
NAVAL POSTGRADUATE SCHOOL 
MONTEREY, CALIFORNIA 

THESIS 

DENOISING OF OCEAN ACOUSTIC SIGNALS 
USING 

WAVELET-BASED TECHNIQUES 

by 

Robert J. Barsanti, Jr. 

December, 1996 

Thesis Advisor: Monique P. Fargues 
Co-Advisor: Ralph Hippenstiel 

Approved for public release; distribution is unlimited. 

DTIC QUALITY raSPEOTED 3 

19970925 050 



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other 
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and 
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) 
Washington DC 20503.  

1.     AGENCY USE ONLY (Leave blank) REPORT DATE 
December 1996 

3.     REPORT TYPE AND DATES COVERED 
Master's Thesis 

4.    TTTLE AND SUBTITLE : DENOISING OF OCEAN ACOUSTIC SIGNALS 
USING WAVELET BASED-TECHNTQUES  

6.    AUTHOR(S) Robert J. Barsanti, Jr. 

5.     FUNDING NUMBERS 

7.     PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey CA 93943-5000  

PERFORMING 
ORGANIZATION 
REPORT NUMBER 

9.     SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.   SPONSOPJNG/MONlTORING 
AGENCY REPORT NUMBER 

11.   SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government.  

12a. DISTPJBUnON/AVAILABILrrY STATEMENT 
Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13.   ABSTRACT (maximum 200 words) 

This thesis investigates the use of wavelets, wavelet packets and cosine packet signal 

decompositions for the removal of noise from underwater acoustic signals. Several wavelet based 

denoising techniques are presented and their performances compared. Results from the comparisons 
are used to develop a wavelet-based denoising algorithm suitable for a wide variety of underwater 

acoustic transients. Performances of the denoising algorithm are compared to those of a short-time 

Wiener filter implementation, and demonstrate that wavelet-based methods are a viable tool for the 

denoising of acoustic data. 

14.   SUBJECT TERMS Wavelets, Denoising, Cosine Packet Transform, Acoustic Signals. 15. NUMBER OF 
PAGES   .115 

16.   PRICE CODE 

17.   SECURITY CLASSIFICA- 
TION OF REPORT 
Unclassified 

18.   SECURITY CLASSIFI- 
CATION OF THIS PAGE 
Unclassified 

19.   SECURITY CLASSIFICA- 
TION OF ABSTRACT 
Unclassified 

20.   LIMITATION OF 
ABSTRACT 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 298-102 



11 



Approved for public release; distribution is unlimited. 

DENOISING OF OCEAN ACOUSTIC SIGNALS 
USING 

WAVELET-BASED TECHNIQUES 

Robert J. Barsanti, Jr. 

Lieutenant Commander, United States Navy 

B.S., Polytechnic Institute of New York, 1982 

Submitted in partial fulfillment 

of the requirements for the degrees of 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 
MASTER OF SCIENCE IN ENGINEERING ACOUSTICS 

from the 

Author: 

Approved by: 

NAVAL POSTGRADUATE SCHOOL 
December 1996 

•^        Robert J. Barsanti, Jr. 

"Z^ Monigue P. Fargues, Thesis Advisor 

Ralph Hippenstiel, Co-Advisor 

Herschel H. Loomis, Jr., (thairman 
Department of Electrical and Computer Engineering 

iDTIC QUALITY INSPECTED 8 

ill 



IV 



ABSTRACT, 

This thesis investigates the use of wavelets, wavelet packets and cosine packet signal 

decompositions for the removal of noise from underwater acoustic signals. Several wavelet 

based denoising techniques are presented and their performances compared. Results from 

the comparisons are used to develop a wavelet-based denoising algorithm suitable for a wide 

variety of underwater acoustic transients. Performances of the denoising algorithm are 

compared to those of a short-time Wiener filter implementation, and demonstrate that 

wavelet-based methods are a viable tool for the denoising of acoustic data. 
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I. INTRODUCTION 

Wavelet analysis provides a unified framework to a number of techniques that are 

applied in various research areas including mathematics, computer imaging and 

geophysics. In signal processing wavelet-based techniques can be found in applications 

such as multi-resolution processing, signal compression, subband coding and noise 

removal.fl] 

Wavelets and their close relatives, wavelet packets and cosine packets provide a 

valuable tool in the removal of noise primarily because they provide a large variety of 

flexible basis functions that allow for projection of the signal into a coordinate system, in 

which the signal characteristic are distinguishable from that of the noise. Wavelet-based 

transforms also permit analysis of data at multiple levels of resolution. This multi- 

resolution property makes these transforms unique, and permits the user to zoom-in on 

local signal features or zoom-out to take global views of the signal to be analyzed. This 

ability is particularly relevant to the types of acoustic signals studied in this thesis, which 

are composed of both short duration broadband transients that are highly localized in time 

and tonals or narrowband signals that are localized in frequency. 

The wavelet thresholding methods used in this study are an extension to, and 

combination of, methods found throughout the signal processing literature. In particular 

we apply denoising techniques originally proposed by Donoho et. al. [2], to underwater 

acoustic transients in low signal to noise ratio (SNR), and colored noise environments. 

The thesis has seven additional chapters. Chapter II is an introduction to ocean 

noise, its sources and characteristics. Chapter III discusses the theory of wavelet analysis 



and its extension to the wavelet packet transform. Chapter IV provides a brief treatment 

of the local trigonometric and the cosine packet transforms. Chapter V describes the 

criterion used for basis selection and the Best Basis algorithm. In Chapter VI the principles 

and application of wavelet denoising are discussed. Various thresholding methods are 

examined and contrasted here as well. Chapter VII discusses the results of applying 

wavelet-based methods to ocean acoustic transients. Chapter VIII provides a summary 

and conclusions. 



n. NOISE 

Noise can be considered the undesired part of the input, whereas the signal is the 

desired part of the input. The presence of noise at the input masks the signal and can hide 

its relevant features. Removal of the noise from the input aids in the detection, estimation, 

and classification of signals. In underwater acoustics, the noise can be separated into two 

broad categories. The first is background noise or ambient noise which is inherent to the 

ocean, and includes all natural and man-made acoustic sources that contribute to the 

underwater noise level in the absence of the receiver. The second category is self noise 

which arises from the receiving system and its platform. 

The literature covering the field of underwater acoustic noise is massive and is the 

second most prolific topic in all of underwater acoustics (after sound propagation) [3]. 

This chapter briefly discusses the types of noise typically found in underwater acoustic 

data, its sources and its characteristics. 

A.       NOISE SOURCES 

1.        Ambient Noise 

Ambient noise is the background noise found at a particular location of the ocean, 

and it is independent of the means used to measure it. The wind and its effect on the ocean 

surface contribute to this noise across the entire frequency spectrum. The ambient noise 

spectrum is shown in Figure 2.1. It displays the sound pressure level (SPL) found in a one 

Hz frequency band in decibels (dB) at 1 meter referenced to 1 uPa. 

As the shape of the curves suggest, different processes are responsible for the 

generation of the noise in different frequency ranges. In the frequency range below about 
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Figure 1.1: Ambient ocean noise spectrum. From Ref. [4]. 

10 Hertz (Hz), ambient noise is primarily caused by ocean turbulence and seismic activity. 

This turbulence is attributed to the wind and wave action at the ocean surface. The noise 

spectrum falls off rapidly in this region with a slope of about 10 dB per octave. In the 

frequency range between 10 and 200 Hz, distant shipping noise dominates the spectrum. 

In areas of low or no shipping noise, the ever present wind and the resulting surface action 

still generate acoustic noise in this range. Other man made sources such as seismic 

exploration and oil production are also found in this band and contribute to a lesser 

degree. 

Above 100 Hz, shipping noise begins to fall off rapidly, and the agitation of the 

local sea surface due to wind turbulence, surface motion, wave interaction, spray, and 

cavitation becomes important. These sea surface effects begin to prevail somewhere 

between 200 and 500 Hz, depending on the local shipping density and the current wind 
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Figure 2.2: Knudsens curves. From Ref. [3]. 

speed and sea state. The first published study of ocean noise in the band from 200 - 2000 

Hz was made by V.O. Knudsen and produced the curves shown in Figure 2.2. These 

curves remain accurate today for frequencies greater than 1000 Hz. (Between 200-800 

Hz, the spectrum is nearly flat contrary to Knudsens' predictions) [3]. As these curves 

show, above one KHz the noise decays at slightly less than four dB per octave, and this 

trend continues up to about 50 KHz. 

In the frequency range above 50 KHz thermal noise begins to dominate the 

background noise. This results in an increase in the noise level at about six dB per octave, 

and it attributed to the thermal agitation of the water molecules. 

2.        Self Noise 

Self noise is the noise associated with the receiving system and its platform. The 

most severe form of self noise typically results from the flow of water past the face of the 

hydrophone on a moving ship. This flow noise is speed dependent and can easily exceed 



that of the ocean ambient noise at higher ship speeds. However at slow speeds, or for 

stationary arrays, self noise is usually less important than ambient noise [4]. Machinery 

noise and propeller noise are other sources of self noise. They both produce vibrations that 

can be sent to the recording system via the mechanical structure of the ship, or can 

generate acoustic waves received at the hydrophone. 

On a stationary platform, ocean currents cause noise by carrying water of varying 

turbulence and temperature in contact with the hydrophone. This creates noise due to the 

piezoelectric and pyroelectric sensitivity of the hydrophones and is called pseudo-noise. 

Another source of noise is caused by cable strumming which can occur if the hydrophone 

is mounted from a flexible cable. [3] 

Self noise is measurable and efforts can be (and usually are) made to minimize it. 

Ships can reduce their speed to limit flow induced noises and propeller noise. Efforts are 

made to isolate machinery sounds and to reduce machinery vibrations. Hydrophones are 

designed with thermal insulators to reduce pyroelectric effects. Numerous other design 

issues of the recording system and its platform are considered to limit the effect of self 

noise. Even in the face of all these measures taken, one would be negligent to ignore the 

possible presence of self induced noises in any data analyzed. 

B.        PROPAGATION EFFECTS 

The transmission of acoustic energy in the ocean is largely affected by the 

properties of the water mass encountered by the acoustic wave. The distribution of water 

temperature, salinity, and density along with the depth of the water and bottom structure 

determine the transmission path of sound in the ocean. Acoustic energy can be reflected 



and scattered from both the surface and bottom of the ocean, permitting the possibility of 

more than one transmission path for a single signal. 

The attenuation of acoustic energy in the ocean medium is dependent on its 

frequency. The general result is that high frequencies are attenuated more than low 

frequencies. This causes the ocean to act like a low pass filter, and is responsible for the 

higher levels of lower frequency ambient noise. 

The ocean is not isotropic, implying that the noise is not homogenous in all 

directions, nor at all depths at a given geographical location. The combination of these 

propagation effects adds to the variability of ocean acoustic noise, and makes it extremely 

difficult to predict ocean noise levels. As a result the characteristics of the noise at the 

receiving platform will not only depend on the actual sources but also on the properties of 

the ocean itself along the transmission path of the acoustic energy. 

C.       NOISE CHARACTERISTICS 

The frequency spectrum of ambient noise shown in Figure 2.1 makes it clear that 

ocean noise is colored. This fact complicates the filtering (noise removal) problem since 

the exact color of the noise is uncertain. One solution to dealing with colored noise is to 

apply a pre-whitening transform to the data before attempting to remove the noise. Pre- 

whitening will be discussed further in Chapter VII. 

Ambient ocean noise changes over time and is therefore non-stationary. However 

the variability of the predominant sources (wind speed and shipping density) change 

slowly over the course of hours or longer. Similarly the properties of the ocean itself that 

affect propagation (such as temperature and density) change even more slowly. So for the 



purpose of analyzing data segments on the order of a few seconds, the ambient ocean 

noise can be assumed to be stationary [3]. 

For short periods of time on the order of fractions of a second to a few minutes, 

ambient ocean noise is also known to have a Gaussian amplitude distribution [3]. This 

statistical property of the noise is extremely important in devising a method to remove it 

from the input, because it lends it self to analysis using well known mathematical 

descriptions and models. 

D.       NOISE IN DATA 

The purpose of this section is to display the frequency and amplitude distribution 

characteristics of the noise found in the data sets analyzed in this study. The goal is to 

apply simple tests to verify that the earlier assumptions of Gaussian colored noise are 

reasonable. 

Two samples of the noise were extracted from two different data records, by 

extracting portions of the data prior to the known onset of the signal. In each case 4096 

points of digitized data were extracted, and the maximum amplitude was normalized to 

unity. 

Plots of the power spectrum magnitude for each of the noise samples is shown in 

Figure 2.3. The spectrum of each of these noise samples was plotted using the Matlab® 

power spectral density (psd.m) function [5]. The function parameters used were an FFT 

length of 256 points and a rectangular window, with no overlap of adjacent segments. 

From the figure we can see that neither sample is white and that the color of each is 

different. 
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A histogram of each noise sample was performed to display the amplitude 

distribution of the noise samples. The 4096 points were separated into 32 bins of 28 points 

each. These histograms are shown in Figure 2.4. Both samples appear to have a Gaussian 

distribution. Although more rigorous tests are possible, a further indicator of the Gaussian 

nature of the noise can be displayed from a normal probability plot of the data. This plot 

compares the percentiles of the sample data to the corresponding percentiles of a normal 

distribution. If the sample data is normally distributed the points in the plots should lie 

along a straight line [6]. From the normal probability plots shown in Figure 2.5, we can 

observe that the noise sample data is essentially Gaussian distributed. These simple tests 

allow us to reasonably conclude that the analyzed samples consist of Gaussian distributed 

colored noise. 
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in. WAVELETS AND WAVELET PACKETS 

Wavelet analysis is easiest to understand as an extension of the more familiar 

Fourier analysis. Therefore this chapter first discusses Fourier analysis before introducing 

wavelet analysis. 

A.       FOURIER ANALYSIS 

1.        Fourier Series 

Any periodic function xp{t) can be represented as the infinite summation of sine and 

cosine terms [7]. If the function xp(t) has period T0, its Fourier series expansion can be 

written using a trigonometric form as: 

*,(*) = ao + E Kcos(2™/o0 + bnsin(2nnfot)] , (3.1) 
H = l 

where/, = 1/T0 is the fundamental frequency. The quantity nf0 represents the »ft harmonic 

of the fundamental frequency. The coefficients an and b„ represent the amplitudes of the 

cosine and sine terms at the rP harmonic of the fundamental frequency. The coefficient a0 

represents the mean value of the periodic signal xp(t) over one complete period. [7] 

The Fourier series of Equation 3.1 can be equivalently written in terms of complex 

exponentials. Substituting the exponential forms of the sine and cosine terms into Equation 

3.1 produces the equivalent complex exponential Fourier series given by: 
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*,(0 =  E Cn e W . (3.2) 

The parameters C„ are the complex Fourier coefficients, and represent the complex 

weights of the w* harmonic of the complex basis function exp(/2imfj) [7]. These 

coefficients can be found from the analysis equation given by: 

The complex exponential analysis equation provides the coefficients necessary to exactly 

reconstruct the periodic signal from its Fourier series expansion. A plot of the magnitude 

of C„ versus frequency is called the magnitude spectrum of the signal xp{t). The spectrum 

provides a frequency domain presentation of the signal. 

2.        Fourier Transform 

The Fourier transform of a general continuous function x(t) is defined as: 

X(f)=]x{f)e-W< dt . (3.4) 

X{f) is a continuous function of the frequency variable/. Equation 3.4 is directly 

analogous to Equation 3.3, and in fact can be derived from it by representing x(t) as a 

periodic function with infinite period and taking the limit as T0 goes to infinity [8]. The 
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magnitude spectrum of x(t) is a plot of the magnitude of X(f) versus frequency and is 

continuous. The original signal x(t) can be recovered exactly from X(f) by means of the 

inverse Fourier transform defined as: 

x(f) = ]xif) e W* df . (3.5) 
—oo 

The two functions x(t) and X(f) uniquely define each other and are known as a Fourier 

transform pair. 

3.        Short-Time Fourier Transform 

The Fourier analysis techniques described above provide a frequency domain 

presentation of the signal. These methods can be applied to signals whose frequency 

structure does not vary with time (i.e., stationary signals). When the signal is non- 

stationary, it is desirable to have a description that involves both time and frequency. [7] 

The short time Fourier transform (STFT) can be viewed as an extension of the 

Fourier transform devised to map the signal into the two dimensional time-frequency 

plane. The STFT uses a sliding window function g(t) to segment the signal into small 

uniform blocks of time. Each block is made short enough so that the signal may be 

considered essentially stationary within that segment. The Fourier transform is then 

applied to each time segment to produce the STFT representation given by: 

S(xJ)= J x(t) g\t-x) e-Wdt , (3.6) 
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where S(xJ) displays the evolution of the signals frequency information over time. A plot 

of the squared magnitude of S(xJ) is called a spectrogram, and it provides a measure of 

the signal energy in the time - frequency plane. 

Many different window functions g(t) may be selected in practice, and the choice 

will effect the resulting STFT. Once a window function has been chosen its shape will 

determine the resolution of the time information (At) in the time - frequency plane. As a 

result of the uncertainty principle, the time resolution, and the frequency resolution 

(A/ ) of a given signal are inversely related and their product has a lower bound of 1/4TT 

[7]. This produces a trade-off of time resolution for frequency resolution. Since the 

choice of window will fix Ax (and also thus A/) over the entire signal length, the STFT 

partitions the time - frequency plane into a uniform grid. The drawback of this property is 

that both At and A/ are fixed throughout the analysis of the signal, and can not 

simultaneously provide good time resolution (requiring short windows) and good 

frequency resolution (requiring long windows). 

B.        WAVELET ANALYSIS 

1.        The Continuous Wavelet Transform 

In Fourier analysis the signal is decomposed into a series of different frequency 

sinusoids. Mathematically the STFT can be viewed as an inner product of the signal with 

a two parameter basis function given by g(t-x) exp(-j2nff) [7]. In wavelet analysis the 

signal is also decomposed into a family of two parameter basis functions ¥^(0, (where 

^^(0 = Y[(t-t)/or]), with specific properties. These basis functions are called wavelets. 

16 



One advantage of wavelet analysis is that it allows selection of a wide variety of 

basis functions, as opposed to being restricted to the sinusoids of Fourier analysis. Two 

important characteristics of wavelets are that; 1) the wavelet function Y(Y) be of finite 

duration, and 2) the wavelet function ¥(f) have zero average value (like that of Fourier 

sinusoids). The second characteristic requires that the basis functions oscillate above and 

below zero, and gives rise to the name wavelet or small wave [9]. Although there are 

numerous functions that meet the necessary properties to be classified a wavelet only a 

few classes have thus far been shown to be of general interest in signal processing. The 

Haar, Daubechies, Coiflet, and Symmlet are a few of the more popular classes and are 

shown in Figure 3.1. 
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Figure 3.1: Four wavelets in the time domain. From 
Ref. [10]. 
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The continuous wavelet transform (CWT) of a signal x(f) is defined as: 

C(T,a)=-L J xffft^tlya t .(3 7) 

where W(t) is the analysis wavelet. The parameter x denotes translation in time, and the 

scale factor a denotes dilation in time. The factor Wa normalizes the energy of the 

CWT. The scale factor in wavelet analysis plays an analogous role to inverse frequency in 

Fourier analysis. For example, consider the signal x(t) = cos (t/a), where a denotes the 

scale factor. If a is made larger the function *(/) will oscillate slower in time, and is thus 

expanded or stretched. If a is made smaller x(t) will oscillate faster, and is therefore 

contracted in time. The scale factor a is therefore a method to expand or contract the 

analysis wavelet in the time domain [9]. (Recall that this will have the opposite effect on 

the analysis wavelet in the frequency domain). 

The time resolution and frequency resolution of the CWT is also controlled by the 

scale factor. Low scales (small values of a) correspond to high frequency wavelets and 

provide good time resolution. High scales (large values of a) correspond to low frequency 

wavelets with poor time resolution but good frequency resolution. Figure 3.2 displays the 

Symmlet 8 wavelet for decreasing values of the scale factor a, in both the time and 

frequency domain. It is clear from the figure that, as a decreases, thinner (more localized) 

time domain wavelets and fatter (less localized) frequency domain wavelets are produced. 
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Figure 3.2: Symmlet 8 wavelet in the time and frequency domains as a function of the 
scale parameter a. The scale factor a decreases from the top to bottom plots. After Ref 
[10]. 

So in summary, large values of a mean high scales, low frequencies, good frequency 

resolution, and poor time resolution. 

A second advantage of wavelet analysis is the multiresolution capability it 

provides in the time - frequency plane. A comparison of the time - frequency mapping of 

the STFT and the CWT is shown in Figure 3.3. The STFT produces a uniform grid with a 

constant time resolution and frequency resolution, while the CWT has time resolution and 

frequency resolution that depend on the scale. Note that the CWT time resolution 

improves at higher frequency and the frequency resolution degrades. 
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Figure 3.3: Time - Frequency plane for STFT and CWT. 

Similar to the STFT spectrogram, the CWT scalogram is defined as the squared 

magnitude of C(x,a), and it is a measure of the energy of the signal in the time - scale 

plane [1]. Further insight to the multiresolution capability of the CWT can be gained by 

comparing the influence of signals in the time - scale plane. Figure 3.4 shows a comparison 

of the regions of influence of the spectrogram and scalogram for two different signals. The 

top plots display an impulse function at t = t0 . Note that the scalogram permits a narrow 

time localization of this signal in the low scale portion of the plot. The lower plots display 

the regions of influence for a signal composed of two sines at frequencies/j and/2. 

Note the CWT has better frequency resolution at high scales and poorer frequency 

resolution at low scales. 
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Figure 3.4: Spectrograms and Scalograms for two signals. Top plots display transforms 
for an impulse function. Bottom plots display transforms for two sines. After Ref [1]. 

2.        The Discrete Wavelet Transform 

The discrete wavelet transform (DWT) is defined by restricting the scale and time 

parameters of the CWT to discrete values. The DWT of a discrete signal x(n) is defined 

by: 

N 

cipjb) = E -p m **(—) , 
a 

(3.8) 

where a, b, n are the discrete versions of a, v, and t of Equation 3.7 respectively. The 
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scaling factor is further restricted to be given by: 

a = ao
J J= 0,1  (34?) 

The choice of a0 will govern the accuracy of the signal reconstruction via the inverse 

transform. It is popular to choose a0 = 2, because it provides small reconstruction errors 

and permits for the implementation of fast algorithms [1]. Setting a = 2^ produces octave 

bands called dyadic scales. At each scale as/increases, the analysis wavelet is stretched in 

the time domain, and compressed in the frequency domain by a factor of two. 

(See Figure 3.2). The result being that the DWT output at each dyadic scale J produces 

more precise frequency resolution and less precise time resolution. 

Also note that as J increases the translation term b/21 becomes smaller, and thus b 

must necessarily increase to cover all translations. The result is that the DWT output 

grows in length by a factor of two at every scale. This produces extremely large DWT 

vectors at the higher scales. This computational difficulty can be alleviated by realizing 

that at each successive octave, the DWT output contains information at half the bandwidth 

compared to that of the previous scale, and thus can be sampled at half the rate according 

to Nyquists' rule [10]. This decimation (or subsampling) is accomplished mathematically 

by restricting values of the shift parameter b. Letting b =k-2r where k is an integer, and 

replacing a by 21 yields the decimated DWT given by: 

N 

C&,k2J) = £   -1 x(n) W*(2Jn-k) , (3.10) 
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where J = 0, log2(N)    and   k = I, N • 2^. The term k-21 in the argument of the 

DWT, indicates that C(a,b) is decimated by a factor of two at each successive scale J by 

retaining only the even points. The resulting DWT coefficients form a [ Jx k ] matrix 

where each element represents the similarity between the signal and the analysis wavelet at 

scale J and shift k. It is common practice therefore to rewrite Equation 3.10 explicitly in 

terms of the parameters J and k, leading us to the decimated DWT equation defined as: 

ci± = E v^"7 *(") f\TJn-k) (3.11) 

The Symmlet 8 wavelet is shown at various scales J and shifts k in Figure 3.5. 
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Figure 3.5: Symmlet 8 wavelet at various scales J and positions k. 
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3.        Implementing the Discrete Wavelet Transform 

An efficient way to implement the DWT of Equation 3.11 using filters was 

developed by Mallat [11]. This scheme uses a complementary pair of lowpass (LP) and 

highpass (HP) filters. These filters equally partition the frequency axis and are known as 

quadrature mirror filters (QMF) [12]. Figure 3.6 displays the filter arrangement and the 

frequency response characteristics of the QMF. The output of the HP filter contains the 

details of the signal while the output of the LP filter contains the rough shape of the 

signal. Since each filter output covers only half the original frequency range of the input, 

each can be decimated by a factor of two by retaining only the even points. The combined 

decimated output of the two filters is a data set which comprise the DWT coefficients at 

the first scale. This process is repeated on the LP filter output to produce further 

decomposition of the signal into LPHP and LPLP parts at the next scale. The filtering and 

decimating operations can be continued until the number of samples is reduced to two. At 

each successive iteration (scale) the frequency range of the output is reduced in half by the 

LP filter, and the frequency resolution is improved by the decimation. Figure 3.7 shows 

how a data set of 2* samples can be decomposed to produce a maximum of J levels of 

transform coefficients. Figure 3.8, displays the resulting transformed coefficients in a tree 

structure. Note that movement down the tree relates to lower frequency (higher scale) 

coefficients. 
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Figure 3.6: Schematic representation of quadrature mirror filters. 

The decimated DWT described above will produce an orthogonal decomposition 

of the input signal only if the QMF pairs (i.e., the wavelets) are properly chosen. Such 

filter pairs have to possess specific mathematical properties and exhibit restrictive 

symmetry characteristics.[13] 

Although the DWT filtering operations are linear and time invariant, the 

decimation combined with the filtering results in a time-variant system. Recall, that a time 

variant system implies that shifts in the system input will not produce an equivalent shift in 

the system output [12]. In fact, a shift of even a few samples in the signal's starting point 

can completely change the wavelet decomposition coefficients. This difficulty complicates 

the performance of signal detection, feature extraction, and classification in the wavelet 

transform domain [14,15]. 

25 



LP 

HP 

Y2 LP 

HP 

LP 

HP 

LP 

HP r2 

LPLPLPLP 
J = 5 

LPLPLPHP 
J = 4 

LPLPHP 

J = 3 

LPHP 
J = 2 

HP 
J=l 

Figure 3.7: DWT implementation using filtering and down sampling operations. 
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Figure 3.8: DWT tree structure. 
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A number of proposals have been made to deal with the time - variant nature of the 

wavelet transform. One method processes multiple time shifted versions of the input and 

averages the results (this is called "cycle spinning") [16]. Another method calculates all 

possible circulant shifts of the input signal using a fast algorithm developed by Beylkin 

[17], and averages the results. This has been shown to be equivalent to the undecimated 

DWT [16], and is a non-orthogonal transformation. A third approach is to seek an optimal 

shift of the input signal. In this case the transform becomes shift invariant, and orthogonal, 

but is signal dependent, since the shift is only optimal for the signal under consideration 

[15]. Some of these techniques have been applied to enhance signal denoising, and will be 

discussed again in Chapter VI. 

4.        Signal Reconstruction 

Reconstruction of the original signal from the wavelet coefficients CJk is achieved 

by reversing the quadrature mirror filtering and down sampling operations. The 

reconstruction will be exact however only if the QMFs (i.e., the wavelets) are properly 

chosen and exhibit some restrictive mathematical properties [13]. Such perfect 

reconstruction filters do exist, and are constructed by designing a second pair of QMF's 

that perform the interpolation (upsampling) and filtering operations. These synthesis filters 

entirely compensate for any amplitude, phase, and aliasing distortion of the analysing filter 

QMF's. Together, the analysis and synthesis filters form a two channel QMF bank, shown 

in Figure 3.9. The result is that the two channel QMF bank behaves like a linear, time- 

invariant system. [12] 
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Figure3.9: Two channel quadrature mirror filter. After Ref. [12]. 

C.       WAVELET PACKETS 

Reviewing the wavelet transform decomposition tree of Figure 3.8, it can be seen 

that the successive iterations of the LP part of the data produces a one-sided tree 

structure. The remaining tree branches of the complete binary tree can be produced by 

passing the HP part of the data through the QMF at each step as was done for the LP part. 

This will subdivide the upper half of the frequency range as well as the lower half, thus 

adding branches to both sides of the tree at each filtering iteration. The resulting complete 

binary tree structure is shown in Figure 3.10. 

Each filtering and decimation iteration represents an increase in the transform 

scale and produces a new level of the tree. Since each decimation operation reduces the 

data set by a factor of two, there are a maximum of J levels for a data set of length N= 2/ 

samples. The number of branches will double at each iteration as we move down the tree 

producing 2s branches at the bottom of the tree. 
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Figure 3.10: Complete wavelet packet decomposition tree structure. 

The full binary tree clearly contains much redundant information since the 

information in any parent branch can be equivalently be replaced by the information of its 

two children branches at the next lower level [19]. Any complete level of the tree will 

form a complete orthogonal basis decomposition of the data. Additionally, by replacing a 

given parent branch by its children, a total of JVx J possible decompositions can be 

produced. Any of these presentations will form a complete orthogonal basis and is 

considered a wavelet packet decomposition, consisting of a complete set of N wavelet 

packet coefficients. Figure 3.10 shows the wavelet basis decomposition in dark lines. Note 

that it is merely one of the many possible wavelet packet decompositions. In Figure 3.11 

another decomposition is shown. Its corresponding tile diagram showing the division of 

the time-frequency plane is shown in Figure 3.12. These last two figures depict the 

opposite decomposition from the wavelet transform decomposition (shown in Figure 3.5). 

For this decomposition the time resolution is best at low frequency, and the frequency 

resolution is best at high frequency. 
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Figure 3.11: One possible wavelet packet decomposition. 
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Figure 3.12: Tile diagram corresponding to wavelet packet decomposition of Figure 3.11. 
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IV. COSINE PACKET TRANSFORM 

A.       INTRODUCTION 

The wavelet packet transform (WPT) provides a multi-resolution decomposition of 

the signal by smoothly partitioning the frequency axis [20]. The cosine packet transform 

(CPT) provides a multi-resolution capability by smoothly partitioning the time axis. The 

CPT therefore provides a complementary signal analysis tool to the WPT that is more 

suitable to certain types of signal decompositions. The CPT uses a windowed cosine 

function (the local cosine) as its basis. As a result, it performs extremely well on 

narrowband signals and signals with harmonic content. The WPT performs well on 

broadband pulse type signals. Use of both of these transformations allows for the 

processing of a wide variety of acoustic transients. 

Two of the basic properties of a wavelet were described to be that they have zero 

average value (oscillate) and that they be of finite duration. As such it is not hard to 

imagine a wavelet that is simply a finite duration sinusoid. This is the basic premise of the 

local trigonometric transform. The local trigonometric functions consist of limited 

duration sinusoids multiplied by smooth cutoff functions (windows). These cutoff 

functions permit the smooth partitioning of the time axis, and allow for the construction of 

orthonormal bases on each interval [13,20]. 

The remaining sections of this chapter outlines the CPT and its two building 

blocks, the local cosine transform (LCT) and the discrete cosine transform (DCT). The 
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approach is descriptive, leaving out much of the mathematical details that can be found in 

reference [13]. 

B.        DISCRETE COSINE TRANSFORM IV 

The discrete cosine transform-iv (DCT-IV) is closely related to the Fourier 

transform, and has as its basis function a discrete version of the blocked cosine given by: 

cosl       „      3       »=1,2, JT  , k cm integer. (4.1) 

Figure 4.1 displays the blocked cosine for N= 256, * =2. Note that this limited duration 

cosine has a period of 2N, and that its half integer frequency makes the left edge looks like 

a cosine while the right edge looks like a sine. The DCT-IV transform of a sequence x(n) 

of length iV is defined as: 

xff) = N I £*(„) cos[^>i] , (4.2) 

which is seen to be the inner product of the sequence with the blocked cosine. The DCT- 

IV can be related to the discrete Fourier transform in the following way. If we define a 

new sequence x2N by evenly extending x(n) such that; 

x    = 1      m for n = 1,..., N 
x™     I x(2N-n-\)      far n = N+1,...2N (43) 

32 



Blocked Cosine 

1 

0.5 - 

0 

0.5 

-* 

- 

_1   -                                                        *S 

50 100 150 200 250 

Figure 4.1: Blocked cosine. 

then the discrete Fourier transform Xp(k) of this new sequence x2N is given by: 

*#)  = £   *2A^XP(^^) 2N 
(4.4) 

It can then be shown [21] that the DCT-IV transform of the original sequence is related to 

the DFT of the extended sequence by: 

X(k) = 
N N   ^ 2N 

(4.5) 

Equation 4.5 shows that the DCT of x(ri) can be computed from the DFT of the evenly 

extended sequence by multiplication by an additional matrix. This allows the DCT-IV to 

be computed quickly by taking advantage of speedy algorithms for finding the DFT. 

C.       LOCAL COSINE TRANSFORM 

The blocked cosine of Figure 4.1 uses a rectangular window which causes distinct 

discontinuities at the boundaries and results in undesirable side-lobes in the frequency 
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domain. This problem can be overcome by the application of a smooth cutoff function that 

tappers the edges rapidly but smoothly at each boundary. The resulting function shown in 

Figure 4.2 is called a local cosine because of its localized nature in both the time and 

frequency domain. The smooth window or bell is typically constructed from a class of 

functions of the form r(f) = e *® sin[<j>(0]- As an example, let p(t) = 0, and <J>(/) = 

7r/4[l+sin(7rr)] to form the bell given by: 

wt\ = J sm[7t/4(l+sm7r0]       "1/2 < / < 3/2 
{) " 1 0 otherwise <4'6) 

This bell r(t) is shown in Figure 4.3 in both the time and frequency domain. The bell is 

symmetric about / = 1/2, and smoothly falls to zero at t = -112 and t = 3/2. Smooth 

partitioning of the time axis can be accomplished by overlapping bells, as shown in Figure 

4.4, and the cosines will remain orthogonal despite this overlap [13]. 

In order to perform a local cosine transform of a data set the inner product of the 

data with the local cosine function is computed. However, the DCT-IV transform can be 

used by "folding" the overlapping portions of the bell back into the interval. The folding 

operation can be imparted on to the data, allowing direct application of the DCT-rV 

transform to a properly preprocessed (i.e., folded) data set. To reconstruct the signal the 

DCT-IV operation is applied to the transformed data, the result of which is then 

"unfolded" to produce the smooth overlapping segments. Details of the folding and 

unfolding operations can be found in references [13,22]. 
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Figure 4.2: The local cosine. 
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Figure 4.3: Bell function in time and frequency domain. Plot shows the real part 
of bell spectrum. 
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Overlapping Bells 

D. 

Figure 4.4: Overlapping bells in the time domain. 

THE COSINE PACKET TRANSFORM 

The local cosine permits partitioning of the time axis into arbitrary segments. The 

cosine packet transform provides a time division technique that segments the signal in a 

natural way. The signal is divided at its midpoint into two equal length time blocks. Each 

of these blocks is again divided at their respective midpoints. The splitting continues 

recursively until the blocks contain two samples. The result is a binary tree which looks 

similar to that of the wavelet transform decomposition, however the divisions in this 

binary tree are in time not frequency (scale). The cosine packet decomposition is depicted 

in Figure 4.5. 

Once the signal has been partitioned in time it is transformed into the frequency 

domain by applying the local cosine transform using the fast DCT-IV algorithm. Since 

each time segment is windowed by the local cosine bell functions, orthogonal bases can be 

constructed using any combination of segments that cover the entire interval. Thus, similar 
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Figure 4.5: Cosine packet decomposition tree. 

to the wavelet packet tree structure, any complete level constitutes an orthogonal basis, 

and any parent node can be equivalently replaced by its two children at the next lower 

level. The result is a total of Nlog2(N) possible orthogonal bases, each of which is 

consider a cosine packet. 

The CPT provides a binary tree structure where, at each successively lower time 

level, the time resolution improves and the frequency resolution decays by a factor of two. 

This is the opposite effect obtained from the WPT. The division of the time-frequency 

plane is displayed in the tile diagram of Figure 4.6, which is shown for the case 

corresponding to the highlighted blocks of Figure 4.5. 

The CPT and WPT provide complementary methods for decomposing a given 

signal into the time-frequency plane. Each of these transforms result in a highly redundant 

set of coefficients, allowing for numerous presentations (ie., orthogonal bases) of the 

signal in the corresponding transform domain. Selecting the "best" presentation for a given 

application is the subject of Chapter V. 
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V. SELECTING A BASIS 

A.       INFORMATION COST 

Given the large number of basis presentations available in a typical wavelet or 

cosine packet decomposition, selection of the "best" basis requires a comparison of the 

possible choices. The criterion for comparison will depend on the application and objective 

of the user. The method of noise removal employed in this study depends on the ability to 

transform the data into a relatively few large coefficients representing the signal and 

smaller coefficients representing the noise. For this application the best basis is the one 

that most compactly represents the data by concentrating the signal information into the 

fewest significant coefficients. This concept can be associated with an information cost 

function Q. 

Information cost functions measure the expense (cost) of storing or transmitting a 

given sequence x = {x,} [7]. These functions can be defined in many ways but to be 

useful Q must be additive such that O(0) = 0, and 0(x) = £ 0( {x,} ). This additive 

property simply means that the information cost of the sequence is the sum of the cost of 

its elements. Note also that Q is independent of rearrangement of the sequence elements. 

Two examples of cost functions are; 

1. Count the number of elements in a sequence that exceed a arbitrary threshold. 

2. Compute the I2 norm or energy of the sequence. 
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The first would provide a measure of the cost of storing or transmitting the information 

necessary to reconstruct the original sequence to an arbitrary precision. The second would 

provide a measure of the total energy contained in the sequence. 

Another cost function can be defined as: 

ß(*) = £  Kl2 log(l/|xf), (5.1) 
i 

which is known as the Shannon entropy [23]. This quantity is closely related to notions of 

probabilistic uncertainty and information of a sequence. This is the measure used in this 

thesis, and the following paragraphs summarize some of the properties associated with it. 

In signal processing the information gained from observing a single element x, of a 

signal x = {x,) can be found from the expression: 

/(x) = logO//?,) ,       I = 0  for  p. = 0, (5.2) 

where/? = |x,.|/| |x| \2 is the normalized energy of the i* element of the signal. The quantity/?, 

is a probability distribution function in that, 0< /?,. < 1 and £/?,= 1. The entropy of the 

signal xy is then defined as the expected value (mean) of I(x) over the length of the signal 

and is given by: 

H(x) = £[/(x)] = EPlI(x) = £/>,log(l/A).     (5.3) 

H(x) is the entropy of the signal, and is a measure of the average information content per 

symbol of the sequence x [7] 
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Two properties of H(x) make it extremely useful in comparing two signals. The 

first is that it provides a measure of the concentration of the energy in the signal. For 

example, if two signals contain equal energy but different entropy, the signal with the 

lower entropy has its energy concentrated in fewer elements. The second property is that 

entropy allows the measurement of the rate of decay of a decreasing sequence, with the 

result that faster decaying sequences have lower entropy. [13] 

These properties of H(x) make it ideal for comparing two or more signal 

decompositions for their ability to concentrate the signal information into a relatively few 

coefficients. Note that H(x) does not possess the additive property sinceH(x) *£ #(*,), 

however Q(x) of equation 5.1 is additive, and it is related to H(x) by; 

H(x) = \\x\\2 0(x) + log(||x||2). So that by minimizing the Shannon entropy Q(x\ the entropy 

H(x) is also minimized. 

B.        THE BEST BASIS ALGORITHM 

The Best Basis algorithm developed by Wickerhauser and Coifman provides a 

rapid way to analyze the numerous basis choices according to an information cost criterion 

[24]. In brief, the Best Basis algorithm works as follows: 

1. Calculate and assign an information cost value to the coefficients in each node 

of the binary tree decomposition. 

2. Compare the cost associated with each parent node to the sum of its two 

children nodes and flag the lower of the parent or the children. 
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3. Search the binary tree from top down and assemble the lowest cost flagged 

nodes into a basis. 

Figure 5.1 graphically describes the process. In Figure 5. la the information costs 

have been computed and assigned to each node. Figure 5. lb shows the results of 

comparing parent and children nodes with the lower cost value assigned to that of the 

parent (shown in parentheses). Any parent node with a information cost less than the sum 

of its children nodes is flagged (shown with an asterisk). Figure 5.1c shows the best basis 

resulting from searching the binary tree from top to bottom selecting the highest most 

asterisked nodes. Note the resulting best basis corresponds to the tile diagram of Figure 

4.6. 

Figure 5.1a: Cosine packet decomposition tree with cost values assigned to each node. 
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Figure 5. lb: Bottom up comparison of parent to children with lowest cost assigned to the 
parent node and shown in parentheses. 
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Figure 5.1c: Selection of best basis by choosing topmost asterisked nodes. 
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C.       COMPARISON OF TWO SIGNALS 

This section provides examples of the application of the information cost criterion 

(Shannon entropy) and the Best Basis algorithm. The first signal to be investigated in this 

application is an impulse function shown in Figure 5.2a. This impulse function was 

expanded into both the wavelet packet (using the Symmlet 8 wavelet) and cosine packet 

decompositions. The Best Basis of each transform was chosen among these expansions 

using the Best Basis algorithm, and is displayed as a tree diagram in Figure 5.2b. From 

Figure 5.2b, it can be seen that the best WPT basis consists of the coefficients from the 

second level of its decomposition tree and produces essentially zero for the information 

cost. The best CPT basis requires an ensemble of numerous tree branches to represent the 

impulse signal and has a resulting information cost of approximately 2.23. Figure 5.2c 

displays the associate wavelet packet and cosine packet normalized coefficients arranged 

in magnitude order. From this figure it is clear that the CPT requires many more 

coefficients to represent the impulse. 

The second example signal is a cosine constructed of 2048 points, and shown in 

Figure 5.3a. This signal was likewise decomposed using both the WPT (with the Symmlet 

8 wavelet) and the CPT. The resulting Best Basis tree structures, and sorted coefficients 

are shown in Figures 5.3b, and 5.3c respectively. In this case it is clear that the CPT 

provides the more efficient representation of the signal, as indicated by the lower Shannon 

entropy and the smaller total number of coefficients in the decomposition. 
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These two simple examples show that the Best Basis algorithm is capable of 

selecting the lowest cost basis from among several choices, and that the Shannon entropy 

provides a reasonable measure to compare the efficiency of bases to represent a signal. 

Additionally it points to the strengths and weaknesses of the CPT and WPT on certain 

types of signals. Short duration, broadband pulse transients (like that of the single impulse 

function) are best decomposed using the WPT with short duration wavelets like the 

Symmlet wavelet. Harmonic signals (like the cosine function) are best decomposed using 

the CPT because of its sinusoidal basis function. 

Wavelet selection plays an important role in the results obtained by wavelet 

analysis. Although a number of wavelets were considered, the Symmlet 8 wavelet was 

chosen, and is used in all comparison testing of various techniques on this thesis. The 

Symmlet 8 wavelet was selected based on its robust performance on a wide variety of 

signals types, and its particularly good performance on the short broadband transients 

considered in this study. 

The proceeding chapters have provided an introduction to wavelet analysis by 

discussing three transforms, the DWT, WPT, and CPT. Chapter VI will discuss how these 

transforms can be applied to remove noise from an input signal. 
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Figure 5.2a: Impulse function used to compare WPT and CPT bases. 
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Figure 5.2b: WPT and CPT Best Basis tree diagrams obtained for the impulse 
function of Figure 5.2a. 
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Figure 5.2c: WPT and CPT sorted coefficients obtained for the impulse 
function of Figure 5.2a. 
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Figure 5.3a: Cosine function. 
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Figure 5.3b: WPT and CPT Best Basis tree diagrams for the cosine function 
shown in Figure 5.3a. 
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Figure 5.3c: WPT and CPT sorted coefficients obtained for the cosine 
function shown in Figure 5.3a. 
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VI. WAVELET-BASED DENOISING 

A.       PRINCIPLES 

Decomposition of the data by the DWT, WPT or CPT, results in a matrix of 

coefficients that represents the data in the corresponding transform domain. This matrix 

contains all the information necessary to reconstruct the original input from the 

corresponding component wavelets or local trigonometric functions. The large coefficients 

represent good correlations of the input with the decomposing basis, conversely the small 

coefficients represent poor correlations of the input with the decomposing basis function. 

If the input was reconstructed neglecting some of the smaller coefficients, the 

reconstruction would still maintain the general shape of the original. However, there 

would be inevitable distortion introduced from simply neglecting some of the components 

necessary for the perfect reconstruction. 

The idea in denoising is to judicially choose which coefficients to retain in order to 

preserve the signal while removing those that represent the noise. Two properties of the 

wavelet-based transforms assist in separating the noise coefficients from the rest. The first 

property is that, by properly choosing the basis to match the signal characteristics, the 

resulting decomposition will have a low information cost and will contain relatively few 

significant coefficients. The second property is that, for an input sequence that is a zero 

mean random process with uncorrelated samples (white noise), the transform coefficients 

will remain uncorrelated. If the the input sequence is additionally Gaussian distributed, the 
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coefficients will be Gaussian distributed and independent [23]. In this sense, the 

orthogonal wavelet-based transforms are linear operations which will transform white 

noise into white noise [25]. 

Therefore, the addition of noise to an input sequence will produce noisy 

coefficients, with the noise contributing to all coefficients, but the signal contributing to 

relatively few. In other words, for a suitably chosen basis applied to decompose a noisy 

input, good correlations will be produced with the signal (resulting in a few large 

coefficients), and poor correlations will be produced with the noise (resulting in many 

small coefficients). Observation of these properties leads to the idea of establishing a 

cutoff level (threshold) for those coefficients to be retained. 

The general denoising procedure can thus be summarized as follows; 

1. Decompose the input into a suitable basis using wavelet-based transforms. 

2. Suppress the noisy coefficients by applying a non-linear thresholding method. 

3. Reconstruct the signal using the inverse transform. 

B.       CALCULATING A THRESHOLD VALUE 

1.        Estimating the Noise 

The term threshold refers to a number that is computed as a cutoff value to 

separate the coefficients that will be retained from those that will be suppressed or 

modified. The general methodology for calculating a threshold is based on the statistical 

properties of the transformed coefficients. If the coefficients are viewed as a series of 
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noisy observations y(ri), then the following parameter estimation problem can be 

formulated; 
■v- 

y(n) =fin) + oz{ri) , » = 1,2,... (6.1) 

where fln) is the deterministic function to be estimated, z(n) is an i.i.d. N(0,1) random 

variable, and o is the standard deviation of the noise. The objective is to suppress the noise 

and to recover f(n) with the smallest mean square error. [25] 

Any solution to this problem will have to assume or compute a value of a. The 

standard procedure estimates a as the absolute median deviation E of the coefficients at 

the finest scale divided by 0.6745 [25]. To explain this result, consider a random variable 

X= {*;} which is i.i.d. N(0,o) and define E as [26]; 

E = med\xi - med(X)\ = med\xt\ . (6.2) 

The operator med is the median, and the second equality in equation 6.2 results from the 

definition ofX Next, define qj and q? as two values of Xthat bound the center 50% of the 

distribution X={xi}. Figure 6.1 depicts the situation. From the standard normal distribution 

tables q2 = -qj = 0.6745-a . The absolute value of Xwill have 50% of its values bounded 

by 0< X < q2, so that med\ x,, | = q2 = E = 0.6745-a, or a = £70.6745. 

This method of estimation of the noise standard deviation a is robust because the 

transform coefficients at the finest scale will be essentially due to the noise, and any small 

number of coefficients due to the signal will not grossly effect the median. 
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Figure 6.1: Normal distribution curve indicating center 50%. 

Once the noise level of the transformed data is estimated a threshold value can be 

set. The simplest choice is to set the threshold (7) at some constant multiple of the noise 

standard deviation (e.g., T=m-a, where m typically lies in the interval 2 < m < 5). Four 

methods of computing a threshold value are described below. 

2. The Universal Threshold 

The universal threshold value is based on a statistical theorem from reference [27] 

which states; 

Given Xh X2, ..... XN where the X{ are i.i.d. N(0,o), then as N - °° 

P( max pq< r  ) = 1 (6.3) 

where Tn is given by; 
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Tu = a v/2 ln(iV) . (6.4) 

Equation 6.3 indicates that, for a Gaussian distributed random variable Xin the limit of 

large sample sizes N, no element XK will have a magnitude greater than the quantity Ta. The 

quantity Tu is known as the universal threshold. 

3. Steins Unbiased Risk Estimator (SURE) Threshold 

This method of threshold calculation was proposed by Donoho and Johnstone [2], 

and is based on the work of Stein [28] in the area of multivariate normal distributions. 

This statistical procedure calculates the estimated mean square error (risk) for a range of 

threshold values, and selects that threshold value (Ts) with the resulting minimum risk. 

4. Hybrid Threshold 

The SURE threshold Ts is known to provide inaccurate results in the case of low 

signal energy [2]. In these cases the threshold estimate is biased unfavorably by the 

dominating noise coefficients and produces a faulty threshold value. The hybrid threshold 

(TH) chooses between Ts and Tu based on the signal energy detected. It will select Ts only 

if sufficient evidence exists that the signal is significant. 

5. MiniMax Threshold 

The minimax principle is used to construct optimum estimators in the field of 

statistics. It is designed to select the choice of estimators that minimizes the worst case 

(maximum) errors of the set. Application of this method to wavelet thresholding was 
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proposed by Donoho and Johnstone [25], and expanded on by Bruce and Gao [29], where 

they tabulate the values of minimax thresholds TM as a function of the sample size. 

6.        Comparison 

Table 6.1 was constructed to compare the values of the thresholds achieved for 

different sample sizes of a zero mean white Gaussian noise signal N(0,1). 

Sample size N 1024 2048 32768 

7u 3.723 3.905 4.560 
T ** 
■'s 2.544 2.679 3.433 

TH 3.723 3.905 4.560 

L                       ^M 2.050 2.230 2.950 
Table 6.1: Comparison of threshold values at different sample sizes 
** Ts is found statistically. The value shown is averaged using ten trials. 

Note from Table 6.1 that the universal threshold value (Ju) is the largest, that the SURE 

(7;) and minimax (7^ threshold values are more conservative, and that the hybrid method 

(7H) defaults to the universal value in this low signal energy case. 

C       THRESHOLDING METHODS 

Once a threshold value is established a number of methods exist to apply the 

threshold to suppress or modify the coefficients of the decomposition. Three different 

thresholding methods are considered in this study, hard, soft, and semi-soft. 
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1. Hard Thresholding 

The non-linear hard thresholding function AH is defined as: 
•v- 

AH (C ) =   \CjJc 'C^' " T f6 5^ 

where T is the threshold set by the user [16,29]. In hard thresholding all the transformed 

coefficients with magnitudes that exceed the set threshold value are retained, and all the 

others are set to zero. One difficulty with hard thresholding is that removal of all fine 

detail from the signal may produce fictitious oscillations and create contrast where none 

previously existed [25]. 

2. Soft Thresholding 

The non-linear soft thresholding function As is defined as: 

A*rc>- \si^c^cJ-^      \CJ>-T (66, A  (C/*} "   1 0 IC.J < T    ■ (66) 
J,K> 

In soft thresholding all the transform coefficients with magnitudes smaller than the 

threshold value Tare set to zero, and all the remaining coefficients are reduced in 

magnitude by the amount of the threshold value [25]. The advantage of this method is that 

the results are not as sensitive to the precise value of the threshold T selected, as in the 

"keep or kill strategy of hard thresholding. The disadvantage of this method is that the 

general shape of the signal might be slightly affected since the even the large coefficients 

are modified using this scheme. 
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3.        Semi-Soft Thresholding 

Semi-soft thresholding is a compromise between hard and soft thresholding 

methods. It was introduced by Bruce and Gao [29]. It uses two threshold values 7, and T2 

where T2 > Tu and is defined as: 

CJ* \CJ = T2 

A- «y - j  siMcj r^l:r')      r,< icy <r2 

0 iqj * r, 

(6.7) 

Coefficients with magnitudes between 7, and T2 are reduced, those with magnitudes above 

T2 are retained, and the rest are set to zero. Note that for Tx = T2, this is hard 

thresholding. 

D.       COLORED NOISE 

The calculation of the threshold value by the methods prescribed above is 

restricted to the case of signals in white Gaussian noise. Extension to colored noise 

environments was proposed by Johnstone and Silverman [30]. This method treats each 

scale of the transformed data as a Gaussian distribution. A threshold value is then 

calculated and applied to each scale. An alternate approach is to apply a pre-whitening 

transform to the data prior to its decomposition, which alleviates the need to calculate a 

separate threshold for every scale. The use of a pre-whitening transform was found to 
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produce better results than that of applying level wise thresholding on the data analyzed in 

this study. 

The general denoising procedure chosen in this work can thus be summarized as 

follows; 

1. Apply a pre-whitening transform to the input data. 

2. Decompose the input into a suitable basis using wavelet-based transforms. 

3. Suppress the noisy coefficients by applying a non-linear thresholding method. 

4. Reconstruct the signal using the inverse transform. 

E.        A TEST CASE 

1.        Synthetic Data 

fii this section four synthetic signals are studied to understand the different 

thresholding methods, and assist in comparing results from one attempt to the next. These 

signals were chosen to capture some of the essential features of the real world acoustic 

transients of primary interest to us. The four test signals are called Decay, Bumps, 

Doppler, andHeavisine, and are shown in Figure 6.2. Decay is a decaying exponential, 

Bumps is a series of sharp peaks, Doppler is a down chirped sinusoid, and Heavisine is a 

distorted sinusoid with a discontinuity. All signals consist of 2048 data points. (The signals 

Bumps, Doppler, and Heavisine were created using the Wavelab .700 makesignal.m 

function [10]). 
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Figure 6.2: Four synthetic signals. From Ref. [10]. 

2.        Comparison of Methods 

The Wavelab.700 toolbox [10] was used to make an initial comparison of the 

performance of wavelets, wavelet packets and cosine packets on the four synthetic signals. 

The benchmark used to compare the cleaned signals is the Mean Squared Error (MSE), 

defined as: 

N 

MSE = ±-Y,   \.m-y{n)f n = 1,2,...,N, (6.8) 

where x(n) is the noise free original andj(") is the denoised output, and N is the length of 

the data. 
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a. Wavelet Transform 

The first comparison was made by decomposing noisy versions of the 

synthetic signals into the wavelet basis by applying the discrete wavelet transform using 

the Symmlet 8 wavelet. The four synthetic signals were subjected to increasing amounts of 

white noise spanning the range of SNR's from +10 dB to -10 dB. The denoising was 

accomplished using the four different threshold values (Tu, Ts, TH, T^) and the hard and 

soft thresholding methods. The coefficients at the two highest scales (lowest levels) of the 

decomposition were exempted from the thresholding, based on the assumption that these 

coefficients primarily represent the signal. The resulting plots oiMSE vs SNR are shown 

in Figures 6.3 and 6.4. Each plotted point represents the average MSE value obtained 

using ten trials at a given SNR level. 

Figure 6.3 displays the application of the hard thresholding method. The 

universal threshold Tu produced the lowest MSE for all signals except at the low SNR 

values of the Bumps signal.   Figure 6.4 displays the application of the soft threshold 

method and shows the minimax and SURE threshold values performing best on all except 

the Heavisine signal. These results suggest that the hard thresholding method performs 

better when used along with the larger threshold value Tu, and that the soft thresholding 

methods perform best using the more conservative threshold values of Ts and TM . Also 

note that the four thresholding values performed nearly equally well when the soft 

thresholding method was applied, however the hard thresholding method shows more 

divergence between the choice of threshold values. This suggests that the selection of 
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Figure 6.3: Wavelet transform with hard thresholding. SNR in dB. 
** Tv : universal, oo Ts: Sure, ++ TM: minimax, xx TH : hybrid. 

threshold value is more critical when employing the "keep or kill" strategy of hard 

thresholding. 

b. Wavelet Packet and Cosine Packet Transforms 

The second comparison was made by decomposing noisy versions of the 

synthetic signals using the WPT (using the Symmlet 8 wavelet) and the CPT. Each of 

these decompositions were denoised by application of the hard, soft, and semi-soft 

thresholding methods. The Tu threshold value was used for both the hard and soft 

thresholding, and the semi-soft thresholding used T2=6.9, and r, = 2.8 as tabulated in 

reference [29]. The basis tree depth was limitted to eight levels, since experimentation 
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Figure 6.4: Wavelet transform with soft thresholding. SNR in dB. 
** Tv: universal, oo Ts: Sure, ++ TM: minimax, xx TH : hybrid. 

demonstrated that further decomposition did not improve the denoising.The resulting plots 

of MSE vs SNR are shown in Figures 6.5 and 6.6. Each plotted point represents the 

average MSE value obtained using ten trials at a given SNR level. 

Overall the wavelet packet transform performed as well, or better than that 

of the wavelet transform. Such results are to be expected since the wavelet decomposition 

is a subset of the wavelet packet decomposition (wavelets are but one possible path 

through the wavelet packet binary tree). The cosine packet methods however also 
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Figure 6.5: WPT for hard, soft, semi-soft thresholding. SNR in dB. 
- Hard, oo Soft, ** Semi-Soft thresholding. 

10 

performed well on the oscillating signals (Decay, Doppler, and Heaviside), and performed 

more poorly on the spiky Bumps signal. Also clear from the packet transform plots is that 

the wavelet packets using semi-soft threshold was consistently the best or nearly the best 

of all the methods, on all four signals. While the cosine packets with semi-soft threshold 

performed the best of the cosine packet methods on all four signals. 
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Figure 6.6: CPT for hard, soft, and semi-soft thresholding methods. SNR in dB. 
— Hard, oo Soft, ** Semi-Soft thresholding. 

c Conclusions 

Although the results could be interpreted a number of ways, a few general 

comment can be made. First, the packet transforms as a group perform better than the 

wavelet transform on the signals considered here. Second, the CPT performs best on 

oscillating (harmonic like) signals, while the WPT denoises spiky discontinuous signals 
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best. Finally, all thresholding denoising schemes lead to similar results as the SNR level 

increases. 

Figure 6.7 shows the results obtained when denoising the signal Decay (at 

three different values of SNR), using two different thresholding schemes. The second 

column of this figure displays the results obtained when denoising with wavelet transform, 

with hard thresholding with the threshold value Tu. This case represents the best of the 

wavelet transform methods. The third column in Figure 6.7 displays denoising results 

obtained using the CPT, and semi-soft thresholding method. This case represents the best 

of the CPT methods. The CPT method provides a cleaner visual result and lower MSE. 

Such results are to be expected as the local cosine function is better matched to the Decay 

signal than the Symmlet 8 function is. 

Figure 6.8 compares the results of hard, soft, and semi-soft thresholding 

methods (using the WPT) on the signal Decay at SNR= -2 dB. This figure displays the 

divergence between visual and numerical quality of the denoising. Although semi-soft 

thresholding achieves the lowest MSE it provides the worst visual reproduction of the 

clean signal. (Note that the slightly "step like" appearance of the plots is an anomaly 

introduced as the result of the graphical reproduction.) 
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Figure 6.7: Denoising comparison of CPT using semi-soft thresholding and wavelet 
transform using hard thresholding. 
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F.        TRANSLATION INVARIANT DENOISING 

1.        Cycle Spinning 

Wavelet denoising with the orthonormal DWT sometimes results in the production 

of artifacts, which occur due to the unfortunate alignment of a signal discontinuity with 

that of the decomposing wavelet at a given shift and scale. These artifacts take the form of 

spurious oscillations in the neighborhood of the signal discontinuity [16]. An example of 

this behavior can be seen in the bottom center plot of Figure 6.7, where a short rapid 

oscillation was produced in the reconstruction of the denoised signal. 

These artifacts are attributed to the lack of translation invariance of the DWT, 

since a signal with similar features but slightly different alignment in time or scale might 

exhibit fewer artifacts [16]. One possible solution is to manually shift the signal data to 

achieve a more favorable alignment. However, shifting the signal could improve the 

behavior near one discontinuity, while worsening the behavior near another signal 

discontinuity. Thus, an arbitrary shift of the signal data will not guarantee a consistently 

better result. 

Coifrnan and Donoho [16], proposed a more formal procedure to suppress the 

artifacts called cycle spinning. This method "averages out" the translation dependence, by 

performing the denoising over a range of shifts of the input data and averaging the results. 

The technique is to shift the data, denoise, and then unshift the denoised data. Repeating 

this process for a range of shifts and then averaging the results has been shown to produce 

a reconstruction with significantly reduced artifacts. [16] 
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The cycle spinning technique is not limitted to use with the DWT, and can also be 

applied to the CPT and WPT as well. In fact, application of this method has been shown 

to reduce the "clicking" effect sometimes found at the data segmentation points of the 

CPT, and to reduce the isolated spikes sometimes produced from wavelet packet 

denoising.fi 6] 

Figure 6.9 was produced using WaveLab .700 [10], and shows the improvement 

that can be obtained by using the cycle spinning technique. The top two plots display the 

signal Decay and its noisy version, respectfully. The third plot from the top displays of the 

results of denoising with the WPT using the Symmlet 8 wavelet. The bottom plot displays 

the result of denoising by averaging the results of eight shifted versions of the input data 

(i.e., eight spins) using the WPT and the Symmlet 8 wavelet. The cycle spinning method 

results in an improvement in bothMSE and visual appearance. 

2.        Translation Invariant Discrete Wavelet Transform 

For a data set of size N, computation of the DWT for all circular shifts can be 

computed in order N-log2(N) time, and it is equivalent to computing the undecimated, non- 

orthogonal, discrete wavelet transform [18]. Denoising with this translation invariant 

discrete wavelet transform (TI-DWT) can provide improve performance over the 

orthogonal DWT, since it provides the averaging benefits described for cycle spinning. 

The denoising procedure is to decompose the signal into the TI-DWT basis using 

the fast algorithm of reference [17], apply the same thresholding methods described earlier 

and then perform the inverse transform. Figure 6.10 was produced using Wavelab .700 
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[10], and shows the results of applying this technique compared to that of the DWT. The 

top two plots of the figure show the signal Decay and its noisy version. The third plot is 

the denoised output from the DWT (using the symmlet 8 wavelet) with hard thresholding, 

and the universal threshold value. The bottom plot shows the result of denoising with the 

TI-DWT using the same wavelet and thresholding parameters. The TI-DWT method 

thoroughly removes the artifact found in the DWT output, but does not provide an 

improvement in the MSE in this case. 

During the application of these two techniques to the data in this study, we found 

that the TI-DWT generally provided better denoising results than that of the wavelet 

transform. However, use of the wavelet and cosine packet transforms for denoising 

performed better than both the TI-DWT and the wavelet transform. Additionally, both the 

CPT and WPT methods benefited from using the cycle spinning procedure with a small 

number of spins (e.g., eight spins). 
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Figure 6.9: Comparison of Denoising with the WPT and WPT using Cycle Spinning. 
Top plot is original signal. Second plot is the noisy signal. Third plot is result of 
denoising with WPT (using Symmlet 8 wavelet). Fourth plot is the result of denoising 
using cycle spinning with eight spins. 
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Figure 6.10: Comparison of denoising with DWT and TI-DWT. 
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VH. DENOISING ALGORITHM AND RESULTS 

Chapter VI described and contrasted a number of wavelet based thresholding 
-4- 

methods. This chapter will apply and extend those concepts to the removal of noise from 

underwater acoustic transients, and show the results achieved. Section A describes the 

details of the denoising procedure. Section B displays some results of applying the 

denoising procedure to real underwater data. Section C compares the performance of 

wavelet thresholding to that of a short-time Wiener filter. 

A.       DENOISING ALGORITHM 

This section provides an algorithm for denoising acoustic signals by implementing 

the four step general denoising procedure outlined in Chapter VI. 

1. Pre-whitening 

Applying a pre-whitening transform to the input data permits extension of the 

thresholding rules to colored noise environments. The pre-whitening transformation is 

accomplished using the technique of Frack [31]. The general approach is to form an 

autoregressive (AR) model based on a sample of the input colored noise. Then the noisy 

data is filtered with a "whitening" filter that is formed from the inverse of the noise AR 

model. The output of the filter will be a colored version of the signal in additive white 

noise. The details of the AR model and whitening filter are given below. 

a.        Autoregressive Modeling 

Any stationary random processes can be modeled as the output of a linear 

time-invariant filter that is subject to a white noise input [32]. The filter in an AR model is 
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an infinite impulse response (IIR) filter with a transfer function given by: 

where 

M& = aQ + axz'
x + a2z'2 + + a z'p.       (7.2) 

The coefficients a, of this all pole filter can be found by solving a system of linear 

equations relating the q 's to the correlation matrix of the random process to be modeled. 

The AR model parameters can also be derived directly from the data without the need to 

compute the correlation matrix or solve the system of linear equations. One clever 

technique for computing the parameters recursively is known as the Burg Method [32]. 

This is the method used by Frack [31], and has the advantage of guaranteeing a stable 

filter by ensuring that all poles of the model are kept within the unit circle. One 

disadvantage of the Burg Method is that it requires data lengths greater than a few 

thousand points to produce good estimates [31]. 

b.        Prediction Error Filter 

A linear predictor is designed to estimate the current or future values of a 

random sequence based on knowledge of the past sequence values. The output of a 

prediction error filter (PEF) is taken as the difference between the estimate of the linear 

predictor and the actual sequence, as shown in Figure 7.1. 
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Figure 7.1: Prediction Error Filter. 

The transfer function for a PEF can be represented by a finite impulse response 

filter (FIR) of the form: 

H
Pi

z) = ao + aiz~l +a2z'2 + + a z'p. 
p 

(7.3) 

If the order/? of the PEF is chosen sufficiently large, the output error terms e(n) will be 

orthogonal and of constant variance, and therefore e(n) will be white noise [32]. 

To construct the pre-whitening filter, the transfer function of the PEF is 

selected to be the inverse of the AR process that models the input colored noise. The 

output of the PEF will be a colored version of the signal in additive white noise. Figure 

7.2. displays the process. 

Selecting the model order to use for the AR model and thus also the pre- 

whitening filter is a difficult problem, since theorectical criteria are known to provide 

inaccurate results when applied to data that is not truley generated from and AR process. 
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Figure 7.2: Pre-whitening Filter. 

A number of different estimators are available to calculate the model order, and they are 

based on locating the minimum in a quantity related to the prediction error variance. One 

such estimator is Akaike's information-theortic criteria (AIQ, and is described by the 

equation: 

AIC(P)=N-ln(op
2) + 2P, (7.4) 

where N is the length of the data, P is the model order and a/ is the prediction error 

variance obtained at that order. The AIC provides a distinct minimum at the optimum 

model order P. This is the criteria chosen for deciding the AR model order in this study. 

[32] 

2.        Normalizing the Noise 

Recall that the threshold values are computed as a multiple of the estimated noise 

standard deviation o. Once a has been estimated, the input data can be scaled such that the 

noise appears at unit variance. This permits the threshold value to be computed 

independent of the data. Scaling of the input to produce N(0,1) noise is accomplished by 

using the normnoise.m function of the Wavelab.700 toolbox [10] and is required pre- 

processing for use of all denoising tools. 
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3. Segmenting the Data 

Segmenting the data into blocks prior to processing serves two purposes. First, it 

provides a method to handle extremely long data records, and allows for the technique to 

be extended to the case of a continuous data stream. Second, it provides a means to adjust 

the parameters of the algorithm to account for changes in the data stream over time. For 

example, the noise estimates and the selection of the best basis can be "updated" for each 

segment. 

Each data record analyzed in this study was segmented into dyadic length blocks 

of 2048 (2n) points. Dyadic length blocks were chosen simply to avoid the need to zero 

pad the data prior to wavelet-based dyadic decomposition. Longer or shorter lengths 

could be used with equal results, however lengths of less than a few hundred points were 

found to perform poorly. This is attributed to the statistical nature of the threshold 

calculations and their assumption of large sample sizes. In addition, at a typical acoustic 

data sampling rate of 8 kHz, 2048 points represents approximately 0.25 seconds of 

acoustic data. This is a sufficiently short interval to assume the ocean noise to be 

stationary. 

4. Signal Decomposition 

The choice of a wavelet basis plays an important role in the results obtained by the 

analysis. Choosing the proper wavelet (i.e., the basis best matched to the signal 

characteristics) can have drastic effects on the overall performance of the denoising 

technique. Unfortunately, there is no single best wavelet basis for all signals nor is there a 
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perfect selection criterion other than direct comparison of results. Current research is still 

investigating how to best choose a mother wavelet from various libraries of basis functions 

[20,33]. 

The underwater transient data to be studied here can be separated into two broad 

classes. Class I data which contains man-made short duration broadband pulse transients, 

and class II data which contains primarily harmonic signals produced by biologies. Based 

on the notion that class I signals can be efficiently decomposed by the WPT (using the 

Symmlet 8 wavelet) and that class II signals can be efficiently decomposed by the CPT, 

each block of segmented data is decomposed by both the CPT and WPT. The best basis of 

each of these sets of transformed data is determined via the Best Basis algorithm. The 

Shannon entropy of the two resulting bases is compared, and the basis with the lowest 

entropy is selected as the decomposition for that segment. 

5. Thresholding 

The algorithm permits selection of either of the three threshold methods (soft, 

hard, or semi-soft). It also permits use of any of the threshold value calculations (Tu, Ts, 

TM, TH). However, in the cases studied here, the combinations of soft thresholding at value 

TM, or hard thresholding with the threshold value Tu proved to be the most effective. 

6. Reconstruction 

Each cleaned segment is individually transformed back to the signal domain and 

the segments are weighted and overlapped to allow for smooth reconstruction. The 2048 

point segments are overlapped 256 points or 12.5% of the total block length. Figure 7.3 
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displays the segmentation and reconstruction process. Figure 7.4 is a block diagram of the 

denoising algorithm. 

DATA RECORD 

Block Segment 

2048 pts. 

« 

256 pts. Ü      n 

Overlapped Segments 

Figure 7.3: Data segments and reconstruction. 

B. RESULTS 

Figures 7.5 through 7.10 display the results of the denoising procedure applied to 

three acoustic transients. The parameters of the algorithm were the same in each case, 

using block segment lengths of 2048 points, and a decomposition depth of eight levels 

(i.e., J= 0,1,...,8). All data records were normalized to have unit maximum amplitude and 

the time axis represents the data sample number. Each of the spectrogram frequency axis 

display the frequency normalized to the sampling rate. No pre-whitening transform was 
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Figure 7.4: Denoising algorithm block diagram. 

applied to the input data since representative noise-only samples were not available for 

these signals. 

Figures 7.5 and 7.6 display the results of denoising a sperm whale echo using soft 

thresholding and the minimax threshold value TM. Figure 7.5 shows the time series, and 

Figure 7.6 shows the spectrograms, of both the noisy and the cleaned sperm whale echo. 

The whale echo is composed primarily of spiky impulsive like claps in a modest amount of 

ocean noise and it is shown with additional white noise added. The two representations of 

the denoised output show the removal of a large amount of the input noise and good 

quality reproduction of the whale echo. The aural quality of the cleaned whale echo is also 

much improved. The background noise was virtually eliminated and each echo clap can be 

heard clearly and crisply. 

Figure 7.7 and 7.8 display the results of denoising a gray whale recording using 

soft thresholding at the minimax threshold value TM. The gray whale call is primarily a 
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series of modulated harmonic tones, in a relatively loud ocean noise background. The 

recording captures a series five calls. Figure 7.7 shows the time series, and Figure 7.8 

shows the spectrograms, of the both the noisy and the cleaned gray whale calls. The 

figures show that a significant reduction in the noise was achieved while retaining the the 

prominent harmonic features of the original whale calls. The aural quality of the cleaned 

signal is virtually without background noise, however some distortion is audible. The 

audio distortion takes the form of a short, but noticible smearing, during the beginning of 

each of the one of the three separate calls. 

Figure 7.9 and 7.10 display the results of denoising a humpback whale song using 

soft thresholding at the minimax threshold value TM, and applying eight cycle spins of the 

input data. The bottom plot of Figure 7.9 displays the difference between the noisy and 

clean versions of the signal, and shows that primarily noise was extracted from the original 

input. The humpback whale song consists of four separate short tones, in a modest 

amount of background noise. Both the time series and the spectrograms display the 

prominent features of the song which are preserved by the denoising step. The aural 

quality of the cleaned song is also good. The only distortion audible in the cleaned version 

of the song is in the remaining background noise, which was not uniformly eliminated, and 

has a slightly digitized sound. A small number of cycle spins of the data was found to 

reduce this audible effect, and it is possible that more "spins" would have enhanced the 

sound quality further. 
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On each of the above biologic transients extremely positive results were achieved 

even though the pre-whitening filter was not used. This success is attributed to the 

relatively high SNR, and the "nearly white" nature of the noise. Spectrogram information 

indicates that the noise contained in the humpback and sperm whale data is wideband, 

while the noise in the gray whale data is more lowpass in nature. Applying the denoising 

algorithm to the gray whale data leads to underestimation of the noise level in the signal 

region. 

The hard thresholding method using the universal threshold value Tu was also 

attempted on the above data sets, and produced similarly good results. However, hard 

thresholding at the higher Tv typically displayed slightly more appealling visual plots (i.e., 

cleaner appearing time series) but slightly worse audio results (i.e., slightly more sound 

distortion) on these signals. 
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Figure 7.5: Time series of the results of denoising a sperm whale echo. 
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Figure 7.6: Spectrograms of the results of denoising a sperm whale echo. 
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Figure 7.7: Times series results of denoising a gray whale call. 
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Figure 7.8: Spectrograms of the results of denoising a gray whale call. 
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Figure 7.9: Time series results of denoising a humpback whale song. 
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Figure 7.10: Spectrograms of the results of denoislng a humpback whale song. 
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C.        COMPARISON WITH SHORT-TIME WIENER FILTER 

1.        Wiener Filtering 

The optimum linear filter for estimating a deterministic sequence s(n) from a noisy 

input data set x(ri) is a Wiener filter. It is based on the statistical characteristics of the 

input and produces a minimum mean square error output. Although the Wiener filter is 

usually used for stationary signals, Frack [31] developed a short-time Wiener filter 

procedure which filters the data after segmenting it into short-time (essentially) stationary 

blocks. The problem solved by the Wiener filter is the estimation problem given by: 

x(ri) = s(ri) + n(n), (7.5) 

where n(n) represents the noise portion of the input. The Wiener solution is found by 

estimating the input data correlation function Rx(l) and the noise correlation function R„{t), 

and solving the Wiener-Hopf linear equations given by: 

£ RJn-l) h(n) = RJl) = RJß - Rß), (7.6) 
n 

for the unknown filter weigths h(n). In the approach taken by Frack [31], the filter weights 

were computed for each segment of the input data. So, Rj^l) is computed on each 

segment, R„(l) is computed from noise only data, and RJ^l) is found using the relation 

Ra(l) = Rs(l) = R£l) - R„(t), since signal and noise are assumed uncorrelated. The result is 

a set of optimum filter weights for each segment of the input. 
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2.        Comparison 

Figure 7.11 displays the signal used for comparison of the short-time Wiener filter 

and the wavelet-based thresholding. It is a short duration synthetic acoustic transient that 

is emersed in successively greater amounts of Gaussian colored noise. The signal consists 

of three short duration transient "clicks", one large click followed by two smaller ones. 

The entire signal duration is approximately four seconds, and has been digitized into 

16384 (214) samples. The signal was constructed of three separate decaying exponentials 

Sb S2, and S3, given by: 

S, = »11(27*! 14) exp(-*,/200)        *, = 1,2,...,256 , (7.7) 

52 = V2 sin(2?z*2 /4) exp(-£2/200)    k2 = 1,2,...,200 , (7.8) 

53 = 1/3 sin(27*314) exp(-^/200)     k3 = 1,2,...,128 , (7.9) 

where St and S2 were separated by 2000 points, S2 and S3 were separated by 1000 points 

respectfully. The data was processed identically for both the Wiener filter and the wavelet- 

based denoising methods. The pre-whitening transform was applied using an AR model of 

order 10, as determined by the AIC criteria (defined by Equation 7.4), and was based on a 

noise-only sample of 4096 data points.The data was segmented in to blocks of 2048 

points. {Note that the Wiener filter also requires relatively large block sizes on the order 

of 1000 or more points to provide good estimates of the correlation matrices.} 

A Wiener filter length of 40 was chosen based on the criteria presented in 

reference [31]. The Wavelet denoising was performed using hard thresholding at the 

universal threshold value, and employing eight levels of dyadic decomposition. 
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Adjacent to each signal plot in Figure 7.11 are the denoising results obtained by 

the Wiener filter and the wavelet-based thresholding. In each of these relatively high SNR 

cases both methods recover the signal without difficulty, and both methods reproduce all 

three clicks. The MSE (shown above each plot) of the two methods was comparable, with 

the Wiener filter performing slightly better. However, the wavelet thresholding method 

produced a much cleaner appearing and less noisy sounding output, completely removing 

the noise between signal clicks. 

Figure 7.12 shows the relative performance of the two methods at lower SNRs. 

Note here that both methods fail to detect the smaller and later two clicks. However, the 

wavelet method out-performs the Wiener filter both in terms of MSE and visual 

appearance of the time series, and continues to extract the largest of the three clicks down 

to -15 dB SNR, whereas the Wiener filter loses the signal entirely. 

Soft thresholding at the lower Tu value was also attempted, and resulted in poorer, 

low SNR performance by the wavelet method on this data. A variety of Wiener filter 

lengths were also tried (orders as high as 90, and as low as 30) with similar results in each 

case. Additionally, other parameters were varied, including the noise AR model order, and 

data segment lengths, and were found to produced similar results. 

Finally, similar findings were also obtained using other sets of ocean acoustic data, 

and further results are presented in reference [34]. 
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Figure 7.11: Comparison of Wiener filter and wavelet-based thresholding at high SNRs. 
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Figure 7.12: Comparison of Wiener filter and wavelet-based thresholding at low SNRs. 
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vm. CONCLUSIONS 

In this thesis we have compared a number of wavelet-based denoising techniques 

and applied them to the problem of noise removal from ocean acoustic transients. The 

denoising procedure outlined made use of both the wavelet packet and cosine packet 

transforms, the thresholding techniques of Donoho et.al. [2], and the Best Basis algorithm 

of Wickerhauser and Coifrnan [24]. This method was shown to perform well on both 

broadband transient and narrowband harmonic signals even in low SNR colored noise 

environments. The implemented scheme provides a viable denoising procedure for a wide 

variety of acoustic transients. 

In particular, the contrast of wavelet-based denoising schemes demonstrated the 

superiority of wavelet packet decompositions to that of the wavelet transform, the robust 

nature of the Symmlet 8 wavelet basis, and the general applicability of the universal 

threshold value. Additionally, cycle spinning of the input data was shown to improve the 

denoising performance as well as provide a means to combat the translation invariance of 

the wavelet-based transformations. The review of basis selection demonstrated that the 

use of the Shannon entropy criterion provides a accurate measure by which to compare 

the efficiency of two bases, and that the basis search (typically the most time consuming 

portion of the algorithm) need not be exhaustive and can be truncated to some reasonable 

number of levels (e.g., eight levels for a data set of 211 samples). Finally, the performance 

of the denoising algorithm to a number of diverse signals was presented, and a comparison 

with a short-time Wiener filter was conducted. 
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The wavelet-based denoising technique compared favorably to the short-time 

Wiener filter. At high SNRs the two methods produced similar results, with the Wiener 

filter providing a slightly better MSE, and the wavelet denoising providing a cleaner visual 

time series and less noisy aural output. At lower SNRs, the wavelet denoising out- 

performed the Wiener filter in terms of MSE, visual appearance, and in its ability to extract 

the largest signal peak at a lower SNR. 

The ideas and results presented in this thesis provide a number of opportunities for 

future research and investigation. In the remaining paragraphs a few topics that could 

expand this work are suggested. 

Wavelet-based threshold denoising can be viewed as an adaptive compression 

scheme that selects the number of reconstruction coefficients to be retained based on an 

estimate of the input noise level. In this view of the process, threshold denoising is a 

natural precursor to signal classification since in principal, it reduces the complexity of the 

signal by eliminating only non-interesting features (i.e., the noise). The design of such 

classifier, that operates in the wavelet domain is a possible area of future study. An 

interesting consequence of such a classifer is that signal features could be extracted and 

identified in the wavelet transform domain, precluding the need for aural reconstruction of 

the signal. 

A second possible area of study would be to incorporate additional basis sets into 

the procedure to complement the local cosine and Symmlet 8 bases. For example, an 

interesting choice would be a wavelet basis composed of decaying sinusoids. Futhermore, 
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an entire "library" of basis sets could be applied to both the denoising and classification of 

acoustic transients, similar to the methods described by Saito [20]. 

The cycle spinning technique is a computational burden since it requires multiple 

applications of the algorithm to be conducted and then the results averaged. Another 

approach might be to calculate all possible circular shifts of the input data in the wavelet 

packet best basis, using a version of the fast algorithm of Beylkin [17]. This would 

essentially be the same process used to perform the undecimated discrete wavelet 

transform with the exception that the decomposition would occur according to the 

selected wavelet packet best basis. This scheme would produce a fast translation invariant, 

wavelet packet decomposition, and should improve the denoising performance. 
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