0 46649158698483E+01 

panel no. 67 FSSmax - 0 46650099898935E+01 

panel no. 68 FSSmax - 0 46649613650187E+01 

panel no. 69 FSSmax - 0 46649653730346E+01 

panel no. 70 FSSmax - 0 46650058975132E+01 

panel no. 71 FSSmax - 0 46649201553847E+01 

panel no. 72 FSSmax - 0 46650525951354E+01 

panel no. 73 FSSmax - 0 46648711199720E+01 

panel no. 74 FSSmax - 0 46651049612333E+01 

panel no. 75 FSSmax - 0 46648142506205E+01 

panel no. 76 FSSmax - 0 46651677654242E+01 

panel no. 77 FSSmax - 0 46647435023243E+01 

panel no. 78 FSSmax - 0 46652480804577E+01 

panel no. 79 FSSmax - 0 46646470102447E+01 
panel no. 80 FSSmax - 0 46653522313344E+01 
panel no. 81 FSSmax - 0 .46644836160268E+01 

panel no. 82 FSSmax - 0 .46654442871698E+01 

panel no. 83 FSSmax - 0 .46641023690973E+01 
panel no. 84 FSSmax - 0 .46656975490966E+01 

panel no. 85 FSSmax - 0 .46661354209918E+01 
panel no. 86 FSSmax - 0 .46850759928442E+01 

panel no. 87 FSSmax - 0 .47774251888542E+01 

panel no. 88 FSSmax - 0 .52561249903248E+01 

panel no. 89 FSSmax - 0 .72196326036770E+01 

panel no. 90 FSSmax - 0 .19254511994784E+02 
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Table 2. Maximum FSS number along the free surface on 
the triangular domain. Boundary conditions given 
as <p on the free surface, <p on the vertical 
boundary, and (pn on the slanted boundary. 
Implicit-like Euler scheme, c=1.0. 



of a right triangular domain. The boundary condition was 
given as the potential derivatives (<pn) °n the longest 
slanted side. On the free surface and on the vertical side, 
potentials were given as shown on Fig. 10. Forty panels 
were located on the free surface, nine panels on the vertical 
side, and forty-one panels on the slanted side. Panels on 
the free surface are numbered from the right as 51 to the 
left as 90. Table 2 reveals that the stability limit is greater 
near both edges and smaller in the middle indicating that the 
least stable elements are located near the center. 

Fig. 10: Free surface simulation for the triangular domain. 
Boundary conditions given as <p on the free 
surface, <p on the vertical boundary, and <pn on 
the slanted boundary. Implicit-like Euler scheme. 
FSS number=4.685, c=1.0. 

Figure 10 is the time simulation result corresponding 
to the example of Table 2. The FSS number was fixed at 
4.685 which is a stable FSS number for the edges and an 
unstable FSS number for the middle panels. The figure 
shows growth in the error of the potential on the middle 
and the effect propagates to the edges. The matrix method 

can be used to evaluate the stability of the implicit-like 
fourth-order Runge-Kutta scheme for the same geometry. 
Park (1992) calculated that the implicit-like RK-4 algorithm 
becomes unstable at an FSS number of approximately 
5.02. 

Linear Open Boundary Problem 

The model geometry and the coordinate system for 
the linear open boundary are depicted in Fig. 3. The fluid 
is bounded by the free surface SF and S<», by the rigid 
body Sß, and by the bottom and far-away contour Sc. The 
surface S changes to a line contour in the two dimensional 
problem. Following Faltinsen (1977) for the two- 
dimensional case and Kang (1988) for three-dimensional 
axisymmetric case, the behavior of the potential </> in the 
far-field is considered to be the same as the value of a 
vertical dipole at the origin. The strength of the vertical 
dipole is determined through matching it to the value of $z 

on the last panel at the truncation boundary. The effects of 
the normalization constant c in the modified Green function 
(i.e. G*) and the truncation boundary are included and the 
accuracy of the numerical scheme has been checked with 
the continuity equation (conservation of mass). 

This investigation is essentially numerical. The 
complexity of the boundary value problem, including 
boundary conditions and time-stepping algorithms, restricts 
stability analysis to numerical studies. The matrix method, 
Eqs. (29) - (33), is used to determine the stability 
characteristics. 

Table 3 shows the numerical stability results as a 
function of the parameters c, the modified Green function 
constant, and the FSS number. This analysis was 
performed with 10 panels on the half wedge-type body 
which has 45 degree slope (i.e. 45 degree wedge half 
angle) and 20 panels on the free surface. The explicit 
fourth-order Runge-Kutta scheme was used. The numbers 
in the table represent the maximum modulus of the 
eigenvalues in the matrix stability analysis, so the condition 
which has a value larger than 1 is unstable and the 
condition which has the value less than or equal to 1 is 
stable. The stable region is observed by varying c from 
1.0 to 0.1 to 0.01. The results suggest that the proper 
manipulation of ein he modified two-dimensional Green 
function controls the numerical stability for this linearized 
problem.   The  possibility   of stability control for other 

c 

FSS 

0.01 0.10 1.00 

w/ w/o w/ w/o w/ w/o 

1.0 1.0(c) 1.0(c) 1.144(r) 0.9999(c) 1.9067(r] 1.117(r) 

2.0 1.0(c) 1.0(c) 1.209(r) 0.9999(c) 1.096(r) 1.169(r) 

3.0 1.0(c) 1.0(c) 1.262(r) 0.9999(c) 1.122(r) 1.21 l(r) 

4.0 1.0(c) 1.0(c) 1.308(r) 0.9999(c) 1.138(r) 1.247(r) 

5.0 1.0(c) 1.0(c) 1.350(r) 0.9999(c) 1.156(r) 1.280(r) 

9.0 0.9994(c) 

10.0 1.255(c) 

Table 3: Magnitude of maximum eigenvalues associated with the forced oscillation, far- 
field open boundary problem. 45 degree half angle, wedge-shaped two-dimensional 
body on the free surface with 10 panels on the body, 20 on the free surface. Explicit 
fourth-order Runge-Kutta scheme, (r) and (c) denote real or complex eigenvalues 
respectively, w/: with truncation effect, w/o : without truncation effect. 
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problems and other numerical schemes is worthy of further 
investigation. 

The effect of the treatment of the truncation boundary 
on the stability is also demonstrated. Complex eigenvalues 
referenced to the unit circle are shown in Figs. 11 and 12. 
As can be seen in Table 3 and Fig. 11, the maximum 
eigenvalue of 1.144 is pure real while Fig. 12 shows the 
maximum eigenvalue of 1.255 is complex. Figure 11 
implies a diverging error with fluctuation while Fig. 12 
implies an exponentially diverging error. A simulation is 
shown in Fig. 13 for the condition shown in Fig. 11. In 
these two figures, the truncation effect was included 
following Faltinsen's far-field model and exhibits 
instabilities similar to the type of instability shown in the 
Introduction, Fig. 2. 

[■genvolues ol test cose for the open-boundory problem 

c - 0.1 

FSS =   1.0,   «/ 

Fig. 11: Eigenvalues of the forced oscillation, far-field 
open boundary problem 45 degree half angle, 
wedge-shaped two-dimensional body on the free 
surface with 10 panels on the body, 20 on the 
free surface. Explicit fourth-order Runge-Kutta 
scheme, c = 0.1, 'o' represents the eigenvalues 
for FSS number =1.0 with the truncation effect. 

The effects of three dimensionality and increased 
panel numbers on the free surface are examined next. 
Consider a cone shaped surface with a 45 degree half 
angle. The three dimensional modified Green function 
(Eqs. (12) and (14)) is used to formulate the integral 
equation of the BEvl Due to the axisymmetric shape, the 
theta integration is performed in closed form reducing the 
physical dimensions by one. The influence coefficients in 
the [A] and [B] matrices will reflect this integration and 
produce changes in the stability characteristics of the 
problem. As a far-field closure, the truncation effect is 
considered by the method of Kang(1988) where the far- 
field behavior is approximated by a single vertical dipole 
located at the origin. 

Eigenvolues 0' test coses 

c = 0.1 
1 .5-1 

X 
X 

X 

o  :  FSS = 9.0 

.   :   fSS -  10.0 

1.0- 

0.5- /       s /               s 

/              8 

-0.5- 

-1 .0- 

I 
\               * 
\              a 

\        «P 

X 

X 

-1 .5-  1 ;         .          i ■1           J           1           ) 

-1 .0             _0  5              0.0 

Reol  E 

o.; 
.v. 

'■»               1.5 

Fig. 12: Eigenvalues of the forced oscillation, far-field 
open boundary problem. 45 degree half angle, 
wedge-shaped two-dimensional body on the free 
surface with 10 panels on the body, 20 on the 
free surface. Explicit fourth-order Runge-Kutta 
scheme, c =0.1, 'o' represents the eigenvalues 
for FSS number =9.0 and 'x' for FSS number 
=10.0 both without the truncation effect. 

c=0.l,FSS«1.0   ,   LINSIW5S , RK4 

20.000- 

0.000- 

" ~ ~~ ^\ 
X. 

-20,000- 
JC \ 

\ 
-40.000- \ 

\ 

-60.000- 
\ 

\ 

-80.000- \ 

0.0 2.0                  *-°                  6.0 
t ime 

1.0 
'        "1 

10.0 

Fig. 13:   Time simulation for the forced oscillation, far- 
field open boundary problem. 45 degree half 
angle, wedge-shaped two-dimensional body on 
the free surface with 10 panels on the body, 20 
on the free surface. Explicit fourth-order Runge- 
Kutta scheme, c = 0.1, FSS number =1.0 with 
the truncation effect. 
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Tables 4 and 5 show the numerical stability results 
for two-dimensional and three-dimensional axisymmetric 
cases with similar conditions (10 panels on the half-body, 
90 panels on the free surface, and the explicit fourth-order 
Runge-Kutta scheme). From the results presented here, it 
is found that the far-field closure consideration is not a 
major factor for the stability analysis of the three- 
dimensional axisymmetric case. In two-dimensions, as 
already shown, the stability region can be altered by the 
far-field closure condition. For the two dimensional case, 
this appears to be quite reasonable since wave energy 
propagated from the body is not dispersed radially in the 
far-field. The proper closure method then becomes much 
more important than in the three-dimensional case. 

The effect of the Green function constant is also very 
weak in three-dimensions. For two dimensions, c should 
be less than 0.02 for the computation to be stable. In three 
dimensions, the stability characteristics, through four 
significant figures, were unaffected by c. This suggests 
that little is to be gained by using the modified Green 
function (i.e. Eq. (10)) in three dimensions. 

In addition to the examples considered here, Park 
(1992) also investigated other time-stepping schemes. 
Several runs with implicit-like fourth-order Runge-Kutta 

schemes and Kang's fourth-order Runge-Kutta scheme 
(Kang (1988)) were performed and no stable regions were 
found. In the implicit-like Runge-Kutta scheme, the 
modulus of the maximum eigenvalues converged to 1.0 in 
the limit as the FSS number went to zero. Hence, for the 
very small numbered range of the FSS number near 0.0, an 
implicit-like method may also be admissible in the 
calculation of the impact problem for short-time spans. 

The linear stability analysis discussed in this chapter 
has laid the foundation for understanding the nonlinear 
calculations. Effects on numerical stability, such as time 
differencing schemes, boundary formulations and temporal 
and spatial discretizations have been investigated. While 
these findings may have to be refined in the cases of steep, 
breaking waves or jets due to impact, the next chapter will 
demonstrate that the linear results are valid for moderately 
nonlinear wave calculations. 

Nonlinear Open Boundary Problems 

With the basic theory of the linear numerical stability 
analysis firmly established, the nonlinear numerical 
stability analysis for the forced oscillation problem can be 
examined. Most of the problem solving procedures are the 
same as that described above except that the free surface 

c 

FSS 

0.01 0.02 0.10 1.00 

w/ w/o w/ w/o w/ w/o w/ w/o 

1.0 1.0 1.0 1.127 l-O(c) 1.041 1.086 1.027(r) 1.043 

2.0 .0 1.0 1.184 1.0(c) 1.058 1.124 1.038(r) 1.062 

3.0 1.0 1.0 1.230 1.0(c) 1.072 1.154 1.046(r) 1.076 

4.0 1.0 1.0 1.270 1.0(c) 1.083 1.179 1.054(r) 1.088 

5.0 1.0 1.0 1.307 1.0(c) 1.093 1.203 1.060(r) 1.099 

9.0 1.0(c) 

10.0 1.275(c) 

Table 4: Magnitude of maximum eigenvalues associated with the forced oscillation, far-field 
open boundary problem. 45 degree half angle, wedge-shaped two-dimensional body 
on the free surface with 10 panels on the body, 90 on the free surface. Explicit 
fourth-order Runge-Kutta scheme, (r) and (c) denote real or complex eigenvalues 
respectively, w/: with truncation effect, w/o: without truncation effect. 

lie 

FSS 

10.0 1.0 0.01 0.00 

w/ w/o w/ w/o w/ w/o w/ w/o 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

9.33 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

10.0 1.275 1.275 1.275 1.275 1.275 1.275 1.275 1.275 

11.0 1.755 1.755 1.755 1.755 1.755 1.755 1.755 1.755 

12.0 2.307 2.307 2.307 2.307 2.307 2.307 2.307 2.307 

Table 5: Magnitude of maximum eigenvalues associated with the forced oscillation, far-field 
open boundary problem. 45 degree half angle, cone-shaped three-dimensional 
axisymmetric body on the free surface with 10 panels on the body, 90 on the free 
surface. Explicit fourth-order Runge-Kutta scheme. All values were complex (c) 
eigenvalues, w/: with truncation effect, w/o: without truncation effect. 
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boundary conditions are now nonlinear and the body 
boundary condition is satisfied on the exact body surface. 
The Boundary Integral Method (BIM) is used in solving 
Laplace's equation and the fourth-order Runge-Kutta 
schemes' are used for time-stepping the nonlinear free 
surface conditions. At each time step, the body and the 
free surface shape are regridded using modified Lagrangian 
polynomials (i.e. non-uniform parametric blended 
Lagrangian polynomials). For the fourth-order Runge- 
Kutta schemes, the influence coefficient matrix may or may 
not be updated during the intermediate steps depending 
upon the method used. 

Park (1992) describes a number of concerns related 
to the nonlinear body-wave interaction problem. The 
stability and closure issues of the previously discussed 
linear problem are still present. With nonlinear boundary 
conditions, though, a number of other factors must also be 
considered, including the body-free surface intersection 
curve and the effects associated with any regriddmg 
algorithm. 

At the intersection point, the body boundary 
condition, usually given as a Neumann type, meets the free 
surface boundary condition, usually a Dirichlet type. The 
confluence of these two boundary conditions causes a 
weak singularity in the integral equation. This weak 
singularity on the intersection point has a global influence 
and causes numerical difficulties for the nonlinear problem. 
For the results presented here, the position and the potential 
of the computational surface is calculated at the center of 
the panel in the BEVI. By locating the control point at the 
center of the panel, the logarithmic singularity at the 
intersection point is removed. However, locating the 
control point at the panel center introduces the difficulty of 
tracing the intersection point where a kinematic continuity 
condition is satisfied. Here the tangential velocity of the 
intersection point is determined by the modified Lagrangian 
polynomial interpolation scheme and the normal velocity of 
the intersection point is determined via the body boundary 
condition to be the same as the normal velocity of the body 
(Park (1992)). 

After each time step, a new location of the body-wave 
intersection point is also calculated to get the wetted body 
length. Starting from the new body-wave intersection 
point, the total arc length of the free surface is calculated. 
The free surface is then regridded to have constant panel 
lengths. For the portion where the high gradient potential 
exists, more panels are allocated to prevent the possible 
loss of accuracy due to the regridding algorithm. After the 
regridding procedure, the new location of the control points 
and the potential values on the new control points of the 
free surface are recalculated. To investigate the numerical 
stability behavior relative to a given FSS number, the time 
step At is tuned to keep the FSS number constant 
according to the modified panel length Ax, at every time 
step. 

Since a fully nonlinear stability analysis is very 
difficult to complete, a local linear analysis is performed 
while the potential is calculated with nonlinear boundary 
conditions. The numerical stability analysis, therefore, 
reflects the nonlinear boundary condition effects in a global 
sense even though the analysis is locally linear. For 
moderate wave slopes, the results are consistent with those 
shown in Tables 3 - 5. The numerical stability analysis, 
therefore, reflects the nonlinear boundary condition effects 
in a global sense even though the analysis is locally linear. 

Figures 14 and 15 show nonlinear simulations with 
the same conditions as that given in Table 4. The 
simulation configuration is as follows: initial depth of body 
= 1.0, body oscillation amplitude = 0.5, wave number k = 
0 1309, number of panels on the body = 10, and number 
of panels on the free surface = 90. The stability range for 
the nonlinear simulations was determined to be essentially 
the same as for linear range indicating that a linear stability 
analysis is a good estimate of the nonlinear stability 
characteristics. 

Fig. 14   Time simulation of the nonlinear potential value 
distribution, stable case. Two-dimensional 
wedge-shaped body with 45 degrees deadrise 
angle.   10 panels on the body and 90 panels on 
the free surface. Amplitude=0.5, £=0.1309, FSS 
number=1.0, c= 0.02, without the truncation 
effect Explicit fourth-order Runge-Kutta method. 

Fig. 15   Time simulation of the nonlinear potential value 
distribution, unstable case. Two-dimensional 
wedge-shaped body with 45 degrees deadrise 
angle.   10 panels on the body and 90 panels on 
the free surface. Amplitude=0.5, £=0.1309, FSS 
number=1.0, c= 0.02, with the truncation effect. 
Explicit fourth-order Runge-Kutta method. 
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SUMMARY AND CONCLUSIONS 

The goal of this paper is to better understand the 
complex behavior of body-free surface interaction 
problems, specifically the hydrodynamics associated with 
intersecting, non-wallsided bodies experiencing large 
amplitude motions. Due to the nonlinearities in the free 
surface boundary conditions, this problem is generally only 
tractable through computation and simulation. Previous 
studies have encountered numerical instabilities restricting 
the usefulness of this method. Either the simulation 
program stops due to floating point difficulties or 
smoothing techniques are applied raising questions about 
the validity and accuracy of the computed values. 

The purpose here is to examine the fundamental 
causes and solutions surrounding numerical stability and 
instability and their subsequent effects on hydrodynamic 
modeling. Analytic determination and evaluation of 
stability regions have been completed leading to closed 
form solutions for stability criteria. These criteria have 
been supported by numerical time simulations. 

Initially, simple models for the hydrodynamics are 
developed yielding basic information on the importance of 
various parameters and algorithms used in the problem 
solution schemes. When closed form analytic solutions are 
not available, this approach gives confidence in numerical 
results by increasing the level of complexity of the model to 
finally include the fully nonlinear free surface boundary 
conditions. Based upon the results presented here, the 
following conclusions are made: 

• By adding a constant to the Green function, the 
stability characteristics of a particular time stepping 
algorithim may be changed. This method is effective in 
two dimensions with open boundary problems, but 
generally not effective in three dimensions or for closed 
boundary problems. 

• The radiation condition is important to stability 
considerations in two-dimensional numerical analysis but 
less so in three dimensions. In the far-field open boundary 
problem, the effect of the truncation limit plays a significant 
role in the stability analysis. However, in the three- 
dimensional problem, no similar effect is observed for the 
cases studied in this paper. Faltinsen's method (Faltinsen 
(1977)) for the radiation boundary is apparently unstable 
but may be approximately valid until the wave propagated 
from the body reaches the outer boundary. 

• The conditional/unconditional stability or instability 
of various time-stepping schemes has been demonstrated. 
As shown in the above sections, an explicit Euler scheme is 
unconditionally unstable and other schemes, such as the 
implicit-like Euler, the implicit Euler, the explicit and the 
implicit-like fourth-order Runge-Kutta schemes are 
conditionally stable. 

• Moderate nonlinearities do not produce significantly 
different stability regions than equivalent linear problems. 
This suggests that a preliminary stability analysis can be 
completed prior to actual simulation of the fully nonlinear 
problem by applying the von Neumann or matrix methods 
to linearized boundary conditions on the mean surfaces. 

• Based upon axisymmetric flow analysis, three- 
dimensional problems appear to have larger stability 
regions than similar two dimensional ones. 

• Figure 12 illustrates that errors expanded in terms 
of the eigen vectors of the [D] matrix have components 
with different decay rates. Those components that lie on 
the unit circle neither grow nor decay, while those that are 
within the unit circle are damped. This suggests the 
possibility of designing an algorithm that selectively damps 
unwanted components (i.e. frequencies) while minimizing 
the numerical dissipation of others. 

• Numerical stability does not guarantee accuracy in 
either computation or modeling. For example, bodies 
characterized by low deadrise angles or high entrance 
velocities will produce jet-like flows. The computer code 
that this work is based upon could not successfully 
calculate such flows. While the time-stepping algorithm is 
stable, during simulation the formation of a jet near the 
intersection point leads to numeric overflow. At the 
intersection point, the free surface forms a thin sheet 
parallel to the body. The narrow distance between the 
body surface and the jet surface causes difficulties in the 
source distribution method since the influence coefficient 
matrix has large off-diagonal terms. This problem, jet-like 
impact with and without gravity, has received a 
considerable amount of attention, but as yet remains 
unsolved. See, for example Dobrovol'skaya (1969), 
Hughes (1972), Greenhow and Lin (1985), Greenhow 
(1987), Miloh (1991), Faltinsen and Zhao (1992), or 
Vorus (1992). 
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Slamming Loads on High-Speed Vessels 
R. Zhao (MARINTEK, Nonvay), 

O. Faltinsen (University of Trondheim, Norway) 

ABSTRACT 

Slamming loads on hull cross-sections are studied by 
a boundary element method, a similarity solution and 
an asymptotic solution. Pressure distributions on 
wedges with deadrise angles between 4° and 81° are 
presented. It is documented that the asymptotic 
solution is a reliable and practical method for small 
deadrise angles. The asymptotic method is generalized 
to wetdeck slamming. The wetted deck area as a 
function of time is found by solving an integral 
equation. The results show that the wave slope is 
important for the slamming load level. The method for 
wetdeck slamming is incorporated in a time-domain 
solution for wave induced motions and accelerations 
of high-speed catamarans. It is demonstrated that the 
slamming loads on the wetdeck can have an important 
influence on the vertical accelerations of a catamaran. 

NOMENCLATURE 

cc = deadrise angle 
X = wavelength of the incident waves 

^0=1.6) = motion variables (see Fig. 5) 

c = wave amplitude of the incident waves 

Sslam = 
lowest ^,-value where wetdeck 
slamming occurs 

P = mass density of water 

cP 
= pressure coefficient 

Dc = height of wetdeck relative to mean 
water level 

Fn = Froude number = U/VLg 

g = acceleration of gravity 
k = wave number 
L = length between perpendiculars 

P = pressure 

Po = atmospheric pressure 
t = time variable 
U = forward speed of the ship 
V = constant vertical body velocity (positive 

downwards) 

(x,y,z)       = coordinate system defined in Fig. 5 
(also used as local coordinates for one 
hull and as local coordinate system for 
wetdeck slamming (see Fig. 7)). 

X! = defined by equation (32) 

INTRODUCTION 

Slamming loads are important in the structural design 
of high speed vessels. Slamming causes also the ship 
master to reduce the ship speed. The normal way to 
predict the voluntary speed loss due to slamming is to 
first calculate the standard deviations of relative 
vertical velocity and motion in a vessel-fixed 
coordinate system at places where slamming is likely 
to occur. The slamming probability is found by 
defining a threshold velocity for slamming to occur. 
An often used criterion is that a typical ship master 
reduces the speed if slams occur more than 3 of 100 
times that waves pass the ship. The conventional way 
of defining a threshold velocity does not reflect the 
effect of the structural form. For instance for a high 
speed vessel with a fine hull form in the bow, the 
procedure may say that slamming occurs on the bow 
part of the hull, while it in reality is not a problem. In 
order to come up with better criteria it is necessary to 
study theoretical models or performing experiments 
for water impact against wetdecks and hull shapes 
typical for high speed vessels. This is also necessary 
in order to develop rational criteria for operational 
limits due to slamming. The criteria should be related 
to average pressures over plate panels on the hulls and 
the wetdeck that cause plastic deformation of the 
panels. The occurrence and the magnitude of the 
slamming pressure are strongly dependent on the 
relative vertical motions and velocities between the 
vessel and the waves. 

In the following text we will first discuss 
slamming loads on cross-sections of a hull. Pressure 
distributions on wedges with deadrise angles between 
4° and 81° are presented. A boundary element method, 
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a similarity solution and an asymptotic solution are 
used. It is documented that the asymptotic solution is 
a reliable and practical method for small deadrise 
angles. The asymptotic method is generalized to 
wetdeck slamming. The method differs from Kaplan's 
[1] procedure both in the way that the wetted area and 
the pressure distribution is found as a function of 
time. The method for wetdeck slamming is 
incorporated in a time-domain solution for wave 
induced motions and accelerations of high-speed 
catamarans in head sea regular waves. The 
hydrodynamic loads on the hulls are found by a linear 
time domain solution. The method is a generalization 
of Faltinsen & Zhao's [2] frequency domain solution 
for high speed vessels. It is demonstrated that the 
slamming loads on the wetdeck can have an important 
effect on the vertical accelerations of a catamaran. 
Further that the slamming loads on the wetdeck cannot 
be estimated by a theory that neglects the effect of 
slamming loads on the wave induced motions. 

SLAMMING LOADS ON HULL CROSS- 
SECTIONS 

Zhao & Faltinsen [3] studied theoretically slamming 
loads on a two-dimensional body. Three different 
methods were presented. The assumptions are that no 
air pocket is created during the impact, the fluid is 
incompressible and the flow is irrotational. The 
pressure is set equal to a constant atmospheric 
pressure on the free surface. The effect of gravity is 
neglected. This is a reasonable approximation in an 
impact problem where large fluid accelerations occur. 

The three methods can be classified as a 
boundary element method, a similarity solution and an 
asymptotic solution. The boundary element method 
and the similarity solution satisfy the exact free 
surface and body boundary conditions. The boundary 
element method is applicable for any body shape and 
velocity, while the similarity solution is valid for 
wedges that is forced with constant velocity through 
the free surface. The asymptotic method is asymptotic- 
ally valid for small deadrise angles and constant 
velocity. 

The boundary element method assumes that a jet 
flow is created at the intersection between the free 
surface and the body surface. The pressure is set equal 
to atmospheric pressure in the upper part of the jet. 
The jet flow assumption can be used to simplify the 
solution. This is done by defining an instantaneous 
fluid domain Q. that does not contain the whole jet 
flow. The velocity potential <(> for the flow inside the 
fluid domain Q is represented by Green's second 
identity. The surface S enclosing Q consists of AB, 
CD, SB, SF and S_ (see Fig. 1). S_ is a control surface 
far away from the body. The angle between the body 
surface and AB is 90°, while the angle between AB 
and the free surface is close to 90°. The line AB is in 
an area where the jet starts and where the pressure can 

be approximated by atmospheric pressure. CD is 
constructed in the same way as AB. 

Fig. 1 Definitions of coordinate system and 
control surfaces used in the numerical 
solution of water entry of a wedge by 
means of a boundary element method, a = 
deadrise angle. 

The problem is solved as an initial value 
problem where the velocity potential and the free- 
surface elevation are set equal to zero at the initial 
time. By using the kinematic and dynamic free surface 
conditions, one can follow how the free surface SF 

moves and how the velocity potential changes on the 
free surface. In the initial phase of the flow AB and 
CD are not used. When AB and CD are introduced, 
the motion of AB and CD are found by assuming a 
one-dimensional flow at AB and CD and integrating 
the fluid velocity. Since the pressure is assumed to be 
atmospheric at AB and CD, the dynamic free surface 
condition can be used to determine the change in <}> on 
AB and CD. 

At each time instant one solve an integral 
equation resulting from Green's second identity. On 
AB, CD and SF the velocity potential is known and 
the normal velocity is unknown, while on SB (j> is 
unknown and the normal velocity is known. 

Details about the numerical method are 
described by Zhao & Faltinsen [3]. Important features 
of the solution method are how the jet flow occurring 
at the intersection between the free surface and the 
body is handled and how conservation of fluid mass 
is satisfied in areas of high curvature of the free 
surface. The method checks that conservation of mass, 
momentum and energy are satisfied. Before the 
segments AB and CD are introduced, conservation of 
energy and momentum are in general not satisfactory. 
Conservation of energy are most difficult to satisfy. 
The reason is numerical difficulties in describing the 
kinetic energy of the fast moving fluid in the vicinity 
of the jet flow. 

The similarity solution is based on 
Dobrovol'skaya's [4] work. The solution is not 
available in explicit form and involves solving a non- 
linear integral equation. This is particularly difficult 
for small deadrise angles. Zhao & Faltinsen [3] have 
presented an iterative scheme to solve the integral 
equation. They verified the results by checking mat 
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the free surface conditions, the body boundary 
condition, the far-field representation, conservation of 
mass, momentum and energy are all satisfied. 

The asymptotic solution is based on the work by 
Armand & Cointe [5] (see also Cointe [6]) who 
extended Wagner's theory [7] by using matched 
asymptotic expansions. A simple composite solution 
for the pressure distribution was presented by Zhao & 
Faltinsen [3]. 

Fig. 2 shows numerical predictions of the 
pressure distribution p on the wetted surface of 
wedges that are forced with constant vertical velocity 
V through an initially calm free surface. The deadrise 
angle a is varied from 4° to 81°. All figures present 
results by the boundary element method and by the 
similarity solution. The agreement between these two 
methods is good. The largest difference occur in how 
the pressure approaches atmospheric pressure in the jet 
flow. Reasons to that are believed to be associated 
with the jet flow approximation used in the boundary 
element method. At small deadrise angles the pressure 
is sharply peaked close to the jet flow domain. 
Calculation of the pressure in this area requires high 
accuracy both by the similarity solution and the 
boundary element method. A reason is that the 
"pd<j>/3t"-term ($ = velocity potential) and the velocity 
square term in Bernoulli's equation are of different 
signs and have large and nearly the same absolute 
value at the jet flow area. This is illustrated in Fig. 3 
for a = 20°. It is believed that Zhao & Faltinsen [3] 
were the first to present similarity solution results for 
wedges with deadrise angles less than 30°. 
Dobrovol'skaya [4] presented results for a = 30°, 60°, 
81° and higher. 

Fig. 2 shows numerical similarity solution results 
by Dobrovol'skaya [4] for a = 30° and 60° and by 
Hughes [8] for a = 45°. The agreement with Hughes' 
results is good while there are some differences 
between our similarity solution results and 
Dobrovol'skaya's results, in particular for a = 30°. 
There must also be a misprint in Dobrovol'skaya's 
pressure results for a = 30°. The results in Fig. 2 are 
believed to be correct. A reason for the disagreement 
may be due to lack of accuracy in Dobrovol'skaya's 
numerical calculations. Our similarity results agree 
well with Dobrovol'skaya's results for a = 81°. 

Fig. 2 shows also pressure results from the 
asymptotic theory for small deadrise angles (up to a 
= 30°). The agreement with the similarity solution is 
very good for small a-values. The results for a = 4° 
shows that Watanabe's [9] asymptotic theory differs 
from our asymptotic theory. Watanabe used a different 
local jet flow analysis and pressure representation than 
ours. Reasons why the asymptotic theory deviates for 
larger deadrise angles are that the quadratic velocity 
term in Bernoulli's equation is neglected outside the 
jet flow and that the body boundary condition is not 
satisfactorily satisfied. 

0.5pV! Fig.2a 

500.0 

375.0 

250.0 - 

• SIMILARITY SOL. 

 ASYMPTOTIC SOL. 

, x x x   BOUNDARY ELEM. 

-1.00 -0.50 0.00 0.50 1.00 

z_ 
vt 

0.5pV 

500.0 

375.0 

Fig.2b 

125.0- x BOUNDARY ELEM. 
— SIMILARITY SOL. 

 ASYMPTOTIC SOL. 

—.—.-. WATANABE (1986) 

0.500 0.525 0.550 0.575 

2_ 
Vt 

Fig.2c 

-1.00 -0.50 0.00 0.50 

161 



P-Po 
0.5 pV! Fig.2d 

80.00 - i 

j 

60.00 -  ASYMPTOTIC SOL        J 

.   , x  < % x >   BOUNDARY ELEM.       j 

40.00 - 

a-10°                                         // 

20.00 - ._.__i==_SC=>^*^ 

i 
'      '   Vt 

O.SpV 

12.00 ■ 

Fig.2g 

9.00 

3.00 

0-2S 

 ASYMPTOTIC SOL 

   SMLARTTY SOL 

i x x x    BOUNDARY ELEM. 

A     \ 

-1.00 -0.50 0.00 0.50 1.00 
-1.00 -0.50 0.00 0.50 1.00 

vt 

0.5pV2 Fig.2e 

ASYMPTOTE SOL 

SIMILARITY SOL 

BOUNDARY ELEM. 

r-n r 

-1.00 -0.50 0.00 0.50 1.00 
-s 

Fig.2h 

1.00 -0.50 

0.5pV! Fig.2f 
. 

20.00 - 

r\ 
XM I 
4\ I 
*/ * 

15.00 - 

a-20° //  J 
I 
I 
I 
! 

10.00 - 

—ZZZ^-^ *                                               ) 
I 
I 
i 

5.00 -   ASYMPTOTIC SOL 

SIMILARITY SOL        " 

BOUNDARY ELEM. 

i 
i 

XX,    xxxx i. 
i 

0.00 - U —i—»- 

0.5PV2 Fig.2i 

3.00 

-1.00 -0.50 0.00 0.50 1.00 -1.00 -0.50 0.00 0.50 1.00 

162 



0.5 pVz 

4.00 -' Fig.2j Co- 
P-P,, 

 SIMILARITY SOL. 

< » * BOUNDARY ELEM. 

--«-HUGHES (1972) 

a-45° 

0.00 

0.5PV 

-wedge apex Fig.21 

0.90- 
SIMILARITY SOL. 

X   X   X   X   X BOUNDARY ELEM. 

0.60- 
a-81» 

0.30- 

0.00 T 1— i            "          < 

z_ 
vt 

-1.00 

Fie. 2 

0.00 

Predictions of surface pressure distribution 
p during water entry of wedges with 
constant vertical velocity V. p0 = 
atmospheric pressure, t = time variable, 
t = 0 initial time of impact, p = mass 
density of water, a = deadrise angle (see 
Fig. 1). 
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Fig. 3 Contributions to pressure distribution from 
the p3<j>/3t-term and the velocity square 
term in Bemoullis equation during water 
entry of a wedge with deadrise angle 20° 
and constant vertical velocity V. 
Calculations based on similarity solution. 

The pressure results in Fig. 2 show only a 
typical slamming behaviour for a up to -30°. By 
slamming we mean impulse loads with high pressure 
occurring over a small surface area that changes 
rapidly with time. Important parameters characterizing 
slamming are the position and value of the maximum 
pressure, the time duration and the spacial extent of 
the slamming pressures. 

According to the asymptotic theory the z- 
coordinate z^ of maximum pressure is equal to (0.571 
- l)Vt and the maximum slamming pressure pmax is 
given by 

Cp      s 
0.5 pV2 

J-l - 0.25 re2 cotan2cc       (1) 

for a wedge. The time duration of slamming can be 
quantified by considering a fixed point on the body 
surface and evaluate the time At, it takes from when 
the pressure is 0.5 (pm„ - p0) until it is 0.5 (pn„ - p0) 
again. The spacial extent ASS of the slamming pressure 
can be found in a similar way (see Fig. 4). Fig. 2 
shows that ASS has only meaning when a < -20°. 
Table 1 shows predictions of Cpm„, z^, ASS and the 
total vertical force F3 on the wedge for deadrise angles 
up to 40°. F3 is based on direct pressure integration. 
The results in Table 1 show that the boundary element 
method is in good agreement with the similarity 
solution. The asymptotic method seems to converge to 
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the results by the similarity solution when a -> 0. The 
maximum pressure is well predicted by the asymptotic 
method even for the larger deadrise angles presented 
in Table 1. When a > 45° (see Fig. 2), the maximum 
pressure is at the apex of the wedge. According to the 
similarity solution Cpn„ will be 2.720, 2.349, 1.810, 
1.443 and 1.163 for respectively a = 45°, 50°, 60°, 70° 
and 81°. 

CPrtvax 

i\    , PRESSURE 

Fig. 4 Definitions of parameters characterizing 
slamming pressure during water entry of a 
blunt 2-D body. Cp = pressure coefficient. 

The results in Table 1 for ASS at small values of 
a illustrate that measurement of slamming pressure 
requires high sampling frequency and "small" pressure 
gauges. There exists in the literature several reported 
experimental values for the maximum pressure for 
wedges and different opinions on how well Wagner's 
theory for the maximum pressure agrees with 
experimental results. However, experimental error 
sources due to the size of the pressure gauge and the 
change of the body velocity during drop tests are not 
always considered. Takemoto [ 10] and Yamamoto [11] 
did consider these factors and showed good agreement 
with Wagner's theory for maximum pressure when the 
deadrise angle was between -3° and 15°. The reason 
for the disagreement for a < -3° is due to the air- 
cushion effect under the wedge. 

Equation (1) is often used in practical 
calculations of slamming pressure for any value of a 
and is referred to as Wagner's formula. However it 
has no rational basis for very large cc-values where it 
clearly underpredicts the maximum pressure. For 
instance at a = 81° Wagner's formula shows Cpm„ = 
0.08, while the similarity solution gives 1.16. It should 
be noted that the maximum pressure occurs at the 
apex of the wedge when a > -45° (see Fig. 2). When 
a is large, the pressure shows a rapid change around 
the apex. 

Table 1 Estimation of slamming parameters by asymptotic method, nonlinear boundary element method and scanty 
solution during water entry of a wedge with constant vertical velocity V. a = deadrise angle, Op^ - pressure 
coefficient at maximum pressure. z_ = z-coordinate of maximum pressure (see Fig. 4). AS =spacial extent of 
slamming pressure (see Fig. 4).c = 0.5 itVt cotano, F3 = total vertical hydrodynamic force on the wedge, p = mass 
density of water, t = time (t = 0 initial time of impact). 

  
AS, Fs 

Cpm„ vt c pVH 

a Similarity Asymptot. Boundary 
element 

Similarity Asymptotic Boundary 
element 

Similarity Asymptotic Boundary 
element 

Similarity Asymptotic Boundary 
element 

4' 503.030 504.61 521.4 0.5695 0.5708 0.571 0.01499 0.01576 0.0156 1503.638 1540.506 1491.8 

7.5" 140.587 142.36 148.3 0.5623 0.5708 0.558 0.05129 0.05586 0.0526 399.81« 423.735 417.9 

10" 77.847 75.36 80.2 0.5556 0.5708 0.555 0.09088 0.1002 0.0941 213.980 231.973 220.8 

15" 33.271 34.37 32.8 0.5361 0.5708 0.533 0.2136 0.2314 0.226 85.522 96.879 85.5 

20* 17.774 18.63 18.2 0.5087 0.5708 0.48S 0.4418 0.4270 0.434 42.485 50.639 43.0 

25- 10.691 11.35 10.9 0.4709 0.5708 0.443 23.657 29.765 23.7 

30* 6.927 7.40 6.94 0.4243 0.5708 0.400 14.139 18.747 13.9 

40' 3.266 3.50 3.26 0.2866 0.57OS 0.245 5.477 8.322 5.31 
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SLAMMING LOADS ON THE WETDECK 

Consider a multihull vessel in incident head sea waves 
on deep water. A right-handed coordinate system 
(x,y,z) fixed with respect to the mean oscillatory 
position of the vessel is used, with positive z 
vertically upwards through the centre of gravity of the 
vessel and the origin in the plane of the undisturbed 
free surface. The vessel is assumed to have the xz 
plane as a plane of symmetry in its mean oscillatory 
position. Let the translatory displacements in the x-, y- 
and z-directions with respect to the origin be r\u r[2 

and rij, respectively, so that T), is the surge, T|2 is the 
sway and T\3 is the heave displacement. Furthermore, 
let the angular displacement of the rotational motion 
about the x-, y- and z-axes be r|4, r\5 and T]6, 
respectively, so that ri4 is the roll, T]5 is the pitch and 
T|6 is the yaw angle. The coordinate system and the 
translatory and angular displacement conventions are 
shown in Fig. 5. 

The method will be exemplified by considering 
regular sinusoidal waves where the wave elevation t, 
is written as 

C, - C,asin((x>et - kx) (2) 

o 

|n3 

On. 

V7 

w w 

Here £a is the wave amplitude, k is the wave number, 
coe is the circular frequency of encounter and t is the 
time variable. The corresponding vertical wave 
velocity in the free surface zone is 

Fig. 5 Coordinate system and definitions of 
translatory and angular displacements of a 
catamaran. 

w - CüQ^COSCCO/ - kx) (3) body boundary condition 

where the circular frequency of oscillation Cü0 of the 
waves is related to coe by coc = co0 + kU. U means the 
forward speed of the vessel. 

The instant of slamming between the waves and 
the wetdeck is found by monitoring the relative 
vertical motion £R and normal velocity V^ between 
the deck and the waves. Consistent with linear theory 
we can write 

CÄ - Tia - *r\s - C 

vB 
dt 

dr\5 

' dt tfris w 

(4) 

(5) 

Slamming is said to occur when £R = -De(x) and V^ 
< 0. Here De(x) is the mean local height of the 
wetdeck above the mean free surface. 

When the waves are in contact with the wetdeck, 
an additional flow is set up in the water. This is 
described by a velocity potential <(> that satisfies the 

i* - v, 
dz 

RN 
(6) 

We will assume that VRN has a linear variation in the 
longitudinal direction over the wetted contact area and 
that <)> satisfies a two-dimensional Laplace equation in 
x and z. The flow is divided into an inner and outer 
flow domain. In the inner flow, the details of the jet 
flow at the intersection between the free surface and 
the body are studied. In the outer flow we use the free 
surface condition § = 0. The body boundary and free 
surface conditions are transferred to a horizontal plane 
(see Fig. 6). The boundary value problem illustrated in 
Fig. 6 is solved at each time instant by using a local 
coordinate system (X, Z) where the X and Z-axis are 
parallel with the x and z-axis. Vm can be written as 
VRN = V, + V2X. The XZ-coordinate system changes 
with time. The relationship between X and x is 

X - x - (aft) - W)) (7) 

165 



?"0                L^U-v..-W»x 
_£_ ,/'"''''™''''y / 'i *- 

. <p-0 

b(0 a(t) 

21(0 
- a(0 - b(t) 

in studying water entry of two-dimensional bodies. If 
the right hand side of equation (10) is approximated 
by 0.5 C.k2X2, the solution can be written as 

m 2\/v/R (11) 

Fig. 6 Definitions of the coordinate systems and 
illustration of the "outer flow" boundary 
value problem for the wetdeck impact 
problem. 

By solving the boundary value problem we find that 
the velocity potential on the body surface at Z = 0 and 
|X|<C(t)is 

<j> - (V, + 0.5V.K) Jf(t) - X2 (8) 

a(t), b(t) and t(t) are found by solving the integral 
equation 

-V,\X\ 

s/X2 
-vl + v,x 

- 0.5sgnX • V2 

- t,K(x,t) + De(x) 

jx2-? I 
] dt 

(9) 

where R = (Ck2)"1 is the radius of curvature of the 
wave profile at the wave crest. 

In the second case we will include the effect of 
the wave velocity. We assume the deck is horizontal, 
infinitely long and has a constant downward velocity 
Vd. It is convenient to use a coordinate system (x\ z) 
that follows the wave crest, x' = 0 corresponds to the 
wave crest. However in the following we will drop the 
prime in the coordinate notation and use x instead of 
x'. By using equation (9) we can write 

.«    -jt -V? 
o    slX2 - I2 

:+v1+V^x 
(12) 

o.5v2(Jx2-e *. x2 

s/x2!2 
-)]dt 

where V, =-Vd + (a-t)V2 and r\t(x) is the vertical 
distance between the deck and the free surface at t = 
0 for positive values of x (see Fig. 7). We assume 

Ü - 1 +Fa 
a 

(13) 

where t = 0 is the initial time of contact between the 
waves and the wetdeck. The integrand is the vertical 
fluid velocity dtydZ at Z = 0 for |X| ä <(t). For 
each time instant equation (9) will be satisfied for two 
x-values. This determines a(t), b(t) and Q(t). The 
integral equation is in general solved numerically. We 
will show two special cases where analytical methods 
are possible. In the first case we study an infinitely 
long horizontal deck with a constant downward 
velocity Vd impacting on a regular sinusoidal wave. 
The wave velocity is assumed negligible relative to 
Vd. In this case V! = -Vd and V2 = 0. X will not 
change with time and X = 0 corresponds to a wave 
crest. Equation (9) can be written 

where Fa« 1 and F is presently unknown. Further 
it is assumed that V2x « Vd and 

dt - (Ar + g,a + Hp2)da 

Wave direction. 

(14) 

b a 

1 iZ 

L^ ^~~~~—             """—---^^x vdt 

Ü      * \n» i - r 
V d sA 

V. ■f wt -m 
V^ 

cos&X) (10) 

This integral equation is similar as Wagner [7] set up 
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Here A,, gr and H, are unknowns. It is possible to 
show by integrating equation (12) that 

I.   - A*Vjc+grVjc* 
(15) 

VfS, 3    8 
+VHr- - -V2gr 

and x is 

x-a - -£.(-&i|t|-4/jrf-|T|+5) (20) 

5, is the jet thickness, that is determined from the 
matching. A first term outer expansion when x - a —> 

oo is 

Similarly we can do for negative values of x. 
By assuming 

dt - (A, + g,b + HP2) db (16) 

where A,, g, and H, are unknowns, it follows that 

- 4. da 
~dt\ 

(21) 

This matches with a first term inner expansion of the 
outer flow solution. We find by using equation (8) and 
(21) that 

TU    ~ A^Vd\x\+g,Vd\x\ 
(17) 

-Vfg, ±_SK) 
3    8 4   6 

By approximating rib and r\, by 0.5x2/R, where R = 
(£,k2)"' is the radius of curvature of the wave profile 
at x = 0, we find that Ar = A, = 0, gr = g, =(2RVd)-1 

and that the coefficients of the x3-terms in equations 
(16) and (17) have to be zero. By also using that 

5a - Jt <VX + 0.5V2«)2 2C 4 da 

v  dtj 

(22) 

By matching with the local jet flow around x = b(t) 
we find that the jet thickness o\, at x = b(t) is 

84 - JI(V, - 0.5V2«)2 2C 
v dtJ 

(23) 

a o 

t - j(gra+Hra
2)da - f(g,b+H,b2) db       (18) 

it follows that F = 0.125 V2/V„ H, = 1.5 gr F, 
H, = -H,. From equations (14) and (16) we can now 
find a(t) and b(t). 

Inner flow regions and matching 

The inner flow regions are located near x = a(t) and 
x = b(t). The velocity potentials in the inner flow are 
found from Wagner's [7] local jet flow analysis. In 
the vicinity of x = a(t) the velocity potential on the 
body is given in parametric form as 

$ - -iE. S(l+to|T|-|T|)+— (x-a)       (19) 
dt   K dt 

where 0 < |T| < <*= and the relationship between |x| 

Composite pressure solution 

In the outer solution a first order approximation of the 
pressure pom is given by the -p3<|>/9t - term in 
Bemoullis equation. We find that 

PourPo   ~p(V1+0.5V2X). 

Ax 
dt 

dl      da 
~di     ~dt 

L        A 2 - X2 

p 0.5V2 

^1 
dt 

( da + dt} 
dt      dt 

y/t2 - X2 

+ 0.5 
3V, 
dt 

Jt2 - X2 

(24) 

where p0 is the atmospheric pressure. The pressure pta 
in the inner flow solution near x = a(t) is given by 
Wagner [7] as 
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Pin   ~  PO   "   2P 

/j_V da 

Kdh 
/Ff (l + v^T       <25) 

where |x| is related to x by equation (20). A first 
term inner flow approximation of equation (24) near 
x = a(t) is 

-piV, + o.svyo 

.da 
It (26) 

<j2l(a - *) 

This is the same as a one term outer expansion of 
equation (25). This means we can write the following 
composite solution for the pressure when 0 < X < 

«(0. 

P-Po      " Pou,-P0+Pin-P0 

►p(V1+0.5V2X). 
dt 

(27) 

J2t(a-x) 

w 300.0 -, 

150.0- 

75.0 

-o.rs o.oo 0.75 

x-ct 
1.50      Ltt) 

Fig. 8 Pressure distribution caused by a 
horizontal flat plate impacting on regular 
sinusoidal waves propagating with phase 
velocity c along the positive x-axis. Vd = 
4 m/s. £, = 1.5 m. The wave length X = 50 
m. 

In a similar way we can construct a composite 
solution for -C(t) < X < 0. For |X| > l(t) we use the 
jet flow approximation for the pressure. 

Fig. 8 shows an example on numerical 
predictions of pressure by means of the asymptotic 
method. Equation (9) is used to find a(t), b(t) and t(i). 
The studied problem is a horizontal flat plate that is 
impacting regular sinusoidal waves propagating along 
the positive x-axis with phase velocity c. The flat 
plate has a constant downward velocity Vd. Results for 
three different time instants are presented, t = 0 
corresponds to the time when the flat plate hits the 
wave crest. It is seen that the pressure is asymmetric 
about x = ct and that the largest pressure occurs for a 
positive value of x - ct at each time instant. We can 
check the results in Fig. 8 qualitatively by using 
equation (11) for J(t). Consistent with the 
approximation of equation (11) we find that the 
maximum pressure coefficient is 

'dl* 

Cp„ 
dt 

V 

(28) 

kX 2r2 

and the minimum value of Cp is 

Cpmin - 2s[Cpn 
(29) 

Cpmax occurs at x-ct = 0.5nL(t), where L(t) is defined 
in Fig. 8. Cprain occurs at x=ct. These formulas are in 
qualitative agreement with the results in Fig. 8. 

Equation (27) shows that the pressure goes to 
infinity when t -* 0. In reality the pressure cannot be 
larger than the acoustic pressure pVdce, where ce is the 
speed of sound in water. Even if the pressure goes to 
infinity when t -» 0, the resulting force on the 
wetdeck is finite. We can estimate this force by 
integrating the outer pressure distribution given by 
equation (24) over a horizontal deck. This gives the 

following vertical force F|D per unit length on the 
wetdeck 

at    A 
(30) 

This shows that the vertical force is independent of 
V2. By assuming V, = -Vd to be time independent and 
using equation (11) as an approximation for £(t) we 
find that 
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Fr 2p7t*-2VX (31) 

If we imagine that Vd is due to linear wave induced 
motions, we get the surprising result that Fj20 is 
linearly dependent on the wave amplitude. However 
we shall see later in the text that there is an influence 
from wetdeck slamming on the wave induced motions 
and accelerations of the vessel. 

Equations (27) - (29) show that the magnitude of 
the slamming loads on a horizontal wetdeck is closely 
related to the wave slope k£a. 

TIME DOMAIN SIMULATIONS OF SLAMMING 
LOADS AND MOTIONS 

To include slamming loads on the wetdeck in the 
prediction of vessel motions, a time domain 
formulation is necessary. We consider here a high- 
speed catamaran in incident waves in deep water. It is 
assumed that the hydrodynamic loads on the hulls can 
be approximated by linear theory. Strictly speaking 
nonlinearities in the incident wave field and the 
hydrodynamic loads on the hulls may matter. 
However, these effects are not believed to change the 
mean conclusions of this paper. The slamming loads 
on the wetdeck will be included in the way described 
previously. The method that we use to evaluate the 
loads on the hulls is a generalization of the frequency 
domain formulation by Faltinsen & Zhao [2]. It is 
assumed that the hulls are hydrodynamically 
independent of each other. This is a reasonable 
assumption at high speed as long as the hulls are not 
too close and the waves from one hull do not 
propagate to the other hull. 

In order to solve the problem in the time domain 
an earth-fixed coordinate system x, = (xi,y,z) has been 
used, where 

x, - x Ut (32) 

y = 0 will in this case correspond to the centre plane 
of the hull. The problem can be formulated in terms 
of potential flow theory. The total velocity potential in 
the vicinity of a hull can be written as 

<$(xvt) - $,(xvt) + <K(*i>*) (33) 

where <J), is the velocity potential of the incident 
waves. Linear regular incident waves will be used in 
the present study. By assuming a slender hull and 
linear response, it can be shown as described by 
Faltinsen & Zhao [2] that ()>, satisfied 

a2^    a2^ (34) 
dy" dz2 

in the fluid domain. The body boundary condition on 
the mean wetted body surface is 

a^ 
dn 

V. - _^7 

dn 
(35) 

where V„ is the body velocity in the normal direction 
n to the body surface. Positive normal direction is 
assumed to be into the fluid domain. 

The dynamic and kinematic free surface 
conditions on the mean free surface in the earth-fixed 
coordinate system can be written as 

IT     ^ 
(36) 

and 

5i 3^ 

dz 
(37) 

where £, means the wave elevation due to <]>,. 
To solve the problem in the time domain, 

Green's second identity is applied for each cross- 
section and time instant. The velocity potential at a 
point (y,z) and time t can be written as 

- 2ro|>1(y,z;*) 

-; 
UW^-logr*^ 

dN dN 
ds(r\,C,;t) 

(38) 

Here r = [(y-T))2 + (z-Q2]w, SB the mean wetted body 
surface, SF the mean free surface, ds a surface element 
along either SF or SB and 3/3N is the derivative along 
the perpendicular to either SB or SF in the cross-plane. 
Since there are not generated any waves far away 
from the hull, the contribution from the free-surface 
integral part of equation (38) can be rewritten. For 
|y| > b(x), where b(x) is large relative to the cross- 
dimensions of the hull, we can write 
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<D, - A(xvt) z/iy'^hBixJ) yz/(y2+z2)2 (39) 

where A and B are determined as part of the solution. 
The unknowns in equation (38) are <J>, on the body 
surface and 3<)>,/3N on the free surface. When (y,z) 
approaches points on SF and SB in equation (38), the 
unknowns can be found by solving numerically the 
resulting integral equations. 

The initial conditions Ci = 0 ^ 4>i = 0 on the 
mean free surface at t = 0 are used. The dynamic and 
kinematic free surface conditions are used to find the 
free surface elevation £, and the velocity potential $, 
on the mean free surface. 

In the numerical calculations the hull was 
divided into a number of cross-sections with equal 
spacing Ax = UAt, where At is the time step in the 
numerical time integration. A second order Runge- 
Kutta method was used in the time integration. At 
each time step the integral equation resulting from 
equation (38) can be written as a system of linear 
equations of the form 

N 

E HiPj 
(40) 

where Uj are the unknowns and H;j are only dependent 
on the element distribution on the body surface and 
the free surface for each cross-section of the hull. 
Therefore H;j (and the inverse of Hjj) can be calculated 
prior to the time domain solution. 

The hydrodynamic force (F,,F2,F3) and moment 
(F4,F5,F6) on the catamaran are written as 

'.->! 
B\ 

nds 

-E C#V 
.7-1 

(41) 

0   i - 1,2,6 

Fs, i - 3,4,5 

where nj; i = 1,6 is defined by n = (n^.nj) and r xn 
= (n4,n5n6) where r is the position vector r = xi + yj 
+ zk. d/dt in equation (41) means partial derivative 
with respect to time in the earth-fixed coordinate 
system. Further Csj are restoring coefficients that 
follows from hydrostatic and mass considerations. Fsi 

expresses the slamming load on the wetdeck. Only 
head sea waves will be considered in the following 
text. This means that F2,F4 and F6 are zero. 

When Wgj- < 0 (see equation (5)) and £R < - 

used to estimate FS3. &X) in equation (30) is 
determined from equation (11) with Vd replaced by 
VIN- Fss can De written as -x^F^ where x = xs is the 
mean longitudinal position where slamming occurs at 
each time instant. Cases where x, is very close to the 
fore and aft end of the wetdeck have to be calculated 
in a different way, but were excluded in the following 
simulations. When V^, > 0, the slamming loads are 
set equal to zero. 

The motions and accelerations of the catamaran 
can be found by solving 

6 

E m ißj 
(42) 

Dc(x) (see equation (4)) equation (30) with V,= V^ is 

where ir^ is the structural mass matrix for the vessel. 
The pressure distribution due to wetdeck slamming 
can be found from equation (24). 

The numerical program has been tested at 
different levels. The prediction of hydrodynamic loads 
on the hulls was tested by convergence tests. This was 
done by changing systematically the element 
distribution on the body and free surface, the location 
of b(x) and number of cross-sections for different 
vessel speeds and wave frequencies. The results were 
also compared with the steady results and the unsteady 
frequency domain results reported by Faltinsen & 
Zhao [2]. Good agreement was documented. 

Numerical results 

The simulation model has been used to investigate the 
effect of wetdeck slamming on catamaran motions, 
velocities and accelerations in head sea regular waves. 
The main particulars and the body plan of the 
catamaran are presented in Table 2 and Fig. 9. The 
hull geometry is based on an analytical function. This 
makes it easy to select an arbitrary number of cross- 
sections and the element distribution on the body 
surface. The results will be presented in non- 
dimensional form based on Froude scaling. Important 
parameters are Froude number Fn, wave slope k£„ 
ratio between wave length and ship length X/L and the 
ratio £,/De, where De is the mean distance between the 
mean free surface and the wet deck at the position 
where slamming occurs. The curvature of the wetdeck 
at the position of slamming does also matter. 

Fig. 10 illustrates how the position of slamming 
changes with the wavelength. The wave amplitude for 
each wavelength corresponds to the lowest waves that 
hit the wetdeck under steady state conditions. The 
figure shows the relative position of the wetdeck to 
the incident waves at the time instant of impact. It is 
strongly wavelength and wave amplitude-dependent 
how and when the waves hit the wetdeck. This has an 
important influence on the slamming loads. 
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4.12-10*L 

Fig. 9 Body plan of one of the catamaran hulls 
used in the simulation studies. 

Table 2 

Main particulars of the catamaran used in the 
simulation studies 

Designation Value 

Length between perpendiculars L 
Beam at waterline midships 0.24L 
Draft - even keel 4.12-10'2L 
Displacement 3.07-10-'L3 

Block coefficient 0.532 
Breadth of one hull at waterline amidships 7.(H0'2L 
Centre of gravity above keel 6.62-10'2L 
Center of gravity aft of amidships 7.M0'2L 
Pitch radius of gyration with respect to 
axis through centre of gravity 0.25L 

Fig. 10 Position of slamming on the wetdeck of a 
catamaran in regular head sea waves as a 
function of wavelength X. The figure shows 
a longitudinal cross-section at the centre- 
plane of the catamaran. Fn = 0.5. £, = £sUm = 
lowest incident wave amplitude when 
slamming occurs. L = length between 
perpendiculars. The catamaran is presented in 
Fig. 5 and Table 2. 

Fig. 11 presents simulations showing the 
influence of slamming loads on the vertical 
accelerations, velocities and motions at the forward 
perpendicular of the catamaran. The wetdeck height De 

was assumed to be constant along the length of the 
vessel. The wave elevation £ of the incident waves are 
given by equation (2). The simulation starts at t = 0 
assuming that the vessel is placed in the incident wave 
system given by equation (2). Results for only one 
wavelength X = 0.853 L and one Froudenumber Fn = 
0.5 are presented. Two different values of ^JDC are 
shown. These corresponds to (£, - CuJ/D, = 0.0655 
and 0.131, where C,um is the lowest Rvalue where 
wetdeck slamming occurs. The figure shows vertical 
accelerations, velocities and motions at FP both with 

and without the influence of slamming loads. In the 
start of the simulations when transient linear effects 
matter, slamming loads were not included. The results 
show that slamming loads have an influence on the 
vertical motions and velocities, but that the influence 
is not as significant as it is for the vertical 
accelerations. The vertical motions and velocities are 
nearly periodic, but not sinusoidal, while the 
maximum vertical accelerations due to slamming 
change more from period to period. The figures 
illustrates that slamming loads are restraining the 
catamaran in its downward motion. 
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Fig. 11 Numerical time domain simulations of vertical motions, (T)3 + 0.571 LT|5), 

velocities (fi3+0.571Lfi5) and accelerations (tl3+0.571Lfl5) at FP of a 
catamaran in regular head sea waves. Fn = 0.5. X/L = 0.853. De = mean 
wetdeck height relative to mean water level. £a = incident wave 
amplitude, X = incident wavelength, t = time, L = length between 
perpendiculars. The catamaran is presented in Fig. 5 and Table 2. 
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Fig. 12 shows the importance of including the 
effect of slamming loads on the vertical motions, 
velocities and accelerations when the slamming force 
is calculated. The first time the waves hit the wetdeck, 
the maximum slamming force is independent of that 
the slamming force is included in the time domain 
simulation of the motions. However, later on in the 
time simulation the position of slamming on the 
wetdeck will change if the slamming force is included. 
This has an important effect on the magnitude of the 
slamming force. 

no effect of slamming on motions 
motions influenced by slamming 

First instant i 
of slamming 1 

-Ar- -°o- -4T- 

The time domain solution outlined above can be 
generalized to include irregular sea, nonlinear effects 
in the incident waves and the hydrodynamic loads on 
the hulls as long as the slamming loads on the 
wetdeck can be estimated by the two-dimensional 
theory outlined in this paper. If wetdeck slamming has 
a more three-dimensional character like in oblique sea, 
further theoretical developments are necessary. It will 
also be of interest to study the hydroelastic effect of 
wetdeck slamming. 

. 0.05 

. 0.6035 

-Ar- -*&- 
U [X . 0.0S3 

£--0.485       £--0.531      is--0.536     2».. 0.553      £--0.548     —'.-0.548 

0.669 

X, £--0.576       £--0.581      £--0.581 

Fig. 12 Numerical time domain simulations of the vertical force F& on the 
wetdeck of a catamaran in regular head sea waves. Fn = 0.5. ML = 
0.853. M = mass of the catamaran, x, = x-coordinate where the waves hit 
the wetdeck. L = length between perpen-diculars. Bd = breadth of 
wetdeck = 0.1L. X = incident wavelength. ^ = incident wave 
amplitude. De = mean wetdeck height relative to mean water level. The 
catamaran is presented in Fig. 5 and Table 2. 
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CONCLUSIONS REFERENCES 

Slamming loads on hull cross-sections are 
studied by a boundary element method, a similarity 
solution and an asymptotic solution. Pressure 
distribution on wedges that are forced with a constant 
velocity, are presented. It is documented that the 
asymptotic solution is a reliable and practical method 
for small deadrise angles a. When a > ~ 20° the 
pressure distribution does not show a typical slamming 
behaviour with sharply peaked pressure close to the jet 
flow (water spray) area. When a > -45°, the 
maximum pressure occurs at the apex of the wedge. 

Slamming loads on the wetdeck are studied by 
a two-dimensional asymptotic method. The wetted 
deck area as a function of time is found by solving an 
integral equation. Approximate solutions show that the 
wave slope is important for the slamming load level. 
A composite solution for the pressure distribution is 
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DISCUSSION 

I. Watanabe 
Ship Research Institute, Japan 

The discussor would like to congratulate the 
authors on their achievement showing us a theoretical 
and still practical way of estimating slamming loads 
and subsequent ship motions of high-speed vessels. 
There is a short comment to be made. He would like 
to stress the importance of treating slamming 
phenomena in a three-dimensional way. You will get 
infinite pressure when the ship hull hits the water 
surface flat in a two-dimensional sense. This 
difficulty can only be avoided by treating the problem 
in a three-dimensional way or taking longitudinal 
flow components into account. 

Ref.   I.   Watanabe,   16th   Symposium   on   Naval 
Hydrodynamics, Berkeley, 1986. 

AUTHOR'S REPLY 

I agree with Dr. Watanabe's comment about 
three-dimensional effect in the slamming problem. In 
our formulation, the pressure will be infinite when 
the deck hits the water surface, but the integrated 
force is finite. I should also mention that the air 
cushion effect is important here. 
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Computations of Fully-Nonlinear 
Three-Dimensional Water Waves 

H. Xü, D. Yue (Massachusetts Institute of Technology, USA) 

Abstract 1    Introduction 

We extend and generalize the mixed-Eulerian- 
Lagrangian approach for nonlinear wave-body in- 
teractions to full three dimensions. A key to 
the success of this extension is our development 
of an efficient and robust high-order boundary- 
element method based on bi-quadratic curvilinear 
elements. Extensive convergence tests are per- 
formed to validate the accuracy and efficacy of 
the method. 

Our first application of this new capability is 
the investigation of the kinematics of three- 
dimensional deep-water plunging breaking waves. 
To generate such waves, we begin with a plane 
progressive Stokes wave (wavelength L) and apply 
a three-dimensional surface pressure (transverse 
wavelength B) to raise its energy beyond the max- 
imum for a steady Stokes wave. It is found that 
the resulting kinematics differ qualitatively de- 
pending on the value of the three-dimensionality 
parameter f=B/L. One of the advantages of the 
present direct simulation is that entire fields of 
quantities such as velocity and acceleration can 
be obtained. Of particular interest is our identi- 
fication of regions of negative surface normal ac- 
celerations in the late stages of wave overturning 
which are precursors to breakdown of the free sur- 
face following a Taylor instability. 

Extensions to include finite water depth and 
boundary walls are completed. With further de- 
velopments to model also the presence of a moving 
body, the ultimate capability for the simulation 
of general three-dimensional fully-nonlinear wave- 
body interactions can be anticipated. 

Steep, even overturning, three-dimensional (3D) 
waves are ubiquitous in the ocean environment. 
The understanding and modelling of steep waves 
and their interactions are fundamental to free- 
surface hydrodynamics and ocean engineering ap- 
plications. 

In two dimensions (2D), computational capa- 
bilities based on the mixed-Eulerian-Lagrangian 
(MEL) approach are, since the seminal work of 
Longuet-Higgins & Cokelet (1976) and Faltinsen 
(1977), now well established. There are now a 
fairly large number of 2D MEL results. Notable 
among these (citing only representative work) are 
Vinje & Brevig (1981) who developed a Cauchy- 
integral formulation, and Baker et al (1982) who 
put forward a generalized vortex method, both 
leading to purely second-kind boundary-integral 
equations (BIE's); Lin (1984), who addressed the 
free-surface and body intersection problem; Dold 
& Peregrine (1986) who developed Taylor meth- 
ods for time integration; Dommermuth & Yue 
(1987), who extended MEL to axisymmetric 3D 
problems including a far-field matching; Dommer- 
muth et al (1988), who performed a quantitative 
comparison to breaking wave experiments; and 
Cointe (1989), who made a useful and practical 
numerical wave tank. 

Despite these advances in 2D, reliable results for 
truly nonlinear problems in 3D are still rare. Sim- 
ulations to date have not been completely suc- 
cessful primarily because of limitations on accu- 
racy/resolution which also affect stability, and 
computational efficiency and power.   One of the 
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earlier examples is Isaacson (1982), who used an 
Eulerian formulation but was able to obtain re- 
sults which are only qualitative and limited to 
short time and small steepness. Romate (1989) 
treated the 3D problem using MEL and higher or- 
der panels. Again his results were very limited and 
affected by spurious wave modes possibly resulting 
from difficulties at free surface and wall intersec- 
tions. Recently, Yang et al (1989) performed 3D 
MEL wave-body simulations using only coarse dis- 
cretizations, and the results are likely to be only 
qualitatively correct. The general realization now 
is that the road from qualitative to quantitative 3D 
predictions is longer and more arduous then once 
thought. The impediments to 3D progress, then, 
in some sense, are largely computational in nature 
— algorithm innovations and developments are 
critical, but true success would be difficult with- 
out the parallel advances in computer capabilities 

(see §5). 

In this work, we extend boundary-element method 
(BEM) MEL approach to fully-nonlinear wave- 
body problems in 3D. The BEM is formulated di- 
rectly via Green's identity leading to mixed first- 
and second-kind BIE's. We start with the nec- 
essary requirements of overall accuracy and effi- 
ciency, and robust and reliable treatment espe- 
cially at free-surface and body intersections. Af- 
ter extensive evaluation, a quadratic-boundary el- 
ement method (QBEM) based on bi-quadratic 
isoparametric curvilinear quadralateral (and tri- 
angular) elements is selected and developed. Even 
for mixed Dirichlet/Neumann boundary condi- 
tions with general intersections, QBEM achieves 
cubic minimax convergence with element size. For 
the solution of the resulting algebraic system we 
adopt a GMRES iterative scheme with a SSOR 
preconditioned These are presented in §§3 and 4. 

To demonstrate the usefulness of the code, ex- 
tensive validations and convergence tests are per- 
formed. Although a number of other results have 
been obtained, we focus in §4 on the study of the 
kinematics of 3D deep-water overturning waves. 
Computational time estimates and potential use- 
fulness of this code for more general applications 
are discussed in §5. 

2    Mathematical 
Formulation 

We consider the ideal, irrotational flow of a fluid 
bounded by a free surface. An orthogonal refer- 
ence frame x fixed on the earth is chosen with 
its origin at the undisturbed water level, x and y 
being the two horizontal directions, and z the ver- 
tical direction, positive upward. All variables are 
nondimensionalized such that the density of water 
p and acceleration due to gravity g are both unity. 

2.1    The    initial    boundary    value 
problem (IBVP) 

The flow is described by a harmonic velocity po- 
tential <f>(£, t). The governing equation for conti- 
nuity is the Laplace equation, 

v2<p{s,t) = 0, x€ V, (1) 

where V is the (simply-connected) fluid domain, 
not necessarily bounded. On prescribed impervi- 
ous boundaries Ss(i), we require 

A   -d4>-U 
*» = dn~ ~ Un' 

prescribed. (2) 

On the free surface SF(t), Bernoulli's equation 
gives the dynamic boundary condition, 

E±=l-\V4>\*-z-PF, 
Dt      21      ' 

Z€SF,     (3) 

where D/Dt = d/dt + V<j> ■ V is the material 
derivative following a Lagrangian particle, and Pp 
is the surface pressure distribution. The kine- 
matic boundary condition is 

Dt'**' 
x e Sr,     (4) 

which prescribes the kinematical evolution of the 
free surface Sp(t). For deep water, the appropri- 
ate far-field condition is: 

V<j>(z) as z —oo. (5) 

for all times. 

The EBVP is complete with the specification of 
the initial body 5B(0), the free surface SF(Q) and 
the potential on it <j>(x € SF, 0). 

Applying Green's theorem, we obtain a useful 
auxiliary condition that the boundary values of 
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<pn must satisfy the compatibility (Gauss) condi- 
tion 

(6) jj    <j>n(z,t)dS = Q, 

where dV = SB U SF. 

2.2    The mixed Eulerian Lagrangian 
(MEL) approach 

The elliptic field equation allows the specifica- 
tion of the entire problem in terms of values on 
the boundary only. This lends itself to the MEL 
(Longuet-Higgins & Cokelet 1976) approach via 
a boundary-integral equation (BIE) formulation. 
This solution procedure involves two main steps: 

1. Given SB{t), <M* € SB,t), SF(t) and 
4>(x € SF,t), solve the boundary-value prob- 
lem (BVP) for 4>n{£ £ SF,t), and in particu- 
lar obtain the velocity V<j>(x £ SF,t). 

2. Integrate the dynamic and kinematic free- 
surface boundary conditions (3) and (4) for 
SF(t + At) and <p(x 6 SF(t + At),t + A). 
Repeat the process. 

The key to the success of BIE MEL, especially 
for three-dimensional problems, is the efficient and 
accurate solution to Step 1, which dominates the 
computational complexity and effort. 

2.3    BIE reformulation of the BVP 

We introduce the free-space Green function, 
G{x,ft=r-1, where r2 = \x- (\2=(x - £)2 + {y - 
v)2 + (z — C)2 ■ Applying Green's second identity to 
4> and G and taking the limit x —* dV, we obtain 
the requisite BIE: 

a(x)<f>{x) + 

//   [^")Gn(f,i)-^»(e)G(£,i)]d5(i) = 0t   (7) 
J Jev 

for x € dV, where the finite part of the singular 
integral is assumed here and hereafter, and a(x) 
is the interior solid angle at x. For x € (SB, SF), 

the (Neumann,Dirichlet) boundary condition is 
applied, and (7) is a Fredholm integral equation 

of the (second,first) kind. A convenient way to 
evaluate the interior solid angle a in (7) is to ob- 
serve that (Brebbia et al, 1984) for a constant <f>, 
(7) reduces to 

a(x) = - [f   Gn(*,i)d5(i). 
J Jev 

(8) 

2.4 Doubly periodic boundary con- 
ditions 

For many problems, such as the study of 3D over- 
turning waves in nature, it is useful and compu- 
tationally attractive to impose doubly periodic 
boundary conditions in both horizontal dimen- 
sions. Although it is possible to impose these con- 
ditions on (vertical) boundary surfaces, the BIE 
domain can be greatly reduced by introducing the 
(free-space) doubly periodic Green function Gv 

which satisfies: 

GP(x + mL-t,y + nB-7},z-C)t      (9) 

for any integer m, n and periodic domain of di- 
mensions L by B. The BIE (7) can now be re- 
duced to one on SF only for deep water (plus its 
image for constant finite depth). 

It is important to point out that the far-field be- 
havior of Gp is in general that of a uniform cur- 
rent: 

G? = Ca l + o(l) as  z oo, (10) 

where Coo is a finite constant. Since GF does not 
satisfy the far-field condition (5), the contribution 
of the integral in (7) over S» : {z —► —oo} must 
be accounted for. From (5), the non-trivial contri- 
bution is from the dipole distribution, where with 
<f> —►constant(i) on Sx, evaluates to: 

//, 
4>GldS = Cf(t). (11) 

Cf is a nontrivial constant to be determined as 
part of the BIE solution (from the Gauss condition 
(6), for example). 

Computationally, Gp can be evaluated as a 
doubly-infinite sum of image sources for which 
very efficient summation formulas are now avail- 
able (Breit 1991; Newman 1991). 
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3     Numerical Method 

3.1 The   quadratic   boundary   ele- 
ment method (QBEM) 

As pointed out earlier, the success of MEL 
depends critically on the efficacy of the BIE 
solver. As part of this research, a range of 
direct boundary-element methods (BEM's) has 

been evaluated and compared. These methods dif- 
fer primarily on the order of approximation of the 
element (or panel) geometry and <f>, 4>n distribu- 
tions, and the choice of the collocation point on 

the element. 

One of the simplest choices is the so-called 

constant-panel method (CPM) (Hess k Smith 
1964) which uses (piecewise) plane geometry, con- 

stant singularity variations, and centroid collo- 

cations. Fig. 1 shows the convergence of CPM 
for a body with continuous surface normal for 

an exterior Neumann problem (results for Dirich- 
let boundary conditions are similar). As ex- 
pected, the average error decreases approximately 
quadratically with panel size Ai, while the max- 
imum error is slightly greater. For mixed Dirich- 
let/Neumann boundary conditions for the sphere, 
the convergence rate (fig. 2) is appreciably de- 
graded and more so for the maximum error. It 
should be pointed out that for MEL simulations, 
the maximum rather than the average is the rele- 

vant error measure. 

For problems involving mixed Dirichlet/Neumann 
boundaries with discontinuous slopes at intersec- 

tion lines (say along C=-SB f~l SF), CPM (using 
constant panel sizes) fails to converge even for an 
imposed smooth harmonic solution. This is shown 
in fig. 3. For a known continuous potential, it 

is possible, in principle, to rendered the solution 
convergent using variable panel sizes. For general 

time-dependent problems, however, the solution 

near the intersection is not known a priori, and 
CPM is likely to be inadequate. The problem is 
more severe for actual free-surface and body inter- 
section lines, C, where it is known that the solution 

may be (weakly) singular. 

One effective way to avoid the difficulty at the 
intersection line is to place collocation points on 
C and specify both Neumann and Dirichlet condi- 
tions at these 'double' points (cf. Lin, et al 1984; 
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Figure 1: Convergence with the total number of 
nodes N, for the exterior Neumann problem for 
(uniform) flow past a sphere. Normalized errors 
for QBEM   : average and ••*••: maxi- 
mum ; CPM : average and ••  +  ••: maxi- 

mum. 
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Figure 2: Convergence with the total num- 
ber of nodes 2V, for the exterior mixed Diiich- 
let/Neumann problem for (uniform) flow past a 
sphere. Normalized errors for QBEM : aver- 
age and ••*••: maximum; CPM : average 
and ••  +  ••: maximum. 
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Figure 3: CPM normalized errors as functions 
of N for the exterior mixed Dirichlet/Neumann 
problem for a smooth harmonic solution on a 
cube.     : average and •  • + : maximum 
(Neumann boundary); : average and •  •  * 
: maximum (Dirichlet boundary). 
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Figure 4: Convergence with the total number of 
nodes N of QBEM for an interior mixed Dirich- 
let/Neumann problem for a smooth harmonic so- 
lution on a cube. Normalized errors:   : av- 
erage, •• + ••: maximum (Neumann bound- 
ary)!  : average, ••*••: maximum (Dirich- 
let boundary). 

Dommermuth & Yue 1987). One immediate con- 
sequence of this is the need for higher order panels 
— at least linear in the singularity distributions, 
and, for uniquely defined normals and nodal <f)n, 
geometric approximations with continuous slopes 
at panel intersections. 

After a systematic study of higher order pan- 
els including super-parametric elements (geom- 
etry based on bi-cubic splines with lower or- 
der singularity distributions), we finally de- 
cide on a bi-quadratic isoparametric boundary- 
element method (QBEM) using 9-node curvilin- 
ear quadralaterals and 7-node (degenerate) curvi- 
linear triangles. Details of the QBEM imple- 
mentation including regularization using triangu- 
lar mapping, adaptive quadrature algorithms and 
far-field influence integration using multipole ex- 
pansions can be found in Xü (1992). 

Figs. 1, 2 show also the performance of QBEM 
for respectively the exterior Neumann and mixed 
Dirichlet/Neumann problem for a sphere. QBEM 
achieves approximately cubic convergence with 
panel size for both cases. 

Finally, we show the performance of QBEM for 
the (continuous) solution for a mixed Dirich- 
let/Neumann problem inside a cube (fig. 4). Dif- 
ficulties associated with the intersection edges are 
effectively removed with no appreciable degrada- 
tion in the convergence rate. 

In general, the computational effort for solving 
the BIE is proportional to N2, say, CPU~ ßN2. 
Significantly, with proper attention to efficiency 
and accuracy of the QBEM implementation (Xü 
1992), ß for QBEM is less than twice that of CPM 
(both using fully vectorized codes on vector com- 
puters). Thus, for a typical required minimax er- 
ror of 10-3, say, we have from fig. 1, N « 150 
and 2000 respectively for QBEM and CPM, so 
that QBEM is some two orders of magnitude more 
efficient than CPM even for the (most favorable 
to CPM) case of a pure Neumann problem on a 
smooth boundary. 

3.2     Solution   of the  BIE  algebraic 
equations 

The linear algebraic system resulting from the 
discretization of (7) is in general dense, non- 
symmetric  and,  because of the first-kind equa- 
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tions on SF, not strongly diagonally dominant. 
For small numbers of unknowns N, the compu- 
tational burden is dominated by the evaluation 
of the BEM influence coefficients (an 0(N2) ef- 
fort), so that many existing MEL simulations in 
2D (and axisymmetric 3D) simply solve the linear 
system directly via Gauss elimination (an 0(NZ) 
effort). For 3D problems, N can be several orders 
of magnitude greater, and any algorithm requiring 
0(NZ) operations is prohibitive. 

In this work, we test and demonstrate the efficacy 
of the generalized minimum residual (GMRES) al- 
gorithm (Saad & Schultz 1986) for 2D and 3D 
MEL BEM. Unlike conjugate gradient methods 
for symmetric matrices whose convergence rate 
can be defined in terms of the condition num- 
ber of the matrix, the corresponding condition for 
GMRES is not precisely defined, but is given in 
practice by the pseudo-eigenvalues of the matrix 
(Trefethen 1990). 

Fig. 5 summarizes the results of numerical ex- 
periments for mixed Dirichlet/Neumann bound- 
ary condition matrices using Green's identity 
(c/. (7)). For comparison, results for matrices re- 
sulting from completely second-kind equations us- 
ing Cauchy-integral formulation (Vinje & Brevig 
1981) in 2D are also shown. For JV up to O(104), 
the number of iterations (for a tolerance of 10"" ) 
required is approximately given by Nu « aoN1'3. 
For N > O(103), there appears to be an stalling 
trend for Nu- 

The next step is to see whether the GMRES iter- 
ation can be accelerated by suitable precondition- 
ing of the linear system. Our computational expe- 
rience indicates that even simplistic precondition- 
ers result in substantial reduction in the number of 
iterations required. Consider the matrix equation 
Ax — b, a preconditioner is a scaling matrix P, 
such that the modified equation P~1Ax = P_16 
converges more rapidly for the iteration scheme in 

question. 

Two simple preconditioning matrices are tested: 
(i) diagonal preconditioner (Golub k Van Loan 
1989), where P = D (we write in general A = 
I + D + u, where L, D, U are respectively the 
lower-, diagonal and upper-submatrices of A); and 
(ii) symmetric successive overrelaxation (SSOR) 
preconditioner, where P = (I + uL)D~x{I + uU). 
The relaxation parameter w   €  [0, l] is selected 

103 

10* 

10' 

10° 
10' 102 10' 10" 

Figure 5: Convergence of MEL matrix solutions 
using GMRES (tolerance 10-7, no precondition- 
ing). Mixed first- and second-kind BIE's using 
Green's identity: 1 ; purely first-kind equa- 
tions using Cauchy-integral formulation: ••*•-. 

based on numerical trials. For the present prob- 
lem, GMRES iterations are reduced by approxi- 
mately a factor of two (ad « a0/2) using diagonal 
preconditioner and approximately a factor of five 
(a, ss a0/5) using a SSOR preconditioner (w = 
0.5). Based on these results, we choose GMRES 
with SSOR preconditioning (w = 0.5) as our solver 
for the QBEM linear equation systems. 

3.3    Time integration & invariants 

Once the BVP at each time is solved and the ve- 
locity V<f> on Sp obtained, the free-surface bound- 
ary conditions (3), (4) can be integrated in time 
in a straightforward manner. We adopt a fourth- 
order Adams-Bashforth-Moulton (ABM4) inte- 
grator coupled with a fourth-order Runge-Kutta 
(RK4) scheme for (re)starting (whenever there is 
a change in time step size). ABM4 and RK4 re- 
quire respectively two and four solutions of the 
BVP per time step. 

From (3), we can derive a simple Courant condi- 
tion for the time step size: 

TrAf || V<f> \\F< At, (12) 

182 



where || V^ \\p is the maximum velocity on Sp. 
This is a necessary condition for stability regard- 
less of the integration scheme. In practice, (12) 
provides the criterion for dynamic time step con- 
trol. Since A^ is in general not constant following 
Lagrangian points, we adopt the time step formula 

TrAt || V4> \\F< CnMr, (13) 

where A^m;„ is the minimum A^ on Sp and the 
Courant constant Cn is a computational parame- 
ter to be chosen. 

A number of integration invariants can be used to 
check the global accuracy of the numerical scheme. 
From mass conservation, we have the Gauss condi- 
tion (6), which for periodic or fixed-body bound- 
aries, must be valid for Sp alone. Alternatively, 
we can define the mean water level which must be 
invariant: 

SpQZ a, znzdS = constant,        (14) 

where Spo is the projection of Sp on z=0. In 
the absence of work done by body boundaries, we 
require for energy conservation 

Pp4>ndS : 

= dt [2J Jd 

(Ek + Ep) 

Ml/- 
di 

KdS + dS (15) 

where Ek, Ep are respectively the kinetic and po- 
tential energies. These mass and energy invariants 
are evaluated and monitored to typically within 
0.5% for all the 3D simulations in §4. 

3.4    Removal of saw-tooth instabili- 
ties 

In numerical studies using MEL where (artificial) 
damping or filtering is absent, saw-tooth instabili- 
ties eventually develop on the free surface as non- 
linearity increases. Despite remaining questions 
regarding their generation and removal, the in- 
evitable presence of saw-tooth instabilities can be 
expected in theory since for any nonlinear system 
without dissipation, energy cascades from lower 

to higher wavenumbers and eventually 'accumu- 
lates' at the highest wavenumber associated with 
the discretization. 

In the present 3D simulations, saw-tooth insta- 
bilities are observed usually near the wave crests 
even for steep (non-overturning) Stokes waves. 
To remove these instabilities, we consider 5-point 
least-square, as well as 5- and 7-point Cheby- 
shev smoothing filters. From numerical tests, and 
by analysing their wavenumber transfer functions, 
the optimal scheme appears to be the 5-point 
Chebyshev formula. This is adopted and applied 
every N, (N, typically 3 or 6) steps. 

3.5    Select convergence results 

The 3D QBEM MEL code has been tested ex- 
tensively for accuracy and convergence against 
exact (longitudinal and oblique) Stokes waves, 
and existing 2D MEL fully-nonlinear results. For 
brevity, only select results are given here. More 
extensive validations can be found in Xü (1992). 

First, to test the QBEM BVP solver, we input 
an exact Stokes wave (Schwartz 1974) profile and 
surface potential and solve for the surface veloc- 
ity. Table 1 shows the convergence of QBEM for 
waves up to near limiting Stokes steepness. Time 
simulation of such waves for a number of periods 
varying Nw, Cn and N, validates the remaining 
part of MEL and details are omitted. The frac- 
tional loss of energy associated with each applica- 
tion of Chebyshev smoothing is typically less than 
o(io-4). 

As a more stringent test, we apply the general 3D 
MEL program to the relatively well-studied prob- 
lem of 2D deep-water overturning waves. Follow- 
ing Longuet-Higgins & Cokelet (1976) we apply 
an asymmetric surface pressure for a short time 
to a 2D progressive Stokes wave with wavelength 
L=2ir (this defines the length scale) and steep- 
ness e=0.4. The fundamental period of this wave 
is To = 5.806. The surface pressure distribution 
is given by 

PF =posin*sm(z — ct)       0 < t < n,       (16) 

and PF = 0 for t > ir.   Here, c = 27r/T0 is the 
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€ Nw 

u w 4, n 

S ^TTMISE e **m«sB e &ma% 

0.1 8 0.00504 0.01301 0.00516 0.01282 0.00539 0.01348 

16 0.00020 0.00060 0.00134 0.00589 0.00136 0.00593 

32 0.00002 0.00009 0.00033 0.00122 0.00033 0.00121 

64 0.00000 0.00002 0.00009 0.00031 0.00009 0.00031 

0.2 8 0.00954 0.02169 0.00660 0.01953 0.00623 0.01891 

16 0.00099 0.00178 0.00205 0.00416 0.00203 0.00432 

32 0.00016 0.00063 0.00064 0.00170 0.00060 0.00162 

64 0.00003 0.00009 0.00017 0.00043 0.00016 0.00041 

0.3 8 0.02293 0.05299 0.00578 0.01395 0.00591 0.01602 

16 0.00060 0.00173 0.00288 0.00499 0.00256 0.00512 

32 0.00020 0.00071 0.00065 0.00145 0.00061 0.00148 

64 0.00003 0.00013 0.00027 0.00098 0.00025 0.00089 

0.4 8 0.02463 0.05460 0.01165 0.02547 0.01294 0.04134 

16 0.00271 0.00914 0.00581 0.02914 0.00560 0.02453 

32 0.00027 0.00094 0.00126 0.00640 0.00090 0.00503 

64 0.00010 0.00045 0.00055 0.00238 0.00046 0.00197 

Table 1: Normalized average (e) and maximum (emax) errors in the horizontal (tt), vertical (w) and 
normal (<£„) velocities on the surface of a Stokes wave, steepness e. The 3D QBEM solution uses a 
nonuniform grid with an average of Nw unknowns per wavelength. 

phase speed of the Stokes wave, and we choose 
po=0.146 to correspond to the fourth case studied 
by Longuet-Higgins & Cokelet. 

In order to study the convergence with respect to 
smoothing and temporal discretization, we select 
three different test cases listed in Table 2. The 
global invariants after wave overturning are con- 
vergent to at least 2 decimal places. 

The corresponding wave profiles for the 3 cases 
(and times) in Table 2 are shown in fig. 6. The 
overall wave profiles match closely for the 3 cases. 
Locally, near the overturning jet, detail discrep- 
ancies are observable, although the maximum dif- 
ference in the computed surface velocity is only 

~1%. 

Our initial condition and surface pressure here are 
the same as the fourth case studied by Longuet- 
Higgins & Cokelet (1976). We mention here two 
comparisons to their results. The height of the 
overturning wave crest in the present simulation 
is approximately 0.638 (not accounting for the 
mean water level). From fig. 11 of Longuet- 
Higgins & Cokelet, we read the overturning crest 

1.5 

0.5 

-0.5 

4 4.5 5 5.5 6 6.5 7 

x 

Figure 6: Comparison of overturning wave profiles 
for the 3 study cases in Table 2. Cases 1: ; 2: 
 : and 3:  . 
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case N. Cn/T t Ek Ev Eh + Ep z 
1 6 0.6 4.7510 0.5600 0.3223 0.8822 0.0616 
2 3 0.6 4.7506 0.5649 0.3252 0.8901 0.0627 
3 3 0.4 4.7493 0.5659 0.3250 0.8909 0.0628 

Table 2: Study cases for the convergence of a 2D deep-water overturning wave as a function of time-step 
control Courant number Cn, and frequency of 5-point Chebyshev smoothing Nt. Minimum and maximum 
time-step limits 10~3 < At/T0 < 10~2 are imposed. The results are for a specified instant after wave 
overturning, t ~4.75. The initial mean water level is z ~0.0624. 

height at approximately 0.64, so that the discrep- 
ancy is less than 0(1%). The present result for 
the final total energy density (energy per surface 
area) is E/Emax =1.91, where Emax=0.07403 is 
the maximum energy for a Stokes wave. This is 
again in good agreement with the final result of 
E/Emax = 1-88 obtained by Longuet-Higgins & 
Cokelet. Comparisons of the present 3D program 
to other available 2D MEL codes (e.g., Dommer- 
muth, Yue, et al 1988) for a variety of cases show 
similar quantitative agreement. 

The parameters of the Stokes wave are wavelength 
i=2ir (this defines the length scale) and steepness 
€=0.4, which gives a fundamental period of T0 = 
5.806 and phase speed c = 1.082. For the imposed 
surface pressure, the temporal and longitudinal 
(a:) dependences are identical to the 2D form (16) 
but with a periodic (cosine) transverse variation 
of wavelength B: 

PF =po(l + cos2iry/B)smtshi.(x - ct),     (17) 

4    Numerical Results 

Our ultimate goal is the simulation of fully- 
nonlinear 3D interactions of steep (even over- 
turning) waves with a body undergoing large- 
amplitude motions. This capability is still some 
time away, and requires, among other develop- 
ments, a robust geometry capability involving 3D 
surfaces and intersections. An immediate and use- 
ful application of the present capability is the in- 
vestigation of the 3D kinematics of steep overturn- 
ing waves — a problem of both basic scientific in- 
terest and practical engineering importance. 

4.1    Kinematics   of 3D   deep-water 
overturning waves 

We extend the 2D fully-nonlinear wave simula- 
tion of Longuet-Higgins & Cokelet (1976) and 
others to three dimensions. Following Longuet- 
Higgins & Cokelet, we start with a progressive 
two-dimensional Stokes wave but now apply a 
three-dimensional surface pressure distribution to 
raise the energy density beyond the maximum for 
a steady Stokes wave. 

for 0 < t < ir, and PF = 0 for t > x. Thus 
the co-propagating surface pressure is gradually 
increased from 0 at t=0 to its maximum at t = x/2 
(i/To =0.271) and is gradually decreased to zero 
for t > x. Since (17) is symmetric with respect to 
y=0 and ±B/2, the doubly-periodic solution (of 
wavelengths L = 2ff by B) must also satisfy no 
normal fluxes on ym=mB/2 for m=0, ±1, ±2,  
Thus the problem can be thought of as one in a 
wave tank with side walls at any two values of 
ym, i.e., a tank with a width which is a multiple 
of B/2. For definiteness, we refer hereinafter to 
y=0 where PF = 2p0 is maximum as the 'center', 
and y = ±5/2 where PF = 0 is minimum as the 
'sides'. By selecting po = 0.073, the pressure at 
the center plane has the same longitudinal distri- 
bution as the 2D one (16). 

The three-dimensionality of the wave is specified 
by the aspect ratio 7 = B/L. Simulations are 
performed for a range of 7 values (7=0.5, 1.0, 
1.5). Based on convergence tests, we use 64 nodal 
points per wavelength in the x direction and 48 
nodal points in the y direction. Using symmetry 
and doubly-periodic Green functions, the prob- 
lem is described by a 65 x 25 grid (384 9-node 
quadratic elements) in half of the doubly periodic 
domain ([0, L] x [-B/2,0]), yielding a total of 1601 
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unknowns (including the additional unknown con- 
stant Cj associated with the far-field dipole inte- 
gral). A dynamic time step control Courant num- 
ber of Cn = 0.6T is used initially which is reduced 
to 0.4T after the surface forcing is switched off. 
Five-point Chebyshev smoothing is applied every 
3 time steps. Lagrangian free-surface points (ini- 
tially distributed unevenly according to the curva- 
ture of the Stokes waves) are followed throughout 
without regridding. 

Figs. 7, 8 show the surface profiles and particle 
velocity components, u, v, w, at times near the fi- 
nal stages of the 3D overturning waves for 7=1.5 
(t/T0 =0.844) and 7=0.5 {t/T0 =and 0.904) re- 
spectively. The results for these two 7's are qual- 
itatively different. In particular, the 3D wave 
plunging tip which occurs along the center line for 
7=1.5 now develops at the side (where the forcing 
was minimum) for the narrower case of 7=0.5. 

This apparently surprising result can in fact be 
explained by considering the wave sloshing in the 
'tank'. According to linear theory, the sloshing 
period of the first-mode transverse wave distur- 
bance due to the pressure forcing is given by 

TB/TL=[1 + (L/B)*] 
-1/4 (18) 

where T& (=2x here) is the linear longitudinal pe- 
riod. This corresponds to TB/TL ~ 0.912 and 
0.669 for 7=1.5, 0.5 respectively. Assuming that 
this sloshing is established when the applied pres- 
sure is removed (at U = x) (cf. figs. 9-14), the 
disturbance elevation will reach maximum ampli- 
tude at the side walls at t2ati+ TB/2=1.035T0 

and 0.903Tb respectively. The computed plunging 
times (which depend in general on the nonlinear 
energy input and dynamics) are at t/To ~0.844 
and 0.904 respectively (corresponding to figs. 7 
and 8). The former is much earlier than ij while 
the latter coincides with the arrival of the cross 
mode crest. This qualitatively explains the loca- 
tion of the 3D wave plunging especially for 'non- 
obvious' 7=0.5 case. In general, this location 
must depend on the period of the transverse dy- 
namics and the time required for the development 
of the plunging wave. An obvious consequence 
is the fact that 3D breakers need not develop di- 
rectly behind the region of maximum (surface or 
bottom) forcing. 

The time development of the wave profiles and 

surface velocities are plotted in figs. 9, 10 and 11 
for u, w and v respectively for the case 7=1.5. 
Figs, (c) correspond to the instant when the sur- 
face forcing is turned off. At this time, changes 
from the 2D Stokes wave are relatively small, but 
clear three-dimensional features of this 'initial' 
condition is evident. In particular, the greater 
wave elevation and magnitudes of u and w are all 
appreciably near the center. Eventually, the hor- 
izontal velocity on the centerline increases to al- 
most three times its initial value and in the process 
plunges forward and overturns. In contrast, the 
magnitudes of the maximum and minimum verti- 
cal velocity change insignificantly as the plunging 
wave develops. A useful parameter to consider 
is the ratio of maximum u to maximum wasa 
function of time, {u/w)m, which increases from 
an initial value of 1.4 to 3.5 at overturning. This 
indicates that the wave overturning is primarily a 
result of the longitudinal motion. 

The relatively short time to breaking compared to 
the fundamental transverse oscillation period in 
this case does not allow significant energy trans- 
fer from the center to the sides. This is reflected 
in fig. 11 for the surface v. By virtue of symme- 
try, v vanishes at y=0,±B/2, and is only nonzero 
in between. This transverse velocity is positive 
(towards the plunger tip at the centerline) on the 
front face, and negative near and behind the wave 
crest. At the last time instant shown, the ratio of 
maximum u to v is (u/ti)m=20.1, so that t; plays 
only a minor role in the dynamics in this case. 

The corresponding results for 7=0.5 are given in 
figs. 12, 13 and 14. Because of the relatively short 
time of the forcing, the results at the 'initial' time 
near i = * (figs, (b)) are, except for a narrower 
transverse scale, qualitatively quite similar to the 
wider tank case (7=1.5). At this time, %,, and 
wmax are ~30% greater than those of the initial 
Stokes wave while wmin at the trough is almost 
unchanged. As the wave plunges on the side, 
the magnitude of u approximately triples while 
(u/w)m increases from 1.4 initially to 3.6 at wave 

breaking. 

Comparing these figures with those for 7=1.5, we 
see that the magnitudes of the longitudinal and 
vertical velocity components are comparable. The 
locations of these maximum velocities and the sur- 
face profiles are, however, quite different. In con- 
trast to the 7=1.5 evolution, the transverse energy 
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Figure 15: Wave profiles on the centerplane (y=0) 
at times corresponding to the occurance of maxi- 
mum u for each case (see Table 3). For clarity, sur- 
face particle (a) velocity; (b) acceleration vectors 
are normalized by their maximum values given in 
Table 3. 

transfer plays a critical role here. After the forcing 
is removed at t = TT, the wave height and v., w ve- 
locities near the side section increase rapidly. At 
t = 3.9900 the wave profile looks like a steep plane 
wave, although the three dimensionality of the w 
distribution is plainly evident. For t > 3.9900, the 
wave energy continues to be transferred to the side 
boundary as seen clearly from the w plots. The 
wave eventually develops into a robust plungiug 
breaker on the side. 

The contrast is most clear for v where the trans- 
verse velocities for 7=0.5 are negative (towards 
the side wall) both in front and behind the crest, 
and positive transverse velocities occur only in the 
trough region. By comparing figs. 11(d) and 14(d) 
at the overturning stage, we see that the maxi- 
mum (negative) transverse velocity v on the crest 
for 7=0.5 is more than three times that for 7=1.5. 

2 (a) 
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Figure 16:   Same as fig. 15 by on the side wall 
(y = -B/2). 

Figs. 15 and 16 show close-ups of the surface pro- 
files, velocity and Lagrangian acceleration vectors 
on the center plane and side wall respectively for 
7=1.5 and 0.5. For comparison, results for the 2D 

. overturning wave (case 3 of Table 2) are also in- 
cluded. For each case, time instants are selected to 
correspond to when maximum u is reached for the 
entire evolution (see Table 3) typically relatively 
late in the overturning phase. The 7=1.5 and 2D 
cases show only minor differences on the center- 
plane indicating that the evolution near the cen- 
terplane is effectively two-dimensional for 7=1.5. 
Although the plunger in the 7=0.5 case takes 
longer to develop, the transfer of energy to the 
side results in its occurring approximately L/6 be- 
hind those of 7=1.5 and 2D cases. Despite the 
difference in the transverse location of breaking, 
the "cross-section" profiles, particle velocities and 
accelerations at the respective overturning trans- 
verse sections are remarkably similar. For 2D 
overturning waves, New et al (1985) conjectured 
that local overturning wave profiles must be rela- 
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Figure 17: Three-dimensional vector plots of the 
surface velocity for 7= (a) 0.5; (b) 1.0; and (c) 
1.5. The corresponding times and normalizations 
are given in Table 3. 

tively independent of global dynamics so that lo- 
cal jet solutions (Longuet-Higgins 1982) may be 
surprisingly useful. The present numerical results 
suggest that this may be true even for (mildly) 3D 
plungers. 

As mentioned earlier, simulations have also been 
performed for 7=1.0. This turns out to be qual- 
itatively very similar to the 7=1.5 case. Figs. 17 
and 18 show vector plots of the surface particle ve- 
locity and acceleration respectively for 7=0.5,1.0, 
1.5. The time instants again correspond to when 
the respective horizontal velocities are maximum, 
and for clarity, the velocity and acceleration vec- 
tors are normalized by their maxima. These val- 

Figure 18:   Same as fig. 17 but for the surface 
Lagrangian acceleration. 

ues are summarized in Table 3 together with the 
maximum and minimum surface elevation. 

From Table 3, we note that the wave height, 
ihnax — Wmim is greatest for 7=0.5 and decreases 
monotonicaily with increasing 7, having a mini- 
mum value for the 2D case. The overall difference 
from 7=0.5 to 2D, however, is only ~10%. The 
maximum velocity magnitudes are approximately 
twice the phase speed of the original Stokes wave, 
while the maximum Lagrangian acceleration am- 
plitudes at this time (not necessarily maximum 
overall in time) are C(5.5 ~ 6) times that of grav- 
ity. Again, the differences among the different 
cases are relatively small. 

As the overturning waves continue to develop 
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7 t Vmax       Vmin | ' \max |a|maz 

0.5 5.2009 1.095 2.038 6.092 
1.0 5.0038 1.039 1.958 5.673 
1.5 4.8166 1.006 1.954 5.491 

2D 4.7754 0.977 2.020 5.593 

Table 3: Main parameters of the overturning waves at a time corresponding to when the longitudinal 
velocity u is maximum for the entire evolution. |V|TOM and |a|mo* denote the maximum magnitudes of 
the surface particle velocity and acceleration at the given times. The 2D data corresponds to case 3 in 

Table 2. 

(shortly beyond the times in figs. 7 and 8), the 
simulations eventually break down. This occurs 
typically before the re-entry of the plunging tip 
and is associated with a Taylor instability (Taylor 
1950) of the free surface undergoing increasingly 
large negative (normal) accelerations. To quan- 
tify the Taylor instability, we define the surface 
normal Lagrangian acceleration 

dn = (a - g) • n, (19) 

where a is the surface particle acceleration, g — 
(0,0, -1) that of gravity, and n the unit normal 
out of the fluid. Thus, the onset of Taylor insta- 
bility corresponds to when an becomes negative. 

For illustration, we consider the case of 7=0.5 and 
follow 3 surface Lagrangian points whose initial 
positions on the Stokes wave are zj ~ 1.82ir (just 
behind the wave crest at 2x), and yi=-0.5B (on 
the side wall), y2 cz -0.35B and y3=0. These 
points are chosen so that at t=5.2009 (cf. Table 3), 
Points 1 and 2 have respectively the maximum La- 
grangian velocity and acceleration (in magnitude) 
at that time. Point 3 on the centerplane is in- 
cluded as a reference. At this time, y2 ~ —0.415, 
and all three points are on the concave front wall 
of the overturning wave. 

Fig. 19 shows the time evolution of a„(f) follow- 
ing these three points (only results near the final 
breakdown are shown). As the plunger develops, 
Point 2 accelerates out of the fluid rapidly, reach- 
ing a maximum value for o« of almost 10 times 
gravity at t ~5.27. After that, a„ decreases dra- 
matically, and eventually becomes negative lead- 
ing to the break down of the simulation (shortly 
after the last point shown). (Even before this hap- 
pens, the dynamic time step control appears in- 

c 
o 

5.15 

Figure 19:   Surface normal Lagrangian accelera- 
tion On as functions of time for : Point 1; 
 : Point 2 and — • — : Point 3. 

adequate for Point 2, resulting in small oscillation 
in a« during the large accelerations. The cor- 
responding velocities and particle positions are, 
however, still extremely smooth.) Physically, this 
rapid increase and decrease in acceleration corre- 
spond to the passage of Point 2 from behind to in 
front of the plunging crest. 

The above results for a„ suggest a simple way to 
identify regions on a breaking wave where instabil- 
ities and surface roughness may initially develop. 
Fig. 20 shows the surface distribution of an for 
7=1.5 (at t =4.811) and 0.5 (at t = 5.300). In 
both cases, the (large) negative a„ region is lo- 
cated in a small area along the overturning wave 
crest where in reality a spray or fingering break- 
down can be expected. 

Other important results such as the partition of 
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Figure 20: Surface normal Lagrangian acceleration an for (a) 7=1.5, t ~4.811; and (b) 7=0.5, i ~5.300. 
The maximum an regions are inside the concave loop and almost completely hidden. The mini- 
mum/negative on are in a small region along the plunging crest. 
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kinetic and potential energies have also been ob- 
tained. Further analyses of the computational re- 
sults and additional simulations to obtain quanti- 
tative dependence of relevant kinematical param- 
eters on 7 are now under way. These will be re- 
ported in the near future. 

Case A/L* T/To CPU 

Validation' 0(1) 0(1) 0(1) 

Fundamental StudyT 0(1)* 0(1) 0(10) 

Fundamental Study' 0(4) 0(2) 0(40) 

Engineering Appl. O(10) 0(10) 0 (100) 

4.2    Other results 

The present 3D code has also been applied to 
doubly-periodic problems on finite depth and 
large-amplitude wave sloshing in a rectangular 
basin. The latter example, in particular, demon- 
strates the efficacy of the code in treating free sur- 
face and wall intersections. Details can be found 
in XÜ (1992). 

5    Conclusions 

A robust and powerful numerical method has been 
developed for the simulation of fully-nonlinear 
wave and body interactions in three dimen- 
sions. The method is based on a mixed- 
Eulerian-Lagrangian (MEL) approach with the 
boundary-value problem formulated directly as 
mixed first/second-kind boundary-integral equa- 
tions (BIE). The BIE is solved using a new 
quadratic boundary-element method (QBEM) 
which demonstrates cubic minimax error conver- 
gence with element size for general wave-body 
boundary conditions and intersections. The re- 
sulting linear algebraic system is found to be 
amenable to and converge rapidly with GMRES 
iterations with SSOR preconditioning. 

To demonstrate the efficacy of this new method we 
apply it to study the kinematic of 3D deep-water 
overturning waves. We define a three dimension- 
ality parameter based on the aspect ratio of the 
problem 7 = B/L. Simulations for different 7 are 
conducted which allow us to map the entire evo- 
lution of the wave surface position, velocity and 
(Lagrangian) acceleration fields as a function of 7. 
It is found that the results vary qualitatively (e.^., 
the location of the plunging tip) with 7, although, 
parameters associated with the local overturning 
wave (e.g., maximum particle velocity and accel- 
eration) are surprisingly unaffected. 

By identifying the surface normal Lagrangian ac- 

Table 4: Scenarios and CPU estimates (hours 
of Cray Y/MP) for quantitative simulations of 
fully-nonlinear wave-body interactions in 3D. T 
with wave overturning; * doubly-periodic bound- 
ary conditions. 

celeration, a«, and following its evolution, we are 
able to locate regions (near the plunging crest) of 
negative a« in the late stages of wave overturn- 
ing. Taylor instabilities rapidly develop in these 
regions leading to the break-down of the simula- 
tions some time before wave reentry. Physically, 
these surface regions must correspond to areas of 
initial development of instabilities and roughness 
on steep waves. 

An important consideration for the immediate 
and potential usefulness of this work is the mag- 
nitude of the computational effort required. From 
numerical experiments, the total CPU time can 
be estimated by 

CPU    ~    0(N2NT) 

*   Clcjcs(A/L2)2(T/T0), (20) 

where JV is the total number of QBEM (surface) 
unknowns; NT the total number of time steps; A 
the total QBEM surface area; T the total simula- 
tion time; and L, T0 respectively the fundamen- 
tal (wave) length and period. Our estimates of 
the computational parameters are Ci ~ 0(10~7) 
Cray-Y/MP hour (~ 0(1O-6) for doubly-periodic 
boundary conditions); C2, the number of QBE's 
per primary wavelength, ~ 0(10) for 1% maxi- 
mum error (~16 for 0.5% maximum error); and 
c3, the number of time steps per primary period, 
~ 0(60-100) (~ 0(200) with wave overturning). 

Table 4 shows the estimated computing time 
based on (20) for a number of likely applications. 
Clearly, useful quantitative 3D fully-nonlinear 
simulations are now feasible but nevertheless still 
very expensive.   Developments that may signif- 
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icantly improve this situation, in particular the 
implementation of adaptive multipole algorithms 

(Rokhlin 1985) that require only O(N) computa- 

tional effort (cf. (20)), are now underway. 
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DISCUSSION submerged body. 

W. Schultz 
University of Michigan, USA 

Your statement that "the inevitable presence of 
saw-tooth instabilities can be expected in theory since 
for any nonlinear system without dissipation, energy 
cascades from lower to higher wave numbers..." may 
be true in most cases, but there is at least one 
counterexample: a weakly nonlinear Stokes wave is 
neutrally stable to superharmonics but unstable to 
subharmonics (Benjamin-Feir Instability). Hence, for 
small times (at least), the energy "cascades" in this 
case from higher to lower wave number. Perhaps 
this is why some nonlinear time marching results 
have been reported (including your own) without 
filtering.  Can you comment? 

Secondly, how general is the Taylor instability 
criteria developed from (19) considering it is local in 
space and time and the flow may have an extensional 
component? 

AUTHORS' REPLY 

The cascade of energy to the highest 
wavenumbers represented is unrelated to the 
stability/instabilityof high/low wavenumber modes or 
harmonics. The exchange of energy among these 
latter modes is in principle uncoupled from the 
scattering of energy into the much high wavenumber 
regimes. 

A jump in the velocity vector across panel 
boundaries is implicit in the bi-quadratic panel 
formulation, requiring special care in the tangential 
velocity calculation on the free surface; and the 
authors have evidently gone to some trouble with this 
calculation. Bi-cubic spline panels, on the other 
hand, have no jump and allow direct computation of 
the tangential velocities on all boundaries. Could the 
authors comment on this? 

AUTHORS' REPLY 

For the velocity calculations, we employ 
Lagrangian polynomial local fits which maintain high- 
order continuity. Our numerical tests confirm the 
consistency and effectiveness of this approach. 

We have systematically tested the performance of 
other higher-order panels including iso- and super- 
parametric elements described by bi-cubic spline 
geometries before selecting the present QBEM. 
Consistent with earlier findings (Roberts & Rundle 
1972; Sytsma et al 1979), our experience with bi- 
cubic elements in three dimensions indicate that, 
while they provide somewhat more accurate 
representations, the computational burden is 
significantly higher and overall less efficient. 

The Taylor criterion for instability is a local one. 
As indicated by Taylor (1950), a component of 
acceleration in the direction of density gradient is 
destabilizing. This is true in any local region of the 
fluid. 

DISCUSSION 

S. Coakley 
University of California at Berkeley, USA 

The authors are to be commended on their 
presentation of a timely and interesting paper. Based 
on our own ongoing research using isoparametic bi- 
cubic spline panels, we applaud the authors' selection 
of a high-order panel method for the overturning 
wave problem. We have had success with these 
methods in our investigation of steep waves above a 
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Applications of Boundary Element Methods 
in Hydrodynamic Problems 

Relating to Manoeuvring Bodies 
W. Price, M.-Y. Tan (The University of Southampton, U.K.) 

ABSTRACT 

Here we develop a general, unified viscous boundary 
element theory and method to evaluate fluid actions, slow motion 
derivatives and flow fields associated with a rigid body 
manoeuvring. It is also shown that this mathematical model has 
wider applications than initially conceived, extending to rolling 
motions, propeller theory, viscous fluid-structure interactions, etc. 

For a rigid body moving with prescribed unsteady 
translational and/or rotational motions a non-linear convolution- 
integral identity is developed from the Navier-Stokes equation, 
allowing time history effects to be retained in the mathematical 
model. Central to this model is the fundamental equation, which 
is a variant of Oseen's equation, and provides the fundamental 
viscous transient solution. 

Analogous to a panel method in potential theory, we 
replace the potential singularity, ideal fluid and the distribution 
of singularities over the body's wetted surface area by an 
appropriate fundamental viscous solution, viscous fluid and 
distribute the viscous solutions over the body's wetted surface 
area and into the surrounding fluid. This discretisation of the 
boundary and domain integrations occurring in the integral 
equation permits the fluid action and flow velocity disturbance to 
be evaluated directly in the developed numerical scheme of study. 

The applicability of the mathematical model is 
demonstrated and illustrated through the modelling of a flat plate 
in a steady flow, oblique tow and rotating arm tests, planar 
motion mechanism (PMM) experiments, rotating cylinder and a 
rolling two-dimensional ship like section. 

INTRODUCTION 

When a body departs from steady motion in a straight line 
the water exerts a resultant force and resultant moment about 
the centre of gravity as a consequence of the disturbance. 
Information on this variation of fluid action to disturbance forms 
an important role in manoeuvring theory especially in the 
assessment of the directional stability, manoeuvring and control 
of the body and in seakeeping studies through oscillatory testing. 

In manoeuvring theory, this variation is described in terms 
of slow motion  derivatives  and the  data  are usually obtained 

from model scale experiments involving steady state oblique tow 
tests, rotating arm tests and planar motion mechanism (PMM) 
oscillatory tests. The steady state tests allow velocity and 
angular velocity derivative data to be evaluated whereas the 
PMM tests provide information on velocity and acceleration data. 
The theoretical models and procedures adopted in the 
experiments are extensively described and discussed in the 
literature and the techniques developed are now firmly 
established [1,2]. 

In fact, such experiments are conceptually simple and 
readily performed, yet the theoretical modelling of these 
experiments poses major fundamental problems and confidence in 
the ability of the models to predict derivative data with a 
modicum of accuracy remains low. In contrast, seakeeping 
experiments are more complicated to perform, theoretical 
modelling is much more advanced and predictive techniques and 
methods arc now well established [3-7]. In these studies, free 
surface wave disturbances have a dominant influence and 
although the study of waves is a difficult subject in itself much 
progress can be achieved by treating the fluid as ideal (i.e. 
incompressible, inviscid and the motions irrotational) and through 
simplifications to the mathematical model (e.g. small amplitude 
waves, linearisation, etc). On the other hand, manoeuvring type 
problems are dominated by viscous effects and in general, surface 
wave disturbances are of less importance. Experience shows that 
because of the dominant influence of the viscous flow component 
to the fluid actions, especially those associated with velocity 
derivatives, little theoretical progress can be achieved without 
quickly being immersed in a non-linear. 

It is this latter type of problem which this paper begins to 
address. Namely the evaluation of fluid actions, their variation 
to disturbance and the flow around an arbitrary shaped body 
maneouvring in a viscous fluid. A general theoretical 
mathematical model is proposed and developed in which the body 
has prescribed forward velocity and angular velocity [8,9]. 
Although focused on manoeuvring problems, the proposed 
method with adaptation is able to describe fluid actions and flow 
fields around a body rolling in a viscous fluid, a body rolling with 
forward speed, a propeller rotating in a viscous fluid, the 
interaction between hull and propeller, etc. 

In seakeeping and offshore studies, panel methods have 
been successfully developed to evaluate the dynamics of quite 
arbitrarily shaped structures subject to wave loadings [10-12]. A 
distribution of potential singularities over the panels covering the 
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wetted surface area of the body provides a framework on which 
to evaluate the fluid forces assuming the fluid is ideal. Here, we 
propose to replace the potential singularity and ideal fluid by a 
fundamental viscous solution and viscous fluid and to distribute 
the solutions over panels covering the wetted surface area of the 
body and extending into the surrounding viscous fluid. 

Commencing from the Navier-Stokes equation, we derive 
a convolution-integral identity which allows the fluid forces and 
disturbed fluid velocity to be determined directly from the 
mathematical model. The introduction of a convolution time 
integral process provides a means of retaining time history effects 
as well as accounting for steady and unsteady or transient 
translational and rotational prescribed maneouvres. From this 
non-linear model based on an integral identity involving boundary 
and domain integrations, it is seen that the Oseen equation or its 
equivalent plays a central role in its subsequent development 
[7,8,13,14]; the solution of this equation provides the 
fundamental viscous solution which is a function of the 
prescribed translator/ and/or rotatory motions of the body. 

The fundamental viscous solution chosen depends on the 
type of problem under investigation e.g. steady state oblique tow, 
rotating arm, PMM experiment, a combination of unsteady 
translations and/or rotations, etc. Here we demonstrate through 
illustrations that, by distributing these fundamental viscous 
solutions over the panels describing the rigid body's geometry and 
into the fluid, we can develop a practical, unified viscous 
boundary element method based on a convolution-integral 
formulation to evaluate fluid actions and flow fields experienced 
by two- and three-dimensional shaped bodies undertaking steady 
or unsteady prescribed manoeuvres. 

MATHEMATICAL MODEL 

In traditional approaches adopted in studies investigating 
the manoeuvring capability of an arbitrary shaped marine vehicle, 
the motions of the rigid body are defined with reference to an 
orthogonal right handed set of body axes Cxyz. In this axis 
system C is fixed at the centre of gravity or other convenient 
position in the body i.e. the stern (say), the positive Cx axis lies 
in the longitudinal plane of symmetry in the direction of the 
bow, the Cy axis lies in the transverse direction pointing to 
starboard and the Cz axis is positive vertically downwards. It is 
assumed that the body and hence the axis system moves with a 
translational velocity - 0(t) [0(0) - 0] and rotates with an 
angular velocity - S(t) [5(0) - 0]. The retention of the time 
dependence in these motions allows unsteady prescribed 
manoeuvres of the body to be examined. 

The Navicr-Slokcs equation describing the fluid flow 
velocity V(r, T) in the incompressible fluid with constant viscosity 
is given by 

—  + (V . V)V - - — Vp + v V2V + f + Ü + 5xr - 
3T p 

ßx(ßxr) + 2ßxV 

and 

V . V = div V  =   0 

(1) 

(2) 

where r denotes the position vector defined in the body fixed 
coordinate system and a tildcQ above a term indicates a 
dimensional quantity.   The variables v, p, p and f represent the 

kinematic viscosity coefficient, fluid density, pressure in the fluid 
and an external, body force respectively. An overdoj denotes an 
acceleration, (Ü) or _an_ angular acceleration (5) and the 
mathematical symbols V, V2 have their usual meanings. 

In the mathematical model developed herein, the disturbed 
fluid velocity V(r",T) and the mean pressure p(T,t)_in the viscous 
fluid are considered as unknowns. Since V - ? + U + fix? and 
V(r",0) - 0 - V (F,0), the Navier-Stokes equation governing the 
disturbed fluid velocity v is given by 

a? 

3T 
+ [(0 + V).VP + Vx [vx(ßxT)] 

_ 7 y2 ^ . J_ vp + (5x0) + 7 , 

V.V - div ? 0. 

(3) 

(4) 

~     - T-T2 p - p U p, 

By adopting the Oseen non-dimensional variables 

V - Ü v, 0 = ÜU, 5 - ÜRcß/L 

f - O^ef/L •    V - (Rc/L) V, 

7 = Lr/Re,       T - Lt/ÜRe,      3/3T - (ÖRe/L) 3/3t 

where L is a characteristic length, U a characteristic speed and 
Re - OLTv is the Reynolds Number, we find that the 
non-dimensional form of the Navier-Stokes equation is given by 

— + (U+v) . Vv + Vx (vx(ßxr)} - - Vp + V2v + ßxU + f 
dX 

(5) 

or, if the vorticity w - V x v. 

9v 1    A -g- + (U.V)v + Vx{vx(vx(ßxr)} - - V(p+y V) + (g) 

V^ + vxo) + ßxU + f , 

and 

V.v  -  0 (7) 

subject to the conditions 

v(r,0) - 0,       v(oo,t) - 0, Vp(oo,t) - (ßxU) and 

v(r,t) - -U(t) - ß(t)xr 

on the body's surface. 

These non-linear equations contain no direct reference to 
Reynolds number but as can be seen, its presence remains in the 
transformation of variables. Furthermore, under the assumption 
fl(t) - 0 and U(t) - U a constant, the linearised form of these 
equations produce the classical equations of Stokes [15]: 

3t 
V2v - Vp + f, (8) 
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and Oseen  [16]: 

4^ +  (U.V)v  -  V2v - Vp + f 
at 

(9) 

In the derivation of the Stokes equation, it is assumed that 
the Reynolds number is small such that products of v in equation 
(5) are negligibly small and therefore neglected in comparison 
with the first order terms. In the Oseen equation, the constant 
uniform velocity term is retained and, at large distances from the 
body, the flow may be regarded as having a parasitic disturbance 
in the uniform flow under inertial and viscous forces of 
comparable magnitudes. Thus the Stokes equation is based 
entirely upon the assumption of small Reynolds number whereas 
the Oseen equation, though suitable for small Reynolds number, 
applies to flows in the far field and for any value of the 
Reynolds number. For these reasons, variants of the Oseen type 
equation are adopted in the mathematical model to be discussed 
and developed in preference to the simpler Stokes equation. 

Convolution-Integral Identity 

By describing the past history of the prescribed manoeuvre 
of the body through convolution time integrals and using 
Gaussian integral formulae, we find after a series of 
mathematical manipulations that the Navier-Stokes equation 
describing the disturbed fluid velocity v can be transformed into 
a convolution-integral equation producing an integral identity. 
This is achieved by introducing two additional unknown 
functions vsj*(r,t) and ps*(r,t) where r - x-q represents the 
position of the field point at q relative to the source point at x. 
In this notation, the subscripts i, j, s, etc take values 1, 2 in a 
two-dimensional problem and 1, 2, 3 in a three dimensional 
problem. Thus the auxiliary function vs* with element vsj* 
represents a (2x2) or (3x3) matrix depending on the type of 
problem under investigation whereas p*, with element ps*, is a 
vector or column matrix containing 2 or 3 elements. 

The details of the transformation are omitted but it can 
be shown that the following integral identity can be deduced 
from equation (5): 

f {vs**[v + (U+v).Vv + Vx{vx(ßxx} - V(V.v) - V2v + Vp • 

Ü 

QxV - f] + p **(V.v)}dfl 

- f {v*[v* - (O.V)vs* + (5xx)x(Vxvs*) -V (V.vs*) - V2vs* - 

Vps*] - [p - (flxU).x]*(V.vs*) 

Here ß denotes the fluid domain, Z represents the boundary 
surface enclosing Q, n is a unit normal pointing outwards from 
the fluid domain Ü and a summation convention is adopted: 

U: n: - U.n - X   Uj nj    etc. 

j-l 

The asterisk multiplier (*) denotes a convolution operation: 

* b - b * a - f a(t-y). b(y) dy 
J0 

and we define 

0(t) - U(r-t),     fi(t) - fl(T-t) 

to indicate a simple time shift in these parameters. 

The term 

Rj - Pkj nk " (-Pökj + vj,k + vk,j) nk 

represents the dimensionless force component in the jth direction 
whereas the variable Rsj* is defined as 

V - Pskj* nk " (Ps* dkj + vsj,k* + vsk,j*) nk 

where nk is redefined as the kth component of the unit normal 
vector at the boundary surface pointing inwards into the fluid 
domain. In these expressions v; k - 3vj/3xk, v -k - 3vsj /3xk, 
etc and 6w-. - 1 when k - j, otherwise it is zero. 

Fundamental Equation 

The functions vsj* and ps* remain undefined in equation 
(10) and as these variables were introduced into the 
mathematical model by us, we are at liberty to choose their 
forms. An examination of the integral identity reveals that a 
major simplification to this expression occurs if we let these 
undefined functions satisfy the following equation: 

■ (0 • v] vs* +   (Q xx)xhx\*) - V2vs* - Vps* 

<)s<5(t)A(r) 

and 

(11) 

V.vc 

vs**[(v.V) v - f]} äü + J[vsj*(r,0)Vj(x,t) - vsj*(r,t)Vj(x,0)]dß 

n 

■ f {vs**[(U.n)v - n{(flxll).x} + nx{vx(ßxx)} - R] + v*Rs*}dX 

X (10) 

subject to the conditions vs:*(r,0) - 0 and v -*(oo,t) -> 0. Here 
both c5( ) and A( ) denote Dirac delta functions. When this 
equation is compared with equation (8) we see that apart from 
the angular velocity term, equation (11) is a variant of the Oseen 
equation with fsj* - ds: d(t) A(r). 

Equation (11) is a general equation applicable to all types 
of   steady   and   unsteady   fluid-structure   interaction   problems 
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involving translational and rotational motions of the body. Its 
solution produces the fundamental viscous solution vs which 
may be derived in analytical form (if possible) or by numerical 
means depending on the type of problem under examination. 

For example, for transient translational motions only (i.e. 
U(t)*0, fl(t) - 0) equation (11) reduces to 

(U.V) v, 
sj 

V2v, 
sj -P. sj 

<5sj <5(t) A(r) (12) 

which on comparison with equation (8) shows it to have a close 
affinity to the Oseen equation. By analogy to the term stokeslet 
adopted to describe the fundamental solutions in potential theory 
for a source and a doublet the fundamental viscous solution of 
equation (12) might be referred to as a 'transient oseenkt'. In 
maritime engineering applications, this fundamental viscous 
solution is appropriate to model a body undertaking steady or 
unsteady prescribed motions associated with a steady state 
towing experiment or a planar motion mechanism (PMM) 
oscillatory experiment. 

For transient rotational motions only (fl(t)=jM), U(t) - 0), 
equation (11) is suitably modified. In this case, the fundamental 
viscous solution can be used to represent a body rolling, pitching 
or yawing with no forward speed or a propeller rotating in still 
water. 

For combinations of both translational and rotational 
motions, in principle, the developed fundamental viscous solution 
can be adopted to model the rolling, pitching or yawing motions 
of a body with forward speed, a propeller rotating behind a 
manoeuvring ship, a helicopter in flight, etc. 

2.3      Integral Equation 

We shall assume that solutions v$* and ps* can be 
obtained from the fundamental equation in either analytical or 
numerical form. The substitution of these solutions together with 
their initial conditions into the convolution-integral identity 
produces an integral equation of the form: 

C(q)vs(q.t) = j  (VS**[R - (U.n)v + n{(flxU).x} - nx {vx(flxx)}l 

-v*Rs*jdX  - JVs**[(v.V)v - fl dfl (13) 

a 

where 

C(q) 0.5 
(   1 

if q e (fl U X) 
if q £ X 
if q e fl 

This equation relates the disturbed fluid velocity vector v(q,t), 
with element vs, to the force R experienced by the body. The 
boundary X in this equation consists of a combination of the 
boundary around the body, Ii., and an outer boundary around 
the fluid at infinity, X   , such thai X = X^ - X^. 

Now on Zm we have 

v(x,t) - 0,     R(x,t)   -   -np^ 

and 

f {vs**[R - (U.n) v + n{(flxU). x} - n x {v x (fl x x)}] 

- v * Rs*} dX = 0 

whereas on Xu, v - - U - O x x, it can be shown that the 
following result is valid: 

- J v*Rs*dX - - {1 - C(q)}(U + flxq) + J v**[V + flxx]dfl 

X, AK 

fvs** {(U.n) v + nx [vx(flxx)]} dX 

where flu denotes the volume domain of the body. Substituting 
this result into equation (13) we find the integral equation takes 
the form 

C(q)v(q,t) = {1 - C(q)}(U + flxq) - J vs**[Ü + flxxjdfl 

f vs**[R + n {(flxU).x)] dX - J v$**[(v.V)v - f]dfl    (14) 

Xw fl 

or. 

C(q)v(q,t) - {1 - C(q)}(U + flxq) 

- f vs**[R + n {(flxU).x) + n(Ü.x) + -±- x2flxn]dX 

J* (Vxvs*)*(-i x2fl)dfl - J vs**[(v.V)v - f]dfl (15) 

AK fl 

Both these non-linear integral equations retain force R 
and fluid velocity v as the basic unknows which can be obtained 
directly from the discretised form of these equations. In 
principle this direct approach should increase the efficiency of 
any numerical procedure developed as well as enhancing 
numerical accuracy. 

FUNDAMENTAL TRANSIENT SOLUTIONS 

The solution of the previous two integral equations 
depends on deriving the fundamental viscous solution vsj in 
equation (11). In this section we discuss the form of the 
solutions appropriate to an arbitrary shaped body undergoing 
unsteady   translational and/or rotational motions. 

Translations 

For a body in translational motion only (i.e. U(t) * 0, 
fl(t) - 0), the equations to be solved to determine the fluid 
velocity v and force R arc: 
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C(q)v(q,t) - {1 - C(q,t)}U - f   v **Üdß - f   vs**RdX - \ X 
J" vs** |"(v.V)v - f 1 iü 

= {1 - C(q)}U - j   \** {R + (Ü.x)n} d2 - 
xb 

f vs**[(v.V)v - fjdfl  , 

and 

** - (O . v) vs* - V2vs* - Vps* - <5s<J(t)A(r) 

V.vs   -0, 

(16) 

(17) 

together with  vs (r,0) = 0,  vs (oo,t) -> 0. 

For a two-dimensional translatory problem (s, j - 1, 2), it 
can be shown that solutions to equation (17) are of the form: 

integral 

00 

E]to - j  '{e~a/o) dor,       |arg(x)| < n 
x 

and the complementary error function 

co     2 
erfc(x) - (2/Vä) j    e"a   da  , 

x 

as defined by Abramowitz and Stegun [17]. 

Rotations 

In the case of a body rotating with angular velocity Q(l) 
only (i.e. U(t) - 0, ß(t) * 0) the equations to be solved are: 

C(q)vs(q,t) - [l - C(q)j(flxq) - j   vs**RdX 
Xb 

- j    vs**(ßxx)dfl - J* vs*4(v.V)v - fldß ,        (22) 

£?K a 

vsj ^ - 4m 

4jrt HJ "     2 ) 

{l-e-^/4t)} 
Vh   -(r2/*)     !l-c 

4^t rsJ   F2 ic ,„-2 2wrz (v^> 
(18) 

and 

vs* + (flxx)x(Vxvs*) - V2vs* - Vps* - dsd(t)A(r) , . * 
vs 

V.vs   -0 

and     v   (r,0) = 0, v   (co,i) - 0. 

(23) 

*v.<>--£{.. (-3 (19) 

whereas for the three-dimensional translatory problem (s, j - 1, 
2, 3) we have 

vsj (r.t) - 
(4;rt> 

U    ,r^o,_i.{
1-"ml,2')   ,(20, 

3/2 PI 

Ps CO -   4* 
d(t)    /l 

(l).s (21) 

Now for simplicity, and luckily it holds for many practical 
applications, we shall restrict our solutions to the case in which 
the axis about which the body fixed coordinate system rotates 
does not change its orientation in a space fixed coordinate 
system.  That is, O can be written in the form 

0(t)  -  fl(t) m 

where ß is a scalar function of lime and m is a constant unit 
length vector. 

For a two-dimensional rotatory problem (s, j, k - 1,2) it 
can be shown that solutions to equation (23) are of the form: 

Here, 

r  -  r + C,     C(t) - / 0(7/) dr/,      r = |x - q| 

is the distance bclwccn ihc field point x and the source point q, 
rs is the sth component of ihc vector 7 and  the exponential 

d,kcos© + cosine , dk:     _2 
vsj fr.O ' 

c2ks 

An 
"kj    -(r^/4t) 
 e 
t Hi) 

1 ™jki 
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\öskcos6 + e3kssin©j 

4n 

rf¥ 
[(V 

-(r2/4t) 

2t 

2FkfA K—1) 
f2 

(24) 

whereas for the three-dimensional case (s, j, k - 1, 2, 3) we have 

vsj (r.t) 

|dskcos© + c^jitij-sin© + msmk(l - cos© j 

An 

dkjC^
2/4t)     rl-crrc([rl/2.^). (25) 

(4TH
3
)
1/2 frl ,kj 

In these expressions wc define 

t 

0(t)  -   f   %)dij  , 

r  -  r + (1 - cos©) m x (q x m) + sin© (m x q), 

and the permutation operator Cjin - 0 if j - i or j - n or i - n, 
e123 = e231 = e312 " l and e132 = e213 = c321 "= "L 

The fundamental viscous solution for steady translational 
and rotational motions can be derived by integrating these 
solutions over the whole time domain.  That is. 

dl (26) 

For steady translational motions, this mathematical model 
[8,9,13,14] agrees with a model derived previously by alternative 
methods [18,19] and also with the fundamental viscous solutions 
obtained [20-23]. 

For steady rotational motions, because of the complicated 
expressions for the integrand in equation (26) there appears to be 
no easily derived analytic expression and therefore numerical 
integration is required to obtain a steady state fundamental 
solution. 

NUMERICAL SOLUTIONS AND DISCUSSION 

Linear and Non-Linear Models 

Equations (13-15) contain a mixture of surface and 
volume integrals. The latter represents the non-linear convective 
term which introduces numerical complexities into the numerical 
scheme of study. 

For small Reynolds number flows, the fluid flow can be 
represented as an Osccn flow and the non-linear convective term 
in the theory neglected with confidence. This simplifying 
approximation  reduces   the  compulation   to  a  linear  one  and 

solutions for the unknowns v and R are relatively simple to 
obtain requiring only a viscous element distribution and boundary 
integration over the welted surface of the body. However, for 
increasing Reynolds number Hows the justification of such an 
approximation becomes less and less tenuous though, for 
comparison purposes, we shall retain this approximation and refer 
to the resulting numerical scheme as the linearised model. This 
does not imply that viscous effects are discarded since these and 
the non-irrotational nature of the now are retained in the 
fundamental viscous solution \*. The findings from this 
linearised model can be compared to the predictions derived from 
the non-linear model in which we retain in the analysis the fluid 
domain integral accounting for the contribution of the non-linear 

convective term. 

Fundamental Solutions 

In a previous investigation [8], a selection of analytic 
expressions describing the fundamental viscous solution were 
derived and their forms discussed. These are solutions to 
equation (11) and arc applicable to steady and unsteady 
translational and/or rotational problems involving viscous 
fluid-structure interactions. In principle, equation (11) can be 
solved numerically but, so far, wc have concentrated on solutions 
which can be derived analytically and have direct relevance to 
practical problems; they also allow the characteristics of the flow 
field generated by the fundamental solution to be widely 
investigated. For example. Tor an oscillating viscous source the 
fundamental solution generates an oscillatory vortex wake, a 
rotating and translating viscous source creates a helical vortex 
wake, etc. These forms of solution have been illustrated 
previously and arc therefore omitted from the present discussion. 
Here we focus attention on the range of applicability of the 
proposed viscous boundary clement method to tackle typical 
steady and unsteady dynamical problems arising in maritime 
engineering science i.e. resistance, manoeuvring, seakeeping, etc. 

Resistance of a Flat Plate 

For a flat plate in an uniform steady flow, U(t) - U a 
constant, figure 1 illustrates the variation of the calculated drag 
coefficient Cd over the Reynolds number range 0 < Re < 10 . 
These findings arc compared with data derived from Blassius' flat 
plate formula and other analytical expressions [24] dependent on 
the degree of approximation (i.e. Reynolds number) assumed in 
the development of the theoretical formula. It is well known that 
in laminar flows such analytical expressions describe 
satisfactorily the magnitude of the observed forces on a flat plate 
but faU when transition and turbulence occurs. The steady state 
viscous boundary model surfers a similar fate since it is restricted 
to non time dependent flows and its extension is being further 
investigated. 

From the evidence presented in figure 1, it is clearly seen 
that the comparison between the non-linear predictions and 
analytical findings are favourable and hence also with measured 
data [25]. This comparison confirms with a degree of confidence 
the ability of the non-linear model to determine magnitudes of 
fluid actions and flow fields with reasonable accuracy and that 
the idealisation, convergence and tolerance procedures admitted 
into the numerical scheme are adequate. Furthermore, no 
numerical difficulties (e.g. instabilities, etc) were experienced in 
deriving these results. 

Figure 1 also highlights the tendency of the linearised 
model to overestimate the predicted values derived from the 
non-linear model but, at low Reynolds number, the contribution 
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of the non-linear term diminishes and the two models produce 
comparable results. 

An Oblique Towing Test 

In this application of the theoretical model, we 
concentrate on translational motions attempting to model 
mathematically a typical steady state oblique towing tank 
experiment to measure slow motion derivatives e.g. heave, sway 
or surge velocity derivatives. That is, the body is accelerated 
from rests and then travels at a constant speed along the tank. 
This experiment is repeated at different drift angles, ß, and the 
variation of fluid action with angle recorded, thus allowing the 
slow motion derivative to be deduced. 

Figure 2(a) illustrates a typical velocity-time history of the 
prescribed forward motion of the chosen body (i.e. a 
two-dimensional ellipse of length to beam ratio 10:1); this 
description of the motion corresponds to the experiment. 
Although such a test is referred to as steady state it contains 
unsteady (accelerating) and steady (constant velocity) phases. 
Because of this the two-dimensional transient fundamental 
viscous solution was used to model the complete numerical 
experiment. In contrast to previous studies using the steady state 
model only [13,14], this transient model is less restrictive in its 
range of application and in its ability to describe flow fields 
allowing time history effects to be included in the predictive 
procedures. It also follows that steady state values now 
correspond to predictions carried out at a large time interval 
from the start of the experiment when the ellipse is travelling at 
constant speed, uninfluenced by earlier unsteady fluid motions 
and the flow around the ellipse and into the wake remains 
constant with time implying that the interactive influence of the 
wake on the incoming How (i.e. feed-back) is constant or zero. 

Figure 2(b) shows the time histories of the drag force 
(jS-0) with Reynolds number Re-1000 and Figure 2(c) illustrates 
the variation of its steady state value with Reynolds number. 
Again we see the linearised model over-estimates the 
corresponding values determined from the non-linear model. For 
Reynolds number Rc=200, Figure 2(d) shows the variation of the 
steady state lift and drag coefficients with drift angle ß, from 
which slow motion velocity derivative data may be deduced. 

On passing it is interesting to note that during the initial 
stages of motion, a starting vortex is created in the flow which 
sheds from the ellipse into the wake and passes downstream. The 
strength of this vortex flow depends upon the intensity of the 
acceleration. 

Rotations: Rotating Ann Test 

Let us now briefly focus attention on rotational motions 
and, in the first instance, consider the modelling of a rotating 
arm experiment. In this lest, the attached model is suspended at 
a fixed distance (radius) along an arm which is set into a circular 
motion. The model travels a circular path of fixed radius and of 
known angular velocity which has a lime history simililar to the 
trace illustrated in Figure 1. That is, there is an initial unsteady 
accelerating phase and a subsequent steady period of constant 
angular velocity. 

Although such experiments purport to measure steady 
state values, in many ways, they arc far less exact and steady 
compared to the oblique low test. For example, there is only a 
limited circumferential path in which the flow onto the model is 
as   defined   though   unsteady   effects   in   the   wake   may   still 

influence the fluid actions on the body, after an interval of time, 
the model passes through its own created wake thus influencing 
the flow over the body which may be steady but not necessarily 
as prescribed, etc. In principle, because time histories of the 
motions are retained in the proposed unsteady mathematical 
model, the scenarios described can be modelled. However, in the 
findings presented in Figure 3 such details are not included in 
the modelling of the numerical experiment. This diagram 
illustrates the predicted flow field around an ellipse travelling 
along a circular path and clearly shows the existence of a cross 
flow over the ellipse and the shedding of vortices into the 
circular wake. 

Oscillatory PMM Experiment 

Through the transient fundamental solutions, oscillatory 
(or random) translational and/or rotational experiments can be 
modelled. By way of a simple example, let us consider a 
traditional unsteady sway PMM experiment involving the ellipse. 
That is, the ellipse is towed along a towing tank at a prescribed 
forward speed in conjunction with an imposed parasitic 
transverse oscillatory motion of known frequency and amplitude. 

Figure 4(a) illustrates a typical time-history of the 
unsteady motion; Figure 4(b) shows the vortices shed into the 
wake and Figure 4(c) illustrates the fluid actions experienced by 
the ellipse at prescribed conditions defined by the Reynolds and 
Strouhal numbers. By repealing such numerical experiments at 
different prescribed conditions a data set can be created from 
which both velocity and acceleration derivative values may be 
deduced. 

Rotations:     Rolling 

Two further numerical experiments are briefly discussed 
in which no prescribed translational motion occurs. Namely, an 
infinitely long cylinder or two-dimensional disc rotating at 
constant angular velocity ßQ after starting from rest and a 
two-dimensional representation of an idealised ship section in 
oscillatory roll motion. 

The cylinder problem allows a preliminary validation of 
the numerical techniques with analytical solutions and, 
furthermore, to allow speculation as to whether or not the 
proposed mathematical model can be extended to provide a new 
viscous flow-propeller theory. 

The analytical solution 
2 

v(t) - - (fl0 a2/r) c"r /4t 

provides information on the langenlial flow field at radial 
distance r measured from the centre of a cylinder of radius a 
rotating at an angular velocity 

2 
fl(t) - - ß0 e'a /4t • 

The resultant moment acting on the rotating cylinder by the 
viscous fluid is given by: 

2 
M(t)   -  -4xa2ß0 [1 + (a2/4t)] c"a /4t 

At t - 0, Q - 0, v - 0 and M - 0 whereas, the steady state 
solution obtained in the limit as t -• oo is given by Q -> -@0, v -» 
-P a /r and M -» -4m fl0 in accordance with the classical 
solution obtained by Milne-Thomson [26]. 
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Figure 5(a) shows a comparison between numerically and 
analytically derived values or these parameters. Their close 
agreement clearly demonstrates the accuracy of the developed 
numerical scheme of study and a measure of validation of the 
proposed mathematical model. 

In its simplicity, the disc can be thought of as a very 
crude idealisation of a propeller. However by changing the 
geometry of the disc we can achieve a more realistic propeller 
shape, yet this does not prevent us using the same mathematical 
model. This needs further investigation, but if proved successful 
it follows that by introducing the three-dimensional transient 
rotational fundamental viscous solution into the mathematical 
model a more realistic propeller geometry-viscous fluid theory 
can be created. 

The rolling of a two-dimensional idealised ship section is 
analogous to the cylinder problem but now the rotating motion is 
fully unsteady through the imposed oscillatory or random motion. 
Figure 5(b) illustrates a selection of flow fields generated around 
two typical ship like sections and the corresponding excited 
moments. 

The mathematical model may be further extended to 
include both translational and rotational motions [8] which will 
be described fully at a future occasion. 

CONCLUSIONS 

For manoeuvring related viscous hydrodynamic problems 
involving a body moving with translations and rotations, the 
proposed general, unified viscous boundary element method based 
on fundamental viscous transient solutions is found suitable to 
describe viscous fluid-structure interactions. The results 
presented are encouraging but further investigations and 
numerical experiments arc necessary to evaluate the range of 
applicability of the developed mathematical model, its ability to 
provide a detailed description of the fluid-structure mechanisms 
in increasing Reynolds number flows and to validate the 
numerical scheme of study for more complex shaped bodies in 
steady viscous flows (i.e. body-appendage configurations, 
three-diemnsional bodies, etc). 

The wide range of applicability of the viscous theoretical 
model demonstrated herein creates optimism and initial 
indicators suggest that the developed general theory can, with 
suitable modifications, find application in the wider context of 
rolling motions, propeller theory, hull-propcllcr interactions as 
well as describing the behaviour of a flexible structure distorting 
in an unsteady viscous flow i.e. a viscous hydroclasticity theory. 
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Figure 1: The variation of the drag coefficient for a flat plate 
against Reynolds number. The figure shows a comparison 
between analytic solutions [24], experimental data [25] and 
numerical solutions obtained from the non-linear and linearised 
mathematical models employing steady state translational 
oseenlet solutions [8]. 
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Figure 2: (a)    Velocity-time history of the prescribed forward 
motion of the ellipse. 
(b) Variation of the drag coefficient with time (Re - 1000). 
(c) Variation of the steady state drag coefficient with Reynolds 
number. 
(d) Variation of the steady state lift and drag coefficients with 
angle of attack (Re - 200). 
In    the   linearised   and   non-linear   mathematical   models   the 
transient translational oseenlet solution described herein is used. 
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Figure 3: Predicted instantaneous flow field around an ellipse 
travelling clockwise around a circular path as would occur in a 
rotating arm experiment. This result is derived from the 
linearised mathematical model using the transient rotating 
oseenlet solution. 
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Figure 4: (a) Velocity time history of the prescribed forward 
motion, uj(t), and transverse sinusoidal motion, u2(t), of the 
ellipse as would occur in a planar motion mechanism experiment. 
(b) Predicted instantaneous flow field around an ellipse 
undergoing oscillatory and forward motions. 
(c) Variation of the fluid actions with time for the described 
PMM experiment. 
These results arc obtained from the non-linear mathematical 
model employing the transient translational oseenlet solution. 
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Figure 5: (a) Comparison of analytically predicted and 
numerically derived results for the variation of the moment with 
time experienced by an infinitely long, rotating cylinder and the 
variation of the velocity flow disturbance with radial distance 
measured from the centre of the cylinder at different instants of 
time (t - 1.0 corresponds to 50 time steps). The numerical 
results are obtained from the linearised model employing the 
transient rotating oseenlet solution. 
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around a rectangular and a half elliptic two dimensional ship 
section rolling sinusoidally. Note the clear shedding of vortices 
with different directions of circulation around the rectangular 
section and to a lesser extent around the smoother curved 
section. The corresponding calculated variations of moment 
against time clearly show marked differences in magnitude 
caused by form shape and by the visible different intensities of 
vortex shedding. 
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DISCUSSION 

H. Maeda 
University of Tokyo, Japan 

I would like to express congratulations for the 
formulation of a general unified viscous boundary 
element theory. 

I would like to discuss about three subjects. 

1. We could not be free from the volume integral 
term in the right hand side of the equation (13) in this 
kind of nonlinear problem, which may give us some 
difficulty for numerical procedure. Especially as to 
with-uniform-velocity problem, I think we have to 
extend the volume range for this volume integration 
according to each time step. Would you please tell 
me how to decide the volume boundary and how to 
evaluate this term? 

2. I could not follow the derivation procedure of the 
equation (11) which looks like the Oseen equation, 
and also the derivation of equation (10) which may be 
explained in Proc. R. Soc. Lond. Would you please 
explain briefly the derivation of these equations? 

3. The authors treated unsteady problem for instance 
PMM in time domain, while the same kind of 
oscillating problems were treated by Bessho in 
frequency domain. These two domains may be 
related through Fourier Transformation. In my 
opinion, time domain procedure is appropriate for 
problems without uniform velocity, while frequency 
domain one for problems with uniform velocity. Can 
I ask your comment on this matter? 

equations give reasonable prediction at all Reynolds 
numbers. For the case of a steady state boundary 
layer on a flat plate the Oseen equations subject to a 
boundary layer approximation give 

Cf = 2/VVR/'
4 

which is similar to but larger than the Blasius result 
of 

Cf = 0.664 R,-*. 

In the case of the rotating cylinder, the exact 
result satisfies the Stokes equations and hence the 
Oseen equations since U.VU is identically zero. 
Therefore, the agreement shown for these special 
cases certainly validates the numerical method but not 
its range of application to general cases. The results 
for rolling hulls seem to me to be qualitatively 
realistic and may give useful approximations. 
However, in my opinion, they cannot be formally 
correct at significant Reynolds numbers because the 
nonlinear quadratic velocity term in the Navier Stokes 
equations which is neglected in the Oseen 
approximation would be large in the neighborhood of 
the bilges where the vortex shedding takes place. 

Does the addition of the volume integral term (the 
nonlinear model) incorporate the full nonlinear terms, 
or does it introduce the next term in the series of 
which the Stokes/Oseen term is the first? It would be 
useful to know how easy it is to compute this term 
for general cases, since it does improve the results. 

It would also be useful to carry out further 
comparisons between the results of the method and 
exact computations of separated flow. 

DISCUSSION 

J. Graham 
Imperial College of Science, Technology, 
and Medicine, United Kingdom 

This is an interesting paper which develops a 
boundary integral (panel) solution of Oseen's equation 
for unsteady viscous flow past a body. 

My main comment concerns the application of the 
results because the Oseen equations would not in 
general be a good approximation to the flow field in 
the neighborhood of a body for Reynolds numbers 
much greater than about 5. The two examples given 
in the paper are special cases for which the Oseen 

AUTHORS' REPLY 

We are grateful to Professor Graham and 
Professor Maeda for their valued contributions to our 
paper. 

Before discussing their comments in detail it 
might be useful to clarify points of presentation and 
to stress that the paper presents an exact theory to the 
solution of Navier-Stokes equation applied to a body 
maneuvering in an unsteady viscous fluid flow. That 
is, the non-linear mathematical model involving a 
convolution-integral formulation relating directly 
force to flow velocity in equation (10) is derived 
without     recourse     to     simplification     through 
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approximation. Secondly, the fundamental viscous 
equation in equation (11) evolves directly from this 
non-linear mathematical model and has been 
introduced to simplify the mathematical model. 
Solutions to this equation allow simplifications to the 
model without approximation but a non-linear relation 
between force and flow velocity is retained in the 
integral formulation. Perhaps, on hindsight, it is 
misleading to the reader to refer to these fundamental 
viscous solutions as transient oseenlets for there exists 
the false interpretation that we are studying only 
solutions to Oseen's equation to describe a body 
maneuvering in a viscous fluid. This is certainly not 
what is being investigated. It is coincidential that the 
fundamental viscous equation is a variant of Oseen's 
equation and we have brought this to the reader's 
attention since a large literature exists on this subject. 
What we are studying and what is described in the 
paper is the maneuvering of a rigid body in an 
unsteady viscous flow through an exact non-linear 
theory based on a boundary element method applied 
to Navier-Stokes equation. By retaining the quadratic 
velocity term through the volume integral, full non- 
linear solutions of the forces and velocity flow field 
are derived whereas neglect of this quadratic term 
provides a linear approximated theory and hence 
linear solutions. 

Professor Maeda raises three separate questions. 

Firstly, the position of the boundary for the 
volume integration was judged through a numerical 
study of the sensitivity of converged solutions to the 
domain of integration. This problem remains under 
study but indications clearly show that solutions of 
forces are far less sensitive to domain of integration 
than predictions of the flow velocity field. Very 
small changes occurred in the force results when the 
domain was restricted to a few body lengths around 
the body or to a large distance from the body. In 
contrast, the velocity flow field was much more 
sensitive to the position of the domain which must be 
chosen to capsulate the total generation of the wake 
and hence the converged solutions describing the 
wake. 

In answer to the second question, the application 
of the integral formula 

equation (10). 

An extended form of the fundamental viscous 
solutions is given by us in the paper published in the 
Proceedings of the Royal Society. 

We agree with Professor Maeda's interpretation of 
the appropriate procedures to adopt for the linear 
approximated theory and non-linear theory. 

Professor Graham's contribution focuses on the 
application of boundary integral solutions of Oseen's 
equation for unsteady flow past a body. For the 
reasons stated, we apologize if we have caused 
confusion or misled him through our presentation. 
The introduction of the fundamental viscous equation 
and solution is only a mathematical way of 
simplifying the non-linear mathematical model 
without approximation. We agree with his comments 
about solutions to Oseen's equation but as 
demonstrated through steady state calculations on a 
flat plate, the proposed theoretical model produces 
satisfactory results over a wide range of Reynolds 
numbers. In fact, from Figure 1, the linear 
approximated theory gives a solution Cf = 1.13 R,""2 

whereas the full nonlinear mathematical model 
produces the solution Cf = 0.75 R/"2 which is in 
close agreement with the Blasius result. 

We agree with Professor Graham's comments 
about the numerical validation of the rotating cylinder 
example and also the qualitative realism of the flow 
field predicted for the case of a rolling hull. Our 
previous general discussion applies to these 
illustrations of rotational motions. Again the full 
nonlinear theory incorporates the quadratic velocity 
term through the volume integral based on the 
solution to the fundamental viscous solution which is 
used in both the linear approximated theory and full 
nonlinear theory. Naturally, because of the volume 
integral, the prediction of nonlinear solutions of force 
and flow velocities are numerically more difficult and 
consume more computer time, but this is being 
addressed as well as comparisons undertaken between 
the proposed approach, other derived solutions, and 
experimental data. 

f KV)dQ=[ unym 
Jü JE 

to each term on the left hand side of equation (10) 
produces the result conveyed in the right hand side of 
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Vortical Flows With and Without a Surface-Piercing Body 
R. Yeung, P. Ananthakrishnan 

(University of California, Berkeley) 

ABSTRACT 

Unsteady vortical flow about a two-dimensional body 
translating in. a free surface is analyzed, with specific at- 
tention paid towards the mechanism of vorticity generation 
in front of the body. The Navier-Stokes equations with the 
appropriate free-surface conditions are solved in primitive 
variables form. Effects of surface tension and surface con- 
taminants are also considered in the analysis. The solution 
procedure exploits a specially developed variational-based 
grid-generation algorithm that can handle large-amplitude 
waves. A projection fractional-step method is used to ad- 
vance the pressure and velocity fields in time. 

Mechanisms associated with the formation of bow 
vortices are examined by replacing the exact free-surface 
conditions by (i) free-slip, (ii) no-slip, and (iii) linearized 
surfactant conditions. Results for these cases suggest that 
the commonly observed trapped vortex and stagnant flow 
in laboratory scale would not be present in full-scale. Re- 
sults based on the fully nonlinear free-surface conditions 
reveal bow waves of decreasing wavelengths at low draft 
Froude number. Amplitudes of these short bow waves are 
suppressed by surface tension. At high Froude number, 
impulsive start of the body results in a splash; a gentler 
start leads to a plunging bow wave. 

Also considered in the paper is the interaction of a 
pair of vortices moving upwards normal to the free surface. 
The fully nonlinear problem for a clean and a contaminated 
free surface is solved using the same solution method. In 
the absence of surface contaminants and at low Froude 
number, short transient waves are generated. The corre- 
sponding surface vorticity due to free-surface curvature is 
not sufficiently strong to alter the courses of the vortices. 
At intermediate Froude number, steepening of a transient 
wave is observed. The corresponding layer of secondary 
vorticity is observed to cause the primary vortices to re- 
bound. Presence of surfactants not only suppresses free- 
surface deformations but also intensifies the generation of 
surface vorticity, thereby inducing the primary vortices to 
rebound even at low Froude number. 

1    INTRODUCTION 

Breaking of bow waves has been found to increase ship 
resistance [1], The turbulent streaks of white waters also 
leave a distinctive signature in the ship wake. It is the 
primary objective of this work to examine closely the origin 
of such breaking. A secondary objective is to understand 
the behavior of vortical flow near a free surface, particularly 
in laboratory scale. 

Experimental observations of the formation of bow vor- 
tices and the consequent separation of the flow upstream of 
a moving body have been made, for example, by Suzuki [2] 
and Honji [3]. Experimental results of Mori [4], Takekuma 
and Eggers [5], Osawa [6], etc. showed that the fitting of a 
bow bulb would accelerate the flow and reduce the intensity 
of bow vorticity. 

Miyata et al. [7] found that at high Froude number, the 
steep waves generated alongside of the bow were nondisper- 
sive and they called them free-surface shock waves. Mori 
[4] analyzed an instability of the waves in the bow region 
which is quite different from plunging type breaking. Mori 
called this instability sub-breaking and argued that it was 
caused by turbulence and governed by the velocity-defect 
and the rate of flow deceleration. 

Grosenbaugh and Yeung [8] reported and quantified an 
oscillatory motion of the bow-wave front which occurs when 
a certain critical speed is exceeded. In the presence of sur- 
face contaminants, they found that the oscillation can oc- 
cur even below the critical speed. Some of the observa- 
tions made by them have since been confirmed by Cole and 
Strayer [9]. 

Maruo and Dcehata [10] carried out experiments using 
ship models to study effects of surface tension in bow flows. 
They were able to reduce the surface tension by applying 
a surface-active compound. With the reduction of surface 
tension, they observed spilling type bow-wave breakings. 
They also argued that the free-surface shear layer is gener- 
ated primarily by such wave breaking. 

Several theoretical analyses were also carried out. First, 
let us review a few of those that are based on the inviscid- 
fluid assumption. Dagan and Tulin [11] obtained second- 
order solutions based on a small draft-Froude number ex- 
pansion. Arguing that the bow-wave breaking is because of 
Taylor instability, they obtained a criterion for the break- 
ing of the bow wave. Assuming steady state a priori, Tuck 
and Vanden-Broeck [12], [13] extended the analysis for the 
nonlinear case. According to these authors, bow- and stern- 
flow problems could be reversed; that is, if the geometry is 
just right a splashless, stagnation-type bow wave profile is 
possible, which would then correspond to a waveless stern 
flow. Using this approach, Madurasinghe [14] attempted 
to construct bow geometries that would be of a "waveless" 
type. More discussions of these may be found in Tuck [15]. 

Grosenbaugh and Yeung [16] obtained nonlinear inviscid- 
flow solutions using a mixed Eulerian-Lagrangian boundary- 
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integral method. Above a certain Froude number, which 
again depends on the bow geometry, the bow wave was 
found to be an overturning type. The stagnation point 
remains trapped beneath the free surface as the wave over- 
turns. However, at low Froude number it was found that 
the stagnation point reaches the free surface in an oscil- 
latory fashion as the transient waves propagate upstream. 
Recently, Yeung [17] repeated the above nonlinear calcu- 
lations using finer node spacings. It was found that the 
splash occurring at the bow depends on the initial accel- 
eration of the body. By making the initial acceleration 
of the body sufficiently small, he was able to "suppress" 
the splash at the bow as well as the breaking of the lead- 
ing and following waves, thus allowing long-time solutions 
to be obtained. It was observed that waves of decreas- 
ing wavelengths are generated at the bow, implying that 
a steady-state stagnation-type solution may not exist even 
at low speed. Based on this inviscid-flow results, Yeung 
conjectured that these short bow waves could be responsi- 
ble for the white-water type instability observed ahead of 
a blunt bow at low speed. 

Theoretical studies incorporating the effects of viscosity 
are very few in number because of several inherent com- 
plexities posed by the governing equations. By using the 
free-surface normal-stress condition and the steady-state 
double-body potential-flow solution, Patel et al. [18] ob- 
tained a criterion for the flow separation ahead of the bow. 
This criterion assumes that surface tension is balanced by 
the normal component of the viscous stress. Despite these 
assumptions, experimental observations of [8] seem to sug- 
gest a good agreement with this criterion. Using a local 
expansion of the governing equations, Lugt [19] studied the 
properties of dividing streamlines at the interface of two 
fluids. In the case of a free surface, it was shown that the 
dividing streamline is normal to the interface. Lugt argued 
that surface tension does not provide any criterion for flow 
separation. On the other hand, dividing streamlines that 
are normal to the free surface have not been observed in 
experiments [8]. 

With the advent of high-speed and large-capacity com- 
puters, direct numerical solution seems to be a viable means 
to tackle the fully nonlinear viscous-flow problem. However, 
as we will see later, the governing equations are sufficiently 
complicated that the numerical analysis is not trivial. Miy- 
ata et al. [20] obtained bow-flow solutions using a Marker 
and Cell (MAC) method. In such a method, the free-surface 
conditions could be implemented only approximately. In 
particular, it is rather difficult to analyze the effects of sur- 
face tension and surfactants. Nevertheless, Miyata et al. 
were able to obtain qualitatively accurate results for large 
Froude numbers. 

Notwithstanding all that has been understood by the 
above experimental and theoretical studies on bow flows, 
many issues remain unresolved. Mechanisms leading to the 
formation of bow vortices especially at low speed, source of 
white-water wave instability, effects of surface tension and 
surfactants in bow flows are a few such issues. 

A somewhat closely related problem that has drawn the 
attention of hydrodynamicists in recent years is the inter- 
action of vortices with a free surface. The motivation is 
to understand the generation of the wake signature behind 

a ship. "For example, Sarpkaya [21] found that two dis- 
tinct surface patterns are generated by a pair of vortices 
approaching a free surface, namely, scars and striations. 
The experimental findings of Sarpkaya provided impetus 
to several subsequent experimental and numerical works. 
Most of the numerical solutions, however, were based on 
the inviscid-fluid assumption (see Sarpkaya et al. [22], Tel- 
ste [23], Yu and Tryggvason [24], Marcus and Berger [25]). 
Viscosity effects, leading to the generation of surface vortic- 
ity, could alter the flow pattern, particularly the trajectories 
of the primary vortices. Nonlinear viscous-flow analysis of 
Ohring and Lugt [26] show that generation of surface vor- 
ticity by curvature is strong enough to rebound the primary 
vortices at intermediate Froude numbers. 

Experimental results of Bemal et al. [27] show that 
presence of surfactants could intensify the generation of 
surface vorticity even at low Froude number. This find- 
ing was confirmed by the numerical solutions of Wang and 
Leighton [28] and Tryggvason et al. [29]. However, in these 
viscous-flow calculations the free surface was assumed to 
be a rigid surface which is an assumption justifiable only 
at very low Froude number. Solution of the fully nonlinear 
problem corresponding to a contaminated free surface has 
not been attempted thus far. 

In this paper, we develop and present solutions of the 
above two related free-surface flow problems: (1) the trans- 
lation of a two-dimensional surface-piercing body and (2) 
vortex-pair and free-surface interaction. These unsteady, 
nonlinear-viscous-flow problems are solved using a finite- 
difference method based on curvilinear coordinates and are 
subject to exact nonlinear free-surface conditions that take 
into consideration the presence of surface tension and of 
surfactants. The development of the solution method and 
the analysis of the bow-flow problem constituted the re- 
cently completed thesis work of Ananthakrishnan [30]. 

2    PROBLEM FORMULATION 

The first problem to be analyzed is illustrated in Fig. 1. 
The domain of the fluid is bounded by the free surface T, 
a far-field open boundary S, and the body contour B. The 
normal and tangential vectors on the boundary are denoted 
as n = {ni,n2) and r- {TI,T2), respectively. The draft of 
the body is denoted as D and its translational velocity as 
U. The density of the fluid is denoted as p, its coefficient of 
kinematic viscosity as v, and the acceleration of gravity as 
g. The coordinate system is chosen to be inertial with the 
s-axis along the calm water level and the y-axis pointing 
against gravity. All field and flow variables, unless indicated 
otherwise, are nondimensionalized by p, D, and U. 

2.1    Field Equations 

Assuming the fluid to be incompressible, homogeneous, 
and Newtonian, one can derive the following nondimen- 
sional Navier-Stokes equations which are applicable to a 
viscous fluid in a gravitational field: 

V-u = 0, 

£^ + (u.V)u = VP+-^-V2u, 
dt      y Re 

(1) 

(2) 
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Fig.   1.    Flow due to a translating two-dimensional 
body: coordinate system and notations. 

where 

P + 
y_ 

F2' 

Here u = u(x,i) = (u, v) and p = p(x,i) denote the veloc- 
ity and pressure fields, respectively. The quantity P rep- 
resents the dynamic pressure. For a given body geometry, 
the key parameters are the Reynolds number Re and draft 
Froude number F defined as 

Re = 
UD 

F = 
U 

2.2    Boundary Conditions 

Let the free surface of the fluid be denoted by the coor- 
dinate x6f. Since free surface is a material surface, its 
evolution is given by 

D 
D? (3) 

The above provides a Lagrangian description of the free 
surface, which would enable one to track T even if it is 
multivalued with respect to x. 

In the absence of surfactants, continuity of the compo- 
nents of the stress-vector along the normal and tangential 
directions is.given by the following equations (see, for e.g., 
Wehausen and Laitone [31]): 

2, 2 du.       ,. 2 dv. 
n^-p+Te^ + n^-p+Tery

) + 

2nin? ,du     dv.        K ^ 
-Te-{d-y + ä-x)=W-e'    for * ^< (4) 

2r\ti\ du     2r2n2 dv      TXm + r2ni   du      dv 
Re   dx+    Re   dy +        Re       ^dy + ~dx' 

= 0,    for x  G   T.     (5) 

where K denotes the curvature of the free surface.   The 
Weber number 

We = 
pU2D 

(6) 

with ac being the surface-tension coefficient of a clean free 
surface, represents the ratio of inertia and surface-tension 
forces. 

On the body contour B, the velocity is given by the 
no-slip condition: 

u = U,   v = 0. (7) 

At the intersection of the body and the free surface, it is 
plausible to assume that the fluid slips freely; i.e. for a 
rectangular body as shown in Fig. 1, 

dv 
u=V,   _ = 0. (8) 

At the far field, we assume that the dynamic pressure 
is zero for all time: 

P = 0  on S. (9) 

It should be emphasized that the above open-boundary con- 
dition is only an approximation and could cause spurious 
reflection of waves incident on S. Hence, the flow simu- 
lation is aborted once the leading transient wave reach 2. 
Velocity components on S are determined by extrapolation 
consistent with the numerical method; this technique will 
be elaborated later in §3. 

2.3    Effect of Insoluble Surfactants 

Free surfaces under normal laboratory conditions are 
always covered with contaminates of one sort or another. 
Usually these contaminants are surface active, i.e. they 
change the surface tension depending on their concentra- 
tion. Experimental results have shown that surfactants can 
alter the dynamics of the flow considerably at low speed (see 
e.g. [27], [8]). 

In the present work, we consider only the class of sur- 
factants that is insoluble in the fluid. Insoluble surfactants 
are convected by the flow and diffused (according to Fick's 
law) only along the free surface. The equation for the con- 
servation of these surfactants can be written as (see Levich 
[32]): 

dc    d ,„  ,     id2 

-d7+cS{CuT) = T,dsic> 
for x €  F. (10) 

where s denotes the arc-length parameter of T, uT the tan- 
gential component of fluid velocity, and C = C(x, i) (where 
x £ T) the concentration (mass/area) of the surfactants. 
And R, = UD/ß,, p., being the coefficient of surfactant 
diffusion. 

Since the surface tension changes with surfactant con- 
centration, the normal stress condition Eqn. (4) is modified 
to 

«?( 
2n\%2 

2 du 
p + ^^z) + n2(-p+in 

2  dv. 

Re dx 
dv 

Re ^dy + dx' 
K   a 

WeVc' 

Re dy 

for x € 

+ 

?, (11) 

Unlike the case of a clean free-surface, the tangential-stress 
component is no longer trivially zero. Instead, it now bal- 
ances the gradient in surface tension induced by the surfac- 
tant concentration. Assuming the surface tension to be a 
function of surfactant concentration alone, one can write, 
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in replacement of Eqn. 
(see Levich [32]) 

(5), the shear-stress condition as 

2ri«i du     2r27i2 dv     T\ni + r2ni  du     dv 
Re   dx +   Re   dy +        Re       ^dy + dx' 

= - E 
dC_ 

forx €  T.   (12) 

E = (13) 

The nondimensional quantity E in the above equation is 
given by 

D    da. 

where a denotes the surface-tension coefficient of the con- 
taminated free surface. Note that addition of surfactants 
lowers the surface tension, i.e. da/dC is negative. Modu- 
lus of dajdC is used to define E; hence, a negative sign is 
introduced on the right-hand side of Eqn. (12). 

In the present work, we assume that the variation of sur- 
face tension with surfactant concentration is linear. Hence, 
E is a constant which we call here the Surfactant number. 
By integrating Eqn. (13), we can express the right-hand 
side of the normal stress condition Eqn. (11) as: 

K       E KC 

We 
K   a 

We"a~c Re 
(14) 

In the far field, we assume that the concentration of 
surfactants remains unaltered by the wave motion, i.e., 

C(x,t) = C(x,t = 0)  at  fflE. (15) 

On B, the no-flux condition ensures that surfactants are 
not convected into the body. To prevent the diffusion of sur- 
factants into the body, the following "insulation" condition 
is imposed 

ds 
= 0  at  Tr\B. (16) 

To complete the formulation, an initial condition is need- 
The body is started impulsively from quiescent state, 

i.e. both velocity field and free-surface elevation are set to 
zero at t = 0. 

ed 

2.4     Interaction of a Vortex Pair with a Free 
Surface 

The problem corresponding to normal incidence of a vortex 
pair on a free surface is illustrated in Fig. 2. In this case, 
the domain of interest is bounded by F, FJ, and the plane 
of symmetry S. At t = 0, the circulation of the (primary) 
vortex is denoted as T, the separation distance between the 
counter-rotating vortices as a, and their depth of submer- 
gence as d. Governing equations are basically the same as 
the ones stated in §2.1 to §2.3, except for the following mi- 
nor modifications. The flow variables are now nondimen- 
sionalized with respect to fluid density p, the separation 
distance a, and the translation velocity of the vortex pair 
at t - 0 which is equal to T/2ira. Therefore, Reynolds, 
Froude, Weber, and Surfactant numbers are redefined as 

Re = 
2TTU 

F = 
27ra, 

We = PT2 

47T2 a<7, 
E = 

2xa2 

I—I 

respectively.   On the plane of symmetry 5, the following 
conditions are imposed: 

Fig. S.   Interaction of a vortex pair with a free sur- 
face: coordinate system and notations. 

u = 0, 
dv 

dx 
= 0  on 5, (17) 

which are equivalent to stating that 5 is a free-slip rigid 
surface. 

In the presence of surfactants, we use the following in- 
sulation condition 

dC 
ds 

= 0 at fns. 

to prevent the transport of surfactants across 5. 
The flow is started impulsively from a quiescent state by 

the introduction of a pair of Rankine vortices. The velocity 
field associated with a Rankine vortex can be written in 
local cylindrical coordinates (r, 9) centered at the vortex 
core as [33] 

Ve(r, 9)    =   T/2-KT,       if r  >  e 

=   IY/27r<f2,   if r  <  e 

Vr(r, 9) 

(18) 

where Vg and Vr are the tangential and radial components 
of the induced velocity, respectively, and e is a small core 
radius. Unlike the case of the singular line vortex, the ve- 
locity is sufficiently small in the core of the Rankine vortex 
that the application of a finite-difference method does not 
require any special treatments. 

3     Solution Method 

Equations governing the above viscous, free-surface flow 
problem pose several inherent difficulties. First, the Navier- 
Stokes equations are nonlinear, with the unknowns p and 
u being coupled. While the momentum equation offers a 
time-evolution type relation for the velocity field, no such 
relation exists for the pressure field. In an incompressible 
fluid, pressure acts as a constraint for the velocity field 
so as to ensure that the equation of continuity is satisfied. 
Even though this role of pressure is conceptually well under- 
stood, numerical implementation of it is not quite straight- 
forward. One could formulate the problem using a vortic- 
ity and stream-function formulation and thereby avoid the 
above complexity.   However, implementation of boundary 
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conditions, especially of the stress type, does not seem, at 
this time, to be a straightforward task using this latter for- 
mulation. 

Second, with wave motion present, the stress conditions 
have to be satisfied on a free surface whose elevation is not 
known a priori but is a part of the solution. Presence of 
surfactants makes the problem even more difficult. Sur- 
factants are driven by the flow and the flow is affected by 
the surfactant concentration, thus requiring concurrent so- 
lution of both the flow and surfactant equations. 

Thirdly, from the viewpoint of field-discretization alone, 
the present problem poses several complexities. The do- 
main of the problem is continuously evolving because of 
wave motion and body translation. Since boundary con- 
ditions, especially those associated with the surfactants, 
play a crucial role in determining the dynamics of the flow, 
they have to be implemented accurately at the exact loca- 
tion of the free surface. Use of boundary-fitted coordinates 
can overcome these problems. Properly designed, such a 
method should be capable of resolving the zone of large 
flow gradients. Special attention, however, is needed to 
generate a grid system capable of coping with steep surface 
deformations. 

We have just completed successfully the development of 
a solution method for solving viscous free-surface flow prob- 
lems accurately [30]. The incompressible Navier-Stokes equa- 
tions are solved using a fractional-step method in primitive 
variables form, taking advantage of a grid-generation algo- 
rithm developed by us. The fractional-step method is based 
on the projection method originated by Chorin [34, 35]. As 
to the generation of the curvilinear coordinates, a varia- 
tional formulation [36] is used in conjunction with the con- 
cept of reference space [37]. This grid-generation procedure 
is capable of handling steep and overturning free bound- 
aries without suffering from problems such as grid-folding 
which some other grid-generation methods are prone to (see 
Steinberg and Roache [37]). 

The above solution method has been reported recently 
also in [38]. For completeness, we provide a brief review of 
this method in the following subsections. 

3.1    Grid Generation 

Using curvilinear coordinates, the physical space (x, y; t) 
is mapped onto a uniform computational space (f,TJ\T). 

The equations governing the physical as well as the grid- 
generation problem, are also transformed and then solved 
in the (£, rj; T) space. The transformation relation for the 
first-order derivatives are given by2 

Ji 
[y,r,d,i - y,(d,n] 

dy   =    4-[-*,^ + ^,,] (19) 
•Jl 

d,t   =   9,T - X
,T9,X - y,rd,y 

and for the Laplacian operator V2 by 

d,xx + dtyy = Ada - 2Bd,iv + Cdm + Pdj + Q3„    (20) 

Physical Space 

(x,y) 

Computational Space 

(in) 

mj^uu|ijftjjj!tMMji|||| .!|||||'!iN|| 

Reference Space 

(a.ß) 

Fig.   3.    Generation of boundary-fitted coordinates 
using reference space. 

where 

Ji = x^r, - z„yif 

denotes the Jacobian of the mapping (x,y)-* (£, rf) and 

P = £,rz + it 

B 

Q 

x,(x,n + y,f y,i? 
T2 
•'l 

xl + y\ 

T2 

+ V,i 

The main idea behind generation of grids using a reference 
space can be explained as follows. The reference space is an 
intermediate space that is somewhat similar to the physical 
space but geometrically so simple that it can be discretized 
easily by interpolation. In free-surface flow problems, clus- 
tered grids are normally required near the free surface and 
the body boundary to resolve the zones of large flow gradi- 
ents and to implement the boundary conditions accurately. 
Requirements such as these are first achieved in the refer- 
ence space and then transferred to the physical space. 

The grid properties (i) coordinate spacings (smooth- 
ness) and (ii) cell-area distribution of the reference space 
are transferable to the physical space by minimizing the 
following functionals: 

I.&V)   =    JJdxdy\VXjyt\
2 + \Vx,yV\2 

-JJdadßlV^tf+lV^f,     (21) 

m,v)-- / / dxdy (22) 

respectively. In the above, 

h - X,aV,0 - X,ßy,a    h = 0^ß,r, - 0,r,ß,i 
2 For compactness, we use a comma in the subscript to denote par- 

tial derivatives with respect to the variable(s) following the comma. 
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denote the Jacobians of the mappings (x,y) -» (a,ß) and 
(a,ß) -♦ (?,»?), respectively. Note that the smoothness in- 
tegral I, is a measure of the difference in coordinate spac- 
ings, between the physical space and the reference space 
and Ic is a measure of J2 which is the Jacobian of the map- 
ping (x,y) -» (a,ß). 

In addition, orthogonality of the coordinates in the phys- 
ical space can be ensured by minimizing 

m, V) = // dxdy {Vx,yt • V,,^}2J3, (23) 

which is a measure of the inner product of the £ and 77 co- 
ordinates in the (x,y) space. The above formulation for 
generating orthogonal grids does not require the use of the 
reference space, and hence corresponds to the direct map- 
ping method of Brackbill and Saltzman [36]. 

The field (Euler's) equations, in the (£, 77) space, corre- 
sponding to the above functional are given by: 

Smoothness 

J3 

J3 

+(-ß,(X + a,tß)y,n] 
(24) 

where 

X = 83a^( - 2n3atir, + <y3atVrl, 

fi = 63ß,u - 2K3JÖ,«» + a3ß,nn ■ 
The coefficients in the above equations are given by 

0! = x2,, + y% KI = xtixiV + y,ty,T„o\ = «^ + y,t > 

03 = a
2„ + ß\, KZ = a,ta„ + ß,(ß,r„ °z = a?( + ß\. 

Cell-area distribution 

-=2 {fcuiz,« + bvix£r, + bV3X,m + aviyM 

J3 

9xv J|; 

^■{ouiz,« + a„2x,{„ + at,32,r,77 + cvi2/,« 

d , 1 
+Cu2y,fr, + C„3y,i7u} = - Jl 3^( J2 

(25) 

vhere 

<M = -x,ny,n, bvi = yiT>, cvi = a:,,,, 

a„2 = 3,{t/,r,+ X,"72/,«' 

6v2 = -2y,{y,o, 

CV2 = -2I
,«

X
,T)> 

Oi>3 = -X,(V,^ 

bv3 = 2/20   cv3 = X,£- 

Orthogonality 

&ol*,« + &o22:^T, + &o3*,i)i» + °oiy,« 

+ QO22/,«T; + Oo3j/,n„ = 0 

Ool*,« + flo2*^i) + ao3*,ijij + Coll/,« 

+CO21/,£T, + Co3y,nr, = 0 

where 

(26) 

O-ol = x,r,V,v^   &ol = x,„>   Col = y.rji 

flo2 = S,«y,r, + *,T,y,f >   &o2 = 2(2X,{!,,, + !/,{!/,!,), 

co2 = 2(2y,£j/,„ + x,{Sfl) , 
2 2 

a03 = *,<2/,<> 6o3 = *,{>  c°3 = y,{- 

One can show that the above field equations corresponding 
to smoothness and cell-area distribution reduce to those of 
the direct mapping formulation of Brackbill and Saltzman 
[36] when the reference space is identical to the computa- 
tional space, i.e. a = £ and ß = t?. 

Depending on the levels of smoothness, cell-area varia- 
tion, and orthogonality required in the physical space, a lin- 
ear combination of the above equations is solved. The grid 
equations are discretized to second-order spatial accuracy 
in (f, 77; T) space and solved iteratively using a mixed over- 
under relaxation method. Grids generated by the above 
procedure for solving a water diffraction problem [39] are 
shown in Fig. 3. Observe that we are able to transfer the 
reference space properties to the physical space and thus to 
obtain clustered grids at the free surface and at the body. 

3.2    Eractional-step method for Navier-Stokes 
equations 

A fractional-step method is used for solving the viscous, 
free-surface flow problems in primitive variables. Accord- 
ingly, an intermediate "auxiliary" velocity field is first com- 
puted using the momentum equation without the pressure- 
gradient term. A Poisson equation is then solved to deter- 
mine the pressure field. Finally, the actual (divergence-free) 
velocity field is computed using the auxiliary velocity and 
pressure. 

This fractional-step procedure may be explained as fol- 
lows. Numerical discretization of the Navier-Stokes equa- 
tions can be written as3 

ii(t*) = -ST VP{tk) + [u(tt-i) + ST ft(tfc-i)]   (27) 

V • u(*t) = 0 (28) 

where t/t denotes the instant of discrete time under consid- 
eration and ST the time-step size. The symbol 1Z(tk-i) is 
used to represent the convection and diffusion terms eval- 
uated at tic-i- We use first-order upwind differencing for 
discretizing the convection terms and central-differencing 
for the diffusion terms. 

With the velocity being known at tk-i, the terms in 
the square bracket of Eqn. (27) can be readily computed 
and this is called the intermediate velocity field u*: 

3For clarity, we return to the same notations used in §2 to denote 

differential operators. 
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u' = u(fc-i) + Wtt(ifc_i) (29) 

By comparing Eqns. (29) and (27), we observe that u* 
can be decomposed into VP(tk) and u(tjt) fields: 

u* = u(ifc) + St VP(tfc) (30) 

The decomposition can be carried out by first solving 
a Poisson equation for P(tk), which is obtained by taking 
the divergence of Eqn. (30): 

V'P(tk) = — V-u*. (31) 

Once known, P(*jt) can be used in Eqn. (30) to obtain u(tk). 
The Poisson equation is discretized by central differencing 
and the resulting linear system of equations can be solved 
by direct elimination or iteration. 

Since the Poisson equation for pressure Eqn. (31) is 
not an independent equation governing the flow, some ad- 
ditional boundary conditions have to be constructed in a 
manner consistent with the numerical method. In imple- 
menting the boundary conditions given in §2 and in con- 
structing boundary conditions for the auxiliary velocity field, 
we take efforts to ensure that the decomposition Eqn. (30) 
is satisfied even on the boundaries. 

Implementation of boundary conditions 

On B (or 5 in the case of bow-flow problem), the nor- 
mal component of the auxiliary velocity is set to be the 
same as that of the actual velocity u(tt): 

u* • n = u(tfc) • n (32) 

The tangential component is computed as 

U* • T SS U(tfc-i) -r+St VP(JW) • r 

Eqn. (32) together with Eqn. (30) thus implies the following 
homogeneous Neumann condition for P(ifc) on B or on 5:  . 

VP(tfc) ■ n = 0 

On 7, the auxiliary velocity is computed using the 
decomposition relation 

u'suttwl + ffVPttw). (33) 

The free-surface stress conditions written in the compu- 
tational space are used to obtain a Dirichlet-type condi- 
tion for P and Neumann-type relations for u. The stress 
conditions are implemented by a predictor-corrector type 
scheme. With respect to the implementation of the stress 
conditions, the solution procedure can be written as follows 
(see [30] for details): 

Predictor: 

1. Solution of the pressure Poisson equation with the 
known pressure at t^-i taken as the Dirichlet condi- 
tion on 7. 

2. Evaluation of the actual velocity field in the domain 
using the decomposition relation Eqn. (30). 

3. Evaluation of the actual velocity on 7 using the stress 
conditions written as Neumann condition in the (£, 77) 
space. 

Corrector: 

1. Determination of the pressure on 7 using predicted 
velocity values. This is used as the Dirichlet condition 
for the solution of the Poisson equation. 

2. Calculation of u{tk) in the domain using Eqn. (30). 

3. Determination of u(tjt) on 7 using the stress relations 
expressed as Neumann conditions for velocity. 

Pressure update: 

• Update of the pressure on 7 using the normal stress 
condition with the corrected u(tk)- 

Note that the above procedure requires the solution of the 
pressure Poisson equation twice at each time step. Concur- 
rently, the free-surface kinematic condition is also imple- 
mented by the following two-step predictor-corrector methoc 

x(ifc)   =   x(tfc-i) + «ru(*fc_i) 

x(tfc) = x(tfc_i) + 5«r{u(tfc-i)+ «(**)} 

With the velocity and surfactant-concentration values 
at t = tk-i being known, the surfactant-conservation equa- 
tion can be solved explicitly for C(tjt). First-order upwind 
differencing is used for discretizing the convection term and 
central differencing for the remaining terms of the surfac- 
tant equation. 

On the open boundary S, the approximation given by 
Eqn. (9) provides an homogeneous Dirichlet condition for 
the pressure Poisson equation. The auxiliary velocity is 
evaluated by first-order spatial extrapolation. The decom- 
position relation is completed to determine u(t/t) on S. 

Remarks 

The decomposition of a vector field into divergence- 
free velocity and pressure-gradient fields, as used in the 
above-mentioned solution method, can be considered as the 
projection of the incompressible Navier-Stokes equations 
onto divergence-free velocity and curl-free pressure-gradient 
fields. Theoretical aspects related to projection of Navier- 
Stokes equations for rigid-boundary flow problems may be 
found discussed in Ladyzhenskaya [40], Chorin [34], Temam 
[41], and Bell et al. [42]. In the case of rigid-boundary 
flow problems, pressure-gradient and velocity fields are or- 
thogonal and hence, strictly speaking, pressure boundary 
conditions are not required (nor are they available) for the 
solution of the Navier-Stokes equations. But this is not 
so in the case of free-surface flow problems. Projection of 
the Navier-Stokes equation onto divergence-free field would 
not eliminate the pressure term and the pressure field is de- 
termined by the free-surface normal stress condition. Our 
procedure for treating free-surface flows is therefore origi- 
nal. Other theoretical issues related to viscous free-surface 
flow problems were investigated by Beale [43]. 

225 



0.02- -— (ISxlO)mesh       -— (30x20)mesh 
 (60x40)mesh        Linear Viscous 0.015 --j 

•  Nonlinear Potential                       .— 
0.01 — ~^^                                                    ^^ 

0.005 -i 
"^NN.                                                                                                     ^*'"' 

JH        0-j 

■0.005 -i 

-0.01 T 

-0.015 -= 

-0.02 — \-T-TT~,      |      ,,      1      1      |      1      1      ,,,,...      |      ..■      ■ 

Fig. 4a.. Wave elevation at time t = f corresponding 
to Re - 10, 000 and f/St - 500. Nonlinear viscous flow 

results for different mesh sizes are compared with linear 

viscous and nonlinear potential flow results. 

Fig. 4b. Time evolution of the standing-wave at left 
free-slip wall corresponding to different mesh sizes. Re = 

10, 000 and time step f/St = 500. For comparison, linear 

viscous flow result is also given. 
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Fig. 4d. Velocity-vector plots at different instants of dis- 
crete time n corresponding to nonlinear viscous-flow calcula- 

tion. f/St = 500. 
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Fig. 4c. Wave elevation at time t = X corresponding 
to Re = 10, 000, (30 x 20) mesh. Results corresponding to 
different time-step sizes f/St - 100, 250,500 are compared 
with linear viscous and nonlinear potential flow results. 
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Fig. 4e. Velocity-vector plots at different instants of discrete 
time n corresponding to nonlinear potential-flow calculation. 

f/St = 500. 
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4    RESULTS AND DISCUSSION 

4.1    A Test Case 

In order to validate our solution method, especially 
its convergence properties, we solve a test problem that 
corresponds to the viscous attenuation of a standing wave. 

In this problem, the flow parameters are nondimen- 
sionalized with respect to the tank length L, acceleration 
of gravity g, and fluid density p. Length of the standing 
wave is chosen as unity. Amplitude a(x,t) of the wave at 
t = 0 is taken as 0.01. The Reynolds number, defined in 
this case by LyfgZlv, is set to 104. Effects of surface ten- 
sion and surface contaminates are not considered in this 
test case. To eliminate the loss of wave energy due to wall 
boundary layers, free-slip (zero vorticity) condition is im- 
posed on the tank wall boundaries. The physical space is 
discretized in such a way that grid spacings are small at the 
free surface compared to that in the interior. The flow field 
corresponding to the linear, potential-flow analysis (see e.g. 
Lamb [44]) is used as the initial condition for the nonlinear 
viscous-flow calculation. 

Numerical results obtained by varying the mesh size, 
i.e. for mesh size = 15 x 10, 30 X 20, and 60 X_40, are 
given in Fig. 4a. The time-step size is set as 6T/T = 500, 
where f denotes the wave period. This figure shows the 
free-surface elevation after the lapse of one period, i.e. at 
t = f. Also shown for comparison is the free-surface eleva- 
tion Y(x, t) computed using the following equation, which is 
based on the linearized Navier-Stokes equations (i.e., with 
the convective effects neglected) and linearized free-surface 
boundary conditions: 

Y(x,t) = a(x,0)e"2(2lr)2(/-Recos(27rx)cos(27ri). (34) 

For additional comparison, the free-surface elevation com- 
puted using a nonlinear potential-flow formulation (see [30]) 
is also given. We can see that the numerical results con- 
verge to those predicted by linear viscous-flow theory as the 
mesh size is refined. The wave amplitude corresponding to 
the mesh size 15 X 10 is only about 30% of that correspond- 
ing to Eqn. (34). However, as can be observed in Fig. 4b, 
this difference is primarily due to the error in phase. The 
phase error is large when the mesh is coarse, as to be ex- 
pected from Fourier-type analysis of our numerical scheme 
when applied to analogous problems (see e.g. Hirsch [45]). 

Results obtained by varying the time-step size are shown 
in Fig. 4c. Here, the mesh size is chosen as 30 x 20. Again, 
we see that the computed results converge to those given by 
linear viscous-flow theory as the time-step size is reduced. 
However, this convergence "rate" is not as rapid as in the 
case of the mesh-size refinement (Fig. 4a). 

Finally, for flow visualization, instantaneous velocity- 
vector plots are given in Fig. 4d. For comparison, the flow 
field corresponding to a nonlinear inviscid flow model (see 
[30]) is also presented (Fig. 4e). Generation of vorticity on 
the wall boundaries is null because of the imposed free-slip 
condition. Since the free-surface curvature is small, vortic- 
ity generated on the free surface is also insignificant. Con- 
sequently, the viscous-flow field resembles the one predicted 
by the inviscid flow model. 

4.2    Bow- and Stern-Flow Solutions 

All results presented in this section are obtained using a 
mesh size of 121 X 41. The Reynolds number is set to 103. 
The length of the body is set to unity. 

Rigid Free Surface 

In order to elucidate the mechanisms associated with 
the formation of upstream vortices at low speed, we con- 
sider three cases in which the exact free-surface conditions 
are replaced by (i) free-slip, (ii) no-slip, and (iii) linearized 
contaminant conditions. In all these three cases the verti- 
cal component of velocity on the free surface is set as zero. 
In case (i), the horizontal component of velocity is com- 
puted by using the shear-free condition, i.e. du/dy = 0. 
In case (ii), the no-slip condition u = v = 0 is used. In 
case (iii), a linearized version of the contaminant condi- 
tions are used to determine the surfactant concentration 
and the horizontal component of velocity. In the physical 
space, the linearized versions of Eqn.(10) and Eqn.(12) are 
given by 

-äT+e-x^uC) = _C  on  , = 0, 

du 
dy 

= -E 
dC 
dx 

on  y - 0, 

(35) 

(36) 

respectively. Following Wang and Leighton [28], we set the 
value of Rs to 103, i.e. same as that of the flow Reynolds 
number. We set E = 0.4, a typical value of the surfactant 
number considered in the work of Tryygvason et al. [29]. 

Instantaneous velocity and vorticity fields correspond- 
ing to the rigid, free-slip "free-surface" case are shown in 
Fig. 5." 

Vorticities are generated around the body contour be- 
cause of the no-slip condition. These are swept downstream 
by the combined action of the flow convection and the vis- 
cous diffusion. However, on the bow side, upstream dif- 
fusion of vorticity is countered by the flow convection and 
the vorticity is consequently concentrated only in a thin 
shear layer. The vorticities generated at the sharp edges 
merge together to form a "macro" vortex at the stern. In 
the vorticity-contour plots, one can also notice the genera- 
tion of secondary vorticity around the body contour by the 
primary vortices peeling off the sharp leading edge. 

As to be expected, vorticity is not generated on a flat 
free-slip surface. Consequently, vortices are not trapped at 
the bow even though the fluid is stagnant at the junction 
of the free-surface and the bow. Since surface deforma- 
tions, generally speaking, are quite small at low speed, the 
flat free-surface assumption is justifiable in the case of low 
Froude-number flows. The present results therefore indi- 
cate that the bow vortices observed in low Froude-number 
laboratory-scale experiments are not caused by viscosity ef- 
fects on the free surface. 

However, if the generation of vorticity is intense, as in 
the case of a no-slip surface, formation of trapped vortices 
in the stagnant zone is possible.  This is evident from the 

* In all the vorticity-contour plots given in this paper, the solid 
lines denote clockwise vorticity and the dotted lines counter-clockwise 
vorticity, unless otherwise specified. 
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(n=JOO) 

(n=300) 

<n=100) 

(n=300) 

(n=500) (n=500) 

Fig. 5. Velocity-vector and vorticity-contour plots for the free- 

slip case, n denotes instant of discrete time. V St/D = 0.01, 

Re = 103. 
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I    /   / 

I  ! / 
\   \   , 

to 

(n=100) (n-100) 

Fig.  6b.   The formation of bow and secondary stern vortices 

in the case of no-slip free surface at Ut/D = 6.0. 

1.1 T        n»l 
n=100 

       n=300 
       n=500 
       n=600 

2.0 2.5 

(n=300) (n-300) 

Fig. 7a. Time evolution of the surfactant concentration, n 

denotes the instant of discrete time with U (St)/D = 0.01. 

x = 0.5 denotes the bow. 

(n=500) (n'500) 

Fig. Ca. Velocity-vector and vorticity-contour plots for the no- 

slip case, n denotes instant of discrete time. U St/D = 0.01, 

Re = 103. 
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Fig. 7b.   Surfactant concentration and the horizontal velocity 

component at Ut/D = 6.0. Bow is at x = 0.5. 
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(n=100) (n=100) 

(n=300) (n=300) 

(n=500) (n=500) 

Fig. 8a: Velocity-vector and vorticity-contour plots corre- 
sponding to the contaminated-surface case, n denotes the in- 
stant of discrete time. U St/D = 0.01, Re = 103. 

^C<SgsSS3$= 

Fig. 8b.   Formation of the bow vortex due to the presence of 
surfactants at Ut/D = CO. 

results presented in Figs. 6a,b. In this case, the approaching 
flow is seen to decelerate and separate on the free surface 
ahead of the bow. The separated flow reattaches at the 
bow near mid draft. Consequently, a prominent vortex is 
seen at the bow (see Fig. 6b). It is interesting to observe 
that the back flow generated by the primary stern vortex 
also leads to the formation of a secondary trapped vortex 
at the junction of the stern and the free surface in a manner 
similar to that in front of the body. 

Results corresponding to the contaminated surface case 
are presented next in Figs. 7 and 8. It has been observed in 
low-speed experiments that surface contaminants accumu- 
late at the bow, thereby altering the dynamics of the bow 
flow (see [8]). In order to simulate this scenario, surfactants 
are smoothly distributed on the bow-side free surface over 
one-body length, at t = 0 (see n = 1 in Fig. 7a). At the 
stern, the free-slip (no surfactant) condition is imposed on 
the free surface. 

Fig. 7a shows the time evolution of the surfactant con- 
centration. Driven by convection and diffusion, the sur- 
factant concentration changes in time. The area under the 
surfactant-concentration profile remains, however, constant 
in time. This indicates that the numerical scheme is able to 
conserve the mass of the surfactants well. At a later time, 
the concentration profile reaches a nearly steady state (see 
curves corresponding to instant of discrete time n = 500 
and n = 600). A graph showing the horizontal component 
of velocity on the free surface and the surfactant concen- 
tration at n = 600 is given in Fig. 7b. One observes that 
the horizontal velocity component (with respect to body- 
fixed frame of reference) practically vanishes beneath the 
layer of surfactants when a steady state is reached. Thus, 
the present results confirm that surfactants accumulating at 
the bow could behave like an incompressible no-slip mem- 
brane. 

Instantaneous velocity and vorticity fields correspond- 
ing to the contaminated free-surface case are shown in Fig. 8. 
These plots show that the flow field at the bow resembles 
that of the no-slip case (see Fig. 6). A close-up view of 
the bow-flow regime shows the formation of the bow vortex 
beneath the layer of surfactants (Fig. 8b). The vorticity- 
contour plots (Fig. 8c) vividly sho%v the generation of sur- 
face vorticity and the formation of the bow vortex by the 
presence of surfactants. 

The above flat free-surface flow results thus indicate 
that the formation of bow vortices observed in low-speed, 
laboratory experiments (e.g. [3], [5]) is because of the pres- 
ence of surfactants. It also shows that, at low speed, the 
shear layer generated on a clean surface by surface curva- 
ture alone cannot be strong enough to generate bow vor- 
tices. 

Nonlinear Free Surface 

Fully nonlinear bow and stern flows are now discussed. 
Results for F = 0.2, We = oo (i.e. zero surface ten- 
sion), and Re = 103 are given in Fig. 9. The instantaneous 
velocity-vector and vorticity-contour plots show that, ini- 
tially, the stagnation points at the stern and at the bow are 
located below the mid-draft. On the body, positive vortic- 
ity is generated above the stagnation points and negative 
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-9.23 

Ut/D=6.0 

Fi°   8c    Instantaneous vorticity fields corresponding to the fiat, contaminated free-surface case: Re - 103, E - 0.4. 
White - red spectrum denotes the clockwise vorticity and blue-green spectrum the counter-clockwise vorticity. 
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(n=100) (n=100) 

<n=300) (n=300) 

(n=SOO) (n=SOO) 

Fig. 9a. Velocity-vector plots in inertial and moving frames 

of reference for Re = 103, F = 0.2, and V St/D = 0.005. n 
denotes the instant of discrete time. The horizontal line in the 
body near the free surface indicate the mean water level. 

Fig. 
Re-- 

9c.    Flow field ahead of the body at Ut/D 

: 103, F = 0.2. 

3.0 for 

(n=10) (n=300) 

(n=100) (n=400) 

Fig. 9d. Time evolution of bow waves: F = 0.2, Re = 
1000, We = oo, Ut/D = 0.05(0.05)3.0. For clarity in display, 

successive curves are displaced upwards by Sy = 0.03. 

(n=200) (n=S00) 

Fig. 9b. Vorticity-contour plots for the case of Re — 103, 

F - 0.2, U St/D = 0.005. n denotes the instant of discrete 
time. 
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Fig. 9e.   Instantaneous vorticity fields corresponding to nonlinear, clean free-surface case: F = 0.2, Re = 103, We 
White - red spectrum denotes the clockwise vorticity and blue-green spectrum the counter-clockwise vorticity. 
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Fig. 10.   The formation of short waves ahead of a blunt 
bow moving at low draft-Froude number. 

vorticity below the stagnation points. These stagnation 
points are then pushed into the fluid by the interaction of 
the wave field and the body boundary layer. At later times, 
the flow field beneath the free surface resembles that of the 
rigid free-slip case discussed earlier (see Fig. 5). 

One can observe from the vorticity-contour plots that 
vorticities of alternating signs are generated on the free 
surface (see Fig. 9b,e). This is due to the nonzero sur- 
face curvature. Near the stem, the free-surface profile be- 
comes quite smooth; hence, vorticity generation becomes 
vanishingly small at later times. However, at the bow,. 
waves are observed to evolve into decreasing lengths (see 
Fig. 9d). With the fluid being stagnant relative to the body 
and the waves being unable to propagate upstream, wave 
slope steepens in time. This feature is rather different from 
the conventional Cauchy-Poisson wave system generated by 
a submerged disturbance, where the short-wave contents 
eventually trail behind the disturbance. The generation of 
similar kind of short bow waves has been observed earlier 
even in the inviscid-flow results of Yeung [17]. It therefore 
appears that the short bow waves (Fig. 9d) are basically a. 
result of inertial and gravitational effects, and not a result 
of viscosity. 

The strength of such free-surface vorticity generated 
by free-surface curvature is rather weak (see Fig. 9e). Con- 
sequently, we do not observe the formation of bow vortices. 
However, it is possible that at high Reynolds number, these 
short bow waves could become unstable and break in the 
form of spilling. Spilling breakers ahead of full-scale blunt 
bows are often observed even at low speed. Such breaking 
can lead to a turbulent vortical structure at the bow (see 
Fig. 10). 

Next, the scale effect of surface tension is analyzed. We 
retain the Froude number as 0.2. The Weber number (see 
Eqn. (6)) is set to 55.0. Roughly, this value corresponds 
to the case of a model of draft 0.1m advancing in water 
at 0.2m/sec, the surface tension at the air-water interface 
being ac - 0.073N/m. 

Instantaneous "snapshots" of velocity vectors and vor- 
ticity contours given in Fig. lla,b show that the flow field 
appears to be not much altered by the presence of sur- 

(n=100) (n=100) 

(n=300) (n=300) 

(n=500) <n=S00) 

Fig. 11a. Velocity-vector plots in inertial and moving frames 
of reference for Re = 103, F = 0.2, We = 55, and U St/D = 
0.005. n denotes the instant of discrete time. The horizontal 
line in the body near the free surface indicate the mean water 
level. 

(l».1..1^—.'^ 

(n=10) (n=300) 

(n=100) (n=400) 

(n=200) (n=500) 

Fig. lib. Vorticity-contour plots for the case of Re = 103, 
F = 0.2, We = 55, U S/D - 0.005. n denotes the instant of 
discrete time. 
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Fig. 13.   Velocity-vector and vorticity-contour plots for Re - 

103] F _ 0-8, T, = 2.0 (gentle start) at Ut/D = 2.50. 

Fig.   lie.     Flow field ahead of the body at Ut/D = 3.0 for 

Tie = 103, F = 0.2, We = 55. 
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Fig. 12. Profiles of bow and stern waves with and without 

surface tension at Ut/D = 3.0. x = 0 denotes the bow in 
the top figure and the stern in the bottom figure. Re - 103, 

F = 0.2. 

face tension. However, a close up look (Fig. lie) reveals 
that the amplitude of the short bow waves are consider- 
ably suppressed. As a consequence, surface vorticity is also 

mitigated. 
In Fig. 12, instantaneous free-surface elevations are 

compared with those of the case without surface tension. 

One can see that the wave dampening effect of surface ten- 
■ sion is significant near the bow. However, this scale effect is 
quite weak in the far field ahead of the bow and also behind 
the body. These results thus resolve the issue of why short 
bow waves are observed ahead of a full-scale ship operat- 

ing at low speed but not so distinctly in the corresponding 
small-scale model experiments, the latter being influenced 
substantially by the effects of surface tension. Next, results 
corresponding to a high Froude number (F = 0.8) are pre- 
sented. Impulsive start of the body results in a splash at 
the bow and thus interrupts the solution process. In order 

to suppress this behavior, the body is started gently as (see 

Yeung [17]) 

4?    =   (^-)3{6(f)2- 15(f) + 10},    if t<T„ 

1, if t > T,. 

The start-up time T, is set to 2.0. Results corresponding 

to this case are shown in Fig. 13. The fluid tends to pile 

up at the bow as the body is accelerated gently. This pile- 

up, in effect, reduces the Froude number based on draft. 

However, at a later time the mound of fluid accumulating 
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at the bow plunges forward and breaks. During this whole 
process, the stagnation point at the bow remains trapped 
at its initial location beneath the free surface. 

4.3    Vortex-Pair and Free-Surface Interaction 

We present a few representative results corresponding to 
the nonlinear interaction of a vortex pair with clean and 
surfactant-covered free surfaces. All boundary conditions 
used are fully nonlinear. In all cases considered in this 
section, the Reynolds number Re = 102 and d/a = 2.0 (see 
Fig. 2). A mesh size of (121x41) with coordinates clustered 
near the free surface and near the symmetry plane is used 
for discretizing the physical space. 

Clean Free Surface 

Instantaneous flow fields corresponding to F = 0.2 
and zero surface tension are shown in Fig. 14 in the form 
of velocity-vector and vorticity-contour plots. Examining 
these plots, one can immediately observe that the surface 
deformations, being drawn to scale, are relatively small at 
this Froude number. Velocity-vector plots show that the 
fluid is stagnant at the junction of the free surface and the 
symmetry plane. From the vorticity-contour plots, one can 
observe that secondary vorticities, of both positive and neg- 
ative signs, are generated on the free surface. Generation of 
these vorticities are due to the zero shear stress condition 
on the curved surface. Undaunted by these relatively weak 
secondary vortices, the primary vortex merely stretches be- 
neath the free surface without undergoing any significant 
rebounding. 

Time evolution of the free-surface elevation for the 
above case is shown in Fig. 15. In this y—exaggerated plot, 
generation of transient waves and a rise in the elevation 
at the symmetry plane due to the upwelling of the primary 
vortex can be observed. In the near field next to the promi- 
nent surface depression, one can also observe the generation 
of short waves. Surface vorticities, shown in the previous 
figure (Fig. 14), are actually generated by the surface de- 
pression and the short transient waves. 

Instantaneous plots of the velocity and vorticity fields 
for F = 0.4 (see Fig. 16) show that the free-surface de- 
formations are considerably larger compared to the case of 
F = 0.2. Secondary vorticity generated at the free surface 
is strong enough to rebound the primary vortex. Time evo- • 
lution of the free-surface elevation, given in Fig. 17, shows 
that the transient wave developing outboard of the primary 
vortex becomes steep and eventually breaks because of local 
instability. 

Contaminated Free Surface 

(n=100) (n=I00) 

(n=500) (n=500) 

(n=1000) (n=W00) 

Fig. 14. Nonlinear vortex-pair and free-surface interaction: 

flow field in the right-half domain for F = 0.2, Re = 100, and 

T 6i/2ira2 = 0.005. 

Results corresponding to F = 0.2, We = 6.0, and sur- 
factant number E = 10.0 are given in Figs. 18 and 19. 
Vorticity-contour and velocity-vector plots given in Fig. 18 
show that the generation of the surface vorticity is sub- 
stantially intensified by the presence of surfactants. The 
generation is primarily due to the nonzero shear stress that 
is needed to balance the gradient of the surface tension 
induced by the surfactant concentration, see Eqn. (12). In- 
teraction with the secondary vorticity causes the primary 

Fig. 15. Time evolution of the clean free-surface elevation 
to the right of the symmetery plane for F = 0.2, Re = 100. 
T t/2Tra7 = 0.05(0.05)5.0. For clarity in display, successive 
curves are displaced upwards by Sy = 0.005. 
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(n=100) (n*100) 
(n-100) (n=100) 

(n-500) (n=500) 

(n=250J 

(n=450) (n=450) 

Fig. 16.   Flow field in the right-half domain for F = 0.4, Re = 
100, and T St/2-rra2 = 0.005. n denotes the instant of discrete 

time. 

(n-1000) (n=1000) 

Fig. 18. Interaction of a vortex pair with a contaminated free 
surface. Flow field in the right-half domain for F = 0.2, Re — 
100, We = 6.0, E = 10.0, and T St/2wa2 = 0.005. n denotes 
the instant of discrete time. 

Fig. 17. Time evolution of the clean free-surface elevation 
to the right of the symmetery plane for F = 0.4, Re = 100. 

r t/2ira2 - 0.025(0.025)2.5. For clarity in display, successive 

curves are displaced upwards by Sy = 0.01. 

Fig. 19. Time evolution of the contaminated free-surface 

elevation to the right of the symmetery plane for F = 0.2, Re = 
100, We = 6.0, E - 10.0. T t/27ra2 = 0.05(0.05)5.0. For 

clarity in display, successive curves are displaced upwards by 

Sy = 0.005. 

236 



Fig. 20. Time evolution of the contaminated free-surface 

elevation to the right of the symmetery plane for F = 0.4, Re = 
100, We = 1.0, E = 10.0, and T tßwa2 = 0.05(0.05)5.0. For 

clarity in display, successive curves are dispaced upwards by 

Sy= 0.01. 

vortex to rebound as well as to lose its intensity more 
rapidly. By comparing the free-surface elevation plots given 
in Fig. 15 and Fig. 19, we observe that the presence of 
surfactants also suppresses the free-surface deformations, 

especially the initiation of short transient waves. 

The above "free-surface dampening effect" of the sur- 

factants is even more dramatic at F = 0.4. Time evolu- 
tion of the free-surface elevation corresponding to F = 0.4, 

We = 1.0, and E = 10.0 is shown in Fig. 20. Breaking of 
the transient wave observed in the case of clean free surface 

(Fig. 17) is effectively eliminated by the surfactants. 

5    CONCLUSIONS 

In this paper, we have presented a new theoretical model 
to analyze the fully nonlinear interaction of vorticity with a 
free surface. Specifically, we have provided some important 

new results corresponding to (i) the bow- and stern-flow 
problem and (ii) the nonlinear interaction of a vortex pair 
with a free surface. These results have shed light on some of 

the classic issues that had heretofore remained unresolved. 

For example, it is now confirmed theoretically that the for- 
mation of bow vortices observed in low-speed or small-scale 
laboratory experiments is because of the presence of surfac- 
tants. The present viscous-flow results also confirm that at 
low speed, waves of decreasing wavelengths are observed 
at the bow, a feature also observed earlier in the nonlinear 
inviscid-fluid results of Yeung [17]. The continually steep- 
ening of these short waves as they evolve in time could be 
responsible for the white-water type instability observed 
ahead of a full-scale blunt bow operating at low speed. The 
scale effect of surface tension is to suppress the generation 
of these short bow waves in laboratory scale and hence the 
white-water instability is rarely distinctly observed in cor- 

responding model tests. 
Results corresponding to the vortex-pair and free-surfac« 

interaction problem show that rebounding of the primary 
vortices is not significant at low speed in the absence of 

surfactants. It has also been observed that, at intermediate 
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Froude number, transient waves generated by the interac- 

tion could break because of local instability. The presence 
of surfactants on the free surface is observed not only to 
dampen the surface deformations, but also to intensify the 

secondary vorticity, which results in the rebounding of the 

primary vortices even at relatively low Froude number. 
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DISCUSSION 

K.Mori 
Hiroshima University, Japan 

It is very common to observe such a flow shown 
in Figure 10. It is a kind of turbulent flow which 
may require some different treatment from the 
method for the nonturbulent flow; an introduction of 
a model or an extremely fine grid. Otherwise the 
turbulent characteristics cannot be captured to lead a 
fake simulation. The production of turbulence may 
somehow absorb the accumulated energy on the crest 
which may change the phenomenon. 

Could I have your comment on the dealing with 
such kind of turbulent vertical structured flow of the 
free surface? 

AUTHORS' REPLY 

We have stressed in our paper that the initiation 
of short bow waves is caused by inertial and 
gravitational effects, not viscosity. We believe that 
these short bow waves could become unstable and 
break at high Reynolds number. In such a scenario, 
the bow flow would be turbulent and contain much 
mixing. Proper turbulence modeling is necessary to 
analyze such breaking or post-breaking phenomena. 
We have yet to develop solution methods to tackle 
turbulent free-surface flows, but that is not quite the 
objective here. 

DISCUSSION 

M. Tulin 
University of California at Santa Barbara, USA 

In this remarkable and beautifully written paper, 
the authors have researched and developed computing 
algorithms, implemented them, and then made 
applications to treat 2-D free surface-body 
interactions for viscous flows including the effects of 
surface tension and contaminants on the free surface. 

The special problem emphasized here is the 
deceptively simple one involving the flow 
immediately ahead of a blunt 2-D ship, which has 
attracted an increasing number of investigators since 
the first work by Dagan and Tulin. Their concern at 
that  time  was   to  understand   the   cause   of  the 

appearance of a strong spilling breaker in front of 
blunt ships at Froude numbers based on draft of 
0(1). They suggested a local Taylor type instability. 
The work of Tuck and Vanden-Broeck, 1977, 
suggested the nonexistence of the inviscid flow, while 
other authors emphasized the role of viscous free- 
surface effects. 

The present work would seem strongly to argue 
against viscous effects. This is an intuitively 
satisfying conclusion on the appearance in nature of 
violent spilling bow breakers at very large Reynolds 
numbers would suggest against the role of weak 
viscous effects initiating the breakers. It is, however, 
quite another story regarding the equilibrium of the 
spilling-breaking zone itself where it would seem 
quite clear that turbulent stresses acting beneath the 
breaker-eddy are required to maintain it in 
equilibrium. Two similar flows, which have already 
been well modeled, and for which the fundamentals 
are to a good extent understood, are the steady 
breaker in the flow above a hydrofoil, the separated 
flow behind bluff bodies (no free surface). 

I would pose the treatment of this fully developed 
breaker flow before blunt bodies as a problem for the 
authors, even in the laminar case. In the case of the 
steady breaker above the hydrofoil, Tulin and Cointe 
(16th Symposium on Naval Hydrodynamics, 
Berkeley, 1986), have shown that beyond a certain 
critical condition (the incidence of a hydrofoil, for 
example) these flows may exist: (1) inviscid, (2) 
strong breaker, (3) weak breaker. Of these, the weak 
breaker is demonstrably unstable while experiments 
indicate that nature prefers the strong breakers over 
the inviscid flow. 

Two questions for the authors: (1) Do they think 
they have done enough to answer the question as to 
the cause of the strong spilling breaker observed in 
nature? and (2) Can their numerical methods arrive 
at a bifurcated solution of the nature described by 
Tulin and Cointe? (A suggestion: treat numerically 
the active wave flow above a hydrofoil and see what 
happens.) 

AUTHORS' REPLY 

We want to thank Prof. Tulin for his generous 
and thoughtful comments. We would also like to 
thank Prof. Tulin for pointing out the relevance of his 
work (Tulin & Cointe, 16th Symposium on Naval 
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Hydrodynamics, 1986) to the present study on the 
generation of bow waves. In the above paper, Tulin 
and Cointe had developed a model for steady spilling 
breakers, according to which the spiller was modeled 
as a stagnant eddy. Turbulent shear stress acting on 
the stream line, that divides the eddy and the uniform 
flow, was assumed to "support" this eddy. The 
shape of the spiller was determined based on the 
force balance between static pressure and the 
turbulent shear stress. The velocity was assumed to 
be discontinuous at the leading edge of the breaker 
and the dividing streamline to terminate at the crest 
which was taken to be the location of the stagnation 
point. The resistance associated with the breaking 
was also determined using linear potential-wave 
theory. The model was also validated by comparing 
its results with experimental results of Duncan (Proc. 
R. Soc. Lond. A, 1981). Many interesting results 
were obtained using this model, some of which that 
are relevant to our work has been outlined by Prof. 
Tulin in the above discussion. 

As well pointed out in his discussion, the focus of 
our paper, at least in the case of surface-piercing 
body, is to demonstrate how effective, or more 
properly put, ineffective is the viscous effect in 
initiating the bow-wave breakers. Our low-Reynolds- 
number results indicate that even at low Froude 
number, bow waves are generated. Since such waves 
were observed in our earlier inviscid solutions also, 
we believe that generation of these bow waves is 
essentially because of inertial and gravitational 
effects. Although not reported in full here, such 
short upstream waves are not observed in the cases of 
a moving surface pressure or a translating submerged 
cylinder. The mechanism responsible for these short 
bow waves, we believe, is the interaction of a 
surface-piercing body with the stagnant fluid as it is 
in the case of bow flow. Although no high-Reynolds- 
number results are yet available at this time, we may 
still conjecture that these short waves would steepen 
further, with viscosity playing a weaker role, and 
could result in breaking as observed in Fig. 10. 
Much work remains to be done to understand how the 
occurrence of turbulence is related to the geometric 
steepness. 

Despite its inability to describe post-breaking 
behavior, the present method has provided much 
insight to the pre-breaking process. However, we 
would like to point out here that only the incipience 
of breakers can be determined by the solution method 
(in the present form) but not the later stages of 

breaking. Perhaps a different solution method, 
especially, from grid-generation point of view, is 
necessary to track the breakers. Thus, it appears that 
developing a solvable numerical model is crucial to 
obtain solutions corresponding to fully developed 
breakers. It is worthwhile to examine how physical 
models such as the one developed by Tulin and 
Cointe could be used to facilitate numerical studies. 
One also needs a proper turbulence model, not to 
mention proper constitutive relations or solution 
techniques to account for air-water mixing that occurs 
at the breakers. Considering all these complexities, 
we feel that our accomplishments are very modest, 
but we hope many more interesting findings will 
come forth in our future endeavors. We would like 
to thank Prof. Tulin for his suggestion of a few 
additional issues to examine, e.g., the bifurcated 
solutions of the type given in Tulin and Cointe. 
Once the numerical method is sufficiently extended, 
it is also worthwhile to consider flow over submerged 
hydrofoils, which is an ideal candidate problem for 
analyzing the physics of steady breakers. 
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Numerical Simulation 
of the Nonlinear Free-Surface Flow Around a Blunt Bow 

M.-S. Shin. Y.-G. Lee, E.-C. Kim, S.-I. Yang 
(Korea Research Institute of Ships and Ocean Engineering, Korea) 

ABSTRACT 

This paper presents simulated viscous flow fields 
with the free-surface around a two-dimensional body 
(semi-infinite body) and three-dimensional hull forms 
(Series 60 models and practical hull form). As the gov- 
erning equation, Navier-Stokes equation and the conti- 
nuity equation are adopted and solved by Marker And 
Cell (MAC) method. The flow around a semi-infinite 
body is simulated on the boundary- and body-fitted 
coordinate system while the others are on the variable 
spacing. The calculated results near the semi-infinite 
body show well the periodic oscillation of the free- 
surface and the interaction between the free-surface 
and induced viscous field. The simulated waves around 
hull forms show good agreement with the experimen- 
tal results. 

On the other hand, a critical condition for the ap- 
pearance of sub-breaking waves is applied to the sim- 
ulated bow waves, although the critical condition is 
derived from the inviscid instability analysis. 

1. INTRODUCTION 

It is important to verify the nonlinear characteris- 
tics around a blunt bow in the field of ship hydrody- 
namics. .The clarification of this phenomena and the 
evaluation of its contribution to the resistance are im- 
portant problems to ship hydrodynamics, especially in 
the wave resistance problem and the preliminary bow 
design stage. 

Recently, many experimental and numerical results 
were presented as related to a bow wave in a uniform 
flow including breaking phenomenon. Under a cer- 
tain Froude number, the oscillatory motion of the bow 
wave takes place and it becomes a wave-breaking in 
proportion to the increase of the uniform velocity. 

The characteristics of nonlinear waves generated 
by an advancing two-dimensional rectangular cylin- 
der was investigated by Miyata et al.[l,2]. From the 
experimental work, it was observed that the bow wave 
fluctuates periodically.  As wave-breaking takes place 

on the forward face of the bow waves at a certain speed 
of advance, the wave fluctuates and moves periodically 
back and forth. 

Grosenbaugh et al. [3,4] investigated the flow char- 
acteristics of bow waves of the piercing circular cylin- 
der and the wing section. They reported that there 
was a critical flow velocity at which the appearance of 
the bow wave undergoes a transition from quiescent 
to turbulent condition. Above this critical velocity, 
the bow wave develops a periodic oscillation. This os- 
cillation appears due to the balance between the rate 
at which fluid is being entrained into the separated 
region and the rate at which it is existing in quiescent 
condition. 

Mori[5,6] suggested the sub-breaking waves as a 
free-surface turbulent flow which was transited from 
laminar to turbulent flow. Based on the direct obser- 
vation of the free-surface and the analysis of measured 
data, it was clarified that the sub-breaking waves were 
neither overturning nor spilling. 

Meanwhile, a number of methods has been de- 
veloped to analysis the interaction problems between 
waves and bodies. Among them, the numerical meth- 
ods by Finite Difference Method (FDM) is the most 
powerful tool for these nonlinear problems, because 
they can solve nonlinear differential equations with 
the nonlinear boundary condition under the least as- 
sumption. 

Waves by a submerged hydrofoil was simulated by 
Mori et al. [7]. The boundary- and body-fitted coor- 
dinate system were adopted in the whole domain and 
the free-surface was expressed by means of the La- 
grangian technique so that grid points move only up 
and down vertically. 

The work was extended to the numerical simula- 
tion of the free-surface turbulent flow and the nonlin- 
ear free-surface waves by making use of the simplest 
turbulence model [8]. It was concluded that the simu- 
lated result by turbulence models with proper bound- 
ary condition at the free-surface is much similar to the 
experiment. 

One of the numerical methods by FDM was de- 
veloped for the simulation of ship waves. Nishimura 
et al.[9] calculated the flow around a practical hull 
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form of arbitrary waterline by TUMMAC(Tokyo Uni- 
versity Modified Marker And Cell)-IV method. The 
particles on the free-surface are moved by Lagrangian 
technique. The computed waves are in good agree- 
ment with the measured results and the method is 
useful for the determination of better hull form with 
smaller wave resistance. 

In the present paper, previous works are, summa- 
rized concerning to the FDM applied for the expla- 
nation of the waves generated by blunt bows. Mean- 
while, the instability analysis of free-surface flow is ap- 
plied to the numerical results for the detection of the 
sub-breaking waves around a blunt bow in the criti- 
cal flow velocity region. The qualitative accuracy of 
the calculated results is examined and the quantative 
availability of the instability analysis is discussed. 

2. NUMERICAL ALGORITHM 

2.1 Two-Dimensional Case 

The main frame and the details are referred in the 
previous works [6,7,10]. The code to simulate the flow 
with a submerged hydrofoil is extended to a semi- 
infinite body with the free-surface. 

The body- and boundary-fitted coordinate and H- 
shape and regular grid system are adopted rather than 
staggered while the free-surface is expressed by means 
of the Lagrangian techinique. 

The Navier-Stokes equation and the continuity equa- 
tion are directly solved by the MAC method and the 
equations with primitive variables are as follows. 

du        du        du 8P        1      , 

dt dx        dy dx      Rn 
(1) 

Differentiating equation (1) with respect to x and 
equation (2) to y, we have following equation with the 
forward time differencing : 

VH = FX + Gy-— «+1 + <+1) 
Af 

where 

F = — + —-V2u 
At     Rn 

du        du 

dx        dy 

(5) 

(6) 

„      vn        1  _,       ,   dv        dv, 
G = (- —Vv - (u— + v- 

At     Rn dx dy 

$ = P + 
Fn2 

where the superscript denotes the time step and the 
last term in equation (5) is expected to be zero at 
every time step. 

The Poisson equation for the pressure term is solved 
iteratively by relaxation method. The (n+l)th ve- 
locity components are obtained by solving equation 
(l) and equation (2) explicitly with the pressure given 
by equation (5). Then, the velocity components and 
moving marker particles are updated. As the initial 
condition, the still condition is used : the whole flow 
field is accelerated up to the given constant velocity. 

The marker particles are moved by the Lagrangian 
technique as follows: 

cn+l = xn + unAt>       yn+l = yn + yn M (7) 

The wave elevations are obtained by interpolating be- 

tween (n-t-l)th marker particles at the original coordi- 

nate, so that the grid points move only up and down 

vertically. 

dv 

di 
dv 

lYx 
dv _ _dP_ 

dy dy 
y       i ,-,2 -?— + —V2v 

Fn2      Rn 

du      dv 

dx      dy 
(3) 

All variables are on the Cartesian Coordinates sys- 
tem (i, y) where x and y are in the uniform flow di- 
rection and the vertical respectively ; u and v are the 
velocity components in the i— and y— directions re- 
spectively. P is the pressure. Rn and Fn are Reynolds 
and Froude numbers, and g, gravitational accelera- 
tion. All the variables are nondimensionalized by the 
draft of the body and the oncoming velocity U0- The 
Laplacian operater is 

2.2 Three-Dimensional Case 

The principal procedure of the TUMMAC-IV 
method are explained in references [1,2,9,15,16,17]. 
Therefore, very brief explanations are described here. 
The conservative formed Euler equation (8)~(10) and 
the continuity equation (11) for inviscid and incom- 
pressible fluid are represented in the finite-difference 
forms. These governing equations are solved as an 
initial-value and boundary-value problems including 
the free-surface condition using time-marching proce- 
dure and iteration methods. 

dx2      dy2 (4) 
du     d(u2)      d{uv)      d{uw) _     IdP 

dt        dx dy dz p dx 
(8) 
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dv     d(uv) 

~di+    dx 
+ d{v2)     d{vw) 

dy dz 

ldP 

P dy 

(9) where 

U) 

AT- A 
■DV (13) 

dw      d(uw)  1 i L 
dt dx 

+ d{vw)     d{w2) _    ldP 
dy 

+ 
dz p dz 

+ 9 A = 2{ + + 

du      dv      dw 

dx     dy      dz 

(10) 

(11) 

In equations (8) ~ (11), w is the velocity compo- 
.nent in the z-direction and p is the density of water. 
The parameters are same as the two-dimensional case 
and used without nondimensionalization. 

A Cartesian coordinate system is employed, in which 
the x-axis is the centerline on the design load water- 
plane of a ship. The ship advances in the negative 
z-direction. A grid system by staggered semi-variable 
rectangular meshes is used for the increase of compu- 
tational accuracy and applicability. The Euler equa- 
tion is represented by first-order forward differencing 
in time and second-order centered differencing in space 
except for the convection terms. The differencing of 
the convection terms are described by a hybrid scheme 
that is the combination of second-order centered dif- 
ferencing and donor-cell method. Also, the continuity 
equation is represented by second-order centered dif- 
ferencing in space. 

The momentum equations and the continuity equa- 
tion give the Poisson equation for the pressure distri- 
bution. The source term of the Poisson equation is 
determined from the velocity field at each time step. 
Therefore, the momentum equations and the Poisson 
equation are the principal equations to be solved in 
present computational procedure. The momentum 
equations are hyperbolic to be solved as an initial- 
value problem and the Poisson equation is elliptic to 
be solved as a boundary-value problem. That is, the 
former are solved by time-marching procedure and the 
latter is solved by iteration method at every time step. 

The Poisson equation is iteratively solved by SOR 
(Succesive Over Relaxation) method with the follow- 
ing equation. 

=    P™!r   +   U(P™JJC    eal 
Pim+1   pm (12) 

where the superscripts m and (m + 1) denote it- 
eration number and w is a relaxation factor. P™jj, cai 
is temporary pressure at each iteration step. The it- 
eration is continued until the second term of equation 
(12) converges within an allowable error. 

The term in the parenthesis in equation (12) is 
modified by eliminating P using the momentum equa- 
tions. If the divergence D^k is assumed in each stag- 
gered mesh, equation (12) is deformed as 

(As)2      (Ay)2      (Az ;}■ (14) 

In the above equation, Ax, Ay and Az are the lon- 
gitudinal length, transverse width and vertical height 
of a cell, respectively. 

The method by equation (13) is called the simulta- 
neous iterative method which is equivalent to the SOR 
method. In this method the velocity is successively 
updated through the iterated calculation of pressure 
field at a time step. This procedure is conveniently 
used to deal with the boundary condition for an arbi- 
trary hull configuration. 

Although this computational procedure is suitable 
to unsteady problems, it is applied to a steady prob- 
lem of ship wave-making in this work by letting an 
unsteady solution approach to a steady state. The 
initial condition is a rested state, and the velocities in 
computational domain are gradually accelerated for a 
desired incident velocity at the inflow boundary. After 
the steps of acceleration the computation is continued 
for adequate time steps until a steady state is reached. 

At the inflow boundary the velocity and pressure 
are given as a desired velocity and reference pressure, 
i.e., in case of a Dirichlet condition. The computa- 
tional domain is bounded by a center plane of a ship, 
because the flow of a ship is symmetry. Namely, on the 
centerplane the condition of symmetry must be taken 
into account. The bottom boundary is usually located 
so deep that the fluid motion is very small. Therefore, 
the hydrostatic pressure and the velocity condition of 
zero gradient are given at the bottom boundary. At 
the sideward open boundary the velocities and pres- 
sures are set equal to the inner values so that their 
gradient in the direction normal to the boundary is 
set zero, i.e., in case of a Neumann condition. Also, at 
the downstream open boundary their gradient along 
the local flow direction is set zero. 

The hull surface consists of waterlines and frame- 
lines. The former is approximated by a succession of 
straight segments, and the vertical variation within 
each cell is ignored for the latter. A free-slip body 
boundary condition is given in the body boundary 
cells (the cells include a body boundary segment). 
Namely, the velocity normal to the body surface is 
zero, and the tangential velocity does not have normal 
gradient, and finally the divergence of a body bound- 
ary cell is zero. Under these conditions, the pressure of 
a body boundary cell is computed by velocity-pressure 
simultaneous iterative method. 

On the free-surface, the Lagrangian movement of 
marker particles is used for the fulfilment of the kine- 
matic condition, and the irregular star technique of 
Chan and Street [10] is used for the dynamic condi- 
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tion. Some interpolation and extrapolation methods 
of velicities components at the position of a marker 
particle, i.e, four-point and nine-point interpolations 
and zero gradient extrapolations are used. 

3. RESULTS AND DISCUSSIONS 

of the rectangular cylinder. It may be similar for the 
flow by the semi-infinite body too. However, the re- 
sult at Fn=1.25 doesn't show the periodic oscillation. 
It should be pointed out that the numerical simulation 
including sub-breaking phenomena is important. 

Fig. 4 shows the time evolution of the bow wave 
elevation at the bow of the body. The steady state 
reaches after T=30 at Fn=0.5 and 0.75, while T=60 

at Fn=1.0 and 1.25. 

3.1 Semi-infinite Body 

Computations are carried out for a two-domensional 
semi-infinite piercing body. The coordinate system is 
shown in Fig.l where the origin is set on the still water 
level and the bow while all of the parameters are non- 
dimensionalized by the draft and uniform velocity. 

The grid system by boundary- and body-fitted co- 
ordinate is shown in Fig. 2 and the computational 
conditions are shown in Table 1. The computational 
domain is extended to eleminate the influence by the 
outflow boundary and the maximum grid spacing on 
the free-surface to x-direction is 0.1 to simulate the 
wave configuration precisely. The Reynolds Number 
is set to be 103 while the Froude number covers the 
range of 0.5 to 1.25. 

Fig. 3 shows the time history of the drag coeffi- 
cients, CDP, during the calculation which are obtained 
by the intergration of the pressure at the fore face 
of a semi-infinite body. The steady state reaches af- 
ter T=30 in case of Fn=0.5 and 0.75 while T=60 for 
Fn=1.0 and 1.25. The periodic oscillations are clearly 
observed at Fn=0.5, 0.75 and 1.0 as in the experi- 
ments by Grausenbaugh et al. [3,4]. In the experi- 
ment, sub-breaking is observed at Fn > 1.0 in front 

Fig. 1    Coordinate system 

«imw»»<1118g 
i^jjil PW^L 

jir~i" if! ■H ■ ili:: ill 1 1 fii ll ill 1 It 
Fig. 2    Grid system for the semi-infinite body 

Table 1 Computational condition 

Semi-infinite body 

Domain of 
Computation 

-12 < x < 110 
-9 < x < 0 

Reynolds number 103 

Froude number 0.5 ~ 1.25 

Maximum grid spacing 
to x-axis 

0.1 

Minimum grid spacing 0.02 

Time increment 0.005 

Aproximate Number 
of cell 

7,500 

Total time step 10,000 or 20,000 

CPU time 1 or 2 hours 

CDP 

— Fn  =  0.5 
-- Fn  =  0.75 

CDP 

n 

- :10s — Fn  =   1.0 
— Fn  =   1.25 

q _ 

- fv— —V 

/~»N__."-.>  - - 

q _ 

o 
d 1 1 1             1             1 1 

0.0 40.0 80.0 120.0 

Fig. 3    Time history of the drag coefficients 

244 



Table 2 Comparison of periodic oscillation at the fore wall of body 

Fn 
Present 

calculation 
Calculated result 

by Wehausen 
phenomenon [3] 

Experimental 
result by 

by Miyata [1,2] 

Experimental result 
by Grosenbaugh et al. [3] 

Circular 
cylinder 

Wing 
section 

0.5 
0.75 

0.135 
0.082 

0.080 
0.053 

1.0 
1.1 
1.25 

0.05 0.040 
0.036 
0.032 

0.063 
0.06 ~ 0.07 0.09 

Rn=103 

d " 

Fn = 0.75 

es 
d " 

- Fn = 0.5 

o 
o 1          1 1          1          i          i          i 

0.0 20.0 

o , 
d 

0.0 
—I— 
40.0 80.0 120.0 

Fig. 4    Time evolution of the bow wave elevation 
at bow of the body (Rn=103) 

■   Calculated result« 
D  Measured result« (circular cylinder, Grosenbaugh et al.[3]) 
  Hydraulic head 

T i 1 r- 
0.B0 1.00 1.20 

Fn 

Table 2 shows the comparison of the oscillating pe- 
riods at various Froude numbers. At Fn=1.0, the cal- 
culated periods are around 0.04~ 0.05 while the mea- 
sured are 0.06-0.07. 

The mean elevation of the bow wave is shown in 
Fig. 5 compared with the measured results by a circu- 
lar cylinder [3]. The simulated results show fairly good 
agreement with the experiment at Fn < 0.75 in which 
the sub-breaking doesn't take place. Because the nu- 
merical scheme in this paper cannot contains the sub- 
breaking phenomena, reasonable agreement between 
hydraulic head and simulated results is observed only 
at Fn < 1.0. 

Fig. 6 shows the wave profiles at various Froude 
numbers. The wave configurations is smooth at Fn < 
1.1 but a steep slope is seen at x = —4.0 in case of 
F.n=1.25 where the sub-breaking is experimentally ob- 
served in case of the rectangular cylinder [l]. 

The pressure contour maps of Fn=1.0 are shown 
in Fig. 7. The claculated period of bow wave was 
20 (Table 2). The humps in the time history of wave 
elevation are at T=80 and 100 while the hollow was 
shown at T=90 (Fig. 4). Although the flow field under 
the body develops consequently at T=80 and 100, the 
wave elevation and the pressure contour in front of the 
body have almost same configuration. It is considered 
that the viscous flow under the body doesn't affect 
much to the flow in front of the body. 

The calculated velocity vectors around the body 
are shown in Fig. 8. A counterclockwise vortex is 
observed under the body which differs noticeably at 
the two Froude numbers. Near the free-surface, an 
abrupt gradient of velocity is seen, which is similar 
to that in the boundary layer developed on a solid 
surface. This velocity distribution is also seen in the 
experimental result for a submerged hydrofoil [8]. 

The contour maps of the vorticity in front of the 
body are shown in Fig. 9. A horse shoe vortex is 
simulated and concentrated near the free-surface at 
Fn=1.25. Experimentally, the sub-breaking takes place 
at almost the same location (x = —4.0) in case of the 
rectangular cylinder [2]. 

Fig. 5    Mean elevation of the bow wave 
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Fig. 7    Pressure contour maps (Fn=1.0) 
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Fig. 8    Calculated velocity vectors around the body 

Fig. 9    Contour maps of the vorticity around the body 
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3.2 Ship Hulls 

Three dimensional flows around Series 60 mod- 
els and Afra-Max Class Tanker (designed by Daewoo 
Shipbuilding & Heavy Machinery Ltd.) as practical 
hull forms are simulated. 

Fig. 10 show the lines of Series 60 hull whose block 
coefficients are 0.6 and 0.8. Fig. 11 shows the lines 
and principle dimensions of Tanker (Afra-Max Class) 
whose displacement, block and prismatic coefficients 
are 97,500 m3, 0.8 and 0.81. The bulbous bow of this 
tanker is thin and large, while the center is higher than 
other conventional tanker. It will be an interesting 
subject to discuss the interaction between the bow and 
the free-surface. 

Fig.12 shows the coordinate system and computa- 
tional conditions are shown in Table 3 in detail. The 
number of grid points are 154,000 for Series 60 model 
of Ct=0.6, 60,000 for Ct=0.8 and 39,000 for tanker. 

The comparison of the calculated and measured 
wave heights [18] along the hull surface for the Se- 
ries 60 model of Cb=0.8 is shown in Fig. 13. The 
maximum wave heights [18] is about 2 cm at the same 
longitudinal position in both cases, but there is a little 
discrepancy near the shoulder. This may be due to the 
slip body boundary condition and no diffusion effect. 
On the whole length, the comparison shows qualita- 
tively good agreement. Especially, better agreement 
is shown in the fore-body part. 

Perspective views of computed waves which are 
magnified three times are shown in Fig.14. The differ- 
ence of wave configuration affected by block coefficient 

Table 3 Computational condition 

Series 60 Tanker 
Hull Form Cb = 0.6 Cb = 0.8 

Domain of 
Computation (m) 

Length 
Breadth 
Depth 

1.60 
0.385 
0.42 

1.80 
0.60 
0.43 

4.80 
1.58 
0.86 

Cell Size (m) 
DX 
DY 

DZ(Min.) 

0.02 
0.007 
0.005 

0.03 
0.015 
0.01 

0.07 
0.04 

0.019 
Number of Used Cell 154,000 60,000 39,000 
Time Increment (sec) 0.0040 0.0027 0.0064 

0.0057 
Time Steps for 

Acceleration 
300 400 300 

Total Time Step 750 1000 500 
500 

Froude Number Fn 0.2 0.2 0.15 
0.17 

Length of Ship 
Model (m) 

2.5 2.5 7.1341 

is noticable. 

Especially, near the soulder of the Series 60 model 
of Cj=0.8, a nonlinear wave formation is well simu- 
lated. The superior accuracy of the present method 
for the nonlinear wave problems had been shown in 
[15]. Fig. 15 shows contour maps of computed waves 
for Series 60 models. Wave height around bow by Se- 
ries 60 model of Ct=0.8 is higher than that of Cj=0.6. 
Also, the divergence angle of the bow wave by Series 
60 model of C6=0.8 is larger than that of Cb=0.6. 

Fig.16 shows the perspective view of calculated 

Fig. 10    Lines of Series 60 hull form 
(from above: Cb=0.6, 0.8) 
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Fig. 11    Lines of Tanker (Afra Max Class) 
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Fig. 12    Coordinate System Fig. 14    Perspective views of computed waves 
(Series 60 models, Fn=0.2, from above: Cj=0.6, 
0.8, wave height is three times magnified) 
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Fig. 13    Comparison of wave profiles along the hull 
(Series 60, C6=0.8, Fn=0.167) 

Fig. 15    Contour maps of computed waves (Series 60 
models, Fn=0.2, from above: C6=0.6, 0.8) 

waves around a tanker at Fn=0.15 and 0.17 while 
Fig. 17 shows photographs of a running tanker model. 
The experiments for the tanker model have been con- 
ducted at the deep water towing tank of the KRISO. 
The tanker model which has the same dimensions as 
the condition of numerical simulation is towed by a 
eletric carriage. The tendency of wave configurations 
seems good in agreement. This is also noted in Fig. 
18 for the wave contours, in which the wave forma- 

tions do not show subtantial differnce between two 
Froude numbers. Sub-breaking waves are physically 
shown around a bow (Fig. 17) but calculated results 
(Fig. 16) don't show this phenomena. Although cal- 
culated result shows smooth free-surface (Fig.18) and 
the steady state is reached without any trouble, they 
are questionable. Therefore, it is necessary to adopt 
the numerical schemes for the sub-breaking waves or 
equivalent treatment. 
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Fig. 16    Perspective views of computed waves 
(Tanker hull, from above: Fn=0.15, 0.17, 
wave height is three times magnified) 

3 h 

Fig. 18    Contour maps of computed waves (Tanker 
Hull, from above: Fn=0.15, 0.17) 

Fig. 17    Photographs of running ship model 
(Tanker Hull, from above: Fn=0.15, 0.17) 

4. DETECTION OF SUB-BREAKING 
WAVES 

The critical condition for the appearance of sub- 
breaking waves, proposed by Mori [5,6] is applied to 
the simulated results. The condition is given by 

U_ dM_ _  dU_ _ J_    ön^ 

MhdS ~ hdS     nz   hdS > 
(15) 

where 

M = {K.U
2
 - nzg)nz, 

U, W :    Velocity components on stream line 
coordinate, 

K : Curvature of wave elevation, 
h : Metric coefficients. 

Near the wave crest, it is assumed nz = 1, J^J = ^ 
and equation (15) can be approximately as follows : 
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Fig. 19    M/U distributions at three different 
Froude numbers for the semi-infinite body. 
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M is always negative in our problems. If the gradient 
of M/U with respect to the incidient flow direction 
shows negative gradient, the real flow field near the 
free-surface can be unstable. 

In the experiment, sub-breaking with unsteadiness 
of the surface takes place at Fn=1.0. Fig. 19 shows 
the M/U distributions at three different Froude num- 
bers for the semi-infinite body. For all cases, negative 
gradients are observed near the body which is due to 
the stagnant velocity component by the existence of 
the body which is not included in the present instabil- 
ity analysis. Comparing the M/U distributions at the 
three different Froude numbers, the M/U distributions 
of Fn=l.l shows a sharp negative gradient around x—- 
1.5 compared with that of Fn=1.0, although the speed 
is slightly different. Thus it can be concluded that the 
sub-breaking takes place at Fn=l.l and the scheme 
should have been switched into that capable for such 
turbulent flow. It should be also pointed out that the 
result at Fn=1.25 can be fake even if the computation 
has been carried out, the process of the sub-breaking 
phenomena is neglected. 

Fig. 20 Distributions of M/U along center line 
(Series 60 models,Fn=0.2, from above: 
Cj=0.6, 0.8) 

The appearing condition of sub-breaking waves is 
applied to calculated results which is shown in Fig. 20. 
The gradient of plotted M/U along center line show 
almost flat at Cj=0.6, Fn=0.2. It means the sub- 
breaking looks like tanker (Fig. 17) doesn't appear at 
this Froude number. 

Fig. 21 shows the M/U distributions applied to the 
calculated flow around a tanker hull. The abrupt neg- 
ative gradient with respect to x is shown which means 
the sub-breaking waves can appear. But this negative 
gradient can be the consequence of the staganant ve- 
locity while the photographs at this Froude number 
show the sub-breaking. 
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Fig. 21    Distributions of M/U along center line 
(Tanker hull, from above: Fn=0.15, 0.17) 

5. CONCLUSIONS 

The numerical simulations of the disturbed flow 
around a semi-infinite body and hull forms with free- 
surface are carried out and the detection of sub-break- 
ing wave is applied to the simulated results. Through 
the present study, the findings are summarized as fol- 
lows: 

(1) The marker point moved by Lagrangian tech- 
nique simulate well the free-surface formation around 
a blunt bow with the appropriate ship body boundary 
condition. 

(2) An intensive interaction between the viscous 
flow with vortex motion and the free-surface is ob- 
served behind the semi-infinite body, but the bow 
waves are not so much affected by the viscous flow. 

(3) The simulated bow wave elevation and its os- 
cillation show generally good accordance with the ex- 
perimental result. 

(4) Detection of sub-breaking in front of the semi- 
infinite body is attempted by applying the criteria. It 
may have appeared at Fn=1.0. 

The computations of semi-infinite body were exe- 
cuted by CRAY-2S at System Engineering Research 
Institute and the computations of hull forms were ex- 
ecuted by IBM PC-386 with WEITEK coprocessor at 
KRISO 
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DISCUSSION after T=90 as show in the figure below. 

K. Mori 
Hiroshima University, Japan 

The authors' approach to pay attention to the 
appearance of sub-breaking waves seems quite sound. 
This is because an experimental observation of the 
bow wave shows that the free surface becomes 
suddenly unsteady and ripple-like waves (which are 
called sub-breaking waves in the paper) appear 
beyond a certain advancing speed. In the numerical 
simulation, it should be considered that the energy 
may be absorbed for the turbulence production. 

The authors applied Eq. (15) for the detection of 
the sub-breaking waves around the bow as a critical 
condition. The condition has been derived from the 
stability analysis and the steepness of the negative 
gradient gives the growth rate of the instability. 
Therefore, should we conclude from Figure 19 that 
all the flows at the three Froude numbers can be 
unstable in front of such a blunt bow although there 
are differences in its steepness? 

How was the time evolution of the bow wave 
elevation for Fn=l.l? Were there any differences 
from that for Fn= 1.0? 

AUTHORS' REPLY 

Thank you for your discussion and comment with 
kindness. 

The balance between the increment of wave 
elevation by local wave length and the circumferential 
force by gravity composes the equation of the critical 
condition for the detection of sub-breaking waves. In 
case of the flow around a blunt bow, the velocity is 
reduced due to the stagnant flow and the local wave 
length becomes zero. As a result, the value of M/U 
near the body becomes minus infinity. This is due to 
the assumption that the basic wave in inviscid 
instability analysis is the sinuous wave. Although the 
negative gradient near the bow is shown, it cannot be 
said that all the flows are unstable. Because of the 
steep negative gradient and the discontinuous 
distribution of M/U of Fn=l.l, it can be said that 
the flow of Fn= 1.1 is unstable. 

The time evolution of the bow wave elevation of 
Fn=l.l is additionally compared and the 
configuration of Fn= 1.1 is similar to that of Fn = 1.0 

120.0 

DISCUSSION 

H. Miyata 
University of Tokyo, Japan 

Since water particles moving about a hull is under 
the influence of both free-surface waves and viscous 
motions, this kind of research is of increasing 
importance and may be developed into a useful tool 
for hull-form design. 

The elucidation of the detailed phenomenon of 
nonlinear bow waves involving viscous motions is of 
another importance. However, the authors' 
discussions based on the simulation results seem to be 
insufficient, because the simulation is composed of 
numerous postulations and approximations. The 
viscous stresses on the free surface are ignored. The 
spacing is too coarse for these stresses. The grid 
system is incapable of representing the overturning 
motion. An appropriate turbulence model for the 
free-surface turbulence is not known. Further 
advanced research with smaller number of 
approximations and restrictions will provide us better 
understanding of the nonlinear mechanism of bow 
waves. 

AUTHORS' REPLY 

Thank you for your discussion. 

The main aim of this paper is to predict the sub- 
breaking phenomena around a blunt bow. Our final 
goal is to simulate the wave breaking phenomena as 
a free-surface turbulent flow which can be used in the 
primary design stage of hull forms. In that sense, we 
thought that the viscous stresses can be ignored. 
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There are a lot of measured data in previous 
works around a piercing body. The measured data 
show the u velocity component in front of the body 
is always greater than zero and the distribution of the 
Reynolds stresses is similar to that in the boundary 
layer developed on the solid surface. Therefore, the 
wave-breaking phenomena should be represented as 
a turbulent flow, not as an overturning motion. 

Author measured Reynolds stress near the free 
surface by a submerged hydrofoil and this work was 
extended to the numerical simulation by making use 
of the simplest turbulence model. It was concluded 
that the simulated result by turbulence models is 
much similar to the experiment and the proper 
boundary condition at the free surface is important. 
Much attention should be paid to get the proper free- 
surface boundary condition. 

DISCUSSION 

P. Ananthakrishnan 
University of California at Berkeley, USA 

I would like to commend the authors for their 
fine efforts on solution of this difficult. My 
comments/questions are as follows: 
1. It has been pointed out by Grosenbaugh and 
Yeung (JSR, 1989) that the bow-wave oscillation 
observed in their experiments is not the same as the 
Wehausen phenomenon. The Wehausen phenomenon 
is used to refer to the starting transient generated by 
a body, as observed in the moving frame. These 
waves propagate upstream. On the other hand, the 
bow-wave oscillation phenomenon was observed to be 
a back and forth surging-type motion of the bow- 
wave front. This oscillation does not propagate 
upstream. As discussed in Grosenbaugh and Yeung, 
it may be irrelevant to compare these two different 
wave phenomena. The oscillation described in 
authors' results appear to be just the viscosity- 
modified Wehausen phenomenon. 

2. Vorticity contours shown in Figure 9 indicate a 
pulsating type behavior. Could this be physical? Or 
is it due to an inappropriate difference scheme? 
Perhaps the authors can comment on this. 

3. In your numerical method, grid points on the free 
surface are restricted to move only up or down. 
What is the consequence of such a restriction on the 
realism of the solution? 

AUTHORS' REPLY 

Thank you for your discussion and comment with 
kindness. 

The periodic oscillation by present calculation 
should be compared to the experimental result. The 
periodic oscillation at Fn= 1.0 is reasonable; present 
calculation is 0.05 while experimental results show 
around 0.06. 

Vorticity contours are interpolated and drawn by 
a package subroutine. The discontinuous contours 
may be due to an interpolate procedure in this 
subroutine. 

As I mentioned, the wavebreaking phenomena 
around a blunt bow should be treated as a free- 
surface turbulent flow. From the experimental result 
(19th ONR, Yeung and Ananthakrishnan), it is 
clearly shown. The wave face moves back and forth, 
but this behavior is not an overturning motion, the u- 
velocity on the free surface is always greater than 
zero so that the technique for an overturning motion 
isn't necessary. 

254 



Investigation on Scale Effect in Ship Viscous Flow by CFD 
S. Abdallah (University of Cincinnati, USA), G. Caprino, 

L. Sebastiani, A. Traverso (Italian Ship Research Center, Italy) 

The present paper deals with viscous flow predictions around 
ship hull, with emphasis on the problem of scale effects on 
ship wake. A numerical methodology is described in which the 
solution for the three-dimensional turbulent flow is obtained the 
primitive-variable formulation. In this approach, the time 
averaged Navier-Stokes equations (RANSE) are solved for the 
velocity field using multi-step time dependent explicit schemes. 
The pressure field is calculated from a Poisson-type equation 
with Neumann boundary conditions, which is derived from the 
continuity equation. The Neumann pressure equation is guaranteed 
to converge, on non-staggered grids, by satisfying the 
compatibility condition using consistent finite-difference 
approximations for the pressure equation and the boundary 
conditions. The turbulent problem is closed by employing the 
Baldwin-Lomax turbolence model. Numerical results for the 
viscous wake at the propeller disk are obtained for a single- 
screw bulbous-bow gas carrier hull and compared with the model 
test results. In addition a computation at 1.0E+8 Reynolds 
number has been carried out, which is intermediate between model- 
scale and full-scale. 

INTRODUCTION 

Development in computational ship hydrodynamics is 
continuatively going on due to both the recent advance of high- 
speed computers and the refinement of numerical algorithms. From 
the ship designer point of view, the far most important 
application of such calculations is the evaluation of ship 
viscous wake at the propeller disk so to be able to predict the 
performances of the propeller in its operating conditions. Ship 
stern flow is currently calculated on the basis of viscous flow 
assumption, disregarding the presence of the propeller or 
considering eventually the hub influence on the flow. This way 
emphasis is given to the bare-hull wake, the so-called nominal 
wake, with respect to the wake actually present when the 
propeller is operating, the so-called effective wake. In the very 
last few years ever more ambitious attempts to a comprehensive 
treatment, which includes the effect of an operating propeller 
into viscous flow calculations with a free surface, are taking 
place within the CFD community but their final assessement is 
still far on the way. Even when propeller-hull and free-surface 
effects are not considered, that is the double-model nominal wake 
is addressed, the evaluation of the full-scale wake at the 
transverse section where the propeller is to be installed remains 
one of the major problem of ship hydrodynamics. 
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The common practice, and until the advent of numerical ship 
hydrodynamics the only feasible approach, to obtain information 
on the nominal wake at full scale is to measure nominal wake on 
models in towing-tanks and to extrapolate these model-scale 
results to the prototype. The Reynolds number scaling of ship 
stern viscous flow characteristics from model-scale to full-scale 
plays thererefore a central role in ship/propeller design. The 
difficulty of scaling from model-scale to full-scale Reynolds 
numbers is mainly due to the scarce availability of reliable and 
suitable full-scale data. Local observations of stern flow 
characteristics near the propller disk on full-scale ships are 
essentially obtained through Pitot probes or LDV measurements. 
Installation on board of the necessary equipment is not a routine 
task and requires a big preparation work besides mechanical 
interventions on the ship structure, so that few service" ships 
are available for such a kind of measurements. Measurement 
techniques are in their turn very delicate and sensitive to 
external  conditions. 

Therefore full-scale data of wake distribution are a few and 
insofar the major empirical source on Reynolds-number wake 
scaling is represented by laboratory experiments on models. The 
situation is however not a satisfactory one at the moment, since 
these investigations are quite onerous both in terms of costs and 
time. More often than not available data are affected by 
measurement uncertainity or are not sufficiently detailed or 
testing conditions are not well documented. Besides the range of 
Reynolds numbers covered is not large enough to provide 
definitive information. 

As a consequence of this general lack of empirical 
information, the reliability of CFD methodologies to predict 
scaling effects in ship wake is still not well assessed. It 
should be also noted that, due to the predominance of model-test 
data over full-scale data, up to now computational techniques 
have been tested and calibrated essentially in the model-scale 
Reynolds number range, up to 1.0E+6, while full-scale Reynolds 
numbers are of the order of 1.0E+9, among the largest values 
encountered in fluids engineering applications. Therefore the 
usual practice is to resort to using empirical or semi-empirical 
formulas for full-scale ship wake predictions. 

There have been several formulas proposed for model-ship 
nominal wake correlation, as reported for istance in the 14th 
ITTC. underlying theory is rather crude and it is essentially 
based on wake measurements on geosim models and simple boundary- 
layer considerations. The usual way of evaluating full-scale wake 
is to correct somewhat model data to compensate for the 
difference in Reynolds numbers. The advantage of such an 
approach is that an adequate scaling methodology can be in 
principle estabilished through extensive model tests. It should 
be however bearing in mind that this procedure is very expensive 
and its validity is limited to the class of ship forms for which 
the particular correlation formula has been estabilished. 
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As confirmed by the recent independent works of Tanaka [1] 
and Boccadamo [2], which gave a crictical examination of the 
various correlation techniques through wake measurements on 
geosims, the search for simple correction formulas for scale 
effects is still in progress. However it appears from the 
complexity of the flow phenomena taking place in the ster^i region 
of practical ship hulls, and revealed by the recent wake 
measurements carried out under the inititative of ITTC, that such 
attempts are doomed to fail due to the fact that conventional 
boundary-layer theory is not thoroughly valid in the thick wake 
stern region. 

A more rational approach to the problem of Reynolds number 
scaling is therefore necessary and can be found by application of 
the recent CFD techniques. In principle there is no obstacle to 
the prediction of ship viscous flow at whatever Reynolds number 
provided that an efficient and reliable method is available to 
solve the governing equations, that is the the Navier-Stokes 
Equations (NSE) or more exactly the Reynolds Averaged Navier- 
Stokes Equations (RANSE). Actually, apart the previously 
mentioned scarcity of relevant experimental data necessary to 
calibrate/validate the code, this ambitious task cannot be 
completely fulfilled due to physical/ numerical reasons. These 
difficulties can be roughly summarised as uncertainties in the 
modelling of turbulence, approximations in the ruling equations 
and limitations of the numerical techniques in dealing with the 
sharp gradients in the near-wall region at high Reynolds numbers. 
Nevertheless the computational approach based on the numerical 
solution of RANSE equations seems the most promising one in the 
assessment of Reynolds numbers wake scaling, as it is confirmed 
by recent applications of CFD methods to Reynolds numers as high 
as five billion. 

Our goal is to verify the reliability of CFD in the study of 
scale effects in ship wake. This goal requires the availability 
on one hand of a computer code with proven accuracy, validated 
against detailed experimental data, and on the other hand 
empirical wake data for at least two scales models of the same 
hull. In the study the first requirement is accomplished. 

The present numerical methodology is based on the solution 
of the time-dependent 3D RANSE in primitive variables. Reynolds 
stresses are related to the means rate of strain on Boussinesq's 
hypothesis through the concept of the eddy-viscosity. Eddy 
viscosity is calculated by the algebraic model of Baldwin-Lomax 
[3], based on the distance normal to the hull. The governing 
equations are discretized on a non-staggered grid, and the 
incompressibility constraint is satisfied by employing the 
optimum pressure-Poisson approach developed by Sotiropoulos and 
Abdallah [A]. 
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The computed results for a single-screw bulbous-bow gas carrier 
hull complete an extensive series of tests for verifying the 
present methodology. The importance of a high level of confidence 
in the computations must be stressed, as the study of scale 
effects will be based on the interpretation of the calculated 
results. In a forthcoming paper, the second requirement will be 
addressed. 

To illustrate the actual possibilities of the methodology in 
the prediction of wake scaling, an additional calculation at a 
"full-scale"   Reynolds 
performed. 

number of 1.0E+8 has been  however 

EXPERIMENTAL METHODOLOGY 

Due to the major role of stem wake in ship hydrodynamics, 
measurements in ship boundary layers and wakes have been carried 
out over many years. Notwithstanding the huge amount of empirical 
information, in reality few of the available data are adequately 
detailed or well documented to provide a deep insight into the 
physics of stem wake and the mechanism of Reynolds numbers 
scaling. The main reason of this fact is that such measurements 
of local flow parameters are delicate, affected by several 
sources of uncertainity, expensive, time consuming and not 
included in the routine work of towing-tanks. 

The basic experimental procedure to study wake scale effects 
still remains the use of geosim models. To this regard a series 
of toking-tank tests were carried out at the Naples university 
model-basin, DIN, on three ship models within a research program 
on geosim tests [5]. The choice of the model scales and of the 
.test speeds has been done taking into account the blockage effect 
and the turbulence stimulation. 

As regard the hull type a single-screw bulbous-bow tanker 
hull was selected. The main parameters of the prototype ship, 
designed and built by Fincantieri Merchantship Division, are the 
following: 

Table 1. Main characteristics 

parameter 
load condition 

full trial ballast 

L/B 
B/T 
Cb 
(ST/T)Z 

5.63 
2.15 
0.72 
4.50 

5.63 
2.48 
0.67 
0.0 

5.63 
3.30 
0.66 

20.90 
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The corresponding model scale ratios are 28, 20, 15.7 and 
the modles were tested at Fn - 0.265. Wake at the propeller disk 
was measured by a rake of 6 Pitot tubes differentially spaced 
along the radius, which can rotate in order to cover the complete 
set of measurements over 360°. The differential value between the 
dynamic and static pressures of each tube wass measured by an 
HBM, type PD 1/0.1 differential pressure gauge, which signal was 
amplified by a 6-channel signal conditioning system. The 
measurement was simultaneously taken by the 6 tubes at each 
angular position. 

System calibration was achieved through a series of carriage 
runs in open water, for a speed range from 0.2 up to 3.9 m/s with 
a 0.1 m/s increment. At each run the response in volts for the 
relative speed was recorded by the system and sent to the HBM 
signal conditioner. At the end of the series a regression was 
made on the recordered data to obtain the calibration curve of 
the Pitot tube. 

The angular step of the rake, in the case of a single screw 
vessel, is kept at 5°, for a total of 37 positions to cover the 
entire propeller disc. At each angle the values at 6 different 
radial positions are recordered for a time of about 10 seconds. 
The acquisition system then provides the corresponding output in 
real time, converting the analogic signal into a physical 
quantity. The fluctuations of the measurements due to natural 
wake pulses at the propeller disc of a ship model makes data 
processing necessary in order to smooth out the results. This is 
done analytically by means of a mathematical spline adopted on 
the results along the radius at constant angle. 

From the the measurements the following quantities were 
obtained for each of the three models tested in the towing-tank: 

- the local nominal wake l-w(x,6), relating to the different 
radius ratios x=R/r and the various angles 6. 

- the nominal wake curves for l-w(x,6) for constant x radius 
ratio as a function of the angle 6. 

- the circumferential mean wake for the various radius ratios and 
the total nominal volumetric wake. 

- the iso-velocity curves on the propeller disc relating to 1-w 
ranging from 0.1 to 0.9 with step 0.1. 

THEORETICAL METHODOLOGY 

The progress of computational fluid dynamics (CFD) in the 
prediction of practical ship flows during the last decade is 
well illustrated by the results of the two comparative studies 
for numerical calculation of ship viscous flows, the 1980 SSPA- 
ITTC Workshop [6] and the 1990 SSPA-CTH-IIHR Workshop [7]. 
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The workshops were addressed to give an assessment of the 
present state-of-the-art of ship viscous flow predictions by 
correlating computational results from different methodologies 
with detailed experimental flow data for selected test cases. 
The first Workshop showed a general breakdown in the capability 
of boundary-layer numerical methodologies to accurately predict 
ship stern flow, pointing out the need of further improvements in 
the modelling ship viscous flow. The results of the second 
Workshop clearly indicates what development direction has 
prevailed: in 1980 only one RANSE solver was presented, in 1990 
only one boundary-layer method was presented. 

A general conclusion which can be drawn from 1990 Workshop 
is that, nevertheless RANSE-based numerical methods are not still 
able to replace model tests in optimizing stern forms, they give 
already realiable qualitative information on the trend of stern 
flow characteristics according to changes in the stern geometry 
and could be a very precious tool in the evaluation of scale 
effects on ship wake. 

In the following we will give an outline of the theoretical 
methodology used for the present investigation on ship wake scale 
effects. 

General background 

The main difficulties associated with the solution of the 
incompressible Navier-Stokes equations come from the continuity 
equation and the role played by the pressure. A better 
understanding of these difficulties can be achieved by looking at 
the basic governing equations for incompressible viscous flows. 

Continuity Equation: 

div V - 0 (1) 

Momentum equation: 

2 
dV/dt + (V grad) V = - grad P + 1/Re grad V (2) 

The structure of the above equations leads to the following 
remarks: 

- continuity equation is not an evolution equation in time, which 
implies that the use of a time marching algorithm, such as for 
the compressible equation, is excluded; 

- there is no physical boundary conditions for the pressure. 
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It can be concluded that continuity equation is essentially 
a constraint on the velocity field. Although it does not involve 
directly the pressure, which appears only in the momentum 
equation, the pressure is the only degree of freedom to impose 
the continuity equation. To approach this problem there are 
essentially two approaches, non-primitive variables or primitive 
variables base equations. Within the first approach use of 
vorticity transport equation allows to eliminate the pressure 
from the governing equations. The present methology adopted the 
second approach, within which continuity equation is satisfied 
trhough a properly derived pressure equation. 

Taking the time derivative of both hands of (1) and the 
divergence of both hands of (2), the following equation for the 
pressure is obtained: 

grad2 P - - div [ (V grad) V - 1/Re grad2 V ] (3) 

This is a Poisson equation for the pressure which replaces 
the continuity equation (1) in the system of the governing 
equations. Equation (3) must be closed with a Neumann boundary 
condition which is derived by taking the normal component of the 
momentum equation (2) on the boundaries. 

The Neumann boundary problem for the pressure is well-posed 
if a compatibility condition, derived by application of Green's 
theorem to the pressure equation, is satisfied. Whilst in 
continuum form this compatibility condition is identically 
satsfied, the same is not true when the discrete Neumann problem 
is considered depending on the discretization scheme adopted. If 
a staggered grid is adopted, the compatibility condition is 
automatically satisfied and thus a converged solution for the 
pressure exists. On a non-staggered grid the compatibility 
condition is not automatically satisfied and the pressure 
equation fails to converge. In the present approach, which adopts 
a non-staggered grid, the pressure equation is therefore 
uniformly modified to meet the compatibility condition by adding 
to its right hand side an artificial source term. 

The corresponding time-averaged Navier-Stokes equations are 
derived modelling turbulent Reynolds stresses using the concept 
of algebraic eddy viscosity on Boussinesq hypothesis: 

<ViVj> = - 2/3 k dij + vt ( dVi/dxj + dVj/dxi ) (4) 

where the turbulent kinetic energy k is equal to the trace of 
Reynolds stress-tensor and the eddy viscosity vt is prescribed 
according to the turbulence model of Baldwin-Lomax as an 
empirical expression containing the distance normal to the hull. 
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The Baldwin-Lomax turbulence model has two advantages with 
respect to its popular competitor, the K-6 model: it does not 
require any additional differential equations and it can be 
prescribed up to the wall, so that the flow can be calculated by 
explicitly satisfying the no-slip condition. 

Governing equations and numerical solution procedure 

The 3D governing equations are written in cylindrical polar 
coordinates (x, r, 6) and then transformed to body-fitted, 
generalized, curvilinear coordinates ( ) , "] , ^ ) using the chain 
rule. 

Continuity Equation: 

J[3£ (J} + dr, V + ar M;J (5) 

Momentum Equation 

J at + A a* + B dr, + c ar 

3E-,   3E0  3E« 
-H + a+T^ + ^ + TT1   (6> di drj 3f 

where; 

Q - 
u 
v 
w 

(A.B.C) - * diag (U.V.tf) 

U - u | +-£„+v£ r  r s0    ?> 

v - u r?  + - j? + w r? 
r  r e x  (7) 

W - U rr + r f, + - f, 

The source terms H and a are defined as follows: 

H - 

V* + »r*, + fr
p

r - r 

r  (^PC + V, + ^P
f  

+ uv> 

Cp<> + »? P    + f P 

1 

(8) 
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and: 

a — 

-f <*22 ♦ ?> 

t V 
r     (R12 + R21  " P 

(9) 

where: 
RU * UJ <«j + "J "Xj 

+ "J fXj 

12 3 u-u,       u-v,       u-w 
(10) 

x.  - r,      x„ - rS,      x- - x 

l.J  - 1.  2,  3 

Finally the viscous flux vectors E]_,   E2 and E3 are defined as: 

»11 u* + Q12 u, + °13 uf + Slj 

V  T 

where: 

a21 Vf + °22 v„ + Q23 Vf + S2j 

a31 Vt + °32 \ + Q33 wf + S3j 

(11) 

all    a12    Q13 

a21    Q22    a23 

a31    Q32    Q33 
Vw 

(€r  <Jr 
+ 8lj)   (lr <l + S2j)   <fr 

£i + 63j: 

(ht* «j. + slj) c1!", <] + e2) <V* «J + s3j) 2 s0 (12) 

«, <j   +glj)   (^   4 + S2J)   (fv   «i + 63j) 2  ''x     x 
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and: 
*1J 

52j 

<x R31  + r «J   <R23   •   r> 

I      3JJ 

'2 R32  + 4 R12 + I  <? «J   ;  v  .J; 

fJ   R,,   + •*■  c^   R_, r    13      r    I    23 7 
1.2 3       . 

<     -  I   ,        «     -  IJ   , e     -   f 

(13) 

The  metric  coefficients  g1J and  the  Jacobian  of 
transformation J are: 

g ij   ij^i-ij^ij 
" er ei + 2 £* ef + ex ei 

r (14) 

and: 

J - 3(r,r0,x) 
(15) 

The pressure is calculated from the pressure Poisson 
equation (3), first obtained in cylindrical polar coordinates and 
then transformed to general curvilinear coordinates using the 
chain rule. The resulting equation is written as follows: 

3_ f4t ( 11 SI +    12 SI +    13 S2)} 
a£ 1J   ^g    a£    g    a»?     s    arJ 

+i_  .At  (12 SI +    22 SI +    23 IP 
+ a»? lJ   ^g    a?    g    a 17    g    ar;j 

where: 

+ i_   rAt  (   13 2P +     23 |£ 
+ ac lJ   cg    a*     8    a»7     6 

33 SI 
ar )] 

V«Q 

(16) 

- ^ [f «r fc + nT f" + rr ff)] a£ 

+ 3^ [r J ̂  (C, f* + «i, f" + r, fr)i (17) 

a_ rAt 
ar [f «x^ + -txf' + rxf

r)] 

Bt :< and f , f and f are the convective and the diffusion terms in 
the momentum equations. 
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The governing equations are discretized on a non-staggered 
grid. We use 3-points central finite differencing for the 
continuity equation as well as for the pressure gradient and 
viscous terms while employ second order upwind differencing for 
the convective terms in the momentum equation- The upwind scheme 
eliminates the need for adding artifical dissipation terms, to 
the right hand side of the momentum equation. 

The momentum equation (6) is solved by marching in time for 
the cylindrical polar velocity components Q. Time integration is 
performed by explicit four stage Runge-Kutta algorithm, enhanced 
with local time stepping and implicit residual smoothing. 
Pressure equation (16) is solved using the point successive 
relaxation method. 

CALCULATION CONDITIONS 

Grid definition 

The numerical solution of RANSE equations requires in 
general an adequate discretization of the relevant fluid domain 
outside the hull through a grid of nodal points over which the 
ruling equations are actually solved. The algorithms based of 
finite difference or finite volume techniques want continuous and 
ordered grids whereon integrating the equation. 

In particular a grid should be sufficiently regular to 
ensure an efficient numerical solution of the relevant equations, 
it should be orthogonal near hull surface to make easier the 
apllication of boundary conditions and it should be very fine in 
regions of sharp changes of geometry, in the thin boundary-layer 
at midship and generally in all the near-wall region. As a 
consequence of these strict requirements and of the geometry 
complexity for practical ship hulls and in consideration of its 
major role in the efficiency and accuracy of the numerical 
solution, numerical grid generation has developed to such a level 
of mathematical refinement that presently it does constitute a 
new sector of computational sciences. 

The algorithm presently used to create the grids is based on 
the so-called body fitted coordinate system. That is a mesh which 
fits the shape of the computational domain where fluid flows. The 
basic idea underlying this methodology is to map the physical 
domain outside the ship hull into a fictious rectangular domain. 
It is immediate to generate an orthogonal grid on the trasformed 
domain, by simply drawing lines parallel to each coordinate axis. 
This grid of the physical domain is obtained by mapping backward 
the grid of the trasformed domain. 

Numerically this is done by solving a set of three Poisson 
equations, where the dependent variables are the physical 
coordinates, the independent variables the transformed 
coordinates and the source terms are the grid control function 
that ensure the required grid distribution. 
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In order to solve the differential system one needs to apply 
a set of boundary conditions which are derived from the 
prescribed size of the physical domanin and the the number of 
points in the axial, radial and girthwise direction. The 
software used to perform these calculations is derived from the 
one originally developed at IIHR [8] and further improved [9]. 

The main goal of this technique is to achieve an orthogonal 
grid on every transversal section and it works very well if the 
number of point for each section is quiet small. As it increases 
the lines coming out of the hull, normal to the surface, move 
closer each other until they cross. In order to avoid this 
problem the first step of our calculation was to create a coarse 
orthogonal grid and then interpolate the mesh adding new points 
in radial and girthwise direction preserving cells "orthogonality. 

A better description of the boundary layer is obtained by 
thickening the grid points near the hull. Also the new radial 
distribution preserves orthogonality and the points are spaced 
according to a geometrical progression which ensures the desired 
number of grid point inside the boundary layer. Of course in the 
rear zone of the ship, where the cross section become more 
curved, preserving orthogonality is very hard if not impossible. 
In this case a good description of hull geometry is preferred, so 
the grid turns out to be more skewed. Continuity of grid cells, 
in the zone past ship sten, is obtained by introducing a false 
wake plane whose depth decrease smoothly in the sections near the 
hull and then remains constant. 

For every case the ship length is the same as the 
distribution of section in the longitudinal direction. The 
influence of scale effects is taken into account thanks to the 
radial distribution of the radial points, which thicken as the 
Reynolds Number increase. The last radial section is placed at 
R/L=0.5 from the hull. The first grid section starts at X/L=0.51 
the last is placed at X/Le1.7. Each grid has from 15 to 20 points 
inside the boundary layer, from 30 to 40 points in the girthwise 
direction. 

Boundary conditions 

Referring to the physical domain in Fig. 1, the relevant 
boundaries are the inlet plane (ABCD), the exit plane (EFGK), the 
water-plane (ABFEO*) and keel-plane (DLKGC), wake centerplane 
(O'LKE), hull surface (ADLO') and outer boundary (BCGF). 

The boundary conditions are applied as follows, in terms of 
the polar fluid velocity components u, v, w and the fluid 
pressure p: 

ABCD) 

u is specified from b'layer computations, while v and w are set 
to zero. The pressure is consequently computed from the normal 
momentum equation. 
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EFGK) 

u   »v  » w  »0. The pressure is again computed from the 
normal momentum equation. 

ABFEO'-DLKGC) 

Simmetry is imposed by setting w and the normal derivatives  of 
u,v and p to zero. 

O'LKE) 

Simmetry is imposed as above. 

ADLO') 

u = v = w = o. The pressure is computed by setting its normal 
derivative to zero. 

BCGF) 

u  =v  = w  «■ p  =0. 

RESULTS AND CONCLUSIONS 

For the correlation, the largest 15.7 model-scale was 
considered, corresponding to a model length of 5 meters and a 
Reynolds number of 9.0E+6. Ship dimensions are scaled by ship 
length and the velocity with respect to the maximum inlet 
velocity. 

Numerical results are obtained using (75, 50, 32) grid 
points in the axial and tangential direction respectively. In 
Fig. 2 one half of the ship geometry is shown with 52 cross- 
sectional planesnoraml to the ship main axis. A typical finite- 
difference grid in the cross-sectional planes is shown in Fig. 3. 

Fig. 4 shows the cross-velocity vectors at the propeller 
plane, x = 0.97. The computed results are in good agreement with 
the experimental data. Note that the computed and measured 
velocity vectors are not at the same space locations. It can be 
seen that the downward cross-flow near the vertical symmetry line 
is well predicted. In Fig. 5 the axial velocity contours are 
shown at the propeller plane. The axial velocity contours are 
well predicted for both the low and high velocity regions. In 
Figs, from 6 to 9 the non-dimensional velocity profiles at x = 
0.5, 0.7, 0.9 and 1.0 are reported versus the angular position. 

Besides the 9.0E+6 Reynolds number calculation, an 
additional calculation at a Reynolds number of 1.0E+8, which is 
intermediate between model-scale and full-scale, was carried out 
in order to investigate the applicability of the methodology to 
high Reynolds number in the scope of wake scaling effects 
analysis. 
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To this regards it should be noted that the central 
difficulty in applying RANSE to high Reynolds numbers is to 
mantain accuracy in the resolution of the increasing gradient of 
velocity and turbulence parameters within a layer of gradually 
diminishing thickness. On the other hand proper viscous and 
turbulent dynamics can be described with accuracy only if the 
vorticity generated within the wall layer is correctly predicted. 
As a matter of fact it results from the 1990 Workshop that only 3 
methodologies over a total of 17 participated to the "full-scale" 
calculations on HSVA Tanker hull at Reynolds number of 2.0E+9. 

It is however useful to recall the main conclusions which 
could be derived from the results of these calculations 
concerning Reynolds scaling. First at increasing Re the thinning 
of the boundary-layer was found not uniform in all regions, 
crossflows were found intensified and so longitudinal vorticity, 
measured by helicity density which is an index of the three- 
dimensionality of the flow. Besided it could be noted that at 
stern the transverse extent of vortical flow did not contract in 
the manner predicted by semi-empirical methods. In general 
correlation formulas resulted in overestimation of velocities in 
the wake centerplanes and ensured only a qualitative agreement 
for the velocity components at the propeller plane. This 
confirmed the limitation of scaling laws based on boundary-layer 
or simple wake concept in the ship stern region. 

In Figs. 10 and 11 we report the trend of numerical error in 
the calculated pressure and axial velocity respectively versus 
iterations number to show the achievement of numerical 
convergence of the solution. In Figs. 12 and 13 we compare the 
isowake contours at the propeller disc at Re 9.0E+6 and 1.0E+8. 

The computed results for Re - 9.0E+6 show that the present 
numerical apporach is adequate for predicting the complex 
turbulent flow around ship hulls. The method was already tested 
for several ship hulls and the present test case is a severe one 
due to the complex geometry involved. The achieved degree of 
accuracy ensures that the method is now ready to be applied for 
prediction of full scale ship hulls. This has been confirmed by 
the calculation presently carried out at an intermediate Reynolds 
number of 1.0E+8. 
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Fig. 2. Cross-sectional planes for one-half ship. 
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Fig.  A.   Cross-velocity vectors at the propeller disc,  x = 0.97. 
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Fig.   5.  Axial velocity contours  at the  propeller disc. 
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Fig.   6.   Non-dimensional velocity  profile at x =  0.5. 
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Fig.   7.   Non-dimensional velocity  profile  at x =  0.7. 
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Fig.   8.   Non-dimensional velocity profile at x =  0.9. 
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Fig.   9.  Non-dimensional velocity  profile at x «  1.0. 
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DISCUSSION 

V. Patel and S. Ju 
University of Iowa, USA 

In a recent paper (Ju and Patel, Journal of Ship 
Research, Vol 35, p. 101, 1991) a much more 
comprehensive study of high Re flow and scale 
effects was described. This paper carefully examined 
the application of a numerical method to high Re 
flow by comparisons with axisymmetric boundary- 
layer data of code R up to Re ~ 105, performed ship 
wake calculations for Re range 5x10* to 5xl09, and 
used these results to assess the applicability of 
empirical scaling laws such as those of Tanaka and 
Himeno for Re scaling of ship wakes. This study led 
to conclusions similar to those of the present authors. 
What is surprising about the present paper, however, 
is that no reference is made to the previously 
published work and very similar conclusions are 
drawn from a much less detailed study in which the 
highest Re considered is only 108, an order of 
magnitude smaller than full scale! In particular, we 
do not see how the stated conclusions follow from the 
results (ex. scale effects) presented in Figures 12 and 
13. 

AUTHORS' REPLY 

I fully appreciate the presentation of Prof. V.C. 
Patel and Dr. S. Ju and I wish to clarify that it was 
not our intention not to recognize the valuable work 
quoted in the Journal of Ship Research, 1991, which 
remains one of the most complete contributions to 
wake-scaling investigation to my knowledge. I, 
however, stated early in the paper, and I hope it 
appeared from my presentation as well, that our 
present work is still more dealing with validation 
rather than on high Re effects. Nevertheless, we 
performed a trial calculation at an intermediate Re 
(A.OE+8) between model (A.OE+6) and full-scale 
(A.OE+9) just to verify the present capability of our 
code to perform well at such Re. We need further 
work to really assess scale effects for practical hulls. 
About the conclusions you refer to, there is probably 
a misunderstanding. The consideration on Re scaling 
contained in the concluding chapter are not related to 
the present calculations. As a matter of fact, it is 
explicitly stated that they are state-of-the-art 
considerations drawn from the computation results of 
the 1990 Workshop on Ship Viscous Flow, to which 
you contributed also with a "full-scale" computation 
on HSVA tanker.  I preferred to quote the workshop 

in place of your previously mentioned paper in order 
to give more generality to the considerations. I find 
it promising that two different methods seem to give 
good results at high Re for two different ships and I 
will be glad to see some further high Re calculations 
for other geometries. 

DISCUSSION 

H.-T. Kim 
Chungnam National University, Korea 

1. In the abstract, you stated that by using 
"consistent finite-difference approximation" for the 
pressure equation and the boundary conditions, the 
compatibility condition is satisfied and the pressure 
equation with Neumann B.C. is guaranteed to 
converge, but in the second paragraph below Eq. (3), 
it is stated that the pressure equation is uniformly 
modified to meet the compatibility condition by 
adding an artificial source term. Can you explain 
these seemingly inconsistent statements? 

2. You used the Baldwin-Lomax zero Eq. model to 
close the RANS equation. But the Eq. (4) in the 
paper includes the turbulence kinetic energy and it 
confused me. Do you really include the turbulence 
kinetic energy term for the Reynolds stress? If so, 
how do you obtain them? 

3. It is not clear to me how you obtain a discretized 
equation for pressure. Did you directly discretize the 
pressure Eq. (k)? Or, starting from the discrete form 
of the continuity Eq.? 

AUTHORS' REPLY 

1. Both the approaches, additional source 
introduction and finite difference consistent 
approximation, to get a consistent solution of the 
pressure Poisson-type equation have been analyzed in 
the development of the code and they are alternatives. 
At the end, the F.D. consistent scheme was selected 
to be implemented in the code. 

2. I appreciate your question. In the general 
background description we refer to a 2 parameters 
turbulence model, but the formulation actually 
implemented uses Baldwin-Lomax turbulence model. 

3. The pressure equation in curve linear coordinates 
(Eq. 16) is the one actually discretized in the code. 
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Longitudinal Vortices in a Turbulent Boundary Layer 
Along a Curved Wall 

W. Kim, V. Patel (The University of Iowa, USA) 

ABSTRACT 

Laboratory and numerical experiments are performed to 
elucidate the influence of longitudinal surface curvature and 
pressure gradient on the growth and decay of longitudinal 
vortices immersed in a turbulent boundary layer. A pair of 
counter-rotating vortices, with their common induced flow 
towards the wall, is considered. Two cases are studied: 
vortices introduced in a flat-plate boundary layer, and 
vortices introduced in a boundary layer that is subsequently 
subjected to concave wall curvature and attendant pressure 
gradients in a rectangular duct with a 90° bend. In the 
former, computational results are compared with previous 
data. The same configuration of vortices is used in the 
latter study, in which both experiments and computations 
were carried out. The computational model solves the 
Reynolds-averaged Navier-Stokes equations in conjunction 
with a two-layer turbulence model. It is observed that there 
is a strong effect of curvature on the interaction between the 
vortices and the wall. The growth and decay of the 
vortices is affected. In particular, when vortices are 
introduced on the concave wall, secondary vortices of op- 
posite sign arise outside the primary ones, forcing the pri- 
mary vortices to stay close to each other. The vortex cir- 
culation decreases on the flat wall whereas it is increased 
on the concave wall. 

NOMENCLATURE 

A 
C 
CD,CL 
Cf 

& 
k 
Ri>Ro 
r 
ri 
rc 
S 
U0 
Ux 
(U,V,W) 

(AU)max 

ve 
(Ve)c  
-uv,-uw,-vw 

area of half-delta wing (vortex generator) 
chord length of half-delta wing 
drag and lift coefficients 
friction coefficient (= xw/rf>U0) 
pressure coefficient (= Ap^pU0 ) 
duct (curved-wall wind tunnel) width 
turbulent kinetic energy, normalized by U0

2 

inner and outer radii of curved-wall tunnel 
radial distance from center of vortex core 
half-radius of the vortex wake 
radius of the vortex core 
half-span of vortex generator 
reference velocity (=16 m/sec) 
friction velocity, normalized by U0 
velocity components in (X,Y,Z) directions, 
normalized by U0 
maximum longitudinal velocity deficit, 
normalized by U0 
circumferential velocity component 
maximum circumferential velocity 
Reynolds shear stresses, normalized by U0

2 

Y 
Z 

a 
ß 
e 

(Qx,ClY,Qz) 
v 
Vt 

streamwise distance from trailing edge of 
vortex generator 
normal distance from the wall 
spanwise distance from the symmetry plane 
wall coordinate (= UTY/v) 
distance of vortex center from the wall 
distance of vortex center from symmetry 
plane 
angle of attack of half-delta wing 
apex angle of vortex generator 
rate of turbulent energy dissipation 
circulation of vortex at trailing edge 
peak longitudinal vorticity 
vorticity components in (X,Y,Z) directions 
kinematic viscosity 
eddy viscosity 
wall shear stress 

INTRODUCTION 

Longitudinal vortices, either arising naturally through 
separation or introduced artificially by vortex generators, 
imbedded in turbulent boundary layers, play an important 
role in a number of practical applications. Among natura- 
lly arising vortices in hydrodynamics are ship bilge vortices 
and the trailing legs of the horse-shoe vortex on a 
submarine appendage. Artificial vortex generators are 
often used to promote mixing and control separation, e.g., 
on the wings of the Boeing 737. The present paper is 
concerned with the development of artificially introduced 
vortices along a curved surface. 

There have been several recent studies concerning vor- 
tices imbedded in turbulent boundary layers. In an effort to 
simulate ship stem vortices, Tanaka and Suzuki (1978) 
considered the interaction between a flat-plate turbulent 
boundary layer and the trailing vortex generated by the tip 
of a lifting wing. Although their measurements were 
somewhat limited, they showed, with the help of a parallel 
computational study, that the eddy viscosity for diffusion 
of the longitudinal vorticity was much smaller (by a factor 
of 6.33, supporting the earlier results of Batchelor (1964)) 
than the eddy viscosity in the parent boundary layer. 
Further experiments have been carried out at Imperial 
College, London, by Shabaka, Mehta, and Bradshaw 
(1985) with a single vortex in an otherwise two- 
dimensional turbulent boundary layer in zero pressure 
gradient. They also found, from measurements of mean 
velocities and Reynolds stresses, that empirical correlations 
used in traditional turbulence models were not likely to 
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accurately predict the development and decay of the vortex 
and its interaction with the boundary layer. Mehta and 
Bradshaw (1988) performed similar experiments with a 
vortex pair with common flow away from the wall, and 
found that large changes occur in the structural parameters 
of the turbulence. The same kind of experiments have 
since been carried out by Eibeck and Eaton (1985) and 
Pauley and Eaton (1988) at Stanford University. They 
showed that the rate of vorticity spreading in a vortex was 
greatly increased by proximity of other vortices, and 
vortices remaining close to the wall produced significant 
levels of span wise skin friction and thus a greater rate of 
decay of circulation. In the above two sets of experiments, 
half-delta wings were used as vortex generators. The 
generators were put on the floor of the wind tunnel settling 
chamber in the experiments of Bradshaw et al., whereas 
Eaton et al. placed the generators near the start of the test 
section. Westphal, Eaton and Pauley (1985) have 
measured the development of a single vortex imbedded in a 
boundary layer subjected to an adverse pressure gradient 
and found that pressure gradients have a considerable effect 
on the structure of the vortex. In the area of computational 
modelling of the fate of artificial vortices, mention has been 
made already of the work of Tanaka and Suzuki (1978). 
Liandrat, Aupoix and Cousteix (1987) have calculated the 
development of longitudinal vortices in a flat-plate turbulent 
boundary layer using parabolized Reynolds-averaged 
Navier-Stokes equations, with mixing-length and 
Reynolds-stress models and compared with the 
measurements of Shabaka et al. (1985). They concluded 
that simple models of turbulence, based on eddy-viscosity 
concepts, provide satisfactory estimates of the main 
features of the flow in the case of a single vortex but are 
not satisfactory in describing the interaction among 
vortices. According to their study, Reynolds-stress models 
were somewhat better but they also underpredicted the 
stresses. The improvement they found by integration of 
the equations along streamlines with a simple diffusion 
model suggests that care must be exercised in numerical 
solution of flows with vortices. The authors are not aware 
of similar numerical studies elsewhere. 

In spite of these previous studies, there remain several 
aspects of the physics of vortex development and decay 
that are not well understood. For example, the manner in 
which surface curvature affects the development and decay 
of longitudinal vortices imbedded in boundary layers is not 
known although curvature effects on turbulent boundary 
layers in the absence of secondary motion are well 
documented. Similarly, the influence of pressure gradients 
on streamwise vorticity in a turbulent boundary layer has 
not been explored. In the area of numerical modelling, 
there is no comprehensive attempt made to model either the 
flow induced by conventional vortex generators or its 
subsequent development. The present experimental and 
numerical study was designed to investigate these particular 
aspects of longitudinal vortices within turbulent boundary 
layers. 

The previous experiments on vortices in flat-plate 
boundary layers are supplemented by similar experiments 
in vortices developing on a concave wall in the presence of 
pressure gradients. A simple semi-empirical model is 
proposed to describe the flow just downstream of a 
conventional half-delta-wing vortex generator, and this 
model is employed in a numerical method that solves the 
Reynolds-averaged Navier-Stokes equations, with a two- 
layer turbulence model, to predict the vortex evolution. 
Extensive comparisons between experiment and com- 
putations are made to elucidate the effects of streamwise 
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wall curvature and pressure gradients on vortex growth and 
decay. 

EXPERIMENTS 

The experimental arrangement used by Pauley and 
Eaton (1988) is sketched in Figure 1. They made measure- 
ments behind a pair of half-delta-wing vortex generators 
placed on the wall of a straight rectangular duct. The 
boundary layer on this wall develops under nominally 
constant pressure, and has a momentum thickness 
Reynolds number, R9 = 1700 at the location of the vortex 
generators. Of the several different arrangements of vortex 
generators used in these experiments, the one chosen as the 
model for the present study is designated case 3 and 
'common-down,' in which the generators are placed such 
that the common flow induced between them is towards the 
wall. The vortex generators are shown in Figure 2. 
Pauley and Eaton used a five-hole Pitot probe to measure 
mean-velocity components and hotwires to measure some 
of the Reynolds stresses. Their data are compared with the 
results of the corresponding numerical simulations in a later 
section. 

The present experiments were conducted in the curved- 
wall wind tunnel shown in Figure 3. This open-circuit, 
suction-type wind tunnel has a 90° bend. The upstream 
straight section provides a developed turbulent boundary 
layer into which vortex generators are installed. The 
downstream straight section is provided to study recovery 
of the flow following the bend. The tunnel cross-section is 
rectangular with an aspect ratio of 6. Measurements and 
calculations of Kim (1991) revealed that, in the absence of 
vortex generators, the boundary layer on the middle two- 
third span of the outer (concave side) wall is essentially 
two-dimensional, i.e., free from secondary motion and 
corner effects. Two pairs of half-delta-wing vortex gen- 
erators are installed symmetrically on this wall, 132 cm 
downstream of the boundary layers trip, which is a 
distance of 14C downstream of station Ul, C (= 50 mm) 
being the generator chord. The location is shown in Figure 
3. The generators are arranged so that the common flow 
between the vortices is towards the wall. Two pairs of 
generators placed symmetrically about the tunnel center- 
plane are chosen instead of a single pair at the tunnel center 
to minimize the length, and interference, of the probe 
traversing mechanism. The vortex generators have the 
same geometry as those of Pauley and Eaton (1988), 
shown in Figure 2, and therefore, generate comparable 
vortices. The experiment is performed with a free-stream 
velocity (U0) at station Ul of 16 m/sec. The momentum 
thickness Reynolds number Re of the boundary layer at the 
location of the vortex generators is 3150. 

In the presentation of experimental as well as compu- 
tational results, unless otherwise indicated, all quantities 
are nodimensionalized with U0, C, and fluid density p, as 
appropriate. Also, to facilitate comparisons among diff- 
erent experiments, the results are presented in coordinates 
which are referred to the location of the vortex generator, 
as shown in Figures 1 and 3. Thus, X is measured along 
the wall from the trailing edge of the vortex generator, Y is 
normal to the wall, and Z is spanwise, measured from the 
plane of symmetry between the two vortex generators. The 
mean-velocity components in the (X,Y,Z) directions are 
denoted by (U,V,W) and the corresponding fluctuating 
components by (u,v,w). 

The pressure distribution along the inner (convex side) 
and outer (concave side) walls of the tunnel, measured with 



wall pressure taps in the symmetry plane, without the 
vortex generators, is shown in Figure 4. It is clear that the 
vortices introduced on the outer wall just ahead of station 
U2 are subjected to an adverse pressure gradient at the start 
of the bend and a favorable pressure gradient at the exit 
from the bend. Within the bend, between stations 15 and 
75, there is a fetch of nearly constant (slightly falling) 
pressure. In the upstream and downstream straight 
sections, there is a small favorable pressure gradient due to 
frictional losses. 

A five-hole pressure probe, calibrated following the 
method of Treaster and Yocum (1979), is employed to 
measure the three mean-velocity components. The overall 
diameter of the probe is 0.13 inch (3.30 mm) and it has 
five 0.023 inch (0.584 mm) holes: one on the flat surface 
facing upstream and four equally-spaced on 45-degTee 
facets. 

The wall shear stress is determined by employing two 
different types of pressure probes at the same location. A 
total-head tube with inner and outer diameters of 0.047 and 
0.065 inch (1.19 and 1.65 mm), respectively, is used in 
the manner of a Preston tube. However, the static pressure 
at the same point is obtained from a separate static-pressure 
probe. The difference between the readings of the two 
probes is used, along with the Preston tube calibration of 
Patel (1965), to obtain the wall friction coefficient. 

A constant-temperature hotwire system is employed to 
measure the fluctuating velocity components. At the 
beginning of this study, it was thought that triple-sensor 
probes could be used to obtain all the necessary infor- 
mation in a single set of experiments. However, more 
detailed consideration of the flow to be measured in the 
present case soon led to the conclusion that commercially 
available triple-sensor probes are much too large to 
properly resolve the near-wall flow. Therefore, a miniature 
two-sensor (cross-wire) hotwire probe, whose overall size 
is less than 2 mm (DISA 55P61), is employed to improve 
resolution of the near-wall flow in the boundary layer. 
This probe is used in two orientations, namely, with the 
sensors in the UV or the UW planes, to obtain all except 
one (-vw) component of the Reynolds stress tensor. 
King's law is employed to relate the output voltage to the 
effective cooling velocities along the wires. The cooling 
effect by the out-of-plaiie velocity component is ignored 
and the directional sensitivity coefficient is assumed to be a 
constant. Although the hotwire measurements also yield 
the mean-velocity components, the measurements with the 
pressure probe are generally more reliable. Therefore, only 
the pressure probe data are presented for the mean 
velocities. The pressure-probe and hotwire measurements 
are made in the upper half of the duct at five cross sections, 
namely, U2, 15, 45, 75, and Dl, which are identified in 
Figure 3. The measured mean velocity and Reynolds 
stresses are compared with the computational results in a 
subsequent section. 

NUMERICAL METHOD 

The numerical method of Chen and Patel (1989) for the 
solution of the Reynolds-averaged Navier-Stokes equations 
is modified and used for the present work. This method 
uses a collocated grid with a PISO-like pressure-velocity 
coupling technique. However, in the original version, only 
the independent variables (i.e., the coordinates) are trans- 
formed into generalized curvilinear coordinates, leaving the 
vector components in Cartesian coordinates. For the 
present study involving a highly curved flow, it was felt 

desirable to consider the full-transformation approach, in 
which contravariant components of the velocity vector, 
following the direction of the numerically generated, 
nonorthogonal, curvilinear grid lines, are employed. The 
detailed tensor operations in transforming the Navier- 
Stokes equations can be found in Richmond, Chen and 
Patel (1986). Turbulence closure is effected by the two- 
layer turbulence model of Chen and Patel (1988) which 
combines a one-equation model near the wall with the 
standard k-e model farther out. Details of the present 
version of the numerical method are given in Kim (1991). 

The numerical method was employed to perform 
calculations for the flow within the entire duct, without any 
artificial disturbance, to study the development of the wall 
boundary layers and, in particular, the evolution of 
longitudinal vortices, naturally occurring on the convex 
wall induced by the pressure-driven secondary motion. 
The results are reported in Kim (1991). Although this 
portion of the overall study is not of concern here, it 
confirmed, as noted above, the experimentally observed 
two-dimensionality of the boundary layer over the mid- 
span of the outer wall. Comparisons between 
measurements and calculations also confirmed the ability of 
the numerical method to resolve the flow details, and 
limitations of the turbulence model in describing the effects 
of longitudinal curvature. These features will be com- 
mented upon in subsequent sections. 

MODEL OF A HALF-DELTA-WING VORTEX 
GENERATOR 

Although vortex generators are quite frequently used in 
practical applications, there is no model or method available 
for the prediction of the size, location and intensity of the 
vortex induced by a typical generator. If it is desired to 
study the fate of these vortices, and their interactions with 
the parent boundary layer, neighboring walls, and other 
vortices, it is clear that one must solve the full Reynolds- 
averaged Navier-Stokes equations for the flow downstream 
of the vortex generators. Solution of these equations to 
describe the flow around a vortex generator itself is a 
formidable task because it would require not only proper 
resolution of the boundary layer and the junction flow, but 
also the leading-edge vortex, its bursting, and transition to 
turbulence. To the authors' knowledge, such a solution 
has not been attempted and there are few, if any, successful 
solutions of the flow around even an isolated delta wing. 
An alternative to calculating the flow around the generator 
is to develop a model that relates certain overall 
characteristics of the vortex to the geometry of the 
generator. This alternative is followed here. 

The flow behind a vortex generator is modeled by 
drawing upon the information that is available from studies 
on delta wings. In particular, a relation is sought between 
the geometrical and flow parameters of the generator and 
the parameters describing the resulting vortex, namely, the 
size, strength, and location of the vortex, as well as the 
distributions of velocity and turbulence parameters within 
the vortex. Such a model is then utilized to prescribe the 
initial conditions to calculate the downstream development 
of the flow. 

To determine the position of the vortex center, it is 
assumed that it is the same as that observed on isolated 
slender delta wings, i.e., the effect of the wall is negligible. 
Lowson (1989) has carried out extensive visualization 
tests, compared his results with those of several previous 
experiments, and correlated the coordinates of the vortex 
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center with the ratio of the angle of attack (a) to the semi- 
apex angle (ß) of the wing. Lowson's correlation is used 
here to determine the location of the vortex center at the 
trailing edge of the generator. For the present case, in 
which cc/ß = 0.825, Lowson's correlation gives the 
following coordinates of the vortex center: y* = 0.6S and 
z* = 0.8S, where S (= 0.4C) is the semi-span of the vortex 
generator (see Figure 2). 

The velocity distribution within the vortex is deter- 
mined by relating the drag and lift of the wing to para- 
meters such as the maximum axial velocity deficit and the 
peak circumferential velocity, and assuming the shape of 
the velocity distributions. The profile used here is based 
on the experimental data of Leuchter and Solignac (1983), 
Phillips and Graham (1984), Mehta and Cantwell (1987), 
and Pauley and Eaton (1989), who measured detailed 
velocity profiles behind different types of vortex genera- 
tors. According to Phillips and Graham, the axial velocity 
behind a vortex generator has a Gaussian distribution and 
the circumferential velocity can be represented by a 
Rankine vortex. This observation was supported by 
Pauley and Eaton. However, the presence of the solid wall 
near the vortex requires an image of the vortex in the wall. 
Another important observation made from the experimental 
data mentioned above is that the radius at which peak 
circumferential velocity occurs (i.e., radius of the vortex 
core, rc) is about the same as the radius at which the axial 
velocity deficit is one-half of its maximum value (i.e., half- 
radius of the vortex wake, ri). Thus, in the present study, 
it is assumed that the axial velocity profile is given by a 
Gaussian distribution and the circumferential velocity is 
represented by a Rankine vortex and its images. It is also 
assumed that the half-radius of the wake is the same as the 
radius of the vortex core. With these assumptions, the 
distribution of axial (longitudinal) velocity in the vortex 
behind a half-delta-wing generator is given by 

U= 1 ■ (AU)™ exp ^& (1) 

Further,, it is assumed that the center of the vortex core at 
the trailing edge of the vortex generator is a stagnation 
point (i.e., (AU)max = 1.0). The circumferential velocity 
with the Rankine-vortex model is given by 

Ve = (Ve)c^ forr<rc 

= (Ve)c^ forr>rc 

with the circulation rc = 27crc(Ve)c and rc = r^ 

(2) 

Once the shape of the axial velocity profile is assumed, 
conservation of mass and axial-momentum balance can be 
used to relate the drag of the vortex generator to the velo- 
city distribution in the vortex. Any contribution from the 
pressure change induced by the vortex, and effects of the 
adjacent wall, are ignored in this model. This gives the 
drag coefficient 

c»-f U(l-U)rdr (3) 

where A is the area of the vortex generator. Similarly, the 
lift of the generator is related to the circulation around the 
vortex, and the lift coefficient is given by 

CL = 
2rcy* 
U0A 

(4) 

Polhamus (1971) gives the drag and lift coefficients of 
slender delta wings as functions of incidence, aspect ratio, 
and sweep angle. These relations are used here. For the 
present configuration of vortex generators shown in Figure 
2, the resulting circulation Reynolds number (rc/v) is 
18,700 and rj/C = r</C = 0.108. 

Vortices with the above velocity distribution are intro- 
duced inside the boundary layer, in which the streamwise 
velocity distribution (U component) is known. A simple 
superposition is adopted for this velocity component. 
However, introduction of the vortices leads to a transverse 
(spanwise) velocity component parallel to the wall which is 
not zero at the wall. This component is doubled due to the 
image vortex in the wall. To impose the no-slip condition 
for this spanwise velocity component at the solid wall, it is 
assumed that that component is related to the streamwise 
component by the inner leg of Johnston's triangular plot 
for crossflow in a three-dimensional turbulent boundary 
layer. Note that this inner leg, in which the velocity vector 
is assumed to be collateral, extends to U/Ux of about 15, 
UT being the friction velocity. 

For the turbulence model employed here it is also nece- 
ssary to determine the distributions of k and e within the 
vortex at the trailing edge of the vortex generator. Both the 
turbulent kinetic energy and the eddy viscosity are assumed 
to have Gaussian distributions, similar to the axial velocity. 
The peak values of k and vt (= Cuk2/e, Cn being a model 
constant) are then related by assuring equilibrium between 
the production and dissipation of turbulent kinetic energy in 
the integral sense; i.e., the integrated production of 
turbulent kinetic energy is balanced by integrated 
dissipation rate at the plane in which the inlet velocity 
profiles are prescribed. Finally, the peak value of the eddy 
viscosity in the vortex is obtained from the formula of 
Owen (1970), which relates the eddy viscosity to the 
circulation Reynolds number TJv. 

The vortex model outlined above, along with the 
characteristics of the parent boundary layer (usually the 
thickness and friction coefficient), provide all of the initial 
conditions necessary to solve the Reynolds-averaged 
Navier-Stokes equations, starting from the trailing edge of 
the vortex generators. Thus, the model provides a means 
to introduce vortices of desired strength and configuration, 
at desired positions, in the Navier-Stokes solution method 
without having to resolve the flow around the generator 
itself. For vortex pairs, the model is used with appropriate 
overlaps and reflections in walls to obtain the combined 
velocity and turbulence profiles. 

COMMON-FLOW DOWN VORTEX PAIR IN A 
FLAT-PLATE BOUNDARY LAYER 

The numerical method and the vortex model outlined 
above are used first to simulate the experiments of Pauley 
and Eaton (1988). As shown in Figure 1, a pair of longi- 
tudinal vortices with their common flow toward the wall is 
introduced in a flat-plate turbulent boundary layer. The 
solution domain extends from the trailing edge of the 
vortex generator, X = 0, to X/C = 35 in the longitudinal 
direction, and is large enough in the normal (0 £ Y/C < 6) 
and spanwise (0 < Z/C £ 10) directions to exclude any 
effect of the tunnel walls. This domain is covered by a 42 
x 65 x 57 nonuniformly distributed grid points. The vortex 
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model described in the previous section supplies the inlet 
conditions at X=0 and the downstream exit profiles are 
extrapolated. No-slip condition is imposed on the wall 
(Y=0), while symmetry conditions were imposed on Z=0 
and the outer boundaries. The first grid point near the wall 
is located around y+=1.0 and care is taken to ensure that 
the grid is dense in the region where the vortex core is 
located. It should be remarked that, in the presentation of 
results attention is confined to a small segment of the total 
solution domain, and also to a part of the wind tunnel 
cross-section, in which the vortices are not influenced by 
the side walls. 

Two hundred iterations are required to obtain a 
converged solution. The CPU time required for calcula- 
tions on the CRAY-YMP supercomputer was about 0.12 
milliseconds per iteration per grid point, which translates 
into a total time of about one hour. 

The calculated and measured contours of longitudinal 
velocity and voracity are compared at four axial locations in 
Figure 5. The axial velocity contours clearly show strong 
distortion of the boundary layer by the vortices. The two 
vortices move apart as they grow in size and produce a 
region of a thin boundary layer between them. Convection 
of each vortex by the flow field of the other holds the 
vortices close to the wall, while the effect of the wall (the 
image vortices) is to force them apart. The boundary layer 
between the vortices is thinned by the strong downward 
flow and the lateral outflow of the boundary layer fluid. In 
the upwash region, the boundary layer is thickened because 
the vortex sweeps low momentum fluid away from the 
wall. The evolution of the vortices is best indicated by the 
longitudinal vorticity contours. These contours are flatten- 
ed due to the impermeability of the wall even though their 
initial shape is circular. There is secondary vorticity with 
opposite sign to the primary one confined near the wall. 
The impermeability condition at the wall reverses the span- 
wise velocity component near the wall and is responsible 
for the production of vorticity of the opposite sign. The 
computations reproduce most of the features of the mean- 
velocity field except near the vortex center, where the 
calculations appear to diffuse the velocity deficit more 
rapidly than is observed in the experiment. 

There is good agreement between the calculations and 
data with respect to the spanwise distributions of the 
(resultant) friction coefficient, shown in Figure 6. The 
downwash between the vortices thins the boundary layer 
and leads to higher friction there. The region of upwash, 
where low momentum fluid is lifted by the vortex, shows 
low friction coefficient, as expected from the axial velocity 
contours. It is also noticed that the troughs in the friction 
distribution indicate the lateral drift of the vortices. The 
agreement between the data and calculations at the first 
measurement station, namely, X/C = 1.7, is indicative of 
the success of the semi-empirical vortex model described in 
the previous section. The agreement further downstream, 
on the other hand, is a measure of the performance of the 
overall calculation method, including the numerical treat- 
ments and the turbulence model. 

The circulation, and the magnitude and position of peak 
vorticity, are good characteristic parameters to describe the 
strength and the location of the vortices. For the experi- 
mental data, the circulation was obtained by integrating the 
longitudinal vorticity of primary sign over the domain of 
measurements, rather than performing a line integration of 
velocity around a contour. The circulation T and peak lon- 
gitudinal vorticity fix are plotted in Figure 7 as functions of 

the distance from the trailing edge of the generator. The 
position (y*,z*) of the center of the vortex core (i.e., the 
point of peak vorticity) is shown in Figure 8. It is clear 
that the calculations are in remarkable agreement with 
experiment, with respect to the decay of circulation and drift 
in the vortex position. However, the peak vorticity is 
underpredicted by the computations. This, along with the 
difference in the axial velocity distributions noted above, 
suggests that the vortex diffuses more quickly in the 
numerical model than in the experiment, confirming the 
observation made by Tanaka and Suzuki (1978). 

Figure 9 shows the comparison of three mean velocity 
components (U,V,W), the turbulent kinetic energy (k), and 
two Reynolds shear stresses (-uv, -uw), at the second 
measurement station which is 7.9C downstream from the 
trailing edge of the vortex generators. Four spanwise 
locations are chosen, representing the symmetry plane mid- 
way between the vortices, the center of the vortex core, a 
location in the upwash zone, and a location outside of 
vortex region, respectively. As was seen from the axial 
velocity and vorticity contours, the velocity deficit in the 
streamwise direction and the spanwise velocity component 
at the center of the vortex core is underpredicted in the 
computation. However, all velocity components at other 
locations are well predicted. The turbulent kinetic energy 
near the center of the vortex core is also underpredicted. 
Although the present turbulence model does not explicitly 
consider the individual Reynolds stresses, they are shown 
here to indicate the implications of using an eddy-viscosity 
model. It is interesting to note that, as expected, the 
primary shear stress -uv is predicted rather well except in 
the vortex core. The observed disagreements cannot be 
attributed entirely to the turbulence model or the vortex 
model used to set the initial conditions, however, because 
these are accompanied by disagreements in the mean- 
velocity gradients in the same locations. It is likely that the 
increased diffusion in the computations comes partly from 
the numerical method or insufficient grid points. This 
possibility is suggested because an arbitrary increase in the 
turbulent kinetic energy in the initial vortex failed to 
significantly improve the predictions. Finally, we note that 
the isotropic eddy-viscosity of the k-e_model does not 
predict the transverse Reynolds stress -uw. Prediction of 
this detail would require an anisotropic model. 

COMMON-FLOW DOWN VORTEX PAIR IN 
THE CONCAVE-WALL BOUNDARY LAYER 

In this case, the numerical solution is obtained in a 
domain that starts at the trailing edge of the vortex 
generators (X = 0) and extends well downstream of station 
Dl (X = 150C) in the straight section of the wind tunnel 
(see Figure 3). In the spanwise direction, the solution 
domain extends from the symmetry plane between the 
vortices (Z = 0) to the side wall of the tunnel (Z = 6C). 
However, in these calculations, the side wall is also treated 
as a symmetry plane as there is negligible interaction 
between the vortices and the comer flow within the region 
of interest. This treatment enables more grid points to be 
placed near the vortices. In the normal direction, the 
solution domain extends from the concave side (Y = 0) to 
the convex side (Y = 4C) of the tunnel, and boundary 
layers on both walls are resolved using appropriate grid 
concentration. The grid spacing used in this curved-wall 
case is somewhat finer than that used in the previous case. 
In fact, a 57 x 76 x 75 grid is employed in the (X,Y,Z) 
directions, with the first grid point near the walls being at 
y+ of the order of 1.0. Three hundred iterations are needed 
to obtain a converged solution. 
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Before presenting the results of the experiments and 
calculations, it is helpful to briefly review the transport 
equation for the longitudinal component of vorticity. In the 
coordinate system shown in Figure 3, this equation is 

Dt 

R SI S2 S3 S4 

[ Viscous terms + Turbulent terms ] (5) 

Recall that X is along the outer, concave wall of the wind 
tunnel. The term on the left-hand side represents the total 
rate of change of longitudinal vorticity (Qx)- The first term 
in the first bracket on the right-hand side represents the 
stretching of longitudinal vorticity in the X-direction, while 
the second and third terms represent the tilting of existing 
vorticity in the Y- and Z-directions into the X-direction by 
the gradients of the longitudinal velocity (U). The fourth 
term also comes from (ß»V)V, which represents the 
inviscid stretching or skewing of existing vorticity. This 
fourth term is absent in the flow over a flat surface 
considered in the previous section. Also, the sign of the 
velocity component normal to the wall (V) is important in 
determining the effects of the imposed curvature on the 
evolution of the longitudinal vorticity. 

Figures 10(a) and (c) show the measured longitudinal 
velocity and vorticity contours. The first thing to notice 
from the vorticity contours is the strong secondary vorticity 
with opposite sign that is present outside of the primary 
vortices introduced by the vortex generators. When 
vortices were introduced in a flat-plate boundary layer, as 
discussed earlier, the secondary vorticity with opposite 
sign was found only near the wäll. In the present case of 
the concave wall, however, the distribution of vorticity 
shows quite different features. From the contours of the 
longitudinal velocity, it is seen that the velocity defect in the 
vortex core decreases faster than in the flat-plate case. This 
acceleration is all the more surprising in view of the 
adverse pressure gradient that prevails at the beginning of 
curvature. It is likely that this is related to the fuller 
velocity profiles in the parent concave-wall boundary layer, 
as shown in Kim (1991) and will be discussed later. The 
symmetry of the experimental results shown in Figure 10 
confirms that the vortex-pair development is not affected, at 
least up to station Dl, by the asymmetry imposed by the 
side wall of the wind tunnel. 

Figures 10(b) and (d) show the calculated longitudinal 
velocity and vorticity contours. It is immediately obvious 
from the velocity contours that the vortices no longer move 
apart from each other after station 75, as in the experiment. 
This phenomenon is attributed to the emergence of strong 
secondary vortices which surround the primary ones. The 
main difference in the vorticity contours from those in the 
flat plate is in the strength and size of these secondary 
vortices. The evolution of stronger secondary vortices is 
explained by the inviscid, curvature-related, vortex- 
stretching term (S4) in equation (5). Consider the 
downwash (V < 0) region between the two common-down 
vortices on the concave wall. The sign of S4 is the same as 
that of Qx, the implication of which is that vorticity is 
fortified between the two vortices. Gn the other hand, in 
the up wash zone (V > 0), the sign of S4 is different from 
that of Qx, so that primary vorticity decreases in this 
region. As the primary vorticity is weakened, secondary 

vorticity with opposite sign near the wall region is lifted by 
the upwash, intensifying the secondary vortices. It should 
be noted that even in the parent two-dimensional boundary 
layer in the curved duct, the normal velocity component (V) 
is directed from the outer to the inner wall between stations 
U2 and 15. The upwash flow is therefore strengthened 
further by this effect in the curved portion of the duct. 
Again, the lifted secondary vorticity is intensified due to die 
curvature-related term (S4), because the secondary vorticity 
and the upwash velocity have the same sign as that of the 
secondary vorticity. Thus, the induced velocity field 
increases near the primary vortex by intensification of the 
secondary flow during the curved portion. This increment 
of the induced velocity component plays a key role in forti- 
fying the primary vortices. While this simple argument 
suffices to explain the overall trends, it does not of course 
take into account the complex interactions between 
curvature and turbulence that are contained in the remaining 
terms of equation (5). 

Figure 11 compares the measured (longitudinal) friction 
coefficients with the calculated ones. It is found that the 
friction coefficients are somewhat underpredicted, parti- 
cularly after station 15, where curvature effects set in. 
However, the shape and position of the peak values are in 
good agreement. The disagreement in the friction magni- 
tude is similar to that observed by Richmond and Patel 
(1991), who employed the same turbulence model and a 
similar numerical method to study the effects of convex and 
concave curvatures on two-dimensional turbulent boundary 
layers. In particular, they found that the velocity profiles 
along concave surfaces were not predicted as full as those 
observed in experiments, and this correlated with the lower 
predicted friction coefficients. Thus, it appears that 
improved predictions would require a turbulence model that 
is more sensitive to surface curvature effects. 

The circulation and peak vorticity of the primary and 
secondary vortices are shown in Figure 12. The circulation 
was obtained by integrating the vorticity of the appropriate 
sign rather than from contour integrals of velocity, and for 
direct and meaningful comparison of calculated and 
experimental values, the integration was carried out only 
over the measurement domain. It is seen that the 
computational results slightly overpredict the circulation of 
the primary and secondary vortices. However, the 
important observation to make here is that the circulation 
increases through the curved part both in the experiment 
and computation. Recall that, as shown in Figure 7, the 
circulation of the primary vortices on a flat plate decreased 
with downstream distance because of the losses due to 
spanwise friction. In the present case, a decrease of 
circulation is observed only before the curvature appears 
and after the curvature disappears. It should be noted that 
surface curvature begins at X/C = 3.6 and ends at X/C = 
29.1. Concave curvature, therefore, acts to increase the 
circulation of the vortices. The peak vorticity of the 
primary vortex is also predicted well. Recall that the peak 
vorticity of the vortex introduced on a flat plate was 
underpredicted, as shown in Figure 7. The evolution of 
the secondary vortex is clearly seen from the corresponding 
plot of peak vorticity. 

The positions of the centers of the primary and 
secondary vortex cores (i.e., the points of peak vorticity) 
are shown in Figure 13, even though the peak points are 
not as well defined as in the flat-plate case. The calcu- 
lations are in fair agreement with the experimental data. It 
is again noticed that the lateral movement of the vortices 
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stops after station 75 (X/C = 24.9) according to the 
numerical solutions. 

Figure 14 shows the profiles of the mean-velocity 
components (U,V,W), the turbulent kinetic energy (k), and 
two of the Reynolds shear stresses (-uv, -uw), at four 
spanwise positions, representing the symmetry plane, the 
center of the (measured) primary vortex core, the upwash 
zone, and outside of the vortex region, at station 15 (X/C = 
7.8). The computational results show good agreement 
with experiment, and provide support for the vortex model 
used to construct the initial profiles just downstream of the 
vortex generator. The axial velocity defect near the center 
of the vortex core is much less than that in the flat-plate 
case. It is observed that the longitudinal velocity change 
due to the vortex is superimposed on the inviscid core of 
the basic curved-duct flow. The overall feature of the 
turbulence profiles is that the vortex is superimposed on the 
highly turbulent flow in the concave-wall boundary layer. 
It is well known that, in a two-dimensional boundary layer 
along a curved surface, convex curvature tends to reduce 
(stabilize) the turbulence, whereas concave curvature leads 
to an increase (destabilization). Obviously, this effect is 
not captured by the calculations. On the other hand, the 
shapes of the profiles of thejurbulent kinetic energy and 
the primary shear stress -uv are predicted rather well 
throughout the flow domain. 

SUMMARY AND CONCLUSIONS 

The development of artificially-introduced vortex pairs 
in turbulent boundary layers was studied through physical 
and numerical experiments, particularly to elucide the inf- 
luence of streamwise curvature and accompanying pressure 
gradients. Vortex pairs with the common flow between 
them down towards the wall were considered. Experi- 
ments were performed with such vortices in the boundary 
layer on the outer, concave wall of a curved-duct wind tun- 
nel to complement similar ones conducted by Pauley and 
Eaton (1989) in a flat-plate boundary layer. 

To conduct parallel numerical experiments, a semi- 
empirical model was developed to relate the size, strength, 
and location of vortices produced by conventional, half- 
delta-wing vortex generators, to the geometry of the vortex 
generators. The model also provides the velocity and 
turbulence distributions in the vortices just downstream of 
the generators, and these were used to determine the initial 
conditions for a subsequent solution of the Reynolds- 
averaged Navier-Stokes equations. Solutions were obtain- 
ed for the geometries used in the two sets of experiments 
mentioned above using a modified version of the method of 
Chen and Patel (1989), described in Kim (1991). 

The experimental and computational studies together 
lead to the following conclusions. 

(1) The numerical solutions, with initial profiles 
obtained from the semi-empirical vortex model, provided 
good agreement with both sets of experimental data, par- 
ticularly with regard to the size and location of the vortices. 

(2) On a concave wall, strong secondary vortices form 
outside the primary ones introduced by the vortex genera- 
tors. The secondary vortices originate from the underlying 
boundary-layer vorticity lifted by the upwash of the 
primary vortices. These secondary vortices also force the 
primary ones to stay close to the symmetry plane when 
compared with similar vortices on a flat plate. 

(3) On a concave wall, the circulation of the common- 
flow-down vortices increases with downstream distance, 
whereas it decreases on a flat plate. This may be explained 

by the change of vorticity distribution due to the stretching 
applied by the wall curvature and the velocity field induced 
by the developing secondary vortex adjacent to the primary 
one. 

(4) Measurements in the vortices on the concave wall 
indicate much higher levels of turbulent stresses compared 
to those measured in vortices on a flat plate. This indicates 
that concave curvature effects, which are known to be 
important in two-dimensional turbulent boundary layers, 
continue to play an important role in turbulent transport in 
more complex vortical flows. The numerical model could 
not capture the details of the flow in the eye of the vortex. 

Before closing, it is important to note that the semi- 
empirical model of the vortex induced by a half-delta-wing 
vortex generator proposed here needs further verification 
and refinement. More detailed experiments, with larger 
and isolated vortex generators, are required to put the 
model on a firmer basis. However, it is also clear from the 
results presented here that the model can be used, in 
conjunction with advanced numerical methods, to study the 
fate of vortices introduced in complex turbulent shear 
flows. For example, the model may be used to investigate 
flow-control strategies on bodies at incidence where 
longitudinal vortices arise naturally from flow separation. 
Kim (1991) describes some additional numerical experi- 
ments in which other vortex pairs (with common flow 
away from the wall) were introduced in boundary layers on 
a flat plate as well as on convex and concave surface. Lim- 
itations of space, and lack of corresponding experimental 
data, preclude a discussion of these situations although the 
calculated results reveal quite interesting features. Finally, 
it is concluded that the numerical model employed here is 
successful in representing the overall features of the flows 
considered but further improvements are needed in the 
modelling of turbulence within the vortices. This is a sub- 
ject of research in progress. 
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Figure 10 Vortices in a concave-wall boundary layer 
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Figure 12 Circulation and peak vorticity of vortices on a concave-wall boundary layer 
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(a) Vertical location of the primary vortex 
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Figure 13 Location of the vortices on a concave wall 
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Figure 14 Flow profiles in vortices on a concavewall; X/C=7.8 
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DISCUSSION 

T. Huang 
David Taylor Model Basin, USA 

The agreement between the measured and 
predicted turbulent kinetic energy (k) and the 
Reynolds shear stresses (-üv and -üw) shown in 
Figures 9 and 14 is not great. What is your 
measurement uncertainties of the measures quantities? 
Do you have enough grid resolution to capture the 
flow physics of viscous core? Can you assess the 
numerical dissipation of your computation? How to 
improve your computational technique to predict 
more accurately the flow field in the core regions of 
the vortices? 

AUTHORS' REPLY 

In the present study, two-sensor hot-wires (X- 
wire) were used without rotating the probe into the 
local mean-flow direction. The probe was aligned 
following the curvature of the wind tunnel. 
Measurement errors are expected due to the probe 
setting. About the grid resolution near the vortex 
core in the computational study, the location of 
vortex core is not known a priori, and therefore, it is 
not easy to ensure a fine grid near the vortex core. 
However, an attempt was made here to select a grid 
that would resolve the region of large velocity 
gradients. Probably an adaptive grid technique would 
help resolve the vortex core better. 

DISCUSSION 

Y. Himeno 
University of Osaka Prefecture, Japan 

Thank you for the very good experiment and 
computation. The measured peak vorticity value in 
Fig. 12(c), at x/c = 7.8, does not seem to coincide 
with the value in Fig. 10, x/c = 7.8. A similar 
inconsistency seems to appear in the peak vorticity 
values measured in Fig. 5 and Fig. 8(b). Would you 
explain the reason? 

AUTHORS' REPLY 

First of all, we apologize for an error since the 
contour level in figure 10(c) was misread.    The 

corrected figure is shown below as figure A. The 
measured value of peak vorticity in figure 7(b) was 
given by Pauley and Eaton (1988). They calculated 
the vorticity using a cubic-spline interpolation, while 
the authors employed a quadratic interpolation. The 
recalculated value using quadratic interpolation is 
given in figure B. We thank Prof. Himeno for 
pointing out the error. 
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Figure B  Peak vorticity of vortices in a flat-plate boundary layer 
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DISCUSSION 

W. Devenport 
Virginia Polytechnic Institute and State 
University, USA 

The authors have performed an impressive 
experimental and computational study of vortical 
boundary layer interaction. The results clearly show 
they have high quality measurements; the 
computational method uses a relatively robust 
turbulence model. In discussing their work, I would 
like to address some differences between 
computations and measurements in Figure 10 and 14, 
specifically, the fact that the measured contours of 
Figure 10 appear broader and flatter than those 
computed (especially at downstream locations) and 
turbulence levels near the vortex control in Figure 14 
are significantly higher in the measurements than in 
the computations. Both these differences would be 
consistent with some side to side wandering of the 
experimental vortices. Could the authors comment 
on whether they observed any such motion? 

AUTHORS' REPLY 

Frankly speaking, we did not suspect any 
wandering of the vortices and therefore did not look 
for it during the measurements. However, 
meandering is much less likely when vortices are 
imbedded in a boundary layer, than when they exist 
in a. freestream. The higher measured turbulence 
level in the vortex on the concave wall results not 
only from the vortex motion, but also from the 
mother boundary layer with which the vortices 
interact. It is well known that the k-e model does not 
predict the increased production of turbulent kinetic 
energy in the boundary layer on a concave wall. 
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An Experimental Investigation of 
Interacting Wing-Tip Vortex Pairs 

J. Zsoldos, W. Devenport 
(Virginia Polytechnic Institute and State University, USA) 

ABSTRACT 
The interaction of turbulent trailing 

vortices shed from the tips of two rectangular 
wings have been studied through helium-bubble 
flow visualizations and extensive hot-wire 
velocity measurements made between 10 and 30 
chordlengths downstream. The wings were placed 
tip to tip at equal and opposite angles of 
attack to generate pairs of co- and counter- 
rotating vortices. Meaningful hot-wire 
measurements could be made because the vortices 
were found to be insensitive to probe 
interference and subject only to very small 
wandering motions. 

The co-rotating vortices were observed to 
roll around each other and merge, upstream of 
the merger location the vortices have 
approximately elliptical cores. These are 
surrounded by the two wing wakes which join 
together at their ends. Flow in the vicinity of 
the cores appears fully developed. During the 
merging process the cores rotate rapidly about 
each other winding the wing wakes into a fine 
spiral structure. Merger roughly doubles the 
core size and appears to produced turbulence 
over a broad range of frequencies. 

The counter-rotating vortices move 
sideways under their mutual induction and 
slightly apart, their flow structure changing 
little with streamwise distance. These cores 
remain fairly circular and do not become fully 
developed within the 30 chordlengths of the 
measurements. 

INTRODUCTION 
Interactions of vortices generated by 

lifting surfaces are commonly seen in the far 
wakes of marine vehicles. Understanding the 
turbulence structure of these flows is essential 
if they are to be successfully computed. 
Providing that understanding is the ultimate aim 
of the experiments described in this paper. 

There have been few previous studies of 
the interaction of trailing vortices and none of 
these has addressed experimentally the 
turbulence structure. Donaldson and Bilanin 
(1975) examined various aspects of vortices 
produced by large scale aircraft including the 
roll up process and lift distributions, 
interaction of tip vortices with each other and 
with flap and tail vortices, various ways to 
increase vortex decay, and atmospheric effects. 
Most of their results presented were produced 
computationally with some velocity measurements 
from full scale aircraft. Crow (1970) developed 
an inviscid stability theory for counter- 
rotating vortices produced by large scale 
aircraft. He showed that for disturbances of 
certain wavelengths, the vortex pair would 
undergo a symmetric sinusoidal instability that 

caused the pair to join and form a train of 
vortex rings. Other work has concentrated on 
counter rotating vortices interacting with some 
type of wall or surface. Barker and Crow (1977) 
examined counter rotating vortices in a ground 
effect situation. Using two dimensional 
vortices, they compared the trajectories of the 
pairs against potential flow theory and to the 
results of full scale aircraft. Workers such as 
Sarpkaya et al. (1988) and Tryggvason et al. 
(1990) have studied qualitatively the 
interaction of vortex pairs and a free surface. 

Because of the lack of previous work on 
vortex interaction we include here a brief 
review of relevant studies of isolated trailing 
vortices. Most previous workers have used one of 
two configurations to generate such vortices; 
the single wing and the split wing. 

The mean velocity distributions of 
vortices shed from the tips of single wings have 
been measured by an number of workers over the 
last few decades (see for example Mason and 
Marchman (1972)). Instantaneous velocity 
distributions have also been examined by 
Corsiglia at al. (1973), using a flying hot 
wire, and by Green and Acosta (1991) using 
double-pulsed holography of small bubbles. 
Relatively few time averaged turbulence 
measurements are available, however. This is 
because trailing vortices generated in wind or 
water tunnels tend to meander (i.e. their core 
location is a function of time) and be sensitive 
to probe interference. 

Meandering causes a fixed probe to greatly 
overestimate turbulence stresses in regions 
where there are significant mean velocity 
gradients across the vortex. In severe cases 
meandering also smooths mean velocity profiles 
significantly. Baker et al. (1974) conducted 
experiments on a trailing vortex generated by a 
rectangular wing in a water tunnel using laser 
Doppler velocimetry. They found that vortex 
meandering decreased the maximum tangential 
velocities by 30% and increased the measured 
core radius by a factor of 2.2. Baker 
attributed the meandering to freestream 
turbulence. Chigier and Corsiglia (1972) and 
Corsiglia et al. (1973) conducted triple 
hot-wire measurements on a trailing vortex in 
the NASA Ames 40x60 wind tunnel. They observed 
a spanwise meandering of about ± 2 chordlengths. 
As a result mean-velocity measurements made with 
a fixed hot-wire probe underestimated the peak 
tangential velocity by as much as 50%. 

Probe interference problems in single-wing 
vortices have been reported by Orloff (1971), 
Gasparek (1960) and Mason and Marchman (1972). 
Orloff and Gasparek found that the trajectory of 
the vortex moved when a small diameter probe was 
inserted into the core. Mason and Marchman also 
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found that a probe changed the vortex trajectory 
but only if it was pitched or yawed relative to 
the free stream direction. Stifle and Panton 
(1991) examined the effects of passing a wire 
through the core of a single vortex produced by 
a delta wing. The found that disturbances 
introduced into the vortex core propagated both 
upstream and downstream with smaller 
disturbances produced by a slower moving wire. 

Despite these problems there have been a 
few investigations of the turbulence structure 
of single-wing vortices. Singh and Uberoi (1976) 
measured the vortex generated by a laminar flow 
half wing with fixed hot-wire probes. They 
observed relatively high frequency unsteadiness 
in the core due to laminar flow instabilities 
but little or no low-frequency meandering. They 
inferred that the laminar flow instabilities had 
symmetric and helical modes with wavelengths of 
the same order as the core diameter. Helical, 
axisymm'etric and other core instabilities in 
vortical flows have also observed been in flow 
visualizations by Sarpkaya (1992) and Maxworthy 
et al. (1985) and studied theoretically by a 
number of authors (see for example Kelvin 
(1880), Lundren and Ashurst (1989), Marshall 
(1991)). Devenport and Sharma (1991) and 
Devenport et al. (1992) studied the structure of 
a vortex generated by the roll up of a turbulent 
wing wake. Their vortex was shown, through 
visualizations, to be relatively stable 
(meandering less than ±0.05 chordlengths) and 
insensitive to probe interference. Detailed 
measurements, made with cross and triple hot- 
wire probes revealed in the mean velocity field 
and turbulence structure of the spiral wake 
surrounding the core over a range of conditions. 
Time average turbulence measurements made in the 
core were influenced by the small amount of 
meandering. However, spectral measurements here 
showed the core to be a region of very little 
turbulent activity at most conditions. Velocity 
fluctuations here appeared to be produced mostly 
by helical and axisymmetric waves traveling on 
the core. 

In an attempt to generate stable single 
vortices, some workers have used a split wing 
configuration. Here the vortex is generated at 
the junction of two wings placed at equal and 
opposite angles of attack. A small nacelle is 
placed between the two wings and used to join 
the wing tips together. Although the split wing 
vortex is supposed to be more stable, its lacks 
the same initial turbulence or mean flow 
structure as that generated from a single wing. 
Hoffman and Joubert (1963) were among the first 
to use the split wing concept to generate a 
single vortex. They analyzed the circulation 
distribution of the vortex and found a region 
where the circulation is proportional to the 
logarithmic radius for various conditions. In 
addition they developed a circulation defect law 
in the inner region of the vortex analogous to 
a turbulent boundary layer. Leuchter and 
Solignac (1983) used a split wing to examine the 
effect of wind tunnel adverse pressure gradients 
on the decay of a vortex. Using laser doppler 
velocimeter, they obtained mean and turbulence 
quantities and found that with increased 
pressure gradients, vortex breakdown occurred 
much more rapidly. Bandyopadhyay et al.(1990) 
also made turbulence measurements using a split 
wing in various amounts of freestream 
turbulence. Using smoke flow visualizations and 
hot-wires, they observed that momentum transfer 
takes place between the core and outer region. 
They also discovered that turbulent fluid inside 
the core relaminarizes due to the rotational 
motion of the core. The most complete set of 
turbulence measurements for a split wing vortex 
to date is due to Phillips and Graham (1984). 
Using slant hot-wires they obtained mean 
velocities and Reynolds stresses for all three 

directions. Ways to increase the decay rate were 
also examined by introducing jets and wakes into 
the core. 

In ■ the present investigation two flow» 
have been studied. The first involved the 
interaction of two trailing vortices of the same 
sign and strength (the co-rotating pair). The 
second also contained two vortices of the same 
strength but of opposite sign (the counter- 
rotating pair). Single rectangular wings were 
used to generate the vortices. The vortices were 
examined through helium bubble visualizations 
and detailed hot-wire measurements. 

APPARATUS, INTRUMENTÄTION AND TECHNIQUES 
Only brief descriptions are given here, 

for more details see Zsoldos (1992). 

Wind Tunnel 
Experiments were performed in the Virginia 

Tech Stability Wind Tunnel. It is a continuous, 
single return, closed-circuit subsonic wind 
tunnel with various interchangeable test 
sections. The test section used for the 
experiment (figure 1) is square with a cross 
section of 1.83m X 1.83m and a length of 7.33m. 
Flow in the empty test section is closely 
uniform with a turbulence intensity of less than 
.05% at 20m/s (see Choi and Simpson (1987)). One 
side of the test section is made of plexiglass 
and glass panels through which observations can 
be made. 

Wings 
Mason and Marchman's (1972) wing model was 

used along with an identical model produced on 
a numerical controlled milling machine. Each 
model has a rectangular planform, NACA 0012 
airfoil section and a blunt wing tip. The chord 
and span are .203m and 1.22m respectively. Mason 
and Marchman's wing is made from solid brass 
while the other wing is made from solid 
aluminum. Surfaces of both wings are accurate 
to within ±.25mm. The wings were mounted 
vertically at the mid span of the test section 
from opposite walls perpendicular to the 
freestream (figure 1). The end of each wing ran 
through a turntable assembly mounted flush with 
each test section wall. The turntables allowed 
the wings to be rotated to any angle of attack 
about their quarter chord lines. The vertical 
location of each wing could be varied by sliding 
it through the turntable and clamping it to the 
turntable outside of the test section. The 
streamwise and lateral positions and the 
dihedral angle of the wings could also be 
adjusted, enabling their quarter chord lines to 
be made colinear. 

The wings were initially placed at zero 
angle of attack, with an accuracy of ±0.2°, by 
using a removable wing tip holding 48 static 
pressure ports. Other angles of attack were 
measured relative to these locations. 

To eliminate possible unsteadiness and 
non-uniformity that might result from natural 
transition, the boundary layer on the wings were 
tripped. Glass beads with a diameter of .5mm 
were glued to the wings in a random pattern in 
a strip extending between the 20% to 40% chord 
locations.  Average density was 200 beads/cm . 

Flow-visualization equipnent 
Flow visualizations were performed using 

a Sage Action Inc. Model 5 console helium bubble 
generator. The generator produces two separate 
streams of helium filled bubbles by supplying 
soap solution, helium and compressed air to two 
'heads' (hypodermic tubes designed to form a 
continuous stream of bubbles). Bubbles were 
passed through two Sage Action vortex filters to 
centrifuge out heavier than air bubbles and were 
injected into the flow through two pieces of 
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was linearized and 
an 18-8 Laboratories 
and also stored on 

mounted in the wind 

4.8mm thick aluminum tubing of airfoil cross 
section located 1.0m upstream of the wing tips. 
At no time did the tubes or bubble streams 
appear to have any visible effects on the flow. 

The bubbles were illuminated using a 
Varian arc lamp (Model pl50S-7) supplied by Sage 
Action Inc. The arc lamp was mounted at the 
upstream end of the wind tunnel diffuser, well 
downstream of the test section. It was adjusted 
to produced a well defined narrow light beam 
aligned with the vortices. Photographs of the 
bubbles were taken using a Nikon N6006 camera 
with ASA 1600 color film using 2 and 8 second 
exposure times. Several hours of video film 
were also taken using a JVC camcorder. 

Hot Hire Anemometry 
Velocity measurements were made using 

single-sensor and four-sensor hot-wire probes. 
All sensors were operated using Dantec 56C01 and 
56C17 bridge units interfaced through buck-and- 
gain amplifiers and an Analogic HSDAS-12 A/D 
converter to an IBM AT compatible computer. The 
HSDAS-12 can sample four hot-wire signals 
simultaneously at a maximum rate of 100kHz per 
channel. Two other channels of the A/D 
converter were used for digitizing the 
free-stream pitot static pressure and the flow 
temperature. Raw data 
processed on line using 
PL1250 array processor 
optical disc cartridges. 

A traversing gear 
tunnel test section allowed the horizontal and 
vertical positions of probes to be controlled 
from the computer. The probe holder, a 23.6-mm 
diameter aluminum rod aligned with the free- 
stream, positioned the tip of the probe 
approximately 0.7m upstream of the traverse 
gear. Two 6.2-mm diameter rods were used to 
offset the axis of the probes from that of the 
holder by 114mm (see figure 2). Thus the probe 
holder did not have to be placed in or near the 
vortex core for the probes to be positioned 
there. 

The single hot-wire probe (TSI type 
1210T1.5) was used to measure profiles of mean 
velocity and turbulence intensity and spectra in 
the wing boundary layer as it left the trailing 
edge. A miniature quad hot-wire probe produced 
by Auspex Corporation (model AVOP-4-100) was 
used to measure mean velocities and Reynolds 
stresses at various planes downstream of the 
wings. A dummy probe, whose dimensions 
approximately matched those of the quad hot-wire 
probe was used to simulate the effects of a 
probe on the vortex during flow visualizations. 

Three requirements led to the use of the 
quad-wire probe; 

(i) The need to have simultaneous 
measurements of all three velocity components. 

(ii) The need for a compact probe, to 
minimize probe interference and the size of the 
measurement volume. 

(iii) The need to make measurements at 
large flow angles (such as at the edge of the 
core) without yawing or pitching the probe. 

The probe (figure 2) consists of four 
wires arranged to form two orthogonal X-wire 
arrays, each sensor being inclined at a nominal 
angle of 45 degrees to the probe axis. Eight 
prongs position the wires some 70mm upstream of 
the main part of the probe within a measurement 
volume less than 1mm in diameter. Each wire is 
made of tungsten and is 0.8mm in length and 5/jm 
in diameter. 

The four simultaneous effective velocities 
output by the quad hot-wire probe were used to 
determine the 3 velocity components in a two 
stage process. First, initial estimates of the 
components were obtained using standard X-array 
hot-wire analysis, taking into account measured 
wire angles and pitch and yaw sensitivities. 

Second, corrections to these estimates, 
determined through direct calibration, were 
applied. This yielded instantaneous records of 
U, V, and W accurate to much larger values of 
instantaneous flow angles than the initial 
estimates. 

The calibration involved pitching and 
yawing the quad wire probe through a total of 
361 angle combinations in a uniform flow of 
20m/s (the free stream velocity at which all 
measurements were made). Corrections were 
obtained by comparing the actual velocity 
components experienced by the probe, calculated 
from the flow velocity and pitch and yaw angles, 
with the initial estimates from the standard 
analysis. They were initially determined as 
functions of the actual components i.e. 
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where Q = \/l/2+F2+W^ and U, V and W refer to 
the velocity components, U being aligned with 
the probe axis. No subscript implies an actual 
value, subscript (e) identifies initial 
estimates obtained from the standard analysis. 
As an example, figure 3(a) shows contours of f,. 
Note that even at moderate angles (e.g. 15°, W/Q 

0.27) the standard analysis requires 
significant if not substantial correction. To 
make use of these corrections it is necessary to 
express them as functions of the estimated 
rather than the actual components i.e. 
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This was done by interpolating the corrections 
onto a square grid. Note that corrections for 
flow angles outside the acceptance cone of the 
quad wire were ignored in this interpolation. 
The acceptance cone and the function g3 is 
illustrated in figure 3(b). 

RESULTS AND DISCUSSION 
The cartesian coordinate system (x,y,z) 

shown in figure 1 will be used in presenting 
results. The origin of this system is located 
midway between the wing tips on a line joining 
the wing leading edges at zero angle of attack. 
•x' is measured in the downstream direction and 
'y' and 'z' parallel and normal to the wing 
spans respectively. Most distances and 
velocities have been normalized on the wing 
chord 'c' of 0.203m and the free stream speed 
U , measured using a pitot-static probe located 
in the forward part of the test section. 

Flow visualizations 
The visualizations were performed to 

examine the interaction of the vortices, their 
wandering and sensitivity to probe interference 
over a broad range of conditions. The aim here 
was to select two cases, one with a co-rotating 
vortex pair and one with a counter-rotating 
vortex pair, for detailed velocity measurements. 
A full list of conditions is given in table 1 in 
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terms of the angles of attack of th« wings a. 
and a2 (measured according to the right-hand 
rule for the negative y axis, a, referring to 
the upper wing), wing-tip separation Ay/c and 
chord Reynolds number Rec = Upefc/v. Counter- and 
co-rotating vortex pairs were generated by 
placing the wings at equal and opposite angles 
of attack respectively. Because of th« volume of 
results only a representative sample will be 
presented here. For a full discussion see 
Zsoldos and Devenport (1991). 

Figures 4(a) and (b) show visualizations 
of the co-and counter-rotating vortex pairs 
generated at Ay/c=0.25, Re « 130000 (Uref = 
10m/s) with the wings at 5* angle of attack. 
(Except for Reynolds number these were the cases 
selected for hot-wire measurements). These 
photo-mosaics were constructed from pictures 
taken over the course of several minutes, each 
component picture having an exposure time of 8 
seconds. They are thus time averaged views of 
the vortex-core trajectories revealed by the 
lighter than air bubbles passing along them. 
Note that the flow is from right to left. 

In the co-rotating case (figure 4(a)) the 
vortex cores, generated at the wing tips, rotate 
about each other as they move downstream. This 
is a consequence of the equal but opposite 
velocities they induce upon each other. Over 
their first few chord lengths the vortex cores 
move slightly apart, presumably as a result of 
the same conservation theorems (due to Betz 
(1933)) that cause an isolated wing tip vortex 
to initially move inboard. After reaching a 
maximum separation the cores begin moving 
towards each other, their rotation rate about 
each other increasing as they do. Ultimately, 
at about 20 chord lengths downstream of the 
wings, they merge and form a single vortex with 
a larger core. This merging process occurs over 
a distance of approximately 1.5 chord lengths 
and appeared to be associated with it a 
significant amount of high frequency, small 
scale turbulent motion. Merger occurs because 
the cores and wing wakes surrounding them are 
regions of distributed vorticity, not single 
point vortices. As a result the cores experience 
induced velocities that have a component that 
draws them together, computational studies of 
inviscid vortices merging in this way have been 
performed by Rossow (1977) and Melander et 
al.(1988) . 

In the counter-rotating case (figure 4(b)) 
the interaction between the vortices is less 
dramatic. The vortex cores drift in the negative 
z direction (towards the camera) with distance 
downstream as a consequence of the equal 
velocities they induce upon each other in this 
direction. (Note that near x/c=20 the cores 
drift out of the illuminating light beam). The 
cores also move slowly apart as a conseguence of 
Betz's (1933) conservation laws. 

Figures 4(a) and (b) are qualitatively 
representative of the flow patterns seen at 
other conditions. Quantitatively, the 
interaction between the vortices, especially in 
the co-rotating case, decreased rapidly with 
increase in wing separation or decrease in angle 
of attack. We were surprised at just how close 
the wing tips had to be placed (<=0.375c at any 
angle of attack) for the co-rotating vortices to 
merge within the 30 chordlengths of the test 
section. This raises the question of whether 
some split-wing configurations with tip 
separations comparable to those of the present 
wings really produce a single vortex, as they 
are assumed to. 

At none of the conditions was vortex 
wandering clearly visible by eye or in the 
photographs. Close examination of the video 
tapes, however, suggested that some small low 
frequency motions might be present. In the cases 
represented in figures 4(a)  and  (b)  these 

motions were estimated to have an amplitudes of 
at roost .05c and .09c respectively and typical 
frequencies of about fc/Uref=0.004. 

Probe interference was simulated at 
several sets of conditions by traversing th« 
dummy probe through the vortex cores. Figures 
5(a) and (b) are particularly clear 
visualizations performed with the dummy probe at 
a,=a2=7.5° and Ree=130000. In figure 5(a) the 
dummy probe is stationary at the center of the 
upper vortex core. Figure 5(b) is a long time 
exposure taken while the probe was traversed 
through this core (the location of the probe tip 
in this figure may be judged by comparison with 
figure 5(a)). In these pictures, and at all 
other conditions examined, the dummy probe had 
no visible effects on the vortex core at the 
measurement point. Effects ■ were visible 
downstream of the measurement point but we saw 
no evidence of these disturbances propagating 
upstream. 

Change in chord Reynolds number from 
130000 to 400000 appeared to have no significant 
influence on the flow structure in any of the 
cases. One possible exception may be the 
amplitude of the vortex wandering which appeared 
even smaller at the higher Reynolds number. 

Velocity measurements 
The following flows were selected for 

detailed velocity measurements based on the flow 
visualization results. 

Co-rotating vortices; 
a, —a, = 5°, ReQ = 260000 

Counter-rotating vortices; 
a.  = a, = 5°, Rec - 260000 

Table 2 summarizes measurements made for 
these conditions at the wing trailing edges with 
the single hot-wire probe. Mean velocity and 
turbulence intensity profiles showed the 
boundary layers here to be fully turbulent. 
Spectra showed no peaks or other features that 
would suggest the presence of vortex-shedding or 
any other undesirable phenomena. In both cases 
the boundary layers on the two wings appeared 
similar with thicknesses between 0.038c and 
0.063c. 

Quad hot-wire measurements were made in 
four cross-sectional planes through the co- 
rotating vortex pair at x/c = 10, 15, 22 and 30 
and in two planes through the counter-rotating 
pair at x/c = 10 and 30. (See figures 4(a) and 
(b) to visualize these positions). In each 
plane measurements were made at 600 to 900 
points in nominally polar grids centered on the 
cores. At each point 614400 simultaneous samples 
of the three velocity components were taken at 
a rate of 30 kHz (sufficient to calculate a 
detailed low-uncertainty spectrum) over a total 
sampling time of about 2 minutes - about 33 
gigabytes of raw data in total. Such a large 
quantity of data was needed to make possible the 
future removal of any small amplitude vortex 
wandering from the velocity measurements. 

The co-rotatina vortex pair 
Figure 6 shows the overall mean flow and 

turbulence  structure  associated  with  the 
interaction and merger of the co-rotating vortex 
pair in terms of mean cross-flow velocity 
vectors and contours of turbulence kinetic 
energy k/Upef

2. Figure 7 shows details of the 
flow in the core regions and includes, in 
addition, contours of mean streamwise vorticity 
a  c/U i    and of the primary turbulent shear x ' ret 

stress VrvJUrif. Vr and Vg are defined by the 

cylindrical coordinate system (r, 0, x) centered 
at the middle of the vortex cores and with the 
x direction aligned with the free stream. 

By x/c=10 the co-rotating vortices have 
turned about their common center through an 
angle of about 135° (figures 6(a and b)). They 
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are separated by a distance almost equal to the 
wing-tip separation, 0.25c, having moved apart 
a short distance and then back towards each 
other by this stage (figure 4(a)). The mean 
velocity vectors of figure 6(a) show the strong 
rotational flows generated by the vortices and 
their mean interaction, which produces a 
crossflow stagnation point midway between the 
vortex centers. The contours of k/Ufef

2 (figure 
6(b)) clearly show the wing wakes that surround 
the vortex cores. Even at this early stage the 
wakes have merged along a line midway between 
the cores. The wakes are rolled into brief 
spirals both by the rotational velocity fields 
of the individual vortices and by the turning of 
the vortices about one another. The resulting 
shear and distortion that the wakes experience 
is presumably responsible for the gradual 
reduction in peak turbulence levels along the 
wakes as the cores are approached. 

Figures 7(a to d) show in detail the core 
region of one of the vortices, the flow being 
anti symmetric. (Note that the vectors of figure 
7(a) do not appear on a perfectly polar grid due 
to corrections for absolute traverse-gear 
location applied after the experiments.) The 
core itself, marked by the solid line in figure 
7(a) and defined as the locus of peak Vfl, is 
very slightly elliptical with its major axis 
aligned approximately normal to the line joining 
the two cores. The diameters are 0.080c and 
0.075c measured along the major and minor axes 
respectively. Similarly distorted cores have 
been observed by Rossow (1977) in discrete 
vortex simulations of counter-rotating vortex 
pairs. The tangential velocities at the core 
edge vary substantially with circumferential 
location from 10.3% Upef on the side closest to 
the plane of anti-symmetry to 20.4% U , on the 
opposite edge. This variation partly a 
consequence of the fact that the core axis lies 
at an angle to the freestream direction and thus 
the coordinate system in which these vectors 
have been resolved. (This is also why the point 
of zero cross flow velocity does not appear at 
the core center.) The contours of u

x
c/uref 

(figure 7(b)), being less affected by this 
skewing, are approximately elliptical in the 
core region and concentric with the core edge. 
They'indicate a maximum"normalized vorticity of 
18.0 at the vortex center. These contours also 
show some positive vorticity in the wing wake 
curled around the core and a region of negative 
vorticity between the cores. Some details of the 
wake structure in the vicinity of the core are 
also visible in the turbulence kinetic energy 
and Reynolds shear stress contours (figures 7(c 
and d)). Within the core these contours show 
velocity fluctuations rising to a maximum. Those 
of t.k.e. are approximately concentric with the 
core and indicate a maximum of k/U f

2=0.0090. 
Those of shear stress are arranged in two lobes. 
The large fluctuation levels at the core center 
are mostly a consequence of the small amplitude 
wandering observed in the flow visualizations. 
If we assume that velocity fluctuations at the 
core center are entirely due to wandering we can 
estimate, using the measured mean velocity 
gradient, an upper bound for the amplitude of 
the core motions. This turns out to be 0.016c 
r.m.s. This length is marked on figure 7(a) to 
give a qualitative idea of the degree to which 
wandering may have smooothed the measured mean 
velocity field. 

An alternative view of the turbulence 
structure in and around the core may be gained 
from  velocity  spectra.  Figure  8(a)  shows 

autospectra of Vp plotted as Gvvjl)'Ttp VS-fc/V\e,, 

where f is frequency in Hertz, for various 
locations along the upper half of the radial 
profile labelled AA in figure 7(a). The spectrum 
at r/c = 0.52 shows velocity fluctuations (and 

some electrical noise) outside the turbulent 
region. Those at 0.24 and 0.16 show fluctuations 
in the region adjacent to the core occupied by 
the curled up wake of the lower wing. These, 
like others measured in the wake regions at 
x/c=10 show a peak in the vicinity of fc/U f = 
4 and an inertial subrange at higher 
frequencies. The frequency fc/U f=4 implies a 
length scale (assuming Taylor's hypothesis) of 
0.25 chordlengths - a probable size of large 
structures in a wake that, away from the vortex 
cores, is about 0.5 chordlengths in width 
(figure 6(b)). Devenport and Sharma (1992) have 
shown that in the wake region of an isolated 
vortex, autospectra of a given velocity 
component have identical shapes, regardless of 
where they are measured. The similarity in the 
shapes of the spectra at r/c=0.24 and 0.16 
suggests that this may also be true in the 
present flow. Moving into the core the spectral 
peak at fc/Upef=4 first becomes more pronounced 
(at r/c=0.09) and then disappears (r/c=0.04 and 
0) as low-frequency energy levels rise. This 
rise is presumably a partial consequence of 
velocity fluctuations produced by vortex 
wandering. At higher frequencies (say fc/Upef>20) 
spectral levels change little between r/c=0.09 
and 0.04 and then fall slightly between r/c=0.04 
and 0. This latter result, which implies that 
velocity fluctuations associated with small 
scale turbulence are only slightly weaker at the 
core center than elsewhere, is a surprising one 
bearing in mind the strong stabilizing effects 
of the core rotation. In isolated vortices it is 
an indication of a fully developed core region 
(Devenport and Sharma (1992)), i.e. one in which 
the flow is essentially independent of 
viscosity. This indication appears confirmed by 
the circulation profiles shown in figure 9. 
Circulation K was estimated from tangential 
velocities in those profiles measured normal to 
the line joining the two vortex cores. (At the 
time of going to press true integral 
calculations of circulation had not been 
performed.) The profiles are normalized on core 
circulation K. and radius r1 and plotted in the 
manner of Hoffman and Joubert (1963). In this 
form the profiles clearly show Hoffman and 
Joubert's fully developed semi-logarithmic 
region. 

That the flow in the co-rotating cores 
should be fully developed is surprising. 
Isolated split-wing vortices do not reach a 
fully developed state until the parameter 
U fx/r , where r is the total circulation, rises 
above a value of about 150 (Hoffman and 
Joubert). Isolated single-wing vortices must age 
by at least this amount (Devenport and Sharma 
(1992)). At x/c=10 Urefx/r0 is only 54 if TQ is 
taken as the root circulation about one of the 
wings. We are not sure at this stage why 
interaction between the co-rotating vortices 
should cause them to become fully developed so 
early. 

By x/c=15 the co-rotating vortices have 
turned about their common center by a further 
116° and moved significantly closer, being 
separated by only 0.17c here (figures 6(c and 
d)). The contours of turbulence kinetic energy 
in figure 6(d) show the distortion of the wing 
wakes brought on by the further turning of the 
vortices. Detailed views of one of the vortex 
cores (again that originating from the lower 
wing) show an even less axisymmetric flow than 
at x/c=10 (figures 7(e to h)) . In both mean 
velocity vectors and vorticity contours the core 
appears more strongly elliptical. The diameters 
along its major and minor axes are 0.115c and 
0.080c respectively, implying a core area about 
50% greater than at x/c=10. Peak tangential 
velocities vary from 6.7%Upef on the edge of the 
core facing the other vortex to 16.1%Uref on the 
opposite side. The contours of vorticity, which 
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again ar» approximately concentric with the core 
indicate a maximum normalized vorticity of 15.7, 
13% less than at x/c=10, and show a negative 
region between the cores. The turbulence kinetic 
energy contours and those of shear stress 
(figures 7(g and h)) show variations consistent 
with the convoluted wakes at this location, the 
small amplitude vortex wandering and the skewing 
of the vortex core with respect to the free 
stream direction. Velocity fluctuation levels at 
the core center (k/Uref

2=0.0093) imply wandering 
motions with an r.m.s. amplitude less than 
0.025c. This scale is shown alongside the mean 
velocity field in figure 7(e). Spectra measured 
in and around the cores at x/c=15 show a 
structure qualitatively identical to that at 
x/c=10 suggesting, as do the circulation 
profiles of figure 9, that the cores remain in 
a fully developed state. This is despite the 
fact that Urefx/ro is only 81 here. 

By x/c=22 the vortex cores appear to have 
merged, the mean-velocity vectors (figure 6(e)) 
showing the flow rotating about a single center. 
The core of this combined flow, illustrated in 
figure 7(i), is not circular but has an outline 
like that of two overlapping ellipses. It has 
diameters of 0.21c and 0.17c in the y and z 
directions respectively - about twice the linear 
dimensions of each of the unmerged cores. The 
tangential velocity at the core edge is also not 
axisymmetric, varying by about ±1.3%Uref around 
the core edge around an average value of 
12.6%Ur f. The contours of turbulence kinetic 
energyre( figures 6(f) and 7(k)) show the wing 
wakes well wrapped up around the center of 
rotation forming a large turbulent region 1.25c 
in diameter at minimum. These contours do not do 
justice to the fine structure of this turbulent 
region which is more clearly seen in the profile 

of turbulence shear stress ~v
x
vJUrtf measured 

along the line BB and plotted in figure 10(a). 
The meaning of the complex variations in this 
profile become clear when one recognizes that a 
single passage through the wing wake produces an 

anti-symmetric -VV distribution consisting of 

one positive and one negative region. The 
profile therefore appears to pass at least 3 
times through separate turns of the wing wake on 
both sides of the vortex center. This fine 
structure is probably a consequence of the rapid 
rotation of the vortex cores about each other as 
they merge. We would expect this rotation to 
wind up the wing wakes into a long double spiral 
which would then slowly merge into a single 
axisymmetric structure. Figure 10 suggests that 
this merger has barely begun at x/c=22. 

The contours of mean vorticity and 
Reynolds shear stress (figures 7(j and 1)) show 
some of the spiral structure extending well 
within the core edge. This non-axisymmetry 
implies that even in the core the merging 
process is not complete. Those of turbulence 
kinetic energy (figure 7(k)) show k/uref 
reaching a maximum of .0019 at the core center. 
This is more than 4 times smaller than the peak 
values recorded in the unmerged cores and we are 
unconvinced that any of it is a consequence of 
lateral vortex wandering. If, however, it were 
it would imply motions with an r.m.s. amplitude 
of about 0.016c. 

The spectral structure of the flow at this 
station is illustrated in figure 8(b) which 
shows V autospectra measured along the line CC 
through the center of the vortex. As in the 
unmerged cases the spectra measured in the wing 
wake outside the core (r/c=0.55 and 0.37) show 
broad peaks at frequencies likely to be 
associated with the passage of large wake 
structures. By x/c=22 this frequency has fallen 
to about fc/U . = 2. Moving into to the core, 
spectral levels at all frequencies rise. At 

lower frequencies, however, the rise is less 
dramatic than in the unmerged cores (figure 
8(a)) and at higher frequencies it continues all 
the way to the vortex center. The implication of 
this is that the merging process generates 
turbulence in the core region over a broad range 
of scales. The circulation profile at x/c=22 
(figure 9) has a surprisingly well developed 
form considering how incomplete the _ merging 
process appears and how small Ure*x/ro is. With 
the root circulations from the two wings now 
combined U fx/r is only 59. Close examination 
of the circulation profile does show small 
variations from the semi-logarithmic region 
associated with the fine spiral structure of the 

wing wakes observed in the ~VxVr  profile. 

At x/c=30, the most downstream station 
measured, the turbulence and mean flow 
measurements (figures 6(g and h)) show an 
overall structure much like that at x/c=22. 
Detailed views of the core region (figure 7(m to 
p)), however, show some relaxation and further 
development of the flow. The core here (figure 
7m) is fairly circular with a diameter of 0.2c. 
The tangential velocities at its edge are fairly 
constant at 12.9%Uref, varying by no more than 
±0.38% - a range probably smaller than the 
uncertainty in this measurement. The large 
turbulent region surrounding the core (figure 
6(h)) has grown and has a minimum diameter of 

about 1.5c. A profile of ~VxVf through the 

vortex center (along line DD in figure 7(m)) 
still shows many of the positive and negative 
regions seen at x/c=22 but these are smaller in 
magnitude and less distinct (figure 10(b)). This 
merging of the wake spiral is also evident in 
the circulation profile at this station (figure 
9) which, in addition to being fully developed, 
is much smoother than at x/c=22. The contours of 
mean vorticity are closely circular in the core 
region (figure 7(n)), the peak normalized 
vorticity at the vortex center being 5.6. Those 
of turbulence kinetic energy (figure 7(o)) are 
still slightly out of round and indicate a value 
of k/U f* of 0.0016 at the center. As at x/c=22 
were are unconvinced that these fluctuations are 
even partly a consequence of meandering. The 
peak turbulence level in the core, if it were a 
consequence of meandering, would imply an r.m.s. 
amplitude of less than 0.017c. The spectral 
structure of the flow at x/c=30 is fairly 
similar to that at x/c=22 except that, as in the 
unmerged cores, high-frequency spectral levels 
at the core center are lower than in the 
immediately surrounding area. The implication 
here is that the rotation of the core ultimately 
stabilizes some of the turbulence generated in 
the merging process. 

The counter-rotating vortex pair 
Figures 11 through 13 show the flow 

structure produced by the counter-rotating 
vortex pair. In contrast to the co-rotating case 
this structure does not change dramatically with 
streamwise distance. The vectors shown in 
figures ll(a and c) , like the visualization 
(figure 4(b)), show the cores moving slowly 
apart with distance downstream and across the 
test section in the negative z direction under 
their mutual induction. At x/c«10 the cores are 
separated by 0.45c (compared to a wing-tip 
separation of 0.25c) and are centered at z - - 
0.7c (the quarter chord location defining 
z/c=0). At x/c=30 these numbers are 0.52c and - 
1.7c respectively. This z-wise movement 
stretches the wing wakes (visible in the 
turbulence kinetic energy contours of figures 
11(b) and (d)) which are forced into contact 
between the vortices. As in the co-rotating case 
this distortion produces a reduction in peak 
turbulence levels along the wing wakes as the 
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cores are approached. 
The detailed views of the upper vortex 

core shown in figure 12, show it to be fairly 
circular with a diameter of about 0.088c at 
x/c>=10 and 0.0108 at x/c=30. Peak tangential 
velocities at the core edge vary from 48%U f to 
34%U f at x/c=10, the highest velocities being 
reached at closest to the plane of symmetry. 
These numbers are 36%Upef and 25%Upef at x/c=30. 
That these velocities are on the whole much 
larger than those produced by the unmerged co- 
rotating vortices is only partly a consequence 
of the difference in the velocity fields the 
vortices impose upon each other. It is also due 
to the fact that the root circulation associated 
with each of the counter rotating vortices is 
about 40% greater than that for the co-rotating 
vortices because of the mutual interference of 
the wings. 

The vorticity contours (figures 12 (b and 
f)) show the vortex cores to be embedded in an 
approximately oval region of vorticity that 
extends out towards the plane of symmetry. 
Within the core these contours are concentric 
and closely circular and indicate peak 
normalized vorticities of 35.1 and 33.1 at 
x/c=10 and 30 respectively, considerably higher 
than at any location in the co-rotating case. 
The contours of turbulence kinetic energy are 
also fairly circular in the core indicating 
large fluctuation levels at the core center, 
k/U, 2 _ 

ref .0098 and .0285 at x/c=10 and 30. These 
are'mostly due to vortex wandering, the implied 
r.m.s. amplitudes being .012c and .041c 
respectively. The relatively large amplitude at 
x/c=30 may have smoothed some parts of the 
measured mean velocity field here (figure 
12(e)). 

The spectral structure of the flow at 
these two locations is qualitatively identical. 
Figure 13 shows sample Vp autospectra measured 
along the profile EE indicated in figure 12(a). 
The biggest difference with similar spectra 
measured in the co-rotating case (figure 8(a)) 
is in the high frequency spectral levels at the 
core center (r/c=0.01). These are more than an 
order of magnitude smaller than spectral levels 
at the core edge (r/c=0.04) and in the 
surrounding region (r/c=0.09), suggesting very 
little small scale turbulent motion at the core 
center. In isolated trailing vortices this type 
of spectrum is associated with under-developed 
(i.e. viscosity-dependent) flow in the core 
region (see Devenport and Sharma (1992)). 
Circulation profiles for these vortex cores 
(figure 9) indeed show no fully-developed semi- 
logarithmic region outside the core. U fX/ro has 
values of 37.5 and 113 at x/c=10 and 3D. 

CONCLUSIONS, FUTURE WORK 
The flow structure produced by pairs of 

co- and counter-rotating turbulent trailing 
vortices have been studied through helium-bubble 
visualizations and detailed three-component hot- 
wire velocity measurements. The vortices were 
generated by two rectangular wings placed tip to 
tip at equal or opposite angles of attack. 

The flow visualizations were performed for 
a range of tip separations, angles of attack and 
Reynolds number. The helium bubbles clearly 
marked the cores of the interacting vortices. 
The co-rotating pair were seen to roll about 
each other and, if the wing separation was 
sufficiently small (<=0.375c) and the angle of 
attack sufficiently large, to merge within the 
30 chordlengths of the wind tunnel test section. 
The counter-rotating pair moved slightly apart 
and across the test section under their mutual 
induction. These flows showed no significant 
effects of a 3:1 change in Reynolds number. At 
all conditions the vortices appeared completely 
insensitive to probe interference and subject 
only  to  very  small  amplitude  wandering. 

Meaningful hot-wire velocity measurements could 
therefore be made. 

The velocity measurements were made at a 
chord Reynolds number of 260000 with a wing tip 
separation of 0.25c. The wings were placed at 
equal angles of attack of 5°, producing a 
counter-rotating vortex pair, and at opposite 
angles of attack of 5°, producing a co-rotating 
pair. A 4-sensor miniature hot wire probe, 
calibrated directly for flow angle, was used to 
make detailed measurements at x/c = 10, 15, 22 
and 30 in the co-rotating case and at x/c = 10 
and 30 in the counter-rotating case. 

Upstream of the merger location the co- 
rotating vortices have approximately elliptical 
cores. These cores are surrounded by the two 
wing wakes which join together at their ends and 
become wrapped up into spirals as the cores 
rotate about each other. The accompanying 
distortion appears to locally suppress turbulent 
motions in the wakes. The cores are, naturally, 
regions of high positive vorticity, but their 
interaction results in the formation of a region 
of negative vorticity between them. Autospectra 
of velocity fluctuations and circulation 
profiles suggest that flow in the vicinity of 
the cores is fully developed (i.e. viscosity 
independent). This is surprising since the 
vortex ages, measured as Upefx/ro, are only a 
third to a half of that required for fully 
developed flow in isolated vortices. During the 
merging process the vortex cores roll around one 
another rapidly winding up the wing wakes into 
a fine spiral structure that remains discernable 
for some distance downstream. Merger roughly 
doubles the core size and appears to produce 
turbulence over a broad range of frequencies. 
The merged core region recovers surprisingly 
rapidly to a fully developed state, especially 
considering its small age. 

In contrast, the flow structure produced 
by the counter-rotating vortex pair does not 
change drastically with distance downstream. 
Their parallel movement across the test section 
stretches the wing wakes which are forced into 
contact between the cores. This distortion again 
appears to locally suppress turbulent motions in 
the wakes. Despite the strong velocity fields 
they impose upon each other the cores of these 
vortices remain closely circular and the 
vorticity and turbulence kinetic energy 
distributions within them are fairly 
axisymmetric. Autospectra and circulation 
profiles suggest that these vortices do not 
become fully developed within the 30 
chordlengths of the measurements. 

In this paper we have presented only a 
small sample of the measurements taken and the 
analyses that are possible on this large data 
set. For example, we are currently reprocessing 
the data to examine separately the turbulence 
structure in several different frequency ranges. 
One aim here is to remove as far as possible the 
effects of vortex wandering from those 
measurements made in the cores. Another aim is 
to reveal whether or not the cores are subject 
to the axisymmetric, helical and other 
instabilities seen in isolated vortices and, if 
they are, in what way those instabilities are 
affected by the presence of another vortex. 
These and other topics will be the subject of 
future papers. 
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Table 1. Flow conditions for visualizations. 

Wing separation 
Ay/c 

Angle of attack 

ctj» a2 

Reynolds number 
Rec 

Dummy probe 

1.0 
1.0 
1.0 
1.0 

+2.5° 
+5.0" 
+7.5° 
+10.0° 

130,000 
130,000 
130,000 
130,000 

0.5 
0.5 
0.5 
0.5 

+2.5° 
+5.0° 
+7.5° 
+10.0° 

130,000 
130,000 
130,000 
130,000 

0.375 
0.375 
0.375 
0.375 

+2.5° 
+5.0° 
+7.5° 
+10.0° 

130,000 
130,000 
130,000 
130,000 

yes 
yes 
yes 

0.25 
0.25 
0.25 
0.25 

+2.5° 
+5.0° 
+7.5° 
±10.0° 

130,000 
130,000 
130,000 
130,000 

yes 

0.375 
0.375 
0.375 
0.25 

+5.0° 
+7.5° 
+10.0° 
+5.0° 

400,000 
400,000 
400,000 
400,000 

yes 
yes 
yes 
yes 

Table 2. Wing trailing edge characteristics. 

6/c 6*/c 6/c Ree 
Co-rotating y/c=1.2 pressure side .04028 .00958 .00533 1289.1 
Co-rotating y/c=1.2 suction side .05631 .01344 .00742 1796.4 
Co-rotating y/c=-1.2 pressure side .04770 .01005 .00615 1486.9 
Co-rotating y/c=-1.2 suction side .06275 .01500 .00835 2018.5 
Counter rotating y/c=1.2 pressure side .03834 .00850 .00488 1180.1 
Counter rotating y/c=1.2 suction side .05949 .01535 .00822 1986.4 
Counter rotating y/c=-1.2 pressure side .04544 .00960 .00579 1400.2 
Counter rotating y/c=-1.2 suction side .06232 .01552 .00857 2072.4 
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-Figure 1. Schematic of Stability Wind tunnel showing the two 
wings and coordinate system. 
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Figure 2. Quad hot wire probe showing 
wire arrangement and probe holder. 
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Figure  3.   Contours of quad hot wire 
Q corrections   (a)   f3 as  a function 
of the actual velocities   (b)   g3 as  a 
function of the estimated velocities. 
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Figure 4. Photo mosaics of (a) co-rotating pairs and (b) 
counter rotating pairs (b) at 5° angle of attack, Ay/c=.25 
Rec=130,000.  Flow is from right to left with the two wings 
on the far right of the photo. 

Figure 5. Probe interference effects in counter rotating 
pairs at 7.5° angle of attack, Rec=130,000. (a) stationary 
probe (b) traversing probe.  Note the lack of disturbances 
upstream of the probe tip. 
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ref. 
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7i. 

Figure 9. Circulation K of vortex pairs 
compared with Hoffmann and Joubert's 
circulation law (solid line). Subscript 1 is 
core location and u and 1 are upper 
and lower vortices in figure 6 and 12. 
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DISCUSSION 

T. Huang 
David Taylor Model Basin, USA 

It will be extremely valuable for the authors to 
include the turbulent shear stresses in the core 
regions of the vortices, excluding the effect of low- 
frequency vortex meandering. 

AUTHORS' REPLY 

We fully agree and expect to have these data in 
the near future. 
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Measurements of Flows Over an Axisymmetric Body 
With Various Appendages in a Wind Tunnel: 

the DARPA Suboff Experimental Program 
T. Huang, H.-L. Liu, N. Groves, T. Forlini, J. Blanton, S. Gowing 

(David Taylor Model Basin, USA) 

ABSTRACT 

Pressures, velocities, skin friction, and Reynolds stresses 

were measured in the stern boundary layer region of an 

axisymmetric body with and without appendages. These 

data are used to assess and further develop current 

computational fluid dynamics (CFD) capability for the 

prediction of flow fields around underwater bodies. The 

model configurations tested included an axisymmetric hull, 

a fairwater, one set of four identical stem appendages, and 

two axisymmetric ring wings. Analyses of measurement 

uncertainties of all the measured variables are presented. 

The data were corrected for tunnel effects. Comparison of 

the measured and computed mean axial velocity and 

turbulent shear stress profiles demonstrates the important 

influence of turbulence modeling in CFD predictions of the 

stern flows. The data illustrate the modifications by various 

appendages of the basic axisymmetric thick turbulent 

boundary layers over the stern.The spatial nonuniformity of 

mean axial velocities and redistribution of the normal and 

shear stresses are found to be caused by a pair of 

contrarotating longitudinal vortices generated by each 

appendage. These are imbedded in the inner stem boundary 

layer of the hull. The helical rotations of the vortices 

produce a transverse transport of axial momentum. The 

high momentum and low turbulence level fluid behind the 

appendage is pulled inward and the low momentum and 

high turbulence level fluid to each side of the appendage is 

pushed upward. The appendage-generated vortices 

redistribute axial-radial turbulent shear stresses but do not 

change their circumferential-average values. The imbedded 

vortices in the stern boundary layer show distinct 

characteristics of turbulent shear stresses with the mixing 

length scales governed by the core sizes of the vortices. 

1.  INTRODUCTION 

The flow over an appended body during level flight':is 

characterized by thick boundary layers, vortical flow 

structures generated by hull/appendage junctures, and 

appendage turbulent wakes. The spatial nonuniformity and 

temporal fluctuations of the flow into the propulsor 

significantly affect propulsor noise. Experimental data for 

CFD validation purposes have been obtained during the 

past 15 years but are limited. They are (1) thick stem 

boundary layer data for various axisymmetric 

configurations [1-6], (2) appendage/flat-plate juncture flow 

data [7,8], and (3) flow data for a curved body which 

simulates qualitatively the flow features of a turning body 

[9]. Experimental data for the flow field over an appended 

body are lacking and the validation of CFD numerical 

methods for submarine design applications cannot be 

adequately accomplished. A first goal of this project was 

to provide an experimental database for CFD code 

validation. Numerical predictions of the flow field over an 

axisymmetric hull model with and without various typical 

appendages could be compared with the experimental data. 

Comparisons were then made to assess the current CFD 

capability for design problems. The ultimate goal of this 

project is to acquire a fully-matured CFD capability that is 

user-friendly, cost effective and fully validated by 

comparison with detailed experimental data. This is called 

the DARPA SUBOFF Project 

As the flow approaches the stern of a typical 

underwater body, the boundary layer quickly thickens, 

viscous-inviscid flow interaction becomes pronounced, 

turbulence reacts to the change in mean flow, and 

conventional thin boundary-layer turbulence modeling is no 

longer applicable.   Since the stem control surfaces are 
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generally immersed in this thick boundary layer, the 

numerical capability to predict the control effectiveness of 

the stern control surfaces and their adverse effect on the 

flow into the propulsor is limited. In addition, a large 

fairwater can generate a turbulent junction vortex from the 

fairwater/hull intersection and a pair of vortices which trail 

downstream into the propulsor. The flow unsteadiness 

around the fairwater and the vortex-induced spatial 

nonuniformity of the flow into the propulsor are of major 

concern. CFD capability to predict the flow nonuniformity 

at the propulsor location, caused by the fairwater and stern 

control surfaces, is lacking. The CFD capability to predict 

the propulsor noise arising from the spatial variations and 

temporal fluctuations of the propulsor inflow is also not 

well developed. 

Part I of the first phase of the SUBOFF experiments 

was designed to accelerate the maturity of the current CFD 

capability for steady flow submarine applications. The 

experimental configurations covered eight simple but 

realistic representative configurations. They included steady 

flow field measurements in a large wind tunnel simulating 

straight and level flight, and straight flight at small angles of 

attack or drift conditions. The unique feature of the above 

experimental series is the quantification of the flow 

nonuniformities at the propeller location. The wake and 

vortical flow structures generated by various combinations 

of fairwater, stern control surfaces, and/or ring wings are 

the principal source of flow nonuniformity. 

The massive amount of three-dimensional flow 

field data from the SUBOFF experiments has been 

organized, formatted and placed onto magnetic tapes. The 

data report and associated data files were prepared to 

provide CFD users with easy access to the measured data. 

A simple and fully validated viscous-inviscid 

axisymmetric flow interaction procedure [17,18,19] was 
used to compute the flows of axisymmetric bodies without, 

appendages in the free flight condition and inside the tunnel 

to assess tunnel wall effects during the design of the 

experiments. 

The results computed by the viscous-inviscid 

procedure were also used to compare the experimental 

results and the results computed by more complete 

incompressible Reynolds-Averaged Navier-Stokes (RANS) 

solvers. The RANS results mentioned in this paper are 

limited to those available to the authors and are used to 

indicate the present status and potential of this approach. 

These limited comparisons of experimental data with the 
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results computed by the RANS methods and the viscous- 

inviscid procedure are presented to promote further 

development of CFD methods to solve incompressible 

turbulent stern flows over axisymmetric bodies and three- 

dimensional ships with various appendages. Further 

validation of CFD computer codes using the present data 

base is expected to be continued. 
The following sections present the SUBOFF 

models, experimental facilities and techniques used, wind 

tunnel blockage effects and corrections, measurement 

uncertainty analyses, typical results and discussion. Some 

of the details were reported in a series of DTRC reports 

[10-15]. A summary of the entire first phase of the 

SUBOFF experiments can be found in a DTMB report [ 

16]. 

2. SUBOFF MODELS 

The representative components of the DARPA SUBOFF 

body and their dimensions are shown in Fig. 1. A typical 

configuration is composed of an axisymmetric hull, a 

fairwater, one set of stern appendages, and two 

axisymmetric ring wings. Two SUBOFF models, DTRC 

Model Nos. 5470 and 5471, were used. The two models 

differ only in the location of the surface pressure taps. 

Model No. 5470 was designed for the towing tank and 

Model 5471 for the wind tunnel. The details of the model 

configurations have been described in Groves et al [10]. 

For completeness of this paper, the essential geometric 

features are repeated here. Each model component is 

described by equations giving either the axial and radial 

values for an axisymmetric component or the Cartesian 

coordinates (x, y, z) of nonaxisymmetric components. All 

equations and computer code listings give model scale 

coordinates in units of feet ( 1 ft.=0.3048 m). A grid 
representation of the axisymmetric hull, fairwater, and stem 

appendages is shown in Fig. 2. 

2.1 Axisymmetric Hull 
The axisymmetric hull has an overall length L of 14.292 ft 

(4.356 m) and a maximum diameter D of 1.667 ft (0.508 

m). The hull is composed of a forebody of length 3.333 ft 

(1.016 m), a parallel middlebody section of length 7.313 ft 

(2.229 m), an afterbody of length 3.646 ft (1.111 m) and 

an afterbody cap of length 0.313 ft (0.095 m). Hull profiles 

are shown in Fig. 3. 

2.2 Fairwater 
The fairwater is located on the hull at top dead center with 



its leading edge positioned at x=3.033 ft (0.924 m) and 

trailing edge at x=4.241 ft (1.293 m) for a total length of 

1.208 ft(0.368 m). A cap attaches to the top of the 

fairwater at a height y= 1.508 ft (0.460 m) and is a 2:1 

elliptical cross-sectional shape. The fairwater cap, the 

fairwater is defined in terms of a forebody, a parallel middle 

body, and an afterbody region. Fig. 4 shows the fairwater 

section profile. 

2.3 Stern Appendages 
The stern appendages consist of four identical planes of 

NACA 0020 sections mounted on the model hull at angles 

of 0° (top dead center), 90°(port), 180°, and 
270°(starboard). The circumferential angle,8,in this report 

is defined positive counterclockwise viewed from the stern. 

The basic stern appendages, shown in Fig.5, can be 

attached to the hull at three different axial locations. The 

stem appendage location with the appendage trailing edge at 

x=13.146 ft (4.007 m) is designated the baseline stern 

appendage location. To provide clearance for stern 

appendage angular deflections, the appendages are slightly 

offset from the axisymmetric hull surface. 

2.4 Ring Wings 
Two ring wings, designated Ring Wing 1 and Ring Wing 

2, have the same section shape of NACA 66 mod. with a 

0.1 thickness-to-chord ratio and a=0.4 mean line, and differ 

only in their angle of attack. Figure 6 shows the placement 

of the wings relative to the axisymmetric hull. 

2.5 Ring Wing Struts 
Four separate, identical struts are mounted equally-spaced 

around the hull girth to support the ring wings. The struts 

were rotated 45° with respect to the stern appendages. The 

struts attach at the same axial position on the hull, 

x=13.589 ft (4.142 m). At the inner surface of each wing, 

the struts are contoured to match each wing. 

2.6 Model Construction 
The axisymmetric hull and fairwater were made of molded 

fiberglass. The hull was reinforced with a 10-in. (0.25 m) 

wide U-channel strongback. The stem appendages were 

made of Hysol, an epoxy and wood fiber-based compound 

that was both waterproof and easily machined. The ring 

wings, support struts, and stem hubs were machined from 

aluminum and anodized. 
The various model components contain a large 

number of surface pressure taps. The taps were arranged to 

assist in wind tunnel alignment of the model with the flow 

and to provide a basic indication of surface flow variations 

as the model configuration, pitch, and drift were varied. 
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Complete tap identification was provided in Groves et al. 

[10]. The finished model was checked for smoothness of 

the surface finishing. The model was measured for 

roughness at three positions on its circumference. The top 

centerline was at 6= 0°, the port seam was at 90° and 

starboard seam was at 270°. When the model was 

measured at five axial stations for the three angular 

positions, the port seam was the roughest and the top 

centerline the smoothest. The mean value for all 22 

roughness readings was 0.00036 in. (0.0091 mm). These 

roughness measurements were made before the 

experiments. 
The radii of the finished models were also 

measured. The radial measurements indicate a standard 

deviation in radius up to 0.07 in. (1.78 mm) in the bow 

region, less than 0.03 in. (0.762 mm) in the parallel middle 

body, and less than 0.05 in. (1.270 mm) in the stem 

region. The relatively large bow asymmetry occurs ahead 

of the trip wire and its impact is considered small. A 

complete analysis of the radial variations was given in Liu 

et al [13,16]. The overall uncertainty of the model radii was 

± 0.03 in.(0.76 mm). The uncertainty of the total model 

length was 0.06 in.(1.59 mm). The overall model 
uncertainties (due to manufacturing errors) of AS/S and 

AV/V respectively were 0.3% and 0.6%, where S and V 

are the model surface area and volume. 

3. EXPERIMENTAL FACILITIES AND 

MEASURING TECHNIQUES 

The wind tunnel selected for the flow field measurements is 

the DTRC Anechoic Row Facility (AFF). The measuring 

system employed in the AFF consists of four sub-systems: 

the probe traversing system, the computer, and the velocity 

and pressure measuring systems. 
3.1 Wind Tunnel and Model Installation and 

Augment 
Eight DARPA SUBOFF model configurations were tested 

in the DTRC AFF with Model No. 5471. The wind tunnel 

has a closed-jet test section that is 8 ft. (2.4 m) square and 

13.75 ft. (4.19 m) long. The comers have fillets which are 

carried through the contraction and allowance for boundary 

layer growth along the tunnel is made by tapering the comer 

fillets, starting from the test section entrance to the exit. 

The test section is followed by a large acoustically-tiled 

chamber 23.5 ft. (7. 16 m) square, normal to the flow, and 

21 ft. (6.40 m) long. The forebody and most of the parallel 



middle body were located in the closed-jet test section, and 

the afterbody protruded into the open-jet anechoic chamber 

as shown in Fig. 7. 

Pretest analyses by Liu et al. [13] demonstrated that 

the effect of the open and closed jet model positioning had 

minimal effect on the flow parameters if the reference 

pressure and velocity were selected in the open-jet area, 

corresponding to x/L = 0.85. The model was supported by 

two thin NACA 0015 struts located at x/L = 0.24 and 0.63. 

The two supporting struts have a 6 in. (15 cm) chord. The 

strut bases were mounted below the tunnel floor for 

minimal flow disturbance. The model end of the strut was 

connected to a gimble secured to the model strongback to 

align the model for various angles of attack or drift. . For 

added stability, two 1/16-inch cables anchored the struts to 

the tunnel wall. Liu et al. [13] and the actual experimental 

results confirmed that the wake data at zero angles of attack 

and drift were essentially free from strut wake 

contamination except near ±30° of the strut. The analyses 

for the blockage of the model in the wind tunnel will be 

presented in the next section. 

In order to align the model to the flow, the model 

center was first aligned to the tunnel centerline using a 

surveyor's transit located 32.8 ft. (10 m) downstream from 

the end of the model. After the model was physically 

aligned with the tunnel, pressures around the body 

circumference were measured at five axial locations for 

aerodynamic alignment. The pressure coefficients after the 

aerodynamic model alignment were within 0.003 of each 

other, which is about the accuracy of the pressure 

measurement system. An overall accuracy of model 

alignment with the flow is estimated to be better than 0.15 

degree. The alignment procedure was detailed by Liu et al. 

[13]. 
3.2 Traversing System 
A traversing system was built to move velocity or pressure 

probes radially in the stem region of the model. The probes 

angular position was automatically controlled in the radial 

direction and could be manually repositioned axially. The 

unit allowed a probe to be positioned anywhere within an 

annular volume 59 in.(1.5 m) in. length from 3 in (7.6 

cm) to 28 in (71 cm) in radius. The traversing unit was 

mounted inside the anechoic chamber directly behind the 

model. This mounting location provided easy access to the 

model's stern region. Ward and Gowing [12] gave a 

complete description of the traversing system and its full 
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3.3 Computer Data Acquisition System 
A Unix-based Masscomp MC 5450-01 Scientific 

Laboratory System served as the data acquisition computer. 

In addition to collecting and analyzing the velocity and 

pressure data, the computer controlled the stepping motors 

of the traversing system and the rotary pressure scanners. 

3.4 Velocity Measurement System 

Velocity measurements utilized standard hot-film techniques 

and required the interaction of hot-film probes, a hot-film 

anemometer, the Masscomp computer, and the traversing 

system. The velocity magnitudes and directions obtained 

through the acquisition system were then used to calculate 

mean velocities, turbulence intensities, and Reynolds 

stresses in the wake of the model. A TSI Model IFA-100 

(Intelligent Flow Analyzer) computer-controlled, hot-film 

anemometer and thin, cylindrical hot-film sensors were 

used to measure the flow in the AFF. Three types of 

probes were used to match the type of measurement 

required. A single sensor hot-film probe, TSI Model 1201- 

20, was selected to measure the time-varying response. A 

TSI 1249A-10 miniature "X" probe was used when the 

flow was two dimensional or in a boundary layer. The "X" 

probe measures two components of velocity, turbulence 

intensity and Reynolds stress. The "X" sensor was used 

for measurements close to the body surface and as a check 

for the three-sensor probe, A compact, three-sensor probe, 

TSI Model 1299-20-18 was used for most of the flow 

measurements since it yielded three velocity components 

with good spatial resolution. Velocity measurements were 

normalized using a reference velocity measured by pitot 

tubes in the free-stream at an axial location x/L = 0.85. 

3.5 Wind Tunnel Wall Effects and Corrections 

It is desirable to use the largest model possible to obtain the 

data at high Reynolds numbers. However, the wind tunnel 

blockage effect increases with model size. For a large 

model in a wind tunnel an area ratio of maximum model 

cross-section to tunnel cross-section of less than 5% is 

considered to be tolerable at low mach numbers (less than 

0.2). Furthermore, if the blockage effect can be quantified 

and the wall effects can be removed from measured data by; 

numerical computations, then the corrected data will 

simulate free flight conditions. 

A potential-flow panel code computer program 

modified to include viscous effect in a simple viscous- 

inviscid interaction procedure [17, 18,19] was used to 

compute the flow field in the AFF. Only the bare 

axisymmetric body with the two supporting struts were 



modeled. The effect of the open-jet was also estimated. 

Detailed determination of wind tunnel wall effects and 

corrections was given by Jiang et al.[20]. The computed 
pressure coefficient distribution Cp along the DARPA 

model represents the blockage effect in the AFF tunnel. An 

overall tunnel blockage was estimated as the average 
difference in the values of Cp over the body length. This 

difference in Cp is about 0.05 resulting in a velocity 

difference of about 0.025 of the freestream . To esti mate 

the open-jet effect, a free surface boundary condition was 

assumed in the tunnel jet region to predict the pressure 

coefficient along the model. Velocity components in the 

flow direction on the panels of the open-jet region were 

iterated to achieve a constant value by allowing different 

normal velocities on the tunnel panels in the open-jet region 

[20]. The open-jet flow pressure distribution was found to 

locally follow the earlier open flow condition calculations. 

The velocities measured at the outer edges of the axial 

measuring locations with respect to the tunnel reference 

velocity were recorded and could be applied to correct 

small (1-3%) drifts of the hot-film anemometer. 

The tunnel velocity and static pressure vary along 

the body length and across the tunnel section. Since 

viscous effects are important in the model stern region, the 

viscous-inviscid flow interaction computation procedure 

[17, 18,19] was used to compute these velocity and static 

pressure variations due to the axisymmetric body in the 

tunnel. The computed axial velocity and static pressure are 

uniform across the entire plane at x/L=0.85 with and 

without the presence of the tunnel walls. The presence of 

tunnel walls causes a 2.4% increase in axial velocity and a 

4.8% increase in static pressure. The computed velocities 

and static pressures at the x/L=0.85 plane were equal to the 

free stream velocity and pressure for the open flow. 

Detailed velocity and static pressure measurements were 

made inside the tunnel in the presence of the axisymmetric 

body. It was found that, at the x/L=0.85 plane, the velocity 

variation was less than 0.5% and the static pressure 

coefficient variation was less than 1.0%. The velocity and 

static pressure at this plane were then used as the tunnel 

reference free stream velocity and static pressure. Two pitot 

probes, mounted at x/L=0.85 and r/Rmax = 3.6 were used 

to measure the tunnel reference velocity and static pressure 

for the entire experiment. The computed static pressure 

coefficients were obtained using the computed reference 

velocity and static pressure at x/L=0.85 for both with and 

without the tunnel walls. It was found that the tunnel 
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blockage effect was nearly eliminated by using the reference 

velocity and static pressure at x/L=0.85. Therefore, all the 

measured velocities and static pressures were normalized by 

the reference velocity and static pressure measured at 

x/L=0.85 and r/Rmax=3.6. 
3.6 Conditions of Inflow and Outflow Planes 

The inflow plane selected was at x/L = -0.45, where there 

was no difference in the computed axial velocity with and 

without the model in the tunnel. The measured variation of 

the axial velocities across the inflow plane of the empty 

tunnel was found to be 0.5% Uref. The outflow plane 

selected was at x/L = 1.2, where the difference in measured 

axial velocities with and without the model in the tunnel 
was about 0.5% Uref. The measured variation of the axial 

velocities across the outflow plane of the empty tunnel was 
found to be 0.5% Uref. Therefore, the inflow and outflow 

at x/L = -0.45 and 1.2, respectively, can be considered 

uniform outside of the wake region. 

3.7 Longitudinal Flow Variation along the 

Tunnel 
The variations of tunnel velocity and static pressure were 

measured along the ceiling at r/Rmax = 3-6 with and 

without the model in the tunnel. A small favorable pressure 

gradient and a small velocity gradient along the tunnel was 

observed. When the small axial flow variation was removed 

from the measured data [16], the corrected data agreed 

better with the computed values where no flow variation 

was imposed in the computation. Thus, the flow over the 

model in the tunnel did simulate the free flight condition 

with minor effects of tunnel walls and axial pressure 

gradient. These effects were measured and presented [16]. 

However, no correction has been applied to the original 

measured pressure coefficients on the body. CFD users 

may apply the measured axial variations of velocities and 

pressure coefficients [16] to correct the raw data. The 

pressure coefficient corrections used to eliminate the effect 

of longitudinal flow variation along the tunnel and the 

corrected pressure coefficients on the body are given in 

Table 1. 

4. MEASUREMENT UNCERTAINTY 

Measurement error sources are usually identified either as 

bias (fixed) or precision (random) errors. The magnitude of 

bias and precision error sources were estimated individually 

and then combined to provide an estimate of the total 

measurement uncertainty [21,22]. In this report, the 95% 



confidence interval estimates [21,22] are used to present the 

bias and precision limits of the measurement errors. The 

final uncertainty analyses summarizing the uncertainties of 

the reported results measured by different systems were 

presented in detail [16] and are stated as follows. 
4.1 Uncertainty of Hot-Film Velocity 

Measurements 
Computer programs for calibration, data acquisition, probe 

traversing, data reduction, data archiving, and initial 

plotting of velocity were written by Blanton et al. [14] who 

estimated the uncertainties associated with using the hot- 

film measurement system. Bias uncertainties of velocity 

measurement, Bv, were found by perturbing the data 

reduction equation with estimates of individual uncertainty. 

The bias uncertainties considered by Blanton et al. [14] due 

to (1) temperature, (2) probe alignment, (3) analog to digital 

conversion, (4) speed calibration,and (5) angle calibration 
are summarized in Table 2, where Sv is the estimated 

sample standard deviation of the measured velocity. As 

shown in Table 2 the speed calibration and angle 

calibration are the major contributors of the bias uncertainty 

of the hot-film velocity measurements.The bias 

uncertainties due to hot-films for 10-20 points within the 

range of the measured velocity were found to be 1.5, 2.0, 

and 2.5% for a single, a two-component and a three- 

component hot-film probe, respectively. The variation of 

this uncertainty depends upon how carefully the values of 

n, A, and B were obtained [1 -1, 9.]. 
Precision (random) uncertainty of the three- 

component hot-film measurements was determined from 

repeat measurements at one point in the free-stream and at 

another fixed point in a highly turbulent region (inside 10% 

of the boundary-layer thickness) of the model. The data 

acquisition system collected 1500 data points per transducer 
at 150 Hz. Therefore, a single measurement at each 

position required about 10-11 seconds to acquire data, 

analyze data, and move to the next position. At the two 

points thirty repeat measurements were taken consecutively. 

Another thirty repeat measurements were also taken over a 

typical time of 30 minutes (a representative time required 

for a typical constant radius velocity survey), the probe was 

moved to a different position and then returned to the same 

position (about 30% of the boundary layer thickness) inside 

the model boundary layer by the automatic traversing 
system. The 2SV> 2SV' and 2Suv precision uncertainties 

for the thirty repeat measurements for the three conditions 
are shown in Table 3, where SV] Sv' and Suv are sample 
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standard deviations of the three mean and turbulent velocity 

components and the Reynolds stress, respectively. Table 3 

indicates that the precision uncertainty of the present 

measuring system is much smaller than the bias uncertainty. 

The position uncertainty of the automatic probe traversing 

system therefore does not contribute significantly to the 

precision errors of the velocity measurements shown in 

Table 3. These thirty repeat measurements of mean velocity 

indicated that the precision uncertainty of the mean velocity 

was less than 0.3% of Uref. The total uncertainty of the 
measured mean velocity Uv with 95% confidence can be 

2       2 1/2 estimated from Tables 2 and 3 as Uv = [Bv  + Pv ] 

The total measurement uncertainty for each of the three 

mean velocity components with 95% confidence was 2.5% 
of Uref. for the three-component hot-film probes. The total 

uncertainties for mean velocities were 1.5% and 2.0% of 
Uref for a single and a two-component hot-film probe. The 

bias uncertainties of the measured turbulence Reynolds 

stresses are not significant because the use of differencing 

in the data reduction program removes most of the bias 

errors. The results of the thirty repeated measurements of 

three turbulence intensities and two Reynolds stresses 

shown in Table 3 indicated that the total measurement 

uncertainty for each of the three turbulence velocities with 
95% confidence was less than 0.2% of Uref ,and that for 

each of the two Reynolds stresses was less than 10    Uj-gf2 

in the inner region of the turbulent boundary layer and wake 
and was less than 5x\0'^rt^ outside 0f the turbulent 

boundary layer and wake. 
4.2   Uncertainty   of  Pressure   and   Shear   Stress 
Measurements 
The significant features of the pressure system were the 

ability for remote calibration at in situ temperatures, the 

measurement of tap and dynamic pressures with the same 
tranducer, and high scanning speeds to survey all pressures 

at constant tunnel conditions. Five rotary pressure 

scanners, Scanivalve Model 48J9GM were the heart of the 

pressure measuring system. Each scanner was connected 

to 48 pressure taps on one side and to a transducer on the 

other side. The calibration transducer was a Datametrics 

Type 570 Barocel sensor with a differential pressure range 

of 10 torr. Vishay Model 2310 signal conditioners were 

connected to the scanner transducers to provide excitation 

voltage, output signal amplification, and bridge balancing. 

This entire system was located inside the model. This 

arrangement reduced the length of the pressure lines from 

each of the surface pressure taps, decreased the response 



time required for a measurement, and thus increased the 

allowable scanning rate. The analog output signal was 

conditioned, amplified, filtered, and finally connnected to 

the Masscomp MC5450 Scientific Laboratory System 

computer. The computer sampled the data from the five 

scanner transducers at 1 KHz for 100 ms for each tap. 

Shear stress on a body in a flow can be measured 

with small obstacles that stagnate the velocity field near the 

surface to produce a pressure rise that is approximately 

proportional to shear stress [23] . This technique easily 

adapted to models that were already equipped with pressure 

taps for surveying pressure distributions. The pressure 

was measured at the tap with and without the obstacles. The 

measurement differences were used to compute the shear 

stress or friction coefficient at that location. Based on 

boundary-layer estimates, the blocks were less than 12% of 

the boundary layer thickness wherever they were used, and 

the top edge of the block is at a non-dimensional boundary 
layer height of y + a 160. Gowing [15] calibrated all the 

obstacle blocks with Preston tubes using the calibrations 

published by Patel as reported in Winter [24]. The blocks 

were calibrated on the wall of a wind tunnel and then 

calibrated on the SUBOFF model surface itself. In both 

cases, the blocks were placed midspan between two 

Preston tubes two inches apart and the average stress 

indicated by the tubes was the calibration value. This 

compensated for any spanwise variation in shear stress 

between the block and the tubes. The two calibrations 

(tunnel wall and model surface) on each block were 

compared and no significant differences in the values were 

found in the range of shear stress where the calibrations 

overlapped. Overall, the blocks produce a pressure rise that 

is about 75% of the pressure rise produced by a similar size 

Preston tube. If the obstacle block is not facing directly into 

the flow, the pressure rise will be different from that for an 

aligned block. This effect must be considered because 

some of the shear stress measurements are made near 

appendage and sail junctions where the surface flow is no 

longer parallel to the body. Instead of performing flow 

visualization, the blocks were aligned to the best estimate of 

the flow direction and this estimate is assumed to be within 

15° of the true flow direction. The pressure rises on the 

blocks were measured by Gowing [15] during calibration at 

flow misalignment angles up to 35° in 5° increments. Up to 

a misalignment of 15°, the pressure rises, and hence the 

friction coefficient, will be within 5% of the value that 

would be measured with an aligned block. On the wall of 

the wind tunnel, the pressure rise on a block was measured 

with a second block placed 1.4, 2, 6 and 10 block widths 

away in the spanwise direction. No interference effects 

were observed with block separations of 3 block widths or 

greater. This minimum separation was used during the 

tests. 

The major sources of error in the pressure and shear 

stress measurements were identified by Gowing [15]. The 

precision uncertainty of the repeated measurements was 

found to be smaller than the bias uncertainty. Misalignment 

of the reference pitot tubes and temperature drift in the 

electronics were the major sources of bias pressure 

measurement error. The pitot tube readings were compared 

during testing to check for misalignment and thermal drift in 

the electronics compensation by repeated calibrations at 

elevated tunnel temperatures. Over an estimated maximum 

tunnel temperature rise of 7°C, the true pressure 
coefficients were estimated to be within +0.01 and -0.0085 

of the measured value. The greatest precision error source 

in the friction coefficient measurements was in measuring 

the small difference between two pressures with and 

without the block. The bias error sources were the accuracy 

limits of the published calibrations for Preston tubes and 

flow misalignment. Overall, Gowing [15] estimated the 

true friction coefficients with 95% confidence to be within 

±0.0002 of their measured values. The total uncertainty of 

the measured pressure coefficients with 95% confidence 

was also estimated by Gowing [15] to be within ±0.015. 

5. DATA PRESENTATION 

A detailed summary of the test conditions for each 

individual test is presented in the appendix of Reference 

[16]. Flow field data were measured in the wind tunnel for 

the SUBOFF axisymmetric body with various appendages 

for nineteen model configurations identified in Table 4. 

Static pressure and skin friction (wall shear stress) 

measurements were made in the critical regions of the 

model surfaces. Velocity and off-body static pressure 

measurements were made in the stern boundary layers of 

the models. The stern flow parameters of importance are the 

boundary layer velocity profiles and Reynolds stresses at 

several axial locations for the CFD code validation, and 

mean spatial and time-dependent flow variations at the 

propeller plane for practical design consideration. 

Model 5471 and its appendages contained 259 

pressure taps for measuring the static pressures on the 
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surfaces.These surface pressure data were obtained to 

address the complex flow in the juncture region of the hull 

and appendages. Skin frictions were measured at selected 

pressure tap locations. Table 5 summarizes the 

measurement data for static surface pressure (denoted as P) 

and skin friction (denoted as S). 

A summary of profile measurements in the stem 

region off the body, consisting of static pressure (denoted 

PP), stern boundary layer velocity (denoted VP) and mean 

spatial velocity variation (wake survey) in the propeller 

plane (denoted V), is presented in Table 6. Pressure and 

boundary layer velocity profiles were measured at various 

radial locations for a given axial and azimuthal position. In 

contrast, the mean wake data contained velocities at various 

circumferential angular positions for a given radial position 

at the propeller plane (X/L=0.978). The range of 

circumferential angles and radii is given in the appendix 

tables of Reference [16]. The massive raw data may be 

obtained from the DARPA Hydrodynamic/Hydroacoustic 

Technology Center located at the David Taylor Model 

Basin.. 

6.  RESULTS  AND DISCUSSION 

Only typical results are presented to illustrate the general 

flow physics governing the modification of the basic 

turbulent stern flow field of a typical axisymmetric body 

by various appendages. The results computed by the 

viscous-inviscid flow interaction computation procedure 

[18,19] and by the incompressible RANS computer codes 

[25, 26,27] are compared to some of the measured data. 

6.1 Measured and Computed Static Pressure and 

Skin Friction Coefficients 
The pressure coefficient is defined as C =2(p-p )/pU 2 for 

the unrestricted domain, where p is the local static pressure, 
p0 is the ambient pressure, U0 is the fream-stream velocity, 

and p is the mass density of the fluid.The corrected 

measured pressure coefficients shown in Fig. 8 agree well 

the values computed by a simple viscous-inviscid procedure 

[1,2,18,19] and a RANS calculation [ 27]. The 
measurement uncertainty of ±0.015 for Cp is noted in the 

last line of Fig. 8 and for measured quantities in subsequent 

tables and figures as appropriate. 

The measured pressure coefficients along the upper 

meridian line for various configurations are shown in Fig. 

9. The effect of the appendages on the hull pressure is small 

except in the areas very close to the appendages. The 

measured static pressure coefficient distributions across the 
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stern flow region of the axisymmetric bare hull are shown 

in Fig. 10. Good agreement between the measured and 
computed Cp values across the stern flow is also noted in 

Fig. 9. The measured pressure coefficients on the fairwater 

and on the stern appendages of various configurations are 
shown in Figs. 11 and 12. The computed Cp values based 

on the viscous-inviscid two-dimensional approximation of 

the section agree well with the measured values on the 

fairwater where the hull boundary layer is thin but 

overpredict the measured pressures on the stern appendages 

where the hull boundary layer is thicker. A general three- 

dimensional vicous-inviscid flow interaction computation 

procedure is expected to predict the pressures and the 

boundary layers over most of the fairwater. However, this 

simplification fails to predict two small tip vortices shed 

from the fairwater cap and the root vortices generated at the 

fairwater/hull juncture (see Section 6.3). Detailed 
comparison between the measured and computed Cp values 

on the fairwater and stern appendages remains to be made 

for the RANS codes in order to ascertain their capability to 

predict the entire flow field over and downstream of 

fairwater and stern appendages [16]. 

Comparison of the computed and measured skin 

friction coefficients along the upper meridian line is shown 

in Fig. 13 for various configurations. Due to the increase of 

axial velocities behind the appendages the measured skin 

friction coefficients on the hull downstream of appendages 

are higher than those of the bare hull by 0.0004 (10-15%) 

for fairwater and by 0.001-0.0015 (about 3 times) for the 

stern appendages. The contribution of the higher skin 

friction to the total drag may not be significant since the hull 

area associated with the higher skin friction downstream of 

the stern appendages is small. As shown in Fig. 13 the 

agreement between the measured and computed values of 
Of is satisfactory for the bare hull. 

6.2 Stern Boundary layer Velocity Profiles 
The axisymmetric characteristics of the measured velocity 

profiles on the axisymmetric bare hull are shown in Fig. 

14. The measured velocity profiles over various meridian 

lines of the bare hull at x/L=0.927 and 0.978 are used to 

illustrate that the stem flow over the bare hull in the wind 

tunnel is reasonably axisymmetric except in the wake region 

downstream of the supporting struts at 8=180°(Section 

6.3). 

Comparisons of the measured and computed 

velocity profiles at various axial locations of the 

axisymmetric bare hull are shown in Fig. 15; for bare hull 



with two ring wings and bare hull and fairwater at 2° angle 

of attack or yaw are shown Fig. 16; and, for axisymmetric 

bodies 1 and 2 [1,2] are shown in Fig. 17. Comparisons of 

the  measured   and  computed   Reynolds   stresses - 
-ux'vr7Uref2 profiles are also shown in Figs. 15 and 17 . 

As shown in Figs. 15 and 17 both the viscous-inviscid 

flow interaction procedure and the RANS computer code 

[27] predict the measured axisymmetric stern boundary 

layer profiles rather well when the axisymmetric stern flow 

turbulence model [1, 2, 18,19] is incorporated in the 

computation. The importance of the turbulence model in the 

prediction of the turbulent stern flows is evident. 

Comparison of predicted and measured velocity and 

Reynolds stress profiles as illustrated in Figures 15 and 17 

is essential and more revealing for the assessment of 

turbulence models used in CFD computations of stern 

flows. 

6.3 Effect of Appendages on the Time-Averaged 

Stern  Flows 

Most appendages on an underwater body or a ship cause 

additional drag and turbulence, and usually generate 

longitudinal vortices, which are sources of spatial flow 

nonuniformity and temporal flow fluctuations at the 

propeller plane. Figs. 18 and 19 show the measured mean 

cross-flow velocity vectors and mean axial velocity 

contours at x/L=0.978 of the axisymmetric hull with three 

appendage configurations. As shown in Fig. 18 each 

appendage generates two contrarotating longitudinal 

vortices starting from the junctures of the hull and 

appendage. At x/L=0.978 the centers of the two vortices 

shed from the fairwater are estimated to be located at 
r/Rmax=0.38 and 0= ±22°, where r is the radial distance 

from the body axis, Rmax is the maximum radius of the 

hull, and 8 is positive counterclockwise from the center 

plane of the fairwater. The centers of the eight vortices shed 

from the four stern appendages are estimated at 
r/Rmax=0.22 and 8=±17° from the center plane of each 

appendage. The centers of vortices are also marked in Fig. 

19. The adverse effects of the supporting struts on the 

measured mean velocities can be seen from Figs. 18 and 19 

and are found to limit in the region of 150°<8>210°. The 

effects of fairwater and four stern appendages on the 

measured mean axial velocities at x/L=0.978 are shown in 

Fig. 20. As can be seen from Figs. 19 and 20 pairs of 

contrarotating longitudinal vortices generated by each 

appendage bring the high momentum fluid behind the 

appendage down to the hull. In the inner stem boundary 
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layer the axial velocities behind the appendage are found to 

be higher than those to each side of the appendage. At outer 

radii slower axial velocities behind the appendage due to the 

appendage viscous wake are evident. It is important to note 

that the redistribution of the axial momentum by the 

appendage-generated vortices has only a small effect on the 

circumferential-average axial velocity profiles shown in 

Fig.l6f. 
6.4 Effects of Appendages on Turbulence 

Characteristics of Stern Flows 

The turbulence characteristics of the stern flows can be 

represented by the distributions of Reynolds stresses, 
namely, -ux'vr', -ux'we', -VT'WQ',Ü^

2
,~V

2
, and we'2, 

where ux', vr', and wg' are the turbulence fluctuations in 

the axial, radial, and azimuthal directions, respectively. Fig. 

21 shows the measured distibutions of one turbulent shear 

stress and three components of turbulence intensity at 

x/L=0.904, and 0.978 of the bare hull. As shown in Figure 

21 the axial turbulence-velocity component has the highest 

intensity (2-5%) inside the stern boundary layer and the 

radial velocity component has the smallest intensity. The 

degree of anisotropy is not serious in the stern flows in 

general. The measured ratios of [- 
üpvr"']/[üx"'2+v7'2+W9'2] are almost constant and are 

found to be about equal to the standard value of 0.15 

[1,2,3,4,5,29]. 

Comparisons of circumferential variations of 

measured axial, radial and azimuthal turbulent normal 

stresses at x/L=0.978 of the axisymmetric hull with and 

without fairwater and four stern appendages are shown in 

Figures 22,23, and 24, respectively. Recall that the trailing 

edge of the fairwater is at x/L=0.297, and that of the four 

appendages is at x/L=0.920. The influence of stern 

appendages on the measured turbulent normal stresses at 

x/L=0.978 is more pronounced than that of the fairwater. 

The helical rotation of the twin vortices pulls the low 

turbulence level fluid behind the appendages inward and 

pushes the high turbulence level fluid away from the 

appendages upward. The twin vortices generated by each 

appendage are responsible for the redistribution of 

turbulence normal stresses. The redistribution of turbulence 

normal stresses shown in Figs. 22, 23, and 24 correlate 

with the centers of the contrarotating vortices as inferred 

from Fig. 18 and the vortex induced pulling/pushing effect 

on the mean axial velocities shown in Fig. 20. The 

turbulence level inside the vortex core regions is higher than 

outside. The fairwater-generated vortices induce a 50% 



circumferential variation in the three turbulence intensities. 

The vortices generated by stem appendages produce peak- 

to-valley circumferential variations of the three turbulence 

components by a factor of two at the inner radii. A small 

narrow viscous wake is detectable "at the outer radii for each 

appendage. 
Comparisons of the circumferential variations of 

two measured turbulent shear stresses are presented in 

Figs. 25 and 26 at x/L=0.978. The influence of the 
fairwater on the measured values of -ux'vr' (axial-radial) is 

small and on the -ux'w0' values is significant and can be 

traced to two contrarotating vortices imbedded in the inner 

stern boundary layer. The magnitude of the measured- 
ux'wg' attains equal peak value but the sign is opposite in 

the core regions of the two vortices as shown in Fig. 26. 

Distortions of the turbulent shear stresses by the eight 

vortices generated by the four appendages are more 

pronounced. The peak values of the measured turbulent 

shear stresses correlate with the centers of the vortices and 

the mixing length scales can be inferred from the core sizes. 
Redistributions of -ux'vr' are evident in Figs. 25 and 26, 

where lower turbulent shear stress in the inner stern 

boundary layer behind the appendage is induced by the 

pulling of high momentum and low turbulence level fluids 

inward. The reverse is true outboard of the two vortex 

centers. The fairwater does not affect at all the 

circumferential-average axial-radial shear stress at 

x/L=0.978. The effect of the stern appendages on the 

circumferential-average axial-radial shear stress is 
neglegible for r/Rmaxa0.5 but is significant in the inner 

radii (about 30% higher). The imbedded longitudinal 

vortices in the inner stern boundary layer have their own 

distinct characteristics of turbulent shear stressess with the 

mixing length scales about equal to the core sizes of the 

vortices. These overall features of turbulent shear stresses 

can be incorporated into turbulence modeling for most CFD 

computer codes. 

6.5 Spatial Wake Harmonics 

The spatial variations of time-averaged velocities can be 

represented by a standard harmonic analysis. Figure 27 

displays the results of the harmonic analysis of the mean 

axial velocities. High harmonic amplitudes at multiples of 

the number of the stern appendages are evident in Fig. 27. 

The fairwater causes increases in amplitude for a few low- 

order axial velocity harmonics. Measurement uncertainty of 

the harmonic amplitudes is estimated from the bare hull 
conditions and is found to be about 0.002Uref. Time- 

dependent flow interaction of appendage,hull, and propeller 

was investigated by Rood and Anthony [30]. 

7.  CONCLUSION 

We have described a recent extensive and comprehensive 

investigation of the three-dimensional flow field of an 

axisymmetric body with and without a fairwater, one set of 

four identical stern appendages, and two ring wings at 

small angles of attack and drift. These experiments were 

conducted in the DTMB Anechoic How Facility. The wall 

effects and corrections for the flow field measurement data, 

with a large model in the wind tunnel were presented and 

measurement uncertainties were quantified. The massive 

data files of distributions of surface static pressure and skin 

friction and profiles of three velocity components, 

turbulence normal and shear stresses, and static pressure 

across the thick stern boundary layers have been placed 

onto magnetic tapes for easy access by the CFD users. 

Examples of a few experimental results were presented in 

this paper to illustrate the physical process governing the 

modification of thick axisymmetric stern boundary layers 

by various appendages. A few major conclusions can be 

drawn: 
The turbulence modeling plays an important role in 

the prediction of the thick stern boundary layers for 

axisymmetric bodies [1,2,18,19]. Detailed comparison of 

the measured and computed velocity and turbulent shear 

stress profiles in the boundary layers is essential to assess 

the validity of the turbulence model used. Demonstration of 

CFD capability to predict time-averaged propulsor inflow 

distributions for a variety of body shapes is a prerequisite 

for using CFD as practical design tool. 

The spatial nonuniformity of mean velocities and the 

redistribution of the turbulent normal and shear stresses are 

found to be caused by a pair of contrarotating vortices 

generated by each appendage that are imbedded in the inner 

boundary layer of the hull. The helical rotations of the 

vortices pull the high momentum and low turbulence fluid 

downstream and behind the appendage inward and push the 

low momentum and high turbulence level fluid away from 

the appendage upward. The appendage-generated vortices 

redistribute axial-radial turbulent shear stress but do not 

change their circumferential-average values . The imbedded 

vortices in the stern boundary layers show distinct 

characteristics of turbulent shear stresses with the mixing 

length scales governed by the core sizes of the vortices. 

330 



ACKNOWLEDGEMENT 

This work was funded under DARPA's Task Area S1974- 

030, Program Element 63569N, The authors acknowledge 

with appreciation the continued support of DARPA area 

manager, Mr. Gary Jones. The authors thank Mr. Justin H. 

McCarthy for his critical review of the paper. The authors 

also thank their colleague, Dr. Ming- Shun Chang, Dr. 

David Fry, Dr. Chen-Wen Jiang, and Mr. William E. 

Smith, for their technical support. The NAS program at 

NASA-Ames Research Center provided their CRAY-2 and 

CRAY-YMP computers resources for this project. 

REFERENCES 
I. Huang, T.T.,Wang, H.T.,Santelli, N, and Groves, N. 
C.,"Propeller/Stern/Boundary-Layer Interactionon on 
Axisymmetric Bodies:     Theory  and   Experiment," 
DTNSRDC Report 76-0113, December 1976. 
2.. Huang, T.T.,Santelli, N. and Belt, G. S., "Stern 
Boundary-Layer Flow on Axisymmetric Bodies," 
Proceedings of the 12th Symposium on Naval 
Hydrodynamics,Wash. D. C, 1978, National Academy of 
Sciences, Washington, D.C., 1978, ppl27-157. 
3. Huang, T.T., Groves, N. C. and Belt, G.S., 
"Boundary Layer Flow on an Axisymmetric Body with an 
Inflected Stern," DTNSRDC Report 80/064, June 1980. 
4. Groves, N.C.,Belt, G. S., and Huang, T. T., "Stern 
Boundary Layer Flow on a Three-Dimensional Body of 3:1 
Elliptical Cross Section," DTNSRDC Report 82/022, April 
1982. 
5. Huang, T.T. and Groves, N. C, "Stern Boundary 
Layer Flow on a Three-Dimensional Body of 2:1 Elliptical 
Cross Section Section," DTNSRDC Report 84/022, 
October 1984. 
6.Huang, T.T., and Groves, N. C, "Effective 
WakeTheory and Experiment," Proceedings of the 13th 
Symposium on Naval Hydrodynamics, Tokyo, Japan, 
1980, Shipbuilding Research Association of Japan, October 
1980, pp. 651-673. 
7. Dickinson, S.C., "An Experimental Investigation of 
Appendage-Rat Junction Flow, Vol.1: Description, and 
Vol.11: Elliptical Nose Appendage Data Base, DTNSRDC 
Report 86/051 and 86/052, December 1986. 
8. Davenport, W.J. and Simpson, R.L., "The Turbulence 
Structure Near an Appendage-Body Junction," Proceedings 
of the 17th Symposium on Naval Hydrodynamics, The 
Hague, The Netherlands, 1988.,NationaI Academy Press, 
Wash. D. C, 1989, pp 461-473. 
9. Chang, M.S. and Purtell, L.P., "Three-Dimensional 
Flow Separation and the Effect of Appendages," 
proceedings of the 16th Symposium on Naval 
Hydrodynamics, Berkeley, California, 1986, National 
Academy Press, Wash. D. C.,1986, pp. 352-370. 
10. Groves, N.C., Huang, T.T., and Chang, M.S., 
"Geometric Characteristics of DARPA SUBOFF Models," 
Report DTRC/SHD-1298-01, 1989. 
II. Huang, T.T.,Liu, H.L., and Groves, N.C., 
"Experiments of DARPA SUBOFF Program," Report 
DTRC/SHD-1298-02, 1989. 
12. Ward, K.C., and Gowing, S.,"Hardware and 
Instrumentation of the DARPA SUBOFF Experiments, " 
Report DTRC/SHD-1298-03,Feb. 1990. 
13. Liu, H.L.,Jiang, C.W., Fry, D.J., and Chang, M.S., 

/Installation and Pretest Analysis of DAPRA SUBOFF 

Model in the DTRC Anechoic Wind Tunnel," Report 
DTRC/SHD-1298-04, Mar. 1990. 
14.Blanton, J.N.,Forlini, T.J.and Purtell, L.P., "Hot-Film 
Velocity Measurement Uncertainty for DARPA SUBOFF 
Experiments" Report DTRC/SHC-1298-05, Mar. 1990. 
15. Gowing, S., "Pressure and Shear Stress Measurement 
Uncertainty for DARPA SUBOFF Experiment," Report 
DTRC/SHD-1298-06, Jan. 1990. 
16.Huang,T.T.,Liu,H.L.,Groves,N.C.,Forlini,T.J.,Blant 
on, J. N.,Gowing, S., and  Smith.W. E.," Measurements 
of Flow Over an Axisymmetric Body with  Various 
Appendages " DTMB Report, July, 1992. 
17. Cebeci, T. and Smith. A.M.O.. Analysis of Turbulent 
Boundary Layer. Academic Press, New York, 1974. 
18.Wang,H.T.,and Huang,T.T.,"Calculation of Potential 
Flow/BoundaryLayerlnteraction on Axisymmetric Bodies," 
ASME Symposium on Turbulent Boundary Layers, 
Niagara Falls, New York. pp. 47-57, 18-20 June 1979. 
19. Huang, T. T., and Chang, M. S.," Computation of 
Velocity and Pressure Variation Across Axisymmetric 
Thick Turbulent Stern Flows," Chapter 18, Proceedings of 
a Symposium on Numerical and Physical Aspects of 
Aerodynamic Flows III, Edited by Tuncer Cebeci, 
Springger-Verlag, 1985, pp 341-359.    . 
20. Jiang, C. W., Liu, H. L., and Huang, T. T., " 
Determination of Wind Tunnel Effects and Corrections," 
Paper presented at the 19th ITTC, Discussion of Cavitation 
Committee.s Report, Madrid, Spain, September 1990. 
21. Moffat, R.J. "Contributions to the Theory of Single 
Sample Uncertainty Analysis," Trans. ASME J. Fluid 
Engineering, Vol. 104, pp. 250-260, 1982. 
22. Measurement Uncertainty, ANSI/ASME PTC 19.1- 
1985, Part 1. 1986. 
23. Elfstrom, G.M., "Indirect Measurement of Turbulent 
Skins Friction," reprinted from DME/NAE quarterly 
Bulletin No. 1979, Ottawa, Canada, April 1979 
24. Winter, K.G., "An Outline of the Techniques 
Available for the Measurement of Skin Friction in Turbulent 
Boundary Layers," Progress Aerospace Science, Vol.18, 
pp. 1-57, 1977. 
25. Gorski, J. J., Coleman.R. M., and Haussling.H. J.," 
Computation of Incompressible flow around the DARPA 
SUBOFF Bodies," Report DTRC-90/016, July, 1990. 
26. Chen, H.-C, Korpus.R., WeemsJC., and Fritts.M.," 
Calculation of Incompressible Viscous Flows about 
Submarine Configurations by a Multiblock RANS 
Method," Report SAIC-91/1239, October, 1991. 
27. Tsai, J. F., Sung,C. H. , Huang.T. T. and Smith, W. 
E," Effects of Turbulence Models on Axisymmetric Stem 
and Two-Dimensional Trailing Edge Flows Computed by 
an Incompressible Vicous Flow Solver," Report DTMB 
and/or paper in preparation, 1992. 
28. Stem, F., Toda,Y., and Kim,H. T.," Computation of 
Viscous Flow around Propeller-Body Configurations: Iowa 
Axisymmetric Body," J. Ship Research, Vol. 35, No. 2, 
June, 1991, pp. 151-161. 
29. Huang, T. T.," Measured similarity Properties of Eddy 
Viscosity and Mixing Length in Three-Dimensional 
Turbulent Stem Bows," paper presented at the 2nd 
International Symposium on Ship Viscous Resistance, 
SSPA, Göteborg, Sweden, 1985; also Report DTNSRDC- 
85/038, May, 1985. 
30.Rood, E. P., and Anthony, D. G.,"An Experimental 
Investigation of Propeller/Hull/Appendage Hydrodynamic 
Interaction," Proceedings of the 17th Symposium on Naval 
Hydrodynamics, The Hague, The Netherlands, 1988, 
National Academy Press, Wash., D. C. 1989, pp 395-413. 

331 



STERN CONFIGURATIONS 
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Table 1 Example of Measured Surface Pressures 

Corrected by the Empty Tubnnel Axial 

Pressure Gradient 

x/L ACp 

Empty 

Tunnel 

Measured 

cp 

On Body 

Corrected 

CP 
On Body 

0.035 0.02776 -0.11398 -0.14174 

0.070 0.02659 -0.07055 -0.09714 

0.105 0.02578 -0.05479 -0.08057 

0.181 0.02396 -0.09734 -0.12132 

0.239 0.02367 -0.04317 -0.06684 

0.402 0.02471 -0.01406 -0.03877 

0.501 0.02144 -0.01303 -0.03447 

0.601 0.01563 -0.02558 -0.04121 

0.700 0.00937 -0.05175 -0.06112 

0.741 0.00748 -0.11203 -0.11951 

0.781 0.01043 -0.22959 -O.24O02 

0.805 0.01264 -0.20961 -0.22225 

0.840 0.00852 -0.05445 -0.06297 

0.857 0.00735 -0.006193 -0.01354 

0.875 0.00656 0.08522 0.07866 

0.904 0.00609 0.16067 0.15458 

0.927 0.00646 0.18508 0.17862 

0.956 0.00788 0.18326 0.17574 

1 0.978 0.00963 0.14006 0.13043 

(Cp) corrected - (Cp) measured " & Cp 

Cp = (P-Pref)/Q/2p U2ref) 
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Fig. 8 Comparison of computed and measured static 
pressure coefficients on the axisymmetric hull 
Measurement uncertainty of Cp: ±0.015 
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□     Measured, BH + fairwater, 0 deg pitch, Odeg drift 
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Fig. 12 Measured and computed (using 2-D section 
profile) pressure coefficient distribution on stern 
appendage surface (baseline position) for various 

configurations 
Measurement uncertainty of Cp: ±0.015 
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Table 2.   Bias Uncertainty of Three-Component 
Hot-Film Velocity  Measurement (Bv = 2 Sv) 

Table 3. Precision Uncertainty of Three-Component 
Hot-Film Velocity Measurement 

Ux/LW 

% 
Vr/Uref 

% 
w8/ Uref 

% 

Temperature 0.32 0.32 032 

Probe Alignment - 050 030 

Analog/Digital 
Conversion 

0.07 0.13 0.12 

Speed 
Calibration* 

2.12 1.76 0.88 

Angle Calibration 0.53 131 1.43 

Total 

(Root Sum Square) 

2.21 2.28 1.79 

*10-points speed checks against the 

predetermined calibration curve 

Pv = 2Sv Pv- = 2Sv- PuV"=2Suv 

"x vr we u'x vr' wy 104 104 

Uref Uref Uref uref Uref Uref «x'vr ■Ux'wS 

% % % % % % Uref2 Uref2 

Outside* 

BL 0.04 0.04 0.06 0.02 0.04 0.02 0.01 0.01 

Wake 

Inside * 

turbulent 0.28 0.16 0.20 0.17 0.13 0.14 1.15 1.01 

wake 

Outside* 

turbulent 0.16 0.06 0.04 0.09 0.05 0.06 0.05 0.05 

wake 

* Fixed probe for repeated measurement 
+ Probe moved and returned to the same point 
Estimated from 30 repeated measurements 

using 1500 individual data at 150 Hz 
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Table 4. Summary of DTRC Model 5471 Configurations 

Cong BH FW 
SA RW 

#1 
RW 
#2 

AOA AOD 
B u D 0° 2° 0° 2° 

1. X X X 

2 X X X X 
3 X X X X 
4 X X X X 

~~x~ 5 X X X 
6 X X X X 
7 X X X X 
8 X X X X X 
9 X X X 
10 X X X X 
11 X X X X 
12 X X X X X 
13 X X X X X 
14 X X X X 
15 X X X X X 
16 X X X X 
17 X X X X 
18 X X X X X 
19 X X X X X 

BH: Barehull; FW: Fairwater; SA: Stem appendages 
B: Baseline; U: Upstream; D: Downstream 
AOA: Angle of attack; AOD: Angle of drift 

Table 5. Summary of Surface Flow Data Collected inAFF 

Co 
nf. 

Surface Tap Dai; nator 
HJ HP HS HL FH FW AH SA WJ WP ws WL 

l PS PS PS P PS PS 
7 PS P P P PS PS P 
3 PS P P P PS PS 

4 p P P P P P P 
5 
6 p P Y Y P 

7 p P P Y Y 

8 p P P P PS PS PS 
9 p P P P P P 
10 
11 
12 p P P p P 

P n p P P p 

14 p P P P P P 
15 P P 
16 p P P P P V p P 

17 p P P P P P Y p Y 

18 p P P P P P P p Y 

19 p P P P P P P p Y  1 

P   =   Surface Pressure Measurements 
S   =   Skin friction (Wall Shear Stress) Coefficients 

Table 6. Summary of Profile Flow Data Collected in AFF 

Conf .875 .904 
Profile Measoremaui at Each x/L 

927    .956    .978    .996    1.04 1.09 1.20 

1 vp vp 
V  DP 

vp vp VP 
v pp 

V v 
pp 

v 
PP 

2 V  UP V  DP V V   PP V 

3 V   VP vp v PE. V 

4 VP  V VP   V V 

5 vp V VP  V V 

6 VP   V VP  V V V V 

7 vp V VP  V V V V 

V 8 VP   V v vp v vp 

9 vp V 

10 v 

11 V 

VP     =        Boundary Layer Velocity Profile Data 
V        = Mean Velocity Wake Data 
pp      =        Pressure Profile Data 
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DISCUSSION 

E. Rood 
Office of Naval Research, USA 

I would like to thank the authors for presenting 
this paper. It is the product, I am sure, of a long and 
tedious measurement effort. Certainly this data base 
will serve as a valuable contribution for the validation 
of flow prediction methods. Nevertheless, the paper 
does not appear to present any new information. The 
description of the behavior of the flow instills 
confidence in the data although it does not explore 
new features of the flow. The authors hint that the 
data base will be used to develop CFD capability, but 
it is not clear how that will be done. Can the data 
base be used to separate errors due to numerical 
procedures from errors due to inadequate turbulence 
models? Do the authors have a preliminary 
assessment of the effects of, say, gridding versus 
turbulence model? 

The action of the longitudinal vortices produced 
by the appendages is interesting. It has been known 
for a long time that the vortices tend to "invert" the 
boundary layer. However, the description of the 
motion in terms of vortices as it evolves downstream 
along the hull conjures an image that may not 
usefully serve in all cases. . Would it also be 
appropriate to describe the effects of the appendages 
in terms of a jet? The inversion of the boundary 
layer places high momentum beneath low momentum 
in a region of small cross-section. This high- 
momentum fluid, then, is jetting through the 
otherwise slow moving boundary layer. I suggest 
that three-dimensional cross-section profiles of the 
axial velocity may conjure an image much different 
than a vortex. In this case, the emphasis is on the jet 
rather than the vortex, which merely serves as the 
transport mechanism. 

AUTHORS' REPLY 

We thank Dr. Rood for his interest in and 
comments on our paper. The paper represents a 
comprehensive database for the effects of typical 
appendages on the axisymmetric stern flows. The 
geometries of the hull and appendages are represented 
in simple mathematical forms so that computation 
grid resolution can be refined to any level without 
introducing discretization error on the body surface. 
The complete set of measurement data of mean flows 
and   turbulence   structures   with   clearly   assessed 

measurement uncertainties is not available in any 
literature. It is true that some of the mean flow 
features have been known, but most available data 
are incomplete and are not suitable for CFD 
validation. The turbulence models for a thick stern 
boundary layer were investigated in this paper. 
However, the turbulence models for the appendages 
generated vortices have not been fully investigated. 

Most CFD codes are not able to predict the stern 
flows of axisymmetric bodies with various 
appendages for design applications, because the grid 
resolutions are not fine enough in the juncture region 
and in the vortex cores, and most turbulence models 
that do not incorporate the special features of 
appendage induced vortices overpredict the decay rate 
of the vortices. In our experience, most grid 
generation schemes without local refinement may be 
used for qualitative prediction but are not adequate 
for quantitative prediction of vortical flows associated 
with hull/appendage junctures. 

We have found that the first grid spacing normal 
to the body surface (y) must be set at a value of ury/u 
slightly less than 10 in order to obtain a grid 
independent solution in our computation which uses 
a modified Baldwin-Lomax turbulence model, where 
u, is the frictional velocity and v is the kinematic 
viscosity of the fluid. Inside the viscous cores of 
vortices at least 10 radial grid points are required. 
The standard Baldwin-Lomax turbulence model must 
be modified for a thick stern boundary layer and for 
the wake region of cross-flow separation associated 
with the body at a moderate angle of attack. 
Turbulence models for the appendage-generated 
vortices in the thick stern boundary layer have not 
been fully investigated. This paper is aimed at 
promoting research interest and activities in this 
special area. 

It is well known that the pressure gradients in the 
hull /appendage juncture regions generate vortices. 
The vortex generation process and the three- 
dimensional interaction between the shed vortices and 
the thick stem boundary layer are expected to be 
described by solutions of the Reynolds-Averaged 
Navier-Stokes equations. Due to the limitations of 
the grid resolution and turbulence model used in most 
CFD codes, the numerical solutions are not fully 
satisfactory. The present measurement data are 
presented to assist the improvement of the current 
CFD capability. 

To represent the effects of an appendage in terms 
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of a jet is not a sound approach. This analogy 
argument requires artificial input of a jet either on the 
boundary or in the flow field. Nevertheless, some 
aspect of the boundary layer inversion may 
qualitatively be simulated as a jet action in the 
boundary layer. A general quantitative solution for 
appendage flow is not likely to be obtained by a "jet" 
simulation. 

DISCUSSION 

V. Patel 
University of Iowa, USA 

1. You show well known axisymmetric (bare body) 
results along with calculations in Figures 1 and 15. 
The BL and the modified BL models give marginally 
different mean velocity profiles although the Reynolds 
stresses differ by a factor of two, or more. What 
does this mean? Do we conclude that the turbulence 
model is not very important (in the flow)? 

2. We know that several groups have calculated the 
flow around the various DARPA configurations (fins, 
appendages, etc.). Can you tell us what has been 
concluded from these calculations? 

validity of turbulence models. Without careful 
examination and thorough comparison, the utility of 
CFD can be seriously compromised. 

The following are my personal assessments of the 
results of DARPA's CFD computations on the 
SUBOFF models. Except for the velocities in the 
region of the propeller plane, some CFD codes 
predicted reasonably well the entire flow fields of 
simple configurations (i.e., bare hull and bare hull 
with ring wings). However, only qualitative trends 
were predicted for more complex appended 
configurations. Some of the deficiencies of the 
present CFD capability are mentioned in the reply to 
Dr. Rood. The opportunity exists for substantial 
improvement of the current CFD capability to predict 
the entire flow field over a fully appended submarine. 
Grid resolution, computation/convergent efficiency, 
and turbulence modeling are a few areas that can be 
significantly improved. 

AUTHORS' REPLY 

We also thank Prof. V.C. Patel for his 
comments. It has been found [2, 19] that the 
standard Cebeci-Smith or Baldwin-Lomax turbulence 
model overpredicts eddy viscosity by as much as a 
factor of 4, mixing length by a factor of 2, and 
Reynolds stress by a factor of 2. These discrepancies 
will generally cause an overprediction of axial 
velocities in the propeller plane by 5 to 10 percent. 
The stringent requirements for the full-scale 
prediction of ship speed and propulsor rotation speed 
impose high standards of experimental and 
computational accuracy. Therefore, continued 
improvement of experimental and computational 
accuracy is essential to meet the design need. The 
turbulence model we propose and use in propulsor 
design to predict the propulsor inflows for the model- 
and full-scale ships is an interim rather than a final 
solution. It is essential to develop a more 
comprehensive and more rational turbulence model 
which can predict accurately the propulsor inflows. 
Critical examination of the measured and computed 
Reynolds stresses and velocity profiles, as illustrated 
in this paper, is extremely valuable to assess the 
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A Practical Nonlinear Method for Calculating Ship 
Wavemaking and Wave Resistance 

H. Raven (Maritime Research Institute Netherlands, The Netherlands) 

Abstract 

This paper presents a new method, developed at the 
Maritime Research Institute Netherlands, for predict- 
ing the wave pattern and wave resistance of a ship. A 
panel method is used to calculate the steady potential 
flow satisfying the fully nonlinear free surface boundary 
conditions. A particular feature is the use of source pan- 
els at a distance above the free surface. This has several 
practical advantages, but, as is shown analytically and 
numerically, also results in a quite accurate representa- 
tion of surface waves. An iterative procedure is adopted 
to cope with the nonlinearity and free-surface charac- 
ter of the problem. The convergence problems typical 
of earlier methods seem not to occur with this method. 
Usually, 4 to 15 iterations are sufficient, making this ap- 
proach most efficient. The computer program RAPID 
(RAised Panel Iterative Dawson) is now being intro- 

duced in commercial ship design work. 
The paper describes the basic decisions leading to 

the approach followed, outlines the method, and de- 
scribes accuracy and sensitivity analyses. A few appli- 
cations are shown, stressing the importance of nonlinear 

effects. 

Nomenclature 

Fn 
FSC 

k 

K 

£1 
t 
U, V 

m 
x,y,z 

Vf, 

Froude number 
acronym for 'free surface condition' 
approximation of wave elevation 
wave number 
fundamental wave number, g/U^ 

Fourier transform of difference operator 

time 
velocity components on free surface 
boundary integral operator 
Cartesian coordinates; 
x astern, y upward, z to port; 
origin on undisturbed waterplane at \LPP 

distance of panels above free surface 

a ratio of panel elevation to panel length 

£d residual error in dynamic FSC 

e/t residual error in kinematic FSC 

Ai,A2 free surface panel length and width 

V wave elevation (nondimensional) 

V' perturbation of wave elevation 

a source strength 

<t> total potential 

§ base flow potential 

f' perturbation of potential 

1    Introduction 

Computer calculations are playing a more and more im- 
portant role in practical ship design. Hydrodynamics is 
one of the aspects for which the development of com- 
puter technology and Computational Fluid Dynamics 
have caused large changes and provided entirely new 
possibilities. It is mainly for potential flows, such as en- 
countered in wave resistance, diffraction and propulsion 
problems, that reliable and practical computer codes 
are now available. 

At the Maritime Research Institute Netherlands, 
the code DAWSON [1] in particular has taken a promi- 
nent place in the commercial ship design work. This 
method for computing the wave pattern and wave re- 
sistance of a ship is being used on a routine basis and 
applied to about 60 different hull forms per year in com- 
mercial projects. Much experience has been gained with 
its use during the last 5 years; experience that allows us 
to pre-optimize hull forms efficiently before model tests 
are conducted. Some examples of the application are 

given in [1] and [2]. 
However successful this program is, it does of course 

have its restrictions. Like almost all methods currently 
used for solving the wave resistance problem, it is based 

on a linearization of the free surface boundary condi- 
tions; specifically, it largely follows the formulation pro- 
posed by Dawson [3], which is a form of the slow-ship 
linearization. Such a simplification could not be avoided 
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until very recently, since the fully nonlinear problem 

was too difficult to be solved in general. 
This linearization of the free surface conditions 

(FSC's) introduces errors, not only by the neglection 
of the nonlinear terms but also by the transfer of the 
boundary conditions from the actual towards the undis- 
turbed water surface. In [4], the magnitude of these er- 
rors was estimated from the linear solution and found 
to be quite substantial in many cases. An example of 
this is shown in Fig. 1, which compares the error in 
the kinematic FSC (i.e. the residual normal velocity 
through the calculated free surface) with the vertical 
velocity on the free surface, for some different linearized 

formulations. 

■ vertical velocity on free surface 
■ Error 1n vertical velocity 

1. Error in kinematic free surface condition; Series 
60 Cb = 0.60 model, Fn = 0.35. 

An extreme case of the effect of these linearization 
errors was dealt with in [4]. It was shown that the 
neglected terms in the slow-ship linearization could in 
principle explain the paradoxical prediction of a nega- 
tive wave resistance for slow, full-formed ships. The 
linearization allows an energy flux through the free sur- 
face, which would be prohibited by the exact free sur- 
face conditions. As a result of this supply of wave en- 
ergy, the wave pattern predicted may be quite reason- 
able, but the predicted wave resistance is absolutely 
useless. A nonlinear method would eliminate this by 
imposing the exact FSC's, and thus hopefully lead to a 
positive and realistic wave resistance prediction. 

Another shortcoming of linearized methods is the 
fact that they ignore certain effects that determine the 
flow field.  The validity of the linearization is basically 

restricted to hull forms showing little section curva- 
ture and slope near the waterline. This in principle 
excludes a number of usual hull form features, such 
as strongly flared sections, flat sterns, transoms, and 
partly or slightly submerged bulbous bows. DAWSON- 
calculations for such hulls can still be performed but 
the realism of the predictions is impaired and a careful 
interpretation is necessary in such cases; optimization 
with respect to the features mentioned is not allowed. 

A solution method for the fully nonlinear free sur- 
face problem is therefore desired, for its more complete 
and realistic flow field description and for the expected 
greater accuracy and reliability of the resistance pre- 
diction. With the advancing knowledge on numerical 
methods and the ever increasing computer power, such 

methods start being feasible now. The difficulty of this 
full, exact 'wave resistance problem' is caused not only 
by the nonlinearity of the free surface boundary condi- 

tions itself, but also by the fact that they must be ap- 

plied at a surface that is initially unknown, and which 
shape and location depend nonlinearly on the solution 

in the field and reversely. Compared with the Dawson- 
like linearized methods, the extra requirements to be 

satisfied are: 

• The free surface boundary conditions should in- 
clude all nonlinear terms; 

• They must be applied at the actual water surface; 

• The hull boundary condition must be applied up 
to the actual waterline instead of the design wa- 

terline; 

• The effect of the running trim and sinkage upon 
the wave resistance should be included. 

• The correct conditions should be applied at the 
edge of a transom, if the water surface leaves the 
hull there. 

Of these nonlinear effects, the second one is gener- 
ally dominant [4] and will provide the largest difficulties 
in setting up a nonlinear method. The trim and sinkage 
effect is in most cases, a rather modest change that can 
be accomodated in a linearized method as well (per- 
haps inconsistently). Transom conditions are in prin- 
ciple inconsistent with the assumptions underlying the 
FSC linearization. In the DAWSON-code, an option is 
available to impose such conditions in an ad-hoc fash- 
ion, but it has to be estimated beforehand whether the 
flow reaches the transom edge or detaches earlier. A 
nonlinear method ought to lead automatically to the 
right flow regime. 

A new method for solving the fully nonlinear prob- 
lem has now been developed at MARIN . All extensions 
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mentioned above are included, except the transom edge 
conditions which still have to be implemented. The 
method is based on a quite simple approach that is 
closely similar to Dawson's method, but relies on the use 
of source panels raised by a certain distance above the 
free surface. The program RAPID (RAised Panel Itera- 
tive Dawson) is currently being introduced in commer- 
cial ship design work. This paper presents the method 
and discusses the decisions taken in its development. 

The number of available nonlinear methods is still 

quite limited, and little information was available on 
the best solutions for the many problems encountered. 
Therefore, prior to starting the development of a new 
method,- we have seriously considered the various basic 
approaches to attack the nonlinear free surface poten- 
tial flow problem. These considerations are briefly re- 

ported in Section 2, and lead to the choice of the class 
of methods that seems most efficient for the problem 
at hand. Section 2.3 summarizes the characteristics of 
earlier methods in this class. In Section 3, our decision 
to apply a panel method with the panels at a distance 
above the free surface is explained, and an analytical 
and numerical study of the accuracy of this approach is 
performed, leading to some surprising results. Section 
4 then describes the basics of our new method. Results 
of a number of applications are discussed in Section 5, 
with an emphasis on the importance of nonlinear ef- 
fects, and including some results of studies on the effect 
of the panel density. Conclusions are summarized in 

Section 6. 

2    Basic decisions on the method 

2.1 Laplace solver 

The problem to be solved is that of a potential flow 
subject to boundary conditions on the hull and the 
free surface. The first decision to be taken is on the 
method to solve the Laplace equation for the velocity 
potential. Finite-Difference, Finite-Element or Finite- 
Volume methods could in principle be used (and are 
used in some methods, sometimes successfully). Still, 
the large number of variables to be handled in such field 
methods, and the necessity to generate a grid adapted 
to the free surface, suggest that these choices may not 
be optimal for potential flow problems, which can be en- 
tirely described in terms of boundary values. Therefore, 
not surprisingly, we have selected a Boundary Integral 
Method as the basic component of our method. 

2.2 Steady iterative or time-dependent? 

For the steady problem considered here, the free sur- 
face conditions require the pressure in the fluid at the 
free surface to be atmospheric, and the normal velocity 
through the free surface to vanish. The nonlinearity and 

351 

free surface character of the problem preclude a direct 
solution procedure. There are two basic alternatives for 

solving this difficulty: 

• to solve the equivalent time-dependent problem, 
starting from some initial state, and to continue 
the calculation until a steady state has been reached; 

• to apply an iterative procedure to the steady prob- 
lem, in which a sequence of linearized problems is 
solved until no further change occurs. 

The time-dependent method might seem impracti- 
cal, but still deserves due consideration. One advan- 
tage is that such a method can also be applied to many 
other problems that are actually time-dependent, such 
as ship motion and diffraction problems. Moreover, a 
quite straightforward and natural formulation is possi- 
ble. The time-dependent terms occurring in the bound- 
ary conditions directly indicate a time-stepping process: 
in each time step the kinematic condition, which con- 
tains di]/dt, is advanced in time to obtain the free sur- 
face shape T]{x,z) for the next time-step, and the dy- 
namic condition, containing d<p/dt, is integrated in time 

to find the potential <f>(x, z) at the free surface. This po- 
tential is subsequently imposed as a Dirichlet boundary 
condition. The Laplace equation is solved for the po- 
tential and velocities in the field at the new time level, 
and the whole cycle can be repeated for the next time 
step. This procedure has already often been applied 

successfully. 
There are two principal drawbacks of the time- 

dependent approach. The first is the large number of 
time steps required before a steady solution is reached. 
Of course this depends on the initial conditions pre- 
scribed; probably the usual way of starting from rest 
and accelerating the model to its final speed is ineffi- 
cient if only the steady solution is of interest. Anyway 
the calculation time needed is expected to remain a dis- 
advantage of this approach. 

The second difficulty is the necessity of specifying 
open-boundary conditions. In the unsteady problem, 
waves with all lengths and velocities can be generated, 
including those moving faster than the ship itself. Such 
waves should be allowed to leave the domain through 
the outer boundaries without too much reflection, since 
otherwise they will spoil the solution and delay the con- 
vergence to a steady result. But, particularly for 3D 
problems, no satisfactory non-reflective boundary con- 

ditions are known. 

The steady iterative methods for solving the wave 
resistance problem are therefore expected to be in prin- 
ciple more efficient and perhaps less problematic. In 
the first place, the number of iterations does not de- 
pend on any physical evolution process, and may be 
much smaller than the number of time steps in a tran- 



sient approach - provided that the iterative procedure 
is correctly formulated. But exactly this appears to be 
the principal difficulty, and all publications on existing 
methods in this class report cases of nonconvergence. 

Compared with transient methods, the necessity 
of imposing non-reflective boundary conditions is less. 
In the steady approach all waves calculated satisfy the 
dispersion relation, and reflections only occur at the 
lateral and downstream boundaries of the calculation 
domain. By correctly dimensioning the latter, the re- 
flections do not have any effect on the flow near the ship 
hull. But as opposed to time-dependent methods, a ra- 
diation condition must now be imposed, which prevents 
the occurrence of waves ahead of the ship. Experience 
is, however, available on ways to enforce this radiation 

condition in numerical methods, e.g. [1] 

The convergence of the iterative process is, there- 
fore, the central issue for steady iterative methods. Of 
course this convergence is strongly dependent on the 
precise formulation. Possible formulations can be di- 
vided in a few classes, to be briefly discussed below. 

Two free surface conditions at y = n are available: 
- the kinematic condition, that the flow velocity at the 
free surface has no component normal to that surface: 

<PxVx + 4>*Vz - 4>y = 0 (!) 

- the dynamic condition that the pressure, expressed 
in the velocities and wave elevation through Bernoulli's 
law, be constant (atmospheric) at the free surface: 

\Fn\ 1 - 4>l - ti - 4>1) -17 = 0. (2) 

Here a coordinate system is supposed with the x-axis 
pointing astern, the y-axis vertically upward and z to 
port. All quantities have been nondimensionalized us- 
ing a reference length (the ship length) and the ship 
speed. 

Only one condition can be imposed upon the Laplace 
equation in each iteration; the other must be used to 
establish the relation between successive iterations, in 
such a way that it is satisfied upon convergence. Three 
options can then be distinguished. 

The first option is, to impose the kinematic bound- 
ary condition in the solution of the Laplace equation 
under an approximate free surface. This gives rise to a 

Neumann condition for the potential that is easily im- 
plemented. The dynamic condition can then be used 
to deduce a new free surface elevation from the veloci- 
ties calculated, and a new iteration can be started. Al- 
though this may seem a fairly obvious formulation of the 
iterative process, straightforward application will pro- 
duce a solution without a trailing wave pattern. The 
only way to get the desired solution is to apply special, 
rather sophisticated prescriptions to deduce a new free 
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surface from the calculated potential, e.g. [5]. For 3D 
cases, no examples of such a procedure are known to 

me. 
The second possibility is just the other way round: 

impose the dynamic condition upon the solution of the 
Laplace equation in each iteration, and use the kine- 
matic condition to update the free surface. This is pos- 
sible in principle by integrating the dynamic condition, 
which contains (f>T, over x to find a new value of the 
potential at the free surface. This is subsequently im- 
posed as a Dirichlet boundary condition for the Laplace 
equation; the resulting velocity field is substituted in 
the kinematic condition and integrated over x to find 
a new free surface shape. An example of a method at- 
tempting this approach is [6]. One may suppose this 

procedure to be susceptible to error accumulation due 

to the integrations. 

In both approaches, the two free surface conditions, 

which together determine the wavelike behaviour, are 
uncoupled. The correct physical behaviour should thus 
be obtained by iteratively incorporating the interplay 
between them; a hard job for an iteration process. The 
third and final possibility eliminates this weak point by 
imposing a combination of both free surface conditions 
in the solution of the Laplace equation, and to use one of 
the conditions to update the free surface. Substituting 
the expression for the wave height (2) into the kinematic 
condition we obtain an expression in the potential only. 
This condition is basically Kelvin-like, and even more 
resembles the FSC according to Dawson. The success of 
the corresponding linearized formulation suggests that 
this single boundary condition includes already much 
of the physical behaviour. Therefore, the iterative pro- 
cedure based on this combined condition is more "im- 
plicit" than the two previous possibilities, and may thus 
be expected to have better convergence properties. A 
possible drawback of this formulation is the structure 
of the resulting combined free surface condition, which 
precludes the application of iterative methods for solv- 
ing the resulting set of equations. 

Taking all this together, we think that a steady 
iterative method is preferable provided that the con- 
vergence problems can be overcome; and that in view 
of the latter, the formulation with the combined condi- 
tion is most promising. These choices are directed by 
the wish to obtain an efficient and practical method, 
rather than a very general one. The resulting program 
will therefore be restricted to the steady forward-speed 
problem. 

2.3    Previous experiences 

A few methods already exist that are based on a Bound- 
ary Integral Method and apply a combined free surface 



condition similar to that of Dawson. Ni [7] most closely 
followed the Dawson implementation. In his method, 
the free surface and hull are covered with source pan- 
els; in the collocation points in the free surface panel 
centres, the combined condition is imposed. After the 
solution of the Laplace equation, the free surface shape 
is updated using the dynamic condition. Thus the en- 
tire free surface panel distribution is displaced and de- 
formed in every iteration. Ni found that a linear source 
distribution on quadratic panels was required to obtain 
an acceptable convergence. The method is rather com- 
plicated and, according to the first publications, sensi- 
tive to various numerical details. Still, possibly due to 
later improvements, the method performs well enough 
to be applied to some extent in practical problems [8]. 

Kim and Lucas [9] several years later came up with 
a very similar method. However, they state that explicit 

artificial' damping is necessary to obtain a convergent 
procedure. Since the damping affects the final results' 

as well, this approach is not acceptable in my opinion. 
The other prominent method is that of Jensen et al. 

[10], [11], which contains several original ideas. In the 
first place, the singularity distribution is not located on 
the free surface itself, but in a horizontal plane at a fixed 
position, above the free surface. Point sources instead 
of source panels are used. The boundary condition in- 
cludes the so-called transfer terms found from Taylor 
expansions, and is, therefore, fairly complicated. Good 
results have been obtained for a number of cases, but 
serious convergence problems are reported for several 
others. In particular, no convergence could be obtained 
for full hull forms such as tankers [10]. 

Another method perhaps to be mentioned is that 
of Musker [12]. In this method, source panels at a very 
small distance above the undisturbed free surface are 
used. The free surface condition is quadratic rather 
than fully nonlinear, and is tranferred to the undis- 
turbed free surface using Taylor expansions. Thus it 
probably misses the dominant nonlinear effects. On 
the point of convergence of the iterative procedure this 
method cannot, therefore, be compared with fully non- 
linear approaches. 

This brief, and perhaps already incomplete, survey 
of existing methods again stresses that the convergence 
of the iterative process is the most critical point. It 
is noteworthy that this convergence is found to depend 
on small details of the numerical method and discretiza- 
tion, and on the precise formulation of the free surface 
condition. 

In setting up our new method, the information on 
the importance of the distinct nonlinear terms gained 
from the studies reported in [4] appeared to be most 
helpful. In particular, the fact that the 'transfer terms', 
representing the difference between the flow quantities 

at the undisturbed free surface and those at the ac- 
tual free surface, are generally the dominant nonlinear 
terms, requires them to be treated carefully and as im- 
plicitly as possible. At the same time they cannot be 
well represented by truncated Taylor expansions, since 

the convergence of these is poor in many cases; addi- 
tionally, for usual singularity distributions large wiggles 
may occur in the Taylor terms. These studies have not 
only shown the desirability of a nonlinear method but 
have also partially directed its development. 

3    The Raised-Panel Approach 

3.1    Initial considerations 
As has been mentioned in Section 2.1, a Boundary Inte- 
gral or Panel method will be used. The usual procedure 
is, to cover the boundaries of the flow domain with a 
discretized singularity distribution; to choose a set of 
collocation points, as many as the number of degrees 
of freedom of the singularity distribution; to express 
the boundary conditions in these collocation points in 
the unknown singularity variables. Solving the resulting 
closed set of equations allows to determine the potential 
and velocity everywhere in the domain. 

However, it is not necessary that the singularities 
are on the boundaries of the domain. It is allowed to 
position them outside the domain under certain condi- 
tions, provided that the collocation points remain on 
the boundary. For our particular application, we shall 
put the sources or source panels at some distance above 
the free surface. This has been applied originally by 
Jensen et al [10],[11] for the same free surface problem, 
and has several advantages for this application in par- 
ticular: 

• Since basically the distance from the panels to 
the free surface is arbitrary within certain lim- 
its, it is no longer necessary to adapt the source 
panels to the new free surface approximation in 
each iteration. This eliminates many geometric 
manipulations which may have a destabilizing ef- 
fect on the convergence of the iterative process. 
With sources above the free surface we only have 
to move the free surface collocation points to the 
new approximation of the free surface, which is 
quite simple. 

• Since the free surface panels do not move in each 
iteration, the influence coefficients (velocities in- 
duced by a unit source density) of free surface 
panels in hull collocation points do not change; 
this saves a considerable part of the calculation 

time. 

• The fact that the potential field now extends above 
the free surface, uninterrupted by singularities on 
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the free surface, may somewhat facilitate the for- 

mulation of the iterative process. 

• Due to the distance between the panels and the 
free surface, the velocity field induced in the fluid 
domain is much smoother than with a usual method. 

• An additional benefit is the "desingularization", 
allowing the use of Gauss quadrature for integra- 
tion over the panels instead of exact analytical 
expressions. This again saves computing time. 

There is some general information from the liter- 
ature on methods with such offset singularities. As 

just mentioned, the method by Jensen et al [10] uses 
point sources above the free surface, in a fixed horizon- 
tal plane at a distance of 1 to 3 source spacings above 
the undisturbed free surface. This distance is claimed 
to have only little influence on the results, but no theo- 

retical study on the accuracy and order of this method 

seems to have been performed. 
Other relevant papers concern simpler boundary 

conditions, of Dirichlet or Neumann type. In the method 
of Webster [13] for calculating the potential flow around 
closed bodies in an infinite fluid domain, triangular pan- 
els bearing a linear source distribution are located in- 
side the hull, at a distance of less than half the panel 
edge length and half the local radius of curvature of the 
hull surface. The collocation points are chosen on the 
hull directly opposite to the panel cornerpoints. The 
method is successful, but has difficulty in representing 
the flow at corners such as a ship bow. 

Schultz and Hong [14] proposed a formulation for 
2D internal potential problems based on Cauchy's law. 
One of the alternatives studied was a method using 
sources outside the boundary. In general they found a 
decreasing discretization error for increasing distance to 
the boundary. For boundaries with sharp corners larger 
errors were found. Subsequently this method has been 
developed to solve 3D free surface problems by a tran- 
sient approach [15]. Applications to moving submerged 
singularities have been shown. It is concluded that the 
distance of the panels to the free surface should be pro- 
portional to the square root of the panel dimension to 
obtain convergence for decreasing panel size; but this 
refers to the errors incurred by using Gauss quadrature 
instead of analytical integration over the panels. 

It appears that for Dirichlet or Neumann conditions 
there is some information on the use of offset singular- 
ities, and fairly detailed studies of the accuracy have 
been performed. But for the particular application con- 
sidered here, with a boundary condition of quite differ- 
ent form, little theoretical information is available. In 
particular, possible questions are: 

• What is the accuracy for a free surface condition 

of the type considered? 

• What is the effect of the distance of the singular- 
ities to the free surface upon the results? 

• Is the poorer numerical conditioning of the equa- 

tions acceptable? 

• What are the limits on the distance? An ana- 
lytical continuation of the potential field up to 
the level of the singularities must exist. Is an ad- 
equate representation of steep waves and of the 
flow field near the waterline possible? 

Most of these questions will be answered in the following 

sections. 

3.2    Accuracy Analysis 

The accuracy aspect typical for our problem is the rep- 
resentation of surface waves. The main error sources 
involved are the discretization of the continuous free 

surface source distribution, and the difference scheme 
used for approximating the velocity derivatives occur- 
ring in the free surface condition. Besides, the trunca- 
tion of the free surface distribution and the discretiza- 
tion of the hull source distribution introduce errors, but 
are less specific for our approach. In the effect of the 
former errors, a distinction can be made between nu- 
merical dispersion (a wavelength error) and numerical 
damping (an amplitude error). These errors have al- 
ready carefully been considered for the standard ap- 
proach, most systematically by Sclavounos and Nakos 
[16]. We shall now apply their methodology (and nota- 
tion) to the solution of the linear wave resistance prob- 
lem, with a Kelvin free surface condition, using singu- 
larities raised above the free surface. The analysis is 
restricted to 2D cases for simplicity. 

For the sake of reference we first consider a continu- 
ous source distribution with infinite extension, at a dis- 
tance yf3 above the undisturbed free surface. The veloc- 
ity components u, v on the undisturbed free surface y = 
0 are expressed as integrals over the source plane, and 
substituted in the Kelvin condition ux + k0v = R.H.S.. 
Here the right hand side incorporates the effect of other 
sources, e.g. those representing a body. The result is a 
boundary integral equation for <r, which can be repre- 
sented by: Wi<r = R.H.S.. 

The properties of the linear operator Wi are stud- 
ied in Fourier space. The Fourier series representation 

ikx dk (3) 
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is substituted into the boundary integral equation. We 

then find 
W1{k)5-{k) = R.H.S., (4) 

W1(Ä) = -|e-*w(l-fc/fc0). (5) 

The zero of the Fourier transform of the operator, 

VVi, determines the wavelike behaviour of the solution 
in the far field; this has the wavenumber k = k0 as ex- 

pected. 

We now consider the discretized problem with 
constant-strength source panels of uniform size. Infi- 

nite sums over the source panels now replace the in- 
tegrations over the continuous source distribution, and 
discrete Fourier transforms of the source strength and 
operator are used. In analogy to Dawson's method the 
term ux in the Kelvin condition is implemented by a 
difference scheme for the first derivative of the induced 
velocity. Therefore, also the discrete Fourier transform 
of the difference operator enters, which we shall denote 
by ikÜi. The resulting transform of the complete op- 

erator is: 

Z7T 
^5!!^,«)]. (6) 

«o 

Here, Ax is the panel length, and a = yf3/Ax. Si 
and S2 represent the combined influence of the source 

panels. The root of the operator is: 

k/ko = — 
Tii Si 

(7) 

We shall now first leave out of account the er- 
rors introduced by the difference scheme by substituting 
Til = 1. Since both 531 and E2 are real, the discretiza- 
tion of the source distribution in constant-strength pan- 
els introduces an error in the wave length (numerical 
dispersion) but no numerical damping. To compute this 
error the infinite sums £1 and £2 must be evaluated nu- 
merically. The order of the dispersion error could not 
simply be deduced, but for a number of panel elevations 
and source panel sizes its value has been evaluated (Ta- 
ble 1). Keeping in mind that a usual panel length is 
Ax = Q.lir/ko, we see that the raised-panel method is 

surprisingly accurate for panel elevations exceeding half 
the panel size, having a numerical dispersion of less than 

0.6 %. 

It is useful to compare this with the results of the 
same type of analysis for the standard method, with 

source panels on the undisturbed free surface, both with 

and without the dispersion correction described in [1]. 
This is a factor introduced into the free surface con- 
dition that exactly cancels the first terms of the ex- 
pression for the numerical dispersion for the transverse 
wave component. As shown in Table 1, without disper- 
sion correction considerable errors occur. The correc- 
tion eliminates these, but only for the transverse wave 
components. E.g. for components at an angle of 60°, 
the wave number error is 29 % with dispersion correc- 
tion, and 38 % without, for Ax = O.l7r/fc0. The raised- 
panel method, which does not have such a dependence 
on the wave direction, is found to be far superior. 

It is interesting to carry out the same analysis for a 
raised point-source method. In a 2D case this then ap- 
pears to reach the same level of accuracy as the raised- 
panel method, although for a somewhat larger eleva- 
tion. However, this result is not necessarily representa- 
tive of the performance of a 3D point-source method. 
The 2D point source method is analogous to a 3D method 
with transverse source lines; but in a 3D point source 
method these source lines are further discretized into an 
array of point sources (having equal strength in our 2D 
analysis). This introduces additional errors in the in- 
duced velocities, which do not occur in the raised-panel 

method. 
The analysis has therefore been repeated by con- 

sidering 2D point source arrays extending in x— and 
z—direction. Evaluating the resulting double summa- 
tions in the induced-velocity expressions we find that 
the 3D raised point-source method is substantially less 
accurate unless the aspect ratio of the 2D source array 
is kept close to unity. E.g. for Az/Ax = 2 , the wave 
length error is 2.5 % ; for Az/Ax = 3 , the error even 
amounts to 11.6 % (for Ax = O-lir/ko). Since keep- 
ing the aspect ratio close to unity generally requires a 
greater number of sources than usual and thus increases 

Table 1:   Wavenumber ratio k/k0 for raised-panel and 
standard method 

k0Ax = O.br 
kuAx = 0.27r 

kuAx = 0.3X 

a = 0.5 
0.9937 
0.9819 
0.9611 

a = 1.0 
0.9997 
0.9986 
0.9957 

a = 1.5 
1.0000 
0.9999 
0.9996 

a = 2.0 
1.0000 
1.0000 
1.0000 

Standard 

1.0744 
1.1608 
1.2623 

Corrected 

1.0003 
1.0026 
1.0090 
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the calculation time, this is a significant disadvantage 

of the point-source approach. 

Up to this point we have left out of account the 
numerical errors introduced by the difference scheme. 
Since 7ti has real and imaginary parts, both dispersion 
and damping result. But the dispersion contribution is 
only of 0( Ax4) for the particular difference scheme used 
in our method; the leading-order dispersion thus results 
from the source discretization and not from the differ- 
ence scheme. But the source discretization introduces 
only numerical dispersion and no damping. Therefore 
the errors due to the discretization and due to the differ- 
encing may be dealt with separately, as has been done 

in this study. 

These conclusions, drawn from a 2D analysis, have 

all been confirmed by numerical experiments for 3D 

cases. In particular, as Fig.2 shows, with the raised 
source panel method the wave profile along the hull 
agrees fairly accurately with the result of the standard 
method with dispersion correction; but at a lateral dis- 
tance from the path of the ship a significant phase dif- 
ference is found, caused by the fact that the standard 
method contains a numerical dispersion error for diverg- 

ing components. 

— raised-panel method 

standard method 

g_ 

0.4 

Wave profile along the hull (top) and at z = 0.40X, 
showing numerical dispersion of standard method. 
Kelvin FSC imposed. Wigley hull, Fn = 0.40. 
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3. Wave cut at z = 0.401, for 15, 30 and 60 panels 
per fundamental wave length. Standard method 
(top) and raised-panel method (bottom). Kelvin 

FSC imposed. Wigley hull, Fn = 0.40. 

Fig.3 shows that for the raised-panel method the 
phase of the waves is absolutely insensitive to the panel 
length Ax, which indicates a negligible numerical dis- 
persion. For the standard method (with dispersion cor- 
rection) there is a forward shift that decreases upon 
longitudinal panel refinement. The effect of the aspect 
ratio of the source array or source panel distribution 
is shown in Fig. 4, where the longitudinal cuts at at 
distance from the hull are compared. The reduction 
of the aspect ratio from 2.6 to 1.0, here accomplished 
by increasing the number of free surface strips from 8 
to 20, has no effect on the phase for the raised-panel 
method, but a substantial effect for the raised point- 
source method, exactly as theory predicts. (Apart from 
this, the increased resolution also appears to have a sig- 
nificant amplitude effect on both methods.) 

Thus the raised-panel method appears to have the 

smallest dispersion error, much better than the method 
using panels on the undisturbed free surface (even with 
the explicit dispersion correction), while having the same 
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(small) numerical damping. The other issues mentioned 
in the previous section, concerning the conditioning of 
the equations and the effect of the panel elevation on 
the results, will be discussed in Section 4.3, in connec- 
tion with the nonlinear solutions. 

  Aspect ritio 1 
 Aspect ratio 2.E 

I 5' 
<2 
w „ x l 
LiJ 

Is 

4. Effect of source distribution aspect ratio on nu- 
merical dispersion. Wave cut at z — 0.46X. Strut- 
like hull, Fn = 0.25. Raised source panels (top) 
and raised point sources (bottom). 

4    RAPID: RAised Panel It- 
erative Dawson 

4.1     The Iteration Scheme 
Based on the analytical and numerical study of the ac- 
curacy of various methods to solve the linear (Kelvin) 
problem, we can conclude that the raised-panel approach 
is the most promising candidate to go on with. The 
next step is to set up an iterative procedure in which a 
sequence of such linear problems is solved, until conver- 
gence to the solution of the complete, nonlinear prob- 
lem is obtained. These linear problems are to be defined 
such that the free surface condition may be applied on 
a known, approximated surface instead of on the un- 
known free surface. On this surface a known 'base flow 
field' is assumed, just as is done in the derivation of the 
slow-ship FSC, but now to be updated in each iteration. 
The formulation of the updates of the surface and flow 
field largely determines the properties of the iterative 

process. 
Regardless of the choice of the base flow and base 

surface, the iteration scheme will be as follows: 

1. Define the panel distribution on the hull, and a 
free surface panel distribution well above the free 

surface. 

2. Assume an initial approximation of the free sur- 
face, and an initial base flow on that surface. 

3. Choose collocation points on the approximate free 

surface, e.g. right under the panel centres. 

4. Impose the combined FSC, linearized with respect 
to this base flow and free surface, in the free sur- 
face collocation points. Impose the hull boundary 

condition in the hull collocation points. 

5. Solve the linear problem in the usual way. Calcu- 
late the wave elevation from the dynamic condi- 

tion. 

6. Move the free surface collocation points to the 

new free surface. 

7. Adapt the base flow to the new solution. 

8. Calculate the residual normal velocity through 
the free surface and the residual pressure. If these 
exceed the specified tolerances, return to step 4. 
Usual tolerances are: 0.2 % of the ship speed, 
for the residual normal velocity, and 0.5 % of the 
stagnation pressure, for the residual pressure. 

4.2    Formulation and implementation 
The discretization of the source distributions is similar 
to that used in DAWSON. On the hull, flat quadrilat- 
eral panels with constant source density are used. The 
panel cornerpoints are defined directly on a digitizing 
table and stored on a hull geometry file. Similarly, the 
free surface singularities are flat quadrilateral panels 
with constant strength, usually positioned at about one 
panel length above the free surface. This free surface 
paneling is automatically generated based on the hull 

geometry. 
The calculation is started with some initial flow- 

field and free surface shape. These have no influence on 
the final result, but may well influence the number of it- 
erations needed. The simplest approach is to start from 
a flatiree surface and a uniform flow. The first iteration 
then produces the Neumann-Kelvin approximation. Al- 
ternatively, one may start with a flat free surface with 
the double-body flow; the first iteration then leads to an 
incomplete slow-ship FSC. One step further is, to first 
run DAWSON, and then continue iterating with the 
free surface and flow field thus calculated. The number 
of iterations required to reach convergence with these 
alternatives generally decreases in this order. Still in all 
cases studied up to now, starting with a uniform flow 
was sufficient to get a converged result. 
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The linearized free surface condition to be imposed 
is derived as follows. For a known base flow field V$ 
and base surface H(x,z), the velocity and free surface 
elevation to be calculated are decomposed as follows: 

V^. = V<2 + V<p', (8) 

V = H + V\ (9) 

where V<p' and 77' are (hopefully small) perturbations. 
The kinematic and dynamic boundary conditions, lin- 
earized in these perturbations, then read: 

*xi7x + *,^ + ^J?« + Vift - *y - ^ = 0        (10) 

lFn*{l-il-*l- ■*,2-2$x¥£-2*w^-2*,ri). 

(11) 

It is to be noted that these equations actually are to be 
satisfied on the new free surface y = 77, but to allow a 

direct solution they must be transferred to the known 

surface y = H. Just as in slow-ship theory, consistency 

would require that a Taylor expansion in 77' be used to 

incorporate this transfer [4]. But our insight in the na- 
ture of these terms indicates they are better discarded; 
we use the conditions in the form presented above. The 
ensuing inconsistency is, of course, meaningless for the 
converged result. 

Next, the wave elevation 77 from the dynamic con- 
dition is substituted into the kinematic condition. The 
resulting combined condition then reads: 

+ 2$2ip'2) + V>xHx + <p'zHz-$y-<p'y = 0.        (12) 

Another useful form may be 

+ *,¥>;) =-e* + («,-5- + $z—)td,        (13) 
Ox oz 

where 
ek = §v - $XHX - §ZHZ, 

1 

(14) 

ed = ^Fn\l -i\-*\- *J) - H, (15) 

the residual errors in the kinematic and dynamic con- 
dition at the start of the iteration. 

This quite straightforward derivation is valid irre- 
spective of the definitions of the base flow and base 
surface; dependent on these, certain further reductions 
may be possible. 

In the discretization of the FSC, again a close sim- 
ilarity to DAWSON exists, in that the derivatives of 
velocities and surface elevations are approximated by 
finite differences, directed upstream. 

This simple basic method is sufficient for a class of 
cases, but some extensions are required for more diffi- 

cult applications or, in particular, for finer free surface 
panel distributions. In the first place, applying the col- 
location point update as described in step 6 above may 
lead to a too drastic change and perhaps divergence. 
But the simplest form of underrelaxation has appeared 
to cure this: the collocation point is shifted to some 
weighted mean of the old and new positions. The re- 
laxation factor generally is between 0.3 and 1.0, and 
may increase with the iteration number. 

4.3     Free surface panel adaptation 

A much more complicated modification is required when 
the opposing demands on the distance from the free 
surface panels to the surface cannot be met. As follows 
from the accuracy analysis in Section 3.2, the minimum 
distance amounts to about 0.5 panel length. The maxi- 

mum distance is not dictated by these accuracy consid- 

erations, but by the conditioning of the resulting set of 

equations. If a collocation point, e.g. in a wave trough, 
is at a distance of several panel dimensions from the 

closest free surface panel, the matrix tends to become 
singular. That this can easily occur, can be deduced 
from the stagnation height expression 

1. 
-Fn2. (16) 

For the usual panel size of about 5 % of the fundamental 
wavelength X0 = 2-irFn2 (nondimensional), the stagna- 
tion height amounts to 1.6 panel length. Raising the 
panels by at least this amount in order to keep clear of 
the highest wave crests is likely to cause trouble near 
wave troughs. 

The obvious solution is, to apply a form of adap- 
tation of the free surface paneling to the wave surface. 
Although this might seem to destroy some of the prin- 
cipal advantages of the raised-panel methods, this is 
too pessimistic. Contrary to methods having the pan- 
els on the free surface itself, there is no need to apply 
the adaptation in every iteration; nor is it necessary to 
adapt the panels very carefully. The only requirement 
is to maintain a reasonable distance between the panels 
and the collocation points. Most of the advantages of 
the method are thus preserved; but not its amazing sim- 
plicity! If worked out, the panel adaptation turns out 
to require fairly tedious geometric manipulations, e.g. 
in the adaptation of the hull paneling to the modified 
intersection with the free surface panel distribution. 

This panel adaptation in fact solves the condition- 
ing problems. For a Series 60 Block 0.60 model, Fig. 
5 compares the nonlinear wave profiles obtained with 
fixed and adapted free surface panels, respectively. The 
quite small difference is due to the better accuracy of 
the latter, and is found to increase with decreasing panel 
size for fixed y/s, i.e. for a poorer conditioning of the 
version without panel adaptation. 
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5. Wave profile along the hull, with and without free 
surface panel adaptation. Series 60 model, Fn = 

0.35. 

For the same case the effect of the distance of the 
panels above the free surface was tested, using the method 
with free surface panel adaptation. Fig. 6 shows the 
wave profile along the hull and at a transverse distance 
of about 0.411, for three different panel elevations. For 
the distances of 0.5Ax and 0.8Ax (which is about 0.9Az 
and 1.4Az along the hull), almost no difference is ob- 

served; the resistance difference amounts to 1 %. For 
the larger distance, 1.3Aa; = 2.3Az, some deviations 
occur as a result of the poorer conditioning. The resis- 
tance difference now is 4 %. Similar experiences have 
been obtained for a number of cases. The general con- 
clusion is that, with the free surface panel adaptation, 
reasonable limits for the elevation are 0.5 and 2 panel 
dimensions, respectively; and that within those limits 
the elevation has a quite small effect on the result. The 
condition number of the matrix equation is a reliable 
indication of the correctness of the elevation and the 

need to adapt the panels. 
Although the adaptations of hull and free surface 

paneling are rather awkward, they do have the advan- 
tage of allowing an adaptation of the dynamic trim and 
sinkage of the hull without any additional cost or effort. 
The convergence of the trim and sinkage is exception- 
ally easy and produces no delay of the iterative process 

at all. 

5    Results 
During the last two years, a number of test cases has 
been run with the code RAPID that implements the 
method described before. Most of these tests served the 
purpose of validation or sensitivity studies. A number 
of applications in commercial projects has already been 

carried out. Below, a few of these calculations will be 

discussed. 
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6. Effect of free surface panel elevation on wave pro- 
file along the hull (top) and at z = 0A1L (bot- 
tom). Series 60 model, Fn = 0.35. 

5.1    Wigley hull 

For the Wigley parabolic hull at Fn = 0.40 fairly sig- 
nificant nonlinear effects are found, although the hull 
is quite slender. Fig. 7 shows the wave profile along 
the hull according to RAPID and the first iteration 
of RAPID, which is a Neumann-Kelvin approximation. 
The nonlinear result shows the expected higher and 
steeper bow wave, but otherwise agrees well with the 
Neumann-Kelvin result. The calculation required 4 it- 
erations, and the CPU time amounted to 30 seconds 
on a CRAY-YMP4/464, for 140 hull panels and 304 FS 
panels. 

nonlinear solution 
ncumann-kelvin result 
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7. Effect of nonlinear terms on hull wave profile. Wigley 
hull, Fn = 0.40. 
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5.2    Series 60 model 

For the Series 60 Block 0.60 hull at Fn = 0.35, some re- 
sults will be shown of a study of the influence of the free 
surface panel density. The idea behind this study was 
that nonlinear effects will presumably be concentrated 
near the waterline, where perhaps even a weakly singu- 
lar behaviour may occur. In that case, convergence of 
the iterative process, and convergence of the nonlinear 
solution for successive panel size reduction, would not 

be guaranteed. 
First, the transverse panel distribution was succes- 

sively refined, by twice decreasing by one half the dis- 
tance between the waterline and the first row of collo- 

cation points adjacent to the hull. For the finest pan- 

eling, shown in Fig.8, this distance amounted to about 
0.45 % of the ship length. Although for that grid both 
the underrelaxation and the free surface panel adapta- 

tion were necessary, no other problems occurred, and 

the tolerances were met after 9 iterations, taking some 
350 CPU seconds (for 540 hull panels, 1104 FS pan- 

els). Fig.9 again compares the nonlinear and Neumann- 
Kelvin results; the nonlinear effects turn out to be more 

pronounced here. 
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8. Free surface panel distribution for Series 60 model. 

9. Effect of nonlinear terms on hull wave profile. Se- 
ries 60 model, Fn = 0.35. 

Fig. 10 compares the wave profiles along the hull, 
and the longitudinal cuts through the wave pattern at a 
transverse distance of 47 % of the ship length, obtained 
with the 3 different grids. In general an excellent con- 

vergence for decreasing free surface panel width is ob- 
served, in that the last refinement hardly has any effect 
at all. Only at the longitudinal position x = 0.20 some- 
thing particular appears to happen in the hull wave pro- 
file; locally a grid-independent result has not yet been 
obtained. A closer inspection showed that the differ- 
ences here are caused by the increasing resolution of 
a strongly diverging wave component, progressing in a 
direction making a large angle with the hull centreline 
and, therefore, having a very small wavelength. Such 
waves are only accurately resolved on the finest grids, 
but have no significant effect on the resistance and gen- 
eral flow pattern, and therefore are of little concern for 
applications in ship design. The differences in the pre- 
dicted resistance with the three panelings considered 

amounted to 2.7 % for the nonlinear solution, against 

6.2 % for the normal Neumann-Kelvin solution. 
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10. Effect of free surface panel width on wave profile 
along the hull (top) and at z = 0.471 (bottom). 
Series 60 model, Fn = 0.35. 

For the same model at Fn = 0.35, the free-surface 
paneling was also refined longitudinally. In the previous 
calculations there were 23 panels per fundamental wave 
length. Doubling this number produces only a small, 
but visible modification of the wave profile along the 
hull, and a somewhat larger difference at the transverse 

distance of 0.47L . 

From these studies and a comparison with a paral- 

lel study for the linearized D AWSON-code, we conclude 
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that most of the discretization errors in RAPID are 
similar to, but perhaps somewhat smaller than, those 
in DAWSON. (As shown before however, the disper- 
sion error is far smaller). In general a perfect grid- 

independence will be hard to reach in wave resistance 
problems, due to the existence of very short waves close 
to the path of the hull. Therefore a comparison between 
design variations should preferably be done with corre- 
sponding free surface panelings. In that case, the influ- 
ence of the discretization errors as found here will be of 
no meaning from the practical point of view; particu- 
larly in comparison with the linearization errors which 
RAPID eliminates. 

5.3    Tanker model 

From publications on previous nonlinear methods it ap- 
pears that generally the largest convergence problems 
occur for full hull forms at low speed, such as tankers. 
However, with RAPID no serious problems have been 
met in the calculations for several different tanker hulls. 
Figs 11 and 12 give a few results for the same tanker 
model as has been used in [4], at the same speed of 
Fn = 0.177. A large number of panels was used: 1258 
per side on the hull and 2100 on the free surface. The 
converged result was obtained in 6 iterations, taking 
about 25 minutes of CPU time. (It is important to note 
here that the code used had not yet been optimized on 
the point of calculation time; significant improvements 
in efficiency will still be possible).   Fig.   12 compares 

the wave profiles along the hull according to RAPID, 
DAWSON and the Neumann-Kelvin approximation. It 
appears that the slow-ship condition in DAWSON is a 
far better approximation of the exact result than the 
Kelvin condition. This is in agreement with the conclu- 
sions drawn from the error estimates in [4], and confirms 
that for this class of ships slow-ship theory is superior 
to the Neumann-Kelvin approach. 

11. Wave pattern of tanker model at Fn — 0.177, 
calculated by RAPID. 

For this tanker model the wave patterns predicted 
by DAWSON and by RAPID are qualitatively equal. 
However, a small longitudinal shift of the wave pat- 
tern can give rise to a large change of the resistance 
for full hull forms; therefore the small differences may 
still be quite significant. As is dealt with extensively in 
[4], DAWSON predicts a negative wave resistance for 
this tanker model (and for several others).  This is at- 

<L> 
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nonlinear solution 
neumann-kelvin solution 
dawson solution 
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12. Hull wave profile predicted using Kelvin, Dawson and fully nonlinear free surface 
conditions. Tanker model, Fn = 0.177. 
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tributed to an energy supply through the free surface as 
a result of the linearization, a problem to be eliminated 
by RAPID. The resistance prediction deduced from the 

RAPID-result is therefore of particular interest. 
As a matter of fact the large negative values did 

not occur, but the predicted wave resistance was close 
to zero. This may seem disappointing, since with a 
realistic wave pattern a zero resistance is just as para- 
doxical as a negative resistance. However, contrary to 
what is the case for the linearized calculations, I now 
have strong indications that the remaining error is at- 
tributable to an insufficient panel density on the hull; 
panel refinement (up to impractically large panel num- 
bers) does result in a slow increase of the resistance to 
a positive value. Further publications on this issue will 

follow. 
More RAPID-results for tanker models are discussed 

in [17]. 

5.4    Partly immersed bulbous bow 

A very interesting application of RAPID is discussed 
next. In DAWSON, the free surface panels and collo- 
cation points are located on the undisturbed water sur- 
face. The hull form above that surface cannot have any 
effect. This is particularly disadvantageous in the case; 

of a bulbous bow that pierces the undisturbed free sur- 
face. Experience shows that such bow forms can have 
very good properties. At a sufficiently high speed they 
become completely submerged by the bow wave, thus 
allowing a smooth flow over the top of the bulb and ex- 
erting a wave-height reducing effect. This phenomenon 
cannot well be incorporated in DAWSON since there 
the FSC is imposed at the undisturbed free surface. 
The procedure used until recently was, to increase the 
draft of the hull in the DAWSON calculations with an 
amount representing a reasonable estimate of the trim 

and sinkage. 
In the present case however, this resulted in a sub- 

mergence of the top of the bulb of only 0.01 m full 
scale. The hull panels and free surface panels then al- 
most coincide; only due to the fact that the boundary 
conditions imposed on them are different a solution can 
be obtained. In principle, it is not justified to apply a 
linearized method to such a case; we should never com- 
pletely trust such results. As a matter of fact substan- 
tial irregularities in the solution can be observed. The 
wave pattern calculated by DAWSON (Figs 13 and 14, 
top) would suggest a rather defective bulb action; al- 
though the flow near the bow is directed downward, it 
does not prevent the generation of a rather heavy bow 

wave around X = -0.4. 
Repeating the calculations with RAPID however, 

substantially different results were obtained. RAPID 
does take into account the separation between the ac- 
tual water surface and the bulbous bow, by imposing 

the FSC at the free surface itself. The iteration was 
started with a uniform base flow and flat free surface. 
The draft of the ship was increased first in order to guar- 
antee a sufficient bow immersion. In the course of the 
iterative procedure, when the bow wave had assumed a 
sufficient height, the trim and draft were adapted step 
by step until the equilibrium of the vertical forces and 

trimming moments was reached. 

13. Wave patterns predicted by DAWSON (top) and 

RAPID (bottom). Hull with partially immersed 
bulbous bow. Wave heights 5 times magnified. 

14. Close-ups of bow wave patterns predicted by DAW-' 
SON (top) and RAPID (bottom). Hull with par- 
tially immersed bulbous bow.    Wave heights 5 
times magnified. 

The final result, obtained after 14 iterations, is 
shown in Figs 13 and 14 (bottom). (It is to be noted 
that near the stern, differences with DAWSON are largely 
caused by the absence of any transom stern modeling in 
RAPID). It is immediately clear that close to the bow 
a significantly different flow pattern is predicted, with- 
out the irregularities that are present in the DAWSON 
wave patterns (Fig. 15). The flow about the bulb is 
smooth and displays the correct flow pattern. The bow 
wave crest at X = -0.4 has disappeared; a crest now 
is positioned near the fore perpendicular. The better 
representation of the actual flow situation at the bow 
appears to influence a large part of the wave pattern, 
and results in substantially more pronounced diverg- 
ing waves. Thus it affects the recommendations drawn 
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for improvement of the Lull form. RAPID allows to 
optimize this class of bulbous bows, without the un- 
certainty on the limits of applicability that we always 
had to take into account in running DAWSON for such 
extreme cases. 

It thus appears that even for slender hulls the non- 
linear effects can be quite appreciable due to particular 
hull form features. 

STERN 

15. Hull wave profiles predicted by DAWSON and 
RAPID. Hull with partially immersed bulbous bow. 

6    Conclusions 

In this paper, a new and successful fully nonlinear pro- 
cedure for solving the wave resistance problem has been 
presented. The RAPID-approach consists of the itera- 
tive application of a solution method for a steady linear 
problem. This solution method has several similiari- 
ties with Dawson's method, but a special feature is the 
use of source panels above instead of on the free sur- 
face. The main merits of the RAPID-approach are in 
my opinion: 

• The convergence of the iterative procedure, which 
in most cases is automatic, even for notoriously 
difficult cases. Up to now, I have not yet met a 
realistic case for which no converged result could 
be obtained. 

cally two free parameters for influencing the con- 
vergence properties: the relaxation factor, which 
is not critical at all and does not affect the final 
result; and the panel elevation, which within rea- 
sonable (and understandable!) bounds also has 
no effect on the final result. 

• The quite small numerical dispersion of the raised- 
panel discretization for wave problems, as has been 
shown analytically and confirmed numerically. 

The good convergence properties are probably due to 
the careful decisions on all aspects of the formulation 
of the method and its numerical implementation. In 

general, details of the numerics may have a dominant 
effect on the convergence behaviour of methods to solve 
the nonlinear free surface problem. 

The RAPID code starts already being useful in the 
commercial ship design work at MARIN. In particu- 
lar the example of the surface-piercing bulbous bow 
shows the value of the method to complement DAW- 
SON. Even so, a number of improvements and exten- 
sions is still needed to make the code more generally 
applicable. In particular, a model and implementa- 
tion of the flow off an immersed transom stern is to 
be added. Possibly, one day the step towards a higher- 
order panel distribution will be made to improve the 
numerical accuracy for a given panel number. Further 
study is needed to improve the accuracy of the pre- 
diction of the wave resistance itself; evaluating this by 
pressure integration is even much more difficult than in 
linearized methods. 

It is useful to keep in mind that even with a so- 
lution of the full potential flow problem, several flow 
phenomena are not covered. In particular, wave break- 
ing and its effect on the flow around the hull and wave 
pattern; and the effect of viscosity on the wave pattern 
around the stern. Still I believe that the possibility to 
solve the full, nonlinear potential flow problem means 
a significant step ahead in the consideration of wave 
resistance and wave pattern in ship design. 
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DISCUSSION agreement with the data is excellent. 

S. Sharma 
University of Duisburg, Germany 

Michell's monumental theory of ship wave 
resistance has stubbornly resisted virtually all 
analytical attempts at improvement for nearly a 
hundred years. It seems that dedicated efforts of 
several researchers in various countries are now 
finally bearing fruit. We may soon have a reliable 
method of at least obtaining a numerical 
approximation to the exact nonlinear—but 
nonbreaking—ship waves in an ideal fluid. A 
significant part of the credit for this achievement goes 
to Dr. Raven for his series of contributions 
culminating in the present paper. I invite him to 
provide a few typical comparisons of his calculations 
with the best available model experiments. Only then 
will we be able to tell how much of the known gap 
between Michell's theory and real ship waves is 
closed by accounting for the nonlinear free surface 
condition and how much still remains due to neglect 
of viscosity (and possibly surface tension). 

For the Wigley hull at Fn=0.31 (Fig. B) and 
Fn=0.452 (Fig. C), again the RAPID-result is quite 
close to the experimental data, and the nonlinear 
effects account for most of the deficiencies of the 
linearized method. The only deviation visible in both 
cases (but not for the Series 60 hull) is an 
underprediction of the bow wave height by about 10 
percent. This is a much better result than obtained 
with linearized methods, but raises the question of 
what else is causing this underprediction. It appears 
to me that it should be attributed to a jet-like flow in 
the immediate vicinity of the bow rather than to the 
neglect of viscosity or surface tension. This 
phenomenon cannot be covered by the present method 
and probably requires a separate treatment by a 
model still to be devised. Its effect on the wave 
profile and pattern is, however, quite small and 
localized. 

Of course, further validations are desired and will 
be performed. 

(See figures on the next page.) 

AUTHOR'S REPLY 

Thank you for your kind remarks. As a matter 
of fact, the paper primarily discusses the convergence 
for increasing panel density, the dependence on 
numerical parameters, etc., rather than comparisons 
with experimental data. Now that I am confident that 
the results are fairly independent of the discretization, 
I have made a number of such comparisons. Because 
of the availability of extensive data, these mainly 
address standard test cases, the Wigley hull and the 
Series 60 parent form. 

Fig. A shows the hull wave profiles for the 
Series 60 Cb=0.60 model at Fn=0.35. The data are 
those from the ITTC Cooperative Experimental 
Program. The full line represents the final nonlinear 
solution, while the markers indicate the result of the 
first iteration, which corresponds to a Neumann- 
Kelvin approximation (solved using Rankine panels of 
course). The Neumann-Kelvin solution significantly 
deviates from the data, by an underprediction of the 
bow wave, overprediction of the stern wave and a 
phase error. The slow-ship approach (DAWSON- 
code) (not shown) gives a wave profile which is 
somewhat closer to the experimental profile. But 
there is a definite improvement by taking into account 
the nonlinear effects:    for the RAPID result, the 
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DISCUSSION 

L. Larsson 
FLOWTECH International, Sweden 

The author is to be congratulated for his very 
interesting series of papers on Rankine source 
methods. The present idea to raise panels above the 
free surface was the first approach tested in the 
discussor's research group when we started the work 
on nonlinear methods in 1984. As appears from the 
enclosed figures from the thesis by Xia [A], a 
marked sensitivity was noted to the height of the 
(flat) source surface and the method was rejected. 
Xia's approach was a standard Dawson technique, but 

with a linearization about the previous solution. No 
transfer terms were included in the FSC, so the 
method should be very similar to the present one. 
One difference is that the source surface was never 
deformed, but is that really needed? Fig. 5 seems to 
indicate the opposite. Is there any other reason why 
the present method should be less sensitive to the 
source surface height than the standard Dawson 
technique as defined above? 

[A] Xia, F., "Numerical Calculations of Ship Flows, 
with Special Emphasis on the Free Surface Potential 
Flow," PhD Thesis, Chalmers University of 
Technology, Gothenburg, Sweden, 1986. 

Yfs = 0.85 dx 

Yfs = 0.60 dx 

Yfs  =  0.35  dx 

Figure A.  Wave height for the Wigley hull at F„ 
Xia [A]. 

0.31.  Different locations of the source surface.  From 

Fn  -  0.31 

'Yfs  -   0.35  dx 
-oYfs   -   0.60  dx 

Yfs   -   0.85  dx 

0.60  dx 
0.35  dx 

,23«5iteration No 

Figure B. Wave resistance for the Wigley hull at two Froude Numbers.  Different locations of the source 
surface from Xia [A]. 
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AUTHORS' REPLY 

Thank you very much for your interesting 
remarks. Admittedly, I did not remember that Xia 
already had briefly studied a similar approach; I 
apologize for not referring to it. In my opinion, the 
results shown in your figures largely conform to 
mine. The smallest panel elevation (3 percent) 
amounts to 0.25 panel length; according to the 
analysis in Section 3.2, this introduces significant 
numerical dispersion, which may explain the 
deviations in the wave profile. The other two lines, 
for yfs=0.6Ax and 0.85Ax, are in much closer 
agreement. That the difference is somewhat larger 
than in my method may be due to the rather coarse 

discretization and the absence of free-surface panel 
adaptation (which ensures a high accuracy for a 
greater range of panel elevations). The differences in 
the resistance in Xia's calculations may have been 
magnified by inaccuracies in integrating up to the real 
waterline for the different hull panelings. Fig. 5 
applies to a rather coarse paneling, with a fairly good 
conditioning even with fixed panels; it thus merely 
shows the insensitivity of the method for the panel 
shape and location. For finer free surface panelings, 
however, the same sort of figure shows larger 
differences due to inaccuracies in the fixed-panel 
method as a result of the increasing condition 
number. 

0.0300 

0.0200- 

0.0100 

0.0000 

0.0100_ 

0.0200 
-1.00 -0.50 ^0.00 

1.00 

Figure 1.   Comparison of the wave profiles, the Wigley hull, at FB = 0.3. 

 ^ .&   71 

Figure 2. Convergence of the calculated wave resistance, the Wigley hull, at Fm = 0.31 and F„ = 0.22. 

368 



DISCUSSION 

G. Jensen 
The Hamburg Ship Model Basin HSV A, Germany 

I want to congratulate the author for his valuable 
study. I also wish to ask a question and comment on 
a few things. 

The author presents his method as a new one. It 
seems, however, that it is quite closely related to the 
method of Bertram, Jensen, and Sölding [10,11], the 
main difference being the neglect of some terms 
containing higher derivatives in the Taylor expansion 
of the free surface condition and the use of a Dawson 
type finite differencing scheme for second derivatives 
instead of analytical derivatives. Do you think this 
leads to a more general convergence? 

I think general convergence cannot be expected 
by this class of methods which can only cover weak 
nonlinearities, due to the underlying assumption of a 
potential flow with a free surface described as a 
unique function. Thus, breaking waves and spray 
cannot be described. Although these phenomena 
occur on any practical ship hull, I agree that this 
method can be usefully applied as the critical region 
very close to the bow is not discretized. I claim, 
however, that for the limit of grid refinement, e.g., 
at the bow convergence, may not generally be 
reached. 

In addition, there are a few other practical cases 
where larger areas of wave breaking occur, and 
where Jensen's method, as expected, does not 
converge and where x/<j>, the method presented by the 
author, should not converge as well. These are as 
follows: Full block ships will generate a large 
breaking wave zone near the forward shoulder at high 
Froude numbers, especially on shallow water. 
Slightly submerged bodies often create breaking 
waves in the flow field. Catamarans often create 
breaking waves where the two wave systems 
interfere. 

AUTHOR'S REPLY 

in the paper; there are differences in the form of the 
FSC, the treatment of the radiation condition, the 
choice of the free-surface singularities, the free- 
surface panel adaptation, the hull discretization, and 
several other points. The transfer terms in the FSC 
are intentionally neglected in order to improve 
convergence. According to my experience, the 
convergence of RAPID is actually better than what 
has been published about your method, but perhaps 
later improvements in your code may have changed 
this. A direct comparison might be interesting. The 
designation "weak nonlinearities" seems not to do 
justice to their importance in practice. Anyway, this 
class of nonlinear effects appears to be well resolved, 
as Fig. 10 shows: the convergence for decreasing 
panel size is quite satisfactory. However, in an 
"inner region" in the immediate vicinity of the bow, 
the mathematical model may become singular, as an 
indication of the jet shooting up along the hull. The 
analogy with the 2D impulsively started wavemaker 
problem suggests that an insufficient resolution of this 
jet has only a very localized effect near the bow, 
while anything else is unaffected. If this is fact is the 
case, the method would be entirely satisfactory for 
the purpose it is intended for. Evidently, further 
study is needed to verify this hypothesis. 

Undeniably, the method cannot cope with vertical 
wave faces or breaking. This does not seem to be a 
very important restriction since breaking cannot be 
incorporated in a potential flow model anyway. In 
cases in which extensive breaking occurs, I expect 
the method either not to converge, or to converge to 
a solution that is not physically realizable and 
unstable. 

DISCUSSION 

K. Nakatake 
Kyushu University, Japan 

I congratulate your completion of fully nonlinear 
method. According to our experience for the 
Rankine source method, it cannot be applicable to the 
very high speed range, say Fn= 10.0. Did you apply 
your method to that case? 

Thank you for your useful comments. Different 
methods for solving this problem unavoidably seem 
to be closely related, as separate developments all 
tend to converge towards the same basic structure 
that is optimal for the problenl. The actual 
similarities with your method are mostly mentioned 

AUTHOR'S REPLY 

In the first place, using Rankine sources is just 
one way of solving the uniquely posed potential 
problem, and is applicable regardless of the Froude 
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number. However, I presume you refer to your 
experience with applying Dawson's method to a 
submerged hydrofoil at high Fn. The possible 
shortcomings in that case may be either in the 
numerics or in the linearization. In the former case, 
they might be removed; in the latter case, they will 
be removed by the present method, provided that it 
converges. For the shallowest submergences, this 
might be problematic, but I have not tried it yet. 

DISCUSSION 

W. Schultz 
University of Michigan, USA 

Your statements about radiation conditions and 
open boundary conditions are confusing to me. 
Theoretically, radiation conditions are required for 
steady or periodic problems, not for initial value 
problems. Numerically, both methods may require 
open boundary conditions, but when material 
derivatives are used Cao, et al (1991)[Int J. Num. 
Meth. Fluid 12, 185] have shown no perceivable 
reflections without using any treatment at the open 
boundaries. While I agree that a time marching 
procedure is not usually efficient for steady flow, an 
adopted implicit procedure with large time steps is 
usually as efficient. 

Your first conclusion that up to now you always 
get converged results for realistic cases—do those 
cases include flows with breaking waves? Also, it is 
my opinion that no procedure yet developed can 
adequately handle mesh refinement near the contact 
line. 

AUTHOR'S REPLY 

As a matter of fact, a radiation condition is only 
needed for steady problems, as stated in Section 2.3. 
Non-reflective I .c.'s are in principle required for all 
free surface problems in truncated domains. But in 
steady problems the waves are confined to the Kelvin 
wedge; for a sufficient width of the free-surface 
domain, reflection only occurs at the downstream 
boundary, and the waves reflected there are unable to 
move back upstream into the domain. Such 
properties do not occur in general unsteady problems. 

The reflection coefficient will be largely 
determined by the implied flow behavior outside the 
discretized free-surface domain; e.g., in Dawson's 

method, there is a sharp transition to a zero vertical 
velocity at the edge. With singularities above the 
free surface, however, this transition is much more 
gradual, and reflections could well be weaker. This 
may explain the good experiences with your raised 
point-source method. 

For your remarks on wave breaking, I refer the 
reply to Jensen's comments; with the addition that 
problems seem to occur near the bow rather than at 
the entire contact line. 

370 



A Numerical Approach for Predicting the Total 
Resistance and Nominal Wakes of Full-Scale Tankers 

S. Ju (Daewoo Shipbuilding & Heavy Machinery Ltd., Korea) 
V. Patel (The University of Iowa, USA) 

ABSTRACT 

Recent advances in the power and speed of numerical 
methods for solution of the Reynolds-averaged Navier-Stokes 
equations to predict the flow around a ship hull have made 
it possible to consider their use in ship design. In this 
paper, one such method is applied to investigate its 
capabilities to predict the resistance components and the 
nominal wake at the propeller plane. A grid sensitivity 
study is first performed to determine the effect of grid 
numbers on the solution and the cost in terms of computer 
storage and time. The method is then applied to a tanker 
series with the same forebody and different afterbodies, at 
model- and full-scale, to show that such a method can be 
economically employed in the design environment to make a 
comparative assessment of different hull forms. 

NOMENCLATURE 

CA   incremental resistance coefficient 
for model ship correlation 

CAA  air resistance coefficient 
Cf   friction coefficient 
Cp   local pressure coefficient 
Cfc   integration of resistance due to Cf 

along the girth 
Cpc   integration of resistance due to CP 

along the girth 
CFO   frictional resistance coefficient of 

a plate 
CF   frictional resistance coefficient of 

the ship 
Cpp  potential-flow pressure resistance 
Cpv  viscous pressure resistance 
CR   residuary resistance 
CT   total resistance 
Cv   total viscous resistance 
Cw   wavemaking resistance 
k    three dimensional form factor 

, Cv - CFO > 

CFO 

Subscripts 

m model 
s ship 
a afterbody (x > 0.35) 
f forebody ( x < 0.35) 

INTRODUCTION 

In ship hydrodynamics, as distinct from aerodynamics, 
the major force component due to flow around the hull is 
resistance, rather than lift. It is one of the duties of a 
naval architect to design ships with hull forms having low 
resistance and, therefore, with minimum power 
requirements. The expected forces on a new ship and the 
ship response to these forces must be estimated as functions 
of the geometry and dimensions of the ship. These 
estimates are based on a combination of theoretical and 
empirical methods, and often require experimental 
confinnation. Design of a proper propulsion system for a 
given ship requires a knowledge of the flow field ahead of 
the propeller plane, in addition to the characteristics of the 
propeller, and involves a similar combination of theoretical 
and empirical techniques. 

Current ship-resistance predictions are still based on the 
well-known suggestion of William Froude, who postulated 
that the full-scale ship resistance consists of two 
components, wavemaking resistance, which scales with the 
Froude number, and viscous resistance, which is 
Reynolds-number dependent. Model-scale Reynolds numbers 
are of the order of 106, while for full-scale ships they can 
be of the order of 109, which are among the largest values 
encountered    in    fluids-engineering    applications. An 
outstanding practical problem in the prediction of the 
resistance of a full-scale ship is that of converting, or 
extrapolating, model results correctly to the full-scale ship. 

Similarly, for determination of the flow into the 
propeller, current design practice relies heavily on 
model-scale experiments and prior experience based on 
experiments on similar hulls. Even in this case, there is 
considerable uncertainty in the prediction of the flow at full 
scale because the scaling methods used to extrapolate from 
model scale are based on notions of boundary-layer theory 
whereas, in reality, the wake flow is much more complex. 

Although Computational Fluid Dynamics (CFD) is a 
long way from maturity for these and other applications in 
ship hydrodynamics, it is destined to play an increasing role 
in the ship design process. Over the past decade or so, 
much effort has been devoted at various organizations to the 
developmemt of CFD methods for prediction of the viscous 
flow over ship hulls. The Resistance and Flow Committee 
of the 19th ITTC (1990) concluded   that some of the recent 
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computational methods for ship viscous flow using 
Reynolds-averaged Navier-Stokes (RANS) equations have 
succeeded in predicting the gross time-mean velocity field in 
the stem region with reasonable accuracy compared with 
model experiments. A similar observation was made 
following the 1990 SSPA-CTH-IIHR Workshop on Ship 
Viscous Flow (Larsson et al., 1991), where some 19 
computational methods were compared with two sets of 
detailed model-scale data. One of the conclusions reached 
at the Workshop, however, was that none of the methods 
has become good enongh to be used by the designer to 
optimize the stern of full shaped ships, although many of 
them are promising and give qualitative information on how 
the flow around the stern is changed when the afterbody 
lines are modified. In addition, a very few methods 
succeeded in calculating the flow at full-scale Reynolds 
number, underscoring the additional difficulties that arise in 
using CFD methods at very high Reynolds numbers. 

Although a great deal of effort has been devoted to 
development of CFD methods for ship hulls, relatively little 
attention has been paid to their use in the design 
environment. This paper is concerned with the practical 
applicability of the method of Patel, Chen and Ju (1988, 
1990) to the prediction of resistance components and the 
nominal wake in the design context. 

extensive calculations were performed for the case of the 
HSVA tanker, which was one of the two test cases of the 
Ship Viscous Flow Workshop. The surface pressure and 
wall shear-stress data on this hull are used to assess the 
capability of the method to predict the viscous-pressure 
(Cpv) and frictional (CF) resistance components, and the 
computer resources required to obtain grid-independent 
results. 

Next, with the noted limitations of the numerical 
method in mind, calculations were performed for test hulls 
and conditions in which the double-body assumption is 
justified and the need for detailed calculations for the 
forebody flow is not critical. The test models selected are 
shown in Fig. 1. These series A tanker forms (A1,A2,A3) 
have the same forebody but different afterbodies, so float 
they are expected to have almost the same forebody viscous 
pressure (Cpvf) and frictional (CFf) resistance components. 
For these tankers, there exist data from towing-tank 
experiments at low Froude number for which the 
free-surface effects are small. Selected results for this 
tanker series are presented to demonstrate the general 
performance of the numerical method with respect to the 
predicition of resistance as well as the nominal wake at bom 
model and full-scale Reynolds numbers. 

NUMERICAL METHOD AND ITS APPLICATIONS 

The numerical method of Patel, Chen and Ju has been 
selected because it is one of the most widely tested 
methods. It has been compared with experiments on a 
variety of hull forms at model scale (Patel, Chen and Ju, 
1990), and has been applied, in a preliminary way, to 
calculate the flow at full-scale Reynolds numbers (Ju and 
Patel, 1991) and the flow around a ship hull in yaw (Patel, 
Ju and Lew, 1990). In addition, mis method has been 
combined with conventional propeller performance prediction 
methods based on inviscid fluid theories to study 
propeller-hull interaction (Stern et al., 1988), and a number 
of other extensions have been made to investigate different 
features of complex, three-dimensional shear flows. The 
method solves the RANS equations, along with the k-£ 
turbulence-model equations, in generalized, body-fitted 
coordinates which are also generated by numerical methods. 
The velocity components are retained in cylindrical-polar 
coordinates, and the wall boundary conditions are indirectly 
satisfied by using the wall-functions approach. Further 
details of the method are given in Patel, Chen and Ju 
(1988), Chen, Patel and Ju (1990) and Ju (1989). 

A number of issues arise when such a method is used 
to assess its potential in the design environment. The first 
is to recognize its limitations. In this connection, we note 
that the method, in the form it is employed here, calculates 
the flow around a double body, assuming that the free 
surface is flat. Plane-of-symmetry conditions are imposed 
on that boundary. Thus, any Froude number effect is 
excluded. Secondly, the solutions are started at some 
location on the parallel middle body and, therefore, 
information on the forebody has to be obtained by other 
means, for example, by potential-flow or boundary-layer 
analyses. The second issue is that of the numerical 
performance of the method. In particular, it is important to 
establish the grid sensitivity of the method and the computer 
requirements to obtain grid-independent answers. 

The next section is devoted to an evaluation of the grid 
sensitivity of the method, with particular reference to the 
prediction  of  the  resistance   components.      In  this   case, 

Fig.  1     Afterbody offset lines of Tanker series A 

GRID DEPENDENCE AND COMPUTING RESOURCES 

Even with the extensive comparisons that were made at 
the Ship Viscous Flow Workshop, it was not possible to 
isolate the effects of the many components of modern 
computational methods, such as grid number and topology, 
numerics, turbulence model, and boundary and initial 
conditions. For example, the number of grid points used 
for the calculations presented at the Workshop for the 
HSVA tanker at a Reynolds number of 5 x 106 ranged 
from a low of 8,000 to as high as 253,000. The grid 
topology also varied, particularly in the stern region. 
However, there was no clear cut correlation between the 
number of grid points and the quality of the results. The 
Workshop calculations made with the present method 
employed 23,000 grid points. Here, we make a more 
comprehensive assessment of the grid sensitivity of the 
method. Once again, the HSVA tanker is chosen as the 
test case. 

In  the   calculations   and   results   to   be  presented,   all 

372 



coordinates and geometrical parameters are rendered 
dimensionless using the ship length L as the characteristic 
scale, and the coordinate x is measured from the bow. The 
velocity components (U,V,W) in (x,y,z) directions, 
respectively, and the friction velocity Ut are 
nondimensionalized by the ship speed Uo. The pressure is 
normalized by the ship speed and fluid density. The 
resistance coefficients are defined in the conventional 
manner (see Nomenclature). For ease of reference, and 
where appropriate, the results are plotted in the format used 
for the Ship Viscous Flow Workshop. 

Table 1 summarizes the grid numbers for which 
calculations were performed, along with the number of 
iterations required to reach steady-state solutions, and 
computer storage and time. The number of grid points in 
the radial direction (JN), from the hull surface to the far 
field, was fixed at 30, while the number of points in the 
strea'mwise direction (IN) was varied from 54 to 151, and 
that around the girth was varied from 15 to 39. The total 
number of points used varied from 24,300 (54x30x15), 
comparable to that used for the Workshop calculations, to 
176,670 (151x30x15). Fig. 2 shows some views of the 
coarsest and the finest grid. The increase in the required 
computer resources with increasing grid number is clear 
from Table 1. 

The computed CP and Ut, which are important for 
prediction of the resistance components, are compared with 
experiments in Figs. 3 and 4. The grid dependency in both 
directions is surprisingly small, and therefore the 
discrepancy between the calculations and experiments 
remains the same.   It is noted   that CP along   the wateriine 

near x = 0.72 has a clearer wiggle as IN increases. This 
behavior is also observed in the potential-flow calculations 
shown in Fig. 5 when small enough panels are used near 
this location. This location is where the wateriine starts to 
curve from the flat midbody. The comparisons of CP 

obtained from the current viscous code and the potential 
code shows good agreement in the region of 0.6 < x < 
0.8 along both the keel and the wateriine. The discrepancy 
around the midbody is associated with the initial conditions 
used at the inlet station at x = 0.3 in the viscous code. 
However, this discrepancy is not critical for the computation 
of the viscous pressure resistance, Cpv, since the component 
in the longitudinal direction of the pressure force is nearly 
zero due to the parallel mid body. The difference in CP 

between the viscous and potential-flow calculations in the 
region of x > 0.80 is mainly responsible for the viscous 
pressure resistance. 

Fig. 6 shows the convergence history of the resistance 
components calculated using four typical grids. In this 
figure, the resistance components are only those for x > 
0.35, i.e., the forebody contributions are excluded. The 
surface area of the hull form is estimated using the 
numerical grid and includes about 1 % error compared to 
the real surface area. Usually, the surface area in the finer 
grid is larger than that in the coarser grid and this 
difference gives larger CF» for the finer grid. Two of the 
four calculations were started from the zero-pressure initial 
guesses, but the other two finer grid cases employed initial 
conditions based on the built-up pressure from the 
intermediate solutions of the coarser grids. The resistance 
coefficients were converged except in the finest grid case 
(151 x 30 x 39) which was stopped after 600 iterations due 

Table 1.   Summary of grid points and CPU memory and time 

XN = 15 KN = 21 KN = 27 KN = 39 

IN= 54 total grid 24300 34020 43740 

CPU memory (mb) 9.4 10.3 11.5 

CPU sec. per iter.* 5.0 9.2 12.7 

total no. of iter.** 100 
total CPU hours* 0.2 

IN= 76 total grid 34200 47880 61560 88920 

CPU memory (mb) 10.6 15.1 18.0 25.6 

CPU sec. per iter.* 8.6 13.4 17.6 27.0 

total no. of iter.** 300 
total CPU hours* 1.2 

IN= 107 total grid 
CPU memory (mb) 
CPU sec. per iter.* 
total no. of iter.** 

•total CPU hours* 

48150 
13.4 
11.8 

86670 
25.5 
24.6 

900 

6.2 

IN= 151 total grid 
CPU memory (mb) 

CPU sec. per iter.* 

total no. of iter." 

total CPU hours* 

67950 

19.6 
15.9 

176670 

49.3 

48.0 
2000*** 

26.7*" 

note)     *   CPU time is based on CRAY2S.    It takes approximately 22 times 
longer for DS5000 and 33 tines for SPARC computer. 

"   convergence is based on the resistance components. 
"*   estimated after 600 iterations. 
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to large computing time. The convergence of CF» is very 
fast, but the values of Cpv» converge very slowly, even 
when the residuals of the flow quantities (changes in 
velocity and pressure between successive iterations) are 
extremely small. For example, the value of Cpva in the 
finest grid is 0.00079 after 600 iterations, but it is expected 
to decrease further by 0.00002, which is only about 1 % of 
CT, after 2000 iterations. 

Fig. 7 shows the influences of the grid number on the 
resistance components comparing the solutions obtained with 
four different grids. Both curves for Cpva and CF« give 
convergent behavior as more grid points are used. The 
effect on CF» is not significant, say less than 0.00006, 
which is about 1.5 % of CT. The coarse grid solution of 
Cpv» is 0.00040 (about 10 % of CT) greater than that of 
the fine grid solution, which is assumed to be close to the 
final values.     The higher   values of Cpva   with the coarser 

grid are associated with not simulating the sharp pressure 
rise in the stern region. This behavior is also observed in 
the calculation of the potential-flow pressure resistance 
(Cppf) for the forebody of the Tanker A, as shown in Fig. 
8. Here, Cppf is obtained by the Hess and Smith method 
(1962). Fig. 8 shows that more than 180 stations in the 
region x < 0.5 with more than 10 grid points in the 
girthwise direction are required to get a reasonable value of 
Cppf. Even positive Cppf's are obtained with less than 70 
stations. The grid dependency tests presented here clearly 
show the possibility to estimate the resistance components 
quantitatively by increasing the number of grid points. 

The practical difficulty to use the viscous codes for 
predicting the resistance, however, is that the computing 
cost with the fine grids are still quite high, as shown in 
Table 1. Another approach to utilize the viscous codes 
considering the current level of the computing power and 
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cost is to use them for comparative purposes only. This is 
explained and demonstrated with a commercial Tanker A in 
the next section. 

MODEL-SHIP CORRELATION 

For a comparative study of the Tanker series A (Fig. 
1), a coarse and a fine grid, with (54x30x15) and 
(107x30x27) grid points, respectively, were employed. 
With three afterbody forms, and two Reynolds numbers, 
corresponding to model- and full-scale conditions, a total of 
12 independent calculation were performed. For consistency 
of results, the same computing conditions during 
grid-generation and iteration procedures were used in all 
calculations. 

Fig. 9 shows the finer grids for Tarker A3 at the 
model- and full-scale Reynolds numbers, which are 6.81 x 

106 and 1.555 x 109, respectively. The considered Froude 
number for this tanker is 0.142. Table 2 provides a 
summary of the resistance calculations. Among the results 
shown, only the values of Cpva and CFa, for the afterbody, 
x > 0.35, were obtained from the viscous-flow numerical 
method. All other quantities were deduced as explained in 
the table. In particular, the forebody pressure force Cppf 
was obtained from potential-flow calculations, and the 
forebody frictional resistance CFf was obtained from the 
ITTC correlation line, and both were assumed to be the 
same for all three afterbody forms, The wave resistance 
Cw was also estimated with an inviscid free-surface method 
(Larsson et al., 1989). 

With regard to the results of the viscous-flow method, 
it is observed that the afterbody frictional resistance (and 
therefore, the total frictional resistance) is insensitive to 
afterbody  shape,  but the effect of grid  refinement is to 
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increase the estimated resistance by about 2% at model 
scale and about 7 to 8% at full scale. This suggests that 
more grid refinement is needed at full-scale Reynolds 
numbers. The effect of afterbody shape is clearly seen in 
the viscous pressure resistance, wife Tanker A3 showing fee 
smallest value and tanker A2 the largest. What is more 
significant, particularly for design calculations, is that, with 
the procedures employed, this ordering among fee three 
hulls remains the same all the way to the estimate of the 
totoal resistance at model scale as well as full scale. The 
effect of grid refinement is to predict a smaller total 
resistance by about 5% at model scale and about 7 to 10% 
at full scale. 

The results from towing tank resistance tests on models 
of this Tanker series are presented in Table 3. Here, only 
the total resistance at model scale was measured and the 
remaining quantities were estimated using standard practice 
based on  1978  ITTC performance prediction method  for 

single screw ship. Here, CR« = CT= - CFO« and Grs — 
CFOS + CRU + CA + CAA. where CA is fee incremental 
resistance coefficient for model-ship correlation and CAA is 
the air resistance coefficient. Comparison of fee measured 
total resistance in model tests wife those calculated for 
model scale in Table 2 indicates feat: (a) the measured 
values are about 5% lower than those predicted wife fee 
finer grid, indicating perhaps a need for further grid 
refinement; and (b) more importantly, fee ordering of fee 
three hulls with respect to their total resistance is fee same 
in fee measurements as feat predicted, with A3 showing the 
smallest resistance and A2 the largest. 

Comparison between fee results obtained from the 
calculations (Table 2) and those deduced from towing-tank 
tests (Table 3) for the full scale ship requires further 
explanation. For this purpose, attention is drawn to the 
results for Tanker Al. Note feat the total resistance 
predicted with the finer grid is CTS = 0.00244, whereas 
the measured value, accounting for the air resistance (CAA 

= 0.00005) is only 0.00205, almost 20% lower. When the 
form-factor method is used for scaling from model to ship 
resistance, the form factor for Tanker Al is estimated to be 
k = 0.213. With this value, k CFO« = 0.00068 for fee 
model and k CFOS = 0.00031 for the ship. This indicates 
that fee form factor must depend on fee Reynolds number, 
a conclusion reached by many previous investigators using 
different arguments. This is further supported by a 
comparison of fee calculated viscous-pressure resistance Cpv 
wife k CFO. At model scale, Cpvm = 0.00078, in 
substantial agreement wife k CFOM = 0.00068, but at full 
scale Cpvs = 0.00072 and does not decrease to fee value 
(0.00031) predicted by the form-factor method. 

Fig. 10 shows fee longitudinal variations, for Tanker 
A3, of fee contributions to the frictional (Cfc) and pressure 
(Cpc) resistance components at each section. These were 
determined by a girthwise integration, from fee keel to fee 
waterline, of fee calculated friction and pressure 
distributions. In the case of fee frictional resistance, no 
significant difference is observed between fee result of fee 
coarse and fine grids, at both the model and ship scales. 
The diminishing contribution of fee stern to frictional 
resistance is also evident. In the case of CPc, there are 
two regions, which give positive and negative contributions 
to fee pressure resistance. The viscous pressure resistance is 
the difference between the areas under the curves in these 
two regions. This explains the difficulty of accurately 
predicting fee viscous pressure resistance. The calculations 
indicate that fee finer grid results in a higher predicted 
pressure recovery and decreasing viscous pressure 
resistance. Obviously, improvement in accuracy would 
require better resolution of the flow in fee stern region. 

Prediction of the stern flow is also of interest in 
matching fee propeller to the hull and predicting propeller 
performance. Fig. 11 shows fee axial-velocity contours and 
the transverse velocity vectors at fee propeller plane of 
Tanker A3 calculated with the two grids at fee two 
Reynolds numbers. The measurements at model scale are 
shown for comparison. In fee calculations, the stern bulb 
shape was modelled, although not accurately enough to 
resolve the local flow details. However, the wake-rake 
support mounted into the propeller-shaft hole during the 
experiments was not considered. This, of course, has an 
effect on the flow in the center of the propeller disc. 
From the model-scale results it is clear that fee calculations 
do not reproduce fee details seen in the measurements, 
particularly with respect to the large velocity gradients 
below   fee   propeller   center.       However,   the   finer-grid 
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Table 2.    Calculated resistance components for Tanker series A 

(grid) 

INxJNxKN 

model scale full scale 

Al 

1.33 

0.99 

-0.21 

1.12 
0.78 

1.98 

2.05 

1.24 

3.22 
3.29 

4.34 

4.07 

0.19 

4.53 
4.26 

A2 

1.37 

1.05 

-0.21 

1.16 
0.84 

1.98 

2.05 

1.24 

3.22 

3.29 

4.38 

4.13 

0.19 

4.57 
4.32 

A3 

1.25 

0.95 

-0.21 

1.04 
0.74 

1.98 
2.05 

1.24 

3.22 
3.29 

4.26 

4.03 

0.19 

4.45 
4.22 

Al 

1.28 

0.93 

-0.21 

1.07 
0.72 

0.86 
0.97 

0.56 

1.42 
1.53 

2.49 
2.25 

0.19 

2.68 
2.44 

A2 

1.38 

1.01 

-0.21 

1.13 
0.80 

0.86 

0.97 

0.56 

1.42 
1.53 

2.55 

2.33 

0.19 

2.74 
2.52 

A3 

CpvaXlO3 

x > 0.35 

54x30x15 

107x30x27 

1.19 

0.90 

CppfXlO3  ' 

x < 0.35 

-0.21 

Cpv xlO3 

(=Cpv«+Cppf) 

54x30x15 

107x30x27 

0.98 
0.69 

CFa xlO
3 

x > 0.35 

54x30x15 

107x30x27 

0.86 

0.98 

CFf XlO3  ** 

x < 0.35 

0.56 

CF xlO3 

(=CFa+CFf) 

54x30x15 
107x30x27 

1.42 
1.54 

Cv xlO3 

(=CPV+CF) 

54x30x15 

107x30x27 

2.40 

2.23 

CW  XlO3  »" 0.19 

CT xlO3 

(=Cv+Cw) 

54x30x15 
107x30x27 

2.59 
2.42 

note)      *    Cppf was obtained by Hess and Smith method  (1962). 
**    CFf was obtained from the 1957 ITTC model-ship correlation line 

considering the ratio of the surface area. 
***    Cw was obtained by the X-PAN code of SHIPFL0W system 

(Larsson et al.,   1989) 

Table 3.    Resistance results from towing tank tests (Van et al.,  1991) 

CT xlO3 

CFO xlO3 * 

k CFO xlO3 

CR xlO3 

CA xlO3 

CAA xlO3 

(CT-CAA) xlO3 

model scale 

Al    A2    A3 

full scale 

4.07 4.12 3.99 

3.21 3.21 3.21 

0.213 
0.68 

0.87 0.92 0.79 

0. 0. 0. 

0. 0. 0. 

Al A2 A3 

2.10 2.15 2.02 

1.45 1.45 1.45 

0.213 

0.31 

0.87 0.92 0.79 

-0.27 -0.27 -0.27 

0.05 0.05 0.05 

2.05 2.10 1.97 

note)  * CFO was obtained from the 1957 ITTC model-ship correlation line. 
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Fig. 10   Longitudinal distribution of Cfc and CPG of 
Tanker A3 

solution appears to indicate qualitative imporvements. 

Comparison of the model and full-scale calculations 
indicate trends similar to those observed by Ju and Patel 
(1991) insofar as an increase in Reynolds number leads to a 
thinning of the viscous-flow region and intensified secondary 
flow. An analysis of these calculations along the lines 
suggested by Ju and Patel confirms their conclusion mat 
these numerical calculations do not support me scaling laws 
based on classical boundary-layer and asymptotic-wake 
theories that are in current use. 

CONCLUSIONS 

This paper has been concerned with the use of a 
modern numerical method for calculation of the viscous 
flow around a ship hull, in conjunction with established 
procedures, for determining ship resistance and the flow at 
the propeller plane. An extensive numerical study was first 
conducted to establish the grid dependency of the solutions 
and computer requirements as both of these features 
determine the overall practicality of using CFD methods in 
the design environment. It is concluded that the method 
employed here would require further grid refinement and 
more grid points, with a concomitant increase in computer 
resources, to improve the quality of the predictions.   Also, 
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further development of this method along the lines suggested 
by the Ship Viscous Flow Workshop are necessary to 
enhance its numerical and physical performance. 

The present calculations also indicate that, with 
moderate grid numbers and modest computer resourses, it is 
now possible to obtain useful predictions when changes in 
hull lines are evaluated at the preliminary design stage. 
The results for the Tanker series A presented here, and 
similar calculations performed for other series in the 
organization of the first author, suggest that this method can 
be usefully integrated into the design methodology to 
identify hull forms with improved resistance characteristics 
and tailored flow into the propeller. While the computer 
costs are still not low enough for routine and economical 
calculations, the numerical solutions have the advantage mat 
many calculations can be performed in a short time and 
each solution provides details of the flow that are not 
readily obtained in standard towing tank tests. 
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DISCUSSION 

L. Larsson 
FLOWTECH International, Norway 

This is an interesting study showing that the 
differences between fairly similar hulls can be 
predicted by CFD. Careful grid dependence studies 
have been made in the longitudinal and transverse 
directions, but why has no attention been paid to the 
normal direction? This is particularly important 
when scale effects are studied. At full scale a more 
stretched grid has been used, but is this adequate to 
cope with the reduction in viscous length scale of two 
orders of magnitude? There is no way the grid can 
be that much finer close to the hull. How does this 
worse resolution at full scale influence the 
conclusions drawn on the form factor? 

A further general observation concerning full 
scale: It may well be that the difficulties in 
predicting the "hooked" wake contours of full ships 
is much alleviated at full scale, since the few 
measurements that exist indicate that the hooks are 
much less pronounced, or even non-existing, 
particularly with a working propeller. 

DISCUSSION 

H. Caprino 
CETENA, Italy 

The paper presented by Ju and Patel opens a new 
way to apply CFD to ship design. As it is the first 
attempt, as far as we know, to calculate the total 
resistance of a ship, some questions are obviously 
raised by this work. 

1. Why did the authors not try to change the grid 
points in the radial direction where the strong 
velocity gradients in the near wall zone influence 
flow behavior? 

2. To calculate the total resistance of a hull with 
CFD methods can give a good qualitative idea of ship 
behavior, above all during the preliminary phase of 
a project in order to compare different configurations, 
provided a considerable computational effort is made 
to achieve the integral quantities. Do the authors 
believe that a careful study of flow behavior, that 
means velocity and pressure values over and near the 
hull, can supply good qualitative information as well 
as with a lower computational effort? 

3. We are pleased to observe that wake prediction at 
high Reynolds number does not support the scaling 
laws based on asymptotic-wake theories, as it turned 
out from the work on scaling effects that we present 
at this symposium. 

DISCUSSION 

L. Sebastiani 
CETENA, Italy 

In your grid sensitivity study, you vary grid 
points in the streamwise and girthwise direction, but 
you keep grid density fixed in the radial direction. 
Can you explain the reason for this choice? It seems 
to me that grid density in the radial direction should 
be investigated as it governs boundary-layer flow 
resolution. 

Your attempt to derive global resistance 
characteristics from CFD calculations is very 
interesting. Still, the results are qualitative. In 
which way can they really help ship designers in 
selecting the best hull configuration? I wonder 
whether there is really a significant improvement with 
respect to simply looking at the local flow 
characteristics. 

AUTHORS' REPLY 

First of all, we would like to thank all discussors 
for their questions and comments. In reply to the 
questions on grid dependence in radial direction 
raised by all discussors, it is correct that the grid 
points in the radial direction influence the solution. 
Our previous study and experience show that the grid 
dependency on the resistance components in the radial 
direction is much less than the other two directions. 
Note that the current method employs the two-point 
wall-function approach, and the results are not so 
sensitive to the grid resolution near the wall because 
the solution is anchored at two near-wall mesh points 
on the law of the wall. Figure A. 1 shows much less 
grid dependency on the Cp and U, in the radial 
direction than those shown in Figs. 3 and 4. The 
number of grid points in the radial direction (JN) was 
varied from 30 to 60, while the number of points in 
the streamwise and girthwise directions (IN and KN) 
were fixed at 76 and 15. Also, the following table 
shows that the grid-dependency on the resistance 
components in the radial direction is negligible. 
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Grid 76x30x15 76x45x15 76x60x15 

CPVa .00101 .00102 .00102 

cFa .00227 .00227 .00227 

Cv. .00328 .00329 .00329 

The uncertainty of the wall-function approach 
pointed out by Prof. Larsson at high Reynolds 
numbers is that there are no firm guidelines that can 
be used to determine y + values which should not be 
exceeded. The performance of the wall-function 
approach used in the present method at very high 
Reynolds numbers has been carefully examined with 
the aid of available experimental data on an 
axisymmetric body in Ju and Patel (1991), showing 
that the current boundary conditions could be applied 
at larger y + values as the Reynolds number 
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In reply to the questions regarding the 
applicability of CFD in ship design process, raised by 
Drs. Caprino, Traverso, and Sebastiani, the grid 
dependence on the friction velocity and pressure 
distributions on the hull is much less than that on the 
resistance components, particularly on the viscous 
pressure resistance. Also, we can get a general idea 
on the resistance without integrating the flow 
quantities, simply by comparing the deflections of the 
limiting streamlines in the stern region or the 
strengths of the vorticity in the wake of different hull 
forms. More deflected limiting streamlines and 
stronger vorticity generally indicate the increased 
resistance. We think that useful qualitative 
information with less computational effort can be 
obtained, demonstration of which was one of the 
purposes of this study. 
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Figure A.l   Grid dependency test; grid refinement in the radial direction 
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Numerical Viscous Flow Computations 
for Complex Geometries 

C.-W. Lin, S. Fisher, P. Impelluso (David Taylor Model Basin, USA) 

ABSTRACT 

An effective numerical technique for viscous flow 
computation has been developed, which allows the 
marine vehicle designer to model complex geometry, 
generate a detailed geometry database, create surface and 
three-dimensional volume grids, and model viscous flow 
phenomena. The whole process has been effectively 
integrated on a workstation network. The major goal of 
developing this numerical prediction capability is to 
obtain accurate computational results and reduce the 
turn-around time for real practical design applications. 
Several applications chosen for this paper illustrate the 
effectiveness and capability of this developed CFD 
technique. As rapid improvements occur in CFD 
technology and turbulence modelling, numerical 
prediction accuracy will be enhanced. In addition, 
advances in both computer CPU speed and memory size 
have enabled the use of more complex grid topologies 
which more accurately represent the real-life geometry. 
Future improvements in numerical methods and 
computer capabilities are anticipated to make time 
accurate flow solutions feasible. Improvements in 
visualization tools have also aided in the development of 
these complex grid structures, and the examination of the 
solution from a CFD analysis. 

INTRODUCTION 

The development of a practical ship design analysis 
system, by application of new technologies within the 
discipline of computational fluid dynamics (CFD), is a 
challenging task to CFD scientists. The capability of 
advanced CFD has been recognized as an effective tool 
to assist the design performance analysis of new and 
innovative designs [1]. Major challenges to CFD 
scientists include: how to model physically complex 
fluid flow such as the phenomenon of turbulence; how to 
deal with complicated real-life body geometry; and how 
to balance the requirements of accuracy, stability, and 
economy for numerical procedures. To achieve all of 
this capability for practical design applications, extensive 
research and development is still needed. This paper will 
focus on a description of the currently developed CFD 
numerical capability, especially concerning complex 
geometry applications. The modelling of complicated 
physical flow details such as turbulence is not the main 
subject in this paper; however, the importance of an 
accurate modelling of flow turbulence cannot be ignored. 
Only the steady state mean flow solution is concerned 
with here.  The validation of computed results such as 

accuracy, numerical convergency and comparison with 
available experimental results will be briefly discussed. 

In the past, simplification of modelled geometry or 
decomposition of complicated geometry into several 
simple components were the approaches to be adopted in 
hydrodynamic calculations. This was partly due to the 
limitation of numerical or analytic solution algorithms 
and partly due to the limitation of computer hardware 
capacity and speed. The disadvantage of this kind of 
approach occurs in either the loss of certain physical 
flow phenomena or ignoring the interference between 
simplified components. As numerical techniques of 
CFD have significantly improved along with the rapid 
development of powerful, high-speed computers, 
accurate viscous flow computations on quite complicated 
geometries have been achieved within a reasonable turn- 
around time. Hence, the CFD numerical capability is 
becoming an effective and feasible tool to support ship 
design analysis. This paper will discuss the current stage 
in CFD numerical capability, specifically on complex 
geometry applications. Several applications using this 
numerical prediction tool has been conducted and will be 
discussed in detail. 

NUMERICAL FORMULATION 

The numerical solution procedure is based on the 
conservation law form of the three-dimensional 
Reynolds-averaged Navier-Stokes equations. The 
pseudo-compressibility approach proposed by Chorin [2] 
is adopted in this work to formulate the incompressible 
steady-state viscous flow equations. The idea is to 
artificially change the propagating speed of pressure 
waves during the transient state. The time-accurate 
unsteady solution using this approach may not be 
physically valid, although some CFD investigators have 
tried to obtain time-accurate solutions using this 
approach. As for the work described in this paper, only 
the steady state solution is of interest. 

This preconditioned incompressible Reynolds- 
averaged Navier-Stokes equations are thus, 

Eqt + Fx + Gy + H2 = 0, (1) 

where the subscripts are partial derivatives with 
respect to the time t and the three Cartesian coordinates 
x, y, and z. The preconditioned matrix E and the column 
vectors of the variables q and of the three components of 
fluxes F, G, and H are defined as 
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where p is the pressure, p is the constant density, u, 
v, and w are the three Cartesian components of the 
velocity and the Reynolds stresses are defined as 

: R.-^ 
du[     du; 
dxj    3xj i,j = 1, 2, 3 (3) 

where (ui, u2, u3) = (u, v, w), (xi, x2, x3) = (x, y, z), 
v is the sum of the kinematic and the eddy viscosity and 
Re is the Reynolds number. The variables are 
nondimensionalized by the free stream condition at 
infinity in the following manner:  u, v and w by u», p 
and x by pcou«,2, x, y and z by a characteristic length L 
and Re = u^L/v«,. a and ß-2 are the preconditioned 
parameters. The case a = -1 reduces to the 3D version of 
Chorin's artificial compressibility model and ß is 
analogous to the sound speed. 

The idea is to choose a ß for a given a such that the 
disparity in propagating speeds will be reduced during 
the transient state. The fact that the transient-state 
solution may not be physically valid is not relevant since 
only the steady-state solution is of interest, ß =1 has 
been chosen in this work which numerical experiments 
shows a good convergence rate. 

The differential form of the Navier-Stokes equations 
(1) can then be integrated over a control volume and 
discretized by a finite-volume formulation. Therefore, 
the Eqs.(l) becomes 
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where AV is the volume of the cell ijk in the 
curvilinear coordinates J=* = (§, r\, Q, As^ is the surface- 

area vector normal to the cell surface \* = constant and 

As- is its projection on the XJ coordinate.  The notation 

£(+) denotes that the terms inside the square bracket are 

evaluated at the midpoint of the right-hand-side cell 
surface S=^+l/2 = constant and £(-) denotes that the same 

terms are evaluated at the midpoint of the left-hand-side 
cell surface TE,t-V2 = constant. For example, when 1 = 1, 

£(+) = i+1/2, j, k, and £(-) = i-1/2, j, k. 

The computational domain is subdivided into a finite 
number of control volumes, and all the dependent 
variables defined at the geometrical center of the control 
volumes. The fluxes derived from the finite-volume 
formulation are evaluated at the midpoint of each cell 
surface using central difference. It is noted that a non- 
orthogonal curvilinear coordinate system is used with a 
non-staggered variable arrangement. It enables one to 
deal with quite arbitrary flow configurations with a 
better resolution in critical regions, which is especially 
valuable in three dimensional solutions where orthogonal 
grids are often difficult, and sometimes impossible to 
generate. The decomposition of the velocity vector is in 
the spatially fixed Cartesian directions, instead of in grid- 
oriented directions. It leads to the strong conservation 
form of the governing equations and totally eliminates 
the need to calculate the extremely grid-sensitive 
curvature terms. 

The discretization procedure using finite volume 
formulation in Eq (4) leads to a set of coupled ordinary 
differential equations, which can have the form as 

S - «*> (S) 

where R(q) is the vector of the residuals consisting 
of the flux balance from the convective and diffusive 
terms. The time integration is performed by using an 
explicit one-step multi-stage scheme derived from a 
generalization of the Runge-Kutta formulation. The 
multi-stage scheme of the Runge-Kutta method can be 
tailored to give the desired stability properties [3]. An 
implicit residual smoothing developed by Jameson [4] is 
implemented to relax the restriction on the time step 
imposed to explicit time-marching scheme applied to 
steady flow calculation. The CFL(Courant-Friedrichs- 
Lewy) number has been found to increase from 3.0 to 4.5 
with the 4-stage Runge-Kutta scheme with 2 evaluations 
of implicit residual smoothing [5]. 

For steady flows, an acceleration technique known 
as local time stepping has also been used to enhance 
convergence to steady state solution. Local time 
stepping utilizes the maximum allowable time increment 
at each cell during the course of the solution. While this 
destroys the physical nature of the transient solution, the 
steady state solution is unaffected and can thus be 
obtained more efficiently. 

MULTIBLOCK FLOW SOLUTION METHOD 

The physical description of an actual marine vessel 
is typically a complex arrangement of several 
appendages with the vessel's hull. Structures such as 
skegs, struts, bilge keels, bulbous bows, control surfaces, 
etc. have a unique appearance when interacting with the 
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complex surface curvature of a hull. Due to this complex 
geometry arrangement, a single structured grid is not 
always feasible as a method of accommodating the entire 
flow field around an appended ship. Additional 
problems arise in the need for the grid not to be too 
skewed, and for good resolution of flow variables in 
regions of high gradients. The use of a single grid for a 
complicated flow domain also usually requires an 
inordinate amount of time to generate an acceptable 
representation. A multi-block approach, dividing the 
whole domain into simple subregions and solving for the 
flow concurrently in each of the different blocks, is an 
effective way to overcome these problems. In addition, 
different flow equations can be used in different blocks 
[6]. 

For a multi-block approach, additional boundaries 
between blocks are created inside the solution domain. 
The crucial element then becomes transferring 
appropriate information across these boundaries. Since 
the method in this multi-block procedure is designed 
specifically for the non-overlapping grid structure, the 
information at the interface boundary has to be computed 
and stored properly for the continuity of flow across the 
interface. All dependent variables at boundary points are 
computed using proper indices which define the interface 
locations between neighboring blocks. The first 
derivatives of velocity variables at boundary points are 
also calculated and stored, since they are needed for the 
computation of viscous diffusion terms in the equations. 
Due to fourth-difference artificial dissipation used in this 
work, extra first derivatives of velocity variables at the 
first grid cell surface of the connecting blocks are also 
computed and stored for the necessary fourth-difference 
calculation. Therefore, the grid cells close to the 
interface boundary will be integrated in a similar sense as 
those interior cells. A distortion-free flow movement can 
thus be achieved across the zonal interface. In fact, the 
scheme developed here is so flexible that a single block 
may connect to any number of blocks without increasing 
the tedious data bookkeeping process or reducing the 
effectiveness and accuracy at the interface boundary. 

Boundary data at all surfaces of each block, in 
addition to the interface boundaries, are also computed 
and stored according to the boundary conditions 
provided. In comparison to the overlapping structured 
grid approach, the computer memory requirement of the 
multi-block method is not necessarily increased for 
storing this boundary data information. The overlapping 
structured grid approach also requires extra grids to store 
transferred information However, a scheme of non- 
overlapping grids provides a simpler way to book-keep 
all of the three-dimensional indices used in the computer 
code. Each block has a consistent index, the same as its 
grid points. Boundary data are responsible for the 
appropriate boundary conditions, as well as the 
information about neighboring blocks if it is an interface 
boundary. Since one block may interface with a number 
of blocks, the tracing of proper indices to connect blocks 
at proper locations is quite important. The book-keeping 
of the indices used in the current work has proven to be 
quite simple and the process of inputting to the computer 
quite easy. Only the starting index is necessary to 
identify the interface location between connecting 
blocks. To further simplify the effort of inputting those 
interface indices, the output of multi-block structured 
grid generator should provide this information. 
Although the current grid generators, GRIDGEN [7], 

used in this work has a similar capability, efforts are still 
needed in the future to effectively link the grid generator 
and the flow solver. 

COMPUTATIONAL PROCEDURE 

The procedure of numerical flow computation starts 
by modelling the proposed configuration in a CAD 
(computer aided design) environment specifically 
designed for ship geometries. Components of the 
whole configuration may be modelled separately with a 
consistent coordinate system, as is this case with a ship's 
appendages. However, overlapping sections are 
frequently a result and must be trimmed and aligned to 
the hull. Intersections of these appendages with the hull 
are successfully determined in the program REMESH 
developed in-house. The geometrical data base 
generated by REMESH becomes the main source to start 
generating a block structure. After the block topology is 
defined, surface grids on the six faces of each block are 
generated using either an algebraic or elliptical grid 
generator. As all the faces for every block has been 
generated, a three-dimensional volume grid is developed 
using a very efficient in-house algebraic interpolation 
program TRANS3D. Not only is the volume grid written 
out, but also a file containing values of the minimum, 
maximum, and negative grid volumes (if there are any), 
along with their locations within each block. Detailed 
procedures of grid generation are discussed in Lin, et al 
[8]. The three-dimensional grid around the proposed 
configuration is then used with the multi-block flow code 
for a steady-state solution of the incompressible 
Reynolds-Averaged Navier Stokes equations. The 
results of the computation are examined using 
visualization tools on the workstations. The whole 
process has been integrated and executed in a 
workstation/PC environment, while a supercomputer is 
available through the network. 

Time marching procedure is used here which begins 
from some set of initial data. The initial data is usually 
specified as a uniform flow, or may be introduced from a 
previous solution. The time-marching procedure is 
applied iteratively to update the flow variables as the 
solution proceeds. Steady-state solutions are deemed 
converged as the root-mean-square (rms) of pressure 
residual has been reduced by a factor of 10"3- 

NUMERICAL APPLICATIONS 

The application of advanced numerical technique 
into the practical design analysis for hydrodynamic 
performance prediction is feasible and may become a 
routine procedure in the near future. In this section, 
several different types of ship configurations are used to 
illustrate the capability of the numerical flow analysis 
tool for dealing with complex geometries. These 
configurations include; an oil tanker; an appended ship 
possessing a shaft and strut, a modified superstructure of 
a combatant for a study of air-wake, and an 
oceanographic testing device known as an Expendable 
Doppler Penetrometer. 

The numerical accuracy is very important for the 
application of CFD techniques to design analysis 
support, although it is not the main subject for this paper. 
The prediction from the current numerical program has 
been compared with available experimental results for 
several different configurations [5,9].   Generally, the 
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prediction illustrates the main features of the flow quite 
well, compared with the measured results. Some details 
of flow quantities are still needed to be improved. It 
should be noted that numerical accuracy, as well as 
computational CPU speeds, is still being enhanced by 
implementing newly developed numerical algorithms or 
turbulence modelling for turbulent flow predictions. 

A typical surface ship hull usually has complex 
curvature, and may be equipped with a number of 
appendages. Most commercial ships such as oil tankers 
or container ships, only have a few appendages, 
while combatants have a fair number of appendages. 
The capability to accurately model ship hull form is a 
necessary step to start a CFD flow computation. 
However, for practical design application, it requires 
effective and efficient representation of any arbitrary 
ship hull geometry in the computer environment. Even 
without any extruding appendages, it is sometimes not a 
trivial task to accurately model a real ship stern shape 
with a bulb bossing and a bulbous bow. As far as more 
complicated configurations such as ship hulls equipped 
with a number of appendages, the flow calculation 
around this appended ship becomes quite challenging to 
CFD scientists. In the following sections, four numerical 
applications on viscous flow calculations will be 
described. No free surface effect is concerned here. A 
symmetrical boundary condition is applied at the free 
surface, which is called a double-body solution. 

BARE HULL 

We chose an oil tanker with a bulbous bow and stern 
bulb bossing for this case. The ship is still in design 
stage. No substantial test data has been available, 
although more model tank experiments may be 
performed in the future. However, it is quite a good test 
case to illustrate how we model the complicated hull 
form and perform CFD flow calculations. Although a 
bulbous bow is designed for reducing wave-making 
resistance, the shape of bulbous bow for this non-free- 
surface viscous flow calculation is still carefully 
modelled. A typical C-type grid is used for better 
resolution of flow in ship bow area, see Fig. 1. Along 
the girth of tanker's cross section, i.e. from free surface to 
bottom keel line, it is divided into 2 grid blocks for better 
control of distribution of grid points on the hull. The 
grid points are thus able to be concentrated near the bilge 
and the bulbous bow. The resolution of viscous flow is 
therefore better at those areas of higher geometrical 
curvature. Although only half of the ships configuration 
is considered, the grid can be easily mirrored into the 
whole grid around the entire ship hull. A viscous flow 
with constant yaw angle with respect to the ship hull can 
be obtained in a straightforward extension of 
computation. 

The tanker possesses a Gondola stern implying a 
bulbous bossing at the stern and a knuckle line along the 
hull at the after section of the ship. A careful modelling 
of this knuckle line is considered necessary. Surface grid 
distribution on the hull is carefully performed so as to 
preserve the accurate location of the knuckle line. Figure 
2 shows the longitudinal velocity contours along the hull. 
The bilge vortex has been clearly shown its development 
along the hull. Figure 3 gives a cross-flow vector plot to 
see the bilge vortex at the end of middle parallel body. 

FULLY APPENDED OPEN-STERN SHIP 

The configuration is a typical open-stern ship 
equipped with a complete set of appendages, i.e. skeg, 
strut, shaft, propeller hub and bossing, is shown in Fig. 4. 
The complexity of geometry is obvious with a enlarged 
dome at the bow and pieces of appendages at the stern. 
The modelling of bow dome is similar to that of the 
bulbous bow mentioned in the previous section. A 
multi-block grid is needed for this complex appended 
stern configuration. Figure 5 gives an outline of block 
structure at this stern area. The hull and appendages are 
shown in Fig. 5 and are the geometrical data base 
generated by program REMESH. Figure 6 displays 
some surface grids on the hull and appendages. 

Some preliminary flow results are presented here. 
Figure 7 shows flow particle tracing near the propeller 
fairwater along the shaft. A longitudinal velocity 
contour around propeller plane is given at Fig. 8. The 
color contour is defined as the sequence of blue, cyan, 
green, yellow, red and magenta with increasing velocity. 
Figure 9 shows the pressure contour on the surface of the 
appendages. At the present time, only qualitative results 
are presented. Quantitative comparisons with model- 
scaled experiment results will be made in the near future. 

AIR WAKE 

Due to the rapid development of CFD technology, 
interest has been raised in evaluating the air flow around 
the ship's superstructure. The wake due to the existence 
of this structure has been recognized as a primary factor 
in affecting the operation of a helicopter with the surface 
ship. Currently, the approach to identify this so called 
"operational envelope" for a helicopter/ship interface is 
to utilize full-scale trial results, which is expensive and 
time-consuming. A computational approach will save 
money and time. Although full-scale trials are definitely 
necessary, substantial efforts can thus be reduced with 
the assistance from computational predictions of air 
wake. Figure 10 shows a typical ship superstructure with 
some geometric simplifications. A complicated grid 
block topology is defined to cover the whole 
computational domain as shown in Fig. 11. A multi- 
block grid has been generated, which is given in Fig. 12. 
The is developed around the whole ship configuration, 
instead of a half ship body. Therefore, the same grid will 
be used to simulate the air flow around the superstructure 
at different angles of incoming wind. Although the flow 
computation is not available at the present time, the 
numerical capability to deal with such a complex 
superstructure is considered as feasible. 

AFTER-BODY SHAPE DESIGN APPLICATION 

An oceanographic device known as an Expendable 
Doppler Penetrometer (XDP) was designed to descend 
through the water and penetrate the sea bottom. As the 
probe penetrates the bottom of the sea, its velocity 
deceleration is measured as a change in acoustic signal 
frequency (Doppler shift). The frequency Doppler shift 
is analyzed to determine the bottom soil undrained shear 
strength. The terminal velocity of this device through 
the water is dependent on the hydrodynamic drag to its 
exterior shape. A design exercise was initiated to 
compare two configurations with a shape difference only 
at the tail section, Fig. 13. Since the configuration is 
symmetric, only a quarter of the body is modelled. Fig. 
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14 gives the block topology for the configuration. The 
pressure distribution contours and flow computations are 
shown in Fig. 15 for these two configurations. Both 
contour maps have the same levels with the sequence of 
blue, cyan, green, yellow, red, and magenta as increasing 
pressure. A substantially rapid change of pressure 
distribution was found with the short-tail configuration. 
It is believed that flow separation may occur there with 
that tail. A smooth distribution was found on the other 
long-tail configuration. 

CONCLUSION 

An effective numerical technique for viscous flow 
computation has been developed, which allows the 
marine vehicle designer to model complex geometry, 
generate a detailed geometry database, create surface and 
three-dimensional volume grids, and model viscous flow 
phenomena. The whole process has been effectively 
integrated on a workstation network. The major goal of 
developing this numerical prediction capability is to 
obtain accurate computational results and reduce the 
turn-around time for real practical design applications. 
Several applications chosen for this paper illustrate the 
effectiveness and capability of this developed CFD 
technique. As rapid improvements occur in CFD 
technology and turbulence modelling, numerical 
prediction accuracy will be enhanced. In addition, 
advances in both computer CPU speed and memory size 
have enabled the use of more complex grid topologies 
which more accurately represent the real-life geometry. 
Future improvements in numerical methods and 
computer capabilities are anticipated to make time 
accurate flow solutions feasible. Improvements in 
visualization tools have also aided in the development of 
these complex grid structures, and the examination of the 
solution from a CFD analysis. 
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Fig. la Profile View of Oil Tanker 

Fig. lb Block Topology at the Bow 
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Fig. lc Surface Grid at the Stern 
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Fig. 2 Longitudinal Velocity Contours at Various Locations along the Hull 
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Fig. 3 Cross-Flow Vector at the End of Parallel Mid-Body 
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Fig. 4 Geometry for Fully Appended Open-Stern Ship Configuration 

Fig. 5 Grid Block Topology for Appended Open-Stern Ship 

Fig. 6 Surface Grid on Appended Ship 
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Fig. 7 Flow Partical Tracing along the Shaft 

Fig. 8 Longitudinal Velocity Contour at Propeller Plane 
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Fi». 9 Pressure Distribution on the Surface of Appendages 

Fig. 10 Geometry of Simplified Ship Superstructure 
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Ro.l 1 Grid Block Topology for Ship Superstructure 

Fig. 12 Multiblock Grid Distribution Around Ship Superstructure 
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Fig. 13 Geometrical Shapes for Two Different XDP Designs 

Fig. 14 Grid Block Topology for XDP Body 
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Fig. 15 Pressure Contours on the Surfaces of Different XDP Designs 
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DISCUSSION 

V. Patel 
University of Iowa, USA 

This paper appears to be quite similar to that 
presented last year at the Osaka Colloquium. Have 
you made comparisons with the data obtained at 
DTRC on the complex geometries of the DARPA 
SUBOFF experimental program? Also, I invite you 
to consider the ship hulls chosen for the SSPA-CTA- 
114R 1990 workshop to make comparisons between 
your calculations and experiment (as well as 
calculations with 19 other methods). 

AUTHORS' REPLY 

The main theme of this paper is to demonstrate 
how effectively we can deal with quite complicated 
geometry for CFD design applications. The 
comparison of predicated results with the DARPA 
SUBOFF experimental data has been clearly shown 
at the Osaka Colloquium. They were our first case 
of validation on the complex geometry. Since then, 
more validations have been conducted. However, 
they are not shown here since the validation is not the 
main subject for this paper. We clearly understand 
the importance of validation of CFD predicated 
results with experimental data, as I have mentioned 
in my oral presentation. Furthermore, the cases 
demonstrated in the paper are mostly surface ship 
type of CFD applications, instead of submarine-like 
body. It is our hope to encourage more CFD 
applications to a variety of complex configurations. 
The comparison of CFD predicated results for an 
appended ship with model experimental data is much 
more important to us, instead of just to a base HSVA 
tanker. However, we will perform HSVA tanker 
computations in the near future. 
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Investigation of Horizontal Motions 
of an SPM Tanker in Shallow Water 

Through Computation and Model Experiment 
T. Jiang, S. Sharma (University of Duisburg, Germany) 

ABSTRACT 

In continuation of work reported at the 17th Sympo- 
sium on Naval Hydrodynamics at The Hague in 1988, 
horizontal motions of a tanker single-point-moored in a 
steady current were further investigated. The present 
paper represents two major additional steps: (i) Model 
experiments in a towing tank for validating previous 
numerical investigations (nonlinear time-domain sim- 
ulations and linearized stability analyses) based on a 
comprehensive mathematical model of the equations of 
motion in three degrees of freedom (surge, sway and 
yaw) and (ii) Transition from deep water to the prac- 
tically more relevant case of shallow water. Various 
theoretically predicted phenomena (stable and unsta- 
ble equilibria, self-sustained oscillations as limit cycles, 
and stabilizing effects of rudder deflection, reverse pro- 
peller rate and asymmetric mooring) were confirmed by 
experiment. Water depth was found to be a significant 
parameter, with a tendency toward stronger instability 
in shallow water. 

NOMENCLATURE 

A Mooring line attachment point (fairlead) 
C Index for current 
E Index for equilibrium 
FA Mooring line tension (horizontal component) 
FAE Mooring line tension at equilibrium 
G Centre of gravity, also as index 
h Water depth 
LA Instantaneous length of mooring line 
LAU Unloaded length of mooring line 
n Propeller rate of turn 
0 Midship point, also as index 
Oxyz Shipbound coordinate system 
P Effective mooring point (ship) 

Towing point (model) 
PxoVoZo     Earthbound coordinate system (ship) 

with x0 pointing against the current 
Carriagebound coordinate system (model) 
with x0 pointing in direction of tow 

T 
t 
u,v,r 

Vc 

X,Y,N 

£A!/A 

ZoE, 2/oE 

2/oI 

1> 
V>A 

^E 

Draft of tanker 
Time 
Surge, sway, and yaw rate 
Current speed (ship) 
Carriage speed (model) 
Net external horizontal force components 
along x,y axes and moment about z axis 
Shipbound coordinates of A 
Shipbound coordinate (LCB) of G 
Coordinates of 0 (advance, transfer) 
Coordinates of 0 at equilibrium 
Initial value of transfer 
Rudder angle 
Complex eigenvalue pair determining 
local stability of equilibrium 
Heading angle 
Direction of mooring line 
Heading angle at equilibrium 

INTRODUCTION 

This paper deals with the horizontal motions of a large 
tanker single-point-moored (SPM) at an offshore termi- 
nal for loading or unloading, see Fig. 1. The obvious ad- 
vantage of this nowadays popular configuration is that 
the ship hull is free to assume a favorable alignment 
to the prevailing current, wind or waves, thereby sub- 
stantially reducing the mooring line tension compared 
to the values possible if its heading were constrained. 
The not so obvious disadvantage, however, is that un- 
der certain conditions the tanker may not attain a stable 
equilibrium even in a seemingly innocuous steady envi- 
ronment but indulge in large-amplitude low-frequency 
oscillations of periodic or aperiodic nature. 

Needless to say that the problem is of great practical 
importance due to the formidable environmental impli- 
cations of a tanker accident. The crucial aspect is not 
so much the space requirement for the large horizontal 
motions but rather the sometimes unpredictable peak 
tensions in the mooring line.   At the same time, the 
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problem is also theoretically fascinating for it displays 
many exciting features of nonlinear dynamics: multi- 
ple equilibria, static and dynamic instability, limit cy- 
cles, self-sustained oscillations, multiple asymptotic re- 
sponse, deterministic chaos, strange attractors, basins 
of attraction with fractal boundaries, etc. Additional 
interest arises from the physical affinity of the problem 
to the case of a tanker under tow or after emergency 

anchoring in restricted waters. 
Naturally, a considerable amount of research effort 

has been devoted to this problem during the last fifteen 
years or so. The earliest studies were apparently by 
Wichers (1976), Owen and Linfoot (1977), and Faltin- 
sen (1979). Fairly complete bibliographies can be found 
in the doctoral dissertations of Papoulias (1987) and 
Wichers (1988). Among the more recent contributions 
worth mentioning are Obokata and Nakajima (1988), 
Aghamohammadi and Thompson (1990), and de Kat 
and Wichers (1991). But the number and range of pa- 
rameters involved is so vast that we are still far from a 
satisfactory complete solution. To name only the most 
important factors, the dynamic response of the tanker 
would depend on design parameters (such as hull form 
and water depth), environmental parameters (such as 
current, wind and waves), operational parameters (such 
as loading condition and mooring configuration), and 
control parameters (such as rudder deflection and pro- 
peller rate of turn). The present paper focuses on the 
effect of water depth, a factor of obvious practical rele- 
vance, which to our knowledge has not been explicitly 
handled in published literature, except in the context of 
the related towing problem by Charters, Thomas and 
Latorre (1985), for instance. 

CALCULATIONS 
FOR TANKER TOKYO MARU 

In previous work we (1987, 1988a, 1988b, 1990 and 
1991) consistently used supertanker TOKYO MARU as 
an exemplary ship for studying the dynamics of single- 
point mooring. Its principal particulars are reproduced 
in Table 1. The main reason for this choice was that 
the hydrodynamic control and response forces of this 
ship in deep water, including hull-propeller-rudder in- 
teractions and scale effects, had been very completely 
identified by extensive model tests at the Hamburg Ship 
Model Basin (HSVA) and documented by Oltmann and 
Sharma (1984). Our mathematical model for comput- 
ing horizontal motions of an SPM ship in three degrees 
of freedom (surge, sway and yaw) - taking account of the 
effects of current, wind and waves - consists of an essen- 
tially nonlinear system of differential equations of order 
18 (with memory effects) or order 6 (without memory). 
It was reported completely in (1988b) and will not be 
repeated here, except for the coordinate system (Fig. 2) 
for ready reference. 

Numerical investigations conducted previously in- 
cluded determination of (i) multiple equilibria in state 

space, (ii) stability domains in parameter space, (iii) 
trajectories in state space, and (iv) practical measures 
for ensuring stability of asymptotic response. A selec- 
tion of computer simulations for tanker TOKYO MARU 
is first reproduced here to illustrate certain character- 
istic phenomena (and for comparison with model ex- 
periments to follow). For each case the corresponding 
parameter values, equilibrium coordinates, equilibrium 
line tension, and the complex eigenvalue pair governing 
local stability of equilibrium (found by linear stability 
analysis) are compiled in Table 2. 

All calculations are for the so-called autonomous 
case, i.e., for the tanker in a steady current, but with- 
out wind and waves, and ignoring memory effects as 
insignificant for the present purpose. Hydrodynamic 
force coefficients were input for the so-called model con- 
dition (i.e. without corrections for Reynolds number) 
to enable direct verification by comparison with model 
experiments, although all results are shown at actual 
ship scale (by simple Froude scaling) for easier practi- 
cal assessment of the phenomena involved. 

Each of the following Figs. 3 - 6 shows, starting 
from arbitrary initial conditions, two asymptotic re- 
sponses (also called attractors), one converging on a 
stable static equilibrium and the other terminating in 
a self-sustained oscillation of large amplitude (about 
40 m) and long period (about 20 min) accompanied 
by peaked fluctuation of line tension. The two mem- 
bers of each pair differ only in one parameter value, 
and simulated time histories and trajectories confirm 
the results of linearized stability analyses of equilib- 
rium states which indicate a' Hopf bifurcation as the 
corresponding parameter is varied, implying a transi- 
tion from stable to unstable equilibrium. 

Fig. 3 compares the reference case (rudder amid- 
ships, propeller freewheeling at zero torque, and fair- 
lead at bow center: dotted line) with a modified case 
(rudder angle 35 deg to starboard: solid line). It illus- 
trates the stabilizing effect of static rudder deflection as 
the simplest practical measure. 

Fig. 4 compares the reference case (dotted line) with 
another modification (propeller operating at substantial 
reverse thrust: solid line) and illustrates basically the 
stabilizing effect of increased mean line tension. 

Fig. 5 compares the reference case (dotted line) with 
yet another modification (fairlead moved off center to 
port: solid line) and is consistent with the general obser- 
vation that asymmetric equilibria (from whatever cause) 
tend to be more stable than symmetric equilibria. 

Fig. 6 compares two departures from the reference 
case: fairlead moved the same distance to port (solid 
line) or to starboard (dotted line). Each of these mea- 
sures introduces an asymmetry into the system, in one 
case reinforcing and in the other case counteracting the 
inherent hydrodynamic asymmetry of the single-screw 
ship. The net effect is that the equilibrium is stable 
with fairlead to port but not to starboard. 

406 



MODEL EXPERIMENTS 
FOR TANKER ESSO OSAKA 

Choice of Tank 

Our previous experimental work, for instance, that lead- 
ing to identification of a complete four-quadrant maneu- 
vering mathematical model for tanker TOKYO MARU, 
was carried out in the large deep water tank (280 m x 18 
m x 5.5 m) of the Hamburg Ship Model Basin (HSVA). 
By contrast, experiments reported here were performed 
in the main towing tank (200 m x 9.8 m x 1 m) of 
the shallow water research facility at Duisburg (VBD) 
for two reasons. First, since both of us have recently 
moved from Hamburg to Duisburg, the latter tank was 
more easily accessible to us. Second and more impor- 
tant, the Duisburg tank has two useful features typical 
of shallow water testing: water depth can be adjusted 
to any value from zero to one meter, and a true current 
can be generated by means of circulating water pumps 

installed at one end of the tank. 

Choice of Tanker 

The present work was conducted with a 1:65 scale model 
of tanker ESSO OSAKA, see Table 3 for its principal 
particulars. This departure from our previous exem- 
plary tanker TOKYO MARU was motivated by three 
main reasons. First, thanks to a set of comprehensive 
full-scale trials sponsored by the United States Mar- 
itime Administration, the tanker ESSO OSAKA has 
meanwhile acquired the status of a standard ship for 
comparative maneuvering studies all over the world, see 
Crane (1979). Second, results of a comprehensive set of 
maneuvering tests with models at two scales (1:45 and 
1:65), partly in four water depths (h/T = 16, 12, 1.5 
and 1.2), carried out at Hamburg and Duisburg were 
accessible, see Oltmann, Wolff, Müller and Baumgarten 
(1986). Third, a suitable model, left over from a previ- 
ous research project, was readily available for our study. 
Body plans and profiles of the two tankers, reproduced 
here in Figs. 7 and 8, respectively, display enough sim- 
ilarity of hull form to justify a tentative comparison 
of our calculations for TOKYO MARU with measure- 
ments for ESSO OSAKA. 

Test Set-up 

Purpose of model experiment was to dynamically sim- 
ulate and record the asymptotic response of an SPM 
tanker in a steady current, as an autonomous system 
seeking its attractor after an arbitrary initial distur- 
bance. Froude dynamic similarity was assumed, i.e., no 
attempt was made to compensate for the differences in 
Reynolds number between model and full-scale. Cur- 
rent was simulated by towing the model through still 
water; hence, initial conditions had to be carefully cho- 
sen to ensure a good approximation to the ultimate 
asymptotic response within the time limit imposed by 
the finite length of the tank. (It is intended to employ a 

true current generated by pumps in future experiments, 
thereby enabling arbitrarily long time records.) Specif- 
ically, following quantities were measured as functions 
of time: horizontal motion of the model in three de- 
grees of freedom (surge, sway and yaw) and mooring 
line tension as well as elongation. 

Fig. 9 shows a schematic of the test set-up. A cam- 
era mounted on top of the towing carriage took a se- 
quence of bird's eye views of the model at programmable 
intervals (1,5 or 1 s) on a special film, yielding 300 to 500 
frames per run of about 8 min duration (correspond- 
ing to about 1 hour at full scale). Each photograph 
identified two reference points on the carriage and two 
on the model. From each frame by photographic pro- 
jection, semi-manual digitization and simple geometric 
transformation model heading angle and horizontal co- 
ordinates of midship point 0 were derived. In parallel, 
heading angle as indicated by a gyrocompass installed 
in the model was also recorded. 

Fig. 10 shows a sample comparison of time history 
records of heading angle obtained by these two meth- 
ods. That the discrepancy is generally much less than 
one degree gives us reasonable confidence in the accu- 
racy of our simple improvised technique of trajectory 
measurement. 

Mooring Line Model 

A somewhat tricky part of the experiment was dynam- 
ically correct modeling of the highly nonlinear load- 
elongation characteristic of the full-scale mooring line 
(representing combined effects of elasticity of hawser 
and catenary action of anchored buoy or righting mo- 
ment of articulated tower). This was finally achieved 
by employing, in series, a cascade of several (four for 
deep water, five for shallow water) linear springs of suc- 
cessively increasing stiffness and individually bounded 
extension, see Fig. 9. During the tests line elongation 
and tension were monitored by means of a potentiome- 
ter and force gauge, respectively. Such dynamic records 
(dots) from several runs are compared to static calibra- 
tions (circles) in Fig. 11 (top for deep water and bottom 
for shallow water). The two curves shown are fourth de- 
gree polynomials fitted to each data set and later used 
for corresponding computer simulations. 

Results and Discussion 

•Results of nine selected test runs are presented in seven 
meaningful pairs in the following Figs. 12 -18 (in essen- 
tially the same format as the previous computer simu- 
lations, cf. Figs. 3-6). Corresponding values of relevant 
design, environmental and operational parameters are 
listed in Table 4. Three general comments are in order. 
First, all quantities are shown Froude scaled to ship size 
since model values would be arbitrary and fail to convey 
a feeling for the real magnitude of the practical problem. 
Second, a uniform current speed of 2 m/s was chosen 
as a realistic compromise between low speeds entailing 

407 



long eigenperiods and high speeds curtailing run dura- 
tion, thus making optimum use of available tank length. 
Third, the two values of water depth equal to 3 and 1.5 
times ship draft are to be understood as representing 
deep and shallow water, respectively. 

Fig. 12 compares time histories and trajectories of 
the tanker in the reference condition (rudder amidships, 
propeller held fixed by friction, and fairlead at bow cen- 
ter) in deep water (solid line) and shallow water (dotted 
line). Both cases obviously reflect unstable equilibria. 
But motion amplitudes and line tension peaks are sev- 
eral times higher and the period substantially longer in 
shallow water than in deep water. This is in apparent 
contradiction to Charters, Thomas and Latorre (1985) 
whose calculations for the same tanker under tow in- 
dicate a stabilizing influence of shallow water over the 
speed range from 0.5 to 6 knots. Possible reasons for 
this discrepancy are differences in length and stiffness 
of mooring line versus tow line as well as deficiencies in 
mathematical modeling of hydrodynamic forces. 

Fig. 13 demonstrates the stabilizing effect of rudder 
application by comparing the unstable reference case 
(rudder amidships: dotted line) with a modified case 
(rudder 35 deg to starboard: solid line). Similarly, Fig. 
14 suggests a stabilizing effect of reverse propeller thrust 
by comparing the reference case (propeller held fixed by 
friction : dotted line) with a modified case (propeller 
operating at 20 rpm in reverse: solid line). Despite 
reservations owing to rather short time records in the 
tank and to some differences in hull form and size be- 
tween the two ships, these experiments in deep water 
can be seen as essentially validating the calculations 
shown in Figs. 3 and 4. 

Figs. 15, 16 and 17 demonstrate the effectiveness 
in shallow water as well of the theoretically predicted 
stabilizing measures rudder deflection, reverse propeller 
thrust and asymmetric fairlead, respectively, by com- 
paring the unstable reference case (dotted line) with 
each of the corresponding modifications (solid line). Dra- 
matic reductions of line tension peaks and ship motion 
amplitudes are achieved. 

Fig. 18 is of special interest for it compares two 
records for the same unstable reference case but starting 
from different initial conditions. Normally, one would 
expect them to asymptotically converge on the same 
attractor (limit cycle). However, the recorded limited 
time history does not reflect this tendency, suggesting 
the possibility of competing attractors in state space 
with their associated separate basins of attraction. 

CONCLUDING REMARKS 

It is evident from the model experiment results shown 
that water depth has a significant influence on the hor- 
izontal motions of an SPM tanker in a steady current, 
with a tendency toward stronger instability in shallow 
water. Comparison of calculated trajectories for tanker 
TOKYO MARU in deep water with measured trajecto- 

ries for tanker ESSO OSAKA in deep and shallow water 
generally confirms various theoretically predicted phe- 
nomena: stable and unstable equilibria, self-sustained 
oscillations, and stabilizing effects of rudder deflection, 
reverse propeller rate and asymmetric mooring. 

For a more convincing validation of the theory it is 
necessary to do strictly comparable numerical simula- 
tions for ESSO OSAKA itself. We regret having been 
unable to finish these in time for the preprint but hope 
to present them in an addendum at the Symposium. 
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Table 2: System parameter values of computer simula- 
tions for TOKYO MARU shown in Figs. 3 - 6, including 
equilibrium states and complex eigenvalues from linear 
stability analysis (common parameters: Vfc = 2.0 ms"1, 

LAV = 75.0 m) 

Fig. Case XA 

[ml [ml [rpm] [ml 
JfeE 

[ml 
4>z FAB 

[°] [kN] 

6      — 

145 0 -35 1.4 -209 44.2 6.2 357 -0.40Ü5.2 
145 0 0 1.4 -231 9.5 0.9 226 0.21Ü5.7 

145 0 0 -30.0 -216 31.4 8.2 510 -0.64Ü6.4 
145 0 0 1.4 -231 9.5 0.9 226 0.21Ü5.7 

130 -13 0 1.4 -206 50.5 3.2 267 -0.16 ±i5.2 
145 0 0 1.4 -231 9.5 0.9 226 0.21Ü5.7 

130 -13 0 1.4 -206 50.5 3.2 267 -0.16Ü5.2 
130 13 0 1.4 -212 -38.6 -1.8 240 0.06Ü5.3 

Table 4: System parameter values of model experiments 
for ESSO OSAKA shown in Figs. 12 - 18 (common pa- 
rameter: VQ = 2.0 ms"1) 

Fig.     Case XA 
[ml 

VA 
[ml 

£AU 
[ml 

n 
[rpm] 

h/T yd 
[ml 

12        — 

13 

14 

15 

16 

17 

18 

162.5 0.0 78.0 0.0 0.0 3.0 32.5 
162.5 0.0 78.0 0.0 0.0 1.5 19.5 

162.5 0.0 78.0 -35.0 0.0 3.0 32.5 
162.5 0.0 78.0 0.0 0.0 3.0 19.5 

162.5 0.0 78.0 0.0 0.0 3.0 19.5 
162.5 0.0 78.0 0.0 -20.0 3.0 32.5 

162.5 0.0 78.0 -35.0 0.0 1.5 32.5 
162.5 0.0 78.0 0.0 0.0 1.5 32.5 

162.5 0.0 78.0 0.0 -30.0 1.5 32.5 
162.5 0.0 78.0 0.0 0.0 1.5 32.5 

139.8 18.2 78.0 0.0 0.0 1.5 32.5 
162.5 0.0 78.0 0.0 0.0 1.5 32.5 

162.5 
162.5 

0.0     78.0 
0.0     78.0 

0.0 
0.0 

0.0 
0.0 

1.5 
1.5 

19.5 
32.5 

Table 1: Main dimensions of tanker TOKYO MARU1 Table 3: Main dimensions of tanker ESSO OSAKA1 

Length between perpendicu ars 290.0 m Length between perpendiculars 325.0 m 

Length of waterline 296.446 m Length of waterline 335.0 m 

Beam 47.5 m Beam 53.0 m 

Draft forward 16.196 m Draft fwd 21.79 m 

Draft aft 15.964 m Draft aft 21.79 m 

Block coefficient 0.805 Block coefficient 0.829 

LCB fwd of midship section XG 7.243 m LCB fwd of midship section ZG 10.35 m 

Radius of gyration (z-axis) 66.36 m Radius of gyration (z axis) 81.25 m 

Number of propellers 1 Number of propellers 1 

Diameter 7.91 m Diameter 9.10 m 

Pitch ratio 0.745 Pitch ratio 0.715 

Expanded area ratio 0.6 Expanded area ratio 0.682 

Number of blades 5 Number of blades 5 
Screw sense righthanded Screw sense righthanded 

Number of rudders 
Rudder area 
Chord length 
Aspect ratio 

1 
73.5 

7.15 
1.438 

m 
m 

HSVA Model No. 2657, Scale 1:35 

Number of rudders 1 
Rudder area 124.65 m2 

Chord length 9.0 m 
Aspect ratio 1.54 
lVBD Model No. 1238, Scale 1:65 
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Fig. 1  Schematic of a single point mooring system 
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Fig. 2 Coordinate systems for SPM tanker 
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Fig. 7 Body plan and profile of tanker TOKYO MARU (HSVA Model No. 2507) 
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Fig. 8 Body plan and profile of tanker ESSO OSAKA (VBD Model No. 1238) 
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Fig. 9 Schematic of model test set-up in VBD 

413 



HEADING 

Fig. 10 Typical time history of heading 
angle as measured by photogrammetry 
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ADDENDUM 
CALCULATIONS FOR TANKER ESSO OSAKA 

Parameter Identification 

The basic input required for doing the necessary cal- 
culations for tanker ESSO OSAKA was a set of hy- 
drodynamic coefficients constituting our so-called Four 
Quadrant Model of maneuvering. Fortunately, many 
of the coefficients were available from previous work at 
Hamburg (in deep water) and at Duisburg (in shallow 
water), see Oltmann et al.(1986). However, a closer 
scrutiny revealed that many of the coefficients, spe- 
cially those for shallow water, needed verification or 
revision. Therefore, several additional PMM tests were 
conducted with a captive model of ESSO OSAKA (Scale 
1:65) in the Duisburg tank. It turned out that a few 
of the more sensitive coefficients could not be defini- 
tively determined from force measurements alone and 
had to be adjusted by reference to trajectory measure- 
ments. Moreover, the experimentally determined hy- 
drodynamic masses and damping coefficients were con- 
firmed by comparison with theoretical calculations us- 
ing the computer programm WAMIT acquired from 
Massachusetts Institute of Technology. The final values 
used for all calculations reported here are fully listed in 
Table 5. 

Comparison with Measurements 

All calculations were based on dynamic equations docu- 
mented in our previous paper (1988b). Each calculation 
comprises: (i) Determination of equilibrium states, (ii) 
Local stability analysis, and (iii) Global time domain 
simulations. The parameter values of all cases stud- 
ied here and associated equilibrium coordinates, line 
tension, and complex eigenvalue pairs governing local 
stability are compiled in Table 6. 

Calculated time histories (dotted lines) are com- 
pared to corresponding measured time histories (solid 
lines) in Figs. 19 - 25. Initial values of coordinates 
were taken from model tests, with some adjustment of 
z0-coordinate to ensure realistic line tension. Initial 
values of velocities were estimated by numerical differ- 
entiation of recorded coordinates. 

Fig. 19 holds for deep water with no measures ex- 
plicitly taken to stabilize the tanker. The instability 
identified by local stability analysis (see Table 6) is con- 
firmed. Agreement between calculation and measure- 
ment is satisfactory, except that line tension is damped 
more strongly in experiment than in simulation. Fig. 20 
holds for deep water with rudder applied. The intended 
stabilizing effect is confirmed both by experiment and 
by simulation. Fig. 21 also holds for deep water but 
now with reverse propeller action. Again the intended 
stabilizing effect is confirmed, although not as clearly 
in experiment as in simulation. A possible explanation 
may be that our mathematical model does not do full 
justice to the confused flow generated by the propeller 

Table 5: System parameter values for four quadrant 
model of ESSO OSAKA in deep and shallow wa- 
ter (Symbols identical to those used by Oltmann and 
Sharma, 1984) 

Parameters h/T = 3.0 h/T = 1.5 

Ideal Fluid Effects: 
xi -0.0693 -0.1400 

Xvr 0.5400 1.3000 

X'r'T 0.0630 0.0630 
Y" 0.0000 0.0000 

Y" -1.0620 -2.0140 

Y-" -0.0240 -0.0480 
N» -0.0570 -0.0790 

m -0.0240 -0.0480 

Hull Lifting Effects: 

c 0.3860 0.8500 

d 1.0000 1.0000 

e 0.0895 0.0996 

c' 0.5200 0.4000 

d1 1.0000 1.0000 

e' 0.1700 0.1500 

k 0.4000 0.4000 

Hull Cross- Flow Effect s: 
do 0.9178 2.1410 

a7 1.3900 2.8000 

«8 1.8018 3.8410 

as -1.5000 -3.0000 
Hull Resistance (Model Scale): 

-^Tu 0.0018 0.0025 

ÄT"|f| 
0.0387 0.0240 

0.1173 0.3452 

Interaction Factors: 
■w (Model Scale) 0.6000 0.7000 

t 0.1960 0.2430 
V" XPT+ -0.0400 -0.0430 
N" 0.0294 0.0100 
V" 0.1000 0.3300 

JVPT- -0.0500 -0.1000 

^HR 0.4000 0.3000 

kpR 0.8950 0.8950 

Rudder Factors: 

*LR 8.OOO0 12.5000 

&DR 3.7000 4.0000 

&NR 0.2000 0.2000 
XR -0.4700 -0.4700 

Propeller Coefficients 

0 < e < 19.2° 

O-p = = -0.630 + 0.815 cos e - 0.423 sin c 

CQ = = -0.101 + 0.122 cos f- 0.034 sine 

19.2° < e < 360° 

O'j — 0.126 cos e| cos«| - 1.039sine sin e[ 

Cn = 0.018 cos e\ cos€|- 0.123sine sin e| 

Rudder Coefficients 

*.[°] ULR Q>R 
0 0.0000 0.0000 

15 0.2083 0.0442 

30 0.4034 0.1762 

45 0.5547 0.2291 

60 0.1952 0.2602 

75 0.1146 0.2905 

90 0.0340 0.3800 
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turning backward on a ship moving forward. 
Fig. 22 holds for shallow water with no measures 

explicitly taken to stabilize the tanker. Again the in- 
stability identified by local stability analysis (see Table 
6) is confirmed. Agreement between calculation and 
measurement is remarkable, including high peaks in line 
tension. Fig. 23 holds for shallow water with rudder ap- 
plied. The intended stabilizing effect is confirmed both 
by experiment and by simulation. Fig. 24 also holds 
for shallow water but now with reverse propeller action. 
Once again the intended stabilizing effect is confirmed, 
although not as clearly in experiment as in simulation 
(see discussion of Fig. 21 above). Fig. 25 also holds for 
shallow water but now with fairlead offset to starboard. 
The intended stabilizing effect is weak but obviously 
present in both experiment and simulation. 

Long-Term Behavior in Deep and Shallow Water 

Fig. 26 compares calculated long-term time histories 
in deep and shallow water without use of explicit sta- 
bilizing measures, that is, extensions of previous Figs. 
19 and 22 far beyond the range of experimental records, 
see also Fig. 12. The instabilities identified by local sta- 
bility analyses are further confirmed. Note that motion 
amplitudes and line tensions are significantly higher in 
shallow water and that asymptotic behavior is qualita- 
tively different: limit cycle in deep water versus strange 
attractor in shallow water. 

Fig. 27 represents a further study of the strange 
attractor identified in Fig. 26. The two cases shown 
are for identical parameter values and initial conditions 
except for a difference of 0.0001° in the starting value 
of heading angle. Note that the time histories begin to 
diverge suddenly and unexpectedly after about 100 min, 
demonstrating long-term unpredictability characteristic 
of chaos. 
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Table 6: System parameter values of computer simula- 
tions for ESSO OSAKA shown in Figs. 19 - 26, includ- 
ing equilibrium states and complex eigenvalues from lin- 
ear stability analysis (common parameters: Vfc = 2.0 
ms-1, LAU = 78.0 m) 
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[rpm]   [m]      [m] [kN] 
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Fig. 19 Measured (—) and calculated (••••) 
time histories of SPM tanker in deep water 
without   explicit  stabilizing   measures 
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Fig. 20 Measured (—) and calculated ( ) 
time histories of SPM tanker in deep water 
with  stabilization  by  rudder application 
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Fig. 21 Measured (—) and calculated (■••••) 
time histories of SPM tanker in deep water 
with stabilization  by  reverse  propeller action 
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Fig. 22 Measured (—) and calculated (•••■) 
time histories of SPM tanker in shallow 
water without  explicit stabilizing  measures 
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histories of SPM tanker in shallow water 
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Fig. 25 Measured (—) and calculated (••••) 
time histories of SPM tanker in shallow 
water  with  stabilization   by  fairlead 
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DISCUSSION 

T. Schellin 
Germanischer Lloyd, Germany 

The authors' previous work considered only 
theoretical prediction of horizontal motions of a 
single-point-moored tanker. Clearly, before 
theoretical results are used to derive practical 
recommendations for tanker operations, they should 
be validated by measurements. This has now been 
done, thereby generally confirming the various 
theoretically predicted phenomena, such as self- 
sustained oscillations, and associated stability states as 
well as the stabilizing effects of rudder deflection, 
asymmetric mooring, and reverse propeller rate. 
There is an additional parameter that concerns 
designers of turret mooring configurations, namely, 
the position of the mooring turret. Could the authors 
comment whether their results concerning asymmetric 
mooring are applicable to turret moored ships and, if 
so, what are the restrictions? 

Although the presented experiments were 
performed with a model of a tanker different from 
that used for the theoretical investigations, its hull 
form was similar so that it seems fair to say that 
comparison of calculated trajectories for tanker 
TOKYO MARU were confirmed experimentally by 
model tests for tanker ESSO OSAKA. Naturally, for 
a convincing validation of the theory, strictly 
comparable numerical simulations for the tanker 
ESSO OSAKA are essential. Hopefully, the authors 
will be able to present results soon. 

The paper represents a major step in that it deals 
with the practically relevant case of shallow water, 
especially since test results show that water depth had 
a significant influence on tanker motions with a 
tendency toward stronger instability in shallow water. 
This is of great interest as it relates to towing 
operations in estuary waters during a harbor approach 
and to emergency anchoring maneuvers of a tanker 
disabled in restricted waters. However, since it is 
known that there are scaling problems associated with 
the prediction of shallow water effects, it would be 
instructive if the authors could discuss the reliability 
of their predictions for full-scale operations in 
shallow water in more detail. 

AUTHORS' REPLY 

We thank Dr.  Schellin, who is a renowned 

researcher in offshore mechanics, for his valuable 
comments and questions. Our response is as follows: 
(i) Having become sensitized to the phenomenon of 
small causes sometimes producing large effects in 
nonlinear systems, we hesitate to extrapolate from 
single-point mooring to turret mooring. Instead, we 
invite him to join us with his "knowhow" in a 
specific investigation of the dynamics of turret- 
moored ships, (ii) We concede that the Symposium 
deadline caught us in the midst of our transition from 
an older test tanker to a newer one. So, in the 
preprint we were forced to compare computer 
simulations for TOKYO MARU with tank 
experiments for ESSO OSAKA. But this 
inconsistency has now been corrected by our 
addendum, (iii) Our previous study for deep water 
had already indicated significant scale effects in the 
present problem. We agree that they may be even 
more important in shallow water, especially because, 
besides the usual Reynolds number discrepancy, the 
effect of a soft sea bottom in natural waters may also 
have to be considered. But in the present paper, all 
calculations and measurements are for model 
conditions only, including a hard tank bottom, 
although for ease of interpretation the results are 
presented for full-size ship by simple Froude scaling. 
We intend to pursue shallow water scale effects in 
subsequent work. 

DISCUSSION 

R. Latorre 
University of New Orleans, USA 

The unanticipated fishtailing of vessels moored to 
SPM installations in the 1970s resulted in attention 
given to the SPM analysis. With the use of available 
data, it is now possible to consider the behavior of 
the SPM in shallow water as the authors have done in 
their paper. I have a brief comment supporting the 
authors' experimental results. 

Since the publication of the work of Charters et 
al (1985) cited by the authors, I have completed a 
number of studies on ship behavior in shallow water, 
Latorre (1992). I have performed a systematic study 
of the influence of shallow water on towed vessel 
trajectory in the towing tank. The results in Fig. A. 
indicate the towed vessel trajectory increases in both 
side excursion Y as well as towing length X 
transversed returning to centerline. Analysis has 
shown a rather consistent magnification of 1.5 < y 
< 2.0 where 7=Y^ shallow water/Y,,^ deep water. 
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Looking at the authors' results for trajectory 
value Y0 of the ESSO OSAKA in Fig. 12. The 
magnification value of y appears to be the same 
order. Our general conclusion is that it may be 
possible under some restrictions to be able to estimate 
the shallow water performance from deep water 
trajectory measurements. 

Latorre, R., Developments at the University of New 
Orleans Towing Tank 1989-1992. Proceedings 23rd 
ATTC, New Orleans, June 11-12, 1992. 

on the related problem of towing stability including 
shallow water and canal effects. It is encouraging to 
observe that his experience with self-sustained 
oscillations of a towed ship agrees so well with ours. 
In shifting from water-depth to ship-draft ratio of 3.0 
(which we call deep water) to 1.5 (which we call 
shallow water) the transverse excursions of the tanker 
in the unstable case are indeed magnified by about 
50 %. However, we would like to draw attention also 
to the qualitative difference in trajectory that might 
arise in shallow water as seen, for example, in our 
Fig. 26. 

AUTHORS' REPLY 

We are grateful for the corroborative evidence 
contributed by Prof. Latorre, a recognized authority 

2.0-1 
a«   10   deg V=   2.24   ft/s 

Xo 

FIG.       TOWED VESSEL  TRAJECTORY 
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Design and Construction of the 
Long-Range High-Speed Foil-Catamaran Passenger Ship 

K.-S. Min (Hyundai Heavy Industries Co., Ltd., Korea) 

ABSTRACT 

A study on the long-range high-speed foil-catamaran 
passenger ship design has been recently carried out for 
the open-sea service of 800 nautical miles round trip 
with top speed above 40 knots. 

For the comfortability of passengers and crew, 
therefore, a great effort has been made to significantly 
improve the seakeeping quality in waves. The hydrofoil 
system, although adopted as an active motion control 
device, has been proved to be greatly beneficial to the 
improvement of resistance property too. 

Extensive theoretical analyses and model tests were 
systematically carried out along the course of design for 
the system optimization and the verification. Extensive 
global and local structural analyses were also carried out 
simultaneously. 

The ship is now under construction and it is 
expected to be completed by the end of August, 1992. 

It is noted that this will be the first ship in the 
world for such a long-range open-sea service in this type 
and size of ships. 

NOMENCLATURE 

B Mono Hull Beam 
BR Breadth of the Ship 
CB Block Coefficient 
CF Frictional Resistance Coefficient 
CM Maximum Section Coefficient 
CP Prismatic Coefficient 
D Depth of the Ship 
d Distance between Mono Hull Centerplanes 
FN Froude Number 
L Ship Length in General 

or 
Total Lift from the Foil System 

LCB Longitudinal Center of Buoyancy 
LF Lift by the Forward Foil 
LOA Length Over-All 
LPP Length between Perpendiculars 
LR Lift by the Rear Foil 

LWL Length on Waterline 
LWL/B Length-Beam Ratio 
LWL/T Length-Draft Ratio 
nx x-Component of the Unit Normal Vector 

on the Hull Surface 
P Pressure 
RF Frictional Resistance 
RN Reynolds Number 
RR Residual Resistance 
RT Total Resistance 
Rw Wave Resistance 
S Wetted Surface Area of the Mono Hull 
T Draft of the Ship 
V Ship Speed 
V Underwater Volume of the Ship 
A Total Displacement of the Ship 
AB Amount of Support by Buoyancy 
K H Lagrangian Constant 
P Density of Sea Water 
<t> Velocity Potential 

1. INTRODUCTION 

In response to the growing domestic request and the 
change of the overseas environment, our company has 
recently established a three-stage development plan for 
the high speed marine transportation system. The target 
of the first stage plan is the design and construction of 
the small high-speed passenger ship for the long-distance 
voyage with the capacity of more than 300 passengers. 

In the beginning, some kinds of technical collabora- 
tions with experienced overseas organizations were 
seriously investigated. However, it has been realized 
that no suitable existing ships or designs were available 
for our purpose in the view points of endurance, 
seakeeping quality and structural reliability. As the 
result, the conclusion had been finally reached that it 
had to be developed by ourselves. 

As the first step of the project, investigations were 
made for the selection of a proper ship type from the 
viewpoints of seakeeping quality, resistance property and 
the possibility of increase in ship size.    Along the 
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history, great efforts have been made by many naval 
architects to increase the ship speed. For the ships with 
conventional displacement type hull forms, however, it 
has been recognized that it is practically meaningless to 
try to increase the speed beyond a certain limit due to 
the rapid increase of wave resistance with the increase of 
ship speed. 

In order to significantly increase the ship speed, 
therefore, it is necessary to prevent the rapid increase of 
wave resistance. This purpose could be achieved by at 
least two different ways. One way is to utilize the 
dynamic lift effect, and the other is to design the hull 
form of displacement type ships to be very fine. The 
hydrofoil boats and the surface effect ships together with 
the traditional planing hull ships are typical examples of 
the dynamic lift effect ships. 

However, the dynamic lift effect ships have their 
own shortcomings. In general, they are less economical 
or poor in seakeeping quality. Furthermore, it is 
extremely difficult to increase the ship size beyond a 
certain limit, which may be regarded as the fatal 
disadvantage of this type of ships. 

On the other hand, the hull form of catamaran 
ships could be made very fine so as to achieve the goal 
of high speed by preventing rapid increase of wave 
resistance. In fact, catamaran ships have attracted 
attention of naval architects due to many practical 
advantages such as large deck area, high stability, 
superior maneuverability, easy operation and maintenance, 
etc. However, the most noticable merit among many 
advantages is in the fact that ship size could be easily 
increased without any limitations and without sacrificing 
any other characteristics. 

For this project ship, it is true that ship speed is 
one of the important design factors. However, the 
seakeeping quality is regarded as more important one for 
the comfortability of passengers and crew. Also, the 
possibility of the future increase of ship size should be 
seriously considered. From the overall view point, 
therefore, the conventional displacement type catamaran 
ship has been selected. 

In this project, the design and the construction 
works are set to be progressed according to the following 
schedule : 

Completion of 
Construction 

Sea Trial 

Conceptual Design and : 
Initial Model Tests 

Model Tests for the 
Verification of the 
Performance 
Characteristic 

Detail and Production 
Designs for the Actual 
Construction 

Procurement of Hull 
Material 

Commencement of 
Construction 

From the middle of 
August to the end of 
December, 1990 

From the beginning of 
January to the end of 
June, 1991 

From February,  1991 

From June,  1991 

From December,  1991 

End of August,  1992 

From the end of August 
to the end of September, 
1992 

Due to the time limit, the author feels the lack of 
sufficient study or investigation. Considering such a 
short time and poor environment, however, the author is 
happy with the successful completion of the design work 
and the good progress in the construction. 

In fact, the brief summary of the part of this work 
had been presented at the First International Conference 
on Fast Sea Transportation(FAST'91) held in Trondhein, 
Norway in June, 1991[1]*. However, the final 
configurations were not available at that time, since 
design work and test program had not been completed. 

In this paper, the results of the theoretical and 
experimental studies, the final design configurations, and 
the status of the construction work shall be briefly 
summarized and discussed. 

2. SELECTION OF THE MAIN DIMENSIONS 

In the early stage of ship design, the most 
important and difficult task is the determination of main 
dimensions. To do this, the effect of variation in main 
dimensions on ship's overall performance characteristics 
should be systematically studied first. It should be 
pointed out that some characteristics may have more 
weight, of course. In any case, however, the basic 
requirements should always be satisfied. The basic 
requirements for this project are as follows : 

- Number of passengers :   not less than 300 
- Endurance :  not less than 800 nautical 

miles 
- Service speed :  not less than 35 knots 

Due to the unusual requirement of such long voyage 
for this kind of ship, the seakeeping quality is 
considered to be more important than the speed quality. 

The world-wide studies on the high speed 
displacement ship hull form have been actively carried 
out particularly from the middle of 1970's and valuable 
results have been obtained recently[2,3]. 

The results of recent studies could be briefly 
summarized as follows : 

- The most important hull form design variable with 
respect to the seakeeping quality is the Length-Draft 
Ratio(LWL/T), and this ratio could be expressed as 
follows : 

LWL/T = (LWL/B)'(B/T) 
Therefore, Beam-Draft Ratio(B/T) is also an important 
parameter for seakeeping.   In general, the seakeeping 
quality is improved with the increase of this ratio. 

- The most important hull form design variable with 

* The numbers in brackets designate the numbers in 
references. 
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respect to the resistance property is the Length-Beam 
Ratio(LWL/B). In general, the resistance property is 
improved with the increase of this ratio. 

- The block coefficient(CB) does not have much 
effects either on the seakeeping quality or on the 
resistance property as long as it is within a certain 
range. 

- There exist   the ranges of the optimum prismatic 
coefficient(Cp), the maximum section coefficient(CM) 
and the longitudinal center of buoyancy(LCB) for the 
given Froude Number(FN). 

Referring to the results of the world-wide studies, 
the initial selection on the main dimensions were made. 
However, they have been changed several times along the 
progress of the design work. Table 2.1 shows the 
changes of the main dimensions since the initial selection 
was made. 

Table 2.1    Changes of Main Dimensions(in meters) 

-~->^Version 

Items            ^"~"~~---^^_^ 
I IV W 

(Final) 

LOA 35.0 45.0 45.5 

LWL 32.5 42.0 42.0 

Breadth 14.0 10.8 11.4 

Mono Hull Beam 3.6 3.2 3.2 

Distance between 
Mono Hull Centerlines 

10.0 7.4 8.2 

Draft 2.5 2.0 1.6 

Depth 5.5 5.5 5.1 

3. Hull Form Design 

With the determination of the main dimensions, the 
hull form design work was started. Due to extremely 
tight time schedule, it was planned at first to 
immediately start the model tests after preparing 4 or 5 
hull forms. However, it was decided to make use of 
this chance to perform the systematic theoretical and 
experimental studies on the hull form design of such high 
speed ships as much as possible even if a considerable 
amount of time and effort were spent. 

In preparing basic hull forms, although not all of 
the cases, but generally the fore-body and the aft-body 
hull forms were designed separately and combined later 
to form a complete one. Particularly, the fore-body 
forms were prepared utilizing "the Wave Resistance 
Theory of Catamaran Ships" and "the Catamaran Hull 
Form Design by the Minimum Resistance Theory" 
developed by the author[4]. 

According to the traditional resistance theory, 
the total resistance of a ship could be expressed by 
the sum of frictional resistance and residual resistance 
as below: 

RT = RF 
+ RR (1) 

For such fine high-speed ships as considered in this 
project, however, residual resistance may be safely 
replaced by wave resistance, that is, 

RT  =. RF   t  Rw (2) 

The basic concept and the design procedure could 
be summarized as follows : 

- express each of resistance components in suitable 
form introducing proper assumptions. 

- represent the hull form by the hull form equation 
with unknown coefficients. 

- solve the unknown coefficients so that the total 
resistance, i.e., the sum of frictional resistance and 
wave resistance becomes minimum. 

Particularly, the hull form with minimum wave 
resistance becomes to be longitudinally symmetric shape 
according to potential theory [5]. In practice, therefore, 
the fore-body hull form is obtained by first deriving 
longitudinally symmetric form with minimum total 
resistance whose length is two times of that of the 
entrance part, then by utilizing one-half of that form. 
In this project, however, the one-half of the derived 
form could be directly utilized as a complete form in 
many cases. 

In order to present the ship body and the fluid 
motion around it, the general coordinate system has been 
introduced as shown in Figure 3.1. 

1 y 
/    1- t Uic.z) + i 

//; / |           ——^7 
/   \> A ,'                  J 

i 

/n           /• * "*■» 
/  A.                          o /■        ~~~JL~~~-h 
. /    !                               -1.il/. i —"7«. .i.ii 

\ 1                        / 
-T 

3.1    Fore-Body Hull Form 

Fig. 3.1    General Coordinate System 

3.1.1   Frictional Resistance 

For frictional resistance, the traditional assumption 
has been introduced that the frictional resistance 
coefficient(CF) is constant with the constant Reynolds 
Number(RN). With this assumption, therefore, the least 
frictional resistance results from the least wetted surface 
area when ship length is fixed. 

The frictional resistance(RF) for catamaran ships is 
expressed as : 
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RF = 2 X   p S CF V2 
2 

(3) 

The  exact  expression  for  the  mono  hull  wetted 

surface area is as follows : 

S = z\ | V 1 + fx2  + fz2    dx dz (4) 

Since the ship form is very fine, however, the 
following approximate expression of wetted surface area 
has been utilized in this study for the sake of 
convenience and consistancy with the expression of wave 

resistance : 

S *   2  [[ [1 ♦ l/2(fx)2 ♦ l/2(fz)2] dx dz      (5) 

The frictional resistance coefficent is determined 

from the 1957 ITTC correlation line as follows : 

CF  = 
0.075 

(Log RN - 2)2 
(6) 

where G(x:?) is the Green's Function, x = (x,y,z) 

and    K — (K,V,K)   represent   field   and   source   points, 
respectively. 

Green's   Function   should   satisfy   the   following 
Boundary Value Problem : 

Governing 

Equation 

VZG =0    for Z < 0 

- Free-Surface      :    Gxx + kGz = 0   on Z = 0 
Condition (k = g/v2 ) 

Radiation 
Condition 

Bottom 
Condition 

lim  [Gx2  + Gy2  + G22]  = 0 
r—>ce 

lim Gz = 0,   or 
2 »-CD 

Gz(x.y.-h) = 0 

(11) 

The Green's Function for infinite depth satisfying 
the above Boundary Value Problem can be expressed as 
[5,6] : 

3.1.2   Wave Resistance 

It is well-known fact that present state-of-art on the 
wave-making resistance theory is such that theory itself 
is not sufficient and, hence, not generally used to obtain 
numerical predictions of wave resistance, although the 
result (obtained from the theory) is not grossly error. 
Nevertheless, it is still useful to qualitatively investigate 
the effect of hull form on wave resistance, and hence, 
could be well utilized in design problem instead of 
performance analysis problem. In this study, the wave 
resistance equation based on the linearized potential 

theory has been utilized. 
Wave resistance is conceptually determined by 

integrating x-component of pressure over the entire 

underwater hull surface, i.e., 

Rw Jfs P n" ds 

r r v2    Jo        Jo 

cos[K(x-?)cose)]-cos[K(z-Osin9] 
Kcos2e - g/v2 

——       id sec2S e«/v  (z*j;)s.c'e 
v2    Jo 

(12) 

& g x sin[——(x-^)sece] -cos[—— (z-£)sin0sec2e] 
V* y2 

The first derivative of Green's Function for infinite 
depth satisfying the Boundary Value Problem can be 
expressed as follows after eliminating non-contributing 

terms [5,6] : 

Gx(xtH =JiL  l^'le secSS es/v2Cz^ 
v4      Jo 

)S8C'(    x 

From the linearized Bernoulli equation in this case, 

P=-p0t=-pV0x (8) 

cos[— (x-Osec0]-cos[-5-(z-Osinesec2e] 
v2 v2 

(13) 

and equation (7) becomes, 

Rw >"\\. 
0x nx  ds (9) 

In order to derive the expression for wave 

resistance, therefore, the velocity potential of the 
steadily moving source under free surface should be 
obtained first by solving the Free Surface Boundary 
Value Problem. For this purpose, some basic 
assumptions concerning the fluid motion and the 
linearized wave should be introduced. Due to limited 

space, however, they will not be discussed here. 
Seek the form of solution as : 

2n 0(x) ■ff (G 
0 n 

0 G 

0 n 
ds (10) 
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In case of the catamaran ship composed of two 
identical hulls as shown in Figure 3.1, the centerplane of 
one hull coincides with x,z-plane with y=0 and that of 
another hull coincides with x,z-plane with y = d. In this 
case, the wave resistance on one hull will be generated 
by its own and the influence of the other one. Therefore, 
the velocity potential, and hence, the first derivative of 

Green's Function in x-direction should satisfy the 
boundary condition on the body surface, that is : 

h=o 
Gx y=2 i?=0 

(14) 

Here, the first term of the right-hand side is 
related to the quantity generated by its own hull and the 

second term is related to that generated by the influence 

from the other one. 



The precise expression is as follows : 

4g2 

t«    y=0    =    — 
Tr/2 2 2 g 

dösec3e e*/v Cz*£)s«e ecos[— 
o v2 

(x-S)sece] (15) 

Gxlyrd 
4g2 

4 

B/2 2,        ,        2 g 
dösec3e e«/v  (z^)s.c »cos[  

o v2 

g 
(x-iS)sece]  cos[  d-sin9sec20]      (16) 

v2 

For the first approximation, 

In    JJs i i    G   ds 
2rc    JJso      an 

30 30 ... 
  - ±   = ± Vfx 

an ay 

nx  = fx 

where, So represents centerplane. 

(17) 

(18) 

(19) 

Combining  the  above,   the following results are 
obtained : 

0x = " 2^ |JsGx(x.y.2:?.77,?. )fx(?. t;)d?dj; 

2TT    JJSO V    Jo 
/v2(z*;Osec29 

(20) 

cos[-^r (x-?)sec0][l+cos(-^r d-sinösec2©)] 

Finally, the wave resistance equation on one hull of 
the catamaran ship is obtained by substituting equation 
(20) into equation (9) : 

In equation(22), the first integral, Rs, represents 
the contribution from two independent single hulls and 
the second integral, Ri, represents the contribution from 
the interaction between two hulls. The following 
important facts could be deduced from equation(22) 

that : 

- Rs depends on ship speed and ship form, while Ri 
depends on ship speed, ship form and separation 

ratio. 
- Rs is always positive and can never be negative. 
- Ri is either positive or negative. This implies the 

possibility to have favorable interactions depending on 
ship speed and separation. 

- As   ship speed   increases,   the   interaction effect 
decreases, and finally there will be no interaction at 

very high speed. 

The above important results from the theoretical 
study have been proved to be true by model experiments 

later. 

3.1.3   Mathematical Expression of the Hull Form 
(Hull Form Equation) 

As the next step to find out the ship form with 
minimum resistance, proper hull form equation(s) should 
be introduced to describe the hull shape mathematically. 
Such equation(s) should be not only able to describe the 
actual hull forms nicely, but also as simple as possible 
so that future mathematical treatment is possible. 
However, it is by no means easy to express the 

complicated hull forms nicely by a simple equation. For 
this purpose, therefore, the author has long adopted the 
separation of variable type equations. In other words, 
the hull forms are represented by a product of two 
functions as follows : 

1 4pg2 

Kw  = 

2 J:V
2 

dxdz 
So 

dWxU.zJfxU.O 
So 

:2D 

fn/2 2 2 g 
x dSsec3e es/v   Cz*jOsec   e.cos[  

Jo v2 

g 
(x-?)sece]   [l+cos( d-sin9sec2e)] 

v2 

If secö  is  replaced  by  cosh u for  the  sake  of 
convenience in integration and if overall catamaran ship 
is considered, then : 

Rw — 
8pg2 

du cosh2 u [P2(coshu) 

+  Q2(coshu)]   [l+cos( d-sinhu • coshu)] 
v2 

= 8s ♦ Ri (22) 

P(cosh u) 

Q(cosh u) } 
2 2 

dxdzfx(x.z) • e t'v  (cosh  u)z 
So 

r cus  1       6 
\     _     >  (  x coshu) (23) 

±f(x,z) :X(x) -Z(z) (24) 

where X(x) and Z(z) represent waterline and body plans, 
respectively. 

In order to derive the overall-optimized hull form, 
both waterline and body plans should be represented by 
proper equations containing unknown coefficients and the 
resistance equation should be solved for the unknown 
coefficients by the three-dimensional optimization 
technique. 

However, it would take enormous effort and time, 
and almost impossible to carry out the necessary work 
within the limited time schedule for this project. 
Therefore, only one polynomial with unknown coefficients 
were adopted for the expression of waterline plan. The 
body plan was assumed to be one of four fixed shapes, 
and two-dimensional optimization technique was applied. 

The hull form equations adopted in this study are 
as follows : 

Waterline plan 

X(x)   =   Ao+Al|X|+A2X2+A3|X3|+A4X4 (25) 
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aT 
Bodv plan 

aai 
Z(z) = (1 + 5)2 Concave type (26-a) 

= 1 ♦ z Straightline type (26-b) aT 

= 1 - z2 Parabolic type (26-c) dX 

= yi - z2 Elliptic type (26-d) 

where z = z/T. 

Boundary conditions 

X (±1) - 0 
X (  0  ) = B/2 
X'(  0  ) = 0 
Z (  0  )  = 1 
Z (-T  ) = 0 

I 
X(x) • Z(z)dx dz = V 

X(x)=A0+Ai]x|+A2x2+A3|x
3l+A^x" 

l-L/2 

where   Ai    and   I   denote   the   unknown   hull   form 
coefficients and one-half of ship length, respectively. 

From the boundary conditions X(0) = B/2 and 
X'(0) = 0, the equation for the waterline plan is 
simplified as follows : 

X(x)  =   (1   ♦ a2  x2  ♦ a3   Ix'I   ' at x<|       (27) 
2 

where ai's are the modified unknown coefficients. 

3.1.4    Optimization Problem 

In order to find the optimum set of coefficients in 
the hull form equation, Lagrangian Multiplier Method has 
been applied with proper constraints and constants as 
follows : 

f!  - R-j- : Total resistance 
fi = f(ai)=0 at x-l      ■  Boundary condition 

fs [ l    [° X(x) • Z(z) dx dz - V = 0 

:  Fixed volume 

T(ai,   X,  ß) - i\  + XXi " ßU 

where, 
T = Lagrangian function (not ship draft) 
ai = unknown coefficients 
X, ß - Lagrangian constants 

If partial differentiation of Lagrangian function is 
performed with respect to the unknown coefficients and 
the unknown constants, and the partial derivatives are set 
to be zero as shown below, then a system of linear 
equations for the unknown coefficients and the unknown 
constants is obtained : 

= 0 

aT 

dß 
= 0 

The constants and the coefficients are obtained by 
solving the linear system. 

3.2    Aft-body Hull form 

Different from the fore-body area, much more space 
is needed at the aft-body area, and hence, the aft body 
hull form becomes much fuller than the fore-body hull 

form. 
In this study, two different types of aft-body 

(non-reduced and reduced transom types) had been tried 
for each of three different section shapes, that is, 
straightline, parabolic and elliptic shapes. Figure 3.2 
shows the section shapes and their combinations utilized 
for the systematic preparation of hull forms. 

For»-teody 
SectKwt Shape 

Typ« I 

z « a+5>* 
Typ»  II 

»■*!■*? 
Tyty HI 

i - i-i' 
Typ« IV 

Aft-body Section shape 
Type II Typ» HI Typ«, TV 

Typ«n Type III Type IV 

Type III Type 

Type IV 

Fig. 3.2    The Section Shapes of the Fore-body and 
the Aft-body Hull Forms and their 
Combinations 

3.3    Connection of the Fore-body and the Aft-body 

In the case that the fore-body and the aft-body 
section shapes are identical, they are smoothly connected 
by nature. When they are different, however, the 
connection work has to be done. 

The connection process has been arranged to be 
done using third order polynomial maintaining sufficient 
distance between two connection points not only so that 
both parts are connected very smoothly without any 
abrupt change in the section shape, but also so that the 
hydrostatic characteristics of the resulted hull form are 
not much different from those of initial target. Figure 
3.3 shows this connection process schematically. 

In practice, the relative difference between the 
block coefficients after connection and the target value 
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has been arranged to be greater than - 0.5% and less 
than 1.0%, that is, 

0.995  <  (CB) actual / (CB) target <  1.01 

y=o.x +fc»c+cx+d | Boundary Condition : 
yyj, y' °y\ at x=xj 
y=yp, / =0   at x=x_ 

Fig. 3.3    Schematic Description of the Connection 
Process 

3.4   Hull Forms 

3.4.1   Initial Hull Forms 

Before the actual design of hull forms, total 38 
combinations of fore- and aft-parts were prepared and 
their practicability was investigated. Some of them were 
proved to be unpractical due to unsatisfaction of volume 
or LCB requirements. 

Finally, 31 hull form combinations were chosen for 
the hull form design. These hull forms are called "the 
Initial Hull Forms". Figure 3.4 shows the 31 mono hull 
models of 31 initial hull forms. 

Fig. 3.5    Eight(8) First Intermediate Mono Hull 
Models 

3.4.3   The Second Intermediate Hull Form 

The resistance and the trim control flap 
effectiveness tests were carried out for the eight(8) first 
intermediate hull form models, and two(2) second 
intermediate hull forms were selected based on the test 
results. Up to the first intermediate steps, only the 
mono hull forms were designed and tested. From the 
second intermediate steps, however, the complete 
catamaran hull forms were designed, models were 
constructed and tested as well as mono hull forms. 

Figure 3.6 shows the catamaran models of these 
two(2) hull forms. 

Fig. 3.4    Thirtyone(31) Initial Hull Form Models 

3.4.2   The First Intermediate Hull Form 

Originally, it was planned to choose about two(2) 
intermediate hull forms from 31 initial ones. Since more 
than half of the initial hull forms showed very similar 
resistance property, however, eight(8) intermediate hull 
forms were selected instead of two(2). The eight(8) 
selected hull forms are called "the First Intermediate 
Hull Forms", since one more intermediate hull form 
selection process was expected. 

Also, there had been some changes in main 
characteristics such as lightship weight along the progress 
of design work. Therefore, these hull forms were 
prepared first by selecting superior hull forms from the 
test results and next by modifying them incorporating 
those changes. Figure 3.5 shows the mono hull models 
of the eight(8) selected hull forms. 

Fig 3.6   Catamaran Ship Models for the Second 
Intermediate Hull Forms 

From the second intermediate hull forms, the model 
tests were carried out at both HMRI* and HSVA**, 
independently. Also, the tests were carried out not only 
for the resistance characteristics, but also for the 
seakeeping and the effect of motion control devices. 

3.4.4   The Semi-Final Hull Form 

After conducting the resistance, seakeeping and the 
effect of motion control device tests for two(2) second 
intermediate hull forms, one(l) hull form was selected 
based on the results of the overall evaluations. 

* Hyundai Maritime Research Institute 
** Hamburgische Schiffbau Versuchs Anstalt 

(Hamburg Ship Model Basin) 
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The selected hull form had the parabolic section 
shape both for the fore- and aft-bodies. Therefore, the 
bottom of the ship was a little bit sharp instead of flat 
or rounded. In fact, this hull form was going to be 
selected as the final hull form, and hence, the extensive 
theoretical analyses and model tests were carried out for 
this hull form. 

However, the hull form had been finally revised 
due to the request from the Special Ship Department who 
was responsible for the actual construction. It was 
considered that the installation of the water inlet duct to 
the water-jet might be difficult for the section shape 
with sharp bottom. 

The revised hull form had the elliptic section 
shape, and it was decided to call this hull form as "the 
Semi-Final Hull Form". Extensive theoretical analyses 
and model tests for the resistance and seakeeping 
characteristics were carried out again for this semi-final 

hull form. 

3.4.5   The Final Hull Form 

Basically, there are not much differences between 
the semi-final and the final hull forms. They have the 
same section shape. As the design work approached to 
the final stage, however, various initial estimations 
became to be clear, and hence, main characteristics also 
had to be modified. Incorporating all those up-to-dated 
information, the final hull form was re-designed. 

The Figure 3.7 shows the catamaran ship model of 
the final hull form. 

Fore - Body 

Fig. 3.7 

Aft - Body 

Catamaran Ship Model of the Final Hull 
Form with the Final (No.9) Foil System 

4. MOTION CONTROL DEVICES 

For the small-size high-speed catamaran ships, the 
motion in waves, particularly the vertical motion of bow 
s intrinsic and unavoidable unless ship size is much 
increased, and hence, there is an limitation in the 
mprovement of motion characteristics purely by the 

proper selection of main dimensions and by the superior 
hull form design. In order to significantly improve the 
seakeeping quality, therefore, it is necessary to introduce 
some motion control devices. 

Among control devices, an active control system 
would produce more significant effect. However, active 
systems also have disadvantages, that is, the system is 
more complicated, consumes more energy and requires 
higher costs for installation and maintenance. In this 
study, therefore, it had been tried to adopt the 
simplest-possible fixed control system as long as the final 
motion characteristics fell within the target range. 

Following this design philosophy, three different 
motion control devices, that is, so-called motion control 
plate and motion control tank as the passive control 
device, and motion control hydrofoil as the active control 
device were decided to be tried individually and in 
combination. In fact, the passive control systems may 
be more accurately expressed by "Anti-Pitch Devices" 
rather than motion control ones. Therefore, the term of 
Anti-Pitch Plate and Anti-Pitch Tank may be used for the 
passive control devices. 

4.1    Anti-Pitch Plate 

This is nothing but the flat plate with simple shape 
as shown in Figure 4.1. 

In this study, six(6) different plates in size and 
shape as shown in Table 4.1 were applied on each of 
mono hulls, and model tests were conducted for 
resistance and ship motion. 

Fig. 4.1    Sketch of an Anti-Pitch Plate 

Table 4.1    Six(6) Different Anti-Pitch Plates 
(All dimensions in meters) 

No a b c d 

1 3.0 2.0 1.0 1.6 

2 4.5 3.0 1.5 2.4 

3 6.0 4.0 2.0 3.0 

4 3.0 2.0 1.0 2.0 

5 4.5 3.0 1.5 3.0 

6 6.0 4.0 2.0 4.0 
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The catamaran ship model with anti-pitch plates is 
shown in Figure 3.6. 

4.2   Anti-Pitch Tank 

This is the streamlined circular section tank as 
shown in Figure 4.2. This is also a multi-purpose tank 
not only as anti-pitch device but also as a fresh water or 
a fuel oil tank. 

In this study, nine(9) different tanks in size and 
shape as shown in Table 4.2 were applied on each of the 
mono hulls, and model tests were also conducted for 
resistance and ship motion. In Table 4.2, At represents 
the displacement of the tank. 

Figure 4.3 shows the catamaran ship model with 
anti-pitch tanks. 

X J_ L 
c=0.4 it b=035U a=0.E5fi}t 

J±_ 

Fig. 4.2   Sketch of an Anti-Pitch Tank 

Table 4.2 Nine(9) Different Anti-Pitch Tank 

No. 
(m) (m) 

Vol. 
(mi) 

At/A 
(%) 

1 

6.0 

0.7 6.74 5.76 

2 0.8 8.81 7.52 

3 0.9 11.15 9.52 

4 

8.0 

0.6 6.61 5.64 

5 0.7 9.00 7.68 

6 0.8 11.74 10.03 

7 

10.0 

0.5 5.73 4.90 

8 0.6 8.26 7.05 

9 0.7 11.24 9.60 

L£J 

Fig. 4.3   Catamaran Ship Model with Anti-Pitch Tanks 

4.3   Motion Control Hydrofoil 

The hydrofoil system, that is, the forward and the 
rear foils with the struts connecting two mono hulls were 
introduced with the main purpose of motion control as an 

active control device. 
At the same time, it was expected to be 

advantageous in resistance property also, since the ship 
hulls would be partially lifted up due to the dynamic lift 
generated by the foil system. This anticipation was 
proved to be achieved more than expected through the 
model tests later. 

All together nine(9) different foil systems were 
designed. For four(4) foil systems among them, actual 
models were manufactured and model tests were 
conducted. The foil system has been adopted as the 
final motion control device and shall be discussed in 
more detail later. 

4.4   Concluding Remark on the Motion Control 
Devices 

There are two opposite aspects in the motion 
characteristics for the small high speed ships. While 
seakeeping quality should be improved as much as 
possible for the comfortability of passengers and crew, it 
is extremely difficult to improve the quality beyond 
centain level even if motion control devices of any kinds 
are introduced. In this project, therefore, the design 
target has been established so that most of passengers 
and crew may not feel great inconvenience with the 
extended sailing at Sea State 4. This target is such that 
the RMS value of the vertical acceleration at the bow at 
Sea State 4 is less than 1/10 of the gravitational 
acceleration(O.lg) for the frequency range of 3-10 
Hz.    This is rather an ambitious target. 

Any device was going to be adopted if the results 
of model tests with the device satisfied this design target 
with the increase in resistance of about 10% range from 
the bare hull resistance. As shown in the results of 
model tests, it is true that the motion characteristics, 
particularly the vertical motion characteristics at the bow 
was significantly improved by the installation of the 
motion control devices. However, there were still 
considerable gaps between the test results with control 
devices and the design target. Here, it should be noted 
that the foil system would have the function of a passive 
control system like a large anti-pitch plate in model 
tests, since flap control is generally not possible during 
the model tests. 

From the results of this study, the conclusion was 
reached that the design target could not be achieved 
without adopting the active control system. Therefore, 
the hydrofoil system with active flap control mechanism 
has been selected as the final motion control device. 

5. HYDROFOIL SYSTEM 

As mentioned previously, the hydrofoil system has 
been introduced as the device not only for the motion 
control, but also to achieve high speed. For this 
purpose, it has been decided for both forward and rear 
foils to have active flap control mechanism. 

The present foil system has several important 
functions as follows : 

- Motion control in heavy weather, that is, the reduc- 
tion of heave, roll and pitch motion 
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- Prevention of the excessive heel during fast turning 
- Reduction of resistance or increase of ship speed in 

favorable weather by producing the lift 

It is well-known that the "Long-Range High-Speed 
Foil Catamaran Passenger Ship" developed in this study 
is the first catamaran in the world equiped with such 
multi-purpose and multi-function hydrofoil system. The 
basic concept, design philosoply and the actual design of 
the foil system shall be discussed. 

5.1    Basic Design Concept 

The difficulty in the early design stage of the foil 
system was to decide the ratio between the buoyancy and 
the basic lift* for the support of ship weight which led 
to the overall optimum compromization of resistance 
property and seakeeping quality. The answer to this 
question is by no means simple and could not be readily 
obtained even if model tests are carried out. There are 
many problems in model tests from the complicated 
physical phenomena to the test technique. The biggest 
problem among them is in the fact that the active 
control effect of the hydrofoil system could not be 
simulated in the model tests. 

In the early design stage of this project, three(3) 
different foil systems with rectangular planform whose 
ratio between buoyancy and lift was 40:60, 30:70 and 
20:80, respectively were designed. Both theoretical 
analyses and experimental investigations were carried out 
for these three foil systems. In theoretical analysis, 
however, the theory itself has not been satisfactorily 
established yet. In experimental investigation, the size 
of model was considered to be too small and tests were 
limited. Therefore, no definite conclusion or guideline 
could be derived. Nevertheless, this study, was not 
totally meaningless. Through this study, a rough 
qualitative indication was obtained as follows : 

- In the first case (the case of 40:60 ratio), the 
seakeeping   quality   was   the   best,   but   resistance 
property was comparatively poor among three cases. 

- In the third case(the case of 20:80 ratio), resistance 
property   was   quite  good,   but  there   was   a   high 
possibility that the forward foil might be emerged 
from the water during motion in heavy weather. 

Reflecting the main purpose of the foil system as a 
motion control device and referring to the above 
indication, the ratio of 40:60 was selected initially as 
the tentative optimum compromization. However, this 
ratio has been changed to 30:70 later and maintained 
throughout the study. 

The item to be decided next was how to assign this 
70% basic lift to each of forward and rear foils, that is, 
how to determine so-called the "Share Ratio" of the 
basic lift between the forward and the rear foils. A 
design direction has been set up for this share ratio to 
be determined so that the ship would maintain the 

* Basic Lift means the lift produced by the foil system 
with the flaps in the neutral position. 

approximate even keel condition when sailing at the 
design cruising speed. This share ratio could be easily 
found from the locations of ship's center of gravity, 
longitudinal center of buoyancy(LCB) and from the 
position of the forward and the rear foils. The share 
ratio between the forward and the rear foils has been 
determined to be approximately 40:60. 

The basic design concept discussed so far could be 
summrarized as follows : 
At the design cruising speed, the total weight of the ship 
is to be supported in the following manner : 

- 30% by the buoyancy 
- 70% by the basic lift produced by the hydrofoil 

system with the flap positions in neutral 
- the share ratio of the basic lift between the forward 

and the rear foils to be approximately 40:60 so that 
the  ship  would  maintain  the  even  keel  condition 
approximately. 

Figure 5.1 shows the summary of this basic design 

concept. 

CJG. 
o 

. AC27DMT) 

0.6L 

C115MT) 

1-F 

A!C80MT> <75MT) 

Fig.   5.1 The Basic Design Concept 
of the Hydrofoil System 

5.2    Connection Method 

In the early stage, the foil system was arranged to 
be rigidly connected to the two mono hulls by the two 
struts as shown in Figure 5.2 with the expectation that 
the installation of the foil system would help the overall 
structural system. 

Fig. 5.2    The Initial Concept for the Installation 
of the Hydrofoil System 

The structural analysis for this arrangement was 
performed so that the foil system might have enough 
strength against the design lift, dynamic load and 
deflection due to ship motion. The structural analysis 
itself shall be discussed later. According to the results 
of preliminary analysis, the thickness of the foils around 
the mid-span should be excessively large. Furthermore, 
some kinds of deflection or deformation at the fore-body 
of the ship were expected during fast maneuvering or 
motion in waves, since the fore-body of the ship is very 
thin.   In this case, the fixed connection system may not 
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be able to absorb the stress due to deformation. It 
was concluded, therefore, that this kind of the 
connection method had no advantages, but was 
harmful structurally. 

In order to avoid the excessive thickness around the 
mid-span of the foils, it was decided to arrange one(l) 
strong strut at the mid-span of both forward and rear 
foils as shown in Figure 5.3. These struts shall be 
called the center struts. The hinge connection method 
was adopted for the side struts of the forward foil so 
that they may absorb certain amount of the transverse 
deflections. Two(2) watertight bulkheads were arranged 
in front of and behind the side struts at each of mono 
hulls for the extra safety when the foil system or struts 
were damaged. This arrangement has been adopted as 
the final system and is shown in Figure 5.3. 

Water-tight Bulkhead        Center Strut 

Forward  Foil Forward  Foil 

Fig. 5.3 The Final Concept for the Installation 
of the Foil System 

The center struts have been arranged to be 
connected to the main hull by the flange connection 
method. Therefore, the entire foil system could be 
installed or removed easily*. Figure 5.4 shows the 
flange connection of the center strut and the hinge 
connection of the side struts. 

Fig. 5.4    The Final Connection Mechanism 
of the Forward Foil 

5.3   Material of the Hydrofoil System 

Some investigations were made on the possible foil 
materal, although the stainless steel was finally selected. 
First of all, the subject material should be non- 
corrosive. 

Three different materials were selected for 

* The required time for the installation or removal of 
the entire foil system is estimated to be less than 
three(3) hours. 

investigation in this study, that is, Ni-Al-Bronze alloy 
similar to the material used for the marine propeller, 
stainless steel and carbon fiber. Particularly, Ni-Al- 
Bronze alloy was selected for the economy study, and 
carbon fiber was selected for the study of the weight 
reduction and the possibility of the future application. 
The chemical composition and some important 
material properties for those three materials have 
been summarized in Table 5.1. 

Table 5.1    Chemical Composition and Material 
Properties for the Three Different 
Materials 

Item 
Stainless 

Steel 

Ni-AI 

Bronze Alloy 
Carbon Fiber 

Chemical 
Composition 

l6Cr 5Ni IMo 9AI SNi 4Fe - 
Tensile Strength 
(kgi7mm!) 

83 - 103 67 • 72 139 

Yield Stress 
(lcRf/mm!) 

62 - 67 25 • 32 5-1 

Elongation(%) >   15 20 - 30 15 

Density(MT/m3) 7.85 7.6 1.48 

Elastic Modulus 
(kgf/mm') 

1.8 « 10" 1.0-1.5.10« 1.2 . 10« 

Fatigue Strength - 
Sea Water(k(jf/mm2) 

25 21 - 
Brinell Hardness 
(Bhn) 

260 - 320 160 - 180 - 

The    results    of   this    brief   investigation 
summarized as follows : 

are 

- When Ni-Al-Bronze alloy is utilized as the system 
material, the dimension, particularly the thickness of 
the foil system should be much increased to satisfy 
the required design strength. Therefore, the weight 
of the foil system and the resistance of the ship shall 
be increased. 

- Carbon fiber has some superior properties to two 
other materials. However, general mechanical 
properties are not sufficiently determined yet. 
Further investigations on the material properties and 
the actual experiences would be necessary for the 
successful application. 

Due to the limited time and for the sake of safety, 
therefore, the stainless steel has been selected as the foil 
material. It is the author's opinion, however, that 
carbon fiber could be successfully utitized as the foil 
material in the near future with the continuation of the 
necessary study. 

5.4   Actual Design of the Hydrofoil System 

Following the design concept and direction 
discussed so far, all together nine(9) systems were 
designed. In order to minimize the possibility of the 
cavitation inception and in order to minimize the induced 
drag, foil sections were designed to produce the lift by 
the optimum combination of camber and angle of attack. 
The camber and the angle of attack distributions were 
calculated by two different methods, that is, by 
lifting-line theory and by vortex lattice method, and 
compared each other. 
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The free-surface effect was not considered in 
any case. The results by two different methods were 
not much different each other. It has been found 
through the model tests that the final results obtained 
in this way sufficiently satisfy the design target in 
general. 

For the design of foil section, "Foil Section Design 
Method by the Conformal Transformation Theory*" was 
going to be utilized. This method has many practical 
advantages and been being utilized for the propeller 
blade section design, but never been applied for the foil 
section design. In this study, therefore, NACA 66 
thickness form and 0.8-a meanline have been used 
exclusively. 

Figures 5.5, 5.6 and 5.7 show the planforms of 
No.l to 3, No.5 and the final(No.9) foil systems. 
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Fnll   Si»t No.       .a. h. £_ 
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Fig. 5.5    Planforms of No.l, 2 and 3 Foil Systems 
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Fig. 5.6   Planforms of No.5 Foil System 

* This method has been developed by the author for 
the first time in the world and proved to be superior 
through the various actual ship propeller design. 

Forward  Foil 
Center Strut 

Unit i n 

Rear Foil Unit < n 

Fig. 5.7    Planforms of the Final(No.9) Foil System 

6. MODEL TESTS 

The importance of the model test cannot be 
overstressed for the successful completion of this project. 
The model tests for the initial and the first intermediate 
hull forms were carried out at HMRI only for the mono 
hull models. They may be regarded as the qualitative 
tests for the selection of superior hull forms. However, 
the tests for all other hull forms, that is, for the second 
intermediate, the semi-final and the final hull forms were 
conducted at both HMRI and HSVA. 

Two different model ship sizes were used at HMRI, 
that is, 2.5 m and 2.8 m long models for the mono hulls 
and for the catamarans, respectively, while HSVA 
adopted only one model size. The model ship length at 
HSVA was 4.5 m. 

Figure 6.1 shows the mono hull resistance test for 
one of the initial hull forms(Hull Form  I-3-S-R). 

Figure 6.2 shows the catamaran bare hull resistance 
test for one of the second intermediate hull forms(Hull 
Form I-3-N). 

Figure 6.3 shows the seakeeping test for one of the 
second intermediate catamaran hull form(Hull Form 
I-4-R) with No.l foil system. 

Figure 6.4 shows the resistance test for the final 
catamaran hull form with the final foil system. It is 
clearly shown in Figure 6.4 that about 70% of ship 
weight is lifted up above the water level. 

Extensive model tests were carried out according to 
the carefully prepared model test program, and a vast 
amount of test data were obtained. Due to the limited 
space, however, only the limited test results shall be 
presented here. 

Figures 6.5 and 6.6 comparatively show the typical 
resistance and seakeeping test results for the bare hull 
and for the ship with motion control devices, 
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respectively, the results shown in Figures 6.5 and 6.6 
are for one of the second intermediate hull forms(Hull 
Form I-4-R). 

Table 6.1 shows the seakeeping test results for the 
bare hull and for the ship with motion control devices 
for the second intermediate hull form I-4-R. 

The seakeeping test results for the final catamaran 
bare hull and for the final ship with the final(No.9) 
hydrofoil system have been summarized in Table 6.2. 

The resistance characteristics for the final hull 
form with and without the final(No.9) hydrofoil system 
are shown in Figure 6.7. 

As shown in the above tables and figures, it is true 
that the seakeeping quality is significantly improved with 
the motion control devices. However, it can also be 
concluded that the design target cannot be achieved 
without introducing the active control device. 

Fig. 6.4 Resistance Test for the Final Catamaran 
Hull Form with the Final Foil System 

Fig. 6.1  Mono Hull Resistance Test for the Initial 
Hull Form I-3-S-R 

500. 

300. 

*     200.- 

100. _ 

30Kts       35kts      40Kts       45Kts      SOKts 
Comparison of Resistance Test Results 

Fig. 6.5  Typical Resistance Test Results for the 
Bare Hull and for the Ship with Motion 
Control Devices for the Second 
Intermediate Hull Form 1-4-R 

Fig. 6.2 Catamaran Bare Hull Resistance Test for 
the Second Intermediate Hull Form I-3-N 
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Q FOIL SET i 

Ship  Speed = 40 Knots 
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Sea States        Sea State4 Sea State3 
Seakeeping Test Results (Vertical Acceleration) 

Fig. 6.3  Seakeeping Test for the Second 
Intermediate Catamaran Hull Form 1-4-R 
with the No.l Foil System 
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Table 6.1 Seakeeping Test Results for the Bare 
Hull and for the Ship with Motion 
Control Devices 

The Second Intermediate Hull Form  I-4-R 
Ship Speed - 40 knots 
Free Trim Run 
Head Sea 

Approx. 

Sea 
State 
(Hs) 

Motion 

Control 
Devices 

Significant 

Heave 
Amplitude 

(m) 

Significant 

Pitch 
Amplitude 

(deg) 

Significant 
Vertical Acceleration at 

St.  10 

(in g) 

St.   19 
(in g) 

3 

(0.9 m) 

Bare Hull 0.62 1.1 0.28 0.43 

Tank No.   5 0.43 0.7 0.19 0.27 

Foil Set 1 0.89 2.4 0.15 0.23 

4 

(1.9 n) 

Bare Hull 1.22 2.1 0.50 0.84 

Tank No.   5 1.01 1.6 0.46 0.64 

Foil  Set 1 1.17 2.9 0.34 0.46 

5 

(2.8 B) 

Bare Hull 1.82 4.6 0.79 1.74 

Tank No.  5 1.67 3.1 0.67 1.18 

Foil Set 1 1.42 3.1 0.46 0.81 

Table 6.2 Seakeeping Test Results for the Final 
Catamaran Bare Hull and for the Final Ship 
with the Final(No.9) Hydrofoil System 

The Final Hull Form N-4-F 
Ship Speed =■ 40 knots 
Even Keel Condition 
Head Sea 

Approx. 
Sea 

State 
(Hs) 

Hull 

Condition 

Signi ficant 
Heave 

Anpli tude 

(m) 

Significant 
Pitch 

Anpli tude 
(deg) 

Significant 
Vertical Acceleration at 

St.   10 
(in g) 

St.   19 

(in g) 

4 
0.9 m) 

Bare Hull 1.26 2.56 0.43 0.74 

t/W the Final 
Foil Set 

0.74 1.4 0.27 0.35 

5 

(2.8 ») 

Bare Hull 2.21 4.7 0.65 1.08 

I/W the Final 

Foil Set 
1.67 3.7 0.54 0.81 

As shown in Figure 6.7, the resistance 
characteristics is remarkably improved by the hydrofoil 
system. Particularly, the resistance is continuously 
decreased with the increase of ship speed beyond a 
certain speed at the trim by stern conditions by about 2 
degrees. It is also noted that the resistance could be 
further reduced if proper trim is maintained by adjusting 
the flap angles. 

7. MOTION CONTROL SYSTEM 

The next thing to do after the selection of motion 
control device was to decide the type of functions which 
the selected control device would have. In the beginning, 
most of effort was concentrated on the improvement of 
ship's vertical motion, particularly the vertical motion 
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Fig. 6.7 The Resistance Characteristics for 
the Final Hull Form with and without 
the Final(No.9) Hydrofoil System 

characteristics at the bow. Therefore, the forward and 
the rear foils were designed to have only one center 
flap, and a simple control system was going to be 
adopted which would have heave and pitch motion control 
functions utilizing the natural motion characteristics of 
the ship. 

However, this idea was changed to the more active 
direction later. It was decided that the control system 
would have more functions as follows : 

- Control of ship motions due to waves 
•   Heave 
■ Roll 
■ Pitch 

- Control of heel during maneuvering 
- Control of flap deflection during astern operation 

According to the above functions, the design of 
hydrofoil system had been revised. For the forward foil, 
one center flap was arranged so that the forward foil 
might have the major role of improving the vertical 
motion characteristics of the bow. For the rear foil, one 
each of port and starboard side flaps were arranged so 
that the rear foil might produce the transverse moment to 
control the roll and the heel as well as heave and pitch. 
The planform of the final(No.9) hydrofoil system is 
shown in Figure 5.7. 

In the astern operation, there was a danger that the 
rear foil might be damaged by the impact of the strong 
water stream from the water-jet. The area exposed to 
such danger was once going to be cut out in advance as 
shown in Figure 5.6. However, the solution to this 
problem was improved by the following arrangement, 
since it was worried that the control system might not 
have sufficient control force or moment due to the 
reduction in the flap area : 

- The rear foil system was moved 65 cm forward and 
10 cm deeper from the initial position 
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In astern operation, the tail flaps of the rear foil 
would be automatically deflected upward at their 
maximum position. In this case, the flaps are 
approximately in the parallel positions to the jet 
stream as shown in Figure 7.1. 

Vater-jet 
Nozzle 

Maneuvering 
Bucket Flap 

Fig. 7.1    Concept of Automatic Flap Control 
in Astern Operation 

There is one thing to be mentioned here regarding 
the control system. The active motion control of the 
hydrofoil ship is achieved by the control of lift produced 
by the foil system, and the control of lift is made 
possible by the control of flaps. In this view point, the 
flap control mechanism is important for the effective 
control of motions. The conventional flap control 
mechanism is the complex system composed of several 
rotating shafts and gears similar to that of airplane 
wings. This is the proven system. However, there are 
several disadvantages as follows : 

- System is complicated 
- System is expensive(high cost) 
- High power is required for the prompt operation 

(low effectiveness) 

For the effective flap control, therefore, the author 
has developed the new control mechanism* for this 
project. In this system, the flaps are directly controlled 
by the motion of piston or bar connected to the 
hydraulic pump as shown in Figure 7.2. 

Fig. 7.2    Conceptual Description of the Flap 
Control System 

Compared with the conventional mechanism, this 
system has several advantages as follows : 

- System is very simple 
- System is inexpensive(low-cost) 
- Installation and maintenance of the system is easy 
- Response(control speed) is extremely fast with low 

power(very high effectiveness) 

In general, the piston or bar which controls the 
flap is long and made thin to reduce the extra resistance 
of water, and hence, it is apt to bend when pushing the 
flap. Therefore, one or two piston or bar guides are 
installed to prevent the bending of the piston or bar. 
The concept for this flap control system is described in 
Figure 7.2. 

The overall outline of the motion control system is 
diagramatically described in Figure 7.3. 

The overall concept for the motion control device 
and system has been developed by the author. The 
soft-ware for the control system shall be prepared by the 
Maritime Dynamics, Inc. in U.S.A. and the hard-ware 
such as foil and hydraulic systems shall be manufactured 
by Vosper Thornycroft in United Kingdom. 

Motion Sensor | 
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Analysis 
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1    Control Unrt~| 
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Fig. 7.3   Diagram of the Overall Motion Control System 

* This new control system has   been   developed   by    the 
author and applied  first time  in  the  world  in  this 
project ship(Patent Pending). 
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8. PROPULSION SYSTEM 

In order for a ship to sail, a sufficient thrust 
should be supplied by some kind of thrust-producing 
device to overcome the resisting forces from the water 
and air. For high speed ships, the selection of proper 
propulsion system is particularly important to achieve 
superior high speed performance characteristics. 

At the initial stage of this project, the propulsion 
by screw propeller and that by water-jet were considered 
with equal weight. To reach the conclusion, therefore, a 
series of investigations were made as follows: 

- Examination on the advantages and disadvantages of 
each system. 

- Investigations regarding the propulsion system of 
recently constructed small high-speed crafts. 

- Extensive discussions and investigations by 
visiting the major water-jet manufacturers in the 
world. 

- Finally, on-board investigations by riding the 
actual ships propelled by the water-jet system. 

From the result of the above investigations, the 
propulsion system was selected. It was the water-jet 
system. 

In fact, this is the oldest type of mechanical 
propulsion for ships. As shown in Figure 8.1, the 
water-jet unit consists of an inlet channel(duct) leading 
the water to the impeller, a pump casing and an outlet 
part(nozzle), forming the jet. 

Fig.  8.1     General Arrangement of Water-Jet 
Propulsion System 

There are many important advantages in water-jet 
propulsion system as follows : 

1) Elimination of all external underwater appendages 
(reduced resistance) 

2) Simple power transmission and compact installation 
- elimination of long and complex transmission 

lines 
- elimination of reverse gear 
- elimination of reduction gear in case of direct 

drive application 
- easier arrangements of multi-shaft configurations 

3) High overall propulsive efficiency in a wide range 
of speed(negative thrust deduction fraction) 

4) Outstanding navigability and maneuverability 
- very good acceleration and deceleration 
- excellent crash stop capability 

- lateral movement 
- rotation without forward motion 

5) No risk of engine overload 
(cubic law power absorption, virtually independent 
of craft speed) 

6) No problem in shallow draft design and shallow 
water operation 

7) Protected propulsion system, particularly 
- in case of shallow water operation 
- even in case of grounding 

8) Easy control of cavitation 

9) Higher comfort for passengers and crew 
(low noise and vibration) 

10) Low underwater noise 
(very important for Naval ships) 

11) High reliability and easy maintenance 
(low maintenance cost) 

Maneuvering is accomplished by a steering nozzle 
and astern thrust is achieved by a reversing bucket in the 
steering nozzle as shown in Figure 8.2. 

Full Ahead 

Fig. 8.2   Maneuvering with Water-Jet 

In late 1960's to early 1970's when the water-jet 
became to be focused again as a marine propulsor for 
high speed vessels, the propulsive efficiency of the 
system was very poor that it was by no means 
comparable to that of the propeller propulsion system. 
Nowadays, however, the system has been so improved 
that for higher speed region, the efficiency of the 
water-jet propulsion system is even higher than that of 
propeller propulsion system as shown in Figure 8.3. 

It is considered that Figure 8.3 shows the range of 
propulsive efficiency generally attainable with modern 
day's water-jet propulsion system. 

The major disadvantages of water-jet propulsion are 
the loss of volume inside the ship due to ducting and 
impeller, or conversely the increase in size of the 
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ship to restore the displacement to its original value, and 
the relatively low propulsive efficiency at low speeds. 
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9.1.2   Material of the Hydrofoil System 

The foil system is one of the important elements in 
weight control, since the weight of the foil system is 
about 10% of the total displacement of the ship. On the 
other hand, the structural safety of the foil system 
directly affects the safety of the ship. These two 
generally opposite aspects - weight and structural safety 
should be carefully considered in the material selection 
of the hydrofoil system. 

As discussed in Chapter 5, the high strength 
stainless steel SS2387 was finally selected as the material 
for the foil system from the overall evaluations on the 
characteristics and properties such as yield stress, fatigue, 
absorbability of impact energy, corrosion, manufacturing 
and maintenance. 

Fig. 8.3    Range of Propulsive Efficiency of Modern 
Water-Jet Propulsion System 

9. STRUCTURAL DESIGN 

9.1   Selection of the Material 

9.1.1    Hull Material 

The selection of the hull material for small high 
speed ships should be made based on the overall 
evaluation of various items such as performance, 
economy, weight and required strength. 

In this project, preliminary midship sections were 
designed first for the three different cases of hull 
materials, that is, for the cases of general mild steel, 
higher tensile steel and aluminium. Various analyses 
were made with respect to hull weight, general strength, 
fatigue strength, cost of material and construction 
man-hour for each of cases and compared. 

The material and processing costs per tonne of 
aluminium is much higher than those of the mild steel. 
It was estimated for this project ship that the total 
material cost and construction man-hour for the case of 
entire aluminium construction would be two and half(2.5) 
times and twice as high as those for the case of mild 
steel construction of the main hull. However, aluminium 
hull would definitely be more favorable in the weight. 
In fact, it was estimated that the hull weight of the 
aluminium construction would be about 30% less than 
that of mild steel construction, since the allowable 
stress-weight ratio of aluminium is 1.7 times higher than 
that of mild steel. In general, aluminium is inferior in 
fatigue strength to mild steel. When considering weight, 
however, aluminium is more advantageous, since the 
fatigue strength-weight ratio of aluminium is about 1.6 
times higher than that of mild steel. 

From the overall consideration, therefore, the 
aluminium was selected as the hull material. In order to 
improve the fatigue strength, much efforts were made in 
the structural design so that stress concentration at the 
high stress area could be avoided. At the same time, it 
was decided to conduct careful study on the fatigue 
strength through the prediction of fatigue life-span. 

9.2 Midship Section Design 

The design work on the midship section was started 
from almost the same stage as that of weight estimation. 
The difficulty in the early stage of the structural design 
was in the fact that no definite rule had been prepared 
from any classification society. The design guidelines 
from major classification societies were considered as 
suggestions, rather than rules. The initial midship 
section design was performed with such guidelines and 
various informations. In order to minimize the 
construction man-hour, to reduce the thermal deformation 
of aluminium material after welding and to avoid the 
occurance of cracks at the welding area, extruded profile 
was used as much as possible. 

The longitudinal frame system was adopted with the 
frame spacing of 300 mm. The transverse frame spacing 
was arranged to be 1,000 mm. The upper deck as the 
main structural deck was arranged longitudinally 
throughout the ship length. Longitudinal girders are 
arranged against the slamming and transverse twisting 
moment. The bottom of deck connection under the 
potential slamming danger was designed to have arc 
shape to decrease the pressure due to slamming. 

It was arranged that the ultimate longitudinal and 
transverse strengths of the ship were achieved by the 
main hull only without any contribution from the upper 
structure. In general, the structural design was carried 
out following the design guidelines from DnV and LR. 

9.3 Structural Analysis 

In order to confirm the local and global strength of 
the ship, the structural analyses were performed in 
accordance with the following steps : 

(1) Load calculation according to the guidelines from 
the major classification societies 

(2) Analysis of the transverse section at midship 
(3) Overall three-dimensional hull structural analysis 
(4) Detail analysis on the connecting parts of the 

hydrofoils to the hull 
(5) Evaluation of safety according to the allowable 

stress 
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(6)  Analysis and evaluation of fatigue strength 

Three important steps among them shall be briefly 
discussed. 

9.3.1    Overall Three-Dimensional Structural 
Analysis of the Hull 

This project ship has rather complicated structural 
arrangement. First of all, two mono hulls are connected 
by the cross deck. Furthermore, one each of foils 
connecting two mono hulls are to be installed at the bow 
and the stern of the ship. For the twin-hull ships, the 
cross deck connection part is generally known to be 
relatively weak, and a large amount of concentrated 
loads are expected at both ends of the ship due to foil 
system. In order to investigate the structural response 
for this ship, therefore, it was decided to conduct the 
overall three-dimensional structural analysis of the hull 
by the finite element method. 

About 5,840 grids and 10,430 elements were used 
for the modeling of the entire hull, and the analysis 
itself was done by MSC/NASTRAN program. Figure 9.1 
shows the modeling for this analysis. 

Fig. 9.2 Longitudinal Stress Distribution obtained 
by the Overall 3-Dimensional Structural 
Analysis under the Load Case 3 

Fig. 9.1     Modeling for the Overall 
3-Dimensional Structural Analysis 

Four different load cases were selected as follows 
with the anticipation that they would be the most serious 
cases for the hull and foil structures : 

Load case 1 
Load case 2 
Load case 3 
Load case 4 

Hull twisting moment 
Crest landing bending moment 
Design lift of the foils 
Asymmetric lift of the foils 

From the results of the analyses, it was concluded 
that the stresses generated at the hull for the given load 
cases are always less than the allowable values calculated 
by DnV guideline. 

Figure 9.2 shows the stress distribution in the 
longitudinal direction under the load case 3, and Figure 
9.3 shows the stress distribution in the forward foil 
under the load case 4. 

9.3.2    Detail Analysis on the Connecting Parts of the 
Foils to the Hull 

The connecting parts of the foils to the hull 

Fig. 9.3 Stress Distribution in the Forward Foil 
obtained by the Overall 3-Dimensional 
Structural Analysis under the Load Case 4 

are considered to be the most sensitive area structurally 
in this project ship because of the large amount of the 
concentrated loads. Therefore, detail stress analysis was 
independently carried out in addition to the overall 
three-dimensional structural analysis. For this analysis, 
the hydrofoils were replaced by the solid elements, and 
the pin and flange joints of the connecting parts were 
modeled using rigid beam element. 

In order to ensure that not complete damage, but 
only the partial damage might occur even in the extreme 
circumstances of unexpected collision with floating 
objects, the final strength analysis was separately 
performed. According to the result of the final strength 
analysis, the stress after damage at the remaining parts 
does not exceed yield stress except at the damaged part. 

9.3.3    Analysis and Evaluation of the Fatigue Strength 

The hydrofoils for this project are basically 
manufactured by the method of casting. However, both 
of forward and rear foils are too big to be casted as one 

. piece. Therefore, it was decided to divide one foil into 
three sections - one center section and two side sections. 
Each of sections are to be manufactured by stainless 
steel casting and welded into one body. 

It is considered that fatigue strength is most 
important for such welded areas. Therefore, it was 
decided to calculate and check the fatigue strength for 
those areas. Fatigue strength itself was calculated by 
two generally and widely used method, that is, 
stress-number of occurance(S-N) approach and fracture 
mechanics approach. The results of calculations are as 
follows : 
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S-N approach D  = 0.046(10 year duration) 

Life-span of :  D  = 0.019(10 year duration) 
crack occurance 

Life-span of 
crack growth 

172 years(ao=l>nn),   ai=10mm) 

Here, D represents the fatigue accumulation coefficient 

(damage ratio). 
If D is equal to 1.0, it is generally considered that 

the fatigue failure is almost to occur. From the results 
of the above calculations, therefore, it is concluded that 
the hydrofoils in this project have more than enough 
fatigue strength with sufficient margin for the given load 

cases. 

10.    CONSTRUCTION 

After completion of the conceptual design and 
obtaining the approval from the Classification Society for 
the major detail design drawings, procurement activity 
was immediately followed starting from the hull 
materials, and they arrived at our production shop in 
November, 1991. At last, the construction work was 
commenced on December 2, 1991 with aluminium plate 
cutting. The construction work has been and will be 
progressed according to the following general schedule: 

- Work commencement 

- First sub-block assembly 

- Completion of the first 
main block 

- Turn over 

- Keel laying 

- Erection of the deck 
house block 

- Completion of ship hull 

- Launching 

- Outfittings 
• Main Engine 
• Water-jet system 
• Diesel generator 
• Passenger cabin chairs 
• Foil system 

- Dock trials 

- Sea trial(without Foil) 

- Overall evaluation of 
performance 

: Dec. 2, 1991 

: Dec. 10, 1991 

: Jan. 20, 1992 

: Feb. 29, 1992 

: Mar. 2, 1992 

: May 30, 1992 

: June 20, 1992 

: July 20, 1992 

: June 20, 1992 
: June 25, 1992 
: June 15, 1992 
: June 30, 1992 
: Sept. 15, 1992 

: Aug. 14, 1992 

: Aug. 25, 1992 

:  Aug.   30,   1992 
(without Foil) 

Sept.  30,  1992 
(with foil) 

For the efficient construction of the hull, it was 
decided to divide the complete hull into four(4) major 
blocks - three(3) main hull blocks, that is, forward-block, 
mid-block and aft-block, and one(l) deck bouse block. 

Each of three main hull blocks except the deck 
house block were assembled in upside-down position first. 
After completion, they were turned over by 60 tonne 
capacity jib crane and erected. Finally, all the blocks 
are to be connected together by welding to form a 
complete hull. Semi-automatic MIG welding method has 
been applied for the aluminium welding. This hull 
construction concept is shown in Figure 10.1. 

Figure 10.2 shows the construction of the 
forward-block of the main hull. Figure 10.3 shows the 
turning-over of the mid-block. 

Aft-Block 

//V/V/V/V/zV/V/'/V/V/V/v;;.' 

0 
TURN DVERI 

£ 
Beck House Block 

Aft-Block Forward' 
Block 

/V/V/V/'/V/V/V/V.''/'/l/i/V/,/V/V;; 

Fig. 10.1 Hull Construction Concept 

Fig.  10.2 Construction of the Forward-Block 
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11.    CONCLUSION 

In this paper, discussions were made on the design 
and construction of "Long-Range High-Speed 
Foil-Catamaran Passerger Ship." A vast amount of 
theoretical and experimental studies have been 
systematically carried out for this purpose. Particularly, 
the conceptual design and the initial model test works 
had been completed within less than six(6) months since 
the start of design work in the middel of August,  1990. 

This project ship is very difficult ship to design in 
several aspects compared with similar existing ships. 
Some of the difficult points are summarized in Table 
11.1. 

For small high speed ships, light weight is 
absolutely necessary. As shown in Table 11.1, however, 
this project ship is almost twice heavier than similar 
existing ships due to the owner's and operational 
requirements. Even if there is no definite requirement in 
seakeeping quality, furthermore, a great effort had to be 
made to significantly improve this characteristic due to 
the extended open-sea voyage. 

In spite of such unfavorable conditions, it is 
considered that the design work has been completed quite 
successfully, and the construction work is under progress 
as scheduled. It has been predicted by the results of 
extensive model resistance tests that the ship could 
achieve the speed of more than 40 knots with almost the 
same propulsion power as that of other similar existing 
ships. Also, the design target in seakeeping quality 
seems to be most probably satisfied according to the 
results of computer simulation based on the seakeeping 
model test results. Furthermore, several new concepts 
have been developed and applied for this project ship 
first time in the world. This project ship is definitely 
the first ship in the world in this size and type of ships 
in the view points of the operational environment, design 
concept and some of ship systems. It could be concluded 
that the overall peformance of this project from the 
design to the construction is extremely efficient and 
successful. 

However, it is a pity that the actual performance 
characteristics of the ship could not be presented here, 
since the construction work has not been completed at the 
time when this paper was being prepared. The sea trial 
is scheduled to be conducted from the end of August to 
the end of September, 1992 first without installing 
hydrofoil system and next with hydrofoil system installed. 
The author would like to have another opportunity in the 
near future to present the performance characteristics of 
this ship measured not only at the sea trial, but also 
through the actual operations. 
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A New Method of Calculating Unsteady Hydrodynamic 
Forces Acting Upon High-Speed Catamaran Ships 

I. Watanabe (Ship Research Institute, Japan) 

ABSTRACT 

Modelling of the flow field around an oscillating catamaran in 
forward motion is discussed. Thin ship approximation is intro- 
duced to make the problem linear. It is shown that the flow field 
for each demihull can be treated separately as far as the ver- 
tical motion is concerned and the corresponding hydrodynamic 
forces are to be computed. The interaction effects between the 
hulls come first as generation of traction or repelling force be- 
tween them. The antisymmetric forces arise on each demihulls 
due to interaction between the hulls even if the ship is making 
symmetric motion about the centerplane. The problem is solved 
by using unsteady lifting surface theory and an integral equation 
with repsect to pressure on the hull, taking into account of free 
surface wave effects, is solved numerically in order to determine 
its intensity of the interaction. 

1      Introduction 

The calcucation of hydrodynamic forces on a ship in 

waves is a still crucial problem in estimating ship safety 

margin in adverse seas in general. As for a catamaran 

ship, It is more so since the concept is rather new and 

conventional way of thinking for forces due to wave ac- 

tion is not appicable in most of the case. There are 

papers recently on hydrodynamic aspects of the mul- 

tihull ships. Ohkusu has treated the problem by us- 

ing slender body theory.[2] Kring et. al. has treated 

multihull ship problem by panel method.[1] This pa- 

per also concerns a catamaran ship, but with emphasis 

on linear hydrodynamic forces on it in oscillatory mo- 

tion. It starts with discussion how to model unsteady 

flow field around a catamaran ship in symmetric mo- 

tion in still water. Thin ship assumption is introduced 

to linearize the problem following Hanaoka's Theoreti- 

cal approach.[3],[4] It will be shown next that the prob- 

lem can be split into two problems, i.e. then symmetric 

problem and antisymmetric problem. The first problem 

is identical with the single hull problem and thus free 

from integral equation or cumbersome calculation to 

solve equations. Distortion of flow and radiating waves 

by one of demihulls induces on the other demihull an- 

tisymmetric flow about its centerplane. It may happen 

even if the ship is making symmetric motion orso called 

vertical motion, the antisymmetric flow problem is es- 

sentially unsteady lifting surface problem and an inte- 

gral equation with repsect to pressure on the hull has 

to be solved in order to determine its intensity of the 

interaction. The paper discusses on how to determine 

hydrodynamic forces in vertical motion and then pro- 

ceed to solve the integral equation and present with its 

numerical solution and hydrodynamic forces and mo- 

ments acting on/between demihulls. 

2      Basic Formulation 

2.1      Statement of Problem 
Consider a catamaran-type ship oscillating harmon- 

ically in a free stream of velovity U directed along the 

positive x-axis. Here x,y z are a left-handed set of 

Cartesian coordinates with the z axis upward, as illus- 

tratedin Fig. 1. The ship is comprised of two identical 

hulls of symmetric shape with respect to each center- 

plane. The Flow is assumed inviscid and irrotational. 

The each hull may have any form under assumption 

that each hull is thin, namely the breadth and the draft 

are smaller in oder compared to the ship length, if we 

• take ship length L, draft T and half breadth b and 

A: 
T 
r 

Then following order of smallness is assumed 

£< A< 0(1). 

Let the hull shape of a demihull be 
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y = ±f(x,z). 

Then entire full form is expressed by 

V ±/o = ±/(x,z). 

(1) 

(2) 

Here the distance between two hulls is denoted by 

2/o. 
Assume the ship is making only vertical motion of 

heaving and pitching. Take upward plus for heaving 

and bow up plus for pitching, then displacement of the 

hull becomes 

z"   =   h — x9. (3) 

The boundary condition on the hull surface becomes 

0 (4) 
at ox  ox     oz oz 

3$ 
dy 

on y ±/0 = }{x,z- z"). 

If we expand the quantities included in the equation 

around the centerplane of the each demihull using the 

thin body assumption and take dominant linear terms, 

we get linear body boundary equation of the unsteady 

flow part as follows, 

*z(£) 

x(£) 

Fig. 1: Coordinate system 

^- = -(yi+U-^)(f:z') = Rew(x,z)e"'t;     at    y = 0. 

(5) 

The equation tells us that the hull boundary cond- 

tion may be imposed not on the hull surface but on the 

centerplane of the each hull. 

In addition, the ship may emit vortices of harmoni- 

cally oscillating strength from each hulls because of the 

hull interaction. So we will impose Kutta condition at 

the trailing edge(at the ÄP) and null dynamic pressure 

condition across each trailing vortex sheets. 

Further free surface condition will be linearised to get 

following well known formula 

dt        dx 
<J> + g$z = 0 (6) 

These three conditions plus the radiation condition 

and Laplace equation defines the problem to be solved 

here. Fig. 2 shows schematic view of the model to be 

treated in the paper. 
Fig. 2: Flow Model around the catamaran treated here 

2.2     Green's Theorem 

Green's theorem may be utilized to get an expression 

of the velocity potential.We have seen that the body 
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boundary condition and the wake condition is now to 
be imposed at y = 0 plane. Let us denote surfaces of 
the right side and left side demihull by fi,,0 and Lli0 and 
subsequent vortex sheets of the both hulls by Rw± and 
L„± respectively. The theorem reads 

47T<E> 

+ 

// 

IL +L„± 

-,dG0   a*' 
5> — ^— CJ0 on       on 

',dG0     to
1    " $ _ — o-o 

on       on 

ds 

ds 

Here subscripts i, o denote inner and outer hull surface 
of each demihull. The integration is made over the both 
sides of the centerplane( Ä,,0, £,,„) and trailing vortex 
sheets of the two hulls extending to the infinity. ( Rw± 
, Lw± ) Integration over the other boundar vanishes 
because of the conditions there. 

Go denotes velocity potential of unit strength source 
distribution and can be written in MichelPs type of ex- 

pression [3] as 

2     roc    [<x eim(x-x')-\y-y'\\ 
G0(x,y,x:x',y',z') = — /      . . 

im(x-x')-\y-y'\\/m2 +n* 

2 

x cos(nz + e) cos(nz' + e)dndm 

Jo.;     L\    Kim) (m) 
(m)dr, 

rat ra3        «0    e   n 

«{/    +/, +/, }^K 

eiTn{x-x') + {z + z')D'2(rn)-x<.p\y-y'\K{rn)(]Lrn (8) 

vhere 

D2(m) = (m + v/Vf/K1, 

K(m) = ,J\m> - D*(m)\, 

z = tan-1 (-D2{m)/n) , 

2{i} 
,-1 - 2Q =F \/l + 4ft 

a{3} - K 
,1-20^71-4ft 

2 
K' = ^,   Q = vV/g, 

1,       for 02 < m < 00 
-1,       for —00 < m < a[. 

In order to limit the integration to finite region, the 
acceleration potential^) is introduced as 

V J—oo 
(9) 

Substitute this relation into (7) and make use of re- 

lation: 

f00 f{m)dm r dx' r   e-
i^'-x)<l>{X)dXeim^x-x') 

J—oo J—oo J—oo 

iw    f(m)dm j 
oc   e-ira(l'-i) 

m + v/V 
4>{x')dx'    (10) 

Since phi(x) vanishes outside of the hull surface, we 
may restric integgration on the hull surfaces. Thus we 

have 

.,dG-,     0$' 
on       on 

0G2     0$' 
<P -z H-t7o on       on 

ds 

ds (11) 

_/ ..' -i\ G7{x,y,x;x ,y ,z   
2J    /•»    roo jimti-i'l-lryV"1'*"1 

VTTJ-OCJO    \/m2 + n2{m + v/V] 
x cos(nz + e) cos{nz' + e)dndm 

2i    if'7     fa'"}D^ 
V^V.j     M 'Kim) 
xe,m{x-x')-\y-y,\K(m)+(!:+:')D'l(m)cjrn 

2i      ra'i     [a'i    f°°, (pD{m) 
Vyfr7   J-oc     Ja',       Ja',        K 

+ 

(m) 
xe,m(x-x')-,<r\y-y'\I«,Tn)H: + :')&(rn)dm 

2   /-oo e-\y-v'\\/(^y*^~^x~x"> 

V Jo (v/V)2 + n2 cos nz cos nz'dn. 

(12) 
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By definition, the <b'n is symmetric to the y = 0 plane. 
However, the antisymmetric flow around the demi-hull 
exists even if the motion is symmtric because of the 
interaction of the hulls, Thus the pressure on the both 
sides on a demihull is not equal each other. 

*'(/.+ ) f Wo-)- 

Since it is sufficient to concider one of the two demihulls 
due to symmetry. The right side demihull (y > 0) is to 
be considered in the following. 

In the outer side of the hull ,i.e. for fo<y 

4ir$   =   JJs{ti-M^-(x,y,z:x',f0,z')dx'dz' 

- 2j J&nGo{x,y,z:x',f0,z')dx'dz' 

+ J Jiti -<t>'o)-Qr(x'y>z '■x''~f°<z')dx'dz' 

- 2jjf^G0(i,y,z:i',-/o,z')(iiW,    (13) 



where S denotes the projection of the centerplane to 

the demihull. 

The y component of the perturbed velocity there is 

given by 

4*—|„=A + 

- 2 /  / w—°-(xJ0+,z : x, f0,z)dx'dz' 

+ J Jw - w J^(*> /o+.z ■ x'> -/o.z')^'^' 

- 2 | Jsw^(x,f0+,z:x',-fo,z')dx'dz'. 

(14) 

Likeswise, on the inner side of the hull( 0 < y < /o), 

5$. 

dG, 21 Jswir(x'fo~,z: x'^^z">dx'dz' 

I Isw - ^]ir^{x' /o~z '■x'' ~fo' z')dx'dz' 
_     9 

,ÖG0 

/s      dy 

It is to be noted that 

dGo, 
dy 

d2Go 

f0-,z:x',-fo,z')dx'dz'.     (15) 

l.v = /o + 
9Go, 
3y ly=/o- 

  _    92G2 
(16) 

Thus, taking symmetric relation between the outer 

and inner side, there exists two distinct types of equa- 

tions. One is equation for symmetric components. It is 

obtained by taking difference between (14) and (15) as, 

— = - — j j w-^-{x,f0,z : x',f0,z')dx'dz'.   (17) 

The equation shows the potential for symmetric com- 

ponent is determined solely by the body boundary value 

as is the case monohull problem. There is no need for 

solving integral equation. This is the main feature of 

the thin ship theory. It is easy to verfy that the solution 

of the above equation is 

$ — / [ wG0(x,fo,z : x',f0,z')dx'dz'.       (18) 

No consideration is necessary to interaction effects 

as far as first, order force in the vertical component is 

concerned.  The interaction plays dominant role in the 

horizontal force calculation as the next formula shows. 

If we add up (14)+(15), equation for antisymmetric 

component is derived as, 

/    (<f>o — <t>i)G2yy'{x, /o, z : x', /o, z')dx'dz' 

+ / / (& — 4>o)G2yy'{x, /o, z : x\ —f0, z')dx'dz' 

= 2 I  / wGoy(x, /o, 2 : x', -f0, z')dx'dz'. 

(19) 

This is an integral equation for the pressure distri- 

bution on the hull surface. The equation shows that 

the disturbance caused by one of hulls denoted by the 

righthand side term generates unsteady circulatory flow 

field around the other hull. This is one example of so 

called gust problem in the field of unsteady lifting sur- 

face problem, The kernel is much complicated since sur- 

face wave effect has to be taken into account though. 

3    Symmetric Flow Problem 

The velocity potential for the symmetric flow field 

can be written by Substituting (8) into G0 of (18), 

1 P ft /*' 

, = *e-//^20[--£/o ^(rrr/Xy + x2 
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Xg-lvlxAW-'O'+n' + i^Or-x') CQS(n , + £) cos(n ,' + £)<fn 

_/  r'2 +   r'A ] ^"(m)    (z + .-')Ja(m)-|B|A-(m)+.m(r-r') J iJ<   +U ' K(m)e am 

J—<x       Ja'2 Ja\ A (T71) 

xe(2+;')DH™)-,<FW<(Tn)+,m(x-x')dm j dx'dzi_ (20) 

Here expression is changed in the form of double in- 

tegral term of (20). Integration with repsect to m is re- 

placed by summation. It is for ease of numerical evalua- 

tion. The change will be justified by the fact that, if we 

take the longitudinal domain length (.Y) lomg enough 

to cover all the appreciable fluid motion, finite Fourier 

series on that domain can approximate fouier tranform 

with good accuracy. This is closer to original Michell's 

approach since he devised the formula starting finite 

sum of the Fourier series. 

3.1     Hydro dynamic Forces 

It is easy to calculate hydrodymnamic Forces and 

moments of vertical motion if pressure distribution is 

known over the demihull.  Within a framework of thin 



ship theory, they are given by 

F = -2Jh%{l}dxdz- 
p is pressure related to the velocity potential as 

(21) 

P=(A + VA)*. (22) 

It is convenient to introduce dimensionless variables 

for further discussion as follows 

Z = x/l,       v = y/b,    C = z/T, 

p — ml,    x = n'i 

u=vl/V,    K = K'l = gl/V2, 

E = X/irl,   D2
{P) = {P + W)

2
/K 

K(p) = -J\D*(p)-p2\ 

8 = 811, 

01,2,3,4 = al,2,3,r- 

If we integrate the potential (20)  after substitut- 

ing each corresponding values into w(x',z'), radiation 

forces(moments) for heaving and pitching (Fee* Fss 

s Fes-, Fse) are obtained respectively. 

Radiation Force for heaving, after some algebraic ma- 

nipulation is given by 

Fu = ^§^ [Fsss sin ut + FSsc cos ut],        (23) 
TTT2 

vhere 

FA, 
His + H2

SS    j 

^l=.y + X2 

<+0%$+-     (M> 
and 

/■«i       f'3      /■«>, Ci + Si , 

(25) 

Likewise, radiation moment for pitching is written as 

Fee = 2p9l'by [Fees sin ut + Feec cos ut],        (26) 
■KT- 

vhere 

Fu 
*-.£?„ Jo 

f~   H2
ce + H2 

° Si1 

r<*      f^C2 + S2 

'c»TJJ se 

yWH)2 + r 
■dX 

-</M:>^ (27) 

and 

F$ec = (-f+/" + f>TF 
Co   +  bo 

iß) 
dp. 

(28) 

Coupling forces(moment) between heaving and pitch- 

ing may be also derived by integration. For example, 

pitching moment due to heaving(Fw) can be calculated 

by 

Fes = ^S^ [Fess sin ut + Fesc cos ut),        (29) 
TTT2 

vhere 

= -4E/ °° {HecHlc + HesHss) 

yw^ 2 + X2 
^X 

.{.r + r+n(^ 
I      J-00     Ja7        Ja,    ) A (ju) 

<f/i, 

(30) 

and 

A     ~    rlHssHtc-HtcHss) 

raj        rai -l 

Ja,        Ja>   J A'(/U) 
+ 

J(rß)2 + X2 

« , pi (S,Cf - C»^ 

-r+r+n •>     /-«I (CSC* + SSS*) 

A-(M) 
(fjli. 

(31) 

Heaving force ( Fse) due to pitching can be obtained 

without calculation since it is related to Fes by following 

relation 

Fiel _ Fes 

e  ~ 8 ' 
(32) 

These sets of formulas are all needed to calculate lin- 

ear forces and moments in the vertical motion. 

In the above formulas Hull form characteriastics func- 

tion is used of which definition is as follows. Subscripts 

denote corresponding modes, e.g. 5 for heaving and 9 

for pitching. H functions are used in double integral 

terms and C, S's are used in single integral terms. If we 

denote hull form by rj(£, C) defined as 

v(Z,Q = M,TQ/b, 

then 

Esc + iHss = D( J) |_y_° -£ cos(xC + *K'£/S#<<C, 

(33) 
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(34) 
C, + iSt = D2(ß) E E f*^*^(/^)Ät(D

2)     (40) 

c+.-5,=fiV) /_;/_; |,^w« cfe^C     (35) 

where 

1 /° ^£e-D2(M)c+.^ rffdC,     (36) 

X = AX,     D2 = \D\ 

(| + ^)2 

tane = — - 
«X 

3.2     Arbitray Hull Form 

All the hydrodynamic forces can be determined if hull 

form functions are specified. It is covenient to introduce 

finite Fourier series as a mean to approximatearbitrary 

hull form. By doing so, analytical integration can be 

made if possible and forces can be expressed by com- 

bination of functions like Bessels Webers and so on, of 

which behavior is well known. 

N   -j 

C9 + iSe = D2(n) E E WkPtAfWD)     (41) 

?her 

PsA=) = TT^- E t""1 sinna,{ J„_,( J) + J,l+1(^)} ^s3{-) 
N + 1 „fi 

(42) 

P«i(=) = -0/Jj.U £ l" ^ naj{ J"-2( J)-J"+2(^)} 2(N + 1) nti 
(43) 

Rk(X) = (sin cÄ(x) - cos £<?*(*)) (44) 

A(x) = -77^-E(-l)^1(2/)sm2^sin/ÄJ,(x) 

(45) 

JV   ^   AT    A' h 

x sin ncry sin //?* sin na sin Iß,        (37) 

/TT 
<3*(x) = -7^-rE(-1)' (20«nJ-siniAB,(x) 

A + 1 ,=1 I 
(46) 

whore 

?    = 

Sk     = 

cos a,   £ = — cos /? 
irj irk 

N + 1'   A = A' + l 

1,       for fc ^ ^ 
for fc i 

2' 
Jf + I 

2 

It is known that n coicide given values r)jk at (a_,,Ä). 

When the above formula is. substituted into 

Hg,Hs,Cg,Sg and integration with respect to a,ß is 

made, The hull form characteristic fuctions are ex- 

pressed by combination of Bessel, Weber and Struve 

functions and so on, as shown, 

H6C + iHiS = t)Q E E WkPiiQMx)    (38) 

Hec + iHes = D{=) E £ <*»?>*fty(=)Ä*(x)    (39) 

* , * 2*    A,  .   ..    .  2/x^(-l)Mr 
Ä*(2)=7rT-rL/sin/ÄSln     T^        92rrl O     - . 7ir..| 

z   r=0        -     7 ' A'+l,^ 

/9Nr 2r+1r' 
{/r+1(z)-Lr+1(z)}- 

5r(2r+l)! 

(47) 

Here Ji(z) is Bessel function, J5;(^) is Weber function, 

Ir(z) is modified Bessel function and LT{z) is modified 

Struve function and AT is defined by 

Ar = l[[P - (2k - l)%      A0 = l (48) 

Now it is clear that, once the hull form is specified by 

Vjk, Hc.s and C, S are determined and then calculation 

of Fc,s's is straight forward. 

3.3      Numerical Example 

Let us discuss some of the characteristics of the 

present formulation by taking numerical examples. Be- 

fore doing so, it is worh while to note how to remove 
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singularity in the single integration terms of the force 

evaluation for accurate numerical integration. The in- 

tegrands have square root singularity at the edges. This 

singular behavior can be removed easily by change ofin- 

tegration variables. The change of variable is made as 

follows. Take a case with sigular points at the edges 

r F{t) 
=dt. 

J(t ~ a)(b - t) 

Then by changing \i to 8 defined as follows 

b — a     b + a 
i = —+     2 

-COSÖ. 

(49) 

(5D) 

The singular integral can be reduced to regular inte- 

gral over (—TT/2, TT/2). 

Likewise, when integration of the next type is to be 

made over the semi-infinite region like 

/. 

F(t) 

°    7(t ~a)(t- b) 
dt, (51) 

then, by changing variables from t to r defined as fol 

(52) 
b - a     b+ a   , 

t = — + -r— VT2 + 1, 
2 2 

The integration  can  be  made  regular  defined  over 

(O.oo). 
Now characteristics of the present formula will be dis- 

cused by taking numerical example. Let us take a cata- 

maran ship. The hull shape is assumed to be that of 

conventional container ship (S-175). Parameters are as 

follows 

F„ = 0.5, K.  =   1. ui = 1.75,    Ü = 0.875. 

Let. us examine characteristics of integrands for verti- 

cal motion mode first. Integrand of the double integral 

is shown in Fig.3. The curve show integrands after £- 

integration. The line corresponds to heaving mode. It 

is seen that the integrand is limited in the very narrow 

range near the origin and thus is easy to evaluate nu- 

merically. Next integrands appearing in single integral 

terms are shown in Fig. 4 through 5. All the inte- 

grands are shown after change of variables mentioned 

above. Since Q > 1/4, a3 and a3 can not exists, only 

integations related a2 and a2 can exist. Fig. 4 shows 

that of finite integral between cij and a2. The abscissa 

8 is related the original variable by abovementioned re- 

lation. It is seen that the change is smooth and easy to 

evaluate. 

Fig. 5 shows integrands in semi-infinite integral 

terms, i.e.(-co,o.j) and (a2,oo).    By solid line, Both 

0.8   - 

0.6   ■ l\ 
0.4   • 

\ 

\ 
0.2   - 1 \ 

(1 

\ 
V 

-30 -20 -10 0 lu ^ JU 

Fig.   3:   Integrand of Double Integral vs.   r, heaving 

mode, Fn = 0.5, LU = 1.75, Q = 0.875 

5   ■ 

/ 
4    - 

/ 
3   ■ / 

/ 
2   - / / 

/ 
I   - 

^\^- I      J 
Fig.     4:   Integrand of {a^a^) Integral,   Fn 

u = 1.75, Q = 0.875 

=   0.5, 

ingegrands converges very rapidly enough easy numer- 

ical evaluation. 

Hydrodynamic forces by present method is shown in 

Fig. 6 and 7. Radiation forces for heaving and pitching 

are shown in these figures together with strip method 

calculation. It is seen that present method give larger 

estimation than strip method does. Comparison with 

experimented results was not possible since those at 

high speed range were not at hand. It would be future 

task. 

4       Antisymmetric Flow Prob- 
lem 

4.1      Integral Equation 

The integral equation presented in the preceeding sec- 

tion is essentially unsteady lifting surface equation with 

surface wave effect as an extra term. Present equation 

is unique in the form that the kernel is expressed by 

Fourier integral. 
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Fig. 5: Integrand of (a2, oo) by solid line, integrand of 

(—oo, aj) integral dashed line, variable being changed 

from ß to r, Fn = 0.5, w = 1.75, Q = 0.875 

O  FhhS    +  FhPC     o   FW£    &  FhK: 

Fig. 6: Hydrodynamic Forces in Heaving, Q;Fsss, 

&;Fisc, a;F«5(Strip Method), +;JF«c(StriP Method) 

, Fn = 0.5, w = 1.75, n = 0.875 

2 
A/i 

□  FpoS    +  FocC    e  FppS    £  FcpC 

Fig. 7: Hydrodynamic Forces in Pitching, Q;Fus, 

A;fMC, D;fws(Strip Method), +;Fwc(Strip Method) 

,Fn= 0.5, Lu = 1.74, Q = 0.87 

£(?, 0 = / / n(f, C')M(e, C; ?, 0<W-     (53) 

Ü? shows disturbance to one demihull caused by the 

other demihull and vice versa. 

= /     dp I    e-2^"+x cos{xC + ()dX 
7T J—oo JO 

x   £ £ «,(?, C,)e'"(f-t') cos(xC' + t)d?dC 

f w{^CY^~i'Hl)'{W')dE,'dC 

J—oo       J ai Jo-i   J 

w(^,C,)ei""~£')+£>,(<+C,)^C       (54) 

-   2 

/ 

where 

»To = fo/l 

The other symbols are defined as the last section. 

The first and sedond terms represent local wave ef- 

fects and the third term represents diverging wave com- 

ponent. 

The kernel funtion(M) has a form 

M 
IX J-oo JO ß + U> 

xe'-((-(')cos(xC + f) cos(^C' + e)d\dß 

+   -=1       +       \D-K-Y(K(n)) 

xetM-V)+D\i+ndß 

-  -7=  /   +/   +/   \n-K- 

xY{kpK(ti))e'M-i')+D7(i+<')di.t 

where 

xe  ""((  f'cosxCcosxC'^X 

7(6) ^-e^"»6. 

(55) 

The first and forth terms represent main contribution 

as a lifting surface. The second and the third terms 

represent free surface wave effects. 

4.2     Numerical Example 

In order to solve the equation, the numerical scheme 

has to be be adopted.     The equation  is essentially 
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unsteady lifting surface equation for low aspect ratio 

wings. Thus experiences in the fields of the lifting sur- 

face equation problem may be made use of. Following 

the typical approach of the aerofoil theory, let the pres- 

sure distribution ( II ) be given as a finite series of the 

trigonometric functions (Birnbaum series) like 

Il{a,,8) = tan-J2ffn cos na sin ß (56) 
^ n=0 

where a and ß is defined as has been made in the 

former section as 

? cos a, C = - cos ß 

This presentation denotes that the pressure has 

square root singularity at the leading edge(FP) and be- 

comes null at the trailing edge to satisfy Kutta condi- 

tion. Elliptic loading variation is assumed depthwise. 

The most variation in the vertical direction is taken 

based on the fact draft length ratio is very small for 

orgdinary hull configuration. 

At the same time, approximation is introduced in 

the integration with respect to m of double integra- 

tion terms. Same reasoning applies to this case as in 

the symmetric case except that the region length(E) is 

taken longer taking into account of the flow property of 

the lifting problem. 
Substitute (4.2) into (53) and integrate with respect 

to a1 and ß' , then we have as a coefficient for CT„ 

M, ™-kU jar- + x2 

Y(J(r=y + X2) l + cj 

x e,i(T,l(^)S1(x)cos(xC + ()dx 

+ *{r+r\D.R.Y(K) 

x e"-i+D2(Tn(n)S2(D
2)dii 

- MF+C+tte'»-R-Y{R) 

x e^^'<Tn(/i)S2(P
2)d/i 

- 2jTVx2 + ^(V
/X2 + ^) 

x c-iw{r„(-w)Si(x)|«=ocosxCdx 

(57) 

In the scheme of numerical evaluation , Simplification 

will be made to reduce ( dependence by making average 

of the depthwise with elliptic loading as a weighting 

function. Thus only longitudinal variation remains to 

be determined by the equation. [6] 

Let us multiply sin ß to (54) and (55) and integration 

with respect to ß is made. Then we have 

Jo = + Ul V    Z. Mn(0 = 4r  E 

x   e'^Tn(=)S-(X )dX 

x   e^Tn(ß)Sl(D2W 

x    e'»tTn(ß)S2(D2)dß 

)2 + X 

2 [°° ,Jx2 + "2Y(Jx2 + "2) 
x    e ^T„(-uü)S2(x)U=0dX 

(58) 

Same procedure will be applied to E{£, () to give us 

with 

x e'^S2(x)dx 

- 2{£2+/o
O<}e-2"0;?(u)(C-*S) 

x e,ßiS2(D2)diJ 

_ 2 {r + r + r\ e-^^^c - «s) 
x e'rt Sl{D2)dß 

(59) 

Here Si, So and Tn are defined as follows 

51(\') = ^-[{^o(x) + ^(x)}cos£ 

nonumber 

-{E0(X) + E,(x)}s]nc} 

S2(X) = ^{h(x) - L^x)} 

These formulas have been composed of functions 

whose behaviors are well known. 

To determine an numerically, a linear equation has to 

be set up. Easiest way is collocation method. A set of 

control point is selected like 

TTJ 

Then N set of equations is set for determining N un- 

known an at each points. 

Y,°nMn(tj) = £(£,)    (j=hN) (60) 
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The components of the matrix may be evaluated nu- 

merically without much difficulty since the functions 

apprearing there are expected to behave well. 

4.3      Numerical Example 

Let us discuss validity of the present method to esti- 

mate side force and yawing moment acting on demihulls 

by taking numerical example. The same model is taken 

as in the symmetric case. Parameters concerning mo- 

tion is the same as the precedding section. Only heav- 

ing mode is treated. Side force and yawing moment(of 

a demihull) is integrating by integrating pressure distri- 

bution n over the demihull surface, side force can be 

calculated as 

Fv 
['   f° 

= P /    /    (0o ~ <f>i)dxd 

= pU2lTJ1 J°{TLdtdC 

= PU2lTj(a0 - lffl). (61) 

Yawing moment for each demihull is given as 

M.      = p       /    (4>0-<f>i)xdxdz 

PU2l2T f J°(TldZd( 

-pU2l2T—(a0 — o-i + -<T2) (62) 

First behavior of integrands is shown by taking 

G2(5i) of (59). Fig. 8 shows integrand of the double 

integration in there to r/E + u>. Solid line and dashoed 

line denote real and imaginary part respectively. 

It is seen that the integrand is limited near r/E + 

w = 0. Fig. 9, 10 and Fig. 11 show how the single 

integral term in the semi infinite region behave to r of 

which definition is geven in the former section. The 

same variable conversion has been made prior to these 

calculation although the integration is relugar in this 

case. 
In the integration of finite region, the integral varies 

smoothly. 
But integrands of semi-infinite region make oscilla- 

tory motion as are shown in Fig. 10 and Fig. 11. Care- 

ful selection of increment of the numerical integration 

is necessary. 
Fig. 12 shows magnitudes of an's of the pressure dis- 

tribution and how they behave as the number of terms 

included, N is increased. It is seen that higher order 

term diminished rapidly and they behave fairly well. 

Fig. 13 shows how the side force and yawing moment 

converge with number of term, N. It is clear that the 

."' '. 

\ 

r/E+t. 

Fig. 8: Integrand Double Integral in G2(£;) to r/=. + u, 

solid line for real part, dashed line for imaginary part 

of integrand, Fn = 0.5, u = 1.75, fi = 0.875 

Fig. 9: Integrand of (ai,a2) Integral in G2(£,), 

Fn = 0.5, w= 1.75, fi = 0.875 

force and moment reach stable value when N excedds 

cctain limit, say N = 9. 

Fig. 14 shows how amplitude of the forces behaves to 

reduced frequency of motion, u. It is seen that both 

the side force and moment diminish as the frequency ui 

increses. 

Fig. 15 shows an example of presure distribution over 

the domihull. The higher pressure zone near the AP is 

due to square root singularity in the pressure distribu- 

tion. It is seen that the pressure is high in the forepart 

and becomes low in the aftpart of the hull. 

5     Conclusion 

Discussion have been made on how to model unsteady 

flow field around a catamaran ship and to present a new 

calculation method of hydrodynamic forces on the ship 

in vertical motion in still water. Thin ship assump- 

tion was introduced to linearize the problem. It was 

shown then that the problem can be split, into two prob- 

lems, i.e. symmetric problem and antisymmetric prob- 

lem for each demihull. It was shown that the symmetric 
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Fig. 10: Integrand of (a2,oo) in G2(£>). Real part( 

solid line),Imaginary part(dashed line). Variable being 

changed to r, Fn = 0.5, w = 1.75, Q = 0.875 

Fig. 13: Variation of Hydrodynamic Forces to N,ü;Side 

Force +;Moment around the midship of the demihull, 

Fn = 0.5, u = 1.75, Q = 0.875 

Fig. 11: Integrand of (—oo, aj) G2{^3)- Real part( 

solid line),Imaginary part(dashed line). Variable being 

changed to r, Fn = 0.5, w = 1.75, Q = 0.875 

Fig. 14: Hydrodynamic Forces in Heaving vs. ui, 

D;Side Force +;Yawing Moment about the midship of 

the demihull, , Fn = 0.5, N=10 

1.5 

xlO"3 

1.0 

0.5 
C, 

0 

-0.5 

-1.0 ■ 

-1.5- 

■re —  

\ 

Fig. 12: Variation of Coefficients of Doulet Distribu- 

tion to N,D;N=13,+;N=11 0;N=9,A;N=7. Fn = 0.5, 

w= 1.75, n = 0.875 

Fig. 15: Pressure Distribution in Heaving 

0;Amplitude +;Real part, A;Imaginary part, 

Fn = 0.5, w = 1.75, Ü = 0.S75, N=10 
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problem is identical with the single hull problem and [7] von       Kärmän, T.       "Neue        Darstellung 

thus the solution and forces and moments in vertical der Tragflügeltheorie", ZAMM, Band 15, Heft 1, 

direction are written explicitly without difficulty.  The Feb., 1935, pp56-61. 

antisymmetric flow arises due to interaction between 

demihulls even if the ship is making symmetric motion. 

The antisymmetric flow causes side force acting between 

demihulls. The integral equation of unsteady lifting sur- 

face to determine the flow was presented and solved 

numerically. The paper discussed the numerical char- 

acteristics of the method and solutions and comapred 

calculated horizontal forces and moments acting on the 

demihulls with other calculation. 
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DISCUSSION 

R. Yeung 
University of California at Berkeley, USA 

I applaud the author's efforts of carrying through 
all analyses of this linearized problem and its 
successful implementation for design purposes. The 
decomposition to a thickness and a lifting problem 
used here requires a thin-body assumption. In 
traditional treatment of ship motion, this thin-body 
assumption is not needed and the body boundary 
condition is satisfied at the equilibrium hull surface 
rather than the "center-plane" of the hull(s). Such an 
additional "linearization" has been found to be 
inadequate for a single hull (Newman, 1959, J. Ship 
Res); hence, leading to the later development of ship 
theory. Inclusion of surface distribution on both 
sides of the demi-hull obviously complicates the 
analysis, but may well be needed if the author desires 
a realistic prediction of catamaran motion, even only 
for design evaluation purposes. Can the author 
comment on the adequacy of the thin-ship 
approximation used here? 

AUTHOR'S REPLY 

The author thanks Dr. Yeung's considerate 
comment. I would not argue that the thin-ship 
assumption adopted here can be applied on any kind 
of hull form or flow conditions since any kind of 
approximation has its field of validity. There are 
certain kinds of hull forms for high-speed vehicles 
which can be thought to have thin hull compared to 
conventional single-hull form. I expect the present 
method can give us good explanation of the flow field 
and forces on such kinds of flows, while keeping its 
merit of compact formulation of forces and clear 
insights on the flow. 

since the terms of the surface integral equation over 
the trailing vortex sheets of the twin hulls are thus 
avoided. In this light, Dr. Watanabe deserves our 
strong recognition for this contribution of great 
significance. 

For practical application, it is of interest to know 
if this method is so effective that the resulting savings 
of computational effort can be substantial. Further, 
would Dr. Watanabe comment if this method can be 
readily adapted to calculate solutions of 
hydrodynamic responses to unsteady motions of 
catamarans which may have small asymmetrical 
modes of motion such as yawing and rolling 
oscillations of small amplitudes. 

AUTHOR'S REPLY 

The author acknowledges Dr. Wu's long time 
contribution to our field and thanks for such an 
expert's comment to my paper. There are two points 
to which I should respond. The first point is about 
computation time. It only takes several minutes to 
calculate all the force components treated here with 
a modest size of work station and can be reduced 
further if integrations are optimized. Therefore, I 
think this CPU time is far shorter than any other 
method in this respect. As to the possibility to apply 
other modes of motion like rolling, sway, and 
yawing, we are working on those problems presently 
and would like to report it in the near future. 

DISCUSSION 

T. Wu 
California Institute of Technology, USA 

In this paper, Dr. Watanabe makes a combined 
use of the velocity potential and acceleration potential 
in evaluating the hydrodynamic responses to high- 
speed catamaran ships undergoing steady motions 
which are symmetrical about the ship's centerplane. 
This appears to be a refreshingly innovative approach 
to achieving a resolution of the challenging problem 
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Model Testing of an Optimally Designed Propeller 
With Two-Sided Shifted End Plates on the Blades 

K. de Jong1,2, J. Sparenberg2, J. Falcäo de Campos3,4, W. van Gent4 

('Groningen Propeller Technology, The Netherlands; 2University of 
Groningen, The Netherlands; 3Maritime Research Institute Netherlands, 

The Netherlands; "Instituto Superior Tecnico, Portugal) 

SUMMARY 

Model tests are carried out to investigate the 
hydrodynamic behaviour of an unconventional screw 
propeller with end plates. The end plate for each blade 
consists of two parts, one part attached to the 
pressure side of the bladetip, the other to the suction 
side. At the junction the end plate parts are 
positioned in a relatively shifted way with respect to 
each other. The propeller was optimized with respect to 
uniform inflow using variational calculus and was 
designed by lifting-surface theory. Open water 
experiments in a deep water towing tank are performed 
with the end plate propeller and with a state-of-the- 
art conventional propeller, used for reference. For the 
unconventional propeller also the case when the end 
plates were not yet fitted to the blades, is examined. 
Cavitation tests have been carried out in a cavitation 
tunnel for uniform inflow. The experimental results 
clearly reveal that the unconventional propeller with 
end plates meets some important design objectives, 
including the objective that a gain in propulsion 
efficiency can be achieved. Furthermore the propeller 
is free of cavitation within considerable margins 
around realistic levels of pressure and loading. 

1. INTRODUCTION 

The propeller investigated in this paper is a propeller 
with end plates. Its design is based upon an 
optimization method using variational calculus and upon 
a lifting-surface theory. 

In the past a propeller with end plates according 
to such an optimization and design philosophy has 
already been manufactured and tested, see [1,2]. 
Extensions of the optimization theory were described in 
[3,4,5]. The implications of these extended 
optimization principles on the design method were 
reported in [6]. For a more detailed presentation of 
the theoretical considerations we refer to [7]. 

A concrete outcome of the theory of [7] is a 
propeller that is different from the one considered in 
[1,2].   A   striking   difference  is  that  the  new  propeller 

has two-sided shifted end plates on the blades, whereas 
the propeller of [1,2] has two-sided symmetrically 
placed end plates. In the present paper we will discuss 
model testing of the propeller with the two-sided 
shifted end plates. 

In Section 2 some particulars describing the 
geometry of the considered propellers used for testing 
are given. For the propeller with end plates we discuss 
shortly the geometry of the end plates and some of the 
underlying ideas. 

In Section 3 propulsion characteristics in uniform 
onset flow, determined in open water model scale 
experiments, are presented. The propeller with end 
plates and an existing propeller model without end 
plates used for reference are considered. Both 
propellers have the same number of blades, equal 
diameter and should deliver equal thrust at a given 
advance speed. The propeller with end plates may 
operate at a lower rotation rate following from the 
optimization process. The reference propeller has been 
designed using state-of-the-art industrial practice. It 
has been built at full scale, and installed on a ship 
on which it operated satisfactory. The tests have been 
carried out in a towing tank. 

For comparative purpose the end plate propeller 
was also tested when the end plates were not yet fitted 
to the blades. Evidently the so obtained propeller 
without end plates is not an optimum propeller 
according to the optimization and design theory. 
However, the extra test does give information about the 
influence of the end plates. A practical evaluation of 
the results is given. Also the propeller 
characteristics are compared with those of the 
Wageningen B-screw series. For the considered 
propellers without end plates a hydrodynamic analysis 
is carried out by means of the computer program ANPRO, 
based upon lifting-surface theory. 

An additional verification of the hydrodynamic 
design principles is given in Section 4, where 
different kinds of cavitation are observed in a 
cavitation tunnel in uniform flow. It appears that in 
the conditions similar to full scale ship propulsion no 
cavitation is observed. Furthermore under operational 
conditions there have been shown to exist considerable 
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margins against cavitation for higher and lower 
loadings. For the purpose of flow vizualisation, the 
cavitational behaviour at considerable lower pressure 
has been observed. It turns out that some of the design 
objectives of the propeller with end plates are and 
others are not completely satisfied. 

Finally    in    Section    5,    on    the    basis    of    the 
experimental results, we state conclusions. 

NOMENCLATURE: 

AJA0 expanded blade area ratio 

ß- reference pitch angle 

CD: drag coefficient 

\jf\ thrust coefficient  =  (8T)/(pirD2V2) 

D: propeller diameter 

d: hub diameter 

77: propeller efficiency  =  (JKT)/(2TTKQ) 

<t>: pitch angle 

Pi- circulation along blades and 

end plates, (i = b,p,s) 

J: advance coefficient  = V/(nD) 

Kq1'. thrust coefficient  = T/{pn D ) 

KQ: torque coefficient = Q/(pn D ) 

A: scale factor full scale versus 

model scale 

I.E.: leading edge 

V, chordlines of end plate, 

(i = p,s; j = l,...,m) 

Nm: rotation rate in open water experiments 

n: design rotation rate of propeller 

Pa- atmospheric pressure at water surface 

Pw- water column pressure 

Pv- vapour pressure 

PD- delivered power 

PID: pitch ratio of B-series propellers 

Q: torque 

P- fluid density 

r: radial position of a blade section 

R: maximum propeller radius 

Rey. Reynoldsnumber at 0.75 R 

°n- cavitation number 

orPs: spanwise length parameters of end plate 

T: thrust 

T.E.: trailing edge 

Z: number of propeller blades 

2. PARTICULARS OF PROPELLERS 

The tested propellers are designated as follows. The 
propeller with end plates is MARIN No. 6251. Since its 
design is a result of research carried out mainly in 
Groningen, The Netherlands, in this paper we sometimes 
speak of propeller No. 6251 as the Groningen Propeller. 
A photograph of this model propeller is shown in 
Figure 1. When referred to its status when the end 
plates are not yet fitted tjo. the blades we write 
propeller No. 6251 (excl.epl). ' The reference propeller 
model is MARIN No. 5869. The main data of these 
propellers are given in Table 1, while more details of 
the geometry can be seen in Figures 2 and 3. The 
intended full scale propeller has a diameter of 7.9 m, 
hence the length scale ratio of the propeller is 
1 : 32.5. 

Table 1. Some design data of the Groningen Propeller 
(MARIN No. 6251) and the reference propeller (MARIN 
No. 5869), both on model scale; scale factor A = 32.5. 

No.  6251 No. 5869 

n 4.85 Hz 7.60 Hz 

Ae/A0 0.483 0.517 

J 0.624 0.399 

K.f 0.425 0.173 

D 243.08 mm 

d/D 0.178 

V 0.736 ml sec 

T 35.77 N 

Z 4 

P 1025 kg/m 

Because for the description of the geometry of the 
end plates there exists no commonly used notation, we 
now give a more precise impression of the shapes of the 
end plates of propeller No. 6251. 

In Figure 4 for propeller No. 6251 the radially 
extrapolated tipprofile of the screwblade together with 
planforms of the end plate in the developed circular 
cylinder of diameter D are depicted. The end plate 
planform consists of two parts, one part in the 
foremost region of the screwblade, the anterior end 
plate part, the other part in the aftermost region, the 
posterior end plate part. As can be seen, in the case 
of Figure 4 the anterior end plate part is located at 
the suction side of the screwblade and the posterior 
end plate part at the pressure side. Along a number of 

' chordlines denoted by Vp and Vs, where the subscripts p 
and 5 refer to pressure and suction side and with 
j=l,2,..., the profiles as depicted in Figure 5 are 
positioned. These profiles have to be interpreted as 
radial distances towards the. smaller radii, measured 
from the chordlines 1\, (i=p,s), which are lying in the 
circular cylinder of diameter D. 

We now shortly recapitulate from [7] some 
underlying principles that led to the nontrivial shapes 
of the two-sided shifted end plate. That the end plate 
planforms are taken as part of a circular cylinder 
through   the   bladetips,   was   motivated   by   the  results 
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Figure 1. Groningen Propeller with two-sided shifted end plates, (MARIN No. 6251). 

pitch  (mm) 

1.000 
0.964 

0.908 
0.853 

0.797 

(R=119.12 mm) 

Figure 2. Blade geometry of propeller No. 6251. 
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16.57 

1.00 
0.95 

0.25 
0.20 

r/R 

(R=121.54 mm) 

Figure 3. Blade geometry of reference propeller No. 5869. 

propeller axis nose-tail line 

Figure 4. Propeller No. 6251; tipprofile of the blade, 
extrapolated to the cylinder with diameter D, and 
developed planforms Pp and Ps of the end plate parts; 
7; (i = p,s; j = l,...,m) are deformed chordlines along 
which the end plate profiles of Fig. 5 are positioned. 

<7p = 0.375 ati. 

— a. = 0.375 a. 

a, = 0.125 a. 

I.E., T.E., 

a, = 0.000 trlt 

«7,» 0.125 c-,.. 

Cj = 0.250 a, 

0^ = 0.375 i7J| 

o\, = 0.500 <7, 

<?,, = 0.525 ey 

(7, = 0.750 a3 

c\, = 0.375 £7, 

73= 1.000(7,, 

Figure 5. Propeller No. 6251; profiles at different 
spanwise stages of both end plate parts, to be located 
along the chords 7; of Fig. 4; 
horizontal lines  : at diameter D. 
curved lines : mean lines of profiles. 
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presented in [3]. Compared with the propeller of [1,2], 
the chordlengths of the end plate are reduced. The 
reduction of chord length is favourable because the end 
plates with their relatively high velocity with respect 
to the water, contribute substantially to the viscous 
energy loss of the propeller. However, the chordlengths 
can not be reduced too much, because in that case the 
danger of cavitation can become too large. Therefore a 
cavitation criterion was applied, that determines the 
chordlengths of the wingsections in connection with 
various section properties, such as lift and thickness 
influence. 

The end plate parts with their roots have to cover 
completely the bladetip, in order to avoid in the 
vortex theory of the propeller the occurrence of a 
concentrated vortex segment at the bladetip. This is 
undesirable when lifting-surface design has to be 
carried out. Also an overlap between the roots of the 
end plate parts appeared necessary in order that on the 
one hand the vorticity can be conveyed smoothly from 
the blade to both end plate parts and that on the other 
hand favourable chordwise pressure jump distributions 
can be prescribed. Leading and trailing edge shapes of 
the end plate parts were chosen in such a way that at 
the thus obtained planforms the corresponding induced • 
velocities do not exhibit unwanted singular behaviour. 

That the anterior end plate part is at the suction 
side of the blade and the posterior part at the 
pressure side, has to do with the fact that for this 
situation the hydrodynamical lift forces cause in the 
blades and end plates lower internal stress levels than. 
in the case when the anterior and posterior parts were , 
positioned the other way round. 

Observing the profiles it can be derived that the 
end plate part at the pressure side of the blade has 
the tendency to produce an "inwash", by which we mean 
that the water just downstream of the end plate part 
for the most part has a velocity component directed 
towards smaller radii. The end plate part at the 
suction side has the tendency to produce an "outwash", 
that is the water just downstream of its trailing edge 
has a velocity component directed mainly towards larger 
radii. The induced inwash and outwash, respectively, 
have a counteracting influence on the tendency of the 
fluid to flow around the tip from pressure to suction 
side (tipvortex), when no end plate would have been 
fitted to the bladetip. This simple and retrospective 
way of looking at the profiles agrees with the 
underlying optimization and design theory which aimed 
for an important part at spreading more evenly the 
trailing vorticity of a propeller by using extra wings 
in the form of the end plates, see [7]. 

That the end plates are two-sided and not 
one-sided is because the splitting of circulation at 
the bladetip into two parts to be conveyed from the 
blade to each end plate part in combination with the 
applied cavitation criterion, makes the surface area of 
the two-sided shifted end plate smaller than the 
surface area belonging to a comparable one-sided end 
plate. Of course this is important for keeping the 
viscous energy loss contribution of the end plates 
within bounds. The spans of the end plate were 
determined by an optimization method that minimized the 
sum of kinetic and viscous energy loss in order to find 
optimum circulation distributions. A number of design 
requirements of propeller No. 6251 were derived from a 
tuning process based upon the reference propeller No. 
5869. The admitted underpressure at the suction sides 
of  blades  and  end  plates  and  the  admitted  maximum 

stresses   in   the  material   are  examples  of  the  design 
requirements. 

The hub and blades of the Groningen Propeller have 
been manufactured at MARIN in a standard manner. The 
outer sections of the blades, about 2 mm radial span, 
to which the end plates are attached, have been 
manufactured separately. The manufacture of the end 
plates required special attention. The shape of the end 
plates could not be described as a series of similar 
wing sections of which only the chord length, maximum 
thickness and camber varied fe/spanwise direction, as 
is mostly the case for the propeller blades. Instead, 
to allow fully for the merits of the theoretical design 
approach, the end plates are considered as hydrofoils 
of a general three-dimensional shape. A geometrical 
data file format suitable for Computer Aided 
Manufacturing has been used. 

3. OPEN WATER TESTS 

For the purpose of a reliable and accurate 
determination of the effect of end plates on the 
propeller performance, a clear specification of the 
test conditions is required. Moreover, tests with the 
different propellers should take place under identical 
circumstances. The open water tests have been carried 
out in the MARIN Deep Water Towing Tank. 

For all final tests one and the same rotation rate 
has been used, that is N^ - 800 RPM. This rotation rate 
has been chosen to be sufficiently high to avoid 
laminar flow effects on the propeller blades and to be 
sufficiently low to measure even the highest propeller 
loadings with one and the same calibrated measuring 
device. A check on the choice of the RPM-value has been 
made by repeating the tests on propeller No. 6251 
(excl.epl.) at Nm = 1000 RPM. The differences in the 
dimensionless thrust and torque coefficients were less 
than 1 percent except at the higher J-values. This is 
considered to be satisfactory. 

Propeller No. 5869 has been used not only as a 
reference on which the design of the Groningen 
Propeller was tuned, see [6,7], but also as an 
experimental reference model during the tests. To check 
the repeatability of the test conditions propeller No. 
5869 has been tested directly after propeller No. 6251 
(excl.epl.), and again after propeller No. 6251 with 
end plates mounted. In between, some extra points have 
been measured for propeller No. 6251 (excl.epl.) to 
check the previous results. Again the repeatability is 
considered to be sufficient {AKT and AKQ less than 1 
percent, except for some high J-values). The results of 
the open water tests are presented in numerical and 
graphical form. See Tables 2-4 and Figures 6 and 7. If 
we observe that the intended effect of the end plates 
is an increase of circulation around the propeller 
blades in the tipregions and that their unavoidable 
detrimental effect is extra viscous drag, the following 
comments can be given on the results. 

First we compare propeller No. 6251 and propeller 
No. 6251 (excl.epl), see Tables 2,3 and Figure 6. Over 
nearly the whole range of J-values KT and KQ are higher 
for the propeller No. 6251 with'.end. plates. The maximum 
differences    in   comparison   with   propeller   No.   6251 

(excl.epl.) are about 0.047 and 0.0072, respectively, 
in the range between J = 0.50 and .7 = 0.70, which is about 
the design and operational condition. 

For the high J-values the increase of KT due to 
the effect of end plates becomes sligthly negative. The 
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Table  2.  Open  water model  test  results  of propeller 
No. 6251 (excl.epl.); rotation rate 13.3 Hz = 798 RPM. 

No. 6251 excl.epl.) 

J KT Ko n 
.00 .5700 .P87P5 000 
.10 .5395 .08339 103 
.20 .5065 .08005 201 
.30 .4710 .07660 294 
.40 .4330 .07280 379 
.50 .3930 .06856 456 
.60 .3512 .P6385 525 
.70 .3081 .P5872 585 
.80 .2637 .P5323 631 
.90 .2180 .P4742 659 

1.00 .1705 .P4128 657 

1.10 .1203 .P3471 607 
1.20 .0658 .P2745 458 
1.30 .0048 .01909 052 
1.307 .00PP .01841 000 

Table  3.  Open  water  model  test  results  of  propeller 
No.6251 with end plates; rotation rate 13.3 Hz = 798 RPM. 

No. 6251 with end plates 

J K.'Y Ko V 

.00 .6038 .08566 .000 

.10 .5733 .08342 .109 

.20 .5441 .08171 .212 

.30 .5132 .07991 .307 

.40 .4788 .07760 .393 

.50 .4402 .07456 .470 

.60 .3975 .07067 .537 

.70 .3508 .06593 .593 

.80 .3009 .06039 .634 

.90 .2481 .05410 .657 

1.00 .1925 .04714 .650 

1.10 .1334 .03948 .592 

1.20 .0694 .03106 .427 

1.297 .0000 .02192 .000 

Table  4.  Open  water  model  test  results  of  reference 
propeller No. 5869; rotation rate 13.3 Hz = 798 RPM. 

No. 5869 

J Kf Ko »7 

.00 .3195 .03377 .000 

.05 .3054 .03251 .075 

.10 .2895 .03115 .148 

.15 .2723 .02968 .219 

.20 .2540 .02813 .287 

.25 .2348 .02650 .353 

.30 .2150 .02480 .414 

.35 .1946 .02303 .471 

.40 .1737 .02121 .521 

.45 .1525 .01933 .565 

.50 .1307 .01738 .599 

.55 .1084 .01534 .619 

.60 .0853 .01318 .618 

.65 .0613 .01085 .584 

.70 .0358 .00830 .480 

.75 .0086 .00545 .187 

.765 .0000 .00452 .000 

effect on KQ remains positive. These observations can 
be understood in view of the dominating viscous drag 
forces for ligthly loaded conditions, which situation 
is enhanced by the end plates. 

For the low J-values it is remarkable that the 
increase in KT due to the end plates remains, but the 
increase of KQ disappears and becomes even negative at 
the highest loading condition. Similar tendencies of 
the curves of KT and KQ are also observed for the 
propeller with two-sided symmetrically end plates of 
[1], see [2]. Also these tendencies are known to occur 
for ringpropellers and propellers in ducts. A tentative 
explanation for this effect is that at the very high 
loading conditions the kinetic energy loss becomes far 
more important than the viscous energy loss. Then the 
presence of an additional winglike object in the 
tipregion of the blades can decrease, by spreading more 
evenly the trailing vorticity, the kinetic energy loss 
and hence the induced drag by a relatively large 
amount. This can be achieved at the cost of a 
relatively small increase of viscous drag. 

The maximum increase of efficiency of propeller 
No. 6251 due to its end plates is 1.4 percent between 
J = 0.4 and 0.5. It has to be noted that an increase of 
efficiency in combination with increased KT and KQ is a 
tendency different from systematic series. In such 
series an increase of KT and KQ, obtained by a higher 
pitch to diameter ratio, is always connected with a 
reduction of efficiency. 

As an example of comparison with series propellers 
we consider the B-series with the same number of blades 
Z = A and the same expanded blade area ratio Ae/Ao = 0A& 
as the Groningen Propeller. These B-series propellers 
are considered in the situation that they have the same 
power coefficient (KQ/J3)" =0.732 as propeller No. 6251 
has in its design point J = 0.624. The data of the 
B-series propellers have been derived from the 
well-known polynomial expressions that are available 
for these propellers. Tabulated first in Table 5 is the 
B 4-48 propeller having at the same value J = 0.624 the 
same KQ = 0.0696 as propeller No. 6251. It is the 
B-series propeller with pitch ratio P/D= 1.33. It is 
seen that the Groningen Propeller has a 5.4 percent 
higher efficiency and a 9.5 percent higher thrust 
coefficient CT than this B-series propeller. To further 
illustrate the good efficiency of propeller No. 6251 we 
next   select   the   B   4-48   propeller   with   the   highest 
obtainable     efficiency    .when, in satisfying     the 
prescribed  value   {KQ/J )* =0.732,   the  J-value  is  left 

Table 5 Comparison between Groningen Propeller (MARIN 
No. 6251) with end plates and B-series pjopellers; all 
propellers have 2 = 4, Ae/A0 = 0A8, (KQ/J )* = 0.732. 

No. 6251 

B-series (#ey = 2.0*106) 

P/D= 1.33 P/D = 0.815 

J 0.624 0.624 0.454 

Kn 0.0696 0.0696.,. 0.0267 

KT 0.388 0.354 0.197 

Cf 2.54 2.32 2.44 

V 55.4% 50.0 % 53.3% 
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free. We find that this is the B-series propeller with 
P/D = 0.815. The operational condition for this propeller 
is J = 0.454, see Table 5. Even with respect to this 
B-series propeller, propeller No. 6251 has a 2.1 
percent higher efficiency and a 4.1 percent higher 
thrust coefficient CT. 

It has to be noted that for the Reynoldsnumber of 
the B-series propellers we have chosen Rey = 2.0*10 . 
Actually this value is higher than for the propeller 
No. 6251 in its design point, for which holds 
#ey = 0.15*106. If we had chosen more suitable, lower 
Reynoldsnumbers for the B-series propellers, obviously 
the comparison would have been more in favour of the 
Groningen Propeller. However, since in this paper we 
did not actually check experimentally one B-series 
propeller under identical test conditions as for the 
other propellers, the comparison with the B-series 
propellers is only a qualitative one. 

That a propeller with end plates can have a higher 
efficiency than any individual propeller of a complete 
class of propellers without end plates, as illustrated 
above with the B-series example, was already predicted 
in [7] from numerical calculations. The amounts of gain 
(5.4 and 2.1 percent, respectively) are in the same 
order of magnitude as the efficiency differences 
predicted in [7]. It is remarked that in [7] instead of 
the power coefficient the thrust coefficient CT was 
prescribed. 

The propeller with end plates does not meet its 
design conditions. At J = 0.624 a KT of 0.425 was aimed 
at. The achieved value of KT is 0.388. The thrust 
discrepancy must be attributed to shortcomings in the 
optimization and design theory. At the relatively heavy 
design loading condition of the Groningen Propeller the 
too simply modeled nonlinear effects become noticeable. 
Also the theoretical estimation of the viscous 
resistance of the propeller can play a role. 

For an evaluation of the results of the tested 
propellers for practical application we consider two 
main possibilities, which only differ in one aspect. 
First, we compare for equal propeller power PD, 
diameter D and ship speed V. Second, we compare for 
equal propeller thrust T, diameter D and ship speed V. 

For equal power the non-dimensional base for 
comparison is 

(KQ/J3y = 
\2wpD2V3) 

In Figure 8 the efficiencies of the propellers are 
plotted on this base. At the design point of the 
reference propeller the efficiency of the Groningen 
Propeller (MARIN No. 6251) is 53.58 percent and of the 
reference propeller 52.09 percent. The difference is 
1.49 percent. The equal power condition corresponds to 
a value of J = 0.60 for propeller No. 6251, while its 
design value is J = 0.624. Hence to absorb the design 
power value the operational rotation rate of propeller 
No. 6251 has to be 4 percent higher than the design 
value. 

For   equal   thrust   the   non-dimensional   base   for 
comparison is 

CT npD2V2 n
j2 

In Figure 9 the efficiencies of the three propellers 
are plotted on this base. At the design point of the 
reference propeller, where Cr = 2.77, the efficiency of 
propeller No. 6251 is 53.90 percent. The difference 
with the reference propeller is now 1.81 percent. The 
equal thrust condition corresponds to a value of 
J = 0.603   for   propeller   No.   6251   while   the   value   at 

| 
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Figure 8. Comparison of propeller efficiencies on the basis of equal power. 
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Figure 9. Comparison of propeller efficiencies on the basis of equal thrust. 

design is J = 0.624. Hence to deliver the design thrust 
the operational rotation rate of propeller 6251 has to 
be 3.5 percent higher than the design value. From 
Figures 8 and 9 it can also be derived that the 
practical differences in efficiencies for propeller 
6251 with end plates and without end plates, 
respectively, is between 2.3 and 3.0 percent. 

For the reference propeller and for propeller No. 
6251 (excl.epl.) a hydrodynamic analysis was carried 
out by means of the MARIN propeller analysis computer 
program ANPRO, based upon lifting-surface theory. The 
calculations were carried out for a Reynolds number 
corresponding to the model scale. For propeller No. 
5869 the effective drag coefficient at a radial 
position rjR = 0.7 was taken equal to CD = 0.0113. 

If compared with the test results of Table 4 and 
Figure 7, it was noted that the agreement between 
theory and experiment was very good for the KT- values. 
However, the theoretical values of KQ were higher than 
the experimental ones. Some additional calculations 
were carried out to find the sensitivity of the 
calculations to the selected CD-value. It appeared that 
a value of CD = 0.0070 gave best agreement for the 
theoretical and experimental KQ-values, while the 
agreement of Kj-values remained nearly unchanged. 

Analogously for propeller No. 6251 (excl.epl.) the 
effective drag coefficient at a radial position r/R = 0.7 
was taken equal to CD = 0.0133. If compared with the test 
results of Table 2 and Figure 6, it was noted that the 
agreement between theory and experiment was very good 
for the Kj-values. The theoretical KQ-values were lower 
than the experimental values, however. Some additional 
calculations were carried out to find the sensitivity 
of the calculations to the selected Cß-value. It 
appeared that a value of CD = 0.0180 gave the best 
agreement. 

It   has   to   be   noted   that   the   discrepancies   in 

KQ-values between computational analysis and 
experimental results are different. Propeller No. 5869 
seems to have a lower drag of the blades than expected 
theoretically and propeller No. 6251 (excl.epl.) seems 
to have a higher drag. The latter may have extra drag 
at the blade tip, due to its abrupt ending. This extra 
drag is not accounted for in the ANPRO computations. 
Another tentative explanation for the difference in KQ 

between the analyzed propellers may be found in the 
differences in blade section profile shape. Then it 
could be concluded that the blade section profiles of 
propeller No. 6251 could possibly be improved. 

4. CAVITATION OBSERVATIONS 

Cavitation observations have been carried out in the 
MARIN Large Cavitation Tunnel. The cavitation number 
which has to be equal to real conditions is defined as 
follows 

Pa+Pw-Pv 

2 n2 
V2 pn  D 

The numerator contains pressures from ambient 
conditions, that is pa is the atmospheric pressure at 
the water surface (about 1.0*10 N/m ), pw is the water 
column pressure at submergence depth and p„2 is the 
vapour pressure in cavity (about 2.0*10 N/m ). The 
denominator is a measure for 'the pressure created by 
the propeller action. For propeller No. 6251 we take 
the full scale values of rotational velocity n and 
propeller diameter D from Table 1 by dividing the small 
scale rotational velocity by A 2 and by multiplying the 
small scale diameter by A, respectively, where A is the 
scale factor  (A = 32.5). Then, for a shaft submergence 
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depth of 8w the cavitation number becomes CT„ = 7.69. 
After correction for the required higher rotational 
velocity to absorb the design power, this number 
reduces to <rn = 7.15. 

When varying the tunnel water speed, a variation 
of propeller loading at constant cavitation number is 
obtained. By varying the pressure in the cavitation 
tunnel the cavitation number can be changed. In a 
diagram  as  given  in  Figure 10,   different  loading  and 

cavitation conditions can be represented. On the 
vertical axis the value of an is indicated and on the 
horizontal axis the value of KT. The value of KT at 
which propeller No. 6251 delivers the required thrust 
is KT-0A0 at .7 = 0.60. At this operational condition and 
the above value of <rn = 7.15, no cavitation is observed, 
as indicated in Figure 10. 

By means of variation of tunnel water speed and 
pressure  (propeller  rotation  rate   is  kept  constant  at 

SHEET CAVITATION 

ON SUCTION-SIDE   OF BLADES 

SHEET   CAVITATION 

ON PRESSURE-SIDE 

END PLATE OUTERSIDE 

SHEET   CAVITATION 

ON SUCTION-SIDE 
END PLATE  INNERSIDE 

SHEET CAVITATION ON 

PRESSURE-SIDE OF BLADES 

TIPVORTEX   CAVITAT.ION 
ON SUCTION-SIDE END PLATE 

0.3 5 0.40 0.45 

Figure 10. Cavitation inception diagram for propeller No. 6251 with end plates. 
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1500 RPM) the conditions have been observed and 
measured for which various types of cavitation start to 
occur. These conditions are also plotted in Figure 10 
and data points for similar types are connected with 
lines. It can be concluded that the operational 
condition has considerable margins against cavitation 
for higher loadings (suction side cavitation) and for 
lower loadings (pressure side cavitation). 

For one condition, <r„ = 2.60 and KT- 0.402, 
photographs have been taken. Two photographs, one from 
the side and another from an oblique upstream position, 
have been taken for four blade positions, respectively 
blade 1, 2, 3 and 4 pointing to the side. See the 
photographs of Figure 11. The various types of 
cavitation can be seen; apparently small geometrical 
differences between the respective propeller blades 
lead to different sizes of the cavities. Also some 
differences between the upstream and side photographs 
occur; they are not taken simultaneously. 

On the photograph with blade 1 pointing to the 
side it is seen that a vortex starts from the 
T-junction of the blades and the end plates. In the 
photograph from the side also a vortex from the tip of 
the suction side end plate can be seen. 

On the photograph with blade 2 pointing to the 
side simultaneous occurrence (not on one and the same 
blade) of three vortices, from the blade junction and 
from the tips of the end plate parts can be seen. 

On the photographs with blade 3 to the side it can 
be seen that the vortex from the pressure side plate 
tip has a lower pitch and a larger diameter than the 
vortex from the junction. The reverse situation has 
been observed for a high loading, Kr = 0.60, for about 
zero main flow velocity. In that case the vortex from 
the junction had the larger diameter and approximately 
zero pitch, while the vortex from the suction side end 
plate tip had a smaller diameter and a larger pitch. 
This mutation has not been photographed; the cavitation 
of the junction vortex appeared as very small bubbles. 

The occurence of the weak vortices from the tips 
of the end plate parts at pressure and suction side, 
respectively, is in accordance with what was aimed at 
in the optimization and design method by which 
propeller No. 6251 was calculated. That is, 
theoretically, when the propeller has optimum 
circulation distributions, the trailing vorticity must 
have a square-root singularity at the tips of the end 
plate parts which has a small coefficient. The 
resulting vortices are the ones that are visible in the 
cavitation tunnel, but only for the low cavitation 
number. 

That the vortices from the tips of the end plate 
parts at the pressure side are at larger radii than the 
vortices from the end plate part at the suction side is 
in agreement with the intended nature of the vortex 
wake of the end plates. In Figure 12 the planforms of 
one blade and end plate of propeller No. 6251 together 
with the corresponding vorticity and circulation 
distributions at the planforms and in the wake of the 
planforms are drawn. The calculated data belonging to 
these pictures followed from the optimization theory 
and from some design requirements. The data were used 
as input for the lifting-surface design method, see 
[6,7],   It  is  seen  that  in  the  wake  of  the  end  plate 

planforms the trailing vorticity of both end plate 
parts has the same sign in the helicoidal direction. 
Such a wake will have the tendency, by its own induced 
velocity, to show tipvortices, the one from the end 
plate part at the suction side of the blade rolling up 

towards smaller radii and the other rolling up towards 
larger radii, which is exactly what in the cavitation 
tunnel is observed. 

An indication for this effect can already be seen 
from the shape of the calculated end plate tipprofiles, 
see Figure 5. It is seen from this figure that the 
direction of the mean line of the profile at the tail 
of the tip of the end plate part at the pressure side 
of the blade is towards larger radii and of the other 
end plate part towards smaller radii. Furthermore the 
tail of the tipprofile of the end plate part at the 
pressure side of the blade is at a larger radius than 
the tail of the tipprofile of the other end plate part. 

The occurence of the vortex from the T-junction 
does not follow from the vorticity pattern of 
Figure 12. It must be realized that the vortex is not 
that strong as for conventional propellers without end 
plates, and that at the examined cavitation number 
un = 2.60 which is considerably lower than the design 
cavitation number <7n = 7.15, the cavitation that occurs 
in the tipregion of the screwblade at the suction side 
can easily feed the vortex with vapour. 

Observing carefully the beginning of the vortex 
from the T-junction, it seems that it is shed from the 
root of the end plate part at the suction side of the 
blade. The shape of the end plate profiles at the 
suction side of the screwblade was given in Figure 5. 
It is observed that near the trailing edge the mean 
lines of the profiles have the tendency to be shaped in 
a more or less S-bend fashion. It appeared that this 
shape is due to a recently found error in the code of 
the lifting-surface design program that was used for 
the calculation of propeller No. 6251. After correcting 
the error in the code, the resulting calculated blades 
and end plates remained practically unchanged. The only 
noticeable deviation in geometry occurred for the end 
plate part at the suction side of the blade near the 
tail of the section profiles. It is found that the 
S-bend behaviour does not occur using the corrected 
code, as is shown in Figure 13, where the corrected end 
plate profiles are given. It is seen that the 
correction of the profiles is relatively larger near 
the root of that end plate part, hence nearer to the 
junction, than to its tip. 

So a possible contribution to the occurence of the 
vortex from the T-junction might be the wrongly 
calculated end plate profiles near the junction, which 
might induce some unwanted extra circulation resulting 
in the shed vorticity from the root of the end plate 
part. If indeed the above explanation is true, not only 
the cavitational behaviour but also the efficiency of 
the propeller with end plates can possibly be improved 
somewhat. This is because the corrected end plate 
shapes are expected to yield then a slightly better 
spreading of the trailing vorticity in the sense of 
obtaining lower kinetic energy loss. 
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(a) blade 1 pointing to the side. 

(b) blade 2 pointing to the side. 

Figurell. Observation of propeller No. 6251 for low cavitation number crn = 2.60 (design: CT„ = 7.15); AY =0.-102 
(see also next page) 
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(c) blade 3 pointing to the side. 

(d) blade 4 pointing to the side. 

Figurell. Observation ol' propeller No. Ü2Ü1 for low cavitalion number <7„ = 2.00 (design: aH 
(see also previous page) 
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Figure 12. Propeller No. 6251; expanded planform Pb of blade and developed 
planforms Pp and Ps of end plate parts; distributions of vorticity and 
circulation distributions Pb, fp and Ps along the spans. 
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Figure 13. Propeller No. 6251; improved profiles of the 
end plate (original profiles were given in Fig. 5). 
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5. CONCLUSIONS ACKNOWLEDGEMENTS 

The reported test results of the Groningen Propeller 
with end plates confirm the design objective of 
conveying circulation from the screwblade in a 
continuous way to both end plate parts. The apparent 
effect on KT and KQ is measured over the complete range 
of propulsive J-values. In the range of J- and 
Kj-values for practical design there is an increase of 
efficiency. The related intended principle of spreading 
more evenly the trailing vorticity of the propeller is 
also confirmed by observations in the cavitation 
tunnel. 

The design objective with respect to the value of 
KT is not completely satisfied. The thrust discrepancy 
must be attributed to shortcomings in the optimization 
and design theory. To deliver the required thrust an 
increase of rotation rate by 4% is necessary. If no 
increase of rotation rate is allowed, a practical 
adaptation of the pitch of the blades is necessary. A 
rule of thumb indicates 6% increase of pitch. A better 
way to approximate the design thrust value better is to 
calculate the propeller again with the optimization 
theory, by demanding a somewhat larger thrust than the 
desired one. 

In comparison with the reference propeller there 
is a clear increase in efficiency, for equal thrust 
condition, of about 1.8%. It has to be noted that the 
propeller with end plates and the reference propeller 
have considerably different rotation rates. Therefore 
it is expected that gains in efficiency will be higher 
if propellers of both types are designed and compared 
for the same lower rotation rate. Furthermore it is 
expected that the gain in efficiency that is found by 
the discussed model scale experiments will be higher at 
full scale, due to the favourable influence on the 
viscous drag of the larger Reynoldsnumbers. 

Because of the lower design rotation rate of the 
Groningen Propeller the rotational energy in the wake 
of the propeller will be larger than for a 
corresponding conventional propeller. The rotational 
energy can partly be transformed in thrust by a stator, 
such as a rudder. The lower rotation rate can possibly 
imply another advantage in view of reducing the extra 
cavitational danger caused by the inhomogeneous wake of 
a ship, in which the propeller with end plates rotates 
with a lower velocity. 

Theoretical analysis of the propeller blades of 
the reference propeller and of the Groningen Propeller, 
when the end plates were not yet fitted to the blades, 
indicates differences between analysis and experiments. 
It has to be investigated whether the drag coefficients 
used in the analysis sufficiently represent the effect 
of the blade section profile shape. If this is true 
there might be room for improvement of the efficiency 
of the Groningen Propeller. 

For realistic levels of pressure and loading no 
cavitation is observed in uniform flow. There are 
considerable margins for lower and higher loadings free 
of cavitation, but a test in a realistic wake field has 
to reveal whether these margins are sufficient. The 
type of cavitation which may appear on the suction side 
of the blades near the end plates indicates some risk 
of erosion of the blade material. 

Because the end plate profiles can be slightly 
improved, the cavitational behaviour and the propeller 
performance can possibly be improved somewhat further. 

This    research    was    sponsored    by    the    Technology 
Foundation, project number GWI59.0819. 
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Interaction of a Turbulent Vortex with a Free Surface 
T. Sarpkaya (Naval Postgraduate School, USA) 

ABSTRACT 

The interaction of a single turbulent trailing 
vortex and its image with a deformable free surface 
has been undertaken for the purpose of exploring the 
origins of scars, striations, and three-dimensional 
instabilities. The experiments were conducted in a 
low turbulence water tunnel through the use of 
various vertically-mounted foils. The distance 
between the top of the test foil and the water surface 
was systematically varied. Velocity measurements 
with an LDV and photographic observations with 
LIF (laser induced fluorescence) of the vortices and 
free surface were made. Certain unusual 
characteristics of the remnants of the turbulent 
vortex tube - reconnection of normal vorticity with 
the free surface and the stretching out and quick 
dissipation of turbulent patches in the tangential 
direction - and their role in the creation of a quasi- 
two-dimensional whirl field have been explored. 
The numerical part of the investigation simulated 
the quasi-two-dimensional surface turbulence with 
vortex dynamics and explored the evolution of 
whirls, energy spectrum, and the fractal dimensions 
of the turbulence field. 

INTRODUCTION 

The wake/free-surface interaction and the 
mechanisms that affect the direct as well as remote 
observation of ship wakes have become major 
research topics in hydrodynamics. 

Ship wakes produce a three-dimensional 
complex signature, comprised of a narrow dark band 
bordered by two bright lines in synthetic-aperture- 
radar (SAR) images. The dark band is the most 
prominent of all the signatures and is seen many 
kilometers downstream at all angles to the SAR 
azimuth direction even under severe weather 
conditions. It signifies the suppression of waves at 
the Bragg frequency as a consequence of various 
short-wave-damping phenomena such as 
turbulence, surface-active materials, and the 
redistribution of surface impurities to the surface by 
bubbles.   The two bright lines, on the other hand, 

manifest themselves only in light winds and signify 
the occurrence of a range of waves which happen to 
be near the Bragg wavelength, possibly, as a 
consequence of the interaction between quasi-two- 
dimensional and three-dimensional turbulent 
motions near the free surface and the restructuring 
and modulation of this interaction by wind, 
unsteady Kelvin-wave-like disturbances, wave 
breaking, and momentum wake, just to name a few 
of the existing proposals. The central intent of this 
paper is neither a discussion of the remote sensing of 
surface-ship wakes nor the establishment of cause- 
and-effect relationships for the observed events 
noted above, but, rather, to describe a number of 
kernel experiments which could eventually serve to 
elucidate the basic fluid mechanics phenomena 
relevant to the understanding of near-surface 
turbulence structures. 

BACKGROUND 

Turbulent flow near surfaces is not uncommon 
and there has been intense interest in understanding 
the behavior of vortices near a wall and the physics 
of the mechanisms sustaining the turbulent 
behavior"^- Thus, it is not surprising that there 
should be turbulent flows at and near deformable 
surfaces or fluid interfaces, in addition to various 
types of waves, due to complex ship wakes. What is 
rather surprising is that the resulting turbulent wake 
(in part, due to vortical motions) should give rise to 
coherent structures capable of absorbing the incident 
electromagnetic waves (negative spectral 
perturbation) for unexpectedly long times even 
under real ocean ambient conditions. This leads to 
two generic questions regarding the behavior of 
turbulence at the free surface: (1) How are the 
coherent structures created at the interface and what 
dynamical processes are responsible for their life 
cycle? (2) What characteristics of these structures (e. 
g., scale, shape, motion, mutual interaction) are 
responsible for the absorption of the incident 
electromagnetic waves? This paper will be 
concerned only with the turbulent structures 
resulting from the interaction of a turbulent vortex 
with the free surface.   Both the dynamical behavior, 
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through vortex dynamics, and the etiology of the 
coherent structures (what physical phenomenon 
causes them) are investigated in some detail. 

Controlled laboratory experiments on free 
surface structures were first conducted by Sarpkaya in 
October 1983, as a continuation of his work on 
trailing vortices in homogeneous and density 
stratified media^. These observations and 
measurements were reported by Sarpkaya and 
Henderson7"8 in 1984 and by Sarpkaya9"10 in 1985. 
They have shown that a pair of ascending vortices 
shed by a lifting surface may interact with the free 
surface and give rise to scars and striations. The 
striations are essentially three-dimensional free- 
surface disturbances, normal to the direction of 
motion of the lifting surface. Sarpkaya and 
Suthon11 have shown that the scars are small free- 
surface depressions, comprised of many randomly 
distributed whirls (normal vorticity connecting with 
the free surface), and come into existence towards the 
ends of the striations (see Figs. 1 and 2) and undergo 
mutual annihilation, dissipation, pairing, and 
merging. The striations come into existence as a 
subsurface instability, i.e., the free-surface proximity 
is not necessary but helps the striations to grow 
nonlinearly to larger amplitudes, depending on the 
prevailing free surface conditions (existing 
disturbances, contaminants, wind, current). In 
summary, an ascending laminar trailing vortex pair 
gives rise to two new components of vorticity: cross- 
axis vorticity in the striations and normal vorticity 
in the scars. The latter appears in part as distributed 
background vorticity and in (greater) part as 
randomly-distributed discrete.structures (CW- and 
CCW-rotating whirls of various strengths), confined 
into a relatively narrow band. 

When the vortices migrate large distances 
upward, they undergo various types of instabilities. 
Several theories have been proposed to explain the 
instabilities associated with the trailing vortices: 
Crow instability12, Moore and Saffman instability13, 
Batchelor's1* swirling flow instability, Singh and 
Uberoi's1^ helical mode instability, and the free- 
stream turbulence proposals of Corsiglia et al.lf>, and 
Baker et al.17 Only the helical instabilities proposed 
by Singh and Uberoi1^ and observed by Sarpkaya9 

appear to provide a satisfactory explanation. In fact, 
as shown by Sarpkaya18, tentacle-like sheets, 
resulting from the helical instabilities, are thrown 
away from the outer edges of the core of a turbulent 
vortex. In other words, the vortex peels off 
randomly and sheds vorticity along its length. These 
vortex sheets interact with the free surface and either 
connect normally with the free surface (resulting in 
whirls) or stretch out parallel to the free surface and 
dissipate quickly. These phenomena are further 
investigated in the present paper. 

Numerical simulations of the domed region, 
formed by  the rise  of a  Kelvin  oval, attracted 

Fig. 1   Scars and striations above a trailing vortex pair. 

Fig. 2 Scars and striations due to a pair of vortices 
generated by a 2-D nozzle parallel to the free surface. 

considerable attention. Sarpkaya et al.19 modeled 
the vortex pair using two point vortices (with small 
cores) and line vortices to model the free surface 
without linearization. Subsequently, Marcus and 
Berger20, Telste21 and Ohring and Lugt22 used 
different two-dimensional models to investigate the 
interaction between a couple of heterostophic line 
vortices and a free, initially planar, surface. In these 
calculations, the critical time at which the numerical 
instability manifests itself does not correspond to the 
instability of the free surface or to its maximum 
position.   The calculations of Ohring and Lugt are 
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particularly noteworthy since they have presented 
results on the decay of the primary vortices and their 
paths, on the generation of surface vorticity and 
secondary vortices, on the development and final 
stages of the disturbed free surface, and on the 
influence of surface tension. They have also shown 
that, for an intermediate Froude number, the path of 
the primary vortex center portrays a complete loop (a 
special rebounding ) due to the presence of secondary 
vortices . 

Dommermuth and Yue2^ solved the linearized 
Navier-Stokes equations in three dimensions with a 
free surface to study the interaction of vortex tubes 
and vortex rings with slip- and no-slip rigid 
boundaries and a linearized free surface. 
Subsequently, Dommermuth24 carried out 
numerical simulations of the interaction of laminar 
vortex tubes with no-slip walls to investigate the 
formation of U-shaped vortices without the 
complications of a free surface. They have concluded 
that two distinct types of vortices form: cam and 
snail vortices, as they preferred to call them. Cam 
vortices are formed as helical vorticity is stripped off 
of the primary vortex tubes. The helical vortex 
sheets are generated by the primary vortex tube due 
to the onset of a U-shaped instability previously 
identified by Sarpkaya9 and by Sarpkaya and 
Suthonll. Dommermuth2^ extended his numerical 
analysis to the interaction of a pair of vortex tubes 
with a free surface and confirmed Sarpkaya and 
Suthon's11 findings that the most interesting feature 
of the impingement of vortex tubes on a clean free 
surface is the reconnection of normal vorticity with 
the free surface, resulting in strong whirls. The 
simulation of more energetic transition2^ in vortices 
has tentatively shown that only the remnants of the 
primary vortex tube could be identified. 

The interaction of jet flows with a free surface 
has attracted some attention2f>~28 for the expressed 
purpose of determining the topology and dynamics 
of the resulting turbulent structures. Although 
instructive in understanding the conversion of the 
azimuthal vorticity (vortex rings) into streamwise 
vorticity, the jet flow is neither as complicated as the 
ship wake nor representative of the turbulent 
phenomena that occur in the ocean environment 
partly because there is no normal vorticity 
generation in the nominal plane of the free surface. 
Furthermore, the interaction of the jet flow with the 
free surface leads to the generation of gravity- 
capillary waves propagating in a direction almost 
perpendicular to the jet axis. 

TURBULENT VORTEX AND FREE SURFACE 

Even though there is still some work to be 
done on the three-dimensional nature of the 
laminar interaction, a number of kernel 
experiments, supported by analysis, is needed to 

elucidate the basic fluid mechanics of turbulent 
signatures, since turbulence is the current limit of 
resolution of our understanding of fluid motion. It 
is believed that one of the fundamental flows 
relevant to the dynamical processes in vorticity/free- 
surface interaction which can be carefully studied in 
isolation, without complications and competing 
influences that normally occur in a fully turbulent 
ship wake, is the interaction of a single turbulent 
vortex (and its image) with the free surface. This is 
expected to shed considerable light on the interaction 
between quasi-two-dimensional and three- 
dimensional turbulent motions. This is important 
not only near the free surface but also for the 
understanding of the processes of small-scale 
turbulence in the presence of highly stable 
stratification when three-dimensional turbulence 
shows a tendency to quasi-two-dimensional 
behavior due to the effect of buoyancy forces. 
Furthermore, the understanding of the properties of 
vortex-induced turbulence near the free surface will 
make it possible to explain the relationship between 
the spatial and temporal scales of turbulence, the 
evolution of surface inhomogeneities, and the 
characteristics of surface structures. It is this belief 
that led to a series of exploratory experiments and 
calculations reported by Sarpkaya1 ^ and to further 
studies reported herein. 

Experiments were conducted in a low 
turbulence water tunnel with an open test section 45 
cm wide, 60 cm deep (maximum), and 150 cm long. 
The turbulence management system was located 
upstream of the test section. It consisted of a 
honeycomb and fine-mesh screen. The turbulence 
intensity in the test section was less than 0.5% in the 
range of velocities used (from about 0.6 m/s to 2.5 
m/s). 

Several vertically mounted half Delta wings 
and rectangular foils (NACA 0012 and NACA 66-209 
with no twist) were used to generate 'single' vortices 
shedding from the free end of the foil (see Fig. 3). 
The reason for the selection of the NACA 66-209 foil 
was that Green & Acosta29  obtained  extensive 

Free surface ■ 
Vortex 

Fig. 3  NACA 66-209 foil section and the tip vortex. 
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velocity and some turbulence data for the fully 
submerged vortex through the use of a novel 
technique. Since some of their governing 
parameters are in the range of those encountered in 
the present investigation, their data for the fully- 
submerged vortex are used for comparison with 
those obtained in the present investigation. 

The tip of each foil consisted of a smooth cap 
with an approximately semicircular cross-section. 
The interior of each model was hollowed and 
connected to a dye reservoir to seed the vortex cores 
with fluorescent dye^ or fluorescent particles (about 
10-20(im). The chord length of the model foils 
ranged from 5 cm to 10 cm. The distance from the 
test section floor (plane of reflection) to the top of the 
tip was either held constant at 38 cm, resulting in an 
effective aspect ratio of AR = 7.5, or varied, resulting 

in aspect ratios ranging from 7.5 to about 12. The 
leading edge of the foil was 4 chord lengths 
downstream of the test section entrance. The chord- 
based Reynolds number ranged from about 10^ to 
5.5xl05. 

In one series of experiments the foil was 
mounted in a rotatable cylindrical base, embedded 
into the bottom of the test-section floor. The bottom 
of the foil was flush with the tunnel floor. Then the 
water level was raised or lowered to adjust the 
position of the vortex relative to the free surface. 
This procedure was particularly helpful for LDV 
measurements, and, LIF and shadograph flow 
visualization experiments. In another series of 
experiments, the foil was made to protrude from the 
tunnel floor vertically upwards, to a desired height 
and angle of attack, while the water level was held 
constant. This was the reason for the change of the 
aspect ratio. However, the results have shown that, 
for models with large aspect ratios, the small change 
in AR, as the model tip approached the free surface, 
did not significantly change either the circulation of 
the vortex or the vortex/free-surface interaction. In 
this series of experiments the vertical positions of 
the LDV and shadograph screen were adjusted 
accordingly. 

The angle of attack was varied from 5 to 10 
degrees (well within the unseparated flow region). 
The total circulation of the fully-submerged trailing 
vortex was calculated from the tangential velocity 
distribution and from29' 30 

r/Uc = [1.05jc(a - ao)]/(l + 2/AR), 

including a correction for the wall effect of the 
tunnel floor, as carefully noted by Green and 
Acosta29. The normalized vortex strengths T/Uc 
varied from about 0.30 to 0.65. The calculated values 
were within a few percent of those obtained from the 
tangential velocity distribution. 

Green and Acosta29 found that the normalized 
mean tangential velocity distribution is nearly 
independent of both the Reynolds number and 
downstream distance (2xl05 < Re < 106) and 2 < x/c < 
10. Of equal relevance to the present investigation is 
their conclusion that "the tangential velocity is 9- 
independent and the vortex is axisymmetric to 
within the experimental error. The unsteady 
component of the tangential velocity falls 
significantly with downstream distance." Two of 
their tangential velocity distributions at the same 
downstream distance and Reynolds number, but for 
different angles of attack, are shown in Figs. 4 and 5 
together with those obtained in the present 
investigation. Clearly, the two sets of data are in 
fairly good agreement and the tangential velocity is 
significantly unsteady. The preliminary data^O 
regarding the surface-proximity effects have shown 
that the unsteadiness in all velocity and turbulence 

1.0 
'^/ 

. 

•c£c. .-*-   Measurement 
error 

0.8 

0.6 

^ 
?£••• 

04 T iw&J o 
^*cf «b o,o.o 

o.: •    <S> Qf 

R/c 

Fig. 4   Tangential velocity distribution: Green and 
Acosta29: •, x/c = 2, a = 10°, Re = 6.83xl05; Present 
data: o, x/c = 2, a = 10°, Re = 5x10$ 

o.s 
© 

c?«o 
0.7 

*>o 
O                                                        —J—t    Measurement 

0.6 - #         %> o                                    crror 

.»• 
»o   0i cPJb 

® • „ 
U°0   0.4 .§?*P.« n 

0.3 

o.: 

0.1 

° <£*p £«£»•   2° 

•»    o         o   <**. 
• 

a. is 

R/c 

Fig. 5   Tangential velocity distribution: Green and 
Acosta29: •, x/c = 2, a =5°, Re=6.83xl05; Present 
data: o, x/c = 2, a = 5°, Re = 5xl05 

482 



components increases dramatically and only the 
remnants of the primary vortex tube could be 
identified as the vortex approaches the free surface. 

The structure of the vortex was video recorded 
through the use of LIF (Laser Induced Fluorescence, 
using fluorescent dyes or particles) at various speeds 
ranging from 60 frames/s to 10,000 fps at various 
downstream stations from the foil. Here only the 
sample results obtained at 500 frames/s at x/c = 7, for 
Re = 4x10^ and T/v = 1.8xl05 are shown. 

Figures 6 and 7 show the vortex core and its 
surroundings in a 2 mm-thick laser light sheet in 
streamwise and transverse directions, respectively. 
The blur in the pictures is partly due to the vibration 
of the core, partly due to the photographing of the 
individual frames from a video monitor with a 
simple camera, partly due to the rapid motion of the 
secondary structures surrounding the core, and 
partly due to the reproduction of the paper. In any 
case, it is clear from these figures and from the 
viewing of hour-long video tapes that the vortex 
core and its immediate surroundings are not 
comprised of smooth axisymmetric surfaces. Vortex 
sheets peel off and some are thrown away from the 
core. 

The core must be replenished with fresh fluid 
from the outer region, i.e., a turbulent exchange of 
momentum must take place between the outer 
region and the core. It is this exchange of 
momentum that leads to the unsteadiness of the 
vortex core and the various velocity components. 
As noted by Dommermuth and Yue^, in their low- 
Reynolds number numerical simulations, "As a 
vortex tube interacts with itself and its neighbors, 
sheets of helical vorticity spiral off of the primary 
vortex tube. The origin of the sheets of helical 
vorticity appears to be the result of a helical 
instability that is initiated by large changes in 
curvature along the axes of the primary vortex 
tubes." 

The evolution of the momentum exchange 
and the unsteadiness in various velocity 
components that result from it must certainly 
depend on the characteristics of the foil, transition in 
its boundary layers, Reynolds number, ambient 
turbulence, and the mutual interaction of the 
trailing vortices with each other or with their images 
across a deformable or rigid boundary. It is not the 
purpose of the present investigation to repeat some 
of the previous works which have dealt with the 
trailing vortices in an effectively infinite medium^' 
29, but rather, to present evidence that the turbulent 
vortex core is neither axisymmetric nor smooth and 
that the interaction of such a vortex with the free 
surface leads to quasi-two-dimensional turbulence 
dominated by whirls (reconnection of normal 
vorticity). The structures in the tangential direction 
dissipate quickly.. 

Fig. 6 A turbulent vortex in a streamwise light- 
sheet. The core is neither smooth nor axisymmetric. 
Shedding of turbulent patches is noted. 
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Fig. 7      The cross-section of a turbulent vortex as seen 
in 1 /500 s, (deep submergence) 

It is, therefore, instructive to look at the cross 
section of the vortex as the water level is brought 
closer to the tip of the hydrofoil. Aside from the 
primary characteristics of the fully submerged vortex, 
the said interaction is governed by the Froude 
number F = V0/V2gh where V0 now represents the 
mutual induction velocity between the vortex and 
its idealized mirror image, across the fluid interface, 
(V0 = r/47th), and h is defined as the depth of 
submergence of the vortex axis (at the point of its 
generation) from the free surface . Thus, for a given 
T, the Froude number increases with decreasing h. 

Figures 8 and 9 show two deeply-submerged (F 
= 0.05) vortex cores in a laser light sheet (intersecting 
them at a 45-degree angle, but photographed normal 
to the vortex axis). The vortex cores are surrounded 
by helical patches that could have only come from 
the vortex sheet  (dye was introduced into the vortex 



core, for details see Sarpkaya6). As the Froude 
number is increased, the vortex comes under the 
strong influence of the free surface. The events that 
follow will be described briefly through the use of 
representative figures, chosen randomly from 
among hundreds. It should be noted that the laser 
light sheet is intersecting the vortex axis at a 45- 
degree angle. The camera axis is normal to the 
vortex axis and looking slightly upwards from under 
the free surface so as to capture the reflection of the 
vortex and the reconnection of its tentacles. 

Fig. 8   The cross section of a deeply-submerged vortex. 

Fig. 9 The cross-section of the vortex shown in Fig. 8 
after 0.01s. The shedding of turbulent patches 
is clearly evident in both pictures. 

Figure 10 shows, for F = 0.32 and x/c = 2, the 
connection of a vortex patch with the free surface 
(and its image), (Re and T/v have been held constant 
at the values cited previously). These connections 
are not always between the free surface and the 
vortex sheets still connected to the vortex core. In 
fact, many of the connections are between the free 
surface and the run-away patches of vorticity with no 
visible connection to the core (presumably, thrown 
away from the core). The earliest connections with 
the free surface are due to independently 'flying' 
patches (when the vortex core is not too close to the 
free surface). 

Fig. 10    The connection of a vortex arm with the free 
surface (F = 0.32 and x/c = 2). 

Figures 11a and lib, separated by a time 
interval of about 0.02s, show at x/c = 7 (other 
parameters are held the same), the progression of the 
connection process and the evolution of whirls at 
the free surface. Clearly, the vortex core breaks up 
and spreads over a larger area as its proximity to the 
free surface increases. This is the mechanism 
whereby the three-dimensional turbulence below 
the free surface is transformed into a quasi-two- 
dimensional turbulence at the free surface. 

Figures 12a and 12b show the multiple 
connections with the free surface at higher Froude 
numbers (F « 1 and 2.8). The viewing of video tapes 
show that not all patches of vorticity are connected to 
the free surface. In fact some of these come close to 
the free surface rather quickly, stretch out in the 
horizontal plane (predominantly in the direction of 
largest strain), and then disappear just as fast. 
Another observation is that the larger the Froude 
number, the faster is the dissipation of the trailing 
vortex, as measured in terms of the extent of the 
whirls and scars at a given x/c.   This would be 
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Figs. 11a and lib The progression of the connection 
process and the evolution of whirls at the free surface 
(the two figures are 0.02 s apart). 

somewhat expected since the tangential vorticity will 
be annihilated more in the overlapping regions of 
two closely situated counter-rotating turbulent 
vortices (real vortex and its 'mirror' image). In other 
words, the generation and dissipation of horizontal 
vorticity is enhanced at the expense of the normal 
vorticity. Figures 12a and 12b also show that the 
coherence of the vortex core is nearly lost and only 
the remnants of the original vortex may be seen. 
The numerical simulations of Dommermuth25 of 
the more energetic transition in vortices near the 
free surface have also shown that only the remnants 
of the primary vortex tube could be identified (see 
Figs. 13a and 13b). Some resemblance may be noted 
between Figs. 12a-b and Figs. 13a-b. Clearly, the 
numerical model does not deal with finer structures 
of turbulence and with the whirls at the free surface. 

Figs. 12a and 12b The multiple normal connections 
with the free surface at higher Froude numbers. 

Representative samples of the top view (taken 
with a laser light sheet, very near the free surface) of 
the surface structures are shown in Figs. 14a-c and 
14d (the streaklines). The constellation of vortices 
seen in these figures emerged almost directly above, 
or slightly on the downwash side, of the trailing 
vortex. Two features of these whirls are particularly 
noteworthy. The first is the emergence of 
heterostophic vortices and the pairing of 
homostrophic vortices (these are best seen on the 
video films of our experiments). The second salient 
feature of the whirls is their persistence. It appeared 
as if the whirls became the 'black holes' of vorticity 
in a sea of otherwise featureless structures of 
vorticity. The structures that were not part of a whirl 
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dissipated quickly. It may thus be conjectured that 
the formation of whirls, as singularities of nearly 
concentrated vorticity, is a matter of survival of 
vorticity, either transported to the free surface or 
generated there. The tendency of the vortex couples 
of the same sign to transport energy from one area to 
another is severely limited partly by the swirling 
motion of the trailing vortex (directly below the 
scar), partly by the mutual interaction of the whirls, 
which keeps the scar intact, and partly by the 
uniform flow. Thus, the vortices created near the 
boundary of the scar cannot escape it but can 
unevenly modulate the edges of the scar. 

Figs. 13a and 13b The numerical simulations of the 
more energetic transition in vortices near the free 
surface (with permission of Dommermuth25). 

Figs. 14a-d  Evolution of a scar above a turbulent 
vortex (x/c = 7). 

The foregoing points out the very important 
role played by the whirls and the danger of replacing 
the nonlinear-time-dependent free surface 
conditions with the more convenient assumption of 
"non-deforming surface" in numerical simulations 
of the interaction of vorticity with a free surface. 

NUMERICAL SIMULATION OF SURFACE FLOW 
STRUCTURES VIA VORTEX DYNAMICS 

The experiments have shown that the surface 
structures have the characteristic behavior of quasi- 
two-dimensional turbulence with energy cascading 
towards larger structures and stretched zones of weak 
vorticity dissipating slowly. The width of the wake 
above the trailing vortex increases slowly at the same 
rate at which the vortices grow in size through 
successive merging processes. Effective methods 
have been developed for structural and eddy center 
identification based on digital image analysis and 
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shadowgraph technique^ 1. The size and angular 
velocities of the whirls were estimated from the 
video tapes in order to explore the statistics of the 
surface structures and to calculate the distribution of 
vorticity in the field of whirls. The instantaneous 
free-surface signatures are compared qualitatively 
with the predictions of a numerical model based on 
vortex dynamics3». 

The observations suggest that the two- 
dimensional numerical experiments can be started 
with 2n oppositely-signed vortices (n = 1000) each 
with a Gaussian distribution (initially placed in a scar 
band and then tracked in an unbounded domain). 
The total circulation is rendered zero in a suitable 
manner. Here, the uneven spacing and strength of 
the vortices correspond to the appearance of 
randomness with a large range of spatial and 
temporal frequencies. 

One is particularly interested in the effects of 
the amalgamation of the vortices. In general, for a 
fairly wide parameter range, the vorticity field has a 
significant component made up of coherent vortices 
that are very long-lived compared with the typical 
flow timescales, such as a large scale advective time, 
or an eddy turnover time. The remainder of the 
field is a more characteristic turbulent background 
flow over which the coherent structures float. 
Typical flow diagnostics (fractal dimensions, energy 
spectra) are also calculated. 

Figures 15-17 show at V0t/h = 1.6 the 
streamlines, the energy spectrum, and the fractal 
structure of a representative scar. The energy spectral 
density for a system of N vortices (arbitrary signs and 
magnitudes) is given by Novikov32, as 

EN = (4wk)' -1 
N N 
Ii?+2Xrp 

. i       p<q 

iqJcAk-Cpq) 

in which k is the wave number, ^_q is the absolute 

distance between any two vortices, and Jo is a Bessel 
function. The first term corresponds to the vortex 
self energy and the second term to the energy of the 
interaction determined by the set of distances ^pq 

between the vortices. The ratio of the second term to 
the first term is a measure of the scale of 
inhomogeneity of the turbulent flow field. The 
evolution of the energy spectral density was 
calculated from this equation. 

The fractal dimension D is obtained by dividing 
the scar space into square meshes of size R and 
counting the number N of meshes containing at 
least one vortex. Then the fractal dimension is 
determined from N « R-^. 

Figs. 15 The streamlines in a single evolving scar: 
(a) at V0t/h = 0.8, and (b) at V0t/h= 1.6. 

Figs. 16 Sample energy spectral density for a single 
scaratV0t/h=1.6. 

The facts emerging from these figures are as 
follows: The whirls amalgamate up to a certain size 
as time increases (i.e., the amalgamation is self- 
limiting). It is remarkable that the band essentially 
retains its overall identity even though its width 
increases slightly due to the mutual interaction of 
the whirls. It is only rarely that one or two whirls 
leave the scar band due to mutual induction. The 
amalgamation process and, hence, the increase of the 
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Fig. 17    Fractal structure of a single scar at V0t/h =1.6. 

visulizations orthogonal to the vortex axis at various 
x/c and at various times at a given x/c is about 1.35 
and the result is sensibly independent of the 
threshold. The fractal dimension D of the numerical 
simulations (e.g., Fig. 15) varied from about 1.29 to 
1.36. The initial seeding of the vortices had very- 
little or no influence on the simulated value of D. 
For a three-dimensional turbulence field, the 
accepted value of D is about 2.5. For a two- 
dimensional turbulence field, as in the present case, 
the value of D is almost halved. For example, the 
shape of the clouds yields a fractal dimension of 
about 1.35, the diffusion of a passive scalar quantity 
on the surface of turbulent water yields about D = 1.3, 
and the cross sectional pattern of the turbulent 
boundary layer is reported to give D = 1.37 
(Takaki33). Evidently, the fractal dimension of the 
evolution of the whirls in a scar is in conformity 
with that of other nearly two-dimensional turbulent 
fields. Clearly, additional physical and numerical 
experiments are needed to delineate the 
characteristics of the turbulence field resulting from 
the interaction of a turbulent vortex with a free 
surface. 

number of large structures slow down or stop as time 
increases and the whirl system reaches an 
equilibrium without dissipation. 

The whirl population has been doubled several 
times and the numerical experiments were carried 
out with different random-number seedings to 
ascertain that the results concerning the energy- 
density distribution and the cascading of the energy 
did not depend on either the number of the whirls 
or on their statistical distribution. It has been found 
that the population density and the number of 
random samplings are sufficiently large to arrive at 
statistically meaningful conclusions. The time 
variations of the distributions, therefore, allow one 
to estimate whether whirl-whirl interactions are 
important. The results presented above show that 
the shift in the size distribution toward larger 
structures and the concentration of energy in these 
structures are an important ingredient of the scar 
formation and life-span. The increase of the number 
of large structures slows down and nearly stops after 
a critical time, when the whirl concentration has 
fallen below a critical value, and the population of 
whirls becomes dominated by viscous decay process. 
Apparently, the two-dimensional topological 
features (whirls) of concentrated vorticity on the free 
surface are inherent products of the quasi-two- 
dimensionalization of the three-dimensional 
turbulence, prevailing just below the free surface. 
The results have also shown that the global 
maximum of the energy spectrum is shifted towards 
smaller wave numbers (larger wave lengths), as 
expected on the basis of amalgamations. 

The fractal dimension D, as determined from 
figures such as Fig. 14 (experiments) have shown 
that the fractal dimension of the boundary of the LIF 

CONCLUSIONS 

The interaction of a single turbulent trailing 
vortex and its image with a deformable free surface 
has been undertaken for the purpose of exploring the 
origins of scars, striations, and three-dimensional 
instabilities. The evidence presented herein shows 
that numerous tentacle-like vortex sheets of finite 
length, resulting from helical instabilities, stretch out 
or are thrown away from the outer edges of the 
vortex core. The vortex peels off randomly and 
sheds vorticity along its length. The core of a 
turbulent vortex is not a benign, smooth, 
axisymmetric, solid body of rotation. The exchange 
of momentum between the outer regions and the 
core leads to the oscillation of the vortex core and the 
various velocity components. 

As the vortex sheets and turbulent patches (or 
finite regions of vorticity) interact with the free 
surface, they either give rise to whirls (reconnection 
of normal vorticity) or stretch out in the tangential 
direction and dissipate quickly. The closer the vortex 
to the free surface, the faster is its dissipation, as 
evidenced by the resulting scar at the free surface. 
This is expected on the grounds that the interaction 
of the vortex with its image across a shear-free 
boundary must result in the increased annihilation 
of vorticity. 

The two fundamental modes of the 
vortex/free-surface interaction observed in the 
present investigation are suggestive of the 'spin' and 
'splat' models of Bradshaw and Koh34, Hunr3^, and 
Leighton et al.36 Their spin model (vortical 
structures originating in the buffer layer and 
attaching to the free surface) and the splat model 
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(patches of vorticity or vortons impacting the free 
surface) in a turbulent open channel flow tend to 
support the observations made in the present 
investigation that the tentacles of vortex (helical 
sheets of vorticity) attach to the free surface and the 
patches of vorticity are thrown at the free surface. 
These similarities need to be explored further 
keeping in mind the fact that in the direct numerical 
simulations36 the non-linear-time-dependent free 
surface conditions are linearized and the free surface 
is assumed to be non-deformable. 

The numerical simulations of the scar band 
through the use of vortex dynamics have shown that 
the shift in the size distribution toward larger 
structures and the concentration of energy in these 
structures are an important ingredient of the scar 
formation and scar life-span. 

The use of a turbulent vortex (and its image) 
near the free surface of an otherwise smooth 
uniform flow proved to be a 'kernel' experiment 
towards the elucidation of the dynamical processes 
in vorticity/free-surface interaction which can be 
studied in isolation, without complications and 
competing influences that normally occur in a fully 
turbulent ship wake. Clearly, detailed velocity and 
turbulence measurements and additional physical 
and numerical experiments are needed to delineate 
the characteristics of the scars and striations. 
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Numerical Investigation of an Oblique Collision of a 
Vortex Ring with a Clean Free Surface 

M. Song (Hong Ik University, Korea), 
G. Tryggvason (University of Michigan, USA) 

Abstract 
Experimental studies of the free surface signature of 
underwater vortical flows suggest that the reconnection 
or "opening-up" of vortex filaments at the surface is a 
major cause for generation of short wave on the free 
surface. To investigate this phenomena, numerical sim- 
ulations of the collision of a vortex ring at an oblique an- 
gle of incident to the free surface have been performed. 
A nearly inviscid flow is assumed, and the vortex ring 
modeled by a collection of "vortons." This introduces 
a small amount of dissipation and allows the ring to re- 
connect with its image at the free surface. In most ex- 
perimental studies the free surface deformation is very 
small, and here the free surface motion is assumed to 
be linear. The free surface deformation can then be 
solved separately after the evolution of the vortex ring 
has been computed. Following the first reconnection 
with the surface, the rings sometimes reconnect again, 
forming two half-rings that propagate parallel to the 
free surface. The computed free surface signature agree 
qualitatively with available experimental results. Based 
on the numerical investigation, we propose a simplified 
model which assumes that the major effect of the vor- 
tex reconnection to the free surface is a pressure impulse 
that generates short waves on the free surface. 

Nomenclature 

R vortex ring radius 
r circulation of the ring 
a core radius 
e incident angle 
D initial depth of the ring 

P fluid density 
V fluid kinematic viscosity 

9 acceleration of gravity 
Re Reynolds number (T/i/) 
Fr Froude number (T/\/gR3) 
S surface tension 

p 
f 

u 
u, v,w 

volj 
ft 
£ 

a 
$ 
I 
7 
ß 
h 
r 
r 

pressure 
surface pressure due to vortex motion 
vorticity vector 
local velocity vector 
velocities in x—, y— and z—directions 
unit vorticity vector of j - th "vorton" 
volume of j — th "vorton" 
"vorton" vector 
"blob" size 
initial vorticity distribution parameter 
wave potential 
impulse 
total impulse 
impulse shape parameter 
surface elevation 
radial distance 
dimensionless time 

1    INTRODUCTION 

The interaction of underwater vortical flows with a free 
surface has been an active area of research in recent 
years, motivated by a desire to understand the mecha- 
nisms responsible for the surface signature of ship wakes 
which are detected by remote sensing radars. Although 
the ship wake/free surface interaction is a very compli- 
cated phenomenon in which many competing processes 
modify each other, most of investigations have focused 
on simpler "canonical" problems such as underwater 
jets and vortex pairs, for example, with the anticipa- 
tion that these studies will be helpful to understand 
the key aspect of the more complicated wake. 

Bernal and Madnia [1] performed experimental 
studies of the interaction between a free surface and an 
underwater jet. They observed that the generation of 
short waves on the free surface appeared to be related 
to the apperence of surface dimples which signify vor- 
tex lines terminating at the free surface. To isolate this 
phenomenon and understand the details, Bernal and 
Kwon [2] and Kwon [3] looked at a single vortex ring 
colliding obliquely with the free surface. They found 
that the reconnection process of a vortex ring at the 
free surface is a direct cause for short wave generation 
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on the free surface. Song, Bemal and Tryggvason [4] 
discussed the surface signature associated with the evo- 
lution of a large vortex ring normal to the free surface. 
The experiments indicated that the later stage of the in- 
teraction was dominated by three-dimensional features 
associated with the development of a. core instability 
and the eventual reconnection of the vortex core to the 
free surface. In their investigation, the vortex reconnec- 
tion appeared to be a major mechanism for the gener- 
ation of short waves on the free surface in agreement 
with Bemal and Kwon [2]. In this paper, we focus on 
the vortex ring/free surface interaction and address sev- 
eral issues by numerical simulations. We also propose a 
simplified model of this complicated phenomena, aim- 
ing at a fundamental understanding of the free surface 
behavior associated with the vortex ring evolution. 

The reconnection of vortex filaments, by itself, is 
still not fully understood. Pumir and Kerr [5] simu- 
lated the interaction of vortex tubes of opposite signs 
by spectral methods. They considered a small peri- 
odic vortex segment and investigated the interaction 
of tubes. Their results showed complete reconnection 
at a low Reynolds number (1000) and the formation 
of vortex ribbons (flattened vortex cores) at a higher 
Reynolds number (4500). Ashurst and Meiron [6] solved 
the Navier-Stokes equation to simulate the reconnec- 
tion process of two vortex rings with a Gaussian vortic- 
ity distribution over the core (core size was 0.1 of the 
ring radius) for Reynolds numbers less than 1000. They 
claimed that the reconnection took place on a convec- 
tive time scale and conjectured that the initial condi- 
tions (the separation distance between the two rings 
and the incident angle) are important in determining 
the reconnection time. Kerr and Hussain [7] also per- 
formed similar calculations as Pumir and Kerr [5] and 
reviewed previous work. Saffman [8] briefly reviewed 
previous experimental and numerical investigations and 
suggested a simple model to explain the physics of the 
reconnection process. 

A Lagrangian discretization of the vorticity equa- 
tions is often used in numerical investigations of both 
two- and three-dimensional vortical flows. In two- 
dimensional cases, the discrete vortex elements are 
point vortices and in three-dimensional cases, they are 
usually called "vortons" (or vortex particles or vortex 
sticks). Despite some arguments regarding the con- 
sistency of the vorton modeling for vortical structures 
(Saffman and Meiron [9], Winckelmans and Leonard 
[10] and Greengard and Thomann [11]), the vortex par- 
ticle modeling is attractive because when the vorticity 
is confined to a small region, only a small region needs 
to be considered numerically. The vorton modeling can 
also be easily incorporated into the free surface prob- 
lem, and hence we use a vorton model to describe the 
vortex ring evolution in the present work. The method 
will be described briefly in section 2.1; for more details 
see Winckelmans [12]. 

Generally, free surface deformations due to under- 
water vortical flows are small for realistic Froude num- 
bers. Therefore, the free surface waves are assumed to 

be linear here. By doing that, we can split the interac- 
tion problem into two separate parts: the vortex ring 
evolution with its image, and the free surface deforma- 
tion which depends on the vortical structure calculated 
without any effect from the surface deformation. As a 
result, the problem becomes much simpler and requires 
considerably less computing time than if we attempted 
the fully nonlinear problem. 

In the following section we describe the mathe- 
matical formulation of the problem and its numerical 
implementations. Section 3 is devoted to the presen- 
tation and discussion of results including a simplified 
model of the interaction. At the end we summarize 
the work presented in this paper. Preliminary results 
of this study were briefly discussed at APS meetings 
(Song, Tryggvason and Bernal [13], Song and Tryggva- 

son [14]). 

2    FORMULATION OF THE PROB- 
LEM 

2.1    Vortex Ring Modeling 

In order to simulate the vortex reconnection where a 
vortex ring "opens up" at the free surface and forms an 
U-vortex, we use a vorton method which is basically an 
inviscid model. Even though the reconnection process 
of the vortex core is not fully understood, viscosity is 
believed to play a key role in the process (Kerr and 
Hussain [7]). The role of viscosity is not to modify 
the large scale behavior of the flow but to initiate a 
local cancellation of vorticity of opposite signs. This 
local behavior produces a pressure imbalance along the 
axis of the vortex core near the reconnection region, 
and this pressure imbalace causes the vorticity to be 
swept outward (Saffman [8]). The experimental studies 
of Kwon [3] showed that the reconnection time is not 
sensitive to the Reynolds number variation as long as Re 
is roughly larger than 2000, and hence we may speculate 
that while vorticity diffusion is important, the absolute 
magnitude of the viscosity has small effects. 

Knowing this, we expect that an essentially in- 
viscid simulation with a small diffusive mechanism can 
successfully accomplish the reconnection which, in re- 
ality, is a phenomenon where viscosity plays an impor- 
tant role. Indeed, inviscid numerical simulations using 
vorton model with a careful treatment of the problem 
caused by the discretization of the vorticity (Winkle- 
mans and Leonard [15] and Winklemans [12]) have suc- 
cessfully simulated the reconnection of vortex filaments. 
This is because the finite blob used for the vortex parti- 
cles exhibits a somewhat dissipative role when the par- 
ticles are very close to each other. 

Guided by the weak dependency of the recon- 
nection process on the Reynolds number, as long as 
it is reasonably large, we introduce viscosity in the 
vorticity evolution following Winklemans and Leonard 
[15]. Their treatment of the viscous term in the vortic- 
ity equation was based on Degond and Mas-Gallic [16] 
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where the V2 operator is approximated by local aver- 
aging of the vorticity. This additional viscosity makes 
the vortical structure evolve smoother without chang- 
ing the global evolution and also makes simulation with 
the free surface possible for a significant period of time 
after the reconnection. 

Following Winckelmans and Leonard [15] and 
Winckelmans [12], a brief description of the problem 
follows: The dimensionless governing equation is the 
Navier Stokes equation in vorticity form, 

f + (u.V)„ V)u + —V2w. 
Re (1) 

Here u is the velocity vector, w = V x u is the vorticity, 
and Re is the Reynolds number denned by T/v. As 
shown by Winckelmans and Leonard [15], an alternative 
form of Eq. (1) is 

^ + (u • vv = (w • VT)u + -^W (2) 

and is known to provide better flow behavior when a 
discretized vortex model is applied. If the vorticity field 
is written as a summation of vortex particles of finite 
number, N, we have 

w(x) 

(3) 

Y^iujVoljWx - x;) 
i=i 

=   XXx^x-x,). 
J=l 

Here w;- and volj are the unit vorticity vector and the 
volume of the j'-th vorton respectively, and fi(xy) = 
Wjvolj.   The velocity field induced by the above dis- 
cretized vorticity is 

• -u(x) = E v(1-^-1) x n(x,-)*(x - x;),     (4) 

Here x is the Lagrangian field point which moves ac- 
cording to the kinematic relation 

f = u(x). (5) 
Since the above formulation is too singular to imple- 
ment numerically, a regularized formulation where the 
S function is replaced by a properly smoothed function 
££ satisfying certain conditions (Greengard [17], Winck- 
elmans and Leonard [15] ) is used. The vorticity, Eq. 
(3), is modified by a "blob" of size e, so that 

*»    X 

Fig. 1 Schematic diagram of the flow and the coordi- 
nate system. 

where x«(x — xj) = 
-x,-|3(|x-x,-|2 + 5gV2) 
47r(|x-xJf + e2)5/2 

The evolution equation for the strength of each vorton, 
including the viscous diffusion, is 

dÜ 1 
At Air  2—1 

x - x,- :+K) 
dt 47rjtt(|x-xJ-|2 + £

2)f 
(fi(x) x Ofo-)) + 

■x,-) 

SGx-x.f + fe2) 

+ ■ 

(|x_x.|2 + e2)5 

105£4 

/(fi(x)-((x-x;)xf2(xi))) 

i?e(|x- + £2 
(uo/(x)n(xi) - uo/(x;-)n(x)). 

(10) 
In order to conserve the volume of the vortons, we keep 
(£(x)2|£2(x)|) constant in time. 

The coordinate system used is shown in Fig. 1 
with the flow geometry. To save computing time the 
vortex ring is initiated close to the free surface and 
symmetry about y = 0 axis is used. The initial vor- 
ticity distribution is Gaussian, defined by 

Kr)l = 5^j «*{-£}, (ID 
where r is the perpendicular distance to the core of the 
ring. 

w(x) « w£(x) = £n(x, 
;'=i 

)C«(x -x,-) (6) 

where £c(x — x;) = 
15£4 

(7) 
8TT(|X- -X;|2 + £2)7/2' 

and the velocity field induced by this regularized vor- 
ticity is 

"w=-£if- -Xjl3 -*,-) x n(xj), (8) 

2.2    Free Surface Calculation 

Assuming that the flow outside of the vortex ring is 
inviscid, incompressible and irrotational, a velocity po- 
tential for wave motion can be introduced. This veloc- 
ity potential, $(z, y, z, t), satisfies the Laplace equation 
in the fluid domain. From the Bernoulli equation the 
pressure field can be expressed as 

-p{f + 5(w)2 + ffz} (12) 
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where p is the density, g is the acceleration of gravity. 
This pressure also satisfies the following relation at the 
free surface 

p = P-S(± + lr). (13) 

Here 5 is the surface tension, R\ and R2 are the 
two principal radii at the free surface, positive when 
the center of curvature is above the free surface, and 
P = tfi -f pa, where pa is the atmospheric pressure 
and p7 is the pressure which is obtained from the vor- 
tex ring motion. Recalling that experimental results 
showed generation of very small waves at low Froude 
number vortex ring/free surface collisions (Song et.al. 
[4], for example), the above dynamic free surface bound- 
ary condition can be linearized with the assumption of 
zero atmospheric pressure (Yih [18]). We therefore have 
the following partial differential equation for $ at the 
free surface. 

<9$ P7 S,d2h     d2h, 

at p p oxi dy2 

The kinematic free surface condition is 

dh _ ö£ 
dt ~ dz 

and is also linearized: 

d$8h     d^dh-, 

dx dx     dy dy 
at z = h 

dh    ö$ 
"37 = ~5~    at z = ° dt      dz 

(15) 

(16) 

To complete the boundary conditions $ = V$ = 0 is 
imposed far away from the interaction region. 

To nondimmensionalize these equations we scale 
time by R2/T, length by R, velocity potential by T, 
velocity by T/R and the pressure by pT2/R2, giving the 
following dimensionless partial differential equations for 
the update of the wave potential and the free surface 
elevation 

9$ 

dt 
+ • 1 <?h     (Ph 

W + dy2' (17) 

dh 

dt 
and  -T- = -T—. (18) 

9£ 
dz 

Here, Fr = T/^W and We = pT2/(RS). 
As mentioned before the pressure f at the free 

surface in the dynamic free surface boundary condition 
is obtained from the vortex ring calculation, where the 
free surface is taken as flat. Once the vortex filaments 
connect to the free surface, it is no longer possible to 
take the flow at the free surface as irrotational, hence 
we estimate the pressure due to the vortex motion di- 
rectly from the Navier-Stokes equations. Dimensionless 
Navier-Stokes equations in the velocity form are 

du du du du 
— + u— + v— + w— 
dt       dx       dy        dz 

dv       dv       dv        dv 

dt       dx       dy        uz 

dw dw dw dw 
— + u— + v— + to— 
dt        dx       dy        dz 

df_     V2u 

dx       Re 

df 

dy 

df 
"dz~ 

+ 

+ 
Re 

Re 

(19) 

1 

Fr2' 

Taking partial derivatives of the first and second equa- 
tions in Eq.(19) with respect to x and y respectively and 
adding we have a two-dimensional Poisson equation for 
the surface pressure due to vortex motion, 

VLP
7 ay 

dx 
+ 

dy2 

,  du     du 
(u—+v— 

dx     oy 

1 

(20) 

dw d ,  dv     dv      - T-7Ü-- 

'-^"fc+^-Jk* Tz 
d dw    d 

dt dz    dx 
where we have used continuity and the fact that the free 
surface is flat as far as the vortex motion is concerned. 
All the terms on the right hand side of Eq.(20) can be 
determined from the vortex calculation and then the 
Poisson equation is solved by a fast solver. 

To determine the d$/dz term in Eq.(18), $ is 
expressed by a truncated Fourier series. The physical 
domain of the problem which is infinite is truncated at 
a finite distance from the collision point and a damping 
layer used to dissipate the outward propagating waves. 
Outside of this layer the wave potential and the surface 
elevation are set to zero. Time integration is done by 
a high order predictor-corrector scheme with variable 
step size. 

3    RESULTS AND DISCUSSIONS 

3.1     Characteristic of Numerical Vortex Rings 

The characteristics of the vortex rings used in our nu- 
merical experiments were investigated in several prelim- 
inary tests with different initial parameters. Physical 
parameters that characterize the rings are the dimen- 
sionless radius of the vortex core (a) and the distribu- 
tion of vorticity (a) in the core. Numerical parameters 
are the number of vortex particles and the size of the 
blob used. The influence of these numerical parameters 
on the convergence of the solution has also been inves- 
tigated by Greengard [17], Winckelmans and Leonard 
[15] and others. 

To characterize the rings, we first investigated the 
speed of the ring and several invariants of the ring mo- 
tion without viscosity. We used 231 and 1045 vortex 
particles for two different cases. The vortex ring is di- 
vided into 33 (55 for the 1045 particle case) segments 
in the azimuthal direction and each segment consists of 
2 layers (3 layers when 1045 particles were used). At 
the cross section of the ring, one vortex particle is lo- 
cated at the center of the core, and the second and third 
layers are composed of 6 and 12 particles respectively. 
Since there is little information from experiments about 
the detailed structure of the vortex core we use equa- 
tion (11) with a = 0.25 and a = 0.1 for for most of 
our calculation. This leads to a dimensionless propaga- 
tion speed that approximately matches the one in the 
experiments of Kwon [3]. 

The computed mean velocities of the vorticity 
centroid were steady but slight oscillations in the ax- 
ial speeds were observed due to the discretization and 
also partially due to the initial vorticity distribution. 
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Fig. 2 Typical vortex ring evolution. Re - 1000. 6 = 50°. a - 0.1 and a = 0.25. 231 vortex 
particles. Top row: Top view, Second row: Side view and Third row: Front view. From 
(a), T = 0.0, 6.0, 8.0, 10.0, 14.0, 16.0, 18.0 and 20.0. 

As the number of particles is increased, the axial speed of propagation speed are comparable to Saffman's [19] 
converges to a value which is close to the estimate of result.   These numerical experiments showed that the 
Saffman [19] and the oscillations are also reduced. modeling of the vortex ring is well under control and 

If we include viscous effect and set Re = 5000, addition of viscosity does not affect the global behavior 
the propagation speed decreased slightly with increas- of the ring, 
ing time due to vorticity diffusion. The rate of decrease 
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Fig. 3 Position of vortex cores at the center plane (y = 
0) as a function of dimensionless time. 0: XUJ R, 
O: Xi/R, □: Zu/R<md x: Z,/R. Re = 1000. 6 = 
50°. a = 0.1 and a = 0.25. 231 vortex particles. 

oo 

Fig. 4 Trajectory of vortex reconnection point on the 
free surface. O: Upper vortex core and O: Lower 
vortex core. T = from 6.0 to 20.0 by 1.0. Re = 
1000. 6 = 50°. a = 0.1 and a = 0.25. 231 vortex 
particles. 

3.2    Reconnection of two vortex rings 

In contrast to the single ring propagation, the recon- 
nection process can not be realized successfully relying 
only on the diffusive mechanism naturally included in 
the inviscid vortex particle modeling when a somewhat 
modest number of vortons is used. When two vortex fil- 
aments interact with each other a dramatic stretching of 
vorticity occurs near the reconnection region and this, 
generally, prevents the calculation from being continued 
further. This is a significant problem if we want to see 
the second reconnection and-the pressure field between 
the two rings, which will be used for the wave motion 

in our case, also becomes unrealistically large. Hence, 
we need a small amount of real viscosity to investigate 
the vortex reconnection with the present method, and 
the inclusion of a small amount of viscosity is believed 
to cause little change in the global picture of the ring 
evolution. 

Typical evolution of two vortex rings colliding 
obliquely with each other is shown in Fig. 2 The first, 
second and third rows are a top view, side view and the 
front view of the ring below the image plane, z = 0, 
respectively. The initial incident angle (#) is 50° and 
the Reynolds number is 1000. 

As the upper part of the ring approaches the 
top surface, it starts to move toward the negative x- 
direction due to its image (frame (b)). The upper part 
of the ring opens up between frames (b) and (c), and 
reconnects with its image ring. After the first recon- 
nection, the U-shape vortex ring propagates along the 
positive rr-axis with its legs separating ((c) and (d)). 
As time increases, the lower part of the ring approaches 
the surface again ((e) and (f)) and eventually reconnects 
with its image at the surface. In frame (h) two separate 
half rings have formed and are propagating outward, 

leaving a few particles behind. 
In Fig. 3 the evolution of the vortex core in the 

double reconnection process is shown by plotting the 
dimensionless downstream location of the core and the 
distance of the core to the image plane as a function 
of dimensionless time. The symbols o and 0 represent 
the downstream location and depth of the upper core, 
respectively, and O and x are for the lower core. The 
speed of propagation of both the upper and lower cores 
is essentially constant (0.21) until they disappear from 
the center plane (y = 0). The trajectories of the vor- 
tex cores on the z = 0 plane in normalized coordinates 
are plotted in Fig. 4. The. diamonds are for the re- 
connected upper core and the squares are for the lower 
core. Right after the first reconnection the two cores 
move away from the y = 0 plane very rapidly (from 
T' = 6.0 to 9.0), and then they move steadily down- 
stream and away from the center plane until the second 
reconnection occurs. At T = 18.0 the lower core recon- 
nects at the z = 0 plane and the two cores form half 
rings that move obliquely away from the center plane. 

Our numerical experiments show that the sec- 
ondary reconnection of the lower core is very sensitive 
to the initial conditions (such as the incident angle, core 

size and viscosity). This sensitivity was also found in 
the experimental studies of Kwon [3] and the numerical 
studies of Ashurst and Meiron [6]. More detailed sim- 
ulations of reconnection of two vortex rings by vorton 
methods can be found in the works of Winckelmans and 
Leonard [15] and Winckelmans [12]. 

One of the important parameters that character- 
izes the reconnection process is the time scale of the 
reconnection. To define the reconnection time, we eval- 
uate the circulation of the upper core of the ring at the 
center plane (y = 0) and estimate the difference be- 
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Fig. 5 Vorticity contours at the center plane (y = 0) 
and the free surface. Re = 5000. 6 = 70°. a = 0.1 
and a = 0.25. T = 0.0, 4.139, 5.290 and 6.328. 
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Fig. 6 Circulation of the upper part of the ring as a 
function of dimensionless time. Re = 5000. 6 = 
70°. a = 0.1 and a = 0.25. 
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Fig. 7 Nondimensional reconnection times as a func- 
tion of incident angle. 0: inviscid, a = 0.1. O: 
inviscid, a = 0.05. O: Re = 5000, a = 0.1. 
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Fig. 8 Perspective views of free surface deformation. Fr = 0.2. Re = 5000. 6 
5.0, 6.0, 7.0, 8.0, 9.0 and 11.0. 

70.0°. T ■■ 

tween the times of 90% and 10% circulations. Fig. 5 
shows the vorticity contours at the center plane (\j = 0) 
and at the top surface (z = 0 and y > 0), that will 
be used for the free surface calculation (6 = 70°, a = 
0.25, D = 1.5, a = 0.1 and Re = 5000). Once the up- 
per part of the core attaches to the free surface, vertical 
vorticity appears on the free surface and eventually no 
noticeable j/-component of the vorticity in the upper 
part of the core is detected at the center plane. Fig. 6 
shows the change of the circulation of the upper part of 
the ring at the center plane. 

To summarize our numerical results for the time 
scale of the first reconnection, we plot the dimension- 
less reconnection time (Tt/a2) as a function of the inci- 
dent angle (6) in Fig.7 for three different cases: two 
inviscid calculations with different vorticity distribu- 
tions (a = 0.05 and 0.1) and one viscous calculation for 
a — 0.1 and Re = 5000. Even though we do not have 
many data points and the definition of the reconnection 
time is somewhat arbitrary, three things are noticeable. 
First, there is an incident angle at which reconnection 
takes place in a shortest time.  This angle depends on 

the initial vortex structure, and in our experiments is 
between 50° and 70°, bigger for a more concentrated 
vortex ring (<r = 0.05). Secondly, it takes a longer time 
for a ring of rather uniform vorticity (a = 0.1) to ac- 
complish the reconnection than the concentrated ring. 
Thirdly, there is an angle (about 50°) at which the re- 
connection time is not significantly affected by the ini- 
tial condition (viscosity and vorticity distribution). 

3.3    Free Surface Waves 

Based on results from the preliminary calculations, the 
initial condition for the ring and the computational pa- 
rameters for the free surface were selected for one well 
resolved calculation. A vortex ring (a = 0.25, a = 0.1 
and Re = 5000), which is the same an in Fig.5, is now 
located at 1.5 dimensionless distances below the free 
surface with 70° incident angle. The Froude number is 
0.2 and the Weber number is 100. The computational 
domain on the free surface is truncated to a square 
plane whose side is 48 x R with a 256 x 256 grid on it. 
The calculation is stopped when the first reconnection 
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Fig. 9 Free surface contours and front/side views of ring. FT = 0.2.  Re - 5000.  0 = 70.0° 
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Fig. 10 Surface elevations at y = 0. Fr = 0.2. Re = 
5000. 6 = 70.0°. From the top, T = 5.0, 6.0, 7.0, 
8.0, 9.0 and 11.0. 

is completed. 
Fig. 8 shows perspective pictures of the free sur- 

face at several times. The z-axis is stretched 240 times 
compared to the x- and t/-axis. The first two frames 
show the free surface deformations that are mostly due 
to the upper part of the ring. This signature becomes 
more clear as time increases. In the next three frames, 
two dimples due to the reconnected vortex cores at the 
free surface appear. Notice the waves generated dur- 
ing this reconnection process. Once two distinguished 
dimples (sixth frame) are established, there is no more 
surface wave generation but the generated waves propa- 
gate outward from the reconnection region. In addition 
to the waves generated due to the reconnection pro- 
cess, there are slowly varying surface deformation near 
the two distinct dimples, which seem to be related to 

500 

the flow induced by the lower part of the reconnected 

ring. 
In order to obtain more detailed information 

about the correlation between the free surface signature 
and the vortex ring evolution, contour plots of the sur- 
face elevation and side/front views of the ring are shown 
together in Fig. 9. As the vortex ring approaches the 
free surface, the upper part of the core starts to move lo- 
cally in the negative x-direction due to its image. The 
dominant surface deformation at this stage is the de- 
pressed free surface near and parallel to the axis of the 
upper part of the core and the slight elevation near the 
center of the ring. This surface-pattern grows as time 
increases, even when the dimples appear. Indeed, the 
dimples are related to the low pressure regions on the 
free surface and the pressure imbalance along the vor- 
tex core accelerate the reconnection process. However, 
since there is still considerable y-component vorticity 
in the center plane, the depression of the free surface 
due to the upper part of the core remains. The most 
dramatic topological change in the vortical structure 
occurs between the third and fourth frames in Fig. 9. 
In the fourth frame, no vortex particles belonging to 
the upper part of the core are observed at the center 
plane. Moreover, the vortex lines at the free surface are 
almost perpendicular to the surface, indicating a full 
reconnection of the vortex core. Once there is no no- 
ticeable t/-component vorticity in the upper part of the 
core at the center plane, the depressed free surface is 
released and moves upward. This is clearly captured in 
the contour plot in the fourth frame. The following free 
surface motion is similar to the Cauchy-Poisson's wave 
problem with a single negative surface depression as an 
initial condition. The next few frames of contour plots 
show wave propagations in the positive and negative x- 
directions. The last frame shows two distinct dimples 
and a slight modification of the surface profile near the 
reconnection region. 

Another description of the evolution of the free 
surface can be seen in Fig. 10 where the surface profile 
at the center plane at times corresponding to Fig. 9 is 
shown. The development of the depression associated 
with the upper part of the vortex core continues up 
to the second frame (T" = 6.0), when the depression 
is suddenly released and waves that propagate in the 
positive/negative s-direction appear. 

3.4    Pressure impulse modeling 

3.4.1    Mathematical Formulation 

In the previous sections we have noticed that most of 
the short waves on the free surface are generated by the 
reconnection process during which a significant pressure 
impulse acts on the free surface. This observation sug- 
gests that it may be possible to model the effect of the 
vortical motion simply by a pressure pulse (or pulses) 
acting on the surface at the reconnection point. If such 
a model produces the right wave patterns, considerable 
simplifications result and, in particular, the wave pat- 
tern due to many reconnections could be computed rel- 
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Fig.  11 Distribution of surface pressure due to vortex evolution.  Only y < 0 side is shown. 
Fr = 0.2. Re = 5000. 9 = 70.0°. From (a), V = 5.0, 6.0, 7.0, 8.0, 9.0 and 11.0. 

atively cheaply. Based on this ideas we introduce below 
an analytical model that is basically a Cauchy-Poisson 
wave problem with a known pressure impulses. 

The governing equation for the wave-velocity po- 
tential is 

in cylindrical coordinates. Following Sneddon's [20] no- 
tation, zeroth order Hankel transformation is given as 

HZ, z, t)=  r°r S(r, z, t)J0(Zr) dr. (22) 
Jo 

Taking the Hankel transform of Eq.(21) gives 

?l-?9 = 0. (23) 

Corresponding Hankel transformed linearized free sur- 
face boundary condition is 

92l>       89     n (24) 

at z = 0, and its dimensionless form, using the same 
variables which were used to nondimensionalize the equa- 
tions in previous sections, is 

82$ — + -L^ = o. 
dt2      Fr2 8z 

(25) 

From now on, all equations are in dimensionless forms. 

If we let 
9 = A(t,t)ex?(tz), (26) 

Eq. (23) is satisfied and, substituting Eq. (26) into Eq. 

(25), we have 

^ + ^ = °- (27> 
Once we obtain A(£,t) which satisfies Eq. (27) and the 
proper initial conditions, we perform an inverse Hankel 
transform to get a wave potential that can be used to 
obtain surface elevations with the linearized kinematic 
free surface boundary condition. 

Now, if an impulse at the free surface is given at 
t = 0, we can write I(r) = §(r, 0,0), and from Eq. (26) 
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Fig. 12 Perspective views of surface wave propagation 
due to a pressure impulse at (-1.5, 0.0). 7 = 0.006. 
ß = 0.3. T' = 3.0 and 5.0. 

we have the initial conditions for A(£, t), 

Atf.O) = *(£)= /    I(r)rJ»(tr)dr (28) 
Jo 

and at 0 (29) 

Solving Eq. (27) with the above initial conditions, 

A(t,t) = Ht)<*x(\l-£äi) (30) 

and *(f, z, 0 = J(0 cos (\J f^t) exp (£*)•        (31) 

An inverse Hankel transform finally gives 

*(r, z, t) = ^°° £/(£) cos ^JLt)J0((r) exp (£*)<££ 

,  (32) 

and   h(r,t) = Frjo    (11(f) sin (^i)■/„(£■)#. 

, r (33) 
If the impulse given on the free surface can be approx- 
imated as 

/(r) = 2^eXp(-^' (34) 

where 7 = J"0°° I(r)2irrdr, from Gradshteyn and Ryzhik 
[21], 

roo 
1(0   =    /    rI(r)J0((r)dr 

Jo 

7 ,    £2/?\ 
2TeXp(-—) (35) 

Fig. 13 Perspective views of surface wave propagation 
due to three pressure impulses. At (-1.5, 0.0): 7 = 
0.006, ß = 0.3. At (-1.2, 0.3): 7 = -0-003, ß = 0.3. 
At (-1.2, -0.3): 7 = -0.003, ß = 0.3. T = 3.0 and 
5.0. 

Substitution of Eq. (35) into expression (33) gives 

A(r,t) = -^jT^Jb(fr)exp(- 
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sin (\/-^-ri) cos (fr cos a)cff <fa. (36) 

To evaluate the above integral we use the method of 
stationary phase (Stoker [22]) and obtain the final form 
of the free surface deformation due to the initial impulse 
given by Eq. (34) as 

h(rrt) = --j 7*3 ßH4 

2* irr4 Fr2 

(37) 
provided t2/(4rFr2) is large. Eq. (37) states that at 
fixed t and r wave height is proportional to 7/Fr2 and 
the wave frequency decreases as Fr increases. 

3.4.2    Wave Propagations 

Fig. 11 shows the distribution of surface pressure as- 
sociated with the evolution of the ring in Figs. 8-10 
(only y < 0 side is shown). Frame (a) shows that the 
minimum pressure above the upper part of the ring. 

After the sudden topological change of the ring con- 
figuration during the reconnection, the local minimum 
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Fig. 14 Surface deformations at the center plane (y = 
0). T = 3.0. Top: Single impulse. Bottom: 3 
impulses. 

pressure region moves outward from the center line fol- 
lowing the motion of the reconnected vortex core (frame 
(b)). Once the first reconnection is fully accomplished 
the local pressure minimum is clearly depicted far away 
from the center line (y = 0). Note that there is no 
wave-like variation of the pressure over the surface but 
only changes in shape and location of its maximum and 
minimum. 

From Fig. 11 we determine the magnitude and 
shape of the impulse to be given on the free surface. 
First we give one impulse at the center of the reconnec- 
tion region (-1.5, 0.0) with 7 = 0.006 and ß = 0.3. In 
Fig. 12 we show perspective views of the wave profile 
at two different dimensionless times. The top picture is 
at T' = 3.0 and shows two distinct wave crests traveling 
radially outward. Comparing this wave profile to frame 
(e) in Fig. 8, the modeled wave looks little shorter than 
in the full simulation and the traveled distance is also 
shorter in the modeled case. Except for the modifica- 
tion of the surface near the reconnection region due to 
the two dimples associated with the reconnected cores, 
both pictures show qualitatively similar shape with the 
afore-mentioned slight differences. The bottom picture 
at V = 5.0 shows, basically, propagation of the wave 
shown in the top with a slight modification around the 
inner and outer boundaries of the wave packet. This 
wave is also a little bit shorter and slower compared to 
the wave in frame (f) of Fig. 8. 

If we look closely at the variation of the surface 
pressure during the reconnection process the real pres- 
sure impulse seems more like three impulses than single 
impulse at the center. At the instance when the upper 
part of the ring is ready to open up, the pressure at 
the center reaches its minimum and the shape of low 
pressure region is elongated and curved toward down- 
stream. Right after the reconnection, the local mini- 
mum pressure region becomes a local maximum, and 
the minimum pressure region splits into two, on either 
side of the center and a little downstream. 

In order to model this procss more realistically we 
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use three impulses near the reconnection region as ini- 
tial conditions. One impulse at the center, (-1.5, 0.0), 
with 7 = 0.006 and ß = 0.3, and two impulses just 
outside of the center and little downstream, (-1.2, 0.3) 
and (-1.2, -0.3), with 7 = -0.003 and ß = 0.3. Fig. 13 
shows the wave profiles at V = 3.0 and 5.0. Wave pat- 
terns similar to Fig. 12 are seen in these calculation. 
In order to make more detailed comparison between the 
wave patterns of Fig. 12 and Fig. 13, we show wave 
profiles at the center plane in Fig. 14. The top is for the 
single impulse case and the bottom is for three impulse 
case at T = 3.0. A broken line at x/R = -1.5 indi- 
cates the location where the initial impulses are given. 
First thing we notice is that the waves at the bottom 
are slightly larger and shorter. Contrary to the sym- 
metry about the broken line for the single impulse case 
the bottom shows flatter downstream waves travelling 
a little faster than the upstream ones. Since our full 
interaction simulation (Fig. 10) includes a considerable 
effect from the base flow induced by the lower part of 
the ring it is difficult to see this detailed differences in 
Fig. 14. However the shadowgraph images obtained 
by Kwon [3] show these longer downstream and shorter 
upsream waves. 

4    CONCLUSION 

The generation of surface waves due to the reconnection 
of a vortex ring with a free surface is investigated with 
a vortex particle model for the ring and linearized free 
surface conditions. The first reconnection of the vor- 
tex ring can be successfully computed with a modest 
number of viscous vortex particles and the reconnec- 
tion time scale for the first reconnection is comparable 
to the experimental results of Kwon [3]. A reconnection 
occurs faster when the incident angle is between 50° and 
70° than when the ring is more normal or more parallel 
to the free surface. While the first reconnection occurs 
as long as the ring is initially not nearly parallel to the 
free surface, the secondary reconnection is more sen- 
sitive to the initial conditions (the incident angle, the 
distribution of vorticity, and the Reynolds number). 

From the experimental studies of Bernal and Mad- 
nia [1] and Kwon [3], it is known that short wave gen- 
eration is associated with a rapid change of pressure 
near the vortex reconnection region. A linearization of 
the free surface conditions, based on a small Froude 
number assumption, retains the pressure effects due to 
the vortex motion as the most dominant'term. Conse- 
quently, the free surface deformations can be obtained 
without solving the full boundary value problem, which 
is very expensive. The present numerical study shows 
that surface waves are generated when a vortex core 
opens up at the free surface and the depressed surface 
region is released. As long as the Weber number is cho- 
sen realistically (in our case, larger than 50), surface 
tension effects on the free surface deformation appear 
to be negligible. 

Based on the numerical results we propose a sim- 
plified model of the wave generation due to the vor- 



tex reconnection. Preliminary results suggest that the 
waves generated are similar to those produced by the 
full problem. However, before the model can be applied 
by any confidence to a more complicated problem, such 
as multiple reconnection, more work is required to con- 
nect the model parameters to the influence of the ring. 
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DISCUSSION 

K.Mori 
Hiroshima University, Japan 

What boundary conditions are used on the free 
surface in your computation of the vorticity equation? 
On the free surface, from the tangential condition, we 
have, for example, in linearized form, 

dx dz 

which may lead 

Wy = 0. 

This means that a boundary layer-like layer for 
vorticity may develop on the free surface which may 
change the development of vorticity. 

AUTHOR'S REPLY 

Wave calculation is based on velocity potential as 
stated in the paper and linearized free-surface 
conditions are used. In linearized formulations, the 
effect of the surface deformation on the motion of the 
ring is neglected. 

DISCUSSION 

A. Weigand 
University of California at San Diego, USA 

In Fig. 5c (top view of vorticity, reconnected to 
the free surface), two separate vorticity peaks are 
visible? What causes these two peaks? Are they 
related and due to the numerical procedure, or do 
you think that they exist in reality and, therefore, are 
physically relevant? 

appearance of two peaks in the surface vorticity in 
Fig. 5c. 

DISCUSSION 

D. Dommermuth 
Science Applications International Corporation, USA 

At low Froude numbers, when the time scale of 
the vortical motions is longer than the time scale of 
the wavy motions, the free-surface elevation is 
hydrostatically balanced with the vortical pressure. 
The dispersive waves that you observe in your 
numerical simulations may be due to an imbalance in 
your initial conditions. Suppose you have a vortex 
ring that is initially very deep (say, more than 100 
diameters). As this vortex ring nears the free 
surface, would you expect the same dispersive waves 
to be generated as your shallowly-submerged vortex 
ring? (Here, the deep initial depth is only meant to 
give the free surface sufficient time to adjust to the 
presence of the vortex ring.) 

AUTHOR'S REPLY 

The waves are not due to an impulsive 
introduction of the ring close to the free surface. In 
order to avoid problems caused by the introduction of 
the ring, the effective circulation of the ring was 
increased gradually from zero to its full strength 
during short start-up period. We examined several 
initial depths and weighting functions and concluded 
that the treatment we used was adequate for our 
purpose. 

AUTHOR'S REPLY 

While sufficiently large number of vortices is 
capable of predicting the core deformation accurately, 
we have used a relatively small number in the 
computations presented here. Therefore, although the 
large-scale motion is fully conveyed, we caution the 
reader not to attach major significance to small-scale 
phenomena in these results such as the transient 
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Experimental Studies of Vortex Reconnection 
to a Free Surface: A Physical Flow Model 

M. Gharib, A. Weigand, C. Willert, D. Liepmann 
(University of California at San Diego, USA) 

ABSTRACT 

An experimental investigation of the reconnection 
process of a vortex ring obliquely approaching a free 
surface is presented. This investigation focused on the 
early stages of the interaction process. Using Digital 
Particle Image Velocimetry (DPIV), the vorticity field was 
mapped. The results depict the formation of a secondary 
vortex that plays an important role in the reconnection 
process. A physical model was developed to describe the 
reconnection process based on the temporal and spatial 
measurements of the velocity and vorticity fields. 

NOMENCLATURE 

D Core-to-core diameter of vortex ring 

DO Nozzle diameter 

Fr Froude Number (JTNgD*') 

8 Gravitational acceleration 

h Depth of the nozzle centerline 

P Pressure at free surface 

R Radius of curvature 

Re Reynolds Number (JT/v) 

s,r,z Curvilinear coordinate system 

u Velocity vector 

u,v,w Cartesian velocity components 
us,ur,w Curvilinear velocity components 

We Weber Number (pr2/aD) 

x,y,z Cartesian coordinate system 

a Angle of vortex generator with surface 

r Circulation 

ß Dynamic viscosity 
V Kinematic viscosity 
a Vorticity vector 
COx, COy, COz Cartesian vorticity components 

p Density 
a Surface Tension 
X Shear stress 

1.    INTRODUCTION 

Recent satellite images of the ocean surface by 
synthetic aperture radar have revealed interesting, but 
puzzling features of complex shear flows interacting with 
the ocean surface. Persistence of some of the observed 
features are specially intriguing, since they do not obey 
any known decay laws for fully submerged shear flows. 
The flow field of a ship wake is quite complex and its full 
simulation in the laboratory is difficult, if not impossible, 
to perform. Therefore, experimental and computational 
approaches that focus on elementary shear flows provide 
better understanding of the nature of this complex flow. 

In this regard, vortex rings and vortex couples have 
received much attention as generic elementary shear flows. 
The problem of a vortex ring or a vortex couple 
approaching a boundary with or without no-slip condition 
whether it is solid or deformable is challenging since it 
involves three-dimensional vortex reconnection. The first 
important steps toward understanding the process of 
vortex/free-surface interaction were undertaken by 
Sarpkaya (1), Ohring and Lugt (2), and Dommermuth (3) 
on the vortex couple problem and by Bernal and Kwon 
(4), Bernal et al. (5) and Leighton and Swean (6) on the 
vortex ring problem. 

Bernal and Kwon showed that as a vortex ring 
approaches the free surface at an oblique angle, the upper 
part of the vortex ring deforms and opens its ends to 
reconnect to the surface. Their intriguing observations 
raised many important fundamental questions regarding 
vortex-ring interaction with a free surface which is 
drastically different from the case of a vortex ring 
interacting obliquely with a solid wall (7). 

In this paper, we focus on the processes that lead to 
the reconnection process of a laminar vortex ring 
approaching at an angle to the free surface. In our 
investigations, we employed Digital Particle Image 
Velocimetry (DPIV) (8) to map the velocity and vorticity 
fields of the approaching vortex. The mapping process 
was carried out on the free surface and at various two- 
dimensional cross-sections in the flow. DPIV 
measurements allowed us to investigate the spatial and 
temporal evolution of the vortex ring and its interaction 
with the free surface. 
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2. EXPERIMENTAL SETUP AND 
PROCEDURES 

Figure 1 shows the experimental setup. The vortex- 
ring generator is placed in a water tank of 81x38x8lcm. 
For the purpose of dye flow-visualization, shadowgraphs, 
and DPIV, the tank has optical windows on five sides. 

The nozzle of the vortex-ring generator has a 
diameter (D0) of 30 mm and incorporates a piston to drive 
the flow. The piston is driven by an air-pressurized water 
reservoir and activated by a solenoid valve. The apparatus 
can generate vortex rings with diameters from 30 to 
43 mm within a Reynolds number range of 600 to 1800. 
The experiment is computer controlled (IBM-PC AT) 
which allows precise timing and synchronization (time 
resolution better than 1 millisecond) of the vortex-ring 
generator, dye injector and DPIV camera. 

For the purpose of repeatability, the tank was filled 
with deionized water which has a relatively constant 
surface tension compared to tap water. To make sure that 
the water surface is as clean as possible within the 
laboratory environment, we used two wipers to remove the 
aged water surface before each measurement. Additionally, 
before and after each experimental run the surface tension 
was measured with a Fisher Surface Tensiomat (Ring 
Tensiometer). 

For the experiments reported in this paper, the 
centerline of the vortex-ring generator was one nozzle- 
diameter (h = 30 mm) below the surface and inclined at 
an angle (a) of 7°. The generated vortex ring had a core-to- 
core diameter (D) of 37 mm. The Reynolds number 
(Re = r/v) for all of our experiments was 1150 with the 
circulation (F) of 11.5 cm2/seconds. Also, the Froude 
number (Fr = JVVgD^) and Weber number (We = 
pr2/aD) had values of 0.051 and 0.53, respectively. 

3. RESULTS 

3.1 Flow  Visualization 

The shadowgraph visualization showed a small 
depression of the free surface followed by the appearance 
of two round surface depressions that enlarge with time 
(Fig. 2). These observations which are similar to those of 
Bernal and Kwon (4), give the impression that the 
appearance of two symmetrical surface depressions are 
associated with the reconnection of the primary vortex; in 
this case, the opening of the upper portion of the main 
vortex ring to the free surface. In order to connect these 
observations to the crucial stages of the reconnection 
process we decided to map the temporal and global 
behavior of the velocity and vorticily fields on the surface 
and in planes normal to it. 

3.2 Free-Surface Velocity Mapping 

Using DPIV we were able to obtain the velocity field 
on the free surface. The vortex ring parameters (Froude 
and Reynolds numbers) were chosen so that any surface 
deformations would be of the order of the laser sheet 
thickness. This allowed us to position the laser sheet very 
close to the surface. After reviewing several hundred 

velocity fields in conjunction with their associated vorticity 
and strain fields, it was decided to present only the frames 
that are crucial in identifying the important milestones of 
the reconnection process. In our presentation of the 
results, we refer to these milestones as stages. 

Figure 3a shows the initial motion at the surface due 
to the induced inviscid velocity field of the approaching 
vortex (Stage 1). In this early stage, a stagnation point 
(marked as Si) appears at x ~ 41 mm and y « 0 mm. 
From this point flow accelerates spatially backward in the 
negative x-direction and then through a spatial deceleration 
converges towards a second stagnation point (marked as 
S2) at x " 1.4 mm and y « 0 mm. For a normal angle 
(a = 90°) approach of the vortex ring to a free surface, 
one would expect a symmetric outward spatial acceleration 
with a circular stagnation region surrounding Si. But for 
an oblique approach, only a small arc portion of the 
primary vortex interacts with the free surface, thus the 
observed pattern is a manifestation of the induced velocity 
of this portion of the vortex ring on the free surface. With 
time, the size of the stagnation area (Si) increases and 
becomes more well-defined. However its location remains 
unchanged as the second stagnation point moves forward 
in the positive x-direction. Therefore, the flow turns at 
sharper angles which result in a sink-source (dipole) 
pattern for the velocity vector field (Fig. 3b). Between 
Stages 2 and 3 a qualitative change occurs in the flow 
behavior. At Stage 3 (Fig. 3c), S2 moves forward even 
closer to Si and changes the dipole into a vortex-pair 
pattern on the surface by reversing the direction of the flow 
between Si and S2 (Stage 4, Fig. 3d). Note that the 
magnitude of the velocity vectors along the center line 
(connecting Si and S2) decreases between Stages 2 and 3. 

With time the vortex-pair pattern is enhanced by a 
strong forward current at the center which clearly separates 
the two counter rotating elongated regions (Fig. 3e). At 
Stage 5, these elongated regions go through a procession 
which reshapes them back to circular form. Stage 6 (Fig. 
3f) shows completion of the reconnection process and 
formation of two distinct circular vortices at the surface. 
This stage corresponds to the shadowgraph image in 
Figure 2. 

So far, the described series of surface velocity 
patterns shows the early stages of the vortex interaction 
with the free surface. The later stages involve the fold-up 
and splitting of the lower portion of the vortex ring which 
result in the formation of two half-vortex rings as was 
reported by Bernal and Kwon (4). We observed a similar 
behavior for the later stages of the flow evolution. 
However, in this paper we focus on the early, but crucial 
stages of the vortex interaction with the free surface. 

It has been generally assumed that the reconnection 
of the main vortex to the surface is directly associated with 
the appearance of the two identifiable surface depressions 
in the shadowgraph picture. The interesting behavior of the 
stagnation points on the free surface raised the suspicion 
that some other important events might occur before the 
main vortex reconnects to the free surface. Therefore, we 
decided to extract the vorticity field from the velocity field 
measurements. 
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3.3 Vorticity Field 

Figure 4 shows the temporal and spatial evolution of 
the vorticity field on the free surface. Figure 4a shows the 
appearance of a symmetric vorticity field. With time, the 
vortex pair grows until a tail pattern appears behind each 
vortex (Stage 3). These tails grow into a new vortex pair 
whose strength exceeds that of the initial pair (Stages 4 and 
5). During Stages 3-5, the initial pair interacts with the 
new pair until they merge and create a new and larger 
vortex pair in Stage 6. 

These observations reveal the dynamic nature of the 
surface flow that was not obvious in the velocity and 
shadowgraph pictures and raise the question of whether 
the initial vortex pair belongs to the main vortex ring. To 
answer this question, we tagged the core of the vortex ring 
with fluorescent dye at two positions close to the point 
where it would contact the free surface. This experiment 
showed that the first vortex pair appeared at the free 
surface before the marked core of the vortex ring could 
contact the water surface. These observations indicated that 
a secondary vortex must have been formed near the surface 
prior to the arrival of the primary vortex, and the 
appearance of the first vortex pair on the surface might 
have been related to the early reconnection of the 
secondary vortex to the free surface. To confirm the 
existence of this secondary vortex, we conducted DPIV 
measurements of the velocity field in the symmetry plane 
(z = 0 ) of the approaching primary vortex. 

Figure 5 depicts the evolution of the vorticity field in 
the symmetry plane (z = 0). As is evident in these 
figures, a secondary vortex with its axis parallel to the free 
surface exists very near the surface. Initially (Stage 1), this 
vortex with clockwise (negative) vorticity is fairly weak 
and is located behind and above the upper core of the main 
vortex. At Stage 2 the vorticity field shows a large vorticity 
gradient near the free surface by the compression of the 
constant vorticity contours. At Stage 3, the large vorticity 
gradient against the free surface disappears, but a new 
region of strong vorticity gradient appears where the two 
counter rotating vortices join. In Stage 4 the secondary 
vortex disappears. The corresponding surface vorticity at 
this stage (Fig. 4d) shows how the previously mentioned 
tail pattern evolves into a complete vortex pair. 

3.4 Peak Vorticity Behavior of the Primary and 
Secondary Vortices 

In order to correlate the sequence of events on the 
free surface to the events in the symmetry plane we present 
Figures 6a and 6b that show the variations of the peak 
vorticity with time in the symmetry plane (coz) and on the 
surface {coy). In the following discussion we regard the 
magnitude of the peak vorticity as a general representation 
of the vorticity associated with each vortex. 

For the secondary vortex, the vorticity parallel to the 
surface, lcuzl, (Fig. 6a) and normal to the surface, \a>y\, 
(Fig. 6b) increase between Stages 1 and 2. During this 
time, \o)y\ for the primary vortex on the surface stays 
negligible while \coz\ decreases slightly. Note that between 
Stages 2 and 3 we observe a weak appearance of the 
primary vortex on the surface (the tail pattern in Figure 
4c). This first appearance of the primary vortex on the 
surface coincides with the qualitative changes of the 

velocity vector patterns from a dipole to a vortex-pair, i.e., 
completion of the flow deceleration and reversal of the 
flow direction along the centerline. Also, during this 
period both primary and secondary vortices show 
increases in their peak vorticity values in the symmetry 
plane, z = 0. Between Stages 3 and 4 a drastic decrease 
occurs in the peak value of lcoz| for both the primary and 
secondary vortices in the symmetry plane to the degree that 
the secondary vortex disappears from the symmetry plane 
after Stage 5 in Figure 6a. However, in Figure 6b \a>y\ for 
the primary vortex continues to increase. The secondary 
vortex pair on the free surface maintains its vorticity value 
in this period. For the primary vortex, coincidence of an 
increase in \a>y\ on the surface with a reduction of \coz\ 
clearly indicates a direct connection between the 
reconnection process and these components of vorticity. 

Between Stages 5 and 6, \coy\ of the primary vortex 
reaches its maximum value marking completion of the 
reconnection process. This completion is more evident in 
the \coz\ component of vorticity where its value reduces to 
zero after a preceding mild increase. It is interesting to note 
that this mild increase in lo>2l for the primary vortex 
coincides with the disappearance of the secondary vortex 
from the symmetry plane. 

Figure 7a shows the temporal and spatial evolution 
of the ^.component of the vorticity field in the symmetry 
plane for Stages 3 through 5. This figure shows that 
between Stages 4 and 5, the secondary vortex disappears 
(t = 5.4 s) while the primary vortex retains some of its 
peak value which corresponds to the generation of a 
tertiary vortex. It seems that this tertiary vortex is not 
strong enough to play a role in the further development of 
the primary vortex. 

3.5  Normal-Strain Field in the X-Y Symmetry 
Plane 

Figure 7b shows the temporal and spatial evolution 
of the normal strain rate field (dw/dz) in the symmetry 
plane (z = 0) for the corresponding time steps of Figure 
7a. The normal strain rate is a measure of the out-of-plane 
stretching of the vorticity vector. In Figure 7b a strong and 
concentrated positive strain rate field is present near the 
free surface in a region above and between the cores of the 
primary and secondary vortices. The concentrated strain 
field moves into the region between the two vortices while 
its strength reduces and its area increases. This behavior 
covers Stages 3 and 4 where the peak vorticity values of 
the primary and secondary vortices rapidly decreases. 
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4  A FLOW MODEL FOR THE 
RECONNECTION PROCESS 

In order to illustrate the dynamics of the vortex ring 
interaction with the free surface, we developed a 
descriptive flow model that provides the kinematic and 
dynamic conditions necessary to generate the observed 
velocity and vorticity fields during the reconnection 
process. 

4.1  Generation and Reconnection of the 
Secondary Vortex 

In the previous section we presented experimental 
evidence that should prove the existence of a secondary 
vortex and its reconnection to the free surface prior to the 
reconnection of the primary vortex to the free surface. The 
role of this secondary vortex in the reconnection process 
will be discussed in this section. In this respect, we need 
to discuss the mechanisms that might be responsible for 
the generation of the secondary vortex. 

The conventional approaches to the issue of vorticity 
generation and vorticity flux at solid boundaries usually 
deal with situations where the no-slip condition is 
involved. The issue of vorticity generation and flux at a 
free surface has only recently received recognition through 
the works of Lugt (9,10), Lundgren (11), Saffman (12) 
and Rood (13). In this regard, a brief review of vorticity 
generation mechanisms at the free surface will be 
discussed. 

Surface 

Schematic 1 Curvilinear coordinate system at the free 
surface. 

The parallel component of the vorticity (a>z) at the free 
surface can be obtained in a curvilinear coordinate system 
(see Schematic 1) as: 

<°z=- _I^_2^ + 2 
[i     jJ. ds R 

dur 
(i) 

where xrs is the surface shear stress in the J -direction , R 
is the local radius of curvature of the surface, and a is the 
surface tension. 

For the air-water interface, the shear imposed by air 
on water can be neglected (i.e. T„ = 0 , see Lugt (9,10)). 
Now, consider the primary vortex ring as it approaches the 
free surface before Stage 1 (Schematic 2). 

Schematic 2 Approach of the primary vortex ring and 
generation of vorticity at the free surface. 

The velocity field induced by the primary vortex can cause 
a local and unsteady change in the surface slope. It can 
also redistribute the contaminants on the surface which will 
result in the generation of surface tension gradients at the 
free surface. The schematic shows the local surface slope 
change and regions of expected high concentration of 
contaminants (thick line). By inspecting the schematics in 
conjunction with Eqn. 1, one can identify regions that can 
possess positive or negative vorticity near the free surface. 
For the region between point Si and I where Si is 
assumed to be locally close to the maximum height of the 
free surface and point I is the approximate location of the 
inflection point, the radius of curvature (R) is positive and 
the surface velocity (us) is negative. Therefore, (-us/R) 
will be positive and results in the generation of positive 
vorticity between Si and I. In this region da/ds is 
negative, and, therefore -l/ß(da/ds) is positive which also 
contributes to the positive vorticity generation. To the left 
of I, R is negative and both -us/R and -do/ds are negative 
and would generate negative vorticity near the free surface. 

The role of dur/ds can be clarified by inspecting the 
normal velocity component at the free surface. Figure 8 
shows the surface normal strain rate field (dv/dy) obtained 
from the surface velocity field. For an initially still surface 
(v = 0), Figure 8 indicates that an upward motion region 
is trailed by a region of downward motion. Since the 
surface slopes in our experiments were small, it is a good 
approximation to accept the iso-velocity contours as 
representative of the magnitude the normal velocity 
component (v). Therefore, by inspecting the iso-velocity 
contours in Figure 8, one can conclude that dur/ds is 
positive between Si and S2 and is negative in the region to 
the left of the S2- The contribution of this term also 
supports positive vorticity generation between Si and I; 
counteracts contributions of the other two terms in the 
region between I and S2; and finally supports generation 
of negative vorticity beyond point S2- 

It follows from our previous discussion that once 
vorticity is generated at the free surface by the 
aforementioned mechanisms, the positive vorticity region 
will mix with its immediate positive sign primary vortex. 
Similarly, the negative vorticity region should spiral into a 
vortex by self-induction in a region below S2 (see 
Schematic 3). 
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Schematic 3 Approach of the primary vortex ring and 
formation of the secondary vortex. 

Schematic 4 Deformation of the primary vortex ring as 
it approaches the free surface. 

In this respect, Figures 5a and 5b sho\v a high 
concentration of positive vorticity on the top portion of the 
primary vortex and the presence of a negative vorticity 
region approximately to the left of the point I. These 
observations qualitatively support our conjectures 
regarding generation mechanisms and probable location of 
the secondary vortex near the free surface. 

The induced velocity field of the approaching 
primary vortex has finite span on the free surface (see Fig. 
3a). Therefore the secondary vortex is generated over a 
finite length. The kinematic condition for the free surface 
prompts reconnection of the two ends of the secondary 
vortex to the free surface with a normal incident angle. 
This reconnection event manifests itself as the initial vortex 
pair on the free surface (Fig. 4a). 

The secondary vortex reconnects to the surface like a 
half ring. Our velocity measurements below the surface (y 
= -4 mm) confirm that the vertical component of the 

vorticity exists with smaller peak values compared to its 
value at the free surface, which indicates a gradual bending 
of the secondary vortex toward the surface. Therefore, the 
secondary vortex moves forward in the positive x-direction 
under its self-induced velocity, which is responsible for 
the second stagnation point, S2, to move toward the first 
stagnation point, S\. This behavior can be easily 
recognized in Figures 5a and 5b where the region between 
the two vortices narrows and its top region (i.e. S2) moves 
forward. 

4.2 Dynamics of the Approaching Primary 
Vortex Ring 

Let us consider the primary vortex as it approaches 
the free surface but is not yet close enough to be influenced 
by the presence of the secondary vortex or deformation of 
the free surface. The flow visualization studies of the 
primary vortex during these early stages (Stages 1 and 2) 
show that the top portion of this vortex staggers backward 
(in the negative x -direction) and forms a narrow stretch 
towards the secondary vortex (see Schematic 4). 

As has been shown by Ashurst and Meiron (14), this 
stretching action is due to the interaction of the primary 
vortex with its image vortex ring above the symmetry 
plane (see Figure 1 of the Ashurst & Meiron). A similar 
behavior is expected for the cases where two vortex rings 
approach each other in an oblique angle (15). In our case 
the undeformed free surface acts as a shear free symmetry 
plane. 

As it was discussed in Section 3.2, the surface 
velocity field has a distinct sink-source pattern which 
illustrates the initial interaction of the tip of the primary 
vortex with the secondary vortex and enlargement of Si 
region due to the further rearward motion of the tip region. 
At these stages the secondary vortex has already 
reconnected to the free surface. 

Figures 6b and 3a indicate that reconnection of the 
primary vortex starts at Stage 3. This is the stage that the 
first normal component of vorticity due to the primary 
vortex appears on the surface and the parallel component 
of the primary vortex in the symmetry plane starts to 
decrease dramatically. Figure 6a shows that the reduction 
of \coz\ for the primary vortex in the symmetry plane occurs 
in two distinct steps. The first step starts with Stage 3 and 
the second with Stage 5. The latter has a shallower slope 
than the former. Similarly, the increase in the peak 
vorticity value of the primary vortex on the surface occurs 
at two steps with the steeper slope starting at Stage 3 
followed by the shallower slope starting at Stage 5. 

The scenario that we seek to construct should be able 
to explain processes that result in the production of the 
normal component of the vorticity at the free surface and 
degeneration of the parallel component of the primary 
vortex in the symmetry plane. Recently, Ashurst et al. (16) 
have shown that the shearing strain-rates induced on the 
stretched section of the primary vortex by the undeformed 
portion of the ring can rotate the vorticity components. It is 
important to note that in our flow situation the secondary 
vortex is in close proximity to the stretched section of the 
primary vortex and its induced shear strain-rate field would 
have an additional effect. Because after Stage 4 the 
secondary vortex disappears from the symmetry plane at 
z = 0 and its strength on the free surface starts to 
decrease, this additional effect is expected to lose its 
importance to the reconnection process in the later stages 
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(from Stages 4 to 6). The reaction of the stretched portion 
of the primary vortex to the combined influence of the 
secondary vortex and the undeformed volume of the 
primary vortex will depend on whether their actions 
enhance or cancel each other. 

As was described in the previous section, after the 
initial reconnection of the secondary vortex to the free 
surface, its normally reconnected portion at the free surface 
moves in the positive ^-direction. However, its parallel 
segment is held back by the rearward motion of the 
stretched portion of the primary vortex. This action causes 
a situation where the top portion of the primary vortex is 
under direct influence of the secondary vortex (see 
Schematic 5). 

Secondary 
Vortex 

Schematic 5 Interaction of the primary and secondary 
vortices during the reconnection process. 

Let us try to visualize the shear strain-rate field of the 
secondary vortex as the primary vortex approaches it. 
First, consider the material changes in the various 
components of the vorticity. If we ignore viscous effects in 
the early stages, the vorticity equation becomes: 

Deo 

Dt 
= (©-V)w. (2) 

Let us start with the rate of change for the y -component of 
the vorticity: 

Dcoy dv dv dv 
(3) 

According to the schematics, near the tip of the stretched 
part of the primary vortex, the ^-component of the vorticity 
(coz) is dominant, i.e., \a>z\ » \cox\ and \coy\. Therefore, 
we only consider the z-component of vorticity near the tip 
region of the primary vortex. According to the schematic, 
the y -component of the induced velocity by the secondary 
vortex should have a symmetric distribution near the 
symmetry plane (z = 0) which requires dv/dz = 0 close 
to the z = 0 region. Therefore, near the tip regions we 
expect: 

Deo 

Dt 
y-~0. (4) 

This means that the reconnection of the vortex to the free 
surface should not be expected in this region. Farther away 
from the tip region, the two legs of the stretched section of 
the vortex ring are mainly composed of x-component of 
the vorticity (o>x). Therefore, we can write: 

DCOy 

Dt 
coy 

dx 
(5) 

This region is mainly under the influence of the curved-up 
section of the secondary vortex. Schematic 5 shows that in 
the x-z plane for the side where z < 0: 

dv 
cox < 0 and —- < 0, 

dx 

therefore, 

Dco„ 

Dt 
>0. 

(6) 

(7) 

Due to the upward inclination of the stretched-back 
section of the primary vortex, ®y in the z < 0 region is 
positive and we should expect production of positive coy. 

For z > 0 we find dv/dx < 0 and cox > 0 which results 
in D C0y/Dt < 0 and production of negative C0y. This 
means that we should expect the reconnection process to 
occur on both sides of the symmetry plane. This behavior 
can be easily seen in Figures 4c and 4d where the surface 
vorticity shows the appearance of the tail patterns 
symmetrically off the x- axis. The sense of rotation of 
these reconnected vortices is negative for z > 0 and 
positive for z < 0 as was predicted by the equations. It is 
interesting to check whether this action is consistent with 
the action of the undeformed portion of the vortex ring on 
the stretched part. Ashurst et al. (16) find that Dcoy/Dt is 
positive for z < 0 and negative for z > 0 regions in the x- 
z plane. It is now clear that due to the consistency of the 
action of the secondary vortex and undeformed part of the 
primary vortex ring, we observe a steep slope for the 
growth of \cOy\ of the primary vortex in the early stages of 
the reconnection (Stages 3-5 in Fig. 6b). This growth 
becomes milder in the later stages where only the action of 
the undeformed part of the primary vortex supports the 
reconnection process. 

Now we need to understand the evolution of the tip 
portion of the primary vortex where az is dominant and, 
then, connect it to the flux of vorticity at the free surface. 
In Figure 6a we can identify a two-step reduction in the 
peak vorticity value of the 0)z component. 

We start with the vorticity transport equation in the z- 
direction: 
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Dcü7 dw dw dw 

Dt 
f 22 

+ V 
d2co7    d

2co. 

dx2 

(8) 

■ + - 
dy2 

In the symmetry plane, only coz is present, therefore, we 
can safely write: 

Dcoz 

Dt 

dw f 
— 6)7 + V 
<k    " V 

d2co,    d2co7 

dx2 ■ + - 
<V 

(9) 

In the initial Stages 1 and 2 the viscous terms can be 
expected to play a minor role in the absence of large 
vorticity gradients. According to the results in Section 3.5, 
the normal strain rate dw/dz in the symmetry plane is 
positive. Also for the primary vortex, coz > 0 in the 
symmetry plane. Therefore: 

Dco7 dw    n  L = ö) —->0. 
Dt l dz 

(10) 

This means that the primary vortex should initially 
experience stretching or extensional strain which should 
result in an increase in its peak vorticity value. Figure 6a 
shows an initial increase in the peak vorticity value 
between Stages 2 and 3. The secondary vortex will 
experience a similar extension and its peak value will 
increase correspondingly. The generation of the normal 
strain rate dw/dz can be attributed to two independent 
processes. The first process, suggested by Ashurst (16), is 
due to the mutual action of the top region of the primary 
vortex with its image which is similar to the action of a 
vortex ring that approaches its image at a normal angle. 
The second process which is suggested by Saffman (17) 
relies on the cancellation of vorticity by the fusion between 
the tip region of the primary vortex and the parallel section 
of the secondary vortex. The vorticity cancellation 
decreases the rotation inside the core, leading to an 
increase in pressure relative to the pressure at large 
distances from the region which in fact leads to a positive 
strain normal to the symmetry plane. The Ashurst model 
explains the existence of the normal strain outside the core, 
while Saffman's is more suitable for the action in the core 
region. 

We still need to explain the large reduction of coz 

between Stages 3 and 4 and the relatively mild reduction 
between Stages 5 and 6. Either vorticity is lost to the field 
at the free surface, diffused and canceled by the secondary 
vortex or convected out of the symmetry plane. In order to 
understand this process, we need to examine the vorticity 
flux equation. Following Lugt (9) and Rood (13), the 
vorticity flux equation at the free surface in a curvilinear 
coordinate system can be obtained as: 

■gcosö.(ll) 

Near the  tip  of the  primary vortex,  the  velocity 
measurements show that the spatial surface-velocity 

da>,) dus \du2 1 dP 

dr) dt 2 ds p ds 

changes are small, i.e., the contribution of the second term 
on the right-hand side of Eq. 11 is small. Since the 
surface-tension distribution between points Si and S2 can 
be considered to be uniform, the normal pressure 
distribution will be uniform and thus the contribution of 
the third term will also be small. In our experiments the 
surface slopes are mild (i.e. 6 = 90° ). Therefore, it can 
be  assumed that g cos 6 is small. These assumptions 
leave the surface acceleration term, dus/dt, as the main 
player in removing or adding vorticity to the flow field 
through the free surface. The surface velocity along the 
line that connects Si and S2 decreases with time to a finite 
negative value from its initial rest state (i.e. dus/dt < 0). 
This can be seen in Figure 3a. Therefore, the negative 
acceleration which results in a positive value for the term 
-dus/dt, should initially cause a positive vorticity flux to 
the region between Si and S2- Evidence of the initial 
positive vorticity concentration can be seen in Figures 5a 
and 5b. However, Figure 3b shows a reduction in the 
overall magnitude of the velocity vector with time. This 
means that dus/dt is positive beyond Stage 1 and thus a 
negative flux of vorticity to the field through the free 
surface should occur. 

The action on the surface is due to the kinematics of 
the flow and the consequent flux of vorticity is due to 
viscous diffusion. Therefore, the vorticity field reacts to 
the kinematics with some time lag. For this reason, the 
vorticity field (coz) of the tip region of the primary vortex 
(see Fig. 6a) starts to decrease in Stage 3 in response to the 
deceleration of the surface velocity field in Stage 2 (see 
Fig. 3b). Now, Figures 5b and 5c indicate that high 
vorticity regions of the primary vortex have counter sign 
vorticity of the secondary vortex in their neighborhood. 
Therefore, one expects additional loss of vorticity due to 
the diffusion within the neighboring regions. In the later 
stages (as is evident in Figure 5c) only this interdiffusion 
of the counter sign vorticity regions is important and not 
the loss of vorticity to the free surface. This can explain 
why at the later stages the tip of the primary vortex loses 
its vorticity (a%) at a lower rate than in the earlier stages. 

5.     CONCLUSION 

The described physical model suggests that the 
reconnection of the primary vortex occurs in two steps. 
First, the combined action of shear strain rate of the 
secondary and the undeformed portion of the primary 
vortex reconnect the stretched portion of the primary 
vortex to the free surface. The completion of the 
reconnection occurs at a slower rate through the sole action 
of the undeformed part of the vortex ring as suggested by 
Ashurst. 

Our physical model suggests that the disconnection 
of the tip of the stretched back portion of the primary 
vortex, also occurs in two steps. In the first step, the loss 
of vorticity to the free surface (as suggested by Rood) and 
diffusive flux of vorticity to the secondary vortex (as 
suggested by Saffman) cause a large reduction of the 
vorticity. In the later stages it is the latter mechanism which 
is responsible for the milder rate of the vorticity reduction 
in the symmetry plane. 
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Figure 1 Experimental Setup. 

Figure 2 Typical shadowgraph picture of a vortex ring reconnected to a free surface. 
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Figure 3a - 3f  Velocity field at the free surface during the reconnection process 
(stages 1 to 6). 
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Figure 4a - 4f  Vorticity field (a>y -component) at the free surface during the 
reconnection process (stages 1 to 6). 

517 



WATER SURFACE 

-1 -- 

-3-- 

.4-- 

a.)   STAG): 1 
1 = 3.71 s 

SÄÜdiftjr 

H 1- 

**%Ä%ß#i§i .. 

b.)   STAGE2 
I = 4.56 s 

 1 h- -+- 
c.)   STAGE 3 

1 = 4.89 s 
 1 1- 

d.)   STAGE4 
1 = 5.40 s 

 1 1 (- 

5     2 4 5 6     3 

7. [cm] 

Figure 5a - 5d Vorticity field (coz -component) in the symmetry plane (z = 0) during the 
reconnection process (stages 1 to 4). 
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Figure 6 Temporal development of the peak vorticity normalized with 
the initial peak vorticity of the vortex ring {coo = 11.0 s-1)- 
a.) coz - component in the symmetry plane (z = 0). 
b.) a>y - component at the free surface. 
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Figure 7 Spatial and temporal development of vorticity and strain rate in the 
symmetry plane (z = 0) during stage 3-5. 
a.) coz - component, 
b.) dw/dz - component. 
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DISCUSSION 

K. Mori 
Hiroshima University, Japan 

Thank you for your interesting paper. 

Did you use the tangential stress condition on the 
free surface in your analysis? If it is considered, the 
tangential components of vorticity may be zero and a 
boundary layer-like flow region may develop (see the 
text book by Batchelor). Did you observe any 
phenomena to support this in your measurement? 

AUTHORS' REPLY 

As it was stated in the paper (eqn. 1), the 
condition of shear stress V = a does not necessarily 
imply that the tangential component of vorticity is 
equal to a (S>r = a) at the surface. This is because 
surface parallel vorticity can exist due to surface 
tension gradients or other terms in eqn. 1. Our data 
was obtained in a real experiment and does not 
include any specific assumptions. A boundary layer- 
like flow is plausible for non-zero shear stress 
conclusions. However, we did not observe that in 
our experiments. 
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Turbulent Structure in Free-Surface Jet Flows 
D. Walker, C.-Y. Chen, W. Willmarth 
(The University of Michigan, USA), 

D. Anthony (David Taylor Model Basin, USA) 

ABSTRACT 

This paper examines the evolution of a turbulent jet 
beneath a free surface using a three-component laser 
velocimeter. Reynolds- and Froude-number effects in the 
interaction of the jet with the free surface are identified. 
At low Froude number, the anisotropy of the turbulence 
near the free surface is increased. The outward velocity 
near the surface, which gives rise to a surface-current 
layer, is larger at low Froude number. An increase in 
Reynolds number further increases the magnitude of this 
outward velocity. At low Froude number, the mean 
velocity profiles exhibit spatial variations which may be 
due to coherent vorticity attached to the free surface. 
These variations are absent at high Froude number, 
probably due to changes in vorticity/free-surface 
interaction, caused by the larger surface deflections. 
These changes in vorticity/free-surface interaction may 
also result in the smaller outward velocity observed at 
high Froude number. Near the free surface, the high- 
mean-shear regions of the flow exhibit locally elevated 
Reynolds shear stress which contributes to surface 
current. 

INTRODUCTION 

The interaction of turbulent flow with a free surface 
has received increasing attention in recent years. A 
significant portion of this interest has come as a result of 
recent advances in remote sensing which are expected to 
allow world-wide monitoring of maritime traffic in the 
foreseeable future. Techniques such as synthetic-aperture 
radar (s.a.r.) are capable of detecting the free-surface 
disturbances created by a surface ship many kilometers 
behind a vessel, and sometimes many hours after the ship 
has passed (see e.g. Munk, et al., 1987). Presently there 
is a significant lack of understanding of the ways in which 
a turbulent flow creates free-surface disturbances, and 
how the structure of the underlying turbulence is modified 
by the presence of the free surface. The purpose of this 
work is to develop some understanding of the nature of 
the interaction of an axisymmetric turbulent jet with a free 
surface. 

Extensive turbulence measurements in axisymmetric 
jets have been reported by Wygnanski & Fiedler (1969) 
and others. The study of turbulent jet flow near a free 
surface, however, has been relatively limited. Swean, et 
al. (1989) made turbulence measurements in a developing 
planar surface-jet and noted a decrease in vertical velocity 
fluctuations near the free surface. The interaction of a 
round turbulent jet issuing parallel to a free surface was 
examined by Bemal & Madnia(1988). In the region 
where the jet first interacts with the free surface, the jet 
scaling depends on the depth below the free surface. 
Significant surface disturbances occurred in the 
interaction region, where the large scale structure of the 
jet first interacts with the free surface. These disturbances 
form approximately plane waves which propagate away 
from the jet axis. The angle at which the waves propagate 
varied with jet exit velocity and jet depth—the angle 
increasing with increasing velocity or decreasing depth. 
They also noted the appearance of small circular dimples 
on the free surface using shadowgraph visualization. 
These dimples are typical of the signature of a vortex with 
its axis normal to the free surface (see Sterling et al, 
1987) and indicate that vortex reconnection (where a 
vortex breaks and "reconnects" with its image vortex 
above the free surface) has occurred. 

The study of Anthony & Willmarth (1992) examined 
a circular jet issuing two jet-diameters below, and parallel 
to, a free surface using a three-component laser 
velocimeter. They also noted that the vertical velocity 
fluctuations were damped near the free surface and identi- 
fied several other interesting effects. Most notable was 
the existence of a thin surface-current layer, identified in 
near-surface velocity measurements, which propagated 
away from the jet centeriine. It was concluded on the 
basis of flow visualization that the surface current was 
comprised mainly of vortical structures ejected from the 
main jet. 

A similar surface-current layer was observed by 
Walker & Johnston (1991) in moderate- to high- 
Reynolds-number model-ship wakes. This suggests that 
the mechanisms of generation of this surface current 
layer are basic fluid dynamic phenomena associated with 
the interaction of turbulent vorticity with the free surface. 
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Vortex reconnection has also been observed in model- 
ship wakes by Walker & Johnston. In these flows, it 
appears that the reconnection process occurs primarily at 
the smaller turbulent scales. 

The purpose of this study is to gain an understanding 
of the effects of variation in the two primary parameters 
which govern the behavior of turbulent free-surface 
flows, the Reynolds number and the Froude number. The 
ultimate goal is to use this understanding facilitate 
prediction of the free-surface features of a ship wake. It 
is therefore important to understand what range of these 
parameters is relevant in turbulent ship wakes. If it is 
assumed that the turbulent wake of a surface ship is made 
up primarily of the boundary layer from the ship, then 
twice the boundary-layer thickness at the stern is a 
reasonable approximate length scale for the wake. 
Assuming that the ship is a flat plate 140 m in length 
moving at 30 knots (both length and velocity typical of a 
modem destroyer), the boundary layer thickness at the 
trailing edge is about 1 m. The resulting Reynolds 
number for the wake is about 3(107) and the Froude 
number is about 3(10°). 

The above values of Froude and Reynolds number 
hold at the origin of the wake. Further aft of the ship, the 
length scale for the wake increases and the velocity scale 
decreases. This results in a decrease in the local Froude 
number. Classical scaling for an axisymmetric wake (or 
a co-flowing jet) suggests that the Reynolds number will 
decrease also, but only slowly (see e.g. Hinze, 1978). 
Hence, to understand the evolution of a turbulent ship 
wake, one must understand the interaction with the free 
surface of a turbulent shear flow at a Reynolds number 

on the order of 108 and Froude numbers of order 101. 
For the far wake, important in remote sensing of ship 
wakes, the Froude number can become very small, while 
the Reynolds.number changes only slightly. 

Laboratory experiments (Anthony & Willmarth, 
1992, Bernal & Madnia, 1988) are typically limited to 
Reynolds numbers of order 104. At these low Reynolds 
numbers, the primary limitation is that the smaller scales 
are absent so that the range of length scales present in the 
turbulence is typically small. This obscures possible 
differences in free-surface interaction between the largest 
and smallest scales of turbulence. 

In what follows, data is presented on the structure of 
turbulence in jets issuing parallel to a free surface. A 
high-Reynolds-number (105) jet is- examined. (Flow- 
visualization results presented by Walker, et al., 1991 
show that there is a marked increase in the small-scale 
turbulence present in this high-Reynolds-number jet 
relative to that seen at Reynolds numbers of about 104.) 
The Froude number of this jet is of order 10°. These 
results will be compared to those of Anthony & 
Willmarth (1992) for Reynolds number of order 104 and 
Froude number of order 101. Since both the Reynolds 
and Froude numbers vary between these two cases, the 
effect of these parameters is identified by reference to a 
third case which matches the Reynolds number of 
Anthony & Willmarth and the Froude number of the 
present high-Reynolds-number jet. In this way, the range 
of Froude numbers present in a ship wake are covered 
and a Reynolds number which is sufficient to introduce a 
broad range of length scales is attained.   The study 
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Figure 1     Schematic of experimental apparatus showing arrangement of 0.0254 m jet and laser velocimeter. 
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concentrates on quantifying the near-surface turbulent 
structure using laser velocimeter measurements and 
identification of the effects of Froude and Reynolds 
number on the nature of, and evolution of, the flow. 

EXPERIMENTAL APPARATUS AND 
PROCEDURES 

For part of this study, the jet apparatus used by 
Anthony & Willmarth (1992) was reused, but the 
experiments were conducted in a different tank with a 
larger nozzle. A set of results at high Reynolds number 
was obtained using a large-scale jet operating in the 
University of Michigan towing tank. The three- 
component laser velocimeter was the one used by 
Anthony & Willmarth. In what follows, the jets are 
described briefly, followed by a description of the 
different tanks in which they were operated. The laser 
velocimeter is then described followed by a discussion of 
the methods used for calculation of the statistics, 
ensemble sizes and averaging times. 

Jet Apparatus 

Different combinations of Reynolds number and 
Froude number were obtained by using three different 
combinations of jet nozzle diameter and exit velocity. 
The nozzle diameters used were 0.102 m, 0.0254 m and 
0.00635 m. (The 0.00635 m nozzle was used only in the 
study of Anthony & Willmarth.) All of the jet nozzles 
were similar; the nozzle profile was a fifth-degree 
polynomial having specified diameter at inlet and exit and 
both zero slope and curvature at inlet and exit. The 
0.0254 m and 0.00635 m jet nozzles were described in 
detail by Anthony (1990). For the present study, the 
0.0254 m jet was supplied by a submersible pump and the 
flowrate was continuously monitored via a calibrated 
rotameter. This system is shown schematically in 
Figure 1. 

The 0.102 m jet (designed and built by W.W.W.) was 
driven by a four-bladed propeller located on the axis of 
the jet. Downstream of the propeller was an expansion, 
followed by a honeycomb flow straightener and several 
screens. The nozzle was constructed of fiberglass and has 

a contraction ration of 9:1. This jet has a maximum exit 
velocity of 3 m/s and is capable of attaining Reynolds 
numbers in excess of 300 000. Initial measurements 
showed a turbulence intensity of about 0.5 percent at the 
jet exit plane and no measurable swirl in the jet. 

The design of all the jets was such that they were free 
to entrain fluid from all directions, in contrast to those 
emanating from solid walls, e.g. the jet of Bemal & 
Madnia(1988). 

Tank Facilities 

The three jets were operated in three different tanks. 
The study of Anthony & Willmarth (1992), which used 
the 0.00635 m jet, was done in a long towing tank with a 
0.610 m x 0.610 m cross-section and the details can be 
found in Anthony (1990). 

Because of physical size of the 0.102 m jet, the 
measurement were made in the towing tank in the Ship 
Hydrodynamics Laboratory of University of Michigan. 
The tank is 6.7 m wide, 3.1 m deep and 110 m long. To 
reduce seeding requirements, plastic curtains were located 
48 jet diameters upstream and 128 diameters downstream 
of the jet exit plane. A swimming-pool-type skimmer, 
connected to the tank filter system, was operated 
continuously at the downstream end of this region to 
clean the free surface. 

For the 0.0254 m jet, a smaller tank (3.7 m x 
2.4 m x 0.61 m deep) was used. The pump for the jet 
was located in a smaller "overflow" tank placed in the 
main tank (see Figure 1). This overflow tank served to 
maintain a constant free-surface level during the 
experiments and also to continuously, mechanically clean 
the free surface during the course of the experiment. 

A comparison between the three different tanks is 
shown in Figure 2. All tanks are shown in dimensions of 
jet diameters, based on the exit diameter of the jet 
operated in that particular tank. 

Laser Velocimeter 

The velocity field of the jet was examined using a 
three-component laser velocimeter designed for use in a 
towing tank (Willmarth, 1987).   The system uses three 
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different lines of an Argon ion laser to obtain 
measurements of three independent components of 
velocity. The three colors used are green (514.5 nm), 
blue (488.5 nm), and violet (476.5 nm); the green and 
blue beam pairs determined two velocity components in a 
plane, and the violet beam pair determined the third 
component which is perpendicular to this plane. Bragg 
cells were used to shift the frequency of one beam of each 
pair by 40 MHz in order to distinguish negative velocities 
on all components. 

In this design, the transmitting and receiving optics 
were contained in two water-tight modules mounted 
inside a submerged cylindrical housing (see Figure 1). 
Optical fibers were used to transmit light between the 
above-water and underwater optics. Beam steerers and 
second-surface mirrors were mounted just after these two 
modules to allow crossing of the six beams. Each beam 
pair formed an effective measuring volume approximately 
200 urn in diameter. The scattering particles used were 
titanium dioxide of rutile crystalline form and were 
approximately 3 um in size. The light scattered from the 
measuring volume was collected off-axis, each module 
receiving scattered light from transmitted beams of the 
other module. This arrangement was chosen for 
improved spatial resolution and results in measurement 
volumes with lengths of approximately 500 am. 

The signals from the photomultipliers were down- 
mixed to yield effective shift frequencies of 200 kHz on 
green and blue and 500 kHz on violet for the 0.102 m 
diameter jet. The 0.0254 m diameter jet experiments 
used effective shift frequencies of 50 kHz on green and 
blue, and 100 kHz on violet in order to maintain the 
resolution of the velocity measurements for the lower 
velocities encountered in this case. The resulting signals 
were filtered using Krohn-Hite band-pass filters, and 
were sent to counter-type signal processors (TSI1980B). 
The outputs from the three counters were then checked 
for temporal coincidence. The coincidence check 
functioned as follows: A data set was valid only if all 
three processors had reported valid measurements during 
a specific time window. The length of this window was 
set equal to the average transit time of a particle passing 
through the measuring volume. The data were transferred 
to a Lecroy MM8206A CAMAC digital memory and 
were then transferred over an IEEE-488(GPIB) interface 
to an IBM PC-AT computer. 

Data Analysis 

The data reported below are based on ensembles of 
individual realizations of the instantaneous three- 
component velocity vector. Initially, the mean and 
standard deviation for each measured velocity component 
were calculated. Realizations that were more than three 
standard deviations removed from the mean on any 
component were eliminated. The velocities were then 
resolved into the appropriate coordinate system and final 
statistics were calculated. The required coordinate 
transformations are detailed in the thesis by Anthony 
(1990). All final statistics were corrected for velocity 
bias by weighting each velocity measurement with the 
reciprocal of the magnitude of the instantaneous velocity 
vector as proposed by McLaughlin & Tiederman (1973). 

The results of Anthony & Willmarth (1992), included 
below for comparison purposes, were calculated using 
ensembles of 1000 elements. For this study, both jets 
examined had velocities which were lower than that of 
Anthony & Willmarth. Since the seed material was the 
same and the seed densities were comparable or lower, 
and the same laser velocimeter was used, this reduction in 
velocity resulted in a significantly lower data rate, and 
hence a longer time to acquire a similar ensemble size. 

For the 0.0254 m jet, the velocity was reduced by a 
factor of four compared to the results of Anthony & 
Willmarth (0.50 m/s vs. 2.0 m/s). This resulted in a four- 
fold decrease in data rate. Initially measurements were 
done for this case using 500 point ensembles. This 
yielded acceptable results at the first measurement station, 
located 16 diameters downstream of the jet exit. 
Measurements further downstream exhibited significant 
scatter. Ensemble sizes were then increased to 1000 and 
better results were achieved. 

The requirement of a larger ensemble size appears to 
actually be a requirement that the averaging time be 
sufficiently long. Comparison of the characteristic time 
scale for this jet and that of Anthony & Willmarth shows 
that the time scale has increased by a factor of sixteen. 
Since the data rate has only decreased by a factor of four, 
the averaging time for a comparable size ensemble has 
only increased by a factor of four. The net result is a 
four-fold decrease in the averaging time for a comparable 
size ensemble when measured in jet characteristic time 
scales. In the results presented below for this flow, 
vertical profiles were calculated based on 500 point 
ensembles, and the horizontal profiles used 1000 point 
ensembles. Based on the characteristic time scale of the 
jet, a further increase in averaging time (ensemble size) 
would be desirable. 

For the 0.102 m jet, the ensemble size used for the 
calculation of statistics was reduced to 500. The large 
volume of water seeded for this experiment resulted in 
lower seed densities and, hence, larger averaging times. 
For this case, the smaller ensembles appear to have had 
only minimal effect on the quality of the data. 

RESULTS 

Profiles of turbulence quantities were obtained from 
three-component velocity measurements. In the results 
presented below, instantaneous velocities are designated 
using upper-case letters (U,V), fluctuations about the 
mean use lower-case letters (u,v), time-average quantities 
are indicated by an overbar (U ,V,i/v), and r.m.s. 
velocities are designated using a prime («',v'). In these 
results, x is distance measured along the jet axis with 
JC = 0 at the jet exit plane; the positive Jt-direction will be 
referred to as the streamwise direction and the 
corresponding velocity component U is the streamwise 
velocity. The surface-normal direction is defined as the 
z-direction, positive upward, with the origin on the jet 
axis. This will be referred to as the vertical direction with 
velocity component W. The transverse, or horizontal, 
coordinate is y. The origin is again at the jet axis and the 
positive direction is defined so as to result in a right- 
handed coordinate system. The transverse velocity is 
given the symbol V. 

For this study, water was the working fluid and the 
air-water interface will be referred to as the free surface. 
The Froude number (Fr) was 1.0 based on jet-exit 
velocity U0 and jet exit-nozzle diameter d. The Reynolds 
numbers (Re) were 102 000 and 12 700, again based on 
U0 and d. These Reynolds numbers resulted from an exit 
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distance h-ld below the free surface.  This places the 
free surface at z = Id. 

Table 1      Experimental conditions. 

Exit Diameter 
d 

Exit Velocity 
Uo 

V ■Jgd 

0.102 m 1.00 m/s 102 000 1.0 

0.0254 m 0.50 m/s 12 700 1.0 

0.00635 m 2.00 m/s 12 700 8.0 

The above conditions were chosen to complement the 
results of Anthony & Willmarth (1992). They examined 
a jet located 2d below the free surface with Re = 12 700 
and Fr = 8.0 (U0 = 2.0 m/s and d = 0.00635 m). The 
combined set of data, therefore has a high-Reynolds- 
number case (Re= 102 000, Fr = 1.0), high-Froude- 
number case {Re = 12 700, Fr = 8.0), and an intermediate 
case (Re = 12 700, Fr = 1.0). In the interest of brevity, 
these names will be used hereafter to refer to the different 
conditions. 

Classical scaling arguments for a round turbulent jet 
in an infinite medium say that the maximum velocity in a 
turbulent jet is proportional to x -1 while the characteristic 
length (usually the full width at half the maximum 
velocity) is proportional to x (see e.g. Hinze, 1978). For 
the self-preserving region of a turbulent jet, therefore, 
universal behavior will be found in the profiles of 
turbulence quantities if vertical and lateral distances (z 
and y) are normalized by x, and all velocities are 
normalized by Uod/x. Presentation of the data in this 
manner will allow ready comparison of the evolution of 
the near-surface jet to the self-preserving behavior of a 
deep jet. It is also a consistent normalization for 
comparing the different cases to be examined in this 
study as well as examining the streamwise evolution of 
the jet for a given set of conditions. 

Profiles of turbulence quantities were obtained at two 
downstream locations, x/d=l6 and 32.    The closer 
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location, xld = 16, is just downstream of where the jet first 
begins to interact with the free surface; xld = 32 is far 
enough downstream that the surface current identified by 
Anthony & Willmarth (1992) is well established. Vertical 
profiles were obtained in the symmetry plane of the jet 
(y = 0) and horizontal profiles were obtained along a line 
just below the free surface, nominally at zld = 2. In what 
follows, the results for xld = 16 are presented first, then 
those for xld = 32. 

Results for xld = 16 

Figure 3 shows vertical profiles of the streamwise 
velocity at xld = 16 on the jet symmetry plane. Far below 
the surface the velocity profiles are jn good agreement, as 
one would expect since this region is least affected by the 
presence of the free surface. The maximum velocity of 
the high-Froude-number jet is about ten percent higher 
than that of the other two cases and occurs at about 
zlx = 0, the jet centerline. For the other two cases, both 
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with lower Froude number, the maximum velocity occurs 
slightly nearer the surface. At the surface, the 
intermediate case exhibits a slightly higher velocity than 
that of the other two. This is confirmed in Figure 4 where 
horizontal profiles at the surface are shown. (The result 
of Anthony & Willmarth do not include horizontal 
profiles at xld = 16 and zld = 2.) Further from the jet axis, 
the mean velocities approach similar values. 

Figures 5 and 6 show vertical and horizontal profiles 
of the mean transverse velocity, respectively. For all 
cases, the vertical profile shows a near-zero velocity, as 
would be expected on the symmetry plane of the jet. The 
horizontal profiles (again excluding the high-Froude- 
number results) show that there is a significant transverse 
velocity, its positive magnitude indicating that the flow is 
outward, away from the jet axis. Far from the centerline, 
the intermediate case exhibits a larger outward velocity 
than the high-Reynolds-number case. 

Profiles of the vertical velocity are shown in Figures 7 
and 8. The mean velocities for the high-Froude number 
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outward, away from the jet axis. Far from the centerline, 
the intermediate case exhibits a larger outward velocity 
than the high-Reynolds-number case. 

Profiles of the vertical velocity are shown in Figures 7 
and 8. The mean velocities for the high-Froude number 
results are negative immediately below the jet axis. This 
is typical of a jet in an infinite medium (see, e.g. 
Wygnanski & Fiedler, 1969). Near the jet axis, the flow 
is outward because the centerline velocity is decreasing, 
while in the outer part of the jet the flow is inward due to 
entrainment. For the two low-Froude-number cases, the 
mean vertical velocity is consistently positive, except in a 
small region just below the jet axis for the high-Reynolds- 
number case. (This small difference in W for the two 
low-Froude-number cases may explain the differences in 
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V seen in Figure 6.) This indicates that the effects of the 
free surface, in particular the formation of the surface 
current with its strong outward velocity may be more 
pronounced at low Froude number. The strong outward 
flow at the surface, evident in Figure 6, is sufficient to 
reverse the natural flow downward away from the jet axis 
for negative z values. This indicates that at low Froude 
number, the jet interacts more strongly with the free 
surface at xld = 16 than at high Froude number. Figure 8 
shows that the mean vertical velocity is essentially zero at 
the free surface, as would be expected. 

The r.m.s. velocity profiles fox xld= 16 are shown in 
Figures 9 through 14. Figures 9 and 10 show the r.m.s. 
streamwise velocity. The results are generally similar for 
all three cases, however, there is a slight elevation of the 

528 



3.0 

2.5 

2.0 

}L± 1.5 

1.0 

0.5 

0.0 

o Re = 102 000 Fr = 1.0 
*  Re =  mOOFr =1.0 
□ Re =  12 700 Fr = 8.0 

üS#bA 

E^° s«$fe 

^ 

o 

-0.2 -0.1 0.0 
z/x 

0.1 0.2 

Figure   9 Vertical  profiles  of r.m.s.   streamwise 
velocity u' at xld = 16, y/d = 0. 

3.0 

2.5 

2.0 

j£x 
UJ 

1.5 

o Re = 102 000 Fr= 1.0 
A Ke =   12 700Fr=1.0 

1.0*. 

0.5 

•o     O    AAAA 

0.0 

0   ÖA 

°   to 

6* 

0.0 0.1 0.2 
ylx 

0.3 0.4 

Figure 10 Horizontal profiles of r.m.s. streamwise 
velocity «'at xld = 16, zld= 2. Solid 
symbols are for -ylx. 

r m s. velocity below the jet axis (-0.15 < z/x < -0.07) in 
the high-Froude-number case which is probably related to 
the negative W velocity below the jet axis. The high- 
Reynolds-number jet also exhibits a higher r.m.s. velocity 
at large depths (z/x < -0.1) which may be a Reynolds- 
number effect. There is also about a twenty percent 
elevation of the r.m.s. u and v velocities at the free surface 
for the low-Froude-number cases. Figure 10 shows that 
there is substantial agreement between the two low- 
Froude-number cases at the free surface. 

Vertical profiles of the r.m.s. transverse velocities are 
shown in Figure 11. In general, the levels of v' are about 
ten to twenty percent lower than «'. However the r.m.s. 
velocity at the free surface for the low-Froude-number 
cases is still larger than that for the high-Froude-number 

case by about twenty percent. The high Reynolds number 
jet exhibits slightly elevated v' levels at all locations 
relative to the other two cases. Horizontal profiles 
(Figure 12) show that, again, there is reasonable 
agreement between the two low-Froude-number cases at 
the free surface. . 

Figures 13 and 14 show vertical and horizontal 
profiles of the r.m.s. vertical velocity, respectively, at 
xld = 16 The behavior of w' is similar to the other r.m.s. 
velocities for z/x < 0 in the two low-Reynolds-number 
cases; i.e. there is a slight elevation of w' for 
-0 15 < z/x < -0.07 for the high-Froude-number case. For 
z/x > 0, the intermediate case exhibits slightly lower 
values of w' than the high-Froude-number case. Again 
the high-Reynolds-number jet exhibits an elevated r.m.s. 
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level, but it is more pronounced than for the other velocity 
components. Since the r.m.s. levels tend to increase 
slightly with increasing xld, this may indicate that the 
high-Reynolds-number jet develops more quickly than the 
others. For zlx > 0, the trend is distinctly different; w' is 
reduced by as much as thirty percent in the low-Froude- 
number cases. The horizontal profiles in Figure 14 show 
that the two low-Froude-number cases exhibit similar 
behavior at the free surface for xld = 16. 

One striking feature of Figures 9, 11 and 13 is the 
disparity in r.m.s. levels at the free surface for the high- 
versus low-Froude-number cases. For the low-Froude- 
number cases, the tangential velocity fluctuations are 
increased by 30 to 40 percent over the high-Froude- 
number case, and the vertical fluctuations are reduced by 
a similar amount. As a result, the turbulence in the low- 
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Figure 16 Horizontal profiles of uv Reynolds stress at 

xld = 16, zld = 2. Solid symbols are -üv for 
-ylx. 

Froude-number jets is much more anisotropic at the free 
surface. For these cases the free-surface behaves much 
more like a rigid, shear-free boundary and, hence, vertical 
momentum is deflected in the horizontal direction by the 
free surface. This results in a reduction in w' and an 
increase in u' and V. 

Figure 15 shows vertical profiles of the üv Reynolds 
stress at xld = 16. Since these measurements are located 
in the vertical symmetry plane of the jet, any cross-stream 

transport of momentum (üv) should be zero. Near the 
surface, there is some systematic deviation from zero in 
the results. The high-Froude-number results are 
consistently negative and the other two cases are positive. 
This is probably due to slight misalignment of the jet 
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Figure 18   Horizontal profiles of uw Reynolds stress at 
xld = 16, zld = 2. Solid symbols are for -ylx. 

resulting in measurements slightly off the jet centerline. 
There is also some scatter in the results. Figure 16 shows 
the horizontal Sv profiles at the free surface for the two 
low-Froude-number cases. Again, there is substantial 
agreement. 

The üw Reynolds stress is shown in Figure 17. The 
intermediate case differs considerably from the other two 
cases which are in substantial agreement. This reduction 
is probably due to the smaller mean velocity gradients in 
the Ü profile for this case and the reduced level of the 
vertical velocity fluctuation w' .  The product of these 
two quantities is the dominant production term for the üiv 
Reynolds stress (see Bradshaw, 1978). At the free 
surface, one would expect this Reynolds stress to be zero 
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Figure 20   Horizontal profiles of vw Reynolds stress at 
xld = 16, zld = 2. Solid symbols are -vw for 
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and this is shown to be so in Figure 17, and further 
confirmed by the horizontal profiles at the free surface 
shown in Figure 18. 

Figures 19 and 20 show vertical and horizontal 
profiles of the vw Reynolds stress. One would expect 
that this Reynolds stress would be zero for both profiles. 
This is true in the horizontal profile shown in Figure 20, 
but again the vertical profile shows a consistent deviation 
near the surface (particularly in the high-Reynolds- 
number case) which is, again, probably due to a slight 
misalignment of the jet. 
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Results for xld = 32 

Similar horizontal and vertical profiles of turbulence 
quantities were obtained at xld = 32. Profiles of the mean 
streamwise velocity are shown in Figures 21 and 22. 

In analyzing the results from the horizontal profiles 
for the intermediate case, it became apparent that the 
symmetry plane of the jet was located at about 
y/x = 0 015. This would correspond to an angular 
misalignment of less than one degree. What is not clear 
is whether this is due to a "physical" misalignment of the 
jet apparatus, or is due to the effect of the wall located at 
ylx = 0.625, which corresponds to yld = 20 (see Figure 2). 
The presence of the wall could cause the maximum in the 
the velocity profile to move toward the wall (to positive 
zlx) due to the Coanda effect. For ease in interpretation, 
the data for the horizontal profiles has been plotted with 
ylx measured relative to the observed symmetry plane of 
the jet. Vertical profiles for this case were obtained 
slightly off the symmetry plane. This is no major 
problem for most statistics since the jet exhibits a broad 
maximum near the centerline. However, for quantities 
which change sign at the jet centerline (i.e., V, vw, üv), 
sharp transverse gradients are present and a slight 
deviation from the symmetry plane can result in major 
changes in the measured turbulence quantities. The 
implications of these effects will be discussed, as 
necessary, below. 

The vertical profile of Ü shown in Figure 21 shows 
good agreement between the results of the two low 
Froude number cases, even though the Reynolds numbers 
are very different. The velocity is relatively uniform 
between the jet axis zlx = 0 and the free surface for these 
two cases. For the high-Froude-number case, the 
maximum velocity is at zlx = 0 and there is a velocity 
gradient below the free surface. The maximum velocity 
for the high-Froude number jet is about ten to fifteen 
percent higher than the other two cases, similar to the 
results at xld = 16. The scatter evident in the intermediate 
case results is most likely due to insufficient averaging 
time. (The r.m.s. velocity results, to be presented below, 
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Figure 22 Horizontal profiles of mean streamwise 
velocity Ü at xld = 32, z/d = 2. Solid 
symbols are for -ylx. 

are comparable to those of Anthony & Willmarth, 1992; 
this indicates that the accuracy of the individual velocity 
measurements is acceptable. However, the time scales in 
this jet are a factor of 16 longer than those of Anthony & 
Willmarth while, for the vertical profile, the sampling 
time was only a factor four longer. Hence, the scatter in 
the data can be attributed to the length of the sampling 
time, as discussed earlier.) 

Horizontal profiles of U are shown in Figure 22. 
The results from the intermediate case, which include 
several points for ylx < 0 (indicated by the solid symbols), 
show that the flow is essentially symmetric. For the two 
low-Froude-number cases shown in Figure 22, the 
velocities agree for ylx > 0.1 but the intermediate case 
exhibits noticeably higher velocity for y/*<0.1 than 
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either the high-Reynolds-number or the high-Froude- 
number case. 

Vertical profiles of the mean transverse velocity are 
shown in Figure 23. The results scatter about zero, the 
expected value for V on the symmetry plane. The scatter 
is, again, attributable to inadequate averaging time; this is 
particularly evident at large negative zlx locations where 
the flow is very intermittent. Horizontal profiles of V 
are shown in Figure 24. For y/x < 0.1, the behavior of the 
two low-Froude-number jets is similar at xld = 32. The 
intermediate case has a smaller transverse velocity than 
the high-Reynolds-number case at xld = 32 for ylx > 0.1, 
but it is slightly larger than than V for the high-Froude- 
number case. Comparison of these results to those at 
xld = 16 indicates that the intermediate case initially (at 
xld = 16) spreads faster than the high-Reynolds-number 
case but by xld = 32 this situation is reversed. 

Profiles of the mean vertical velocity are shown in 
Figures 25 and 26.   The vertical profiles exhibit no 
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significant difference for the three cases. The similarity 
in the W profiles indicates that the differences in the 
mean horizontal and vertical IJ  profiles can be almost 
completely attributed to to the differences in V at the 
surface.    The low-Froude-number jets spread more 
rapidly (larger V) and this causes a smaller streamwise 
velocity below the surface. At the surface, the increased 
Ü for the low-Froude-number cases may be due to the 
same mechanism which causes increased V. The 
horizontal profiles show that the vertical velocity is 
essentially zero at the free surface, as would be expected. 

Horizontal and vertical profiles of r.m.s. streamwise 
velocities, shown in Figures 27 and 28, clearly show that 
for ylx > 0.1, the two low-Froude-number cases exhibit an 
increased level of u'. For y/x < 0.1, there is some scatter 
and slight inconsistencies between the vertical and 
horizontal profiles; however, the vertical profiles indicate 

Figure 25   Vertical profiles of mean vertical velocity W 
2Ltxld = 32,y/d = 0. 

that the two low-Froude-number cases exhibit larger 
r.m.s. streamwise velocity fluctuations near the free 
surface. Comparison to xld = 16 shows that the r.ms. 
level has increased for all cases by 30 to 40 percent, and 
that the difference near the free surface between the high- 
and low-Froude-number cases is similar, but more 
pronounced at xld = 32. 

The r.m.s. transverse velocities v' are presented in 
Figures 29 and 30. The horizontal profile, shown in 
Figure 30, shows that near the surface, the high- 
Reynolds-number flow exhibits the largest transverse 
velocity fluctuations, with the two low-Reynolds-number 
cases having the smallest. Compared to x/d= 16, all 
three cases have exhibited an increase in v\ but the 
increases are largest for the high-Reynolds-number case. 
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This has resulted in significant difference in v' between 
the two low-Froude-number cases—a major change 
between xld = 16 and xld = 32. 

Figure 31 shows vertical profiles of the r.m.s. vertical 
velocity. The two low-Froude-number cases appear to 
exhibit vertical velocity fluctuations which are about 
twenty percent higher than the high-Froude-number case 
near the jet centerline; however, this behavior is reversed 
at the free surface. The horizontal profiles (Figure 32) 
show that at low Froude number, there is an approximate 
fifty percent reduction in w' when compared to the high- 
Froude-number case at xld = 32. This is somewhat more 
than what was seen at x/d= 16, but the difference is 
primarily due to an increase in w' for the high-Froude- 
number case;   the other results are virtually unchanged 
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from xld= 16. At x/d = 32 the anisotropy of the 
turbulence has remained unchanged for the high-Froude- 
number case relative to xld- 16. This is due to the 
uniform rise in all r.m.s. velocity fluctuations, For both 
the low-Froude-number cases, the transverse and 
streamwise velocity fluctuations have increased a similar 
amount, but the vertical r.m.s. velocity has remained the 
same.This results in the increased anisotropy for these 
cases at xld = 32 relative to xld = 16. 

Horizontal and vertical Reynolds shear stress profiles 
are shown in Figures 33 through 38 for xld = 32. 
Figure 33 shows the vertical profile of the «v Reynolds 
stress. The results for the high-Reynolds-number case 
and the high-Froude-number case are near zero; however 
the results for the intermediate case are consistently 
negative. This is due to the slight misalignment of the jet 
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Figure 33 Vertical profiles of uv Reynolds stress at 
xld = 32, y/d = 0. 
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symmetry plane noted earlier.  In the horizontal profiles 
of üv, shown in Figure 34, it appears that the high- 
Reynolds-number results are consistently higher than the 
high-Froude-number case. There is considerable 
variation in the results from the intermediate case but they 
appear to be in agreement with the high-Froude-number 
results for y/x < 0.1 and approach the high-Reynolds- 
number results for y/x > 0.1. The peak level of üv in the 
horizontal profiles for the two low-Reynolds-number 
cases is comparable to the results for x/d= 16.  This 
indicates that there has been a relative increase in üv for 
the high-Reynolds-number case. This would be expected 
due to the slightly higher level of v' for this case. 

Figure 34   Horizontal profiles of uv Reynolds stress at 
xld = 32, zld = 2. Solid symbols are -üv for 
-y/x. 

The "scatter" in the üv profile for the intermediate 
case shown in Figure 34 is probably not "bad data" or 
"random noise". If one examines the U velocity profile 
for this flow shown in Figure 22, it is clear that the profile 
exhibits several local maxima. The locations of these 
maxima correlate roughly with the locations of local 
minima in the üv profile. Further, the location of the 
high-mean-shear regions in Figure 22 correlate roughly 
with the local peaks in üv. It is clear that the profiles are 
not dense enough to resolve the details of this 
phenomenon, but the results appear to be internally 
consistent. Similar variations in the U and üv profiles 
also occur in the  other low-Froude-number case; 
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Figure 36   Horizontal profiles of uw Reynolds stress at 
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however, they are less pronounced. In contrast, the 
results for the high-Froude-number case are smooth and 
monotonic. The variations seen in the low-Froude- 
number cases may result from reconnection to the free 
surface of the vorticity associated with the large-scale 
structures in the jet as visualized by Walker, et al. (1991). 
The differences between the high- and low-Froude- 
number cases may result from the pronounced wave 
making seen in the high-Froude-number case by Walker, 
et al. and Anthony & Willmarth (1992). 

Vertical profiles of üw, shown in Figure 35 exhibit 
the same similarities between the two low-Froude-number 
cases which were evident in the profiles at x/d=16. 
Similar differences between the low- and high-Froude 
number cases are also present. These differences reflect 
generally the differences in the mean velocity profiles 
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where for the two low-Froude-number cases the 
maximum velocity has shifted nearer the surface. 
Horizontal profiles of üw are essentially zero, as would 

be expected, and profiles of vw shown in Figures 37 and 
38 are, as expected, also near zero. 

SUMMARY AND CONCLUSIONS 

This study examined the effects of the main 
parameters, Froude number and Reynolds number on the 
structure of turbulence in near-surface turbulent jets. 
Measurements of all six Reynolds stresses as well as the 
three mean velocity components were obtained using a 
three-component laser velocimeter. The study examined 
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two jet flows: Re = 12 700 with Fr= 1.0 and 
Re = 102 000 with Fr = 1.0. These results are combined 
with those of Anthony & Willmarth (1992) for 
Re - 12 700 and Fr= 8.0. This combined set of results 
allows a comprehensive evaluation of the effects of these 
parameters over a meaningful range. The measurements 
were confined to vertical profiles on the jet axis and 
horizontal profiles at the free surface for two streamwise 
locations x/d = 16 and 32. 

Examination of the mean velocity profiles shows that 
the two low-Froude-number jets appear to evolve more 
quickly than the other case. As a result the maximum U 
velocity decreases more quickly, and the location of this 
maximum moves toward the surface more quickly. 
Horizontal profiles of TJ at x/d = 32 are smooth for the 
high-Froude-number case, but exhibit spatial variations 
for the low-Froude-number cases. The variations are 
most pronounced in the intermediate case, and probably 
result from the large-scale vortical structure of the jet 
attaching to the free surface. This would result in 
significant coherent vorticity oriented normal to the free 
surface. The fact that the spatial fluctuations are less 
pronounced in the high-Reynolds-number case may be 
due to the increased amount of small-scale vorticity 
present in this flow acting to smooth out the velocity 
variations. In the high-Froude-number case, the large 
free-surface deformations may change the way in which 
the large-scale structure interacts with the free surface, or 
at least "randomize" the location of the interactions in 
such a way at to yield a smooth velocity profile. 

At x/d = 32, the intermediate case exhibits the highest 
TJ velocity, overall. It is followed by the high-Reynolds- 
number case, while the high-Froude-number case hasjhe 
lowest velocity. At x/d = 16 the transverse velocity V is 
the same for the two low-Froude-number cases. Of the 
two low-Froude-number results, the high-Reynolds- 
number case exhibits the largest V at x/d = 32. At this 
location the high-Froude-number case has the lowest V. 
Hence, for the two low-Froude-number cases, the vertical 
TJ and W velocity profiles are similar for x/d = 32, and 
the differences in the horizontal TJ profiles are 
accounted for by the differences in the V profiles. It is 
not clear at this time why this difference exists but it is 
most likely a Reynolds-number effect. 

In all the results, the turbulence became more 
anisotropic at the free surface; the horizontal and 
streamwise velocity fluctuations were increased and the 
vertical velocity fluctuation levels were decreased due to 
the presence of the free surface. Initially, the two low- 
Froude-number cases exhibited a greater degree of 
anisotropy, due to higher u' and V levels, and lower 
w', than the high-Froude-number case. For all the cases, 
u and v', as normalized here, increased with streamwise 
distance. For the high-Froude-number case w' increased 
a similar amount and so, the anisotropy for that case was 
similar at both streamwise locations. For the low Froude 
number cases, w' was roughly the same at both 
locations. Hence due to the increase in u' and v', the 
degree of anisotropy near the free surface increased 
significantly for the low-Froude-number cases at the 
downstream location. This behavior indicates that the 
effects of the free-surface on the turbulent velocity 
fluctuations is much stronger at low Froude number, 
causing more energy to be transferred from the vertical 
velocity fluctuations to those tangent to the surface. 

At both streamwise locations, the vertical profiles of 
the wiv Reynolds stress reflect the differences in the 
mean velocity profiles for the different values of Froude 
number. Horizontal profiles of the uv Reynolds stress 
show that the maximum values of this stress are obtained 
for the high-Reynolds-number flow, while the lowest are 
for the high-Froude-number case. This is reflective of 
the relative values of V at the surface (i.e., the spreading 
rate) for the different flows. For the intermediate case, 
local maxima in the Reynolds stress profile appear to 
correlate with the high-mean-shear regions in the mean 
velocity profile—further evidence that the fluctuations in 
the mean velocity profiles are due to coherent vortices 
connected to the free surface. The larger uv values for 
the two low-Froude-number flows is probably related to 
the vorticity connected to the free-surface.    The 
observation of the highest levels of uv in the high- 
Reynolds-number case is, most likely, due to the 
increased amount of small-scale vorticity connected to 
the free-surface (seen in the visualizations of Walker, et 
al. (1991). The low levels of uv in the high-Froude- 
number case may be due to the large free-surface 
deformations inhibiting vortex reconnection to some 
degree, or some other form of wave-vorticity interaction. 
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ABSTRACT 

Forces and flow phenomena about a body 
of revolution are studied both experimentally 
and numerically. The revolutional body is towed 
at Fn=0.11 to 0.44 with different depth of 
submergence. It is shown that the lift force 
varies with the Froude number in close 
connection with the variation of the drag force, 
which is attributable to the variation of the 
pressure distribution on the upper surface of the 
body. The interaction of the viscous flow with 
the wave motion is simulated by a finite- 
difference method in the framework of an 
inflexible rectangular coordinate system. Some 
interesting features of the vortices about the 
revolutional body are revealed in both cases of 
straight and oblique flows. 

1. INTRODUCTION 

A cylindrical body is often used as an 
important component of offshore structures and 
ships. Significant number of the oil-drilling 
platforms are supported by a pair of lower hulls, 
SWATH ships are supported by a pair of 
submerged bodies of revolution and the 
submarines have the most typical configuration 
of revolution. 

In order to design the optimal 
configuration of the cylindrical body the 
hydrodynamical forces should be satisfactorily 
clarified. Not only the drag force but also other 
forces and moments are important for the 
dynamic properties of the system. When it is 
operated in the vicinity of the free-surface the 
forces and moments show some nonlinear 
behaviors. 

Physical experiments of measuring the 
forces at an experimental tank is very useful to 
grasp the hydrodynamical properties of the 
system. However, the understanding of the 
physical phenomena, that is, fluid-motions which 
cause the forces and moments, is more 
important, since it gives more substantial 
informations. The sound understanding of the 
physical phenomena that connect body 
configuration with the forces and moments 
seems to be most important for the designers of 
hydrodynamical systems. The most significant 
physical phenomena are free-surface waves and 
viscous flows about a body of revolution moving 
beneath the free-surface. In case the body does 
not pierce the free-surface the wave motion may 
be of the linear system, but in case it interacts 
with the viscous flow or in case it makes steep 
slopes nonlinear features become important. The 
viscous flow which dominates the flow about the 
aftpart of the body is intrinsically nonlinear. 

For the elucidation of the nonlinear fluid 
motions both experimental and numerical 
investigations are effective and analytical ones 
may be of limited usefulness. Proper use of 
these investigations seems to provide satisfactory 
knowledge necessary for the understanding of 
the nonlinear mechanism of fluid motions. The 
numerical and physical experiments are very 
advantageous for the qualitative understanding 
of the structure of vortices. By the recent 
advances of the technology of computational 
fluid dynamics the nonlinear features of viscous 
flow are going to be clarified in details. 

Two kinds of CFD techniques have been 
developed at the authors' laboratory in the past 
10 years. One is the TUMMAC method that 
employs the inflexible rectangular coordinate 
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system and the other is the WISDAM method 
that employs the boundary-fitted, curvilinear 
coordinate system. Both methods solve the 
Navier-Stokes equation by the time-marching 
procedure with finite-difference and finite- 
volume discretization, respectively. The 
WISDAM method is suitable for the simulation 
of the complicated viscous flow in the boundary 
layer and in the separated flow about a smooth 
body surface [l]-[3] and the TUMMAC method 
is suitable for a body of extreme complexity and 
for a free-surface motion with extreme 
nonlineality [4]~[8]. 

In this paper the waves and viscous flow 
about a bodv of revolution are studied. The 
complicated vortex shedding mechanism is 
explained with the simulation results by the 
WISDAM-V method in Section 2. The 
experimental study of forces is described in 
Section 3 for the body set in the vicinity of the 
free-surface. The new CFD technique based on 
the TUMMAC-VH code is described in Section 
4 for the present condition of a body of 
revolution moving beneath the free-surface. The 
numerical simulations are presented in Sections 
5 and 6 for two cases of the body in steady 
straight course and steady oblique course. Brief 
concluding remarks are mentioned in Section 7. 

2. 3D STRUCTURE OF SEPARATED FLOW 
IN AN INFINITE FLUID REGION 

Experimental and computational studies 
are performed for the elucidation of the 3D 
structure of the separated flow past a body of 
revolution in an infinite fluid region. A body of 
simple configuration as shown in Fig.l is chosen 
so that the results can be extended to various 
engineering problems concerning 3D separated 
flows. The forebody has a smooth parabolic 
profile, so that no separation would take place at 
this part of the body. Its length is 283 mm and 
the cylindrical middle section is an acrylic tube 
of 540 mm in length and 160 mm in diameter. 
Drag measurements were conducted with this 
model having various afterbodies of straight 
conical profile of different semi-apex angles. 

The measured drag coefficients are shown 
in Fig.2. It suddenly increases when the semi- 
apex angle (ß) of the conical afterbody increases 
from 20° to 24° and then the doubly increased 
coefficient is kept at the constant value when the 
semi-apex angle increases up to 60° . The 
critical geometry of a revolutional body with a 
conical afterbody advancing parallel to its axis is 

present when ß is in between 20° and 24°. This 
does not seem to be dependent on the Reynolds 
number. 

For the case of 30° semi-apex angle a 
numerical simulation was performed by the 
WISDAM-V method in a curvilinear coordinate 
system shown in Fig.3. The so-called O-type 
grids are used for the transverse sections of the 
computational domain and the so-called H-type 
grids for the horizontal planes. The first grid 
point is located so close to the body surface that 
the spacing in the lateral direction is about 5 * 
10"5 .while length is made dimensionless with 
respect to the length of the main part of the body 
which is 832 mm. Since the simulation is 
performed at the Reynolds number 1 * 106 , this 
distance corresponds to 2 to 3 viscous units, 
which implies that the first grid points are 
located inside the viscous sublayer. This is 
important for the present method without using 
the wall-function in the boundary layer. 

Equi-pressure surfaces in the vicinity of 
the afterbody are shown in Fig.4 at various time 
levels. Since the iso-surfaces of the negative 
pressure on the afterbody are intimately related 
with those of vorticirv, the variation of the iso- 
pressure surface is supposed to be caused mostly 
by vortex shedding. The prominent structure of 
the vortices is made of ring-shaped vortices 
followed by longitudinal ones which are 
horseshoe-shaped or spindle-shaped. A 
longitudinal vortex tube usually makes a pair 
with another one of opposite sense of rotation. It 
is noted that the longitudinal vortices are 
generated inside of the ring vortices in the 
vicinity of the body surface. It is supposed that 
the ring vortices made of the spanwise 
components of vorticity is deformed or splitted 
on the way to dissipation. Such mechanism of 
vortex shedding seems to have some common 
features with the cases of bodies with similar 
configuration. 

3. FORCES AND PRESSURE DISTRIBUTION 

The experimental set-up for the 
measurement of drag and lift is shown in Fig. 5. 
The diameter of the tested body is denoted D and 
the clearance between the top surface of the 
body and the free-surface is h. Since the tested 
body is supported by a sword, the forces exerted 
on it are extracted in the measurement. 

The cylindrical body with the afterbody of 
20° semi-apex angle is chosen for the study of 
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the wave-wake interaction problem. The Froude 
number based on the length of the body is varied 
from 0.11 to 0.44. Due to the restriction of the 
experimental set-up the parameter of 
submergence (h/D) is varied from 0.25 to 1.00. 
Therefore the free-surface effect is still present 
on the condition of the deepest submergence. 

The variation of lift coefficient is 
summarized in Fig.6, in which the lift coefficient 
is made dimensionless with respect to the 
horizontal projected area. The overall tendency 
of lift coefficient is to increase abruptly with the 
decrease of submergence and to increase with 
the increase of Froude number. However, the 
latter increase is not monotonous and the 
smallest value is recorded at the highest Froude 
number. The variation of drag and lift 
coefficients versus Froude number is shown in 
Fig.7, in which the coefficients are made 
dimensionless with respect to the surface area of 
the body. 

The variation is very wavy due to the 
wave resistance especially when the body is 
shallowly submerged. It is noted that the phase 
of lift variation is quite contrary to that of drag 
for almost all cases. It is presumably due to the 
fact that the high wave drag is caused by the 
small wave elevation on the afterbody, which 
causes relatively smaller angle of upward flow 
resulting in the small lift force. 

Pressure distribution is measured at Fn = 
0.44 on three longitudinal lines, that is, two on 
the vertical plane that includes the axis of the 
body (one 0 = 0° on the top surface, the other 0 = 
180° on the bottom surface) and one on the 
horizontal surface that includes the axis of the 
body (0 = 90° on the side surface). The results 
are compared in Fig.8. As is naturally 
anticipated the variation of the pressure due to 
the difference of the depth of submergence is 
most noticeable on the upper surface of the body. 
The quite particular distribution on the upper 
surface at h/D=0.25 is attributable to the 
breaking phenomenon of the waves above the 
afterbody. 

The measured wave contours are shown in 
Fig.9 for three degrees of submergence. The 
wave height is made dimensionless with respect 
to the water head of the uniform stream at the 
advance speed. While the Froude number based 
on the length of the body is set at 0.44, the wave 
formation varies with the depth of submergence. 
In the shallowest case the waves on the 
afterbody are broken and the wave formation 
shows more complicated features involving 

unsteady variation. 

4. COMPUTATIONAL METHOD TUMMAC- 
vn 

4.1 Grid System 

A rectangular staggered mesh system is 
employed, as shown in Fig. 10. Since the degree 
of accuracy is less higher than the curvilinear, 
boundary-fitted coordinate system for the 
implementation of the body boundary 
conditions, resolution of the physical phenomena 
in the vicinity of the body surface is not very 
satisfactory. However, this system has the 
advantage of high adaptability and robustness. 
Furthermore, the elaborate efforts of grid 
generation are almost entirely eliminated, which 
is most important for engineering applications. 
The equally-spaced grid system gives better 
resolution in the far-field than the boundary- 
fitted coordinate system, which provides coarser 
grid spacing there for the resolution of separated 
flow far behind a body. As described in the 
subsequent sections, most of the efforts are 
focused on the treatment in the body boundary 
cells. 

4.2 Computational Procedure 

The governing equations are the 
continuity equation and the Navier-Stokes 
equation, as follows. 

8-^=0, 

dtU^-djP+a'. 

(1) 

(2) 

Here, &i denotes space-differencing in the 
Xi direction, ^t time-differencing, P the pressure 
divided by the density of water, and the last term 
a' is written as 

a'= - uJdju" + (Re_1+vs) ajdju* 
+ Mi+djvsOjUi+aiui) + fi 

where, vs is the eddy viscosity of the 
subgrid-scale (SGS) turbulence model, M1 is the 
controllable numerical dissipation introduced to 
stabilize the solution [9], and f is the external 
force including the gravity force. 

The algorithm of the computation is same 
with the previous TUMMAC method [4, 5, 6, 8]. 
Updating of the velocity field is made after 

541 



updating the pressure field by solving the 
Poisson equation, and this cycle is repeated in a 
time-marching procedure. However, in the 
region composed of B-cells the following 
simultaneous iterative method is used, because it 
is very suitable for the implementation of the 
zero-divergence condition in the body boundary- 
cells. 

pm+l _ pm + (^ Y) 

(3) 

A = At + 
Yi + i+Yi-i t 7j + i + 7j-i , Ykt-i+Yk-i 

(AXl)
2 (Ay)2 (Az)2     [(4) 

where, <x> is the relaxation factor, D is the 
divergence of a cell and 7 is the volume porosity 
defined in the subsequent section. The velocity 
field is updated by the following equation 

ui (n+l) = ui (n) + At (- 3jP + a;)_ 

4.3 Body-Boundary Conditions 

(5) 

In order to represent the complicated 
configuration of a 3D body two kinds of porosity 

are introduced, i.e., volume-porosity (7) and 
surface-porosity (ß) [8], the ratio of the fluid 
portion of each boundary cell to the total volume 
and that of surface area, respectively. Since the 
location of the body-boundary is approximately 
represented by these scalar values, they are used 
not only for the flagging of cells and for the 
drawing of the body configuration but also for 
the flux and divergence calculations as well as 
the choice of differencing scheme. 

The boundary-cell (B-cell) is defined as a 
cell in which volume-porosity is greater than 0.5 
but less than 1.0. A cell of which volume- 
porosity is less than 0.5 is defined as an empty 
cell (E-cell), where the pressure is not computed. 
A full-of-fluid cell (F-cell) facing an E-cell is 
defined as a special B-cell (B*-cell) with the 
porosity of 1.0. The choice of computational 
method for the pressure from Eq. (5) or (6) is 
determined by this flagging. 

The velocity point located at the center of 
each surface of a cell is assumed to be present if 
the surface-porosity is greater than 0.5. The 
choice of the differencing scheme is also 
dependent on the surface-porosity. The velocity 
on a cell surface for which surface-porosity is 
unity is normally calculated by the momentum 

equation (5), while that on a cell surface for 
which surface is greater than 0.5 but less than 1.0 
is extrapolated from the neighboring velocities 
u'* inEq. (6) (seeFig.ll). 

k,,k Ißku' 
Ißk 

(6) 

where, the velocities uk are not themselves 
ok 

extrapolated and the surface-porosity P of the 
cell where neighboring velocities are suitable is 
used as a weighting function. The extrapolated 
velocity u' * is calculated by a quadratic equation 
(7), 

V  (ß1 + 0.5) (7) 

Therefore, the extrapolation is made 
approximately in the direction normal to the 
body. 

4.4 Free-Surface Condition 

This condition is the same with that of the 
previous TUMMAC-IV method [4] [5]. For the 
fulfillment of the free-surface condition, the 
dynamic and kinematic conditions are given as 

P = Po = 0 

3tF + uJ3iF = 0 

on z = h, 

on z = h, 

(8) 

(9) 

where F(x\t) is the equation of free- 
surface and Po is the atmospheric pressure 
divided by the density of water. 

The dynamic condition expressed by Eq. 
(8) is implemented by the irregular-stars 
technique by Chan & Street [10] in the 
procedure of pressure computation and the 
kinetic condition expressed by Eq. (9) is fulfilled 
by the Lagrangian movement of marker particles 
on the free-surface. 

5. NUMERICAL SIMULATION! I) 

- STRAIGHT COURSE AT Fn = 0.44 - 

The condition of computation is listed in 
Table 1. The computational domain is 1.80 m * 
0.48 m x 0.59 m, the degree of submergence h/D 
is 0.5 and the Froude number based on the body 
length is 0.44. 
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The simulated results of overall flow-field 
are shown in Fig.12 and the details are presented 
in Fig. 14 on the cross-sectional planes at the 
longitudinal location shown in Fig. 13. In all 
figures it is clearly observed that the flow due to 
the waves on the free-surface is closely related 
with the viscous flow about the body. Fig.12 
indicates that the wake on the afterbody is 
attracted upward and that the pressure field is 
very complicated in the region between body and 
free-surface. The wake contours are not of the 
form of circle but it is deformed and the contours 
of vorticity about the axis of the longitudinal 
coordinate show complicated features of vortex 
shedding. Some pairs of longitudinal vortices 
with counterrotating components are formed 
behind the revolutional body. However, due to 
the inadequate degree of accuracy and due to the 
predominant pressure field by the waves the 
separated vortices give only very gentle 
influences on the pressure field. 

6. NUMERICAL SIMULATION (II) 
- OBLIQUE COURSE AT Fn = 0.11 - 

By giving horizontal velocity component 
at the inflow boundary the oblique flow is 
generated. The flow field is simulated when the 
oblique flow angle ß is 10° at Fn=0.11 and the 
results are shown in Figs. 15 to 17. The depth of 
submergence is same with the previous case. 

The pressure field is seriously influenced 
by the presence of the free-surface even at this 
low Froude number as shown in Fig. 16. The 
structure of the longitudinal vortex component 
seems to be extremely complicated as observed 
in Fig. 17. A pair of longitudinal vortex tubes 
which is predominant on the face surface of the 
forepart of the body is abruptly decomposed and 
partly connected with another pair of 
longitudinal vortices on the back surface of the 
aftpart of the body. The latter pair of vortices 
are shed far downstream. 

The structure of longitudinal vortices is 
compared between the cases of straight and 
oblique flows with equi-vorticity surface 
drawings. One of the typical features of the 
complicated flow phenomenon is visualized by 
the numerical simulation. The sound 
understanding of the complicated structure and 
mechanism of the flow in addition to the 
estimation of forces and moments will be of 
significant importance for the design of a body 
moving beneath the free-surface. 

7. CONCLUSIONS 

One of the most complicated fluid 
phenomenon of wave-wake interaction is studied 
for the case of a body of revolution advancing 
beneath the free-surface. It is demonstrated that 
the nonlinear forces are caused by the variation 
of pressure distribution mostly on the upper 
surface of the aft-part of the body and that this is 
partly due to the deformation of the wake by the 
presence of the free-surface. Although the 
degree of accuracy of the present CFD technique 
is not satisfactory, the large-scale vortical 
motions under the influences of the free-surface 
or of the oblique flow are qualitatively well 
simulated. The numerical simulations seem to 
be very useful for the understanding of the fluid 
mechanics which cause nonlinear forces on a 
moving body. 
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Tablel     Condition of computation for the 
case of straight course. 

Number of used cell 
101x49x59 

= 291.991 

Cell size 
Ax = 0.018 m , Ay = 0.01 m 

A: = 0.01 -0.030 m 

Reynolds number (L-base) 1.26x10« 

Froude number (L-base ) 0.44 (u = 1.4 m/s) 

Time increment T' 2.8 xlO"4 

Time for Acceleration 1.0 (2600 sre/>) 

Total Time 2.0 ( 5200 seep ) 

CPU Time (TITAN-III) about 160 hours 

Table2      Condition of computation for the case 
of oblique course. 

Number of used cell 
91 x 46 x 34 

= 142,324 

Cell size At = 0.026 m . Ay = 0.016 m 
Az = 0.016- 0.048 m 

Reynolds number (L-base) 3.67 x 105 

Froude number (L-base ) 0.11 (a = 0.35 m/s) 

Time increment T • 1.73 x 10-3 

Time for Acceleration 0.5 (870 step ) 

Total Time 2.5 (4350step) 

CPU Time ( RS - 3330) about 62 hours 

x/L= 0.0 0.34 l.Ofehoulder)       1-27 

^i *•*• rmx Dm« P^>^ \^f u^^ 
z 

L2 = 0.54 m tan ß 
■1 

| PART I \ PART II | | PART III | 

Fig. 1        Configuration of the tested body of 
revolution advancing to the left. 
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semi-apex angle (daprta) 

Fig. 2 Variation of drag coefficient at various 
semi-apex angles, Cd is made 
dimensionless with respect to the 
forward projected area. 

Fig. 3        Boundary-fitted grid system for the 
case of a flow in an infinite fluid 
domain. 
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MuJti Component 
Load CcU 

Side View 

Fig. 5       Experimental set-up. 

Front View 

Fig. 6       Variation of lift coefficient at various 
depth of submergence and Froude 
numbers. 

Fig. 4 Computer-graphics drawing of equi- 
pressure ( Cp at - 0.10 ) surface at T : 
1.7, 2.0 and 3.0 from above. 
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(a) h/D = 1.0 Interval   8.035 

Fig. 9 

( b) hID = 0.5 

( c) hID =» 0.25 

Contours of waves generated by 
the body advancing at Fn = 0.44 at 
three degrees of submergence. 

Fig. 10       The staggered grid system. 

1.0 

terval   0.025 

Fig. 12 Computed contours of wave, 
longitudinal velocity component and 
pressure coefficient, the latter two are 
or the centerplane, Fn = 0.44. 

L. 

i/L=1.00     1.14       1.27      1.41       1.54      1.68      1.81       1.95 

Fig. 13       Schematic sketch for the longitudinal 
location of cross-sectional planes. 

Fig. 11 Schematic sketch of velocity 
extrapolation on the body surface by 
use of the porosity technique. 
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DISCUSSION 

H. Raven 
MARIN, The Netherlands 

You performed 2 sets of calculations with 
different Navier-Stokes solvers. Without free 
surface, the WISDAM method leads to an inherently 
unsteady result containing large-scale periodic vortex 
shedding. With free surface, the TOMMAC method 
converges to a steady result. I do not suppose this is 
entirely a genuine effect of the free surface. Do you 
have an explanation for this startling difference 
between the behavior of the methods? Do you have 
any comparisons of the results of both methods under 
identical conditions? 

AUTHORS' REPLY 

Thank you for your discussion. Both of the 
numerical methods employ time-accurate solution 
algorithm. The N.S. equation is explicitly 
discretized, and the time-increment is 10* to 10"4 of 
the nondimensional time. With the increase of the 
number of grid points, we can have more interesting 
features of unsteady vortex shedding. One example 
is shown in Ref [8] for the case of vortex shedding 
from a sphere. 
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Numerical Evaluation of Fins 
Acting Near the Free Surface 

S. Fontaine, S. Huberson, J. Montagne 
(Bassin d'Essais des Carenes, France) 

ABSTRACT 

A lifting surface method associated with vortex par- 
ticles modeling the vortical wake is presented to calcu- 
late the unsteady flow around stabilization fins. Typi- 
cally, fins are used on submarines and the assumption 
is made that the waves affect the fins but that the free 
surface is not influenced by them. The effectiveness of 
the fins at low speed is studied, so that the orbital mo- 
tion of the flow and the nonlinear interaction with the 
vortical wake are addressed. In the last part, an ap- 
proach for dealing with fin/wave interactions when the 
diving plane happens to get too close to the free surface 
is discussed. 

I. Introduction 

We want to compute the hydrodynamic characte- 
ristics of a diving plane of a submarine in water waves. 
In particular, we are interested in the unsteady global 
forces which take an important place in the manoeuvra- 
bility. A second interest is to determinate the wake gene- 
rated by a diving plane and its interaction with other 
appendices. 

The optimization of fins working near the free surface 
becomes a difficult problem at lower speed. 

• The first property of the flow to be considered in 
that work is that it is an unsteady flow. The lo- 
cal conditions in which the fins have to operate 
are governed by the waves and the vortical wake 
are far from equilibrium at each time in the wave 
cycle. Praticularly, when the instantaneous inci- 
dence is not small, let us say larger than 5 degrees, 
the vortices wich develop at the tips of the fins 
can not be neglected. Moreover, they are respon- 
sible for non linear effects wich have to be correctly 
modelled. 

• Due to the relative magnitude of the wave induced 
velocity and of the velocity of the fin itself, the lat- 
ter can experience very high angle of attack during 
a part of the wave cycle. As a result, the bound- 
ary layer of the fin can separate far upstream of 
the trailing edge, sometimes at the leading edge. 
The numerical approximation of such flow require 
an accurate account for viscous effects and the nu- 
merical solving of Navier Stokes equations seems 
to be unavoidable. 

• As it has been previously mentioned, we are inte- 
rested in cases where the submarine is close to the 
free surface. It is obvious that the surface can be 
affected by this proximity and the hydrodynamics 
characteristics of fin are strongly altered. A full 
description of this phenomenon would require a 
combined model for the flow induced by the fin and 
for the description of the unsteady free surface. 

• The last point is that if one wants to study the 
interaction effects between all the foils of a com- 
plete submarine, the full development of the vor- 
tical wake of each fin as to be computed on very 
long time, specially for those which are located up- 
stream. During their development, these vortical 
wakes are submitted to two different effects, both 
due to the presence of the submarine hull. First, 
their trajectory will be affected by the deviation 
of the streamlines due to the presence of the hull. 
The second point is that this vortical wake is par- 
tially embeded within the ship boundary layer and 
can be analysed as a concentrated vortex interact- 
ing with a shear flow. 

It is not the aim of the present paper to address all 
the above described problems. Our attention will be fo- 
cussed on those wich can be relevant of an inviscid anal- 
ysis of the vorticity dynamic. This restriction is mainly 
imposed by the limitation of the numerical method which 
has been chosen. Because of the necessity to establish as 
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clearly as possible the level of confidence one can have 
in the numerical results, comparison with experimen- 
tal data have been made to complete the description of 
the flow. These experiments are used in two different 
ways. First we check the validity of our model by a 
direct comparison between experimental and numerical 
results. Second, we use the discrepancy of these two 
different appproach to draw the outline of the domain 
in which the different parameters value do not allow to 
expect good results from the numerical model. This last 
remark only concerns the present method and does not 
indicate that no method can work for those cases. 

In section two of the paper, the numerical method 
is described. Because it has already been used in other 
studies (ref [4],[7]), the particles method presentation 
will be very short. Larger emphasis will be devoted to 
the description of the method used to compute the flow 
around the submarine hull which is rather new. The 
numerical study is presented in section three. It consist 
of three different subsection. The description of the flow 
around an isolated fin in waves is split in two parts: the 
effect of the orbital velocity field due to the waves, and 
the effect of the free surface. A third subsection will be 
devoted to the study of the influence of the submarine 
hull on long time development of the diving planes vor- 
tical wakes. Only the inviscid flow approximation will 
be considered in all cases. 

influence of the other part of the body the potential fa, 
has to match the boundary condition on the fin: 

^ = -(u_ + u.+E0 + HJ-a (2) an 

2.2 The particle method. 

The vortex particles concept has already been used 
to compute three dimensional unsteady flows around 
wings and helicopter rotors (1). Particle methods have 
been introduced as early as 1931 [2] in order to com- 
pute two dimensional flows of incompressible inviscid 
fluids involving a singular vorticity distribution. Choriu 
[3j proposed an extension of the method to account for 
viscous effect both within the flow field and along the 
boundaries. Rehbach [4] extended the method to three 
dimensionnal flows. 

The method consists in discretizing the vorticity sup- 
port with a set of particles and to compute their motion. 
This is achieved by using a lagrangian coordinate system 
to express the Euler equations. 

dt 
=    UrQLO (3) 

^    =    (u • V)Ur 
dt K '-T 

II. The numerical methods. 

The outlines of the method result from the above 
mentioned assumptions that the velocity field can be 
expressed in the frame moving with the submarine as 
the sum of several terms: 

UT = U, . +U+Uja + IL. + Ii. (1) 

The velocity of the submarine U^ and the velocity field 
of the waves U„ are given. The perturbation due to the 
submarine and its diving planes is split into three terms: 
UG the contribution of the hull, H,. the contribution of 
the diving planes and U„ the contribution of the vor- 
tical wake. These flow fields derive from potentials 4>a, 
4>i, and 4>u. We use three different methods for describ- 
ing these potentials, a lifting surface method for the fins, 
a particle method to describe the wake, and a discon- 
tinuous Galerkin method for the hull. This yield three 
coupled methods that we describe hereafter, before giv- 
ing the global resolution algorithm. 

2.1 Description of the fins by the lifting surfaces. 

The fins are taken into account by using an integral 
description through a distribution of doublet on their 
skeleton. Typically, we use a mesh as given in figure 
3. This is a well known vortex lattice method in which 
we can use equivalence between a surface distribution 
of doublets and a linear distribution of vorticity on the 
edges of the cells.   In order to take into account the 

The vorticity distribution is discredited in particles. The 
particles are defined by two quantities: their circulation 
fl, which is the amount of vorticity initially contained in 
the particle and a point X; which can be the geometrical 
center of the particle or any other: point representative 
of the particle location. For instance, they represent the 
following averages: 

(4) 

Axda 

The velocity field is obtained from the vorticity distri- 
bution by using the Biot-Savart integral law: 

wthJIL 
w(y) A (x - y) 

da 
x-y 

(s) 

The vorticity creation 
The vorticity creation model establishes the link bet- 

ween the solid walls discretization and the particle wake. 
Particles are created along given lines in order to satisfy 
a condition formaly derived from the Joukovski condi- 
tion. First, we use the Hess relation between the doublet 
distribution and vorticity to obtain a linear distribution 
of vorticity on the lattice of the surface u,u. Then, this 
vorticity is assumed to be emitted within the fluid at 
a mean velocity computed along the separation lines. 
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Here, the separation line is the trailing edge of the fin 
which is discretized in small segments ae which are rep- 
resented by their mid point X«. At eac^ Pomt ¥* an<* 
at each time step At, a particle is created according to 
the following relations: 

X,.    =    X, + A:/2Ur(Xj (6) 

Q,   =    /  «. 
Ja. 

JxAt I UT(XJ | 

Coupling the particle method to the general procedure 
Here, the velocity to be used UT is the sum of all 

contribution defined in (l). Then, the discrete equations 

to be solved are: 

(7) 

%■    =    UT(X,.) 

^    =    (0,.V)UT(X.) 

1. y-> Q, A (X,- - X,) 
5U2Ü   -   4Ti^   |x.--xy|

3 

(n.v)iL(x.)   =   3Tfg|x,.-X/l6 

[((X,.-Xy)Q,.)((X,-X,.)AQ;.) + 
(((x,-xy)AOy)o,)(x.-xy)) 

In three dimensional case, the vorticity transport equa- 
tion has a non-zero right hand side which is called the 
deformation term. This term can be obtained through 
an integral relation by derivating the Biot-Savart law. 

2.3 The use of the discontinuous Galerkin method for 

the hull. 

The contribution to the potential flow of the body 
of the submarine and of the sail is calculated through a 
discontinuous Galerkin method on boundary elements. 
The use of this method is motivated by the fact that 
the body surface in generally produced by a CAD sys- 
tem. The discontinuous Galerkin method allows to take 
advantage of the high degree of approximation used in 
CAD, and can use directly the unstructured approxi- 
mation surface panel definition obtained with standard 
CAD designs. 
We give hereafter a short description of the method as 
it has been implemented for our application. We want 
to solve the problem: 

drip 

0 (8) 

-IL,, -Do 

The point P belongs to 5,, the surface of the subma- 
rine, np is the exterior normal to S., and U„t is a given 
velocity field. For instance Uelt can be the sum of the 
velocities given by the lifting surface, the vorticity parti- 
cles and the global advance U«,. This problem is solved 

through a boundary element method, by looking for the 
potential distribution on 5, satistafying the equation: 

-hjs}^^w=T\iJP     (9) 

This equation can be reformulated in a concise form: 

[I-K)t = f (10) 

where I is indentity, K and f are the integral operators. 

At first, we define the approximation of the surface of 
the body as a set of curved panels I\ covering the sur- 
face. Each panel can be obtained by a polynomial trans- 
formation of the unit simplex. Each point P of the panel 
is obtained from a point P by P = *,•( P ), *i is a poly- 
nomial in ( x,y ) of degree r. The mam requirement of 
this representation of the surface is that there is no hole. 
The panels resulting from a CAD design may not neces- 
sary connect at their vertices, as we can see on the mesh 
used for our example (figure l). Then, the potential ap- 
proximation $/, on the boundary elements is search as 
an element of the space Vh of functions uh, defined as: 

Vk = ( tu , V« £ /. , ukr. = t>i o *.■-', h e P> ) 

Figure 1: Discretization of a submarine hull. 

Pp is the space of polynomials of degree inferior or equal 
to p with respect to the variables x ,y on the unit sim- 
plex, /, is the index space of all panels. In this method, 
p is restricted by p< r, in order to be consistent with 
the discretisation of S,. We can note that this defini- 
tion of Vh does not impose any continuity on u/, at the 
interface of the panels. The approximate solution $,, is 
obtained by projection of the equation (11): 

f VVUSVH 

(11) 
[  fs§(I - Kh)<t>h.vhd<T = $sJio 

KH is the integral operator applied to the fonction $, 
on the panel distribution. This equation leads to a li- 
near system which can be solved with standard matrix 
inversion methods. 
One is refered to [5] for a complete discussion of the 
application of the method. For practical purpose, the 
main issue, appart from the mesh generation, is to set 
up quadrature formulae which are consistent with the 
degree of approximation and which are not too much 
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time consuming. This is the main discussion of the re- 
port [6]. An other issue is the choice of the degree of 
approximation p. Our experience is that the value p=2 
is an optimum with respect to efficiency and accuracy. 
Moreover it allows to derive directly the pressure and 
the velocities on the body. However, p=l is often use- 
full because the CAD system can give too many panels 
to be handled with the p=2 approximation. 

Coupling the Galerkin approximation to the general 
procedure. 

The Galerkin approximation is introduced in the flow 
of the general procedure as a standard boundary element 
method. The flow field given by Uw, the lifting surfaces 
and the particles at the previous time step introduces 
a right hand side term in the equation treated explic- 
itly. Then, the flow field induced by the body must be 
taken into account to implement the particles and the 
lifting surface. The computation of velocities at points 
outside of the surface 5, is obtained by quadrature for- 
mulae which use far field approximation or interpolation 
between the value on the body and the far field approx- 
imation. 

2.4 The global time stepping algorithm. 

We use a time marching approach, either for steady 
or unsteady problems. Then, we use a fractional time 
step algorithm in order to decouple the problems. Know- 
ing the values of #c"+2/3, <t>i.n and ^,n+1/3 at time 
step, the values at time step n+1 are obtained following 
the loop: 

• Compute fi,n+1 with conditions imposed 
by ^"+1/3, *c"+2/3 

• Compute 4>u
n+4     with conditions imposed 

K„ J.    "+1    J.    " + 2/3 
by <Pl.        , <PG 

• Compute (f>Gn+&    with conditions imposed 
L„   i    n+1    ±   n + 4/3 
by 91,        , 9u 

For unsteady problems, this algorithm is consistent 
and is accurate enough for small time steps. Owing to 
the hyperbolic nature of the flow this algorithm happens 
to converge to a steady solution when it exists. 

2.5 The wave model. 

As it has been mentioned in the introduction, we 
assume that the free surface is not disturbed by the 
submarine and the depth is infinite so the wave model 
is a simple two dimensional Stokes model. We just recall 
hereafter the explicit formula which are used to express 
the velocity potential. The free surface is assumed to be 
sinusoidal, according to the following equation: 

y = asm(mz — nt) (12) 

It is a progressive wave with a wavelength A = 2.7r/m 
and a period r = l.-KJn. The expression of the velocity 

potential is 

* = ■ ih(m/i) 
sh(my)sin(mi — nt) 

III. Validation tests. 

3.1 Problem description . 

The results coming from a test campaign on the effi- 
ciency of the diving planes of a submarine near the free 
surface gave us a lot of information in order to assess 
the method. During the tests, a model of a submarine 
with the fins mounted on the sail has been towed near 
the free surface (figure 2 ). The efforts on the fins and 
the hull were measured during the tests. Several ex- 
perimental conditions were used by varying the towing 
speed, the depth, the wave parameters and the period 
of oscillation of the fins. At the stage of development of 
the numerical method, it is not feasable to run all the 
test cases with the complete geometry. On the other 
hand, since the tests were not made in order to validate 
a numerical method, they don't cover systematically the 
range of variation of the different parameters. 

Figure 2: Experimental conditions 

For these reasons, the numerical results are splitted into 
three parts. First, we compare the lift measured in the 
experiment and the lift calculated on isolated diving 
planes with the same geometry and the same flow pa- 
rameters, for particular conditions. These comparisons 
indicate large unsteady effects when the variation of in- 
cidence is due to oscillations of the diving planes. Since, 
the comparisons show some discrepency between exper- 
imental and numerical results, two other kinds of tests 
have been performed in order to assess the effect of the 
hull and of the free surface. 
The free surface interaction with the fin is addressed an 
experiment on a flat plate at a steady incidence per- 
formed in the tunnel of the Laboratory of Fluid Me- 
chanics of Le Havre University. The results compared 
with different numerical approximations show that the 
effect of the free surface is negligible for the application 
considered. 
One case has been run with the hull and the fins for a 
fixed angle of incidence. It has been run sufficiently in 
order to see the effect of the hull on te roll up of the vor- 
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tex. For the lift, with no waves, the effect is negligible. 
These three tests are discussed hereafter. 

3.2 An isolated diving plane. 

The numerical conditions are specially designed to 
be representative of the conditions experienced by a sub- 
marine. To reduce computing time, we only considered 
the diving plane in the calculations and the effect of the 
submarine is neglected. The results are the global forces 
on the foil. Experimental results used in the validation 
are obtained in the towing tank of Paris for different 
wave conditions. The diving plane has been discretized 
in a 12 x 5 mesh. This mesh is illustrated on figure 3. 
The dashed part has been added in order to simulate 
the submarine hull. 

Figure 3: Diving plane discretization 

An oscillating diving plane. 
We consider that the incoming flow is uniform and 

that the diving plane is oscillating. The characteristics 
are given in (13); ß is the angle of incidence of the diving 
plane with the flow, u> the pulsation, c the chord of the 
fin. 

ß = 9.9acos(ut + 12") 
w = 0.668    rad/s (13) 
depth    of    fin = |c    m 

The results obtained with these conditions are presented 
in Table 1. They are given in terms of the Cz amplitude 
and of the phase difference with the oscillation. The 
quasi-unsteady results correspond to an approximation 
considering that the unsteady lift is simply the steady 
lift (figure 4 ) at the angle of incidence ß and the ve- 
locity at time t. We can observe that the amplitude is 
in concordance with experimental data. The unsteady 
effect have an influence in term of difference of phase. 

Table 1: 

Experiment quasi-unsteady unsteady 
amplitude 

(Cz) 
0.6 0.54 0.62 

difference 
of phase 

+ 13" -22" 

Figure 4: Lift of the diving plane with respect to the 
angle of incidence 

plane of the submarine with this flow is: 

Ö = tan-1((|U00 \+uw)/vw) 

The speed of the submarine is constant and the wave 
characteristics are given in (14),(15); hcc is the total 
height between crest and though, A the wave length. 
T the period, Tc the characteristic period which corre- 
spond to c/V the time for a particle to cross the diving 
plane. The wave lengths are large compared to the size 
of fin. 
The maximum angle of incidence of the fin 6 is about 
10° for the first case and about 20° for the second. 

case    1 ' 

2 < 

hcc = 4.3    m 
A = 138    m 
T = 9.4    a 
Tc = 0.58    3 
depth    of    fin = jc 

hcc = 3.3    m 
A = 200    m 
T - 11.3   a 
Tc = 2.3    a 
depth    of    fin = ^c 

(14) 

(15) 

These two cases differ principally by the depth of the fin 
and by the speed of the submarine. The results are given 
in Table 2. We can observe that the unsteady effects are 
negligible in the first case, and are important for the sec- 
ond. In the latter, the vorticity emitted along the edges 
of the plane at time to is convected downstream and will 
remain above the wing for a time ranging from 0 for the 
trailing edge to Tc for the region close to the leading 
edge. This effect is a memory effect due to the presence 
of the vortex core above the plane. Moreover the large 
maximun angle of incidence in the second case induced a 
loss of lift which is not taken into account in the present 
method. 

Diving plane in water waves. 
An unsteady flow results from the composition of the 

wave induced velocity field and the submarine velocity. 
The time evolution of the angle of incidence of the diving 

An oscillating diving plane in water waves. 
We have made a test which consider the two effects: 

oscillations and water waves. The conditions are the 
following: 

565 



Table 2: 

case 1 

Experiment quasi-unsteady unsteady 

amplitude 

(Ci) 

0.55 0.6 0.63 

difference 
of phase 

+9U -6U 

case 2 

Experiment quasi-unsteady unsteady 

amplitude 1.05 1.18 1.35 

difference 
of phase 

-20 -20 

In that connection, we have retain flow conditions which 
are compatible with both numerical computation and 
measurements. Presently, the experimental study only 
concerns fins in a uniform stream. This limitation has 
been chosed in order to simplify the flow because we plan 
to combine velocity field measurements and free surface 
determination. The results to be described hereafter 
have to be considered as the first step of this particular 

study. 
The computer code is the code which as been used for 
section 3.1. The external flow is assumed to be uniform 
and the free surface effect is correctly approximated by 
the double model assumption: a symetrical condition is 
imposed on the free surface; this condition is satisfied 
by using a second fin as described on figure 6. 

hcc = 4.3    m 
T = 9.4    s 
A = 138    m 
ß = 2.2° + 10.6°coj(wi - 10°) 
w = 0.668    rad/s 
depth    of    fin 

(16) 

_   6, m 

and the results are given in figure 5. The maximum an- 
gle of incidence between the diving plane and the flow is 
about 20°. It seems that when the effects are coupled, 
there is less unsteady phenomena. 

free surface 

Ua 

Figure 6: Double model assumption 

lev 4SB 

Figure 5: Time evolution of the lift during one period. 

3.3 Influence of the free surface. 

In this part, the wave velocity is not accounted for. 
This is not required by the numerical method: the stokes 
wave model which is used in section 3.1 is linear so that 
the free surface is a plane. As a result it is compatible 
with the double model approximation which is used to 
model pressure effect in the present section. However, 
as it has been claim in the introduction, our goal was to 
combine experimental and numerical approach in order 
to give a description of the flow as realistic as possible. 

For the experimental work, we have used a water 
tunel with a free surface. The fin has been placed on 
the side wall of the tunel and is equipped with a two 
components balance. Experiments have been performed 
for Reynold numbers ranging from 2.2 104 to 3.5 10*. 
The fin has been placed at three different height un- 
der the free surface: 0.45 c, 0.72 c and 1.32 c where c 
is the chordlentgh of the fin. On figure 7 we compare 
the numerical results to the measured value of the lift 
coefficient: 

C. 
J/in 

pn- 

where el is a vertical unit vector, n is the unit normal 
to the fin. No viscous correction has been applied. It 
can be observed that a good agreement is obtained even 
if the fin is rather close to the surface. Nevertheless, a 
slight divergence of the two curves for the lower value of 
the immersion parameter indicate that we are close to 
the limit of validity of the method. 

3.4 Influence of the submarine hull. 

We have also tried to estimate the influence of the 
submarine hull. This was achieved by assuming that the 
perturbation caused by the presence of the hull could be 
modelled by the potential formulation. The hull of the 
submarine is discretized into a set of 150 curved panels 
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(figure 1). 
The panels are described with a CAD system by a poly- 
nomial chart which the degree r is included between 5 
and 12. Those high degrees are due to the definition of 
the tips of the submarine. The middle part of the hull 
is described with small degree panels. 

The degree of approximation of the potential is equal 
to 1 s not to consume too much time. The computing 
time for calculating the integrals defined in (13) is about 
a half hour on a computer Alliant FX80. <■ 
The submarine has a constant velocity and is set in in- 
finite depth. The angle of incidence of the diving plane 
with the incoming undisturbed flow is 10 degres. The 
vortex particles are emitted along trailing edge and tips 
in order to well represent the wake. 

At first, we study the wake position without the sub- 
marine hull. We compute this case during 30 chord 
length, this represents about 200 time steps. The vor- 
tical wake is represented on figure 8a in the plane (x,y) 
and on figure 8b in the plane (x,s). The rolled up wake 
can be observed. 
We consider the similar computation with the subma- 
rine hull. The results are presented on figures 8c and 
8d, where the hull is plotted. It can be observed that 
the presence of the submarine disturbes the wake. The 
particles are moving around the sail and are convected 
with the velocity due to the hull. 

The interest of this result is to show that interaction 
between the appendices can occur. Then, it becomes 
necessary to know locally the flow. We present on fig- 
ure 9, 10 the velocities distribution and the vorticity in a 
plane (y,z) in the rear of the submarine. Those informa- 
tions are adequately in order to evaluate the interaction 
between the appendices. 

IV. Conclusion. 

A first step of our programme has been accomplished, 
since we wanted to show the feasability of a method 
coupling boundary elements and the vortex particles 
concept to compute efforts for maneuvrability purpose. 
This method can be helpful to simulate non linear in- 
teractions, specially memory effects. In order to assess 
in a better way the interaction with the free surface we 
intend to pursue the systematic comparison briefly pre- 
sented in section 3.3. 
Now we have a complete procedure to describe the sub- 
marine within the perfect fluid assumption, and we are 
looking for optimizing its time efficiency in order to im- 
prove its capabilities. 
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Figure 7:  Lift coefficient of a fin near the free surface 
for different immersion 
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a) 

- a. =■      — 

b) 

d) 

Figure 8: Evolution of the wake position. 
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Figure 9: Velocities distribution 
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Inner-angle Wavepackets in an Unsteady Wake 
Y.-S. Cao, W. Schulz, R. Beck (University of Michigan, USA) 

Abstract 

The phenomenon of the inner-angle wavepack- 
ets in the wake of a ship is investigated. The 
three most probable causes of the wavepackets 
are: interference of the wave systems by the bow 
and stern; free-surface nonlinear effects; and wake 
unsteadiness due to translation and oscillation of 
the disturbance. The phenomenon is studied with 
nonlinear calculations using a desingularized bound- 
ary integral method, linear calculations using a 
time-domain Green function, and the method of 
stationary phase. It is shown that nonlinear ef- 
fects are not essential to the generation and persis- 
tence of inner-angle wavepackets; the unsteadiness 
of the wake can cause the inner-angle wavepack- 
ets. The unsteadiness is one possible explanation 
for the phenomenon. 

Introduction 

In addition to the normal Kelvin wave pattern, a rel- 
atively isolated wavepacket is sometimes observed in the 
wake of a ship. The wavepacket, referred to as the inner- 
angle wavepacket or inner-angle soliton, appears at an 
angle less than 19.5°, the angle of the normal Kelvin cusp 
line from the course of the ship. The wavepacket can per- 

sist for several kilometers behind the ship. A typical ex- 
ample is the experimental observation and measurement 
in the wake of the U.S. Coast Guard cutter Point Brower 
(Drown et al. 1989). In the experiment, the inner-angle 
wavepacket was observed at an angle of approximately 
11". Although the generation mechanism responsible for 
this wave feature is not entirely clear, the most probable 
hypotheses for the causes for the inner-angle waves are: 
1) a linear interference pattern due to the wave fields gen- 
erated by the bow and the stern; 2) nonlinear free surface 
effects; and 3) unsteadiness of the wake as referenced to 
the coordinate system attached to ship. 

The linear interference has been studied by Hall k 

Buchsbaum (1990) using a submerged source-sink pair as 
well as a line source distribution to model the ship. The 
linear free surface boundary condition was used. They 
were able to generate an inner-angle wavepacket using 
this model. However, the wavepacket amplitude decayed 
faster than the observed data. Brown et al. (1989) also 

found that the decay rate of the amplitude of the inter- 

ference pattern predicted by linear steady Kelvin wake 
theory was higher than the observed decay rate. 

Nonlinear effects have been claimed to play an impor- 
tant role in the generation of the inner-angle waves (Hall 

k Buchsbaum 1990, Brown et al. 1989, and Akylas et 
al. 1989). No comprehensive nonlinear models have been 
developed to calculate the entire wave field of a ship, al- 
though considerable research has been conducted on cer- 
tain aspects. Most nonlinear studies use a perturbation 
method to account for nonlinear effects (Akylas et al. 

1988, Brown et al. 1989, and Hall k Buchsbaum 1990). 
A two-dimensional nonlinear Schrödinger equation for the 
wave envelope is derived assuming a narrow band of fre- 
quencies for the carrier waves along the ray of the inner- 
angle wavepacket. The wave envelope from the nonlinear 
Schrödinger equation can support solitary wave solutions 
(hence the terminology inner-angle soliton). However, 
the use of the envelope equation implies that the wave- 
lengths of the carrier waves are much smaller than the 
envelope width, which seems not to be supported by vi- 
sual observations. Moreover, as pointed out by Wu (in 
a discussion of Akylas et al. 1988), the carrier waves are 
not perpendicular to the envelope track and hence it is 

an open question whether the asymptotic radiation of the 
envelope wave packets can be satisfactorily explained by 
local group velocity considerations. An overview of the 
research into the inner-angle wavepacket is given by Hall 

(1991). 

The studies mentioned assume a steady wake in the 
coordinate attached to the ship. However, the observed 
wake of the Coast Guard cutter was distorted by ambi- 
ent waves, limiting the comparison to averaged properties 
(Brown et al. 1989). There was still variability in the re- 
duced data even when the components due to the ambient 
waves were filtered. This could be due to, in addition to 
the ambient waves, 1) variation in ship speed or heading; 
2) time-dependent ship motions; 3) interaction with the 
transverse Kelvin wave and the time-dependency or in- 
stability of the "solitary" wave envelope. Other sources 
of unsteadiness could be the propeller induced flow field, 
vortex shedding (von Karmen vortex street type) and the 

turbulent flow in the near field.   Unsteady features of 
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the wake may play a very important role in this phe- 
nomenon and may be an alternative explanation for the 
phenomenon. It is therefore desirable to investigate the 

unsteady features of the wake. 

Time-harmonic unsteady waves have long been stud- 
ied in seakeeping problems. However, the main objective 

there is to determine the hydrodynamic forces acting on 
the ship and the resulting ship motions, while little at- 
tention is given to the far-field wave patterns. Eggers 
(1957) studied the wave pattern due to a translating pul- 
sating source and described several systems of constant 
phase curves. Recent work by Noblesse & Hendrix (1990) 
showed similar results. These studies show that the wave 
pattern geometry and its polar angular boundary for the 
far field waves essentially depends on the nondimensional 
Brard parameter r = Vw/g, where V is the translating 
speed of the disturbance, u is the pulsating frequency of 
the disturbance as observed from the coordinate system 
attached to the disturbance, and g is the acceleration 

of gravity. These studies used the method of station- 
ary phase. Recently, Nakos and Sclavounos (1990) calcu- 
lated the time-harmonic wave patterns due to a modified 
Wigley hull model translating and oscillating in heave 
using a Rankine source panel method. However, none of 
the described work on unsteady wave patterns specifically 
tried to explain the inner-angle wavepacket phenomenon. 
Only recently, Mei (1991a,b) used a unsteady, nonlinear 
Schrödinger equation to study the phenomenon. 

In our study, the following three methods are used to 
examine causes for the inner-angle wavepacket with the 
emphasis given to the unsteadiness of the wake: 
1) Linear wave calculations: The time-domain Green func- 
tion satisfying the linear free surface conditions and ra- 
diation conditions (Liapis & Beck 19S6, King 1987, Beck 
k Magee 1990) is used to calculate the wave elevation. 
2) Method of stationary phase: Although it is not easy 
to evaluate wave elevation by the method of stationary 
phase, the wave field boundaries and the rate of decay 
can be obtained without a great deal of computational 
effort. These lines are obtained in a similar manner as 
Eggers (1957). 
3) Nonlinear wave calculations: The time-stepping pro- 
cedure following material particles (Longuet-IIiggins & 
Cokelet 1976), combined with a desingularized boundary 
integral method (Cao 1991 and Cao et al. 1991), is used 
to calculate the waves with fully nonlinear free surface 
boundary conditions. It has been shown that the method 
is fast, accurate and numerically stable. 

Since in this study we are primarily interested in far- 
field waves, we simply model a ship either by a source-sink 
pair moving below the free surface or a moving pressure 
distribution on the free surface. 

Initial-Boundary Value Problem 

In the following, all quantities are made dimension- 
less by the fluid density p, the gravitational acceleration 
g, and a proper length scale L. Therefore, the speed V 

is replaced by Froude number FT = V/^/gL. 

We assume that the fluid is incompressible and invis- 
cid and the flow is irrotational. This implies the existence 
of a velocity potential <p(Z,t) with the fluid velocity u 

given by u(x,i) = V^, wllere x = (5>2/>5)is a field Point 

and t is time. The surface tension is neglected. 

Two coordinate systems are used (Fig. 1). Oxyz 

is the earth fixed coordinate system and Oxyz is the 
moving coordinate system attached to the disturbance 
which advances with speed V the -x direction. There- 
fore, x = x - Frt,y = y,z - z. The plane Oxy and Oxy 
coincide with the mean position of the free surface and 
the z-axis and z-axis point upwards. A system of polar 
coordinates R,ß will be introduced in the Oxy plane as 
an alternative. The problem under consideration is the 
flow generated by a disturbance starting from rest. The 
disturbance can be the motion of a singularity below the 
free surface (representing a submerged solid body), or a 
free surface pressure distribution. The fluid domain D is 
bounded from above by the free surface Sj and a contour 

Soo sufficiently far from the disturbance. 

x,x 

Fig. 1. The coordinate systems. 

The continuity equation requires that the potential <f> 

satisfy the Laplace equation, 

A<f> = 0 (in D). (1) 

The free surface boundary is not known a priori, it is 
determined through two boundary conditions. The kine- 
matic condition ensures that a fluid particle on the free 

surface remains on it, 

DXf 

Dt 
V4> (on S}) (2) 
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vhere 
D_ 

Dt 
| + V^V 

is the substantial derivative following a fluid particle, 
Xf = (xj,yj,zj) is the position vector of a free surface 
particle and zj = rj(x,y,t) is the free surface elevation. 
The dynamic condition requires that the pressure on the 

free surface is zero (without loss of generality), unless 
the disturbance is represented by an ambient pressure pa 

over some finite part of Sj. Bernouli's equation can be 
transformed to 

D<f> 
Dt = ~Pa ■Vr\\V4>\2 (on Sj) (3) 

At infinity, a proper far-field condition is required. 
For a three-dimensional initial-boundary value problem, 
(f> -> 0 implies that the flow due to a disturbance vanishes 

at infinity. 

In our time-dependent problems, we study the flow 
generated by disturbances starting from rest. For initial 

conditions, we pose 

<j> = 0 (in D for t < 0) 

and 

X] = 0 (on Sj for t < 0). (4) 

Linear Calculations 

Our above problem can be linearized by conventional 
perturbation methods, with 4> and rj being considered as 
small quantities. Then <p has to satisfy the linearized free 
surface condition 

dt2     dz 
(onz = 0), (5) 

in our dimensionless notation and r? can be found from 

(onz = 0). (6) V = ' dt 

Considering the simplified case of a flow generated 
from singularities of given strength rather than by a ship, 
we need only the potential due to a source-type singular- 
ity. General problems can always be represented through 
linear superposition of the fundamental solution. The 
time-domain Green function due to an impulsive source 
G(P,P',t,t') at time t' and location P' is given by 

G(P,P', t,t') = 

'1      1 
6{t-t') + G (P, P',t, t') II (t - t') .       (7) 

I   J 

where 

G(P,P',t,t') = 

rdkVksin (Vk (t - t'))ek^+-">J0 (kR)        (8) 

is the wavy part, P = (x(t),y(t),z(t)) is the field point, 

and P' = (x'(t'),y'(t'),z'(i')) is the source point, r = 

[(x-x')2+(y—y')7+(z—z"')2]2 is the distance between the 

field and source points, f = [(x—x')2+(y—y')2+(z+z')2]i 

is the distance between the field point and the image of 
the source point, and R=[{x- x')2 + (y - j/')2]2 • Here, 
J0 is the zero-order Bessel function, S(t) is the delta func- 
tion, and II(t) is the unit step function. 

The Green function G(P,P',t,t') satisfies the follow- 
ing governing equation, 

V2G   =   -4i:6(P-P')6(t-t'), 

with the linear free surface condition on z = 0, 

d2G     8G 

dH + dz 
=   0 (on z = 0), 

and the initial and far-field conditions 

„   dG 

dt 
VG- 

t - t' < 0 

as T CO 

The potential due to a point source of strength a(t) mov- 

ing in the path (z' = x'(t'),y' - y'(t'),z' = z'(t')) witlv 

zero intensity for t < 0 is then 

<t>(P,t)=  ['a(t')G(P,P',t,l')dt'. 
Jo 

(9) 

The free surface elevation in the fixed coordinate system 
is, 

T]{x,y,t) = - 
dt 

(on z = 0). (10) 

For flow in the coordinate system attached to the dis- 
turbance, it is adequate to replace x by x — FTt and ^ 

by at ~ Frg£- Then one obtains the wave elevation in 
the coordinate system moving with velocity FT in the — x 
direction as 

«.....)--<£-*£) (on z = 0).        (11) 

We use the subroutine initially developed by Liapis 
and Beck (1986) and later improved by King (1987) and 
Magee (1990) to calculate G(P, P', t, t'). The time convo- 
lution integral in (9) is performed using a simple trape- 
zoidal rule. 

Since discretization of the free surface is not necessary 
in the linear calculations, we are able to consider a large 
free surface area with a fine grid. The disturbance used 
is a translating and pulsating source-sink pair. The sub- 
mergence depth is chosen to be unity as is the separation 
of the source and sink. Figures 2 to 6 show the wave pat- 
terns by the source-sink pair with zero-mean strength for 

the Froude number based on separation distance Fr = 1.0 
and different values of r. For r = 0 ( and FT ^ 0), we 
recover the classical Kelvin wave system within the wave 
cusp angle ßk = tan-1 -4j (Fig. 31). For increasing r, the 

system splits up into two, bounded by cusp angles /3j and 
/?2, with ßi of the inner system slightly decreasing. The 
boundary angle ßi of the outer system approaches a max- 

573 



Fig. 2. Waves due to a translating and pulsating 
source-sink pair with zero-mean strength and r = 
0.125; linear calculation. 

Fig. 5. Waves due to a translating and pulsating 
source-sink pair with zero-mean strength and r = 1.0; 

linear calculation. 

Fig. 3. Waves due to a translating and pulsating 
source-sink pair with zero-mean strength and r = 

0.25; linear calculation. 

Fig. 6. Waves due to a translating and pulsating 
source-sink pair with zero-mean strength and r = 2.0; 
linear calculation. 

Fig. 4. Waves due to a translating and pulsating 
source-sink pair with zero-mean strength and r = 0.5; 
linear calculation. 

100.0 

75.0 

«a. 50.0 

25.0   / 

0.0 
0 12        3        4 5 6        7 

Fig. 7. Bounding line angles vs. r (measured from fig- 
ures 2 to 6). 

574 



imum of order x/2 for r « 1/4 and then falls off towards 
ft with r increasing. Fig. 7 shows the angles ßi and /32, 
measured from figures 2 to 6, as functions of T. From 
Fig. 7, we may guess that the inner-angle of the Point 
Brower observations corresponds to ß\ for 1.0 < r < 1.5. 

Fig. 8 shows isometric and contour plots of the far- 
field waves generated by a translating and pulsating source- 
sink pair with nonzero mean strength and r=l which may 
correspond to the surge motion of a ship. The pulsation 
amplitude is the same as the mean value. As can be 
seen, an inner-angle wavepacket is well separated from 
the Kelvin diverging waves at about 14°. 

Fig. 8. Far-field waves due to a translating and pulsat- 
ing source-sink pair with non-zero-mean strength and 
T = 1.0; linear calculation. 

Assuming the wake is linear and has reached a time- 
harmonic state, we can express the velocity potential 

4>{x,t) as 
<f>{x,t) = Reivixy"'}, (12) 

Clearly, the spatial function <p also satisfies Laplace equa- 
tion. The linearized free surface boundary condition for 
4> in the coordinate system moving with the disturbance 
in the — x direction is 

£♦(*-*£)'<" (on z = 0).    (13) 

Substituting (12) into (13) gives the free surface condition 

for ip, 

8z+   T dx2' 
^+fr^_2,TrW^-UV = 0       (on 2=0). (14) A °~9 ox 

Separation of variables gives 

<pKek2exp[i{kxx + kyy)] (15) 

where the wavenumber vector is given by 

(kx,ky) = k(cos9,sm6). (16) 

Substituting (16) and (15) into (14) gives the relation 
between k and 9, 

k = (kFT cos e-üjf. 

Solving (17) for k gives 

kj = 
1 + IT cos B + SjVl + 4r cos 9 

2Fr
2 cos2 9 

with its first derivative 

dkj      ,   „     „(Vl + 4rcosfl + (Sj) 
—J- = ki tan P- — 
de     J Vl + 4r cos 9 

(17) 

(18) 

(19) 

where r = Fru again is the Brard number and Sj = 
(-iy+1,(j = 1,2). Since k is real, we have (l+4r cos 9) > 
0. So, the region for 8 must be restricted to -80< 0 < $c, 
where 

it 

■K — COS" 

if r < 0.25 

^(i)    if r> 0.25 

Far-field Wave Pattern by 
Method of Stationary Phase 

The method of stationary phase provides an easy way 
to determine far-field wave patterns in terms of curves of 
constant phase. In this analysis, the particularity of the 
disturbance does not affect the establishment of the for- 
mulas for determining the phase lines as will be shown in 
the following. Therefore, if the region under considera- 
tion is sufficiently far from the disturbance, the far-field 
wave pattern obtained is independent of the local distur- 

bance details. 

The spatial potential ip can then be expressed as 

rfg) = £ f° d8Aj(8)ek'zei (k'>*+k>^, (20) 

where Aj{9) is a function depending on the particular 
disturbance. The wave elevation f](x, t) has a form similar 

fj(x,t) = Re{r,(x)eiut} (21) 

and 
2    /•»• 

v(x) = Y1        d9Bj(9)ei t^+^-w) 
J=l' 

■■ /     d9Dj{8)eiR4'- 
J-Sr. 

'iim (22) 
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where Bj(B) is a function depending on the the particular 
disturbance, R and ß are the polar coordinates of the field 

point, 
{x,y) = R(cosß,sinß) 

and 
tpj = kj(cos ß cos 8 + sin ß sin 8). 

Evaluation of (22) by the method of stationary phase 

(Copson 1965) gives 

r,(R,ß): 

2     M 2* 

R\^"(ß,t 
(23) 

where 9m are the stationary points given by 

d 

d8 
(^•(/3,0)) = O 

x dkxj + y dkyj = 0. (24) 

The choice of the "±" sign in (23)_is the same as the 
sign of the second derivative ip"(ß,6m). For simplicity, 
the subscripts m and j and the bar over 8 are omitted 

hereafter. 

The curve of constant phase can be obtained without 
knowing A(8) and B(8). The curve of constant phase C 

is given by 

Rtl>(ß,8)±- = C 

kxx + kyy = c 

where c = C =p f • Solving (24) and (25) simultaneously 
for x and y gives 

(25) 

(x,y) = 
c (dky,-dkx) 

(26) 

With the use of (16), (26) becomes 

c  / dk 
(x,y) — -J-J ( k cos 9 + — sin 8 , k sin t 

dk 

7&' 
(27) 

Substituting (18) and (19) into (27) gives the parametric 
equations for the curves of constant phase c, 

(x,y) _ 

2c \(6j sin2 8 + y/1 + AT cos 8) cos 8, -Sj sin 8 cos2 8 

(1 + 2r cos 8 + 6jy/T~+4T cos ~6)yf\ + AT cos 8 
(28) 

with 8 being the parametric variable. Choosing values of 
C separated by 2~ gives a set of phase lines separated by 
one wavelength. Equation (28) shows that the constant 
phase lines, further scaled by Fr , only depend on r. 

The lines of constant phase developed in (28) do not 
yet satisfy the radiation condition that all waves must 
have a group velocity that moves away from the distur- 

bance when referenced to the moving coordinate system. 
Because of symmetry about y, we will only consider the 
case of y > 0 (thus 6 > 0). At first glance, there seems to 
be two sets of constant phase lines since j = 1,2. By care- 
fully examining (28), we find that for j = 1 in (28) pos- 
itive c satisfies the radiation condition for 0° < 8 < 90° 
but not for 90° < 8 < 0o. The constant c must be neg- 
ative for 90° < 6 < 80 to satisfy the radiation condition. 

So (28) with j = 1 gives two systems of constant phase 

lines which we refer to as the first and second wave sys- 
tems hereafter. For j - 2 in (28), positive c satisfies 
the radiation condition for 0° < 8 < 80, giving only one 
system of constant phase lines (the third wave system). 
Hence, there are three different wave systems in the wake. 

Figures 9 to 16 show lines of constant phase C for sev- 
eral values of r with FT # 0. For a given value of r, each 
figure contains three distinct systems of waves similar to 
those in Noblesse & Hendrix (1990) using a different ap- 
proach. For T — 0 (steady waves), the third system dis- 
appears (the wavelength becomes infinitely large), while 
the first and second systems of the phase lines are iden- 
tical and the same as the normal Kelvin wave pattern. 
For r > 0, the first system is very similar to the Kelvin 
wave pattern consisting of transverse waves and diverg- 
ing waves and has a cusp line whose angle is less than the 
Kelvin angle ßk = 19.5°. The second system also consists 
of transverse waves and diverging waves. For r < 0.25, 
the cusp line is at an angle larger than 19.5°; for r > 0.25, 
the transverse waves in the second system disappear. The 
third system has ring-type waves for 0 < r < 0.25 and 
for r > 0.25, part of the ring-type waves transform into 

diverging waves. 

A line of constant phase C is disconnected at the cusp 
line of a wave system since the constant c has a jump of 
x/2 across the cusp. This is because the second deriva- 
tive of rjj, ip", changes sign across the cusp. Because of 
this jump, the crests (or troughs) of the transverse waves 
and the crests (or troughs) of the diverging waves do not 
meet on the cusp line. The phase lines shown in Noblesse 
k Hendrix (1990) correspond to the lines of constant c 
and are continuous at the cusp. 

From (28), we have 

= /• 
sin ö| cos#| 

sin2 8 + 6jy/l + 4rcos8 ' 
(29) 

vhere 

,    1 + IT cos 8 + Wl + 4r cos 8 ,„-.. 
/ = syn{c —n }      (3Ü) 

cosy 

Equation (29) for j = 1 is plotted in Fig. 17 for various 
values of r. The curves for 0" < 8 < 90° correspond 
to the first system of phase lines and those for 90° < 
8 < 80 correspond to the second system of phase lines 
as explained above. Eq.(29) for j = 2 is plotted in 
Fig. 18 for various values of r. 
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Fig. 9. Constant phase lines of Kelvin wake, r = 0. Fig. 13. Constant phase lines, r = 0.5. 
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Fig. 10. Constant phase lines, r = 0.2. 
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Fig. 14. Constant phase lines, r = 1.0. 
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Fig. 11. Constant phase lines, r = 0.25". 
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Fig. 15. Constant phase lines, r = 2.0. 
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Fig. 12. Constant phase lines, r = 0.25+. Fig. 16. Constant phase lines, r = 4.0. 
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Fig. 17. \y\/x vs. 0 for the first and second systems. 
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Fig. 18. tan  1{\y\/x) vs. 6 for the third system. 

The bounding angle for each system can be deter- 
mined from Fig. 17 and Fig. 18, or from (28) directly. The 
maximum \y\/x of each system gives the bounding angle 
ß = tan-:(H/x). For the first system, 0° < 8 < 90° 
in Fig. 17, \y\/x has one maximum which is also a local 
maximum (i.e. the derivative of \y\/x is zero). For the 
second system, 90° < 9 < 80 in Fig. 17, \y\/x also has one 
maximum which, however, is not a local maximum when 
r > 1/4. For the third system, Fig. 18, \y\/x can have 
a maximum of ±oo for r less than a certain value. \y\/x 

has a jump from oo to -co (or -co to oo) across an angle 
9C which is the root of sin2 6e - -/l + 4r cos 9C = 0. The 
infinity of |jr|/a; does not correspond to the angle of the 
bounding line. The angle of the bounding line in this sys- 
tem only comes from the local maximum of \y\/x where 
the derivative of \y\/x is zero. Fig. 19 shows tan_1(|i/|/x) 
as a function of 9 for the third system. From Fig. 19, it 
is easier to determine the angle of the bounding line by 
finding the global maximum of tan_1(|j/|/i). 

Fig. 20 shows the bounding angles for the three sys- 
tems (denoted by ßi, ßi and ßz respectively) as func- 
tions of T. ßi is a continuous function of r. ßi has a 
jump from 54.74° to 90° and ßz has a jump from 180° 
to 126.26° when r changes from 0.25- to 0.25+. Fig. 20 
can be used conveniently to determine the angles of the 
inner-angle wavepackets. 
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Fig. 19. tan-1 (|J/|/x-) vs. 9 for the third system. 
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The wave decay rate for large R can be estimated by 
applying the method of stationary phase to (22) without 
knowing B(8) (Copson 1965). The decay rate is closely 
related to the second derivative of ip (corresponding to 
the first derivative of \y\/x, Newman 1977). Fig. 17 and 
Fig. 18 are helpful since they allow one to visualize the 

first derivatives of \y\/x. At a cusp line (/? = ßi, i=l,2,3), 

if i>j" = 0 but ipj'" ^ 0, then (23) should be replaced by, 

(see Copson, 1965), 

v(R,ßi)~ 
IM 4 6 

i 

KyKit\il>i"Xßi,em 

.jie.W>(ft,9m)±7'' 

+ °(^7ä) (31) 

The decay rate along different ß can be determined by 

(23) and (31) with the information on ipj" provided by 

figures 17 and 18. 

Along ß, in which ß / ßi and ß < max{ßi), i = 
1,2,3, the wave elevation is given by (23) since the 
second derivative of ip, ip", does not vanish at the 
stationary points. The waves decay at a rate of 
R-1/2. For simplicity, we express this decay as 

V(R,ß)^^j2+0(\)- (32) 

If ß is greater than max(/3;), there are no stationary 
points and the waves decay faster, 

V(R,ß) oci + OC-jL). (33) 

The decay rates along the bounding angles of the 
wave systems are as follows: 

- Along ß = ßi, for all r, tp" is zero for the first 
wave system at the stationary point while ip" is 
not zero for the other two wave systems. The 
contribution from the first system dominates 
and decays as R-1?3, while the contributions 
from the other two systems decay as 7E-1/2. 
Therefore, the decay rate along ß = ßi is 

,(il,/3)«^ + 0(-^).        (34) 

— Along ß = ßi, tp" is zero for the second system 
at the stationary point only when r < 0.25. 
When T > 0.25, tp" is not zero. Also, ip" is 
also not zero for the other two systems for all 
T. Therefore, the decay rate along ßi is 

v(R,ß)<x 
-^+0(j&)   '■       ifr<0.25 

wn + o(Jt) ifr > 0.25. 

Along ß = ß3, i>" is zero for the third system 
for T > 0.25. i>" is not zero for the other two 
wave systems for all r. Therefore, the waves 
decay as 

r?(£,/?)c< 

jfr+O^) ifr > 0.25 

B> 
75+0(i) ifr < 0.25. 

Nonlinear Calculations 

In the nonlinear calculations, a time-stepping pro- 
cedure is employed to solve the initial-boundary value 
problem. In this procedure, a boundary value problem 

with the free surface position and the potential known 
at a given instant of time is solved by the desingularized 

method to find the velocity on the free surface. Then the 
position of the free surface and the potential are updated 
by integrating the nonlinear free surface boundary con- 
ditions (2) and (3) with respect to time in a Lagrangian 
fashion. Computations are conducted in the fixed coor- 
dinate system with the use of a moving computational 

window (Cao 1991). 

The indirect version of the desingularized method is 
used (Cao 1991 and Cao et al. 1991). For the waves due 
to a source-sink pair, the potential <j> is constructed by the 
disturbance singularity (a source-sink pair) and a simple 
Itankine source distribution over an auxiliary surface S/ 

of finite extent above the free surface, 

<KX) = -=-: + • 
4n\X-Xol\      4ir\X-Xo2\ 

fl« *.)■ 
-=—ds 

X-X,\ 
(35) 

where X0\ and X0i are the locations of the source and 
sink respectively. The strength of the pair, a0, is given. 
The strength of the the Itankine source distribution cr(X,) 
on S/ is determined by satisfying the Dirichlet condition 
for 4> on the free surface. To ensure the convergence of 
the numerical solution, when the integral equation (35) is 
discretized, the local desingularization distance Ld (dis- 
tance between the corresponding nodal points on Sj and 
Sf') is chosen to be related to the local mesh size such 

that 
Lt = ld(Dmy (36) 

where Dm is the local mesh size (usually the square root 
of the local mesh area in a three-dimensional problem). 
The parameter I a is independent of the discretization and 
reflects how far the integral equation is desigularized. 
The parameter v affects the accuracy of the numerical 
integration. A proper choice of /<; and u is: 1.0 < Id < 2.0 

and v = 0.5 (Cao 1991 and Cao el al. 1991). 

Because of the desingularization, the Itankine source 
distribution can be replaced by concentrated Itankine 
sources at the nodal points on S/, thus reducing the 
CPU time for the calculation of the influence matrix. A 
fast iterative solver, GMRES, is used to solve the matrix 
equation. Since we are interested in the far-field waves, 
a large computational domain is required resulting in a 
large matrix equation (number of unknowns N > 3000). 
To accelerate the convergence, a simple and effective pre- 
conditioning technique is adapted. We use the influence 
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matrix at the first time step as the preconditioner (Cao 
1991). The preconditioning can make solving the matrix 
equation 10 times faster. The time integration of the free 
surface boundary conditions is performed using a fourth- 
order Itunge-Kutta-Felhberg method. 

We first calculate the waves generated by a submerged 
source-sink pair. The separation, the depth of the sub- 
mergence, and the strength of the source and the sink 
are chosen to approximately model the Coast Guard cut- 
ter. The cutter has a 25.3m waterline length, 5.2m beam, 
1.8m draught, and the ship speed V was 7.7m/s (Brown 
et al. 1989). The source-sink pair starts to move hori- 
zontally in the -x direction from rest. We use the same 
separation (87.7% of the waterline length), submerged 
depth (50% of the draught) and strength (VAW, where 
Aw = 3.3m2 is the submerged cross-sectional area near 
midship) of the source-sink pair as used by Hall & Buchs- 
baum (1990). The problem is made dimensionless based 
on the ship's waterline length. The strength of the pair 
is multiplied by (1 - e'-*) where /i=2.0. The time sim- 
ulation is sufficiently long so that the waves behind the 
pair achieve a steady state. Fig. 21 shows the isometric 
and contour plots of the waves when the pair has traveled 
about 16 ship lengths. The wake has essentially become 
a Kelvin wake although there is an interference between 
the wave systems by the source and the sink. This in- 
terference is not at an angle significantly less than the 
Kelvin angle in contrast to the observed inner angle of 
11" for the Point Brower experiment. In addition, as dis- 
cussed in a later section, the interference pattern decays 
at a faster rate than observed. 

Steady waves due to two moving free surface pressure 
patches are shown in figures 22 and 23. Each patch has 
a length 1 and beam 0.2. The pressure distribution for 

each patch is 

Pa(£,v,t) = PoPx(i)Py(y) (37) 

IMF 
Fig. 21. Waves due to Point Brower (modeled by a 
translating, non-pulsating source-sink pair); Fr=0.49; 
nonlinear calculation; free surface domain: (0 < i < 
11 0 < y < 4.5); Contour lines are apart by 0.005. 

1{COS[5TT(£T0.8)]+ 1} 
0 

\x\ < 0.8 
0.8 < \x\ < 1 
\x\ > 1.0 

(38) 

f i \y\ < o.i 
P"(y) = l   i{cos[10jr(j/T 0.1)] + 1}   O.K \y\ < 0.2 

[ 0 |y| > 0.2 

and (x,y) are the local coordinates attached to the cen- 
troid of a patch. The centroids of the two pressure patches 
are separated by 1.8. Froude number based on the patch 
length is 0.4. In Fig. 22, the pressure is small (p„ = 0.001) 
so the waves are essentially linear. In Fig. 23, the pressure 
is 20 times larger so the waves are nonlinear (the max- 
imum wave slope is about 0.30). Fig. 24 compares the 
longitudinal wave cuts of the linear and nonlinear steady 
waves at different y when the linear waves of Fig. 22 are 
multiplied by 20. It is surprising in Fig. 24 that the linear 
and nonlinear waves are so close. A much larger pressure 
disturbance leads to wave breaking causing the nonlin- 
ear calculation to stop. If the nonlinear calculation could 
have been performed allowing local wave breaking near 
the disturbance, we would expect to see much larger dif- 
ferences between the linear and nonlinear far-field waves. 

Fig. 22. Waves due to two translating, non-pulsating 
surface pressure patches (weak disturbance); nonlinear 
calculation; free surface domain: (0 < x < 5.2, 0 < 
y < 1.6); Contour lines are apart by 0.0002. 

Fig. 23. Waves due to two translating, non-pulsating 
surface pressure patches (strong disturbance); non- 
linear calculation; free surface domain: (0 < i < 
5.2, 0 < y < 1.6); Contour lines are apart by 0.004. 

580 



0.30 

0.25 

0.20 
G 

.2 

1      0.15 
> 

0. 10 

0.05 

0.00 

nonlinear    linear 

j, = 0.12S _ A NA 
~  V "v 

y = 0.096 ~^\hr\ ^^ V V \ 
jf = 0.06-i M 
j, = 0.032     A 

A,   ^ 
y = 0       / \ 

\  / 
« 1         1   ... . 

Fig. 24. Comparison of nonlinear waves to "linear" 
waves due to two translating, non-pulsating surface 
pressure patches (strong disturbance). 

Fig. 25. Waves due to a translating and pulsating sur- 
face pressure patch with zero mean,r = 0.25, F„ = 0.4; 
free surface domain: (0 < x < 5.2, 0 < y < 1.6); Con- 
tour lines are apart by 0.0001. 

Fig. 26. Waves due to a translating and pulsating sur- 
face pressure patch with zero mean,r = 0.5, Fn = 0.4; 
free surface domain: (0 < x < 5.2, 0 < y < 1.6); Con- 
tour lines are apart by 0.0001. 

The nonlinear calculation shown in Fig. 23 does not 
reveal any inner-angle wavepacket at an angle signifi- 
cantly less than the Kelvin angle. Instead, the two wave 
systems formed by the forward and aft disturbances seem 
parallel to each other. The computations (not shown 
here) using other values of the separation distance of the 
two patches, aiming at the effects of interference of the 
bow and stern waves, reveal the same feature except when 
the separation distance is so small that the two wave sys- 
tems merge into one Kelvin-type wave system. 

We then calculate the unsteady wake generated by 
one pressure patch of form (38) translating at the same 
speed as that in Fig. 23 in the -i axis and pulsating with 
a frequency w such that p0 = p0s\nut. Figures 25 to 30 
show the waves for different values of r. For small r, two 
wave systems can be seen, one with a bounding angle 
larger than the Kelvin angle ßk = 19.5° and the other 
smaller than ßk. As r increases, only one wave system, 
with the smaller bounding angle is visible. Although it is 
not easy to measure bounding angles precisely from these 
contour plots, it is dear that both angles decrease with 
increasing disturbance frequency. 

Fig. 27. Waves due to a translating and pulsating sur- 
face pressure patch with zero mean,r = 1.0, Fn = 0.4; 
free surface domain: (0 < i < 5.2, 0 < y < 1.6); Con- 
tour lines are apart by 0.0001. 

Fig. 28. Waves due to a translating and pulsating sur- 
face pressure patch with zero mcan,r = 2.0, Fn = 0.4; 
free surface domain: (0 < i < 5.2, 0 < y < 1.6); Con- 
tour lines are apart by 0.00005. 
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Fig. 29. Waves due to a translating and pulsating sur- 

face pressure patch with zero mean,r = 4.0, Fn = 0.4; 
free surface domain: (0 < x < 5.2, 0 < y < 1.6); Con- 
tour lines are apart by 0.00005. 

Fig. 30. Waves due to a translating and pulsating sur- 
face pressure patch with zero mean,T = 6.0, F„ = 0.4; 
free surface domain: (0 < x < 5.2, 0 < y < 1.6); Con- 
tour lines are apart by 0.000001. 

Comparisons and Discussions 

We now can compare the results of the nonlinear cal- 
culations, the linear calculations and the stationary phase 
analysis; and compare the steady and unsteady waves. 

Fig. 31 shows the contour plot of the waves generated 
by the same source-sink pair used in Fig. 21 to simu- 
late the cutter Point Brower using the linear calculation. 
Both the nonlinear (Fig. 21) and linear (Fig. 31) calcula- 
tions show similar interference of the wave system caused 
by the source and the sink. The interference is not clearly 
separated from the Kelvin diverging waves. Fig. 32 and 
Fig. 33 show results of the linear and nonlinear wave cal- 
culations for the same source-sink pair used in Fig. 21 and 
Fig. 31 but for unsteady flow. As an example, the un- 
steadiness is introduced by allowing the source-sink pair 
to heave with an amplitude of 25% of the mean depth of 
submergence and r=0.5. An inner-angle wavepacket is 
seen separated from the Kelvin diverging waves at an an- 
gle between 13.5° and 14.5° in both linear and nonlinear 
calculations. The wavepacket by the nonlinear calcula- 
tion seems more isolated. Besides 

The unsteadiness could also come from the large eddy 
separation in the turbulent wake. Rough calculation us- 
ing the frequency of the vortex shedding from a cylinder 
at high Reynolds number (Re = ^ = 104 to 107) (White, 
1979) indicates the corresponding r's in the range of 1.0 
to 2.0 are possible. There are obviously many sources 
of unsteadiness that are in the proper range to give an 
inner-angle wavepacket between 10° to 15°. The heave 
example shown in Fig. 32 and Fig. 33 is just one. 

wmmm 
Fig. 31. Steady Waves due to Point Brower (modeled 
by a translating, non-pulsating source-sink pair); 
2^=0.49; linear calculation; free surface domain: 
(0 < s < 11 0 < y < 4.5); Contour lines are apart by 
0.005. 

Fig. 32. Unsteady Waves due to Point Brower (mod- 
eled by a translating, pulsating source-sink pair); Fr=0.49; 
r = 0.5; linear calculation; free surface domain: (0 < 
x < 11 0 < y < 4.5); Contour lines are apart by 0.005. 

Fig. 33. Unsteady Waves due to Point Brower (mod- 
eled by a translating, pulsating source-sink pair); FT=Q. 
T = 0.5; nonlinear calculation; free surface domain: 
(0 < x < 11 0 < y < 4.5); Contour lines are apart by 
0.005. 

19; 

Fig. 34. Comparison of wave contour lines and con- 
stant phase lines for linear waves due to a translat- 
ing and pulsating source-sink pair with zero-mean; 
r = 1.0. 

582 



Three wave systems are identified in the stationary 
phase analysis. However, the phase lines do not give the 
quantitative information about the wave elevation. To 
calculate the wave elevation, it is necessary to know A(9), 
or B{9), which depends on the particular disturbance. It 
is possible that one may not be able to identify all the 
three wave systems in the isometric and contour plots of 
the wave elevation. At low frequency, we see the first 
and second systems in the plots of the linear and non- 
linear waves. The third system is not seen most likely 
because it has a large wavelength, a small amplitude, or 
is outside the computational window. At an intermediate 
frequency, the third system can be identified while it is 
difficult to distinguish the second system from the first 
system because the bounding lines of the two systems 
are close and the waves interact. At high frequency, the 
second system has a very short wavelength, shorter than 
our computational grid can resolve. We can see the third 
system or the combination of the first and third systems 
but it is difficult to distinguish them from the plots of 
wave elevation. Fig. 34 shows a contour plot of wave el- 
evation due to a translating, pulsating source-sink pair 
with a zero-mean strength and r = 1.0 using the linear 
calculation. The corresponding constant phase lines are 
overlayed on the contour lines (note: only positive values 
of the wave elevation are plotted for a better comparison). 
The agreement in the wavelength, wave orientations, and 
the phase in the inner region and outer region is fairly 
good. 

Figures 35 to 39 show the waves due to the same 
source-sink pair used in Fig. 34 but with r = 0.5 at five 
different times within one period of the oscillation, be- 
ginning at time t = 12.0 when the pair has traveled 18 
ship lengths. The period is 100A* where At = 0.02 is 
the time step used in the calculation. As can be seen, the 
initial transient effects have died out and the waves have 
almost achieved the time-harmonic state since Fig. 35 
and Fig. 39 are nearly identical. To examine how these 
unsteady waves move, the wave elevation along the sym- 
metry plane and the ray of the inner-angle wavepacket 
of 14 degrees within one period is shown in Fig. 40 and 
Fig. 41 respectively. In Fig. 40 and Fig. 41, R is the 
distance from the center of the source-sink pair. As ex- 
pected, the transverse waves (Fig. 40) radiate from the 
disturbance. The waves along the 14° line (Fig. 41) also 
radiate from the disturbance but with a lower frequency 
fluctuation. From Fig. 40 and Fig. 41, it can be seen that 
the wave amplitude along the wavepacket is larger and 
decays at a slower rate than that along the symmetry 
plane. 

The wave motions can be seen more clearly from the 
animation of the waves (shown by a video tape). The 
animation clearly shows that the inner-angle wavepacket 
originates from the disturbance and moves away from 
it. The wavepacket fluctuates about the 14° line, which 
agrees with the observed sinuous fluctuation along the 
"solitary" feature in the wake of the cutter Point Brower 
(Brown et al. 1989). The animation also shows that there 
are long-crest waves moving away from the wavepacket 

periodically, corresponding to the diverging waves of the 
third wave system in the constant phase analysis. As a 
wave (e.g., a wave crest) in the wavepacket moves along 
the 14° line, half of it merges into one of the long-crested 
waves and the other half keeps moving along the wavepacket. 

Fig. 42 shows the peak wave amplitude within the 
diverging wave system of the steady wake in Fig. 21 by 
nonlinear calculation. The peak wave amplitude at a dis- 
tance x is obtained by searching for the maximum wave 
amplitude in the y direction within the diverging-wave 
region (15° < ß < 19.5°). Fig. 43 shows the peak wave 
amplitude within the region (10° < ß < 15°) of the in- 
terference between the bow and stern wave systems in 
Fig. 21. Fig. 44 and Fig. 45 show the peak wave ampli- 
tudes within the diverging wave and interference regions 
for the steady wake in Fig. 31 by linear calculation. Both 
linear and nonlinear results show that the waves within 
the interference region decay at 0(Ä-1/2), faster than the 
waves within the diverging-wave region (0(R~1^3)). This 
is consistent with the results of the linear steady Kelvin 
wake theory (Ursell 1960). 

For an unsteady wake, Fig. 46 shows the peak am- 
plitudes within the inner-angle wavepacket of the waves 
in Fig. 33 by nonlinear calculations. The results for 
three different times are shown by three different sym- 
bols. Fig. 47 shows the the peak amplitudes within the 
the inner-angle wavepacket of the linear wake (at five dif- 
ferent times, figures 35 to 39). The upper envelope of 
the amplitude in each figure gives the decay rate of the 
wavepacket amplitude. A straight line showing the alge- 
braic decay rate by the stationary phase analysis is drawn 
at the upper bound of the peak amplitude in each of the 
figures. As can be seen, the waves by both nonlinear 
and linear calculations decay at a rate close to 0(R-1^3) 
within the inner-angle wavepacket. This is consistent 
with the result of the stationary phase analysis for the 
unsteady wake. 

The experimental data of Brown et al. (1989) are also 
redrawn in Fig. 48 to show the algebraic decay of the 
peak amplitude. The observed decay rate is closer to the 
0(i2-1/3) decay rate given by the unsteady theories for 
the unsteady inner-angle wavepacket. 

Conclusions 

The nonlinear and linear computations, as well as the 
stationary phase analysis for the waves due to the source- 
sink pair or surface pressure patch, have shown that the 
nonlinear effects are not essential to the generation and 
persistence of inner-angle wavepackets. The unsteadiness 
of the wake due to the translation and pulsation of a 
disturbance can cause the inner-angle waves. The an- 
gle of the the inner-angle wavepacket decreases with the 
reduced frequency. The inner-angle wavepacket decays 
at the same rate as the Kelvin diverging cusp line. The 
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generation and persistence of the inner-angle wavepacket 
can be explained by linear unsteady wave theory. The 
observed inner angle of 11 degrees in the full scale mea- 
surement on the Coast Guard cutter Point Brower corre- 

sponds to 1.0 < T < 1.5. 
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Fig. 35. Unsteady wake due to a 
translating and pulsating source- 
sink pair with zero-mean; r = 
0.5; t = 12.0. 

Fig. 36. Unsteady wake due to a 
translating and pulsating source- 
sink pair with zero-mean; r = 
0.5; t = 12.5. 

Fig. 37. Unsteady wake due to a 
translating and pulsating source- 
sink pair with zero-mean; r = 
0.5; t = 13.0. 

Fig. 38. Unsteady wake due to a 
translating and pulsating source- 
sink pair with zero-mean; r = 
0.5; t = 13.5. 

Fig. 39. Unsteady wake due to a 
translating and pulsating source- 
sink pair with zero-mean; r = 
0.5; t = 14.0. 
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Fig. 40. Wave elevation of figures 35 to 39 along the 

symmetry plane. 

500 

Fig. 43. Peak wave amplitude within the interference 

region of nonlinear steady wake of Fig. 21. 
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Fig. 41. Wave elevation of figures 35 to 39 along the 

inner-angle wavepacket. 
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Fig. 44.   Peak wave amplitude within the diverging 
wave region of linear steady wake of Fig. 31. 
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Fig. 42.   Peak wave amplitude within the diverging 

wave region of nonlinear steady wake of Fig. 21. 

500 

Fig. 45. Peak wave amplitude within the interference 
region of linear steady wake of Fig. 31. 
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5.0*10° 

500 

Fig. 46. Peak wave amplitude within the inner-angle 
interference region of nonlinear unsteady wake of Fig. 21. 
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Fig. 47. Peak wave amplitude within the inner-angle 
interference region of linear unsteady wake of Fig. 31. 
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Fig. 48. Peak wave amplitude within the inner-angle 
wavepacket in the wake of the cutter Point Brower 
(experimental data of Drown et al. redrawn to show 

the algebraic decay rate). 
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DISCUSSION 

J.-W. Kim 
Seoul National University, Korea 

Congratulations on your successful explanation 
for the inner-angle wave packets observed in the 
Point Brower experiment. I would like to give you 
two questions. I think the comparison of dispersion 
parameters, such as wavelengths and frequencies, are 
important to decide whether this phenomenon is 
unsteady or not. Have you tried this? My second 
question is why the inner-angle wave packets cannot 
be seen in general observations if they can be 
predicted by linear theories? 

AUTHORS' REPLY 

A careful to your first question cannot be given 
because the experiments reported in Brown et al 
(1989) did not directly measure the wave packet angle 
but inferred that angle based on steady Kelvin theory. 
Hence, it is difficult to directly ascertain the 
importance of the unsteady effects. 

We do not mean to claim that these inner-angle 
wave packets are generally seen. They appear in a 
minority of all wakes, but seem to be found only on 
certain ships in moderate seas. 

important to realize, since the angle of a caustic front 
can usually be calculated rather easily from a 
knowledge of the dispersion relation. The calculation 
of the entire wave pattern is much more complicated. 
A historical note: the wave patterns behind a 
pulsating disturbance for a wide range of T have been 
given in the 1950s and 1960s by Hanaoka (as I 
remember) in a volume published by the Soc. of 
Naval Architects of Japan (in English). 

AUTHORS' REPLY 

We would like to thank Prof. Tulin for his kind 
comments and valuable suggestions. 

Sufficient Point Brower experimental data is not 
available to conduct a detailed wave structure 
comparison. We would like to do so when the data 
is available. The cusp (or caustic) angle can be 
found in the extrema of Eq. 29, but not in a closed 
form as for steady waves. 

We are working on a revision and extension of 
this work with Prof. Eggers. He has made us aware 
of the many fine early works by the Japanese in this 
area. 

DISCUSSION 

M. Tulin 
University of California at Santa Barbara, USA 

The Point Brower observations have offered a 
scientific mystery with some practical consequences. 
I have myself felt uneasy with previous non-linear 
wave explanations; they seemed strained. The 
authors are to be congratulated on explaining the 
inner wave front to unsteady wave generation. The 
correlation between the observed modulations in the 
wave front (sinuosity) with the theoretical predictions, 
for the given angle of the front (11 °), is convincing. 
It remains to offer some explanation of the origin of 
the unsteady waves. A suggestion: compare the 
detailed wave structure observed behind the Point 
Brower with the unsteady wave theory; this is not 
done in the paper. 

The authors do not mention that the inner wave 
front is a caustic (therefore the x'*4 decay).   This is 
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Wavemakmg by Heaving Bodies in Long Tanks, 
Including Nonlinear Group Formation Near Resonance 

M. Tulin, Y. Yao (University of California at Santa Barbara, USA) 

ABSTRACT 

In view of several practical ramifications of this 

problem, computational-analytical techniques for 

calculating waves induced by heaving arbitrary bodies in 
narrow tanks have been developed. These feature 

computational nearfield solutions matched with appropriate 

far field solutions. In the linear case, the far field is 

provided by linear mode superposition. In the non-linear 

case, the far field is described by a suitable non-linear 

evolution equation of the cubic Shrödinger type. Matching 

techniques were developed. Calculations were successfully 

carried out on an IBM 2000. The results confirm the 

important effect of tank walls on added mass and damping. 

Results of computations have been compared with 

some data obtained with a conical wavemaker in a narrow 

tank. Pronounced wave groups were obtained near 

resonance, and these are very well reproduced in 

considerable detail by the non-linear theory and 

computations, without considering any effects of 

dissipation. 

INTRODUCnON 

We have carried out, some years ago, our first 

experimental studies of shaped wavemakers, Kolaini 

(1989), and Tulin & Kolaini (1988); the majority of our 

observations were for a cone which heaved on the tank 

centerline. The observed wave patterns change 

dramatically in the vicinity of the frequency corresponding 

to the first (symmetrical) natural transverse mode (first cut- 

off frequency), & we observed striking effects there, 

including the suppression of the planar mode and the 

generation of nonlinear groups of sloshing (transverse) 

waves. Subsequently we have carried out analyses & 

numerical computations to explain these observations 

quantitatively. 

This study is closely related to two areas of related 

work in the literature. The first area concerns analytical 

studies of wave effects due to oscillations of a truncated 

cylinder in a tank, utilizing the linear free surface 

approximation, see Yeung and Sphaier (1989a; 1989b). 

The second area concerns theoretical and experimental 

studies of non-linear wave group formation by a 

symmetrical wavemaker operating near the first cut-off: 

Kit, Shemer & Miloh (1987). The first set of authors 

focussed on the prediction of added mass & damping for 

heave as well as surge, pitch & sway, over a wide range of 

frequencies, utilizing linear analytical solutions in series 

form. In their impressive work, they found sharp but finite 

peaks and sometimes discontinuities in the computed 

values of their dimensionless coefficients at the successive 

cut-off frequencies. The second set of authors concentrated 
on the measurement & prediction of the non-linear 

modulated sloshing wave patterns in the tank near the first 

cut-off frequency; these were produced by a segmented 

symmetric paddle wavemaker which was operated so as 

always to produce zero mean paddle displacement & thus 

avoid the production of planar waves. 
The force on oscillating bodies are the integration of 

pressures resulting from the near field motions, while the 

wave patterns in the body of the tank themselves define the 

far field motions. Yeung & Sphaier have avoided the 

problem of connecting the near & far fields by choosing a 

body, the truncated cylinder, for which they are able, 

rather marvelously, to obtain analytical solutions, 

including both propagating  & evanescent modes, 
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satisfying the linear boundary conditions on both the 

wavemaker, the free surface & the tank walls. Kit, et al, 

are largely concerned with the wave groups in the far field, 

which they model with an appropriate non-linear evolution 

equation. They have attempted connection between this far 

field model and the wavemaker itself by linearizing the 

wavemaker boundary conditions and applying them on the 

back wall of the tank. The resulting theory was able to 

produce intermittent wave group behavior only after the 

introduction of large damping, empirically determined. 

In our own work we have dealt with both the linear 

regime (L) of Yeung & Sphaier and the non-linear regime 

(NL) of Kit, et al. For both regimes we distinguish 

between the near & far fields. In the near field we employ 

a boundary element plus multiple image computational 

method; for (L), linearized BC's were satisfied on the 

undisturbed body & free surface; in (NL) the exact BC's 

were satisfied on the real boundaries. In the far field we 

employ different representations in the two cases. In (L) 

we utilize a series in terms of normal (free wave) modes, 

omitting only evanescent modes with rapid decay near the 

wavemaker. In (NL), which applies near a cut-off 

frequency, we utilize the free propagating wave mode plus 

a non-linear evolution equation which describes the 

behavior of the resonant sloshing mode. This equation is 

determined using a multiple scale analysis following the 

technique used by Jones (1984) to treat cross waves; the 

original derivation of the non-linear cubic Schrödinger 

equation for wave problems in ducts goes back to Aranha, 

Yue & Mei (1982). 
In both (L) & (NL) the near and far field solutions are 

required to match on a suitable downtank plane across the 

tank & the solutions are found simultaneously. The 

method has the advantage that it may be applied to arbitrary 

bodies. 

In (L) we have made computations for a series of 

bodies of conical shape with elliptic cross section; these 

were for a range of shapes and relative axis: 

downtank/crosstank ^ 1, The cone represents the present 

body and was studied most extensively, as it was the 

subject of earlier experiments. These calculations were 

originally suggested to explain the observed disappearance 

of the planar mode during oscillation of the cone at the first 

cut-off, & they did succeed in confirming this observation. 

As we shall see, however, this striking phenomena is not 

at all general, depending for a given tank on both the cross 

section area & shape of the heaving body. For the cone, 

we have made calculations of added mass & damping up to 

& near the first cut-off, & found behavior very similar to 

that found by Yeung & Sphaier for the truncated cylinder. 

In particular, we have found that the sharp peaks in added 

mass and damping near the first cut-off have a finite value, 

which we believe to be actual & not a result of numerical 

difficulties near the resonant singularity. 
In (NL) we have made computations for the heaving 

cone tested by Kolaini (1989). These calculations 

reproduced the observed phenomena very well, including: 

wave group size, shape, spacing & propagation speed, & 

including the observed amplitude cut-off effect. No 

dissipation or other empirical adjustments to the theory 

were required. 

In this paper we describe the theoretical & numerical 

methods and the major results briefly. 

BASIC EQUATIONS 

Consider a heaving wavemaker with characteristic 

length scale D, operating at one end of a uniform 

horizontal channel of breadth b in which the undisturbed 

depth of liquid is d, the angular frequency of the periodic 
motion of the wavemaker is co, a is the stroke of the 

wavemaker and g is the acceleration due to gravity. The 

flow is assumed to be incompressible, inviscid and 

irrotational. Dimensionless variables are defined using a as 
an amplitude scale, k=g/co2 as a lengthscale and or1 as a 

timescale. Then the exact equations to be satisfied are 

V 0 = 0 

3<i>   3q _   dd> dr\ 
3z    3t      3x; 3x; 

3d)      _ i   d<& 9<i> 
<3t 2   3x; 3xi 

at   Z = £T| 

at   Z = ETJ 

(2.1a) 

(2.1b) 

where   e = ka 

= 0        at y=i^ (sidewalls) (2.1c) 
90 
dy 

^■ = 0        at   z = -dk      (bottom) (2.1d) 
dz 

3<i> 
Y~ = nz(x,y,z) sin (t) (2. le) 

at x =/ (y, z, e sin t) (wavemaker surface) 

^■=0        at x = 0   (backwall) (2.1f) 
dn 
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We shall consider separately here two problems: 
NL, Nonlinear: e, 8 (= a/D) not small. 

Initial boundary value problem; 

oscillations started from rest: 
<D(x,y,z; 0) = 0 (2-lg) 

L,    Linear e, 8 small. 

Frequency Domain. 

In the case of problem NL, the radiation condition is 

applied downtank: 

0(x,y,z,t)   ->   0     asx ->   »        (2.1h) 

In the case of the frequency domain calculation (L), it 

is assumed that the wave energy is flowing down-tank 

only (no reflections considered). 
Problem NL is especially appropriate in the vicinity 

of resonant frequencies where the solutions of problem L 

become unbounded. 
The approach used for both problems is to divide the 

flow field into a near-field (near the wavemaker) and a far- 

field (down-tank) where the two separate solutions are 

matched at an appropriate cross section (x = xo) (See Fig 

1), which is chosen to be far enough from the wavemaker 

that the decaying wave modes generated there may be 

neglected. The near-field is to be determined by the 

boundary element method, while the far-field is to be 

described in an analytic manner. 
Assuming a flow symmetric about the channel 

centerplane, the field to be computed may be taken as 

bounded by the centerplane, wavemaker surface, matching 

plane and the side, bottom, & back walls. The effects of 

the centerplane, bottom and back wall may be taken into 

account by use of suitable image systems. There are seven 

images of the near-field boundary elements, see Fig 1. 
We note that in the general case of a non-symmetric 

wavemaker shape, one can use three images of the near- 
field boundary elements to remove the bottom and back 

walls. 

NEAR FIELD 

Problem NL : 

The near-field 0(s0) and the velocity normal to s0, 

<E>n(s0), are related through Green's Third Formula: 

2,0(P)+|   1^(0^21 -G(P,q)^f]ds = 0 

p,qe s0 (3.1) 

where s0 = sw+ sf + ssw + Sm ; n is the normal to the 

boundary in the outward direction from the fluid domain; 

p = xp and q = Xq; the Green's function G(p,q) is a simple 

source (prrr) plus its seven similar source images. 

In (3.1), On(ssw) and <£>n(Sw) are known (2.1c,e). 

The exact free surface shape r\, and G>(sf) may be 

determined at each time step through integration of the 

following relations which apply exactly on Sf: 

Dri_30 
Dt ~ 9z 

(3.2a) 

Dx -E?±      and       Sl=e^ 
DT-£ä7      and        Dt     £dy 

(3.2b) 

Dt       l    2 [&M5WJ (3.2c) 

where VO(sf) is known at the previous time step; therefore 

O(Sf) can be taken as known. 

However, both 0(sm) & <E>n(Sm) are unknown. They 

must, however, match their corresponding far-field values 

on sm & are therefore related through far-field 

relationships. These relationships will be discussed 

subsequently. 

Problem L: 

In this case, e is taken as zero in (2.1); <J> = <!> e"'\ 

where <)> is complex; and the equivalence of (3.1) is: 

2nmJ   l HKcü^ai . G(p,q)^]ds = 0 

p,q € s0 (3.3) 

where G(p,q) is the same as above. 
In the linear case, <t>(sf) = <i>n(Sf), where Sf is the 

undisturbed free surface. As in (NL), <l>(Sm) and <(>n(Sm) are 

known. On sm, we will require matching of the near and 

far field, see Matching & Numerical Details. 

FAR FIELD 

Problem L: 

The linear far field free wave modes in the tank are 

well known, and are represented by three series ( in 

dimensional form): 

O = <£>i + On + Om 

where 

(4.1) 
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*i = X Ane
1*-x-<Bt)cos(kyny)coshkx(z + d) where 

n=0 

<X>n =   X   Bne-k-x-itötcos (kyny) coshkz(z + d) 
n=n*+l 

*ra=E X Cnme-k-*-totcos(kyI1y)coskzm(z + d) 

where, 

kyn" b 
I:     k2

n = kf-k2
n ;> 0       (nSn*) (4.2) 

It    kL = k2„- k? > 0      (n>n*) 

ILL    ^xmn = *-zm "*" ^yn 

The wavenumber, k2, and kan in (4.2) are given by the set 

of dispersion relations: 

co2 = gkz tanh (kzd);   CO2 = - gk^, tan (Wi)    (4.3) 

The first compatibility equation (4.21) reveals that a 

sequence of propagating wave solutions exists. Each 
successive solution begins at a cut-off frequency, O^, for 

which kz (given by 4.3) is equal to transverse 

wavenumbers, kyn, which are multiples of the half tank 
wavenumber, mt/b, see Figure 2. 

In the solution, (4.1), the first term comprises a finite 

series of propagating modes for transverse wavenumbers 

up to and including the preceding cut-off wavenumber, the 

second comprises an infinite series of evanescent modes 

for transverse wavenumbers larger than the preceding cut- 

off wavenumber, the third comprises a double infinite 

series of evanescent modes for all combinations of 

transverse & vertical wavenumbers. An asterisk in (4.1) 

denotes the cut-off condition. 

In the case where the wavemaker operates just below 

(subcritical) or above (supercritical) the first (symmetrical) 
cut-off frequency, Qi = (27tg/b)1'2, only two of the wave 

solutions given by (4.1) are important in the far-field, 

where most of the evanescent waves have died. 

co<Q!: 

<j> = A e™ cosh (z+kd) + Be-'x'x cos(2s.y) cosh (z+kd) 
kb 

(4.4a) 

Cli < ox Q2 '■ 
$ = A e« cosh (z+kd) + Be'1^* cos( 2s. y) cosh (z+kd) 

kb (4.4b) 

*-^-(gN co- 
(4.5) 

is a small parameter of the problem, and the complex 

numbers A & B are to be determined by solving the entire 

problem coupling the near and far field. 

It is seen that the B component in (1.1) changes 
across the cut-off frequency, ßi, from a decaying mode 

(subcritical) to a propagating mode (supercritical). Since 

only propagating modes are associated with damping, this 

has the consequence that B contributes to the damping only 

for supercritical conditions; resulting in a discontinuity in 
damping across Cl\. The added mass is associated with 

modes of $ out of phase with the stroke, both propagating 

and decaying. 

It is fundamental that energy supplied to a given 

mode (the damping) will propagate downtank at the group 

velocity cg of that mode. As a result, for a given quantity 

of modal damping, the modal energy density within the far 

field will vary as (cgb)-1. 

It is easily shown that within the framework of linear 
theory, cg varies as (-X.')1'2, and thus disappears at ßi. As 

a result, unbounded energy density normally appears at the 

cut-off frequency & destroys the validity of the linearized 

theory. It is interesting to realize that this occurs even in 

the case of finite damping. 

Problem NL : 

Here we consider only tanks sufficiently deep 

(d>b/2) so that the deep water approximation suffices near 

the first cut-off. As discussed in the Introduction, an 

evolution equation for the intermittent wave groups may be 

determined by a multiple scale analysis. Following Jones 

(1989), the slow variables which correctly scale the wave 

group phenomena are: 

:£X -eh (4.6) 

The potential and wave elevation are expanded in e: 

<I> = ®i + e O2 + e2^ + 0 (e3) (4.7a) 
Ti=ri1 + eTi2 + e2ri3 + 0(e3) (4.7b) 

Multiple scale analysis produces first and second order 

solutions. The latter are very lengthy in the case where a 

planar wave coexists near Q.\ (A # 0). For the sake of 

brevity we give here only the case A=0 for <I>2 and T|2: 
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<j>i =A ez e;(*-') + cos(y) ez[C(X,x )cos(t) + D(X,t )sin(t)] 
(4.8) 

Tii= iA ez e'<*-0 + cos(y) ez[C(X,i )sin(t) - D(X,t )cos(t)] 
(4.8b) 

O2 = [ 2CD cos(2t) + (D2 -C2) sin(2t) ] / 4 
(4.9a) 

TI2 = cos (2y)[(D2 - C2)sin(2t) - 2CDsin(2t) + (D^+C2)] / 4 
1 (4.9b) 

where C, D are defined in terms of a complex evolution 
function: F(X,t ;X) = C + iD. The detuning parameter X 

arises naturally, and defines the closeness to the resonant 

frequency. It is: 

~2     2    2s.. 1 
bk 

e2co2 (4.10) 

where we note X = X.'/2e2. 

A third order solvability equation is found in the form 

of a non-linear partial differential evolution equation for 

F(X,x ;X). We have found: 

i£ + ^-ljF+l|F2|F=0 
^  4ax2  2     8 (4.11) 

where 
J = 5L+4JM^ 

so that in the presence of planar waves J replaces X as the 

detuning parameter ; it expresses the influence of already 

existing planar waves of amplitude A upon the generation 

& propagation of the sloshing wave groups. 

MATCHING & NUMERICAL DETAILS 

Problem L: 

Boundary conditions on s0 are given except on sm, 

where the near & far field are required to match. For 

0x122. the far field is represented by only two modes, A & 

B, see (4.4). The matching is accomplished by requiring 
<]>n(near) = <t>n(far) at each grid point on Sm and requiring 

two integrals of <|> over sm to match in the near and far 

fields. These integrals are: 

ff Jo       J-& 

4>(near) cosh(z+kd) dzdy 

Jo      J-& 

<|>(far) cosh(z+kd) dzdy 

=   ,   JT|hk(sinh(2dk)+2dk 
2K 4 ' 

JJ  <|>(near) cos(y-£) cosh(z+kd) dzdy 
0   J-&. 

Jo      J-& 

<b(far) cos(2f) cosh(z+kd) dzdy 
bk 

g B ei-TÄ7^ bk (sinh(2dk) + 2dk b) 

4 4 

As a consequence, <j>n(near) = <()n(far) on sm, 

All of the variables in (3.3) & (4.4) are complex, so 

separation into real and imaginary parts doubles the 

number of equations. The resulting matrix needs only to be 

solved separately for each frequency, & was solved by the 

generalized minimal residual method; approximately 60 

seconds CPU time per frequency were required on the 

IBM 2000. Constant boundary elements were utilized & 

the control points were taken at the panel center. 

Convergence tests were carried out. Approximately 700 

panels were utilized on s0 and convergence within 5% is 

estimated. 

Problem NL : 

The non-linear evolution equation is discretized by a 

semi-implicit finite-difference scheme of the Crank- 

Nicolson type. The nonlinear term is quasi-linearized by 

the explicit estimation as Aranha et al. did (1982). The 
space step for the far-field was chosen as AX = 0.2, and 

the time-step (Ar) was chosen as one twentieth of the 

wavemaker period. In order to eliminate the influence of 

the far end of the tank, the domain of calculation was two 

to three times as long as actual. The solution, F, was taken 

as zero at the end of the tank. The motion started from rest 

and F was determined simultaneously with the solution of 

the near field problem. 

Matching was accomplished by requiring 
On(near)=<I>ln(far) on s„, and that two integrals of the 

fields match at sm, One of these is an integral of <I> over 

Sm, as in (L), and the other an integral of T\ over the tank 

width at XQ: 

Jo     J-a 

O(near) cos(y) ez dzdy 

Jo     J-& 

(5.1a) 

<I>i(far) cos(y) ez dzdy 

= [ C(x0,t) cos(t) + D(xo,T) sin(t)] *£      (5.2a) 
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f Ti(near) cos(y) dy 

r rii(far) cos(y) dy 

= [ C(xo,t) sin(t) - D(xo,T) cos(t)] &■      (5.2b) 

These integrals allow the determination of C(x0,t) and 

D(xo,t) through the matrix solution at each time step. 

The number of panels in the near field was 

approximately two third of that in (L), and the number of 

equations one third. 

Each complete case shown in Figure 7 (about 7000 

time steps) involved 10 hrs CPU time on the IBM 2000; or 

about 7 seconds per time step. 

NUMERICAL RESULTS & COMPARISONS 

The experiments of Kolaini (1989) were carried out 

in a wave tank of cross-section 3 ft square and length 75 ft 

with a conical wavemaker of 76 degrees total angle; the 

average water depth was 60 cm, the average draft of the 

wavemaker was 23 cm and the diameter was 33.3 cm. 

Problem L: 

The amplitude of the propagating planar wave was 
observed to disappear at Q.\ during tests. In Figure 3, the 

results of linear calculations confirm a very small value of 

the wave amplitude there (about .5% of the stroke). 
However, in the case of the widest tank calculated 
(b/D=6.0), the wave amplitude at £l\ is only slightly 

smaller than its maximum value. 
The behavior of the planar wave amplitude 

approaching Q.\ was found to depend upon the body 

shape. The results of calculations for conical bodies of 

constant total volume but of various elliptical cross 

sections are shown as Figure 4; we note that the depth in 

this case was increased over Figure 3, in order to 

accentuate the effects. These reveal that elongation of the 

body along the wavemaker alleviates the tendency for the 

wave to disappear, whereas its elongation downtank 

accelerates its disappearance. These results show, too, that 

the observation of disappearance at the cut-off frequency 

for the cone wavemaker was fortuitous. 

If the force on the oscillating body is: 
F=Fisinmt+FRCoscot, than the added mass coefficient, 

M-33=FR /pVaco2, where V is the body volume. The force 

was calculated by appropriate integration of the body 
pressures, pOt. The results are shown as Figure 5. All of 

the wave modes, both propagating & evanescent contribute 
to the added mass, but the rapid rise to a peak at Qi is due 

to the contribution of the B mode which also peaks there; 

we estimate that about 60-70% of H33 at Qi is due to the B 

mode, decaying rapidly on either side of Qi. It is 

interesting that the tank width has a very profound 

influence on the added mass, everything else constant. 

This was already computed & noted by Yeung & Sphaier. 

They have also shown as we show in Figure 5 that 

narrowing the tank decreases the sharpness of the B peak, 

and for very narrow tanks causes the peak entirely to 

disappear. 
The damping factor, X.33 = Fj/aco, is shown in 

Figure 6 for the cone. The damping decay approaching Q\ 

is due to the suppression of the planar wave, previously 
noted. The discontinuity across Q.\ is due to the 

propagation of the B wave beyond Ci.\ and not below it 

Again, the effect on damping near Q.\ is exaggerated in the 

case of wider tanks. 

Problem NL : 

Kolaini (1989) showed that the heaving motion of the 
conical wavemaker (b/D=2.7; d/b=.23) near &i generally 

resulted in the continuous intermittent propagation of 

sloshing wave groups downtank, see Figure 7(top). Our 

major result here is to show that these experimental results 

are closely reproduced by the present theory, which 

contains no disposable parameters. 
An interesting phenomenon first noted by Kolaini is 

the suppression of the wave group propagation for strokes 

below a certain value & the linear increase of wave group 

speed with stroke above this value, see Figure 7(a). The 

present theory reproduces the experimental results 

remarkable well. The same is true of the amplitude, 

spacing, & shape of the groups, see Figure 8(b). 

With increasing stroke, Kolaini found that some of 

the wavegroups become increasingly deformed in shape 

with the increasing distance downtank. Utilizing the 

present non-linear theory we have tested the hypothesis 

that these deformations might be the result of small 

variations in tank effective width. The results of a 

simulation of the effect of width variations of .5% with a 

period of 4.4 tank widths is shown in Figure 9 (c). The 

resulting wavegroup shape deformations are suggestive of 
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those actually measured, see Fig 9(a), and are certainly 

highly noticeable when compared to the case of uniform 

width, see Fig 9(b). These results suggest the importance 

of tank precision in such experiments. 

The calculated results for large strokes, Figure 9(b), 

also reproduce the vertical asymmetry of the measured 

wave group; this is a consequence of including the second 

order solution. 

DISCUSSION & SUMMARY 

The success of the computations presented here 

demonstrates the utility of near-far field matching to deal 

with problems of wave generation in tanks by large & 

rather arbitrarily shaped bodies. The present paper shows, 

furthermore, how to carry out the matching. 

The results obtained in the linear case confirm many 

of the findings of Yeung & Sphaier (1989) concerning the 

strong effect of tank walls on the added mass and damping 

of oscillating bodies. Our own interest in the linear 

calculation of the planar propagating wave was motivated 

by the experimental finding of Kolaini (1989) that this 

wave disappeared at the first symmetric cut-off frequency 

in the case of a cone of 76° total angle with a 

diameter/tankwidth about .36. This striking observation 

was confirmed by the linear computations. But they also 

revealed that disappearance could occur at sub-critical 

frequencies for bodies elongated in the downtank 

direction. There is clearly more to learn about these 
phenomena in tanks, and it would seem important to do so 

for the proper interpretation of wave induced forces on 

bodies in tanks. 

When oscillating a body near the first symmetric 

resonance, large sloshing waves can be generated near the 

body, which intermittently leave the body to propagate 

down tank as a wave group. These had previously been 

observed & studied by Kit, et al (1987). Kolaini (1989) 

has measured these wave groups & found that they were 

generated only for sufficiently large heaving strokes, & 

that they propagated with speeds increasing linearly with 

further increase in stroke. The theoretical prediction of 

these properties has not been possible based on previously 

existing theory. It was for this reason that we instituted the 

near-far field approach, involving a boundary element 

computation in the near field based on non-linear boundary 

conditions on the body and the free surface. This approach 

seems to have succeeded, as not only do the calculations 

result in propagating wave groups without the introduction 

of viscous dissipation, but the qualitative behavior of these 

groups is reproduced surprising well. This sets the stage 

for the computational studies of such wave groups. It 

needs to be commented, however, that since the 

computation for a complete run (7000 time steps) requires 

10 hrs CPU time on an IBM 2000, so that the wave tank 

seems an equally efficient research tool. 

In the course of the non-linear research, we have 

obtained the far field evolution equation for sloshing 

waves in the presence of propagating planar waves. The 

result shows that the detuning parameter is increased by 

addition of planar waves. This is likely to reduce the 

strength or even eliminate the resonance. This may explain 

why we have not seen evident wave groups when 

operating at the second or higher cut-off frequencies. 

Finally we should note that the propagating of 

directional modes by heaving shaped bodies between tank 

walls can be used for the generation of directional seas in 

narrow wave tanks for testing purposes, as suggested 

originally by Tulin & Kolaini (1988). We have been 

experimenting with specially shaped wavemakers, driven 

stochastically, for several years now. 
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Figure 2. Dispersion Relation for Surface Gravity Waves in a Tank (Schematic) 
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Figure 7. Non-linear sloshing wave group propagation in the channel with 
various wavemaker strokes at frequency 1.299 Hz (cut-off frequency 
fx = 1308 Hz).   (a) - group speed ; (b) - group interval. 
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Figure 8. Sloshing wave heights as a function of time at various locations along 
the channel with a wavemaker stroke of 635 cm at frequency 1.299 Hz 
(cut-off frequency/j = 1308 Hz).    (a) - experiment;   (b) - theory. 
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(cut-off frequency ^=1308 Hz). (a) - experiment; 
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DISCUSSION 

R. Yeung 
University of California, USA 

I want to congratulate the authors for a very fine 
paper covering both linear and nonlinear behavior of 
waves near the cross-mode resonance. In the case of 
linear results, we are most gratified to see that one 
interesting aspect of our earlier works (Yeung & 
Sphaier, 1989) is confirmed in the present work, 
namely, when the body size approaches ~50% of the 
tank width, it inhibits the occurrence of the first 
"spike" of the added mass curve. We were 
fascinated but concerned with the results at the time. 

Because of the occurrence of the spikes and 
"discontinuities" we have also been puzzled by how 
the actual wave fields will evolve as one crosses the 
first cut-off. The authors have provided an elegant 
nonlinear (evolution) model to explain the 
experimental observations. Can the authors comment 
on whether or not such a model would also be 
applicable at the higher cut-off frequencies? 

AUTHORS' REPLY 

We thank Prof. Yeung for his kind discussion. 
As he has observed, the results of our calculations of 
wall effects (Problem L) are quite consistent with his 
own and have very interesting and even surprising 
features. More work is desirable, including 
experimental validation. 

It is possible, in principle, to study higher 
resonances. Of course, the derivation of the 
evolution equation becomes increasingly more 
tiresome. It may be of interest that we have not 
observed any striking resonance effects while 
operating at the second cut-off and higher, although 
we did not attempt precise measurements; of course, 
at these higher resonances, the lower nodes are in 
general present and can mask subtle higher mode 
effects. 
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Analysis of a Two-Dimensional Partially- or 
Supercavitating Hydrofoil Advancing Under a 
Free Surface With a Finite Froude Number 

C.-S. Lee, J.-M. Lew, Y.-G. Kim 
(Chungnam National University, Korea) 

ABSTRACT 

A potential-based boundary element method is pre- 
sented for the analysis of a super- or partially-cavitating 
two-dimensional hydrofoil at a finite submergence be- 
neath a free surface, treating without approximation 
the effects of the finite Froude number and the hydro- 

static pressure. 
Free surface sources and normal dipoles are distri- 

buted on the foil and cavity surfaces, their strength 
being determined by satisfying the kinematic and dy- 
namic boundary conditions on the foil-cavity boundary. 
The cavity surface is determined iteratively as a part 

of the solution. 
Numerical results show that the wave profile is al- 

tered significantly due to the presence of the cavity. 
The buoyancy effect due to the hydrostatic pressure, 
which has usually been neglected in most of the cavi- 
tating flow analysis, is found playing an important role, 
especially for the supercavitating hydrofoil; the gravity 
field increases the cavity'size in shallow submergence, 
but decreases when deeply submerged, while the lift is 
reduced at all depth. 

INTRODUCTION 

Recently the need for a fast ship is increasing not 
only for the military purpose but also for the trans- 
portation of passengers and of modern commercial pro- 
ducts^]. Hull forms of new concept are now under 
investigations, the hydrofoil being considered a useful 
means of producing lift in many cases. At a high speed 
it is impossible to avoid the cavitation on and around 
the hydrofoil, and hence we should be able to predict 
with a sufficient accuracy such behavior of cavity as 
the inception, the extent and the shape, for the proper 
design of the hydrofoils. Furthermore the hydrofoil- 
generated wave profile, altered by the presence of the 
cavity, has to be correctly predicted for the propulsor 
and/or tandem hydrofoil design. 

Researches on the cavity around the body were 
initiated by Helmholtz in 1868 and Kirchoff in 1869 
by the hodograph method.  Then in 1907 Levi-Civita 

extended the method for the flow around the curved ob- 
stacle. The first engineering application of these works 
was made possible half a century later by Tulin[2] for 
the analysis of the supercavitating flow, and followed 
by numerous investigations (see, for example, Tulin[2] 
for the review of general papers related to the cavity 
flow). 

Analysis on the cavitation in practice is carried 
out under various assumptions. The fluid is assumed 
incompressible, inviscid and irrotational. The angle of 
attack, the cavity thickness and the wave amplitude 
are assumed small to enable the linearization. The cav- 
ity termination condition has to be suitably specified. 
The influence of the hydrostatic pressure term in the 
cavitating free surface wave analysis has usually been 
neglected. Our aim is to analyze the cavity flow past a 
hydrofoil, advancing with a finite Froude number, and 
at the same time to show the importance of the buoy- 
ancy effect, that is, the gravity effect on the submerged 
foil-cavity system, in the cavity analysis. We therefore 
review the existing papers in three categories as follows: 

• Literature where the buoyancy effect in unbounded 
fluid is neglected. 

• Literature where the buoyancy effect in unbounded 
fluid is considered. 

• Literature where the buoyancy effect in a free sur- 
face flow is neglected. 

Linear theory for the first category was typically 
developed by Geurst[3] and Tulin[2] under the assump- 
tion that the thickness of the body and the cavity is 
small compared to the dimension of the body in the 
main stream direction. Nonlinear analysis was car- 
ried out analytically by Wu[4] for the supercavitat- 
ing flow of infinite cavity length. Numerical analy- 
sis to solve the integral equation, formulated based 
on Green's identity, was first performed by Golden[5], 
using the discrete vortex/source distribution method 
for the two-dimensional hydrofoil. This was extended 
to the supercavitating hydrofoil of the finite span by 
Jiang[6] and further to the unsteady cavitating pro- 
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peller by Lee[7], enabling the prediction of cavity ex- 
tent and volume variation. Analysis up to this point 
was based on the linear theory. Nonlinear analysis 
considering the exact cavity and hydrofoil thickness 
was done by Uhlman[8][9] for the two-dimensional hy- 
drofoil in partially- and supercavitating conditions by 
the method of vorticity distribution. A new nonlinear 
boundary element method based on the potential for- 
mulation is recently reported by Lee[10], Kim et al[ll] 
and Lee et al[12] for the analysis of the partially- and 
supercavitating flow around the hydrofoil by using the 
normal dipole and source distribution on the cavity and 
foil surfaces. Similar works are also done simultane- 
ously by Kinnas and Fine[13]. 

The effect of the transverse gravity field, that is, 
the buoyancy effect, upon the cavity flow in unbounded 
fluid was first considered by Street[14][15]. He solved 
the linearized supercavitating flow around a symmet- 
ric wedge section, including the hydrostatic pressure, 
and found that the gravity effect produces the neg- 
ative lift in the supercavitating flow. Kiceniuk and 
Acosta[16] then verified the results experimentally. By 
applying the conformal mapping technique, Larock and 
Street[17] developed a nonlinear theory and solved a 
mixed-boundary-value-problem to find that the gravity 
effect reduces the lift and cavity size. In their analysis 
they adopted the single spiral model, which permits the 
sudden velocity jump at the cavity termination point 
(see Tulin[2] for description of the termination model- 

ings). 
The cavity flow beneath a free surface has been 

dealt with many authors. In early sixties, linear theo- 
ries were developed treating single fiat-plate hydrofoil 
with a finite cavity near the free surface (see, for exam- 
ple, Yim[18]), and Green and Street[19] subsequently 
treated by the linear theory two supercavitating hy- 
drofoils of finite cavity length at infinite Froude num- 
ber. Larock and Street[20] also analyzed the supercav- 
itating flow past a two-dimensional fiat plate by using 
Riemann-Hilbert mapping technique. They treated the 
finite cavity length problem and adopted the double- 
spiral cavity termination model. For the hydrofoil of 
arbitrary section, Furuya[21j applied the nonlinear the- 
ory and solved the problem in an iterative manner. It 
should be noted that the works up to this point are 
all carried out for the infinite Froude number flow, ne- 
glecting the buoyancy effect. Applying Green's theo- 
rem, Doctors[22] recently introduced the method of the 
free surface source distribution on the body and cavity 
surfaces for the hydrofoil advancing at a finite Froude 
number. Although he could satisfy the linearized free 
surface condition, the radiation condition and the infi- 
nite depth bottom boundary condition by using the free 
surface sources, he suffered from a numerical difficul- 
ties in his velocity-based formulation, and had to resort 
to the least square fitting method to remove the highly 
oscillating behavior of the source strength along the 
cavity surface.   He also neglected the buoyancy effect, 

while dealing with the finite Froude number problem. 
In the present study, we treat the partially- or su- 

percavitating flow past a two-dimensional hydrofoil ad- 
vancing under a free surface with a finite Froude num- 
ber. We applied Green's identity to derive the inte- 
gral equation for the unknown velocity potential on 
the foil and cavity surfaces. By introducing the free 
surface dipoles and sources, we satisfy the linearized 
free surface condition and the radiation condition at 
the outset. We include the hydrostatic pressure term 
in evaluating the dynamic condition on the cavity sur- 
face and show the significance of this buoyancy effect. 
The present paper may be regarded as an outgrowth of 
the authors' series of works [10] [11] [12], where addi- 
tional details, especially on numerical procedures, may 
therefore be found. 

STATEMENT OF THE BOUNDARY VALUE 
PROBLEM 

Let's consider a two-dimensional cavitating hydro- 
foil be placed in an inviscid, incompressible and irrota- 
tional fluid. A Cartesian coordinate system is chosen as 
shown in Fig. 1, with the x-axis placed on the undis- 
turbed free surface, SF, and with the positive t/-axis 
pointing the opposite of the gravitational acceleration. 
The hydrofoil of the chordlength c is inclined by an an- 
gle of attack a relative to the uniform oncoming free 
stream in the positive x-direction. The leading edge of 
the foil is located at x = 0 and below the undisturbed 
free surface at y — —d, d being the submergence. 

SF 

LL 

Figure 1: Coordinate system and definition sketch of a 
cavitating hydrofoil. 

The total velocity, V_, may be expressed in terms 
of the total velocity potential, $, which is defined using 
the oncoming velocity, U^, the position vector, x, and 
the perturbation potential, <j>, as follows: 

V = V* (1) 
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where 
* = iZoo-£+^ (2) 

Conservation of the mass applied to the potential 
flow gives the Laplace equation as a governing equa- 

tion, that is, 

V2$ = 0 ,       throughout the fluid (3) 

We assume that the amplitude of the free surface, 
(w, or the disturbance is small so that the boundary 
condition on the free surface may be linearized. Mo- 
tion of the fluid can be uniquely defined by imposing 
the boundary conditions on the boundary surfaces as 

follows: 

1. Linearized free surface condition on the free sur- 

face: 

$T ■ + v$y = 0 on the free surface    SF (4) 

vhere, with [/«, = [LLooh 

9 
UL 

(5) 

The free surface elevation may be expressed as 

CtU     VI! 
9 

on the free surface    Sp   (6) 

2. Radiation condition at infinity: 

lim   |V*| = |£J 

lim  |V$| < oo 
x->+<x 

(7) 

3. Flow tangency condition on the body surface: 

n ■ y_ = — = 0 ,      on the body surface    SB 

dU (8) 

where n is the unit vector normal to the bound- 
ary, defined positive when pointing into the fluid 

region. 

4. Quiescence condition at infinite depth: 

lim  V4>-+(/<, 
y—>-oo 

(9) 

5. Kutta condition: 

\Y-T.E\ <°°I      
at ^e trailing edge       (10) 

where T.E. stands for the trailing edge. 

For the partially cavitating flow, the Kutta con- 
dition requires that the magnitude of the velocity be 
finite at the trailing edge as in the subcavitating flow. 
The same condition may, however, be implemented in 
a different way for the supercavitating case, since the 
trailing edge is the junction point of the two distinct 
flow regions. The Kutta condition may be restated that 
the flow across the trailing edge be smooth and contin- 
uous. See Lee et al[12] and Wu[4][23] for additional 
description of the requirement at the junction point, 

that is, the detachment condition at either the leading 
or the trailing edges. 

With the presence of cavity around the hydrofoil, 
we have to apply the kinematic and dynamic bound- 
ary conditions on the cavity surface, the cavity closure 
condition at the cavity trailing end and the cavity de- 
tachment condition. 

6. Kinematic condition on the cavity surface: 

DF 

Dt 
0 ,      on the cavity surface    Sc    (11) 

where F{x,y) is a function expressing the cavity 

surface. 

7. Dynamic condition on the cavity surface: 

p = pv ,      on the cavity surface    Sc      (12) 

where pv is the vapor pressure inside the cavity. 

8. Cavity closure condition: 

Tc{xcte) = 0 ,       at the cavity trailing end 
(13) 

where Tc(x) denotes the cavity thickness function 
and Xctc denotes the x-coordinate of the cavity 
trailing end. 

9. Detachment condition at the trailing edge of the 
foil in supercavitating flow is the continuity of the 
velocity vectors at the trailing edge: 

lim   Y_A -   1™   Y-B (14) 

where A and B are points positioned on the lower 
part of the hydrofoil and cavity surfaces connected 
at the trailing edge, respectively. 

Using the Bernoulli equation, we get relations be- 
tween the surface pressure, p, the tangential speed on 
the foil-cavity surface, |VJ, the cavitation number, a, 
and the pressure coefficient, Cp, as follows: 

1. Case when the buoyancy effect is not included: 

r     =   p~Px 
1 u 

on foil/cavity surface (15) 

_ Poo ~ Pv r /l^l>2      , 

on the cavity surface (16) 

where p is the density of water, p^ is the am- 
bient pressure at the depth of the leading edge 
upstream infinity, that is, p^, = patm -f pgd, patm 
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being the atmospheric pressure, and |V^.| is the 
tangential speed on the cavity surface. 

2. Case when the buoyancy effect is included: 

r, _ P ~ P~ _ 1    ,|J6k2    2(y-yre/)/c 
°P =     1 „7V2      ~  '       Wf     i Z7-2 ^ \pui ■u, F? 

7) 

■Pv 

-cPv = ( IE, 1 + 2(y= - y«/)/c 

on the cavity surface m 
where c the chordlength, yc and yrcj the y-co- 
ordinates of the cavity surface and the leading 
edge, respectively, and Fc = Uoo/\/gc the Froude 
number of the oncoming flow. 

In this paper, we are interested in the lift, L, the 
drag, D, and the moment, M, acting on the hydro- 
foil in cavitating condition and also the cavity volume, 
Vol (or, the cavity section area in the present two- 

dimensional problem). 
The nondimensional coefficients of these quantities 

are defined following the expression of Uhlman[8]. 
The lift coefficient, Ci, is given as 

CL \pUlc JsB 

the drag coefficient, CD, is 

D      _ 

= -4> cj-^ds 

Cn = 
!L I   Cph-=^ds 

JSn UOO 

(19) 

(20) 

and the moment coefficient,  CM, about the leading 
edge of the hydrofoil is 

M 
°M= i   r„   , = -%   Cvrxhds (21) 

2PUooC JSB 

where c denotes the chordlength and r denotes a vector 
from the leading edge to a point on the foil surface; t 
is the unit tangential vector defined in the clockwise 
direction along the foil surface as shown in Fig. 1. 

The cavity volume, Vol, is calculated from the cav- 
ity thickness function, Tc(x), as 

Vol 
Jo 

Tc{x)dx (22) 

where £cav is the cavity length defined along the x-axis 
as shown in Fig. 1. For supercavitating flow, Tc(x) be- 
comes the vertical extent of the upper and lower cavity 
surfaces. 

SINGULARITY DISTRIBUTION METHOD 

From the Green's theorem, we may derive an ex- 
pression for the potential in the flow field by distribut- 
ing the normal dipoles and sources on the body surface, 

or alternatively by distributing only either the normal 
dipoles or sources as shown by Lamb [24]. From vari- 
ous literatures (see, for example, Moran[25]), we know 
the lifting airfoil problem can be treated successfully 
by adopting only the normal dipoles on the foil surface 
and on the wake sheet. To deal with the cavity flow 
problem in the present method, in addition to the nor- 
mal dipoles, we introduce the sources to represent the 
presence of the cavity on the cavitating portion of the 
foil. We expect that the sources will serve as a normal 
flux generator, which may be integrated in the stream- 
wise direction to form the cavity shape, in a similar 
manner as in the thickness problem of the thin wing 
theory. 

The total potential in the fluid region may now be 
expressed as follows: 

<f>{x) = UO0x   +    [ 
Js 

K0± 
'sBuSc   27T <9n< 

G(xU)dS 

+    I    q-^-G{x;0dS 
Jsc  2TT 

+   /   ^/-GfefldS        (23) 
Jsw 2TT one 

vhere 

q{£)   =   free-surface source strength 

fi(£)    =   free-surface normal dipole strength 

x(x, y)   =   field point where the induced potentials 

are calculated, (x + iy) 

G(x;0   =   ln(x-0 + ln(x-0 

+   2 
/ 

- dk - 27rie-"'(£-£) 

_9_ 
dnc 

k — v 

normal derivative with respect to 

the point £ 

£(£,77)   =   point where the singularity is located, 

(t + "?) 
£'{(> V)   —   complex conjugate of £, (£ — it]) 

and also SB, SC and Sw denote the body surface, the 
cavity surface and the wake sheet surface, respectively, 
and fiw denotes the dipole strength on the wake sheet 
surface, Sw, which is negative of the jump of potentials 
across the wake sheet surface. The direction of the 
dipole in the wake sheet surface, Sw, is defined positive 
when pointing upward. 

For dipole only distribution, we may convert the 
flow tangency condition (8), <9$/<9n = 0, in the fluid 
side of the boundary into the zero total potential con- 
dition, for the fictitious internal flow, 

$-(x) = 0 (24) 

where the superscript denotes that the velocity poten- 
tial is to be calculated on the interior to the foil surface 
(see, for example, Breslin et al[26] ).  If we apply this 
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conversion across the dipole and source sheet, we will 
inevitably introduce errors in the flow tangency bound- 
ary condition or nonzero normal flux due to the influ- 
ence of the sources. Indeed, this normal flux on the cur- 
rent dipole and source sheet is in essence the thickness 
correction function necessary in searching the cavity 
shape. If this error term vanishes through iterations, 
due to the vanishing source strengths, the kinematic 
condition on the cavity surface will then be satisfied by 
the alternative form of the kinematic boundary condi- 

tion for the internal flow (24). 
Equation (23) may now be reformed and applied to 

a point on and inside the foil-cavity surface to meet the 
alternative form of the kinematic boundary condition 

(24) as 

u(x) 
$-(z)=0 =  £/ooX      +      ^ 

JSBUSC   27T  an^ 

q(0 
JSC    ^ 

+  [ TT-^-GteOM   (25) Js„ 27T one 

In case of partially cavitating flow, y.w is the nega- 
tive of the potential jump at the trailing edge, whereas, 
in fully cavitating flow, fiw is that at the cavity trailing 
end. For a steady lifting flow, the negative of ßw is 
equivalent to the circulation around the hydrofoil and 
constant along the wake surface, Sw. 

The Kutta condition (10) is replaced by Morino's 
condition [27] for the present potential based method 

as 
/*„ = -(A*)„ (26) 

where (A$)„, is the potential jump across the wake 
sheet surface, Sw, which extends to downstream infinity 
either from the trailing edge in the partially-cavitating 
flow or from the cavity trailing end in the supercavi- 
tating flow. 

Due to the characteristics of singularities, the gov- 
erning equation (3), the free surface boundary condi- 
tion (4), and the quiescence condition (9), will auto- 
matically be satisfied. 

Since U^x in (25) is known, the equation (25) be- 
comes an integral equation for the unknown strengths 
of source and normal dipole distributions. 

By the definition of the velocity potential, we may 
express the potential on the cavity surface as follows: 

$"•' *ä+ Jo 
\Vc\ d3 (27) 

where the superscripts, u and I, represent the upper 
and lower surfaces of the cavity, respectively, and the 
subscript cdp denotes the cavity detachment point and 
lg denotes the girth length along the cavity surface from 
the cavity detachment point to the point where the 
potential is calculated. 

Thus, $u and $' denote the velocity potentials on 
the upper and lower surfaces of the cavity in case of 
the fully cavitating flow, respectively. $^p and $cdp 

become the velocity potentials at upper and lower cav- 
ity detachment point, respectively. For the partially 
cavitating flow with positive angle of attack, only the 
velocity potentials on the upper surface of the cavity, 
$u and $^p, are considered. 

Equation (27) relates the tangential speed on the 
cavity surface to the velocity potential, which is really 
a useful form, since the speed on the cavity surface, 
IVJ, is related to the unknown variables $ or fi. 

The source strength representing the thickness of 
the cavity or, more correctly, the function to relocate 
the current cavity surface position in an iterative pro- 
cess may be related, in a linearized sense, to the pro- 
duct of the oncoming velocity and the first derivative of 
cavity thickness correction function, tc, as in the case 

of thin wing theory, 

±C      rpc rpc 

(28) 

i(0-^(.--I) (29) 

where Vn is the normal component of the total velocity 
on the cavity surface, which is expected to be nonzero 
when the tangency boundary condition (8) is replaced 
by the zero total potential condition (24), and the sub- 
script (i) denotes the iteration index. Equation (29) 
shows that tc is the difference of the cavity surfaces be- 
tween two successive iterations. Note that the source 
strength, g(£), vanishes upon convergence. 

Since the cavity thickness, Tc, is to satisfy the clo- 
sure condition (13), the thickness correction function, 
fc, should also satisfy the same condition. Integrating 
(28), we get expressions for the cavity thickness cor- 
rection and an alternative form of the cavity closure 
condition as follows: 

tV) 

f( 

Jo U, 

Jo 

■ dx 

u0 
■dx = 0 

(30) 

(31) 

Once the equation (25) is solved, the cavity source 
strengths, q(Q, are known, and hence the new cavity 
shape may be obtained by correcting the ordinate of the 
cavity surface at the current iteration, as schematically 
shown in Fig. 2. 

NUMERICAL IMPLEMENTATION OF THE 
PROBLEM 

Discrete representation of the hydrofoil and cav- 
ity surfaces 

For numerical computation, the foil and cavity sur- 
faces are replaced by a set of straight line segments of 
finite length as shown in Figs. 3 and 4 for partially- 
and supercavitating flows, respectively. 
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Figure 2: Definition sketch of the cavity surface posi- 

tion at each iteration. 

Figure 3: Discretization of the foil and cavity surfaces 

for partially-cavitating flow. 

/ cdpte 
Sc 

Figure 4: Discretization of the foil and cavity surfaces 
for supercavitating flow. 

The flow near the leading edge varies more rapidly 
than any other region around the foil, and hence the 
surface panel size should be smaller in this region. We 
adopted, to represent the x-coordinate of the panel 
boundary, xB, two different discretization functions for 
the partially- and supercavitating flows as follows: 

1. For the partially-cavitating flow, 

= .(1 0 <  0  <7T (32) 

2. For the supercavitating flow, 

xB = c(l - cos 9) ,    O<0<f (33) 

In the above equations, the lower and upper limits of 
6 corresponds to the leading edge and trailing edge, 
respectively. 

The x-coordinate of the cavity, x°', is the same as 
the coordinate of the panel boundary above the upper 

surface of the foil, that is, xc - xB, whereas each sur- 
face panel on the supercavitating portion has the same 
horizontal extent as the panel on the foil next to the 
trailing edge. The vertical coordinate of the hydrofoil, 
yB, is computed by using the offset of the hydrofoil sec- 
tion, and that of the cavity, yc, is obtained as a part 
of the solution. Figures 3 and 4 show the typical dis- 
cretized foil and cavity surfaces for the partially- and 
supercavitating cases, respectively. 

Approximation of the integral equation 

Assume that the strengths of sources and normal 
dipoles are constant on each panel, that is, 

M(0   =   N ,   on panel j, j = 1,..., ND + 1 (34) 

q(Q   =   qk ,    on panel'f, k = l,...,Ns       (35) 

where ND + 1 and Ns denote the number of panels 
on which normal dipoles and sources are distributed, 
respectively. Since the source panels always coincide 
with the dipole panels, the total number of panels to 
represent the foil-cavity system will be ND. We will 
not count the dipole for the wake sheet surface just for 
convenience, since it is always represented as a function 
of the other dipole strengths. 

The control point on the foil-cavity surface, xp, 
where the boundary conditions are to be satisfied, is 
positioned at the center of each element, such that 

x? = i(x,. + xi+1),    .- = 1,...,7VD (36) 

where x,- may either be the panel boundary coordinate 
of the hydrofoil, xB = {xB,yB), or that of the cavity, 

xC = (xc,yc). 
Distributing the normal dipoles on the surfaces of 

both hydrofoil and cavity and the sources on the cavity 
surface, we can express for the partially-cavitating foil 
the total velocity potential at the i-th control point as 
follows: 

*7 

where 

= 0 = [/ooxf     + 

+ 
Ns 

+ —8- 

IT ,    if i = j 

1c, £-°(zr,L) dS    ,    if i ^ j 

(37) 

Qik   =    /   G(x;;^)d5 

ß-   =   JsAG{X-^)dS 

where the subscripts i and j denote the i-th control 
point and the j-th singularity point, respectively, and 
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the subscript w represents the wake surface. 
For the supercavitating flow, in accordance with 

the smooth flow detachment condition of Kutta type 
as described earlier, the slope of the lower surface of 
the cavity at the detachment point must be equal to 
that on the lower surface of the hydrofoil at the trailing 
edge, and hence we have 

qaPu = \LLoo\{-^h'(x)}T.E. (38) 

where qcdpu is the source strength at the cavity detach- 
ment point near the trailing edge and k'(x) denotes the 
function expressing the lower surface of the foil. 

Thus, in case of supercavitating flow, the equation 
(37) may be rewritten as 

*r = o = t/oo*f + 
IcdpU 

27T 
■Oi (cdptc) + E£& 

Ns-l 

v± 
2^ 

+ % 

+    2nP" 
(39) 

where the subscript cdpte denote the panel index im- 
mediately downstream from the trailing edge of the hy- 
drofoil. 

An approximate expression for the Kutta condi- 
tion (10) is obtained, following the Morino's condition 
(26), as 

fiw = -(A$)w = $1 -$ND = -{HI-[IND)      (40) 

where the subscripts 1 and ND link the values to the 
lower and upper surface panels, respectively, adjacent 
to either the trailing edge for the partially cavitating 
flow or the cavity trailing end for the supercavitating 
flow. 

Before converting (27) into a discrete form, it is 
necessary to review the relation of the tangential speed 
on the cavity, |VJ, with the constant pressure dynamic 
boundary condition for the cases with or without in- 
cluding the gravity effect in the pressure equation. When 
neglecting the buoyancy effect, according to (15) and 
(16), the dynamic condition on the cavity surface (12) 
can be replaced by the kinematic condition that the 
tangential speed on the cavity surface, |VJ, is constant. 
With the effect included as in (17) and (18), however, 
the dynamic boundary condition can no longer be sim- 
ply replaced by a single tangential speed value due to 
the difference in the hydrostatic pressure on the cavity 
surface. Expecting an iterative procedure to determine 
the cavity surface, we may assume the speed on the 
cavity be represented by a reference speed at the lead- 
ing edge, |Vre/|, multiplied by a correction factor as 
a function of girthwise position, a(s). The tangential 
speed on the cavity surface may therefore be expressed 
as: 

l£J = 
const. without buoyancy effect 

fl(s) \Y.ref\   with buoyancy effect 
(41) 

By equating the pressures on the cavity surface and the 
reference point, equation (18) relates the speed, |VJ, 
on the cavity surface, yc, with the reference speed |Vrt/| 
at yrcf as 

u + 2(yc-yrcf)/c     U£,e/| 

F} Uc 
(42) 

By substituting |VJ = a(s)|Vlr^| into (42), we 
may derive an expression for the correction factor, a(s), 
as follows: 

N 
i 

2p(2/c - 2/«/) 

\Y. ■re/I 
(43) 

From (27) and (41), the total velocity potential at 
the control point of the j-th source panel along the cav- 
ity surface in the streamwise direction can be expressed 
as follows: 

*?''. 

*u±   +    IK cdp 

cap 

lEÜAtf' 
without buoyancy effect 

+   \VTt}\n^a(sk)Ast' 
with buoyancy effect 

(44) 

where $*jp denotes the total velocity potential on the 
cavity detachment points at the leading edge and the 
trailing edge of the hydrofoil, and As£' denotes the 
length of the k-th source panel along the upper and 
lower cavity surfaces, respectively. 

Since $;- = $J — y.j = —fij, the above relation 
becomes 

tf=\ 4 \¥-c\lg      without buoyancy effect 

where 

Ihdp ~ W-rcN'g   with buoyancy effect 

h = Y,As^  rs = tl a(s*)As* 

(45) 

(46) 

Equation (45) shows that strengths of normal dipoles 
on the cavity surface can be expressed as a function of 
the dipole strengths at the cavity detachment point 
and the representative tangential speed on the cavity 
surface, |VJ or |Vlre/|; that is, there is no unknown 
dipole strength on the cavity surface. It should how- 
ever be noted that the correction factor, 0(5), can be 
approximated by using |V„/|(i_i) of the previous (i-1)- 
st iteration. 

Upon discretization, the cavity closure condition 
(31) for the partially-cavitating flow will be recast as 

Ns 

]T qkAsk = 0 (47) 

In case of supercavitating flow, applying (38), the 
above relation can be rewritten as 

Ns-1 

52   1kAsk = -qcdpteAScdpte 
k=l 

(48) 

where Acip(c denotes the length of the cavity panel con- 
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nected to the trailing edge. 
The total number of unknowns for the partially 

cavitating flow \sND + l, which consists of (ND - Ns) 
unknown dipoles, (Ns) sources and |VJ or \Y_Tcl\. To 
determine the unknowns we need the same number of 
equations, which may be formed by applying (37) to 
ND control points defined in (36) and by applying the 
closure condition (47). For the super-cavity, the num- 
ber of unknowns is reduced to ND, since one of the 
source strength qcdvu is known from (38). The equa- 
tions may similarly be formed by using (39) to the 
control points except the one immediately downstream 
from the trailing edge and by using the closure condi- 

tion (48). 

Discussion on the solution procedure 

Upon formation of the linear system of algebraic 
equations, we may solve the simultaneous equations 
with the aid of high speed computer, determining the 
strengths of sources and normal dipoles. The cavity 
thickness may be computed by integrating the source 
strengths in accordance with (30) and by using (29). 
In this paper, only the vertical coordinate of the cavity 
surface is evaluated. Once the cavity surface is found 
for the present step, the sources and normal dipoles 
are to be relocated on the newly obtained cavity sur- 
face, and then the whole process is repeated until a 
sufficient convergence is achieved. Upon convergence, 
the strength of the sources vanishes and the converged 
cavity shape is obtained. 

For the first iteration, it is necessary to assume 
the initial cavity geometry. A simple quadratic cavity 
shape with maximum thickness to be equal to the foil 
thickness was assumed for the partial cavity case. To 
satisfy the cavity detachment condition (14), for the 
supercavitating flow, the slope of the cavity is matched 
with that of the lower surface of the trailing edge and 
again the lower surface was initialized with a quadratic 
function, whereas the upper surface of the cavity was 
assumed as a straight line with a slope of |a. The 
vertical coordinate of the cavity trailing end is initially 
located above the z-axis by lmv x |a, but this point 
is free to move up and down depending on the inte- 
grated cavity shape. The initial approximation of the 
cavity geometry is found irrelevant to the final solu- 
tion, as long as the shape is represented by a smooth 
simple curve. Based on this numerical experimenta- 
tion, we conclude that the solution is convergent to 
a common solution regardless of the initial guess of 
the cavity shape. For most of the engineering calcula- 
tions, the first few iterations are found sufficient, but 
for most of sample calculations, the number of itera- 
tions, N'teT, is set to 10. Typical numbers of panels 
used are ND ta 200 or 100 for the supercavitating or 
partially cavitating flows, respectively. 

Once we get the dipole distribution, then we can 
compute the tangential speed |V,| by differentiating the 

total potential values (which is negative of the dipole 
strength) along the foil-cavity surface. We use a simple 
quadratic differentiation formula to take derivatives. 
Equation (15) is then used to compute the pressure 
coefficient, from which the lift, drag and moment coef- 
ficients are obtained by evaluating (19) through (21), 
and the cavity volume is obtained by (22). The cavita- 
tion number, a or acomp, is computed by substituting 
into (16) or (18) the tangential speed on the cavity 
surface, IVJ, which is obtained directly by solving the 
simultaneous equation. 

NUMERICAL CALCULATIONS AND DISCUS- 
SIONS 

Non-cavitating free surface flow 

The present paper is the outgrowth of Lee et al[12], 
who applied the present method to the cavitating flow 
past a hydrofoil advancing in an unbounded fluid. The 
numerical procedure are described in detail and eval- 
uated in Lee et al[12] for the case of the unbounded 
fluid. The difference of the present application occurs 
only with the presence of the additional free boundary, 
that is, the free surface in contact with the atmosphere. 

The first step in validating the present numeri- 
cal procedure is, therefore, to analyze the flow past 
a hydrofoil advancing beneath a free surface in non- 
cavitating condition. We selected a 12% thick Joukowski 
section, for which a numerical result by Bai[28] and 
experimental data are available. Figure 5 shows the 
pressure distribution around this Joukowski hydrofoil 

Present method (H/c = oo) 
Bai (H/c = 6) 

o     :    Giesing and Smith (H/c = oo) 
©     :    Exp. by Parkin et al (H/c ts 2.4) 

-Cy, 0.0 

-0.2 

x/c 

Figure 5: Pressure distribution on a 12% thick 
Joukowski hydrofoil at a = 5 deg, Fc = 0.617, and the 
leading edge submergence d/c — 0.113. Fluid depth, 
H, is infinite. Data taken from Bai[28]. 
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under the condition of a = 5 deg, Fc = 0.617, and the 
leading edge submergence d/c = 0.113, together with 
the comparison with existing data. It is shown that 
the result correlates well at least with existing numer- 
ical methods for the fluid of infinite depth. 

Supercavitating flow 

A symmetric wedge in transverse gravity field 
in unbounded fluid 

To show the effect of the transverse gravity field 
upon the cavitating flow, we selected a symmetric wedge 
placed horizontally in uniform flow. Figure 6 shows the 
computed (negative) lift, L, non-dimensionalized with 
the displaced weight of the wedge, B, versus the cavity 
length relations for the wedge with apex angles, ß = 1 
deg and ß = 7.5 deg, together with the linear theo- 
retical result of Street[14] and experiments of Kiceniuk 
and Acosta[16]. It is first of all observed that the mag- 
nitude of the negative lift, that is, the loss of the lift, 
increases with the increase of the cavity length. It is 
shown that, for the small apex angle, ß = 1 deg, the 
computed result ( ) falls on the theoretical line of 
Street ( ) up to the cavity length, 4av/c = 2.0. The 
two results deviate from each other, from £cav/c = 2.0 
and above, showing the evidence of the blockage effect 
upon the lift force of the long buoyant cavity. 

Kiceniuk and Acosta[16] carried out experiments 
with a symmetric ß = 7.5 deg wedge for three Froude 
numbers, Fc = 5.0,6.2 and 7.5, and their results are 
reproduced in Fig. 6. Our computational results for 
the same condition are also added in Fig. 6, showing 
little dependency upon Froude number variation. It 
is noted that the experimental results scatter consider- 

ably, which indicates the unsteadiness of the high speed 
fiow'condition, while showing the similar trend as the 
present computation. Figure 7 shows the results for the 
apex angle, ß = 15 deg, for the same Froude numbers. 
Deviation between the experiments and the numerical 
computation increases, which indicates that the wall 
blockage effect appears more significant with the in- 
crease of the apex angle and the transverse thickness 

of the cavity. 

A deeply submerged flat plate 

Another computation is made for the flow past a 
flat plate deeply submerged beneath a free surface, but 
unlike the existing results such as Lee et al[12], includ- 
ing in the present study the hydrostatic pressure vari- 
ation due to the gravity in the vertical direction. Fig- 
ure 8 show the cavity shapes, predicted by considering 
or without considering the buoyancy effect, for the as- 
sumed cavity length, £caJc = 4.4. For the same cases 
with pre-assigned cavity length, the computed lift, drag 
coefficients and the computed cavitation number, a, 
and the cavity volume are compared in Table 1.   It 

may be noted that, for this deeply submerged case, the 
lift and the cavity size are reduced slightly, although 
not significant, due to the transverse gravity field vari- 
ation around the foil and cavity boundary as predicted 

by Larock and Street[17]. 

ß = 7.5° 
Exp. [16j Present 

Fc = 5.0 
Fe = 6.2 
Fe = 7.5 

0 

• 
0 

0 
X 

* 

— Linear, Street[14], ß -* 0° 
Present, ß = 1.0° 

L/B -2 

Figure 6: Ratio of the buoyancy induced lift to the 
displaced weight of the wedge versus the cavity length 
for ß = 7.5 deg. Comparison with the linear theory of 
Street[14] and experiments of Kiceniuk and Acosta[16]. 

0=15° 
Exp. [16] Present 

Fc = 5.0 
Fc = 6.2 
Fc = 7.5 

0 

• 
0 

0 
X 

* 

— Linear, Street[14], ß -» 0° 
Present, ß = 1.0° 

**cav IC 

Figure 7: Ratio of the buoyancy induced lift to the 
displaced weight of the wedge versus the cavity length 

for ß = 15 deg. 
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Table 1: Comparison of the lift, drag coefficients, the 
cavitation number and cavity volume coefficients, pre- 
dicted with and without considering the buoyancy ef- 
fect, for a prescribed cavity length, £cav/c = 4.4. 

ND = 190. 

Without With 
buoyancy effect buoyancy effect 

Ch 0.324 0.307 
Cn 0.057 0.054 
a 0.190 0.174 

Vol 1.240 1.203 

A hydrofoil beneath a free surface 

Up to now, the influence of the free surface bound- 
ary in contact with the atmosphere is not considered, 
that is, the effect of the free wave upon the flow around 
the hydrofoil has been neglected. To the authors' knowl- 
edge, there is no published evidence dealing with the 
transverse gravity effect upon the cavity flow past a 
hydrofoil advancing at a finite Froude number near a 
free surface, and hence only the results of the present 
method will be presented. Figure 9 shows that, for the 
similar condition as Fig. 8 except the finite submer- 
gence depth, d/c = 0.53, the cavity shape and wave 
profile are altered significantly. When the hydrostatic 
pressure term is considered into computation, the posi- 
tion of the cavity upper surface near the leading edge is 
lowered compared to the surface obtained without con- 
sidering the gravity effect, but the cavity turns slightly 
upwards downstream due to the buoyancy effect. Re- 
member that the pressure constant dynamic boundary 
condition on the cavity surface is equivalent to requir- 
ing the velocity being constant when neglecting the 
buoyancy effect, but on the contrary with the buoyancy 
effect, the tangential speed on the cavity surface is no 
longer constant. The tangential speed on the upper 
surface is less than the speed on the lower surface due 
to the difference in the hydrostatic pressure. Moreover, 
the effect is more significant on the upper cavity sur- 
face than on the lower surface. It is expected, therefore, 
that the wave pattern will be influenced to the same de- 
gree and should be analyzed with the buoyancy effect 
into consideration. 

0.5 

y/c 0.0 

-0.5 

x/c 

Figure 8: Effect of the transverse gravity field upon the 
cavity shape on a supercavitating flat-plate hydrofoil at 
a = 10 deg, Fc = 4.0 and d/c = oo; Predicted with(— 
—) and without( ) the hydrostatic pressure. 

We, then, carried out a parametric study to see the 
influence of the submergence depth and Froude num- 
ber. Figure 10 shows the cavity volume, the cavity 
length, and the lift and drag coefficients variations as a 
function of the cavitation number for three depth con- 
ditions, that is, d/c = 0.5,1.0 and 2.0, for a flat-plate 
hydrofoil at a = 10 deg and Fc = 3.0. Figure 11 also 
shows the similar quantities for the same hydrofoil at 
a = 10 deg and the submergence depth, d/c = 1.0, for 
three Froude numbers, that is, Fc = 3.0,4.0 and 5.0. 
In both figures, the results obtained with or without 
considering the hydrostatic pressure term in computa- 
tions are compared. It is noted that the buoyancy ef- 
fect, due to the depth difference between the upper and 
lower cavity surfaces, appears most significantly in the 
cavity volume and the cavity length. At the same cav- 
itation number, by including the buoyancy effect, the 
cavity volume and the cavity length are reduced when 
the submerged depth is large, roughly when d/c > 1.0, 
in a similar manner as we observed for the deeply sub- 
merged hydrofoil, whereas the trend is reversed for the 
case of shallow submergence.' The lift and drag coeffi- 
cients decrease at most of the submerged depths when 
the buoyancy effect is considered. 

From Fig. 11, we may observe that the buoyancy 
effect decreases with increase of Froude number, as ex- 
pected from (17) and (18). The buoyancy effect ap- 
pears are most pronounced at lower Froude numbers 
when the hydrofoil advances at shallow draft, when 
d/c — 1.0, contrary to the negligible influence for the 
cavity flow in deeply submerged condition. 

The most noticeable consequence of including the 
hydrostatic pressure in the computation may be evi- 
denced from Fig. 12, which shows the change of the 
wave elevation for different cavitating conditions.   A 

2 

1 

y/c       0 

-1 

-2 
-1 1 3 5 7 

x/c 

11 

Figure 9: Effect of the transverse gravity field upon 
the cavity shape(above) and wave profile(below) past 
a supercavitating fiat-plate hydrofoil at a = 10 deg, 
Fc = 4.0 and d/c = 0.53; Predicted with( ) and 
without( ) the hydrostatic pressure term. 
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Figure 10: Effect of the transverse gravity field upon the cavity volume, 
the cavity length, the lift coefficient and the drag coefficient for a supercav- 
itating hydrofoil at a = 10 deg, Fc = 3.0, for three submergence depths, 
d/c = 0.5(*),1.0(o) and 2.0(o); Predicted with( ) and without( ) 
the buoyancy effect. 

flat-plate hydrofoil is operating at a = 10 deg and 
d/c = 1.0 for two Froude numbers, Fc = 2.0 and 3.0. 
Added together in the figure is the wave elevation gen- 
erated by a symmetric hydrofoil with 1 % thick bicon- 
vex foil section. It may be seen that the wave elevation 
decreases in general with inclusion of the buoyancy ef- 
fect, presumably due to the cushioning effect of the 
constant pressure cavity. 

The lift and drag coefficients and the cavity length 
and volume coefficients obtained for the corresponding 
cases to Fig. 12 are summarized in Table 2. We observe 
that the buoyancy effect is the same as we have seen 
in the parametric study. Table 2 also shows that due 
to the buoyancy effect the lift and the cavity volume 
reduced by 1.4 ~ 3% and about 20%, respectively, for 
both Froude number cases. 

Partially-cavitating flow 

A computation is made for a partially-cavitating 
hydrofoil with an NACA 16-006 section advancing at 
Froude number, Fc = 0.5, with a = 5.0 deg beneath 
a free surface at d/c = 0.6. Figure 13 shows the cav- 
ity shape and the wave profile for the assumed cavity 
extent of tcav/c = 0.5, together with the wave pattern 
generated when the cavity is absent. It is observed 
that the wave amplitude increases considerably com- 
pared to the non-cavitating case, due to the additional 
thickness effect of the cavity. It is also seen that the 
cavity and wave profiles, with and without considering 
the buoyancy effect, are indistinguishable in the par- 
tially cavitating case. This is due to the small cavity 
size and also due to the relatively large Froude number 
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Figure 11: Effect of the transverse gravity field upon the cavity volume, 
the cavity length, the lift coefficient and the drag coefficient for a super- 
cavitating hydrofoil at a = 10 deg, d/c = 1.0, for three Froude numbers, 
Fc = 3.0(*),4.0(o) and 5.0(o); Predicted with( ) and without( ) the 

buoyancy effect. 

Table 2: Buoyancy effect upon the lift and drag coeffi- 
cients and the cavity length and volume coefficients for 
a supercavitating hydrofoil at a = 10 deg and d/c =1.0 
for two Froude numbers, Fc = 2.0 and 3.0. Comparison 
with the non-cavitating case is given. 

Without With Non- 
buoyancy buoyancy cavitating 

effect effect condition 

cL 0.296 0.292 0.665 
Fc = 2.0 cD 0.052 0.051 0.107 

(7 = 0.148 *-cav 1 C 3.042 2.570 N/A 
Vol 0.563 0.467 N/A 

Ct. 0.313 0.303 0.725 
Fc = 3.0 CD 0.055 0.053 0.115 

cr = 0.142 *~cav I £ 3.081 3.042 N/A 
Vol 0.694 0.677 N/A 

compared to the supercavitating case. 

CONCLUSIONS 

A potential-based boundary element method is pre- 
sented for the analysis of a super- or partially-cavitating 
two-dimensional hydrofoil advancing at a finite sub- 
mergence beneath a free surface, treating without ap- 
proximation the effects of the finite Froude number and 
the hydrostatic pressure. 

The present paper employs the free surface source 
and normal dipole distribution method for the solution 
of the mixed-boundary-value problem. The strength of 
singularities is determined by satisfying the boundary 
conditions on the body and cavity surfaces; the cavity 
geometry is determined through an iterative process. 

Numerical results show that the wave profile is al- 
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Figure 12: Buoyancy effect upon the cavity and wave 
profiles past a supercavitating flat-plate hydrofoil at 
a = 10 deg, d/c =1.0 for two Froude numbers, Fc = 
2.0(upper) and 3.0(lower); Predicted with( ) and 
without( ) the buoyancy effect.   Non-cavitating 
case( ) is added for comparison. 
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Figure 13: Effect of the transverse gravity field upon 
the cavity shape and the wave profile past a par- 
tially cavitating hydrofoil with NACA 16-006 section 
at d/c = 0.6, a = 5 deg and Fc = 0.5, for a cavity 
length, £cav/c = 0.5. The cavity and wave profiles pre- 
dicted with( ) and without( ) the hydrostatic 
pressure term are not distinguishable. Non-cavitating 
case ( ) is added for comparison. ND = 200. 

tered significantly due to the presence of the cavity. 
The buoyancy effect due to the hydrostatic pressure, 
which has usually been neglected in most of the cavitat- 
ing flow analysis, is found playing an important role, es- 
pecially for the supercavitating hydrofoil, showing the 
dependency of the cavity shape upon the submergence 
depth, while leading to the reduction of the lift and 
drag for all submerged depth. The cavity length and 
the cavity volume decrease when the buoyancy effect is 
considered for the case of deep submergence, whereas 
those quantities increase for the case of shallow sub- 
mergence. 

The present potential-based boundary element 
method, developed for the two-dimensional case, may 
be extended for the analysis of the three-dimensional 
lifting hydrofoil by replacing the free surface Green 
function without any difficulty. 
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ABSTRACT 

Recently Ceccio and Brennen [1][2][3] have 
examined the interaction between individual traveling 
cavitation bubbles and the structure of the boundary layer 
and flow field in which the bubble is growing and 
collapsing. They were able to show that individual 
bubbles are often fissioned by the fluid shear and that this 
process can significantly effect the acoustic signal 
produced by the collapse. Furthermore they were able to 
demonstrate a relationship between the number of 
cavitation events and the nuclei number distribution 
measured by holographic methods in the upstream flow. 
Kumar and Brennen [4] [5] have further examined the 
statistical properties of the acoustical signals from 
individual cavitation bubbles on two different headforms 
in order to learn more about the bubble/flow interactions. 
All of these experiments were, however, conducted in the 
same facility with the same size of headform (5.08cm in 
diameter) and over a fairly narrow range of flow 
velocities (around 9m/s). Clearly this raises the issue of 
how the phenomena identified change with speed, scale 
and facility. The present paper will describe further 
results from experiments conducted in order to try to 
answer some of these important questions regarding the 
scaling of the cavitation phenomena. These experiments 
(see also Kuhn de Chizelle et al. [6] [7]) were conducted 
in the Large Cavitation Channel of the David Taylor 
Research Center in Memphis Tennessee, on similar 
Schiebe headforms which are 5.08, 25.4 and 50.8cm in 
diameter for speeds ranging up to 15m/s and for a range 
of cavitation numbers. 

NOMENCLATURE 

Cp pressure coefficient, (P - P0 )/0.5 pU0
2 

D headform diameter 
I* dimensionless acoustic impulse 
P static local pressure 
P0 static free-stream pressure 
Pv water vapor pressure 

R       Radius of the base of the hemispherical cap of the 
bubble 

Re     Reynolds number, U0D/v 
t        time 

At*    dimensionless bubble travel time between 
electrodes 1 and 2 

U0     free-stream velocity 
Xc     collapse coordinate along the axis of revolution 
8        bubble thickness in the direction normal to the 

headform surface 
Yi       dimensionless electrode duration parameter for 

electrode i 
y       global coverage parameter 
v       kinematic viscosity 
p        density 

o       cavitation number, (P0 - Pv )/0.5 pU0
2 

O;      inception cavitation number 
xw     acoustic impulse duration 

1. INTRODUCTION 

The purpose of the experiments described herein is to 
investigate the effects of scale in the cavitation occurring 
on a simple axisymmetric headform. The focus is on 
traveling bubble cavitation, and the interaction between 
the flow and the dynamics and acoustics of individual 
bubbles. Experiments by Ceccio and Brennen [2] [3] on 
5.08cm diameter axisymmetric headforms had revealed a 
surprising complexity in the flow around single 
cavitation bubbles. Among the phenomena observed 
during those previous experiments were the fact that the 
bubbles have an approximately hemispherical shape and 
are separated from the solid surface by a thin film of 
liquid. This general conformation persists during the 
growth phase though, especially with the larger bubbles, 
the thin film appears to become unstable and may begin 
to shear off the underside of the bubble leaving a cloud 
of smaller bubbles behind. On the other hand, the 
collapse phase is quite complex and consists of at least 
three processes occurring simultaneously, namely 
collapse, shearing due to the velocity gradient near the 
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surface and the rolling up of the bubbles into vortices as a 
natural consequence of the first two processes. These 
processes tend to produce small transverse vortices with 
vapor/gas filled cores. It was noted that the collapse 
phase was dependent on the shape of the headform and 
the details differed between the ITTC headform 
(Lindgren and Johnson, [8]) which possesses a laminar 
separation and the Schiebe body (Schiebe, [9]; Meyer, 
Billet and Holl, [10]) which does not The current 
investigation employed Schiebe headforms with a 
minimum pressure coefficient on the surface of 
Cpmin=-0.78. 

Several other features of the flow around individual 
cavitation bubbles were noted in those earlier 
experiments and need to be mentioned here. On the 
ITTC headform, when some of the larger bubbles passed 
the point of laminar separation they would induce an 
attached "streak" of cavitation at both the lateral extremes 
of the bubble as indicated in Figure 1. These streaks 
would stretch out as the bubble proceeded downstream, 
being anchored at one end to a point on the body surface 
along the laminar separation line and at the other end to 
the "wing-tips" of the bubble. The main bubble would 
collapse, leaving the two streaks it induced to persist 
longer. 

LAMINAR - 
SEPARATION 

LINE 

<■ 

MOVING 
AND 

COLLAPSING 
BUBBLE 

FIXED POINTS 
ON SURFACE 

<3 
FLOW 

FIXED POINTS 
ON SURFACE 

Fig. 1 Schematic diagram indicating the conformation of 
a cavitating bubble induced separation streaks. 

One of the important consequences of these variations 
in the details of the collapse processes is the effect on the 
noise produced by a single cavitation event (Ceccio and 
Brennen, [2][3]; Kumar and Brennen, [4][5]). Bubble 
fission can produce several bubble collapses and 
therefore several acoustic pulses. Presumably this would 
also effect the cavitation damage potential of the flow. 
However it is important to reiterate that these earlier 
experiments were all conducted with 5.08cm diameter 
headforms and utilized only a very narrow range of 
tunnel velocities of 8-9m/s. Consequently there are very 
real questions as to how the observed phenomena might 
scale with both headform size and with tunnel velocity. 
The experiments described here represent one effort to 
answer some of these questions. 

We digress briefly to note that questions on the 
scaling of cavitation have been asked for many years but 
particularly in the aftermath of the ITTC comparative 
tests conducted by Lindgren and Johnsson [8] who 
showed how disparate the appearance of cavitation was at 
different speeds, in different facilities and at different 
water "qualities". The latter characterization refers to the 
number of cavitation nuclei present in the water where 
most of these nuclei usually consist of very small air 
bubbles in the range of 5 to 300u.m. As O'Hern et al. 
[11][12] have shown, the nuclei are similar in size 
distribution in most deaerated water tunnels and in the 
ocean. This causes one set of scaling questions since the 
ratio of body size to the nuclei size will change with the 
body size. The other set of scaling issues derives from 
the complex interactions between the bubbles and the 
flow close to the headform. Since the flow is Reynolds 
number dependent, scaling effects will also be caused by 
the changes in both body size and tunnel velocity. As a 
guide to interpretation of the results of the experiments a 
panel method was developed to solve the axisymmetric 
potential flow around the Schiebe headform in the 
absence of cavitation. Some results from these 
calculations are presented in Figure 2, which shows the 
isobars in the low pressure region on the surface of the 
headform. 

Fig. 2  Pressure distribution near the minimum pressure 
point in the potential flow around the Schiebe headform. 

2. EXPERIMENTS 

The data presented in this paper was taken during 
tests conducted in the Large Cavitation Channel of the 
David Taylor Research Center in Memphis, Tennessee 
(Morgan,     [13]). Three    geometrically     similar 
axisymmetric Schiebe headform (Schiebe, [9]) measuring 
5.08cm, 25.4cm and 50.8cm in diameter were installed 
on the centerline of the tunnel and cavitation tests were 
conducted over a range of tunnel speeds from 9m/s to 
15m/s and dissolved oxygen contents (30 to 80% 
saturation at atmospheric pressure).   The experimental 
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arrangements are described by Kuhn de Chizelle et al. in 
greater detail in other papers [6] [7] and will not be 
repeated here. It is sufficient to indicate (i) that a larger 
number of still photographs and a substantial quantity of 
video was taken for each operating condition (the video 
was synched to a strobe light to improve time resolution), 
(ii) that surface electrodes were used to detect the 
presence of a bubble immediately over that electrode, 
(iii) that a hydrophone placed inside the headform 
recorded the cavitation noise (the headform was made of 
lucite and filled with water in order to provide a short 
and relatively reverberation free path for the noise 
between the cavitation and the hydrophone). 

Figure 3 presents the observed cavitation inception 
numbers, Gj, as a function of the headform diameter, D, 
tunnel velocity, U0i, and air content relative to saturation 
at atmospheric pressure. Inception was based on an 
arbitrarily chosen event rate of about 50 cavitation events 
per second. The events were detected by means of flush 
mounted electrodes, the current from which was 
moderated by the presence of a bubble [1][3]. 
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Fig. 3  Cavitation inception numbers Gj, for the various 
headform sizes, velocities and air contents. 

one requires a lower tunnel pressure and it may be that 
the nuclei concentration in the tunnel increases 
considerably with decreasing operating pressure. We 
shall discuss this and other effects later in the paper. 

3. EVENT RATE OBSERVATIONS 

Both the photographs and the video tapes were 
analyzed in order to explore the variations in the 
cavitation event rates with headform size and tunnel 
velocity. The event rates were evaluated by counting the 
number of individual bubbles (or events) observable in a 
single frame and averaging this number over many 
frames. This allowed construction of Figure 4 in which 
the average number of observable events is plotted 
against the cavitation number, a, for each of three 
velocities (9, 11.5 and 15m/s) for the three headforms 
(this data is for 30% dissolved oxygen content and we 
shall focus attention on these conditions). Not 
surprisingly the number of events increases with 
decreasing cavitation number and with increasing 
headform size. Not so predictable is the tendency for the 
number of events to decrease with increasing speed. 

(15 (1.6 11.7 

CAVITATION   NUMBER.    O 

Fig. 4 Average number of observable events on the 
headform as a function of the cavitation number for all 
headform sizes and tunnel velocities. 

U0=15m/s;     o U0=11.5m/s;    a U0=9m/s 

The trends in Figure 3 are fairly clear. The inception 
number increases with increasing headform size and the 
curves may well asymptote a value equal to the 
magnitude of the rnmimum pressure coefficient on the 
surface of the headform (Cpmin= -0.78). This headform 
size effect is simply a consequence of the fact that the 
larger the headform, the more nuclei are available for 
cavitation and, therefore, for a specific event rate the 
value of Oj will be larger. The values of ü[ also increase 
with an increase in air content for a similar reason, 
namely more nuclei at the larger air contents. Figure 3 
also demonstrates that the cavitation inception number 
increases with decreasing tunnel velocity. This effect is 
not so readily explained. However it is clear that to 
achieve the same cavitation number at a lower velocity 

The data on the number of events may be converted 
to cavitation event rates using bubble lifetimes obtained 
from knowledge of the velocity (from potential flow 
calculations using the panel method) and the measured 
locations of bubble appearance and collapse as a function 
of a (see Kuhn de Chizelle et al., [6]). The resulting 
event rate data for 30% dissolved oxygen content is 
presented in Figure 5 and it is clear that this is consistent 
with the cavitation inception data of Figure 3 given the 
selected criterion of 50 events/sec. 
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Fig. 5     Cavitation event rate as a function of the 
cavitation number for all headform sizes and tunnel 
velocities. 
G U0=15m/s;     o U0=11.5m/s;    A   U0=9m/s 

As previously stated, one of the purposes of the 
present investigations was to demonstrate the connection 
between the event rate ( and by implication the inception 
number) and the nuclei number distribution. While the 
details of this analysis will be left until a later paper, it is 
instructive to present the event rate data of Figure 5 in 
the following modified form. Let us estimate that all the 
nuclei which pass through an annular stream-tube 
bounded on the inside by the headform and on the 
outside by the stream-surface which just touches the 
Cp=-G isobar (see Figure 2) cavitate and therefore form 
observable bubbles. Then, using the potential flow 
velocity in this stream-tube (therefore neglecting 
boundary layer effects) and using the data of Figure 2 to 
estimate the thickness of the stream-tube at each 
cavitation number, we can calculate the volume flow rate 
of liquid in the stream-tube for each operating condition. 
Dividing the data of Figure 5 by these values we obtain 
an estimate of the number of cavitation nuclei per unit 
liquid volume; this data is presented in Figure 6. 

(1.5 0.« 0.7 
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Fig. 6 Number of exited nuclei per unit liquid volume as 
a function of the cavitation number for all headform sizes 
and tunnel velocities. 

ü U0=15m/s;     o U0=11.5m/s;    A   U0=9m/s 

It is significant that some of the variation with 
cavitation number, headform size and tunnel velocity 
which was present in Figures 4 and 5 has now been 
substantially removed. Indeed, with several exceptions, a 
fair fraction of the data of Figures 4 and 5 would now 
appear to correspond to a nuclei concentration of 
0.1 nuclei/cm3. The most noticeable deviation from this 
uniform value occurs at the highest speed (15m/s) with 
the two larger headforms. 

The fact that most of the data appears to correspond 
to the same nuclei concentration is simultaneously 
encouraging and puzzling. It is encouraging because it 
suggests that a more careful analysis which begins with 
the same nuclei number distribution and follows each 
nucleus along its streamline may allow synthesis of the 
event rates and the inception numbers. But it is also 
puzzling because the concentration of 0.1 nuclei/cm3 is at 
least an order of magnitude smaller than most of the 
measurements of cavitation nuclei would suggest. 

Referring to Billet's [14] useful review of the subject 
of nuclei concentrations and distributions we note that the 
most reliable observations of nuclei (micro-bubbles and 
particles) have been obtained by systematically surveying 
the reconstructed holograms of volumes of tunnel water 
taken while the tunnel is in operation (for example Gates 
et al., [15]). For de-aerated tunnel water, such 
inspections typically reveal concentrations of the order of 
20 nuclei/cm^ with sizes ranging from about 5[am to 
about 200(J.m. However the next question to ask is what 
fraction of these potential nuclei do, in fact, cavitate 
when subjected to sub-critical pressures. Here the answer 
is quite unclear. The other principal method for counting 
nuclei is the cavitation susceptibility meter in which the 
liquid is drawn through an orifice (or other device) in 
which the water is subjected to low pressures. The 
device is of sufficiently small size so that cavitation 
events occur individually. Then the concentration of 
actual cavitation nuclei (as opposed to potential nuclei) is 
obtained from the measured event rate and the known 
volume flow rate. Billet's review indicates that the 
typical concentrations measured by susceptibility meters 
is usually of the order of 2 nuclei/cm3, significantly 
smaller than the concentrations obtained by holographic 
methods. While this may suggest that only a fraction of 
the potential nuclei actually cavitate, the data is, as yet, 
inadequate to support any firm conclusion. 

In a later paper we shall present a model for the 
cavitation event rate which is based on a known nuclei 
number distribution function and follows all the possible 
sizes of nuclei along the streamlines on which cavitation 
might occur. This model is similar to that described by 
Ceccio [1] but corrects some errors in that previous 
analysis and includes other effects which may be 
important such as the effect of the boundary layer and the 
screening effect which occurs in the stagnation point flow 
and was first described by Johnson and Hsieh [16]. A 
brief preview of these results is given here. If one 
assumes a typical nuclei number distribution function, 
N(R)  in m"4 of the form N(R)  =  10"5 / R3-5  for 
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R < 2X10-4 m, then typical event rates for the Schiebe 
headform are shown in Figure 7. This data does not 
include the screening effect which reduces the event rate 
by about a factor 2 to 5. Nor does it include boundary 
layer effects which are small. 
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Fig. 7 Calculated event rates for the Schiebe headform 
for various headform sizes and tunnel velocities. Bubble 
screening effect not included. 

Qualitative comparison of Figure 7 with Figure 5 
reveals significant areas of both agreement and 
disagreement. Note first that the trend in event rate with 
headform size and with cavitation number are quite 
similar. However the trend with tunnel velocity 
produced by the model is contrary to the trend in most of 
the experiments. Perhaps this discrepancy is caused by 
assuming a common nuclei distribution for all operating 
conditions when, in fact, the nuclei population may be 
much higher at the low tunnel velocities than at the high 
since, to reach the same cavitation numbers, one must 
operate the tunnel at much lower pressures at the low 
velocities. The other area of disagreement to which 
reference was made earlier is that the event rates in the 
model are much higher than in the experiments. 
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Fig. 8 Calculated cavitation inception numbers for 
various headform sizes and tunnel velocities and based 
on two different critical event rates of 5000/sec and 
500/sec. 

Given a model for the event rate one may the obtain 
cavitation inception numbers simply by establishing 
some critical event rate criterion. Figure 8 presents some 
typical cavitation inception numbers calculated in the 
way for criteria of 5000 events per second and 500 events 
per second. Comparing this with Figure 3 we note the 
same areas of disagreement that were manifest in the 
comparisons of event rates. 

4. CAVITATION APPEARANCE 

A typical bubble cavitation event consists of the 
growth and collapse of a bubble as it travels through the 

low pressure region close to the headform surface. The 
shape and size the bubble will assume are dependent on 
the cavitation number and the pressure coefficient history 
it experiences along its trajectory. In this section we 
shall describe in more detail the observations made 
during a study of the photographs and video recordings. 
The following observations were made at a dissolved 
oxygen content of 30%. 

Bubble shape 
For cavitation numbers close to the minimum 

pressure coefficient c=0.78, the bubble life-time is very 
short. In Figure 3 we noted that the highest inception 
cavitation numbers occur for the largest bodies at the 
lowest velocities. Figure 9a shows a cavitation bubble 
for such conditions (Gj=0.77; D=50.8cm; 9m/s; 30% 
dissolved oxygen content). All the bubbles assume a 
very thin disk-like geometry. For such cavitation 
numbers there is little or no growth normal to the 
headform surface. The bubbles grow almost entirely in 
the plane parallel to the headform. In its final phase the 
center of the bubble does not collapse first. Instead we 
observe the evanescence of the bubble's leading edge. 
There seems to be a location on the headform at which 
the cavity collapses, creating a fairly straight leading 
edge on the bubble. At these cavitation numbers we can 
see from Figure 2, that the critical isobar Cp=-a is very 
elongated and close to the body surface. The region 
below vapor pressure is quite similar to the shape the 
bubbles assume. It appears that the bubbles are 
prevented from growing in the direction perpendicular to 
the body surface by the high normal pressure gradients 
normal to the surface. On the other hand, since the 
smallest headform has much smaller cavitation inception 
numbers (significantly less than 0.78), the bubbles 
observed on this headform do not assume such a flattened 
shape, even under inception conditions. 

As the cavitation number is decreased below Oj, the 
bubbles grow in volume (in diameter and in height) and 
assume the roughly hemispherical shape typified by 
Figure 9b. The maximum volume is mostly cavitation 
number dependent. As the bubbles approach their 
collapse phase their thickness, 8, normal to the headform 
surface decreases faster than their base radius, R, and the 
leading edge collapses most rapidly along a fairly straight 
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Fig. 9 High speed photography of cavitation events taken at a 30% saturation dissolved air content: 
50..SY«; diameter headforni (distance between the two pairs of patch electrodes: 2.54cm) : 
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Figures j-k: U0=15m/s, a=0.55; Figures l-tn-n: U0=I5m/s. a=0.53; Figure o: U0=15m/s. o=0.49 
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front (Figures 9j, 91). At this stage they appear thin and 
close to the headform surface (see also Ceccio, [1]) and 

look similar to the bubbles observed under inception 
conditions. 

One unique feature of the present observations was 
the appearance of wave-like circular dimples on the top 
of the hemispherical cap (Figures 9b, 9e, 9f, 9g, 9j, 91, 
9m). The dimples seem to become more pronounced as 
the volume of the bubble increases. They are absent 
during the growth phase as seen in Figure 9c, and appear 
early in the collapse phase. Their ring shape could be 
interpreted as a precursor of a collapsing reentrant jet, but 
we note that the center of the dimple retains a concave 
curvature at all times. The dimple seems quite stable, 
and remains on the bubble until the very last stage of 
collapse. On the 50.8cm headform the dimples 
sometimes appear in pairs on the largest bubbles. On the 
smallest headform they do not form as distinctly, but 
occasionally a single rough depression in the center of 
the bubble may be observed. 

Measurements of the bubbles on all three headforms 
show that the radius at the base of the hemispherical cap, 
R, scales linearly with the headform diameter, D (Kuhn 
de Chizelle et a/., [6]). At the same cavitation number, 
the ratio R/D, appears to be the same for all three 
headforms. We do not observe any variation of R/D with 
the velocity U0. Furthermore the dimensionless collapse 
location XQ/D is approximately the same for all 
headforms. This appears to be true as long as the 
interactions between bubbles, or between bubbles and 
patch cavities remains limited. Therefore simple size 
scaling of the base diameter of the bubble cap with the 
headform size seems to be possible. This simple scaling 
applies only to the bubble's base radius though, since the 
shape of the bubble, its thickness 5, the amount of shear 
on its base and the cavitation event rate vary greatly from 
one headform to the other. 

Bubble tail and patches 
Figure 9a shows the presence of streaks of vapor or 

"tails" extending behind both sides of the bubble. It 
appears as though the bubble is sheared in the region 
extremely close to the headform surface leaving the tails 
behind in its wake. The undersides of some bubbles 
appear roughened towards the trailing and leading edges. 
The structure of the tails is always extremely wavy, 
turbulent and they seem to be attached to the headform 
surface (Fig. 9c). They appear early in the growth phase 
of the bubble. As the bubble is convected downstream it 
continues to "feed vapor" into the tails, allowing them to 
extend in length and height (Figures 9c, 9d, 9e, 9f). 
Ultimately the larger bubbles will collapse leaving 
behind patch-like cavities. It seems clear that whether a 
bubble will be sheared or not is determined early in the 
growth phase. If a bubble does not exhibit the trailing 
edge streaks early in its passage as seen in Figure 9c, it 
will grow and collapse with a smooth cap shape (Fig 9b, 
9j, 91). For this reason, for fixed cavitation conditions, 
the streaks always occur around the same position on the 
headform (Fig. 9c, 9d, 9e, 9f) and so will the leading 

edge of the patches. If the thickness of those streaks is 
small, the dynamic of the final collapse of the bubble 
appears unaffected by them and appears similar to the 
process described in the previous paragraph and seen in 
Figure 9m. However, for small enough cavitation 
numbers the patch can out-grow the bubble and swallow 
it leaving behind a patch-like cavity (Fig. 9k, 9n). At this 
point it is not clear if all the patch cavitation structures 
are generated by traveling bubbles. Some of them 
evidently are, and can be recognized by a planform 
shape, similar to a "V" with its vertex pointing 
downstream. The final length and thickness of the patch 
cavity are dependent on the bubble that generated it, and 
therefore vary with the headform diameter and cavitation 
number. For cavitation numbers close to the minimum 
pressure coefficient -Cpmin=0.78, no patches and very 
few bubble tails are observed as in Figure 9a. For these 
conditions the tails seem unable to grow sufficiently to 
form a patch-like cavity. Figures 9k, 9n show two 
typical patches at lower cavitation numbers. We notice 
that the patch on Figure 9k is thinner and ends sooner for 
higher cavitation numbers. The collapse mechanism of 
the patch itself is quite unclear. In the video recordings 
they vanish entirely between two frames (1/30 seconds). 
Is the entire patch swept downstream once the bubble 
head has vanished, or does it entirely collapse on the 
headform? The current investigation has not, as of yet, 
been able to answer these questions. 

The number of sheared bubbles seems to increase 
with the cavitation number, headform diameter and flow 
velocity. Since the ratio of the laminar boundary layer 
thickness to headform size will scale with Re_1/2, we 
would expect that the shearing of the cavitation bubbles 
would increase as the relative boundary layer thickness 
decreases. However, at the highest Reynolds number of 
107, we note that the theoretical laminar to turbulent 
transition comes close to the low pressure region and 
might cause further disruptive effects. 

Bubble-patch interactions 
When the cavitation number is sufficiently reduced, 

the transient patches become fairly stable and remain on 
the headform, thus creating attached cavities for periods 
of up to a few seconds. As their number increases the 
patches will merge to create larger attached structures. 
Favre and Avellan [17] have shown that those attached 
cavities disturb the initial pressure distribution in such a 
way that they actually extend downstream beyond the 
original Cp=-aj isobar. The cavitation number at which 
this phenomenon happens varies considerably from one 
headform to the other. It can be seen in Figure 9i at a 
cavitation number of about 0.5 for the 50.8cm headform. 
By contrast, at the same cavitation number, the 25.4cm 
headform produces just a few bubbles and patches 
(Figure 9o) and the 5.08cm headform shows no 
cavitation. At this point we note that the transient 
cavitation patch phenomenon was never observed on the 
smallest headform. That headform seems to exhibit an 
abrupt switch from traveling bubble cavitation (some of 
which have long trailing tails) to persistent attached 

625 



cavities. The attachment location of these cavities on that 
headform is fixed, and usually corresponds to a 
roughness element. This has not been observed on the 
larger headforms, even though the polished finish was 
identical to that of the 5.08cm body. Roughness appears 
to be a very critical parameter for the attached cavitation 
scaling of these bodies. 

For all test conditions at cavitation number below 0.7 
we noticed the coexistence of the two different kinds of 
cavitation patterns: traveling bubbles and transient 
patches. Quite remarkably, even for the conditions at 
which we observe many patch-type cavities, some very 
smooth hemispherical traveling bubbles are still present 
(Figure 9b, 9h). We can see in Figures 9g, 9h, 9i bubble 
type cavitation riding above attached cavities. 

Comparing the shape of the bubbles encountering 
patch cavities with those which do not, it is clear that the 
shapes differ because the former are not subjected to the 
boundary layer shear which the latter experience. 
Bubbles which do encounter patches or attached cavities 
will eventually collapse and merge completely with the 
larger structure upstream of its closure region. By doing 
so they appear to perturb the attached cavity shape, as has 
been observed by Briancon-Marjollet et al. [18]. 

5. CAVITATION NOISE 

For a range of cavitation numbers between inception 
and a value at which the cavitation patches persisted, it 
was possible to identify in the hydrophone output the 
signal produced by each individual bubble collapse. It 
was found necessary to digitally high pass filter the 
signals using a cut-off frequency of 5kHz in order to 
reduce the effect of vibration and noise caused by 
cavitation at the top of the supporting strut. This filtering 
did not, however, substantially effect the results. The 
processing amplifier gain response was calibrated and 
applied to the results. The noise from the cavitation was 
analyzed in several ways. We present first a spectral 
analysis which is the traditional approach normally taken 
toward cavitation noise. However more fundamental 
information can be gained from an analysis of the 
pressure pulses produced by individual cavitation events 
as will be described later. 

Spectral analysis 
FFT analyses of the signals from individual events 

were performed for different cavitation conditions for 
Nyquist frequencies up to 500kHz. In order to compare 
the shape of the power spectral density for different 
cavitating conditions the values have been non- 
dimensionalized by the number of sampled points, N, 
multiplied by the mean squared power amplitude, PSD, 
where 

PSD = 
N2 C2(f0) + C2(fN/2) + 2'5c2(f.) 
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Fig. 10 Averaged dimensionless power spectral density 
signals for the 50.8cm headform: 

■ U0=11.5m/s, a=0.64; 

The dimensionless PSD curves are presented in Figure 10 
and consist of data averaged over several cavitation 
events. 

_ U0=9m/s, 0=0.66; 

Uo=15m/s,a=0.61. 

First we notice that for all headforms and tests 
conditions the measured spectral shape varies little with 
the operating condition and cavitation number as was 
reported by Arakeri and Shanmuganathan [19]. Most of 
the data represented here was taken close to inception. 
The influence of the hydrophone cutoff frequency above 
80kHz can be observed in all signals. The measured 
decay between 1kHz and 80kHz in the present data 
appears roughly constant, with a value of about 
-22dB/dec. for all conditions. This value is similar to the 
value of -24dB/dec. (or f"6/5) obtained earlier by Kumar 
and Brennen [5] and by Ceccio and Brennen [2] [3] in the 
Caltech Low Turbulence Water Tunnel. By way of 
comparison we note that the spectra obtained by Blake et 
al. [20] for cavitation on a hydrofoil show a comparable 
frequency dependence of -20dB/dec. (or f_1) though there 
is also a consistent dip in their spectra at 10kHz. Arakeri 
and Shanmuganathan [19] have presented data with a 
similar frequency dependence though the slope also 
increases from about -12dB/dec. (or f_3/5) to -30dB/dec. 
(or f3/2) as the bubble interactions increase. None of this 
data is very close to the value of -8dB/dec. which 
Fitzpatrick and Strasberg [21] predicted for the range 
10 to 100kHz based on a Rayleigh-Plesset analysis. 
Taking fluid compressibility into account yields decays 
as low as -40dB/dec. (f-2) for the very high frequencies 
(around 100kHz and up), but these frequencies are 
beyond the capability of the hydrophone used in the 
present experiments. 

Measurement of the frequency decay as a function of 
the cavitation number for different cavitating conditions 
is shown in Figure 11. We observe that this slope seems 
to decrease as the cavitation number value is reduced 
below 0.6. For some cavitation conditions the slope can 
be as low as -35dB/dec. This change is consistent with 
the effects of bubble interactions observed by Arakeri 
and Shanmuganathan [19]. 
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Fig 11. Average power spectral density slope decay 
between 1kHz and 80kHz [dB/dec.]. Measurements for 
different headform diameters and velocities as a function 
of the cavitation number. 

Acoustic pressure pulses 
The amplitudes of the acoustic pressure pulses were 

measured by defining the impulse, I, as the integral under 
that instantaneous pressure time history from the 
beginning of the collapse pulse to the moment when the 
pressure returns to its mean value. Since the impulse will 
vary inversely with the distance of the hydrophone from 
the noise source, we multiply I by the appropriate 
headform radius D/2 and form a dimensionless impulse, 
I*, by dividing by the headform radius, free stream 
velocity and the fluid density as indicated by the 
Rayleigh-Plesset analysis, so that the dimensionless 

impulse, I* = 47tI/pU0. The hydrophone output for each 
of the experimental conditions was examined in order to 
identify at least 40 of the larger pulses associated with a 
bubble collapse. The average values of the non- 
dimensional impulses obtained in this way are plotted 
against cavitation number in Figure 12. 

The non-dimensional impulse is of the same order of 
magnitude for all three headforms. It initially increases 
as the cavitation number is decreased below inception. 
However most of the data also indicates that the average 
impulse ceases to increase and, in fact, decreases when a 
is decreased below a certain value (about 0.43, 0.50 and 
0.62 for the 5.08cm 25.4cm and 50.8cm diameter 
headform). The decrease at low cavitation numbers 
might be caused by the increasing presence of attached 
cavitation patches, damping the bubble collapse 
mechanism. The location of the peaks appears to be 
somewhat influenced by the velocity: they are shifted 
towards higher cavitation numbers for lower velocities. 
This trend is consistent with previous observations (Kuhn 
de Chizelle et ai, [6]) of the average void fraction over 
the headform at constant cavitation numbers, which 
exhibited an increase with a decrease in velocity.   The 

conditions at which the impulses, I*, are maximum seem 
to correspond to circumstances in which the cavities 
cover about 20% of the surface area of the headform in 
the   neighborhood   of  the  minimum  pressure   point. 

Higher void fractions increase the interactions between 
the bubbles and the patches and considerably reduce the 
acoustic impulse. Such an effect was previously reported 
by Arakeri and Shanmuganathan [19] who noticed strong 
interaction effects for void fraction values larger than 
25%. 
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Fig. 12 Average dimensionless maximum acoustic 
impulse I*, standard deviation and impulse duration xw 

[Us] for all three headforms as a function of the 
cavitation number. 

The standard deviation for the impulse is substantial, 
around 40% of the average value. Therefore for identical 
cavitation conditions the cavitation noise may vary 
considerably from one event to another. The duration of 
the impulse, xw, is also presented in Figure 12 and 
reveals a cavitation number dependence similar to that 
observed for the impulse. It appears to be of the same 
order of magnitude for all velocities and diameters. 
Examining this data it should be recalled that the typical 
response time of the hydrophone is about 3^s and is not 
negligible compared with the measured duration. 

In summary, we find that the acoustic impulse 
produced by a single bubble collapse, while exhibiting 
considerable variability, nevertheless scales with 
headform size and tunnel velocity in the way which is 
expected on the basis of the Rayleigh-Plesset analysis. 
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Moreover, when the bubble concentration exceeds a 
certain value the noise from individual events becomes 
attenuated. 

Electrode signal analyses 
When a bubble is located over a particular electrode 

denoted by the index "i", it produces a perturbation in the 
voltage signal, vj(t), from that electrode. Figure 13 
presents an example of the signals from the first and 
second patch electrodes (located at axial distances of 5.08 
and 7.62cm from the headform stagnation point). The 
corresponding noise signal is plotted on the same Figure, 
time shifted by 170|is which corresponds to the time 
necessary for the acoustic noise to travel from the 
headform surface to the hydrophone. The signals from 
an unsheared bubble (seen in photograph 9b) and from a 
sheared bubble developing attached streaks (seen in 
photograph 9d) are contrasted in this Figure. 

t   [ms] 
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that measured for the case of unsheared traveling 
bubbles. This suggests that the leading edge of the patch 
detaches first and cavity is convected away by the flow. 

The typical time for which a bubble covers an 
electrode is given by 

[■ a*a et eieetrede ügaü 

% = Jvi(t)dty 

and can be written in dimensionless form by defining an 
electrode signal duration parameter YJ^JUQ/D. Clearly 
a bubble with attached streaks or patches will yield 
substantially larger Yj values than single unattached 
bubbles. Therefore yj provides a valuable indicator of 
the type of event which has occurred.    The global 

coverage parameter y defined as y = ^/y,y2 groups both 
electrode duration parameters. Non-sheared bubbles 
typically have coverage parameters less than 0.01. 

For single traveling bubbles, the duration parameters 
over the first and the second upstream patch electrode are 
strongly correlated. Figure 14 represents a plot of y 
versus the dimensionless electrode duration for the first 
electrode, yj ,for a wide range of cavitation numbers and 
velocities. Clearly there exists a strong correlation 
between both electrodes durations yx and y2. It follows 
that a long (or short) duration at the first electrode leads 
to a long (or short) duration at the second electrode. 
Therefore we may conclude from Figure 14 that trailing 
streaks or tails (which cause larger durations) only appear 
early in the bubble evolution and that, if they do not 
appear, the bubble will continue without tail for the rest 
of its lifetime. This was also the conclusion reached 
from studies of photographs and video observations 
(Kuhn de Chizelle et al., [6][7]). Note that the above 
implies that the leading edges of the attached patches are 
always upstream of the first electrode. 

0fM#tf»#rt>*HM 

Fig. 13 Electrode signals from upstream patch electrodes 
1 and 2 and the corresponding acoustic noise signals. 
The signals plotted correspond to the bubbles presented 
in photographs 9b and 9d. 

Analyses of these electrode signals shed additional 
light on the mechanism of the bubble collapse. Sheared 
bubbles produce much longer electrode signals. 
Moreover, the trace from the first electrode will vanish 
before that from the second electrode, indicating that the 
collapse mechanism always proceeds in a downstream 
direction. Whether the cavity disappears by collapsing 
on the headform itself or detaches and is convected away 
by the flow is unclear. The time interval between the 
ends of the two electrode signals is often comparable to 

o.i 

0.01 

o.ooi 
o.ooi o.oi 

T 

0.1 

Fig. 14 Non-dimensional electrode signal duration time 
on the first and second patch electrodes for all flow 
velocities and cavitation numbers 

628 



The time of passage over the electrode "i" is denoted 
by    tj    and    may    be    defined    by    the    quantity 

t, =    Jv;(t)tdt /   Jv,(t)dt. 

Then the non-dimensional interval (or bubble travel time) 
between the signals from electrodes 1 and 2 can be 
defined as At*=(t2-ti)U0/D and data on this quantity is 
presented in Figure 15. 

o.i 

at* 

o.oi 
0.001 0.01 

Y 

0.1 

Fig. 15   Non-dimensional electrode peak interval, At*, 
for all flow velocities and cavitation numbers. 

For all conditions the non-dimensional interval is 
concentrated around a value of At*=0.043. Panel method 
calculations of the non-dimensional travel time along a 
streamline between electrode 1 and electrode 2 yield an 
identical value of At*=0.043 for the streamline closest to 
the headform. Also the travel time increases slightly as 
the streamline is located further from the headform. 
From the photographs Kuhn de Chizelle et al. [6] 
estimated that a typical non-dimensional bubble thickness 
for cavitation numbers around 0.65 is about 5=0.01 and 
the potential flow travel time for streamlines located at 
that distance above the headform surface is At*=0.044. 

The agreement between the measured travel time for 
non-sheared bubbles (represented by y values less than 
0.01) and the potential flow calculation indicates that 
there is no slip between the bubble and the inviscid flow 
outside the boundary layer. The bubbles appear to ride 
over the boundary layer and travel at the same velocity as 
the outer flow. 

For shear factors less than 0.005 which correspond to 
the highest cavitation numbers (o > 0.70) some scatter 
can be observed. For those conditions photographs 
indicate that many bubbles collapse before they reach the 
second electrode. The signals measured on the second 
electrode may therefore be generated by rebounded 
bubbles. At the other extreme the large values of y 
(>0.01) correspond to long sheared bubbles with tails. 
Note from Figure 15 that the scatter in At* increases 
significantly with y and that there is a trend toward 

greater travel times indicating that the bubble velocity is 
slower than that of the flow outside the boundary layer. 
This is consistent with part of the bubble being within the 
boundary layer. 

Since the electrodes and the hydrophone signals were 
recorded simultaneously, it is possible to correlate the 
acoustic output of each event with the y value for that 
event in order to explore the effect of bubble attachment 
on the noise. Figure 16 presents y as a function of the 
non-dimensional acoustic impulse, I*, for the 50.8cm 
headform at 30% dissolved oxygen content. Most of the 
data is confined to cavitation numbers close to inception 
(low event rates) in order to ensure no overlap between 
events. 
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Fig. 16 Dimensionless acoustic impulse, I*, for the 
50.8cm headform as a function of the electrode signal 
coverage  parameter y. 
■   a=0.64, U0=15m/s; G a=0.60, U0=15m/s; 
♦  o=0.71, U0=11.5m/s o c=0.64, U0=11.5m/s; 
A 0=0.78, U0=9m/s; A 0=0.66, U0=9m/s 

Figure 16 leads to several conclusions. First we focus 
on the data on the left hand side for values of y less than 
0.01. These correspond to unattached bubbles with the 
smallest bubbles having the smallest values of y. In this 
regime the impulse increases with increasing y (i.e. 
decreasing cavitation numbers and increasing bubble 
size) as previously suggested by many authors, for 
example Fitzpatrick and Strasberg [21] and Hamilton et 
al. [22]. Ceccio and Brennen [2] [3] also demonstrated 
that the impulse may be much smaller than this 
maximum. The data here clearly exhibit an upper bound 
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or envelope on the impulse. Vogel et al. [23] have also 
reported that the cavitation noise increases for the case of 
unsheared bubbles as the ratio of the distance to the 
headform and the maximum bubble radius decreases. 

The present data adds to these earlier studies in that it 
shows a clear decline in the impulse when the value of y 
exceeds about 0.02. These y values correspond to 
bubbles which have attached streaks and patches and it is 
apparent that this results in a decrease in the impulse 
associated with the collapse of these events. The largest 
coverage parameters, y, correspond to the lowest 
cavitation numbers and thus to the largest patch cavities. 
The reduction in cavitation noise for these types of events 
can probably be attributed to the fact that the collapse is 
much less coherent, producing high pressure nodes which 
are much smaller in magnitude. 

6. CONCLUSIONS 

In this paper we have presented some of the results 
from a series of experiments carried out in the Large 
Cavitation Channel (LCC) to investigate the scaling of 
the dynamics and acoustics of individual cavitation 
bubbles in flows around headforms. Many of the 
phenomena observed by Ceccio and Brennen [2] [3] in 
experiments on 5.08cm headforms were seen again in the 
present experiments. Such micro-fluid mechanical 
phenomena included the hemispherical shape of 
individual cavitation bubbles, the thin film separating 
them from the surface, the destabilization of that film, the 
occasional production of attached streaks in the wake of 
the bubbles and the complex processes during the bubble 
collapse including bubble fission and roll-up into 
vortices. 

The present experiments yielded substantially lower 
cavitation inception numbers for the larger headforms. 
One result of this was that for the same air content, 
velocity and cavitation number, we observed bubble 
inception on the smallest headform and fully developed 
attached cavitation on the largest. Some of the 
differences in the appearance of individual bubbles on the 
three headforms could be attributed to this large 
difference in inception numbers since it implied quite 
different locations for the critical Cp=-a isobars. The 
most noticeable effect of scale on the appearance of 
cavitation was the increase in bubble-generated attached 
streaks and patches for the larger headforms. On the 
5.08cm headform a traveling bubble would occasionally 
generate two attached streaks or tails at the lateral 
extremes of the bubble. These would disappear almost 
immediately after the bubble collapsed. On the larger 
headforms at higher speeds (larger Reynolds numbers) 
and low cavitation numbers the streaks began to occur 
more frequently and extend behind the entire width of the 
bubble. The streaks would tend to produce a transient 
patch of attached cavitation which would disappear 
shortly after the bubble collapsed. For low enough 
cavitation numbers , however, the patches would persist 
almost indefinitely and create larger attached cavitation 
structures.   It is possible that this is the mechanism of 

formation for most patch cavitation. 
Another new observation during the present 

experiments was the appearance of a remarkably 
repeatable "dimple" on the exterior surface of the 
traveling bubbles on the two larger headforms. These 
seem to appear when the bubble (or headform) is 
sufficiently large which suggests that the dimples are 
influenced by surface tension effects. 

Cavitation event rates were also evaluated from the 
photographs and videotapes and this data clearly 
complements the observations of cavitation inception 
since inception was based on a chosen event rate. The 
event rates increase with increasing headform size and 
with decreasing cavitation number in the expected 
fashion if one assumes a fixed nuclei concentration. 
However the observed increase in the event rates with 
decrease in tunnel velocity are contrary to that which one 
would expect from the lower nuclei flux at lower speeds. 
It suggests that the nuclei population is substantially 
larger when the facility is operated at the lower pressures 
needed to achieve the same cavitation numbers at a lower 
velocity. It is also demonstrated that the event rates 
appear to correspond to a nuclei population of the order 
of 0.1 nuclei/cm3 which is at least an order of magnitude 
lower than the expected nuclei population. We are 
continuing to investigate possible explanations for this 
discrepancy including the bubble screening effect first 
suggested by Johnson and Hsieh [16]. 

The noise generated by individual events and the 
variations in the noise with the type of event were also 
investigated. We first demonstrate that the acoustic 
impulse generated by individual traveling bubbles scales 
quite well with headform size and tunnel velocity and 
that this scaling is in accord with that expected from the 
Rayleigh-Plesset or Fitzpatrick-Strasberg analysis. As 
expected lower cavitation numbers lead to larger bubbles 
and larger impulses as long as the bubbles do not 
interfere with one another or with larger patch cavities. 

As in the previous study by Ceccio and Brennen 
[2] [3] the impulses generated are less than about a third 
of the magnitude predicted by the Rayleigh-Plesset 
analysis. It seems likely that the shearing and fission the 
bubble experiences prior to collapse leads to a less highly 
focused and less "efficient" noise-producing event. The 
present study has added to this information. We have 
shown that the events which generate attached "streaks" 
or "tails" and which represent a greater fraction of the 
events at higher Reynolds numbers also produce 
significantly smaller acoustic impulses. This correlation 
was observed by special cross-correlation of the surface 
electrode signals and the hydrophone output. The above 
observation has clear implications for the scaling of 
cavitation noise. 

Some additional observations were made for those 
conditions at which the cavitation number was small 
enough for persistent attached patches to form and at 
which the void fraction of bubbles in the cavitation 
region became significant. First it was clear that when a 
traveling bubble encountered (or rode over) a patch its 
dynamics   were    altered    and    its    acoustic    output 
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substantially diminished. Secondly like Arakeri and 
Shanmuganathan [19] we also observed a significant 
decrease in the noise when the void fraction was 
sufficiently large so that the bubbles covered about 20% 
of the area in the cavitation region. 

ACKNOWLEDGMENTS 

Large scale experiments like these require help of 
many people and the authors are very grateful to all of 
those who helped in this enterprise. We are very grateful 
to the ONR for their support under contracts 
N00014-91-J-1426 (SLC) and N00014-91-J-1295 (CEB, 
YKdC). We are also extremely grateful to the David 
Taylor Research Center (DTRC) and to their staff 
including W.B. Morgan for making the use of the LCC 
possible for us and to both Scott Gowing and James 
Blanton of DTRC for extensive help with the 
experiments. Po-Wen Yu from the U. of Michigan also 
provided important help with the photography. 

REFERENCES 

1. Ceccio, S.L. 1989. "Observations of the dynamics 
and acoustics of traveling bubble cavitation." Ph.D. 
Thesis. California Institute of Technology. 

2. Brennen, C.E. and Ceccio, S.L. 1989. "Recent 
Observations on cavitation and cavitation noise." 
Proc. ASME Third Int. Svmp. on Cavitation Noise 
and Erosion in Fluid Systems. San Francisco, FED- 
Vol. 88, pp. 67-78. 

3. Ceccio, S.L. and Brennen, C.E. 1991. "The dynamics 
and acoustics of traveling bubble cavitation." J. Fluid 
Mech.. Vol. 233, pp. 633-660. 

4. Kumar, S. and Brennen, C.E. 1991. "Statistics of 
noise  generated   by   traveling   bubble  cavitation." 

■ASME  Cavitation   and   Multiphase  Flow   Forum. 
Portland OR, June 1991, FED Vol. 109, pp. 55-62. 

5. Kumar, S. and Brennen, C.E. 1992. "An acoustical 
study of traveling bubble cavitation." Submitted to I 
of Fluid Mech. 

6. Kuhn de Chizelle, Y., Ceccio, S.L., Brennen, C.E. 
and Shen, Y. 1992. "Cavitation scaling experiments 
with headforms: Bubble dynamics." Proc. Second 
International Symposium on Propeller and 
Cavitation. Hangzhou, China. 

7. Kuhn de Chizelle, Y., Ceccio, S.L., Brennen, C.E. 
and Shen, Y. 1992. "Scaling experiments on the 
dynamics and acoustics of traveling bubble 
cavitation." Proc. Institution of Mechanical 
Engineers. Cambridge, UK. 

8. Lindgren, H. and Johnsson, C.A. 1966. "Cavitation 
inception on headforms. ITTC comparative 
experiments." Proc. 11th Int. Towing Tank Conf.. 
pp. 219-232. 

9. Schiebe, F.R. 1972. "Measurements of the cavitation 
susceptibility of water using standard bodies." St. 
Anthony Falls Hydraulic Lab.. Univ. of Minnesota, 
Rep. No. 118. 

10. Meyer, R.S., Billet, M.L. and Holl, J.W. 1989. 
"Free-stream nuclei and cavitation." Proc. ASME 
Third Int. Svmp. on Cavitation Noise and Erosion in 
Fluid Systems. San Francisco, FED-Vol. 88, pp. 52- 
62. 

ll.O'Hem, T., DAgostino, L. and Acosta, A.J. 1988. 
"Comparison of holographic and counter 
measurements of cavitation nuclei in the ocean." 
ASME J. Fluids Eng.. Vol, 110, pp. 200-207. 

12.0'Hem, T., Katz, J. and Acosta, AJ. 1985. 
"Holographic measurements of cavitation nuclei in 
the sea." ASME Cavitation and Multiphase Flow 
Forum Booklet. FED Vol. 23, pp 39-42. 

13. Morgan, W.B. 1990. "David Taylor Research 
Center's Large Cavitation Channel." Proc. Int. 
Towing Tank Conference. Madrid, Spain, pp. 1-9. 

14. Billet, M.L. 1985. "Cavitation nuclei measurement - 
A review." ASME Cavitation and Multiphase flow 
Forum. Booklet, pp. 31-38. 

15. Gates, E.M., Billet, M.L, Katz, J., Ooi, K.K., Holl, 
W. and Acosta A.J. 1979. "Cavitation inception and 
nuclei distribution. Joint ARL-CIT experiments." 
Rep. E244-1. Calif. Inst. of Tech.. Div. of Eng. and 
Appl. Sciences, Pasadena, CA 91125. 

16. Johnson, V.E. and Hsieh, T. 1966. "The influence of 
gas nuclei on cavitation inception." Proc. Sixth 
Symposium on Naval Hydrodynamics. Washington 
D. C. 

17.Favre, J.N., Avellan, F., Ryhming, I.L. 1987. 
"Cavitation performance improvement using a 2-D 
inverse method of hydraulic runner design." Proc. 
Int. Conf. on Inverse Design Concepts and 
Optimization in Engineering Science-H. Penn. State 
Univ. 

18. Briancon-Marjollet, L. and Franc, J.M. 1990. 
"Transient bubbles interacting with an attached cavity 
and the boundary layer." J. Fluid Mech.. Vol. 218, 
pp. 355-376. 

19. Arakeri, V.H. and Shanmuganathan, V. 1985. "On 
the evidence for the effect of bubble interference on 
cavitation noise." J. Fluid Mech.. Vol. 159, pp. 131- 
150. 

20. Blake, W.K., Wolpert, M.J. and Geib, F.E. 1977. 
"Cavitation noise and inception as influenced by 
boundary layer development on a hydrofoil." J. Fluid 
Mech.. Vol. 80, pp. 617-640. 

21. Fitzpatrick, H.M. and Strasberg, M. 1956. 
"Hydrodynamic sources of sound." First Svmp. on 
Naval Hydrodynamics. Washington DC, pp. 241- 
280. 

22. Hamilton, M.F., Thompson, D.E. and Billet, M.L. 
1982. "An experimental study of traveling bubble 
cavitation and noise." ASME Int. Svmp. on 
Cavitation Noise, pp. 25-33. 

23. Vogel, A., Lauterbom, W. and Timm, R. 1989. 
"Optical and acoustic investigations of dynamics of 
the Laser-produced cavitation bubbles near a solid 
boundary layer." J. Fluid Mech.. Vol. 206, pp. 299- 
338. 

631 



Tip Vortex Roll-Up and Cavitation 
D. Fruman1, C. Dugue1', A. Pauchet2, P. Cerruti3, L. Briancon-Marjolet2 

^Ecole Nationale Sup6rieure de Techniques Advanc6es, France; 
'"University of Minnesota [on leave from Ecole Nationale Superieure]; 

2Bassin d'Essais des Carenes, France; 
3Laboratoire d'Hydrodynamique, France) 

ABSTRACT 

Experiments conducted in three cavitation tunnels with 
elliptical planform hydrofoils, of area ratio 3.8 and mid- 
span chord ranging from 40 to 475 mm, allowed to 
investigate the effects of Reynolds numbers, comprised 
between 4xl05 to 6.8xl06, on tip vortex cavitation. The 
hydrodynamic forces of the hydrofoil were measured for 
Reynolds numbers ranging from 2.5x10s to 2.4xl06. The 
tangential velocity profiles were measured in each one of 
the cavitation tunnels for numerous stations situated 
between the tip of the foil and the trailing edge at mid-span 
and some other stations beyond the trailing edge. Axial 
velocities and turbulence levels were also measured. The 
critical cavitation numbers were determined in the two 
largest cavitation tunnels. From the values of the tangential 
component of the velocity, the local intensity of the vortex 
and the radius of the inner, solid body rotation, region are 
determined. Using their values at the position 
corresponding to the minimum pressure along the vortex 
path, the minimum pressure coefficient is computed and its 
absolute value compared to the desinence cavitation 
number for several flow situations. This comparison is 
very satisfactory and sheds new light on tip vortex 
cavitation interpretation. 

NOMENCLATURE 

a distance to the vortex axis for maximum tangential 
velocity 

b half span 
Cmax maximum chord 
c, lift coefficient 
cr pressure coefficient at the vortex axis 
C   • mimum pressure coefficient at the vortex axis 
i incidence angle 
Po= pressure of the unperturbed flow 

Po pressure at the vortex axis 
r,y distance to vortex axis 
V«, free stream velocity 
Vi tangential velocity 

Va axial velocity 
8 boundary layer thickness 
r tip vortex intensity 
v liquid kinematic viscosity 
p liquid density 
ai incipient cavitation number 
cd desinent cavitation number 

1. INTRODUCTION 

Onset of cavitation occurs on the axis of a tip vortex when 
the pressure there reaches a value equal or below that of 
the vapor pressure of the flowing liquid. The pressure on 
the vortex axis depends on the process leading to the roll- 
up of the vortex sheets and, in particular, on how the 
vortex intensity and the vortex core develops along the 
vortex path. A considerable amount of work has been 
devoted to these matters but, in spite of much effort, a 
conclusive approach allowing to interprete test results on 
cavitation inception and desinence and to extrapolate them 
to Reynolds numbers such as those encountered in 
propeller application has not yet been offered. 

The major ingredients of the alchemy of the 
phenomenology of tip vortex cavitation is in the seminal 
paper by McCormick (1962) published exactly thirty years 
ago. In it, McCormick rules out the possibility of 
estimating the critical cavitation conditions from either a 
completely rolled-up vortex sheet model (far downstream) 
or of a nondistorded vortex sheet model (very near the 
wing). He thus proposes a semiempirical approach in 
which he considers, for the first time, that the boundary 
layer developed over the lower surface of the foil near the 
tip determines the extent of the vortex core. He then 
postulates a power law relation, 8=Re"T, between the 
boundary layer thickness, 8, and the local Reynolds 
number. Re. However, since no detailed velocity 
measurements in the region very near the tip were 
available at that time, in McCormick's original work 
(McCormick (1954)) the flow at the tip of the foil is 
analyzed as being the result of the velocity field induced 
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by the distribution of circulation along the wing span. The 
flow is then very much similar to the one around the edge 
of a flat plate so that the maximum "tangential" velocity at 
a distance from the tip a, supposed to be the core radius 
and small as compared to the half span, is proportional to 
a "°-5. It should be pointed out that this computation 
assumes, wrongly (see Van Dyke (1964)), that the lifting 
line theory is valid up to the tip of the foil. Since the 
rninimum pressure coefficient will scale with the square of 
the maximum velocity, the critical cavitation number will 
be roughly inversely proportional to the core radius This 
leads McCormick to establish, based on his experiemental 
data for Reynolds numbers, computed with the free stream 
velocity and the chord, ranging from 2x10s to 3xl06, that 
the power index r is 0.35, different from the values of 0.5 
and 0.2 for respectively laminar and turbulent boundary 
layer over a flat plate. This situation is resolved by 
McCormick (1962) by saying that the value obtained is 
reasonable because comprised between the two referred 
extreme values. The fact that McCormick's data extend 
from the laminar to the turbulent regime does not justifies 
that the power index should be comprised between these 
values. Indeed, Billet and Holl (1979) have already pointed 
out that the critical cavitation number should scale as the 
inverse of the square of the vortex core radius if a potential 
vortex behaviour is postulated. In that case the critical 
cavitation number should scale as Reynolds to the power 
0.4 if a turbulent boundary layer behaviour is assumed. 
This is what the direct plotting of McCormick (1962) 
results show for rectangualr foils at 4 and 8° incidence. 
Moreover, in a recent investigation, Fruman et al. (1991) 
have related the core radius to the desinent cavitation 
numbers, a<j- °f elliptical planform wings having identical 
cross sections and operating at the same incidence angle 
by the same relationship, a=c<f1/2- They showed that a 
behave very much as the thickness of a flat plate boundary 
layer in the transitional regime (Schlichting (1979)) for 
Reynolds numbers comprised between 0.6 and 6x10s and 
can not, thus, be fitted by a power law. Moreover, beyond 
the transitional regime, the evolution of the vortex core 
radius is analogous to that of a turbulent boundary layer 
(a=Re"°-2). These results were further substantiated by 
detailed laser velocimetry measurements of the tangential 
velocity profiles along a vortex path from the tip of an 
elliptical wing to a distance downstream where roll-up has 
been  completed.   These  measurements  allowed   to 
determine the evolution of the local core radius with 
distance and to compare it with the mid-span boundary 
layer thickness (assumed to be equal to that of a flat plate 
of equal length). The order of magnitude of the core radius 
is indeed comparable to the boundary layer thickness. 
McCormick's introduction of the boundary layer thickness 
concept is thus highly justified despite the fact that there is 
a disagreement concerning its variation with Reynolds 
numbers. 

The minimum pressure coefficient on the axis of the 
vortex will be also directly related to the local vortex 
circulation at the point of minimum pressure. This leads to 
two different problems. First, the vortex intensity to be 
taken into account is proportional to the mid-span bound 
circulation of the foil. Therefore, a good knoweledge of 
the actual lift coefficient is necessary to fully interpret 
results   which  otherwise  display  quite  unexpected 

behaviours. This question has been recognized by Platzer 
and Souders (1979), but effects of Reynolds number and 
free stream turbulence seem to have been underestimated 
in many cases. As an exemple, Arndt et al. (1991) found, 
based on a theoretical value of the lift coefficient, only a 
fraction of the bound circulation in the vortex while more 
recent experimental results by Arndt and Dugu6 (1992) 
show that actual lift of the foil is only 75% of the 
theoretical one. Second, there is a controversy about where 
the rninimum pressure occurs along the vortex and how far 
downstream of the tip one has to perform tangential 
velocity measurements in order to determine its location. 

Several contributions to the computation of the rninimum 
pressure on the vortex have been recently published. Li all 
cases, the way authors operated was to measure, either by 
Laser Doppler Velocimetry (LDV) (Stinebring et al. 
(1991), Arndt et al. (1991), Fruman et al. (1991)) or 
double pulse holography (Green (1988, 1991)), the 
"tangential" velocity profiles of the vortex at varied 
distances from the tip of the hydrofoils and to integrate the 
radial momentum as if the vortex was axisymmetrical. 
This procedure can certainly be criticized because the 
velocity profiles are not, at the selected stations, those of 
an axisymmetrical vortex and, therefore, account of the 
whole velocity field has to be taken. However, and in spite 
of this limitation, the results obtained are very interesting 
and a review of these recent contributions will be highly 
valuable. 

Arndt et al. (1991) used an elliptical planform hydrofoil 
with area ratio of 3, Reynolds numbers, based on the free 
stream velocity and the base chord length, comprised 
between 3x10s and 11.5x10s, and LDV systems for 
measuring the axial and "tangential" velocities. It should 
be pointed out that the velocities were measured on a 
direction normal to both the free-stream direction and the 
axis of the hydrofoil at distances from the tip comprised 
from 0.47 to 3.77 maximum chord and a Reynolds number 
of 5.6x10s. Notice that 0.47 maximum chord from the tip 
correspond to the foil trailing edge at mid-span, thus, far 
from the tip. Co,,,!,, was computed by numerically 
integrating the radial equilibrium equation for the velocity 
distribution on each side of the vortex axis. The results 
show that the nünimum pressure coefficient for the suction 
side of the velocity profile are generally smaller than those 
for the pressure side and that on both sides they vary with 
downstream location. Moreover, even if the value of the 
inception cavitation number is bracketed by the estimates 
of -Cpmin the authors claim that other effects should be 
considered. They argue that although the incipient 
cavitation number will tend to diminish if the operating 
pressure of the cavitation tunnel is larger prior to the tests, 
this tension effect will be cancelled by the contribution of 
the fluctuating component of the pressure field. However, 
a more recent result by Arndt and Dugue" (1992) show a 
good agreement with the incipient cavitation number, 
"raising a question concerning Arndt and Keller's (1992) 
conclusion that the measured differences between -Cpmin 

and 0j can be accounted for by flow unsteadiness in the 
vortex". Moreover, and as it was signaled above, Arndt et 
al. (1991) questioned the validity of estimating -Cpn^, by 
the techniques used in the presence of a strong 
asymmetrical velocity profile and possibly large axial flow 
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velocities in the vortex core (not shown in the referred 
paper but in Arndt and Keller (1991)). 

Green's (1991) work differs from the above because he 
employed the double pulsed holography technique to 
determine the axial and tangential velocity profiles and the 
single pulse holography to obtain the pressure on the 
vortex axis at distances from the tip larger than one chord. 
Tests were performed with a rectangular planform 
hydrofoil with aspect ratio of 2.3 in a cavitation tunnel 
characterized by a very low free stream turbulence level. 
Velocity measurements were reported for a Reynolds 
number of 6.83x10s and cavitation inception data for a 
Reynolds number of about 106. By partly using the 
tangential velocity data for a 10° incidence angle, the 
author makes an estimation of -Cp,^ leading to a value of 
4.38±0.4. From single pulse holography of bubbles he 
determines a value of 3.3+0.5, which he claims to be 
independent of distance, much lower than the one 
estimated from the velocity profiles. After some discussion 
his best estimate of -Cpmin is set equal to 3.8±0.6; 
"inferring the mean core pressure from measurements of 
tangential velocity seems to be viable". The values of the 
incipient cavitation number, for the same incidence angle, 
are comprised between 4.2 and 2.6 depending on the air 
content of the recirculating water. Either surface tension 
effects or pressure unsteadiness are considered by Green to 
explain the disagreement between the cavitation data and 
the minimum pressure coefficient (3.8±0.6). In Green 
(1988) it is signaled that the trailing vortices meander 
laterally by 0.01 or 0.02 m (up to 14 % of the chord 
length) at about a mean location for a distance larger than 
three chords .This is a situation which seems unique to 
these experiments. In Arndt et al. (1991) and Green 
(1991), the pressure coefficients on the vortex axis were 
computed from velocity profiles determined far from the 
tip and their values are not in agreement with the critical 
cavitation numbers. 

Stinebring et al. (1991) conducted tests with a trapezoidal 
planform hydrofoil with an aspect ratio of 1.28 for 
Reynolds numbers close to 5xl06 (well in the turbulent 
regime) and measurements of the three components of the 
velocity (axial, parallel to the foil span (radial) and normal 
to both (tangential)) were made by means of a three 
components LDV system at 0.073 and 0.667 tip chord 
downstream the tip. They mapped the velocity field on a 
plane normal to the axial flow at 0.067 tip chord (where 
cavitation onset occurs) and showed that the flow outboard 
of the hydrofoil follows nearly a circumferential path 
about the vortex center while, inboard, there is a strong 
radial flow away from the vortex center. This means that, 
outside the hydrofoil wake, the radial component is 
negligible small on a straight line drawn horizontally (the 
foil is also horizontal) through the vortex center. An 
estimate of the minimum pressure coefficient, Cp,^, in 
the vortex center (-0.82) was obtained by numerically 
integrating the radial equilibrium equation for the 
tangential velocity profile obtained nearest the tip. Its 
absolute value compares favorably to those of the incipient 
(0.6) and desinent (0.8) cavitation numbers. It should be 
noted that, since the absolute value of the pressure 
coefficient is in both cases larger than the critical 
cavitation number, the difference can be accounted for by 

surface tension effects on the nuclei. No explicit mention 
of vortex wandering was made by the authors. 

In their approach of the problem Fruman et al. (1992) 
determined the critical cavitation conditions of an elliptical 
planform hydrofoil of area ratio 3.8 and symmetric NACA 
16020 cross section. They also measured the "tangential" 
velocity distribution, over axes parallel to the foil span, for 
5 and 10° incidence angles and, respectively, 15 and 
13 m/s, corresponding to Reynolds numbers of 1.2 and 
l.OxlO6, for stations comprised between the tip of the wing 
and four maximum chord downstream (four stations were 
comprised between the tip and the mid-span trailing edge). 
Instead of conducting a numerical integration of the radial 
equilibrium equation using the velocity data, as for 
Stinebring et al. (1991), Arndt et al. (1991) and Green 
(1991) the authors proceeded in the following way : first, 
the profile outside the wake is fitted with a Lamb (1945) 
model and simultaneously corrected for image effects due 
to the lateral tunnel walls; second, the local vortex 
circulation is made non dimensional with the mid-span 
bound circulation (computed from actual lift 
measurements); third, the vortex core is made non 
dimensional with the mid-span boundary layer thickness 
(assumed to be equal to that of a flat plate of equal length); 
fourth, from the local vortex intensity and the vortex core 
radius the local minimum pressure is computed by 
replacing their values in the integration of the radial 
equilibrium equation for a Lamb velocity profile. The 
following conclusions were drawn from the results of the 
above procedure : i) vortex roll-up leads to a local 
circulation of about 25% of the mid-span bound circulation 
at the tip of the wing; ii) the vortex core radius is very 
close to the mid-span boundary layer thickness (computed 
as for a flat plate) at one half of the maximum chord from 
the foil tip; iii) a minimum of Cpmjn occurs at a distance of 
about one eight of a chord downstream of the tip and 
iv) -Cpnjij, is in agreement with the desinent cavitation 
number of the foil for the same incidence angles and test 
velocities. The good agreement between the cavitation 
results and the ones issued from the "tangential" velocity 
profiles led to a detailed analysis of data obtained during 
these tests and previous ones for much smaller Reynolds 
numbers with a geometrically similar foil. The main 
conclusions of this analysis have already been detailed in 
the beginning of this introduction. Finally, in Stinebring et 
al. (1991) and Fruman et al. (1991) there is good 
agreement between the minimum pressure coefficient 
computed at the position where cavitation occur along the 
vortex path; that is to say in the region very near the tip of 
the wing. 

It can thus be said that there are still major unresolved 
questions concerning tip vortex cavitation and that there is 
ample room for other contributions. The objective of the 
present one is to make use of the rationale developed by 
Fruman et al. (1992) to conduct tests in three different 
cavitation tunnels on geometrically similar hydrofoils, of 
elliptical planform and cross section NACA 16020, for 
flow conditions allowing a large range of Reynolds 
numbers to be investigated. The program encompasses 
several tasks which are summarized below : 
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a) Measurement of the hydrodynamic forces of two of the 
foils in order to fully characterize the Reynolds number 
effects on, in particular, the lift coefficient. In this 
investigation, Reynolds numbers have been increased up to 
the situation where a near plateau was obtained for the lift 
coefficients. The details of the lift coefficient versus 
Reynolds number and incidence angles evolution are 
essential for interpreting and discussing the critical 
cavitation number data on one hand and the Cpn 

on the other. 
, values 

Table 1 : Foils dimensions and free stream velocity range. 

FACILITY Chord, Half-span, Min. 
veloc, 

Max. 
veloc, 

mm mm m/s m/s 
ENSTA 40 60 3 10 
Ecole Navale 80 120 3 15 
Bassin des 475 712.5 2 20 
Carenes 

b) Measurement of the "tangential" velocity profiles in 
each one of the cavitation tunnels for a given incidence 
angle (-10°) of the foils. They were performed for 
numerous stations comprised between the tip and the 
trailing edge at the mid-span, allowing a very detailed 
description of the roll-up process in the very near region, 
and for stations sufficiently far downstream to obtain 
information on the completion of the vortex roll-up. Axial 
velocity and turbulence data were also obtained in two of 
the cavitation tunnels. These detailed measurements 
complete and extend those presented by Fruman et at. 
(1991). 

c) Measurements of both the incipient and desinence 
cavitation numbers in the three cavitation tunnels as a 
function of incidence angle and Reynolds numbers. As in 
McCormick's work (1962) the analysis of cavitation data 
was limited to desinent conditions. 

The analysis of the data is conducted in the following way: 

1) From the lift coefficients it is easy to obtain the mid- 
span bound circulation value for all flow conditions 
investigated. 

2) From the "tangential" velocity profiles the local vortex 
intensity can be obtained and related to the mid-span 
bound circulation. Also, either by considering the distance 
to the axis where the maximum of the velocities occur or 
by fitting a Lamb profile through the whole velocity 
profile, the radius of the local core can also be reached. 
The core radius is then related to the thickness of the 
boundary layer, assumed to be that of an equal length flat 
plate. 

3) With the results from 2), the minima of the pressure 
coefficient at the vortex axis, Cp,^, along the vortex path 
is obtained and compared to the desinent cavitation 
number. 

2. EXPERIMENTAL FACILITIES AND PROCEDURES 

Experiments were conducted in three cavitation tunnels, 
whose geometry and operating conditions are given later, 
using elliptical planform hydrofoils of area ratio 3.8 and 
identical NACA 16020 cross sections. The foils are scaled 
according with the test section dimensions of the tunnels. 
Table 1 summarizes the foils dimensions and the free 
stream velocity range. 

A limited number of tests were also conducted at the 
Bassin des Carenes with a hydrofoil of identical planform 
but cross section NACA 0020. 

2.1. Tests in the ENSTA cavitation tunnel (ECT) 

The hydrofoil was mounted horizontally on one of the 
vertical walls of the 150 mm height and 80 mm width test 
section of the ENSTA cavitation tunnel. The tangential 
components of the velocities of the vortex issued from the 
tip of the foil were measured for 10.6° incidence angle and 
a free stream velocity of 9 m/s (Reynolds number of about 
3.6x105) at fourteen stations situated at a distance, 
measured from the leading edge at the mid-span, of 0.5, 
0.525, 0.55,0575, 0.625,0.675,0.75, 0.875,1,1,5, 3,5.5, 
8 and 10.5 maximum chord. 

The LDV system operated in the backscatter mode using a 
150 mW nominal laser, a TSI fiber optics and a Intelligent 
Flow Analyser IFA 550 from TSI. For the optical 
arrangement chosen, the measuring volume is about 
200 urn long. The displacement of the optics is controlled 
automatically by means of a Macintosh II with step widths 
as small as 20 fim. The data rate, was increased by seeding 
the circulating water with Iriodine. The axial turbulence 
level in the test section, measured in the absence of the 
hydrofoil, was less than 2%. Lift and drag measurements 
were performed using a two components strain gage 
balance. 

2.2. Tests in the Ecole Navale cavitation tunnel (ENCT) 

The hydrofoil was mounted horizontally on one of the 
vertical walls of the 192 mm side and 1 m long square test 
section of the Ecole Navale cavitation tunnel at 300 mm 
from the entrance. Air content was keep in the 2 to 3 ppm 
range. The free stream turbulence was 1.5%. All 
instantaneous values of the operating parameters were 
recorded in order to compute the actual Reynolds and 
cavitation numbers. 

Lift and drag forces were measured using a two- 
component strain gauge balance whose calibration, prior to 
the tests, showed a linear response in the range of forces 
expected, up to 170 daN for lift and up to 18 daN for drag. 
In order to extend the range of Reynolds numbers for 
which force coefficients were known, measurements were 
conducted with a homothetic hydrofoil of 80 mm half span 
and 60 mm chord for free stream velocities comprised 
between 15 and 40 m/s at the Institut de Machines 
Hydrauliques et de Mecanique des Fluides (IMHEF) of 
Lausanne (Switzerland). 

The axial and "tangential" components of the 
velocity of the tip vortex were measured at stations 
situated at 0.5, 0.525, 0.55, 0.575, 0.625, 0.675, 0.75, 
0.875, 1.0, 1.25, 1.5, 2, 2.5 and 4 maximum chord 
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downstream the leading edge at mid-span using a Dantec 
two components (three beams) LDV operating in the 
backscatter mode with a 5 W Argon ion laser source. For 
the optical configuration selected, the measuring volume is 
0.5 mm long and 0.04 mm wide. The backscattered signal, 
acquired by two photomultipliers and treated by two 
Dantec enhanced Burst Spectrum Analyzers (BSA) 
57N20 and 57N35, is processed by an IBM PS/2 
microcomputer using the Dantec Burstware software. The 
liquid was seeded with Iriodine in order to increase the 
data rate. Velocities were measured on four hundred 
positions separated by a minimum step width of 30 \an for 
a 10° incidence angle and a free stream velocity of 
13.5 m/s. 

2.3. Tests in the Bassin des Carenes Cavitation Tunnel 
(GTH) 

The hydrofoil hangs vertically from the top horizontal 
wall of the 1.14 m side square test section of the GTH 
(Grand Tunnel Hydrodynamique) (see Lecoffre et al. 
(1987) and Briancon and Frechou (1992)). The tip of the 
foil was situated at 1.26 m from the entrance and the tip 
vortex cavitation could be then visualized over the 
remaining 4.74 m of the test section length. The foil 
incidence was modified manually through a mechanical 
system installed on the test section cover. Since no force 
balance was available for these tests, the zero incidence 
angle was set by geometrically checking, prior to 
installing the cover, its position with respect to the cover 
lateral sides. Once in the test section, the zero incidence 
angle was verified by performing tip vortex desinence 
experiment at negative and positive angles of attack and 
determining the position insuring the symmetry of the 
results. The zero position is known with a precision of 
±0.5°. Incidence angles were varied between 0 and 13.5°. 
Data reported here were obtained without nuclei injection 

• at oxygen contents of about 3.2 ppm. The axial free 
stream turbulence level was between 0.3 and 0.5 %. 
Operating conditions were continuously monitored and 
recorded on the video images used to determine "off-line" 
the critical cavitation conditions. 

Axial and "tangential" velocities were measured with a 
two components (three beams) forward scattering LDV 
system using a 15 Watt Argon source at stations situated 
at 0.58,0.6,0.7, 0.8,1,1.7, 2.6,3.5 and 4 maximum chord 
downstream the mid-span leading edge. Because of the 
extremely large distance between the emission and 
reception optics, their position was simultaneously 
monitored by two three-axis independent computer- 
controlled (Dantec) traversing mechanism systems. The 
measuring volume, of 4.7 mm long and 0.18 mm wide, 
was positioned with a precision of ±50 jim and the steps 
size (0.25 to 5mm) were adapted to the local tangential 
velocity gradients. LDV data were analyzed using two 
Dantec BSA and stored on a PC computer for further 
treatment 

2.4. Critical cavitation number measurements procedure 

Tip vortex cavitation inception and desinence were 
obtained from direct visual observation of the test section 
or by delayed inspection of video recordings of the region 

close to the tip of the wing (for the GTH tests). In all 
cavitation tunnels, visualization was improved using 
stroboscopic light sources. Except when otherwise 
specified, test were conducted at constant cavitation 
number (constant free stream velocity and test section 
pressure) by slowly varying the incidence angle of the foil 
until cavitation onset occurred. The incidence was then 
increased slightly to obtain a well developed tip vortex 
cavitation and desinence conditions were obtained by 
reducing the incidence angle. Cavitation inception is 
critically dependent, Arndt et al. (1991), upon the water 
quality characterized, essentially, by the nuclei and gaz 
content. Thus, in the present work desinent cavitation 
numbers have been used throughout since, as already 
mentioned by McCormick (1962), they are much less 
sensible to changes in water quality. 

2.5. Velocity measurements procedure 

Figure 1 shows the coordinate axis and the way the 
velocity profiles were determined in the three cavitation 
tunnel. 

I Positions x for all stations are measured 
I from the leading edge at mid-chord. 

Fig. 1 : Foil arrangement, coordinate system and velocity 
components measured in the three cavitation 
tunnels. 

One of the major problems associated with the LDV 
measurements is to be sure that the measuring volume 
coincides with the center of the vortex. This was done by 
first making the point of crossing of the laser beams to 
coincide with the cavities convected in the vortex path for 
a cavitation number slightly below critical. Second, the 
vertical velocity component on a vertical axis was 
determined for a short distance on both sides of this 
position. The extremum of the velocity corresponds to the 
effective location of the vortex axis. 

It should be mentioned that vortex wandering was very 
limited in all the tests reported here. For example, a 
comparison of photographs of a cavitating tip vortex taken 
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in the ENCT at low (10"s s) and high (0.5 s) exposure 
times for the same flow conditions indicates that the 
amplitude of the vortex meandering can be estimated in 
the near region (about one chord from the tip) to be less 
than 100 um. Li the GTH, at about the same position, the 
amplitude is about 1 mm, roughly scaling with the foil 
size. For the farthest velocity profile obtained, the 
maximum wandering amplitude was about 5 mm. This is 
only one percent of the foil chord, well below the vortex 
meandering (14 % of the chord length) reported by Green 
(1988) for tests performed with a rectangular foil at 
Reynolds numbers probably within the transitional regime. 

3. RESULTS 

3.1. Force measurements 

Figure 2 shows the lift and drag coefficients as a function 
of the incidence angles determined from measurements 
conducted at the ENCT. Reynolds number effects are 
particularly dramatic on the lift coefficient since, at 10° 
incidence angle for example, it falls from 0.75 at 
Re=2.5xl05 to 0.3 for Re=1.2xl06. Tests conducted at the 
Institut de Machines Hydrauliques et de Micanique des 
Fluides (IMHEF) of Lausanne have fully confirmed the 
data obtained at the ENCT on one side and have allowed 
to obtain data for Reynolds numbers of up to 2.4xl06. 
Figure 3 shows for several incidence angles the lift 
coefficients as a function of Reynolds numbers. For 
Reynolds numbers lower than those for which laminar to 
turbulent transition is expected to occur (^xlO5) the lift 
increases very rapidly, besides for the very small angles, 
while it remais nearly constant for Reynolds numbers 
exceeding 106. The results obtained in the ECT in the 
range of Re<4xl0s are in general agreement, although a 
little bit smaller, with those measured at the lowest range 
of Reynolds in the ENCT. The difference in the lift 
coefficient values can be due essentially to the difference 
in the wing confinement in the two test sections. When 
analyzing the results, the mid-span bound circulation will 
be computed from the lift coefficients by, 

_       Cl (i,Re) V» Cmax 
10 =  

2 

3.2. Velocity Measurements 

3.2.1. Tangential velocities 

Figure 4 shows results obtained in the ECT at an incidence 
angle of 10.6 and a free stream velocity of 9 m/s. The 
vertical (= tangential) component of the velocity,Vt, 
normalized with the free stream velocity V„, is plotted for 
stations comprised between the tip of the wing and the 
trailing edge at mid-span. It should be pointed out that 
even if as much as 320 measurements have been made 
over spanwise positions comprised between y/Cmjj^O.4 

with a minimum radial step of 40 Jim, only a reduced 
number of data points have been reported in order to make 
the figure easily readable. Even though, there is a 
remarkable good definition of the velocity profiles, in 
particular in the core region. It has also to be signaled that, 
because the short distance between the tip and the lateral 

wall of the test section (only 20 mm) the raw results have 
been corrected to account for image effects. 

o □ A • ■ ▲ + 

10"5 Re 2.5 4.1 5.5 7.1 8.9 10.4 12.0 

Fig. 2 : Hydrodynamic coefficients versus incidence angle 
for the elliptical foil NACA 16020 cross section 
and different Reynolds numbers, a) lift 
coefficients, b) drag coefficients. Data obtained in 
the ENCT. 
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Fig. 3 : Lift coefficients as a function of the Reynolds 
number for different incidence angles. Data 
obtained in the ENCT and the IMHEF cavitation 
tunnel. 
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Figure 4 :   Tangential velocities as a function of distance to the vortex axis for different axial stations. 
ECT data for i=10.6° and V„,= 9 m/s. 
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Figure 5 :   Tangential velocities as a function of distance to the vortex axis for different axial stations. 
ENCT data for i=10° and ^=13.5 m/s. 

640 



These results improve considerably those presented by 
Fruman et al. (1991) and show some very interesting 
features of the flow in the very near region of roll-up. At 
the wing tip, there is already a clear indication of the 
initiation of a vortical structure, comprising a rotational 
zone where the velocities are proportional to the radial 
distance, and, as it will be shown later, a potential region 
outside. The maximum velocity, very precisely measured, 
increases when moving downstream and, simultaneously, 
the rotational zone develops for negative values of the 
spanwise distance (inboard). For x/cmax=0.575, only 3 mm 
downstream the tip, the rotational zone is well developed 
and the beginning of the symmetrical potential region 
occurs. From there on the maximum and the minimum of 
the velocities are nearly equal (to within 0.3%), showing 
thus that the square of the ratio between the two extremum 
can not be used in here as a parameter pertaining to vortex 
roll-up completion, as suggested by Stinebring et al. 
(1991). At x/cmax=0.625, the maximum velocity is the 
largest and the influence of the wing wake inboard 
becomes evident as shown by the downwash velocities 
already present. The wake effect develops downstream 
while the maximum velocity reaches a near plateau whose 
value is slightly larger than 0.6 V„. Since the pressure on 
the vortex axis will be closely related to the square of the 
maximum tangential velocity, whatever the velocity 
distribution is and even if the flow is not axisymmetrical, it 
is clear that measurements not conducted in the very near 
field, less than a chord from the point of initiation of the 
vortex roll-up, will be meaningless from the point of view 
of its cavitation implications. These results show also the 
need to conduct measurements with an extremely good 
spatial definition in order not to miss the pecularities of the 
velocity profiles in the core region, where good quality 
data are necessary to obtain reasonable estimates of the 
vortex core size, and to achieve a good description of the 
whole transitional and potential region. 

In Figure 5 the results obtained in the ENCT for an 
incidence angle of 10° and a free stream velocity of 
1'3.5 m/s are shown. The'distance investigated on both 
sides of the vortex axis has been reduced to ±0.15 Cm,*. 
Comparison with the velocity profiles of Figure 4 shows 
that the vortex roll-up is also already initiated at the wing 
tip. Moving downstream clearly demonstrate that the 
velocities behave nearly in the same way in both cavitation 
tunnels in spite of the fact that the Reynolds number has 
been increased by a factor of three (3.6x10s in the ECT 
and 10.8x10s in the ENCT). The absolute values of the 
maximum and minimum velocity are nearly equal from the 
station x/cmax=0.525 on and are very close to 0.6 V„,. The 
solid body rotation region extends inboard from this same 
station. Figure 6 shows that for the velocity profile 
obtained at x/cmax=2.5, symmetry has been achieved on 
both sides of the tip vortex axis. 

The improvement in the spatial definition of the tangential 
velocity profiles in the ECT and the ENCT, as compared 
with earlier results by Fruman et al. (1991), is remarkable 
and offers new insights on the way roll-up develops in the 
very near region. In perticular, the present results clearly 
demonstrate that symmetry is achieved very rapidly 
downstream of the tip. 

15   -0.10    -0.05       0      0.05     0.10    0.15 

Fig. 6 : Tangential velocities as a function of distance to 
the vortex axis for x/cmax = 2.5. ENCT data for 
i =10° and V„. =13.5 m/s. 

Since the velocity profiles obtained at the GTH were 
measured along axes at 90° from those used in the ECT 
and the ENCT, there are marked differences as can be seen 
in Figure 7 for a 10° incidence angle and 10 m/s free 
stream velocity. The most significant is the strong 
disymmetry between the measurements conducted on the 
suction and on the pressure side. On the suction side the 
maximum velocity increases considerably over a very 
short distance, from x/c^^O.SS to 0.60, and decreases 
steadily from there on. On the pressure side, the maximum 
of the absolute value of the velocity is very small for the 
first velocity profile (x/cm„=0.58) and increases steadily 
up to a distance x/Cn^lJ. It is very interesting to note 
that for the station situated at x/cmax=0.6, a small 
"accident" occurs on the pressure side very near the axis. 
This accident moves outside, as can be seen by considering 
the velocity profiles in Figure 7, and fades away for a 
distance of about two chords downstream. Figure 8 shows 
that this "accident" persist in the velocity profiles obtained 
at x/Cnj.j^O.S for three flow conditions. This "accident" is 
very much analogous to the one signaled by Arndt and 
Keller (1991), who performed their measurements in the 
same way that at the GTH and attributed it to a secondary 
vortex. However, we recall that no such "accident" has 
been noticed in the results obtained at the ECT and the 
ENCT. 

3.2.2. Axial velocities 

The measurements conducted in the ENCT have 
demonstrated that the axial velocity profiles remain nearly 
equal to the free stream velocity everywhere but in a 
region very close to the vortex axis, Figure 9. An excess 
velocity of about 30% exists on the axis of the vortex at 
the wing tip and is conserved two millimeters downstream. 
However, it rapidly fades away to finally show, at a 
distance of two chords downstream, a weak velocity 
defect. In the GTH the behavior is much more complex. 
Indeed, in the region very near the tip, Figure 10 shows 
that the velocities increase by about 10% for distances 
comprised between y/Cm^sdö.l and that, around the axis, 
strong defect and excess velocities, the former of about 
0.85 V„, and the later of up to 1.63 V„, are superimposed. 
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Figure 7 :   Tangential velocities as a function of distance to the vortex axis for different axial stations. 
GTH data for i=10° and VTC=10 m/s. 
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Figure 9 :   Axial velocities as a function of distance to the vortex axis for different axial stations. 
ENCT data for i=10° and V =13.5 m/s. 
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Figure 10 : Axial velocities as a function of distance to the vortex axis for different axial stations. 
GTH data for i=10° and ¥„=10 m/s. 
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The profiles relax downstream but, even at a distance of 
four cords, a jet behavior with an excess velocity of 
1.25 V„ persists. The signature of the secondary vortex of 
Arndt and Keller (1991) is seen on the pressure side for a 
distance of about half chord downstream the tip. 
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Fig. 8 : Tangential velocities as a function of distance to 
the vortex axis for x/cmax = 0.8. GTH data for a) 
i=10° , V.„ =10 m/s, b) i=6° , v., =10 m/s and c) 
i=10o,VM=6m/s. 

3.2.3. Tangential and axial turbulence 

Figure 11 gives the RMS value of the tangential 
component divided by VM at x/cmax=1.0 in the three 
cavitation tunnels. As shown, the background level is 
comparable, of the order of 1 to 1.5%, outside a radius of 
about 0.05 maximum chord. Within this region the 

turbulence level increases up to slightly more than 20% in 
the ECT, to slightly more than 55% in the ENCT and up to 
62% in he GTH. It is interesting to note that being on the 
wake side (as in the ECT and ENCT) does not introduce 
any significant change of the background turbulence in 
spite of the fact that, as shown above, the induced 
velocities are quite important. It should also be mentioned 
that a maximum relative fluctuation of 78% was measured 
in the GTH for the station situated at ^(^^=0.6. 

The behavior of the RMS of the axial component in the 
GTH is analogous to those of the tangential component. 
This is shown in Figure 12 were it can be seen that the 
background turbulence is about the same for both 
components, that the maximum of the relative RMS of the 
axial component is close to 55% and is situated on the axis 
(as for the tangential component) and that the lateral 
extension of the region where the increase occurs is the 
same for both components. A small but noticeable 
"accident" can be seen on the pressure side in the 
immediate vicinity of the axis. This accident is the 
turbulence counterpart of the one signaled already in 
§§ 3.2.1 and 3.2.2.. 
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Fig. 11 : RMS value of the tangential component divided 
by V„, as a function of distance to the vortex axis 
for x/Cmax = 1 in the three cavitation tunnels. 
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Fig. 12 : RMS value of the axial component compared to 
the RMS of the tangential component (both 
divided by V^ ) as a function of distance to the 
vortex axis for x/c,nax = 1 at GTH. 
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3.3. Critical cavitation numbers 

The cavitation number is defined as usual by, 

,p--pv 0 = 2'- 
pVi 

(1) 

where j>v is the vapor pressure at the temperature of the 
flowing water. Indices i and d are used for inception and 
desinence conditions respectively. 

As an example, Figure 13 presents the inception and 
desinence cavitation numbers obtained for free stream 
velocities of 10 m/s in the GTH and the ENCT with the 
NACA 16020 cross section wings. The scatter of the 
results in the ENCT gives a good idea of the error 
associated with the visual detection of the cavitation onset 
and desinence. It should be pointed out that tests 
performed by different manipulators have shown a 
remarkable good repeatability of the results. This is shown 
in Figure 14 where data presented by Fruman et al. (1991) 
for desinence condition are compared to those of the 
present tests. 

3    - 

a 
a 

a 
D 

o 
D 

ENCT 
GTH 

ft 
a»*s 

oo 

0O 
,o 

"$ 
file 

C3   D 

10      12      14      16 

2    - 

1    - 

Od D 
c o 

a 
D O 

a    « 

.          ft*' 

1                1                1                1 

O 

O ENCT 
D GTH 

i,fi 

■         i 

2       4        6        8       10      12      14      16 

Fig. 13 : Incipient and desinence cavitation numbers as a 
function of incidence angle. ENCT and GTH data. 
V„=10m/s. 

By interpolating through the data points, it is possible to 
establish the curves giving the critical desinence number 
for constant incidence angle as a function of Reynolds 
numbers. For 8, 10 and 12°, Figure 15 shows the results 
obtained in the ENCT and the GTH. 

In order to demonstrate the very strong influence of the 
wing cross section on the desinence conditions, Figure 16 
reports the results obtained with the two elliptical foils 
with cross section NACA 16020 and 0020 at a Reynolds 

number of 5.2 106 in the GTH. The differences are as 
dramatic as those shown by Arndt and Dugu6 (1992) for 
another elliptical foil of area ratio 3 and cross section 
NACA 662-415, a=0.8, compared to one of our NACA 
16020 foil results. 
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Fig. 14: Desinence cavitation numbers as a function of 
incidence angle for tests performed at ENCT. 
Comparison of Fruman et al. (1991) and present 
results. 
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4. ANALYSIS AND DISCUSSION 

4.1. Tangential velocities 

From a close inspection of the tangential velocity results it 
is clear that the flow is very much three-dimensional in the 
region extending from the tip to the trailing edge at mid- 
span. From this position on the hypothesis of axisymmetry 
can be considered as a good approximation although it is 
only after about two chords that it is fully valid. Whatever 
the precise shape of the velocity profile is, the pressure on 
the vortex axis will always be proportional to the square of 
the ratio between the maximum of the tangential velocity 
and the free stream velocity, 

\12 

0.714 T(x) = 1 

Cp(x) = -2 VKxTdr. 

Vl   r 
.-k iW 

V- 
(2) 

where k depends on the shape of the velocity profile. 
Figure 17 is a plot of the square of ^^^=0-5 (V^- 
v train) for ^ °f äi& profiles shown in figures 4, 5 and 7 
(provided V^^, is actually measured) and of the maximum 
non dimensional tangential velocity for the data presented 
in figures 4 and 5. It clearly shows that, in spite of the very 
significant differences of Reynolds numbers, covering 
more than two decades, of lift coefficients and of 
experimental configurations, there is a clear analogy 
between all these results. The smallest value of Cp^x) 
should occur at the station where the maximum tangential 
velocity is the largest; thus, for short distances downstream 
the tip. 

Because the maximum velocity data shows a relatively 
good qualitative agreement, it seems natural to pursue 
further our analysis of the data. 

Let us assume that, in spite of the 3-D character of the 
velocity field in the near region, a good approximation of 
the local vortex intensity, T(x), and of the local viscous 
core radius, a(x), can be inferred from the information 
contained in the "tangential" velocity profiles. To do this, 
we proceed as follows : 

i) for the velocity profiles obtained in the ECT and the 
ENCT the angular momentum, product of the tangential 
velocity and the distance to the vortex axis, is plotted as a 
function of the distance to the vortex axis. Figure 18 shows 
the data of figures 4 and 5 for x/cmax=0.75 and 
demonstrate that a nearly constant value is achieved 
outside the solid body and transition region for the 
outboard data. For the velocity profile obtained in the GTH 
this procedure is meaningless because of the strong 
disymmetry between the pressure and suction sides (see 
Arndt et al. (1991)). Instead, and without an a priori 
justification, we select, as the local vortex intensity, the 
mean of the extrapolated angular momentums on the 
pressure and suction sides, as indicated in Figure 19. 
ii) from the position of the maximum of the tangential 
velocity, an estimate of the vortex core radius is readily 
available. 
iii) using the values of T(x), a(x) and Vtmax(x) it is easy to 
verify if the experimental velocity profile can be 
approached by a Lamb type by verifying that, 

2 n a (x) Vtm«(x) 
If this condition is well satisfied, the experimental data for 
the ECT and the ENCT can be fitted using a Lamb (1945) 
velocity profile given by, 

Vt(x,y) = IM-[l-exp(-1.255(y/a)
2)] (3) 
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Fig. 19 : Angular momentum of velocities obtained at 
GTH as a function of distance to the vortex axis for 

r=1.95410-2m2/s 
a = 7.75 10"^ 

Fig. 20 : Exemple of fitting of the experimental data with a 
Lamb (1945) velocity profile. ECT data. 

The fitting is improved by manually modifying the value 
of T(x) and a(x). As an example, Figure 20 shows for 
some of the velocity profiles the experimental data and the 
fitted curve. The adjustment is remarkable good on the 
outboard side and approaches very nicely the inboard side 
at a distance of half a chord from the tip. For the GTH data 
the mean of the pressure and suction side local velocites 
are fitted in order to obtain a better estimate of the vortex 
core radius. This procedure can not be justified a priori. 

The values of T(x) are made non dimensional with the 
mid-span bound circulation computed from the lift 
coefficient and those of a(x) are made non dimensional 
with the boundary layer thickness at mid-span, S, 
computed as for a fully turbulent boundary layer over a flat 
plate (ScMichting (1979)) by, 

»°=Cmax ... 
(4) 5=0.37cmax 

The values obtained from the present tests are plotted in 
Figure 21(a). Again, in spite of the variety of the flow 
conditions tested, these results are in quantitative 
agreement and provide interesting informations concerning 
the roll-up process in the near region. Indeed, Figure 21(a) 
clearly demonstrate that the roll-up is well initiated at the 
tip of the wing where the local vortex intensity reaches 
0.25 r0. At the wing trailing edge, half a chord 
downstream the tip, the local vortex intensity has increased 
by a factor of two and is still half way from the conditions 
of roll-up completion. These results are in fully agreement 
with those presented by Fruman et al. (1991). Concerning 
the radius of the core region, Figure 21(b), it is worth 
noting that a minimum of about 0.5 8 appears in the 
vicinity of the tip and that at the wing trailing edge it 
reaches roughly 70% of the boundary layer thickness. This 
value is smaller that the one inferred from previous results 
(Fruman etal. (1991)). 
On the basis of these and previous results, it appears that 
the local vortex intensity and core radius are respectively a 
fraction of the mid-span bound circulation and boundary 
layer thickness. The pressure coefficient can thus be 
expressed as, 

Cp(x) = - k .« :-K(x)C? 

= -K(x)Ci2Re04 

where the constant K accounts, 
achieved fraction of the roll-up. 

4.2. Critical cavitation numbers 

Too CmiT 
0.4 

(5) 

in particular, for the 

Figure 22 shows the desinence cavitation number divided 
by the Reynolds number to the power 0.4 as a function of 
the incidence angle for the NACA 0020 foil tested in the 
GTH (Re=5.2xl06). In the same figure, data from 
McCormick (1962) (Re^7xl05) and Falcao dos Santos et 
al. (1989) (Re=2.2xl06) for a NACA 0015 elliptical foil 
with area ratio of 4 have been also plotted. The agreement 
is remarkable taking into account the two order of 
magnitude range of Reynolds numbers 
(7xl0s<Re<5.5xl06) covered by the data, the difference in 
relative foil thickness and the fact that tests were 
conducetd in three different facilities by independant 
investigators. Additional data sustaining this correlation 
with Reynolds number to the power 0.4, or close, is 
provided by Billet and Holl (1979) who present data for a 
rectangular and a quasi elliptical foil with area ratio equal 
to 4 and NACA 0015 and 0010 (cambered) cross section 
respectively. It should also be mentionned that McCormick 
(1962) data for rectangular foils at 4 and 8° incidence 
display also an analogous behaviour as a function of 
Reynolds number; the power computed from his data is 
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very close to 0.41. Therefore, it seems clear that a 
correlation based on a simple relation between the core 
size and the turbulent boundary layer is satisfactory. 
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Fig. 22 : Desinence cavitation number divided by 
Reynolds number to the power 0.4 as a function of 
incidence angle for the NACA 0020 elliptical foil. 
Comparison of present data and previous data by 
McCormick (1962) and Falcao dos Santos et cd. 
(1989) for a NACA 0015 elliptical foil. 

For the elliptical NACA 16020 foil, the desinence 
cavitation number divided by the Reynolds number to the 
power 0.4 for the ENCT tests conducted in the range of 
5.6xl05<Re<1.2xl06 are plotted in Figure 23(a) as a 
function of the lift coefficient. The data correlates rather 

well in spite of the existence of some scattered points for 
the lowest velocity on this graph, 7 m/s. It is suspected that 
this situation arises from the quite substantial modification 
of the boundary layer for Reynolds numbers below about 
6x10s as indicated by the alteration of both the lift and the 
drag coefficient. A correlation as a function of Q2, as 
suggested by expression (5), did not provide for a more 
satisfactory presentation. The results for the tests 
conducted in the GTH (2.6xl06<Re<6.8xl06) are plotted 
in the same way in Figure 23(b). It should be recalled that 
the lift coefficients are the asymptotic values for large 
Reynolds numbers in Figure 3. Again, there is a 
remarquable good alignement of the data points when the 
liftt coefficient is used as the abscissa and the slope is very 
close to that of the ENCT data. 
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Fig. 23 : Desinence cavitation number divided by 
Reynolds number to the power 0.4 as a function of 
lift coefficient for NACA 16020 elliptical foil, a) 
ENCT data; b) GTH data. 

Although the ENCT and the GTH data plotted 
independently are satisfactory, they do not strictly coincide 
as shown in Figure 23b. The reason for this discrepancy 
can be traced down to different problems. It may be 
possible that the extrapolated values of lift coefficients, 
over more than a decade of Reynolds numbers, are slightly 
overestimated; it may also be possible that some, as yet 
unknown, effects at very large Reynolds numbers tend to 
reduce the desinence cavitation number relative to those at 
smaller Reynolds numbers. This is very much evident in 
Figure 13b where, for incidence angles of less than 8°, the 
GTH desinence cavitation numbers fall below those at the 
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ENCT. In any event, there is thus a clear indication that 
cavitation numbers obtained by extrapolating test results 
performed at low, but still high enough if compared to the 
transition values, Reynolds numbers will be overestimated. 

The final question to be addressed concerns the 
computation of the minimum pressure from the velocity 
measurements. If a Lamb velocity profile is assumed, the 
pressure coefficients is simply given by, 

Cp = - 1.255 

27t2o2L 
ln2 = -0.0441 

V„fl 
(6) 

From Figure 21 we have for the conditions of minimum 
pressure along the vortex path, 
r= a r0=0.5 a VM Q c^ with a=0.35 
and 
a= ß Sew with ß=0-48 

By introducing the turbulent boundary layer thickness 
given by expression (4), we have finally, 

Cpmin =-0.043 C?Re04 

For 10° incidence and 13.5 m/s the desinence cavitation 
number obtained at ENCT is 1.5 and the computed value 
of Cpmin with Cp0.35 is -1.36. For the GTH results at 10° 

incidence and 10m/s we have C<j=2.5 and, with Cp0.34, 

Cpmin=-2.4. For 10° and 6m/s od=2.2 and, with CpO.34, 
C min=-2.0. No comparison has been attempted with the 
results issued from ECT tests since, as already signaled in 
Fruman et al. (1991), they are mostly situated in the 
transition region and, thus, the Reynolds dependency is not 
as for fully turbulent results. Moreover, for small incidence 
angles, 6° for exemple, the computed value of -Cpmin 

overestimates the desinence cavitation number obtained at 
the GTH. Even though, considering the variety of 
experimental facilities, the numerous operating personnel 
involved in performing the experiments and the amount of 
data that needed to be processed in order to obtain these 
results the agreement between the desinence cavitation 
number and the absolute value of the rninimum pressure 
coefficient is extremely reasonable for incidence angles 
corresponding to moderately loaded lifting surfaces. 

This agreement brings a strong support to the earlier 
conclusion of Fruman et al. (1991) that pressure 
fluctuations do not contribute significantly to tip vortex 
cavitation occurrence. In this respect, it is gratifying to see 
that we have been rejoined by others on this specific 
matter. Moreover, it does not seem that the jet behaviour in 
the vortex core, which has been observed in the GTH tests, 
is responsable of a significant modification of the 
cavitation occurrence. By the same token, using the actual 
lift measurements in the discussion and interpretation of 
tip vortex cavitation results, as it has been done in the 
revised version of Fruman et al. (1991) and here, has 
shown to be very important and has also been recognized 
as such by other authors 

V. CONCLUSIONS 

A considerable amount of data concerning i) the force 
coefficients ,of the elliptical hydrofoils used in the 
experiments, ii) the velocities induced by the roll-up of the 
tip vortex in the very near region (within half a chord 
downstream the tip) and iii) the tip vortex cavitation 
inception and desinence have been obtained in several 
cavitation tunnels. The tangential velocity profiles have 
allowed to establish, by fitting the data to a Lamb velocity 
profile, the evolution of the local vortex intensity and core 
radius along the vortex path. The minimum of the pressure 
on the vortex axis occurs in the vicinity of the tip, at a 
distance of about l/8th of the maximum chord. At this 
position, the local vortex intensity is about 35% of the 
mid-span bound circulation and the vortex core radius is 
about 45% of the thickness of the turbulent boundary layer 
computed as for a flat plate of length equal to the 
maximum chord. For a Lamb velocity profile, the pressure 
coefficient on the vortex axis is computed - using the 
values of the local vortex intensity, the local vortex radius 
and the boundary layer thickness - as a function of the 
square of the lift coefficient and the power 0.4 of the 
Reynolds number. For large enough incidence angles (10°) 
the agreement between the minimum pressure coefficient 
on the vortex axis and the desinence cavitation numbers is 
remarkable good. This agreement makes unnecessary to 
account for pressure fluctuation effects to advance 
cavitation occurrence (ad>l Cpminl) or for interfacial 
tension effects to account for cavitation occurrence delay 
(Od«d Cpmy). Moreover, data obtained al low (but larger 
than those corresponding to the laminar to turbulent 
transition ) values of the Reynolds numbers seems to give 
slightly overestimated values when extrapolated to a 
tenfold larger Reynolds number. 
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DISCUSSION 

C. Hsu, David Taylor Model Basin, USA 

I have read the paper with great interest. Thick 
NACA sections used in the model test are known to 
be susceptible to flow separation. The flow 
characteristics of such sections depend very much on 
flow conditions (laminar, transitional, or turbulent), 
ambient turbulence intensity, surface roughness, etc. 
The scattering of the lift data of the small ECT and 
ENCT models can therefore be attributed to the 
effects of transitional flow instabilities and flow 
separation. Such model data may not be at all useful 
for full-scale predictions, since only thin foil sections 
are of practical interest and full-scale Reynolds 
numbers are also generally two or three orders of 
magnitude larger the model Reynolds numbers. 

Some of the experimental data are, however, of 
fundamental interest. The peak tangential velocity is 
seen in Fig., 4, 5, and 7 to attain maximum values 
very near the wing tip and to decay farther 
downstream. The existence of inner vortex core can 
also be inferred from the tangential velocity 
measurements. According to Hsu, the tangential 
velocity near the wing tip (thus by ignoring the axial 
gradient effects) in the inner viscous region for 
elliptical wings can be approximated as 

Vt . -Ljä:1-"^)-*2^ - -L-iT,-"(-4T1)'^F])r- 

T = (-4n)1/2(v^/FJ1/2 

)lf2c 

Calculated tangential velocity profiles for ENCT and 
GTH models are given in Figures 1 and 2. 
Calculations are based 

c = 80.0mm max 

&. 

b = 120.0mm     a 

13.5m/sec    Re = 1.08 x 106 

0.335 {measured data) 
= 0.675 and 1.000 

10.0° 

for ENCT model, and 

c     = 475.0mm    b = 712.5mm    a = 10.0° max 

Vm = 10.0m/sec    Re = 4.75 x 106 

CL 
s 0.463 (postulated) 

x/c^ = 0.600, 1.000 and 1.700 

for GTH model. Calculated peak tangential velocities 
are seen to be in good agreement with measurements. 

The cavitation inception measurements performed 
at GTH are also of great interest. The data, as 
reproduced in Fig. 3 can be fitted with curves given 
by 

with 

l-J! r = r0(2/&) 
r0 = o.SK.c^q 
K = 2-n 
b = semi-span 
cma = the maximum chord length 
n - 0.5 for elliptical wings 
Vn = 2"T(3/2-n/2) M(l/2+n/2. 2. T)) (-i\)lß 

M = hypergeometric function of the first kind 
T = Y function 

.2 
n = — = similarity variable 

For a first approximation t - x/Vm (i.e. the tip 
vortex is assumed to be convected downstream with 
free stream speed),  r can then be expressed by 

0.00062 x ReQS 8.0° 

o = 0.00114 x Re03 for a = 10.0° 

0.00173 xfo0i 12.0° 

Such Reynolds dependence conforms with Hsu's 
scaling law for the tip vortex cavitation inception of 
elliptical wing. 

It is to be noted that, in Hsu's approach, the 
cavitation inception of tip vortex is assumed to occur 
very near wing tip and to be characterized by the 
maximum tangential velocity. Such assumptions, in 
view of authors' measurements, seem to be justified. 
These assumptions may, however, not be viable for 
wings of complicated planforms or with tip flow 
control devices: further studies on tip vortex 
problems seem warranted. 
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Ref. Hsu, C.C., (1991). Studies of scaling of tip 
vortex cavitation inception on marine lifting surface. 
Journal of Fluid Engineering, Vol. 113, Sept, pp. 
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I would very much like to thank Dr. C.C. Hsu 
for taking the time to read our paper and preparing 
detailed comments. Since he is not asking any 
specific questions, I do not have any answer to give. 
However, I would like to take this opportunity to 
make some comments. Indeed, we agree with the 
discussor that the foil we have used is prone to all the 
problems he mentioned; this is not a reason for not 
trying to accurately predict tip vortex cavitation 
occurrence. However, the data on lift and drag given 
in Fig. 2 of our paper is not "scattered"; it does 
reflect the physics very accurately and, in particular, 
the strong effect of Reynolds number. Fig. 3 shows 
that for large enough Reynolds numbers, there is a 
near plateau that can be extended with a good degree 
of confidence to the tests performed in the GTH. 
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The form 6 velocity profile we have used is as 
good as any. It allows a good fitting of the velocity 
data and gives access to the local vortex intensity and 
the local core radius; two quantities whose physical 
significance is evident. The use of a more 
complicated velocity model did not seem necessary at 
the present stage of our analysis. We would like to 
point out that the velocity data plotted in Fig. 7 of 
our paper shows in the very near region downstream 
the tip a very marked dissymmetry of the velocity 
profiles. We think that it is not appropriate to use, as 
the discussor does, the data for the section side only 
(and thus ignoring what happens on the pressure side) 
to justify the results obtained by means of this 
suggested velocity distribution approximation. 
Experimental results have to be used very carefully 
in order to avoid jumping to biased conclusions. 

Finally, the conditions of data presented in Fig. 
22 and 23 of our paper seem to demonstrate that the 
desinent cavitation numbers do follow a 0.4 power 
dependence on the Reynolds number. 
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Figure 1 - Tangential Velocity Profile in the Viscous Inner Region of the 

Tip Vortex for a Elliptical Wing with Span-Maximum Chord Length Ratio = 3.0 
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Figure 2 - Tangential Velocity Profile in the Viscous Inner Region of the 

Tip Vortex for a Elliptical Wing -with Span-Maximum Chord Length Ratio = 3.0 
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DISCUSSION 

C. Brennan 
California Institute of Technology, USA 

I would like to congratulate the authors of this 
paper for their excellent research on scaling effects 
on tip vortices and tip vortex cavitation. In many 
ways, this complements our paper on the scaling 
effects in travelling bubble cavitation. 

In their paper, the authors chose to focus on 
desinent cavitation numbers because of the greater 
repeatability of this data. But I would be most 
interested if the authors would comment on the 
inception number data that was obtained and its 
dependence not only on Reynolds number but also on 
other factors such as nuclei size, nuclei population, 
and air content. Will this be part of a later 
presentation? 

rationale for investigating scale effects on travelling 
bubble cavitation (Prof. Brennen' s paper) and tip 
vortex cavitation is similar. 

The effect of a large nuclei seeding on tip vortex 
desinence has been shown in the video. The critical 
cavitation number increases considerable, and, under 
such circumstances, it is hard to distinguish between 
"gaseous" or "vaporous" cavitation. Some data for 
cavitation inception are given in Fig. 13 of our paper, 
and it can be seen that there are differences between 
inception and desinent conditions. We have 
accumulated a very large data base on critical 
cavitation conditions, and this will be the subject of 
a subsequent paper. 

Let me use this opportunity to give some detail 
on the scientific program we are conducting on tip 
vortex cavitation (Figure). As you can see, most of 
the factors that may affect tip vortex cavitation will 
be investigated during a four year research effort. 

AUTHORS' REPLY 

We very much appreciate the compliments of 
Prof. Brennen concerning our work.   Indeed, the 
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A Systematic Investigation of Viscous Scale Effects 
on Cavitation Inception 

Y. Ye, D.-Z. Wang, F. Lu, S. Huang 
(China Ship Scientific Research Center, China) 

ABSTRACT 

Viscous scale effects on cavitation 
inception were systemetically investi- 
gated by using several series of' axi- 
symmetric bodies, two dimensional foil 
sections and propellers. Tests included 
LDV flow measurement, oil film flow 
visualization, surface mean and fluc- 
tuating pressure measurement, thrust, 
torque and noise measurement and 
cavitation observation. Theoretical 
computation was also performed. LDV flow 
measurement was successfully used to 
determine the thin boundary-layer 
transition as a supplementary flow 
visualization measure, by which a regular 
size effect on boundary-layer transition 
on the Schiebe bodies was revealed. The 
similar size effect on transition on 
propeller models was also found by the 
oil film method. A quasi-critical 
Reynolds number was defined to analyze 
this size effect on transition. A much 
thicker separated bubble was measured on 
the hemispherical model for a Reynolds 
number of ReD= 1.68x 106. Typical scaling 
trends for travelling bubble cavitation 
and attached small bubble-band cavita- 
tion on hydrofoils were observed. The 
preliminary result of the blackboard 
paint used as a tripping device is 
encouraging. From the very limited 
propeller cavitation data, the Reynolds 
number exponent n of propeller tip vortex 
cavitation scaling rules was found to be 
dependent upon the blade surface con- 
dition, the stage of development of TVC 
and the thrust loading of propeller 
models. 

NOMENCLATURE 

AE/AC 

C 0.7 

P-P 

,2 

radius of the cavitating core 
propeller disc area ratio 
chord length of a propeller 
section at 0.7 radius 

pressure coefficient 

D 
h 

J-lTo 

KT = 
pn'O* 

L 
m 
n 

P 

Po 
r 
R 
R      = — 

P en ~ 

T 
U 

V 
V 
V, 

y, Ay 

a 

a/a,. 
6 

a = 
IPV* 

propeller diameter 
radial  distance  from  body 
surface 
shape factor of boundary-layer 
velocity profile 

advance ratio 

roughness height 
propeller thrust coefficient 

reattachment length 
exponent 
exponent number of revolutions 
per second 
pressure, pitch 
vapor pressure 
pressure at infinity 
local radius on a propeller 
radius of propeller 

Reynolds number 

roughness Reynolds number 

propeller Reynolds number 

section Reynolds number at 0.7 
radius 
propeller thrust 
axial fluctuating velocity 
smooth laminar boundary-layer 
velocity  at  the  top  of 
roughness height 
radial fluctuating velocity 
free stream velocity 
section inflow velocity 
axial    distance,    non- 
dimensional radius 
vertical or radial distance 
from body surface 
angle of attack, air content 

air content ratio 
boundary-layer thickness 

cavitation number 

propeller cavitation number 

657 



ABBREVIATION AND SUBSCIPT: 

carb carborundum 
crit critical 
d desinent 
i incipient 
LDV Laser Doppler Velocimeter 
L.E. leading edge 
min minimum 
q.crit ■ quasi critical 
r reattachment 
RPM revolutions per minute 
s, sep separation 
T.E. trailing edge 
TVC tip vortex cavitation 
2D two dimensional 
3D three dimensional 
0 desinent TVC 
1 unattached TVC, diplacement 
2 attached TVC, momentum 
3 developed TVC, energy 
4 fully-developed TVC 

INTRODUCTION 

Cavitation inception prediction is of 
vital importance in the research and 
design of modern high speed naval ships 
and underwater weapons. In order to 
correctly predict the full scale cavi- 
tation performance, not only the precise 
and reliable model cavitation test data 
must be obtained, but also the corre- 
sponding scaling rules should be 
established from the gradually 
accumulated correlation information 
between model test and prototype trial. 
For this purpose some basic concepts of 
the cavitation scale effects must be well 
understood. Departures from the classic 
rule a, = -Cfmin for the cavitation number 
at inception are called "scale effects", 
which can be chiefly divided into the 
viscous and nuclei effects. The present 
work at CSSRC only concerns with the 
viscous scale effects on cavitation. 
Based on the significant progress 
achieved in the past, especially during 
the recent 20 years (see, for example 
[1-3]), we have confined ourselves to 
few topics of the subject such as the 
transition detection, size effect (unit 
Reynolds number effect) and scaling 
rules. This extensive systematic 
experimental investigation has been 
conducted since 1984. It mainly consisted 
of the following three parts: 

1. Study of axisymmetrical bodies -- 
Theoretical computation using two 

different appoaches was performed for 
the flow field around the hemispherical 
headforms considering the blockage 
effect of the water tunnel and the 
viscosity. Three series of Schiebe 
bodies, hemispherical headforms and 
blunt circular cylinders of diameters of 
D=50, 100, 150 and 200 mm were tested at 

the Large Cavitation Tunnel of CSSRC. 
Flow measurements were made using a 
two-channel three-beam LDV operated in 
forward-scatter mode. In addition to the 
cavitation obersvation with and without 
turbulence stimulators, surface mean and 
fluctuating pressure were also measured. 

2. Study of two-dimensional foil sections 
LDV  measurement  and  cavitation 

observation were conducted at the cav- 
itation tunnel of Shanghai Ship and 
Shipping Research Institute for a series 
of NACA 16-012 foil section models with 
chord lengths of C=100, 200, 300 and 400 
mm respectively. 

3. Study of propellers — 
Viscous scale effects on propeller tip 

vortex cavitation were investigated by 
testing a series of three geosim pro- 
peller models of diameters of D=200, 280 
and 350 mm in the Large Cavitation Tunnel 
of CSSRC without and with two diferent 
turbulence stimulators. Tests included 
flow visualization by oil film method, 
repeated measurement of thrust and 
torque, noise measurement and cavitation 
observation for five different condi- 
tions of propeller tip vortex cavitation: 
desinent, unattached, attached, 
developed and fully developed TVC. The 
present paper is a final report to 
summarize the main results of this 
systematic investigation of viscous 
scale effects. 

II. STUDY OF AXISYMMETRIC BODIES 

Since early fifties of the present 
century cavitation scale effects studies 
caused by the model scale, free stream 
velocity and fluid properties have 
developed step by step [1-3]. In the 
recent twenty years some important 
viscous effects on cavitation inception 
were successfully revealed by utiliza- 
tion of different suitable flow visu- 
alization techniques. Of particalar 
importance here is the pioneer work done 
at CIT by Arakeri and Acosta [4]. They 
developed the schlieren technique of flow 
visualization of the thermal boundary 
layer for water tunnel use, by which they 
clearly showed the existence of pre- 
viously unreported laminar separation 
bubble on two headforms up to very high 
laboratory Reynolds numbers. Van der 
Meulen impressively introduced a 
three-dimensional imaging technique of 
in-line holography to visualize 
boundary-layers both on axisymmetric 
headforms and two-dimensional hydrofoils 
[5, 6]. It consisted of making holograms 
when injecting small amounts of a sodium 
chloride solution into the flow at the 
position of or close to the stagnation 
point on the model. The laminar sepa- 
ration points on axisymmetric bodies on 
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two-dimemsional hydrofoils can be quite 
clearly demonstrated by either of the 
schlieren or holographic methods. How- 
ever, there exist some difficulties in 
detection of both the transition of thin 
boundary-layer on streamlined bodies and 
reattachment in the . large: separated 
regions by these two methods. As a 
starting-point of the present study we 
tried to use LDV to determine the sep- 
aration, reattachment and especially 
transition points on axisymmetric 
headforms in cavitation tunnels. 

Experimental Arrangement and Models 
Although in 1975 Acosta and Parkin [7] 

already indicated that it appeared 
feasible to use LDV for determination of 
the gross characteristics of the surface 
boundary layer, especially for trans- 
ition detection. However, before we 
started our flow measurement, we hardly 
could find any reference pursued along 
this thought. At the first stage of our 
study we had to check this feasibility. 
The following four axisymmetric head- 
forms of diameter of 64 mm were tested: 
a 1.5 cal. ogive, a Schiebe body of 
C/>min = _ 0.75, a longitudinal blunt cir- 
cular cylinder and a hemispherical 
headform body with a downstream facing 
step at the tangency point, Fig.l. The 
initial tests were performed in a cav- 
itation tunnel with a test section of 
600 x600 mm2. Test Reynolds number 

ranged from 0.75x10s to 6xl05. Flow 
measurements were made using a two- 
channel three-beam LDV operated in 
forward-scatter mode. It consisted of a 
Spectra-Physics 15 mW He-Ne Laser and 
TSI optics. The feasibility test turned 
out to be successful [8]. At the second 

Fig.l. Configuration of test models 
a: 1.5 cal ogive 
b: hemispherical headform with step 
c: Schiebe body (c„ =-0.75 

'min 

d: hemispherical body 
e: blunt body 

stage of the present study three series 
of headforms were tested with a test 
section of diameter of $ 800 mm. Test 

Reynolds number ranged from 0.6x10 to 

1.68X 106. The main difference of the test 
set up used were as follows: 

a) a lens of 500 mm focal length was 
used, the measurement volume was 0.162 
mm wide, 

b) mean and fluctucting pressure on 
the body surface were measured. The 
transducers used were TEAC PGM-2KC, the 
diameter of diaphragm was about <|>5.5mm. 

Theoretical Computation 
At first, the laminar separation point 

of an hemispherical headform in an 
infinite flow field was calculated, the 
predicted separation angle was 

esop = 84°04', 6 see Fig.l. The maximum 

diameter used in the series tests was 
$200 mm, therefore the blockage effect 
was too big to be neglected. Then flow 
field around the axisymmetric headforms 
considering the blockage effect of the 
water tunnel was calculated. Two 
approaches were performed. The first 
approach consisted of irrotational flow 
and laminar boundary layer calculation 
successively. The second aproach con- 
sisted of direct numerical solution for 
viscous flow around an axisymmetric nose 
in water tunnel. 
1). The first Approach 

For H200, the predicted separation 

point by the first approach is 9jep = 87.5 . 
Flow measurement by LDV indicated that 
at V = 2.5m/s, non-dimensional velocity 
distribution, separation angle and 
boundary layer thickness were all nearly 
in agreement with the prediction, Fig.2. 
However, at V = I0.5m/s, although the 

measured separation angle 0 = 87 was in 
agreement with the prediction, but there 
exsisted big difference both in the 
non-dimensional velocity distribution 
and boundary layer thickness, Fig.3,4. 

u/v 

Fig.2. Comparison of laminar 
boundary-layer calculation and LDV 
mesurement results, H200, V 2.5m/s 
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Fig.3. Comparison of laminar 
boundary-layer calculation and LDV 
measurement results, H200, V 10.5m/s 

002- 

U/V LDV 
u/V LDV 
U/V  Calculated 

LDV Measurement and Signal Analysis 
We were not interested in the survey 

of the whole flow field around the test 
models, so we confined ourselves to 
measure the flow at few selected posi- 
tions in order to find some character- 
istic points such as points of boundary 
layer separation, reattachment and 
transition. By using the present LDV set 
up with frequency shift the reverse flow 
could well be measured. Therefore during 
our initial tests the separation and 
reattachment points of separated region 
both of the blunt circular sylinder and 
the step body were easily founded. Our 
effort was mainly concentrated on how to 
use LDV to determine the transition from 
laminar to turbulence. We analyzed the 
LDV signals at positions close to the 
maximum intensity point inside the near 
wall region of the boundary layer. Signal 
analysis consisted of spectrum analysis 
and comparison of the ratio of low pass 
filtered RMS value to higher pass fil- 
tered one of the velocity fluctuation. 

Although both the axial and radial 
components of the velocity fluctuations 
were measured. Some main tendencies could 
be found from the signal analysis of the 
axial component alone. By careful com- 
parison of many power spectra and ratios 
the correlation between these spectra 
and ratios with velocity distributions 
of different flow regime gradually became 
clear. When transition occurred, in 
addition to the well-known large RMS 
value associated with transition, 
spectrum analysis of the LDV signals of 
fluctuating velocity indicated that the 
velocity level was increasing almost 
linearly with decrease of the frequency 
in a log-log plot of the power spectrum. 
On the other hand, the ratios of low pass 
filtered RMS value of the LDV signals to 
high pass filtered one often reached a 
maximum. Transition detection on the 1.5 
cal. ogive and the Schiebe body shows 

Fig.4. Comparison of laminar 
boundary-layer calculation and LDV 
measurement results, H200, V 10.5m/s 

6 87" 

2). The Second Approach 
Viscous flows around the three hemi- 

spherical noses were calculated. The 
diameter ratios were 1/3, 1/4 and 1/8 
respectively. Reynolds numbers of the 
flow based on the diameters of noses were 
2x 103. Primary results show that due to 
the blockage effect the computed surface 
pressure distributions are changed in 
the same way as the measured ones and 
the velocity distributions measured by 
the LDV method. For the real flow of_high 
Reynolds number, criterion of transition 
and turbulence model must be invoked. 

CD 
-o 10 

500    1K     2K       5K 
Frequency   ( Hz ) 

Fig.5. Power spectra of axial fluc- 
tuating velocity for V=l.5m/s, Schiebe 
body 
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good agreement with results of schlieren 
and in-line holography methods [8]. 

Some results of the present LDV mea- 
surement related to transition detection 
on.the Schiele body will be presented 
here. The Schiebe body used in the present 
study has a minimum pressure coefficient 
of -0.75. Figs. 5,6 are the power spectra 
of axial fluctuating velocity at dif- 
ferent locations for V=1.5 and 7.0 m/s. 
The ratios of RMS values obtained with 
different band pass filters of 2-200 Hz, 
2HZ-1 KHz, 200 Hz - 20 KHz and 1 KHz - 
20 KHz are given in Table 1. 

The power spectra presented here seem 
similar to the spectra of axial velocity 
fluctuation downstream of a roughness 
rod from a classical study on transition 
by Klebanoff and Tidstrom [9]. From Fig.5 
at the lowest Reynolds number, close to 
the nose of Schiebe body, we can seethat 
the fluctuation is composed of relatively 
high freguencies and in a downstrem 
direction there appears a gradual change 
to lower and lower freguencies until 
transition occurs. Fig.7 is a comparison 
of transition measurement results by 
different methods of Schiebe bodies. In 

20 50 100 200  500 1K  2K  5K 10K 20K 
Frequency  ( Hz ) 

Fig.6. Power spectra of axial fluc- 
tuating velocity for V=7.Om/s, Schiebe 
body 

Table 1. Comparison of Ratios of RMS Values of Axial Fluctuating 
Velocity Using Different Band Pass Filters, Schiebe Body 
(C_.--0.7B), D-64mjn 

1,- IM m/s .    *     - 1.10» 10* 

X/D u m/s J?,m/, >,/!„ 7.1I-- 1 Kll:: T-7.0OH:: 2-200//:-. 
\K -TOKit:: ?00-?CU//:: 

0.4 
0.8 
0.9 
1.0 
1.1 
1.2 
2.0 

0.961 
0.920 
1.239 
1.165 
0.775 
1.252 
0.7B2 

0.269 
0.468 
0.481 
0.708 
0.623 
0.578 
0.587 

0.179 
0.312 
0.320 
0.472 
0.415 
0.385 
0.391 

1.97 
2.93 
2.76 
4.08 
4.25 
4.46 
3.00 

1.75 
1.79 

2.00 
2.10 
1.33 

2.80 
2.66 

4.15 
4.05 
2.81 

I'n-m/s. R,o-2.SOx I05 

0.70 
0.75 
0.B0 
1.00 

2.883 
2.598 
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0.320 
0.363 
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0.237 
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Fig.7. Comparison of transition mea- 
surement results by diferent methods 
of Schiebe headforms and its size 
effect 
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the same figure transition positions by 
LDV method of a series of four different 
sized Schiebe bodies with CFm{„ = - 0.75 
were also given (D = 50, 100, 150 and 
200 mm) [10]. From this figure it can be 
seen that, generally speaking, trans- 
ition location detected by LDV is a little 
bit downstream than detected by in-line 
holography. If holography gives the 
position where transition from laminar 
to turbulence just starts, then LDV 
measurement gives the position where 
turbulence has already further devel- 
oped. 

The present series flow measurements 
by LDV clearly revealed a regular size 
effect or unit Reynolds number effect on 
boundary-layer transition on the Schiebe 
headforms, namely at the same Reynolds 
number, the smaller the diameter of the 
model, the shorter the distance of the 
transition point downstream from the 
minimum pressure point. This is thought 
to be caused by the bigger relative 
surface roughness on the smaller models. 
If model surface was hydrodynamically 
smooth, then the bigger the model size, 
the nearer should be the transition from 
the C,min point. 

In addition to this Schiebe headform 
series with transition, the other two 
headform series used in this study also 
represent different typical flow fields 
with separation of thin boundary layer 
or large separated region respectively. 
For all four models of the hemispherical 
headform series a negative axial velocity 
was measured near the wall in a range 
from 6 = 79° to 6-90°. For H200, the 
measured separation point was 9 = 87 . The 
LDV flow measurement, result was compa- 
rable to the laminar boundary layer 
calculation result in the low speed 
range. But for V = 6.5 and 10.5 m/s, the 
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measured boundary layer thickness was 
eguivalent to 5-6 times the theoretically 
predicted laminar boundary _ layer 
thickness, and the velocity distribution 
was much fuller than the laminar dis- 
tribution, see Fig.2-4. Fig.8 is a 
comparison of the calculated and measured 
boundary layer momentum thickness 62, the 
difference between these values is quite 
evident. Obviously, separation did exist 
in this case, but the velocity profile 
can not be regarded as a laminar profile. 
Besides, the relationship between the 
ratio of displacement thickness to 
momentum thickness H i2 and the ratio of 
energy thickness to momentum thickness 
H32 was not in agreement with a relation 
deduced from experimental results by 
Rotta [11], so this velocity profile did 
not belong to a one-parameter turbulent 
family, whereas most of the velocity 
profile of the Schiebe headforms measured 
followed this relationship. Therefore, 
strictly speaking, this kind of sepa- 
ration on the hemispherical headforms 
can only be considered in very general 
terms as a transitional or viscous 
separation. On the other hand, we com- 
pared the power spectra of LDV signal at 
V=10.5 m/s for 6 = 85°,87°, 90° (upstream 
from the separation point, separation 
point, downstream from the separation 
point and near the reattachment zone). 
We also compared the ratios of the RMS 
values from two different pass filters, 
see Table 2. By comparison, it was found 
that when boundary layer separation 
occurred, the characteristics of the 
power spectrum are very much like those 
of the power spectrum when boundary layer 
transition occurred. In both cases they 
only appeared in a very thin layer close 
to the body surface. However, these 
characteristics manifested themselves 
most strongly in the large separated 
region and near the reattachment point 
on the longitudinal blunt circular 
cylinder not only for the axial fluc- 
tuating velocity component but also for 
the radial one. Table 3 gives the ratio 

Table 2. Comparison of Ratios of RMS Values of Axial Fluctuating 
Velocity Using Different iand Pass Filters, (2HZ-1KIIZ)/(1K- 
20KHZ). 

Hod el 1 ./. 0* Axial Radial Low High Ratio 
Distanc Distanc Pass Pass 

e e Filtere Filter 
X/D ''—. d ed 

H200 10.5 85 0.20 0.092 0.032 2.00 
H200 10.5 87 0.23 0.237 0.052 4.S5 
H200 10.5 90 0.5 0.06 0.257 0.094 2.73 
S150 10.5 0.4 0.10 0.235 0.042 5.60 

Fig.8. Comparison of boundary-layer 
momentum thickness 

Table 3. Comparison of Ratios of RMS Values of Axial and 
Fluctuating Velocity Using Different Band Pass Filters, 
1KHX)/(1K-20KHZ), Blunt Cylinder, D»64nwi 

Radial 
(2Hz- 

Axial 

Distance 

X/D 

Radial 

Distance 

h BUR 

*.»* I0"5 

1.23 2.46 3. 84 6.07 

u V u V u V u V 

0 
0.917 

Xr/D 

0 
0.04 
12.00 
0.04 

2.69 2.27 
8.18 
5.09 
7.SB 

4.63 
7.3« 
4.91 

3.60 
6.08 

7.13 

6.09 
4.04 

5.14 

2.49 
6.78 

6.49 

2.52 
3.15 

5.22 
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of RMS values by different band pass 
filters of 2Hz-lKHz and lKHz-20KHz of a 
blunt model of diameter of 64 mm. These 
values are apparently bigger than the 
corresponding values related to the thin 
boundary layer transition or separation. 
The measuring point at X/D=0.917 and 
h=12mm was close to the maximum shear 
layer of the fluctuating velocity. The 
reattachment length L on this blunt 
cylinder was decreasing with the increase 
of the free stream velocity. The values 
of Xr/D were 1.584, 1.540, 1.505 and 

1.472 for /?aDxlO"
s of 1.23, 2.46, 3.84 

and 6.07 respectively. 
Due to the high air content ratio 

a/as= 1 with the flow measurement around 
the blunt cylinder series, the free 
stream was basically saturated in the 
large cavitation tunnel. The measured 
reattachment length beame about 2/3 of 
the measured value at the small cavi- 
tation tunnel (600 x 600 mm2) with low air 
content ratio, L/D decreased from 1.6 to 
1. This fact was very much similar to 
the test results of a hemispherical 
headform with a backward facing step 
tested at two different air content 
ratios in the small tunnel. From the 
series flow measurement around the blunt 
cylinders it was found that the reat- 
tachment length L/D was increased with 
the increase of model size, it varied 
from L/D=0.86 for model B50 to L/D=1.05 
for model B150 and L/D basically did not 
change with free stream speed for the 
same sized model. These differences 
between L/D measured at different con- 
ditions of air content ratio in fact 
revealed an impressive bubble/flow 
structure interaction of real fluid 
effects on the non-cavitating flow inside 
the large separated region. 

Spectrum Analysis of Pressure Signal 
Figs. 9 and 10 are the spectra of 

pressure signal from surface transducers 
on the hemispherical nose H200. Trans- 
ducers were located at four positions 
respectively: A) X/D=0.55, B) X/D=0.50, 
0 = 90°, C) 9 = 78.5°, D) 0 = 75°. Power 
density in the lower freguency band 
differed most significantly at X/D=0.50, 
6=90° for V=2.5 m/s and 10.5 m/s. Mea- 
surement indicated that the increase of 
power density in the lower freguency band 
for V=10.5 m/s appeared just downstream 
from the separation point 9 = 87° and near 
the reattachment zone. Evidently, there 
exist points of similarity between the 
power spectra of pressure and velocity 
signal. The higher power density in the 
lower frguency band appeared to be a 
common feature in cavitation prone areas 
such as in transition, separation and 
reattachment zones. 

B Frequency (Hz) 

Fig.9. Power spectra of surface 
pressure fluctuation of hemispherical 
headforms H200, Trans. A(X/D, 0.55), 
B(X/D, 0.50) 

D    Frequency CHZ> 

Fig.10. Power spectra of surface 
pressure fluctuation of hemispherical 
headforms H200, Trans. C(978.5°), 
D(675°) 

Cavitation Tests 
Figs. 11 and 12 are limited cavitation 

curves of Schiebe and hemispherical 
headforms respectively. These two curves 
remind the common characteristics^ of 
several sets of existing data for limited 
surface cavitation on hydrofoils and 
headforms. 

In our tests travelling bubble cavi- 
tation appeared at lower velocity for 
Schiebe models. But when velocity or 
model diameter increased a little bit, 
fixed patch cavitation appeared. Espe- 
cially for large sized models the number 
of fixed patches with a triangular 
leading edge increased with the velocity. 
It clearly revealed the roughness 
effects. For models S200 and S50, 60 \i.m 
distributed carborundum was used as 
turbulence stimulator near the stagna- 
tion point within a range of 0.7 D. 
Observation indicated that the number of 
fixed patches usually increased in the 
downstream region from distributed 
carborundum in comparison with the 
non-stimulated model. Cavitation index 
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Fig.11. Limited cavitation curves of 
Schiebe headforms 
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Fig.12. Limited cavitation curves of 
hemispherical headforms 

and location did not change signifi- 
cantly. Cavitation inception occurred in 
the transition region of the Schiebe 
models and cavitation index could be 
approximately correlated with the 
negative value of the pressure coeffi- 
cient there. 

For the hemispherical models, band or 
bubble-ring cavitation have never been 
observed in this tunnel. At lower test 
speed, treavelling bubble cavitation 
appeared, at high test speed, fixed patch 
cavitation appeared. The number of the 
fixed patches became more and bubble 
cavitation disappeared with the further 
increase of speed. For models H200 and 
H50, 60 \xm distributed carborundum was 
used as turbulence stimulator from the 
stagnation point up to 0 = 80°. For model 
H100 a wax ring of 0.3 mm in height and 
4 mm in width was used as a turbulence 
stimulator. For model H200, travelling 
bubble or fixed patch cavitation occurred 

at 9 = 86°-88° without stimulator, but a 
thin piece of densely distributed cav- 
itation  on  roughness  appeared  at 
9 = 81°-84° with stimulator used, in the 
later case cavitation quite often started 
from the trailing edge of the distributed 
carborundum.  The  limited  cavitation 
index without stimulator could be cor- 
related with the nagative value of the 
pressure coefficient at 9 = 8/°. For model 
H100, cavitation observation was made 
with the upper half model having a wax 
half ring and lower half model having 60 
um carborundum distributed from the 
stagnation point down to X/D=0.55. At 
the middle speed range the travelling 
bubble and fixed patch cavitation existed 
simultaneously on the upper half model, 
but cavitation attached to the roughness 
appeared on the lower half model, Fig. 13. 
In this case the limited cavitation index 
could be correlated with the measured 
value of the minimum pressure coeffi- 
cient. For the blunt circular cylinder, 
the cavitation type belonged to vortex 
cavitation. Fig.14 is the cavitation 

Fig.13. Limited cavitation with dif- 
ferent turbulence stimulators on 
hemispherical headform H100, V 6.5m/s 
0 0.54 

10r 

5     -510 

RCD x |05 
20 30 

Fig.14.  Cavitation curve of blunt 
cylinders 
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curve of blunt circular cylinders, o is 
the average value of desinent and 
inception cavitation indices. It is 
interesting to notice that the cavitation 
curves for hemispherical and Schiebe 
headforms and blunt circular cylinders 
have almost the same slope from the 
present measurements in a log-log plot 
of o versus R,0. 

As already mentioned, power spectra 
of the LDV signals in cavitation prone 
regions had a common feature which 
strongly suggested that there might exist 
large-scale coherent structure of tur- 
bulence. High-speed cavitation photos 
under stroboscopic light indeed made 
these line vortices of turbulence vis- 
ible . Figs . 15 and 16 recorded the typical 
cavitation pattern downstream from the 
fully developed attached cavity end both 
of Schiebe and hemispherical bodies. This 
pattern looked like consisted of many 
large horseshoe or hairpin vorticies, 
especially a number of U shaped and .O. 
shaped vortex cavitation could be 
observed which inclined at almost -lb" 
with respect to the boundary. They 
clearly revealed the coherent structure 
of turbulent boundary layer. Fig. 17 gives 
a rare case of a very large .O. shaped 
vortex cavity inside the large separated 
region of blunt circular cylinder. 

■mi 

Fig.15. Horseshoe vortex cavities 
downstream from the end of developed 
cavity of Schiebe headform, S 100, V 
9.5 m/s, ö 0.2 9 

Fig.16. Horseshoe vortex cavities 
downstream from the end of developed 
cavity of hemispherical headforms, 
H100, V 12.5m/s, a  0.35 

Fig.17- Horseshoe vortex cavities in 
the cavitation region on blunt cir- 
cular cylinder B200, V 5.0m/s, o 1.44 

III.  STUDY  OF 
SECTIONS 

TWO  DIMENSIONAL  FOIL 

In the early fifties the scale effects 
study on cavitation on hydrofoils was 
initiated both at the CIT and PSU. In 
the late eighties some more hydrofoil 
cavitation data were published by the 
PSU and MARIN. These data showed the 
different scale effects on the different 
types of cavitation. Billet and Holl 
observed  clear  trends  for  attached 
cavitation from several series tests of 
hydrofoils.   However,   for   travel- 
ling-bubble cavitation on hydrofoils, 
the velocity scale effect was observed 
where as the size scale effect was not 
observed [12]. Van der Meulen studied 
the boundary layer and cavitation phe- 
nomena on two hydrofoils NACA 16-012 and 
NACA 4412 by using an in-line holographic 
technigue. He found that there existed 
a certain correlation between the cav- 
itation appearance and the viscous flow 
behaviour [6]. Van der Meulen and _Ye 
conducted an experimental investigation 
of artificial means to eliminate both 
viscous and nuclei effects on bubble 
cavitation on a NACA 4412 hydrofoil [ 13 ] . 
In the late nineties both experimental 
and  numerical  studies  on  hysrofoil 
cavitation were performed at the DTRC 
and  elsewhere.  Shen  and  Dimotakis 
investigated the viscous and nuclei 
effects on hydrodynamic loadings and 
cavitation of a NACA  66  (MOD)  foil 
section.  Their  study  concerned  two 
different types of pressure loadings 
representing a propeller blade section 
operating  at  design  and  off-design 
conditions. They used a viscous/inviscid 
interation code developed by Cebeci et 
al. to compute the viscous flow field on 
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the foil section [14]. Latorre and 
Baubeau carried out a numerical study of 
wall influence on boundary-layer 
transition for two-dimensional NACA 
16-012 and 4412 hydrofoil sections [15]. 
The main objective of the present 
experimental hydrofoil cavitation study 
is trying to further understand the 
different scaling trends for attached 
leading edge cavities and bubble cavi- 
tation and their correlation with the 
viscous flow behavious. A series of four 
two-dimensional NACA 16-012 hydrofoil 
section models having chord length of 
C=100, 200, 300 and 400 mm were tested 
at two angles of attack a. «= 2° and 7°. 
Tests comprised LDV measurement and 
cavitation observation. Test section of 
the cavitation tunnel of SSSRI is 
600 x 600 mm2. Foil models were made of 
bronze. 

LDV Measurement 
LDV measurement was made at two free 

stream speeds V=l m/s and 5 m/s. 
Figs.18,19 are the measured pressure 
distribution on the biggest foil model 
at two values of angle of attack a = 2° 
and 7° respectively. Because it was 
impossible to measure the boundary-layer 
near the leading edge of the smallest 
model the angle of attack has to be 
increased to a-3.2°, Fig.20 is the 
measured result. Comparison of the 
pressure distribution was made with the 
computed results of Latorre and Baubeau. 
The boundary-layer measurements indi- 
cated that all the velocity profiles 

X/C % 
Fig.18. Pressure distribution, NACA 
16-012 at a = 2°, C=400mm 

-A—v=lm/s, LDV measurement 
-o— v=5m/s, LDV measurement 

 Calculated (Latorre and Baubeau 
ck=   2*) 

could be attributed to turbulent profiles 
except for very few profiles of two small 
foil models measured at a-2° and V=lm/s 
near the leading edge of the foils. By 
comparison with the experimental results 
of Van der Meulen [ 6 ] and computed results 
of Latorre and Baubeau [15] transition 
from laminar to turbulence occurred 
earlier in the present test. 

Fig.19. Pressure distribution, NACA 
16-012 at a = 7°, C=400mm 

_£_ v=lm/s, LDV measurement 
_o— V=5m/s, LDV measurement 

  Calculated (Latorre and Baubeau 
ck=   hi 

x/c % 
Fig.20. Presure distribution, NACA 
16-012 at a-3.2°, V=lm/s, C=100mm 
—o— LDV measurement 
  Calculated (Latorre and Baubeau, 

a =4°) 
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Cavitation Observation 
Cavitation experiments were conducted 

in routine procedure to determine the 
type of cavitation, the desinent cavi- 
tation number od 

and   the incipient 

cavitation number o<. Besides, for the 
sheet cavitation appeared in the case of 
a = 7°, another two cavitation numbers 
were recorded, o, was the cavitation 
number corresponding to a developed sheet 
cavity having a length of about 1/8 ot 
the chord length and o2 was the cavitation 
number corresponding to a more developed 
sheet cavity having a length of about 
1/4 of the chord length. When sheet cavity 
appeared, all the measurements were 
performed not only for smooth foil 
surface but also for painted foil sur- 

The type of cavitation occurring at 
a =2° was typical travelling bubble 
cavitation, Fig.21. The bubble cavita- 
tion started to appear usually at a 
position of about x/c=20% from the 
leading edge. The largest bubbles could 
reach the trailing edge. Fig.22 gives 
the desinent and incipient bubble cav- 
itation data which clearly demonstrate 
both velocity and size effect. Cavitation 
index decreased with increasing Reynolds 
number for a given foil model and 
increased with increasing chord length 
for a fixed Reynolds number. Furthermore, 
the smaller the chord length, the bigger 
the slope of variation of cavitation 
index versus Reynolds number and the 
bigger the difference in cavitation 
indices of different sized models at a 
given Reynolds number. 

Fig.21. Travelling bubble cavitation, 
NACA 16-012, C=200mm, a = 2°, V=5.5m/s, 
0 = 0.430 

The cavitation appearance for ot= 7° was 
attached bubble-band cavitation started 
from the leading edge, Fig.23. Thistype 
of cavitation looked like a transition 
case from sheet cavitation to cloud 

0.7 r 

0.6 

0.5 

0.4 

0.3 

0.2- 

0.1 - 

V 

A4 
B3Sg 

■k> 
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u ' -6 
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Fig.22. Desinent and incipient cavi- 
tation data for NACA 16-012, a=2° 
Cmm        100  200  300  400 
desinent    A    ■    ▼    • 
incipient   A   D    V    O 

Fig.23. Attached small bubble-band 
cavitation, NACA 16-012, C=200mm, 
a = 7°,  v=7m/s, a = 1.48 

cavitation. Figs.24 and 25 show desinent 
and incipient cavitation data on smooth 
and painted surfaces respectively. 
Cavitation index increases with 
increasing Reynolds number for a given 
foil model. Due to the scatter of the 
data no definite size effect was 
observed. A more clear Reynolds number 
effect appeared in the case of painted 
surface. The viscous scale effects on 
developed cavitation was smaller than 
those on desinent, incipient cavitation, 
Fig.26. The size effect on the developed 
(a,) and more developed attached 
bubble-band cavitation (o2) is similar 
to the size effect on travelling bubble 
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Fig.24. Desinent and incipient cavi- 
tation data for NACA 16-012, a = 7°, 
smooth 
Cmm       100   200   300   400 
desinent   ▲    ■    T    • 
incipient A a    <?    o 

5r 

4 

3 

Fig.26. Developed and more-developed 
cavitation data for NACA 16-012, a = 7° 
Cmm       100  200   300   400 
developed St  A    m y t 

more-developed^A    D    v    0 

(jc) 

o 

.  5  ? 
Q   B  * 

■ «« * 
<iS 

0 

Rex 10 
Fig.25. Desinent and incipient cavi- 
tation data for NACA 16-012, a = 7°, 
painted 

400 Cmm 200 300 
desinent ■ ▼ 
incipient D V 

cavitation, namely cavitation number for 
fixed cavity length increases with 
increasing chord length of the model 
except for the largest foil. This kind 
of size effect is thought to be caused 
by the time effects, at a fixed Reynolds 

number the residence time of bubbles in 
the low pressure region is shorter for 
a smaller foil with higher free stream 
speed. 

An interesting process was observed 
during the cavitation test for the 
smallest model at angles of attack betwen 
a = 2° to 3.2°. Tests started from a low 
speed of V=5m/s with a large number of 
developed bubble cavitation near the foil 
surface. When the pressure was increased 
the bubble cavitation disappeared first, 
then attached transient sheet cavitation 
came into sight on the smooth foil surface 
from the leading edge and so did the 
streak cavitation on the painted surface 
a little while later. Next the pressure 
was further increased till all these 
cavitation diappeared. After the 
desinent cavitation was measured the 
pressure was decreased to measure the 
incipient cavitation. First the same 
process appeared as just mentioned about 
the sheet cavitation on smooth and 
painted surfaces. As the pressure was 
further lowered, all of a sudden these 
cavitation grew very rapidly downstream. 
As soon as the cavity length became close 
to 2/3 of the chord length, a strong 
vibration of the sheet cavity end began 
to appear and at the same time the bubble 
cavitation came into view. When the 
pressure was further lowered causing the 
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bubble cavitation to develope, the sheet 
cavitation disappeared gradually. At 
last the foil surface was full of bubble 
cavitation. Afterwards tests were con- 
ducted with increasing speed up to 
V=8m/s. The cavitation process was 
basically the same as with V=5m/s, but 
more streak cavitation occurred on the 
painted surface and it became more 
difficult for transient sheet cavitation 
to disappear on the smooth surface, 
consequently both bubble and sheet 
cavitation appeared simultaneously. 
Figs.27-29 are some of the photos taken 
during this interesting process at an 
angle of attack a =3.2°. 

Fig.27. Cavitation appearance, NACA 
16-012, C-100mm, a = 3.2°, V=6m/s, 
0 = 0.53 

Fig.28. Cavitation appearance, NACA 
16-012, C=100mm, a = 3.2°, V=6m/s, 
0 = 0.47 

Fig.29. 
16-012, 
0 = 0.36 

Cavitation 
c=100MM, 

appearance, NACA 
a=3.2°,  V=6m/s, 

Few similar findings were reported 
before. Arakeri and Acosta found dis- 
appearance of cavitation on a tripped 
2-inch hemispherical headform with 
increase of speed and decrease of 
pressure [16]. Van der Meulen demon- 
strated change of cavitation type from 
bubble to sheet cavitation by a slight 
increase of angle of attack around a=3° 
on a NACA 16-012 hydrofoil [6]. Shen and 
Dimotakis showed the strong influence of 
speed on cavitation appearance on a NACA 
66 (MOD) foil section at a=3°, leading 
edge attached cavities appeared at high 
speed but midchord bubble cavitation 
occurred at low speed [14]. 

This kind of unusual cavitation pro- 
cess has forced scientists to further 
study not only viscous and nuclei effects 
but also their interaction. In the 
present test, at a=2° there existed a 
weak peak in the pressure distribution 
which did not cause laminar separation, 
however this peak became strong enough 
to induce separation when roughness spot 
or dirty particle attached to the leading 
edge or when angle of attack was slightly 
increased. Then streak cavitation or 
transient spot or patch cavitation 
emerged. When the pressure was lowered 
abundunt nuclei inside the free stream 
possibly would bring about the disap- 
pearance of laminar separation and 
consequently the leading edge cavities 
would vanish. 

IV. STUDY OF PROPELLERS 

Recently there clearly appears a new 
surge of interest in the vortex structure 
and vortex cavitation of marine lifting 
surface and propeller. Interesting 
reports on the subject have been issued 
one after another (see for example the 
Proceedings of the 21st and 22nd American 
Towing Tank Conference). In order to 
further study the cavitation scale 
effects and to give a correct prediction 
of cavitation performance on prototype 
it is necessary for each facility to 
develope its own database and to accu- 
mulate its own experience. This part of 
our systematic investigation is dealing 
with the viscous scale effects on pro- 
peller tip vortex cavitation. 

In the present paper only few inter- 
esting findings from the boundary-layer 
visualization and cavitation observation 
will be reported. 

Boundary-Layer Visualization 
As far as the flow visualization of 

the boundary-layer on rotating propeller 
blades is concerned, even though a 
three-dimensional LDV can be used to 
measure the boundary-layer, it is quite 
a time-consuming work to do. Instead, a 
much more time-saving method - the oil 
film method is used [24], 

669 



In the present investigation we have 
used a series of three different sized 
propeller models. This propeller was 
selected from a cavitating propeller 
series which was designed for high speed 
vessels [17]. The blade outline can be 
seen on Fig. 30, which was taken just 
before the oil film test. The first blade 
of the propeller was smooth. The second 
one was roughened at the leading edge 
with 60 microns carborundum over about 
3% of the chord on the suction side. The 
whole third blade surface was painted 
with a kind of blackboard paint. The oil 
paint used for flow visualization was a 
kind of castor oil mixed with red lead 
oxide. The paint should be mixed about 
in the proportion of one part of caster 
oil to five parts of red lead oxide. 
Paint tests were made at J=0.996, 0.86 
(effective slip ratio 0.3, 0.4) of 
several speeds, namely, V=3.5, 5.0, 6.4 
and 8.0 m/s for D=220 mm and V=3.5, 4.0, 
5.0 and 6.25 for D=280 mm and D=350 mm. 
Theoretical calculation was performed 
for these two advance ratios. Figs.31,32 
are the calculated pressure distribution 
results. For both values of J at r/R=0.7 
the pressure distribution on the suction 
side is near shock-free entrance con- 
dition, but a peaked condition appears 
on the pressure side. Figs.33-36 are the 
photos and sketches of the paint tests. 
The shade line area indicates laminar 
boundary-layer, the remains represent 
either turbulent boundary-layer or 
boundary-layer separation. 

The oil film flow visualization of the 
geosiom propeller models revealed that 
a laminar boundary-layer region always 
appeared near the leading edge of blade 
root on smooth blades of all the propeller 
models in the whole tested range with a 
maximum Reynolds number of R, 3x 10c 

This laminar region diminished very 
slowly with the increase in free stream 
speed. If no suitable boundary-layer 
stimulator was used it would be quite 
difficult to remove this laminar region 
away by the increase of speed only. The 
effect of carborundum at the leading edge 
was so significant that almost in all 
conditions tested the laminar region 
disappeared. According to Huang et al, 
incipient cavitation numbers on the 
axisymmetric headforms with isolated 
roughness bands were found to approximate 
the computed values of - CFmm when the 
roughness numbers R,K were equal to or 
greater than 600 [18]. Huang and Shen 

Fig.31. Calculated pressure distri- 
bution on propeller at J=0.996 (suc- 
tion side) 

u 

0.24 

o.i4 -: 

0.04 

-0.06 

-0.16 

-0.26 

-0.36 
0.4   . 0.6 

X/C 

Fig. 30 . The propeller model before oil 
film test 

Fig.32. Calculated pressure distri- 
bution on propeller at J=0.99 6 
(pressure side) 
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Fig. 33. The paint pattern on propeller 
D=280mm at V=5m/s, J=0.996 (suction 
side) 

Fig.34. The paint pattern on propeller 
D=280mm at V=5m/s, J=0.996 (pressure 
side) 

reported that leading-edge roughness 

with roughness Reynolds numbers R9K 
= ~~ 

about egual to 600 was found to reduce 
the difference between the measured 
incipient sheet cavitation numbers and 
the computed values of -CPm,„ on three 
hydrofoils, one propeller at two values 
of J in steady flow, and a hydrofoil 
under pitching oscillation [19]. A 
minimum roughness Reynolds number of 300 
to stimulate boundary-layer transition 
on model propellers was recommended by 
the 18 the ITTC [20]. In fact, direct 
systematic measured transition data of 
boundary-layer on propeller models is 
rather rare to be found in the literature 
in comparison with the ones on flat plate, 
axisymmetric bodies and foil sections. 

L.E^-"T.E 

Fig.35. The paint test sketch on 
propeller of D=220mm at various speeds 
Column: 1-smooth, 2-with carborundum, 
3-painted 
Row:   A-V=3.5m/s    B-V=5.0m/s 

C-V=6.4m/s    D-V=8.0m/s 

B     1 

LE^A.l 

Fig.36. The paint test sketch on 
propeller of D=350mm at various speeds 
Column: 1-smooth, 2-with carborundum, 
3-painted 
Row:    B-V=3.5m/s    C-V=4.0m/s 

D-V=5.0m/s    E-V=6.25m/s 

In the present study approximate values 
of the critical roughness Reynolds 
numbers may be estimated. According to 
the calculated pressure distribution, 
for the leading edge roughness at 
r/R=0.7, the smooth laminar boundary- 
layer volocity uk- at the top of the 
roughness of height K eguals about 1.05 
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V (Cp = -0.1). Table 4 gives the measured 
and. estimated results of the critical 
Reynolds numbers both at 0.7 radius and 
for the leading edge roughness used (60 
um carborundum). 

Table 4. The Measured and Estimated 
Critical Reynolds Number at 0.7 Radius 
for Roughened Models with Carborundm 

J 0.996 0.86 

Dmm 220 280 350 220 280 350 

Ä.0.7X 10"6 

R »A 

R.K' D 

0.92 
476 
2.16 

1.68 
681 
2.43 

2.62 
850 
2.43 

1.04 
538 
2.45 

1.89 
766 
2.74 

2.36 
765 
2.19 

The oil film results disclosed that 
the critical roughness Reynolds number 
R,Kcrit is approximately proportional to 
the propeller diameter D. On average a 
rough estimation of R,Kcru/ D can be given 

as ReKcrit /D" Const = 2.4^. Thus, for a 
propeller of D=250mm, R,KCnt will be equal 
to about 600. Coincidently, this value 
is double the minimum roughness Reynolds 
number of 300 to stimulate boundary-layer 
transition recommended by the 18th ITTC. 
The difference in this value may be caused 
by the different pressure distribution. 
The ratio of /?.*.-„-,•, can be used to give a 
rough estimation of the critical 
roughness Reynolds number for different 
sized propeller models to stimulate the 
whole suction side boundary-layer into 
turbulent for a near shock-free entrance 
pressure distribution at 0.7 radius. 
Usually a roughness height of K=60 iim 
or 30 \±m has been found suitable, in 
this case K=Const we have R,K/D=Const, 
R*o.7 / £>2=Const, namely the critical 
Reynolds number at 0.7 radius is roughly 
proportional to. the square of the 
diameter. This size effect is larger than 

the case of R. =Const, 

^»o.7 / D=const which is implied in the 
constancy of the critical Reynolds number 

ReK = —^-^Const for different sized models 
as appeared in a relation recommended by 
the 18th ITTC for the peaked pressure 
distribution /?e0.7/C=K/450 [20]. In 
addition to the application of 60 \xnx 
carborundum at the leading edge of the 
propeller models, a kind of blackboard 
paint was used to paint the whole blade 
as an alternative to induce transition 
of the boundary-layer. The preliminary 
result of the blackboard paint used as 
a tripping device was encouraging. 

The laminar region was always dimin- 
ished considerably in all conditions 
tested. This stimultor became more 
effective at higher speeds on the smaller 

propeller, in this case either the 
laminar region was totally removed or 
only a very small laminar region existed 
near the leading edge of the blade root. 

The oil film flow visualization of the 
geosim propeller models strongly sug- 
gested that there existed a similar size 
effect on boundary-layer transition as 
in the case of the Schiebe bodies, namely, 
for a given Reynolds number, the smaller 
the propeller diameter, the smaller the 
laminar boundary-layer region on the 
propeller blades. This size effect is 
thought to be caused by the difference 
in relative roughness height of the blade 
surface. This effect is most evident in 
the case of painted blades. Here a 
quasi-critical Reynolds number R,qcru is 
defined in a practical manner as the 
Reynolds number at which boundary-layer 
transition occurs close to the leading 
edge at all outer ratii of r/R>0.4 (R 
being the radius of the propeller model). 
According to this definition table 5 
gives some paint test results of the 
present study. 

Table 5. The Measured and Estimated 
Quasi-critical Reynolds Number at 0.7 
Radius  for  Different Blade  Surface 
Conditions 

Blade sur- 
face 

condition 

Dmm 220 280 350 

J *.„cr«><10"6 

roughened 
with 

carborudum 

0.996 
0.86 

0.92 
0.90 

1.18 
1.14 

2.19 
1.66 

painted 0.996 
0.86 

1.65 
1.04 

2.35 
1.89 

2.86 
2.36 

smooth 0.996 
0.86 ~2.7 ~s4.3 

From this table it is clear enough to 
show that for a given smaller laminar 
region on the propeller blade at inner 
radii r/R<0.4, the quasi-critical 
Reynolds number is increasing with the 
propeller diameter in the tested range. 
Roughly speaking, for the two types of 
roughened blades this size effect can be 
expresssed as Re0.7 / D

15=const. This 
constant is dependent on both the blade 
surface condition and the thrust loading 
of the propeller models. Fig.37 is the' 
variation of the separation radius with 
Reynolds number. Here for the near 
shock-free condition the separation 
radius may still be defined as in the 
peaked condition, even there was neither 
the separation bubble near the leading 
edge nor distinct "cut off" of the paint 
streaks of the laminar flow region. 
However transition occured more gradu- 
ally than on a propeller blade with a 
peaked pressure distribution. An 
increase in the Reynolds number shifted 
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3.0 

Renx|0 

Fig. 37- Variation of separation radius 
with Reynolds number and surface 
condition   (J=0.996) 

Dmm Smooth painted 
220 o • 
350 A A 

the transition region towards the leading 
edge, the chordwise movement of the 
transition edge was more evident than 
the radial one. The separation radius 
was not constant, it only varied slightly 
on the smooth blades but significantly 
on the painted blades. The laminar region 
on the painted blades was smaller than 
on the smooth blades, especially when 
the Reynolds number was increasing this 
boundary-layer stimulator became more 
effective. It is interesting to mention 
that in our tests the boundary-layer on 
the whole pressure side was turbulent. 
This agreed with the calculated peaked 
pressure distribution with a very strong 
adverse pressure gradient at the leading 
edge. As far as the cavitation tunnel 
test is concerned, it is not generally 
true to say that the bigger the propeller 
model, the smaller the scale effects. In 
order to reduce the scale effects caused 
by viscosity and blockage, it is pre- 
ferably to choose a testing scheme using 
a comparatively smaller model with a 
higher RPM of the propeller. In this case 
the test Reynolds number either may 
become closer to the critical Reynolds 
number with smooth blades or may easily 
reach on exceed a much lower critical 
one with roughened blades. 

Scale Effects on Propeller TVC 
McCormick's semi-expirical scaling 

relationship for tip vortex cavitation 
inception on hydrofoils in the form of 
o, = R", • am has been widely used to predict 
full scale propeller TVC inception based 
on model tests [21]. Here a is the angle 
of attack of the hydrofoil. The deter- 
mination of the Reynolds number exponent 

n is important for the TVC scaling. The 
lack of necessary propeller model series 
test data has forced us to tentatively 
utilize the existed hydrofoil data, 
though there exists apparent distinction 
between the TVC on hydrofoils and pro- 
pellers. It would be much better to 
accumulate sufficient propeller data to 
develope a proper scaling relationship 
for propeller TVC inception. Our effort 
is just the first step to develope our 
own database to determine such a scaling 
law. 

It has been found from many investi- 
gations that the inception of TVC depends 
strongly on both the tip boundary-layer 
and the dissolved air content of the 
water. The present study deals with the 
viscous scale effects on propeller TVC 
only. In order to reduce the possible 
nuclei scale effects all the cavitation 
tests were performed at an almost con- 
stant value of a/as (0.85$a/a.s£0.90) . 
Cavitation tests were conducted at three 
speeds V=3.5, 5.0 and 6.5 m/sec for two 
values of J=0.996 and 0.86. Five dif- 
ferent stages of development of TVC were 
measured with naked eyes under 
stroboscopic light at fixed values of V 
and J. The conditions measured were 1). 
desinent TVC, o0, 2). unattached TVC, a,, 
3). attached TVC, o2, 4). developed TVC, 
o3 (the first stage of developed TVC), 
5). fully developed TVC with mid chord 
small bubble band cavitation from r/R=0.4 
up to the propeller tip, o4 (the second 
stage of developed TVC, this stage will 
be simply designated as fully developed 
TVC in this paper). Due to the design 
limitation of the tunnel sometimes it 
was impossible to arrive at the above 
mentioned conditions . Figs . 38 is a tpical 
photo of the fully developed TVC. The 
cavitation appearance on painted blades 
under the fully developed TVC condition 

Fig.38. The fully developed TVC on 
painted propeller D=350mm at V=6.5m/s 
and J=0.99 6 
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is worth mentioning. The mid-chord 
cavitation bubble appeared to be a fine 
bubble band which looks like closer to 
what expected to be the full scale 
pattern. 

The performance tests of these pro- 
peller models indicated that the tunnel 
blockage effects were not negligible due 
to the limited size of the tunnel. The 
tunnel blockage of the three configu- 
rations tested were 5.3, 8.6 and 13.4% 
respectively (the area ratio of the 
propeller disc area to the tunnel cross 
area). In order to compare the test TVC 
results under the same thrust loading, 
a simple KT indentity method was used to 
correct the measured cavitation data. 
Figs.39-42 are some of the corrected TVC 
data. Table 6 gives the exponents n of 
the results of linear regression analysis 
of these data. 

Table 6. The Reynolds Number Exponents 
n for TVC Scaling Rules for Different 
Blade Surface Conditions and Stages of 
Development of TVC. 

J=0.996 smooth with 
carb. 

painted 

attached 
unattached 
desinent 

0.20 
0.15 
0.08 

0.08 
-0.05 
0.02 

-0.07 
0.06 
0.24 

J=0.86 smooth with 
carb. 

painted 

attached 
unattached 
desinent 

0.43 
0.22 
0.17 

0.10 
0.02 
0.14 

-0.03 
0.13 
0.20 

0.7 1.0 1.5    2.0 
-6 

Ron xio 

2.5  3.0 

Fig.40.  Cavitation numbers  versus 
Reynolds number for a series of 
propeller models .at different stages 
of development of TVC (smooth blades, 
J=0.86) 
Dmm desinent unattached attached 
220    o        D        6. 
280    o        a A 
350    •        ■ A 

10 

6" 

5 __D^ -Ja-cr-« -% &"~ 

0 7 

Ren xio 

20 
6 

2 5  3 0 

Fig.39. Cavitation numbers versus 
Reynolds number for a series of 
propeller models at different stages 
of development of TVC (smooth blades, 
J=0.99 6) 
Dmm desinent unattached attached 
220  ' o        □        A 
280    »        a A. 

350    •        ■        A 

I 5 r 

10 

6" 
6i o^ 

"7r 

07 

a o    a 
A  . A       A 

[I 

A 

10 2 0 2 5  3 0 

Ren x io 

Fig.41.  Cavitation  numbers  versus 
Reynolds  number for  a  series  of 
propeller models at different stages 
of development of TVC (roughened with 
leading edge carborundum, J=0.86) 
Dmm desinent unattached attached 
220    o        D        A 
280    a O A 
350    • ■ A. 
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Fig.42.  Cavitation numbers versus 
Reynolds  number  for a series  of 
propeller models at different stages 
of development of TVC (painted baldes, 
J=0.996) 
Dmm desinent unattached attached 
220    o        n        A 
280    »        a        A 
350    o        m A 

Based on the above mentioned exper- 
imental results some of the main viscous 
scaie effects on TVC may be discussed as 
follows: 

1. The Effect of the Reynolds Number 
After the tunnel blockage correction 

was made, a clear Reynolds number effect 
on the cavitation data appeared. No clear 
size effect was observed. This was 
possibly caused by the fact that during 
the cavitation tests the boundary-layer 
on both the suction and pressure sides 
was turbulent near the propeller tip, 
and the inception of TVC was mainly 
effected by the boundary-layer devel- 
opment near the tip. Thus the size effect 
of boundary-layer transition turned out 
to be a secondary effect on the inception 
of TVC, here the dominant effect was the 
Reynolds number effect. 

2. The Effects of Blade Surface Condition 
and Cavitation Development 

If we use the exponential scaling law 
as apiR"., here the Reynolds number Re is 
based on the blade chord length and the 
resultant blade inflow velocity at 0.7 
radius, then the exponents n for dif- 
ferent test conditions can be determined 

from the very limited data available. 
Even though the values of n should not 
be regarded as very accurate quantities, 
they will still be useful for us to 
understand some basical aspects of TVC 
scaling rules, at least, qualitatively. 
From table 6, it is evident that for all 
three blade surface conditions and three 
types of TVC the exponents n differ from 
each other. The values of n are strongly 
dependent on both the types of TVC 
measured and the blade surface conditions 
of  the propeller models.  Generally 
speaking, the real values of n found at 
this tunnel were smaller than the usual 
range of n=0.36-0.60 reported in the 
literature. The effects of blade surface 
condition on TVC manifested itself first 
in the cavitation inception numbers. In 
comparison with the smooth blades TVC 
was delayed on the painted blades _ in 
general. For the roughened blades with 
carborundum the desinent TVC was often 
delayed but the attached TVC was often 
hastened. Secondly, the blade surface 
condition also had an effect on the 
exponent n. The values of n for the 
desinent, unattached and attached TVC on 
the smooth blades were the highest among 
three different blade surfaces with few 
exceptions. The effect of cavitation 
development was quite regular for the 
smooth blades: the exponent n was the 
highest for the attached TVC and n was 
the lowest for the desinent TVC. On the 
other hand, the exponent n was increasing 
with the thrust loading of the propeller 
for the smooth blades. The cavitation 
development still exerted an certain 
regular effect on the exponent n for the 
painted blades, however it was just the 
opposite to the effect on smooth baldes: 
the exponent n was the lowest for the 
attached TVC and n was the highest for 
the desinent TVC. This effect became 
irregular for the roughened blades with 
leading edge carborundum. During the 
cavitation  tests  the  boundary-layer 
condition on the suction side of the 
smooth blades  was  far  from quasi- 
critical: the laminar region was either 
close to the blade tip (J=0.996) or near 
r/R=0.6-0.7  (J=0.86).  However,  the 
boundary-layer condition on the suction 
side of the roughened blades was either 
near critical (with carburundum) or near 
quasi-critical (painted), the laminar 
region was completely disappeared with 
carborundum or only a small laminar 
region existed close to the painted blade 
root. For the same cavitation development 
the highest exponent n of the smooth 
blades may be related to the biggest 
laminar boundary-layer region on the 
suction side of propeller baldes [22]. 

In order to further improve the 
accuracy of the TVC inception measurement 
and to establish a more solid scaling 
relationship, there appears an apparent 
need to use some more objective method 
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of defining TVC inception like Kuiper's 
method [23] of determination of the TVC 
inception from the radius of the cavi- 
tating core (ac=0.25 mm) or Ye's improved 
method [24] based on Kuiper's method 
(ac = 0). 

V. CONCLUSION 

The main conclusions are as follows: 
1. LDV flow measurement was success- 

fully used to determine the thin 
boundary-layer transition as a 
supplementary but quantitative flow 
visualization measure. When transition 
occurred, in addition to the well-known 
large RMS value associated with trans- 
ition, spectrum analysis of the LDV 
signals of fluctuating velocity 
indicated that the velocity level was 
increasing almost linearly with decrease 
of the frequency in a log-log plot of 
the power spectrum. On the other hand, 
the ratio of low pass filtered RMS value 
of the LDV signals to high pass filtered 
one often reached a maximum. These 
features of the LDV sinals also appeared 
in some extent in the measurements at 
other cavitation prone regions such as 
reattachment points of separated 
boundary-layer or region. Transition 
detection by the present LDV method 
showed good agreement with the results 
of schlieren and in-line holography 
methods. 

2. The present series flow measure- 
ments by LDV clearly revealed a regular 
size effect or unit Reynolds number 
effect on boundary-layer transition on 
the Schiebe headforms, namely at the same 
Reynolds number, the smaller the diameter 
of the model, the shorter the distance 
of the transition point downstream from 
the minimum pressure point. This is 
thought to be caused by the bigger 
relative surface roughness height on the 
smaller models. 

3. Spectrum analysis of the LDV signals 
in cavitation prone regions implied that 
there might exist large-scale coherent 
structure of turbulence. Downstream from 
the fully developed attached cavity end 
both of Schiebe and hemispherical bodies 
cavitation pattern looked like consisted 
of many large horseshoe or heirpin 
vortices (D-shape, U-shape). Most of 
these large scale structure of vortex 
cavities inclined at almost 45° with 
respect to the flow boundary. They 
clearly revealed the coherent structure 
of turbulence. 

4. Boundary-layer separation was found 
at 6 = 87° of the hemispherical model H200 
for a Reynolds number of ReD - 1.68 x 106. 
But the measured boundary layer thickness 
was equivalent to 5-6 times the predicted 
one, and velocity profile was much fuller 
than  the  laminar  one.  Preliminary 

analysis indicated that this separation 
was neither laminar nor turbulent, it 
can be considered in very general terms 
as transitional or viscous separation. 
It seems that in comparison with the 
laminar separated bubble this much 
thicker viscous separated bubble will 
offer much more time for gaseous 
micro-bubble growth to occur. As far as 
the mechanism of cavitation inception 
inside the separated zone is concerned, 
it seems not general to consider the 
pressure fluctuation near reattachment 
point as the only possible reason. 

5. Typical scaling trends for trav- 
elling bubble cavitation and attached 
small bubble-band cavitation on 
hydrofoils were observed. The size effect 
on developed attached bubble-band cav- 
itation was similar to the size effect 
on desinent and incipient travelling 
bubble cavitation except for the largest 
foil. 

6. The preliminary result of the 
blackboard paint used as a tripping 
device is encouraging. The laminar region 
was always diminished considerably in 
all conditions tested. This stimulator 
became more effective at higher speed on 
the smaller propeller, in this case 
either the laminar region was totally 
removed or only a very small laminar 
region existed near the leading edge of 
the blade root. 

7. The oil film flow visualization of 
the propeller models strongly suggested 
that there existed a similar size effect 
boundary-layer transition as in the case 
of Schiebe bodies. A quasi-critical 
Reynolds number Reqcrit was defined to 
analyze this size effect. For a near 
shock-free condition, roughly speaking 
Req.crit was found to be proportional to 
D ■ for propeller models either painted 
or roughened with leading edge carbo- 
rundum . 

8. From the very limited data of the 
present study, the Reynolds number 
exponent n of propeller TVC scaling rules 
was found to be dependent upon the blade 
surface condition, the stage of devel- 
opment of TVC and the thrust loading of 
propeller models. Much remains to be done 
before some more solid propeller TVC 
scaling rules may be established. 
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Analytical and Numerical Study of 
Large Bubble/Bubble and Bubble/Flow Interactions 
G. Chahine, R. Duraiswami, M. Rebut (DYNAFLOW, Inc., USA) 

Abstract 

The presence of cavities in a liquid can have 
significant effects on its behavior and its flow 
characteristics. In practical flow situations, these 
effects cannot be fully understood or predicted 
without addressing complicated, but nonetheless 
fundamental phenomena associated with the dy- 
namics, interactions, and deformation of bub- 
bles. The importance of these phenomena has 
long been recognized, but has largely been ne- 
glected due to the difficulty of the associated 
mathematical problems. In this contribution, 
bubble shape oscillations in response to nonuni- 
form flow fields and/or due to their interaction 
with other bubbles are considered using both a 
matched asymptotic expansions technique and a 
fully three-dimensional boundary integral method* 

Results from both approaches in a few par- 
ticular cases are compared, and the limits of 
application of these methods for these cases is 
assessed. 

Nomenclature 
no, 
Tb0, 

TO, 

lo, 

To, 

(■, 

t, 

<Po, 

Q, 
K, 

Ri, 

characteristic bubble size, 
characteristic bubble time scale 
outermost characteristic flow length scale 
characteristic flow time scale 
bubble/boundary distance scale 
interaction time scale, 
ratio between r^o and lo 
time 
bubble velocity potential in moving frame 

bubble velocity potential = <f>' — 4o 
total velocity potential 
basic velocity potential 
velocity gradient scale 
velocity bigradient scale 
ith component of the bubble radius 

Introduction 
The presence and dynamics of bubbles and cavities in 
a flow field can have significant effects of relevance to 
engineering applications. These effects include erosion, 
noise generation, damping of acoustic signals, degrada- 
tion of performance...etc [1, 2, 3, 4]. This has instigated 
a great interest in the study of the problem, and thou- 
sands of publications have been devoted to the study 
of cavity flows since the early work of Rayleigh [5] and 
Besant [6]. Due to the complexity of the general math- 
ematical and physical problem, most approaches have, 
however, been limited to the study of spherical, isolated 
bubbles, or to elongated linearized two-dimensional cav- 
ities. More recently, with the advent of new mathemat- 
ical and computational tools, increasing attention has 
been given to the study of more practical cavity con- 
figurations: namely nonspherical bubbles and bubble 
clouds. Nonspherical axisymmetric bubble dynamics, 
such as in the vicinity of a solid wall or a free surface 
were most particularly studied [7, 8, 9, 4]. All these 
studies were restricted to the simplified case where the 
bubble is in a quiescent fluid and where external forces, 
if any are potential, and act in a direction perpendicular 
to any nearby rigid or free boundary. Advantage was 
taken of the axisymmetry of the resulting problem. De- 
viations from these simplifying assumptions could sig- 
nificantly influence the results. In fact, in most practi- 
cal cases bubbles are neither isolated, nor in a uniform 
flow or in a quiescent fluid. Common examples include 
cavitation bubbles near propeller blades, large cavity 
dynamics near complex geometries in a gravity field, 
dynamics of bubble clouds, and bubble dynamics in a 
shear or boundary layers. 

The dynamics of bubble clouds have also recently re- 
ceived a lot of attention [10, 11, 12, 13], especially since 
they have been observed to produce dramatic deleteri- 
ous effects, which cannot be explained with approaches 
based on single bubble dynamics. 
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All these studies but [9, 11], have considered only 
the contribution of the bubble volume change on the 
cloud dynamics, and have either neglected bubble fluid 
relative motion and bubble deformation, or restricted 
their approach to acoustic perturbations. 

In a first approach, based on the method of matched 
asymptotic expansions, we consider these effects in the 
limiting configuration where the bubble size is small 
compared to inter-bubble distance (small void fraction), 
or where the bubble size is much smaller than some 
characteristic length scale of the surrounding flow. 

These include problems of bubble dynamics in nonuni- 
form flow fields (bubble dynamics in the flow field of a 
vortex or near a headform) and the inclusion of com- 
pressibility.   In these cases, the small perturbation is 
chosen to express small but not negligible interactions. 

This limitation is removed in a second parallel ap- 
proach where a fully three dimensional numerical method 
is developed. This method has been tested for bubble 
dynamics in a quiescent fluid [14, 15], and has been re- 
cently used for the investigation of bubble dynamics in 
complex flow fields such as vortical, boundary and shear 

flows [16, 17]. 
In this contribution we will present first the model 

used for the bubble dynamics (Section 1). We will high- 
light effects taken into account and attempt to describe 
the limits of validity of the model. We will then describe 
in general terms the asymptotic approach used (Section 
2). In Sections 3 to 5 bubble behavior in nonuniform 
flow fields, particularly the flow about a headform and 
in a vortex flow are described. In Section 6 the same 
method is used to describe the particular configurations 
of multibubble clouds with a particular note on the ex- 
tension of the method to the case where the bubbly 
medium is slightly compressible. In the following sec- 
tions the studies described above will be extended to 
very large deformations and interactions. The numer- 
ical method used will be described in Section 7 while 
Sections 8 will consider the particular cases of bubble 
behavior in a sheared flow field near a solid wall, in a 
vortex flow, and for a multibubble configuration. Fi- 
nally some conclusions are drawn from the results. 

1    Bubble Dynamics Model 

We will consider mostly cavitation bubbles where rel- 
atively large bubble wall velocities are involved and 
where, as a result, viscosity has no appreciable effect 
on the growth and collapse of the bubbles. The study 
will also be restricted to the case where the flow veloc- 
ities remain small compared to the speed of sound in 
water, and as a result, we can neglect or approximately 
account for compressibility effects. This is usually valid 
until the latest collapse phase. The above two assump- 
tions, classical in cavitation bubble dynamics studies, 
result in a flow due to bubble dynamics that is poten- 
tial (velocity potential, <&,(x,2)) s" that ub = Vfo, and 

which satisfies the Laplace equation, 

VVt = 0. (!) 

In our numerical work this assumption is not imposed 
on the "basic flow," i.e. to the underlying flow existing 
in absence of the bubble, . In addition, compressibility 
of the liquid, or of the bubbly medium in the case of a 
bubble cloud, can be considered in an "ad-hoc" fashion 
through a delay time for the propagation of information 
between the source and a field point, as well as through 
a compressible model for the spherical component of the 
bubble oscillations. The solution must in addition sat- 
isfy boundary conditions at infinity, at the bubble walls 
and at the boundaries of any nearby bodies. At all 
moving or fixed surfaces (such as a bubble surface or 
a nearby boundary) an identity between fluid velocities 
normal to the boundary and the normal velocity of the 
boundary itself is to be satisfied. For instance, at the 
bubble-liquid interface, the normal velocity of the mov- 
ing bubble wall must equal the normal velocity of the 

fluid, or, 

V^b • n = Vs • n, (2) 

where n is the local unit vector normal to the bubble 
surface and Vs is the local velocity vector of the mov- 
ing surface. This equation expresses the fact that the 
bubble surface, B(r,6, <j>,t), is a material surface of the 
liquid 

DB 

Dt 
= 0. (3) 

The bubble is assumed to contain noncondensible 
gas as well as vapor of the surrounding liquid. The 
pressure within the bubble at any given time is con- 
sidered to be the sum of the partial pressures of the 
noncondensible gases, Pg, and that of the vapor, Pv. 
Vaporization of the liquid is assumed to occur at a fast 
enough rate so that the vapor pressure remains constant 
throughout the simulation and equal to the equilibrium 
vapor pressure at the liquid ambient temperature. In 
contrast, since time scales associated with gas diffusion 
are much larger, the amount of noncondensible gas in- 
side the bubbles is assumed to remain constant and 
the gas. is assumed to satisfy the polytropic relation, 
PgV

k - constant, where V is the bubble volume and 
k the polytropic constant, with k = 1 for isothermal 
behavior and ifc = Cp/cv for adiabatic conditions. In 
previous studies the influence of heat transfer [18], and 
gas diffusion [19] on the dynamics of a bubble cloud was 
considered. We will neglect these effects in this presen- 

tation. 
The pressure in the liquid at the bubble surface, 

Pi, is obtained at any time from the following pressure 
balance equation: 

PL — Pv + PSi V -*■ (4) 

where Pgo and V0 are the initial gas pressure and vol- 
ume respectively, <7 is the surface tension, C the local 
curvature of the bubble, and V the instantaneous value 
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of the bubble volume. Here Pgo and V0 are known quan- 
tities at t = 0. The curvature and the normal, n, to the 
surface B are given by: 

C = V -n n = 
VB 

|VBf 
(5) 

2    Asymptotic Theory for Bub- 
ble Flow Interactions 

The asymptotic method that we have developed is cen- 
tered on the following approach. Whether the prob- 
lem considered is that of bubble interactions in a cloud 
or that of the interaction between bubbles and a non- 
uniform complex flow, the problem is addressed by a de- 
composition of both time and space domains into mul- 
tiple scales. For instance, the dynamics of any bubble is 
obtained by considering an inner problem of scales rb0, a 
characteristic bubble size, and rb0, a characteristic bub- 
ble time scale. The overall flow field, on the other hand 
is addressed by considering an outermost problem with 
scales L0, a characteristic flow length scale, and T0, a 
characteristic flow time scale. Using the same proce- 
dure, an intermediate outer problem is introduced with 
outer scales such as a characteristic length scale of inter- 
bubble distances or bubble/boundary distances, l0, and 
an interaction time scale, T0. Finally, a far-field acoustic 
field scale can be introduced based on the length, crbo, 

where c is the sound speed in the liquid. 
An asymptotic analysis of the problem can be de- 

veloped when these various scales are of different orders 
of magnitude. For instance, for bubble/bubble interac- 
tions in a cloud or for bubble/flow interactions near a 
boundary an asymptotic approach can be introduced 
when no is much smaller than /0, in which case one 
could use the ratio between rba and /0 as the small per- 
turbation parameter, e. 

no 
la 

(6) 

The outer problem is associated with the macroscopic 
behavior of the bubbles in a bubble cloud or in a com- 
plex flow geometry. A bubble then appears as a super- 
position of singularities of various orders. If more then 
one bubble is involved, the summation is to be carried 
out over all the bubbles. The inner problem obtained 
when the lengths are normalized by rb0, provides the 
microscopic details of the behavior of the flow in the 
vicinity of an individual bubble center (-5,-). The pres- 
ence of the other bubbles or boundaries, all considered 
to be at infinity in the inner problem, is sensed only by 
means of the matching condition with the outer prob- 
lem. The boundary conditions at infinity for the inner 
problem are therefore obtained at each order of approxi- 
mation by the asymptotic behavior of the outer solution 
in the vicinity of J5,-. Thus, if one knows the behav- 
ior of all bubbles except £?,-, the motion, deformation 
and pressure field due to this cavity can be determined 

by solving linearized forms of the equations presented 
in the previous section. At the lowest order, e = 0, 
each bubble (of index i) behaves spherically as if in 
an infinite medium and the time dependence of its ra- 
dius, a0(i), is given by the Rayleigh-Plesset equation if 
the medium compressibility is neglected, [20], or by the 
Keller-Herring equation [21, 24] for example if a slight 
compressibility of the medium is taken into account (see 

section 6). 
The combination of all these first approximations of 

each inner problem provides a description of the whole 
first order flow field (i.e. a distribution of sources or 
sinks representing all bubble oscillations). The behavior 
of this outer flow field in the vicinity of each bubble 
sets the boundary conditions at infinity at the following 
order of approximation, e, for the corresponding inner 
problem. The same process is then repeated for the 

successive orders. 
At all orders solutions of the Laplace equation are 

expanded in general form as spherical harmonics and 
the bubble radius equation is expanded in surface har- 

monics: 

oo     i P.. 

j=0m=-j 

(?) 

r = 71(9,<?,*) = £  £ RijUmUe,¥>), (8) 
j=0m=-j 

In what follows, quantities indicated with a superscript^ 
~  are inner variables, while those with a superscript 
refer to outer variables. The Yjm are given by: 

(9) 
f P™(cos 6) cos rmp\        for m > 0 

Yjm = | pVl(cos e) sin \m\<p;     form < 0 

Then all quantities, x, particularly <j>, 4>, andR, are ex- 
panded in powers of £ as follows: 

X = Xo + exi(r, 0,H>, t) + e2
X2(r, 6, <p, t) + 0(e3).     (10) 

3    Bubble Behavior in a Nonuni- 
form Flow Field 

Let us consider a basic flow field (flow in absence of 
the bubble) that is potential and steady, with a veloc- 
ity vector Vo deriving from the potential <f>o- Let the 
pressure be p0 and the liquid density p. The velocity po- 
tential satisfies the Laplace equation and the Bernoulli 

equation: 

1 Po 
V2<£o = 0, r(V<£o)2 + — = constant. (11) 

Let <$>' and p' be the potential, the speed and pressure 
in presence of the bubble. We now have similar equa- 
tions as (11-12) with these complete flow variables. In 
addition, far away from the bubble, we have 

<f>' = 4>o, 
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and the continuity of the normal velocities at the bubble 
wall can be written: 

W-n}r=R = ^e;.n (12) 

We will consider now the bubble potential, fa, differ- 
ence of the potentials </>' and fa. 

fa- 

Since at infinity Vb and fa decay to zero, and the pres- 
sure is po, the Bernoulli equation becomes: 

2 p 
(14) 

M=-cc 

where we have limited ourselves to the case where the 
basic flow is steady. The right hand side of the equation 
is a constant of the basic flow field. 

At this time we can transform the above equations 
to those in a coordinate system with origin o moving 
with a velocity prescribed VM, and decompose this ve- 

locity as 

YM = Vex+ö5 x oM, (15) 

where Vc is the translation velocity of o, and w is the 
rotation velocity with respect to the fixed frame. 

Making the transformation, the system of equations 
of the problem becomes, <j> being the velocity potential 
of the bubble flow  in the moving frame: 

A<2f>=0;    lim <£ = 0;     {Vf n}M« = 0, 

Vo) +0 x oM • n V0-n = f + (Ve 

Yt + 5W)2 + (Vo - Vc - Ö; x oM) • Vff 

4(tf- VJ .+* Po(o) (16) 
P)T=R P 

The pressure at the bubble wall and the pressure inside 
the bubble are related through Equation (4). 

Nondimensionalizations 

All equations can be normalized using the following 
scales. In the outer problem: 

r       = l0 f        l0 : the initial bubble wall distance 
4>      = 4>ext 4>   4>ext ■ outer velocity potential scale 

In the inner  problem: 

R = r0 R r0 : the initial bubble radius 
p = App Ap : pressure change scale 
t = To t To : characteristic collapse time 

<j> — TQ0/TO rl/To : inner velocity potential scale 
V0 = VOVQ VO : basic flow velocity scale 
VV0 = Q VVo Q : basic velocity gradient scale 

The matching conditions between the inner and the 
outer solutions is obtained by formally writing that there 
exists an intermediate region characterized by r", r0 < 
r* < l0 where both solutions are valid. This leads to: 

12. 
To 

r 

^0 
<t>ext 4>{-r)- 

«0 

(17) 

(13)        Taylor series expansions of the basic velocity 

Since we are considering the case where the size of the 
inner region is small compared to the characteristic 
length of the basic flow, we can express the velocity 
field in the inner region as a Taylor series expansion 
about the moving origin o. 

Vo(r) = Vo|0 + f-VV0|   +jU-VVV„    • r + 0(e3) 
'o       Z o 

In order to compute the various terms in Equation 
(16) we need the following quantities: 

V0(r)-Ve   =   gr0f-VV0(o) + 

yiHi- VVVo(o) ■ f + 

(IS) 

(V„(r) - V«) • V0   =   ^ V0 • (QTOT ■ VV0(o) + 

l- UTlro f • VVVo(o) •?+■■• 

k-Vl(r)-Vl)   =   ^(0 2?^f-VVo(o)-Vo(o) + 
l Jo ~o 

\    T0
2Vo'Wf-VVVo(o)-f-Vo(o)-f 

\  (gr0f-vv0(o))2 + ---      (19) 

where v0 is the characteristic velocity of the flow field, 
Q the characteristic dimension of the velocity gradient 
and H the characteristic dimension of the velocity bi- 
gradient. 

4    Problems with a Plane of Sym- 
metry 

We now consider the problem of a bubble in a flow in the 
case where there is a plane of symmetry. This assump- 
tion is not fundamental and has been made to simplify 
the analysis. The general theory is first developed, and 
is then applied to the problem of a bubble collapsing 
near a semi-infinite bluff axisymmetric body in a uni- 

form flow field. 

Problem formulation 

We will choose a coordinate system Oxyz fixed to a 
streamline, Ve = V0(o(i)), so that the z-axis is parallel 
to VQ(O);     V0 = vx(t)ex. If we consider the case where 
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the problem is symmetrical about the (Oxz) plane then 

VVo(o) = 
<*!      0 a2 

0    0 0 
a2   0 -a-i _ 

(20) 

J ex,ey,ez 

As a result f-VV0(o) and f-VVV0(o)-r can be written: 

Wo(o) 

ex,ey,ez 

aix + a2z 
0 

—a-yz + a2x 

' GT(0,1>) 
Gt(0,rl>) 

ej,e>,tj 

• VWo(O) 

jiz2 + 273x2 

0 
74Z2 + 273x2 

Cr,Ce,e>p 

where we have transformed the quantities from carte- 
sian coordinates (x, y, z) to spherical coordinates (r, 0, rp) 
with the polar axis along the 2 axis. In the above equa- 

tions: 

7i = 

73 

da2 

97' 
9ai 

72  = 

74 = 

9a2 

dx ' 
9QI 

(21) 
92 '        '*      dx " 

Since the problem has a plane of symmetry, we shall 
take    üJ = Lo(t)ey, 

ü x oM = w r (ey x er) (22) 

We nondimensionalize wasu = fiw, where ft is the 
characteristic rotation speed of the frame. 

Domain of validity of the asymptotic 
solution 

The choice of the relative sizes of the six nondimensional 
parameters of the problem to consider was determined 
first by application of the least degeneracy principle. 
This was then relaxed in order to obtain solutions in 
some practical physical configurations. The analytical 
and numerical solutions presented below are based on 
the following sizes of these parameters relative to e. 

1. The characteristic length of the inner problem is 
smaller than that of the outer problem, r0/l0 « 1. 

2. The characteristic velocity of the initial flow, u0, 
is of same order as the characteristic collapse velocity, 

v0 = O(r0/T0). 
3. The characteristic basic velocity gradient is of the 

order of e in the inner problem: QTo = 0(e). 
4. The characteristic velocity bigradient at the scale 

of the inner problem is far smaller than that of the inner 
problem: HT0r0 = 0(e2). 

5. The characteristic rotation speed at the scale of 
the inner problem is smaller than the collapse velocity: 

ftTb = 0{e). 
6. The collapse velocity is directly related to the 

local pressure by pv2
collap,J Ap = 0(1). 

The bubble is considered to be close enough to the 
submerged body so that at leading order, e°, in the 
outer problem, the body appears as an infinite flat wall. 
At subsequent orders, the curvature is taken into ac- 
count. This means that the ratio of the bubble standoff 
distance to the local radius of curvature of the body is 
of order e. In the inner problem, the effect of the wall 
is seen first at order e for the potential and at order e2 

for the bubble radius. The effect of the curvature only 
intervenes at order e2 on the potential and only adds a 
constant to the equations. 

Order e° 
The system of equations described above reduces at or- 
der e° in the inner problem to that of an oscillating 
spherical bubble: 

~ 1 ~ 
(fi0 = q/f      with    q = —Ro Ro, (23) 

where RQ is determined by the Rayleigh-Plesset equa- 

tion 

(24) 

•Ap, 

where W = APRo/cr and V = (poo - Pv)/&P, with the 

initial conditions: Ro = 1 and Ro = 0. In the outer 
problem the general solution (7) reduces to 

k> = B0{i)Po{cos6){— + fn+1    '     -/n+1 - 
(25) 

The matching condition between the two problems 
can be written 

$ \Ur) + efaf) + e2'4>n{f) + 0(e3)} = 
J-o l 

<f>cxt [&(f) + efo(r) + e2hm + 0(e3)} (26) 

which leads to: 

*e* = £^;  Bo(t) = q(i);    1™*/ = ? (2?) 

Order e 

After accounting for the solution at 0(e°) the equations 
of the problem at 0(e) become: 

A<fo = 0; lim <£i = - 

dr 9r2 J f=A dr 
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^ + ^ + ^^»+^^»+(28) 
. dt     9ldtdf     8r 3r     9l Ör dP    {   ' 

where 

GT   =   2a2 cos 9 s'm 8 cos ip + Qi(s'm2 6 cos2 ip - cos2 9) 

F   =   Qi sin 9 cos V> + »2 cos Ö (29) 

Resolution of the order £ 

Using the general solution of the Laplace equation, the 
limit condition at infinity on <f>\ leads us to take: 

Ujm <$;',0 ?/2, (30) 

Since the problem is symmetrical about the (Oxz) plane, 
there are no terms in sin j/>,and we do not have to con- 
sider m < 0. Equation (16) becomes: 

l±±R     Y- 
KQ 

i 1 Bv™v 

2 + Ag» Y]" 

2  - - K22 
-    r-Roa^i + QiÄo(^20 g~), 

i% 
■Rljmijm + 9 

j + 1 

Ä; 
,j+4 ■'-'lim ̂ m + 

fl2 2 
-   2-^-ÄljmKJm - -g-ga2y2i + 

-4-^(^-720)   +   fiRovx(aiYn + a3Y10) 
Ro       6 

-Rioo>oo3A'PÄÖ 
ZK-l (31) 

For j > 2 we have a homogeneous linear differential sys- 
tem where the initial conditions are zero. The solution 
is therefore R\jm = B\jm = 0;  Vj > 2. 

The equations for the non-zero terms at order e as 
well as all equations obtained at order e2 can be found 
in Reference [22]. At order € the bubble behavior is 
modified by both the presence of the wall, which at 
this order only appears as a flat plate, and the presence 
of a pressure gradient. At the following order e2 the 
curvature of the wall comes into play as well as the 
velocity bigradient. 

Application to Bubble Dynamics near 
a Headform 

We consider now the dynamics of a bubble near a semi- 
infinite bluff body. The velocity potential considered 
is that due to a superposition of a uniform flow and a 
source of intensity Q located at the origin: 

4>o - V^x + (32) 

This simulates the flow field about a Rankine body of 

radius, R ■■ /-2— and stagnation point at A' = —R/2. 

At order £°, the outside pressure Ap(i) is taken to be 
the pressure in the fluid in absence of the bubble along 
the trajectory of a fluid particle. At higher orders of e, 
the gradient and bigradient are also taken into account 
while following a fluid particle. 

A fourth order Runge-Kutta procedure is used to 
solve the ordinary differential equations presented ear- 
lier. To illustrate the method, a Rankine body with a 
radius of 10 centimeters with flow at infinity advanc- 
ing at a velocity of 1.15 m/s was selected. Figures 1 
through 4 show some results obtained on bubble be- 
havior near the Rankine body. Figures la through lc 
show a case where the interaction between the bubble 
and the flow field is significant. The initial bubble ra- 
dius is r0 = 1 cm. and its distance, l0, from the wall is 
such that £ = r0/l0 is equal to 0.3. 

Figure lb shows the trajectory of the bubble cen- 
ter along the body, and Figure lc shows the pressure 
and velocity variations with time. In the initial phase 
t < 2.0 the bubble sees a pressure drop. Later, the 
pressure rises back towards the ambient pressure. This 
velocity is also that chosen for translating the origin 
of coordinates in which the bubble shape is prescribed. 
Figure la shows, overlaid on each other, the bubble con- 
tours at different times (from t = O.lTo to 2To during 
the bubble growth and collapse. The orientation of the 
bubble relative to the body is the same as illustrated 
in Figure lb which shows bubble positions versus time. 
It is apparent from the contour plots that the bubble 

moves toward the body wall during its collapse. Due to 
the velocity and pressure gradient around the body the 
bubble elongates and in fact rotates around its center 
of mass. Initially, the side of the bubble surface facing 
an intermediary direction between the downstream di- 
rection and the wall direction flattens out. A reentrant 
jet is then produced perpendicular to that face. The 
direction of the jet appears to change with time in a 
fashion indicating increased influence of the presence of 
the wall. The computations shown in the figure stopped 
when the bubble wall touched the origin of coordinates. 
This moment will be delayed in future computations by 
selecting an adequate translation of the origin of coor- 
dinates that is perpendicular to the wall. 

Figure 2 shows the influence of the distance of the 
bubble to the wall, or e, on its shape history. Bubble 
collapse contours are shown for e = 0.15,0.3 and 0.6. As 
expected, deviation from sphericity increases with the 
proximity to the wall. Due to stronger shearing action 
closer to the body approaching the wall has the effect 
of increasing bubble stretching and elongation during 
its growth, then reinforcing the reentrant jet formation 
during the collapse. For e = 0.3 and e = 0.6 the com- 
putation stopped when the bubble surface touched the 
origin of coordinates. However, due to the weak nature 
of the interaction for e = 0.15 the collapse is completed 
with no reentrant jet and is followed by a bubble re- 
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bound or second growth that is not shown on the figure. 
Also, as expected, a similar effect as in figure 2 is 

obtained if the distance to the body is maintained con- 
stant while the bubble size is changed. Figure 3 shows 
such a case, where the distance between the bubble cen- 
ter and the wall is maintained at 3.333 cm, while the 
bubble size is varied from 0.5 cm (e = 0.15), to 1 cm 
(e = 0.3), to 2 cm (e = 0.6). Here too the jet is seen to 
rotate to become closer and closer to perpendicular to 

the wall. 

5    Bubble/Vortex Interaction 

One of the most fundamental phenomena observed in 
flow cavitation is the capture of bubbles/nuclei by vor- 
tices. The problem of the interaction of a single gas bub- 
ble and a Rankine line vortex is amenable to treatment 
via analytical techniques. Here we also apply to this 
problem the method of matched asymptotic expansions 
described above. To do so we assume that the length 
scale characteristic of the bubble, rbo is small compared 
to the initial distance from the bubble to the vortex, d. 

The analytical results have been tested for a plau- 
sible set of parameters, and yield physically reasonable 
solutions. The solution shows that the bubbles are at- 
tracted towards the vortex center, and that a jet ap- 
pears on the side of the bubble opposite to the flow 
direction. Further investigation of the parameter space 
and computation of higher order corrections are cur- 

rently underway. 

Problem formulation 

Consider a spherical bubble initially at rest in an in- 
compressible, inviscid liquid at a distance d from a line 
vortex of strength T. The pressure at infinity is p^ 
and the velocity due to the vortex alone (i.e. excluding 
any bubble effects) isV0. To perform the calculations 
we consider, as in the previous section, two coordinate 
frames. The first is a fixed frame which is convenient for 
describing the overall flow, one axis of which coincides 
with the vortex axis. The second is a moving frame 
which has its origin initially at the center of the bubble 
and moves at the liquid velocity in the absence of the 
bubble. We denote the location of the moving origin by 

o. 
With the same assumptions as in the previous sec- 

tion the equations of the problem, both for the flow 
and the boundary conditions on the bubble are the ones 
presented in Section 1. Since we are interested in the 
modification in the flow caused by the presence of the 
bubble, it is convenient to introduce as in Section 3 the 
reduced or bubble potential <t>b, defined by 

^ = 4>' - fß = $ - *„, (33) 

where 4>v is the velocity potential due to the isolated 
vortex and ß is the angular cylindrical coordinate in 

the fixed frame. The quantity <j>b represents the change 
to the potential of the flow because of the presence of 
the bubble. Because of linearity, the function 4>b also 
satisfies Laplace's equation and conditions described in 

Section 3. 
We now consider the moving system of coordinates. 

The coordinates are initially coincident with the bubble 
center, and move with the flow at that location in the 
absence of the bubble while the Cartesian axes remain 
parallel to those in the fixed frame. Let <j> denote the 
bubble velocity potential in the moving frame. 

«x,i) = Mx' + o,t) = «x',t) (34) 

where x' is x referred to the moving frame. The velocity 
V is expressed in the moving frame as 

V 
M** X e" 

(35) 

where e( is a unit vector along the shortest line joining 
the point at which the velocity is to be measured and 
the z axis of the fixed system, and / the length of this 
line. The velocity of the moving coordinate system is 

then: 

Vo = —; [- sin ut ev + cos ut e2<], 
2nd 

(36) 

By maintaining the moving cartesian axis parallel to 
the fixed frame axis we obtain the same equations for 

<j> as in Section 3, with w = 0. 
Dimensional Analysis 

As in the previous section the flow is assumed to be 
divided into two regions, an external region where the 
effects of the vortex dominate, while the region close to 
the bubble is dominated by its dynamics. The length 
scale characteristic of the bubble region is rbo, the initial 
bubble radius, while the outer problem has as scale d. 
We will consider the case where e = rbo/d is small. The 
physical quantities entering the problem are pg0 and rbo 

(from the bubble), and Poo.T, and pi from the liquid. 
The matching between the inner and outer problem 

and the application of the principle of least degeneracy 
leads to the condition that the scaling for the velocity 
V be such that it is of the same order as the bubble 
deformation velocity 

W~h rbo 

To' 
The nondimensional velocity is then defined by 

V = ftv— with Yt — 
•M3 

(37) 

(38) 
\JPOOIP 

This imposes the following restriction on the gradient 
of the vortex velocity field 

(V|TC-Vo)~r6o|VV|~£^. (39) 

We will denote 
1~bo 

V (40) 

685 



An important quantity is the rotation frequency of a. 
particle around the vortex line. This is given by 

r 
2-rrd2' 

(41) 

The ratio of this frequency and the Rayleigh frequency 
is seen to be 

rb0 T/2xd 
uT0 = ——, ~ 0(e). (42) 

yPco/pi 

Asymptotic expansions 

After expanding the equations of the problem described 
earlier as indicated in Section 2 these are solved up to 
and including terms of 0(e). As in the previous sec- 
tion problem upon introducing the expansions, the lead- 
ing order problem e° reduces to the spherical oscillating 
bubble problem. This problem has solution 

<t>o = qa/r = -RlRo/r, (43) 

which yields the following Rayleigh-Plesset equation for 

Ro 

+ [Vv + fi2 - 1) ,(44) RQRO + ■zRo 
VR-3k     2W-i 

— rgn0 

where 

v -M.         -p - h. 
ig —           >                    'V —           5 

Poo                                     Poo 

Order el 

The equations at 0(e) are 

VVi = o 

subject to 

Or         R0 „       ot 
r=Ko 

(45) 

(46) 

(47) 

and 

dt+Ro^ + Rl^ + Ro]++51 

- 9Z--D   ri0°    , 
" Rik+l 

(l-W + 2) 

+ RDnVd-er + V0.Vl\ 

_2W ~     '    rita 
p   £—i 2—1    f? 
HO   /=lm=-<   -"0 

=Ho 

(48) 

Introducing the expansion for the function Ri and <j>\ 
similar to that in Section 2, with the difference that the 
Ytm(6,tp) are defined here as 

yr(8^) = 
(n — \m\ 

'-Plml(cos9)exp(im^). 
(n + \m\)\ 

the dynamic boundary condition becomes: 

Ro    I.       ,9ffio- (Ro Ro 
rllrr. +  TTr\lT, 

/to 

+ti(A6%7 + A'5%'-2)) - Ujjt + jÜ r1/m = 

„,„ r100Jg°     2Wr„m /       (/-1)(/+1)\ 
-3^-^r + Tfc-jg- ^ ä J + 

+O(A^
2
 + yi"^'-2) + n2(JR0/^

1 + i?o/^T'-1), 

where 

-■Bo (cosui — :' sino;<). (49) 

Examination of the above equation reveals that, ex- 
cept for (l,m) = (2,2), (2,-2), (1,1), and (1,-1) the 
equations are homogeneous second order linear differ- 
ential equations (initial value problems). Since we have 
assumed the bubble starts from a spherical shape, and 
is initially at rest, the solutions to these equations will 
vanish identically. For the four non-trivial cases, the 
differential equation satisfied by the particular radial 
component may be written as follows: 

Rl 
RQRIU + ZRoRui — 4—Am = 

•fto 

4        m - 2V2Q2Ro cos ut; (50) 

•fto-Rii-i + 3-RoÄn,-! — 4—i?n,_i = 
•tto 

l^"'"1 +2^n2fiosina>t; (51) 
Ro 

— R\17 + RoR\77 —   I 2— + -RQ I  i?l22 = 

WR122   n [2^(RoRo  .   „        2UJRI      n   \  ,rn. 
 ^+2^3^ ( -^psin2u>< - -j±cos2ut\ ;(52) 

~^~Rl2,-2 + RQR\2,-7 2"ö~ + Ö-^O j R\2,-2 

WRi2,-, , n   2    (RoRo 2wÄg , 
 ^5 \-2\  -It   —-—cos2o!< -| —-sm2uit j ,(53) 

IXQ yoyo o 

where 

■Rui = rm + rn,-i        Rn,~i — 

#122 = fi22 + r12,-2 

>"lll - T-11,-1 

Rn,-7 = ri22"ri2-2,        (54) 

In terms of these new coefficients the surface of the 
bubble (in the moving coordinate system) is given by 

r = R0 + e [(.Rni cos ip — Ru,-i sin <p) sin 8+ 

(R122 cos 2<p - i?i2,-2 sin 2^) sin2 el + 0(e2). (55) 
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Results and Conclusions 
We present here some results from a numerical study 
using the above equations. The equations involve 4 pa- 
rameters - Vg,Vv,Cl,W and the perturbation parame- 
ter e. In the following we have not attempted to map 
the parameter space of the above equations, but rather 
demonstrate the characteristics of their solutions for a 
particular choice of the parameters and show that they 
make physical sense. We choose the following for the 
physical parameters: P^, = 1.03 x 105Pa, Ro = 10~3m, 
d = 5 x 10~2m, T = 1.2m2/s, Pv = 2 x lQ3Pa, a = 
7 x W-2N/m, Pj0 = 3x 104Pa, p = 103kg/m3,k = 1.4. 

This yields the following for the non-dimensional pa- 
rameters: Vg = 2.9126 x 10-\ Vv = 1-94174 x 10~2, 
W-1 = 6.7961158 x lO"4, 0 = 3.764 x 10"\ T0 = 
9.85 x 10-5, £ = 0.05^ = 7.53 x 10~3. 

The equation systems at 0(1) and 0(e) are inte- 
grated using a simple fourth-order accurate Runge-Kutta 
scheme. The results from this trial run are shown in Fig- 
ures 4-6. The results indicate that the expression for the 
bubble becomes multivalued for times after 4.6T0, i.e. 
the origin of the local coordinates lies outside the bub- 
ble after this time. Thus results of the integration up to ■ 
this time are shown. Figure 4 shows a cross-sectional 
view of the bubble in the x,y plane at various times. 
The bubble motion and deformation, and the forma- 
tion of the jet are clearly seen. The bubble initially col- 
lapses almost spherically (while moving with the vortex 

flow), and reaches a minimum at approximately 1.55T0, 
and grows till it reaches a maximum size at 2.9T0. It 
subsequently collapses and shows the formation of a jet 
on the side opposite to its direction of motion, and di- 
rected towards the vortex axis. The computations are 
stopped at 4.6T0 when the bubble no longer contains 
the origin of coordinates. Figure 5 shows the trajectory 
of the <fi = 0 and tp = x points in this cross-section. Fi- 
nally Figure 6 shows cross-sectional views of the bubble 
at the same times, but in a normal plane. This plane 
contains the z axis and the line connecting the moving 
coordinate origin and the vortex. The fact that the jet 
is directed towards the vortex axis becomes apparent in 

this view. 
Quite obviously a more systematic study of the pa- 

rameter space is required. Also, as in Reference [28] 
the results of the asymptotic analysis and of the 3D 
boundary element program 3DynaFS must be com- 
pared. Qualitatively the same types of results are ob- 
served. The expression used for the motion of the mov- 
ing coordinate system must be refined to prevent bubble 
function becoming multi-valued so early in the collapse. 
These and related aspects are items of current research. 

6    Bubble Cloud Study 
Consider a cloud of TV bubbles of radius r'b, i = 1, • • •, N 
immersed in a liquid. The bubbles are initially assumed 
to be at rest and at equilibrium with the surrounding 
fluid. The characteristic radius of the bubbles is r60- 
We denote the distance between bubbles i and j as Uj, 
which we take to be of the order of the characteristic 
distance /0- We define as before e as rb0/l0. 

The matched asymptotic expansions method 
described in the previous sections was implemented ear- 
lier in [11, 25] to study the behavior of such a bubble 
cloud. Here we will only sketch an outline of the model. 
We assume that the characteristic geometric scale of 
the cloud (l0), is small compared to the outside driving 
pressure field scale (L0), but is much larger than the 
typical bubble radius rb0. Therefore, to first approxi- 
mation, the same driving pressure is assumed to be felt 
at the same time by all bubbles in the cloud. Varia- 
tions of this pressure due to the position of each bubble 
are only seen at the higher orders. In a more general 
case, the pressure felt by each bubble is dependent on 
the bubble location and on the modification of the out- 
side flow field by the presence of the bubble cloud. We 
are presently implementing such an approach which ac- 
counts for the compressibility of the two-phase bubbly 

medium. 
Since e is the ratio rb0/l0, it is directly related to the 

void fraction here assumed to be low. At the lowest or- 

der, e = 0, each bubble (of index i) behaves spherically 
as if in an infinite medium and the time dependence of 
its radius, 4(i), is given by the Rayleigh Plesset equa- 
tion, [20]. If the compressibility of the medium is to be 
included, then an equivalent equation such as in [24] can 
be used. This first approximation of the whole flow field 
(a distribution of sources or sinks representing all bub- 
ble oscillations) sets the boundary conditions at infinity 
at the following order of approximation. The same pro- 
cess is then repeated for the successive orders. Up to 
the order 0(e3), one can show, [11, 25], that the influ- 
ence of the remaining bubbles on each bubble 1?,-, can 
be schematically replaced by the influence of a single 
equivalent bubble centered at G,-. The growth rate and 
position of this equivalent bubble are determined by 
the distribution and the growth rate of the other cavi- 
ties. In general, this fictitious bubble equivalent to the 
"rest-of-the-cloud" and the corresponding "cloud cen- 
ter" and "equivalent bubble intensity" are different for 
each bubble. If 0,s is the angle between the centers' 
direction B;G; and the direction of a field point B;M, 
the equation of the surface of the axisymmetric bubble 
B{ can be written in the form: 

R(0,gi<p,t) = 4(0 + ea[(t) + e2[aj(0 + /&)•«* ft,] 

+e3[4(t) + fi{t). cos 0ig + gi(t)V2[cos 0,g)} + o(e3), 

where Vi is the Legendre polynomial of order 2, and ar- 
gument cos6ij. The components, a'n, f

l
n and g'n, satisfy 

687 



linear second order differential equations which can be 
written in symbolic form as follows: 

ZM1Ö = £ ^(2/o,--.!/n-i)^(cos^).      (56) 

Here T>2(y'n) represents a differential operator of the sec- 
ond order in time acting on the radius component y'n ( 
one of a'n,f^,g'n) of the bubble i ; 1'0

3 is the initial dis- 
tance between the bubbles 5; and Bf, F]{y'o, ■ ■■■,yx

n-i) 
is a known function of the terms (y'k), determined at the 
preceding orders; m is an integer indicating the order of 
the spherical harmonic; 0,s is the polar angle measured 
wth respect to the line connecting the center of the bub- 
ble i and the center of the equivalent bubble Bg; and n 
is an integer indicating the order of the approximation. 

The detailed expressions can be found in Reference 
[11]. The behavior of B{ can then be computed by inte- 
gration of the obtained system of differential equations 
using a multi-Runge-Kutta procedure. The behavior 
of the whole cloud is thus obtained. Earlier studies 
[11, 25, IS] have shown that collective bubble behavior 
can have a dramatic effect on both bubble growth and 
implosion. Specifically, bubble growth is inhibited by 
bubble interactions, while bubble collapse is enhanced. 
This cumulative effect comes from the fact that the in- 
teraction reduces any driving pressure drop as a result 
of the other bubble growth, while it increases the col- 
lapse driving pressure as a result of the other bubble 
collapse. Due to the cumulative effects of the collapse 

of all the bubbles in the cloud, each bubble ends its col- 
lapse under the influence of a pressure which is orders of 
magnitude higher than that for an isolated bubble (see 
Figure 9 described below and corresponding discussion) 

Extension to a slightly compressible liquid 

The incompressibility approximation assumed above can 
be relaxed. In this section we extend our asymptotic 
treatment of a bubble cloud to the case of a slightly 
compressible liquid. Briefly the method followed is that 
of expansion in two parameters - the Mach number 
M, and the parameter e introduced earlier. We de- 
rive 0{M) corrections to the incompressible equations 
(valid till 0(e3) discussed above. 

To consider the effect of compressibility we consider 
the following equations of motion: 

),{% + (U'V)P) + V ' U = ° (5?) 
|U (u.v)u) + IvP = 0 

dp 

dp -l P  dp 

Poo     P 

(58) 

(59) 

The flow is assumed irrotational, so that we can define 
a velocity potential 

u = V<f>. (60) 

Substituting from (59) for the velocity in the equations 
of motion we obtain 

> + 
Pel 

|£ + (W-V)A 0, 

and 

f + I^ + ^o 

(61) 

(62) 

We now consider the cases where the length scale 
Lo = CX,TM is much larger than the length scales IQ and 
r^o, so that 

and define a new parameter M such that 

M = 
Uo _ rb0/T0 

L CQO 

(63) 

(64) 

We can identify M with the Mach number, and use it 
as a perturbation parameter. The details of this calcu- 
lation will be demonstrated in a later paper [29], and 
we only outline the approach here, and present some 
preliminary results. 

The problem can be decomposed into an acoustic 
part and a hydrodynamic part. The acoustic part con- 
sists of the "far" field corresponding to the pure liquid 
far away from the cloud region, while the "near" field 
is that in the neighbourhood of the bubbles, and corre- 
sponds to the hydrodynamic part of the problem. The 

near field can be decomposed, as before, into an "inner" 
(corresponding to the neighborhood of a bubble) and 
"outer" field (corresponding to the rest of the cloud). 

It turns out that if we take M ~ £3 the inner equa- 
tions are almost identical to the incompressible ones 
until 0(M), except that they account for the time re- 
tardation due to the compressibility of the medium. 

Performing the analysis with this assumption yields 
that the preceding equations hold, with the equation of 
the bubble radius at 0(e°) modified from a Rayleigh- 
Plesset form to a Keller-Herring form [21] 

This equation can be written as 

(1 
<j, .. 3 
-)aa + - 
c i 1-7-I a" 3c, 

1 /       a      a d , r 

where 

Vo 2(7 
PB = PgO [ -yj     + Pv - —, 

(65) 

(66) 

and c is the sound speed. 
This model is being used in in combination with the 

bubble interaction model to extend the study to the 
case where a slight compressibility of the liquid is taken 
into account. Figure 7, for instance shows the influence 
of a finite sound speed on the behavior of a bubble in a 
6-bubble configuration. 
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7    Boundary Element Method for 
Three-Dimensional Bubble Dy- 
namics 

In order to enable the simulation of bubble behavior 
in complex geometry and flow configurations includ- 
ing the full non-linear boundary conditions, a three- 
dimensional Boundary Element Method was developed. 
This method uses Green's identity to solve Laplace's 
equation. If the velocity potential, <j>, or its normal 
derivative is known on the fluid boundaries (points M), 
and <j> satisfies the Laplace equation, then <j> can be 
determined anywhere in the domain of the fluid (field 

points P) using the identity: 

IS. 
1 

On IMP an MP 
ds = cnr <£(?),(67) 

where air = Q is the solid angle under which P sees the 

fluid. 

a   =   4, if P is a point in the fluid 

a   =   2, if P is a point on a smooth surface 

a   <   4, if P is at a corner of the discretized surface. 

The advantage of this integral representation is that it 
effectively reduces the dimension of the problem by one. 
If the field point P is selected to be on the boundary 
of the fluid domain (a bubble surface or on any other 

boundary), then a closed system of equations can be 
obtained and used at each time step to solve for values 
of d<t>/dn (or <j>) assuming that all values of <j> (or d<j>/dn) 
are known at the preceding step. 

To solve Equation (66) numerically, it is necessary 
to discretize the bubble into panels, perform the inte- 
gration over each panel, and then sum up the contribu- 
tions to complete the integration over the entire bubble 
surface. To do this, the initially spherical bubble is 
discretized into a geodesic shape using flat, triangular 
panels. After discretizing the surface, Equation (66) 
becomes a set of N equations (N is the number of dis- 
cretization nodes) of index i of the type: 

E(^-^)-E («<•*)- (68) 

where Aij and Bij are elements of matrices which are 
the discrete equivalent of the integrals given in Equa- 
tion (66). To evaluate the integrals in (66) over any 
particular panel, a linear variation of the potential and 
its normal derivative over the panel is assumed. In 
this manner, both <j> and d<t>/dn are continuous over 
the bubble surface, and are expressed as a function of 
the values at the three nodes which delimit a particular 
panel. Obviously higher order expansions are conceiv- 
able, and would probably improve accuracy at the ex- 
pense of additional analytical effort and numerical com- 
putation time. The two integrals in (66) are then evalu- 
ated analytically. The resulting expressions, too long to 

present here, can be found in [27]. In order to proceed 
with the computation of the bubble dynamics several 
quantities appearing in the above boundary conditions 
need to be evaluated at each time step. The bubble 
volume presents no particular difficulty, while the unit 
normal vector, the local surface curvature, and the local 
tangential velocity at the bubble interface need further 
development. In order to compute the curvature of the 
bubble surface a local bubble surface three-dimensional 
fit, f(x,y,z) = 0, is first computed. The unit normal 
at a node and the local curvature can then be expressed 
using Equations (5). 

To obtain the total fluid velocity at any point on the 
surface of the bubble, the tangential velocity, Vt, must 
be computed at each node in addition to the normal 
velocity, Vn = d(f>/dn n. This is also done using a local 
surface fit to the velocity potential, <j>i = h(x, y, z). Tak- 
ing the gradient of this function at the considered node, 
and eliminating any normal component of velocity ap- 
pearing in this gradient gives a good approximation for 
the tangential velocity 

Vt = n x (V0; x n). (69) 

With the problem initialized and the velocity poten- 
tial known over the surface of the bubble, an updated 
value of d<t>/dn can be obtained by performing the inte- 
grations outlined above, and solving the corresponding 
matrix equation. The unsteady Bernoulli equation can 
then be used to solve for Dfi/Dt, the total material 
derivative of <f>, 

£± = 
dA+\V4> |2= P*~PL ■ fl2 + i|V^|2.    (70) 

D(j>lDt provides the total time variations of <j> at anv 

node during its motion with the fluid. The second term 
on the right hand side is the hydrostatic pressure and 
is introduced to account for cases where the influence 
of the gravitational acceleration is not negligible. Using 
an appropriate time step, all values of <f> on the bubble 
surface can be updated using <j> at the preceding time 
step and D<f>/Dt. In the results presented below the 
time step was based on the ratio between the length of 
the smaller panel side, /m,„ and the highest node veloc- 
ity, Vmax. This choice limits the motion of any node to 
a fraction of the smallest panel side. It has the great 
advantage of constantly adapting the time step, by re- 
fining it at the end of the collapse - where Zm,-„ becomes 
very small and Vmax very large - and by increasing it 
during the slow bubble size variation period. New co- 
ordinate positions of the nodes are then obtained using 
the position at the previous time step and the displace- 
ment, 

dM /n + Vt on 
dt. (71) 

This time stepping procedure is repeated throughout 
the bubble oscillation period, resulting in a shape his- 
tory of the bubbles. 
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8    Presence of a Viscous Basic 
Flow 

Cavitation bubbles seldom grow and collapse in a qui- 
escent fluid or in a uniform flow field. To the contrary, 
cavities are most commonly observed in shear layers, 
boundary layers and vortical structures. To study bub- 
ble dynamics in a nonuniform flow field, let us consider 
the case where the "basic flow" of velocity V0 is known 
and satisfies the Navier Stokes equations: 

^ + Vo-VV0 = -ivPo + ^V2V0 . 
at p 

(72) 

If the basic flow is potential the application of the Bound- 
ary Element Method is straightforward and there is no 
need for any additional assumptions. 

In the presence of the oscillating bubbles, the veloc- 
ity field is given by V which also satisfies the Navier 

Stokes equation: 

^X + v • VV = --VP + iA72V 
dt p 

(73) 

Both V and V0 also satisfy the continuity equation. 
We can now define bubble flow velocity and pressure 
variables, Vb and P6, as follows: 

Vb = V-V0, Pb^P-Po- (74) 

If we assume that this bubble flow field (Vb and Pb) is 
potential, we can use a method similar to the one de- 
scribed in the previous section to study the dynamics. 
This assumption implies that, even though the basic 
flow is allowed to interact with the bubble dynamics 
and be modified by it, no new vorticity is allowed to be 
generated by the bubble behavior. Within this restric- 

tion, we have 

Vb = V&, V24 = 0. (75) 

By subtracting (72) from (71), and accounting for (74) 
we obtain 

V dfo   ,   1 \r 2 . \r     v   j- — 
-dT+2Vh  +V°'Vb+ Pj 

= Vbx(VxVo).(76) 

This equation, once integrated, may be considered the 
equivalent of the classical unsteady Bernoulli equation 
in potential flow. As an illustration consider the case 
where the basic flow field is that of a two-dimensional 
Rankine vortex, V0 = V$ee, with 

r 
V» = 

Vg = cor 

r > a. 

r < ac (77) 

where ac is the radius of the viscous core, T the vortex 
circulation and Vs the tangential velocity. In that case 
the Bernoulli equation can be replaced by: 

dd>, 

w+\|Vb 
p 

|2 ■    6 = constant along radial direction.(7S) '+- 

Accounting for at-infinity conditions, the pressure at 
the bubble wall, Pi, is related to the pressure field in 
the Rankine vortex, P0, by: 

PL 

P p 

84>b 
Ht 

l vb 
. at bubble wall 

(79) 

The nondimensional basic flow pressure, P0, normalized 
with the ambient pressure, P», is known and is given 

by: 

P0(r) = l-n -5 

Po(?) = 1 

a, 

n 
~2 \r 

<^2 

r < ac 

r> ac, 

where lengths are normalized by Rmax, the maximum 
radius the bubble would achieve in an infinite medium 
if the pressure drops to the value on the vortex axis. 
The swirl parameter Q., defined as, 

n (^r)2. Poo  2™, 
(SO) 

characterizes the intensity of the rotation-generated pres- 
sure drop relative to the ambient pressure. The pressure 
on the vortex axis is (1 — fi) and goes to zero if 0 = 1. 

9     Computational Results and Dis- 
cussion 

We present in this section some results obtained with 
the Boundary Element Method code (3DynaFS), and 
compare them with results from the asymptotic expan- 
sion method. The accuracy of the numerical code was 
evaluated by using simple test cases known in the liter- 
ature such as the collapse of spherical and axisymmet- 
ric bubbles. For spherical bubbles, comparison with 
the Rayleigh-Plesset "exact" solution revealed that nu- 
merical errors were less than 0.14 percent for a dis- 
cretized bubble of 162 nodes. The error dropped to 
0.05 percent for 252 nodes. The two discretizations - 
162 nodes (320 triangular panels) or 252 nodes (500 
panels) - are usually selected for most of our nonspher- 
ical bubble dynamics runs. However, for the purpose 
of studying multibubble interactions we were limited to 
102 node bubbles (200 panels) due to the limitations 
of our 32 MBytes MIPS RC3240 computer. For an 8- 
bubble configuration the code uses about 30 MBytes 
for 102-node bubbles. With this "coarse" discretization 
the error is about 2 percent on the achieved maximum 
radius, but is very small, 0.03 percent, on the bubble pe- 
riod. (This can be seen in figure 9). Comparisons were 
also made with studies of axisymmetric bubble collapse 
available in the literature [8, 4], and have shown, for 
the coarse discretization, differences with these stud- 
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ies on the bubble period of the order of 1 percent. Fi- 
nally, comparison with actual test results of the complex 
three-dimensional behavior of a large bubble collapse in 
a gravity field near a cylinder shows very satisfactory 
results, [15] (see Figure 8). The observed difference in 
the period was shown to be related to the confinement 
of the experimental bubble in a cylindrical container 

[27]. 
Figure 9 compares the results obtained with the 3D 

code with those given by the asymptotic approach. The 
bubble cloud is subjected to a sudden pressure drop, 
and for ease of interpretation, only symmetric cloud 
configurations are considered. Results for one, two, four 
and eight-bubble symmetric configurations are shown. 
For the two-bubble case the bubble centers are sepa- 
rated by a distance /0, and the initial gas pressure in 
each bubble is such that the bubble would achieve a 
maximum radius Rmax = RM = 0.07Zo if isolated. The 
four-bubble configuration considers similar bubbles cen- 
tered on the corners of a square with sides of dimension 
/0. Finally, the eight bubbles are located on the corners 
of a cube of side /0. The figure presents the variations 
with time of the distance between an initial bubble cen- 
ter and both the point closest to (< 0), and the point 
farthest (> 0) from the "cloud center". These points 
are selected because they lie along the direction of de- 
velopment of the reentrant jet the farthest point be- 
coming the tip of the jet which penetrates the bubble 
during the collapse. As we can see from the figure, the 

BEM method clearly shows that for bubbles oscillat- 
ing in phase the period of oscillation increases with the 
number of interacting bubbles. The maximum bubble 
size along the jet axis is however not significantly mod- 
ified. The jet advancement towards the "cloud center" 
increases with the number of bubbles. This is seen by 
the crossing of the r = 0 line by the upper curves on 
the graph which becomes more and more pronounced 
with an increase in the number of bubbles. This effect 
is more pronounced for larger values of e (see Figure 

10). 
Figure 9 also compares the results of the BEM code 

with the asymptotic approach. It illustrates the lim- 
itations of the incompressible asymptotic approach as 
it stands now. When the number of bubbles increases 
the method diverges towards the end of the collapse 
and predicts either a much faster collapse than obtained 
with the more accurate BEM method (N=2 and 4), or 
an unexplained early bubble rebound (N = 8). This be- 
havior occurs earlier when either the number of bubbles 
or the value of c increases. 

Figure 10 shows the influence of e on the bubble 
dynamics for a 4-bubble configuration. Using the BEM 
3D results enables one to study the influence of reducing 
bubble inter-distance on the dynamics of each bubble. 
Increasing the proximity between the bubbles, or in- 
creasing the number of bubbles is seen to increase the 
lengthening effect on the bubble period, while enhanc- 
ing the reentrant jet formation, as in the more clas- 

sical case of bubble collapse near a solid wall.   In all 
cases, the reentrant jet formed is directed towards the 
center of the bubble cloud, or here, the center of the 
square.  As expected, the asymptotic approach gives a 
very good approximation at low values of e, but fairs 
poorly for high values of e (note that for e = 0.5 the 
bubbles touch at their maximum size). The above con- 
clusions on the asymptotic approach have to be tem- 
pered by the fact that all cases presented addressed rel- 
atively intense bubble collapse (with a strong reentrant 
jet formation).   The relevant nondimensional param- 
eter to characterize the collapse intensity is the ratio, 
Vgm, of the gas pressure to the outside pressure at max- 
imum bubble size. This ratio is about 0.06 for the cases 
shown above. For higher values of Vgm a smoother col- 
lapse followed by a rebound occurs, and the asymptotic 
approach fairs much better [28].  Figures 11 and 12 il- 
lustrate further the three-dimensional behavior of the 
bubble, using 19S-node bubbles.  Figure 11 shows two 
cross-sectional views of the bubble shapes at various 
times during the collapse for a strong interaction case 
(e = 0.498), for a 4-bubble configuration. The first view 
shows bubble contours in the Z = 0 plane, plane of the 
four bubble centers. In this plane all four bubbles can 
be seen, and the reentrant jet appears very wide giving 
the bubble at the end of the collapse the appearance of 
a "deflated balloon". The second view is a diagonal cut 
though the centers of two of the bubbles. In this view, 
the reentrant jet appears much more pronounced. The 

combination of the two views illustrates very clearly the 
reentrant jet formation, its direction towards the center 
of the square, and gives a qualitative idea about the 
intensity of the collapse.  In this case, due the geome- 
try of the configuration, the jet has a two-dimensional 
flat shape, rather than a conical axisymmetric shape. 
This clearly provides one reason for the failure of the 
asymptotic approach for this case, since the expansions 
in that approach were stopped to an order (e3) which 
does not allow the description of any azimuthal bubble 
shape variations.  Figure 12 presents a 3D view of the 
bubbles towards the end of a relatively weak collapse 
of a 4-bubble configuration (e = 0.185). Since the case 
shown is symmetrical and all bubbles have the same 
shape, this diagonal view can be interpreted as showing 
the shape of the same bubble from different view angles. 
The reentrant jet is here again seen to be wide, pointed, 
and well advanced towards the other side of the bub- 
ble. A complete history of the advancement of the jet 
in the bubble can be deduced from figure 10. Figures 13 
through 17 illustrate various important effects due to ei- 
ther asymmetries in the bubble configuration, or due to 
the presence of an underlying nonuniform flow. Figure 
13 shows the case of an asymmetric five bubble config- 
uration.   All bubbles have the same initial radius and 
internal pressure, and are initially spherical and located 
in the same plane. The most visible effect observed is 
that on the center bubble.  Its growth is initially sim- 
ilar to that of the other bubbles, but it ends up being 
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the least deformed. Later on, as the collapse phase ad- 
vances with the development of a reentrant jet directed 
towards the central bubble, this bubble appears to be 
shielded by the rest of the cloud. Its period appears to 
be at least double that of the other bubbles. Unfortu- 
nately, the code cannot presently follow the dynamics 
beyond this point since it fails following the touchdown 
of the first reentrant jet on the other bubble side. Here, 
this occurs before any significant progress of the collapse 
of the central bubble is observed. The issue of con- 
tinuing the computations beyond this point is clearly 
important and is presently the subject of an ongoing 
research at DYNAFLOW. Reference [30] gives results of 
our first attempt towards solving this problem. Figure 
14 shows a 4-bubble configuration where the bubbles 
are centered on the corners of a square. All bubbles 
were chosen so that they would behave identically if 
in an infinite medium. However, a time delay between 
the bubble oscillations was imposed. As a result, at 
t = 0 the bubbles had relative initial sizes in the ra- 
tios 2,1,3,1 counter-clockwise starting from the bubble 
centered at the origin. This results in a very asym- 
metric behavior of the cloud configuration. The bubble 
periods appear to be lengthened the most for the larger 
bubbles at t = 0. The "delayed" bubbles (the smaller at 
t - 0) are prevented by the other bubbles from growing 
significantly, and end up collapsing very early in their 
history. These bubbles on the other hand significantly 
influence the "earlier" ones by increasing at some point 
the pressure drop these bubbles sense and then by pre- 
venting them later on from collapsing. Since the code 
presently breaks down before a significant collapse, we 
can only speculate that a very strong collapse of the 
larger bubbles would ensue, because of the large pres- 
sure produced by the collapse of the smaller bubbles. 
This can be illustrated by observing the modification of 
the imposed pressure drop by the behavior of an indi- 
vidual bubble. As shown in figure 15, the bubble growth 
initially reduces the effective pressure drop that would 
be felt by a second bubble at the distance lo, this trend 
is later reversed, and is followed by a significant pressure 
rise during the bubble collapse. 

Figure 16 shows the three-dimensional behavior of 
a bubble in a line vortex. The bubble is initially po- 
sitioned at a distance of 2Rmax from the vortex axis 
located at X = 2. The normalized core size is 4 in this 
case. Figure 16a gives a view in the XOY plan of the 
bubble at different instants. The bubble is seen spiral- 
ing around the vortex axis ( perpendicular to the fig- 
ure) while approaching it. At the same time, due to the 
presence of the pressure gradient, the bubble strongly 
deforms and a reentrant jet is formed directed towards 
the axis of the vortex. Figure 166 shows the same bub- 
ble seen from the 0X axis. Here some elongation is 
observed along the axis of the vortex as well as a very 
distinct side view of the re-entrant jet. This result is 
totally contrary to the usually held belief that bubbles 
constantly grow during their capture until they reach 

the axis and elongate along it. Finally, Figure 17 shows 
in the XOY plane perpendicular to the vortex axis the 
motion of two particular points on the bubble, A and 
B, initially along OY. Also shown is the motion of the 
mid point, C. While C seems to follows a path similar 
to the classical logarithmic spiral, A and B follow more 
complicated paths, even moving away from the vortex 
axis at some point in time. 

Figures 18 and 19 , address the behavior of a bub- 
ble near a solid wall in the presence of a nonuniform 
flow field and as a result of a relative velocity between 
the bubble and the flow. In the example shown a sim- 
ple linear velocity profile is used to simulate the the 
boundary layer flow near the wall in which the bubble 
dynamics is considered. The basic flow velocity varies 
from a value, V,he„ at a distance r^o from the wall to 
zero at the wall. The basic pressure is assumed constant 
across the shear layer and is an input of the problem, 
Pamb, as is the initial gas pressure inside the bubble, 
PgQ. The bubble center is located at a distance 10 from 
the wall, the ratio rbQ/lQ being a key parameter char- 
acterizing the bubble / wall interaction. Here, another 
important parameter is the ratio between the charac- 
teristic shear velocity and a characteristic bubble dy- 

namics velocity [16], for instance x - Vskcar/y&P/p- 
Figure 18 shows an example of bubble growth and col- 
lapse shape contours obtained with 3DynaFS near a 
solid wall in the absence of shear. Figure 19 shows for 
the same conditions the bubble collpase in the presence 

of the nonuniform flow. A very significant effect of the 
wall flow is seen on the development of the reentrant jet. 
The jet is seen to be much weakened and delayed. Since 
we have made these numerical observations in 1990 in 
[16], tests conducted by other researchers in the Large 
Cavitation Channel appears to confirm experimentally 
at least some aspects of these observations. 

Figure 20 shows the strong interaction between a 
growing and collapsing bubble and a vortex ring. Figure 
20a shows a high speed movie sequence where the vortex 
ring, the axis of which is on the left edge of the succes- 
sive pictures, was generated using the impulsive motion 
of a piston in a tank where a reduced ambient pressure 
was imposed [45]. The bubble was spark-generated us- 
ing submerged electrodes positionned where the initial 
bubble center is sought. The figure shows that the bub- 
ble grows initially almost spherically, then the shear 
flow due to the vortex ring becomes very important 
leading to a stretching and elongation of the bubble 
along a stream line of the vortex flow. The bubble then 
collapses in a very unusual manner producing a con- 
striction along the vortex flow line, then decomposing 
into two bubble clouds. A set of various bubble / vortex 
interaction intensities is presented in [45]. Figure 20b is 
a direct numerical simulation of the experimental case 
shown in figure 20a. The vortex ring flow was simu- 
lated assuming a Rankine model and a viscous core size 
as observed from other tests where microbubble motion 
inthe vortex flow were visualized.   Given such a crude 
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model of the vortex ring and given that the modification 
of the vortex flow by the bubble dynamics neglected, 
the similitude between the numerical simulation and the 
experimental result is quite satisfactory and is able to 
capture most of the feature of the bubble behavior. An 
improved viscous model and the inclusion of the basic 
flow modification will enable an even better correspon- 
dence. The study of such an interaction is essential to 
the understanding of the the interaction between mi- 
crobubble and large organized viscous structures which 
occur in boundary layers. These interactions are ex- 
pected to be much more significant at full scale than 
in the laboratory, particularity due to a significant in- 
crease of the ratio between hydrodynamics scales and 

bubble scales. 

10     Conclusions 

In this contribution the dynamics of the interaction 
between bubbles and nearby boundaries (other bub- 
bles or complex geometries) or nonuniform flows was 
considered using an asymptotic method and a three- 
dimensional Boundary Element model. Both approaches 
enabled us to address aspects of the bubble dynam- 
ics that have been ignored to date due to their math- 
ematical difficulty. The asymptotic approach, valid for 
the case of weak interactions, enables a better under- 
standing of the general trends without recourse to an 

extensive analysis of test cases, since it provides ana- 
lytical expressions from parts of the solutions. On the 
other hand direct 3D simulation have the advantage 
of enabling the study of strong interactions where the 
asymptotic expansion metod fails. Comparison of the 
two methods provides a means of mutual validation of 

the methods. 
From the application of both methods the following 

conclusions can be drawn from the study: 
1. When compared to the dynamics of a single bub- 

ble, significant modification of the bubble dynamics and 
shape is observed for multibubble interaction. For iden- 
tical bubbles acting in concert, an increase in the bubble 
period is observed without significant modification of 
the bubble maximum size when the number of bubbles 
increase or when their separation distance decreases. 

2. A shielding effect of the bubbles was observed 
leading to an increased period and maximum size of 
the bubbles in the center of the cloud. 

3. While very large pressures are computed using 
the asymptotic method with bubble clouds composed 
of the same size bubbles, more moderate pressures are 
obtained when the bubbles are not exactly in phase and 
when large deformations are taken into account. 

4. Bubble collapse near a solid wall and in the pres- 
ence of a nonuniform flow field is seen to be significantly 
modified by the presence of this flow field. Reentrant 
jet formation is seen to be delayed and weakened when 
not eliminated. 

5. Bubble capture, growth and collapse in a line vor- 
tex flow field is seen to involve significantly non spheri- 
cal effects which have been systematically neglected by 
previous studies. For instance, noise generation at the 
inception of tip vortex cavitation can probably be ex- 
plained by the deformation, collapse and splitting of the 
bubble while being captured. 

6. The study of the interaction between bubbles and 
large organized structures provides some hints about 
the complexity of bubble dyanmics in real full scale flow 
fields. 

On-going areas of improvement of this study include 
extension of the asymptotic approach to the case of a 
compressible fluid and coupling of the multibubble ap- 
proach to a two-phase medium model. The Boundary 
Element Method approach is being improved to include 
the full description of the reentrant jet piercing of the 
bubble and its subsequent advancement in the fluid. 
The 3D code 3DynaFS is also being exercised on a 
Cray Y-MP and implemented on a parallel Connection 
Machine in order to significantly improve computation 
time, and to allow practical consideration of a much 
larger number of elements than at present. 

Acknowledgments 

We would like to acknowledge the support of the Of- 
fice of Naval Research, Contract N00014-S9-C-0025, and 

the interest and technical discussions with Dr. Edwin 
Rood. The authors would like to acknowledge the many 
contributions and significant discussions of several col- 
leagues at DYNAFLOW , inc. 

References 

[1] YOUNG, F.R., "Cavitation," McGraw-Hill, London. 
1989. 

[2] ROOD, E.P., "Review - Mechanics of cavitation incep- 
tion," ASME Journal of Fluids Engineering, Vol. 113, 
163-175, 1991. 

[3] HAMM ITT, F.G., Cavitation and Multiphase Flow 
Phenomena, McGraw-Hill, New York, 1980. 

[4] BLAKE, J. R, AND GIBSON, D. C, "Cavitation Bub- 
bles Near Boundaries," Annual Review of Fluid Me- 
chanics, Vol. 19, pp. 99-123, 1987. 

[5] RAYLEIGH LORD,"On the Pressure Developed in a Liq- 
uid During Collapse of a Spherical Cavity," Phil. Mag., 
pp. 34, 94-98, 1917 

[6] BESANT, W., "A Treatise on Hydrodynamics", Cam- 
bridge University Press, pp. 198, 1859. 

[7] SHIMA, A. AND NAKAJIMA, K., "The Collapse of a 
Non-Hemispherical Bubble Attached to Solid Wall," 
Journal of Fluid Mechanics, Vol. 80, pp. 369-391,1977. 

693 



[8] GuERRi, L., LUCCA, G., AND PROSPERETTI, A., "A 
Numerical Method for the Dynamics of Non-Spherical 
Cavitation Bubbles," Proceedings 2nd International 
Colloquium on Drops and Bubbles, JPL Publication 82- 

7, Monterey CA, Nov 1981. 

[9] CHAHINE, G. L., "Experimental and Asymptotic 
Study of Nonspherical Bubble Collapse," Applied Sci- 

entific Researches, pp. 187-197, 1982. 

[10] VAN WIJNGAARDEN, L. , "On the Collective Collapse 

of a Large Number of Gas Bubbles in Water," Pro- 
ceedings of the 11th International Congress of Applied 

Mechanics, Springer, Berlin, pp. 854-865, 1964. 

[11] CHAHINE, G.L., "Cloud Cavitation: Theory," lJ,th 
Symposium on Naval Hydrodynamics, Ann Arbor, 

Michigan, National Academy Press, Washington, 

D.C., pp. 165-195. 1983. 

[12] D'AGOSTINO, L. AND BRENNEN, C.E.,"On the 
Acoustical Dynamics of Bubble Clouds," ASME Cav- 

itation and Polyphase Flow Forum, Houston, Texas, 

pp. 72-76. 1983. 

[13] KUMAR, S. AND BRENNEN, C.E., "Some nonlinear 
interactive effects in bubbly cavitation clouds," sub- 
mitted to Journal of Fluid Mechanics. 

[14] CHAHINE, G.L. AND PERDUE, T.O., "Simulation of 
the Three-Dimensional Behavior of an Unsteady Large 
Bubble Near a Structure," Proc. 3rd Int. Coll. on 

Drops and Bubbles, Monterey CA, Sept. 19S8. 

[15] CHAHINE, G.L., "A Numerical Model for Three- 
Dimensional Bubble Dynamics in Complex Geome- 
tries," 22nd American Towing Tank Conference, St. 

Johns, Newfoundland, Canada, August 1989. 

[16] CHAHINE, G.L., "Numerical Modelling of the Dy- 
namic Behavior of Bubbles in Nonuniform Flow 
Fields," ASME 1990 Cavitation and Multiphase Flow 

Forum, Toronto, Canada, 1990. 

[17] CHAHINE, G.L., "Nonspherical bubble dynamics in 
a line vortex," Proceedings of ASME Cavitation and 
Multiphase Flow Forum, Toronto 1990,(ed. O. Fu- 

RUYA) ASME, pp. 121-126, 1990. 

[18] CHAHINE, G. L. AND LIU, H. L.,"A Singular Pertur- 
bation Theory of the Growth of a Bubble Cluster in 
a Super-heated Liquid," Journal of Fluid Mechanics, 
Vol. 156, pp. 257-274, 1985. 

[19] KALUMUCK, K.M. AND CHAHINE, G.L, "The In- 
fluence of Gas Diffusion on the Growth of a Bub- 
ble C\on&" ASME Cavitation and Multiphase Flow Fo- 
rum, Cincinnati, Ohio, pp. 17-21, June 1987. 

[20] PLESSET, M.S. AND PROSPERETTI, A., "Bubble Dy- 
namics and Cavitation," Annual Review of Fluid Me- 

chanics, Vol. 9, pp. 145-185, 1977. 

[21] PROSPERETTI, A. AND LEZZI, A.M., "Bubble Dy- 
namics in a Compressible Liquid. Part 1. First Order 

Theory." Journal of Fluid Mechanics 168, pp. 457-478, 

1986. 

[22] REBUT, M. AND CHAHINE, G.L., "Asymptotic Study 
of Bubble Dynamics in a Nonuniform Potential Flow", 
ASME Cavitation and Multiphase Flow Forum, Los 
Angeles 1992. 

[23] DURAISWAMI, R. AND CHAHINE G.L., "Analytical 
study of a gas bubble in the flow field of a line vor- 
tex," ASME Cavitation and Multiphase Flow Forum, 

Los Angeles 1992. 

[24] HERRING, C, "Theory of the Pulsations of the 
Gas Bubble Produced by an Underwater Explosion" 
Columbia University NDRC Reo. C-J, SR 20-010,1941. 

[25] CHAHINE, G. L., "Pressure Field Generated by the 

Collective Collapse of Cavitation Bubbles," Proceed- 

ings, IAHR Symposium on Operating Problems of 

Pump Stations and Power Plants, Amsterdam, Hol- 

land, 2-1, pp. 1-12., 1982. 

[26] G.L. CHAHINE, K.M. KALUMUCK, AND T.O. 
PERDUE, "Cloud Cavitation and Collective Bubble 
Dynamics," Tracor Hydronautics, Technical Report 

83017-1, 1986. 

[27] CHAHINE, G. L., PERDUE, T. O. AND TUCKER, 

C.B., "Interaction Between an Underwater Explosion 
Bubble and a Solid Submerged Body," DYNAFLOW, 
Inc. Technical Report 89006-1, 1989. 

[28] CHAHINE, G.L. AND DURAISWAMI, R. "Dynamical 
Interactions in a multi-bubble cloud." in "Proceedings 
of the ASME Cavitation and Multiphase Flow Forum, 

Portland 1991" (ed. O. FURUYA) ASME, 49-54, (also 
To appear in the Journal of Fluids Engineering), 1991. 

[29] DURAISWAMI, R. AND CHAHINE, G.L., "Multiple 

bubble dynamics in a slightly compressible liquid," in 
preparation. 

[30] ZHANG, S., DUNCAN, J., AND CHAHINE, G.L., "Dy- 
namics of a bubble past the point of collapse," Asme 
Cavitation and Multiphase Flow Forum, Los Angeles, 
1992. 

[31] SNAY, H.G., GOERTNER J.F., AND PRICE, R.S.„ 
"Small Scale Experiments to Determine Migration of 
Explosion Bubbles Towards Submarines," Navord Rep. 
2280, 1952. 

[32] CHAHINE, G.L,"Dynamics of the interaction of non- 
spherical cavities," in "Mathematical approaches in 
hydrodynamics," ed. T. MILOH, SIAM, Philadelphia, 
1991. 

694 



n 02 

Figure la-c: Fig. lb and Fig. lc show the geometry and flow field of the problem considered. The trajectory of the 
bubble center along the headform (of radius 10 cm) is indicated in Fig. lb. The pressure (in Pa - y axis) and the 
velocity (in m«"1 - right y axis) of the basic flow along this streamline, are plotted against the non-dimensional time. 
The free stream velocity is 1.15 ms'1. Fig. la shows the computed bubble contours for c = 0.3, and time between 
0.1Tb to 27o. Bubble translation, rotation and re-entrant jet formation are clearly seen. 

i .0-0.8-0 6-0.4-0.2 0.0   0.2   0.4   0.6   0.8   1.0   1.2 1.0-0.8-0.6-0.4-0.2 0.0  0.2  0.4   0.6   0.3   1.0   1.2 

b 
1.0-0.8-0.6-0.4-0.2 0.0   0.2   0.4   0.6   0.8   1.0   1.2 

C 

Figure 2a-c: Bubble contours at various times for e = 0.15,0.3 and 0.6. Here the initial bubble radius was kept 
constant at 1 cm, while the initial standoff from the head form was varied to change e. Increasing interaction is seen 
with decreasing standoff. 

-1.0-0 8-06-0.4-0.2 0.0   0.2   04   0.6   0 8   l.C   1.2 

a 
-1.0-0.8-0.6-0.4 -0.2 00   0.2   0.4   0.6   0.8   1.0   1.2 

b 
-1.0-0.8-0.6-0.4-0.2 0.0  0.2   0.4   0.6   0.8   1.0   1.2 

C 

Figure 3a-c: Bubble contours at various times for e = 0.15,0.3 and 0.6. Here the initial standoff distance /0 was kept 
constant at 3.333 cm, while the initial radius was varied to change z. Increasing interaction is seen with increasing 
initial bubble size. 
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Bubble cross-section in the xy plane Motion of points initially farthest and closest from vortex 
Bubble cross-section in the rz plane 

Figure 4: 
Figure 5: 

Figure 6: 

Figures 4 6- The interaction of the bubble with a line vortex is shown in these figures (see Section 5). Fig. 4 shows the 

(i,yj - i,u,u; muiig uic ^ , ,.    ,ross_sectbn of the predicted bubble shape in 
farthest from and closest to the vortex axis in Fig. 4. Fig. 6 shows the cross section o P 
a plane containing the vortex line and the center of the moving coordinat^systen, The vortex axis .s       2Ü, 

abscissa. 

0.6 

Figure 7: Influence of compressibility on the dynamics of a 
6-bubble cloud. The figure shows R(eig = 0,t) vs. time for 
one bubble. The bubbles have an initial radius of 0.01 cm 
and are arranged at equal distances from the origin along 
the coordinate axes, so that t = 0.07 . The bubbles are at 
equilibrium at t = 0 when they are subjected to a sudden 
pressure drop. Here V = 2.0, and W = 679. The solid 
line indicates the incompressible solution. Also plotted 
is the corresponding curve for M =0.01 (small dashes), 
M =0.03 (small dash-dot), and M =0.07 (dash-dot). The 
strong effect of increasing compressibility can be seen. 

MermaJizMl Tim«. W7f"^*oM') L 

Figure 9: Motion of the bubble points farthest and clos- 
est to the cloud center versus time for 1,2,4 and 8-bubbIe 
symmetric configurations. Comparison between 3D code 
results and the asymptotic analysis, z — 0.07, Pso/Pamb = 
2S3. 
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Figure 8: Large bubble collapse near a cylinder. Com- 
parison between our three-dimensional BEM code and the 
experimental results of Goertner et al. 
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Figure 10: Motion of the bubble points farthest and closest 
to°the cloud center versus time for a 4-bubble symmetric 
configuration. Comparison between 3D code results and 
the asymptotic analysis. Influence of bubble proximity or 

C.   Pfo/Pami = 283. 
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Figure 11: Bubble contours during' collapse of a 4-bubble 
configuration, a) Cross sectional view in the plane Z = 0. 
b) Cross sectional view in the plane Y = X. t = 0.498 
based on the maximum radius. Note the non-axisymmetric 
shape of the jet during collapse. 

Figure 13: Growth and collapse of 5 bubbles having the 
same initial size and internal pressure. Influence of the 
initial bubble geometry on dynamics, c = 0.474 based on 
the maximum radius. The center bubble is seen to have a 
remarkably different behavior. 

Figure 12: Bubble Contours for the collapse of a 4-bubble 
cloud for € = 0.185. Since the case shown is symmetrical 
and all bubbles have the same shape, this diagonal view 
can be interpreted as showing the shape of the same bubble 
from different view angles. 

Figure 14: Growth and collapse of 4 identical bubbles ini- 
tially symmetrically distributed but with different initial 
radii (2,1,3,1 clockwise starting from origin). The figure 
shows the influence of 'phasing' on the dynamics. 
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Figure 15: Pressure at distance 10 from a bubble following a sudden pressure drop. £ = 0.3, Pso/Pamb = 283. 
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Growth & Collapse Near Wall- No Flow 
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Figure 17: 
Figure 16-17: These figures show bubble vortex interaction 
for Cl = 0.948, ac = 4fi„„, and P3a/Pemi = 584. Figure 
16 shows three dimensional bubble shapes at various times 
during bubble capture in a vortex line, a) View in the 
XOY plane, b) View in the XOZ plane. Figure 17 shows 
the motion of the two bubble points initially on axis OY 
and their mid-point vs. time, a) Vortex at X = 1. b) 
Vortex at X = 1. 

Figure 18: 

Collapse 9 Wall-Linear Velocity Profile 
ih/Vror*.0«J. 0/Bfno«=.177. Pge/PamB-2S 

Figure 19: 
Figure 18-19: These figures show the influence of a shear 
flow in the growth and collapse of a bubble in the vicinity 

of a will.Pf0/P.mt = 23. L/IU« = 1-77 Fig. 18 shows a 
case where and there is no shear flow. Fig. 19 shows the 
same case for Vjhe«r /Vnasieitk=0.042. 

ßäk f% 1 i 

STRONG INTERACTION BETWEEN A 
BUBBLE AND A VORTEX STRUCTURE 

^  U.S. Movie Simulation 

Figure 20:  Comparison of 3D BEM simulation and high speed movie sequence for the interaction between a bubble 
and a vortex ring. The bubble is spark generated and the vortex ring piston generated. 
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DISCUSSION 

R. Yeung 
University of California at Berkeley, USA 

I would like to congratulate the authors for a fine 
contribution. In your numerical procedure for 
treating the interaction of multiple bubbles, I 
anticipate a singular force, potential value, and 
possibly even more singular velocities would occur 
when the cavities make the initial contact as a point. 
Can you explain in some detail how you handle the 
treatment of this singular behavior, or its avoidance? 

view-graph of some calculations that a student of 
mine, Yan Kuhn de Chizelle, has recently produced, 
which shows results somewhat similar to those of the 
authors. A boundary integral method was used to 
solve the unsteady axisymmetric flow of a toroidal 
source/sink being corrected along a streamline very 
close to the body surface. The "bubble" clearly 
shows the shape similar to those of the experiments 
of Ceccio and Brennen with a thin film separating it 
from the surface and a characteristic wedge shape at 
the front. As in the authors' calculations, the 
collapse causes a jet to develop on the anterior 
surface of the wedge. 

AUTHORS' REPLY 

Thank you, Prof. Yeung, for your comments. If 
a contact point occurs as you describe, singular 
behavior leading to termination of the computations 
occur. In fact, in all computations presented in the 
paper, this did not occur and it appears that a fluid 
layer remains between the bubbles. Singular 
behavior is seen only if the time step is coarse. The 
adaptive time stepping in our code based on the 
minimum distance between any two points in the 
computational domain enables avoidance of the 
problem. However, we encounter this difficulty 
when a reentering jet is formed, crosses the bubble, 
and touches the other side of the bubble. Presently, 
the computation stops at this point for the 3 DynaFS. 
For the axisymmetric code, we have made progress 
in solving the problem beyond that point by modeling 
the bonded surfaces as a surface of shear 
discontinuity that is followed from that point on using 
a hypersingular formulation of the boundary integral 
method [1,2] 

[1] Zang, Duncan, and Chachine, 1992 a. 
[2] Zang, Duncan, and Chachine, 1992 b. 

DISCUSSION 

AUTHORS' REPLY 

I would like to thank Prof. Brennen for his 
comments and confirming independently our findings. 
Since submission of our paper, we have conducted 
some 3-D computations on bubble behavior near a 
blunt body, which tends to confirm further these 
findings. A Rankine body was used for the 
computations. The flow was given by combining a 
uniform flow with a source and sink flow. The 
resulting body was discretized and bubbles were 
followed in their motion around the body. Fig. 1 
shows the flow field used. The velocity near the 
body was assumed to decay from the inviscid solution 
to zero at the body wall in a simulated boundary 
layer. Fig. 2 shows the results obtained, which are 
able to reproduce several of the features of the paper 
of the discussor in these proceedings. These are 
generation of a dimple on the bubble during its 
growth, which rotates to become almost 
perpendicular to the body at buSK maximum. Also, 
the downstream bottom of the bubble is seen lifting 
from the surface, while the upstream friction is seen 
to present a characteristic trailing portion of the 
bubble that tends to stick to the wall. These could be 
due to the numerics but also reproduce previously 
observed configuration. See Fig. 3 showing a buSK 
near a foil with its image in its foil. 

C. Brennan 
California Institute of Technology 

I would like to congratulate the authors on a very 
interesting paper. The efforts to understand the way 
in which cavitation bubbles are deformed by the large 
shear rates and pressure gradients near the surface of 
a body have clearly been heightened by the 
experimental observations of Ceccio and myself 
(JFM, 1991).    I would like, if I may, to show a 
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Broadband Noise of the Cavitating Marine Propellers: 
Generation and Collapse of the 

Free Bubbles Downstream of the Fixed Cavitation 
J. Matusiak (Technical Research Centre of Finland, Finland) 

ABSTRACT 

A method of evaluating generation and collapse of free 
cavitation bubbles in the propeller flows is presented. The 
number and size of free, spherical cavitation bubbles are 
related to the variation of propeller-blade-attached cavitati- 
on. The beta type probability density distribution of the 
initial bubble size is proposed. This distribution is normali- 
zed with respect to the sheet cavitation thickness. The 
method of calculating the low-frequency pressures induced 
by fixed blade cavitation and high-frequency broadband 
noise caused by the collapse of free bubbles in propeller 
flows is presented. The method yields noise spectra in the 
frequency range from the blade-passing frequency to tens of 
kilohertz. Computed pressure and noise induced by the 
cavitating propellers are compared to the values measured in 
model- and full-scale experiments. The fractal structure of 
the bubble cloud and the proposed method of evaluating the 
collapse of the bubble cloud downstream of the fixed cavi- 
ties yield noise spectra which correlate well with the expe- 
rimental results of full- and model-scale measurements. 

NOMENCLATURE 

a velocity of sound 
Ac cavity area 
B constant of the barotropic equation 
C constant 
D pressure gradient 
f density function, 

frequency 
h0 depth of propeller shaft 
H pressure function at the bubble wall 
I relative length of sheet cavitation 
lc chordwise length of sheet cavitation 
Lp noise level 
n number of bubbles, 

exponent of the barotropic equation 
m parameter of the beta distribution 
p pressure 
PO ambient pressure 
P pressure at the bubble wall 
P(f) discrete Fourier transform of pressure 
r radial ordinate of field point 

R bubble radius, 
distance from the control point on the blade 
to the field point 

Ro propeller radius 
s non-dimensional chordwise distance 
S surface tension, 

power spectral density 

Tb 
blade-passing period 

t time 

k time to the first rebound 

h time of travel of a flow particle from the 
cavity sheet to the blade trailing edge 

U velocity of the propeller blade section 
V cavity volume 
V non-dimensional volume 
Z number of propeller blades 
x dimensionless ordinate of the beta 

distribution 
ß ratio of volumetric gas concentration 
7 exponent of the isentropic process 
11 thickness of sheet cavitation 
P spanwise distance, 

density 
G cavitation number 
X collapse time 
e angular position 
Q angular velocity of propeller 

Subscripts 

c cavitation 
f fluid 
g gas 
1 blade loading 
m model 
s ship 
t blade thickness 
V vapour, 

volume 
X dimensionless bubble radius 
0 initial 
oo at infinity, 

external 
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Superscript 

complex conjugate 

Operators 

linearly increasing pressure is derived. The computer 
implementation of the presented method is outlined. The 
computed results in the form of noise level spectra are 
presented and compared to the experimental data. 

Ä time derivative of A 
AA finite difference of A 
d(A) in the figures, first time derivative of A 
dd(A) in the figures, second time derivative of A 

INTRODUCTION 

Marine screw propeller located at the stern of a ship operates 
in a flow affected by the hull. The ship wake, which is a 
decelerated, non-uniform inflow into the propeller disc, has 
certain negative effects on its operation. Apart from the 
desired steady thrust component developed by the propeller, 
an unwanted unsteady loading is experienced by propeller 
and ship. These periodic loads, called "bearing forces", are 
transferred through the shaft and the bearings to the ship 
structure. The magnitude of these unsteady loads depends 
mainly on the non-uniformity of the wake and usually does 
not exceed 5% of the steady components, i.e. thrust and 
torque. A rotating propeller induces an unsteady pressure 
field which affects the submerged part of the hull as "surface 
pressures and forces". 

In general, propellers of surface vessels are designed 
to carry the loading at which cavitation is unavoidable. The 
occurrence and extent of this cavitation depends on the 
angular position of the blades. The main reasons for cavita- 
tion unsteadiness are a non-homogeneous inflow into the 
propeller disc (ship wake), resultingin unsteadiness of blade 
loading, and hydrostatic pressure variation experienced by 
the rotating blades. Fluctuating cavitation is responsible for 
the fact that the vertical surface force considerably exceeds 
the vertical bearing force. Thus unsteady cavitation is usu- 
ally the main cause of ship vibration problems. The pressure 
induced by unsteady cavitation decreases much slower with 
distance than the contributions of the non-cavitating propel- 
ler. Moreover, this pressure also comprises high-frequency 
components and thus it is the main source of the underwater 
noise generated by vessels. The primary source of high- 
frequency noise is the collapse of free cavitation bubbles. 
This noise contributes to crew discomfort, may interfere 
with the sonar systems of a research vessel and may promote 
the detection of a naval vessel by enemy sensors [1]. 

Fig. 1 is the illustration of the above described effects 
on the propeller-induced pressure. Description of the eval- 
uation of pressure induced by the non-cavitating propeller 
and the method of calculating the cavitation fixed with the 
blades can be found in the literature [2-11]. The details of 
the approach adopted in the following are given in reference 
[12]. 

Scope of the work 

The problem of theoretically evaluating the broadband pressu- 
re induced by the cavitating marine screw propeller is 
considered in the following. The method of evaluating the 
number and mean size of free cavitation bubbles generated 
by a break-off of the unsteady sheet cavitation of a screw 
propeller is presented. The size distribution of bubbles thus 
generated is proposed. The collapse of free bubbles 
downstream of the blade-fixed cavities is discussed and the 
formulae for numerical evaluation are given. In particular, 
the formula for the collapse time of a bubble subjected to the 

tip vortex cavitation 

sheet cavitation 

cavitation bubbles 

blade loading and 
thickness 

cavitation 
(sheet and bubble) 

Fig. 1    Components of the propeller-induced unsteady 
pressure- schematic summary. 

702 



CAVITATION-INDUCED HIGH FREQUENCY 
NOISE 

General 

The literature survey of the methods of evaluating the 
propeller cavitation noise conducted by Pylkkänen [13] 
summarizes the published approaches. Most of them rely on 
model-scale cavitation tests. Thus there is a relatively large 
number of publications dealing with the scaling of propeller 
noise. A theoretical approach to the problem presented by 
Gravastrand [14] considers cavitation bubble growth and 
collapse in a partially constant pressure field. Okamura & 
Asano [15] use a semi-empirical approach. This allows an 
estimation of the high-frequency noise from the main parti- 
culars of the propeller and from the global sheet cavitation 
information. Weitendorf [16] and Isay [17] suggest the use 
of the so-called bubble tracing method. In this method the 
growth and collapse of the bubbles, when passing the low 
pressure region of the propeller blade suction side, is evalu- 
ated. 

Ross [18] presented an analytical method of eval- 
uating the pressure induced by a collapsing cavitation bubble 
at the instant of the rebound. Morozov [19] pointed out that 
the broadband character of the noise spectrum is the result of 
a large number of bubbles collapsing nearly simultaneously. 
Assuming random time intervals between the pressure pe- 
aks of assumed analytical form, Morozov derived the formu- 
lae for the power spectral density of the entire process of 
bubble cloud collapse. 

Bark [20] conducted cavitation observations and 
pressure measurements for the harmonically pitching hyd- 
rofoil and model propellers operating in a ship model wake. 
His observations relate the collapse of the disintegrated 
fixed cavities to the induced pressures. 

Fixed cavitation break-off 
Experimental results indicate that bubble cavitation and in 
particular bubble collapse are responsible for high-frequen- 
cy noise induced by screw propellers [21]. The volume 
variation of attached sheet cavitation is far too slow to induce 
high-frequency noise. Free bubble generation is associated 
with the break-off of fixed cavitation at the downstream end. 
The phenomenon is discussed by Knapp et al in reference 
[21] for cavitating axially symmetric bodies. Even for sta- 
tionary flow conditions, an unsteadiness of fixed cavitation 
is observed. This is attributed to the re-entrant flow at the 
downstream end of the cavity. When reaching the upstream 
end of the cavity, this re-entrant jet may in an extreme case 
suppress the cavitation. Less violent contacts of the re- 
entrant jet with the inner surface of the cavity cause periodic 
break-offs of the latter. This break-off mechanism as well as 
diffusion of the air nuclei from the liquid flowing into the 
cavity [22] generate free cavitation bubbles. These bubbles 
are convected by the flow into the higher pressure region and 
collapse, inducing noise. An experimentally obtained distri- 
bution of damaging cavitation blows in relation to the 
attached sheet cavity, presented in reference [21], supports 
this hypothesis. The cycling of cavitation of the lifting 
surfaces (struts, hydrofoils and propeller blades), in steady 
flow conditions, is far more limited. The re-entrant jet 
thickness in relation to the cavity length is smaller, which 
might be the reason for stability of the partial cavitation of 
the hydrofoils for cavity relative lengths I < 0.75. The 
instability region 0.75 < I < 1.15 can be understood as 
cavitation cycling. However, this uncertainty region is limi- 
ted to a restricted range of flow parameters which are 
irrelevant for a well-designed propeller. For these reasons 
this phenomenon will not be discussed further, although it 

might be the main source of noise induced by a poorly 
designed screw propeller operating in a strongly non-homo- 
geneous wake field. 

Generation of free bubbles in unsteady flow conditions 

Bark [20] observed in model scale the disintegration of 
cavities and their collapse in unsteady flow conditions. The 
break-off of the fixed cavitation, filmed during the tests, was 
complex and often took place in stages. Although the collap- 
se of the attached and disintegrated patches of sheet cavita- 
tion were noted, spherical, small-diameter bubbles were 
also observed. The collapse of these spherical bubbles was 
associated with violent pressure peaks. The rebound of 
collapsing cavities was observed and a generation of sharp 
pressure peaks associated with it was noted. 

The following model of free cavitation bubble gen- 
eration is proposed. The attached cavity grows in the low 
ambient pressure region through the expansion of air nuclei 
convected to it by surface diffusion and the re-entrant jet, 
and by the liquid vaporization. At this phase there is no net 
generation of free cavitation bubbles. Propeller cavitation 
observations reported in references [23, 24, 25, 5] can be 
considered to support this model. 

The decrease in the sheet cavitation volume is as- 
sociated with cavity break-off. At this stage the re-entrant 
flow is insignificant. The downstream end of the cavity tears 
itself off into free bubbles. This is illustrated in Fig. 2. 

sheet cavitation area A 

cavitation bubbles (total volume = Z V.) 

Fig. 2. Generation process of free cavitation bubbles. 

The volume rate of bubbles generated in the process equals 
the rate at which the sheet cavity volume decreases times the 
relative gas & vapour volume ß in the sheet, and it can be 
expressed as follows 

£(iVi) = -ßf(Ac)dp   for^<0 
dtV i=l dt dt 

£(£Vi) = 0      for%>0 
(1) 

dt i=l dt 

where V; is the volume of ith bubble, dp is the blade span 
differential and and n is the total number of bubbles. 

Size distribution of the cavitation nubbles shed from 
the fixed cavity 

The initial size of the bubbles generated as an effect of the 
fixed cavity tearing-off is proposed to be represented by the 
beta distribution [26]. Its density probability function is of 
the form 

f.(x) = m(l -\)m~l (2) 
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where 

X = R/(0.5TIC) (3) 

is the dimensionless bubble radius and r\c is the fixed 
cavitation thickness at the point of the break-off. mis a 
constant. 

The proposed density function (2) is presented in Fig. 3 for 
the value of constant m = 9. 

10 

fx(x) 

0.1 

0.01 

0.001 

0.0001 

X 
1 s 

0.5 

Fig. 3. The proposed probability density function of the 
cavitation bubbles radius generated as the result of the 
tearing-off of the fixed cavity. 

Thus it is assumed that the diameter of the bubbles leaving 
the trailing edge of the sheet cavitation does not exceed the 
maximum thickness of the fixed cavity. This assumption and 
the feature of the maximum size limit of the applied density 
function (2) is in agreement with the proposed model of the 
free bubble generation. Moreover, this function has the 
following attractive features. It describes a fractal form with 
a dimension m - 1. Hence the number of bubbles increases 
rapidly with the decreasing radius. Although there is no 
quantitative experimental evidence available on the matter, 
photographs presented in reference [27] support qualita- 
tively this type of a bubble cloud distribution. In refer- 
ence [28] the structure of a bubble cloud is described which 
can be regarded as fractal. There is no reference made to the 
type of process which generated the cloud. Using the means 
of the parametric study, the constant m in formula (2) was 
chosen to be m = 9. This study involved the computation of 
noise for three marine screw propellers for which the ex- 
perimental data was available [29,25,30]. 

Stereophotogrammetry of the sheet cavitation at the 
break-off [31] indicates that its chordwise thickness dis- 
tribution ri(s) can be approximated by the shape function of 
the turbulent boundary layer on a flat plate, i.e. 
T](s) = constant*s4^. Thus the maximum thickness of the 
fixed cavity at the point of the break-off is obtained from the 
length and area of the sheet cavitation 

Tic=1.8(A0/lc). (4) 

Four other initial bubble size distributions were also tried. 
They are presented in reference [12]. The beta distribution 
with m = 9 gave the best numerical agreement with the 
experimental values. The final results of these computations 
are presented in the next section. The high fractal dimension 
of this distribution (m - 1 = 8) indicates that the formation 
of the bubble cloud is a very complex dynamic process. 
However, the detailed mathematical modelling of this pro- 
cess is beyond the scope of this paper and will not be 
discussed here. Instead the globally better understood va- 

pour-gas-mixture continuity relation and the deduced bubble 
size distribution is used. Qualitatively the cavitation break- 
off process and the complexity of it are described by Bark 
[20]. Different modes and stages of the attached cavitation 
disintegration and the fact that the thickness of the bubble 
cloud exceeds the thickness of the sheet cavitation [20] 
indicate that break-off is indeed the result of a complex 
process. The proposed model can be considered to represent 
the final stage of sheet cavitation disintegration. 

For the beta type of bubble size distribution given by 
formula (2), the mean value of the bubble dimensionless 
radius is 

JO 
x(l-x)  dx = 0.1 (5) 

The spherical bubble non-dimensional volume equals 
v(x) = 4/3 rot3 and thus the derived volume density function 
in terms of the radius is 

fv(x) = fx(x)^ = S.ii-J0 
(m-l) 

-«=f*«d7=4T^r—•        (6) 

For m = 9 the mean value of the bubble volume is 

JO 

v(x = l) 

v fv(v) dv 

12JC/   x3(l-x)8dx = v(x= 1.6565 x) . 
JO 

(7) 

The integrand of (7) is plotted in Fig. 4 showing that the main 
part of the free cavitation volume is shed downstream of the 
fixed cavity in the form of bubbles of the diameter close to 
10% of the sheet cavitation thickness at the point of the 
break-off. 

0.2 

Ux)v(x) y 
y 

* 

^^ 
^ 

0.01 

Fig. 4. Volume distribution of the free bubbles generated 
as the result of the sheet cavity break-off. 

The condition (1) of the vapour & gas mixture continuity 
yields 

i(nV) = -ßi<Ac)dp (8) 

where 
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V = (Tlc/2)Jv. (9) 

Assuming that the mean value of the bubble volume is 
constant within the finite time increment At, equation (8) 
yields the total number An of the generated bubbles for the 
blade length dp and within time step At 

An = -J-[Ac(t + At) - Ac(t)J dp . (10) 

This model of free bubble generation excludes the vapour 
liquidisation. Moreover, spanwise flow of the vapour and 
gas mixture contained by the cavitation sheet towards the 
blade tip is disregarded. The latter is expected to be of 
importance in the case of highly skewed propellers. This 
three-dimensional effect, which stabilizes fixed cavitation, 
might be the reason for the reduced pressures and noise of 
propellers with skewed blades. 

Collapse of free bubbles 

The bubbles generated as a result of the fixed cavitation 
break-off are rapidly accelerated by the water flow 
downstream of the fixed cavity. The bubbles are assumed to 
be spherical in shape. Their radii are small compared with 
their relative distances, and their velocity is assumed to be 
equal to the local flow velocity. These assumptions allow us 
to disregard their interaction and coalescence in particular. 
Rapid films of reference [27] support the assumption of zero 
slip velocity. Thus collapse of the bubble cloud can be 
treated as collapse of the individual bubbles. Moreover, the 
effect of the solid boundary, which is the blade surface, on 
the dynamics of the bubbles is disregarded, too. 

Partial cavitation cuts off the sharp pressure peak at the 
leading edge of the blade. The pressure at the non-cavitating 
portion of the hydrofoil increases monotonically from the 
vapour value pv to the static pressure value po at the trailing 
edge. For the sake of simplicity, this pressure growth is 
assumed to be linear, that is of the form 

P=o(0 = p, + x (Po - Pv) 
tt 

(ID 

where tt = (c - y/U is the time of travel of a flow particle 
from the downstream end of the sheet cavity to the trailing 
edge of the hydrofoil, c is chord od the hydrofoil, lc is the 
chordwise length of the sheet cavitation and U is velocity of 
the blade section. The above assumption means that the 
perturbed flow velocity is neglected when evaluating the 
chordwise position of a bubble. Moreover, the effect of the 
boundary layerdownstreamofthe fixed cavity on the bubble 
translational motion is disregarded, too. px will be called the 
external pressure in the following. The °° index means that 
this bubble-collapse-driving pressure extends in space as 
constant over the radial distance r » R. 

Relation (11) can also be written as 

P„(t)=pv + —;j-pfU
3o-(p,e) (12) 

c-L 

where o~(p,0) is the cavitation number at the blade section 
located at the radius p and angular position 0, Pf is water 
density. 

Collapse time of vanour bubble 

In references [21, 32], the time of collapse of a bubble 
subjected instantaneously to a pressure jump is shown to be 

1 = 0.91468 Ro-Zpf/p; (13) 

This formula was derived by Rayleigh. Viscosity, liquid 
compressibility and bubble surface tension were disregarded. 
Assuming that pressure variation given by formula (12) is 
slow when compared with the bubble collapse time, disre- 
garding surface tension, compressibility and viscosity effect 
the following generalization of the Rayleigh equation 

2(pv-pJ 

3pf 
1- 

R3 
(14) 

for the bubble wall velocity is proposed 

dR_     /2(po-pv)t(Rg-R3) 

dt      V 3pfttR
3 

(15) 

Formula (15) yields after integration an estimate of the time 
of bubble collapse due to linearly increasing external pressu- 
re 

tc=(3x/2)2/3(tt)
1/3fortt>tc. <16) 

For the fully cavitating foil sections, tc = x is taken. 

Vanour bubble collapse in a linearly increasing 
pressure field 

The equation for bubble collapse, including the effect of 
liquid compressibility, 

RR(l-|) + |R2d-f-) 

= H(l+f-) + R£L(l-|-) 
(17) 

was derived by Gilmore and quoted here after reference 
[21]. In this equation 

a = ao P + B 
,n — 1 

2n 
pJt)+B 

is the local velocity of sound in the liquid and 

n (Poo + B) 

(18) 

H: 
(n-l)pf 

fp^Un-D/n 
LPOO+B

1 (19) 

is the pressure function at the bubble wall with the as- 
sumption of isentropic compression. For water, constants 
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B= 3*108 Pa, n = 7 and a0 = 1450 m/s are taken. 
For the special case of linearly increasing external 

pressure, which is given by formula (11), disregarding 
viscosity, gas compression within the bubble and wall 
surface tension, it can be shown that the time derivative of 
the pressure function is given by 

H = _D_ -H-2- 
pv + Dt + B        pf |pv + D t + B 

P + B 
-ff> — 1 

(20) 

where D = (po - pv)At is the slope of the external pressure 
increase. Moreover, the pressure at the bubble wall was taken 
to be constant and equal to the vapour value, that is P = Pv- 

Inclusion of the surface tension and isentropic com- 
pression of the gas contained by the bubble leads to a 
pressure at the bubble wall in the form of 

p(R)=pgof; 
3y 2_S_ 

R 
(21) 

In formula (21) pgQ is the initial pressure within the bubble 
and S is surface tension. 

The time derivative of the pressure function in the case 
of linearly varying external pressure equals 

H = D -H-J2. 
Pv + Dt + B        pf[pv + Dt + B 

P + B 

R 
pfR 

pv + D t + Bfr 
P + B 

2S     ,v„    RoJ 
-R--3TPS°R] 

(22) 

where peg = pv for the compressible, non-condensable 
vapour is taken. 

In the case of supercavitation, the bubble is subjected 
to an instant increase in pressure up to the value p0 at the 
trailing edge. In this case the above formulae can be used by 
substituting in (22) vapour pressure pv by the pressure at the 
trailing edge p0 and setting D = 0. Although the static 
pressure at the trailing edge is time dependent, this depen- 
dence is much weaker than the pressure variation acting on 
a bubble due to a chordwise travel, i.e. dpo/dt« D. Thus it 
is justifiable to neglect the former dependence when time 
derivatives explicitly present in bubble dynamics equations 
are evaluated. 

The case of a partially cavitating foil is simulated 
using the bubble collapse model presented above. The 
conditions are realistic for a full-scale propeller. The distan- 
ce from the point of break-off to the trailing edge is 1 m and 
the propeller diameter is 5 m. The rate of propeller revolu- 
tion is 118 rpm, the radial hydrofoil location is at p = 2 m and 
the considered blade is at the uppermost position. The 
propeller submergence is h0 = 3.5 m. The fourth-order 
Runge-Kutta method was used in solving the Gilmore equa- 
tion for bubble collapse. The surface tension and com- 
pression of the vapour were taken into account. The initial 
radial velocity of the bubble was taken to be zero, that is dR^/ 
dt = 0 and the initial bubble radius was taken to be R$ = 1 mm. 
The results of the computations are presented in Figs. 5 to 8. 
In the following figures, d(R) and dd(R) denote the first and 
second time derivatives of the bubble wall radius, that is 
bubble wall velocity and acceleration. Volumetric accelera- 
tion is denoted by dd(V). 

The collapse time of the bubble yielded by formula 
(16) is tg = 0.877 ms for the case presented above. Thus 
compressibility of the liquid and vapour slightly increases 
the collapse time. 

1 2 
time [ms] 

Fig. 5. Spherical bubble collapse and rebounds in lin- 
early increasing pressure field downstream of the partial 
cavity (bubble radius and wall velocity). 

6000a 

40000-• 

20000- - 

a: 

-20000- 

time [ms] 

Fig. 6. Spherical bubble collapse and rebounds in lin- 
early increasing pressure field downstream of the partial 
cavity (bubble radial accelerations and field pressure at 1 
m distance). 

The consecutive rebounds require shorter times. The volu- 
metric acceleration associated with them gets narrower and 
the maximum bubble radius decreases. Thus each consecu- 
tive rebound induces higher frequency noise of decreasing 
power. This is seen in Fig. 7 as the peaks of the noise 
spectrum at the frequencies exceeding 1.2 kHz. At the 
instant of rebound the radial velocity of the bubble equals 
zero and thus volumetric acceleration and noise are directly 
related to the radial acceleration. The peak value of the latter 
is governed by the gas compression within the bubble. In 
Fig. 7 the power spectral density of the pressure induced by 
the collapsing bubble of Figs. 5 and 6 are presented. A single 
bubble of 1 mm radius and a cloud of one hundred bubbles 
of the same initial size, leaving the fixed cavity at random 
instants within 24 degrees of propeller rotation, in the 
external pressure field increasing linearly from the vapour 
value with the rate of 2.8 MPa/s, are considered. The spectra 
do not differ by the constant factor only. Their shapes are 
different, too. In the high-frequency range (f > l/tc) this 
difference is related directly to the bubble number (10 
log 100 = 20). At the frequencies f < l/tcthe difference in the 
height of the spectra is larger and it grows inversely with the 
frequency. This is because the bubbles do not leave the fixed 
cavity at the same time. Each of them is at a different phase 
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of collapse. As a result an irregular time-history of the 
induced pressure forms. A sample of this pressure signal is 
shown in Fig. 8. 

Fig. 7. Power spectral density of the pressure at 1 m 
distance from a collapsing single bubble and from a 
cloud of one hundred bubbles ofl mm radius in the 
linearly increasing external pressure (partially cavitating 
blade section). 

0,0665 0,0675 0,0685 0,0695 

time [s] 

Fig. 8. A sample of the pressure time-history induced by 
a collapsing cloud of one hundred capitation bubbles of 
1 mm radius (partially cavitating blade section). 
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Computer implementation of the numerical simulation 
of the propeller-induced noise 

The method was computer coded using the FORTRAN 77 
programming language. The code is vectorized in order to 
minimize the execution time on the CRAY X-MP EA/432 
supercomputer. The total length of the computer program is 
5309 lines. Thus it is not feasible to present a detailed 
description of the code here. Only the main features of it and 
the crucial details concerning the numerical implementation 
and the form of results presentation are given in the follo- 
wing. The procedure is illustrated in Fig. 9. 

Fig. 9 Block diagram of the numerical scheme for the 
evaluation of the high-frequency noise induced by a 
cavitationg propeller. 

Having the results of the unsteady lifting surface compu- 
tation [33], in the form of the unsteady load at the eight 
equally spaced strips the blade is divided into, fixed cavi- 
tation is evaluated with the spacing of the blade angular 
position of two degrees, that is A0 = 2 deg. The quasi-steady, 
two-dimensional and linear approach of Geurst [3] is used 
when evaluating sheet cavitation. Differentiation of the 
fixed cavitation volume is conducted using the three point 
symmetric finite difference scheme. Low-frequency pres- 
sures induced by the blade thickness and loading, and by the 
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fixed cavitation, are calculated for each of the 180 blade 
positions, that is for the 180/Z angular positions of propeller. 
Thus the time history of the propeller-induced pressure is 
computed for the blade-passing period Tb = 2K/(Q. Z) and 
for the points for which coordinates are given as the input 
data. An additional, fictious field point located at 1 m 
distance from the propeller disc is considered, too. For this 
point the far field solution is applied, in which only the effect 
of cavitation is considered. Thus the distance R from the 
control point on the blade to this fictious point is taken to be 
constant and equal to 1 m. In the results presented in the next 
section this point is depicted on the figures by "p at 1 m". 
These values can be extrapolated to higher distances with an 
assumption of the linear acoustics and the undisturbed 
pressure propagation in an unbounded, homogeneous me- 
dium 

p(r,t) = ^:V(t-r/a0) 

where 

V = 4rc(R2R + 2RR2) 

(23) 

(24) 

is volumetric acceleration of bubble. 
For each blade position and for each blade section 

condition (1) is checked. The total number of cavitation 
bubbles (10) and their mean volume (9) are evaluated for the 
cases of sheet cavitation shrinking. Theratioof gas & vapour 
volume to the total volume of the sheet is assumed to be ß = 
0.8. The probability density function (2) is discretized by the 
five bubble dimensionless radii. For each bubble class 
determined by the radius R and time tt the time to the first 
rebound tc is evaluated using the formula (16). Integration of 
the Gilmore equation (17) is conducted for each bubble class 
using the fourth-order Runge-Kutta method. The simulation 
period is set to 3.5 t^ The time step At of this integration is 
selected as follows. The blade-passing period is divided into 
the 131072 instants. Thus the sampling period of the com- 
puted noise is Atn = Tb/131072. The integration step is 
selected to be the smaller of the two values: Atn and 3.5 \J 
4000. The computed time history of the induced high- 
frequency pressure caused by a single bubble class is added 
as many times as there are bubbles in the class into the total 
pressure vector HFP which covers the entire blade-passing 
period. The first element of the HFP vector, during this 
copying scheme, is governed by the angular position of the 
propeller and by a random integer value. This insures a 
random instant of bubble generation within a 2 deg. interval 
of blade angular position. This summation is repeated for all 
bubble clouds and bubble classes resulting in the time- 
history of a broadband pressure. 

The results of computations are presented in the raw 
form without any attempt to scale them. In order to cover a 
sufficiently broad bandwidth and to reveal all relevant 
features of data the frequency axis is given in a logarithmic 
scale. The ordinate is given in a logarithmic scale as well, 
with the following definition of noise level [34,18] 

Lp(f)[db] = 201og[P(f)/prefer.] (25) 

where the reference pressure is taken to be prefer. = 1 uPa 
and P(f) is understood as the root-mean-value (rms). 

Computation of (25) is conducted using the standard 
procedures of signal processing [35]. The Fourier transform 
of the broadband pressure is evaluated using the Fast Fourier 
Transform method yielding the complex pressure spectrum 
P(f) discretized with the frequency resolution Af = 1/Tb. The 

one-sided power spectral density of the pressure is obtained 
from the following 

Sp(f) = 2TbP(f)P*(f) (26) 

where P*(f) is the complex conjugate of the P(f). 
The noise level is thus finally obtained from the 

following expression 

Lp(f) = 101og[Sp(f)Af/p2refer] (27) 

The resolution Af, which equals the blade-passing fre- 
quency, does not allow the presentation of the low-fre- 
quency part of the noise spectrum as distinct peaks. Instead 
a broken line connecting the peak values is plotted in the 
results presented in the next section. The high frequency 
portion of the spectra is smoothed by calculating the mean 
of eleven adjacent values for each spectral line. 

Results of the numerical simulation of the propeller- 
induced noise measurements 

The method described above was verified by conducting the 
computations of noise for a number of marine propellers for 
which the experimental results are available in the open 
literature and for a coastal service boat. This simulation 
included both the full- and model-scale measurements. In 
these experiments low frequency pressure and noise were 
measured by the transducers and hydrophones mounted at 
the ship and model sterns close to the propeller. For this 
reason computations were conducted taking into account the 
effects of blade thickness and loading on the induced pressu- 
res. In the case of the coastal service boat the measurements 
were conducted with stationary hydrophones. 

In Figs. 10 and 11 the results of computations are 
compared to the measured values in terms of the noise level 
for the product tanker M/T Pasadena. She was the subject of 
the Nordic co-operative project dealing with structure-borne 
sound in ships from propellers and diesel engines [30]. 
Noise measurements in the full-scale and tests in the cavita- 
tion tunnels were conducted. The results of the measurements 
are plotted as the interpolated values read from the figures 
and tables of references [36] and [30]. The model-scale 
experimental values are the "mean levels" of reference [36]. 
The advance ratio J in the following figures is based on the 
mean value of the axial velocity in the propeller plane. 

200 

D. 
to    190 

Fig. 10. Noise spectrum of the M/T Pasadena (full-scale). 
Measuring point 1 at the condition B of the reference [36] 
(Vs = 16,3 kn, Ü = 132 rpm). 
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Fig. 11. Noise spectrum of the MIT Pasadena (model test 
in scale X = 23,7 in the cavitation tunnel). Measuring 
point 1 at the condition B of reference [36] fß^ = 3227 
rpm andJ= 0J85 corresponding to the full-scale values 
Vs =16,3 kn and Qs = 132 rpm). 

The main features of the measured noise spectra are well 
reproduced. That is, the maxima and minima are of nearly 
the same value and they are located at the same frequencies. 
Also the slopes of the spectra are of similar values. The 
biggest discrepancy is in the frequency bandwidth starting 
approximately at twice the blade-passing frequency and 
extending to the local minimum of the spectra (300 Hz in the 
full-scale). In the model test the effect of noise reflection 
from the tunnel walls may be affecting the measured values 
[37]. Another explanation for these differences is the in- 
accuracies in the evaluation and numerical differentiation of 
the fixed cavitation volume. In this intermediate frequency 
region the form of the noise spectrum is primarily governed 
by the higher harmonics of the pressure induced by the fixed 
cavitation (Fig. 1) and secondarily by the number of free 
bubbles. The pressure induced by the fixed cavitation is 
related to the second time derivative of the volume, while the 
number of free bubbles is related to the finite difference of 
the volume (formula (10)). Moreover, as there is good 
agreement of the noise in the high frequency region, it can 
be concluded that the main reason for the discrepancies, 
apart the spurious noise of the measurements, is the inaccu- 
racies in the evaluation of fixed cavitation. The assumption 
of the sheet cavitation's quasi-steady character, which re- 
sults in a distortion of the details of cavitation volume time 
history, can be blamed for the differences in the intermediate 
frequency range. 

The results of the computed noise for the contain- 
ership Sydney Express and her models are presented in Figs. 
12 to 14. The measured values are read from the figures of 
the references [29] and [25]. The detailed propeller and other 
relevant data were also taken from these references. Model 
experiments of Sydney Express were conducted following 
the cavitation andFroude similarity test conditions [25,29]. 
The noise level up to the frequency 10 kHz is rather well 
reproduced by computations in the bigger model propeller 
case.For the smaller model propeller the bandwidth of good 
agreement is significandy smaller. 

The results of the noise induced by the single screw 
coastal service boat are presented in Figs. 15 and 16. Measu- 
rements were conducted in shallow water (approximate 
depth of 25 m). 

The clear effect of the reflections from the water 
surface and sea bottom is a deformation of the noise spectra 
at the low frequency range (up to 1 kHz). The high-frequen- 
cy noise propagates without significant distortion. Propa- 

gation of the higher frequencies can not be regarded as being 
either a pure plane or purely spherical acoustic waves. This 
transmission loss effect in shallow water is discussed by 
Urick [38]. In reference [38] at short distances spherical 
spreading is applied. For higher ranges the sound pressure 

attenuation is lower and is given by the formula p2(r)=p0 r _3/l2. 
For still higher distances the cylindrical spreading of noise 
is assumed leading to the pressure attenuation of the form 

p2(r)=p§ r -1. The computed results were obtained with the 
assumption of ideal spherical spreading. Judging from the 
measured noise level difference at these two field locations 
the cylindrical spreading is more suitable in this shallow 
water case and the considered range. 
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Fig. 12. Noise spectrum of the Sydney Express (full- 
scale). Measuring point 2 at a speed of 22 knots and 
propeller-shaft speed of 110 rpm. 

Fig. 13. Noise spectrum of the Sydney Express (model 
test in scale X = 18,7 in the cavitation tunnel). Measuring 
point 2 at a speed of 22 knots and propeller-shaft speed 
of 110 rpm, corresponding to the model condition of 
Qm = 474 rpm, J = 0,654. 
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Fig. 14, Noise spectrum of the Sydney Express (model 
test in scale X = 28 in the cavitation tunnel). Measuring 
point 2 at a speed of 22,4 knots and propeller-shaft speed 
of 109,5 rpm, corresponding to the model condition of 
nm = 580 rpm, J = 0,677. 

140 

f[Hz] 

Fig. 15. Noise level of the coastal service boat. Measure- 
ment conducted 317 m port of the ship. 
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Fig. 16. Noise level of the coastal service boat. Measure- 
ment conducted 600 m port of the ship. 

CONCLUSIONS 

The approach presented results in broadband propeller- 
induced pressures which agree well with the available me- 
asured results. The method is applicable for cavitating 
marine screw propellers of normal type. High-frequency 
noise due to a non-cavitating propeller is not dealt with. The 
reason for this is its minor importance in the case of normally 
operating surface vessel. Although the method is theoreti- 
cal, it requires certain experimentally obtainable data. This 
is the nominal model wake of the vessel and the results of the 
model self-propulsion test. That is, the same data are needed 
as are used in preparing the cavitation model test. Although 
the method requires much computer effort (approximately 
12 min CPU time of the CRAY X-MP E A/432 supercompu- 
ter) it is cheaper than the cavitation tests. Calculations 
directly yield the prediction of the full-scale values and they 
are not affected by other deficiencies of experimental met- 
hods, such as spurious noise, reflections and other experi- 
mental errors. 

There are, however, several open questions left. The 
tested cases were normal marine propellers of surface ves- 
sels which exhibited a moderate amount of the sheet type 
cavitation. It can be questioned whether this method can be 
used for the modem highly-skewed propellers. For these 
propellers the relation between the fixed cavitation volume 
variation and the volume of the generated free bubbles is 
probably affected by the three-dimensional effect of the 
spanwise flow. Moreover, as the method is based on poten- 
tial flow approximation, itdoes not take into accountviscous 
effects. As a result it fails to predict the noise measured at 
low Reynolds numbers. The lack of viscous effects may 
further contribute to the problems with dealing with the 
leading edge cavitation of highly-skewed propellers. For 
propellers exhibiting very short leading edge cavitation the 
linear approach which disregards blade thickness will result 
in too pessimistic prediction. Effects such as propeller-hull- 
vortex (PHV) and tip-vortex cavitation induced noise are 
disregarded. It remains uncertain whether the rather poor 
agreement in the intermittent frequency range is caused by 
the above-mentioned deficiencies of the measurements, or 
whether it is a problem of the fixed cavitation evaluation. 
The simplified model of the break-off, neglecting the collap- 
se of non-spherical patches of sheet cavitation detached 
from the main cavity [20], may also be responsible for the 
poor agreement of the noise spectra in the intermediate 
frequency range. Some of these questions can be verified 
when the appropriate measured data are available. 

The noise propagation model adopted in this method 
is that of the linear acoustic approximation yielding spheri- 
cal spreading, for the unbounded, homogeneous medium. 
The vicinity of water and hull surfaces, sea bottom or water 
tunnel walls reflecting sound results in directional sensitivi- 
ty, transmission anomalies and loss. These effects have a 
great influence, especially on the long pressure waves and 
noise at large distances. In this respect predicting the high- 
frequency noise generated by the cavitating propeller of a 
vessel in restricted waters is of importance also for hydroa- 
coustic investigations. 
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DISCUSSION 

C. Brennan 
California Institute of Technology, USA 

The author presents an interesting attempt to 
synthesize the noise from sheet cavitation. The basic 
approach seems quite appropriate and represents an 
extension of the procedure first put forward by 
Fitzpatrick and Strasberg at the very first Naval 
Hydrodynamics Symposium in Washington, D.C., in 
1956. (I am a little surprised at the lack of reference 
to this paper or the extensive work of Blake as 
described in his recent book on the subject.) While 
I would not differ with the basic philosophical 
approach presented by the author, there are some 
places where I would question the details: (a) The 
empirical formula used to determine the size of the 
bubbles is crucial in determining the noise spectra. 
The author correlates this size with the thickness of 
the sheet cavity. Would it not be more appropriate to 
scale it with some turbulent eddy size as strongly 
suggested by the recent studies of entrainment by 
Prosperetti, Duncan, Chachine, and others? (b) The 
bubble cloud shed by a sheet cavity usually has a 
high enough void fraction for cloud effects to be 
important. The author seems to dismiss these effects 
rather too quickly, (c) I am concerned when I 
examine the typical bubble history shown in Fig. 5. 
This shows typical ratios of minimum to maximum 
bubble size of the order of 0.5. Such ratios are 
typical of gas bubbles but not of cavitation bubbles in 
which the ratios are typically 10~5 or smaller. It is 
this range of ratios that is necessary to produce 
significant cavitation noise. 

Reference [28] of my paper and the recent 
measurements conducted at the University of Tokyo 
by Prof. Kato and one of his students indicate that a 
fractal form suggested by me seems to be an 
appropriate choice. The assumption that the 
maximum diameter of a bubble shed from the fixed 
cavity does not exceed the sheet thickness seems 
reasonable to me. If you have any evidence to the 
contrary, I would be very glad to see it. (b) My 
assumption that the bubbles do not interact is not 
quite suitable for large bubbles. This may be the 
reason for poor correlation of the computations with 
the experimental data in the intermediate frequency 
range (from 300 Hz to 1 kHz). However, the bulk 
of the created bubbles is of a very small size. Each 
of them is of a different radius and each of them is 
created, shed downstream, and collapses at a different 
instant. Thus, their significant interaction is very 
unlikely. Assumption of the spherical form of the 
bubbles is good also for small size bubbles as the 
significance of the surface tension grows rapidly with 
the curvature, (c) My assumption was that during a 
very rapid collapse, the vapor behaves as a 
compressible gas, that is, it does not condense. The 
inclusion in the numerical model of the effects of 
vapor condensation and of the partial gas pressure in 
the bubble is possible if the appropriate experimental 
data are available. I am afraid that such data are 
different for each cavitation test facility. The ratio of 
minimum to maximum bubble size quoted by you (10' 
5) seems to me too low. A bubble of the initial 
diameter of 1 m compressing to 10 urn is difficult to 
accept. The photographs of the collapsing bubbles 
shown us by Dr. Chahine and those that can be found 
in the literature (Ref 121 of my paper) indicate that 
this ratio is much closer to the one presented by me. 

AUTHOR'S REPLY 

Thank you Prof. Brennen for your comments and 
questions. I am sorry I did not refer explicitly to the 
single bubble dynamics and its effect on the noise 
spectrum presented by Fitzpatrick and Strasberg. 
The book of Blake, which is referred by me, covers 
this subject and other matters that are relevant to my 
paper. This book includes also further references and 
the one referred by you. There is a large number of 
papers on the single bubble dynamics published. The 
pioneering work in this field was done by Lord 
Rayleigh in the last century. 

(a) I do not know the publication referred to by 
you. There is unfortunately very little experimental 
evidence of the bubble size distribution in the cloud. 

I attempted to develop a method that leads to a 
practical result, which is a noise spectrum generated 
by a cavitating propeller. If I included the effects of 
factors that are unknown or different for each test 
facility, I would not be able to reach my goal. 

DISCUSSION 

Spyros Kinnas 
Massachusetts Institute of Technology, USA 

The author is making use of a quasi-steady two- 
dimensional cavity theory in order to determine the 
sheet cavity on the blade. I am wondering how good 
this approximation may be, especially at the tip 
region (even for conventional propellers). 
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AUTHOR'S REPLY 

Quasi-steady two-dimensional cavity theory 
produces surprisingly good results, especially in 
terms of sheet cavitation extent. It underpredicts 
cavitation thickness at the blade tip region. In order 
to take into account the three-dimensional nature of 
the flow at the tip, the following is done. The 
intermittent tip vortex cavitation radius is evaluated in 
a quasi-steady manner using the method of Betz. 
Cavitation at the blade tip is related to the tip vortex 
cavitation using the circulation conservation principle 
and simple geometrical considerations. The approach 
is described in detail in reference [12] of my paper. 

DISCUSSION 

R. Latorre 
University of New Orleans, USA 

The author has presented a very interesting result 
of his study on cavitation noise from marine 
propellers.  I have a comment and a question. 

In the work of Osborne, Latorre (1992), we 
considered the development of a numerical model of 
single bubble growth and collapse along with the 
digital processing of the noise signal into a power 
spectra similar to the one shown by the author in Fig. 
7. One main conclusion is that Equation (13) is in 
good agreement with our numerical results. 

Fourier Transform (FFT) technique, which resulted, 
in my case, in 65536 spectral lines. Another reason 
for this choice was the fact that low frequencies of 
the measured propeller-induced pressure are usually 
analyzed by the spectral analyzers that utilize the FFT 
algorithm. This enabled me to present the pressure 
level at the low frequency range (from the blade 
passing frequency to 15 times the blade frequency) 
with the resolution equal to the blade frequency 
value. Thus, a comparison of the measurements and 
computation was made possible. For higher 
frequencies, a special processing of the raw discrete 
Fourier transform data was conducted, which enables 
a comparison of the results with the measured noise 
level data and which also reveals the main features of 
the simulated noise.  The procedure is as follows: 

Noise level is evaluated (formula [27]) for each 
spectral line. 

Spectrum is smoothed by calculating the mean of 
eleven adjacent values for each spectral line. 

For each frequency decade, 25 equally spaced 
frequencies are selected and for each of them the 
mean noise level is evaluated. 

This procedure leads to 1/7 octave analysis of the 
signal. 

I would like to ask the author to describe the 
signal processing he used. In our development, we 
utilized a digital filter based on the Harming window 
to obtain the 1/3 octave band pass frequency. Our 
intent was to replicate the instrumentation used in 
experimental measurements. 

Osbome, G., Latorre, R., "Development of 
Numerical Modeling of Cavitation Bubble Behavior 
and Noise," Naval Engineers Journal, Vol. 104, No. 
1, pp. 36-45, January 1992. 

AUTHOR'S REPLY 

Thank you Prof. Latorre for your comments and 
your question concerning processing the numerically 
simulated pressure signal. Because of the complex 
nature of this signal, which comprises both the slowly 
varying in time, deterministic part, and a large 
number of random peaks, I decided to use Fast 
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A Nonlinear Boundary Element Method 
for the Analysis of Unsteady Propeller Sheet Cavitation 

S. Kinnas, N. Fine (Massachusetts Institute of Technology, USA) 

ABSTRACT 

The unsteady flow around a cavitating marine propeller 
is treated in nonlinear theory by employing a low-order 
potential-based boundary element method and a time- 
marching scheme. The kinematic and dynamic bound- 
ary conditions, which are fully three-dimensional and 
time-dependent, are satisfied on the propeller surface 
beneath the cavity and on the portion of the blade wake 
surface which is overlapped by the cavity. The formula- 
tion and algorithm are developed to treat arbitrary cav- 
ity planforms in an efficient and robust manner. The 
results from the numerical method are shown to con- 
verge quickly with number of panels and with number 
of time steps per propeller revolution. The produced 
cavity shapes are validated and shown to satisfy the 
imposed dynamic boundary condition within acceptable 
accuracy. Computed cavity planforms are compared to 
those from linear theory and linear theory with leading 

edge corrections. 

1    INTRODUCTION 

Unsteady propeller cavitation has always been a major 
concern in marine propeller design. In recent years, 
when quite often the presence of cavitation is inevitable, 
the use of an analytical tool to identify the cavitation 
characteristics of a particular propeller geometry has 
become an essential part of the design process. With 
the evolution of faster computers and more accurate 
methods of analysis, the improvement of the prediction 
of unsteady propeller sheet cavitation was natural. In 
the present work, a nonlinear boundary element method 
for the analysis of the unsteady flow around cavitating 
propellers will be presented. 

Cavitating or free-streamline flows were first addressed 
in nonlinear theory via the hodograph technique as in- 
troduced by Helmholtz, Kirchoff and Levi-Civita [lj. 
Due to the difficulty of this technique to treat general 
shape three dimensional geometries, the linearized cav- 
ity theory, introduced by Tulin [25] became quickly very 

1 Principal Research Engineer & Lecturer. 
^Doctoral Graduate Student. 

popular, and this is proven from the vast amount of 
publications3 on applications of linearized cavity theory. 
In particular, the three-dimensional flow effects around 
cavitating finite span hydrofoils have been treated in 
linear theory, either via a strip-theory/ lifting-line ap- 
proach [22,20,27,30], or via the numerical lifting surface 
approach [24,9]. 

The first effort to analyze the complete three dimen- 
sional unsteady flow around a cavitating propeller sub- 
ject to a spatially non-uniform inflow was carried out by 
C-S. Lee [18]. He employed a source and vortex lattice 
lifting surface scheme and he applied the unsteady three 
dimensional linearized boundary conditions on the cav- 
ity. The cavity planform was determined at each blade 
strip and each time step (i.e., blade angle) by searching 
for the cavity length which would produce the desired 
vapor pressure inside the cavity. The effect of the other 
strips was accounted for in an iterative sense by "sweep- 
ing" along the spanwise direction of the blade back and 
forth until the cavity shape converged. Unfortunately, 
this method was hampered by the inherent inability of 
linear cavity theory to predict the correct effect of blade 
thickness on cavity shape [26,28]. This deficiency was 
recently corrected in two dimensions by Kinnas [12,11], 
who introduced the leading edge correction in the lin- 
earized dynamic boundary condition on the cavity. The 
leading edge correction was subsequently applied to the 
three dimensional propeller solution [10]. The numeri- 
cal scheme was also improved by employing a more ro- 
bust arrangement of the vortex and source lattice and 
their required control points. The method (which is 
incorporated in the code PUF-3A) has been found to 
predict the gross unsteady cavity characteristics on pro- 
pellers within reasonable qualitative agreement with ex- 
perimental or full-scale observations [2]. However, de- 
tails of the cavity flow at the blade leading edge and 
tip cannot be computed reliably, especially in the case 
of highly skewed propellers, due to the breakdown of 
either the linear cavity theory or the employed leading 
edge corrections. The accurate prediction of the cavity 
flow at the tip is important since this is where much of 
the action occurs, especially in the onset of tip vortex 
cavitation. 

717        3A complete list of which may be found in [26]. 



Figure 1: The cavitating propeller in a circumferentially nonuniform wake inflow. 

Very recently we have completed a (potential based) 
Boundary Element Method (BEM) for the prediction of 
the unsteady (fully wetted) flow around either open or 
ducted propellers [16,8]. The method has proven to 
be very robust and able to compute unsteady pressure 
distributions at the propeller leading edge and tip at 
a broad range of reduced frequencies, even in the case 
of extreme propeller geometries [15].' The present pa- 
per deals with the extension of the BEM to analyze, in 
nonlinear theory, unsteady propeller sheet cavitation. 

Various velocity-based BEM's have been applied for 
the nonlinear analysis of the flow around 2-D and 3- 
D partially and supercavitating hydrofoils. These in- 
clude methods by Pellone and Rowe [23], for supercav- 
itating 3-D hydrofoils, by Uhlman [28,29], for partially 
and supercavitating 2-D hydrofoils, and by Lemonnier 
and Rowe [7], for partially cavitating 2-D hydrofoils. In 
each of these BEM's, the panels are placed on the cav- 
ity boundary whose shape is determined by an iterative 
process which terminates when both the kinematic and 
the dynamic boundary conditions are satisfied. 

Recently, a potential-based boundary element method 
(i.e., one based on Green's third identity for the per- 
turbation potential) was developed by Kinnas and Fine 
[14] for the nonlinear analysis of the flow around par- 
tially and supercavitating 2-D hydrofoils. This method, 
when applied to partially cavitating hydrofoils (with 
the cavity length known and the cavitation number un- 
known) has been found to converge to the final cavity 
shape with fewer iterations than velocity-based BEM's. 
In particular, it has been found that the first step in 
the iterative method, in which the dynamic boundary 
condition is satisfied on the hydrofoil surface beneath 
the cavity, predicts a cavity shape which is remarkably 

close to the "exact" nonlinear shape. More recently 
this method was extended for the analysis of the flow 
around 3-D cavitating hydrofoils [13,5]. In the present 
work, this method is further extended for the analysis 
of unsteady propeller sheet cavitation. 

2    FORMULATION 

Consider a propeller subject to a circumferentially nonuni- 
form inflow Vw(xs,rsJs), as shown in Figure 1. The 
wake inflow is expressed in terms of the absolute (ship 
fixed) system of cylindrical coordinates xs,rs,&s- In 
analyzing the flow around the propeller we use the pro- 
peller fixed system (x,y,z), also shown in Figure 1. We 
assume that the propeller is right-handed and that it 
rotates with angular velocity u. The inflow relative to 
the propeller, U;„, will be time dependent and given as 

\Jin{x,y,z,t) = \Jw(x,r.6-Lut) + u x x,      (1) 

where r = vV2 + z'2i & = arctan(z/y) and x = (x,y, z). 
We assume that the propeller cavitates, and the time 

dependent cavity sheet surface is denoted by Sc{t). We 
also assume at this point, that the resulting flow is in- 
compressible and inviscid, and that the inflow Vw is 
the effective wake, i.e. it includes the interactions be- 
tween the vorticity of the inflow in the absence of the 
propeller (nominal wake) and the vorticity due to the 
propeller. Then, the time dependent total flow veloc- 
ity relative to the propeller fixed system, q(x,y,z,t), 
can be written in terms of the perturbation potential, 
4>(x,y,z,t), as follows: 
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q{x,y,z,t) = \3in(x,y,z,t) + V<l>{x,y,z,t).     (2) 

In the next four sections, we outline the necessary equa- 
tions and conditions for determining <f>(x,y,z,t) as well 
as the cavity planform and shape. 

2.1     The Green's Formula 

By applying Green's third identity for <j>(x,y,z,t) at 
any time t, we get the following integral equation for the 
perturbation potential cj>p(t) at any point p on the wetted 
part4 of the propeller blade (or hub) surface, Sws{t), °r 
on the cavity surface, Sc(t), both shown in Figure 2: 

27T^(i) = 

OuSc(t) 
,,(()«gM_c(p;/«') 

dnq(t) dnq(t) 

+    [       A4>(rveg,t)^^dS;   P£(SwsUSc 
JSw(t) OnJt) 

dS 

(3) 

with the subscript q corresponding to the variable point 
in the integrations; n9(£) is the unit vector normal to 
the propeller wetted surface, the cavity surface or the 
wake surface; A<j> is the potential jump across the wake 
sheet, Sw{t), and G(p; q) is the Green's function. In 
the case of unbounded three dimensional fluid domain 

G(P'i <?) = 1/JR(P; <?)> with R(p; q) being the distance be- 
tween points p and q. 

Equation (3) expresses the potential on the com- 
bined wetted propeller and cavity surface, Sws{t) U 
Sc(t), as the superposition of the potentials induced by 
a continuous source distribution, G, and a continuous 
dipole distribution, |£, on Sws U Sc, and a continuous 
dipole distribution on the trailing wake surface Sw(t), 
also shown in Figure 2. Note that all the involved sur- 
faces in equation (3) are time dependent, either because 
their shapes and/or because their line boundaries are 
functions of time. On the combined wetted blade and 
cavity surface, Sws(t)l)Sc{t), as will be described in the 
next sections, either the source distribution is known (a 
Neumann condition) or the dipole distribution is known 
(a Dirichlet condition). The remainder of the unknown 
dipole or source distribution is determined from the ap- 
plication of equation (3). 

At first, the strength of the source distribution on 
the wetted propeller surface may be expressed, via the 
kinematic boundary condition, as5 

-Q^- = -U,-„(a:„y„2„i)-n,;   q 6 Sws(t)      (4) 

where xq,yq,zq are the coordinates of point q with re- 
spect to the propeller fixed system. 

Figure 2: Definition of the wetted blade, the cavity and 
the trailing wake surfaces. 

In the case of partial cavitation (when the cavities do 
not extend behind the blade trailing edge6 ) the trailing 
wake, Sw, is treated the same way as in the case of 
fully wetted unsteady flows [15]. In more detail, the 
geometry of the wake is assumed to be invariant with 
time and taken to be the same as the steady-flow relaxed 
wake corresponding to the circumferentially averaged 
inflow [6]. The dipole strength A<j>(r,0,t) in the wake, is 
convected along the assumed wake model with angular 
speed w, in order to ensure that the pressure jump in 
the wake is equal to zero, i.e., 

A<j>{r,6,t)   =   A4>T\r,t- 
r(r) 

t > 
e - oT(r) 

A<t>(r,0,t)   =   Acf>s{r);t< ^ (5) 

where r,6 are the cylindrical coordinates of the wake 
surface, Sw, and 9j(r) is the 6 coordinate of the pro- 
peller blade trailing edge at radius r. A<j>s(r) is the 
steady flow potential jump in the wake when the pro- 
peller is subject to the circumferentially averaged in- 
flow. For t < 0 we assume that the propeller is subject 
to the circumferentially averaged inflow. The unsteady 
inflow is "turned on" at t = 0. 

4Another name for the non-cavitaiing part. 

5A special numerical treatment is required to determine the 
source strength at the wetted part of the blade in the vicinity of 
the moving cavity trailing edge, as will be discussed in Section 
3.2 

6The geometry of the trailing wake in the case of supercavita- 
tion will be discussed in Section 2.2. 
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The value of the dipole strength, A^x(r,i), at the 
trailing edge of the blade at time t, will be given by 

A^T(r,i) = #(r,0 - <[>-T{r,t) = T(r,t) (6) 

where <^J(r, t) and 4>T{r,t) are the values of the poten- 
tial at the upper (suction side) and lower (pressure side) 
blade trailing edge, respectively, at time t. The differ- 
ence in those potentials is also equal to the circulation 
T at time t around the blade section at radius r. The 
condition (6) is equivalent to requiring the shed vortic- 
ity from the blade trailing edge to be proportional to 
the time rate of change of the circulation around the 
blade. 

2.2    The Dynamic Boundary Condition 

The dynamic boundary condition (DBC) requires that 
the pressure everywhere inside and on the cavity be 
constant and equal to the known cavity pressure, pc. 
Bernoulli's equation with respect to the propeller fixed 

system becomes: 

where p is the density of the fluid and r is the distance 
from the axis of rotation. Here Uw is the total "effec- 
tive" wake velocity and qt is the total cavity velocity. 
p0 is the pressure far upstream on the shaft axis; g is 
the acceleration of gravity and y$ is the ship fixed co- 
ordinate, shown in Figure 1, defined as negative in the 

direction of gravity. After some manipulation, and us- 
ing the definition of the cavitation number: 

_       Po.-Pc ,o\ 
a" - (p/2)n2D2' V ' 

where n = Lü/2TT and D are the propeller revolutions 
and diameter, respectively, the cavity velocity may be 
written 

|g,|2   =   nlD2[(l+an)[l-/(S)f-l 

+   \Uw\2+u2r2-2gys-2 
dt 

(9) 

The function / corresponds to a pressure recovery law 
in front of the trailing edge of the cavity along the arc 
s on the surface of each spanwise blade section. This 
pressure law is intended to simulate the real fluid effects 
at the end of the cavity. It is given from 

the arclength at the beginning of the transition zone 
where the pressure recovery law is applied. The extent 
of the transition zone is given in terms of the parame- 
ter A = ($L - ST)/SL- The parameters A (0 < A < 1) 
and v [u > 0) are arbitrary constants. The effect of 
these parameters on the cavity shape has been shown 
for hydrofoils in [14], and in the case of propellers in [4]. 

Due to the particulars of our algorithm, the cav- 
ity boundary is most naturally considered in two parts: 
the first being the portion which overlaps the propeller 
blade, and the second —which occurs in the case of su- 
percavitation — the portion which overlaps the blade 
wake surface. The application of the dynamic bound- 
ary condition on each of these parts will be considered 
separately. 

DBC on the Cavitating Part of the Blade 

In addition to the expression (9), the velocity qt may 
also be expressed in terms of the directional derivatives 
of the perturbation potential and the components of 
the inflow along the same curvilinear coordinates. The 
coordinate system7 on the cavity surface consists of 5 
(chordwise) and u (spanwise), as shown in Figure 2: 

qt = 

(f* + V.) [s - (a ■ v)v] + (% + Uv) [v-(s- v)s] 

Is x vll2 

+ £+"-'» (11) 

with s and v being the unit vectors corresponding to 
the coordinates s and v, respectively, and with n being 
the unit normal vector to the assumed cavity. U3, Uv, 
and Un are the s, v and n components of the relative 
inflow, U{n. 

If s, v and n were located on the correct cavity sur- 
face, and if the flow was steady, then the normal ve- 
locity, |* + Un: would vanish. However, this is not the 
case since the cavity surface is not known a priori and 
its location is approximated, as will be described in the 
next section. Nevertheless, in applying the dynamic 
boundary condition, the normal velocity is assumed to 
be vanishingly small8. Equations (9) and (11) may then 
be combined to form an equation which is quadratic in 
the unknown chordwise perturbation velocity, -^. Solv- 

ing this quadratic9, we can express |£ in terms of the 
cavitation number, the inflow velocity, and the unknown 
crossflow |^ and time derivative -57: 

M 
0 s < sj 

ST < S < SL 
(10) 

Here, s is the arclength of the blade section beneath 
the cavity measured from the cavity leading edge, SL 

is the arclength at the end of the cavity, and $T is 

7In general non-orthogonal. 
8This term could very easily be included in a iterative numer- 

ical scheme for determining the cavity shape. Its effect on the 
solution is expected to be insignificant though. 

9The root, which corresponds to cavity velocity vectors point- 
ing downstream is selected. 
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84 
ds 

-U,+ 
dt 
dv 

+ uv cos e 

+   sm< 19« |2- 
dv 

+ UV (12) 

with 6 being the angle between s and v, as shown in 
Figure 2, and where |g,| is given by equation (9). Equa- 
tion (12) is integrated once to form a Dirichlet boundary 
condition on <j>: 

3 

4>(s) = (j>(0) + /[right-hand-side of (I2)]ds (13) 

The integral on the right-hand-side of equation (13) is 
determined by trapezoidal quadrature. The lower limit 
of the integral corresponds to the cavity detachment 
point at each blade section, whose location is considered 
to be an independent parameter in the present work. A 
discussion on the location of the detachment point is 
offered in Section 6. The value of <f>(0) in equation (13) 
is unknown and is expressed via a cubic extrapolation 
in terms of the unknown potentials on the wetted panels 
on the same strip in front of the cavity. 

The dynamic boundary condition (13) is transcen- 
dental since <j> depends on both its spanwise and time 
derivatives. These terms are treated as knowns and 
are updated in an iterative time-stepping scheme which 
will be discussed later. The convergence of the cross- 
flow term |£ has been studied for the case of steady 
cavitating three dimensional hydrofoils and reported in 
[13]. To summarize the result, it was found that the 
global dependence of the solution on the crossflow term 
was small and only a single additional iteration was 
required for convergence. The convergence of the time- 
derivative, as well as its effect on the solution, will be 
discussed in Section 3.2. 

DBC in the Supercavitating Wake 

Equation (13) also applies on the upper or lower part 
of the supercavity. As already mentioned, though, the 
cavity surface is not known and has to be determined 
as part of the solution. In this work, however, we will 
apply our dynamic and kinematic boundary conditions 

on an approximate cavity surface, as shown in Figure 
3. This surface is defined as follows: 

• It coincides with the blade surface under the cav- 
ity in the cavitating part of the blade in front of 
the trailing edge.    We denote this surface with 

SCB(t) 

• In the case of supercavitating flow, the two sides of 
the supercavity behind the trailing edge coincide 
with the two sides of the zero thickness trailing 
wake sheet. We denote this surface with Scw(t). 

Figure 3: The approximate cavity surface on which the 
boundary conditions are applied. 

A justification for making this approximation as well 
as a measure of its effect on the cavity solution will be 
given in Appendix A and in Section 4. In this case, re- 
quiring the pressures on the upper and lower parts of the 
supercavity to be the same (since both have to be equal 
to the cavity pressure pe), is equivalent to the force-free 
wake condition, which has been enforced by satisfying 
the vorticity convection equation (5). In-other words, 
the supercavitating part of the wake, Scw{t), and the 

rest of the wake behind the cavity, Sw(t), can both be 
treated as one. As in the case of the fully wetted un- 
steady (or partially cavitating) flow, the potential jump 
at the trailing edge is determined by equation (6) and 
is convected downstream according to equation (5). 

Having treated the wake as mentioned, we need to 
satisfy a dynamic boundary condition only on one of 
two sides of the supercavity. In this case we choose the 
"upper" (suction) side of Sew- The dynamic bound- 
ary condition on the cavitating portion of the wake, 
Sew, may also be written as a Dirichlet condition on 
p. However, in this case we will assume that the coor- 
dinate 5 follows the streamlines and that the total cross 
flow velocity normal to s and in the plane of the wake is 
small compared to the mean velocity of the wake sheet 
at the same point. This assumption is justified from 
our experience with the cross flow in the case of par- 
tially cavitating flows, mentioned earlier. The dynamic 
boundary condition on Sew may thus be written 

V 
8s 

+ U, = \qt\. (14) 

Equation (14) may be integrated once to form a Dirich- 
let boundary condition on <j>+, similar to (13). The value 
of |gj is given, as in the case of the cavitating part of 
the blade, by equation (9). 
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On the other hand, equation (3) needs special treat- 
ment when p 6 Sew- This will render the following 
expression for <j>+, the perturbation potential on the 
"upper" side of the wake surface, as proven in [5]: 

4ir#(i) = 2irA$p(t) 

* I, 
-I, 

,(t) 
dG(p; q) 

dn„ 
G{p; q) dUi) 

dn„ 
dS 

Scw(t) 
qw{t)G(p; q)dS 

+ 
STV 

A^q,egJ)^ldS; 
on. 

pEScw{tll5) 

where SB = SWs{t) U SCs(t) is the surface of the blade, 
and STW = S\v(i) + Scw(t) is the total surface of the 

trailing wake, with the normal vector n, defined as pos- 
itive when pointing to the suction side. Note that Sg 
and STW do not depend on time. In addition, we have 
introduced the cavity source in the wake, qw, defined 
as: 

<lw{t) = 
(0 it) 

(16) 
dn dn 

The original Green's formula (3) for p £ SB will also be 
modified to: 

2Tviv{t) = 

-I, (,(()^-<W ,w 

JScw[t) 

+     j      &<p{rq,eq,t) 

dnq 

t)G{p;q)dS 

dGjp; q) 

dn,(t) 

dna 
dS 

dS;   p€SB    (17) 

Note that in both equations (15) and (17) the Green's 
functions G and J^- do not depend on time, since they 
are located on the approximate cavity surface, which is 
assumed to be fixed in time. The consequences of this 
will be better understood in Section 3. 

2.3     The Shape of the Cavity 

Since the dynamic boundary condition is applied on the 
portion of the flow boundary which is encompassed by 
the cavity, the other boundary condition (namely the 
kinematic condition) may be used to determine the po- 
sition of the actual cavity surface once the singularity 
strengths are known. In this section, the most use- 
ful form of the kinematic boundary condition (KBC) 
will be derived. As in the previous section, the cavity 
boundary will be divided into two zones which will be 
considered separately. 

i.:. 
K 

■m 

..•*•■ 

■ Camber, C 

_L± 

Figure 4: Definition of the cavity camber and height for 
a supercavitating section of the propeller blade. 

KBC on the Cavitating Part of the Blade 

The kinematic boundary condition on the cavity is the 
requirement that the velocity normal to the cavity is 

zero (in the case of steady flows) , or, more generally 
(also valid in the case of unsteady flows), the statement 
that the substantial derivative of the cavity surface is 
zero. Using the latter statement of the condition as a 
starting point, the kinematic boundary condition may 
be written 

D 
[n- h(s,v,t)) = 

Dt 

V)(n- h(s,v,t)) 0 (18) 

where n is the coordinate normal to the blade surface 
(with unit vector n) and h(s, u, t) is the thickness of the 
cavity normal to the blade at the point {s,v) at time t. 
Expressing the gradient in terms of the local directional 
derivatives 

V=i i '-If* L—i L±JhL + n 19 
||s x v\\2 on 

and performing the dot product with qt (as defined in 
(11)) and finally substituting the result in (18) yields 
the following partial differential equation for the cavity 
thickness: 

|^ [V. - cos Wv] + ^ [K - cos evt] 

sin^-f) (20) 

where 

OS 

ov 

K, 
dn 

+ Un. 
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KBC in the Supercavitating Wake 

The kinematic boundary condition on the cavity surface 
in the wake may be derived in a similar fashion: 

jj-t(n-g{s,v,t)) = 0 (21) 

where g(s, v, t) defines the cavity surface. The upper 
and lower cavity surfaces, g(s,v, i)*, may be written 

g(s, v, f )* = C{s, v, t) ± -hw{s, v, t), 

where C is the cavity camber in the wake and hw is the 
cavity thickness. The quantities g, C and hw are all 
taken along the normal to the trailing wake surface, as 
shown in Figure 4. 

Assuming again that the spanwise crossflow velocity 
is small, the kinematic boundary condition (21) can be 
shown to reduce to 

MO-^-19,1-^- (22) 
where qw is the cavity source distribution, defined by 
equation (16). Note that the cavity height on the blade 
and in the wake, both shown in Figure 4, are defined 
differently and so they are given separate symbols. 

Once all of the singularities on the blade and in 
the wake have been determined, the cavity thickness 
is found by solving the PDE (20) and the ODE (22). 
This is done by replacing the partial derivatives of h 
and hw with two-point backwards difference formulae 
and solving for h and hw recursively [13,5]. The treat- 
ment of the time derivatives will be described in Section 
3.2. 

2.4    The Cavity Planform 

The extent (planform) of the unsteady cavity is not 
known and has to be determined as a part of the so- 
lution. The cavity length at each radius r (defined as 
the arclength of the intersection of the cavity with a 
cylinder of radius r whose axis is the axis of rotation) 
is given by the function l(r,t). For given cavitation 
number ern, this function must be determined from the 
requirement: 

S{l(r,t),r;an) = 

h{l(r,t),r,t)  [or hw{l(r,t),r,t)] = 0 (23) 

Equation (23) requires the unsteady cavity shape to 
close at its trailing edge. A discussion on this require- 
ment will be given in Section 6. As will be described 
in the next section the cavity and wetted blade are dis- 
cretized into M spanwise strips. In that case, equation 
(23) becomes: 

6m(h(t),l2{t) /«(*);*») = 0;   m = l,...,M    (24) 

where 8m is the openness of the cavity trailing edge at 
the mih strip and lm is the value of l(r,t) at midspan 
of the same strip. At each time t the vector L = 
[l\,h, ■■■, IM]

T
 must be determined from satisfying the 

M nonlinear equations (24). The algorithm to do that 
is described in detail in [13]. We summarize it in the 
following steps: 

Step 1: Make a guess for the shape of the cavity trail- 
ing edge, L, (a very good guess is the cavity plan- 
form from the previous time step). 

Step 2: Invert equations (17) and (15) subject to the 
conditions (4), (13), (14) and (6). 

Step 3: Integrate equations (20) and (22) to determine 
the cavity openness, Sm, for all m at the assumed 
cavity trailing edge. 

Step 4: If 6m ^ 0 then update the cavity planform L 
by applying a Newton-Raphson (secant method) 
scheme on equations (24) and repeat Steps 1 to 4, 
until the openness of the cavity 6m = 0 for all m, 

within a prescribed tolerance STOL- 

The algorithm is also depicted in Figure 5 in the case of 
a two-dimensional and a rectangular hydrofoil, where 
the corresponding cavity openness is shown for sev- 
eral planform guesses, including the "correct" planform. 
The effect of the magnitude of STOL on the cavity plan- 
form is investigated in Appendix B. A discussion on 
the multiplicity of solutions for the cavity planform is 
offered in Appendix C. 

3    NUMERICAL IMPLEMEN- 
TATION 

The objective of the numerical analysis is to invert equa- 
tions (17) and (15) subject to the conditions (4), (13), 
(14) and (6). The numerical implementation is very 
similar to that for the cavitating flow around two and 
three dimensional hydrofoils [14,13,5] and will be de- 
scribed in detail in [4]. A summary of the numerical 
implementation is given next. 

The combined wetted blade and cavity surface is dis- 
cretized into TV panels in the chordwise and M panels in 
the spanwise direction, as shown in Figure 6. The trail- 
ing wake (and supercavity) is discretized into panels at 
constant angular intervals A9W = uiAt with At being 
the time step. The trailing wake panels are also shown 
in Figure 6. The blade and trailing wake discretization 
is identical to that in the case of fully wetted unsteady 
flows [16,8,15]. Therefore, the involved influence co- 
efficients are time independent and thus need only to 
be computed once. This is a consequence of the ap- 
proximation of the cavity surface, already mentioned in 
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Figure 5:   The algorithm for determining the cavity planform for fixed cavitation number. 

Section 2.2. The source or dipole distributions on each 
of these panels is approximated with constant strength 
distributions. The involved influence coefficients for the 
unit strength dipoles and sources are computed by uti- 
lizing the formulas in [21] and [8]. If we call: 

Nws   =   No. of wetted panels 

NCB   =   No. of cavitating panels on the blade 

New    =   No. of cavitating panels in the wake 

then among the discrete sources and dipoles we have 

• Nws known source strengths, via equation (4), 

• NCB known dipole strengths, via equation (13), 
and 

• New known dipole strengths, by integrating equa- 
tion (14). 

The unknown strengths of the 

• Nws dipoles on the wetted blade, 

• NCB sources on the cavitating blade, and 

• New cavity sources in the wake 

are determined by inverting the discretized form of equa- 
tions (17) and (15). The treatment of the unsteady po- 
tential jumps in the trailing wake is identical to that for 
fully wetted unsteady flows [8,15] and will also be de- 
scribed in detail in [4]. In summary, the potential jump 
in the wake is either known from previous time steps 
or from applying equation (6) or an unsteady pressure 
Kutta condition at the trailing edge of the blade. 

3.1     The Split Panel Technique 

As mentioned already the discretization for the unsteady 
cavitating propeller flow is identical to that for the un- 
steady fully wetted flow, i.e. fixed in time. To keep it 
this way, however, we would have to force the unsteady 
cavity to end at panel boundaries. Unfortunately, we 
found that approximating the cavity trailing edge with 
the closest panel boundaries in the chordwise direction, 
either produced uneven cavities in the spanwise direc- 
tion or more often was causing the process of deter- 
mining the cavity planform to diverge.  To circumvent 
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Discrete Cavity Planform  Foil & cavity giid 
 Discirtized cavity 
 Coiiti)iioua cavity 

Figure 6: Discretization of the propeller blade, the cav- 
ity and their trailing wakes; N = 12, M = 8, A6W = 6°. 

this problem we utilize the split panel technique, which 
was introduced in [13]. This technique is depicted in 
Figure 7. The panels whose midspan segment (defined 
as the segment connecting the midpoints of the span- 
wise panel sides) is intersected by the continuous cavity 
trailing edge line, are split into a "left" cavitating and 
"right" wetted panel, as shown in Figure 7. Ideally, we 
could treat these panels as two separate panels. This, 
however, would introduce an additional number of influ- 
ence coefficients, which would have to be computed at 
every iteration of determining the cavity planform and 
every time step. To avoid this, we treat the split panel 
as one. The values for the dipole and source strength 
on the split panel are taken as the weighted averages 
of the strengths of its "left" and its "right" part. For 
example the cavity source is defined as: 

d£ 
dn 

_   3nVL ^  dnK 

U. + IR 
(25) 

SPLIT L 

where lL and lR are the lengths of the "left" and "right" 
parts of the split panel at midspan of each strip, as 
shown in Figure 7. The value of §£fl is known, via 

equation (4), and the value for §£L is expressed, via 
extrapolation10, in terms of the unknown source strengths 
in front of the split panel. This is also depicted in Fig- 
ure 7. A similar technique is applied to determine the 
dipole strength of the split panel. In addition, since 
the dipole and source strengths on the split panels have 
been expressed in terms of unknowns at neighboring 
panels, we do not apply equation (17) or (15) at any of 
these panels. The split panel technique is described in 
more detail in [13] and will be described as applied to 

propellers in [4]. 

■.Jr\.u 

Figure 7: The split panel technique. 

3.2     Treatment of the Unsteady Terms 

The dynamic and kinematic boundary conditions, (13), 
(14), (20) and (22), include time derivatives of the po- 
tential and the cavity thickness.  The numerical treat- 

10The cavity source is assumed to behave like 1/y/x with x 
being the distance from the cavity trailing edge. 
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Figure 8: Cavity volume vs blade angle 0 for the trial 
one-bladed propeller at an = 3.5. Shown are the solu- 
tions from the first three revolutions, with the differ- 
ences due mostly to convergence of ■£. 

ment of these terms and their effect on the solution will 
be described in this section. 

As we mentioned in Section 2.2, the dynamic bound- 
ary condition (13) expresses <j> as a function of, among 
other parameters, the time derivative g*. At a given 

time step, |£ is assumed to be known and equal to its 
value computed after the solution was obtained when 
the propeller was at the same angular position dur- 
ing the previous rotation. The derivative is computed 
numerically by implementing a fourth-order-accurate 
backward finite difference scheme11. During the first 
propeller revolution, |^ is assumed to be zero. A bet- 
ter approximation for ~^, though, would be its value 
from the fully wetted flow and this will be implemented 
in the future. Therefore, the solution will take several 
revolutions to converge to the steady-state oscillatory 
solution. However, several revolutions are already nec- 
essary for the solution to converge, since, according to 
the time-marching algorithm, it takes one full revolu- 
tion for all of the blades to "see" the unsteady inflow 
and thus several revolutions for the solution to converge. 
The fact that the value of |£ lags by one revolution is 
not expected to slow the convergence of the overall so- 
lution. As an example, Figure 8 shows the time-history 
of the cavity volume for a one-bladed propeller oper- 
ating in a non-uniform inflow wake, both described in 
Section 4, for the first three revolutions. 

The implementation of the time derivatives of the 
cavity thickness ^ and 3h. the kinematic bound- 
ary conditions (20) and (22) are numerically straight- 
forward and will not be discussed in further detail here. 
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Figure 9: Cavity length vs wt for a NACA16006 2-D 
section at a = 4° and <r(t) = 1.2 + 0.2coswf. Shown are 
the quasi-steady and the fully unsteady cavity solution. 
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Figure 10: Cavity shapes from several time steps of the 
fully unsteady solution shown in the previous figure. 

These boundary conditions are used in the computation 
of the cavity thickness, which occurs after the solution 
at the current time step when the source strengths are 
known. In addition, these terms must also be included 
in determining the strength of a source panel which is 
wetted at the current time step, but which was cavi- 
tating during the previous time step. In other words, a 

"Various finite difference schemes have been investigated for 

the computation of the fully wetted unsteady pressure distribu- 
tion and the fourth-order scheme was chosen for reasons of ro- 

bustness [15]. 
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collapsing cavity has an additional source strength on 
the panels which lie between the trailing edge of the 
cavity from consecutive time steps. The magnitude of 

the total source will be given as 

d7t~    n   dt ■ 
(26) 

In order to understand the importance of the un- 
steady terms of the boundary conditions, an unsteady 
two-dimensional model of a partially cavitating hydro- 
foil is investigated, wherein the cavitation number is 
allowed to vary harmonically (<r{t) = <x0 + ascosu;i) 
while the inflow is steady and uniform and the wake 
is quasi-steady (no shed vorticity, but the wake dipole 
strength changes each time step). Although this model 
is not an accurate representation of the physical flow, 
it allows us to see the relative effects of the various un- 
steady terms on the global 2-D solution.  To this end, 
we have computed the time history of the cavity length 
on a NAGA16006 hydrofoil operating at an angle of at- 
tack of 4° and with a time-dependent cavitation number 
equal to a{t) = 1.2 + 0.2 cos w* at a reduced frequency 
0f £ _ ä  -  i.o.   Figure 9 shows the cavity length 
as a function of uit for one cycle for two different solu- 
tions. The first solution contains no history at all; the 
time derivatives of both the potential and the cavity 
thickness are zero. The second solution includes all the 
unsteady terms as well as the additional source terms 
during the collapse stage. Note that the curve from the 
fully unsteady solution is shifted to the right, i.e.  the 
growth stage lasts longer than the collapse stage, a well 
known characteristic of unsteady cavitation. 

Figure 10 shows cavity shapes from several time 
steps during the second cycle of the fully unsteady solu- 
tion discussed above. Of particular interest is the differ- 
ence between the cavity shapes at u>i = 90° and 270° for 
which the cavitation numbers are identical. The differ- 
ence between the shapes is clue entirely to the unsteady 

terms. 
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4    RESULTS AND VALIDATION -0.50 -0.30 -U.10 o.iü 0 30 

The numerics of the present method have been exten- 
sively validated when applied to two or three dimen- 
sional hydrofoils, and the results are reported in [14, 
13,5]. We next test the. numerics of our method when 
applied to propellers. We apply the method on a one- 
bladed propeller, whose the geometry characteristics are 
given in Appendix D. The propeller is operating at an 
advance ratio Js = Vs/{nD) = 0.8, with Vs being the 
ship speed, and a cavitation number an =2.7. We first 
run the propeller in uniform inflow and ignore the hy- 
drostatic terms [g = 0). In this case, the cavity shape 
is steady in time. The resulting cavity planforms and 
the cavity heights at one blade section are shown in Fig- 
ure 11 for different number of chordwise and spanwise 
panels. 

Figure 11: Convergence of the blade cavity planform 
with number of panels; predicted from the present 
method. The corresponding cavity shapes at r/R = 0.5 
are also shown. Uniform flow with Js = 0.8; <rn = 2.7. 
Cavity detachment is set at 2.45% of the local chord at 
all spanwise locations. 
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To validate the solution, we analyze the blade with 
the computed cavity added to its suction side, as one 
modified blade in fully wetted flow. In doing so we ap- 
ply a fully wetted boundary element method [19] by 
utilizing a panel arrangement which is adapted to the 
cavity trailing edge, which is known at this stage. The 
pressure distribution at rjR = 0.75 is shown in Fig- 
ure 12 together with the pressure distribution from the 
present method.   Note that the pressure distribution 
from the present method is constant over the cavity, 
as it should be, since the same formulation is utilized 
in computing the pressure as'in the dynamic boundary 
condition.  Most remarkable, though, is the agreement 
of that pressure to the one from the validation test. 
This good agreement indicates that the predicted cav- 
ity shape is a very good approximation to the cavity 
shape that would result from a completely non-linear 
theory, in which the "exact" cavity shape is determined 
in an iterative sense by repanelling the updated shapes, 
until convergence. This result supports the assumption 
we made in Section 2.2, where we applied the bound- 
ary conditions on the approximate cavity surface.  Fi- 
nally, the cavity planform from applying the present 
(PROPCAV) and other methods (PUF-3A), which have 
been mentioned in the introduction [18,10], are shown 

in Figure 13.   Note that the original PUF-3A (linear) 
overpredicts the cavity extent in both the spanwise and 
chordwise directions, especially at the inner propeller 
radii.  On the other hand, the modified PUF-3A (with 
the leading edge corrections) seems to underpredict the 
cavity planform, even though it produces more "accu- 
rate" cavity shapes than the original. 

We then apply our method for the same propeller in 
a non-uniform axial wake inflow, U\vx, of which the cir- 
cumferential variation is given in Figure 14. In this case 
the hydrostatic terms are turned on (Fr — n2D/g = 
10.45). The advance coefficient and the cavitation num- 
ber are kept the same as in the uniform inflow case. The 
computing time on a DEC9000 computer for N = 80, 
M = 20 and A6w = 6°, was approximately three hours 
per revolution. The convergence of the cavity volume 
with the size of the time step is shown in Figure 15. 
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Figure 12: Chordwise pressure distributions on the 
cavitating blade at r/R = 0.75. Uniform flow with 
Js = 0.8; an = 3.5. The pressure coefficient is defined 
as Cp = (p — p0)/(p/2)/Vg, with Vs being the ship 
speed. 
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Figure 13: Cavity planforms predicted from PUF-3A 
(with and without the leading edge correction) and 
the present method (PROPCAV). Uniform inflow with 
Js = 0.8; ffn = 3.5. 
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Figure 14: The wake inflow as a function of 6s; 0s = 0 
corresponds to the "12 o'clock" position. The same at 
all propeller radii. 
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Figure 15: Cavity volume as function of blade an- 
gle: predicted from present method (PROPCAV). Non- 
uniform flow with J.s = 0.8; crn = 3.5. Convergence 
with time step A9\v = wAi. 

5    CONCLUSIONS 

A potential-based boundary element method has been 
developed for the analysis of unsteady propeller sheet 
cavitation. The method is able to treat, in a compu- 
tationally efficient and robust way, arbitrary unsteady 
cavity shapes on a blade discretization which is fixed 

in time. Applying the cavity boundary conditions on 
the blade surface under the cavity rather than on the 
"exact" cavity surface, is shown (here and in the cited 
references) to have little effect on the predicted cav- 
ity extent and volume. The non-linear character of the 
solution is thus preserved, while substantial savings in 
the computing time are accomplished. The method, im- 
plemented in the computer code PROPCAV, provides 
the user with more accurate blade cavity shapes than a 
previous method (PUF-3A) which was based on a lin- 
earized lifting surface formulation. 

6 FUTURE WORK 

As mentioned in Section 2.2, the location of the de- 
tachment point at each blade section is an arbitrary 

parameter. These points could be determined from fur- 
ther knowledge of the viscous flow in front of the cav- 
ity. In addition, we have made tiie assumption that the 
unsteady cavity closes at its trailing edge. In reality, 
though, there is a trailing wake behind the cavity of 
some finite thickness. The detachment point as well as 
the open wake behind the cavity could be determined 
from coupling the method described in the present pa- 
per with a boundary layer solver. Systematic boandary 
layer LDV measurements in front and behind unsteady 
cavities in two and three dimensions would be enlight- 
ening in learning more about the physics of the flow. 
Viscous flow numerical simulations of cavity flows in 
two-dimensions would also be useful at this stage [17]. 
In addition to the boundary layer coupling, there is also 
a need for the numerical treatment of the tip vortex 
cavitation, especially at off-design conditions. We have 
already faced this problem when applying our method 
to some propeller geometries, in which the predicted 
cavity shapes and planforms do not close and seem to 
need to be matched by a local tip vortex solution. In 
addition, the present method could readily be extended 
to treat the effects of a hub and/or a duct as well as the 
effects of another component. 
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Figure 16: Cavity shapes, predicted from linear (with 
and without the leading edge correction) and from the 
present non-linear method (with and without cavity re- 
panelling). NACA-16 hydrofoil at a = 4° (top), d = 8° 
(bottom), with thickness to chord ratio 6% (left) and 
9% (right). The ratio aja is kept constant and equal 
to 0.055. 

A    Non-linear Character of So- 
lution 

Effect of Re-panelling on Solution 

As mentioned several times in the main body of this pa- 
per, the dynamic and kinematic boundary conditions 
on the cavity are applied on an approximate surface. 
We have investigated the effect of this approximation 
on the solution in two dimensions, for partially and su- 
percavitating flows, where we iterated to determine the 
"exact" cavity surface on which both conditions are met 
[14,13,5]. In conclusion we found that: 

• For fixed cavity length, the cavitation number and 
cavity shape converge quickly (often in two iter- 
ations) to the "exact" nonlinear result. This is 
much faster than a previously developed surface 
vorticity-based boundary element method [28]. Even 
the first iteration is very close to the exact result 
[14]. 

• For fixed cavitation number, the first iteration 
(panels on the hydrofoil) cavity is also close to 
the "exact", as reported in [13]. This may also be 
seen in Figure 16, in which the cavity shapes are 

t/c=0.05 tfc-0.09 

Figure 17: Non-linear effect of blade thickness on cav- 
ity solution. Cavity planforms and shapes at midchord, 
predicted by the present method, are shown. Rectan- 
gular hydrofoils, a = 5°, A = 5, t/c = 0.05,0.09 (span 
and chord are not in scale). 
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shown for two hydrofoil sections at two angles of 
attack, as predicted from linear theory, with and 
without the leading edge correction, and from the 
present method without (first iteration) and with 
(converged solution) re-panelling. In the same fig- 
ure, also note the substantial improvement on the 

linear theory, when the leading edge corrections 
are included. 

In addition, we have validated the cavity solution re- 
sulting from the present method when applied to two 
and three dimensional hydrofoils. To accomplish that, 
we add the computed cavity heights normal to the hy- 
drofoil suction side to produce a new hydrofoil, which 
we then analyze in fully wetted flow. In this case we 
locate the panels on the computed cavity surface. The 
resulting pressure distribution on the new foil has been 
found to be nearly constant, equal to the desired cav- 
itation number, within acceptable accuracy. This is a 
strong indication that the "tested" cavity shape pro- 
vides a very good approximation of the "exact" cavity 
surface. This validation test has also been applied in 
the case of the propeller, as described in Section 4. 

Non-linear Dependence of Solution on 
Blade Thickness 
The present method has also been found to manifest 
the correct non-linear effect of blade thickness on the 
shape of the cavity. This is shown in Figure 17 where 
the cavity planforms and shapes at midspan are shown 
for two rectangular hydrofoils at two cavitation num- 
bers. Both hydrofoils have an aspect ratio A — 5, zero 
camber and a NACA65a thickness section of which the 
maximum thickness is varying elliptically to zero in the 
spanwise direction. They are both at an angle of at- 
tack a - 5°. The first has a thickness to chord ratio 
at midspan t/c = 5%, and the second with t/c = 9%. 
Note that the present method predicts a smaller cavity 
(in extent and volume) for the thicker foil at the same 
cavitation number. The predicted effect of foil thick- 
ness on the cavity size appears to be less pronounced in 
the case of supercavities. 

B    Effect of STOL on Solution 

As mentioned in Section 2.4 the "correct" cavity plan- 
form for a given cavitation number is determined via 

an iterative process until the thickness at the trailing 
edge of the cavity vanishes at all spanwise locations 
within some prescribed tolerance STOL- The effect of 
that tolerance (made non-dimensional on the chord) on 
the predicted cavity planform is .shown in Figure 18 for 
a rectangular hydrofoil of t/c = 0.05. The planform No. 
1 (which also happens to be the converged planform for 
fijoi = 0.1) has been used as the initial guess for all 

tolerance 

Figure 18: Cavity planforms, predicted from the present 
method, for several values of 5TOL- The corresponding 
cavity and foil sections at midspan are shown at the 
top. Same hydrofoil as in Figure 17, a = 5°, t/c = 0.05, 
a = 0.8 (span and chord are not in scale) 

these cases. The results shown in Figure 18 suggest 
that at least a tolerance 5ToL - 0-001 must be utilized. 

C    Multiplicity of Solutions for 
Hydrofoils 

Equations (24) may accept more than one solution, i.e 
cavity planform, for some values of cavitation number. 
For example, this is a very well known fact in two di- 
mensions, where for some cavitation numbers there are 
three solutions (two partial cavities and one supercav- 
ity). Our method has also been found to predict multi- 
ple solutions in three dimensions [5], as can be seen in 
Figure 19. Note that for a = .74, .76, .78 we predict two 
cavity planforms, one partial cavity and one mixed cav- 
ity (supercavity at midspan). The partial cavities were 
produced when the initial guess was a partial cavity 
and the supercavities when the initial guess was a su- 
percavity. The cavity length at midchord vs a/a is also 
shown in Figure 20, together with the corresponding 
curves for two other rectangular hydrofoils with aspect 
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ratios A = 2 and A = 10. Notice the striking simi- 
larity of these curves to the well known characteristic 
curve for a two dimensional cavitating flat plate (not 
shown in the Figure), especially for the larger aspect 
ratio hydrofoils. Further research and/or experiments 
are required in determining the stability and physical 
existence of the multiple solutions. The reader is also 
referred to [13] and [5] for more discussion on this issue. 
The multiplicity of solutions for propeller blades will be 

addressed in the future [4]. 

cavuation 
number 
! - 1.1 
2-0.9 
1-0.S 
4 - .75 
5 - .76 
6-.74 
7-0.8 
8-.7S 
9-.76 
10-.74 
11 -0.7 
12-0.5 
13-0.3 

-0.1      -0.05 0.05       0.1 0.2       0.25       0.3       0.35       0.4 

r/R     P/D      rakc/D     skcw{dcg.) IJD /»«/'<: JD 

0.2 1.332 0. 0. 0.174 0.0351 0.0651 

0.25 1.33S 0. 0. 0.202 0.0369 0.0594 

0.3 1.345 0. 0. 0.229 0.0368 0.0537 

0.4 1.358 0. 0. 0.275 0.0348 0.0441 

0.5 1.350 0. 0. 0.312 0.0307 0.0360 

0.6 1.310 0. 0. 0.337 0.0245 0.0286 

0.7 1.250 0. 0. 0.347 0.0191 0.0219 

o.e 1.150 0. 0. 0.334 0.0148 0.0157 

0.9 0.950 0. 0. 0.280 0.0123 0.0101 

0.95 0.750 0. 0. 0.210 0.0128 0.0072 

1.0 0.500 0. 0. 0. 0.0120 0.0044 

Table 1: The trial propeller geometry. 

D     Geometry of the Propeller 

The propeller geometry is given on Table 1. R is the 
radius and D the diameter of the propeller. P is the 
pitch of the propeller helix, lc is the blade chord at r, 
fmax is the maximum camber and, rmax the maximum 
thickness. The camber distribution is a NACA a = 
0.8 meanline and the thickness distribution a modified 
NACA 66 form [3]. 

Figure 19: Cavity planforms, predicted from the present 
method, for several cavitation numbers. Rectangular 
hydrofoil, t/c - 0.05, a = 5°, aspect ratio A = 5. 

ecvfty length ot v>* m!d-«hort 

0.03        0.1 ^ 0.13        0.2        0.23        OJ        0JS        OX       0.43        0J 

Figure 20: Effect of aspect ratio on multiplicity of so- 
lutions for rectangular hydrofoils {t/c = 0.05, a = 5°). 
The cavity length at midspan is shown vs a/a for three 

aspect ratios A = 2,5,10. 
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DISCUSSION 

Chang-Sup Lee 
Chungnam National University, Korea 

The authors should be praised for their fine piece of work. I feel 
they are keeping a good pace to lead researchers in propeller hy- 
drodynamics. I would like to ask a question in connection with 
the cavity planform shown in Fig. 17. We observe that the 
cavity length at the tip is zero; or in other words the tip region 
is not cavitating contrary to a usual observation in cavitation 
tunnel experiments. We, at Chungnam National University, are 
working on the same problem, using almost same procedure as 
described in the present paper. Our results always showed a 
tendency to supercavitate at the tip. We feel that the behav- 
ior may be associated strongly with the crossflow component, 
or the spanwise velocity component. We wish to hear how the 
authors treated the flow in the tip region. Did you make any 
approximation to compute velocity in the tip region? And also 
we would like to hear whether there is any effort to resolve the 
tip flow or tip vortex cavitation. Again we congratulate the 
authors for their excellent achievement. 

AUTHORS' REPLY 

We would like to thank Dr. Lee for his kind comments and for 
his interest in the presented work. He asks about the cavity 
planform shown in Figure 17. For the (rectangular planform) 
foil and conditions shown in Figure 17, the method predicted a 
cavity shape whose length reduced to zero near the tip. We have 
done extensive validation of similar results, including "pressure 
validation", mentioned in section 4. In addition, we have also 
made some water tunnel observations of a similar wing — one 
which is shaped like the keel of a sailboat —and found that the 
sheet cavity did taper to zero near the tip. A cavitating tip 
vortex, separate from the sheet cavity, was also observed. We 
can imagine that the tip vortex and sheet cavity may in other 
conditions be connected, which may explain the observations 
which Dr. Lee refers to. 

For elliptic planform foils (or any foil whose chord length tapers 
to zero at the tip) the predicted planforms do tend to super- 
cavitate at the tip. An example of this is shown in Figure 21 
(taken from [5]) where the planform is predicted to increase near 
the tip. Perhaps it is this type of supercavitation to which Dr. 
Lee refers. In addition, for rectangular foils at higher angles of 
attack or lower cavitation numbers, we also predict supercavi- 
tation throughout the span, but without the increase in cavity 
length near the tip seen in Figure 21. Regarding the crossflow 
term in the dynamic boundary condition, no approximation has 
been made; the crossflow has been included in an iterative sense. 
In any case, as shown in [4], the crossflow terms have little effect 
on the predicted cavity shapes. 

Dr. Lee also asks about our plans for incorporating a model 
for tip vortex cavitation. We have made preliminary plans to 
couple the current solution with an inner tip vortex solution in 
the vicinity of the blade tip. However, details of this method 

have yet to be developed. 

Figure 21: Predicted cavity planform for an elliptic hydrofoil, 
showing large cavity lengths near the tip.i/c = 0,04, a/a = 
0.327, a = 3". The span to maximum chord ratio is 5.9. (Taken 
from [5]) 

DISCUSSION 

C. Brennen 
California Institute of Technology, USA 

I applaud the authors' effort to construct analytical methods 
to analyze sheet cavitation on a propeller. I am however con- 
cerned that their methods are not capable of tackling the most 
dramatic phenomenon associated with unsteady sheet cavita- 
tion, namely the detachment of the sheet and the production of 
a cavitation cloud whose subsequent collapse is a very violent 
phenomenon. While I recognize that the authors do not claim 
to address this phenomenon, nevertheless it raises the question 
of the conditions governing free streamline separation at the 
leading edge (see Furuya, JFM, 1975), a critical issue which, 
in steady flows, determines whether or not a sheet cavity will 
form. I am curious to know whether the authors are considering 
this important issue of cavity separation at the leading edge in 
order to broaden the applicability of their methodology. 

AUTHORS' REPLY 

We would like to thank Dr. Brennen for his constructive com- 
ments. He first comments on the inability of our method to 
treat the important phenomenon of cloud cavitation and the 
apparent neglect of the importance of the cavity detachment 
point. As he recognizes, in the present work our objective was 
to develop a robust and efficient method for the prediction of 
sheet cavitation on propellers which operate in a nonuniform 
ship wake. This type of cavitation is commonly observed in the 
case of propellers operating close to design conditions. The kind 
of "violent" cavitation he refers to tends to be more common 
in situations where the geometry (foil) is pitching and the flow 
is stationary as opposed to our applications where the flow is 
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non-stationary and the geometry (propeller) is stationary. In 
several propeller applications (especially at design conditions) 
a time dependent sheet cavity appears to occur throughout the 
full propeller revolution. By using the panel method and by 
applying the three dimensional nonlinear boundary conditions, 
we are confident that we can obtain the correct inviscid solution 
even for extreme propeller geometries. However, we acknowl- 
edge that the location of the cavity detachment plays a very im- 
portant role in determining the global flow, including the shape 
of the sheet cavity. As we mentioned in section 6, we plan to 
employ an interactive boundary layer analysis in front of and 
behind the cavity. Using a detachment criterion similar the one 
suggested by Franc and Michel (JFM, 1985), the dependence of 
the detachment point on viscosity will be captured. Work on 
implementing this for two dimensional flows has already begun. 

DISCUSSION 

William B. Morgan 
David Taylor Model Basin, USA 

It seems that one of the principal problems with this theory is 
determining the cavity detachment point. Can the authors give 
any insight to how to estimate this detachment point for an ar- 
bitrary shape? I am interested in some of the new sections being 
developed for propellers. Another question concerns cavities of 
0.7 to 1.0 chord length. Does your theory show an instability 
in this area as observed in experiments? 

AUTHORS' REPLY 

For propellers operating at off-design conditions, cloud cavita- 
tion is known to have a large effect on the induced vibrations, 
radiated noise, and surface erosion. A further coupling of the 
present method with a bubble or cloud cavity model deserves 
consideration, especially as hardware and software advances 
yield faster run times and permit the use of more complex codes. 
However, the phenomenon is very complex and adequate mod- 
eling of the physics may be outside the scope of potential flow 
theory, even when the viscous boundary layer is accounted for. 

DISCUSSION 

Tetsuji Hoshino 
Mitsubishi Heavy Industries, Japan 

I would like to congratulate the authors on developing the 
very sophisticated theory of unsteady propeller cavitation. I 
would like to ask one question. The calculations shown here 
look like that the cavity always appears from the leading edge 
of the blade. The pressure at the leading edge would be always 
lower than the vapour pressure in the lifting surface theory but 
not always lower in the panel method. Therefore, you should 
determine the starting point of the cavity by the pressure con- 
dition that the pressure on the blade becomes lower than the 
vapor of the water. 

AUTHORS' REPLY 

We want to thank Dr. Hoshino for his comments. He addresses 
the issue of cavity detachment, noting that our detachment 
points should coincide with the minimum pressure points from 
the fully wetted flow. It is true that the minimum pressure 
point is always at the leading edge in linearized hydrofoil the- 
ory. However, when the leading edge corrections are included 
[11], the minimum pressure point is not at the leading edge any 
longer. As mentioned in the previous discussion, we recognize 
the importance of the detachment point. It has been shown 
that the actual detachment point depends strongly on the na- 
ture of the boundary layer near the blade leading edge. Our 
ultimate goal is to develop the detachment criterion mentioned 
above, thereby incorporating the effect of viscosity. Our present 
goal, however, was to numerically validate the inviscid result for 
given locations of detachment points. 

We thank Dr. Morgan for his comments. He first asks about the 
cavity detachment. We hope that we have answered his question 
in the previous discussions. He also asks whether the so-called 
"three-quarter chord instability", which has been observed in 
experiments, has been predicted by our theory. In two dimen- 
sional flows, there is an observed instability of cavities which 
have length greater than roughly three quarters of the chord. 
In analysis, this instability is manifested by the occurrence of 
multiple solutions. In other words, for a given cavitation num- 
ber there correspond more than one cavity length. Our theory 
also predicts multiple solutions for two dimensional foils and for 
high aspect ratio three dimensional foils (see Appendix C of the 
paper). However, our method has not predicted multiple solu- 
tions for propellers. This is in agreement with the fact that no 
corresponding instability has been observed for propeller flows. 

DISCUSSION 

K. Nakatake 
Kyushu University, Japan 

I congratulate your completion of the method for this difficult 
problem. 

1. Is Uw equal to Uw ? 

2. You wrote Uw (effective wake) includes the interaction 
between the vorticity of the inflow and the vorticity due 
to the propeller. Do you mean that the propeller creates 
vorticity flow in front of the propeller? How could you 
obtain? 

AUTHORS' REPLY 

We thank Dr. Nakatake for his comments. He asks if Uw is the 
same as Um. In fact, the use of Uw in equation (7) is incorrect; 
it should say Uw ■ He also seeks a clarification of our defini- 
tion of the effective wake, which the symbol Uw represents. We 
say that the effective wake includes the interaction between the 
vorticity in the inflow in the absence of the propeller (the nom- 
inal wake) and the vorticity due to the propeller (distributed 
on the propeller blades and their wakes). This interaction does 
not create vorticity in front of the propeller. It redistributes it 
though and as a result changes the flow field seen by the pro- 
peller. 
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DISCUSSION 

Chen-Wen Jiang 
David Taylor Model Basin, USA 

It will be valuable to see the improvement of current approach 
compared with your lifting surface theory. The propeller used 
in Ref. [10] could be used for this purpose. There are two 
questions regarding this paper: 

1. How do you treat the boundary condition at the cav- 
ity/propeller surface junction area? 

2. Our experience indicates that the wake alignment is im- 
portant to the unsteady pressure condition. I expect it 
is critical in the unsteady pressure calculation. Probably 
the influence of wake alignment is more important than 
the items mentioned in "future work" section. What is 
your opinion on this? 

AUTHORS' REPLY 

We thank Dr. Jiang for his comments. One comparison of 
the present method to the lifting surface method is given for 
a no-skew propeller in Figure 13. Another comparison may be 
seen in Figure 22. In these comparisons it can be seen that 
the lifting surface method (PUF-3A) predicts cavities which 
are within reasonable bounds to those predicted by the present 
panel method (PROPCAV) only when the leading edge correc- 
tions are included. We have also carried a comparison for the 
high-skew AO-177 propeller used in Ref. [10]. In that case 
we have found that the cavity planforms compare well to those 
from lifting surface theory (with leading egde corrections) at 
inner radii but that the panel method predicts shorter super- 
cavities than the lifting surface method at the outer radii. We 
suspect that in this case the results from the lifting surface 
method need more panels in the spanwise direction. We plan 
to make a more thorough comparison between the two methods 
in the future. 

Dr. Jiang's question on the treatment of the cavity/propeller 
junction is addressed in Section 3.1 and in more detail in the 
cited references in the same section. Finally, his question on 
wake alignment. Wake alignment would affect the cavity solu- 
tion in a similar way wake alignment affects the loading on the 
blade in fully wetted flow. This effect, however, has been found 
to be minimal at design conditions. 

PP.OPCAV 10*20 2nd Revolution 
PUP-3A 1.«.correction! 
PUP-3A llno.r  (NX-40  MXBBV-7) 

-200       -100 0 100 
Blade Angle 

200 

Figure 22: Cavity volume histories predicted by PUF-3A (with 
and without the leading edge correction) and the present method 
(PROPCAV) on the test propeller at Js - 0.8 and a = 2.7 in 
nonuniform flow. 

DISCUSSION 

H. C. Raven 
MARIN, The Netherlands 

I first want to congratulate the authors with completing this 3- 
D unsteady panel method for propeller cavitation. There may 
be discussion, though, on its being nonlinear. Because only 
the first iteration is carried out, the cavity conditions are ap- 
plied on the foil surface instead of on the cavity. As a result, 
terms of first order in the cavity thickness are missing in both 
the kinematic and the dynamic boundary conditions. Incor- 
porating these "transfer terms" leads to a linearized consistent 
formulation recently proposed by Buist and Raven [Ref]. In 
that paper it was shown that the linearized method gives re- 
sults quite close to that of nonlinear method. The additional 
transfer terms improve the agreement. Your results do show 
that incorporating the fully wetted flow without approximation 
already yields a satisfactory method, but one should be aware 
of its leading order inconsistency. Can you comment on this? 

[Ref] J. Buist, H.C. Raven "A consistently linearized approach 
for the calculation of partial sheet cavitation", ASME cavita- 
tion Forum, 1991. 

AUTHORS' REPLY 

We thank Dr. Raven for his comments. The presented method 
has been formulated as an iterative method (this is more clear in 
[14] and [13]) in which the cavity shape is updated by an addi- 
tional cavity height which is taken normal to the cavity surface 
from the previous iteration. The first iteration cavity is taken to 
coincide with the foil surface underneath it. It has been found 
(see [14]) that the cavity shape from the first iteration is very 
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close to the final. So it has been decided to stop the iterative 
process after the first iteration, especially when we applied the 
method to the unsteady cavitating flow around propellers. Dr. 
Raven's formulation (in his Ref. with Buist) treats the cavity 
solution as a linear perturbation to the fully wetted flow. We 
do not do that. Our problem is formulated as a perturbation to 
the inflow instead. In our formulation there is no assumption 
about the magnitude of the perturbation potential <f>. In the 
next lines a proof is given that our first iteration cavity solution 
is indeed a consistently linearized formulation with respect to 
the cavity thickness h. We will limit ourselves in two dimen- 
sions: 

Consider a 2-D hydrofoil with s being its arclength, measured 
from the leading edge, with n and a being the normal and 
tangent to the foil unit vectors, respectively. Call qn and q, the 
components of the total velocity vector, q, normal and tangent 
to the foil, respectively, resulting from the first iteration cavity 
solution. These velocities are thus evaluated on the foil surface. 
The velocity vector, qh, on the cavity surface (of height h(s)) 
may be found from the following expansion: 

g^^q + hh + Oih1) (1) 
an 

The normal vector, nh, on the cavity surface is given [14]: 

n" = 7i - ^s + 0(h2) (2) 
as 

Making use of the equations: 

dgn    _    _£n_Ö£i ... 
dn R      ds l ' 

an R      ds 

with R being the radius of curvature of the hydrofoil, it can 
proven that: 

9*-»* = 9n-?.g + 0(/.J), (5) 

Omitting second order terms in equation (5) renders our kine- 
matic boundary condition which requires: 

*n-95£ = 0 (6) 

Note from equation (6) that qn = 0(h). This has been used in 
deriving equation (5). 

Similarly it can proven for the dynamic boundary condition, 
that: 

q';=ql(l-h/R) + 0(k2) (7) 

Including the curvature term (—h/R) has a very small effect 
on the solution, because the curvature of hydrofoils is relatively 
small, except at the leading edge where, however, the height is 
small. 
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Numerical Simulation and Experimental Study of the 
Hydrodynamic Characteristics of a 

Hydrofoil-Strut-Pod Configuration with Inlets (I) 
L. Baiqi, Z. Dexiang, Y. Xiaozhong, H. Shan, C. Zhongyao 

'(China Ship Scientific Research Center, China) 

ABSTRACT 

Under the linearized water 
surface condition, a numerical method 
based on the doublet distribution for 
predicting hydrodynamic character- 
istics of a foil-strut-pod configura- 
tion is presented in this paper. The 
theoretical formula derived by the 
authors previously for the calcula- 
tion of induced velocity caused by a 
horseshoe vortex with arbitrary 
orientation beneath the water surface 
is applied. The computer executive 
time for calculating the complex 
exponential integral is obviously 
reduced by using a new method pro- 
posed. It is found that good 
agreement between calculated and 
experimental results can be achieved. 

In addition to the numerical 
approach, a new test set-up for 
experimentally studying the inte- 
grated hydrofoil waterjet propulsion 
system has been developed. The lift 
and drag of foil-strut-pod configura- 
tion with inlet flow and the net 
propulsive force produced by inte- 
grated hydrofoil waterjet propulsion 
system were obtained from the experi- 
ments. It has been shown that the 
performance of the test set-up is 
satisfactory, the effects of inlet 
velocity on lift and drag can not be 
neglected, and the net propulsive 
force is useful for predicting the 
speed of prototype craft. 

NOMENCLATURE 

E^z) 

cross-sectional area of inlet 
chord length of foil section 
pressure coefficient 
lift coefficient 
drag coefficient 
drag 
complex exponential integral 

F     Froude number based on chord c 
rc    (U//gc) 

g      acceleration of gravity 
G(p,q) velocity  potential  of  the 

Havelock-Kelvin source 
submergence depth of leading 
edge of foil 
relative depth of submergence 
(h/c) 
wave number (g/U2) 
lift 
length of pod in axial direc- 
tion 
chord length of strut 
number of horseshoe vortexes 
number  of  elements  on  body 
surface 
unit  vector  normal  to  body 
surface, pointing outward 
unit vector normal to ith ele- 
ment, pointing outward 
unit vector normal to wake 
surface, pointing to negative 
direction of y axis for verti- 
cal plane or negative direc- 
tion of z axis for other plane 

acting on body sur- 

>i 

w£ 

pressure 
face 
static pressure in undisturbed 
coming flow 
point in fluid domain 
point on body surface 
flowrate 
body surface 
jth element on body surface 
wake surface 
Äth horseshoe vortex strip 
representive area 
thrust  produced  by waterjet 
propulsion system 
net propulsive force of inte- 
grated hydrofoil waterjet pro- 
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u 
V. 
1 

V . 
-3 
V. 
_i 
V . 

A 

AR 

a 

Y(q) 

^w(q) 

Y(Qj) 

(q0) 

>(x,y,z 

pulsion system 
velocity of free stream 

mean velocity at inlet 
mean velocity at nozzle exit 

inlet velocity ratio (V /U) 

exit velocity ratio (V /U) 
longitudinal force measured 
by fore dynamometer 

longitudinal force measured 
by aft dynamometer 
vertical force measured by 
fore dynamometer 
vertical force measured by 
aft dynamometer 

aspect ratio of foil 

angle of attack of foil 
distribution   of   doublet 
strength on Sb 

distribution   of   doublet 
strength on Sw 

strength of the jth vortex 
lattice on Sb 
strength of the  Jlth horse- 
shoe vortex on S w 
fluid domain 

) induced velocity potential 

water density 
gradiant operator defined on 
Sb 

1  NUMERICAL SIMULATION OF 
THE HYDRODYNAMIC CHARAC- 
TERISTICS OF A HYDROFOIL- 
STRUT-POD CONFIGURATION 

INTRODUCTION 

There are many published papers 
dealing with numerical simulation of 
flow past a body in unbounded flow 
field, but few works have been 
focused on the flow problem of a 3-D 
lifting configuration beneath the 
water surface. When the lifting con- 
figuration, such as foil-strut-pod 
configuration of a hydrofoil craft, 
operate close to the water surface, 
the surface effects cannot be ignored. 
So it is desirable to develop a 
numerical method for predicting the 
hydrodynamic characteristics of a 3-D 
lifting configuration moving beneath 
the water surface. 

The numerical method based on 
doublet distribution presented in 
present paper was developed from the 
method in reference [1] and can be 
used to predict the pressure distri- 
bution and other hydrodynamic charac- 
teristics of a general 3-D lifting 
configuration under the linearized 
free surface condition. 

Because the doublet distribution 
with constant density is equivalent 

PART 

to the vortex lattice, so one of the 
key points of the problem is to derive 
the theoretical formula of induced 
velocity caused by a horseshoe vortex 
with arbitrary orientation beneath the 
water surface in uniform flow. The 
formula has been derived previously 
from the Havelock-Kelvin source by the 
authors [2] and provides a theoretical 
basis of numerical simulation. 

Another key point is how to 
reduce the computer executive time 
with satisfactory accuracy. For this 
effort a new method to calculate the 
complex exponential integral E^Cz) was 

presented in the study. It has been 
found that the computational time was 
obviously reduced, while good accuracy 
was achieved by using this new method. 

As a numerical example, the 
hydrodynamic characteristics of the 
aft foil-strut- pod configuration of 
hydrofoil craft PS30 were calculated, 
and the results showed good agreement 
with the experiment data. 

BASIC EQUATIONS 

We consider a lifting body in an 
inviscid, imcompressible, irrotational 
flow with a uniform velocity U far 
upstream. A Cartesian rectangular 
coordinate system 0-xyz is adopted, 
where x is parallel to the free stream 
direction, z-axis points upward, and 
the y-axis complies with right handed 
coordinate system, as shown in Fig. 1. 
The induced velocity potential caused 
by the body satisfies the following 
equations and conditions: 

V2<Kx,y,z) = 0,  (x,y,z)efi 

A + Ao,  z-0 3xJ   az 

3* 
3ii 

-U-n 

lim 4>,V<|)-0 
Z-*-~ co 

radiation condition and 
Kutta condition 

(1) 

(2) 

(3) 

(4) 

(5) 

There is trailing vortex sheet S^ 

extending from the trailing edge of 
body to infinity downstream. Across 
the sheet, the induced velocity poten- 
tial <j> is discontinuous, but its nor- 
mal derivative is continuous. 

According to the Green theorem, 
the solution satisfying (1), (2), (4) 
and the radiation condition can be 
expressed as 

♦ (p)-ff  Y^^f^SU 
jjp       on 
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+ ff y   (q)A^>dS(q)  (6) 
JJSW 

W    3nw 

Substituting (6) to (3), we obtain 

l) 
JJSb     3" 

+ ff     Y   Cq)l£iPlfLldsCq)]—ü-n   (7) 
JJc  W    3n 

The formula (7) is an essential 
control equation for solving the 
problem of uniform flow past the body 
by using the doublet distribution 
method. The doublet distribution can 
be derived from equation (7) and 
Kutta condition. 

Once the distribution of Y(I) 

and Yw(<l) 
are obtained, the 

distribution of the induced velocity 
on the St., the pressure distribution 

and the lift coefficient can be 
calculated by the following formulas: 

induced velocity on the body surface 

V<Kp) = 4vs   Y(P)+ ff     Y(q)v|^dS 2   bh JJC an 

♦JJ.V'O'fr'» (8) 

pressure  distribution  on  the  body 
surface 

C -P"Pro !  (U + V<t))-(U + V<t>)       (9) 
P ^PU2 U2 

hydrodynamic lift coefficient 

L JJ  (Pn-k")dSApU2S  (10) 
L i;PU2S  JJS 

C can also be calculated by the vor- 

tex distribution on S^ according to 

the Kutta-Joukowski theorem. 

NUMERICAL METHOD 

In order to obtain an approxi- 
mate solution for equation (7), the 
body surface S, is approximated by a 

number of small quadrilateral ele- 
ments, and the wake surface S  is di- w 
vided into a series of semi-infinite 
strips correspondingly. The quadri- 
lateral elements and strips are rep- 
laced by the doublet distribution. 
The centroid of each element is taken 
as the control point satisfying 
boundary condition. Accordingly, the 

boundary integral equation (7) is 
transformed into a set of linear equa- 
tions 

n. 
l 

N 
[ Z,Y(q 
J = l 

+ z Y (q„)v JJ. 

3G(p,,q) 

3n 
-dS(q) 

3G(P-i ,q) 
 i dS(q)]=-U-n. 

w£ 

i=l,2, 

3n w 

,N (11) 

In order to solve the set of 
equations (11), the Kutta condition 
must be added which requires no con- 
centrated vortex at trailing edge, 
i.e. 

Yw£ Y£k YJU* 
£=1,2,. ,M (12) 

where the Y. . and v„i  denote the vor- 
'Al     'lln 

tex strength of two sides at trailing 
edge of the body respectively, y . de- 

notes the strength of I th horseshoe 
vortex. 

The key point to solve the set of 
equations (11) is the calculation of 
influence coefficients 

'JJS 

3G(p,,q) 
-dS(q) and 

3G(pi,q) 

,    3n 
-dS(q) 

derive the theo- 
induced velocity 

So it is needed to 
retical formulas of 
potential caused by vortex lattice and 
horseshoe vortex with arbitrary orien- 
tation beneath the water surface in 
uniform flow. As fundamental solutions, 
they are useful for solving the wave- 
making problem caused by a lifting 
configuration. The formulas have been 
derived by the authors previously 
under the linearized free surface con- 
dition. Details about these formulas 
can be found in reference [2]. 

Because the  calculation of  the 
complex exponential integral  E.(z)= 
|-°=   -t 

[e /t]dt, (|argz|<ir)is rather time- 

consuming and very frequent in solving 
wave-making problem,a numerical method 
has been employed to calculate the 
E . ( z ) for improving computational ef- 

ficiency. In this method the E,(z) was 

calculated directly from its asympto- 
tical expansion for |z|>20, for |z|-s20, 
the value of the E. (z) was calculated 

by interpolation from relevant dis- 
crete points at which the values of 
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E.(z) were computed previously. The 
numerical examples presented in this 
paper show that the numerical method 
is efficient and accurate. 

NUMERICAL EXAMPLES 

Unbounded Flow past a Sphere 

Fig.2 shows the numerical re- 
sults and analytical solution of the 
pressure distribution on the surface 
of a sphere in the unbounded uniform 
flow. It can be found that the 
numerical results coincide well with 
the analytical solution. 

Unbounded Flow past a Foil of Finite 
Span 

lated. The contour and paneling of the 
configuration are illustrated in Fig. 
7, where the yaw angle is assumed to 
be zero. 

The configuration consists of a 
hydrofoil, two struts, two pods and 
two end-plats. Paneling of the confi- 
guration surface is performed in such 
a way that firstly, the configuration 
surface is divided into 14 regions in 
our case, secondly, each region is 
divided into a number of quadrilateral 
elements. The total number of elements 
on the configuration surface is 648. 

According to the symmetry and the 
Kutta condition (12), the set of equa- 
tions (11) can be transformed into the 
following form including the Kutta 
condition (12 ) : 

The flow past the foil with 
section NACA0012 and AR=10 was simu- 
lated. The calculated pressure dis- 
tribution on the foil surface at a = 
6.75° is shown in Fig.3 and Fig.4. 
The surface of the foil is divided 
into 320 quadrilateral elements with 
10 segments spanwise and 32 segments 
along the contour of foil section. 
The computed results are compared 
with the measured ones, and good 
agreement has been achieved. 

Flow past a Hydrofoil of Finite Span 
beneath the Water Surface 

The pressure distribution on the 
hydrofoil with section NACA16 series 
in uniform flow beneath the water 
surface was calculated. The aspect 
ratio AR and Froude number F are 

4.08 and 8.23 respectively. In compu- 
tation, the surface of the hydrofoil 
is divided into 340 quadrilateral 
elements with 10 segments spanwise 
and 34 segments along the contour of 
foil section. The computed results of 
pressure distributions on the 
hydrofoil surface for various rela- 
tive submergence depth h~ are shown in 
Fig. 5. It has been found that the 
water surface has much more effects 
on the upper side of the hydrofoil 
than on the lower side, it is in 
accord with the experience. The lift 
coefficients were also calculated and 
compared with experimental ones, as 
shown in Fig.6. The lift coefficients 
calculated by present method are in 
good agreement with the experimental 
data. 

Flow past a Hydrofoil-Strut-Pod Con- 
figuration 

As a main numerical example, the 
hydrodynamic characteristics of the 
aft hydrofoil-strut-pod configuration 
of hydrofoil craft PS30 were calcu- 
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where [B, .] is the influence 

cient matrix; 

coeffi- 

is the induced normal velo- 

city at Jlth control point in 
the ith region caused by the 
kth vortex lattice with unit 
strength in the jth region; 

y.. denotes the strength of the 

jth vortex lattice in the  ith 
_,. region; 
T. is the column vector composed 

(j-1.2,. tm±) ; of Y. . 

n. . denotes the unit normal vec- 

tor of the jth element in ith 
_,. region pointing outward; 
N. is the general column vector 
i        -   -► 
composed  of n_. _.   (j = l,2,..., 
m.). ij 

[B4 

Because the order of the matrix 
J is relatively large, it is time- 

consuming to solve the set of equa- 
tions (13) directly. In order to save 
the  computation time,  we calculate, 
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instead, the inverse matrix B on 

the main diagonal directly, and solve 
the set of equations (13) interative- 
ly. The numerical procedure is as 
follows: 

:d)_p-l 
i-1 

r —=B..[-u-N.-.xiBijr^ 

- I     B..?(0)] 
j-i+l u J 

(1) 

(17) 

?(p)=A(p)f(p)+CE_A(p))f(p-l) 
ill       ii 

p»2,  i-l,2,...,7       (18) 

where superscript p is the number of 
iteration; 

E is the unit matrix; 

^(0)(j=l,2 7) is the ini- 
J 

i 

tial values of r.; 

i-1 
=B. ,1' -U-N. l I   B. .T\ 

j = l U J 
(P) 

7     ■+ 
- z   B. .r. 
j=i+l u J 

(p-1) 

a 

(P). 

(P) 
il 

0 

0 

a(P) 
i2 

0 

im. 
l 

a (P) 
"ij 

is a relaxational factor. 

The iteration method mentioned above 
is so called controlled successive 
over relaxation method (CSOR), it is 
much better than the other known 
iterative methods. 

The numerical results are shown 
in Fig.8 to Fig.13. Fig. 8 and Fig.9 
show the lift coefficient depending 
on the relative submergence depth and 
angle of attack. The numerical and 
experimental data of lift coefficient 
at h=1.59 are shown in Table 1. The 
pressure distribution on some sec- 
tions of the configuration are shown 
in Fig.10 to Fig.13. It can be found 
that these numerical results are 
reasonable, although there are not 
experimental data to check the nu- 
murical results of pressure distribu- 
tion . 

Table 1  Comparison of numerical 
results with experimental 
data for lift coefficient 

a 2° 3° 4° 

CT  (calculation) 0.345 0.435 0.519 

CT  (experiment) Le 
0.347 0.422 0.500 

CT /C. 
Lc  Le 

0.994 1.03 1.038 

PART 2  EXPERIMENTAL STUDY OF 
INTEGRATED HYDROFOIL 
WATERJET PROPULSION 
SYSTEM 

INTRODUCTION 

The fore and aft hydrofoils of a 
waterjet propelled hydrofoil craft are 
usually arranged in canard type, in 
which over 65% of the craft weight is 
borne by the aft foil. The aft hydro- 
foil-strut-pod configuration should 
provide not only a lift enough to 
support most of craft weight but also 
one or two inlets for the waterjet 
propulsion system. The water inlet is 
generally imbeded in the pod and may 
be regarded as a part of the foil- 
strut-pod configuration. In operation, 
the water enters through the inlet and 
duct system, then energy is added to 
flow by the pump, finally the water 
exhausts at the nozzle exit with a 
high velocity and a thrust propelling 
the craft forward is produced. It can 
be seen that the mutual hydrodynamic 
interference between the aft hydrofoil 
-strut-pod configuration and the 
waterjet propulsion system can not be 
neglected. However, there is not much 
published information on the mutual 
interference at present. This is due 
to the fact that most of the model 
tests for hydrofoil and waterjet were 
conducted separately. 

In order to investigate experi- 
mentally the effects of inlet flow on 
hydrodynamic characteristics of the 
hydrofoil-strut-pod configuration and 
to obtain the net propulsive force of 
waterjet propulsion system with the 
hydrofoil-strut-pod configuration, a 
new test set-up has been developed for 
the towing tank at CSSRC. It has been 
found from the experiments that the 
performance of the test set-up is 
quite satisfactory. Test results also 
demonstrate that the effects of inlet 
velocity must be taken into account in 
design of the hydrofoil-strut-pod con- 
figuration, and the measured net pro- 
pulsive force of the integrated hydro- 
foil waterjet propulsion system can be 
used to predict the craft speed. Com- 
pared with the similar test facility 
described in reference [3], the pre- 
sent test set-up seems to be more 
reasonable, and a new dimension is 
added to the experimental technique in 
dealing with hydrodynamic problem of 
hydrofoil craft. The test set-up can 
be used to directly measure net pro- 
pulsive force and lift of the hydro- 
foil configuration within an extensive 
flowrate range. 

DESCRIPTION OF THE TEST SET-UP 
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The experiments were conducted 
at the towing tank of CSSRC. The 
towing tank is 474m long, 7m deep, 
14m wide. The carriage can be operate 
at speed up to 20m/s. 

The test set-up fixed to the 
carriage is composed of a foil-strut- 
pod configuration model, a waterjet 
propulsion system, adjustment units 
and measuring instruments, as shown 
in Fig.14. 

A 1/12 linear scale model of a 
full scale foil-strut-pod configura- 
tion with one foil, two struts and 
two pods was adopted in tests. The 
scaled model was kept geometrically 
similar to full scale prototype in 
all respects except internal duct 
imbeded in the struts. 

The waterjet propulsion system 
of the test set-up consists of cen- 
trifugal pump, flexible joint, 
piping, valve, flowmeter, nozzle, 
inlet and internal duct. The pump 
driven by a 4kW motor provides flow- 
rate of 8xl0-3 m3/s and lift of 24m 
under nominal condition. The valve 
and flowmeter are respectively used 
to regulate and measure flowrate. A 
flexible rubber corrugated pipe is 
used as a joint between the model and 
pump which not only allows a flow 
path and easy connection but also 
isolates transmission of the force 
normal to its axis (e.g. foil lift). 
Exit of the nozzle is of round shape. 
Internal cross-sectional area of the 
exit equals its full scale value 
times the square of scale ratio 1/12 
in order to simulate the thrust per- 
formance of waterjet propulsion sys- 
tem. 

Two altitude adjustment units 
and one angle adjustment unit were 
used to adjust submergence depth of 
the model, altitude of the waterjet 
propulsion system and angle of attack 
of the model. The model and waterjet 
propulsion system were fixed to the 
carriage by means of the adjustment 
units. 

The measuring instruments in- 
clude fore dynamometer, aft dynamo- 
meter, flowmeter and associated pen 
recorders. In the tests, they can be 
employed to measure fore vertical 
force Zf, fore longitudinal force Xf, 

aft vertical force Za, aft longitudi- 

nal force Xa and flowrate Q. 

METHOD AND RESULTS OF EXPERIMENT 

The main purposes of conducting 
model tests on the integrated hydro- 
foil waterjet propulsion system are: 
1. To predict the hydrodynamic 
characteristics of the foil-strut-pod 
configuration with inlet flow and to 

study the mutual hydrodynamic 
interference between the hydrofoil 
configuration and waterjet propulsion 
system, particularly the effects of 
inlet velocity (or flowrate) on 
hydrodynamic characteristics of the 
configuration. 
2. To investigate the thrust per- 
formance of the integrated hydrofoil 
waterjet propulsion system. The net 
propulsive force ' produced by the 
integrated system, which equals 
thrust produced by the waterjet pro- 
pulsion system minus external drag 
exerted on the configuration, is very 
useful for the interpretation of test 
result and predicting the speed of 
craft. 

To fulfill the above purposes, 
the geometrical similarity between 
the model and the full scale proto- 
type regarding the external form of 
inlet lip, nozzle exit and foil-strut 
-pod configuration must be 
maintained, except those internal 
components such as pump and duct etc. 
The deletion of the requirement for 
the pump and duct is due to the fact 
that in our case problems related to 
the duct loss from inlet to nozzle 
exit and the propulsion efficiency 
are beyond our study. In case only 
the hydrodynamic characteristics of 
the foil-strut-pod configuration is 
studied, even the similarity for 
nozzle exit is not necessary. In 
addition to the geometrical similari- 
ty, it is also necessary in 
conducting model tests to comply as 
nearly as possible with the laws of 
dynamic similarity. The dynamic simi- 
larity in terms of Froude number was 
maintained in tests, while Reynolds 
scaling law was given up as usual 
because it is impossible to meet both 
requirements simultaneously. However, 
the size of model should be as large 
as possible so as to attain a suffi- 
cient Reynolds number within the 
interested test speed range. 

Prior to conducting the test 
program in the towing tank, all the 
instruments including one flowmeter 
and two dynamometers were carefully 
calibrated. All calibrated curves 
were linear within the test range. 

The model tests in towing tank 
for a given set of submergence depth 
and angle of attack were carried on 
in such a way that the flowrate was 
changed one by one from the maximum 
to zero by regulating the valve for a 
given carriage speed. The forces Zf , 

Xf, Za, Xa and the flowrate Q were 

measured for each run. 
The lift L of the foil-strut-pod 

configuration with inlet flow and the 
net propulsive force Tn of the inte- 
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grated hydrofoil waterjet propulsion 
system can be directly derived from 
measured values, 

L = Zf + Za = Zi 

T  = -<Xf + X.) 

(19) 

(20) 

However, the drag D of the configura- 
tion with inlet flow can not be 
directly measured because D is 
included in Tn in such a way that it 
is difficult to be separated. It is 
well known that Tn plus D is equal to 
the thrust T produced by waterjet pro- 
pulsion system. Assuming that T can be 
calculated in terms of the formula 
given in [4] 

T = pQ(Vj-U)-J>pAi(Vi-U)
: 

then D = T-T, T + Xf +Xa 

(21) 

(22) 

Owing to the fact that it is difficult 
to calculate T exactly, so the accura- 
cy of D is somewhat lower than that of 
L and Tn. 

It must be stressed that D is de- 
fined as the resultant of all the ex- 
ternal wetted surface forces acting on 
the foil-strut-pod configuration in 
the free steam direction, and T is the 
resultant of all the internal wetted 
surface forces exerted on the waterjet 
propulsion system in the advancing 
direction of the carriage, while the 
stream surface generated from the 
stagnation points on inlet lip sepa- 
rates the internal flow ingested by 
the inlet from the external flow [5]. 

The test program covered the 
variation of the following parameters: 
(1) carriage speed from 0 to 6.7m/s; 
(2) flowrate from 0 to about 6.5xl0~3 

m3/s, which respectively correspond to 
the closed and totally opened condi- 
tion of the valve; (3) angle of attack 
equal to 0.45° and 1.65°; (4) submer- 
gence depth of foil    equal to 0.152 
m. 

Some experimental results on the 
lift and drag of the configuration 
with two inlets operating are given in 
Fig.15 and Fig.16. It may be noted 
that the effects of inlet velocity 
ratio on the lift and drag can not be 
neglected. The lift coefficient CL de- 
creases slowly with increase of inlet 
velocity ratio. When Frc=6.94^ C^ at 
V.=0.7 is lower than CL at V\ =0 by 
about 9.5% for ct=0.45° and by about_6% 
for a=1.65°. When Frc=

5-£_8> C
L 

at Vi = 

0.7 is lower than CL at Vj.=0 by about 
1% for a=0.45° and by about 3% for 
a=1.65°. It may well be that the 
reducing of water flow past foil due 

to the presence of inlets leads to 
the loss of foil lift. The drag coef- 
ficient CD varies with inlet velocity 
ratio more obviously, which is 
probably related to the suction force 
pointing forward produced on inlet 
lip surface. 

The tests of the configuration 
with streamlined caps at the fore end 
of pod for blocking inlet flow were 
conducted in the same way as the 
conventional hydrofoil test. The mea- 
sured lift and drag forces are also 
given in Fig.15 and Fig.16 for com- 
parison. The lift coefficients in this 
case are all a little lower than the 
corresponding ones of the configura- 
tion without caps. On the opposite, 
the drag coefficients in this case are 
all higher, it can be attributed to 
absence of the suction force on inlet 
lip surface when mounting streamlined 
caps to inlets. 

The net propulsive force Tn of 
integrated hydrofoil waterjet propul- 
sion system measured at various speed 
and flowrate is shown in Fig. 17 and 
Fig.18. It is clear that for a given 
speed, if the net propulsive force is 
just equal to the sum R of the drag 
of fore foil unit, the additional 
drag due to the interference of fore 
foil unit on aft foil unit and the 
air drag of hull, then the hydrofoil 
craft will navigate under foilborne 
condition with constant speed. So the 
curves of Tn versus U and Q can be 
used to evaluate speed of a waterjet 
propelled hydrofoil craft. As long as 
Tn and R are plotted against the 
speed under certain design operation 
conditions including flowrate, angle 
of attack and depth of submergence, 
then the speed value corresponding to 
intersection of both curves is just 
the speed which can be attained by 
the craft. 

CONCLUSIONS 

The numerical method presented 
in this paper can be used to predict 
the hydrodynamic characteristics (in- 
cluding pressure distribution) of 
foil-strut-pod configuration under 
the linearized water surface condi- 
tion. Comparison of calculations with 
experiments shows that good agreement 
between them can be achieved. 

The theoretical formula of in- 
duced velocity caused by a horseshoe 
vortex with arbitrary orientation de- 
duced from Havelock-Kelvin source 
provides a important basis for nu- 
merical simulation of present 
problem. 

The proposed new method calcu- 
lating Ej^ (z) reduces obviously the 
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Computer executive time and can be 
used in solving wave-making problem. 

The integrated hydrofoil waterjet 
propulsion system test set-up deve- 
loped at CSSRC has been shown to be 
satisfactory. The test set-up can be 
used to investigate the effects of 
inlet flow on hydrodynamic character- 
istics of the foil-strut-pod configu- 
ration and to obtain the net pro- 
pulsive force of the integrated hydro- 
foil waterjet propulsion system. 

The effects of inlet velocity 
ratio on the lift and drag must be 
taken into consideration in design of 
foil-strut-pod configuration. The mea- 
sured net propulsive force is very 
useful for predicting the speed of 
craft. 
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Fig.16  Experimental results of 
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The Effect of Turbulence Ingestion 
on Propeller Broadband Forces 

C.-W. Jiang, M. Chang, Y. Liu (David Taylor Model Basin, USA) 

ABSTRACT 

This paper presents the theoretical prediction of 
the low frequency unsteady broadband forces for pro- 
pellers in a turbulent flow, such as those on any sur- 
face ship. Broadband forces are predicted by the use 
of a new correlation method and are compared with 
existing theoretical models based on both correlation 
and spectrum approaches. In contrast to the avail- 
able theories, the new theory predicts low blade rate 
humps and broadband forces simultaneously. For a 
homogeneous and isotropic turbulent inflow and for a 
given advance coefficient, turbulence length scale and 
turbulence level, the present theory produces an un- 
steady broadband thrust level which is proportional in 
the high frequency region to the third power of ship 
speed. At low frequencies, predictions of propeller un- 
steady thrust spectra show peaks near the first and 
second blade rate frequencies and those peaks skew to 
the higher frequency side of the blade rate frequencies. 
Side forces demonstrate the same phenomena but at 
a lower level. The physics of the phenomena are dis- 
cussed and numerical results are compared with lim- 
ited experimental data. 

NOMENCLATURE 

A, Filter function 
b Blade spacing 
C Blade section chord length 
D Propeller diameter 
f(r) Longitudinal velocity correlation function 
f\r Meanline shape function 
Fi Propeller force at i direction 
g(r) Transverse velocity correlation function 
Gij(u) Velocity correlation in frequency domain 
H(UJ) Aerodynamic response function 

IT Total rake 
J = VJnD Advance coefficient 

K(ui) Sears function 
k Wave number 
L Blade lift force 
t{t) Hydrodynamic force 
n Propeller rotational speed, rps 
P Pitch of blade section 
r            Radial coord, or dist. between two points 
R Propeller radius 

•R,j(r) Velocity correlation in time domain 
u Root mean square of turbulence 
u; Turbulent velocity in i-th direction 
U(r) Resultant velocity at propeller radius r 

Va Axial vel. at prop, plane for a given radial loc. 
V, Ship speed 
# Lbs 
u! Frequency 
0 Shaft rate frequency 
Ü' Blade rate frequency 
A Turbulence integral length scale 
p Fluid density 
<f> Propeller blade pitch angle 
(f>i One dimensional turbulence spectrum 
$ Wave number spectrum of turbulence 
$ Broadband unsteady thrust spectrum 
ty" Broadband unsteady thrust/w3 

INTRODUCTION 

The unsteady forces generated by a propeller con- 
sist of periodic force components and a broadband 
force component. The narrowband periodic force com- 
ponents occur at multiples of the blade passage fre- 
quency and are considered to result from the unsteady 
pressure distribution on the propeller blades. These 
unsteady pressures are caused by the non-uniform in- 
flow or by cavitation, such as for the propellers on 
surface ships. Force spectra from this non-uniform 
inflow are narrowband at the blade rates. The high 
frequency broadband noise is due to vortex shedding 
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by the propeller blades. Although designers axe care- 
ful to reduce these unsteady force sources, laboratory 
experiments indicate that an unexpected broadband 
force occurs at first and second blade rate frequencies. 
This low frequency broadband force is due to the in- 
teraction of the inflow turbulence with the propeller 
blades. The inflow turbulence ingested on the pro- 
peller blades is generated in the hull boundary layer 
and in the boundary layers on all the appendages up- 
stream of the propeller, superposed on the ambient 
free-stream turbulence. Therefore, the inflow turbu- 
lence may contain a broad range of length scales. This 
paper addresses the effects of turbulence on broadband 
forces generated by propeller blades regardless of the 
source of the turbulence. 

The unsteady force caused by turbulence ingestion 
has been studied by several investigators in the past. 
Most previous studies are based upon special assump- 
tions and, thus, lack generality. Sevik [1] considered 
the forward speed to be much greater than the pro- 
peller rotational speed and, therefore, regarded the 
blades as rotationally stationary with respect to the 
turbulence. This assumption implied that the blades 
are rotationally uncorrelated. He measured the un- 
steady thrust on a ten-bladed rotor operating in a 
water tunnel downstream of screen-generated turbu- 
lence. The experimental measurements show humps 
near blade rate frequencies and its multiples which 
were not predicted from Sevik's theory. Thompson 
[2] extended this theory and performed additional ex- 
periments for rotors with different numbers of blades. 
The experimental results show that the magnitude of 
the broadband humps increases when the blade-to- 
blade spacing decreases. He included in his analy- 
sis the blade to blade circumferential correlations in 
a zero forward speed sense. In comparison to the 
experiments, his theoretical results produced consis- 
tently higher humps. Chandrashekhara [3] examined 
only the cases for which the circumferential correla- 
tion length was larger than a blade spacing. Mani 

[4], Homicz and George [5], Amiet [6], and Blake [7] 
considered the rotor forces and noises radiated by tur- 
bulence with a given wave spectrum. Mani [4] showed 
that the radiated sound spectrum from a rotor oper- 
ating in a turbulent inflow has humps centered at the 
blade rate frequencies and its multiples. The width 
of those humps was found in his experiments to be 
related to the ratio of the turbulence length scale to 
the blade spacing. Blake [7] considered the case of 
a rotor with a small advance coefficient and a turbu- 
lence length scale considerably smaller than the length 
of the blade span. Simple results are obtained from 
asymptotic expansion of small and large correlation 
lengths. The small correlation result approaches the 
result of Sevik's analysis, and the large correlation the- 

ory predicts the narrow bandwidth humps at blade 
rate frequencies. Although Blake's model predicts the 
humps at the blade rate frequency, the hump ampli- 
tudes above the smooth broadband force spectrum 
curve do not exhibit the decay phenomena observed 
in experiments. 

In the present paper, the correlation analysis fol- 
lows Sevik's approach [1], but removes the simplifi- 
cation of the velocity correlation tensor used in [1]. 
The blade rotational effect is correctly preserved in 
the analysis and the results resemble the experimen- 
tal observation. Numerically, for a given turbulence 
correlation function, the statistical properties of the 
unsteady angle of attack encountered by the moving 
blade are evaluated at each time step. Then the force 
spectrum is obtained from a Fourier transformation of 
the computed time history of those unsteady angles 
of attack. The next two sections outline the funda- 
mental approaches and the corresponding computa- 
tional procedures. Numerical examples are included 
for the thrust, side force and torque spectra of a rotor 
in an isotropic turbulence flow. These results are com- 
pared with existing experiments. A flow chart of the 
present numerical turbulence ingestion model is given 
in Figure 1; the blade surface is divided into chord- 
wise strips along the span. Each strip is considered 
as a two-dimensional (2-D) section with unsteady lift 
concentrated at the quarter-chord of that section. As 
is indicated in Figure 1, the two critical components of 
the model are the inflow turbulence characteristics and 
the transfer function between the turbulence intensity 
spectrum and the unsteady forces. In the given exam- 
ples, the Sears function is used as the fluid dynamic 
transfer function. 

THEORETICAL APPROACH 

The analysis of turbulence-generated propeller broad- 
band force can be approached with two different tech- 
niques. One is the spectrum approach and the other 
is the correlation approach. These two approaches 
should lead to the same results if the specified spec- 
trum form and correlation function describe the same 
turbulence characteristics. The authors prefer the cor- 
relation method because it is the more direct approach 
and is easier to apply numerically. However, for com- 
pleteness of the study, the spectrum approach is in- 
cluded in this paper. Results from both approaches 
will be compared in the discussions. 

Spectrum Approach 

This section follows the procedure described in Blake 
[7], which assumes that the turbulence is convected 
frozen (Taylor's hypothesis) and the turbulent char- 
acteristics are represented as a product of functions 
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in each direction (separation of variables). With the 
turbulent inflow component normal to the blade, u2 in 
Figure 2, expressed in terms of its Fourier transform: 

Propeller Blade Geometry 

Propeller Inflow Velocity 
& 

Turbulence Characteristics 
(isotropic, homogeneous) 

Unsteady Thrust 
Spectrum 

Fluid Dynamic Transfer Function 

Fig. 1. Flow chart of excitation force model. 

Upwash 
gust 

*1 

Fig. 2. Definition of local coordinate system. 
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u2(k, u) = -^JJJJu2(x, fy-^-^dxdt   (1) *„(„) 

where "denotes the vector in terms of the coordinates 
in the propeller plane {xi,x3) and its normal (x2), 
the lift per unit radius on the s-th blade written in 
terms of the Fourier components of the incident up- 

wash, u2(k,LL>), is 

dL,{Lo)/dr   =   pirCu2{k,uj)U{r)L2D{hC/2) 

ei(*jr+*12»(>-u0 (2) 

where L2D is the two-dimensional lift due to a unit 

disturbance, C is the blade chord length, b is the blade 
spacing at the radius r, kn equals kx cos <t> + k2 sin (j>, 

<f> is the blade pitch angle, and U(r) is the resultant 
velocity into the blade at radius r. The net force on 
an N-bladed propeller in the i-th direction due to the 
(£,w) turbulence contribution is found by summing 
over all the blades and integrating over the radius from 
the propeller hub (RH) to tip (RT) 

Fi(k,oj)   =    [ T p^Cu2{k,uj)U{r)ni{4>)L2D{hCI2) 

N-\ 
V^ ei(hT+ki2sb-wt) jr (3) 

where n,-(<£) is the direction cosine in the i-th direction 
of the blade. The summation over the N blades in 
equation ( 3) is called a filtering function, denoted A„ 

and is 

N-i 

A,(k12b)    =    £e' Ari2 -*6 

sm(Nkub/2)eHN-Vk»bM 

sm(kub/2) 
(4) 

Substituting this expression back into equation ( 3), 
the net force becomes 

I  j  I  I    I   PVC2\L2D(hC/2)\2 

Jki Jk2 Jh JRH JRH 

I Aa{h2h) |2 U(ri)U(r2)$22(k,u>) 

n.-(7i)n.-(72)e"'':3(rs-ri)cfr2dr1^ (6) 

where $22(k, w) is the wave number spectrum of the 
turbulent field. Equation ( 6) is the fundamental form 
of the spectrum approach. It is clearly seen that the 
major task of the analysis is in the specification of the 
wave number spectrum of the turbulent field $22(^5 w) 
and the evaluation of the multiple integrals. In gen- 
eral, the spectrum form 922(k,ui) associated with a 

moving body is not known, and the prediction of $u(u)) 

with triple integration over k is impractiable. Nev- 

ertheness, the analytical results associated with some 

simple forms of $22(£> w) could provide a good approx- 
imation to reality and lead to a better understanding 
of the overall features of $,-;(w). 

By applying Taylor's hypothesis that the turbu- 
lence convects over the blade with the resultant ve- 
locity and without decay, and by assuming that the 
wave number spectrum can be separated into direc- 
tions along the resultant velocity (&i), the radial di- 
rection (£3), and the normal direction (k2), the turbu- 
lence spectrum becomes 

*22(£,w) = «!*i(fci)fc(*2)fc(*3)*[w - U(r)h]    (7) 

Furthermore, we assume that <j>i(ki) takes a form of 

*(*.■) = -,      Ai 

7T 1 + (A.fc;)2 (8) 

where 2A; represents the integral length scale of u2 

in the i-th wave vector direction. When the radial 
integral length scale is small with respect to the blade 
span, i.e.,1^3(^3) ~ AS/TT and the radial direction wave 
number is small, i.e., k$R <C 1 , the force spectrum , 
equation ( 6) becomes 

Fi(k,u)   =    j    p7rCu2(^,w)l7(r)n,(^)I2D(^C/2) 
JRH 

Mh^e-^-^dr (5) 

*«(«) =   / / (
RT

 AC
2
A3 I I2D(W2) 

Jk, Jk-> JR„ 

fRr 

Jki Jkj JRH 

Mk12b) |2 £/2(r)«l^(A1)^(fc2)n?(^) 

and the frequency spectrum of the fluctuating force, 

$„(u>), becomes 

S[io - Utfkjdrdhdkz 
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I A,[{k2 sin <t> + — cos <£)&] |2 

U2{r)ÜU^/U)Mk2)nH<l>)drdk2      (9) 

For simplification, the average spanwise lift amplitude 
as a function of wave number has been used in the 
last formulation. Then the turbulence spectrum can 
be moved outside of the radial integral. The discrete, 
numerical expression of equation ( 9) becomes 

*«n = £<M^)£AC2A3|W^)I2 

8h 5R 

\ A„[(k2sin<f>+—cos<f>)b] |2 

U2ül<t>,{ulU)n]{<t>) (10) 

Equation ( 10) entails summation over the blade ele- 
ments and the wave number and it is numerically more 
managable than equation ( 6). The application of this 
model will be presented in a later section and the re- 
sults will be discussed. For the case of small advanced 
coefficient and small hub, RT » RH, equation ( 9) can 
be further reduced to 

I2 (2A,/Är)n?(7)^(^:) 

J     | A,[{k2 sin 7 + -^- cos 7)6] |2 

h{h)dk2 (11) 

where UT is the resultant tip speed ^V2 + {Rrty2 (V 
is axial inflow velocity). Blake[7] obtained the asymp- 
totic solutions of the above equation. Evaluation of 
the integral is determined by the relative width of 
the turbulence spectrum, 4>2{k2), and the filter func- 
tion, I A,[{k2 sin j+^ cos f)b] |2. When the band 
of ^2(^2) is greater than the range of the filter func- 
tion, i.e., the axial integral length parameter, 2A2, is 
smaller than the blade spacing projected in the axial 
direction (small correlation length), the last equation 

can be simplified to 

on.  I 

c_ 
Rj 7) )2P2 

V* RT 

Ai/'itRT 

1 + (Ajw/n.Är)21 + ™c/n.RT 
(12) 

On the other hand, when the axial integral length 
parameter, 2A2) is greater than the blade spacing pro- 
jected in the axial direction (large correlation length), 

equation (11) becomes 

8iVx2 1 C  2 7T 2Ü[2A 

3n 

Ai/irRj 

RT' 
XJ' V2 RT 

Aa[{k2sin~/ + j^cos7)6] 

1 + {A.mN/Rr) 1 + irmNC/RT 

L  (13) 

where m is the number of the blade rate frequency; 

otherwise, $;;(w) equals zero. 
In examining equations ( 12) and ( 13), it is seen 

that equation (12) is a monotonically decreasing func- 
tion of ui and it resembles the rotational uncorrelated 
results of Sevik [1]. Equation ( 13) contains only the 
blade rate humps with non-decayed amplitude above 
the rotational uncorrelated results. Neither of these 
approximations can be applied to predict the complete 
measured phenomena. In order to obtain a meaning- 
ful prediction, one has to go back to at least equation 
(11). Numerical results show that even (11) does not 
give satisfying predictions; only the results of equation 
( 10) are in reasonable agreement with the measure- 
ments. Further discuissions of the spectrum approach 
will be given in the results section. 

Correlation Approach 

The derivations of the frequency spectrum of pro- 
peller thrust using the correlation approach are briefly 
discussed here. These derivations follow the theory of 
Sevik [1] except that the velocity correlation has been 
modified to incorporate propeller rotational effects. In 
order to calculate the characteristics of the fluctuating 
force over the blade surfaces, the blade is divided into 
a number of surface elements. The time-dependent 
forces acting on the various surface elements are re- 
lated by virtue of spatial and temporal correlation of 
the velocity fluctuations in the approach stream as 
well as by virtue of the induced effects that take place 
between adjacent elements. In the following tensor 
equations, subscripts are used to denote the direction 
along the coordinate axes, while superscripts are used 
to denote the blade element involved. For example, 
F%0(t,T) denotes the hydrodynamic force acting on 
the a-th element in the direction i at the instant of 
time t caused by a velocity fluctuation of unit mag- 
nitude in the direction j on the /?-th element at the 
instant r.   With this convention, the hydrodynamic 
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force acting on the a-th element at time t in the direc- 
tion i, £f(t), due to the influence of velocity fluctuation 
at all elements, /?, and in all the directions, j, over all 
the time, r, is expressed as 

<f(0=/'   F?/(t-r)u?(T)dr (14) 
J—oo 

where 

i,j   =   1,2,3 

a,ß   =   l,2,...n 

Since £f (t) is a random function of time in a turbu- 
lent flow, a statistical approach must be employed. If 
the inflow turbulence is time-invariant, the correlation 

function of unsteady forces, $°- , becomes 

<5>°f(r)   =   E[£f(t)£^t + r)] 

2     fT    yoo    foo 

where 

Rt(r 

lim-/    /    /   FZ^Fflfr) 
T-.00 j   7o    JO     Jo 

u*(* ~ ri)«l(' + T ~ T2)dr1dT2dt 

J™ f F°?{Tl)Fft{T2)Rtm{T + r, - r2) 

(fri<fr2 (15) 

1    f00 

+ n -1-2)   =    lim = /    ulit-Ti) 

where 

and 

H£{U)   =    r Ffk\r)e-^dr 
Jo 

cftH - J_ r =   2x J-< Rt(r)e- TdT 

H?k{u) is the hydrodynamic frequency response func- 
tion and CPkm{u) is the Fourier transform of the veloc- 
ity correlation function. Equation ( 16) is the formula 
for predictions of unsteady forces due to inflow turbu- 
lence. When we apply this equation to the propellers, 
we have to specify Hf£{u) and CTk

S
m{w) according to 

the enviroments in which the rotors are operating. A 
computer code has been written to compute the G(w) 

and ty(w) for specified turbulence characteristics. To 
demonstrate the computation procedure, the analysis 

of an isotropic turbulence is given below for general 

discussion. 

ISOTROPIC TURBULENCE 

In the present method, we shall first derive the ve- 
locity correlation function between points a and ß. A 
detailed derivation for isotropic turbulence is given by 
Hinze [9] and is briefly described below. Longitudinal 
correlation refers to the coordinate system in Figure 
3. The origin of the coordinate system is at a and r is 
the distance between points a and ß with components 
£; along the axis i,-. In the plane of the a/?-line and 
the Xi-axis, the velocities at a and ß can be resolved 
into the components «i„, directed between these two 
points, and the components u2., which are perpendic- 
ular to the line-aß. The velocity components along 
the Xj-axis at these two points are: 

The corresponding frequency spectrum of the cor- 
related force fluctuations on the a-th element in the 
direction i due to the /?-th element in the direction j 
can be found by taking the Fourier transform of the 
above correlation tensor: 

!,°ß *£» =   ÖT/     nß(r)e-^dr 
Z7T ./-co 

1 roo      yoo     roo 

Z7T J-oo JO      JO 

Rt(r + n-T2)dT 

=  [ff!TMr«(uO]G&H (16) 
«.. ß Fig. 3.    Geometrical definition of   u1   u. 

756 



Uj    =   u"m cos <fi - uj. sin if i 

=   «?.£-«&)/l-<§ 

«>   =   ul^-4.f^ (17) 
Let us define 

«?.«?.   =   u2/(r) 

u?„u£,   =   u2fir(r) 

-u?.Jl-H 

,.?    = 
»                          ^  COS^2 „,   ß > 

«1. COS V?2 + «2.7  + * (U3.) 1 tani/Ji 

= ^k+^—^+nui) (i9) 

where F(ui.) is the term associated with the velocity 
component uf,. This term is not given in detail be- 
cause the invariance and isotropy conditions provide 
the zero mean for all terms containing the u£, compo- 
nent. The invariance and isotropy conditions yield 

where u is the root-mean-square of turbulence and r 
is the distance along these two points. Because of 
invariance conditions, we have 

Uf.«2.     =     M1.U3. 

=   ug.uf. 

"i.uf. = u%„uß
u    = 0 The correlation of u° and u\ is determined as 

When we multiply uf by uf and take the mean value 
of the product, we get 

Ä12     =     U\u\ 

2f(r)-9(r)ee u  ; 4iC2 (20) 

•Rn „a„ß 

,f(r)-9(r) 
Ziti+9{r)] (18) 

In general, combining equations ( 18) and ( 20), we 
can write the velocity correlation as 

Rii = Anr)7{r)te + 9(r)6d (21) 

Next, let us consider uf u$. From Figure 4, we have where <5i;- is the Kronecker delta. The relationship be- 
tween f(r) and g(r) can be derived from the continuity 
condition of fluid incompressibility, 

*■ * 

dR 

db 
'-1 = 0 (22) 

Substituting Äy of equation ( 21) into equation ( 22) 
yields 

/M+ §*£>-*> (23) 

From this relation between f(r) and g(r), the velocity 
correlation function can be expressed in terms of one 
scalar function, either f(r) or g(r), which gives 

«.. P Fig. 4.  Geometrical definition of   u1   u2 ft,=»n-^«,+(/H+|^w m 
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The longitudinal correlation function, /(r), can be 
approximated by an exponential function 

f(r) = e-''A (25) 

where A is the integral scale of the turbulence. This is 
equivalent to assuming that the turbulence spectrum 
is in the form as it is used in the spectrum approach. 
As has been verified by screen-generated turbulence, 
this is a good approximation for homogeneous and 

isotropic flow field. 
For blades rotating in a turbulent field with rota- 

tional speed 0, r(r) is 

by equation ( 29) should thus contain both a broad- 
band and a blade rate hump spectrum in general. It 
resembles the experimental measurements and will be 

discussed in detail in the results section. 
Sevik [1] studied special cases of the above equa- 

tion when ÜR is much smaller than V, and he approx- 

imated equation ( 27) by 

r(r = 0) = yJrl + r}-2rQrpcos{9a- ß„)       (30) 

The corresponding velocity correlation then becomes 

Rii ~ e-'-^MVr) (31) 

r(r) = \I{VT)
2
 + r\ + r} - 2rarß cos{9a -6ß + Qr)(26) The components of the velocity correlation tensor 

are 

Equation ( 24) can be rewritten as: 

*i   =  A^nrj + V-T^Wfr-^   (27) l2rA 

or in the algebraic form 

2A; 

Rn       =      U   t~K  A  +      A       I 

B.2 
2A 

(32) 

u2{1_Yl)e-(^-^l) (33) 

Rn 

R22 

R\2 

IT    1     -2    ,    /, r   M   — rÜi 
B fex* + (1" 2Ä)le  A 

U
 fe"   + (1 - 2Ä)]e    A 

HI =   «2[—^]e" * (28) 

By taking numerical Fourier transformations of the 
time domain correlation function (equation ( 27)), one 
obtains the frequency spectrum of the velocity corre- 
lation function, G,j(w), as 

G,H = ^ r RiAr)e-^di 
Z7T J-00 

(29) 

where the omitted superscripts are the indices of two 
points for convenience. 

In examining equation ( 27), it is clear that fi,-j 
is periodic with respect to blade rotation due to the 
presence of the cosine term in the correlation func- 
tion. This periodic term is most dominant when V/fi 
is small. As r or V increases, the importance of the co- 
sine term decreases and £,, becomes a monotonically 
decreasing function of r.   The spectrum represented 

The effect of the angular location of the blade, fir, is 
totally absent in Sevik's correlation model; e-

r(T=0)/A 

is a time independent term. The solution for G,_,- con- 
tains no blade humps and may be expressed analyti- 

cally; that is, 

G11 

G22 

-   (x)2 + 
A 

r/A 

1   (V\2        , ,2 

*"(£)*+ w^     2 (£)' + <• 

Hoping to recover the blade rate humps without 
losing the simplicity of the analysis, Martinez [8, Ap- 
pendix A] modified Sevik's analysis by including the 
propeller rotational speed through the approximation 

r(r) S y/rl + r}-2rarßcos{60 - 60 + fir)     (35) 

Then the velocity correlation function becomes 

vr+dzli 
Ru    =   u'e ' » + * J (36) 
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and 

i?2: =   «'(l-^)e-(*^> (37) 

which still preserves the exponential form of the cor- 
relation function used by Sevik [1]. As is true for the 
spectrum approach, simplification of the correlation 
function implies a filtering process in the physics. For 
practical applications, the search for an analytical so- 
lution could have prevented the advancement of un- 
steady force prediction methods in the past. Later, 
Martinez and Weissman [8, Appendix B] followed the 
recommendation of the authors of the present paper 
and used the same correlation function (equation ( 27)) 
to perform analytical study. They were able to form a 
closed form solution and the solution contains Bessel 
functions. Their numerical results obtained from com- 
puting the various order of Bessel functions compared 
well with the present computational results. The present 
analysis adapts both theoretical and numerical tech- 
niques. For individual cases, the theoretical analysis 
will be carried to its full extent, in this case to equation 
( 29), and then numerical analysis will follow. 

FLUID DYNAMIC RESPONSE FUNCTION - H{u) 

The next step of the computation is the establish- 
ment of a transfer function, H(u>), defined in equa- 
tion ( 16). The simplest computation is based on two- 
dimensional, incompressible and inviscid aerodynam- 
ics theory. Sears [10] derived the response function for 
a zero skew, discrete sinusoidal gust convected in the 
plane of a foil at zero angle of attack. The resulting 
aerodynamic unsteady force is represented as 

H{u) = 2irpU-K{w) (38) 

predictions providing the value of the local lift slope 
is appropriately corrected. This means that the coef- 
ficient 2ff of equation ( 38) be replaced by the steady 
state locallift slope as described by Sevik [1]. 

Applying the above Sears' function to a 2-D blade, 
the angle between the inflow and the direction of ad- 
vance also has to be considered. This gives 

Hp(u)   =   H{u)cos<!> (40) 

where HT denotes the two-dimensional response func- 

tion for a propeller in its direction of advance and (j> is 
the inflow angle with respect to that direction. When 
operating near design conditions, <f> may be approxi- 
mated by the pitch angles of blade sections for most 

marine propellers. 

NUMERICAL PROCEDURES 

With a specified correlation function, equation ( 28), 
and a chosen transfer function, equation ( 40), we may 
proceed to perform the numerical unsteady force com- 
putations as given in equation (16). Since propeller 
unsteady forces are generated from the unsteady veloc- 
ity relative to the blades, the velocity spectrum com- 
ponents G(w) in equation ( 16) should be expressed 
in a rotational cylindrical coordinate system which is 
fixed on the blade. Let the mean inflow to the pro- 
peller be denoted by vF. Then the unsteady angle of 

attack becomes 

a(r) tan"1^ 
ua 

ua 

(41) 

with 

where K(u>) is the Sears' function and is in terms of 

cylindrical functions HQ   (k) and H\ '(k); = u° cos 4>a + ug sin 4>0 (42) 

K(u) 
/(') H\'\k) 

H?\k) + iH$\k) 
(39) 

where k is the normalized reduced frequency (uC/2U). 
Equation ( 38) was derived for an isolated foil oper- 

ating with sinusoidal velocity disturbances normal to 
the foil surface. When applying the equations to pro- 
pellers or small aspect ratio foils, the results of using a 
two-dimensional approximation may not valid. How- 
ever, the two-dimensional theory will give satisfactory 

and 

ua
Nv?N (u° cos 4>a + Ug sin 4>a){up

x cos <j>e + uß
e sin <f>ß) 

u°u% cos <j>a cos <f>p + u%ue cos <j>Q sin <j>p + 

UgU^sin4>a cos <f>ß + u^ue sin <j>a sin <j>p    (43) 

where <f>a is the propeller inflow angle at point a. 
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The velocity correlation of equation ( 16), thus, 
becomes 

R%%    =   R^cos<f>acos<{>ß + I%$cos4>asin4>0 + 

R°^ sin 4>a cos (f>/3 + ^sm4>a sin 4>ß     (44) 

and 

till (r) = BZ5 cosöo(0) cos^(r)+JRjf sin0a(O) sin^(r) 

-      JJJ? cosöa(0)sin^(T)-Ä^ sinöa(0)cosöj3(r) 

(48) 

where 

The calculation of Rfz is straight forward as 

Ki = «2i^xd*2+(l-ix^   (45) 

yhere dx = VT and 

r(r) = ^(dxf + rl +r}- 2rarß cos(0a(O) - ^(0) + Or) 

The calculations of R°J and R°g$ in terms of r has 
to be further expressed through the instantaneous an- 
gular locations of the blade elements. For the coordi- 
nate system shown in Figure 5, the tangential velocity 

component is 

Fig. 5.  Chordwise strips on propeller blade 

uf =ufcos^(T)-u:sin^(T) 

and the velocity correlations R°g and RgS are 

(46) 

RaJ = R% cos 90{r) - R% sin &0{r) (47) 

Rfy    =   «2(1 - ^-^t/)e-^ 
2A 
r 

RaJ   =   u'(l-—dxdz) 
.-All 

2A 

<£y   =   racos9Q{Q) -rßCos6ß(r), 
2Ä)]e    A' 

and 

<£z   =   ros'm8a{0) -rßsin6ß(r). 

Since turbulence has been assumed to be homoge- 
neous, R(I(T) is only a function of T, and can be eval- 

uated at 6a(0) and 6ß{r). 
Based on the above definition of RNN, correlation 

functions are numerically evaluated at given w values 

as 

Z7T J —oo 

The thrust spectrum tensor, equation ( 16), be- 
tween blade elements a and ß is then calculated as: 

*#» = [ff£(uon#£HÄM] (49) 

Assuming the unsteady force generated at each indi- 
vidual strip is two dimensional, the last equation be- 

comes 

with Hp given by equation ( 39). The total unsteady 
force spectrum is obtained from summing ^"^ (w) over 
all elements of a and ß. In this computation, the mean 
flow angle <f> has to be estimated before the unsteady 
thrust can be determined. This angle can be obtained 
from propeller computer codes. For near-design oper- 
ating conditions, the pitch of the blade may be used 
for <j> for most marine propellers, as mentioned earlier. 

Similarly, the side force spectrum can be numeri- 
cally calculated by using equation ( 16), it becomes 
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1       yoo     roo    foo 

= rJJo L ™^w- 
ain(fl,(0) + flo)iTiFj^(T2) 

SMi^gsin(0s(O) + ö0 + QT)«^ 

=   [^Njv(w)sin^a]*[^jv(w)sin^] 

[^NM] (50) 

where 0o is the blade reference angular location, and 

sira(0«(O) + 0O + fiTje-^dr 

Since 

-!- / * atn(ft,(0) + eo)sin(es(0) + 80 + Qr)d90 = 
lit Jo 

Followed the same procedures, the total torque due 
to the ingested turbulence can be derived in final form 
as 

*o» [HFN(u)co34aY[HtfN(U)costo][G°!{u,)] 

where 

G*(W)   =   ^- r RtN{r)r,rse-^dr 

where r7 is radial distance of element 7. Numerical 
calculations of thrust, side force and torque spectra 
are performed and presented in the following section. 

Sevik - theory 
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     Blake - large correlation 
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Then 

^w(w)   =   s/lÄ™('')cO5('f(0)"'l(0) + ßr) 

e-wdr 

Again, assuming the unsteady force generated at each 
individual strip is two-dimensional, then the side force 
spectrum becomes 

*#>)   =   [H^i^sin^YlH^^sinM 

[S&Ml (51) 
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Fig.6   Comparison of Existing Methods 
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RESULTS AND DISCUSSIONS 

Sevik's experiment [1] is used to study the present 
approach and to demonstrate the differences between 
the present computation and previous results. The ex- 
periment was conducted in the 1.22m (48") diameter 
water tunnel at Pennsylvania State University. The 
propeller used for this investigation has ten blades 
with a constant chord length of 2.54cm (1") and a 
radius of 10.16cm (4"). The turbulence level in the 
test section without the grid was about 0.1%. Two 
grids were used with mesh sizes of 10.16cm (4") and 
15.24cm (6"), respectively, to generate the turbulence 
level of about 3% with two different integral length 
scales at the propeller plane. The distance between 
the grid and the propeller plane was twenty times the 
grid sizes. Data were taken at a tunnel speed equal to 
4.57m/sec (15ft/sec) and the advance ratio was 1.22. 
Power spectral density of the propeller thrust due to 
turbulence was measured and compared with theore- 
tial results of Sevik [1], Figure 6. The measured spec- 
tra show significant humps at the first blade rate fre- 
quency while the humps at the higher blade rates were 
observable only for the 15.24cm grid case. The theo- 
retical results of Sevik compared well with the mea- 
surements with respect to the broadband part of the 
spectrum while the humps were missing. Later, Blake 
[7] compared those data with his asymptotic solutions 
of equation ( 12) and equation ( 13), derived to im- 
prove the prediction on blade rate humps. His results 
are also given in Figure 6. The smooth broken line 
in Figure 6 shows the asymptotic results of small cor- 
relation (equation ( 12)) and the dotted line provides 
the large correlation results (equation ( 13)). It is 
seen that the small correlation results approach Sevik's 
theory as expected since they are equivalent to omit- 
ting the rotational correlation from the analysis. The 
large correlation asymptotic results give humps cen- 
tered at multiples of the blade rate frequency without 
the broadband part of the spectrum. The comparison 
of the asymptotic solutions and measurement indicate 
that the basic approach is correct and that numerical 
simplification should be avoided. 

Computations based on equation ( 10) and equa- 
tion (11) were performed numerically for the two grid 
sizes, and the results are given in Figures 7 and 8. The 
results of equation (11), Figure 7, show that the cen- 
ter frequencies of the humps shift and skew to higher 
frequencies when compared with Blake's calculations. 
The amplitudes of the humps do not decay at higher 
blade rates for either grid size. Also, the results using 
equation (11) show ditches between the humps quite 
below the measured results. Since equation (11) did 
not have the radial dependence of the filtering func- 
tion (Aj), Sears' function and Taylor's hypothesis, it 

over emphasizes the blade rotational effect. By re- 
moving the small advance coefficient assumption, in- 
cluding the radial dependence on filtering and Sears' 

Present - Spectrum Eq.ll 
Blake - small correlation 
Blake - large correlation 

100        200        300 400 
Frequency, Hz 

500 600 

-10 
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Fig.7   Comparison of Simplified Spectrum 
Approaches 

functions, and numerically integrating equation ( 10), 
the hump amplitude and ditch depth are reduced and 
the hump bandwidth is increased as shown in Figure 
8. It is thus demonstrated, in a practical application, 
that the radial dependence should be included in the 
analysis. Neverthless, including this effect in the wave 
number integration complicates the computation and 
the spectrum approach is not recommended at present. 

Figures 9a and 9b present the comparisons be- 
tween the results of the present correlation theory and 
the experiment. The current correlation theory pre- 
dicts both the humps which were demonstrated in 
the experiment and the broadband part of the spec- 
trum. The broadband part of the spectrum compares 
well while the hump amplitudes and center frequencies 
of higher harmonics do not agree.   The cause of the 
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hump discrepancy could be in the uncertainty of the 
inflow turbulence. The experiments show the inconsis- 
tency in the results between 10.16cm (4") and 15.24cm 
(6") grids. The 15.24cm (6") grid results have humps 
at both first and second blade rate frquencies while 
10.16cm (4") grid results show only one hump near the 
first blade rate. These differences could reflect devia- 
tions from the design homogeneous and isotropic grid 
turbulent inflow. Since the characteristics of the inflow 
were not measured, no further comparisons are possi- 
ble. However, from the general features of the com- 
panion and the other computations which are not in- 
cluded, the authors are certain that the present model 
should predict the spectrum reasonably well if the in- 

flow turbulence is given. 
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.8   Comparison of Unified Spectrum Methods 
With Experiment 

Martinez's [8] analytical model decomposed the ax- 
ial and propeller-plane velocity correlations to inves- 
tigate the contribution of each component. The same 
investigation can be performed numerically. Figure 10 

gives the spectra combination of x - x with x — 9 and 
x — x with 6 — 6 forces. It demonstrates that the x—x 
component provides the basic shape and level of the 
thrust spectrum.   The frequency shift is due to the 
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Fig.9   Comparison of Correlation Methods 
With Experiment 

x -* 6 effect and the level increase at lower frequency 
is due to the 6 - 6 effect. Due to the phase shift of the 
x — 6 component velocity correlation, the x — 6 term 
subtracts from the x—x term at the left of blade rate 
frequency, while to the right it adds to the x — x term. 

Side force and torque spectra, Figurell, have shapes 
similar to the thrust spectrum. The differences in 
spectrum levels are due to the velocity correlation func- 
tions, G(u), and components of fluid transfer function. 
The level of side force spectrum is about lOdB below 
the thrust spectrum. 

The characteristics of the unsteady force spectrum 
may be generalized from the study of isotropic tur- 
bulence. The present isotropic results show that the 
spectrum can be normalized in terms of the param- 

763 



eters V/Afi.A/Ä and w/ft. Their influence on the 
resulting unsteady force is demonstrated in Figuresl2 
and 13, and is summarized as follows: 

2) The effect of advance coefficient, V/ASl: With 
other nondimensional parameters held constant, Fig- 
ure 13 shows that as the advance coefficient decreases, 
the blade rate humps become more pronounced. The 
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Fig. 10   Thrust Spectrum Components 

1) The effect of the inflow turbulence scale, A/R: 
In general, the smaller the turbulence length scale, 
the higher the broadband unsteady spectrum. How- 
ever, both amplitudes and bandwidths of the blade 
rate humps decrease with decreasing turbulence scale 
as the result of faster decay of the rotational corre- 
lations, while the variation of the turbulence length 
scale has only a minimal effect on the hump center 
frequencies, Figurel2. 
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Fig. 12 Effect of Turbulence Length Scale (A/R) 
on Unsteady Thrust 

(Turbulence Level = 0.03; V/Rfi=0.39) 

higher blade rate humps become significant at low ad- 
vance coefficients as shown by Blake[7] and discussed 
previously. In the normal operating condition (V/Afi 
greater than 0.5), only the first blade rate hump is 
expected. 

200 300        400 
Frequency, Hz 

500 600 

Fig. 13   Effect of Advance Coefficient (V/AO) 
on Unsteady Thrust 

(Turbulence Level = 0.03; A/R=0.28) 

3) Skew of the hump center frequencies: The center 
frequencies of the humps shown in Figure 14 are not 
at blade rate frequencies and are skewed to the right. 
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The skew is caused by the geometrical pitch of the 
blade combined with x — 8 correlation. The larger the 
pitch, the greater the skew will be. The first order 
estimate of this skewness may be approximated from 
the second and third terms of equation ( 47) and given 
in Figure 10. 
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Fig. 14   Normalized Effect of Advance Coefficient 
(V/AQ) on Unsteady Thrust 

(Turbulence Level = 0.03; A/R=0.28) 

4) Inverse cubic dependency on the high frequen- 
cies: To demostrate the spectrum behavior at high 
frequencies, the theoretical results of the grid turbu- 
lence for 10.16 cm and 15.24 cm screens are re-plotted 
in normalized form in Figure 15. The frequency is 
normalized by the blade rate frequency and the thrust 

spectrum is normalized by the third power of the ve- 
locity. At high frequencies, past the second hump, 
the slope of these normalized curves approaches mi- 
nus three as expected from equation (12) or equations 
( 34) and (38) for a given advance coefficient and tur- 
bulence level. The two grids used in the experiment 
did not cover enough of a range in turbulence lengths 
to make as substantial alterations near the hump as 
the theoretical calculation provided in Figurel2. 

Because ships normally operate at a nearly con- 
stant advance coefficient, it is of interest to present 
the thrust spectrum in dimensional form as a function 
of ship speed or propeller rpm with a given advance 
coefficient. The behavior of the thrust spectra at dif- 
ferent speeds for the 10.16 cm grid turbulence is shown 
in Figure 16. It is seen that the hump bandwidth at 
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the first blade rate frequency increases as ship speed 
increases. In practice, one should anticipate a sharp 
hump during lower speed operation. 

CONCLUSIONS 

Theoretical predictions of broadband thrust forces 
in a turbulent flow are presented. The calculations are 
carried out using a correlation method and a spectrum 
method. The results of the correlation theory provide 
a better correlation with experiment than the spec- 
trum theory, computed from an assumption of homo- 
geneous and isotropic turbulence. Turbulence veloc- 
ity correlation can be considered as the combination 
of transverse and rotational correlation. The effect 
of transverse correlation produces an unsteady thrust 
proportional to the third power of ship speed. The 
rotational correlation is inversely proportional to a ro- 
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tational parameter given by V/Ati'. The rotational 
correlation distorts the V3 power relation and causes 
the unsteady thrust spectra to show humps near the 
first and second blade rate frequencies; these humps 
skew to the higher frequency side of the blade rate 
frequencies. Since the hump phenomena were not ex- 
plained previously, only limited, inconclusive experi- 
ments are available to verify the theory. Future ex- 
periments should include simultaneous measurement 
of unsteady force and turbulence in order to validate 
the theory. 

The spectrum method is not as easy to apply as 
the correlation method because it involves higher or- 
der integration. When the integration order was re- 
duced through simplification, the results were also de- 
graded as shown in Figures 6 through 8. The correla- 
tion method gives good results, Figure 9, and can be 
adapted to more complex cases with little numerical 
difficulty. 

In addition to improving the inflow turbulence as- 
sumptions, the analytical methods can be further im- 
proved by including the effect of finite span, camber 
and angle of attack. A parametric investigation of 
the turbulence inflow and propeller unsteady response 
should be done under laboratory conditions before the 
theory is applied to a complex propeller/rotor geome- 
try. 
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DISCUSSION 

J.-C. Suh 
Korea Research Institute of Ships and Ocean 
Engineering, Korea 

I would like to express a great congratulation to 
the authors for their excellent paper. I have two 
questions about obtaining a transfer function of the 
propeller unsteady forces. It seems that the authors 
have used the linearized analytic solution only for a 
vertical gust of onset flow (Sear's function). 
However, there are two components of onset flow to 
a blade section in concern, say vertical and horizontal 
gust. I think that both components should be 
included to make a sort of consistent calculation. Is 
there any reason for excluding the horizontal 
component? 

At off design conditions, incidence angles to a 
blade section would be large. The linearized analytic 
solution that the authors have chosen might be 
inappropriate for obtaining the global propeller forces 
in the cases of off design conditions. How did the 
authors include this nonlinear effect on the 
calculations? 

to dominate the physics of thrust, and a totally 
different transfer function will have to be applied. 

DISCUSSION 

E. Rood 
Office of Naval Research, USA 

The authors have presented a very interesting 
paper formally accounting for rotational correlation. 
It is clear that this development will produce blade 
rate humps. However, I wonder about the 
quantitative comparison with the experimental data. 

How were the correlations obtained in the 
referenced experiment? What is the variation in the 
integral length scale with position in the propeller 
plane?  Were two-point correlations obtained? 

Has the experiment been repeated? Should it be? 
What does the prediction tell us to guide another 
experiment? 

AUTHORS' REPLY 

AUTHORS' REPLY 

The unsteady lift is due to the unsteady angle of 
attack, which is the angle between the direction of 
relative velocity and the blade section. Equation (42) 
is the unsteady blade normal velocity due to both the 
axial and the tangential components. The unsteady 
force due to the perturbation velocity along the blade 
section is a higher order; that is, 

V+v'   V+v 

U+u'     V 
•[l-(«yü)+.»]-£+^-{ u u 

Vu'.   V   V  }«—+_ 
UU     U   V 

Dr. Rood's questions were our questions. The 
experimental results used in this paper were 
performed more than twenty years ago, and the 
turbulence characteristics were not measured at that 
time. In order to verify this theory, an experiment is 
being conducted at the Applied Research Laboratory, 
Perm State University. Both inflow turbulence and 
unsteady thrust are measured in this experiment. The 
experiments have been repeated for grid generated 
turbulence and presented at this symposium. Those 
results will be published in the near future. The 
problem with Dr. Sevik's experiments could be the 
instrumentation and/or blade resonance frequency. 
Indeed, the dynamometer has been redesigned for 
ARL/PSU's test. 

where V/U is the mean angle of attack and v'/U is 
the unsteady angle of attack. This approach should 
be a good approximation as long as the variation of 
angle of attack is inside the linear region. The 
linearized theory breaks down, and a higher-order 
approach has to be developed when the operation 
mean angles of attack are outside the limits of the 
linear region. The term within the bracket, {}, 
becomes important when V/U is large. However, in 
that case we will expect the separation phenomenon 

DISCUSSION 

R. Martinez 
Durham, New Hampshire, USA 

This paper represents an important contribution 
to our current understanding of how a rotor filters out 
a broadband force from the turbulence that it chops. 
The authors consider two approaches to this random- 
gust/blade interaction problem:   (1) a wavenumber- 
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spectral one, which is then applied to cases of 
anisotropic flows characterized by three independent 
integral scales, i.e., one for each spatial direction; 
and (2) a spatial-domain solution, applied to frozen 
isotropic turbulence. The predicted peak levels 
display a slight shift to the right of the blade-rate 
frequency and its overtones, due to the cross- 
correlation of flows normal and tangential to the rotor 
plane. Everything is well explained. There are only 
two minor comments: 

(1) Have the authors had a chance to apply the 
wavenumber approach to isotropic turbulence so as to 
provide an apples-to-apples check for that method 
against the spatial correlation solution? 

(2) The author of Ref. 8 has recently derived an 
asymptotic expression for the maximum, or latent, 
shift of the cross-correlation component. This is 
(where B is the number of blades) 

shift = —-, v2+| 
RJA) 

B 

where v = 1 and 2 for the blade-rate frequency and 
its first harmonic, respectively. J is the advance 
ratio. R, is the rotor tip radius. The question is, did 
the calculations of the cross-correlation component by 
itself follow the above equation, as has been the case 
for the predictions in Ref. 8? 

AUTHORS' REPLY 

(1) The correlation approach is easy to understand 
and follow. Comparisons of the spectrum and 
correlation approaches are not valid because of the 
simplification used after Equation (6) for the 
spectrum method. As mentioned in the paper, the 
triple integrals of wave number in the spectrum 
method is impractical to solve and is not performed. 
This integration would be necessary to compare with 
correlation method results. 

(2) Dr. Martinez recently derived an analytical 
asymptotic expression for hump ship to higher than 
the blade rate. We have checked our x-6 numerical 
correlation results, which indicate the peak shift on 
this component follows your formula. 

DISCUSSION 

D. Thompson 
Pennsylvania State University, USA 

This paper presents an important improvement to 
the theory of propeller unsteady response to a 
turbulent inflow. The investigation is thorough, and 
the paper is well organized and written with the 
exception of some minor grammatical and 
typographical errors. 

It would have been interesting to see the results 
of the study of the unsteady thrust sensitivity to 
advance ratio change, Figure 13, plotted in terms of 
nondimensional values. For instance, in Figure 13 
the variations in advanced ratio were obtained for 
constant shaft RPM; otherwise, the center of the 
spectral humps would move with frequency. A good 
nondimensional frequency would perhaps be 
frequency divided by blade rate frequency. 
Operating at off-design advance ratio changes the 
steady thrust. A good nondimensional unsteady 
thrust would perhaps be through division by the 
steady thrust at each advance ratio considered. A 
presentation of the results in this fashion would add 
to the interpretation. 

AUTHORS' REPLY 

We appreciate Dr. Thompson's comment. Fig. 
14 is a nondimensional plot of Fig. 13, where the 
frequency is nondimensionalized by the blade rate 
frequency as suggested by Dr. Thompson, and the 
force is normalized by the velocity's third power. 
The unsteady thrust is not rendered by the steady 
thrust because the unsteady loading is not 
proportional to the steady force mathematically. For 
practical purposes, we could have also plotted the 
unsteady thrust in terms of percentage of the steady 
thrust.   Thank you for your suggestion. 

DISCUSSION 

M. Sevik 
David Taylor Model Basin, USA 

It is with pleasure that I comment on an excellent 
paper that deals in a comprehensive manner with the 
unsteady forces generated by a turbulent flow on a 
rotating propeller. This subject, which was also of 
interest to me, resulted in a paper that first appeared 
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in the Proceedings of the Seventh Symposium on 
Naval Hydrodynamics, held in Rome, Italy, in 1968. 
The humps in my experimental data were not 
explained by my theory. They are explained in the 
present paper, however, by the time-dependent terms 
in equation (26) which were omitted in my original 
equation (30). In addition, the authors also predict 
time-dependent side forces, while my paper only 
dealt with the fluctuating thrust. I agree with the 
authors that future experiments should include 
simultaneous measurements of unsteady force and 
turbulence. The characteristics of the turbulent flow 
were not measured in my experiments on the 
assumption that a distance of 20 mesh sizes between 
the propeller and the grids would ensure reasonable 
isotropy of the turbulence. 

The practical application of the theory in the 
wake of a ship will require knowledge of the 
governing flow parameters, which are difficult to 
measure or predict. The theory will also require 
changes in order to deal with flows that are much 
more complex than heretofore considered. The 
authors' task is, therefore, only partly finished. 

AUTHORS' REPLY 

We thank Dr. Sevik, who is a pioneer in this 
subject, especially noted for his contribution to the 
correlation approach we adopted here, for his 
discussion. We agree with Dr. Sevik's comments 
that the application of this theory to the wake of a 
ship is more complex than we considered here. A 
study of the importance of turbulence characteristics 
for this kind of flow field is being conducted at 
ARL/PSU. Preliminary data indicate that the effect 
of appendages on thrust spectrum is very small. 
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Numerical Calculation of the Viscous Flow 
Around a Rotating Marine Propeller 

K.-J. Oh (Kyungnam University, Korea), 
S.-H. Kang (Seoul National University, Korea) 

ABSTRACT 

Reliable and accurate prediction of viscous flow 
around a marine propeller operating at the stern is of 
pratical importance for design and performance prediction 
of propellers. A computer code was developed in the 
present study for the full viscous flow simulation around 
the marine propeller at the stem and it's performance was 
investigated using the available data. The continuity and 
Navier-Stokes equations with a standard k-e model in the 
rotating coordinate fixed on the propeller are numerically 
solved using FVM.The predicted profiles of 
circumferentially averaged velocity and turbulent kinetic 
energy show a good agreement with the measured ones 
at the downstream of the propeller, while there are 
significant discrepancies in the near wake. A vortex-like 
core with low velocity inside associated with the 
formation of the tip vortex and the location of maximum 
axial velocity on the suction side of the blade were 
observed in the simulation. Flow structure observed in the 
experiment were confirmed in the simulation, however 
not quantitatively. The blade wake was diffused too 
much in comparison with the measured one. 

NOMENCLATURE 

ai coefficients in the descretized eq. 

*J transformation matrix 

Cß,Cp,C\ -Qj turbulence model constants 
DP diameter of the propeller 
E constant 
J advance ratio or Jacobian 
k turbulent kinetic energy 
L body length 
m mass flow rate 
N rotational speed of the propeller 
n normal distance from the surface 
MXX axial momentum deficit parameter 
M8x tangential momentum parameter 
P pressure 

Re radius of the external boundary 

Rh radius of the hub 

RP radius of the propeller 
S<P source term for each variables 

u,v,w velocity component in x, r, 9 dir. 

x.r.e cylindrical coordinate 
£ dissipation rate of kinetic energy 

<p specific variable 
ro diffusion coefficient of <p 

K von Karman constant 
p density 
ak,oe turbulence model constants 

1» wall shear stress 
CO rotational speed of the propeller 

S.v.s boundary fitted coordinate 

INTRODUCTION 

Modern propeller design methods are mainly based 
on the inviscid flow theory, with various viscous effects 
taken into account only through empirical information 
concerning balde drag and wake. The hull and propeller 
interaction, which is also one of the most important 
phenomena to understant the ship propulsion efficiency, 
is strongly influenced by viscous effects. Reliable and 
accurate prediction of viscous flow around a marine 
propeller operating at the stern is of pratical importance 
for design and performance prediction of propellers. The 
function and geometry of a propeller are similar to those 
of general turbomachines, but the flow features become 
more complicated due to unsteadiness, three- 
dimensionality, and high level of turbulence. It is also 
still difficult job to reasonably simulate the vortex type of 
flow near the tip and hub. 

Various numerical methods have been developed in 
the past for the two or three dimensional flows, 
compressible or incompressible flows, inviscid or viscous 
flows, and steady or unsteady flows. Techniques for 
turbomachinery flow computations have reached a high 
level of maturity. However, there is still a need of 
calibration of the computation even for the two- 
dimensional cascade flowf 1]. Only a few cases of viscous 
flow simulation of marine propeller have been reported in 
the past. Recently, Stern and Kim[2] presented the 
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calculation results of the flow through a propeller with 
rectangular blades using Navier-Stokes analysis. 

On the other hand, very little information is 
available on the details of the unsteady, turbulent flow 
behind a body-propeller combination, not only for the 
physical understanding of the flow structure but also for 
the assesment of numerical methods. The detailed 
measurement around the propeller is very difficult to 
carry out in the rotating blades as well as in the wake. 
Recently, Hyun[3], Hyun and Patel[4, 5] experimentally 
investigated flows behind a propeller operating on the 
axisymmetric body in the wind tunnel. They reported 
interesting features of the propeller wake and provided 
extensive data, i.e. circumferentially averaged and 3- 
dimensional phase averaged values of mean velocity 
components and Reynolds stresses. Any numerical 
investigations for the above measurements are not 
reported yet. 

The objectives of the present study is to develope a 
computer code for the three-dimensional viscous flow 
simulation around the marine propeller at the stern and 
investigate the performance using the available data [4,5]. 
The continuity and Navier-Stokes equations with a 
standard k-e model were solved using Finite Volume 
Method. The simulated results are to be discussed below. 

GOVERNING EQUATION 

Configuration of the propeller mounted on the 
axisymmetric stern is shown in Fig. 1. Governing 
equations for the incompressible, steady, and turbulent 
flow are given by the continuity and the Reynolds 
averaged Navier-Stokes equations. They are written in 
the rotating cylindrical coordinate system (x, r, 8 ) fixed 
on the propeller blade of constane angular velocity CO. 
Reynolds stresses are modelled using a standard k -e 

Fig. 1 Configuration of a body-propeller, flow domain 
for simulation and cylindrical coordinate. 

model. The values of k and £ are obtained from their 
transport equations. Modified version of k - e model for 
low- intensity turbulence, anisotropic turbulence, rotating 
effects on turbulence, etc. have been investigaed. Since 
they are not well developed yet for the general purposes, 
a simple one is used in this study. The general form of 
the governing equations can be written as follow. 

dm) + id{rV(p)+\d{W4)) = 

dx r or r da 

d_ 
dx 

r. d0_ 
dx 

1 d\    r +7^rF* 
l 

+— 
r 2 de * de)    ♦ (i) 

where <p, rt, and S„ denote the flow variables, diffusion 
coefficients and source terms respectively (cf. Table 1 ). 

TRANSFORMATION OF GOVERNING EQUATIONS 

The flow domain is schematically shown in Fig. 1, 
which is bounded by the propeller blade passage, the 
propeller hub and body surface, the axis of wake, 
upstream and downstream sections, and the outer 
boundary. A non-orthogonal boundary fitted coordinate 
system ( £, T], £) is used to transform the phycal domain 
to a rectangular computational domain. The 
transformation of the independent variables (x, r, 6) in 
the governing equations, leaving the flow variables <f> in 
the original cylindrical coordinate, can be expressed as 
follow [6,7]. 

—{b\U<p + b\V<p + b\W<p) + ^-{b2U<p + b2V<p + b2W<p) 
^ drj 

+±(b?ut + b}v0 + blwt) = -^[rtjg"^ 

+±(rjz22^)+4;(r.J8^) + s> 

(2) 

dr] dr\)   dC{ dC 

where bj is the transformation matrix which is 
represented by the partial derivatives of (x, r, 6 ) with 
respect to (£,7], £). J isJacobian, g' is metric tensor, 
and SQ is the source term in the transport equation for 
each variables. 

BOUNDARY CONDITION 

Bonudary conditions imposed on each boundaries 
are as follow; 
(1) Upstream section; The values of the 3 components of 
velocity and the turbulent kinetic energy and its 
dissipation rate are prescribed. The pressure is not 
required, since the staggered grid system is chosen in the 
present calculation. Determination of the upstream 
condition is dependent of the interaction between the hull 
and the propeller. A simple viscous flow calculation is 
carried out for the extended region around the 
axisymmetric body with the propeller modelled by   the 
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uniform distribution of momentum source corresponding 
to the propeller thrust. 
(2) Downstream section; The downstream section is 
located far from the body and the propeller, and zero 
gradient condition is assumed for all variables. 
(3) Blade and hub surface; To avoid the difficulty in 
resolving the near wall turbulent flow, the wall function 
is used at the surface. The grid points next to the wall are 
located in the fully turbulent layer where the logarithmic 
law is satisfied and the velocity vectors are assumed to be 
collateral.   Then   the   wall   shear   stress tw and   the 

turbulence quntities at the wall are estimated as follows. 

4k 
D In [E-n ~vk = 

P#; 
,£: 

K-n (3) 

where V, is the magnitude of the velocity at the first grid 
point from the wall, n is normal distance from the wall, 
and k and E are 0.42 and 9.793 respectively. 
(4) External boundary; It is placed sufficiently far from 
the propeller. Uniform free stream without turbulence is 
assumed there. 

U = Un,W = -coRe,k = e = 0,P = P0 (4) 

Table   1.   <p, fp,   and SQ  in  the governing equations. 

rt 

1    o 

U  v. 

V   v. 

w v< 

0 

pdx + dx{V' dx J+ r dAT' dx 
l_d_f   dW_ 

+rde{v' dx 

-LiL 11 H£\ X-H   ^ 
r^r + ^x{V■ dr )+r drl™' dr , 
1  d (   3W\     1   d (  uA    2v, dW + -—\v,— \- ——{v,W)- 
rd9\ ' dr dB 

V V     W 7 
-v„ -s- - v, -75- + + rco   + 2coW 

r2        r2      r 

prd9     dx{r 99J    rdr{ '38 

rde{r  de)    rdr{'    '    rde{r 
W VW    v. dW     v, dV    .   T/ 

r2 r   dr   ' r2 d9 

G-CDe 

-{Cfi-C2e) 

note: G = v, ^ndUY    fdVX    (\dW    V 
^-d7)+{-d7)+[-rl9+7 

dr + dx) +{r d9+ dx) 

'\dV_    dW     W 
+]~rle+~dr~     r 

vt =v + v„v, = CM- 

C„ = 0.09;Co = 1.0;C, = 1.44;C2 = 1.92; a, = 1.0; or, = 1.3 

The value of radial velocity at the external boundary is 
determined from the continuity equation. 
(5) Periodic surfaces; Periodic boundary conitions are 
enforced on the periodic surfaces. 

NUMERICAL SCHEME 

The governing equations are discretized using the 
Finite Volume Method and the hybrid scheme for the 
convective terms in the staggered grid system [8]. The 
scalar variables P, k, e are located at grid node, while 
velocity components are placed between scalar nodes. 
Such a grid system has a benefit of having the velocity at 
the boundaries of the scalar cells where they are needed 
in integrating the convection term. Furthermore, the 
pressure nodes are located on either side of the velocity 
node and it is easy to calculate the pressure gradient term 
in the momentum equations. The final form of the 
discretized equations can be expressed as below [6,7,8]. 

a„<Pp = aN<pN + as(ps + aE<pE + aw<pw + aD0n + at VYU + J«, 

(5) 

The subscript P refers to a grid node to be considered and 
the subscript U, D correspond to the upstream and 
downstream grid points respectively. The neighbouring 
grid point in the section are denoted by N, S, E, W, and 
aN, as, aE, aw etc. represent the diffusion and convection 
coefficients at each corresponding surface of the control 
volume. 

Since the velocity field obtained using the previous 
values of pressure at each iteration does not satisfy the 
continuity equation, they are corrected using the 
corrected values of pressure, which are obtained using the 
continuity equation, i.e. the SIMPLE algorithm [8]. The 
discretized form of pressure correction equation is 
obtained in the form of eq. ( 5 ). 

CALCULATIONS 

Model Propeller 

The developed numerical method is applied to the 
propeller investigated by Hyun [2] and Hyun and Patel 
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[3,4] in the wind-tunnel. The propeller was mounted at 
the stern of an axisymmetric body, which was designed 
modifying the Afterbody 5 of Huang etal. [9]. The total 
length is L=151.61 cm. The diameter of the propeller 
D =2R =10.16 cm, and the hub-tip ratio of the propeller 
is' R,/R,=0.2187. The propeller has three blades, the 
sections of which have NACA-66 thickness distributions. 
It was mounted at x/L=0.9755. The value of the 
freestream velocity and the number of rotations were 
U=16.5 m/s , N=200 rps respectively. The advance ratio 
of° the the propeller / (= ND/U„ ) was 0.812. The 
Reynolds numbers based on the based on the body length 
and the cord length at r/Rp of the propeller blade were 
1.55x10* and 1.44xl05. 

Extensive measurements were carried out at the 
down stream of the propeller using a five hole pitot tube 
and a hot-wire anemometer. Measured data, i.e. mean 
velocity, static pressure, the turbulent kinetic energy, and 
Reynolds stresses, are available for the assesment of the 
present numerical method. 

Grid Generation and Estimation of Inlet Conditions 

Since the propeller operates at the stem, the 
calculation domain should cover the whole field of the 
flow including the body as well as the propeller. 
However, the number of grid point is still limited by the 
computer capacity and the main interest of the present 
study is to simulate the flow near the propeller. The 
computational grid was algebraically generated in the 
limited domain, which is bounded by two neighbouring 

) = - 0.15 at the upstream and blades, the sections of x/D 
of x/D = 6.0 at the downstream locations. The external 
boundary is located at   r/D = 5.5 , which is far enough 

from the propeller. The numbers of grid point were 132, 
40, and 20 in the streamwise, radial, and circumferential 
(blade-to-blade) directions respectively. The finer meshes 
are allocated near the leading and trailing edges, 
propeller tip, and the blade and body surfaces 
considering rapid changes in the velocity fields. The 
generated meshes at the £ =1, 77 =2, and f=l surfaces are 
shown in Fig2. 

Since the inlet section of x/D=-0.l5 locates near 
the propeller, the flow is strongly distorted due to the 
body and propeller interaction. The boundary conditions, 
i.e. the values of each velocity components and the 
turbulent kinetic energy and it's dissipation rate should be 
properly estimated there. The boundary conditions were 
estimated by axisymmetric viscous flow calculation in the 
whole domain including the body and the propeller. The 
interaction of the body and the propeller was taken into 
account in the calculation, assumming the acting 
propeller to be the uniform distribution of momentum 
source corresponding to the propeller thrust. The 
calculated streamwise and radial components of velocity 
at the inlet position with and without the propeller are 
compared with measured values in Figs. 3 and 4. The 
flow near the body is axially accelerated and radially 
inward motion is induced due to the propeller suction 

(a) 

r/D 
A (extended to 5.5) 

-0.15 0.0 0.5   x/D 
(extended to 6) 

(b) 

x/D 

(c) 

Fig.2 Parts of the generated mesh on (a) £ =1.0, 
(b) 77=2.0, (c) C=1.0 planes. 

effect. The streamwise component of velocity are 
reasonably predicted in comparison with measured 
values, except near the tip of the propeller. 

Solutions are assumed to be converged when the 
residual sources of each variables reduce to 1% of the 
reference values, and the converged solution is obtained 
after about 1000 iterations and CPU time of 5.5 hours on 
CRAY-2S supercomputer. 
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Fig.3 Streamwise velocity components at the.inlet with 
and without the propeller. 
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Fig.4 Radial components of velocity at the inlet with 
and without the propeller. 

Fig.5 Calculated and measured[2] circumferentially 
averaged values of pressure coefficient along the 
hub and wake center line. 

Fig.6 Contours of equi-pressure coefficient on the blade 
to blade surface of the hub. 

■ 0.4,0.6 
x/D 

, 0.0 0.2 0.4 

0.6,0.8 

Fig.7 Contours of equi-pressure coefficient on the blade 
to blade surface of r/Rp=0.7. 

RESULTS AND DISCUSSION 

The circumferentially averaged values of the 
pressure coefficient along the hub and the wake center 
line are presented and compared with measured values in 
Fig.5. The pressure at the upstream of the propeller is 
higher than the ambient pressure due to the deceleration 
over the stern and rapidly increses through the propeller. 
The pressure significantly changes over the tail and in 
the the wake. After rapid decrease in pressure due to the 
propeller, the pressure increases again up to the 
stagnation point at the tail. It monotonically recovers to 
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Fig.8 Calculated and measured[2] circumferentially 
averaged profiles of axial velocity compenent. 

x/L=1.3 
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Fig.9 Calculated and measured[2] circumferentially 
averaged profiles of radial velocity compenent. 

the value of the ambient pressure in the wake, however 
the measured values recovers after showing the 
minimum value (Fig.5). The reason of the discrepancy 
is not clear, and the flow acceleration and rotational 
effect of the propeller and hub may be not fully taken into 
accout in the simulation. Figs. 6 and 7 show the pressure 
coefficient distributions in the blade to blade surfaces of 
the hub and r/R =0.7 respectively. The staganation point 
appears near the leading edge of the pressure side. The 
pressure variations over the pressure side are not large 
along the blade. However, there appears strong adverse 
pressure gradient over the suction side. The location of 
the minimum pressure on the suction side moves to the 
trailing edge as the radial distance increases. 

Circumferentially averaged values of mean 
velocities at the downstream of the propeller are 
compared with measured values in Figs. 8, 9 and 10. 
The axial acceleration of the flow due to the propeller is 
observed in the axial velocity profiles at x/L = 0.9835, 
1.0, 1.02 in Fig.8. The axial velocities have their 
maximum values at r/R =0.7, and approaches to the free 

x/I^1.3 

r/Rp 

0.B 

0.4 

0.0 

1.2r    « 

x/L= 0.6835 

.10.0 0.1 0.2 0.3 0.4 
W/Uo 

Fig. 10 Calculated and measured[2] profiles of 
tangential velocity compenent. 

x/L=0.9835 

°'.DTJ      ^01     X>2     ~X)3 
k/Uo"2 

Fig. 11 Calculated and measured[2] circumferentially 
averaged profiles of turbulent kinetic energy. 

stream velocity. At the tail of body, x/L=1.0, a small 
separation region is observed in the prediction. 
Comparison of the predicted with the measured velocity 
profiles shows a reasonable coincidence up to the one 
diameter downstream of the propeller, while there are 
significant discrepancies in the wake. At x/L=l.l and 
1.3, the flow maintains the acceleration effect of the 
propeller and have a peak value in the axial velocity, 
however the prediction does not show this feature at 
near wake. As mentioned befor, it is because the flow 
acceleration and rotational effect of the propeller and hub 
may be not fully taken into accout in the simulation. 
Radial velocitie profile at x/L=0.983 shown in Fig.9 has 
it's maximum values at r/R =0.75. At x/L=0.983 and 1.0, 
the predicted values show good agreement with the 
measured profiles and rapid changes in the radial 
velocity was simulated near the hub. At x/L=1.02 and 
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Fig. 12 Variations of mass and momentum deficit 
parameters. 

1.1, the flows are almost parallel to the axis in the 
calculation, and these are the consistant with the under- 
estimation of the axial velocity profiles. Averaged values 
of swirl velocities are reasonably predicted in the 
comparison with the measured profiles in Fig. 10. The 
prediction of rapid variations of swirl velocity near the 
tip confirms the measurements. The magnitudes of 
circumferential velocity increase from the outside to the 
hub like a free vortex type of flow, however they reduce 
to zero on body surface and the centerline of the wake. 

Averaged turbulence kinetic energy distributions 
are compared with measured profiles in Fig. 11. At the 
just downstream of the propeller, the turbulence kinetic 
energy distribution was nicely calculated and showed it's 
maximum value at the location of the maximum axial 
velocity. This is due to the large value of generation rate 
of the turbulence kinetic energy over this region. 
However, in the downstream of the wake, predicted 
values of the turbulence kinetic energy is considerably 
smaller than those of the measured ones. 

Momentum deficit parameters in the wake are 
important to estimate the propeller thrust and torque. 
Integral parameters for the mass and the momentum 
deficts are defined as follows. 

™ = 7^\>o-U)rär 
UoL' J° 

M„ = 
2%p 

"    UlL2 £v{U0-U)rdr 

fe    U2
nL

2 J° 

(6) 

(7) 

(8) 

The estimated values of these parameters and measureed 
ones are shown in Fig. 12. The mass and axial momentum 
deficts rapidly decrease in the near wake    and are 

LOCATION OF  TRAILING EDGE 

PreSSURE_SIDE/SUCTIDN SIDE 

r/Rp 

(b) 

Fig. 13 Axial velocity distributions at x/L = 0.9835; 
(a) measured [2], (b) calulated values. 

gradually decrease to have asymtotic values in the far 
wake. On the other hand, the circumferential momentum 
generated by the swirlling flow remains constant in the 
wake. The values of the mass and axial momentum 
deficts from the prediction are somewhat higher than 
those of the measurements. This discrepancy is partiallay 
due to the difference between the estimated and measured 
values of the inlet boundary conditions. Over-all 
simulation errors are accumulated in these integral 
parameters. Considering the error in the parameters at the 
inlet location, the prediction error is not so significant. 

Measurements of three-dimensional phase-averaged 
mean velocity field and Reynolds stresses were made 
with a triple sensor hot wire [3,4,5]. They provide the 
true  information   of complexity   of  the   flow   and 
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Fig.l4Vetor plots of cross flow at x/L = 0.9835; 
(a) measured [2], (b) calulated values. 
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Fig. 15 Streamwise velocity contours  at x/L - 0.9835 
in moving pitchline coordinate; 
(a) measured [2], (b) calulated values. 

contribution of local aspects of the flow in the blade 
wake at the intersection of the hub and the blade, and 
near the tip. The calculated and measured.axial velocity 
contours at x/L=0.983 are shown in Fig. 13. 
Measurement shows a vortex-like core with low velocity 
inside near r/R =0.96, which is associated with the 
formation of the tip vortex. The wake of the main span of 
the propeller appears in the region between 75 to 90 
degrees in the phase plane. The location of maximum 
axial velocity was observed on the suction side and was 
indicated by a core of high velocity around 95 degree and 
r/R =0.96, where the propeller was disigned to produce 
maximum circulation. All the aspects of the flow are 
confirmed in the simulation. However, the minimum 
value of the velocity in the tip vortex is 0.85 (the 

measured value was 0.80 ) and the maximum value of the 
velocity in the main core is 0.98 (the measured value was 
1.05). The changes in axial velocity across the blade 
wake observed in the experiment do not appear in the 
calculation. The projection of the velocity vectors are 
presented in Fig. 14. Out side the blade wakes, the radial 
velocity is generally negative. Within the blade wakes, 
the flow direction radially inward on the suction side and 
outward on the pressure side. The simulated trend of 
radial velocity variation is coinside with the 
measurement, however no outward motion on the 
pressure side. The rapid change in circumferential 
velocity across the wake is also confirmed. The swirling 
velocity rapidly reduces near the tip, however the 
formation of the hub and tip vortex do not observed in the 
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Fig.16 Turbulent kinetic energy distributions 
at x/L = 0.9835; (a) measured [2], 
(b) calulated values. 

energy was as high as 0.130 at the maximum load radius 
of the suction surface, where the radial and 
circumferential gradients of mean velocity are large. 
Simulated maximum values is 0.030 at the same location. 
If we remember that the circumferentially averaged 
distribution of kinetic energy was in good agreement with 
measured one in Fig.11, the total kinetic energies 
coinside each other. The layer of turbulent kinetic energy 
was diffused too much across the blade wake in 
comparison with the measured one. 

CONCLUSION 

Three dimensional viscous flow simulation around 
the marine propeller was carried out and compared with 
the available data. The important results and conclusion 
are summarized below. 

1. Comparison between the predicted and the 
measured velocity profiles shows a reasonable 
agreement in the downstream of the propeller, while there 
are significant discrepancies in the near wake. At the just 
downstream of the propeller, the turbulence kinetic 
energy distribution was nicely calculated and showed it's 
maximum value at the location of the maximum axial 
velocity. However, in the downstream of the wake, 
predicted values of the turbulence kinetic energy is 
considerably smaller than those of the measured ones. 

2. A vortex-like core with low velocity inside 
associated with the formation of tip vortex and the 
location of maximum axial velocity on the suction side 
were observed in the simulation. All the aspects of the 
flow were confirmed in the simulation, however not 
quantitatively. 

3. The maximun value of kinetic energy (0.130 in 
measurement) was underpredicted as low as 0.030 at the 
same location. The layer of turbulent kinetic energy was 
diffused too much across the blade wake in comparison 
with the measured one. 
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simulation. Meshes in the study seems not enough to 
have fine resolution. 

Hyun and Patel plotted velocity component in the 
planes perpendicular to the constant pitch surface of the 
propeller, which is to capture the flow structure more 
accurately. Measured and calculated streamline 
components of velocity are shown in Fig. 15. The general 
view of velocity contour shows the shape and the 
thickness of the wake center plane and tip vortex 
formation. Finally turbulent kinetic energy distributions 
are shown in Fig.16. The figure shows that high 
turbulence levels are confined within the blade wake. 
There is large discrepancy between the calcualted and 
measured contours.    The maximun value of   kinetic 
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ABSTRACT 

The paper presents an unsteady nonlinear vor- 
tex lattice method (UNVLM) for calculations of 
propeller hydrodynamic performances, in which the 
shape and rollup of the wake vortex sheet are not 
known as a priori, but determined as part of solu- 
tion by the time-dependent vortex shedding proce- 
dure. Calculations for the performances of a con- 
ventional propeller DTNSRDC-4118 and a highly 
skewed propeller DTNSRDC-4383 are performed by 
this method. The influence of the blade tip vor- 
tex separation upon the performances of propeller is 
investigated. Comparison of these predictions with 
experimental data indicates that the agreement is 
satisfactory. In addition, the time-dependent de- 
formation of shed vortex sheet and its final stable 
geometric shape are also shown clearly. Such in- 
formation may be of practical value in studying the 
geometric shape of free vortex wake and establishing 
a reasonable free vortex wake model. 

NOMENCLATURE 

Normal component of velocity at 
the ith control point, induced by 
the bound vortex ring with unit 
strength circulation around the 
jth. element on the fcth blade, 
also called influence coefficient; 
Influence coefficient of the trailing 
vortex ring Twj on the fcth blade; 
Subscript denoting blade camber 
surfaces; 
Chord length at 0.757?; 
Influence coefficient of the tip or 
leading edge separated vortex ring 

$ 

C0.75R 
„it 

C, 
D 
dk- 

m 
K 
KT,KQ 

L 

M 

MB 

n 
n; 

n 
N 

NB 

Qi 

Qnrr 
R 

S 

T,j on the fcth blade; 
Friction drag coefficient; 
Pressure coefficient; 

so 

t 

T,Q 
u, I 

U 

Leading edge suction coefficient; 
Propeller diameter; 
Influence coefficient of the jth. line 
source element Qj on the fcth blade; 
Camber distribution, see Fig.l; 
Number of propeller blades; 
Thrust and torque coefficients; 
Number of separated vortex rings 
shed from'tip and leading edges, 
or the number of tip separated 
vortex rings without leading edge 

separation; 
Number of trailing vortex rings 
shed from the trailing edge; 
Number of spanwise intervals; 
Normal vector on camber surface; 
Unit normal vector at the ith 
control point; 
Unit normal vector of the nmth 
vortex element; 
Rate of revolution (rps); 
Number of bound vortex rings, 

N = MB xNB; 
Number of chordwise intervals; 
Strength of jth concentrated line 
source representing blade thickness; 
Strength of line source element; 
Blade tip radius (= D/2); 
Hub radius; 
Nondimensional chordwise coordi- 
nate, s = 0 at the leading edge, 
s = 1 at the trailing edge; 
Direction of the chordwise elements 
closest to the leading edge, positive 
towards the leading edge; 
Time variable; 
Thrust and torque; 
Subscripts denoting upper and lower 
sides of blade camber surfaces; 
Local inflow velocity vector under 
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u,-     - 

V        — 

(vm),- - 

V v nm 

xm(r) ■ 

x,y,z ■ 

x,r,6   ■ 

r ■*- nm 

r . 
AAnm 

A!™ 

Ai 
AV; 

MO 

p 

open water condition; 
Inflow velocity at the ith control 

point; 
Total velocity vector; 
Advance velocity; 
Mean value of resultant velocity 
on both sides of the camber surface 

at the ith control point; 
Total velocity at the nmth bound 
vortex element; 
Blade rake, i.e. x-coordinate of 
midchord line; 
Cartesian coordinates fixed on 
the propeller; 
Cylindrical coordinates fixed on 

the propeller; 
Strength of the jth bound 

vortex ring; 
Strength of the Imth spanwise 

vortex element; 
Strength of the nmth bound 

vortex element; 
Strength of the j'th tip or leading 
edge separated vortex ring; 
Strength of jth trailing vortex ring; 
Area of the nmth bound vortex ring; 
Blade index, 5k = 2ir(k - 1)/K, 

fc = 1,2,...,K; 
Length of the nmth bound vortex or 
source element; 
Time increment; 
Tangential velocity jump across 
the camber surface; 
Skew angle, i.e. angular coordinate 
of midchord line as measured from 

y-axis; 
■ Density of fluid; 
■ Velocity potential; 
■ Angular speed of propeller, 

ft = 27rn; 

1. INTRODUCTION 

The effect of highly skewed propellers on reduc- 
ing vibration forces and noise has been recognized 
and accepted by people gradually since 1960's. In- 
vestigations on the hydrodynamic performances of 
highly skewed propeller and its application to large 
or high speed ships have attracted growing atten- 
tion of researchers in the world with the rapid in- 
crease in ship size and engine power and the de- 
velopment of computer techniques. However, the 
problems related to the hydrodynamic performances 
and strength analysis of highly skewed propeller are 
more complicated than conventional one due to its 

particular geometrical contour, so the further im- 
provement on propeller theory is required, which 
promotes the development of propeller theory to a 

certain extent. 

Two numerical lifting surface approaches have 
been developed and widely used in the predictions 
of hydrodynamic performances of the propeller, i.e. 
the mode function method and the discrete vortex 
lattice method. Recently much attention has been 
paid to the panel method to improve the accuracy 
of calculating pressure distributions on the propeller 
blades. The common shortcoming of those appro- 
aches is that the nonlinear effects of the wake shape 
are ignored and the geometric shape of free vortex 
wake, namely wake model has to be presumed. Ob- 
viously, it is unreasonable to apply- the same pre- 
sumed wake model to different propeller types and 

loads. 

A new numerical lifting surface method, termed 

as an unsteady nonlinear vortex lattice method (UN- 
VLM), has been developed for calculating the steady 
and unsteady flow about a three-dimensional thin 

wing with or without leading edge separation in the 
field of aerodynamics'1'2). This method has also 
been applied successfully to the hydrodynamic per- 
formance prediction of the ship rudder and theo- 
retical design of additional thrusting fins(3'4). The 

present paper describes how the UNVLM has been 
extended to the calculation of hydrodynamic charac- 
teristics of propeller, in which the shape and rollup 
of the wake vortex sheets are not known as a priori, 
but are determined as part of solution by the time- 
dependent vortex shedding procedure. It is possi- 
ble by using this method that the time-dependent 
deformation of shed vortex sheet and its final sta- 
ble geometric shape are illustrated clearly, and the 
unsteady performances of propeller can be directly 
calculated. This method may also be used to in- 
vestigate the dynamic characteristics of propellers 
at short start and stop conditions, and to consider 
problems of the tip and leading edge or only tip edge 
vortex separations on the propeller blades, provided 
that the location of the separating line and the vor- 
tex strength of the separation are specified in ad- 

vance. 

In present study, calculations for hydrodynamic 
performances of a conventional propeller DTNSR- 
DC-4118 and a highly skewed propeller DTNSRDC- 
4383 with 72-degree skew angle are performed by 
UNVLM, in which two cases are investigated: one is 
under the condition of the attached flow, the other is 
the steady flow with tip separation on the propeller 
blades. The influence of tip separation on propeller 
performances is shown.    Comparison of calculated 
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results with experimental data indicates that the 

agreement is satisfactory. 

2. BLADE GEOMETRY AND SINGU- 
LARITY ARRANGEMENTS^ 

2.1 Blade Geometry 

Fig.l Coordinate system and blade 
geometry notation 

As shown in Fig.l the Cartesian coordinate sys- 
tem O - xyz for the expression of blade geometry 
is fixed on the propeller, with x- axis defined as 
positive downstream, y-axis located on the reference 
line of a specified blade, and z-axis directed by right 

hand rule. To facilitate computation, a cylindrical 
coordinate system O - xr6 is defined in the usual 
way, with the angle 0 measured clockwise from y- 
axis when viewed in the positive direction of j-axis, 
and the radial coordinate r given by r = y/y2 +z2. 
The correlation between the two coordinate systems 

is as follows: 

x = x 
y = r cos 9 
z = r sin 6 
6 = tan-1 (z/y) 

(1) 

The expressions of blade camber surface are derived 

f xc{r) = xm(r) + C(r){s - |)sinV(r) 
—f(s) cos tp(r) 

0c(r) = 0m(r) + C(r)(s - \) cos <?(r)/r 
+f(s) sin <p(r)/r + 6k 

yc{r) =rcos9c{r) 
zc(r) =rsinöc(r) 

(2) 

2.2 Blade Singularity Arrangement 

A continuous distribution of sources and vor- 
tices representing blade thickness and loading is re- 
placed by a set of discrete line source and vortex ring 

elements of constant strength with endpoints of each 
element located on the camber surface. The radial 
interval from the hub, rH, to the tip, R, is divided 
into MB equal intervals, with the chordwise jortex 
elements forming vortex rings located at radii: 

= rH +{R -rH) 
Am — 3 

4MB +2 
a = l,2,...,MB+l     (3) 

The intersections of the spanwise vortex ele- 

ments forming vortex rings or the discrete spanwise 
line source elements and chordwise vortex elements 

can be written as: 

NB 

n = 1,2,...,NB (4) 

The control point is chosen at the center of vortex 
ring, i.e. the mid-point of the line joining (sn+i,pm) 

and (3n+i,pm+i), where the boundary condition, 
i.e. the total normal velocity of the flow should be 
zero on the camber surface, is satisfied. 

3. MATHEMATICAL DESCRIPTION 
OF THE METHOD AND CALCU- 
LATIONAL PROCEDURE 

The UNVLM applied in the present paper is 
based on the potential flow theory. Bound vortex 
rings are placed on the lifting surface, and the free 
vortices are time-dependently shed from the edges 
of lifting surface (the trailing edge, tip or leading 
edge of the propeller blades). The geometric shapes 
of free vortex wake are unknown as a priori, but 
determined as part of solution. The fluid viscous 
effect is represented by tip or leading edge vortex 

separations. 
Assume that the flow is incompressible, irrota- 

tional, and homogeneous in the fluid domain exclud- 
ing the propeller blades and their wakes. A velocity 
potential exists and satisfies the continuity equation 

A$ = 0 (5) 

and is subjected to the following boundary condi- 

tions: 
1). The radiant condition. 

The induced velocity of the propellers decays far 
from the blade, everywhere except near the wakes, 

that is 
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when \r\ -» oo, V$ = 0 (6) 

2). Tangency condition on the camber surface. 
The total normal velocity of flow should be equ- 

al to zero on the camber surface, i.e. 

V ■ n = 0,     or    n • (V$ + U) = 0 (7) 

The local inflow velocity vector under the open water 
condition, U, is written as 

U = Vi+flxr (8) 

3). The Kutta Condition. 
At the trailing edges and at tip and leading 

edges where free vortex separations exist, the Kutta 

condition should be satisfied. 

V$ < oo 

4). Kelvin's theorem of circulation conversion. 

DT 
At any time step 

Dt 
0 

(9) 

(10) 

5). The pressure difference between upper and lower 
surfaces of free vortex wake sheets is equal to zero, 

that is 
ACD 0 (11) 

To model the viscous effects of separated flow 
properly, both the location of the separating line and 
the vortex strength of the tip and leading edge sepa- 
ration have to be provided in advance. Usually this 
is done by experiments, flow visualization technique 
or the theoretical calculation of the viscous flow. 

Two cases are investigated in this paper. One is 
that free vortex sheets are shed only from the trail- 
ing edges of blades, which are composed of trailing 
vortex rings, the other is that bound vortex sheets 
are separated at the tip edges and convected down 
in the trailing wake, forming into a set of tip edge 
separated vortex rings in addition to trailing vortex 
rings. Both of them are referred to free vortex rings, 
the strengths of which are determined by those of the 
adjacent bound vortex rings at previous time step. 

As the above-mentioned numerical model 
of combined vortex rings and source lines has been 
established, the equation (5) and its boundary con- 
ditions, except (7), are satisfied automatically. Ac- 
cording to (7) a set of linear algebraic equations is 
obtained to determine the strength of bound circu- 
lation: 

[Aij] 

n 

■fj + [Bij) 

Twi 

v   . + [Cij] 

r,i 

r.,- 

Qi 

+ [Dtj] Q, 

QN 

= -U, • n, (12) 

where the values of Twj and T3j are known from 
those of adjacent bound vortex rings at previous 
time step, and 

K 

Aij = £«&. 
*=i 

K 

Bij = £>?;. 
t=i 
K 

Cri = £<?;. 
*=i 

K 

D,j = £4- 
Because the blade shape is not varying during 

whole computation procedure, the coefficients A{j 

and Dij are both constant and their calculations are 
performed only once. The calculational effort of Bij 
and Cij increases with time as the number of free 
vortex elements grows. This must be performed at 
each time step since wake rollup changes the geom- 
etry involved in its induced velocity calculations. 

Move all known terms of equation (12) to the 
right side of equation, the linear equations used to 
determine bound circulations are derived as 

N M 

7 y 
Aij?fj = - Uj • n, - 2_^ BijTwj - 2_^ Cij^sj 

:=i 3=1 1=1 

N 

J2D>iQi        i = l,2,...,N     (13) 
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As soon as the unknown strengths of vortex 
rings Tfj are obtained at each time step, the down- 
wash at each vortex edge location (u,v,w)i (i.e. the 
nodal points of all the free vortex rings) is calculated 

by the following equation: 

(u,v,w)i = [Awij] 

/i 

■fi 

■fN 

+ [Bwij] 

Twi 

vM J 

+{CV 

r.i 

Lr3 

+ [D "JiJJ 

Qi 

Qi 

LQ N •> 

+ Ui (14) 

The new location of the free vortex nodes for 
the next time step r; = (x,j/,z); is then determined 

by 

n(x,y,z,t + At) 

= {u,v,w)i-At + Ti(x,y,z,t)       (15) 

where Awij, Bwij, Cwij and Dwij are the influence 
coefficients of the bound vortex ring, trailing vortex 
ring, tip or leading-edge separated vortex ring and 
line source element on each free vortex node respec- 

tively. 
To demonstrate the calculational procedure of 

propeller open water characteristics, it is assumed 
that at t = t0 the propeller starts impulsively from 
rest to steady advance velocity V^ and rate of rev- 
olution n, and no free vortex rings exist at the mo- 
ment. Once the bound vortex strengths are solved, 
a time increment At is added and a new raw of free 
vortex rings are shed. The shedding procedure was 
illustrated in detail in reference (3). 

The time increment At is prescribed as: 

At 
■'O.TSR 

0.757T NBnD 
(16) 

where C0-75R/NB is the chordwise length of an ele- 
ment at 0.75i?. 

4. CALCULATIONS OF HYDRO- 
DYNAMIC FORCES 

Once the strengths of bound vortex rings are 
obtained, the forces acting on the propeller blades 
can be calculated, which consist of the potential 
forces and viscous forces. 

4.1 Potential Forces 

The potential forces acting on the propeller bla- 
des are composed of following three parts: 
1).   Kutta-Joukowsky force acting on the spanwise 
and chordwise vortex elements. 

6T«m = PAlnm\nm x rnn (17) 

It should be noted that Tnm denotes the array of 
discrete chordwise and spanwise vortex elements^5' 
which are different from the value of bound vortex 
rings Tfj, but can be obtained from the latter easily. 
2). The Lagally force acting on the line source ele- 
ments. 

SFi -pL\lnmLJnm Vn (18) 

3). The force proportional to the time rate of the 
change of the velocity potential, which may be eval- 
uated in the following way: 

6Km =pnnm-(£r?m)AAnm dt 
i=i 

pnnm—(r/[(m_1)WB+n])AAnm   (19) 
at 

4.2 Viscous Force 

5Km -pCfAAnm\Vnm\Vnm (20) 

The increase in viscous resistance under off-de- 
sign conditions is properly balanced by deducting 
1/3 of leading-edge suction force from total force. 
The leading-edge suction force can be calculated as 

follows: 

SF'lm = -7rpC2
sArlm-s0 

where C, is defined as 

CJ — 2^im(v^ir 

(21) 

(22) 

with Sim and sam representing the coordinates of the 
ends of the first chordwise interval on the leading 
edge, and TJm is the strength of the first discrete 
spanwise vortex element"). 
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To sum up, the x, 6, and r components of the 
hydrodynamic forces acting on the propeller can be 

expressed as follows: 

K   MB    NB 

F„e,r = E E [E(*F- + *F™ + *F- 
k=l m—\    n=l 

+ *FL)-^FIm]        (23) 

The propeller thrust and torque can be written re- 

spectively as 

K    MB     NB 

i=l m=l   n=l 

+6FF
nm)-\sFl 

K    MB     NB 

Q = EE[Eä + ^ + ^ 
Jfc=l m=l   n=l 

+ SF^m)fTe
nm 

-hsF{m),-rlm] 

(24) 

(25) 

The coefficients of propeller thrust and torque 
are then respectively: 

Kn 
pn 2£)4 KQ = 

Q 
pn 2 £)5 

To understand the difference caused by various 
numerical approaches, calculations of above men- 
tioned potential forces also are performed by inte- 
grating pressure distribution. The computational 
points of the pressure are defined at the control po- 
ints on the propeller camber surface. The pressure 

jump across the surface of blade may be obtained 
from the unsteady Bernoulli's equation as following: 

APi = (P«)i-(P/),- 

Noting that 

-ip(Va.V„-VrV,), 

(*„ - $;). = !>,■ 

(26) 

V._ 

V, = V. 

Vm + -AV 

:AV, 

AP. = -P&fi ~ P(V- • AV)- (27) at 

where (Vm); is the vector sum of the inflow velocity 
and the velocities induced by vortex rings and line 

source elements. 
Then the potential force will be 

SFf =-APiAA,--n!- (28) 

Similarly the expressions of thrust and torque 
of the propeller can be derived as follows: 

K    MB XNB 

E[ E »f 
*=1        i=l 

MB    NB 

+ E(E*»» + iÄF!»)J, (29) 
m=l   n=l 

K     MB XNB 

Q = E{ E (*?w 
MB     NB 

+ E[I>FLv^ 
= 1    n=l 

+ |(ÄFJm)»Tfm]} (30) 

5. EXAMPLES AND RESULTS 

Calculations are performed by UNVLM without 
and with tip vortex separations for a conventional 
propeller DTNSRDC-4118 and a highly skewed pro- 
peller DTNSRDC-4383 with 72° skew angle to verify 
the present method. The corresponding calculated 
results are shown in Tab.l and Tab.2. 

Table 1 Results for DTNSRDC-4118 

J 0.833 0.500 

Formulas (24),(25) (29),(30) (24),(25) (29),(30) 

Case 1 
KT 0.149 0.145 0.260 0.244 

KQ 0.0272 0.0272 0.0396 0.0400 

Case 2 
KT 0.153 0.140 0.283 0.265 

KQ 0.0279 0.0278 0.0438 0.0440 

the pressure jump can be rewritten as: 
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Table 2 Results for DTNSRDC-4383 

J 0.889 0.600 0.470 

Formulas (24),(25) (29),(30) (24),(25) (29),(30) (24),(25) (29),(30) 

Casel 
KT 0.239 0.227 0.360 0.321 0.412 0.357 

KQ 0.0474 0.0474 0.0614 0.0610 0.0663 0.0655 

Case 2 
KT 0.362 0.321 0.422 0.363 

KQ 0.0620 0.0610 0.0687 0.0678 

Notes:  Case 1 — Without tip separation 
Case 2 — With tip separation 

The comparisons between calculated results for 
the open water characteristics under the condition 
of tip separation and the existing experimental data 
are shown in Fig.2 and Fig.3 for propellers DTNSR- 
DC 4118 and 4383 respectively. 

Fig.4 indicates the transient KT and KQ for 
the propeller DTNSRDC-4118 at J=0.833 under the 
conditions without and with tip separations. 

Fig.5 shows comparisons of the results by two 
ways of calculating forces mentioned above for the 
DTNSRDC-4383 at J = 0.6. 

The variations of the geometric shape of the free 
vortex sheets at time step t = t0 + lOAt, t0 + 30At, 
and t0 + 60At for DTNSRDC-4118 at J = 0.833 
under condition without tip separation are shown in 

Figs. 6, 7, and 8. 
Fig.9 shows the shape and rollup of the wake 

vortex sheet at time step t = t0 + 40At for the 
DTNSRDC-4118 propeller at J = 0.833 under con- 
dition with tip separation. 

0.8 

0.7 

0.6 

0.0 

DTNSRDC   PROPELLER   4118 

   Experimental   data 

ooooo   (24).(25) 
xxxxx    (29),(30) 

1.0 0.4       0.5       0.6       0.7       0.8       0.9 
Advance   Coefficient   (J) 

Fig.2 Comparison of open-water characteristics 
for propeller DTNSRDC-4118 

0.9 

0.7 

,0.6 

O 
0.5 

«a 
0.4 

0.3 

0.2 

0.1 

DTNSRDC  PROPELLER  4383 

   Experimental  data 

l   l   M   i   i   i   I   l   i  i   i   I   i   i  i   i   M   i   i   '  I   '  '   •  >  l   '   '   ' 
0.3       0.4       0.5       0.6       0.7       0.8       0.9       1.0 

Advance   Coefficient   (J) 

Fig.3 Comparison of open-water characteristics 
for propeller DTNSRDC-4383 (72° skew) 

KT,10KQ 

With Tip Separation 
Without Tip Separation 

0.0 

lOKr 

10        20        30        40        50        60 
Time Step 

Fig.4 Variation of KT and KQ with 
time when impulsively started 
(DTNSRDC-4118, J ^ 0.833) 
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KT,10KQ 

1.8 

0.0 

Kutta-Joukowski Theorem 
Pressure Integration 

10        20        30 40 
Time Step 

50 60 

Fig.5 Variation of KT and KQ with 
time when impulsively started 
(DTNSRDC-4383, J = 0.6) 

Fig.8 Geometric shape of free vortex 
wake (DTNSRDC-4118, J = 0.833, 

t = t0+ 60Ai) 

Fig.6 Geometric shape of free vortex 
wake (DTNSRDC-4118, J = 0.833, 

t = t0 + 10Ai) 

Fig.7 Geometric shape of free vortex 
wake (DTNSRDC-4118, J = 0.833, 

t = t0 + 30Ai) 

Fig.9 Geometric shape of free vortex 
wake (DTNSRDC-4118, J = 0.833, 

t = t0 + 40At) 

6. CONCLUSIONS 

1. UNVLM is a valuable tool for predictions of 
propeller hydrodynamic performances. It may 
be applied not only to predictions of both stea- 
dy and unsteady performances, but also to in- 
vestigations on the dynamic variation perfor- 

mances of the propeller at short start and stop 

conditions. 

2. This numerical method provides a good way to 
analyse the influence of the tip and leading edge 
separations. The present results show that val- 
ues of KT and KQ increase slightly, when tip 
vortex separation is taken into consideration. 
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However, the influence on the skewed propeller 
DTNSRDC-4383 is smaller than on the conven- 
tional propeller DTNSRDC-4118, especially at 
low advance coefficient J. Further research is 
needed for the explanation of this phenomenon. 

The calculated results indicate that the influ- 
ence of tip separation on values of Kf and KQ 

of DTNSRDC-4118 propeller is significant at 
J = 0.5. The KT and KQ are still a little lower 
than experimental data, even though the tip 
vortex separation is taken into account. That 
means it may be necessary to consider the lead- 
ing edge separation for this case. Anyhow, the 
computational program provided in the present 
paper can be used to study the leading-edge sep- 
aration problem, which will be conducted later 

on. 

3. The present results show that the prediction ac- 
curacy of open water characteristics for highly 
skewed propellers is improved considerably by 

using UNVLM. 
4. The geometric shape of free vortex sheets and 

their variation in the shedding process are illus- 
trated in the present paper. Such information 
may be of practice value in measuring and ana- 
lyzing the structure and geometric shape of the 
free vortex wake, and then in establishing a ra- 
tional wake model. 

5. As a time-dependent wake shedding and rollup 
numerical procedure is applied, it can be imag- 
ined that the UNVLM needs more computer 
time than the traditional lifting-surface meth- 
ods. That means, frankly speaking, it can not 
be considered very worthwhile applying the me- 
thod only to the prediction of open water char- 
acteristics of propellers. However, as mentioned 
above, this numerical method provides a possi- 
bility to investigate some problems related to 
propellers, such as tip and leading edge sepa- 
rations, unsteady performances of propeller at 
start and stop conditions etc., for which other 
methods could do nothing. Thus, it is expected 
that the UNVLM will be an important part in 
the development of propeller theories. 

REFERENCES 

1. Kandil, 0. A., Mook, D. T., and Nayfey, A. 

H., "Nonlinear Prediction of the Aerodynamic 
Loads on Lifting Surfaces", Journal of Aircraft. 
Vol.13, Jan. 1976, pp.22-28. 

2. Katz, J., "Lateral Aerodynamics of Delta 
Wings with Leading Edge Separation", AIAA 
Journal. Vol.22, No.3, 1984, pp.323-328. 

3. Wang Guoqiang and Zhang Tianfeng, "A Non- 

linear Vortex Lattice Method for Calculating 
Hydrodynamic Forces of Rudder with Tip Edge 
Separation", The IMAEM'87, IV Congress, 
Varna, Bulgaria, 1987, pp.23-1-23-7; also 
Journal of Shipbuilding of China. No.97, 1987, 

pp.14-21. 
4. Wang Guoqiang and Zhang Tianfeng, "Design 

of Additional Thrusting Fin with Nonlin- 
ear Vortex Lattice Method", The PRADS'87, 
Trondheim, Norway, 1987, pp.202-210. 

5. Wang Guoqiang and Hu Shougen, "Improve- 
ment of Prediction Method for Propeller Char- 
acteristics and Blade Pressure Distribution", 
Selected Paper of CSNAME. Vol.3, 1988, pp. 
135-151; also Journal of Shipbuilding of China, 

No.100, 1988, pp.22-35. 

791 



Pressure Distribution and Blade Stress 
on a Highly Skewed Propeller 

Y. Ukon (Ship Research Institute, Japan), 
H. Yuasa (Mitsubishi Engineering and Ship Building Co., Ltd., Japan) 

ABSTRACT 

This paper describes the extensive investigations on 
pressure and stress on the blade of a highly skewed 
propeller of the "Seiun-Maru". The measurement of 
pressure distribution on the blades of propeller models 
working in uniform flow and non-uniform flow behind 
wire mesh screen and the measurement of pressure 
distribution and stress on the propeller blades of the highly 
skewed propeller in full scale were performed. These 
were carried out on a conventional propeller as well, of 
which various full scale measurements have been 
conducted. On the highly skewed propeller, complicated 
and peculiar phenomena in the pressure measurements 
were found, which could not be predicted by the existing 
theory. Furthermore, the measurement of blade stress was 
performed on the highly skewed propeller working behind 
the complete ship model with flow liners in the cavitation 
tunnel. The measurements on the model corresponded 
well with those on the full scale. 

The present measurements indicated that there still 
remain some problems to be improved on propeller 
theories particularly for a highly skewed propeller. 

NOMENCLATURE 

D 
E 
J 

JS.T 

n 

Pi 
Pv 
P. 
Q 
T 
V 
w 
e 
e 

On 

P 

Pressure coefficient = (Pj-PJ/VWD2 

Propeller diameter 
Young's modulus, Modulus of elasticity 
Advance ratio = V/nD 
Torque coefficient = Q/pn2D5 

Thrust coefficient = T/pn2D" 
Revolution rate of propeller 
Pressure at center of propeller shaft 
Local pressure on propeller blade 
Vapor pressure 
Reference pressure at infinity 
Torque 
Thrust 
Advance velocity 
Wake fraction 
Strain 
Angular position of propeller blade (Zero 
deg = 12 o'clock, positive to clockwise, 
looking forward) 
Non-dimensionalized    Stress     = 
eE/pn2DzKT 
Cavitation number = (P^-PJ/ViprfD2 

Density of water 

1. INTRODUCTION 

Recently highly skewed propellers, HSP in short, 
are often utilized for various kinds of ships. It is well 
known that this type of propeller reduces not only ship 
hull vibration and noise remarkably but also fuel 
consumption in some cases. The hydrodynamic 
characteristics of HSP, however, have not been fully 
understood yet, unlike those of a conventional propeller, 
CP in short. To highlight the difference of hydrodynamic 
aspects between them clearly, a comparison of the 
pressure distribution on the blades of two kinds of 
propeller models was made in detail, because cavitation 
occurrence depends on the pressure distribution and FEM 
(Finite Element Method) analysis for propeller strength 
employs it as input data. For this purpose, a sophisticated 
technique to measure the pressure distribution on the 
blades of a propeller model was newly developed. The 
pressure measurement was performed on two kinds of 
propeller models working in uniform flow and non- 
uniform flow generated by wire mesh screen at the SRI 
(Ship Research Institute) large cavitation tunnel. In this 
paper, the pressure distribution especially on HSP is 
discussed comparing the measurements with the 
calculation by an existing propeller theory. 

The progress of numerical techniques such as 
propeller lifting surface theory [1,2,3], lifting body theory 
[4,5] and CFD [6] to calculate propeller performance is so 
remarkable that some of them are applied to the design of 
marine propellers effectively. In order to evaluate newly 
developed numerical techniques, experimental data at high 
Reynolds number play an important role. It has been 
indirectly confirmed only by measuring ship speed, power, 
thrust, torque and others at sea trials or full scale 
measurement whether propeller theories can predict the 
pressure distribution or cavitation extent with sufficient 
accuracy. Comparing with thrust and torque, pressure 
distribution is of more microscopic quantity and most 
suitable for the evaluation of theory in detail. According 
to the recent development of measuring instruments, more 
precise pressure measurement has been carried out on the 
blade of propeller models working in non-uniform flow. 
The measured data on the pressure distribution of a full 
scale propeller for a merchant ship have not been 
published at all. An exceptional example was presented 
by Allison [7]. He carried out the measurement of both 
pressure and blade stress on the surface propellers of the 
SES-100B at speeds up to 85 kts. 

Lately, it is reported that 6 % of installed HSP 
have been broken or bent in the vicinity of the tip. 
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According to the report, the break-off of the propeller tip 
was caused by rapid fatigue crack growth even in ahead 
conditions. Then, a research program was proposed to 
measure the pressure distribution and the blade stress near 
the propeller tip on the blades of CP and HSP. The 
research project SR206 included the measurement of 
three-dimensional wake distribution by Tracer/Multi-TV- 
Camera method [8] as a two-years program from 1989 to 
1990 Simultaneously the wake measurement by LD\ 
was performed in 1989 [9]. In these measurements, a 
training ship "Seiun-Maru" was employed, which is 
operated by the Institute for Sea Training, Ministry ot 
Transport. On this ship, the measurements of hull surface 
pressure and cavity thickness on both propellers, and blade 
stress at the root of HSP were conducted in 1982 [1UJ. 
The measurement of pressure distribution and blade stress 
on the blades of two full scale propellers was charged by 
three organazations. The Ship Research Institute has 
already measured the pressure distribution on propeller 
models in a cavitation tunnel [11,4]. ALM (Atashima 
Laboratory, Mitsui Eng. & Ship Building Co. Ltd.) has 
experienced to measure the blade stress of a CPP at full 
scale [12] and Nakashima Propeller Co. Ltd. has advanced 
techniques and experts to manufacture propellers. 

In the present research project, the blade stress 
measurement on the HSP model was also performed using 
a complete ship model of the Seiun-Maru in the SRI 
cavitation tunnel. In this measurement, not only the 
estimated wake distribution by the flow liners [13] but also 
cavitation pattern were simulated. The blade stress and 
cavitation pattern on the model were compared with the 
full scale measurements. 

2      MEASUREMENT     OF     PRESSURE     ON 
PROPELLER MODEL 

2.1. Recent Progress of Pressure Measurement 

Pressure on a propeller blade is one of the most 
important parameters not only to characterize the 
performance of a propeller but also to evaluate propeller 
theory Several researchers have proposed the 
measurement techniques of blade pressure on propeller 
models together with the development of miniature 
pressure transducers. 

One of them was to fit pressure gauges 
flush-mounted to the blade surface directly. Takei [11] 
measured the pressure distribution on a model propeller 
working not only in uniform flow but non-uniform flow. 
Takahashi [14] and Vermissen [15] also earned out the 
measurement of pressure distribution by this type of 
method. .     „.„,,        .     ,     A Recently Jessup [16] and Ling [17] have developed 
a new technique to measure at numerous pressure taps on 
the blade surface through connecting channels to the 
pressure gauge with sequential plugging and unplugging of 
holes. This technique can not be applied to the 
measurement in non-uniform flow. 

Koyama [4] measured the pressure distribution on 
a propeller model with rather thick blades by using the 
pressure pick-ups with Helmholtz cavity chamber. The 
pressure transducers were embedded on the surface 
opposite to the surface where the pressure distribution is 
to be measured. These transducers were fitted to the 
propeller blades, to make Helmholtz cavity chambers. 
The major advantages of this type of pressure pick-ups are 
the ability to measure unsteady pressure with high 
accuracy, without disruption to the measuring blade 
surface and even under cavitating conditions. 

2.2. Measurement Technique 

Tested Propellers 

In this paper, three propeller models were used. 
The principal particulars of the model propellers are given 
in Table 1. The pressure distribution measurement was 
carried out using 400 mm diameter propellers, MP No. 
251 and 252, not only in uniform flow but in non-uniform 
flow generated by wire mesh screen, while the blade stress 
was measured using about 221 mm diameter propeller, 
MP No 323, in non-uniform flow behind a complete ship 
model of the Seiun-Maru written in the following section. 
The principal particulars of the ship model are given in 
Table 2. Both measurements were conducted in the SRI 
large cavitation tunnel. 

Pressure Pick-up 

In the present measurement, pressure transducers 
(Sankei Eng. P303-1S) were used, whose specifications 

Table 1 Principal Particulars of Model Propellers 

Type CP HSP 

Model Propeller No. 251 323 252 

Diameter [m] 0.400 0.22095 0.400 

Pitch Ratio at 0.R 0.950 0.944 

Expanded Area Ratio 0.650 0.700 

Boss Ratio 0.1972 

Number of Blades 5 

Blade Thickness Ratio 0.0442 0.0496 

Mean Blade Width Ratio 0.2465 0.2739 

Skew Angle [deg] 10.5 45 

Rake Angle [deg] 6.0 -3.03 

Blade Section MAU Modified SRI-B 

Material Anodized Aluminum 

Direction of Rotation Right 

Table 2 Principal Particulars of Model Ship 

M. S. No. 500 

Length bet. P.P. [m] 6.444 

Breadth [m] 0.984 

Depth [m] 0.491 

Draft [m] 0.356 

CBH 0.577 

Material Wood 

Table 3          Specification of Pressure Gauge for Model 
Propeller   

Type 

Capacity 

Resp. Freq. 

Output Voltage 

Non-linearity 

Repeatability 

Bridge Voltage 

P303-1S 

±lkg/cm2 

7kHz 

50mV/6VFS 

0.5% FS 

0.2% FS 

6VDC(8VDCmax) 
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are shown in Table 3 and the same installations of the 
pressure transducers were adopted in earlier measurement 
[4]. The measured pressure values in some places, 
however, were unfavorably affected by the stress due to 
the deformation of propeller blades. In order to remove 
such a detrimental effect, a special care was taken on the 
attachment of pressure transducers to the blade. These 
were supported by soft adhesive filler to isolate the 
pressure gauges from blade stress. Fig. 1 shows the 
improved attachment to measure the pressure on a 
propeller blade without any effects from blade stress and 
deformation. The Heimholte cavity chamber was filled 
with silicone sealant whose viscosity was 10 cs. 

In order to check this newly developed attachment, 
the following test was performed. The pressure taps were 
covered with a rigid metallic tap and tiny amount of air 
was supplied into the cavity chamber. By sealing off the 
pressure pick-ups from the surrounding pressure, the 
output of pressure transducers was checked. If a pressure 
pick-up was affected by blade stress, the output of the 
pressure transducer should change during the revolution of 
propeller model. Little influence was found for most of 
pressure pick-ups under the respective experimental 
conditions. A few of them were slightly affected by the 
propeller loading. Corrections to the measured pressure 
coefficients for them were made by subtracting those due 
to loading which were obtained by this procedure. This 
correction, however, amounted so small that this was less 
than the corresponding errors of the measurements. 

For both propellers, the pressure pick-ups were 
arranged mainly along 0.7 R (radius) as well as 40 %C 
(chord length) from the leading-edge. The arrangement of 
the pick-ups for each propeller is shown in Table 4. 
Eighteen and Seventeen pressure pick-ups were installed 
for CP and HSP, respectively. A few of them were 
provided at geometrically similar positions to evaluate the 
reliability of measurement. In order to examine whether 
the present pressure pick-up can measure unsteady 
pressure significantly, the response of the pressure 
pick-ups was examined using an underwater speaker which 
emits sinusoidal pressure at the frequencies from 100 Hz 
to 1 kHz. In the frequency range from 100 Hz to 700 Hz, 
the decay of the transferred pressure amplitude was within 
3 dB and no shift of the phase was observed. From the 
measurement in uniform flow, the response of the pressure 
pick-ups can be also estimated from the static pressure 
variation during rotation. 

silicon oil 

Measurement Procedure 

The measurements were performed in the No. 1 
working section of the SRI large cavitation tunnel. The 
capacity of ä dynamometer for thrust and torque was 200 
kg and 10 kg-m, respectively. Pressure signals from the 
gauges were transmitted through 6 ch. wired FM 
telemeter. Calibrations were conducted in the cavitation 
tunnel not only by varying the static pressure in the range 
of 80 mmHg with keeping the tunnel water velocity and 
the propeller shaft speed at zero but also by turning the 
propeller very slowly, i.e., 0.1 rps. These calibrations 
were done before and after each set of runs at given six 
pressure pick-up locations. The accuracy of the present 
calibration was expected within ±0.2 mmHg and the 
accuracy of measurement was enhanced by such frequent 
calibrations. The calibration factor varied little throughout 
the experiments. 

The present measurements were made at three 
revolution rates of propeller, those were, 3.63, 6.63 and 
8.00 rps. To determine the measurement condition, the 
respective propeller characteristics were measured in the 
cavitation tunnel and the correction of wall effect was 
made [18]. The corrected curves of propeller 
characteristics on thrust and torque agree well with the 
results of propeller open water test in a towing tank as 
shown in Fig. 2. For the measurement in uniform flow, 
the tested advance coefficients were 0.50, 0.60, 0.70 and 
0.90, based on the thrust identity method. 

The measurement conditions in non-uniform flow 
for CP and HSP were KT=0.207 and 0.201, respectively. 
These conditions were determined by the reading of thrust 
meter equipped to the Seiun-Maru in the full scale 

Table 4 

(a)CP 

Arrangement of Pressure Gauge on Model 
Propeller 

(b)HSP 

unit: m/m 
Fig. 1 Newly    Developed    Helmholtz    Cavity 

Chamber and Pressure Gauge 

chord-wise 
position 

side of 
blade 

radial position 

0.5R 0.7R 0.9R 

10% 
back 
face 

* 
* 

25% 
back 
face 

* 

40% 
back 
face 

* 
* * 

* 
* 

60% 
back 
face 

* 

80% 
back 
face 

* 
* 

chord-wise 
position 

side of 
blade 

radial position 

0.5R 0.7R 0.9R 

10% 
back 
face 

* 
* 

17.5% 
back 
face 

* 

25% 
back 
face 

* 

40% 
back 
face 

* 
* 

* 
* 

* 
* 

60% 
back 
face 

* 

70% 
back 
face 

* 

80% 
back 
face 

* 
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measurement in 1982 and corresponded to 163 rpm of the 
engine. The simulated wake from the estimated one of the 
Seiun-Maru by wire mesh screen is shown in Fig. 3. 

2.3. Measurements in Uniform Flow 

The measured pressure in the chordwise and radial 
directions in uniform flow for CP at advance ratio J=0.5 
and 0.7 are shown in Figs. 4 and 5, respectively. The 
present measurements were carried out at three different 
revolution rates of propellers to investigate the Reynolds 
effects except J=0.5. In each figure, the pressure 
distributions computed by an existing lifting surface 
theory, "kernel function expansion method" [1] with the 
"equivalent two-dimensional profile method" [19] are 
demonstrated. The present calculation method of blade 
surface pressure is a kind of "strip theory". The 
hydrodynamically equivalent camber-line at given radial 
positions is computed from three-dimensional upwash 
given by the lifting surface theory. The equivalent 
thickness is given by two-dimensional geometrical offsets. 
Then, the pressure distribution of the equivalent two- 
dimensional wing section can be calculated by Moriya's 
non-linear wing theory [20]. 

Except 3.63 rps, two measurements at higher rate 
of propeller revolution, that is, 6.63 rps and 8.0 rps 

 Exp.at Cavi.Tunnel 
 Do. with Wall Effet Cor 

 Exp. at Towing Tank 

Fig. 2 Propeller Open Water Characteristics 
Mesh Wake 

270' 

Fig. 3 Seiun-Maru Full Scale Wake Distribution 
Simulated by Wire Mesh Method 

agreed well with each other within the measurement error. 
Good agreements between theory and measurement were 
observed at the suction side, while the computed values 
were considerably lower than the experiments at the 
pressure side except near the leading edge. 

The measured results in the chordwise and radial 
directions for HSP are shown in Figs. 6 and 7. Roughly 
speaking, the tendency between theory and experiment on 
the chordwise pressure distributions of HSP was similar to 
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J = 0.500 
r/R. = 0.7 

Chordwise Pressure Distribution on CP in 
Uniform Flow: J=0.5, r/R„=0.7 
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D     ■    8.00 ' 
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Fig. 4 (b)       Chordwise Pressure Distribution on CP in 
Uniform Flow: J=0.7, r/Ro=0.7 
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Fig. 5 
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Radial Pressure Distribution  on  CP in 
Uniform Flow: J=0.5 & 0.7, x/C=0.4 
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those of CP for both suction and pressure sides except the 
propeller tip. From the present measurements, the 
following two interesting findings were obtained. Wavy 
pressure distributions at the suction side for HSP were 
found at each advance ratio. Such distributions were not 
observed in the measurement on CP. With respect to the 
radial pressure distribution at 40 %C position, a good 
correlation between theory and measurement was found 
both on HSP and CP, except near the tip. At the advance 
coefficient 0.5 and 0.6, the pressure on the back side at 
0.9 R was extremely less than the theoretical value, while 
the pressure on the face side at 0.9 R for J=0.9 became 

-2.0 

CP 

-1.0 

Back Face n(rps) Error 
A     A 3.63 I 
O     • 6.63 1 

 Theory 

1.0 

Fig. 6 (a) 

-2.0r 

HSF MP.No.252 

J = 0.500 
r/R.= 0.7 

Chordwise Pressure Distribution on HSP in 
Uniform Flow: J=0.5, r/R„=0.7 
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O    • 6.63 1 
D    ■ 8.00 ■ 

Theory 

1.0 

Fig. 6 (b) 

-2.0 

Cp 

■1.0 

0.0 

Chordwise Pressure Distribution on HSP in 
Uniform Flow: J=0.7, r/Ro=0.7 
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HSP   MPNo.252 

.7 

r/R -*—t r/R 

Fig. 7 

J =0.500 J = 0.700 

Radial Pressure Distribution on HSP in 
Uniform Flow: J=0.5 & 0.7, x/C=0.4 

extremely higher than that given by the theory. 

2.4. Measurements in Non-uniform Flow 

From the evaluation of effects on the pressure 
pick-up due to blade stress by the above-mentioned 
procedure and natural frequency of the pressure pick-up, 
it is expected that the present measurement technique has 
reasonable accuracy for unsteady measurements. 
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In Fig. 8, several measurements of pressure 
variation on the blade of CP are shown during one 
rotation of the propeller in non-uniform flow. At 40 %C 
of 0.5 R, the mean value of pressure coefficient on the 
suction side showed close agreement between 
measurement and theory. Smaller amplitude of the 
measured pressure variation may be caused by laminar 
viscous effect. On the pressure side, good qualitative 
agreements were observed between measurement and 
theory. The present theory overpredicted the pressure 
coefficient as seen in the measurements in uniform flow. 
At 10 %C of 0.7 R, excellent agreements between the 
measured and the computed values were obtained at both 
sides. At 40 %C of 0.7 R and 0.9 R, a similar tendency 
was observed on the correlation between measurement and 
computation to that at 40 %C of 0.5 R. As a common 
tendency in the measurements, negative peak near the 
angular position of zero degrees was smaller than that of 
the theory. With respects to the chordwise pressure 
distributions, the same tendency in the relation between 
experiment and theory was found. 

The measured pressure variation of HSP is 
compared with the computed values in Fig. 9. The 
correlation between theory and experiment were similar 
among 40 %C of 0.5 R and 0.7 R and 10 %C of 0.7 R. 
At 40 %C of 0.9 R, however, extraordinary discrepancy 
between theory and measurement was obtained. The 
theory entirely underpredicted the amplitude of the 
pressure coefficients not only at suction side but also at 
pressure side. 
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2.5. Discussions 

Reynolds Effects 

In the present investigation, the measurements in 
uniform flow were performed at three different shaft 
speeds except at lower advance ratio for the highest 
revolution rate of n=8.0 rps because of the capacity on 
the measurement apparatus. For CP, marked differences 
on the pressure distribution were found at the lowest speed 
from those at other higher speeds. Those were greater 
than the estimated error band. Roughly speaking, at the 
higher velocity, the measured pressure became higher. 
The similar tendency was observed in the measurements 
by Jessup [16]. It might be said that this tendency was 
due to Reynolds effects. For both propellers, little 
influence of propeller revolution rate on the pressure 
distribution could be observed at higher speeds. 

Skew Effects 

Comparing the chordwise pressure distribution 
between CP and HSP, the latter distribution became wavy. 
From flow visualization by oil film method, however, no 
significant difference was observed in the pattern between 
CP and HSP. 

On the radial pressure distribution, the measured 
pressure near the tip of HSP rapidly changed and differed 
from the predicted one except for the case of J=0.7, 
where the propeller operated at the shock free condition. 
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One of the reasons is thought that the pressure tap at 40 
%C of 0.9 R was covered with the vortex generated by 
leading edge separation. 

With respect to the pressure distribution in non- 
uniform flow, both distributions of two propellers showed 
similar behavior, except near the tip. In the vicinity of 
the tip, the negative pressure peak was moderate for CP, 
while that for HSP was extremely sharp. This tendency 
might be also explained by the above-mentioned reason. 

Comparison with Computation 

In the present paper, the pressure distribution was 
computed by using acurrent lifting surface theory. In this 
computation, viscous correction was made using a simple 
method by multiplying an empirical constant with drag 
coefficients for given thickness. A detailed comparison 
between the computation and the measurements on the 
suction side showed the discrepancies that for lower J than 
0.7 the theory predicted lower values in the aft part of the 
chord, while for higher J it did lower values in the fore 
part of the chord. This might be caused by neglecting the 
displacement effect due to boundary layer thickness around 
the blade in the calculation. 

The present theory overpredicted the pressure 
distribution on the face side in most cases. Since the 
other theories [4,5,17] based on a surface pannel method 
presented higher pressure coefficients than the present 
theory did, it is expected that a better agreement could be 
obtained by employing the above-mentioned improved 
theories. For HSP, an existing theory could not 
reasonably predict the pressure distribution not only near 
the tip but also at the angular position around zero 
degrees. The theory which takes account of leading edge 
vortex separation or tip vortex [21] could give us 
breakthrough to predict to flow field around the blades of 
HSP. 

3. MEASUREMENT OF PRESSURE ON FULL 
SCALE PROPELLER 

3.1. Measurement System and Procedure 

Sensor for Full Scale Measurement 

From the view points of full scale measurement, 
the Heimholte chamber method as utilized in the model 
measurement, was also adopted to the present pressure 
measurement. Since less drift of standard pressure and 
robustness against rough treatment were inevitable to a 
pressure transducer for full scale measurement, two kinds 
of strain gauge-type pressure transducers (Kyowa PS-5KB 
and 2KB for CP, and PS-5KB-M306 for HSP) [22] were 
employed for this measurement. 

On the contrary, this pressure gauge has a 
shortcoming that the output voltage is relatively not so 
high. It was, however, judged that the measurement with 
sufficient accuracy would be possible owing to the recent 
rapid progress of a strain amplifier. From the experience 
of the above-mentioned model experiments, it is inevitable 
to remove the influence of blade deformation into the 
output of a pressure gauge and to protect the gauge with 
specially designed adapter [22]. The adapters were made 
of stainless steel for the prevention of corrosion due to sea 
water. In order to confirm the effectiveness of this 
adapter, preliminary tests [22] were performed, in which 
full scale conditions were simulated to some extent. 

Arrangement of Pressure Pick-ups 

Twenty-four pressure pick-ups were equipped for 
each propeller from the limitation of number of channels 
of the present telemeter. The arrangement of pressure 
pick-ups on the blades of full scale propellers of the 
Seiun-Maru is shown in Table 5. From No. 2 to No. 5 
blade, six pressure pick-ups were equipped on each blade. 
On No. 1 blade, three double-axis strain gauges were 
fitted. Among twenty-four pressure gauges, four pairs of 
gauges were fitted to the similar locations of other blades 
to evaluate the measurement accuracy and to examine the 
influence of capacity of the pressure gauge. It was not 
possible to arrange the pressure pick-ups at nearer 
positions to the leading edge than those in Table 5, 
because of the adapter size and the evaluation of 
measurement accuracy. The Helmholtz cavity chamber 
was filled with silicone sealant with the viscosity of 25 cs. 

The cords of pressure pick-ups and strain gauges 
were installed into copper tubes to protect them from the 
periodical deformation of a propeller blade operating in 
non-uniform flow. The copper tubes were embedded in 
recesses with adhesive and filler, and faring was made 
along the blade surface to keep the original blade shape of 
the propellers. 

Measuring System 

The wired FM telemeter method [12] was adopted 
to transmit pressure and strain signals and the number of 
channels of the telemeter limited to thirty. Twenty-four 
channels among them were employed to measure the 
pressure on the propeller blades. Pressure signals were 
transmitted from the pressure pick-ups through waterproof 
connectors, pre-amplifiers, distributors, the telemeter for 
transmission, slip rings to the telemeter for receiver as 
shown in Fig. 10. The receiver had five switches 
corresponding to each blade so that the measurement at six 
channels can be performed simultaneously. The measured 
data were stored by an analogue data recorder. After A-D 
conversion, the measured pressure and strain signals were 
analyzed by a micro computer. 

3.2. Tested Ship and Experimental Conditions 

As a tested ship, the Seiun-Maru [22] was selected 
and employed for the present measurements by courtesy 
of the Institute for Sea Training. The propeller with three 
strain gauges and twenty-four pressure pick-ups was 
equipped to the ship in the dock as shown in Fig. 11. The 
transmitter of FM telemeter and the slip ring were 
attached to the propeller shaft as shown in Fig. 12 and the 

Table 5 Arrangement of Pressure Pick-up on Full 
Scale Propeller 

*  Number Indicates Blade Number of Propeller 

chordwise 
position 

side of 
blade 

radial position 

0.5R 0.7R 0.9R 0.95R 

10% 
back 
face 

2&4 
3 

15% 
back 
face 

2 
3 

25% 
back 
face 

5 5 

40% 
back 
face 

4 
5 

2&4 
3&5 

2 
3 

4 
5 

60% 
back 
face 

4 5 

80% 
back 
face 

2&4 
3 

2 
3 
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receiver was placed in the exercise room on the upper 
deck. CP in 1989 and HSP in 1990 were tested. The 
pressure pick-ups and strain gauges were fitted to both 
propellers in Nakashima Propeller Co. Ltd. by engineers 
of three organizations (SRI, ALM and Nakashima). 

In the 1989 measurement, the ship was operated 
with searching calm sea area. The change of draft during 
the measurement would be a few centimeters, estimating 
from fuel consumption. The thrust and torque coefficients 
for CP were analyzed to be 0.210 and 0.0339, 
respectively [22]. The advance ratio J was estimated as 
0.62 from the data of a propeller open water test. The 
ship conditions of mean draft, trim and displacement for 
CP were 5.42 m, 0.08 B/S and 5,260 ton, respectively. 

In the 1990 measurement, the Seiun-Maru with 
HSP was operated similarly to that with CP. 
Experimental conditions of ship speed, thrust and power 
versus the rate of propeller revolutions are plotted in Fig. 
13. The relation between revolution rate and ship speed 
was almost linear. The measured thrust and power were 
roughly proportional to square and cubic of revolution 
rate, respectively. Roughly speaking, HSP was operated 
at almost constant advance ratio as CP. The advance ratio 
J for HSP was estimated as 0.66 under the conditions of 
110 and 149 rpm. The thrust and torque coefficients 
under these conditions for HSP corresponded to 0.190 and 
0.0303, respectively.  The ship conditions of mean draft, 

Fig. 10 Measuring System for Pressure and Stress 
in Full Scale 

Fig. 11 Highly Skewed Propeller Equipped with 
Pressure Pick-ups and Strain Gauges 

trim and displacement for HSP were 5.17 m, 0.90 B/S 
and 4,942 ton, respectively. 

3.3. Measurement Procedure and Analysis Method 

Before the measurement of pressure distribution at 
sea, the calibration of pressure pick-ups was performed in 
the dock. After filling sea water into the dock, floating 
the ship and settling the current down for one hour, the 
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calibration was made. Regression analysis with the head 
calculated from the geometrical position of the pressure 
pick-ups was applied to get the calibration constants for 
each pressure gauge. 

At the calibration of CP, some pressure pick-ups 
had been already out of order. On other pressure pick-ups 
of CP, the linearity between the head and the output of 
pressure pick-up was quite good. At the calibration of 
pick-ups for HSP, the coefficients of correlation were 
relatively worse than those of CP [22]. Only one pick-up 
was out of order for HSP. 

Just before and after every pressure measurement, 
the standard pressure was measured without turning the 
propeller blade and with the ship speed less than 0.2 
knots. Analogue pressure and strain signals and the 
position pulses of the blade were recorded by a data 
recorder. Some of the data were analyzed on board. The 
measurement was initiated when the revolution rate of a 
propeller and the ship speed became almost steady. Since 
the measurement was accomplished by sequentially 
changing the blade to be measured from No. 1 to No. 5 
blade, simultaneous measurement could be conducted for 
the blade of interest. The measurement, however, was not 
performed simultaneously for other blades. Based on the 
position pulses of the propeller, the pressure signals were 
averaged, assuming that they were harmonic. 

3.4. Measurements 

Data Quality Evaluation 

From the examination of the standard pressure 
measured immediately before and after the pressure 
measurement, little drift was observed for the present 
measurements, except two pick-ups (0.95 R, 40 %C, face 
and 0.9 R, 40 %C, face) of CP. The error of the 
averaged pressure measurements was estimated +0.01 
kg/cm2 except those at the top position of the propeller 
and under cavitating condition. Since the data analysis on 
the extremely low pressure equal to vapor pressure was 
carried out by the extrapolation using the calibration 
constants at dock and the measurement of the standard 
pressure, the error of the present measurements should be 
estimated to be ±0.03 kg/cm2 finally. Representing it by 
the pressure coefficient, it amounts to ±0.12 for 110 rpm 
and ±0.07 for 149 rpm, respectively. The error due to 
the trim of the ship during the full scale measurement was 
supposed negligible, because of little change of the draft 
at the stern. 

The drift of standard pressure for HSP was 
relatively larger than that for CP throughout the entire full 
scale measurement of HSP. The influence of the drift on 
the pressure measurement, however, was negligible even 
for HSP owing to the measurement of the standard 
pressure at every runs. The error of the pressure 
measurements for HSP was also estimated to be the same 
as CP. Among the data in which the drift of standard 
pressure was negligible, the analyzed data were 
determined by taking account of sea state, steering angle 
and the stability of propeller revolution rate. 

Variation of Blade Pressure during One Revolution 

The variations of the measured pressure on HSP 
during one revolution at 110 and 149 rpm are shown in 
Figs. 14 (a) and (b), together with the computed values by 
one of Koyama's lifting surface theories [1]. Figs. 15 (a) 
and (b) show the pressure variation on CP at the same 
revolution rate of the propeller. The solid lines and 
broken lines show the measured and the computed results, 

respectively. The abscissa and the ordinate show angular 
position of the blade and the pressure coefficient, 
respectively. Zero degrees of the propeller angular 
position is defined as the generator line of the blade 
locates 12 o'clock. In these figures, the data for the 
pressure gauges which became out of order are excluded. 
The difference of measured pressure between two pairs at 
40 %C of 0.7 R was very small, while that at 80 %C of 
0.7 R was more remarkable. 

In Figs. 14 and 15, the pressure at the back side of 
0.7 R increases with the increase of angular position, 
while the pressure at the face side of 0.7 R decreases. 
This tendency is given by the tangential component of the 
wake and agrees with not only experimental results of 
pressure on the blade of propeller models in a towing tank 
[14] but also theoretical calculation. This explains one of 
the reasons why wider extent of cavitation on propeller 
blades working behind a ship appears mainly at starboard 
side. 

In both figures, the plateau of the pressure 
variation at 15 %C from the leading edge on the back side 
at 0.9 R can be found. These pressure pick-ups were 
expected to be covered with unsteady sheet cavity. The 
slight virtual decrease of this pressure with the turning of 
the propeller blade was given by the correction of static 
pressure due to head variation. Under the condition 
higher than 90 rpm, sheet cavitation occurred near the tip. 
The measured pressure in the cavity on HSP was 
relatively higher than vapor pressure. This might be 
raised by more intermittent occurrence of cavitation or 
difference of cavity structure. On the other hand, the 
measured pressure in the cavity on CP was nearly equal to 
vapor pressure. 

In the present measurement, little influence of 
difference of propeller revolution rate into the pressure 
coefficients was observed and a similarity law was 
established except the region of cavitation. From the view 
point of the measurement of absolute pressure, it is 
expected that these measurements are surely reliable. 

In the pressure variation on the face side during 
one revolution at 80 %C of 0.9 R under 149 rpm as 
shown in Figs. 14 (b) and 15 (b), an interesting 
phenomenon was observed. At the angular position 
between 30 and 40 deg for CP and 60 and 80 deg for 
HSP, fluctuating pressure was detected by a pressure pick- 
up on the face side where cavitation did not exist. This 
pressure might be brought about by unsteady cavitation on 
other blades in the propeller slip stream such as the break- 
down of tip vortex cavitation. 

Among these pressure variations, the pressure 
curve in the back side at 80 %C of 0.9 R on HSP was 
very peculiar, since it moved once to the positive direction 
and then stepwise shifted toward the negative direction at 
the angular position of about 50 degrees. Similar but less 
remarkable behavior could be found in the pressure 
variation not only at 60C % of 0.9 R of HSP but also at 
60 %C and 80 %C of 0.9 R of CP. In the measurement 
of HSP, three pairs of pressure pick-ups were alive. 

Chordwise and Radial Pressure Distribution 

The chordwise pressure distributions at 0.7 R and 
0.9 R, and radial ones at 40 %C for each 90 degrees of 
angular position under the condition of 110 rpm for CP 
and HSP are shown in Figs. 16 and 17, respectively. In 
these figures, theoretical values given by the lifting 
surface theory are included. Discussion on the correlation 
between the experiment and the theory will be presented 
later. 

The chordwise pressure distributions at 0.7 R and 
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0.9 R, and radial ones at 40 %C for 110 rpm are shown 
in Figs. 16 (a) and (b), respectively. As an interesting 
characteristic of the chordwise pressure distribution, it can 
be cited that the pressure distribution at 0.7 R of HSP is 
similar to that of CP, while the pressure on the back side 
at 0.9 R becomes lower towards the trailing edge. Even 
turning normally, the loading at the trailing edge of HSP 
is extremely higher than expected as if the propeller would 

operate under the astern condition. On the other hand, the 
loading at the tip of HSP locally becomes higher than that 
of the inner position not like CP. 

In Fig. 17 (a), the chordwise pressure distribution 
of 0.9 R at 90 and 180 degrees of angular position looks 
like the letter "M". Similar pressure distributions were 
observed in the pressure measurements on HSP model of 
the Seiun-Maru as shown in Fig. 6 (a).   It seems that 
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these interesting phenomena might be caused by transient 
behavior of laminar separation bubble or radial vortex 
formed by leading edge separation. 

Concerning radial pressure distribution in Fig. 16 
(b), peculiar characteristics that the pressure at 0.95 R on 
the face side of HSP rapidly jumped to negative pressure 
were found independently of angular position. Although 
the loading at the tip on CP would be very light, it could 
not be concluded definitely because some pressure pick- 

ups in the vicinity of tip were broken out. 

3.5. Discussions 

Theoretical    Calculation    and    Estimated    Wake 
Distribution 

The comparison of measured pressure distribution 
with the theory is very important to evaluate the reliability 
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of the present measurement and an existing propeller 
lifting surface theory [1]. As input data of the wake 
distribution, the estimated one [23] by Sasajima's method 
was derived from the measured wake distribution in a 
towing tank. This wake is shown in Fig. 18. The 
tangential component of wake distribution measured in a 
towing tank was applied to this estimation without 
modification. 

Operating conditions of each propeller were 
determined to be KT = 0.210 for CP and 0.190 for HSP, 
respectively. These conditions correspond to the 
condition of 110 rpm and 149 rpm for both propellers. 
Under these conditions, cavitation extent was not so large 
for 110 rpm and the revolution rate of the propeller was 
stable, and then the output of pressure pick-ups was 
sufficiently large. The thrust at each operating condition 
was obtained by reading the thrust meter equipped to the 
Seiun-Maru. 

In the present calculation, symmetric estimated 
wake distribution as shown in Fig. 18 was used as input 
data. In the full scale measurements, however, some 
instruments for the wake measurements [8,9] were 
installed on the hull surface at the starboard side as shown 
in Fig. 19. The wake measurement was performed using 
the complete ship model and simulating the miniature 
models of the instruments for full scale wake 
measurements for HSP in the cavitation tunnel. The 
measured nominal wake distributions at the propeller disk 
without and with instruments are shown in Figs. 20 (a) 
and (b), respectively. The latter wake was asymmetric 
and the wake peak revealed at the starboard side. Using 
this wake, the pressure distribution on the HSP was 
recalculated and the calculated pressure variation during 
one revolution at two locations (10 %C, 0.7 R and 15 
%C, 0.9 R) is shown in Fig. 21 with the measurements. 
The calculation was conducted by the thrust identity 
method. Slight improvement on the correlation between 
the measurements and theory was found. The difference 
considerably decreased in the phase delay of the negative 
pressure peak between the measurements and the 
calculations. At other locations, negligible change in the 
calculated values was observed due to the difference of the 
input wake, comparing with the data in Fig. 14 (a). 

Variation of Blade Pressure during One Revolution 

Comparison of the pressure between measurement 

Fig. 18 
Axial and Tangential 
Wake Distribution 
Estimated by Sasajima 
and Tanaka's Method 
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and theory for both propellers is shown in Figs. 14 and 
15. Theoretical pressure variation at 40 %C of 0.5 R is 
lower than the experimental one on both back and face 
sides. Since both agreed with each other qualitatively, the 
difference between them was brought about by excess 
computation of induced velocity due to displacement 
effects which was calculated by the "equivalent two- 
dimensional profile" method similar to the "strip theory". 
The same discrepancy was observed in the comparison 
between the theory and the model measurement on the 
Seiun-Maru propellers. Therefore, it can be concluded 
that the present pressure calculation method has room to 
be improved. 

At 10 %C of 0.7 R, excellent agreement between 
theory and measurement was obtained not only on the 
back side but also on the face side for both propellers 
except cavitation region. In the vicinity of the top position 
of a propeller blade, however, the pressure peak given by 
the theory was lower than then measured one of 110 rpm. 
This discrepancy was expected to be caused by the 
decrease of wake peak due to the propeller suction. At 
other positions on the back side of 0.7 R, close agreement 
was obtained except near the top position of the propeller. 
On the other hand, the same tendency as that of 0.5 R was 
found on the face side at 40 %C and 80 %C of 0.7 R. 

At each location 0.9 R on the back side for CP, the 
present theory also corresponded well to the measured 
pressure except the region where sheet cavity might cover 
the pressure pick-up. At 15% C of 0.9 R on the face side 
of CP, excellent agreement was observed. 

Sharp peaks were found in the pressure variation 
in the fore part of the blade on the back side at 0.9 R of 
HSP for 110 rpm and might be given by intermittent 
cavitation or low pressure of the vortex core. At other 
positions on the back-side of 0.9 R for HSP, the theory 
predicted the measured pressure very well. Under these 
conditions, three-dimensional effects due to cavity on 
pressure distribution were considered to be small from the 
present measurements. On the face side of each propeller, 
the same discrepancy at 0.9 R was presented as found at 
0.5 R and 0.7 R. 

There existed remarkable difference of the pressure 
variation between CP and HSP at 80 %C of 0.9 R for 
both propeller revolution rates. At about fifty degrees of 
angular position of the propeller blade, the pressure once 
shifted positively and then jumped stepwise and 
negatively. This measured pressure variation can not be 
predicted by the theory. This pressure jump was not 
found in the measurement of CP even in full scale clearly. 
Examining the pressure variation on other pick-ups of not 
only CP but also HSP carefully, similar but very tiny 
jump can be found at 60 %C of 0.9 R for both propellers 
and at 80 %C of 0.9 R for CP. This might be caused by 
the crossing of the tip vortex or the "part-span vortex" 
stemmed from leading edge separation above the pressure 
pick-ups as shown in Fig. 22. This type of vortex was 
expected to be similar one to that observed in the face 
cavitation. 

The pressure variation at 0.95 R on the back side 
was affected by sheet cavitation. In the non-cavitation 
region, the discrepancy between the theory and the 
measurement was found as observed in the measurement 
of HSP model in Fig. 9 (d), and it is supposed that the 
present theory can not predict the pressure near the tip 
significantly. 

Chordwise and Radial Pressure Distribution 

As shown in Figs. 16 and 17, excellent agreement 
between the theory and the full scale measurements of the 

pressure on the back side of 0.7 R and 0.9 R for CP were 
obtained except at the angular position of zero deg, while 
die theory predicted fairly lower pressure distribution on 
the face side than that of the measurements. Since the 
same trend was observed on the propeller model, the 
theory should be to blame for the discrepancy. 

The theory agreed well with the measurements of 
chordwise pressure distribution at 0.7 R of HSP as shown 
in Fig. 16 (a). On the contrary, the measured pressure in 
the aft part of 0.9 R became extremely lower with 
approaching to the trailing edge and deviated completely 
from the computed one. This indicates that the load 
around the trailing edge near the tip of HSP was 
surprisingly higher than that expected by the theory. This 
pressure drop in the vicinity of the trailing edge at 0.9 R 
is supposed to be affected by the existence of vortex 
stemmed from leading edge separation. To simulate such 
flows around the propeller blades, the development of a 
new propeller theory including the modelling of leading 
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Fig. 21 Comparison of Pressure Variation during 
One Revolution between Measurement and 
Calculation with Corrected Wake 
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edge separation as shown in Fig.22 is necessary (for 
example, [21]). The present measurements suggeste that 
even if a propeller rotates normally, the tip of HSP is 
heavily loaded stepwise and twisted to the inverse 
direction against the expectation. Therefore, if a crack 
happens to occur at the trailing edge of the blade near the 
tip, the crack on HSP would grow much more rapidly than 
CP due to such repeated high loadings near the tip. 

As shown in Fig. 16 (b) of the radial pressure 
distribution at 40 %C of HSP, the present measurements 
also suggested that the measured propeller load at the tip 
was higher than the computed one by the lifting surface 
theory. This HSP was specially designed to make much 
thicker than the NK rule and to decrease the geometrical 
pitch at the tip, though. 

The comparison between the theory and the 
measurement clearly indicates that there still remain some 
problems to be improved for the existing propeller lifting 
surface theory and the design of HSP from the view point 
of propeller strength. 

4. MEASUREMENT OF BLADE STRESS ON FULL 
SCALE PROPELLER 

4.1. Measurement Procedure 

In the measurement of blade stress on the full scale 
propellers, two kinds of strain gauges were employed. 
One of them was waterproof double-axis strain gauge 
(Kyowa KFW-5-D16-11-L500) as an active gauge for the 
measurement and embedded on the blade. The other was 
triple-axis strain gauge (Kyowa KFW-5-D17-11-L100) as 
a dummy gauge for temperature compensation and 
installed into the boss cap. In order to prevent the strain 
gauges from the separation due to the flow above the 
blade surface, the active strain gauges were embedded to 
the hollow blade surface dug with 3.5 mm deep with 
adhesive, and covered with wire mesh screen and soldered 
as shown in Fig. 23. The diameter of the follow surface 
was determined 50 mm to depress the influence on the 
measurement due the change of blade section within 10 % 
error. The cords were surrounded with copper tubes and 
tubes was attached to the blade with pipe fixing plate and 
adhesive. The recesses were coated with adhesive and 
filler, and finally the coated portion was finished to 
present a smooth flush surface by a grinder after 
hardening of the coating.material. Three strain gauges for 
the measurement were stuck on 70 % chordwise position 
at 70, 80 and 90 % radial positions of the No. 1 blade on 
the face side for each propeller as shown in Fig. 24. 

To coincide one of the strain gauge axes with the 
direction of principal stress, each of them was arranged 
parallel to the tangents of 70 %C line, while another of 
the strain gauge axes were put to the normal to the chord 
line. In this paper, the respective directions are denoted 
as R and T. Two triple-axis strain gauges were stuck on 
the hollow place of the boss cap where the measurements 
were not to be influenced due to deformation of a 
propeller. At each stage of the preparation work, the line 
resistance and the earth resistance were measured by a 
digital voltmeter and checked. Finally the load test to the 
propeller blade was performed by using an oil pressure 
jack and the response of each gauge was examined. 

The measurement system of blade stress was the 
same as that of pressure in full scale. The signals of 
strain gauges on the blade were transmitted to the receiver 
of the wired FM telemeter through the waterproof 
connection, the cords in the hollow propeller shaft and the 
slip ring attached to the propeller shaft and analyzed by a 
micro computer. 

4.2. Measurements 

Calibration and Measuring Procedure 

Calibration of the strain gauges was carried out by 
impressing the voltage equivalent to 500 n strain at the 
terminal of the telemeter in the dock. Even under the 
static condition when the blades are not operating, it is 
expected that the measured strain are affected by the strain 
due to the weight of the blade itself. Little difference, 
however, in the measured strain was found between the 
angular position at 0 deg (top) and 180 deg (bottom) 
within the accuracy of measurement. In the same manner 
as the pressure measurement, the acquired data during 8.2 
sec were averaged and the variation of blade strain during 
one revolution was obtained. Just before and after the 
measurements, zero strain was measured under the 
condition that the propeller stopped and the ship speed was 
less than 0.2 knots. 

Measured Results 

CP. The measurements of blade stress on CP were 
performed for various propeller revolution rates of 70,90, 
110, 149 and 163 rpm as in the measurements of pressure 
distribution. Fig. 25 shows typical measured strain values 
at 0.7, 0.8 and 0.9 R during one revolution at 112.4 rpm. 
Positive and negative values are tension and compression, 
respectively. 

Since the measured strain decreased with 
approaching to the propeller tip, this tendency agreed with 
the existing measurements. For the measurement on the 
radial direction, only tension stress acted to the blade 
during one revolution at each radial position, while for 
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tangential direction, the strain at each radial position was 
very low. It proved that each strain gauge was stuck on 
so that one of the axes coincided with the direction of 
principal stress. Comparing the maximum principal stress 
at 70 %C at each radial position with the calculated values 
by FEM at the design of the propeller [23], the former 
was higher than the latter by about 7 - 20 % as shown in 
Table 6. 

HSP. The measurements were conducted at the 
propeller revolution rates of 70, 90, 110 and 149 rpm. 
Fig. 26 shows the variation of measured strain during one 
revolution at 0.7 R for 110 rpm. Tension stress was 
found in the radial direction R and in the tangential one T 
as well. One of the reasons may be due to disagreement 
of the direction between the principal stress and the axis 
of strain gauge. This might be caused by that the lifting 
surface calculation could not predict the pressure 
distribution in the vicinity of the propeller tip accurately. 

At the angular position of 45 deg, sharp peak of 
the radial strain was found. Near the bottom, the strain 
values in both direction were constant. At the port side, 
the strain values become minimum. Radial strain values 
at three radial positions varied with corresponding to the 
pressure variation at 40 % of 0.95 R as shown in Fig. 14 
(a). A strong correlation of the measurements was found 
between the strain and the pressure variation during one 
revolution. A comparison of mean principal stress at 
70 %C between the measurement and FEM analysis at the 
design of HSP was shown in Table 6. Except 0.9 R, the 
measured values were less than the predicted ones by the 
FEM. The pressure distribution as the input data for the 
FEM calculation was calculated by YamasaM's lifting 
surface theory [24] using the estimate wake without the 
tangential wake as shown in Fig. 18. 

4.3. Discussions 

Comparison of Measurements between CP and HSP 

From the comparison of two measurements on CP 
and HSP, it was observed that the radial strain at 0.7 ~ 
0.9 R of CP was more predominant than tangential one. 
The radial strain of HSP was also more predominant than 
the tangential one, while the tangential one was negligible. 
Although one of the axes of the strain gauges on HSP did 
not coincide with that of the principal stress and the blade 
thickness was different between them, qualitative 
comparison might be possible. Introducing non- 
dimensionalized stress and comparing two measurements, 
the mean stress on CP was larger than that of HSP, while 
each amplitude was comparable as shown in Fig. 27. 
Roughly speaking, the measured stress on HSP was 
constant independent of the propeller revolution rate, 
while that of CP tended to slightly decrease with the 
increase of the revolution rate. 

Comparison between Measurements and FEM 
Computation 

To discuss how accurately the FEM can predict the 
blade stress distribution on full scale propellers, FEM 
computation on the HSP was performed by using the 
MSC/NASTRAN [25]. The propeller blades were 
modelled by 528 quadrilateral elements and divided by 
twenty-four in the radial direction and twenty-two in the 
chord wise direction. The number of connection point was 
575. The boundary condition at 0.2 R was given as fixed 
support. Since the accuracy of FEM computation became 
worse due to the rapid decrease of the blade thickness and 
the use of constant thickness element in the vicinity of the 
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Fig. 25 Variation   of Blade   Strain   during   One 
Revolution on Full Scale CP 
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Fig. 26 Variation  of Blade  Strain  during  One 
Revolution on Full Scale HSP 

Table 6 Comparison of Blade Stress along 70% C 
between Measurement and calculation by 
FEM 

Radial Position Measured Value 
[leg/mm'J 

Predicted Value 
[kg/mm'] 

CP (Max. Stress, 163rpm) 

0.7R 4.8 4.5 

0.8R 3.6 3.1 

0.9R 1.8 1.5 

HSP (Mean Stress, 149rpm) 

0.7R 1.2 1.5 

0.8R 0.9 1.2 

0.9R 0.6 0.6 

0.7R 70*/.C   radial 
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Fig. 27 Comparison of Non-Dimensionalized Blade 
Stress between Full Scale CP and HSP 
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tip, the blade shape of the leading edge near the tip was 
slightly modified. 

The loadings to the blade are considered to be 
composed of hydrodynamic force and centrifugal one. 
Two kinds of hydrodynamic loadings were employed as 
input data. One of them was the calculated results of 
pressure distribution by Koyama's unsteady propeller 
lifting surface theory [1]. These results were employed in 
the comparison of pressure between the measurement and 
the theory described in the previous chapter. Another 
loading was the pressure distribution modified by the 
measured pressure in the vicinity of the propeller tip. 

A comparison of the radial and tangential strain 
variation at three' radial positions between the 
measurements and FEM calculation is shown in Fig. 28 
under the condition of 110 rpm. In this figure, the 
computed strain was transformed to the respective axial 
components of the used strain gauges. The FEM 
computations agreed well with the measurements 
qualitatively and they were predicted smaller than those of 
the measurement. Fig. 29 demonstrates the variation of 
the maximum stress during one revolution. The region of 
relatively large stress extended to the trailing edge of the 
propeller blades. It is an inherent phenomenon to HSP 
[26]. At the angular position of 20 degrees, large peak of 
the stress revealed. 

In Fig. 30, the blade stress distribution calculated 
by FEM with the modified pressure distribution at the 
angular position of 40 degrees is compared with the 
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Fig. 28 Comparison  of  Blade  Strain   Variation 
during One Revolution between Measured 
and Calculated Values by FEM (110 rpm) 

calculated distribution by the lifting surface theory. The 
calculations with the correction using the measured values 
indicated the higher stress area at the trailing edge of 0.7 
R than those without the correction. From the present 
calculation,' it was recognized the tendency that the 
corrected pressure distribution predicted more accurate 
blade stress distribution than that without the correction 
quantitatively. To improve the prediction of the blade 
stress, more precise and advanced program code of lifting 
surface theories are needed. Therefore, the introduction 
of leading edge separation vortex and tip vortex to a 
lifting surface theory is inevitable and the vortex lattice 
method is more suitable because the modelling of 
separation vortex is easier than the mode function method. 

5. Blade Stress Measurement on the Propeller Model 

5.1. Tested Model 

TOP 

Fig. 29 
Bottom 

Variation of Maximum Blade Stress on 
HSP during One Revolution Calculated by 
FEM (110 rpm) 

Without Correction 

Fig. 30 

With Correction 

Comparison of Stress Distribution between 
FEM Calculation Results by Two Kinds of 
Pressure Distribution (110 rpm, 40 deg) 
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The measurements of blade stress on the propeller 
model have been performed by a number of researchers. 
Since most of the measurements were made in a towing 
tank, the wake distribution was model one, Reynolds 
number at the measurement was considerably low and 
neglected the influence of cavitation, e.g. [26]. The 
present measurements was conducted in the No. 2 working 
section of SRI large cavitation tunnel using a complete 
ship model. To simulate the estimated wake for the full 
scale in the cavitation tunnel, a pair of the flow liners was 
employed [13] as shown in Fig. 31. The simulated wake 
is shown in Fig. 20 (a). The principal dimensions of ship 
and propeller model are shown in Tables 1 and 2. 

Five waterproof double-axis strain gauges (Kyowa, 
KFG-1-120-D16-23 N30C2) were stuck on the blades by 
two kinds of methods. Two of the gauges were stuck on 
the blade surface directly and covered with the coating for 
waterproofing the gauges and smoothing the surface 
profile. Three of them were embedded on the hollow 
blade surface whose diameter and depth were 7 mm and 
0.5 mm like the full scale measurement, respectively. The 
gauges were covered with a synthetic compound and 
finished to get a smooth flush surface. The former is 
called "On-blade method", while the latter is called "In- 
blade method" in this paper. The direction of the gauge 
axes was set in the same manner as the full scale. The 
arrangement of five gauges is shown in Fig. 32. Dummy 
gauge for the temperature compensation was installed into 
the propeller boss cap. 

5.2. The Measurement Apparatus 

For the present measurement, a transmitter and a 

Fig. 31 Flow Liners 
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receiver for the wired FM telemeter system with five 
channels were provided. The transmitter in a waterproof 
airtight case was installed into the ship model and 
connected to the propeller driving system (Kempf and 
Remmers) as shown in Fig. 33. The inside of the model 
was filled with water and the pressure was reduced to the 
given low pressure. Five strain signals were acquired 
simultaneously with the position pulses of the propellers 
and recorded by an analogue data recorder. Then, the 
whole measurements on five double-axis strain gauges 
could be accomplished by twice measurements. 

5.3. Experimental Condition and Procedure 

The experimental conditions of the model 
measurement were determined according to those of the 
full scale measurement. The revolution rate of the 
propeller model at the measurement was determined so 
that the relation between the hydrodynamic load to the 
blade and the strain for the model was kept to be similar 
to that for the full scale. The ratio pn2D2/E of the model 
was determined to be equivalent to that of the full scale 
under the conditions of 70, 90,110 rpm. For 149 rpm, it 
was impossible to conduct the measurement at the 
propeller revolution rate given by the present similarity 
law because of the strength of the models and the 
telemeter. Young's modulus for the model and the 
propeller were 12,000 and 7,000 kg/mm2, respectively. 
The pressure was determined as the cavitation number at 
the shaft center was equal for both cases. Cavitation 
patterns on the model were similar to those on the full 
scale in the angular positions when the observation was 
possible in the full scale. The inflow velocity was 
determined by KT identity method. KT values were given 
by the full scale measurement. These experimental 
conditions were determined by using another propeller 
model without strain gauges. 

5.4. Measurements 

Just before and after the measurement, the drift of 
zero strain at each gauge was measured. Throughout the 
measurement, it was very small and the maximum value 
was 3 fi strain. The data analysis was for about 2000 data 
per one channel was made by the same procedure as in the 
full scale measurement. The scatter of the measurements 
were extremely smaller than those of the full scale and 5 
ft strain in standard deviation. As a representative 
example, the variation of the measured strain is presented 
during one revolution at the propeller revolution rate of 
110 rpm as shown in Fig. 34. For other conditions, 
similar distribution were obtained except that sharp peak 
of the strain became flat due to cavitation. Comparing 
these data with those in full scale, excellent agreements 
were found. 
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Fig. 32 Arrangement of Strain Gauges on HSP Fig. 33 Measuring   System  of Blade  Stress  on 
M0Cjel Model Propeller 
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Fig. 34 
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Fig. 35 Comparison of Non-Dimensionalized Blade 
Stress of HSP between Model and Full 
Scale 

Non-dimensionalized blade stress measurements at 
0.7 R on HSP model are demonstrated in Fig. 35, with 
the full scale measurements as a function of the propeller 
revolution rate in full scale. The amplitude of blade stress 
except 0.9 R agreed well between the model and the full 
scale, while close agreements were found on the mean 
values at 0.7 R. The measurements in full scale and those 
on model by two kinds of methods agreed well each other, 
except on the mean value at 0.8 R. On-blade method, if 
anything, presented closer correlations than In-blade 
method. The present model test including the simulation 
of cavitation can predict the full scale phenomena very 
well not only qualitatively but also quantitatively. 

CONCLUSIONS 

First of all, in this paper, sophisticated 
measurement techniques have been developed to measure 
the pressure distribution on the propeller model. The 
pressure distributions were measured on CP and HSP 
working not only in uniform flow but also non-uniform 
flow. From the measurement and the comparison with a 
lifting surface theory, the following conclusions can be 
drawn. 

1. The present measurement technique using 
Heimholte cavity chamber typed pressure 
transducers can measure pressure on propeller 
models without the effects of blade deformation. 

2. The measured pressure distribution on the blades 

of a propeller model agrees well with the theory 
not only in uniform flow but also in non-uniform 
flow except near the tip. On the pressure side, 
however, the theory underpredict the pressure 
regardless of advance ratio, skew and flow. 

3. The measured pressure distribution of HSP seems 
to be affected by the complicated flow field around 
the blades. It is recognized that the existing 
propeller theory can not compute the pressure at 
the tip with sufficient accuracy for HSP. 

Secondly, from the present full scale measurement 
and the comparison with an existing propeller lifting 
surface theory on the pressure distribution of the full scale 
propeller, the following conclusion can be drawn. 

4. The theory with use of estimated full scale wake 
distribution predicts well the pressure on the back 
side for HSP except 80 %C of 0.9 R but lower 
pressure on the face side except the cavitation 
region. At 80 %C of 0.9 R, the pressure on HSP 
tendes to drastically lower than that given by the 
theory. This pressure drop is expected to be 
caused by the vortex stemmed from leading edge 
separation. It is clearly demonstrated that there 
still remaine some problems to be improved for the 
existing propeller theory essentially. Taking 
account of the wake induced by the wake 
measurement instrument improves the correlation 
of the phase of pressure variation between the 
theory and the measurements. 

5. The measured pressure in the cavity on the blade 
of CP in full scale is almost vapor pressure, while 
that of HSP is rather higher than the vapor 
pressure. 

Finally, from the measurement of blade stress on 
the full scale propellers and the HSP model, the following 
conclusion can be obtained. 

6. Strong correlations are observed between the 
variation of the pressure and the blade stress 
during one revolution for CP and HSP. FEM 
analysis on HSP using the corrected pressure from 
the pressure measurement as input data improves 
the correlation with the measurements and predicts 
higher blade stress in the wider area than that 
using only the computed pressure does. 

7. The stress measurements on the propeller model 
behind a complete ship model with flow liners in 
the cavitation tunnel showed good agreements with 
the full scale measurement. This method is useful 
for the prediction of blade stress. 

The present study provides a number of invaluable 
standard data to validate the computational techniques on 
marine propellers and important suggestion on the damage 
mechanism of HSP. 
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DISCUSSION propeller theory. 

W. Morgan 
David Taylor Model Basin, USA 

This is a very interesting paper and a valuable 
addition to the literature. When we developed the 
"modern" highly skewed propeller in the 1960s, one 
concern we had was the strength in backing due to 
static divergent. At that time we did a lot of work 
including extensive model tests and came to the 
conclusion that "most" highly skewed propellers 
should be thickened near the blade tip (0.8K to 1 .OR) 
to have adequate strength in backing. This was 
discussed in a SNAME paper on "Highly Skewed 
Propellers" by Cumming, Boswell, and myself in 
1972. Could the authors comment on our earlier 
observations relative to their present work? 

AUTHORS' REPLY 

Thank you very much for Dr. Morgan's 
comments. Considering the strength in backing, most 
highly skewed propellers seem to be thickened near 
the blade tip. Discussor's earlier works are 
invaluable to design highly skewed propellers and the 
basis for the design. Our conclusion is that, if one 
would like to design the blade thinner near the tip to 
improve the propeller efficiency, he should take into 
account the strength not only in the backing but also 
in ahead condition. Concerning the latter strength, it 
is not appropriate to analyze the propeller blade 
strength based on any existing propeller theories 
without considering such an impulsive periodic 
loading in ahead condition given in this paper, 
because the propellers are entirely employed in ahead 
condition. Since our present measurements were not 
performed at the fully loaded condition, more serious 
phenomena might occur on the blade under this 
condition. 

DISCUSSION 

T. Hoshino 
Mitsubishi Heavy Industries, Ltd., Japan 

First of all, I would like to congratulate the 
authors on successfully conducting the very difficult 
measurements of pressure distributions on propeller 
blades and blade stress on both model and full scales. 
Measurements of pressure distribution are very 
important to confirm and/or improve the existing 

1. Fig. 7 and 9 show that the theory underestimated 
the pressure on the face side, but overestimated on the 
back side at y/Ra= 0.9. This means that the thrust 
calculated by the theory was lower than the 
experiment. Did you compare the thrust of HSP 
between the calculation and the experiment? 

2. In full scale measurement of pressure distribution, 
the correction of static pressure increase due to wave 
elevation would be important. How did you correct 
the effect of wave deviation at each speed? 

AUTHORS' REPLY 

Thank you for Dr. Hoshino's questions. 

For the first question, we calculated the thrust by 
the theory and compared with the measurements. For 
the design condition of J=0.6 in uniform flow, the 
theory agrees with the measurements, and we 
calculated the pressure distribution by adjusting the 
thrust by KT identity method. Locally, at some 
measuring points the theory overpredicted, and at 
other points the theory underpredicted. The authors 
expect that the thrust given by the theory 
corresponded to the measurements totally. 

As the authors have mentioned in this paper, 
usually the present theory predicted lower pressure 
than the theory on the face side. The reason should 
be attributed to the use of "equivalent two- 
dimensional hydrofoil theory." Therefore, you feel 
the theoretical one was lower than the experiment. 
We did not calculate the thrust from the pressure 
difference between the face and the back side. 

Second question: For the present measurements, 
we did not correct the effect of wave elevation at each 
speed. After the full scale measurement, we have 
performed the self-propulsion test with adjusting the 
draft and measured the change of ship condition. The 
variation of sinkage of the ship at aft peak was small, 
and the wave elevation was not so remarkable for this 
ship under the condition that the author presented the 
data in this paper. From the full scale measurement, 
we can estimate that the effect of the ship condition 
was so small because of the similarity law on the 
pressure coefficients established at each propeller 
revolution rate except at the non-cavitating region. 
The correction method of wave elevation was not so 
simple and easy. 
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measuring points the theory overpredicted, and at 
other points the theory underpredicted. The authors 
expect that the thrust given by the theory 
corresponded to the measurements totally. 

As the authors have mentioned in this paper, 
usually the present theory predicted lower pressure 
than the theory on the face side. The reason should 
be attributed to the use of "equivalent two- 
dimensional hydrofoil theory." Therefore, you feel 
the theoretical one was lower than the experiment. 
We did not calculate the thrust from the pressure 
difference between the face and the back side. 

Second question: For the present measurements, 
we did not correct the effect of wave elevation at 
each speed. After the full scale measurement, we 
have performed the self-propulsion test with adjusting 
the draft and measured the change of ship condition. 
The variation of sinkage of the ship at aft peak was 
small, and the wave elevation was not so remarkable 
for this ship under the condition that the author 
presented the data in this paper. From the full scale 
measurement, we can estimate that the effect of the 
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law on the pressure coefficients established at each 
propeller revolution rate except at the non-cavitating 
region. The correction method of wave elevation 
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Application of a Panel Method 
to the Unsteady Hydrodynamic Analysis 

of Marine Propellers 
K. Koyama (Ship Research Institute, Japan) 

ABSTRACT In the field of hydrodynamic analysis of 
marine propellers the lifting surface theory 

A panel method for analysis of unsteady has been developed and applied successfully, 
flow around a propeller is presented.  The in the early stage of the study the mode 
purpose of the study is to simulate the function method was used but recently almost 
potential flow around a propeller operating in an numerical methods employ the vortex/doublet 
arbitrary motion.  The numerical calculation lattice method.  This change is owing to the 
is carried out for the unsteady flow by time development of high speed computers and to the 
marching with the development of the vortex demand for analysis of complicated shape of 
wake. blades.  Recently the application of the panel 

Kutta condition at trailing edge of the method to the hydrodynamic analysis of marine 
blade is discussed and an explanation is made propellers becomes active.  Useful information 
on the doublet matching numerical Kutta on the flow and pressure on the propeller blade 
condition of the potential based surface panel can be obtained by the method.  The lifting 
method.  This is proved by simple numerical surface theory treats the thin wing, whereas 
calculation for two dimensional steady flow. the panel method treats the thick wing.  So 

The numerical condition is applied to the unknowns for panel method are 2 times more than 
calculation for propellers. unknowns for lifting surface theory. 

Numerical validation of the method is Considering that some calculations are 
performed by the calculation for three necessary to be added for including thickness 
propellers.   Numerical accuracy of paneling effect in case of the lifting surface theory 
and time marching is investigated. and that the panel method treats exactly thick 

Some flow characteristics such as the wings, 2 times more unknowns for panel method 
effect of neighbour blades and the effect of is considered to be preferable, 
existance of hub are discussed. Application of the panel method to the 

A propeller operating in the non-uniform hydrodynamic analysis of marine propellers 
flow is investigated.   Calculations are becomes active gradually(l)-(ll).  The method 
carried out for sinusoidal inflow.  The result treats numerically the potential flow around 
is compared with unsteady method based on the lifting body as exactly as possible.  The 
frequency domain analysis. viscous effect of the flow is concentrated in 

the infinitesimal thin vortex wake behind the 
1. INTRODUCTION blade.  The geometry of the lifting body can 

be treated as accurately as wanted by the 
The purpose of this study is to develop numerical calculation of the panel method. 

the simulator for hydrodynamics of marine There are some directions to be developed in 
propellers.  Study on CFD is very active now the field of this method.  One direction is to 
under favorable conditions of high speed develop new methods such as velocity based 
computers.   This situation of computer utility panel method.  Other direction is to improve 
stimulates us to develop the application of the numerical methods such as higher order 
potential theory to further wide field.   In panel method.  The direction of this paper is 
order to accomplish the simulator for different from these.  A simple method, 
hydrodynamics of marine propellers, we are potential based low order panel method is used, 
developing the calculation program for the Our direction is to expand the application of 
unsteady hydrodynamic analysis of marine the panel method to the unsteady hydrodynamic 
propellers using a panel method. analysis of marine propellers.   Recently the 
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study in the sane direction was presented(11). 
Kutta condition at trailing edge of blades 

is very important in case of numerical 
calculation of panel method.  Because the 
condition is very severe in case of panel 
method, although the treatment of the condition 
was easy in case of the «ode function method of 
the lifting surface theory. 

In this paper a panel method for unsteady 
flow around propeller blades is presented. 
Kutta condition at the trailing edge of the 
blade is discussed.  The calculation is 
carried out by time marching with the 
development of the vortex wake.   Nuierical 
validation of the method and the comparison of 
the results with the experiment are shown. 
Effect of neighbour blades and effect of hub 
are discussed.   Propeller operating in 
sinusoidal inflow is calculated and discussed. 

According to Green's identity formula, the 
velocity potential in the flow field is 
expressed as 

<D      = 

+ 

1 
in 

1 
4s 

S S 14 ids 
3 n     r 

/ ;   fl> /r-   (-)   dS 6n       r 
(3) 

where the integral domain includes all boundary 
surface which bounds the flow field and r is 
defined to be the length of the vector r froi 
integral point to observer point.   Symbol 
3 / 3 n" is the normal derivertive to the 
integral surface directed into the flow field. 

If we set fictitious velocity potential 

0 ; inside the blade, 
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Fig.1 Flow Domain and Boundary 
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Then the velocity potential can be written as 
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2. FORMULATION FOR THE UNSTEADY POTENTIAL FLOW 

AROUND A PROPELLER 

2.1. Boundary Integral Equation 

We consider a propeller operating in 
unbounded flow field ( Fig.l )•   It is assumed 
that the vortex wake emanating from the 
trailing edge of the blades is infinitesimally 
thin and that the flow field except vortex wake 
is incompressible, inviscid and irrotational. 
Then there exists the velocity potential <t>   and 
the velocity vector v is expressed as 

=  V d> (1) 

According to the condition of continuity of the 
flow Laplace equation is obtained for the 

potent i al 

where 
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<D 
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Then  finally we obtain  the  expression 

<DD     +      <t>s     +     ®u     +     ^oo 

<D D = 

<D s = 

Ou = 

CD» = 

V2<D      =      0 (2) 

4 

7 

7 

1 

in 

(6) 

(7) 

(8) 

(9) 

(10) 

S  JB   u    äV   (r>   dS 

J JB  <J   ^dS 

J   J u   A ®u   -r^-r   (-)   dS        (11) 
3n       r 

S Js~ y^ T dS 

S S soo   <t> T^-r   (-)   dS        (12) 
3 n       r 

818 



where 

<D D 

<D s 

cD u 

<D ; 

A (D 

is velocity potential induced by doublet 
distribution on body surface. 
is velocity potential induced by source 
distribution on body surface. 
is velocity potential induced by vortex 
wake 
is velocity potential in case of 
unperturbed field without a propeller 
is fictitious velocity potential inside 
the propeller 
is the surface of a propeller such as 
blades or hub. 
is one side of the surface of vortex wake 
is the boundary surface far from the 
propel ler. 
is the potential jump on the vortex wake 

In the case where the observer point is on 
the blade surface, the integral for <D D becomes 
singular.   The potential on the blade surface 
inside the flow field induced by doublet 
distribution <DD* and the fictitious potential 
on the blade surface inside the blade induced 
by doublet distribution OD- are expressed as 

<DD± =  + 

in *-i  B U 3 n' 
(-)   dS 
r 

(13) 

where  the  symbol   f—f   indicates   that   the 
integration  excludes  the  singular point  at 
which  the  observer  point  coincides  with  the 

integral  point. 
From   these  equations  we  can  get   the 

boundary  integral   equation 

+   -p-   HB   (  4>   -   <I>co)   -T-r   (-)   dS 
4 n OUT 

<D s     -      <D u (16) 

d>. 
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in 3 n'     r 

3cD/3n'   is given by  the boundary  condition 
on  the  blade  surface B  according  to  the 
movement of  the  blade. 

3 0/ 3 n (19) 

where     V   is   the vector  of  the  velocity of  the 
moving  blade  and   n    is   the  unit   vector   normal 

to  the  blade  surface. 
9 <5»/ö n'   is  given   by   the   inflow  velocity 

3 cD co / 3  n ' W •  n (20) 
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expressions are 
the value CD s 

Present an 
Above equation 
phenomena. Vo 
step.   A CD M i 

time step in ge 
is flowed by th 
A cD w on th e v 

However tl e val 
the trail ng ed 
the Kutta condi 
Sec t ion 3. 

e vector of the velocity of the 
low.   Detail of these 
shown in Ref. (12).   These give 

alysis is for unsteady flow, 
shows the instance of the flow 
rtex wake is developed with time 
s given by the value at previous 

neral, because the vortex wake 
e induced velocity and the value 
ortex wake is kept in its value, 
ue A <D u on the panel nearest to 
ge of the blade is decided by 
tion.   This is discussed in 

1 
( <D O : 

in 
J-S-s   ( CD <D , ) 
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The fictitious potential inside the blade <D i 
is assumed suitably and CD s , <D m   are 
determined by the boundary condition.   Then 
the equation (14) becomes a Fredholm integral 
equation of the second kind with the unknown 
<D - CD i . 

In the present method the fictitious 
potential <D i  is assumed to be equal to <D <„ 

cD CD, (15) 

Then the integral equation becomes 

( CD <Dco ) 

2.2. Low Order Panel Method 

In the panel method the integral surface S 
. ff is devided into many small panels. 
Integation is performed for each panel.  There 
are low order panel method and higher order 
panel method according to the order of 
approximation of integral over the panel (6). 
In this paper we use simple low order panel 
method, in which we assume that the panel is a 
plane and that the singularity such as doublet 
and source is constant in its value on the 
panel.   In this case integral over a panel 
becomes (12) 
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where   suffix   i   of  Di.   si   indicates  a  plane 
panel   expressing  a  part  of  integral   surface. 
X.Y.Z  are   the  coordinates  on   the plane  panel. 

2.3.   Pressure  and  Forces 

qr2 / V»
2 

( 2 / V~2 ) 
a ($ -$> co) 

a t 
(35) 

By integrating the pressure over the blade 

surface, we can get the value of forces and 

moments such as thrust, torque, scaft forces 
and moments.   Details are shown in Ref. (12) 

3. KUTTA CONDITION 

Kutta condition which makes the separation 

point coincide with the trailing edge, is very 

important because it controls the whole flow 

around the blade.   In the present method this 

condition is set by equating both pressure of 

upper and lower surface of blade at the 

trailing edge. 

Pu = p,   at trailing edge of blade 

(<X>u-<t> 1) 

- qn2 ) =  I 

P u 
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p 1    _ a 
a t 

1 
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(   qru2 

qr  = 1   v- 

(36) 
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where suffix u,1 means upper and lower surface 

of a blade.   If we write 

Pressure on the blade is expressed as 

P 2 
gy + 

a $ 
a t 2 

C(t)(29) 

where y is upward vertical coordinates, p is 

density of water, g is gravity acceleration and 

v - V I V (30) 

As the value in far front of a propeller is the 

same as the value at the propeller position 

without the propeller, using suffix » for the 

value, pressure coefficient is expressed as 
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In the numerical calculation we separate the 

effect of gravity and approximate qr°° equal Vco 

. resulting 

V '= ( qru + Qr 1 ) / 2 

equation (37) becomes 

3t (<DU- O 1) +V- ( qr 

(39) 

Qn) = 0(40) 

Theoretical analysis for the Kutta 

condition at the trailing edge of a casped wing 

shows the delicate flow around the trailing 

edge.  Almost in all cases for three 
dimensional wing(13) or for unsteady flow(14), 

flow leaves trailing edge to the direction 

tangential to either upper or lower surface of 

wing.   But in many cases the angle of trailing 

edge is small and it is difficult for numerical 

method to treat the delicate flow exactly.   So 

it is assumed in the present numerical method 
as in other numerical methods that the flow 

leaves the trailing edge to the direction 

tangential to the bisector of trailing edge. 

In our numerical method it is assumed that 

the flow near the trailing edge is two 

dimensional and following notations are used 

(Fig.2) 
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Fig.2 Potential at Trailing Edge 
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where 
A s u, A s u, A s L are the length 
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e u, eL are the unit vector along T U
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V'u is the mean velocity between ou""«« 
and further 

Asu= AsL= As 
is assumed.  Then Kutta condition becomes 
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<Dou- $01 is used for the potential jump on 
the vortex wake adjacent to the trailing edge 
in the integral equation.   The first term of 
expression (44) is main term.  (<£> Tu 

_ 4> T I ) is 
unknown in the integral equation.   The second 
term is the unsteady term.   (<I> Uu ~~ "D ui) is 
known in the previous time step.  The third 
term is the term corresponding to the effect of 
blade thickness.  The third term becomes zero 
when wing thickness is zero or when the inflow 
velocity vector coincides with the mean camber 
line at the trailing edge.   In case of steady 
flow the value k in condition (44) should be 
set zero. 

If wc ncgrcct the third term and set k=0 
then 

<t> Ou - <t> 0 I  =  <D Tu - O T i (46) 

This is the same as the potential continuous 
Kutta condition which is used in Morino"s 
method(15). 

In order to make clear this theory for 
Kutta condition, calculations for two 
dimensional steady flow were carried out. 
In this case the boundary integral equation 
corresponding to equation(16) becomes 

1 
O In        B   3n 

log r ds 

"IT   JBfr7l0grdS 

(47) 

where  O oo = 0  was assumed. 
In order to make clear the meaning of the 

third term of expression (44), the calculation 
of the circular cylinder with circulation was 
performed.  The angle between the direction of 
motion and the direction of potential cut line 

is 135° ( Fig.3 ). 

Fig.3 Motion of Circular Cylinder 

Fig.4 Potential Cut Point T and 
Separation Point S 

The results of the calculation based on 
the condition (46) are shown in Fig. 5(a).(b), 
(c).   In the figure the velocity potential <S>, 
velocities V. V,, VT, and pressure coefficient 
C0 are shown.   Following notations are used 
for the velocities in the figure. 

V = t • v .  v =V0 
V, = t • (-V) 

VT = V + V, 
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Where t is tangential unit vector to the 
surface.   The abscissa is the angle f 
corresponding to the position on the cylinder 
surface.   The definition of the direction of 
the velocity is the same as that of the angle. 
Around the trailing edge T that is both tips of 
the abscissa, the value $ is constant and 
disturbance velocity V is nearly zero.   The 
results are considered to be the appearance of 
the effect of the condition (46).   But the 
separation point S which is the position VT=0, 
aparts from the point T which is the 
intersecting point of the cylinder surface and 
potential cut line (Fig.4), because the flow 
velocity observed on the cylinder VT is the 
summation of the disturbance velocity V and 
relative velocity V| .  So it comes to the 
conclusion that in case of circular cylinder, 
the condition (46) or the condition (44) 
without the third term cannot control the 
condition that the separation point S coincides 
with the point T although the solution is 
decided uniquely. 

Next the results of the calculation by the 
condition (44) with k=0 is shown in Fig.6(a), 
(b),(c).   As expected by the theory both 
velocities VT on the upper and on the lower 
surface around the point T are nearly equal in 
the absolute value, very small in the absolute 
value and opposite in the sign.  Then this 
method can control the condition that the 

separation point S coincides with the point T. 
This means that the method based on the 
condition (44) can treat correctly the Kutta 
condition at the trailing edge of the airfoil. 

Next the calculation for the airfoil was 
performed using condition (46) .   The profile 
of the airfoil is expressed by 

POTENTIAL 3> 

02 

00 

-02 

/"" 

TEL /                            TEU 

Fig.8(a) Potential on Airfoil (Eq.46) 

VELOCITY 

2lC 

1 

I                              VT »-o-o-o—o—n   n    y   „^* 

i    Vi 

WO   g    a    I ,\,J I. __ 
TE-L 1 TE-U      " 

J 
7t 27C 

Y=a+£ancos    ( n  Ö )   + I b n s   i   n   (no) 
cos  ( e ) 
a ,    =      0.001135 b ,   = 0.069427 
a g   =   -0.018741 b2   = -0.010211 
a 3   =   -0.001486 b3   = -0.007872 
a 4   =      0.000036 b A   = 0.000029 
a s   =   -0.000017 b5   = -0.001110 

-o «—o  ■ o 

» O » O »  o 

Fig. 7 Panel of Airfoil 

The panel arrangement is shown in Fig. 7.   The 
number of the panels is 32.   The calculated 
results for potential, velocity, and pressure 
in case of the angle of attack a =2° are shown 
in Fig. 8(a). (b), (c).   Similarly to the case of 

Fig.8(b) Velocity on Airfoil (Eq.46) 

Fig.8(c) Pressure on Airfoil (Eq.46) 
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the circular cylinder, the disturbance velocity 

potential is constant and the disturbance 
velocity is nearly zero near the trailing edge 

T which is the cross point of airfoil line and 

potential cut line.   The effect of relative 

velocity corresponding to the motion of the 

airfoil is quite different from the case of the 

circular cylinder.   Because the trailing edge 

angle dj   is very small in case of airfoil in 

contrast to the circular cylinder in which the 

angle is large 8  T=n   .       As shown in the 

figure the relative velocities on the upper and 
lower surface are nearly equal in the absolute 
value and opposite in the direction, which is 

exactly realized in case 6T=0 .   As a result 

the Kutta condition at the trailing edge T is 

almost satisfied.   Except the case of very 

large 6j   .   the separation point S is located 

between the trailing edge T and the control 

point of the panel tangent to the trailing edge 

This shows that the condition (46) works 

well for the calculation of the thin wing. 

The calculation for the same airfoil by 

the method based on the condition (44) was 

performed and the results was similar to the 

results by condition (46) and the discrepancy 
was less than 1%   in the value of the lift 
coef f i c ien t. 

The pressure distribution for the angle of 

attack a    = -4° ,0° 2° ,4° ,6° based on the 
condition (46) are shown in Fig. 9 with the 

comparison with the calculation by Imai's 

conformal mapping method (16).   The agreement 
is sat i sfactory. 

=     MORINO M. 

-conformal 
mapping   1MA1M. 

LE TE 

4. NUMERICAL CALCULATION 

4.1 Propellers and Paneling 

Numerical calculation was performed for 

three propellers MP221,DTRC4119,MP218.   Their 

principal particulars and operation conditions 

are shown in Table 1.   Figures of paneling for 

the propellers are shown in Figs. 10, 11, 12. 

Propeller MP2 21 is a simple model 

propeller which has three blades of low aspect 

ratio.   The blade has no camber and the form 
of blade section is NACA 4 digit type. 

Measurement of pressure near tip on the blade 

was presented (6).   For the propeller the 

comparison of the calculation by the present 

panel method with the lifting surface theory 

and with the measurement is shown in the 

following sections. 

Propeller DTRC4119 is also three bladed 

propeller of simple geometry but with camber. 

Section meanline is NACA a=0.8 and section 

thickness form is NACA66 ( DTRC Modified ). 

Measurement of pressure on the blade had been 

performed using LDV flow velocity data near the 

blade surfaced?).  For the propeller the 

comparison of the present calculation with the 

measurements and with other panel method(VSAERO 

) is shown.   For the propeller the effect of 

the hub is also discussed. 
Propeller MP218 is conventional 5 bladed 

propeller.   Blade section üs MAU.   The 

propeller was designed for a training ship 
Seiun-maru "  Many studies had been 

performed for the propeller in Japan.   The 

calculation for the propeller operating in non- 

uniform flow is performed and comparison is 

made with other unsteady panel method (BEM) and 

with unsteady lifting surface theory.   Both 

unsteady analysis are based on frquency domain 

analysis, whereas the present method is based 

on time domain analysis. 

Table 1 Particulars of Model Propellers 

Propeller No. MP221 DTRC4119 MP218 

Diameter (m) 0. 3 0. 305 0.221 

Hub Ratio 0. 313 0. 2 0.197 

Pitch Ratio 0. 85 1. 084(. 7R) 0.95(. 7R) 
No. Blade 3 3 5 
Blade Section NACA4d igi t NACA66a = . 8 MAU 

Advance C. J= 0. 6 0. 833 0.658 

KT Measured 0. 082 0. 146 0.195 

.Fig. 9 Comparison with Conformal Mapping Method 
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Fig. 10 Paneling of blade surface for MP221 NR x NC = 9x 8 . 9x 16 

Fig.ll Paneling of blade surface for DTRC4119    NR x NC = 7x 8 . 14X16 

Fig. 12 Paneling of blade surface for MP218      NR x NC = 6 x 8 , 9x8 
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4.2 Tine Step Calculation 

Present calculation is carried out by tine 

marching.   Watching the calculation results on 

each time step reveals the phenomena and is 

useful for us to check the numerical results. 

Here we will see the calculation results on 

time step for propeller MP221. 

At the begining of time marching there is 

no vortex wake behind blades.   The potential 

and the pressure on blade are shown in Fig. 13. 

There is no potential jump at trailing edge of 

blade and no force from the flow. 
Next step the vortex wake is emanated from 

the trailing edge (Fig. 14).   Kutta condition 

presented in section 3 is used at the trailing 

edge.   The results are shown in Fig. 15. 

Potential jump at the trailing edge is appeared 

and the pressure jump at the trailing edge 

becomes very small and the lift is generated on 

the blade. 

Fig.14. Propeller with Wake ( MP221 ) 

Fig. 13 Potential and Pressure without Wake 

( MP221 . r/R = 0. 85 ) 
Fif 15 Potential 

( MP221 , 

and Pressure w i th Wake 

r/R = 0. 85 ) 
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4.3 Effect of Number of Panels 

In order to evaluate the present scheme, 
we have to know the effect of number of panels 
and length of the vortex wake on the accuracy 
of the calculation. 

The offset presenting the geometry of the 
blade is constructed from the manufacturing 
point of view.  Offset points are distributed 
more to the region with high curvature.   In 
case of numerical calculation there is the 
optimum distribution of location presenting the 
geometry of blades.   In general the location 
of optimum points is different from the offset 
points.   As errors may occur in interpolating 
the geometry for the numerical points from the 
offset points, we don't interpolate the 
geometry but select the most effective points 

from the offset. 
Calculations for 3 paneling cases of MP221 

presented in Fig.10 are shown in Fig. 16.   One 
case is for the propeller with whole blades, 
whereas other cases are for the propeller with 
only one blade for convenience.   In the figure 
thrust coefficient KT for one blade is plotted 
for time steps.  Development of vortex wake is 
shown in Fig. 17. 

Calculations for 3 paneling cases of 
DTEC4119 presented in Fig. 11 are shown in Figs. 
18,19.   Similar calculations for MP218 are 
shown in Figs. 20, 21. 

dh 

Fig.17(a) Propeller with Vortex Wake 
( MP221 , ISTEP= 11 ) 

MP221 
J = 0-6 

0.04 

KT 

0-02 

0.00 

NRxNC 
o 3 blades 9x8 
<■ 1 blade 9 x 8 
o    1 blade      9 x 16 

°ooooo 

10   ISTEP      20 30 
i I  

0.0 05 rev. 1.0 15 

Fig. 16  Thrust  Coefficient   for  one blade   (MP221) 

Fig.17(b)   Propeller  with  Vortex  Wake 
(  MP221   ,    ISTEP=11   ) 
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DTRCA119 
J = 0833 

01 0r 

NRxNC 
3 blades 7x8 
1 blade 7x8 
1 blade      14 x 16 

KT 

005 

0.00 

noOnaonaooDDonaaaoDDODDDDaoDDa 

oooooooooo 

10 1STEP 
_l  

20 

oo 0-25 rev.  0.50 

30 
i 

0.75 

AO 
 I 

1.0 

Fig. 18 Thrust Coeff. for one blade (DTRC4119) 
Fig.19(a) Propeller with Vortex Wake 

( DTRC4119 , ISTEP=20 ) 

0-10 

KT 

005 

000 

MF 218 NRxNC 
J = 0658 0 5 blades 6 x   8 

A 1 blade 6x8 
a 1 blade 9x8 

AAAAAAAAAAAAAAAAAAAA 
aooaooaooaoaaaoooooQ 

o 
—    o 

°°°°°°oooooo0oooo 

00 
10 1STEP 
I    I I 

20 
0-25 rev.  05 

Fig. 20 Thrust Coeff. for one blade (MP218) Fig. 19(b) Propeller with Vortex Wake 
( DTRC4119 , ISTEP = 20 ) 
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4.4. Comparison with Lifting Surface Theory 

In this section calculation results for 

pressure distribution of MP221 are shown (Fig. 

22) and comparison with the ordinary method 

based on lifting surface theory is discussed. 

Fig.21(a) Propeller with Vortex Wake 

( MP218 , ISTEP=10 ) 

MP221, J=06, r/R=0.95 
•   * Experiment 

—° *— Panel M-(Present) 
Lifting Surface T. 

MP221,  J=0.6, r/R=0.90 
• •»     Experiment 

—° •— Panel M-(Pnesent) 
Lif ting Surface T. 

Fig.2Kb)   Propeller   with  Vortex  Wake 
(  MP218  .    ISTEP=10   ) 

Fig.22   Pressure  Distribution   (  MP221   ) 
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Panel Method 

3 dim. Thick 
Wing Theory 

Ordinary Method based on 
the Lifting Surface Theory 

3 dim. Thin 2 dim. Thick 
Wing Theory Airfoil Theory 

Fig. 23 Ordinary Method Based on Lifting Surface 

Theory 

DTRCA119,J=0.833Jr/R=0.9 
•   » Experiment(Jessup) 

__o— ...— PanelM.(Present)without hub 
 Panel M(VSAERO) 

As shown in Fig. 22 the result by the present 

panel method is close to the experiment, 

whereas - C, value by the ordinary method 

based on lifting surface theory is higher than 

the experiment.  These results prove very well 

a shortcoming of the ordinary method based on 

lifting surface theory and the improvement by 

panel method. 
In the ordinary method based on lifting 

surface theory, the camber effect and the 

thickness effect are treated separately (Fig.23 

) and lifting surface theory and thick airfoil 

theory are used.   The camber effect is 

calculated by lifting surf ace theory which is 

available for three dimensional thin wings. 
The calculation supplies hydrodinamic camber 

line which is different from the geometrical 
camber line.   The hydrodinamic camber line and 

the thickness distribution compose the two 
dimensional thick airfoil.   The pressure on 

the two dimensional thick airfoil can be 
calculated by nonlinear thick airfoil theory, 

in which the pressure distribution has no 

singularity at leading edge.   It is noteworthy 

that the three dimensional effect of thickness 
is not taken into consideration in the ordinary 

method based on lifting surface theory.  This 

had already been pointed out (18).   This is 

proved very well in Fig. 22. 

4. 5. Effect of Hub 

Calculation  results  for  pressure 
distribution  of  DTRC4119   at  20   time  step  are 
shown   in   Fig. 24.        Comparisons   with  experiment 
(17)   and  with other  panel   method (VSAERO)   show 
generally   satisfactory  agreement.        In  detail 
the  present   panel   method  gives  higher  value  for 
- C0  near   the  leading  edge on   the  back  side. 
The  present  panel   method  gives  higher  value  for 
- C o  also on  the  face  side  at   r/R = 0. 3.       The 

reason   for   the discrepancy   is  not   clear. 

DTRai19.JrO.833, r/R=a7 
•        *    Experiment(Jessup) 

_-o -*._ PanelM.(Present) without hub 
 Panel M.( VSAERO) 

DTRai19,J=0.833, r/R=0.3 
• *     Experiment (Jessup) 

—° *~ Panel M.(Present) without hub 
—o -o~ Panel M(Present) with hub 
 Panel M.(VSAERO) 

Fig.24 Pressure Distribution ( DTRC4119 ) 
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Fig. 25 Paneling of Hub 
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For propeller DTRC4119 calculations were 

performed for both cases without hub and with 

hub.  Comparison of both calculations shows 

the effect of hub.  Paneling for the hub is 

shown in Fig. 25.   As shown in Fig.24 for r/R= 

0.3. flow velocity in case of with hub is 

faster and the pressure is lower according to 

the effect of hub.   Comparison of circulation 

distribution between with/without hub is shown 

in Fig. 26.   According to the effect of hub. 

the circulation around blade section near hub 

4.6 Propeller Operating in the Non-Uniform 

Flow 

As marine propellers operate behind ship 

hull, the inflow to the propeller is not 

uniform.  So it is important to know the 

characteristics of propellers operating in non- 

uniform flow. 
Calculation of propeller MP218 operating 

in non-uniform flow was carried out. Simple 

sinusoidal axial wake was chosen for the non- 

uniform flow 
Vs(l-Wx)=Vs(l-(0. 3 + 0. 3cos40 )) 

DTRC4119JS0.833, 
-o- without hub 
-°-  with hub 

0-04 r 

Q00 
0-2 06 

r/R 
10 

MP218, J = 0.658,  r/R=0-8 
• A Experiment (Ryo) 

-_o— --*-_ Panel M.(Present) 
 BEM(Ryo) 

-0-2L 

Fig.26 Circulation Distribution Fig.27 Pressure Distribution ( MP218 ) 
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Sinusoidal axial wake is useful for the study 

of unsteady characteristics of a propeller. 

The results are coipared with the 

calculation by frequency domain BEM by Ryo(2), 

which is a kind of panel «ethod, and comparison 

is also made with the calculation by the 

lifting surface theory. 

Before discussing non-uniform flow, 

calculation result for MP218 in uniform flow is 

shown in Fig.27 and compared with other panel 

method and experiment (3).   Comparisons show 

satisfactory agreement in general and in detail 

the present panel method gives higher value for 

- C „ around 20% chord on the back side. 

Result of the calculation for propeller 

MP218 operating in sinusoidal axial inflow is 

shown in Fig.28.   KT value for each blade and 

KT value for all blades are plotted for time 

step.  KT value for one blade oscillates 

corresponding to sinusoudal inflow.   KT value 

for all blades doesn't oscillate because the 

sinusoidal inflow is proportional to cos46    and 

MP218 is 5 bladed propeller.   The value for 

early time step corresponds to quasisteady 

calculation, whereas the value for latter time 

step approaches the unsteady calculation.   The 

decrease of KT value for all blades with time 

step is not small in contrast to the case of 
uniform flow (Fig. 20).   Comparison with 

unsteady analysis by BEM and lifting surface 

theory is shown in Fig. 29.   The two methods 

employ frequency domain analysis, whereas the 

present method use time domain analysis.   The 

comparison shows satisfactory agreement in 
general but in detail in latter time step, 

where the comparison should be made, the lower 
value of the oscillation by the present method 
is Lao low compared with other two methods. 

MP218 
Js = Vs/nD = 0-658 
Wx = 0.3<.0.3cos49 

CU 

0.3 
all blades 

0-1 

KT 

ao 

± No.4 
I Na3 

No.5 I  |Na2 
|No.1 blade 

ao 
5  ISTEP 10 

_L 
025  rev. 0-50 

Fig. 28 Variation of Thrust Coeff. 

MP218 Operating in Sinusoidal Inflow 

5. CONCLUDING REMARKS 

A panel method for analysis of unsteady 

flow around a propeller was presented. 

Calculation was carried out at each time step 

with the development of vortex wake.   The 

method was discussed with numerical validation 

and with the comparison with other method and 

experiment for three propellers.   Some flow 

characteristics such as the effect of neighbour 

blades and the effect of existance of hub were 

discussed.   The verification was accomplished 

in the uniform inflow cases.   The method was 

applied to a propeller operating in sinusoidal 

axial non-uniform inflow field.   The result 

was compared with unsteady method based on 

frequency domain analysis.   The method can 

treat the analysis of a propeller operating in 
arbitrary motion in non-uniform inflow.    The 
treatment of the deformation of vortex wake 

according to induced velocity was left to be 
studied later. 

MP218 
Js = Vs/nO = 0.658 
Wx = 0.3.0.3cos46 

Panel M. (Present) 
BEM(Ryo) 
LiftingSurfaceT. 

0.10 

KT 

0.05 

000 
ISTEP     10 15 20 

0.0 025 050 

Fig. 29 Comparison with Other Methods 

MP218 Operating in Sinusoidal Inflow 
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in the present paper »as performed as a        Symposium on Naval Hydrodynamics, AnnArbor 1990 
cooperative research project "No Vibration High    12. Koyama,K.,"A Numerical Method for 
Quality Ship".  The project was supported by   Analyzing Potential Flow Around a Screw 
the technology development fund of Ship & Ocean  propeller Based on the Lifting Body Theory 
Foundation.  The author would like to express   (first report)," Papers of Ship Research 
sincere gratitude to Prof. H. Tanibayashi, who    Institute, Vol. 25, No. 5, Sept. 1988 
was the chief of author's group in the project.     13. Mangier.K.W. and Sm i th. J. H. B.," Behaviour 

of the Vortex Sheet at the Trailing Edge of a 
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DISCUSSION 

S. Kinnas 
Massachusetts Institute of Technology, USA 

First, I would like to congratulate the author for 
his continuing efforts in developing panel methods for 
propellers. I would like to raise the following 
questions/comments though: 

The author discretizes the trailing wake with 
piecewise constant strength dipoles. We have found 
(by applying a similar method Ref. [11]) that it was 
necessary to keep the strength of at least the first 
panel in the wake linear in order for the results to be 
insensitive to the size of the wake panel (i.e., time 
step). For example, the author may look in Fig. 6 
and 7 of [21] where it is shown that the results are 
strongtly dependent on the time step size, unless a 
linear panel in the wake is employed. How does the 
predicted unsteady circulation distribution around a 2- 
D foil subject to a transverse gust behave with the 
ratio of the length of the first panel in the wake to 
that of the last panel on the hydrofoil, for the same 
(or similar) conditions to those shown in Fig. 6 of 
[21]? 

Concerning his Kutta condition: We have also 
found that the correction to Morino's condition (third 
term in equation 44) is necessary (also sufficient) in 
2-D in order to render zero pressure jump at the 
trailing edge, especially for thick sections at high 
angles of attack [22]. However, we have found that 
this condition is not always sufficient in 3-D for 
guaranteeing that the pressure jump at the trailing 
edge is equal to zero at all spanwise locations 
(especially in the presence of strong spanwise flow). 
Namely, in 3-D we had to apply an iterative pressure 
Kutta condition [21] in order to explicitly require that 
the pressure jump be equal to zero at all spanwise 
locations. Has the author checked the pressure jump 
at the trailing edge at all spanwise locations for his 
propeller runs? For example, the pressure 
distributions shown in Fig. 24 for r/R=0.7 do not 
seem to match at the trailing edge. 

Concerning the comparison of the lifting surface 
(LSM) and the panel method (PM) against 
experiments given in section 4.4, it is beyond dispute 
that the PM will capture the potential flow effects 
more accurately than the LSM. Before comparing 
with experimental results though, the effects of 
viscosity should be included (for example via a 
boundary layer connection).   In most cases, the PM 

will predict a higher circulation than LSM. On the 
other hand, the boundary layer effects will reduce the 
inviscid flow circulation (because, in most occasions, 
the thickness of the boundary layer on the pressure 
side is smaller than that on the suction side). Thus, 
in some instances those two effects will cancel, and 
the LSM will produce a circulation that is closer to 
experiment than that from the PM. This is the 
reason why the lifting surface method has been so 
successful in designing conventional (no skew or 
rake) propellers. The discussor does not imply that 
comparisons with experiments should not be done; he 
only wants to stress out that we should be careful in 
drawing conclusions about the two methods (PM or 
LSM) before the viscous flow effects are included. 
To put it in different words, we should not always 
expect the PM results to be close to experiments. 
The discussor would like to listen to the authors' 
comments on this issue. 

[21] Kinnas, S.A. and Hsin, C.-Y. "Boundary 
Element Method for the Analysis of the Unsteady 
Flow Around Extreme Propeller Geometries," AIAA 
Journal, Vol. 30, No. 3, March 1992, pp 688-696. 

[22] Lee, J.-T. "A Potential Based Panel Method for 
the Analysis of Marine Propellers in Steady Flow," 
PhD Thesis, MIT, Dept. of Ocean Engineering, 
August 1987. 

AUTHOR'S REPLY 

Thank you, Dr. Kinnas, for your important 
discussion.  I would like to reply to each item. 

Fig. 21(b) of the main body shows the vortex 
wake paneling for the propeller in uniform flow. 
Paneling for the propeller in sinusoidal non-uniform 
flow Wx = 0.3 + 0.3 cos 40 is shown in Fig. B. 
Although strength of dipole is constant in the wake 
panel, the size of the first panel in the wake is small 
compared with other panels in the wake. The size is 
almost the same as the last panel on the blade as 
shown in Fig. B. The strength of dipole is set as 
expression (44) of the main body. The length of the 
other wake panel is At • n = 0.0343 (n = 17.15 
rps), so there are about 7 panels in the 0.25 rotation 
(this corresponds to one period of cos 40). This 
balance is considered to be reasonable for the 
calculation, although the numerical check might be 
necessary as the discussor pointed out. 

As the discussor pointed out for the pressure 
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distribution near the trailing edge in Fig. 24, the 
pressure Kutta condition might not be complete, 
although the pressure jump near the trailing edge is 
very small. Considering that the condition (44) is 
valid for 2D case as shown in numerical calculation 
in Section 3, it is reasonable to interpret that the 
reason for the incompleteness may be 3D effect. But 
the numerical results cannot explain this. For 
example, the pressure condition near the trailing edge 
for r/R = 0.7 is worse than that for r/R = 0.9, 
although 3D effect is considered to be stronger for 
4/R = 0.9. So the author thinks it should be studied 
further to make clear the incompleteness. 

It goes without saying that a new method should 
be compared with ordinary methods and shown with 
its advantage when it is proposed. Why is it 
necessary to use a panel method? The author 
intended to show an example of the advantage of the 
panel method in Section 4.4. The author thinks Fig. 
22 shows the advantage of the panel method very 
well. Mechanism of difference between the two 
methods was explained by the 3D effect from 
thickness for lifting surface theory, which was 
discussed in Ref. (6). The conclusion shown in Fig. 
22 will not alter even if the viscous effect is taken 
into consideration, because both calculations for -Cp 
will go up if the boundary layer thickness is taken 
into account. 

Thank you. 

Fig.B  Paneling  for   the  propeller   in  non-uniform 

f low 

DISCUSSION 

B. Maskew 
Analytical Methods, Inc., USA 

The panel method described in the paper applied 
the well established Dirichlet condition, which sets a 
fictitious internal potential equal to that of the onset 
flow. With this approach, the doublet and source 
distributions provide the perturbation potential of the 
flow. I have two comments on the paper: the first 
concerns the ensuing discussion on the Kutta 
condition, where it was noted that, if the third term 
in Eq. 44 is omitted, then the Kutta condition is not 
satisfied for thick trailing edges. If, in fact, the total 
potential, i.e., p+poo, is used in each of the 
quantities in Eq. 46 rather than the perturbation 
potential, then the steady Kutta condition on the thick 
sections can be satisfied (this essentially restores the 
third term in Eq. 44 in a simple manner). 

My second comment concerns the very low panel 
densities used on the blades. In general, it is found 
that at least 20 (and preferably 30 or more) panels 
are needed across the blade chord on the upper and 
lower surfaces to adequately capture the pressure 
distribution. This is particularly important if the 
blade section includes an "aft loaded" camber line or 
if the blade is operating in a highly curved flow field. 
In these situations, even a sophisticated explicit Kutta 
condition that equalizes the upper and lower trailing 
edge pressures will not give the correct pressure 
distribution on a low order method unless the surface 
geometry is well represented. If boundary layer 
effects are to be included, then at least 30 chordwise 
panels on the upper and lower surfaces are needed. 

AUTHOR'S REPLY 

Thank you, Dr. Maskew, for your important 
discussion. If the total potential is used in Eq. (46), 
the steady Kutta condition on the thick airfoil can be 
satisfied, as you said in your first comment. If 
velocity vector V in Eq. (19) is set zero and inflow 
velocity W in Eq. (20) is set some finite constant 
value in my formulation, the potential $ gives the 
total potential. And the third term of Eq. (44) 
vanishes because of V=0. This is useful for the case 
of a wing that doesn't rotate. So this idea cannot be 
applied to a propeller blade. 

As for your second comment, I should investigate 
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the effect of number of panels with finer paneling as 
you said. But it was happy for me to have the 
chance to compare the calculations with fine paneling 
by some other researchers. The workshop on surface 
panel method for marine propellers organized by the 
20th ITTC Propulsor Committee was held in this 
hotel last Sunday. Some researchers including the 
discussor use very fine paneling. Fig. A is the 
example of the comparison of our calculation with 
other calculations. This discrepancy shows the 
degree of error or degree of accuracy for our 
calculation. This should be noticed when our 
calculation results are used. 

AUTHOR'S REPLY 

Thank you, Dr. Hoshino, for your important 
discussion. I calculated about 0.5 rotation of time 
steps to obtain the KT, KQ, CP value presented in 
this paper. As you can see in Figs. 16, 18, 20, the 
effect of the vortex wake emanating from the 
neighbor blade is very significant. That is about 
early 0.25 rotation in these calculation cases. 
Calculation was performed about 1.0 rotation for one 
blade, and the result showed very small variation of 
KT value. But I think it should be confirmed by the 
calculation with more long vortex wake. Thank you. 

Thank you. 

DTRC4119,I=0.833,U/O Rib, Linear Uake 

0.3R EfDC 

D KRIS0 + rHI    © VNJ    ^ SRI    * CETENfl    * experiment 

Fig.A Comparison with Other Calculations 

Pressure Distribution 

DISCUSSION 

T. Hoshino 
Mitsubishi Heavy Industries, Ltd., Japan 

I would like to congratulate the author for the 
excellent paper presenting the method to analyze the 
unsteady characteristics of propeller by surface panel 
method. I would like to ask one question. 
Calculation of several rotations of propeller is 
necessary to get the converged solution in time 
domain analysis. How many rotations did you 
calculate to obtain the final solution? 
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A Bilinear Source and Doublet Distribution 
Over a Planar Panel and Its Applications 

to Surface Panel Methods 
J.-C. Suh, J.-T. Lee, S.-B. Suh 

(Korea Research Institute of Ships and Ocean Engineering, Korea) 

Abstract 

This paper presents closed-forms for computing 
the induced potentials and velocities due to a bilin- 
ear density distribution of source and/or doublet 
singularities over a planar panel. The surface in- 
tegrals associated with Green's scalar identity can 
be transformed into contour integrals using Stokes' 
formulas. The present analysis includes, of course, 
the cases of constant or linear distributions. The 
closed-forms are more computer-oriented and ex- 
plicit than those derived previously so that we can 
obtain, with much easier implementation, the ma- 
trix elements of the linear system of algebraic equa- 
tions in application of surface panel methods. 

NOMENCLATURE 

A constant in equation for the vorticity compo- 
nent of a Hill's spherical vortex flow, w   = 

AT sin 6 

A vector, Eq. (11) 

a constant defined by e ■ r 

ao,ai,a2,a3 coefficients for specification of bilinear source 
distributions 

a, 4, c lengths of the semi-axes of an ellipsoid 

B vector, Eq. (7) 

t 

n 

Qi 

£ 

?o 

1x,1y 

IS 

R 

arclength along each side of a planar panel 

number of sides of a polygon panel 

unit normal vector to a planar panel 

corner points (vertices) of a panel 

velocity 

surface speed 

undisturbed speed of onset flow 

i-and y-component of velocity in the symmet- 
ric plane of a Hill's vortex flow 

speed at the interior surface of a sphere for a 
Hill's vortex flow 

radius of a sphere for a Hill's spherical vortex 
flow 

distance between a vertex of a panel and a field 
point 

distance vector between a source-point and a 

field-point, x^ — xp; as a scalar, distance be- 
tween the two points 

length of each side of a panel, Fig. 1 

maximum thickness of a circular wing 

bo, bi, 62, &3  coefficients for specification of bilinear doublet 
distributions 

d perimeter of a planar panel with the index t 
denoting the side in concern 

£ unit vector independent of a source-point, es- 
pecially taken as ±n, Eqs. (7) and (11) 

Sli unit direction vector along sides of a panel 

Sfiiri unit vectors in £- and ^-direction in the local 
coordinate system (£,»J,f) 

?.$ unit vector in cVdirection in a spherical polar 
coordinate system (p,B,<f) 

(U,V,W) 

Cartesian coordinates of a field point mea- 
sured from the origin of (£, T7,c)-coordinate 

system 

local plane coordinate system, Fig. 2 

position vector of a point where potential and 
velocity are evaluated, i.e. of a field-point 

position vector of a point where a singularity 
is located, i.e. of a source-point 

onset flow velocity 

angle of attack 

surface doublet density, equivalently defined 
by n = -<f> 
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(p, ß, <j>)        spherical polar coordinate system used for rep- 
resentation of a Hill's spherical vortex flow 

a surface source density 

(j> velocity potential 

A4> jump of velocity potential at trailing edge 

(£, V, f) local Cartesian coordinate system where a sin- 
gularity is located at the plane of £ = 0 

u vorticity; as a scalar, vorticity component of a 
Hill's spherical vortex flow 

1. INTRODUCTION 

The main task for computing the potential flow about 

arbitrary bodies is to determine velocity potential <j> in a 

fluid domain. Using Green's scalar identity, the velocity 

potential can be represented from distributions of sources 
and doublets on the boundary surfaces. Applying the nor- 
mal boundary condition at the collocation points results in 

a linear system of algebraic equations to be solved for un- 
known doublet strengths on each panel with known source 
strengths. The associated surface integrals should be eval- 
uated at the collocation points to obtain the matrix ele- 
ments of the linear system. A fast and accurate computa- 
tion of these elements is, therefore, very important in the 

numerical solution. 
The potential <j> within the fluid domain can be ex- 

pressed approximately as a sum of each contribution in 
terms of the surface value of the potential 4> and its normal 
derivative n- V^> on each panel of the discretized boundary 

surfaces £,-; 

^(Sp ,) = -i£//s,.{^-v*-^-v(i)}^ (i) 

The velocity can be derived by differentiating Eq. (l) with 
respect to the coordinates of the field point. Here r is 
distance between the integration point x^ on 5,- and the 
field point x^ located in the fluid domain. The first and 
the second term represent the potential due to a surface 
distribution, respectively, of source-type singularity with 
a density a = n ■ V# and of doublet-type singularity with 
a density p = -<j>. We may take without loss of general- 
ity one planar panel as the integration region in concern 
herein, which can be regarded as a part of the discretized 

boundary surface. 
The closed-form expressions of the surface integrals 

for constant source distributions over flat quadrilateral 

panels have been introduced by Hess & Smith (l). They 
expressed the surface integrals as a superposition of line in- 
tegrals for each side of the panels, with independent treat- 
ment of the contribution from the side. Webster (2) has 
extended the Hess and Smith analysis to a triangular panel 
in order to eliminate the discontinuity problem for a flat 
quadrilateral source panel by allowing a linear variation 
of the source strength across the triangular panel. These 
two approaches are concerned with only the source dis- 
tributions and the resultant expressions are considerably 
complicated to employ a computer code.   A simpler and 

more unified derivation has been provided by Newman (3) 
for computing the potential due to a constant doublet or 
source distribution. His analyses are based on the elemen- 
tary plane geometry related to the solid angle of a panel. 
He defined four infinite sectors (for a quadrilateral panel), 
bounded by semi-infinite extensions of the two adjacent 
sides of the panel with respect to the corresponding ver- 
tices, such that the difference between the domains of the 
four sectors is the domain of the panel. Then the surface 
integral over each infinite sector is evaluated in terms of 
the included angle of the corresponding vertex projected 

onto the unit sphere with center at the field point. He has 
also described the more general recursive scheme for com- 
puting the potential due to a source or doublet distribution 

of linear, bilinear or higher order form, using the basic re- 
sults for the case of the constant distribution. However the 
computer-oriented results for the induced velocities due to 

the higher-order distributions do not appear explicitly to 

be appreciated. 

Another elegant approach based on mathematical for- 

mulations has been presented by Cantaloube ii Rehbach (4). 
They introduced more explicit expressions of the surface 

integrals for the source or doublet distribution. With vec- 
tor operations of the integrands for using Stokes' formu- 
las, they show that the surface integrals for the constant 
or linear distributions of sources and doublets over a pla- 
nar facet can be transformed into line integrals along the 
contour of the panel. The major advantages of their study 
are that the formulations are valid for a planar curve-sided 
panel and that the resultant equations are expressed in a 
global coordinate system while the aforementioned analy- 
ses require the transformation of the local coordinate sys- 
tem.  Thus the expressions derived by Cantaloube & Re- 
hbach may be regarded as a more computer-oriented form. 
They have proposed the direct numerical integrations of 
the line integrals by an integration quadrature (e.g. Simp- 
son rule or Gaussian quadrature).  However when a field 
point is very close to the sides or vertices of a panel, a 
large number of the quadrature base points and consider- 
able effort to choose these points suitably would be needed 
in order to achieve good accuracy. Such numerical imple- 
mentation in a computer code may lead to a large amount 
of extra-computer time.   Any attempt for finding closed 
form expressions of the line integrals even for a polygon 
panel does not appear in their study. Suh (5) obtained, as 
an extension of Cantaloube ii Rehbach's work, the closed- 
forms for computing the induced potentials and velocities 
due to constant and/or linear distributions of the singu- 
larities. He expressed them as a sum of contribution from 
each side of the panel, in terms of appropriate basic inte- 

grals. 
As an another extension (but of the different ap- 

proach) the present paper deals with a bilinear singular- 
ity distribution over a planar polygon panel. In numerical 

implementation of the potential-based panel method for 
solving the potential flow around a lifting body, the trail- 

ing wake sheet is represented approximately as the dou- 

blet distribution of potential jump. One possible way to 
include the effect of the local variation of these doublet 
strengths is with the use of a bilinear distribution over 
each wake panel (which is uniquely determined from im- 
posed potential jump values at its four vertices). The use 
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of the bilinear distribution over quadrilateral panels (or 
the linear distribution over triangular panels) eliminates 
the discontinuity problem of singularity for the piecewise 
constant distribution. Then the singularity strength will 

be chosen to vary bilinearly (or linearly) across the panel. 
The main scope of the present work is therefore to derive 
explicit and elegant closed-forms of the induced potential 
and velocity due to a bilinear distribution. The bilinear 
distribution case includes, of course, both the constant and 
the linear distribution cases. 

Alternative forms of the associated integrands for the 
bilinear distribution, of sources and doublets over a pla- 
nar panel are presented in Section 2, from which we can 
transform the associated surface integrals into line inte- 
grals along contour of the panel by using Stokes' formulas. 
For a planar polygon panel, the derived line integrals can 
be reduced to closed-form expressions which are presented 
in Section 3. They are expressed compactly as a sum of 
contribution from each side of the panel, in terms of ap- 
propriate basic integrals. It will be shown that each con- 
tribution depends on the relative position of a field point 
from the side. Section 4 is devoted to analytical evalua- 
tions of the basic integrals. In section 5, for the purpose 
of checking the convenience and accuracy of the present 
approach, we apply the derived expressions to some flow 
problems, as listed below, related to surface panel meth- 
ods: (i) an axisymmetric rotational flow inside a sphere (a 
Hill's spherical vortex flow) (ii) a non-lifting flow around 
an ellipsoid and (iii) a lifting flow around an elliptic wing. 

2.   ALTERNATIVE FORMS OF INTEGRANDS FOR 
STOKES' FORMULAS 

Without loss of generality we will consider the do- 
main of one planar panel for the integration region as a 
part of the discretized boundary surface in Eq. (l). We 
take an orthogonal coordinate system (£,»7,c) to specify a 
bilinear form, such that the panel is in the plane f = 0 and 
the direction of f-axis is the same as that of the unit nor- 
mal vector, n, of the panel, as shown in Fig. 1. The unit 
vectors in the direction of £-axis and rj-axis are denoted 
by ep and e,,, respectively. These two axes may be chosen 
arbitrarily in the directions but lying on the panel surface. 
The coordinates (x, y, z) of the field point xp are measured 
relatively from the origin of the coordinate system. 

The potentials and the velocities at a field point xp 

induced by a bilinear source distribution a = a0 + arf + 
0377 + a3£7? and by a doublet distribution fi = b0 + &i£ + 
b2r) + b3^ri, respectively, can be written as, 

i \ i  /" /* r  i      f_z,    i-y 
^    =    -47//>r+Cl— + C2 — 

+C3(;-*Xq-y)]*-s (2) 

,W    =    -L/"/fcoV(i) + ei({-*)V(i) (3) 
- 4?r J Jsl r T 

+c2{r, - y)V(i) + c3(Z - x)(u - y)V(i)] dS  (4) 

+M    =    -^■//,[*V^) + *U'l)V(r) 

+d2(r, - y)V(i) + dz(i - z){n - WM;)] dS (5) 

£M    =   -±-{1 ^V(i) x d£ + Jfs(n x V/0 x V(±)dS} 

=   - — \<[ {bo + b^ + brt + hZtfvfyxdi 
4TT IJc r 

+ fj {{h + hn)^, 3 q{b% + 6sOs«} * v{-)ds] 
S (6) 

where for shortness of expressions we have defined the con- 
stants co = ao + aix + aiy + ci3xy,ci = oi + 03t/, C2 = 
o2 + a3x,C3 = as and do = &o + hx + 62y + bsxy,di = 
h + b3y,d2 = 62 + b3x,d3 = 63- Equation (6) has been 
changed into the form of the vortex distribution equiva- 
lent to the doublet distribution (6, 7). 

.2p(*,y.*) 

Q*{t*,V4) 

Qs(.t<>,Vs) 

QsCSs^s) 

Qiituli) 

$2(6.12) 

Fig. 1   A planar panel defined in a local coordinate sys- 

tem 

In the case of a bilinear singularity distribution, eight 
different integrands are involved in the surface integrals in 
Eq. (1). For use of Stokes' formulas, all integrands can be 
transformed into equivalent ones either in curl-form of a 
vector or in cross product-form of a vector with the normal 
n as follows: 

{-x 

»7-y 

=    e-(VxB) 

=    «vfexVr) 

=    -«{ • (n X Vr 

(7) 

(8) 

(9) 

tt-XKl-^    =    en-[nxV{(r,-y)r}} (10) 

V(i)   =    -VxA (11) 

K-x)V(i)   =    [^.{»xV^)}-^ 

-Z[e„-{nxV(l)}]n        (12) 
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0?-¥)V(;) 

(e-*)0?-v)v(-) 

-[iffcxV(^)} + )]s, 

+z [e( ■ {n x V(i)}]n (13) 

-^■[-.xV{^}]ef 

+fi,.[axV{^!}]6| 

+ze?- [nx V(^-^)]a     (14) 

where 

A- 
r(r-t-e-r) T + e ■ 

The distance vector r is defined as x^ — xp where the sub- 
scripts f and p refer to the source point and the field point, 

respectively. Equations (7) and (11) have been introduced 
by Suh (5) and Guiraud (8) respectively, which can be 

also derived by direct manipulation with starting from the 

right sides. The remaining equations have been derived by 
a similar deduction, under hypothesis of planarity of the 

panel. While Eqs. (7) and (11) hold for any e independent 
of the integration point x^ more generally, the unit vector 
e is taken as ±n for application of Stokes' transformation 
where the sign is chosen such that e • r is not negative. 
Of course, these two relations can be simply used if one 
wants to compute the induced potentials and velocities 
due to the constant source and doublet distributions. In 
this case, the present approach using these key relations 
will be shown to consider consistently simpler than those 
presented in (1, 2, 3, i). 

Using Stokes' formulas of the surface integrals with 
the alternative forms for a polygon panel, we can express 
the surface integrals as a sum of the associated line inte- 
grals for each side of the panel with independent treatment 
of the contribution from the side. Each contribution can 
be written as closed-forms in term of only the geometrical 
parameters of the side as will be described in the following 
sections. 

3. INDUCED POTENTIALS AND VELOCITIES 

By using Eqs. (7) through (10) for the correspond- 
ing integrands and then by performing Stokes' transforma- 
tions, Eq. (2) can be written as, in terms of line integrals, 

A<") 
r • (dl X n) 

r + e- r 
+ ci^ • * rdl £ 4JT L    JC 

-c2^ -jrdl + ess,, • j fa - y)rd^    (15) 

The term r • (dl x n)/d£ represents the projection of the 
distance vector r onto the vector perpendicular to both dl 

and n. Because it is constant for each side of a straight 
line and e • r is a non-negative constant (= a) for all sides 

of the planar panel (that represents the normal distance 
of the field point from the panel), Eq. (15) can be written 

^ 
l Ns r      /"     l t 

4x f-' i       Jc; r + a JC: 

-CM I   rdl+C3ViJ   («j-y)ri/j (16) 

rdl 

The index i denotes the integer for identification of the side 

in concern, Ns is the number of sides of the polygon panel 
(e.g., Ns = 3 for triangular panels), i, = r ■ (e^. x n), 

«.=«{• £4 a11^ «• = fiij " £ti- The directional vector 

e^ = di/dl is chosen in a counterclockwise direction as 
the convention of the contour integral. Rewriting the last 
integral in Eq. (16) in terms of the local coordinates of 
the nodes, we finally obtain the expression for the source- 

induced potential: 

I   Ns T        r      1 
d")    = y" Uot,- /    —— dl+iwi-ciui 

A% f-f L      Ja r + a 

+<*«,•(!?.• - »)} f  rd£+c3vff  trdl]   (17) 
JC; JC; J 

Here I is the integral variable representing the arclength 

along each integration path C,-. The vertices composed 

of the panel (fr,rj,-) and the sides are also defined in a 
counterclockwise order as illustrated in Fig. 1. It is seen 
that the integral term for each side is related to the relative 
position of the field point from the side. Each integral, as 
will be shown, depends only on the coordinates of the two 
end points of the corresponding side. Equation (17) can be 
directly used even in the cases of that the field points are 
just at the panel surface (i.e., in the self-induction cases), 
by setting o = 0 in Eq. (17) since n • r = 0. Furthermore, 
when the field point is just at the side of the panel, the first 
term vanishes because tt- decays faster than the integral 
with r approaches zero, while the other terms have finite 

values. 

For the source-induced velocity, we first re-arrange 
the first integrand in Eq. (3) for use of Stokes' transfor- 

mations: 

V(i) = n{n-V(i)}-nx{nxV(i)} 

Using Eqs. (11) through (14) and rearranging the resulting 
expressions give us the corresponding expression for the 

source-induced velocity: 

,W = — i>Co{n(n-e)t,- f   -r^dl 
-  .       4jr£^L       I   v Jc{r(r + a) 

+ (n x U.) j    ~dt) + ("^ - u.-ej{{ci(& " x) 

+c2(r)i ~ V)} f   -dt+ {ciu,- + cjv,-} /    -dt] 

-ti(ciet + c2en) /    ——-dt v JCi r + a 

+zn(c2Ui - ciVi) I   -dt+ cj|-e{u,-(& - z)2 

+&,"•• (»?i ~ y)2 + nuiz{(i - x)} J    -dl 

+c3{-2^(e,- - *)u? + 2fi,(»7,- - y)vfnzu?} j   iu] 

+cz{w*i-<ku?}jc
t-dl] (18) 
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For a bilinear doublet distribution /i = fco + &i£ + 
b2r> + 63^, the induced potentials and velocities can be 
obtained in a straightforward manner as in the cases of 
the source distribution. The final results can be written, 
for the induced potentials, 

*"  -  -£&"*<* Wc,^ zdi 
r(r + a) 

+{d2ut- - divt + d3ui{Zi - x)} Jc -dt 

+d3uUfc-rdt} (19) 

and, for the induced velocities 

Ns 

4* aM   =   J-£[(rx &.){(&<>+ &1& +few+ k&»K) 

/"   \dt + {biui + biVi + bsit.Vi + tj.u,)} 
JCi rs 

J^dl+bMVif^dl} 

+n{d1vi - d2u,) f   -dt + d3{n{u.-(»7,- - y) 

+d3n(v? - «?) /   ;«tt] (2°) 

It is easily found that the expression for the induced po- 
tential 4>W has the same form as the normal component 
of qW except notation of the singularity distribution. 

4. CLOSED-FORMS OF THE BASIC INTEGRALS 

In the preceding sections, we have expressed the in- 
duced potentials and velocities in forms of a sum of the 
more simplified line integrals given in Eqs. (17), (18), (19) 
and (20). We will derive here closed-forms of the following 
line integrals involved in those expressions: 

J3.= f   rdt,   Kli=  f   %il,   K2;= f   ^ dt, 
JCi JCi   r Jc< 

*-/ Jc 

-dt, 

K3; =  /    Irdt 
JCi 

The line integrals for each side of the polygon can be 
treated independently by the geometric parameters of that 
side. It is sufficient, therefore, to consider only one side of 
the panel, say 1 = 1, for the purpose of these evaluations. 
For simplicity of the presentation, we drop the subscript t 
used for identifying the side. We take, without loss of gen- 
erality, a local plane coordinate system (x',z') in the plane 
through the field point x^ and the side in concern, such 
that the side lies on the x'-axis, one end point of the side 

is at the origin and the integration path is performed along 
the positive x'-axis, as shown in Fig. 2. Then the local co- 
ordinates (x',z') can be expressed, in terms of the global 
coordinates, as \z'\ = \u x Qixp| and x' = U'Q\*v In the 

following development, we define the distances between the 
end points and the field point by Rx =■ |Qup| = V*'2 + z'2 

and R2 = \Q2Xp\ = \/{s-x'yi + zli. Expressing the inte- 
grals in terms of the local coordinates x' and z' and per- 
forming the integration (9), we get the following results 

for the integrals. 

11 = In 
R2 + s-x' 

Ri-x1    ' 
12 = II - 

1 1   (8- X1 X1  \ 
13 =-(11-12),    I4=^{-^- + ^}. 

Jl = R2 - Äi + *'H>  J2 = — - — + x'14, 

3Z=-{{s-x')Ri + x'R1 + z'2n}, 

Kl = i{(» - x')R2 + x'Ä! - *°Il} + 2x'Jl - x'2Il, 

K2 = -(- Z^+|^) + Il + 2x'J2-x'2I4, 
R2       R\ 

K3=^(ä|-ä1
3
)+X'J3, 

V7^T?{<Ba + a{s _ x<)Rl + ax>R2} 
where H = z"(R1 + a){R2 + a) 

<*       ,        • -im .rf>P + aRi\1 

is replaced by II - yj^_^% ~ sin     H> lf \  Ri + a  I 

rzn + a.Ri\i < z,2 holds   In the cases of a _ 0 and/or 
V  .Ri + a  /   - , , .        „, 

z = 0, we can take the limit forms of the expressions,  lne 
expressions involve only three transcendental functions for 
each side (or vertex) to evaluate, including the square-root 
function for the distance Ä,-, the logarithmic function and 
the arc sine function. 

x„(x',z') 

Qi(0,0) <?2(s,0) 

Fig. 2  A local plane coordinate for each side of a panel 

Finally the closed-forms of Eqs. (17) through (20) can 
be written as, in terms of the basic integrals retaining the 
index 1 for identification of the side and vertex: 
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& 

Ns , 

» 

*M      = 

» 

=   —— y*|c0t,-I2,- + {ei«; - cju,- + CSV,-(TJ,- - y)}J3; 
«=i 

+<WK3,-] (21) 

=    — Yj-c0{a(n • £)*.-I3i + (&,«.' - S«t».-)I1.-} 
4x.=1L 

+ (£{«.• - £„«,-){ {ci(fc - *) + ^(^ " !/^Ili 

+ (ciu,- + c2v,-)Jl,-} - (cief + c2e„)i,-I2,- 

+{ctUi - civ,-)n*Il,- + e3{{-e£u,-(& - x)2 

+ir,v,-(r),- - y)2 + nuiztfi - x)}Il< 

+{-2fif (6 - x)u2 + 2£r)(r?,' - y)v- + nzu,2}Jl; 

+ {-e,u? + e,v,3}Kl,-}] (22) 

1   Ns r 
- VJ [MH ■ £){.I3>' + idlVi - d2Ui 

i=l 

-d!|Ui(6-x)}Il.--ds*u?Jl,-] (23) 

1   Nsr, = ££[{{(&-*H-(*-v)«.-}a 
1=1 

+*(«,•«£ - u.e^)}{(6o + feiC." + M; + *3^'?i)I4,- 

+{&iu,- + ijt;,- + fesC&f.' + 1.".')}J2' + 6s«t«i-K2<| 

+(difi4 + die*){a-s)ti!Zi + (divi - <*2U,)nIlt- 

+d3n{{vi(r]i - y) - u,-(& - x)}Il,- 

+ («? - u2)Jl,} + «*»(&,«* - £{«,-)rfl,-] (24) 

These expressions cover, of course, the results for the 
case of constant/linear singularity distributions. Equa- 
tions (21) through (24), are relatively much simpler and 
more explicit than those given in (I), (2), (3) and (4), al- 
though are not shown precisely the identities (because of 
the different manipulation) which exist among their ex- 
pressions and the present ones. These explicit simple ex- 
pressions (even for the linear distributions) may reduce 
computing time significantly for formation of a set of si- 
multaneous linear equations in application of singularity 
methods. In the potential-based panel methods, for ex- 
ample, the calculated potentials form the fundamental ma- 
trix elements of the linear system to be solved and thus 
such a formation is the primary factor of the computing 
time. Also the present expressions may be used to find 
potential and velocity in order to include mutual interac- 
tion in complex-flow problems for compound propulsors. 
In some problems we should often put a careful effort for 
field points located inevitably in the extreme vicinity of 
the panel edges. 

5. APPLICATIONS TO SURFACE PANEL METHODS 

To validate the formulation described in the preced- 
ing sections, for the following three potential flow problems 
we compared the numerical results obtained using surface 
panel methods with the analytic solutions: (i) simulation 
of a Hill's spherical vortex flow, (ii) non-lifting flow about 
an ellipsoid, and (iii) lifting flow about a circular wing. 

5.1 Simulation of a Hill's Spherical Vortex Flow 

The newly useful relation Eq. (7) can be applied di- 
rectly to evaluate the volumetric integral of vorticity dis- 
tributions, namely, the Biot-Savart integral. Sample calcu- 
lation is applied to a Hill's spherical vortex flow as demon- 
strated below. For axi-symmetric flow without swirl mo- 
tion inside a sphere, the vorticity has only a component in 
the 4> direction m spherical polar coordinates (p,9,<j>). As 
a simple solution to the governing equation for the scalar 
vorticity component, we may set u = Apsm8. Then the 
constant vortex-lines are circles of radius psis.8 with cen- 
ter along the x-axis (x = pee»9). This flow is called a 
Hill's spherical vortex flow (Iß). Typical streamline pat- 
terns are shown in Fig. 3. From the relation between the 
stream function and the scalar vorticity component, we 
can find the velocity components in the symmetric xy- 

plane of 4> — 0 (1): 

q% 

<3v 

?<* 
-pi)cosi8 + j(Ri-2p2)sin29 

=    A(R*-p*)Sm26-£-(R2-2p2)sm29 
10 1° 

where R is radius of a sphere. 

Fig. 3 Streamline pattern of a Hill's spherical vortex flow 

With the given velocity field, we will now recover this 
vortex flow by the integral representation in the form of 
the vector identity for velocity. A velocity field £ can be 

written as, 

£   =    i-[-//(n.£)V(i)iS-//(nx£)xV(i)iS 

+ ///(v • £)V(i)<^ + ///(V x j) x v(i)«fv] 
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Knowing that the normal component (n • £) is assumed to 
be zero at the boundary surface and the fluid is incom- 
pressible (i.e., V • £ = 0), we simplify the above equation 
as 

£=I[-||(I,x,)xV(iH5 + ///,xV(^] 

As an approximation, we may assume (n X q) and a are 
piecewise constant over the subdivided elements. We can 
then transform the volume integral over each cell into sur- 
face integrals over its enclosed faces (i.e. six planar faces) 
by Gauss theorem. The integrand of the transformed sur- 
face integrals becomes l/r. Equation (7) (with e = ±n) 
can be used to transform each surface integral into line in- 
tegrals expressed in a form analogous to the first integral 
term in Eq. (17). The final form becomes 

£  =   -££>*>»*//*(^ 
n 

-B<^).x{Ea*//^},-]      (25) 

Here q$ is the speed at the interior surface of the sphere 
and ej, is unit vector in ^-direction. The first summation 
is performed for the panels on the interior surface of the 
sphere and the second for all divided cells. The surface 
integrals represent, respectively, the velocity and the po- 
tential induced by the constant source distribution over 
the corresponding planar panels with unit density, as de- 
scribed in the preceding sections. 

In order to show that such representation of the ve- 
locity in terms of the surface integrals and the volume 
integrals can recover the given velocity distribution, the 
comparisons of the simulated velocity with the given ve- 
locity are made along two rays of constant polar angles 
9C = 28° and 0e = 88" as shown in Table, where the veloc- 
ity direction is defined by tan-1(gy/?i) in the symmetric 
iy-plane of <f> = 0. Here we take R — 1, A = 1 and 
Nfx Ne x JV^=20 x 36 x 36 as number of the subdivided 

elements. The good agreements between the given and the 
simulated velocity components are observed. These agree- 
ments mean that the present expressions for the constant 
singularity distributions are valid. When we calculate the 
shear-flow interaction terms in rotational flow problems 
about a three-dimensional body by using the vorticity- 
velocity formulation (11), such a Biot-Savart integration 
would be necessary to find the velocity field for a (given) 
vorticity field. 

5.2 Non-Lifting Flow about an Ellipsoid 

The analytic solutions of the perturbation potentials 
of an ellipsoid at zero angle of attack are given in refer- 
ence (10). By superposing the analytic solutions at zero 
angle of attack relative to the different axes, we obtain 
the analytic solutions for an arbitrary oblique onset flow 
q = (U,V,W). Then the surface speeds are found by 
differentiating the potential along the surface. The final 
result is given herein for comparisons of the numerical so- 
lutions. 

Table: Simulation of a Hill's spherical vortex flow 

(a) 9C = 28" 

p Speed q, = Direction (deg.) 

simulated given simulated given 

0.010 0.199 0.200 0.007 0.002 

0.050 0.198 0.199 0.038 0.060 

0.100 0.196 0.198 0.218 0.240 

0.150 0.193 0.195 0.527 0.549 

0.200 0.189 0.190 0.978 0.999 

0.250 0.183 0.185 1.588 1.607 

0.300 0.177 0.178 2.386 2.400 

0.350 0.169 0.170 3.410 3.417 

0.400 0.160 0.161 4.712 4.711 

0.450 0.150 0.152 6.375 6.362 

0.500 0.139 0.141 8.516 8.482 

0.550 0.127 0.129 11.31 11.24 

0.600 0.114 0.116 15.02 14.91 

0.650 0.101 0.103 20.08 19.88 

0.700 0.089 0.090 27.17 26.81 

0.750 0.077 0.078 37.25 36.64 

0.800 0.068 0.069 51.46 50.47 

0.850 0.064 0.064 69.84 68.45 

0.900 0.067 0.067 89.57 88.04 

0.950 0.078 0.078 106.43 105.17 

0.975 0.086 0.085 112.78 112.12 

(b) ec -- = 88° 

P Speed q * == Direction (deg.) 

simulated given simulated given 

0.010 0.198 0.200 0.001 0.000 

0.050 0.198 0.199 0.003 0.005 

0.100 0.195 0.196 0.018 0.020 

0.150 0.190 0.191 0.045 0.047 

0.200 0.183 0.184 0.085 0.087 

0.250 0.174 0.175 0.141 0.143 

0.300 0.163 0.164 0.218 0.219 

0.350 0.149 0.151 0.323 0.324 

0.400 0.134 0.136 0.471 0.470 

0.450 0.117 0.119 0.684 0.680 

0.500 0.098 0.100 1.010 0.998 

0.550 0.077 0.079 1.558 1.529 

0.600 0.054 0.056 2.649 2.564 

0.650 0.029 0.031 5.807 5.413 

0.700 0.004 0.005 64.28* 39.68* 

0.750 0.028 0.025 171.93 171.03 

0.800 0.059 0.056 175.67 175.43 

0.850 0.092 0.089 176.88 176.75 

0.900 0.127 0.124 177.46 177.39 

0.950 0.164 0.161 177.78 177.76 

0.975 0.184 0.180 177.80 177.89 

* The relatively poor agreement occurs near the stagnation 
point where the very small difference in magnitude of the veloc- 
ity produces the large difference in its direction. 
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For an ellipsoid whose geometry is specified as (z/a) + 
(y/i)2 + (*/c)2 = 1 where a,b,c are the lengths of the 
semi-axes of the ellipsoid, the total velocity q on the sur- 
face becomes 

^      ix       y       z \-i 

where 

a0   =   a6cr(a2 + A)-s/2(62 + A)-1/2(c2 + A)-1/2
(fA 

Jo 

Jo 

70   =   B6C/'00(a2 + A)-1/2(i2 + A)-1/J(c8 + A)-s/1dA 
Jo 

The linear and the bilinear singularity distributions 
over the triangular panels and the quadrilateral panels re- 
spectively, were applied to obtain the surface speed on a 
sphere. No-penetration condition is applied at the nodes 
of the panels (as collocation points) in the potential based 

o.oo   & 

D       Numeric(quadrilateral)      Cl 

A       Numeric (triangular) 

panel method. The resulting linear system of equations 
form for the unknown nodal values of the perturbation po- 
tential. In Fig. 4, the surface speeds calculated numerically 
using a second order fitting of the potential are compared 
with the analytic solutions. Both cases of the triangular 
panels and the quadrilateral panels give the accurate solu- 
tions. These comparisons imply that the calculations for 
the induced potentials due to the linear and the bilinear 
distributions are valid. 

Similarly we applied the bilinear distribution to cal- 
culate the surface speed of an ellipsoid in an oblique onset 
flow. Figure 5 shows the chordwise distribution of the sur- 
face speed at the three different spanwise positions. In 
Fig. 5, the numerical results have good agreement with 
the analytic solutions. Some discrepancy is observed near 
the leading edge and the trailing edge where the numerical 
resolution does not follow the rapid change in the poten- 
tial. 

  Analytic (y/b=0.97) 
  Analytic(y/b=0.70) 
- • — Analytic(y/b=0.00) 

D Numeric(y/b=0.97) 
0 Numeric(y/b=0.70) 
A Numeric(y/b=0.00) 

■0.50     -0.30     -0.10     0.10 0.30 0.50 

x/(2a) 

-0.50     -0.30     -0.10     0.10 0.30 0.50 

x/(2a) 

Fig. 5 The surface speed of an ellipsoid in an oblique on- 
set flow by using the quadrilateral panels with the 
bilinear singularity distribution. The onset flow 
velocity: q = (1,0,0.1736); The number of chord- 
wise and spanwise panels: N X M = 40 X 40. 

Fig. 4 The surface speed of a sphere calculated by using 
the triangular panels and the quadrilateral panels 
with the linear and the bilinear singularity distri- 
bution respectively. The number of chordwise and 
spanwise panels: N x M = 40 x 40. 

5.3 Lifting Flow about a Circular Wing 

We calculated the circulation distribution for a cir- 
cular wing, for which the linearized analytic solutions are 
given in reference (12). Numerical and analytical circula- 
tion distributions for circular wings with NACA 4-digits 
section at 5" angle of attack are compared in Fig. 6. For 
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easy implementation of the Kutta condition described in 
Appendix, the constant singularity density was used for 
wing panels and the bilinear distribution for wake sheet 
elements extending on the _y-plane. It is seen that the nu- 
merical method gives fair values compared to the linearized 
analytic solution using the moderate number of panels. 
Particularly the numerical results are in good agreements 
with the analytic ones near the tip where the circulation 
changes rapidly. The bilinear representation of the wake 
sheet singularity in the numerical method would be ap- 
propriate to include this local variation. Fig. 6 shows that 
the circulation decreases as the thickness-chord ratio in- 
creases. This feature is also found in the results provided 
by Lee (6). 

sented. Through the several applications of the present 
analysis to surface panel methods, we have shown the for- 
mulation to be valid. The Kutta condition (described in 
Appendix) based on the local behavior of the trailing edge 
flow gives reasonable numerical solution under the stated 
assumptions, by including the spanwise variation of the 
potential jump along the trailing edge. 

Although the present work has mainly concerned with 
a flat panel, the doublet potential for constant distribu- 
tion is valid for hyperboloidal panels bounded by straight 
edges. In this case the vector e in Eq. (11) may be taken 
as other unit vector independent of the singularity posi- 
tion and we must ensure the correct jump of the potential 
when the field point crosses the panel surface. Eventually, 
future work should address the treatment of such a higher- 
order representation of geometry. 

-©- 
< 

    Analytic 
D       Numeric(t/2a=0.0l) 
A       Numeric(t/2a=0.10) J 

_____ _ 
0.00 0.20 0.40 0.60 0.S0 1.00 

y/b 

Fig. 6 Circulation distribution of a circular wing at a — 
5° angle of attack. The number of chordwise and 
spanwise panels: N x M = 40 x 40. 

6. CONCLUDING REMARKS 

The major purpose of this paper is to derive the 
closed-forms for computing explicitly the induced potential 
and velocity due to singularity distributions. Especially 
for constant distributions, the resultant expressions from 
Eqs. (17) through (20) do not have any local coordinate 
terms so that we may use directly a global coordinate sys- 
tem. This aspect is a great advantage of the present study 
over those presented previously. The elegant closed-forms 
for evaluating the Biot-Savart integral are additionally pre- 
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APPENDIX: Implementation of the Kutta Condition 

The Kutta condition has been applied originally in 
the steady two-dimensional flow case for uniqueness of so- 
lution mathematically and for regular flow in the vicinity 
of the trailing edge (T. E.) physically. It eventually im- 
plies that the rear stagnation point is at the T. E. for a 
non-cusped sharp-edged foil in order to satisfy both the 
pressure-equality condition and the condition of finite ve- 
locity at the T. E.. But if we applied this interpretation in 
steady three-dimensional flow, the two conditions of pres- 
sure equality and finite velocity can not be satisfied exactly 
at the T. E., since there is inherently a velocity difference 

across the sharp T. E.. 
There is no rigorous numerical model of the Kutta 

condition for general three-dimensional potential flow un- 
less the viscous effect is fully investigated, in the view- 
point of that the physical features behind the Kutta con- 
dition are complex. However it is considered acceptable to 
employ a numerical scheme by which a resulting solution 
should satisfy nearly the condition of finite velocities and 
the condition of zero loading in the neighborhood of the 
T. E. or at the T. E.. Following the concepts based on 
the pressure-equality condition and the finiteness of veloc- 

ity, Mangier k Smith (13) have investigated the trailing- 
edge flow (the so-called 'Maskell' trailing-edge flow), for 
steady three-dimensional lifting problems. As an extension 

of Mangier and Smith's approach to the unsteady three- 
dimensional flow case, the trailing-edge flow is discussed 

by Morino et al. (14)- The essential result is that the flow 
leaves the T. E. parallel to either the upper or lower sur- 
face depending on the sign of the vorticity in the sheet as 
it leaves the T. E.. The possible orientation of the sheet 
is limited to be between the tangents of the surface at the 

T. E., otherwise an infinite velocity will occur. 

The Kutta condition suggested in the present numer- 

ical method is (i) to introduce the wake sheet as a 'barrier' 
for the existence of a physical discontinuity in the fluid re- 

gion about a lifting body, (ii) to assume a fitting form for 
potential values (<£) along the upper and lower surfaces 
so that the potential can be extrapolated to the T. E. as 
points on the surface approach the T. E. and the stagna- 
tion point can be located at either the upper or the lower 

trailing edge, and (iii) to satisfy the pressure equality con- 

dition at the T. E.. 
Let us approximate the disturbance potential distri- 

butions {<£) on the upper and the lower surfaces near the 
T. E. as a linear form of the local coordinates (geometrical 

parameters) £ and r/: 

4>u{£u, *?) = °u £u + K n + c« (26) 

Mti> l) = atZl+bi1 + ci, (27) 

where the parameter rj is arclength along the T. E. positive 
taken as spanwise direction (see Fig. 2 in reference (13)) 

and the parameters £u and £/ are arclength along the upper 
surface and the lower surface, respectively, measured from 

the T. E. and normal to the T. E.. Here the subscripts u 
and £ refer to the upper and the lower surface, respectively. 
Then the potential jump at the T. E. from (26) and (27) 
can be written, including its spanwise variation term, 

A^ = <j>u (0, IJ) - 4>l (0, rj) = cu - ci + (feu - bt)r, 

This potential jump is expressed in terms of unknown 
quantities in the panel-method approximation as: 

A^>= (^i-^w)-(auful-a^tor)-(iur)i-fertw) + (6u-fef)r? 
(28) 

where 4>i an^ 4>N 
axe tne (unknown) disturbance poten- 

tial, respectively, at the control points of the two adjacent 
panels to the T. E. (i.e., the 1st panel from the T. E. on 
the upper surface and the iV-th panel on the lower sur- 
face). £ui, ZtNilitlN are the local coordinates of the con- 
trol points. Then taking the gradient of (26) and (27) and 
then including the undisturbed velocity q^ give the total 
tangential speeds on the upper and the lower surface near 

the T. E.: 

ll    =    (v *« + «")* + &•&, +6«)2 (29) 

where §cu, ey and e^, are the unit vectors of the local 
coordinate system at the trailing edge point. 

According to the Mangier and Smith's analysis, van- 
ishing the tangential speed at the T. E. either on the upper 
or the lower surface allows us to determine the unknown 

coefficients au and at in (28): 

'Similar procedure has been presented by Ingham et al. (15) for 
the problem» with two regions of different physical features, in which 
the two analytical solution forms of the Laplace equation for the two 
regions in the neighborhood of the discontinuity are introduced and 
then the appropriate physical matching conditions at the common 
interface are enforced to determine the coefficients associated with 
those forms. Also this procedure has been applied to irrotational 
solenoidal flow near a stagnation point (16). 
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[a» = -qj>-eiu,at=-il-<m, if D - 0 

where £> = 2(j, • &,)(*„ - *i) + (*S - H)- Here 6" and be 

are still unknown representing variation of the perturba- 
tion potential in 77-direction on the upper surface and the 
lower surface at the T. E. panels. Consequently this model 
requires an iteration procedure to determine these coeffi- 
cients by fitting the potential values at the T. E. panels in 
that direction. 

As a special case of two-dimensional steady flow, (for 
which a stagnation point should be located at the T. E.) 
it holds qu = 0 and qt = 0. Applying these constraints to 
(29) and (30) gives 

Qu = -% ■ e.(u and  at = ~lc " %l 

With these coefficients, (28) reduces to 

A<f> = 4>i ~ 4>N + g, ■ Ar 

where Ar(= r_\ - LN) denotes difference of position vectors 
of the control points of the two adjacent panels. Lee (6) 
suggested this equation as the Kutta condition for steady 
two-dimensional lifting flow, by which he has shown signifi- 
cant improvement on accuracy of numerical solutions com- 
pared to those obtained by the so-called Morino's Kutta 
condition. Accordingly Eq (28) contains the Kutta condi- 
tion for the two-dimensional flow. 
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The Flow Structure in the Lee Side 
of an Inclined Prolate Spheroid 

T. Fu, R. Shekarriz, J. Katz (The Johns Hopkins University, USA) 
T. Huang (David Taylor Model Basin, USA) 

Abstract 

Particle Displacement Velocimetry is used for measuring 

the velocity and vorticity distributions around an inclined 

prolate spheroid. The objective is to determine the effects 

of boundary layer tripping, incidence angle and Reynolds 

number on the flow structure. It is shown that when the 

flow is not tripped, separation causes formation of a pair 

of vortex sheets. The sizes of these sheets increase with 

increasing incidence angle and axial location. Rollup of a 

primary vortex occurs in some cases. The rest of the lee 

side remains almost vorticity free proving that the flow 

can be characterized as open separation. Tripping causes 

earlier separation, brings the primary vortex closer to the 

body, and spreads the vorticity over a larger region. 

Introduction 

The structure of three dimensional separated flows has 

baffled researchers for quite some time and is still not 

clearly understood. Extended efforts by Wang (1972, 

1983) and by Peake and Tobak (1982) led to the 
understanding that two distinct types of flow separation 

can exist behind inclined bodies of revolution. The first 

type, typically defined as "closed separation", involves an 

enclosed region bounded by a stream surface that 

intersects with the body at the separation and reattachment 

lines. The second type, "open separation", involves 

detachment of stream surfaces from a body at the 

separation line, but without reattachment of the same 

surface further downstream.   Consequently, the flow 

field does not necessarily contain an enclosed separated 

region (bubble), and except for the detaching stream 

surface, the flow can remain attached to the body. 

According to some references (Costis et al., 1989; and 

Wang et al. ,1992, for example) both forms of separation 

can occur on the same body, depending on the incidence 

angle. 

One type of model, inclined prolate spheroids, has 

received considerable attention, but unfortunately the 

length to diameter ratios have varied. Unlike the 

computed results that provide detailed distribution of the 

velocity and vorticity (Kim and Patel, 1991a and b; as 

well as Gee et al, 1992; are a few examples), most of the 

experimental studies are limited to measurements of 

surface shear stresses (Meier and Kreplin, 1980) and 

surface flow visualization (Han and Patel, 1979; Costis et 

al., 1989, Wang et al., 1990). Velocity measurements 

away from the body, such as the data provided by Meier 

et al. (1983) as well as by Barber and Simpson (1990) are 

scarce. Both studies were performed with point 

measurement techniques, the former with a multi-port 

pitot tube, and the latter with combined hot wires and a 
pitot tube for turbulence and mean velocity 

measurements. Some flow visualization experiments 

with laser sheet and dye (Meier et al., 1983; Costis et al., 

1989; Han and Patel, 1979 ) were also performed. 

Consequently, the currently available experimental data 

are insufficient for comparison with the computed results. 

Almost all of the available sources claim that changes in 

the Reynolds number cause considerable changes in the 
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location of separation, a trend mostly attributed to 

boundary layer transition (Han and Patel, 1979, for 

example). Secondary vortex structures that can be easily 

identified at low Reynolds numbers are hard to detect 

when the flow becomes unsteady, particularly when point 

measurement techniques are utilized. As a result, Meier et 

al. (1983) had no difficulties in plotting the cross flow 

topology at low velocities, but could not decide whether 

the vortex pair located near the surface disappeared, or the 

flow became unsteady to the level that they could not 

identify them. This particular problem can only be solved 

by mapping the instantaneous velocity distribution, an 

option made possible by implementing the Particle 

Displacement Velocimetry (PDV) method. This approach 

can overcome smearing of data caused, for example, by 

meandering of structures. 

Detailed mapping of the flow structure in the lee side of 

an inclined prolate spheroid is the primary focus of this 

paper. As the results show, the instantaneous velocity 

and vorticity distributions enable identification of primary 

and secondary vortex structures even when the flow is 

unsteady and turbulent The effect of several parameters, 

such as the incidence angle, Reynolds number and 

boundary layer tripping are investigated. 

Experimental Setup 

ragm Laser 

Spherical      Bragg 
Lens Cell 

Strut Support 

■A 
Mirror \ 

Cylindrical 
Lens 

a) 

i   Direction of Motion 

b) 

Figure 1: A sketch of: a) the experimental setup in the 

towing tank; b) orientation of the laser sheet and coordinate 

system. 

The experiments were performed in a 140 ft long and 
10x5 ft cross section towing tank located at the David 

Taylor Model Basin. The test model was a sting 
mounted, 9 inch diameter (Dmax), 6:1 prolate spheroid. 

Most of the measurements were performed at 10° and 20° 

incidence, and at carriage velocities (U) ranging between 
1 to 5 ft/sec (corresponding to Reynolds numbers, based 

on the model length, ranging between 0.42xl06 to 

2.1xl06). A 2 mm diameter wire, cemented to the 

surface at x/L=0.2 (x is the axial distance from the nose, 

and L is the length of the model), was used for tripping 

the boundary layer during some of the experiments. 

As noted before, the velocity distribution was measured 

by using PDV. Detailed descriptions of the experimental 

setup and analysis procedures are provided by Shekarriz 

et al. (1992a and b), and Dong et al. (1992a and b). 

Briefly (see sketches in Figure 1), PDV consists of 

illuminating desired sections of the flow field with a laser 

sheet, while seeding the water with microscopic (~25 
microns in diameter), neutrally buoyant (specific gravity 

varying between 0.95 and 1.05) particles containing 

imbedded fluorescent dye. These particles are practically 

invisible in most of the flow field, but they respond with 

intense fluorescence while being illuminated by a green 

laser (Argon ion in the present study). By pulsing the 

laser more than once while recording a single image each 

particle leaves multiple traces on the same film. Most 

images are recorded by a submerged 35 mm camera, 

primarily since the film meets the required resolution 

(3500x2500 pixels per negative). Video images are 

recorded for qualitative observations, and for determining 

the location of the separation point 
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After being developed the negatives are digitized by a 

diode array scanner. Two types of analysis procedures 

have been developed. The first consists of matching 

traces of the same particle and measuring the distance 

between them ("Particle Tracking"). The second 

procedure consists of dividing the image into a large 

number of small sections, and determining the average 

displacement of all particles within each section by 
computing the auto-correlation function of the intensity 

distribution ("Auto-Correlation" method). All the present 

data has been analyzed by using this procedure. 

Calibration experiments (Dong et al., 1992a) have shown 

Figure 2: a) An image of the flow on the lee side of a 
inclined prolate spheroid at ReL=2.1xl06, a=20° and 

x/L=0.90; b) The velocity distribution computed from the 

image in part a. 
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Figure 3: An image of an axial sheet containing dye traces 

used to determine the location of separation. 

that the error level can be kept at about 1%, provided 

several conditions, such as particle density and 

magnification, are satisfied. 

In the present study the laser sheet and the recording 

equipment were kept at a fixed position. Due to the 

geometry of the body, and our desire to measure the 

velocity up to x/L=1.0, it was necessary to position the 

camera ahead of the model, and incline the laser sheet at 
an angle of 35° to the axis of the tank. Consequently, 

when the model was at 20° incidence, there was a 15° 

angle between the illuminated plane and the normal to the 
axis of the model. This arrangement also increased the 

residence time of each particle within the light sheet. It 

simplified the recording procedures by enabling us to 

increase the delay between exposures, which for most of 

the data presented here, was 1 msec. No attempt was 

made in this paper to interpolate or add data to regions 

with insufficient particle seeding, or when the body 

blocked part of the image. 

A sample photograph recorded by exposing the film four 

times, and the corresponding velocity vector map are 

presented in Figure 2a and b, respectively. The presence 

of two "major" vortex structures (foci) and the saddle 

points below them are clearly evident. Note that the 

locations of these singular points depend on the 

orientation of the laser sheet. In this particular case (20° 

incidence) there is only a 15° angle between the light 

sheet and the cross planes (see Figure lb). Thus, there is 

only about 3.4% difference ( l-cosl5°) in the velocities, 

and the flow structures should be quite similar. Several 

co-rotating secondary vortices can be identified below the 

primary structure on the left side of the model. A similar 

phenomenon has been identified by Ward and Katz (1989 

a and b) during qualitative visualization experiments in the 

lee side of a nose cone with a sharp tip. 

The instantaneous velocity distribution in Figure 2b 

appears to be asymmetric. Examination of numerous 

images, some of which will be presented later, leads to 

the conclusion that the asymmetry is a result of vortex 

meandering. In other images the primary structure on the 

right side is higher, and in some they are symmetric. 

When averaged, the flow structure in the lee side of the 

model appears to be symmetric. Note also that due to 

narrowing of the body, the velocity is not zero even 

outside of the region affected by flow separation. 

The location of separation on the body was determined by 

recording video images of light sheets oriented parallel to 

the direction of motion, and by distributing fluorescent 

dye in the water. This choice was a result of several 

attempts to determine the angle at which the location of 

separation was most clearly evident. A sample image of 

dye traces focusing on the area near the separation point is 

presented in Figure 3. 
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Figure 4: The location of boundary layer separation. 

854 



Results 

Location of Separation 

The location of boundary layer separation is presented 

and compared to other measurements in Figures 4a and b 
(<j> is the azimuthal angle, 0° being the windward 

meridian). At 10° incidence, the present separation line at 

ReL=2.1xl06 agrees with the results of Barber and 

Simpson (1990) at ReL=4.0xl06, but is considerably 
below (smaller if) their data at ReL=1.3xl06. Tripping 

seems to have very little effect at such a low incidence. 

At 20° (Figure 4b), tripping causes separation at a lower 
azimuthal angle up to x/L=0.7, and has much less effect 

on the location of separation beyond this point.  Since 

there is no other source of information at this angle, the 

results are compared to other measurements at 15° and 

30°.   On a smooth body the separation point moves 

slightly towards the windward meridian as the Reynolds 

number is increased from 1.3xl06to 2.1xl06.  At 

ReL=1.3xl06 the results fall slightly below the 15° data 

of Barber and Simpson (1990).   Meier et al. (1983) 

provide two data sets at 30° incidence. The first set is 

measured with flush mounted hot wires, and the second, 

with substantially earlier separation, is determined by 

surface oil visualization.   They do not explain this 

discrepancy.   The present results at 20° incidence are 

close to their hot film data (at 30°) and above their surface 

oil results. Since the present locations of separation fall 

between available data at 15° and 30°, one can at least 

conclude that the results are consistent. 

Qualitative Observations 

Selected images aimed at demonstrating the characteristic 

flow structure in the lee side of the model are presented in 

Figure 5-9. The first (Fig. 5a) is a low velocity 
(ReL=4.2xl05) image containing multiple secondary 

vortices. As the Reynolds number is increased, the 

presence of these secondary vortices becomes less 

evident, as shown in Figure 5b (see also Figure 2). 

These structures do not disappear, as the vorticity 

distributions show (Figure 11 for example), but their 

scale and form are such that it is hard to identify them 

from qualitative observations. Axial variations in the size 

and location of flow structures are presented in Figure 6, 

while incidence angle effects can be observed by 

comparing Figures 7a and b.     As expected, the 

Figure 5: Images demonstrating the Reynolds number 
effect at x/L=0.78 and oc=20°; a) ReL=4.2xl05 and b) 

ReL=2.1xl06. 
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Figure 6: Images demonstrating axial variations in the 
flow structure at a=20° and ReL=2.1xl06; a) x/L=0.5 

and b) x/L=0.65. 

Figure 7: Incidence angle effects on the flow structure at 
x/L=0.90 and ReL=2.1xl06; a) oc=20° and b) a=10°. 
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Figure 8: The flow structure when the boundary layer is 

tripped at x/L=0.90, ReL=2.1xl06, and cx=20°. 

dimensions of the region affected by boundary layer 

separation increase with increasing x/L and increasing 

incidence angle. Finally, the effect of boundary layer 

tripping is demonstrated by comparing Figure 7b to 

Figure 8. With tripping the secondary structures seem to 

disappear and the primary vortices are located much 

closer to the surface. This qualitative assessment is only 

a clue to major changes in the velocity and vorticity 

distributions. 

Figure 9 contains several close-up views of specific 

sections in order provide clearer details of the flow 

structure. The first image shows the flow in the vicinity 

of a saddle point, and the second provides clear evidence 

for the existence of secondary vortices below the primary 

Figure 9: Magnified sections focusing on: a) a saddle point; b) primary and secondary structures. Both are at 
x/L=0.90, Re^.lxlO6 and a=20°; c) Tip vortex behind an elliptical wing at Rec=5xl05, cc=5° and x/c=1.5. 
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Figure 10: Instantaneous velocity distributions at ReL=2.1xl06 and a=20°. a, b and c are smooth body 

distributions; d, e and f are tripped boundary layer results. 

structure (distinction between primary and secondary 

vortices is made based on their size and repeatability). 

Note that none of the vortices shown here has the 

structure that one would expect to see in a typical vortex 

with a clearly defined core. In order to emphasize this 

point, a typical image of a tip vortex is also provided in 

Figure 9c. This issue will be discussed later while 

presenting the quantitative results. 
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Figure 11: Vorticity distribution computed from the data presented in Figure 10. 

Velocity and Vorticity Distributions 

Selected computed instantaneous vector maps, illustrating 

axial variations in the flow structure, with and without 

boundary layer tripping, are presented in figure 10. The 

corresponding vorticity contour plots, determined by 
computing co=Av/Az-Aw/Ay', where v and w are the 

velocity components  in  the y'  and  z directions, 

respectively, are presented in Figure 11. The accuracy of 

the vorticity is only about 10%, since its computation 

involves a comparison between fairly close numbers. 

Several trends become clearly evident from the results. 

First, in agreement with the previous qualitative 

observations, the region affected by flow separation 

(identified by the presence of rotational flow) increases 

with x/L only in the y' direction, whereas the change in 

859 



the z direction is minimal. Second, boundary layer 

tripping not only changes the location of the primary 

vortices, but it also alters the entire vorticity distribution . 

On the smooth body the vorticity seems to be 

concentrated within clearly defined regions, that at 

x/L=0.9 resemble two symmetric vertical vortex sheets 

with several discrete peaks. The highest peak, which is 

consistent with the location of the primary structure, has a 
dimensionless vorticity (coDmax/U) of about 6 at 

x/L=0.65, and at least 10 at x/L=0.78 and 0.9. The space 

between the "vortex sheets" contains much less vorticity, 

and in some cases (not shown here), it contains 

predominantly irrotational flow. These results indicate 

that the fluid located between the "vortex sheets" does not 

pass near the surface of the body and as a result remains 

vorticity free. This phenomenon can only happen if the 

region contains "freshly" entrained external fluid, namely 

this zone cannot be a part of an enclosed separated 

bubble. Thus, the flow in the lee side of the model under 

these conditions can be characterized as open separation. 

On the tripped body the vorticity is distributed more 

uniformly over the entire lee side of the model. This 
trend should be expected since boundary layer tripping 

causes a considerably higher level of turbulent diffusion 

(mixing), and as a result more uniformly distributed 

vorticity. At x/L=0.65 there are still sites with irrotational 

flow, whereas further downstream, at x/L=0.78 and 0.9, 

the vorticity is non zero almost everywhere, and the 

contour plots contain several peaks with values ranging 

from 6 to 8.   The highest peaks (at x/L=0.78 and 0.9), 

whose locations are consistent with the sites of the 

primary vortices (see the velocity distributions), are 

located much closer to the surface, but their magnitudes 

remain at the same levels as the smooth body results. 

Due to the reduced distance from the surface, one would 

expect also a considerable change in the forces acting on 

the body. These forces will be calculated following 

completion of data analysis. This dramatic change in 

flow structure has been consistently evident in all the data 

analyzed during the present study. To the best of our 

knowledge, such a phenomenon has not been reported 

anywhere in the literature. However, as noted before, 

practically any experimental study performed with 

inclined bodies of revolution (Meier et al., 1983 and Han 

and Patel, 1979; for example), shows sensitivity to the 

Reynolds number, presumably due to the characteristics 

of the boundary layer on the surface of the model. 

Although not always obvious from the velocity maps, the 

presence of counter-rotating secondary vortex pairs near 

the surface is clearly evident from the vorticity 

distribution. These structures exist even when the 

boundary layer is tripped, as shown for example in 

Figure llf. As noted before, Meier et al. (1983) could 

identify these vortices only at very low Reynolds 

numbers, but the present PDV results show that these 

structures exist even when the boundary layer is 

turbulent. Identification of these vortices with point 

measurement techniques is difficult because of 

meandering, the extent of which is discussed later. Note 

that these so called "secondary structures" are not always 

Figure 12: a) Velocity and b) vorticity distributions on a smooth body at x/L=0.90, ReL=2.1xl06, and a-20°. 
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determined from several images at x/L=0.90, 
ReL=2.1xl06, a=20°, with (right side) and without 

tripping (left side). Larger symbols indicate mean values. 

small, and the magnitudes of the vorticity peaks within 

them are comparable to those of the primary vortices. 

Since they are located closer to the surface, they may have 

a greater impact on the forces acting on the body. 

Vector and vorticity plots at the same conditions as the 

data in Figures 2b and 10c, are presented in Figures 12a 

and b to demonstrate variations between runs. Compared 

to Figure 10c the vorticity in Figure 12 is even more 

concentrated within the two "vortex sheets" and a 

considerable portion of the flow in the middle is 

irrotational. The "secondary" structures are located 

further away from the surface, and are similar in size and 

magnitude to the "primary" vortices. Note that an 

additional weaker vortex pair exists also at y'/Dmax=0.5 

and z/Dmax=±0-l- Traces of a similar pair are evident 

also in Figure 10c, but have not been observed in other 
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distributions (data not shown). Meandering of structures 

occurs both behind the smooth body and to a lesser 

extent, also when the boundary layer is tripped. This 

trend is illustrated in Figure 13, that compares the 

locations of singular points (foci and saddle points) in 

several vector maps. As noted before, the unsteady 

nature of this flow is the main reason for the difficulties in 

resolving the size and strength of secondary vortices from 

time averaged point measurements. In spite of these 

variations, Figure 13 confirms that boundary layer 

tripping consistently shifts the location of the primary 

vortex and the saddle point below it closer to the surface. 

When the Reynolds number is reduced to 1.3xl06, as 

shown in Figure 14, the smooth body results are not 

substantially different. The pairs of "vortex sheets" still 

exist, but it is difficult to identify the primary structure 

since the vorticity distributions contain several peaks with 

similar size and strength.   This phenomenon exists in 

both examples, but is more pronounced at x/L=0.65. The 

dimensionless vorticity peaks are also lower by about 

20%. This trend is expected, since the vorticity produced 

in a laminar boundary layer is proportional to U3/2, or 

co/U^U1/2. 

Two sample velocity and vorticity distributions at 10° 

incidence are presented in Figure 15 to demonstrate 

differences from the data at 20°. Here the size of the 

region with rotational flow is considerably smaller, with 

peak values of less than half of those at 20°. The peak 
magnitudes are consistent with Barber and Simpson's 

(1990) hot wire measurements. At x/L=0.78 the vortex 

sheet appears to be wrapped around the body, and each 

side contains at least three centers, the largest of which is 

only slightly more powerful than the other two. At 

x/L=0.9 the vortex sheet detaches from the surface and 

major vorticity peaks appear on each side of the body. 
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Figure 16: Velocity and vorticity distributions of the tip 

vortex shown in Figure 9c. 

Discussion 

Throughout the entire paper the terms "primary and 

secondary vortices" have been used to describe either 

peaks in the vorticity distributions, or centers of regions 

with a predominantly circular motion. Yet, in many cases 

the primary peaks are only slightly larger than the 

secondary ones, and both have comparable magnitudes to 

other peaks within the vortex sheets. This phenomenon 

is more pronounced when the boundary layer is tripped 

(Figures lOd, e and f). Thus, the location and strength of 

the primary vortex provide us with insufficient 

information on the flow structure, and its effect on the 

forces acting on the body. 

The lee flow structure is fundamentally different from 

other vortex-dominated flows, such as a tip vortex, for 

which most of the vorticity is concentrated within a 

clearly defined core. This difference can be clearly 

observed by comparing the present results to a sample 

velocity and vorticity distribution of a tip vortex shown in 

Figures 16a and b. The vorticity within the tip vortex 

core is higher by almost two orders of magnitude than the 

surrounding fluid. In the lee side of an inclined body 

additional vorticity is constantly added into the flow as the 

boundary layer fluid detaches from the surface. The 

resulting vortex sheet is unstable and breaks into several 

distinct vortices, which often do not form a clearly 

dominating structure. Each time a local rollup occurs, a 

saddle point appears below it. Unlike the tip vortex, this 

flow structure is "fragile" and sensitive to small changes, 

such as turbulence, surface tripping and injection, as well 

as minute geometric changes in the case of sharp nose 

cones. When the body is very long, such as in some of 

the classical nose cone measurements (see Allen and 

Perkins, 1951 and a review by Peake and Tobak, 1982), 

the lee side contains a large number of trailing vortices. 

Conclusions 

It is demonstrated in this paper that by using PDV one can 

map the lee side velocity and vorticity distributions even 

when the flow is unsteady. Measurements performed 

with and without boundary layer tripping, at Reynolds 

numbers between 0.42xl06 to 2.1xl06 and incidence 

angles of 10° and 20° lead to the following conclusions: 

1. When the boundary layer is untripped, the flow 

structure contains a pair of "vortex sheets" located on 

each side of the model. Each sheet contains several 

vorticity peaks. Typically the largest one is defined as the 

primary vortex, but in some cases there are several 

vorticity peaks with comparable sizes and magnitudes and 

no peak is dominating. As part of the vortex sheet rolls 

up into a distinct vortex, a saddle point appears below it 

in the velocity field. The space between the sheets 

contains primarily irrotational flow. Hence the lee side 

flow can be characterized as open separation. The entire 
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flow structure is unsteady. Vortex meandering causes the 

instantaneous distributions to appear asymmetric, but 

when averaged over time the flow is symmetric. 

2. Boundary layer tripping changes the overall flow 

structure greatly. Primary vortices move closer to the 

surface, without significantly changing their size or 

magnitude. The vorticity distribution becomes more 

uniform, and additional vorticity peaks appear randomly 

over the entire lee side. At 20° incidence tripping also 

causes the boundary layer to separate earlier. 

3. Pairs of counter rotating "secondary vortices" appear 

near the surface on both sides of the model. They have 

been seen before (refs. 10 and 18), but only at very low 

Reynolds numbers because they meander. Their sizes 

and magnitudes also vary substantially, and in some cases 

are comparable to the "primary vortices". 

4. The dimensions of the vortex sheet and the magnitude 

of the vorticity peaks within it increase with x/L. A small 

change in the velocity (between 3 to 5 ft/sec) causes an 

expected reduction in the magnitude of the peaks, but 

does not change the overall flow structure. Qualitative 

observations at lower velocities show that the vortex sheet 

breaks into a series of co-rotating vortices. 

5. The structures in the lee side do not have clearly 

defined cores containing most of the vorticity, as typically 

occurs in tip vortices. Instead, the vorticity is distributed 

more uniformly, and in some cases it is difficult to 

identify the presence of major peaks. 
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New Experimental Techniques on Ship Motions in 
Directional Spectrum Waves 

S. Takezawa, T. Hirayama (Yokohama National University, Japan) 

ABSTRACT 

Real sea surface is expressed by short 
crested irregular waves with continuous direc- 
tional spectrum. These waves will be called as 
directional spectrum waves. 

For conducting running ship experiment in 
short crested irregular waves, we developed 
new type of directional spectrum wave genera- 
tor for a towing tank. 

Furthermore, other than wave probe array, 
we developed non touch type new wave surface 
probe for obtaining the encounter directional 
wave spectrum especially for high speed run- 
ning condition. 

Finally, we developed a new estimation 
method of directional transfer function of 
ships or floating bodies from experiments in 
directional spectrum waves. 

This paper reports above three new exper- 
imental techniques. 

NOMENCLATURE 

S:power spectrum 
D:directional distribution function 
H: frequency response function 
B:breadth of segmented wave generator 
w :wave frequency, suffix o means absolute and 

suffix e means encounter 
k:wave number 
6 :wave direction of propagation 
X'. encounter wave angle 
£ , tp : random phase angle 
():column vector 
[]:matrix 

INTRODUCTION 

About seakeeping research,the one of main 
objects is to become able to estimate ship 
behavior in actual ocean wave condition. Real 
sea is mainly composed of two wave systems 
namely wind waves and swell. Here,the swell 
is very similar to long crested waves, on the 
other hand, wind waves are short crested waves 
and can be expressed by continuous directional 
spectra concerning to wave direction of propa- 

gation. We call such waves as directional 
spectrum waves. 

Of course the characteristics of direc- 
tional spectrum of actual ocean waves are not 
clear yet, but theoretical calculations can be 
conducted for regular waves with arbitrary 
encounter direction (oblique waves) and this 
means that theoretical calculation is also, 
available in directional spectrum waves with 
arbitrary shape. This results are not examined 
enough by experiments ,so experiments in 
directional spectrum waves are needed. 

Long crested oblique waves are relatively 
easy to generate in a square basin by so 
called snake type wave maker and also easy to 
analyze. For example see reference(l). About 
the generation of short crested directional 
spectrum waves ,there was a trial(2) that such 
waves were generated in a long tank by chang- 
ing rotation speed of each electric motor for 
segmented flap type wave generator mounted on 
one side of longitudinal tank wall and running 
ship tests were conducted. However directional 
spectrum waves were not so easy to be generat- 
ed, because each segment of snake type wave 
generator must be driven independently and 
arbitrarily. Furthermore large number of 
reliable segmented wave generator were needed 
for this case. 

Some square basins that can generate 
directional spectrum waves can be seen today 
(for example 1,3), but running ship test is 
difficult to conduct because they don't have 
enough area (3) for running. So, the genera- 
tion of arbitrary directional spectrum waves 
in narrow long tank is desired for conducting 
running ship test. 

On the other hand, in our conventional 
towing tank of Yokohama National University 
(YNU), recently we succeeded to generate the 
directional spectrum waves with arbitrary 
symmetrical directional distribution following 
to a new concept (4,5). And this was confirmed 
by new measuring and analyzing techniques for 
directional spectrum waves developed by our- 
selves. About directional wave measurement,we 
developed laser beam type wave surface 
probe(LAWSURP). This is so called non-touch 
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type and suitable for encounter wave measure- 
ment in high speed running condition. 

Our new wave generating technique uti- 
lize the reflection of tank side walls posi- 
tively, and from this reason, there is a 
restriction that directional distribution become 

symmetrical and main direction of encounter 
directional spectrum waves must be head or 
following sea. 

Of course, we conducted experiments of 
running ship models and models of floating 
offshore structures in such directional spec- 
trum waves and compared measured motion spec- 
tra with theoretical ones and we also de- 
veloped a new technique to estimate direction- 
al frequency transfer functions directly from 
measured data of motions of ship or offshore 
structures in such waves. 

This latter technique is applicable to 
estimate directional transfer functions of 
actual ships or floating offshore structures 
if measurement of directional spectra of 
incoming ocean waves can be conducted. 

Of course realization of generation of 
directional spectrum waves in narrow long tank 
is useful not only in checking results from 
linear theory but also investigating nonlin- 
ear phenomena that can not be treated by 
linear theory. 

MONULOIt— _MJ^Si£HXM-£NX GXKXruiTTnN. 

NEC     99 

WAVE   Absorber A 

laser wave  surface  probe      WAVE   GENERATOR 

enlarged 

ENGTH    100m 

laser   wave   surface   probe 
iiiunnii } 

So ,our report on new experimental tech- 
niques namely (1): directional spectrum wave 
generation, (2): laser type wave surface probe 
for directional spectrum wave analysis and (3) 
direct estimation method of directional fre- 
quency transfer functions of motions of a 
running ship from experiments, will be very 
useful for studying seakeeping problem. 

GENERATION OF DIRECTIONAL SPECTRUM WAVES IN A 
TOWING TANK 

Wave Generator 

Up to this time, it had been considered 
that generation of directional spectrum waves 
with arbitrary directional function will be 
very difficult in a towing or narrow long 
tank, because of wave reflection at the tank 
side walls. On the other hand snake type wave 
maker installed in a square basin or rectangu- 
lar tank can realize only a limited small area 
of uniform directional spectrum wave. 

Photo 1. Directional spectrum wave generator 
installed at the end of the towing tank 
(L=100m,B=8m,d=3.5m) of Yokohama National 
University (YNU) . Snake motion of 24 
segmented plunger type wave generator can be 
seen. 

Fig.l Generating system for directional 
spectrum waves in the towing tank of Yokohama 
National University(YNU). 

Photo 2. Generated directional spectrum wave. 
Looking toward the end beach. Side beaches, 
now lifted condition, are seen. 
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For generating uniform directional spec- 
trum waves along a long towing tank ,from the 
view point of new concept ,a new wave maker 
which consist of 24 segmented independently 
driven plunger type wave maker was installed 
at the end of the towing tank of YNU(4). See 
the fig.l and photo. 1. The type of this wave 
maker is so called snake type and each seg- 
mented wave maker is plunger type . Further- 
more the most important point is that this 
wave maker utilize the tank side walls reflec- 
tion positively as mirror image generator. 

Namely, fluid disturbances are limited 
within the both 'side walls of the towing tank 
but those walls are considered to have mirror 
effect if the reflection occurs at that walls. 
So we can understand that the measured wave 
elevation in a towing tank can be expressed as 
the sum of the results of the infinite series 
of directional plane wave generator with 
finite span(this case 8m) or in other words as 
the results of linear array of oblique plane 
wave generator. So, relatively homogeneous 
directional wave fields are realized along the 
towing tank . 

From this results, we can recognize that 
by the YNU type wave generator, we can con- 
duct running ship test in directional spec- 
trum waves by relatively small number of 
segmented wave generator using conventional 
towing tank. 

The wave directional characteristics and 
uniformity of this tank are already confirmed 
(5).This can be seen in fig.2. Left hand side 
figure correspond to the position of 15 m from 
wave generator and right hand side figure to 
60 m . Between these two figures we can see no 
significant difference from the view point of 
practicality. 

Each unit driven by electric servo motor 
can be controlled independently according to 
digital signals through D/A converter. Digital 
wave signal is pre-calculated as described in 
the next section and stored in the floppy disk 
of a personal computer. 

Signal for segmented wave generator 

Expression of directional wave spectrum 

Usually ,directional spectrum of sea waves are 
expressed by the following formula. 

1 OS D(0) 

1.10 

15M 

J ff.lt 

\ 
V  

SPECIFIED 
DISTRIBUTION 

tS-25) 

Fig.2 Directional wave spectra measured at 
different point(l5m & 60m from wave generator) 
in the towing tank of YNU. 

S(w,d)=D(w,8)-S(<o\ (1) 

In general , the directional distribution 
function D is the function of both direction 
and frequency, but here it is assumed that 
this is only the function of direction follow- 
ing to the ITTC's and ISSC's directional 
spectrum standard. 

As directional distribution function D 
,next two expressions are familiar and here we 
adopted those expressions. 

Type(i) D{w,d)=D{8) 

=D0cos
2" 0    :\6 

Type(ü) D{cü,d)=D(6) 

=D0cos 2s 

1*7 

\<* 

(2) 

(3) 

Parameters n and s are both concentration 
or peakedness parameter and inverse of those 
parameters will be called as directional or 
angular spreading factor. Between those two 
parameters there is an approximated relation 
as s=4.3n (19). Do are coefficient for normal- 
ization. This can be seen in fig.3. Usually 
n=l, namely cos-square distribution, is adopt- 
ed for the field of seakeeping problem. As 
one dimensional wave spectrum we adopted so 
called P-M type wave spectrum. 

DIRECTIONAL  DISTRIBUTION 

DO) 

DIRECTION   (de<j) 

Fig.3 Comparison of two kinds of directional 
distribution function. 
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Calculation of signal 

The directional spectrum waves can be 
considered as the superposition of long crest- 
ed plane waves with various kind of frequen- 
cies and directions of propagation, so the 
elevations of such waves at arbitrary position 
(x,y) is expressed from the same considera- 
tion. 
The motion of snake type wave generator is 
decided by considering wave elevation at the 
position of wave generator (x=0, about co- 
ordinate system see fig.l), in double summation 
expression. 

(4) 7(0 ,rB,t )=XJ ZJ O,;COS( cu.-f 
> = I 

-fe/Bsin^+fyO 

where V2S(",., 0.-)Aa,A< 

and furthermore taking into account of the 
directional transfer function of directional 
plain wave generator with finite span. 
Finally the voltage timehistory for the r-th 
segmented wave generator becomes 

V(r,t) = ±£ .,,_,     \G(coh0.)\ 

Xcos( a>it—kirBsin #,- + £y 

(5) 

where G is transfer function between driving 
signal and generated regular wave. Generally 
speaking ,G is the function of both frequency 
and wave direction. 
Of course YNU type wave generator have limita- 
tion that we can not generate directional 
waves which has unsymmetrical directional 
distribution, because of mirror effect and 
range of wave direction is limited as +90 to 
-90 deg. The number I of frequency of compo- 
nent wave was selected as 150 to 200. Direc- 
tional interval is made 2 degrees and time 
interval of digital signal is made as 0.935 
sec (0.1 sec for the model of 2/175 scale). 

MEASUREMENT OF DIRECTIONAL SPECTRUM WAVES 

Laser Wave Surface Probe (LAWSURP) 

Directional spectra are estimated from 
measured wave timehistory by applying so 
called MLM (Maximum Likelihood Method) 
(6,7).because it is said that directional 
resolution is relatively high . 

If we want to adopt this method for 
encounter waves of running ship , we must know 
the wave number or wave length from measured 
encounter frequency for calculation. But in 
following sea condition one to one correspond- 
ence is broken between encounter wave frequen- 
cy and wave length, so conventional MLM can 
not be applied directly as described 
later(8,9,10,ll). 

For the wave measurement, we used array 

of capacitance type five wave probes at the 
first time (8.9) and this can be seen in the 
fig.l, but such probes like water surface 
piercing type are not suitable for high speed 
running case. Furthermore, basically, there is 
no need to measure only wave height for ob- 
taining directional spectrum, and we also 
desired to measure wave slope more precisely 
,so the wave probe for measuring wave height 
and wave slope by using laser light was de- 
veloped by our group(12). We call this as 
laser wave surface probe (LAWSURP). 

Schematic description of laser surface 
probe is illustrated in fig.4. Basically, this 
is non touch type wave probe. Wave height is 
measured from the scanning lines of the TV 
image showing the air-water boundary by laser 
beam shot from the under water point. Resolu- 
tion of wave height is about 1 mm. And wave 
slope component (longitudinal and transverse 
direction) is obtained from using the relation 
of wave slope (s) and horizontal movement (R) 
of the laser spot on the horizontal projection 
board about 0.5m over the water level. R is 
measured using TV camersa. 

The relation between s and R is expressed 
as follows 

sin"'(w sin s)~ s=tan"'^-jj (6) 

where n is refractive index. About the water 
n is 1.33. Furthermore h is obtained from wave 
height, so we can obtain wave slope s. 
This probe system is mounted on a carriage and 
can measure encounter waves moving in high 
speed, because laser beam does not disturb the 
water surface. 

CCD TV CAMERA 

(for Vave Slope) 

CCD TV CAMERA 

(for Vavc Height) 

Ah 
■*: STILL WATER LEVEL 

Fig.4  Measuring principle of wave elevation 
and wave slopes by the laser wave surface 
probe (LAWSURP). 
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SHORT CRESTED WAVE   (WIDE SPREADING 

Photo 3. System of Laser Wave Surface Probe 
(LAWSURP). Laser beam is introduced to the 
under water point through optical fiber. 

This probe gives three kinds of informations 
on surface elavation namely wave height and 
two components of wave slope, and we applied 

those data to MLM. 

Example of generated directional spectra. 

Example of directional spectrum wave at 
rested condition can be seen in fig.5 . (a) is 
wave height and (b),(c) correspond to wave 
slope in transverse plain and longitudinal 
plain. Fig.6 is estimated directional wave 
spectrum. This is the .case close to the cos- 
square distribution(dotted line). (b) is 
directional distribution at several frequen- 
cies, and (c) is mean distribution function 
.namely the integrated result along the fre- 

quency. 

S(u,«I 
(C.J>!) 
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Fig.6  Directional distribution of a wide 
spreading directional wave spectrum obtained 
by a laser wave surface probe (LAWSURP). 
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(a) o.oo 
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MfWVVW^A^ ^v^V^A/""' 
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Q |Q ~ Mcasur«) Wave Slop;  in loirjitudiml Direction S(t) -(j.M.rrc H       "0.229 

(c) 0.00-4-/ vjf ip^j^^ « 
Fig.f> An example of measured limeliistory of directional spectrum wave 
with wide spreading directional distribution function using a laser 
wave surl'ace probe (I.AWSUKP). (a)is wave elevation (mm), (b) is wave 
slope (rad)in transverse direction and (c) is wave slope in longitudinal 

direction. 
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HAVE r*tOUE"CT(«AB/«C> 

EXAMPLES OF MODEL SHIP TESTS IN DIRECTIONAL 
SPECTRUM WAVES AND COMPARISON WITH THEORY. 

Some problems in theoretical estimation 

For head sea case 

In fig.7, we show two dimensional spectra 
and two dimensional frequency response func- 
tions . Abscissa shows absolute (not encoun- 
ter) wave frequency and ordinate shows compo- 
nent wave direction. Principal(or main) wave 
direction corresponds to zero degree. 

(b) is "wave slope" spectrum transformed 
from wave elevation spectrum of Fig.7(a) at 
zero forward speed condition. This expression 
is consistent to the transfer function nondi- 
mensionalized by wave slope like pitch or 
roll, (c) is theoretical transfer functions of 
pitch at Froude number of 0.275. Theoretical 
calculations by a strip method (NSM) is done 
on the base of absolute wave frequency namely 
on wave length. Considering experimental 
condition of this time, sway and yaw are 
fixed. .,..!. 

From wave slope spectrum multiplied by 
square of transfer functions ,we can obtain 
theoretically estimated response directional 
spectrum as Fig.7(d). In the general form, 
this process is expressed as follows. 

Stiax,, x, V)=\HAa». X, VWSc(ax>, x) <7) 

where St(.coc, x)= wave spectrum at V=0 

For following sea case 

In following seas we can not apply MLM 
because of one to one correspondence in fre- 
quency domain can not be realized (18). 

This situation is described in fig.8. 

OtRECTIONAl. ENCOUNTER 
WAVE    SPECTRUM 

Fn. - 0,275 

lloving  Sea 

Q.31 e.M 
tU¥t FKEOUEHCt («AS/SEC! 

Fig.7 Theoretically estimated directional 
spectrum of pitch of a container ship. (a)is 
analyzed directional wave spectrum from 
experiment at zero forward speed and (b) is 
corresponding directional wave slope spectrum, 
(c) is theoretical directional transfer 
function of pitch by a strip method(NSM) and 
(d)is calculated response spectrum of pitch 
using wave slope spectrum (b) and response 
function(c). Frequency is in ship scale. 

Following Sea 

(b)  Ir 

'   C.Q8       O.li 0.23 8.33 0.*I 
CHceuOTtx racoutNCr c*»a/?cc] 

CKOWtfOl WJWT rWCVCWCT (*»/MC> 

Fig.8 Example of transformation of directional 
wave spectrum in following sea condition, (a) 
is obtained spectrum at rested condition and 
(b) is transformed results from (a) under the 
following sea condition (Fn=0.275). (c) show 
the mesh and a contour curve in (a) and (d) 
shows the transformed results of that mesh and 
the contour curve. 
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Fig.8(a) is an example of estimated direction- 
al spectrum from wave records at standing 
condition. Abscissa is circular frequency and 
ordinate is wave direction. On the other hand 
(b) is directional encounter wave spectrum in 
following sea condition transformed from (a). 
This transformation is made by the following 
formula 

S.(a,.,x)=    SiTX'V) 
1 V cos Vcos* 

(8) 

The suffix'0 means absolute and e means 
encounter. Spectrum in the right hand side 
does not include V for the wave case.( Expres- 
sion JJLl including V is used for motion spec- 
trum estimated by the transfer function ex- 
pressed in absolute wave frequency.) 
The relation between absolute wave frequency 
and encounter wave frequency is given by 

(l)e=Wss — V COS X (9) 

Fig.8(c) shows one of contour curves of spec- 
trum (a),and this curve is transformed into a 
thick solid curve in Fig.8(d). Others are 
transformed results of the lattice in (c). As 
can be seen in this figure, corresponding 
frequency area is modified and folded, so one 
to one correspondence can not be realized in 
such a following sea case. So, MLM can not be 
applied for these following sea case. 

From this reason, in following sea case, 
we adopted directional wave spectrum estimated 
at standing condition as input wave spectrum 
for obtaining response spectrum as shown 
equation (7) 

After this ,the obtained spectrum is 
transformed into encounter frequency expres- 
sion by expression (8). 

Model and experimental condition 

Model ship and experimental setup 

As an example, we used a container ship 
model of 2.0m length. Scale ratio is 2/175. 
This ship type was adopted in the ITTC's 
comparative study on ship motion. Froude 
number of this ship speed is 0.275(22.1 
knots) 

The model ship is towed through heaving 
guide rod with gymbal mounted at the center of 
gravity of the model, and the heave .pitch and 
roll motions are measured. This case surge 
,yaw and sway motions are fixed and theoreti- 
cal calculations are also conducted following 
to this condition. 

Generally speaking , for obtaining stable 
statistical values .about 200 encounter wave 
peaks are requested in irregular waves, so 8 
to 14 times runs were executed for following 
sea experiment. 

Typical Examples 

Head Sea Condition 

For ' the running condition ,in case of 
head seas ,we can estimate encounter direc- 
tional wave spectrum by introducing small 
correction into MLM for standing condition 

Theoretically estimated two dimensional 
spectrum ,as shown in Fig.7(d) , can not be 
compared directly with experiment, because 
measured motion timehistory results in one 
dimensional spectrum. In other words this is 
the integrated results of two dimensional 
spectrum as following equation. 

S.(a>.) = f\(a>., x)\HJLa>„ x)\2dX (10) 

So ,here, comparisons between one dimen- 
sional spectra is made. Fig.9 is drawn in the 
actual ship scale. Fn=0.275. Cal means estima- 
tion by NSM, using measured wave spectra as 
input wave data. 

About heave motion in the directional 
spectrum waves in which principal wave direc- 
tion is head sea, the effects of directional 
spreading of waves are not so large consider- 
ing from both experimental results and theo- 
retical calculations , but rolling motions 
appear even if the main direction of direc- 
tional spectrum waves is head sea as shown in 
fig.9(d) and this is the most characteristic 
feature. 

Following sea condition 

Similar to fig.9, fig.10 correspond to 
following sea case of Fn=0.275. Directional 
function is s=10 type. Cal means calculated 
results ,as already described, using theoreti- 
cal directional transfer function and direc- 
tional spectrum of waves estimated from the 
measured waves at standing condition. 

FFT means that the one dimensional spec- 
trum is obtained by Fast Fourier Transforma- 
tion method and MEM means by Maximum Entropy 
Method. Results in fig.10 are averaged results 
according to run number. Both methods show 
about the same results but relatively sharp 
peaks are obtained by MEM than by FFT. 

Cal is smaller than experiments for 
rolling, and there seems two peaks ,one corre- 
spond to peak of wave spectrum and the other 
to roll natural frequency noted by an arrow. 

Similar to the results in head sea, in 
following directional spectrum waves there 
also appear rolling motion which can hardly 
seen in long crested following (encounter 
angle=0 degree) irregular waves except nonlin- 
ear phenomena. The encounter mean wave period 
(23 sec) of this case is close to natural 
period of rolling so about 40 degrees maximum 
double amplitude was seen from time history. 
On the other hand pitch is reduced by 8%. 
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Fig.9 Comparison of one dimensional motion 
(heave & roll) spectra in directional spectrum 
wave  (s=9)  with that  from  theoretical 
estimation noted by cal. Head sea condition 
and Fn=0.275. All  in ship scale. 

Fig.10 Comparison of one dimensional motion 
(heave & roll) spectra in directional spectrum 
wave  (s=10) with that  from  theoretical 
estimation.  Following sea  condition  and 
Fn=0.275. All  in ship scale. 
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In following sea case,heave natural 
frequency is far out of wave frequency as 
shown by downward arrow. 

Encounter mean wave period is changed 
from that absolute value and become longer in 
following sea condition. Furthermore, from 
analysis ,encounter mean period of directional 
spectrum waves becomes shorter than that of 
long crested irregular waves in following sea 
condition by about 10% for this case, and this 
tendency is reasonable. 

Effect of angular spreading parameter 

To see the effect of wave directional 
spreading on motions ,we show fig.11. The 
abscissa is angular spreading factor defined 
by 1/s, and s is parameter used in equation 
(3). Four kind of s is considered including 
long crested waves. Cos- square directional 
function correspond to l/s=0.2 approximately. 

Ordinate is defined by square root of 
Mo(motion)/Mo(wave). Here Mo means area of 
spectrum, so if this value equal 4.0 then by a 
wave with significant height of 1.0 meter, 4.0 

ROLL   Fn = 0.275 

0.05 0.10 0.15 0.20 0.25 
ANGULAR   SPREADING  FACTOR =l/s 

Fig.11 Effect of angular spreading factor(l/s) 
on roll response in following directional 
spectrum waves. 
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Fig.12  Reduction of response in directional 
spectrum waves of a moored semisubmersible 
platform  model.  Abscissa is  peakedness 
parameter s in log scale. 

degrees significant roll angles are excited. 
For roll the effect of angular spreading 

factor is very large in experiment and so very 
important factor, and the experimental results 
show larger change than calculated results. 

The motions of a moored semi-submersible 
platform (8 columns and 2 lower hulls type) 
are also affected by the directional spreading 
characteristics of directional spectrum waves 
and some examples are shown in fig.12 
(13,14,15). This case, abscissa is s in log- 
scale. About 30% reduction of sway motion can 
be seen for cos-square distribution case. 

ESTIMATION OF DIRECTIONAL FREQUENCY TRANSFER 
FUNCTION OF MOTIONS FROM MEASURED RESPONSES IN 
DIRECTIONAL SPECTRUM WAVES 

As often tried in long crested regular 
.irregular or transient water waves (TWW)(21) 
, it is important to estimate directional 
response transfer functions of models by using 
a measured wave and responses. However, for 
the case of directional spectrum wave, it is 
not so easy to conduct such inverse estima- 
tions .because obtained response spectrum is 
the results of integration in each wave direc- 
tion like equation (10). 
About this estimation problem we proposed new 
practical methods(10,11,16,20). 

Response spectra is expressed by equation 
(10). This case we want estimate H from inte- 
grated value S. For this we discretize equation 
(10) as follows. 

s = (u>»)T(\h„\2)8x (11) 

where w  is wave spectrum and hn is the 
directional response function at w, and here 
8x    is the width of encounter wave angle. 
Suffix n is the number of wave direction. 
Superscript T means transposition of matrix. 

Next, we expand H by Fourier series as 

\H(We, X)\2~ 2  <lk{cUe) COS kx 

and discrete expressions becomes as 

(12) 

(IA.11)^ 

1 cos xr--cos Nxi 

1 cos X2---COS Nx2 

1 cos x*---cos Nxn 

-■[C)(a)     (13) 

From this the condition for making minimizing 
the square of estimation error of response one 
dimensional spectrum become as follows. 

([W})[C])T([W][C})(8x)2 cf\Uas) 

CK 0 \  A 

([W][C])T(s)$x 

(lA-l'). 

c^is the L-th row vector of matrix C 

(14) 
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where. 

[W) = 
{w)l 

.(«05. 

(15) 

Here, m means the number of wave kind. X is 
the Lagrangian multiplier for introducing 
restraint condition when we know the response 
function at direction Xj  ■ 

Example of estimated directional transfer 
functions 

Figl3 shows directional wave spectra used 
for estimation . We used four cases of one 
dimensional frequency spectra , and two cases 
of directional distribution function , so the 
total 8 cases of wave spectra are used. 

Fig.14 is estimated heave and pitch 
directional transfer functions expressed in 
three dimensional figure at the heading sea 
condition of Fn=0.275. Fig.15 is sectional 
shape of directional transfer functions at 
three frequencies. Constraint is introduced at 
180 deg.(head sea) by the results obtained 
from experiments in Transient water waves 
(21). Solid curves are theoretical ones by NSM 
and they show relatively good coincidence with 
each other. So this method can be applied for 
the ship or floating offshore structures in 
real sea if the incident directional wave 
spectra can be measured. 

CONCLUSION 

About the recently developed new experi- 
mental techniques on ship motions in direc- 
tional spectrum waves, following conclusions 
are obtained. 

1) We could realized practically homoge- 
neous directional spectrum wave fields in a 
conventional long towing tank by the small 
number of segmented wave generator mounted at 
the end of the tank, from taking into consid- 
eration of the reflection of side walls. 

Although such wave generating system is 
restricted to such waves that the principal 
direction of directional spectrum wave is 
parallel to the tank side wall, various appli- 
cations will be possible, and new results will 
be expected especially about non linear phe- 
nomena in the field of ship hydrodynamics. 

2) Generated directional spectrum waves 
were confirmed by the newly developed Laser 
Wave Surface Probe(LAWSURP) and by so called 
MLM analysis method. LAWSURP is suitable for 
high speed running condition and measurement 
of wave local slope. 

3) We also developed a new estimation 
method of directional transfer functions from 
measured motion responses and directional wave 
spectra. 

4) Experiments in directional spectrum 
waves showed the effect of angular spreading 
factor on response, especially on the motion 
of semi submersible platform and on ship roll 
motions in following sea condition. 
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Research on Unsteady Wave Field Generated by Ships 
With Advance Velocity by Transverse Cut Method 
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ABSTRACT 

The mutual relation exists between unsteady wave field and 
forces - that is wave exciting forces, added resistance and 
wave damping force - . As well known, Köchin function 
shows the characteristics of unsteady wave field and when 
we want to obtain the forces it is also needed. Hence, the 
experimental techniques to get the function must be devel- 
oped. Two method could be thought, one is the longitudi- 
nal cut method which means that the unsteady wave field 
is cut on the parallel line to ship course, the other is the 
transverse cut method. The former has already established 
by Ohkusu, the later is presented by the authors with ex- 
periment results obtained with the new equipments, and 
we show the asymptotic behaviors of unsteady waves at far 
field and give a consistent explanation of the mutual rela- 
tion among them. 

NOMENCLATURE 

Rtf) Köchin function 
Dw space of wave probes 
V speed of wave probe 
L ship length 
K wave number = u2/g 
Ko wave number = g/V2 

g gravitational acceleration 
V model ship speed 
do critical angle = cos-1(^-) 
n = v-V/g 
u wave frequency 
a(x) singularity distribution 

C wave elevation 
9 propagating direction of elementary waves 
R horizontal distance between (0,0) and (x,y) 

INTRODUCTION 

It is important to know the characteristics of unsteady 
wave field generated by oscillating ships for the detailed 

investigation on seakeeping in waves, because the relation 
between the wave forces acting on ships and/or floating bod- 
ies and generated waves by them is close. In the research 
field on steady wave making resistance, the wave pattern 
analysis has been successful. Also in the research field on 
unsteady wave making resistance, the wave pattern analy- 
sis must be considered. Ohkusu has already presented the 
method of the unsteady wave field analysis by the parallel 
cut with the ship's course[7]. We say it longitudinal cut 
method. 

In this paper, we present the wave pattern analysis 
method with the transverse cut of the wave field, namely 
transverse cut method. Even if either method is used, some 
wave probes are necessary. In case of the former method, 
the wave probes can be set up at the fixed point in space, 
and the truncated correction, that is a restricted water tank 
correction, is necessary, because waves propagated behind 
the ship exist at far field[20]. In case of the later method, 
the wave probes must be set up at the moving coordinate 
with ships, and the method does not need the correction, 
because the wave amplitude gets almost to 0 very rapidly 
near the edge of unsteady wave field. 

We carried out the experiments of wave pattern anal- 
ysis by the transverse cut method with the new facility 
which is on the moving coordinate with ships and has a 
small carriage with five wave probes moving perpendicular 
to ship's course. As the results the amplitude functions, 
namely Köchin function, of fine ships like container and full 
ships like tanker can be obtained experimentally. For the 
unsteady wave pattern analysis, it is suitable to investigate 
the asymptotic behavior of the unsteady-wave field by using 
the stationary phase method which is one of the approxi- 
mated integration method. With this method, the decaying 
order of wave amplitude at the edge of unsteady wave field 
is obtained analytically, and we have confirmed that the ap- 
proximated results are available. The calculated results are 
useful to understand what is the dominant characteristics 
of the wave field and to know how to make the wave pattern 
analysis. 

The experimental results of Köchin function of the ship 
with blunt bow do not coincide with the calculated results 
based on the slender-body assumption. Especially under 
the diffraction condition, the difference is large. As the one 
method to solve the problem, we distribute the isolated sin- 
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gularity at fore point of ships, which presents the bluntness 
of ships, and compare the experiment results with calcu- 
lated one of Köchin function. Good agreement is obtained. 

We also carried out the wake measurement of the blunt 
ship and took picture of wave breaking behaviors in front of 
it. The mutual relation among the blunt bow, the wake and 
the wave breaking is discussed. The authors will also show 
the overview on the research of the unsteady wave field. 

2      WAVE GENERATED BY PERIODICAL 
SINGULARITY WITH CONSTANT 
ADVANCE VELOCITY 

2.1 Co-ordinate system 
and two kinds of waves [13,14,15,18] 

The wave number of waves generated by periodical sin- 
gularity with advance velocity of V can be obtained in the 
co-ordinate system in fig.l. In the view of the space co- 
ordinate system (0S - XsYa) and the moving co-ordinate 
system(o — xy) with the singularity, the relation between 
them is as follows. 

Xs = x + Vt      :     Ys = y (1) 

The waves that have amplitude unit and satisfy the free 
surface condition and also propagate in the direction of 8 
in o - xy system can be shown as follows. 

r(Q\ _ ei{ut-k{xcos$+ysine)} /^ 

Transforming the equation to 0, - X,Y, system gives 

cw i(u/t-k-X,-cos e+k-Vt-msS-k-Y, sin«) 

i(w+k-V-cos »)t   -ik(X, cos S+Y, sin«) 
(3) 

The waves propagate in the direction of 8 in o - xy 
system also propagate in the direction of 0 in 0, — XSY, 
system. Considering the time term, the wave phase velocity 
C in Os — XSYS system is 

„      u + k ■ V ■ cos 8      u 
C = — ; = T + V ■ cos 9 

k k 

And the wave dispersion relation is given as follows. 

°2 = f W 
Solving these two equations, the wave number k can be 
obtained 

*;W ^ 
A'o{l - 2ft cos 8 ± y/\ - 4ft cos 8} 

(5) 
2cos20 

Positive is when j=l, negative is when j=2 : where ft = 
uV/g, K = w2/g, KQ = g/V2. The waves generated by 
periodical singularity with constant velocity are composed 
of these two waves having wave number kj(8) j=l,2 men- 
tioned above and can be explained as follows. 

1. The one wave is the deformed Kelvin wave generated 
when a singularity advances with a constant velocity. 

2. The other wave is a deformed ring wave generated 
when a singularity oscillates without velocity. 

Although the wave mentioned in (1) above is called &i wave 
and (2) is fcj wave usually, they have various names and are 

Os Ys 

Fig.l Co-ordinate system 

not specified. 
Since the term within the root shown in eq.(5) must be 
positive, the following condition should be satisfied. 

1 - 4ft cos 9 > 0 (6) 

In case of Ü > 0.25, namely cos 8 < 0.25 < Ü, then 6 
should exist within cos-1(0.25/J!) < \8\ < %. 
Since 8 means wave propagating direction, the waves do not 
propagate in the direction of outside of this range. Write Qo 
for cos-1(0.25/fi), and name it the critical angle. In case 
of ft < 0.25, the value within the root is always positive, 
therefore waves propagate to every direction. 

These wave numbers, ki,k2, correspond to each wave 
number of Kelvin wave and ring wave, that is, when a sin- 
gularity does not oscillate ^2 wave disappears and fci wave 
number coincides with Kelvin wave number. On the other 
hand when a singularity does not have advance velocity, k\ 
wave disappears and &2 wave number coincides with ring 
wave number. To make it easy to understand, rewrite the 
wave number shown in eq.(5) as follows. 

fci    =    Kn ■ sec 

k2   =   K- 

1 + Vl - 4ft cos 9 

(7) 

1 + \/l-4ftcos0 

Therefore it is clear as 

1. When u = 0, the singularity does not oscillate but 
translates in a constant advanced velocity, hence K = 
0 and fcj = 0, ft = 0 so that fcj = Ko ■ sec2 9. This is 
the wave number of Kelvin wave. 

2. When V = 0, the singularity does not translate but 
oscillates, hence KQ = cc and fcj = oo, ft = 0 so that 
&2 = K. This is the wave number of ring wave. 

When V = 1.0(m/s), u = 6.0(1/«), ft = 0.61, K0 = 
9.8(1/«), oo = 66°, as the typical condition in this calcula- 
tion, the results of fci and k2 are shown in fig.2. 
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When 6 = 90°, the wave number of ki wave is infinity, 
namely wave length is infinitesimal. When waves propagat- 
ing in direction of 9 are getting to a0, the wave length of 
ki. wave is getting shorter. The fcj wave number coincides 
with the kz wave number at 6 = O/Q. 

15 

%   10 
a 
p 
a 
<u 

WAVE NUMBER 
;v=l   m/s   :   W=6   1/s; 

10s 

104 
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io2 

1.0 2.0 3.0  £ 
Direction(rad) 

10 

Fig.2 Wave number of fci and k^ waves 

Fig.3 

Fig.4 

Fig.5 

C wave 

2.2 Parameter ft 

According to these formulas we can find that parameter 
ft plays an important role. As it is indicated ft = ^/K/KQ, 

K shows the wave number generated by oscillation and KQ 

shows the wave number generated by a constant velocity, 
thus ft indicates the ratio of wave number of unsteady wave 
to steady wave. Namely the parameter ft shows the degree 
of unsteadiness of wave field, and various phenomena of un- 
steady wave field can be settled by ft. When the value of 
ft becomes beyond the certain value, that is ft =0.25, the 
critical angle ao emerges. Any elementary waves do not 
propagate in the direction of 8 < oto- This phenomenon is 
named as Doppler effect of water wave which effect is usu- 
ally used in the acoustic research field. It means the effect 
of velocity on wave number. 

2.3 Fundamental property of kx and k2 waves 

When we divide unsteady waves into two wave systems 
and divide each system into two kinds of waves, we can well 
understand the property of waves generated by the period- 
ical singularity, that means ships, with constant velocity. 

Although we call each wave as A, B, C, D wave for con- 
venience, they do not have particular names. A, B, C and 
D waves can be described as follows. 

V 
-> 

e>2 

D wave 

Fig.6 

Propagating direction of A, B, C, andZ? 
waves represented ino — lysystem and 

Os — XsYssystem 

[1] A wave (£2 wave system) : Fig.3 
It propagates behind the singularity in both 0 - xy and 
0, - X,Y, systems. The mark <— shows the direction of 
propagation in o - xy system and the mark <■-•- shows the 
direction of propagation in Os — XSYS system. 

[2] B wave (£2 wave system) : Fig.4 
It propagates toward the front in both o—xy and Os—XsYs 

systems. It exists in front of the singularity because both 
phase and group velocities are faster than the one of singu- 
larity. 
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[3] C wave (ki wave system) : Fig.5 
It propagates toward the front of the singularity in both 
o-xy and 03 - X,Y, systems. Although group velocity is 
slower than the velocity of singularity, it exists behind of 
the singularity. 

[4] D wave (k\ wave system) : Fig.6 
It propagates behind of the singularity in o-xy system, on 
the other hand in 0S - XSY, system it propagates toward 
the front. Both phase and group velocities are slower than 
the velocity of singularity. 

The magnitude of wave length is A> B > C > D. 
Here we can find an interesting point as follows. 
Since A wave propagates behind in 0S - X,Y, system, a 
singularity is expected to get thrust as the reaction of send- 
ing out that wave.  T his thrust is called wave propulsion 
generally. 

2.4 Concept of elementary waves 

The structure of wave system generated when ship nav- 
igates in still water is explained by the conception of el- 
ementary waves originated from the idea of Kelvin. This 
is very effective idea to understand the complicated wave 
field generated by ships, and also very successful idea. His 
idea shows wave field which looks very complicated can be 
presented by means of summing up two dimensional waves 
which propagate in various directions. We call the two di- 
mensional wave an elementary wave, which constructs the 
wave field. 

The parameter characterizing an elementary wave is sim- 
ple, it is an amplitude (C), period {T) and propagating di- 
rection (9). The wave field generated by the advancing and 
oscillating ships in waves is explained by the mathemati- 
cal procedure like superposition of elementary waves like 
A,B,C, and D waves as mentioned at section (1.3), and this 
method is established to explain an unsteady wave field. 

2.5 Wave pattern 

When we see the waves generated by ships, they are 
not elementary waves but their superposed wave field. The 
wave field we see at this moment is the crest and trough lines 
where phase of elementary waves matches , hence they are 
called equi-phase lines or wave pattern. The wave pattern 
generated by ships with constant velocity without oscilla- 
tion is well known as Kelvin wave pattern. Then let's obtain 
what kind of wave pattern is generated by ships with con- 
stant velocity with oscillation. 

The elevation of water surface Cp at an arbitrary point 
P, the direction ip and distance R from origin, occurred by 
elementary waves can be explained as follows, (refer to fig.l 
expressing co-ordinate system) 

(8) 

If R = 0 is substituted into the eq.(8) (where a singularity 
or a ship exists), 

C = A(0)e" (9) 

In order to equalize the phase of wave at the point P 
with the one at the origin, phase part kj(8)Rcos(8 - ip) 
should be satisfied the relation as follows. 

kj{6)R cos(0 - i>) = 2nir  :  n = 0, ±1, ±2, • (10) 

By differentiating eq.(10) with respect to 8, one equa- 
tion is obtained. The envelop line of equi-phase line group 
satisfies it and eq.(10) simultaneously. Wave pattern can be 
drawn by indicating the point P presenting the unknown co- 
ordinates (x,y), that is tp and R, respect of given 8. Finally 
wave pattern can be drawn as using the next relations, 

2mrqj(d) 
kj(9)[co$9-qj{9) + sm8] 

2nx 
V= kj{8)[cos8-qj(9) + sm8] 

(11) 

where 

qj(6) = - tan 0 ± Vl - 4fl cos «(cot 8 + tan 6)      (12) 

Fig.7 shows the wave patterns under the condition Q. = 
0, that is V = 0 or u = 0. These wave patterns are named as 
when u = 0, the Kelvin wave pattern[17] and when V = 0, 
ring wave pattern respectively. 

In the case that the singularity pulsates(cj £ 0) or ad- 
vances (V ^ 0), that is Q / 0, the wave pattern changes 
gradually as following figures. 

The wave pattern drawn in the dotted lines and real 
lines in fig.8 are constructed by elementary A wave [in the 
range x>6> x/2] and B wave [in the range x/2 > 9 > a0] 
respectively belonging to k2 wave system. 

In fig.9, the wave pattern drawn in real lines and dotted 
lines are constructed by elementary C waves [in the range 
x/2 > 8 > a0] and D wave [in the range x > 8 > x/2] 
respectively belonging to hi wave system. 

Fig.10 shows the relation between the velocity of sin- 
gularity and k2 wave pattern. From the viewpoint of wave 
pattern, the increase of velocity is equivalent to the increase 
of u. The increase of V or u, that is fi = uV/g has large 
value, makes the forms of equi-phase lines more parallel to 
the longitudinal direction, that means more parallel to the 
ship. Thus the phenomena in unsteady wave field should 
be discussed from not uorV but the parameter ft. 

3     CONSTRUCTION OF UNSTEADY 
WAVE FIELD 

3.1 Theoretical equation of unsteady waves 

The theoretical equation of unsteady waves is given as 
follows. 

CP(Ä,^) = ylWei{w<-*i(')Re"('-*)} 
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Fig.7 Ring wave pattern [V = 0] and 

Kelvin wave pattern [w = 0] 

Fig.8 k2 wave patterns generated by periodical 

singularity 

Fig.9 k-i wave patterns generated by periodical 

singularity 

ft = 3.o ,n = 2.0/   /    ,' 

I ! X 

o 

Fig.10 Variation of k2 wave patterns according to fi 

value 

C   =   —[["    - f ^(9)^(0) exV{-iR9l(9)}d9 
g    J-TT/2      JV/2 

P   —[[b]W2(e)H2(8)exV{-iRg2(6)}d9        (13) 
g   Ja 

+' 

Wj(0) =   1 + 
kj(6) cos0\        kj{6) 

i<0n   J vi - 4n cos e 
: 3 = 1,2 

Where a = f - x/2, b = V + ?r/2, fi = wV/j, /(" = 
w2/g,Ko = g/V2, and fc^(ö) is shown in eq.(5). Here gj(8) 
is an important function to know the unsteady wave be- 
havior at far field and to obtain the approximated value of 
eq.(13) and given as follows. 

flj(0) = fc;(0).cos(0-yO (14) 

The first term in eq.(13) means the surface elevation 
caused by ki wave and the second term means fc2 wave. 
Hj(9) is the Köchin function showing the property of the 
periodical singularity, that is ships, as follows under the 
slender body assumption. 

/L/2 
o{x)-ei-k'^-mse-xdx  : i = 1,2     (15) 

-Z//2 

a(x) is singularity distribution along the center line of 
a ship which is determined by solving the two dimensional 
problem of each section of the ship, namely Ursell-Tasai 
method. This equation is Fourier transform of <r(x). 

Near the 9=a0, the Wj(9) value becomes large by the 
order l/%/0. By the well known variable transformation, 
that singularity can be removed[25]. 

3.2 Approximated formula on unsteady waves 

Eq.(13) is generally expressed as following form. 

1=1  f(8)exV{-iRg(9)}d6 
Ja 

Where 

(16) 

W) Hj(e)-Wj(9)    ;    j = l,2 
kj(6)cos 9 

K0n 
=   Hi{8).[l + AW 

v7! - 4ft cos ff 
{17) 

This integral form is well known, and when the value 
of R is large, the approximated method to obtain the in- 
tegral result is recommended. Although the calculation of 
unsteady wave field is not so difficult by using computer 
recently, for understanding the structure of unsteady wave 
it is necessary to extract some dominant components from 
eq.(13). 

Since the value of exp {-iRg(0)} fluctuates very rapidly 
when R becomes large, the integrated value is nearly 0. 
Only in the neighborhood of special point 9 where g'(8) = 0 
is satisfied, the integrated value would be exist. That point 
is called as stationary phase point. 

Differentiating eq.(14) respect to 9 and make it 0, the 
following relation is obtained, which gives stationary phase 
points. 
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cot iji = - tan 8 ± 
•v/1 - 40 cos 8 

(18) 

The minus sign and the plus sign mean k\ wave, k2 

wave respectively. This relation is same as eq.(12) which is 
needed to obtain the wave pattern. The equation has the 
validity when R becomes large, namely the approximated 
wave presents the behavior of unsteady waves at the far 

The case (1) is the most popular case. Eq.(16) is ap- 
proximated by substituting the first and third terms of right 

hand side in eq.(19) to eq.(16) as follows. 

I   ~   f(8Q)<ixp{-iRg(6o)} 

rß       _-iRg»(Bo).(e-60)
2 

/   exp{- 
Ja 

}dB 

The well known integrated result is given as 

(20) 

TT/2      2.0 

Direction[rad.] 

Fig. 11 Stationary phase point of fcx and k2 waves 

f(60)exp{-iRg(80)} 
2ir 

R\g"(eQ)\ 
•exp   ±-   (21) 

The ± sign in front of 7r/4 corresponds to the plus and 

minus of g"(8o)- 
Therefore integrated result can be determined easily by 

obtaining the stationary phase point. Even though the in- 

tegrated result gives a good approximated value when R 

is very large, it is important to investigate the conditions 
when you need to get more accurate value. In the case that 

some stationary points exist, each integrated value should 

be added. 
When g"(80) = 0, it is impossible to use the approxi- 

mated formula shown in eq.(21), because the denominator 

is 0. In this case next equation is valid. 

/   ~    f{80) exp{-iRg(80)} 

j exp{- 
-iRg'"(80) ■ (8 - dp)3 

■}dd (22) 

When variable transformation is performed as eq.(23), this 
integrated result is shown by Gamma function. 

field.  The calculated results of the stationary phase point 

are shown in fig.ll. 
The taylor expansion of g(8) around the stationary phase 

point #o is 

g(8)   =   g(80) + g'(8Q)-(8-e0)+
g"{eo)'^~eo) 

,    g'"(6o)-(6-eo)3 , +     g +• 
(19) 

There are several ways to approximate g(9) around 8 = 80 

as follows [26]. 

(1) g'(90) = 0 and we consider the 1st and 3rd terms. 
(2) g (90) = g"(60) = 0 and we consider the 1st and 4th 

terms. 
(3) g'{80) = 0 and we consider the 1st, 3rd and 4th 

terms. 
(4) g"(60) = 0 and we consider the 1st, 2nd and 4th 

terms. 
[ In this case, there is no solution of g'(9) = 0 ] 

Therefore f(9) around 90 is slowly varying function, let's 

be f(8) ~ f(90). 

g'"(80) ■ (9 - 90) = e (23) 

This result is only valid at g'{80) = g"(90) = 0 corre- 
sponding to the case (2). 
When g"(8o) — 0, two stationary phase points are close, 
therefore the another method must be used[27]. This 
method corresponds to the case (3) in which both g"(8) 
and g'"{8) can not be neglected. Although this integral cal- 
culation is complicated, it can be shown with Airy function 
by using Chester-Friedman- Ursell method[16]. 

a   =   g"(80)/2,    ß = g'"(80)/6 

g(9)   ~   g(8o) + a ■ (8 - 8of + ß ■ (8 - 80)3       (24) 

Around the double stationary point, there are two roots 
of g'(8) = 0 and one point approaches the other point. 
The function g'{8) and g{8) could be approximated as a 
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quadratic and cubic expression respectively. 
Performing the co-ordinate transformation as follows 

8 - do = ai ■ 8 + a2 

Substituting eq.(25) to eq.(24) 

g{6)-g(e0)   =   ßal-8~3 + (aal + 3ßala2)-8~2 

+   (2a1a2a + 3aialß)-8 

+   al(a + ßa2) 

(25) 

(26) 

Near the 80, this equation can be approximated as a cubic 
expression 

1     *3 
g(8)-g(80) ■{•5 + 7 (27) 

Comparing each power,ai,02,{ and ( are determined as fol- 
lows. 

<x2 = 
gVo) 

2      ^ c      g"(6o)2 J    2 
2fi"'(Öo)V5'"(öo) 

9"(8o)3 

i = g(0o) + 

(28) 

(29) 
Y'(*o) ' '    *"""' ' WW 

Wave elevation is shown by using Airy function and the 
relation dd/d.8 = oi. 

Airy    function : Ai(±x) = — /     cos(— ± xt)dt 
x Jo o 

c 
2u> 

/(«o)« 
iRg(e„ •2TT 

%'"(e0) 

g"(go)2 

ff'"(e0)
4/3 (30) 

Wave motion shown by this equation indicates the char- 
acteristics of wave behaviors around the edge of unsteady 
wave field. 

Also the case (4) in which g"(80) = 0, namely a sta- 
tionary phase point does not exist. We consider up to g'{9) 
and g'"{8), the result also can be obtained with Airy func- 
tion. This function is important to calculate behavior at 
the front of water waves. In this case the detail calculated 
method will be described at section 2.3.2. Case (3) and (4) 
are important for the investigation of asymptotic behaviors 
of unsteady wave field. 

The dominant component of unsteady waves is evalu- 
ated with the methods mentioned above. We need to es- 
timate the range of the validity of these results. Since 
\g"{8o) A 0J and/or \g"{6) and g'"(8) can not be neglected 
J are uncertain, it is not so easy to estimate the validation 
range. Therefor there are some opinions computing the ex- 
act formula (13) directly is more accurate than the approx- 
imated method. The approximated calculation gives us the 
important and dominant informations of the unsteady wave 
field, though. 

When 8 ~ Q0 (QO is the critical angle), the amplitude 
part of the integrand becomes large very rapidly. In this 
region the approximated relation f(6) ~ /(#o) breaks. 

3.3 Asymptotic behavior of unsteady waves 

We can understand more deeply the seakeeping theory 
by knowing the asymptotic behavior of unsteady waves. 

3.3.1 Asymptotic behavior of unsteady waves 
at x—► —oo 

When x—► -oo, where is far behind away from ships, 
the dominant elementary wave is the propagating wave to 
direction T, namely the function g(8o) tends to —^(TT). AS 

the result wave elevation is 

f{80)exp{-iRk2{ir)} 
2TT 

R\g"(*)\ 
exp(±7r/4) 

(31) 

This result tells us that the amplitude of the propagat- 
ing wave to direction ■K decays with order 0(l/v(ß). This 
is the basic background of the truncated modification for 
the longitudinal cut method. 

3.3.2 Asymptotic behavior of unsteady waves at 
y —► +oo and x —> +oo 

When y —^ +oo under x = - const., the value cot(tp) = 
cot(x/y) tends to 0_ (Minus of 0_ means that the value 
tends to 0 from negative value.), and also when n 0. 
under y=+const., the value cot(^) tends to 0_ and when 
i —► +oo, the value cot(^) tends to +00. So the behavior 
of unsteady waves at far field can be considered on referring 
to the value of cot(^). 

Under the both conditions, x -> 0_ —* +00 (where is 
in the forward direction from a singularity) and y —► +00 
(where is in the transverse direction from a singularity), a 
stationary phase point does not exist. 

So, the behavior of wave motion around the edge of un- 
steady wave field (1 —► +00, y =const. and y —> +00, 
x =const.) can be investigated simultaneously. 
At these region, the solution g'(8) = 0 does not exist. So 
the 8, satisfied g"{8,) = 0 is used, that is g'{8,) and g'"{83) 
terms are considered to evaluate eq.(13) as follows. 

C   * 
1w my Rg(e.) 

•/ — CO 
Ue (32) 

This equation can be calculated with Airy function be- 
cause it is consisted 1st and 3rd order terms. The result 
is 
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>-*wimir} 
x   Ai   Rg'{6s) Rg"W 

(33) 

When y in eq.(32) becomes large, that is R becomes 
large, the wave motion is investigated by knowing the 
asymptotic behavior of Airy function. Asymptotic behavior 
of Airy function when f —<■ oo is shown. 

^-iT^f^-r^ 
An independent variable £ is shown 

* = Rg'( Rg'"(8s) 

Substitute f into the eq.(33) 

~ CQR
2/3 ~ 0{R2'3) 

(34) 

(35) 

1 

2Ä 

Ai(x)   *    ^■(C0R^r1/4-^v[-l(C0R
2/3) 

(Co)-1/4-(Ä)-1/6-exp(-/3Ä) 

3/2 

: /5 = f(Co)3/2 

Substituting this into eq.(33), the asymptotic value of the 
wave amplitude near the edge of unsteady wave field is 
shown as follows 

-PR 

^°(W} (36) 

where R = \/x2 + y2 . 
This decay order is very high. When iorj-» +oo, 

wave amplitude damps rapidly. This remarkable decay or- 
der indicates that a truncated correction of wave data is 
not necessary when the unsteady wave pattern analysis is 
carried out with the transverse cut method, which is one of 
the merits of this method. The investigation of this section 
shows the asymptotic behaviors of unsteady wave at the 
edge of unsteady wave field. 

Fig.12 shows these general states of decaying order at 
the edge of unsteady wave field. 

4 UNSTEADY WAVE PATTERN ANALYSIS 
-TRANSVERSE CUT METHOD— 

For obtaining the wave elevation £(20, y) which does not 
depend on time, needed some experimental equipments and 
analytical theory are needed. In this experiment we use the 
small carriage with five wave probes which is on moving 
co-ordinate system, namely on the ship fixed co-ordinate 
system, and it moves in transverse direction. As the result 
we can get five wave data. With these data, C(xo, y) can 
be obtained by the analysis theory mentioned below and is 
substituted to eq.(37) or (38). Finally H{8) can be deter- 
mined. 

In this analysis, the steady wave elevation Co is also ob- 
tained. Detail investigations on the mutual interaction be- 

Fig.12 General states of decaying order of asymptotic 

waves at the edge of unsteady wave field 

tween unsteady and steady waves will be possible. 

4.1 Analysis formula of transverse cut method 

Unsteady wave pattern analysis has presented firstly by 
Ohkusu. His method is the parallel cut method with the 
ship course shown BB' line in ftg.13. Naito and Zhang[12] 
have shown the transverse cut method of the wave field 
shown AA' line in fig.13. Each method has merits and de- 
merits respectively. 

The longitudinal cut method does not measure an ele- 
mentary wave propagating to TT/2 because the setting line of 
wave probes is parallel to x/2. On the contrary, the trans- 
verse cut method does not measure an elementary wave 
propagating to if because the setting line of wave probes is 
parallel to jr. 

In the research field on steady wave making resistance, 
the wave pattern analysis is successful. By the unsteady 
wave pattern analysis, we can obtained the Köchin function 
experimentally. As the result, the discussion on (" Which 
theory is the most suitable ? J and \ How to correct the 
theory ? J turns to be real. 

The wave pattern analysis formula is obtained by the 
Fourier transformation of the unsteady wave formula shown 

884 



by eq.(13). After rather complicated calculus, the wave pat- 
tern analysis formula by the transverse cut method can be 
obtained as follows. 
[1] Analysis formula of symmetrical unsteady wave field gen- 
erated by symmetrical ship motions (heave, pitch, surge) is 
as follows. 

Hi(0) = £■ r C(*o,iO • coB(ki(6)ysme)dy 
lu Jo 

sin2 9 ± Vl - 4ft cos 9    _ jk^xocosS 
'cosfl(l + *;(0)flcos0/ü:) 

(37) 

[2] Analysis formula of unsymmetrical unsteady wave field 
generated by unsymmetrical ship motions (roll, yaw, sway) 
is as follows. 

lu> Jo 

sin2 9 ± %/l - 4ficos9      eik,[e)xocose+-K/2 
' cos 9(l + ki(6)ü COS0/K) 

(38) 

Fig.13 Perspective view of unsteady wave field 

generated by ships [cos component] 

4.3 Technique to obtain wave amplitude ((x0,y) 

i = 1,2 means fci, k2 wave system respectively.   x0 is the 
position of transverse cut plane. 
When 9 -> w/2, the limited value of under line part exists 
as 2K when i = 1, and 2ti when i = 2 respectively. 
If we could determine C(*o,lO by experiment, Köchin func- 
tion Hj(9) can be obtained with eq.(37) or eq.(38).   The 
method to get C(xo, y) is shown at section 3.3. 

4.2 New system of the experiment 

We built up the new experimental system shown in fig.14 
and fig.15. It has the small carriage moving the transverse 
direction beneath the main towing carriage. This small car- 
riage is driven by DC motor and has five super-sonic-type 
wave probes. They are setted with an equal space [Dw]. 
The space Dw among probes and the moving speed [Vwp] 
of them can be changed arbitrary with the control unit. 
When the first probe passes the longitudinal center line of 
the model the starting signal is generated which is the ref- 
erence input time. 

The water surface at an arbitrary point in unsteady 
wave field oscillates with the encounter period Te in case 
of diffraction condition, in case of radiation condition oscil- 
lates with the period T. Since the carriage speed must be 
determined as that every 

T=/[number of wave probes JV : in our case 5] (second), 

each probe must cross the point(i,j/). As the result, five 
data of surface elevation every one period is obtained. The 
speed of wave probe VWJ> is decided as follows. 

y-wp — 
N-Dv 

N=5 is used in our experiments. If this speed is high for 
the system, Vmp divided by (N-l),(N-2),...,{ N-(N-2)} can 
be used. 

[a] Radiation experiment 
Getting the value of £{xo,y) on the line X=XQ is easy by the 
least square method because the water surface fluctuation is 
regular and we take wave data five times during one period. 
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