
AFIT/DS/ENG/97-04

Extracting Functionally Equivalent

Object-Oriented Designs from

Legacy Imperative Code

DISSERTATION

Ricky E. Sward
Major, USAF

AFIT/DS/ENG/97-04

19970925 045

Approved for public release; distribution unlimited

DIn=C QUALITY InXBP(ID 5

The views expressed in this dissertation are those of the author and do not reflect the

official policy or position of the Department of Defense or the U. S. Government.

AFIT/DS/ENG/97-04

Extracting Functionally Equivalent

Object-Oriented Designs from

Legacy Imperative Code

DISSERTATION

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy in Computer Engineering

Ricky E. Sward, B.S.C.S, M.S.C.S, M.S.I.S.

Major, USAF

September, 1997

Approved for public release; distribution unlimited

AFIT/DS/ENG/97-04

Extracting Functionally Equivalent

Object-Oriented Designs from

Imperative Legacy Code

Ricky Eugene Sward, B.S.C.S, M.S.C.S., M.S.I.S.

Major, USAF

Approved:

._... 'ry 2 (~, .. 7

Dr Thomas C. Hartrum, Chairman

Dr Robert P. Graham, J'

Dr Aihua W. Wood

Dean's Representative /

Dr Robert A. Calico, Jr.
Dean, Graduate School of Engineering

Acknowledgements

Thank you, Renee, for the dedication and devotion you have shown me during this process.

I love you. I could not have done this work without your support on the home front. Thank

you, Amanda, for the fun and games you seem to come up with endlessly. I can always

count on you for a break. You wan'na play "cups"? Thank you, Mom and Dad, for always

being there for me. Thanks for your inspiration and support. Thank you, Dr Hartrum, for

your guidance and levity. We do make a good team. The things I forget, you remember

and vice versa. Thank you, Paul, for your guidance on my "big picture". That sure is a

big pencil. Thank you, Robert, for all the "focus checks". I think we found the perfect way

to spoil a trip to the beach. Thank you, Dr Wood, for your guidance and encouragement.

I appreciate it. Thanks also goes to the KBSE research group: Dr Hartrum, Paul Bailor,

Mark Gerken, Frank Young, Scott DeLoach, Robert Graham, Jerry Nutter, and Tom

Schorsch. Thanks for all the bullets. It's always best to be told you're an idiot by your

best friends. Thanks, Jerry, for being a bud. Best of luck with everything. Did you ever

find your LATEX book? I have an extra one in my car if you need it. To the guys in Room

231, good luck and keep that popcorn going! Thanks, Jimbo, for the rocket diversions.

Sure hope the Big Kahuna fits in my van. Thanks, Cookie, for the trip to Salt Lake City.

Squatters was great, but I could have done without Antelope Island. If I've told you once,

I've told you a thousand times.. .stop exaggerating. Finally, I'd like to thank and praise

the Lord Jesus Christ for guiding me through these years. Thank you for making me part

of your plan and making my way perfect!

Ricky E. Sward

God is my strength and power: Call to me, and I will answer you,
And He maketh my way perfect. And show you great and mighty things,

2 Samuel 22:33 Which you do not know.
Jeremiah 33:3

lUi

Table of Contents

Page

Acknowledgements iii

List of Figures. xiii

List of Tables. xxi

Abstract. xxii

1. Introduction and Background 1

1.1 Introduction

1.1.1 Overview 1

1.2 Definitions. 2

1.2.1 Re-Engineering. 2

1.2.2 Reverse Engineering. 4

1.2.3 Program Understanding 5

1.3 Related Work. 6

1.3.1 Plan Recognition Systems. 8

1.3.2 Data-Driven Systems 12

1.3.3 Informal Information Systems. 17

1.4 Summary. 17

1.5 Summary of Contributions 18

1.6 Overview of Chapters 18

Ii. Problem Statement. 20

2.1 Introduction. 20

2.2 The Re-Engineering Methodology. 20

2.2.1 Legacy Code 20

2.2.2 Canonical Form 20

iv

Page

2.2.3 Program Slices 23

2.2.4 Parameter-Based Object Identification (PBOI) . . . 24

2.2.5 Generic Object-Oriented Design Model 24

2.2.6 Generic Object-Oriented Program Model 24

2.2.7 Requirements Specification 25

2.2.8 Generic Object-Oriented Analysis Model 25

2.2.9 Object-Oriented Program 25

2.2.10 Object-Oriented Products and Processes 26

2.2.11 Maintaining Functional Equivalence 26

2.3 Summary 27

III. The Generic Imperative Model 28

3.1 The Imperative Paradigm 28

3.2 The GIM Domain Model 30

3.3 Imperative Assignment 30

3.4 Imperative Sequential Control 31

3.5 Imperative Selective Control 33

3.6 Imperative Iterative Control 35

3.7 Imperative Subprograms 37

3.8 Imperative Designs 39

3.9 Imperative Procedures 39

3.10 Imperative Functions 41

3.11 Imperative Procedure Invocation 43

3.12 Imperative Function Invocation 45

3.13 Recursion 48

3.14 Imperative Variables 48

3.15 Imperative Data Types 49

3.16 Imperative Scoping Issues 51

v

Page

3.17 Imperative Homogeneous Data Structures 52

3.18 Imperative Heterogeneous Data Structures 53

3.19 Imperative Pointers 53

3.20 Imperative Expressions 53

3.21 Imperative Input 56

3.22 Imperative Output 59

3.23 Formalizing GIM Statements and Expressions 62

3.24 Formalizing Imperative Subprograms 64

3.25 Formalizing Imperative Subprogram Calls 66

3.26 Formalizing Imperative Designs 68

3.27 Summary 69

IV. The Generic Object Model 71

4.1 Introduction 71

4.2 The Object-Oriented Paradigm 72

4.3 The GOM Domain Model 73

4.4 Classes 73

4.5 Modeling Object-Oriented Designs 75

4.6 Objects 76

4.7 Methods 77

4.8 Messages 81

4.9 "GET-" and "SET-" Messages 84

4.10 Inheritance 86

4.11 Polymorphism 87

4.12 Object-Oriented Assignment 87

4.13 Object-Oriented Sequential Control 88

4.14 Object-Oriented Selective Control 89

4.15 Object-Oriented Iterative Control 91

vi

Page

4.16 Object-Oriented Subprogram Invocation 93

4.17 Recursion 96

4.18 Variables 97

4.19 Attributes 98

4.20 Data types 100

4.21 Scoping Issues 100

4.22 Homogeneous Data Structures 102

4.23 Heterogeneous Data Structures 104

4.24 Pointers 104

4.25 Object-Oriented Expressions 105

4.26 Object-Oriented Input 107

4.27 Object-Oriented Output 109

4.28 Formalizing GOM Statements and Expressions111

4.29 Formalizing Object-Oriented Classes 113

4.30 Formalizing Object-Oriented Methods 114

4.31 Formalizing Object-Oriented Messages 116

4.32 Formalizing the Object Model 117

4.33 Summary 119

V. Identifying Objects 122

5.1 Introduction 122

5.2 Taxonomy of Imperative Subprograms 122

5.3 Parameter-Based Object Identification 123

5.4 Converting Category 2 Subprograms 124

5.5 Converting Category 0 Subprograms 127

5.6 Converting Category 3 Subprograms 127

5.6.1 PBOI Case 1 129

5.6.2 PBOI Case 2 131

vii

Page

5.6.3 PBOI Case 3 132

5.6.4 PBOI Case 4 133

5.6.5 Eliminating Duplicate Classes 134

5.7 Converting Category 1 Subprograms 136

5.8 Converting the Main Program 137

5.8.1 Removing Duplicate Object Instances 140

5.8.2 Merging Overlapping Classes 143

5.9 Converting Category 4 Subprograms 145

5.10 Converting Category 5 Subprograms 146

5.11 Program Slicing 146

5.12 Inter-Procedural Slicing 150

5.13 Masking Output Parameters 151

5.14 Conservative Slicing 153

5.15 Slicing for the Main Program 154

5.16 Discussion 157

5.17 Summary 158

VI. Formal Transformations 159

6.1 Introduction 159

6.2 Transforming Statements (0) 159

6.3 Transforming Accesses () 164

6.3.1 Transforming Expressions (be) 164

6.3.2 Transforming GOM Variable Accesses 166

6.3.3 Transforming Attribute Accesses (6- 1) 168

6.4 Transforming Subprograms (0) 170

6.5 Transforming Category 2 Subprograms (02) 171

6.6 Transforming Parameters 172

6.6.1 Moving Parameters to Attributes (TA) 173

viii

Page

6.6.2 Moving Attributes to Parameters (Tj - ') 174

6.7 Transforming Attributes (Y) 174

6.8 Transforming Category 3 Subprograms 181

6.8.1 Linking Classes and Subprograms (p) 181

6.8.2 Formalizing PBOI Case 1 182

6.8.3 Formalizing PBOI Case 2 187

6.8.4 Formalizing PBOI Case 3 190

6.8.5 Formalizing PBOI Case 4 198

6.8.6 Formalizing PBOI 201

6.9 Transforming Subprogram Calls 202

6.10 Category 3 Subprogram Transformation (U3) 208

6.11 Transforming Category 1 Subprograms (01)212

6.11.1 Removing duplicate objects 213

6.11.2 Generating Methods (,) 216

6.11.3 Merging overlapping classes 219

6.11.4 Converting the Main Program 220

6.12 Eliminating Category 4 and Category 5 Subprograms 229

6.12.1 Build Slices Transformation 231

6.13 Converting an Imperative Design 234

6.14 Summary 235

VII. Proving Functional Equivalence 236

7.1 Introduction 236

7.2 Proof for Statement Transformations (0) 237

7.2.1 Proof for Assignment Statements 238

7.2.2 Proof for Input and Output Statements 238

7.2.3 Proof for Skip Statement 239

7.2.4 Proof for Sequential Control Flow 240

ix

Page

7.2.5 Proof for Selective Control Flow 240

7.2.6 Proof for Iterative Control Flow 241

7.3 Proof for Parameters and Attributes () 244

7.4 Proof for Subprogram Conversion (a) 247

7.5 Proof for Program Slicing (Tmain)...............248

7.6 Proof for Imperative Design (0-F) 249

7.7 Summary 250

VIII. Feasibility Demonstration 251

8.1 Introduction 251

8.2 Converting FORTRAN to the GIM 251

8.2.1 FORTRAN Assignment Statement Transformation . 257

8.2.2 FORTRAN Sequential Control Flow Transformation 258

8.2.3 FORTRAN Selective Control Flow Transformation 258

8.2.4 FORTRAN Iterative Control Flow Transformation 261

8.2.5 FORTRAN Subprogram Transformation 263

8.2.6 FORTRAN Variable Transformation 265

8.2.7 FORTRAN Data Types Transformation 266

8.2.8 FORTRAN Expression Transformation 266

8.2.9 FORTRAN Input/Output Transformation 267

8.3 Completeness of the Transformation 267

8.4 The Ballistic Missile Defense Simulation System 269

8.5 Eliminating Category 4 and Category 5 subprograms 269

8.6 Implementing the PBOI 272

8.7 Analysis 277

8.8 Summary 278

X

Page

IX. Contributions 279

9.1 Introduction 279

9.2 Major Contributions 279

9.3 Minor Contributions 281

9.4 Summary 283

X. Future Research and Conclusions 284

10.1 Introduction 284

10.2 Future Research 284

10.2.1 Data dependencies 284

10.2.2 Arrays 285

10.2.3 Modifying the Design 285

10.2.4 Program Slices 286

10.2.5 The Generic Unstructured Model 286

10.2.6 Extensions 287

10.3 Conclusions 287

Appendix A. The Generic Imperative Language 288

A.1 Introduction 288

A.2 The Generic Imperative Language 288

Appendix B. The Generic Object-Oriented Language 294

B.1 Introduction 294

B.2 The Generic Object-Oriented Language 295

Appendix C. Nested If Proof 301

Appendix D. Parameter Transformation Proof 302

D.1 Introduction 302

D.2 New Procedure Definition 302

D.3 New Procedure Call 303

xi

Page

Appendix E. BMDSIM Conversion Transcript. 306

Appendix F. Mapping GIM Entities to the GOM 313

Bibliography 316

Vita 321

xii

List of Figures

Figure Page

1. Re-Engineering Process 3

2. Reverse Engineering Process 4

3. Program Understanding 5

4. Reverse and Re-Engineering Systems 7

5. Re-Engineering Methodology 21

6. FORTRAN elseif structure 22

7. Simulated while control flow 23

8. GIM Domain Model 30

9. Imperative Assignment Class 30

10. Imperative Assignment Object 31

11. Imperative Selection Class 33

12. Imperative-Selection Object 34

13. Imperative-Iteration Class 36

14. Imperative-Iteration Object 36

15. GIM Imperative Design Class 39

16. FORTRAN Subroutine VADD 40

17. GIM Procedure Class 40

18. Modeling a Procedure 41

19. FORTRAN Function PRDIV 42

20. GIM Function Class 42

21. Modeling a Function 43

22. Imperative Procedure Call Class 44

23. Imperative Procedure Invocation Object 44

24. Imperative Function Call Class 46

25. Imperative Function Invocation Object 46

26. Imperative-Variable Class 49

xii

Figure Page

27. Imperative-Variable Object 49

28. Imperative-Data-Type Class 50

29. Four Byte Integer Object 51

30. Two Byte Integer Object 51

31. Imperative Array Access Object 53

32. Modeling Imperative Literal Constants 54

33. List of Imperative Literal Constants 54

34. Modeling Imperative Unary Expressions 54

35. List of Imperative Unary Expressions 55

36. Modeling Imperative Binary Expression 55

37. List of Binary Expressions Modeled in the GIM 55

38. Imperative Input Class 56

39. Imperative Input Object 57

40. Imperative File Class 57

41. Modeling MASTER-FILE 58

42. Modeling the COBOL Read 58

43. Imperative-Output Class 59

44. Imperative Output Item 59

45. Modeling the COBOL Display 60

46. Modeling the COBOL Write 61

47. FORTRAN Function UPLREQ 65

48. FORTRAN Function PRDIV 67

49. FORTRAN Subroutine RELAY 68

50. GOM Domain Model 73

51. GOM Class Class 73

52. Class CLASS-5 74

53. GOM Class Object 74

xiv

L

Figure Page

54. GOM Instantiate Glass 75

55. GOM Design Class. 75

56. An Object Instance Variable 76

57. Attribute Access Class 77

58. Attribute Access Object. 77

59. GOM Method Glass 78

60. Class CLASS-S 78

61. GOM Method Object. 79

62. GOM Message Class 81

63. GOM Message Object. 82

64. "SET-" and "GET-" Methods for ZCOS. 85

65. CLASS-S inherits from USER-OBJECT. 86

66. GOM Assignment Class. 87

67. GOM Assignment Object 88

68. GOM Selection Class. 90

69. GOM Selective Control Flow Example 90

70. GOM Iteration Class 92

71. GOM Iteration Object 92

72. GOM Procedure Call Class. 94

73. GOM Function Call Class 94

74. GOM Variable Class 97

75. GOM Variable Object Example. 98

76. GOM Attribute Class. 98

77. Example of ZCOS Attribute 99

78. GOM Attribute Object Example. 99

79. GEOM Array Variable Access Object 102

80. GEOM Attribute Array Access Object. 103

xv

Figure Page

81. GEOM Attribute Array Access Object 104

82. "SET-" and "GET-" Methods for GEOM 105

83. Modeling Object-Oriented Literal Constants 105

84. Object-Oriented Literal Constants 105

85. Modeling Object-Oriented Unary Expressions 106

86. List of Object-Oriented Unary Expressions 106

87. GOM Binary Expressions Class 106

88. Object-Oriented Binary Expressions Modeled in the GOM 107

89. GOM Input Class 108

90. GOM Input Object 108

91. GOM File Class 109

92. GOM Output Class 110

93. GOM Output Object 110

94. Class CLASS - 2 113

95. Method UPLREQ 115

96. Class with method RELAY-PHASE 116

97. Class with method UPLREQ 117

98. Subprogram Taxonomy 123

99. Imperative function CAPTURE 125

100. Class and method built for CAPTURE 126

101. PBOI Cases 128

102. Subprogram BOUNCE 129

103. Subprogram RADIUS 129

104. Class and method built for RADIUS 130

105. Initial class built for BOUNCE 131

106. Updated class built for BOUNCE 132

107. Class built for RADIUS 133

xvi

Figure Page

108. Updated class built for BOUNCE 134

109. Subprograms CAPTURE and BOUNCE 135

110. Original class built for CAPTURE 136

111. Updated class built for CAPTURE 137

112. Updated class built for BOUNCE 138

113. Initial class built for BOUNCE 139

114. Updated class built for BOUNCE 140

115. Duplicate classes built for CAPTURE 141

116. Class to replace the duplicates 142

117. Partial Signature of Subprogram LNKCAL-DWELLT 142

118. Partial Signature of Method LNKCAL-DWELLT 143

119. Partial Class Containing Attributes BETA, XLAMDA, and DIAM. 143

120. Creating an Instance of CLASS-5 144

121. Duplicate object instances 145

122. Duplicates removed 146

123. Overlapping object classes 147

124. Overlapping classes merged 148

125. Imperative subprogram BOOSTR 149

126. Imperative subprogram BOOSTR-R 150

127. Imperative subprogram BOOSTR-V 151

128. Original imperative subprogram TRAJ 152

129. Imperative subprogram TRAJ-R 153

130. Imperative subprogram TRAJ-V 154

131. Imperative subprogram LASP 154

132. Imperative subprogram LASP-TD 155

133. BFLUX and BFLU masked 155

134. Imperative subprogram KEP-R 156

xvii

Figure Page

135. TRAJ as a Category 3 subprogram 157

136. Updated Category 3 subprogram TRAJ 158

137. The 0e transformation 163

138. The 0 transformation 164

139. The 6e transformation 165

140. The 6 transformation 167

141. The 8. 1 transformation 169

142. The 6- 1 transformation 170

143. DIAM as Attribute of CLASS-4 178

144. DIAM as Attribute of CLASS-5 178

145. DIAM as Attribute of CLASS-4 and CLASS-5 179

146. DIAM as Attribute of CLASS-5 180

147. The T'l. transformation 182

148. Subprograms RADIUS, CAPTURE, and BOUNCE 184

149. Classes Built for RADIUS, CAPTURE, and BOUNCE 185

150. Updated CLASS-4 for BOUNCE 187

151. The Tbi transformation 188

152. Subprograms CAPTURE and BOUNCE 189

153. Classes Built for CAPTURE and BOUNCE 190

154. Updated Class for BOUNCE 191

155. The T3o transformation 192

156. Subprograms RHO, BOUNCE, and RELAY-PHASE 194

157. Classes Built for RHO, BOUNCE, and RELAY-PHASE 195

158. Updated Class for BOUNCE 197

159. Updated Class for RHO 198

160. The T4o- transformation 198

161. Subprograms RADIUS and BOUNCE 199

xviii

Figure Page

162. Classes Built for RADIUS and BOUNCE. 200

163. The Tpboi transformation 202

164. The v, transformation. 203

165. The ve transformation 205

166. The v transformation 206

167. Class CLASS-3 with Method RHO 206

168. The Tv' transformation. 207

169. The TduP, transformation. 209

170. The U3 transformation 210

171. Partial declaration of RELAY-EFFNCY 211

172. Classes after PBOI Transformation 212

173. The veU transformation 214

174. The vduP transformation 215

175. The T dup transformation 215obj

176. Duplicate object instances. 216

177. Duplicates removed 216

178. Instantiation Method for CLASS-17. 217

179. The r. transformation 218

180. The r,- 1 transformation. 219

181. The T""'e transformation 221

182. Overlapping object classes. 222

183. Overlapping classes merged 223

184. The T,' , transformation. 225

185. The va, transformation. 226

186. The vM transformation. 227

187. BMDSIM1 before BOUNCE converted. 228

188. BMDSIM1 after BOUNCE converted 229

xix

Figure Page

189. The crM transformation 230

190. The T bild transformation 232

191. The TCaiLs transformation 233

192. Proof for iterative base case 243

193. FORTRAN Workbench 253

194. Assignment Transformations 257

195. Selective Control Flow Transformations 259

196. Iterative Control Flow Transformations 261

197. Subprogram Transformations 263

198. FORTRAN Subroutine VADD 263

199. Imperative Name Class 265

200. Data Type Transformations 266

201. Binary Expression Transformations 267

202. Unary Expression Transformations 267

203. Literal Expression Transformations 268

204. Input and Output Transformations 268

205. Subprograms Classified 272

206. GOM Workbench 276

207. Control Flow Constructs 313

208. Subprogram Calls 313

209. Data Storage Constructs 313

210. Data Type Classes 314

211. Literals 314

212. Binary Expressions 315

213. Unary Expressions 315

214. Input and Output 315

xx

List of Tables

Table Page

1. Formal transformations 160

2. Fortran ASTs Used 254

3. Fortran ASTs Used (cont) 255

4. Fortran ASTs Used (cont) 256

5. Subprograms from BMDSIM 270

6. More Subprograms from BMDSIM 271

7. Slices for Category 4 and Category 5 Subprograms 273

8. More Slices for Category 4 and Category 5 Subprograms 274

9. More Slices for Category 4 and Category 5 Subprograms 275

xxi

AFIT/DS/ENG/97-04

Abstract

The research presented in this document defines a methodology for automatically ex-

tracting functionally equivalent object-oriented designs from legacy imperative programs.

The Parameter-Based Object Identification (PBOI) methodology is based on fundamen-

tal ideas that relate programs written in imperative languages such as C or Cobol to

objects and classes written in object-oriented languages such as Ada 95 or C++. The

fundamental thesis that defines the PBOI methodology is that object attributes manifest

themselves in imperative subprograms as data items passed between subprograms. The

PBOI methodology converts each subprogram in an imperative design into a class and a

method that implements the subprogram. During this process duplicate classes are elimi-

nated, duplicate objects are identified, and overlapping classes are merged into one class.

Transformations have been developed that formalize the PBOI methodology and a formal

proof is provided showing the extracted object-oriented design is functionally equivalent

to the legacy imperative system. To focus the task of re-engineering, generic models of

imperative programming languages and object-oriented programming languages have been

developed. The Generic Imperative Model (GIM) is programming language independent,

programming construct independent, and canonicalizes simulated control flow constructs.

Formal definitions for the semantics of each GIM construct have been defined using the

weakest precondition notation. The Generic Object-Oriented Design model (GOM) is also

programming language independent and programming construct independent. Formal def-

initions for the semantics of each GOM construct have also been defined using the weakest

precondition notation. The formal tranformations convert imperative subprograms repre-

sented in the Generic Imperative Model into classes and objects represented in the Generic

Object-Oriented Design Model. A taxonomy of imperative subprograms has also been

developed which classifies all imperative subprograms into one of six categories. A proof

of concept prototype has been developed and a 3000-line FORTRAN-77 system has been

converted to an object-oriented design as a feasibility demonstration.

xxii

Extracting Functionally Equivalent

Object-Oriented Designs from

Legacy Imperative Code

L Introduction and Background

1.1 Introduction

1.1.1 Overview. The object-oriented paradigm with its promise of re-usability,

extensibility, and maintainability has great appeal to organizations with aging legacy sys-

tems. Legacy systems are often complex, unstructured, and include no documentation.

Making even the smallest change to a legacy system often creates unpredictable side-

effects. Legacy systems are valuable assets to an organization and should be preserved,

not thrown away [49]. Re-engineering imperative legacy systems into object-oriented sys-

tems provides a way for organizations to modernize their aging systems without losing the

investment that these systems represent [50, 67].

The research fields of re-engineering and reverse engineering have recently emerged

within the field of software engineering. The goal of software engineering is to improve

the products and practices used to develop software. However, the majority of the soft-

ware development effort is spent on maintaining legacy systems as opposed to developing

new systems [61]. Boehm [8] estimates the proportion of resources and time devoted to

maintenance ranges from 50% to 80%. The implication is that in order to improve the

software development process, the software maintenance process must be examined. Since

maintaining an object-oriented system is inherently easier than maintaining an impera-

tive system [32,33], re-engineering legacy code to the object-oriented paradigm improves

the maintenance process. Furthermore, re-engineering to the object-oriented paradigm is

desirable to organizations because it improves the overall software development process.

The research presented in this document defines a methodology for automatically

identifying objects from legacy imperative programs. The Parameter-Based Object Identi-

fication (PBOI) methodology is based on fundamental ideas that relate programs written

in imperative languages such as C or Cobol to objects and classes written in object-oriented

languages such as Ada 95 or C++. Transformations have been developed that formalize

the methodology and a proof is provided showing the extracted object-oriented design is

functionally equivalent to the legacy system. To focus the task of re-engineering, generic

models of imperative programming languages and object-oriented programming languages

have been developed. The formal transformations convert imperative subprograms repre-

sented in the imperative model into classes and objects represented in the object-oriented

model. A taxonomy of imperative subprograms has also been developed which classifies

all imperative subprograms into one of six categories.

The remainder of this chapter defines re-engineering terms in Section 1.2 and presents

related work in the field of re-engineering in Section 1.3. A summary of research contribu-

tions is provided in Section 1.5 and brief descriptions of the following chapters is presented

in Section 1.6. The author assumes the reader has fundamental knowledge about both the

imperative paradigm [16] and the object-oriented paradigm [62].

1.2 Definitions

The following definitions are provided for the terms re-engineering, reverse engineer-

ing, and program understanding.

1.2.1 Re-Engineering. According to Chikofsky [13],

Re-engineering is the examination and alteration of a subject system to recon-
stitute it in a new form and the subsequent implementation of the new form.

Typically, a system being re-engineered is written in an outdated programming language

or built specifically for an outdated hardware platform. Computer systems that were

built many years ago and have undergone several maintenance modifications often become

what are known as legacy systems. A legacy system is hard to maintain because of the

lack of knowledge about the system and because of the side effects when making even a

simple change to the system. The computer program in a legacy system is called legacy

code. Re-engineering often focuses on revamping legacy systems using new programming

2

SImplementation p~eImplementation

Figure 1 Re-Engineering Process

paradigms, languages, or hardware platforms. Figure 1 shows a generalized view of the

process of re-engineering legacy code as developed by Byrne [12]. In order to do effective

re-engineering, the legacy code must be expressed at a higher level of abstraction than the

programming language in which it was written [75]. This process of expressing the legacy

code in a higher level of abstraction is reverse engineering as shown on the left hand side

of Figure 1. The different levels of abstraction in re-engineering include implementation,

design, and requirements specifications.

Legacy code can be re-engineered at each of these levels of abstraction. At the

implementation level, it is possible to re-code a program from one programming language

to another. At the design level, it is possible to re-design a program changing the design

of the legacy code into a design for the target system. At the requirements specification

level, it is possible to re-specify the requirements for a program. Each of these processes is

discussed in more detail in Section 1.2.2.

0 n3

Once these transformations are done at the different levels of abstraction, forward

engineering can be used to build the target system in the new paradigm or language. Re-

engineering is the overall process of reverse engineering followed by forward engineering.

This process does not require the target system to be functionally equivalent to the legacy

KN Reverse Specification

Reverse Design

Implementation Restructuring

Legacy System

Figure 2 Reverse Engineering Process

1.2.2 Reverse Engineering. Figure 2 shows the process of reverse engineering

in more detail. To abstract legacy code, implementation information must be available.

This is typically the programming language code such as FORTRAN or Cobol code. It is

possible to restructure the implementation information during reverse engineering without

re-engineering the legacy code to a new target system. A restructuring at the implemen-

tation level could possibly include eliminating GOTO statements from the legacy code.

The process of reverse design abstracts the implementation information up to the

design level. This process extracts information such as structure charts showing the calling

hierarchy of the legacy code, data flow diagrams showing the flow of data in and between

4

legacy code routines, or control flow diagrams showing the flow of control for the legacy

code. Restructuring can also be done at the design level without doing re-engineering. For

example, the structure chart could be reorganized to improve the number of connections

between different legacy code routines, i.e., improve the coupling [64] between routines.

The design level information is abstracted up to the requirements specification level

by the reverse specification process. This process extracts the specifications for the legacy

code from the design information. Restructuring can also be done at this level of ab-

straction. For example, the specifications could be split apart and reorganized to improve

understandability.

Often in reverse engineering, a system undergoes a program understanding process

in order to create a more robust and understandable abstraction of the program. Pro-

gram understanding is a special form of reverse engineering. An overall view of program

understanding is presented in the following section.

1.2.3 Program Understanding. This section describes the current cognitive sci-

ence notion of human program understanding as found in Tiemens [73]. Figure 3 shows an

Mental Model

Assimilation Process

Figure 3 Program Understanding Theory

overall notion of how humans understand programs. The knowledge base stores concepts the

person already understands such as analysis and design techniques, programming architec-

tures, specific algorithms, and specific programming language constructs. This knowledge

ranges from abstract notions such as architecture to concrete notions such as assignment

statements in FORTRAN.

5

The legacy code is the programming language code the person is trying to understand.

This code is typically in the form of a listing the person can examine. There is typically

no pre-processing of this code before the person examines it.

The assimilation process involves the person looking at the code and trying to find

concepts in the knowledge base implemented in the legacy code. This process is aptly

called "assimilation" because the person is trying to fit the processing being done by the

legacy code into the knowledge he or she already has in the knowledge base. The process

builds new knowledge that is linked to the knowledge base and stored in the mental model.

The mental model is a series of links created in the assimilation process by the person

understanding the legacy code. The mental model is the person's understanding of how the

processing of the legacy code fits into what he or she already knows. The links between the

knowledge base and the legacy code are rich semantic links from what was known before

to what is being understood now. Understanding is a process of recognition, abstraction,

assimilation, and storage [73].

This overall view of program understanding is by no means complete because the

area of program understanding is an open field in cognitive science. However, the ideas

presented here are an adequate presentation of the current literature in this field.

1.3 Related Work

This section reviews previous work in the area of reverse engineering. This review

includes significant contributions in program understanding, extracting software architec-

tures, extracting objects, and maintaining functional equivalence. The overall landscape of

these contributions is presented below followed by detailed descriptions of selected systems.

Research contributions thus far in the area of reverse engineering can be loosely

categorized based on three criteria:

Knowledge The level of the knowledge extracted from the legacy code.

Strategy The approach used for reverse engineering.

Goal The end result or product.

6

IcBiggerstaff Ace
Lutsky e

Doai Johnson On
Domain Liu

Lividas
Hutchens Jcbo

(Design Johnson

0)
_0

e Programming

Ferrnt --- --- --- Functionally
HorwitzEquivalent

LangageObjects Objects

Program Ga
Plan Data Driven Informal Understanding

Recognition Information

Strategy

Figure 4 Reverse and Re-Engineering Systems

Figure 4 shows these criteria on three axes. The axis labeled Knowledge shows

the different levels of knowledge that can be extracted. Language knowledge is low-level

knowledge about a programming language such as FORTRAN or Cobol. Programming

knowledge includes knowledge about common ways to implement algorithms such as sorting

or searching. Design knowledge is knowledge about the architecture or overall design

of a legacy code. Domain knowledge is knowledge about the application domain being

implemented by the legacy code. The axis labeled Strategy shows the different strategies

used in reverse engineering. Plan Recognition strategies rely on pre-defined plans or clich6s

that describe the concepts to be recognized. Data Driven strategies rely on information

from the legacy code such as data-flow, control-flow, and program slices in order to extract

knowledge. Informal Information strategies extract information from documentation and

comments from the legacy code.

7

The axis labeled Goal shows the goals of the reverse engineering systems. Program

Understanding systems produce a mapping between concepts and the legacy code which

represents an understanding of the legacy code. The Architecture goal refers to systems that

recover the architecture used in the legacy code. This ranges from low-level products such

as module interconnection diagrams to high-level products such as recognizing a client-

server architecture. The Objects goal refers to systems that recover objects and classes

from the legacy code. Systems in this category recover as many objects as possible, but

are not focused on duplicating the functionality of the legacy code with these objects. The

Functionally Equivalent Objects systems recover objects and classes with the specific goal

of maintaining the functionality of the legacy code.

1.3.1 Plan Recognition Systems. Work in the area of program understanding has

been dominated thus far by the plan (or clich6) recognition systems [28,48,51,60,70]. Plan

recognition systems were inspired by forward engineering systems based on plans including

the Programmer's Apprentice [56-59,74]. Plan recognition systems aid in understanding

legacy code by matching the code to a pre-defined plan with concepts and constraints

between the concepts. Once the plan is found in the code, the concept being represented

by the plan is considered to be understood. These plans can be organized into a hierarchy

representing low-level programming knowledge up to high-level domain knowledge.

Figure 4 shows where plan recognition systems fit in the overall landscape of re-

engineering systems. As shown in the figure, some plan recognition systems (Wills, Ning,

etc.) can recognize domain knowledge while others (Hartman and Johnson) recognize

design knowledge. The goal of plan recognition systems has, to this point, been program

understanding.

1.3.1.1 Rich's Work [60]. The Recognizer system built by Rich and Wills

automatically finds all occurrences of a concept in a program. This system relies on the

idea of clich6s for concept recognition and uses the plan calculus [57] to represent programs

and cliches. The Recognizer builds a hierarchical representation of the concepts it finds

in the programs and associates a natural language description with each of the concepts

recognized.

8

Rich addresses five problems in legacy code that are handled by using clich6s to

represent knowledge:

Syntactic variation The same net flow of data and control can be achieved in many
ways.

Non-contiguousness Parts of a clich6 can be scattered through the program text;
they do not have to be contiguous.

Implementation variation An abstraction can be implemented in many ways.

Overlapping implementation Program optimization can merge the implementa-
tions of distinct abstractions.

Unrecognizable code It is hard to find "good" concepts in code if the code was
not built from a template such as a clich&.

The Recognizer system transforms programs into the plan calculus to overcome the

problems of syntactic variation and non-contiguousness. The Recognizer also includes a

hierarchy of clich6s represented in the plan calculus. By representing both programs and

clich6s in the plan calculus, Rich has made the matching process much simpler. The process

of matching clich6s to programs is treated as a graph parsing problem. The Recognizer

demonstrates understanding of the program by producing documentation automatically.

It does this by using generic natural language templates stored with each clich6 and filling

in the appropriate fields from the code. The documentation has an artificially formal flavor

to it, but demonstrates shallow understanding of design decisions made in producing the

code.

Overall, Rich's research raises some important issues. First, for program under-

standing, there must be some representation of the concepts to be recognized. Second,

the representation of concepts must be compatible with the representation of the program.

Using the plan calculus to represent both the program and the cliches is a good com-

mon representation for the Recognizer. Using the plan calculus overcomes the problem of

syntactic variation and non-contiguousness. It also casts the problem as a graph parsing

problem which taps into a rich resource for problem solving. Rich calls this approach a

representation shift.

1.3.1.2 Ning's Work. Ning [26] developed the Program Analysis Tool

(PAT) to aid program understanding. The system uses a plan hierarchy and rule-based

9

inferencing system to recognize low-level constructs in the code and combine these to

form higher-level abstract concepts. Ning [39] discusses automating the process of concept

recognition by transforming programs to different levels of abstraction:

Text-level transformations treat a program as a sequence of characters and trans-
form the program using character substitution.

Syntactic-level transformations treat programs as abstract syntax trees and trans-
form programs using rules about the abstract syntax descriptions.

Semantic-level transformations add meaning to the syntax of programs and trans-
form programs using the semantic information found in control flow and data flow
diagrams.

Concept-level transformations rely on knowledge of programming, problem solving,
and application domains to transform programs at the conceptual level.

Ning [39] also discusses the general problem of concept recognition. Programs contain

many different kinds of information which can be divided into language concepts and ab-

stract concepts. Language concepts are the low-level syntactic programming concepts from

the legacy code. They include modules, language statements and other concepts defined

by the programming language syntax. Abstract concepts refer to language-independent

concepts such as programming concepts and problem solving methods such as searching

and sorting.

A programming language compiler recognizes language concepts and builds them

into an Abstract Syntax Tree for a program. To recognize abstract concepts, a concept

classification hierarchy called a concept model is used to define the knowledge to be rec-

ognized. This model will not be complete since abstract theories of general programming

are hard to develop. Thus, a partial recognition of the program is possible. This means it

may not be able to recognize the program as representing a single concept, but it may be

possible to recognize islands of concepts in the program. The concept model also defines

the attributes of the concepts to be recognized. Ning develops the idea of a plan to rep-

resent a concept. A plan contains components (or sub-concepts) of the concept and the

constraints between the sub-concepts. This information is encoded in the form of concept

recognition rules. Plans represent the abstract concepts to be recognized, and through the

constraints of the plans, they represent how these concepts will be recognized.

10

Ning's work is important because it exemplifies plan recognition systems. In any

program understanding system, all levels of abstraction need to be recognized. Ning shows

how a hierarchy of concepts can be recognized using a hierarchy of plans. Ning's work was

the basis for continued work in plan recognition by Letovsky [41], Quilici [51], Chin [52],

and others as discussed in the next section.

1.3.1.3 Other Plan Recognition Systems. The Cognitive Program Under-

stander (CPU) system by Letovsky [41] uses plans as correctness preserving transforma-

tions for rewriting programs into semantically equivalent yet more abstract representations.

Quilici [51] enhanced Ning's plan hierarchy to include indices into the plan hierarchy, a

specialization mechanism, and links to other related plans. These improvements were in-

tended to speed up the plan recognition process. The DECODE system from Chin [52]

builds up a concept base through interaction with the programmer. DECODE uses an

enhanced plan recognition system to recognize as much of the legacy code as possible. It

increases understanding of the program by allowing the programmer to enter new con-

ceptual design primitives and linking them to the program. The UNPROG system by

Hartman [28] uses plans to recognize control designs such as read-process loops in Cobol

programs. The PROUST system from Soloway and Johnson [70] uses plans in a top-down

method in order to understand novice programmer's code.

Overall, the plan recognition systems are limited by the number of plans required to

fully understand legacy code. If the exact plan that represents the concept being imple-

mented by the legacy code is not present in the plan hierarchy, the plan recognition system

is not able to understand the legacy code. This implies large plan hierarchies are required

to understand even simple programs. The plan recognition process does not scale up well

to large production-level legacy code. Quilici and Chin write [52]:

Applying this paradigm to reverse engineering real-world legacy systems is
problematic, as it appears to require enormous libraries of code patterns, relies
on program-understanding algorithms that are not guaranteed to scale, and fails
completely on existing idiosyncratic code that does not fit well into patterns [17,
40,69].

The plan recognition systems suffer from problems that limit their applicability to

real-world systems [52]. The methodology presented in this document does not use libraries

11

of code patterns. Instead, it uses a data-driven approach similar to the systems described

in the next section.

1.3.2 Data-Driven Systems. Plan recognition systems are contrasted with the

data-driven systems as shown in Figure 4. Data-driven systems do not rely solely on

the process of matching plans for recognizing concepts in legacy code. Some data-driven

systems use low-level knowledge about the legacy code to limit the amount of code being

considered when matching plans to the code. In general, data-driven systems use data-

flow and control-flow dependencies, program slicing, and definition/usage information to

extract design and programming knowledge. The data-driven systems have varying reverse

engineering goals including extracting architectures and objects. The following sections

present relevant data-driven systems.

1.3.2.1 Newcomb's Work [47]. This section describes Newcomb's work on

recovering functionally equivalent collections of objects from legacy code. The following

terms are defined by Newcomb and help explain the process.

Scope analysis relates the occurrence of a variable to its declaration.

Program unit analysis describes the signature of routines, i.e., the number, order,
and type of parameters for all routine declarations and invocations.

Collision former is a unique template of a data structure based on record length,
field offset, field length and field type.

Alias analysis is the process of finding the names of the records and subfields in
legacy code that match the collision former.

Alias map represents a relation whose domain is a collision former and whose range
is a set of records that match the collision former. The criteria for matching the
collision former can be changed.

Program slice is computed using the transitive closure of a usage to definition arc
with respect to a variable.

Newcomb uses the idea of a collision former to hold the low-level declarative knowl-

edge in his system. Each Cobol 01 level record from the legacy code becomes a collision

former. The collision formers do not describe algorithms or designs, as would a plan. They

hold the structure of the data in the system. The procedural knowledge is stored in control

flow and data flow diagrams derived from the code.

12

The collision formers are used to do alias analysis, i.e. used as patterns to search

through the other record structures for matches Newcomb calls aliases. Alias analysis is

done on the data items in the legacy code instead of on the routines in the code (as in plan

recognition systems). Newcomb creates an alias map that maps from each collision former

to the set of record definitions that match the collision former.

Classes in the object model are formed by alias analysis and collision formation. The

classes are built from a generalized version of the set of record definitions, and the instances

of the classes are the records in the set. The fields from the. 01 records are assigned to the

objects as attributes. Currently, Newcomb's object modeling process does not construct

class hierarchies.

Once objects are found through alias analysis, Newcomb takes a program slice focus-

ing on one object. This indicates what procedures in the code modify or use the object.

Newcomb presents a thorough explanation of how these procedures are built as methods

and assigned to classes of objects.

Overall, Newcomb's system is important because of the work in extracting function-

ally equivalent objects. Newcomb claims the Object-Oriented Model (OOM) extracted is

functionally faithful to the legacy code, but does not provide a proof of this claim.

1.3.2.2 Sneed's Work. The system developed by Sneed [67] is a pre-cursor

to Newcomb's system [47] and also extracts functionally equivalent objects from legacy

code. Sneed uses Cobol record structures to extract objects. Every record type is iden-

tified as an object and every field as an object attribute. The methods for these objects

are extracted by using a program slicing technique Sneed calls phasing. A phase is an ex-

ecutable sequence of statements that follows the data flow path starting at an input from

a file and ending at an output to a file. These program slices are attached to the objects

to which they refer and become methods in the class that describes these objects.

An object-oriented specification is built for each extracted object. The specification

language used is Z++, an object-oriented version of the Z specification language. At the

end of the reverse engineering process, there is a specification for each method and the

imperative code is distributed among the objects in the target system. Sneed claims the

13

objects extracted are functionally equivalent to the legacy code, and uses dynamic profiling

to validate this claim. Dynamic profiling is a technique that inserts statements in the legacy

code to print out the values of variables at certain points in the code. The values of the

variables are collected during execution of the legacy system. The values of variables in

the re-engineered system are also collected during execution of the re-engineered system.

The systems are functionally equivalent if the values for each of the variables in the legacy

system are equal to the values for that variable in the re-engineered system.

The system from Sneed is an interesting data-driven system because of the program

slicing and the extraction of functionally equivalent objects. The use of dynamic profiling

requires execution of both the legacy system and the extracted object system, which limits

the practicality of Sneed's proof of functional equivalence. Furthermore, errors in the

transformation of the legacy system are not discovered until the re-engineered system is

executed.

1.3.2.3 Nyary's Work. The system described by Nyary [68] automatically

extracts object-oriented design documentation from legacy code. Nyary claims the design

extracted is functionally equivalent to the legacy code, but does not prove this claim. The

first step in Nyary's approach is to identify several different types of objects including user

interface, information, file, record, view, work, and link objects. Nyary gives heuristics for

finding each type of object. The seven types of objects are identified and stored with the

names and descriptions of their attributes.

The system extracts operations for these objects by using data-flow and control-flow

information. The connections between objects are identified by examining the parameters

of routines in the legacy code and identifying any foreign variables in the object operations.

Foreign variables are variables used by an operation that are not included in the object

associated with the operation. Nyary claims the extracted operations are functionally

equivalent to the legacy code. The sequence of these operations is expressed as a state

driven model (as defined by Shlaer and Mellor [63]).

Nyary presents another example of a system that claims to extract functionally equiv-

alent objects. Nyary does not provide any formal proof of this claim.

14

1.3.2.4 Achee and Carver's Work. The methodology developed by Achee

and Carver [1] uses statistical analysis of subroutine parameters to extract objects from

legacy FORTRAN systems. The frequency with which pairs of parameters are used in

different subroutines is used to construct the "strongest cohesive unit" [1]. Objects are

extracted by grouping these data items together (to form the cohesive unit) and then

attaching methods to these objects.

Achee and Carver do not claim to extract functionally equivalent objects from legacy

code. Their methodology is interesting because it uses subroutine parameters to extract

objects using a statistical method rather than the methodology presented in this document.

Their analysis focuses more on how parameters are used in a single subroutine than on the

parameters passed between several subroutines.

1.3.2.5 Liu, Lividas, and Johnson's Work. Lividas and Johnson [43] present

three techniques that use data-driven methods to extract objects from legacy code. The

first two techniques were developed by Liu [42]; Lividas and Johnson introduce a third.

Lividas and Johnson express all three methods for object identification using formal defi-

nitions. These definitions are presented below.

Let P be an imperative program, F the set of all routines in P, T the set of all types

in P, and D the set of all data items in P. A candidate object [43] is a triple CP = (, T, 6)

where o C F, r C T, 6 C D, and M indicates the method used for object identification.

Global-based Object Identification (GBOI) defines a triple CP - (V, 0, x) where
C F and x is a global variable with respect to V.

Type-based Object Identification (TBOI) defines a triple C' - (or, 0) where
W C F and r C T. Here,

n

T= U{ai} U {b}
i=1

where ai represent the types of the parameters and b the type of the returned variable
(if any).

Receiver-based Object Identification (RBOI) defines a triple CP = (V,r, 0) where
C F and r C T. Here,

n
7=U{r } u {b}

i=1

15

where ri represent the types of the parameters that are changed in 0.

These three techniques identify candidate objects in imperative programs based on

relationships between the data items.

1.3.2.6 Other Data-Driven Systems. Figure 4 shows several other data-

driven systems. These systems are described briefly in this section. The system proposed

by Hausler [29] is a hybrid of the plan recognition systems and the data-driven systems.

Hausler uses program slicing to isolate pieces of legacy code and then uses pattern match-

ing to recognize plans in the program slices. This is interesting because the knowledge

extracted by data-driven means is being used to limit the amount of code considered when

matching the plans to the code. The systems from Ferrante [20] and from Wilde [77]

capture dependencies in legacy code. Horwitz [30] and Weiser [76] present data-driven

methods for program slicing. These four contributions provide building blocks for data-

driven reverse engineering tools. The knowledge being represented is at the language level.

The systems presented by Choi [14] and by Hutchens [31] use data-driven methods to

analyze system structure of legacy code. Choi presents a method for extracting various

module interconnection diagrams based on various criteria. The system built by Harris [27]

uses program slicing and recognition rules to recognize architectural aspects of legacy code.

The recognizers used are similar to plans because they structure the knowledge being rec-

ognized, but the recognizers do not require an exact match in the legacy code. Program

slicing is used to limit the amount of code considered when matching recognizers to code.

The system proposed by Gall [21] uses data flow diagrams and structure charts to

cluster procedures and data together into objects. Semantic knowledge is added to the

objects found by comparing them to an independently developed object-oriented model of

the underlying system. The OBAD system built by Yeh [79] (a sub-system of the Harris

system [27]) extracts Abstract Data Types (ADTs) from legacy code. This system first

builds a graph where the procedures and the data structure types are the nodes and the

references from the procedures to the internal fields of the structures are the edges. The

ADTs are extracted from the connected components of this graph. This contribution is

included under the objects rubric because of the similarity between ADTs and objects [11].

16

The system developed by Ong [50] extracts objects from FORTRAN code. The

system uses information from the COMMON block of the FORTRAN code to organize

data and procedures into objects. The work presented by Jacobson [33] describes an

incremental approach for re-engineering legacy code to the object paradigm. An interface

is built from the new object-oriented part of the system to the part of the system not being

re-engineered.

1.3.3 Informal Information Systems. The final group of contributions extract

knowledge from the informal information found in legacy systems. This information in-

cludes any available user's manuals, programmer's manuals, or testing manuals. The infor-

mal information also includes the comments in the legacy code associated with the piece of

code being analyzed. The DESIRE system from Biggerstaff [4-6] uses informal information

to extract domain level knowledge, as indicated in Figure 4. DESIRE uses the informal

information to aid program understanding. The work done by Lutsky [45] uses informal

information in legacy system documentation to generate test cases for legacy systems. The

I-DOC work by Johnson [34] automatically answers user's questions about a legacy system

from a hyper-media database of knowledge. I-DOC automates the informal information

associated with a software system.

1.4 Summary

The data-driven systems presented in this chapter use approaches for reverse engi-

neering that are more promising than the approaches used by plan recognition systems.

Newcomb's system [47], for example, has been demonstrated on legacy systems as large

as 168,000 lines of Cobol code. The data-driven systems are more scalable because they

either limit the amount of code being matched against plans or they don't use plans at all.

Several approaches were presented that extract objects from legacy code. Some of

these systems claim to extract functionally equivalent objects, but there are no proofs

of these claims. Sneed [67] validates his claim using dynamic profiling, but this is not

practical because it requires the extracted object-oriented design to be implemented. Any

17

error introduced in the transformation would not be uncovered until the entire design was

implemented.

The research presented in this document is similar to the work done by Newcomb [471,

Sneed [67], and Nyary [68], as indicated in Figure 4. This research uses data-driven methods

to extract an object-oriented design that includes functionally equivalent objects.

1.5 Summary of Contributions

Given the overview of re-engineering and the related work that has been done in this

area, the research presented in this document makes the contributions shown below. Each

of these contributions is discussed in subsequent chapters and a more detailed summary of

the contributions is provided in Chapter IX.

1. An object identification methodology that extracts functionally equivalent objects
from legacy imperative code.

2. A taxonomy of imperative subprograms.

3. Formal transformations that define the object identification methodology.

4. A proof of functional equivalence between the legacy imperative code and the ex-
tracted object-oriented code.

5. A canonical form for representing legacy imperative code.

6. A surface syntax for the imperative canonical form.

7. A canonical form for representing object-oriented designs and code.

8. A surface syntax for the object-oriented canonical form.

9. Definitions of the formal semantics for an imperative function call.

10. Definitions of the formal semantics for an object-oriented message.

1.6 Overview of Chapters

Chapter II defines in detail the problem of re-engineering imperative systems to the

object-oriented paradigm. Chapter III presents the generic model of imperative program-

ming languages and Chapter IV presents the generic model of object-oriented languages.

Chapter V presents the taxonomy of imperative subprograms, the methodology for extract-

ing objects from subprograms, and explains how program slicing [76] is used to simplify

the methodology. Chapter VI presents transformations that formalize the methodology.

18

Chapter VII presents a proof that the extracted design is functionally equivalent to the

legacy system. Chapter VIII presents a feasibility demonstration using a prototype im-

plementation of the methodology. Chapter IX describes the contributions this research

makes to the field of re-engineering. Chapter X discusses future research and presents the

conclusions.

19

IL Problem Statement

2.1 Introduction

This chapter presents a summary of the overall re-engineering methodology developed

by this research. Each part of the methodology is explained briefly here and the more

significant parts are explained in greater detail in the following chapters.

2.2 The Re-Engineering Methodology

The goal of this research is to develop a methodology for re-engineering legacy sys-

tems into functionally equivalent object-oriented designs. Figure 5 shows the overall view

of this methodology. In the figure, the large rectangles are groupings of processes and

products within certain paradigms. The large box on the left shows the re-engineering

processes and products within the imperative paradigm. The large box on the right repre-

sents the forward engineering processes and products within the object-oriented paradigm.

The large box in the middle represents versions of processes and products in the object-

oriented paradigm that can be manipulated automatically with a computer. The "rounded-

rectangles" inside the large boxes represent products within a paradigm. The arrows be-

tween rounded-rectangles represent processes for converting one product to another. Each

of the rounded-rectangles is discussed in the sections below. The dashed rectangle shows

the scope of this research.

2.2.1 Legacy Code. The input to any re-engineering methodology is the collection

of programming language code to be transformed. As explained in Chapter I, this code is

termed legacy code. An assumption of this research is that the legacy code is available in

some format, the least desirable of which is a program listing. The prototype developed to

implement this research further assumes the legacy code can be accessed by a computer.

2.2.2 Canonical Form. The first step in the re-engineering methodology is to

transform the legacy code into a canonical form. A canonical form allows code that does

the same to look the same. A canonical form is language independent, programming

20

Imperative Object-Oriented Object-Oriented
Paradigm Representation Paradigm

Requirements Generic
Specification OOA Model

Program PBO Generic COSlices COD Model -- -OD

GenericGeri

Imperative Gel OOPM odelC O P M odel
Model

Legacy Code

Figure 5 Re-Engineering Methodology

21

IF(ITYP.EQ.1) THEN
ALT = -5.71D0

ELSEIF(ITYP.EQ.2) THEN

ALT = -1.57D0

ELSEIF (ITYP.EQ.3) THEN

ALT = -9.46D0

END IF

Figure 6 FORTRAN elseif structure

construct independent, and control flow construct independent. Each of these aspects is

explained in the following sections.

2.2.2.1 Language Independent. A canonical form is language independent,

i.e., the representation is not tied to any one specific programming language. This allows

the re-engineering methodology to operate at a higher level of abstraction, encompass more

diverse legacy code, and be built independent of the nuances used in the legacy code.

2.2.2.2 Programming Construct Independent. A canonical form allows

different programming language constructs to be recognized as the same entity. Certain

constructs can have a different surface syntax but provide the same control flow. These

constructs are easily identified because they have equivalent control flow graphs. Wills [60]

refers to this as the syntactic variation problem as discussed in Section 1.3.1.1. For example,

Figure 6 shows the FORTRAN elseif construct. Not all programming languages have

this control construct, so the elseif is converted to embedded if-then-else statements

in the canonical form. Embedded if-then-else statements provide the same control flow

as the elseif statement, thus providing the canonical form.

2.2.2.3 Simulated Control Flow Constructs. Another use of the canonical

form is to recognize control flow constructs not implemented in the legacy code program-

ming language. For example, there is no while loop in FORTRAN, but it can be simulated

with the proper combination of an if-then statement and a goto statement. This is re-

ferred to as the implementation variation problem by Wills [60].

22

150 IF(C2.GT.1.OD0) THEN

C1 = 1.0DO - E**2

C2 = Cl/C2GAM

GO TO 150

END IF

Figure 7 Simulated while control flow

Figure 7 shows FORTRAN if-then and goto statements that simulate a while loop.

By recognizing these simulated control flow structures in the legacy code, they can be

represented in the canonical form as the control flow entity they emulate. For example,

the if-then and goto structure from Figure 7 are transformed into an equivalent while

structure in the canonical form.

2.2.2.4 Generic Imperative Model. The Generic Imperative Model (GIM)

has been developed as the canonical form for the re-engineering methodology, as shown in

Figure 5. The GIM includes fundamental aspects of imperative programming languages

such as FORTRAN, C, Pascal, Cobol, and Ada 83. Chapter III presents the GIM in detail.

2.2.3 Program Slices. Once the legacy code is converted to the canonical form,

a process of program slicing is used to split the imperative legacy code into program slices

based on functionality of the routines. A program slice [76] is the collection of imperative

programming statements extracted from a legacy program that are required to produce a

single value. Program slicing over entire legacy systems has been used in such applications

as software maintenance and debugging [22] to isolate sections of code. The approach

taken in this research is to use program slicing on a single legacy subprogram, as discussed

in more detail in Chapter V.

The rationale for using program slicing in the re-engineering methodology is to split

the legacy code into separate imperative subprograms that resemble object-oriented meth-

ods. In his Object Modeling Technique, Rumbaugh [62] defines a specific type of object-

oriented method called queries. A query of an object returns a specific value from the

object. By using program slicing, an imperative subprogram that returns multiple val-

23

ues can be split into multiple subprograms that each return a single value. These new

subprograms now resemble query methods and can be built into an object class.

2.2.4 Parameter-Based Object Identification (PBOI). This section describes the

arrow shown in Figure 5 labeled PBO. The goal of this step is to organize the data

and associated program slices into objects and classes that comprise the extracted object-

oriented design. Chapter V describes the Parameter-Based Object Identification (PBOI)

methodology developed by this research that extracts objects based on the data items being

passed throughout the legacy system. As each object is extracted, a class is built in the

object-oriented design that defines the attributes and operations of the object. As a final

step in this methodology, duplicate object instances are eliminated and overlapping classes

are merged. This is explained in detail in Chapter V. In order to scope this research,

generalization and specialization hierarchies are not identified for the extracted classes.

Each class is built as a sub-class of an overall super-class resulting in a flat hierarchy of

classes.

2.2.5 Generic Object-Oriented Design Model. The Generic Object-Oriented De-

sign Model (GOM) is a canonical form that models any object-oriented design. The GOM

has been developed as part of this research and is used to represent the extracted design.

The design is built by creating entities from the GOM such as objects, classes, messages,

and methods. The GOM also defines a design entity that is a collection of the extracted

classes. Chapter IV defines the GOM in detail.

2.2.6 Generic Object-Oriented Program Model. The Generic Object-Oriented

Program Model (GOM-P) is a canonical form that models any object-oriented program.

The program differs from the design in that the object-oriented methods include object-

oriented programming statements. This research assumes the statements of each method

are from the imperative programming language paradigm. Part of the re-engineering pro-

cess is to transform GIM statements to GOM-P statements. The GOM-P models languages

such as C++, Java, and Ada 95. Chapter IV defines the statements that are modeled in

the GOM-P.

24

2.2.7 Requirements Specification. Figure 5 shows a dashed arrow from the pro-

gram slices to the requirements specifications. Although this specific process is outside the

scope of this research, it will be addressed briefly. It may be possible to extract specifi-

cations from the partitions that describe the functionality of the imperative code. These

requirements specifications might be used to create an equivalent Object-Oriented Analy-

sis (OOA). Being able to recover accurate specifications of the legacy code would clearly

allow a more extensive and robust analysis of the legacy system. However, recovering

specifications from code is considered a hard problem [44] and is left as future research.

2.2.8 Generic Object-Oriented Analysis Model. The Generic Object-Oriented

Analysis Model (GOM-A) is a canonical form that models any object-oriented analysis. Ac-

cording to Rumbaugh [62], Object-Oriented Analysis (OOA) differs from Object-Oriented

Design (OOD) in that the OOA object model includes associations between objects and

that the functional and dynamic models are separate in OOA. In OOD, the dynamic and

functional models are incorporated into the object model. For these reasons, the GOM-A

includes entities for the object, dynamic, and functional models. It also includes entities

for the associations between objects. It is hypothetically possible to build a GOM-A cov-

ering any object-oriented analysis. The GOM-A is not included as part of this research.

DeLoach [15] has done work in this area and developed a generic model of the Rumbaugh

Object Modeling Technique (OMT) [62].

It is possible to convert a requirements specification recovered from the imperative

legacy code to an object-oriented analysis as indicated in Figure 5, but this research does

not include such processing. The arrow in Figure 5 from the GOM to the GOM-A shows

a hypothetical abstraction process. This is left as future research.

2.2.9 Object-Oriented Program. Once the OOD has been built by the re-

engineering methodology, it is possible to convert it to an object-oriented program. This

program can be implemented using any object-oriented language such as C++ [71] or Ada

95 [3]. This research has done only rudimentary prototyping of this step, as explained in

Chapter VIII.

25

2.2.10 Object-Oriented Products and Processes. The rounded-rectangles in Fig-

ure 5 labeled OOA, OOD, and OOP represent the products of Object-Oriented Anal-

ysis, Object-Oriented Design, and Object-Oriented Programming, respectively. There

are currently several methodologies for analysis, design, and programming in the object

paradigm [9,10,62]. These rounded-rectangles are included in the figure to imply a correla-

tion between the object-oriented design produced by the re-engineering methodology and

an object-oriented design produced through forward object-oriented analysis and design.

2.2.11 Maintaining Functional Equivalence. After the object extraction method-

ology has been used on an imperative legacy system, the question remains about the utility

of the transformation. How can one judge that the object-oriented design produced from

the methodology is of any value? This question can be interpreted in at least two different

ways. First, the question could be asking about the quality of the design and whether the

recovered design is a good object-oriented design. Second, the question could be asking

about the value of the design in general and whether representing the legacy system in the

object-oriented paradigm adds value.

The former view requires a metric to determine the quality of an object-oriented

design. This is an open research issue in the area of object-oriented analysis and design,

i.e. there is currently no metric that accurately judges the quality of an object-oriented

design. There is only an informal attempt in this research to answer the question from

this view.

Instead, the value of the object-oriented design recovered is judged from the latter

perspective. If it can be shown that the object-oriented design recovered from the impera-

tive legacy code returns the same output as the legacy system given the same input, then

the design is quite valuable. Such an object-oriented design can replace an aging legacy

system and provide the same functionality as the original system while allowing the main-

tenance of the system to be done in the object-oriented paradigm. Chapter VII provides

a proof that the design extracted using this methodology is functionally equivalent to the

legacy code.

26

2.3 Summary

This chapter has presented a summary of the re-engineering methodology defined

in this research. The methodology transforms imperative legacy code into the GIM, uses

program slicing on the subprograms, extracts objects from the data items in the legacy

system, and represents the extracted design using the GOM and GOM-P. The rationale for

each of these steps has been discussed briefly and more detailed explanations are provided

in the following chapters. Several other entities, such as the requirements specifications

and the GOM-A, were presented and left for future research.

27

III. The Generic Imperative Model

This chapter defines the Generic Imperative Model (GIM) developed to model the vari-

ables, expressions, assignment statements, and control flow typically built into imperative

programming languages. The imperative paradigm is discussed first, followed by detailed

descriptions of how these traits of imperative programming languages are modeled using

Abstract Syntax Trees (ASTs). Rumbaugh's notation [62] for classes and objects is used

to present the objects and classes that define these ASTs. Formal semantics are defined

for each GIM entity using the weakest precondition notation [18,19,24,25].

3.1 The Imperative Paradigm

According to Dershem [16], there are currently four different programming language

paradigms: imperative, logic, functional, and object-oriented. Tennent [72] and Ghezzi

and Jazayeri [23] describe the imperative programming language paradigm as a style of

programming based on the following concepts.

Variables Variables hold state information during execution of the program.

Data Types Data types define the acceptable values for a variable and the operations
that can be done on the variable.

Expressions Expressions are combinations of variables and operators used to express
temporary intermediate values.

Assignment Statements Assignment statements change state by assigning new
values to variables via expression evaluation.

Input/Output Input and output statements read and write to the standard in-
put/output devices and to files.

Sequential Control In sequential control flow, a sequence of statements executes
one after another.

Selective Control In selective control flow, a choice is made, based on the result of
a boolean expression, between executing one sequence of statements versus another.

Iterative Control In iterative control flow, a sequence of statements is executed
repeatedly while a boolean expression is true.

Procedural Abstraction A procedural abstraction collects a sequence of state-
ments that are executed when the abstraction is referenced by name. A procedural
abstraction can be passed parameters and may return values.

28

Main Program In systems of imperative subprograms, there is always one subpro-
gram that is given the flow of control as the system begins execution. This special
subprogram is termed the main program.

Imperative programming languages include FORTRAN, C, Pascal, Ada, Cobol, and

others. In fact, any language where the majority of the language implements the concepts

presented above is considered an imperative programming language. These are the concepts

that distinguish the imperative paradigm from the other programming language paradigms.

These imperative programming language constructs are modeled in the GIM by build-

ing ASTs that store knowledge about the constructs. For a specific programming language

such as Ada 83, it is possible that a construct in the language is not part of the impera-

tive paradigm. For example, the accept and entry statements implement communication

between tasks in Ada 83. These statements are not modeled in the GIM because they fall

outside the definition of the imperative paradigm presented in this chapter. Overall, this

means certain imperative languages can not be completely modeled by the GIM. The Fea-

sibility Demonstration Chapter (Chapter VIII) discusses a method for determining which

parts of a specific language can be modeled by the GIM.

The organization of this chapter emphasizes the importance of assignment and control

flow in the imperative paradigm as opposed to the issues of data storage and expressions.

Unfortunately, one cannot talk about assignment without variables and expressions. The

reader is referred to Section 3.14 and Section 3.20 for the explanations of how variables

and expressions, respectively, are modeled in the GIM.

For each programming language construct modeled in the GIM, formal semantics

are provided using the state model [19] of programs. Preconditions and postconditions

are used to define the semantics for each GIM representation of an imperative construct.

Specifically, given a postcondition R that is guaranteed to be true after a statement S is

executed, the weakest precondition, wp(S, R), defines the weakest set of preconditions that

must hold in order for the execution of S to establish R [19]. This research relies heavily

on the previous work done by Djikstra [18], Gries [25], and Dromey [19] to define formal

semantics for imperative programming language constructs.

29

3.2 The GIM Domain Model

This section presents a brief overview of the ASTs that are included in the GIM

domain model. Figure 8 shows a partial representation of the GIM domain model. The

imperative-domain

imperative-design imperative-data-construct
imperative-statement imperative-subprogram imperative-variable imperative-expression

imperative-io imperative-iteration / imperative-functionimperative-data-type

imperative-assignment imp-procedure-call imperative-procedure imperative-function-call

imperative-selection

Figure 8 GIM Domain Model

overall superclass of the domain is the imperative-domain AST. The imperative-design

class models collections of imperative subprograms as defined in Section 3.8. The abstract

class imperative-statement is the superclass for all imperative programming statements

modeled in the GIM. The imperative-data-construct class is the superclass of imper-

ative expressions, data types, and variables modeled in the GIM. Each of the lower-level

classes in the domain model are described in the rest of this chapter.

3.3 Imperative Assignment

An imperative assignment statement takes the general form x := e, where x is a

variable and "e is an expression of the same type. When this statement is executed, the

expression e is evaluated and the result is assigned to x [19]. Assignment statements

in the GIM are modeled using the imperative-assignment class. Figure 9 shows the

imperative-assignment

imp-assign-lhs: imperative-variable
imp-assign-rhs : imperative-data-construct

Figure 9 Imperative Assignment Class

class description for the AST that models imperative-assignment in the GIM (using

Rumbaugh's notation [62]). The imp-assign-lhs attribute models the variable being

assigned a value. The imp-assign-rhs attribute models the expression to be evaluated and

assigned to the variable. When variables appear on the right hand side of an assignment,

30

they are considered expressions. The GIM is able to model both variables and expressions

on the right hand side of the assignment statement.

As an example, consider the following C assignment statement.

mfpgrc = 0;

This assignment statement is modeled in the GIM by creating an instance of the class

imperative-assignment, which is shown in Figure 9. Figure 10 shows the object instance

((imperative-assignment)

imp-assign-hs imp-assign-rhs

((imperative-variable) (i mperative-literal-integer)

Figure 10 Imperative Assignment Object

that models this C assignment statement in the GIM. The variable rfpgrc is modeled as

a variable in the GIM (see Section 3.14) and is stored in the imp-assign-lhs attribute.

The value 0 is modeled as a literal expression (see Section 3.20) and is stored in the

imp-assign-rhs attribute of the AST.

The semantics for the GIM assignment statement are defined formally using the

weakest precondition notation. Let R' denote the postcondition R, with all free occurrences

of x simultaneously replaced by e [19]. The semantics for the general form of imperative

assignment, x := e, are defined using the weakest precondition notation as shown below.

Definition III.1. wp(x := e, R) = R,

In the GIM, the imp-assign-lhs models x and the imp-assign-rhs models e. By

relating the general form of assignment to the specific representation of assignment in the

GIM, the formal semantics for assignment in the GIM are now defined.

3.4 Imperative Sequential Control

The default method of program control in the imperative paradigm is sequential con-

trol flow where a sequence of statements is executed one statement after another. Program

statements that are executed sequentially in an imperative programming language are

31

modeled in the GIM by storing the statements in a sequence. The order of the statements

in the sequence corresponds to the order of the statements from the imperative program.

For example, in the collection of statements shown below, <Statement 1> is executed

followed by <Statement 2> followed by <Statement 3>.

<Statement 1>
<Statement 2>

<Statement 3>

This collection of statements is modeled in the GIM using the following sequence.

[<Statement 1>, <Statement 2>, <Statement 3>]

The semantics for sequential control in the GIM are based on the semantics of the

composition command [25] and are defined using weakest precondition notation. Let S1

and S2 be imperative statements and [Si, S2] represent the sequential composition of the

two statements.

Definition 111.2. wp([S1, S2], R) = wp(S1, wp(S2, R))

Definition 111.2 leads to the claim that the GIM representation of sequential control

flow is associative. Let S1, S2, and S3 be imperative statements.

Theorem III.1. wp([SI, [S2, S3]], R) =wp([[S1, S2], S3], R)

Proof.

wp([S1, [S2, S3]], R) = wp(Sl, wp([S2, S3], R))

= wp(S1, wp(S2,wp(S3, R)))

= wp([S1, S2], wp(S3, R)) (by function composition)

= wp([[Sl, S2],S3], R)

Since the weakest precondition for the sequences [S1, [S2, S3]] and [[Si, S2], S3] are equal,

the sequence [S1, S2, S3] is often used in this document to represent these sequences. In

addition, singleton sequences and empty sequences are used when convenient.

32

3.5 Imperative Selective Control

In the imperative paradigm, control flow consisting of a selection between two or

more statements is called selective control flow. The selection between statements S1 and

S2 is based on a boolean expression B. In general, selective control flow takes the following

form.

if B then

S1

else

S2

To be more specific, S1 and S2 above may consist of sequentially composed state-

ments, so they are modeled in the GIM as sequences of statements. Si must include at

least one statement to execute, but S2 can be an empty sequence. Selective control flow is

typified in imperative programming languages by the if-then-else statement. Selective

control flow where S2 is empty is typified in the imperative paradigm by the if-then

statement.

Selective control flow is modeled in the GIM by using the imperative-selection

class. Figure 11 shows the class description for the imperative-selection class. The

imperative-selection

imperative-exp: imperative-data-construct
imperative-then-part: seq(imperative-program-construct)
imperative-else-part: seq(imperative-program-construct)

Figure 11 Imperative Selection Class

imperative-exp attribute models the boolean expression that controls the selection. The

imperative-then-part models the sequence of imperative statements that are executed if

the boolean expression is true. The imperative-else-part attribute models the sequence

of imperative statements that are executed when the boolean expression is false.

For example, the following FORTRAN if-then-else statement shows a choice be-

tween executing the statement LEXIST(I) = 1 or the statement LERROR = .TRUE..

33

IF (MFPGRC .EQ. 0) THEN

LEXIST(I) = 1

ELSE

LERROR = .TRUE.
END IF

The choice is made based on the value of the boolean expression (MFPGRC .EQ. 0).

This FORTRAN if-then-else statement is represented in the GIM as shown in Figure 12.

imperative-exp C imperative-else-part

()imperative-assignment) C ((imperative-assignment)

Figure 12 Imperative-Selection Object

The imperative-exp attribute holds the <imperative-equal> object which models

the expression (MFPGRC .EQ. 0). The imperative-then-part attribute holds the single-

ton sequence containing the assignment statement from the then part. The imperative-

else-part holds the singleton sequence containing the assignment statement from the

else part.

The semantics for the imperative-selection statement are defined using weakest

precondition notation. Let B represent an imperative boolean expression and let S1 and

S2 represent sequences of imperative statements. The general form of selective control

flow presented at the beginning of this section as represented in the GIM is given by the

following form.

if B then S1 else S2

The sequence S1 is executed if B is true and the sequence S2 is executed if B is false. The

semantics of this GIM form of selective control flow are defined below.

Definition 111.3. wp(if B then S1 else S2, R) = (B = wp(S1, R))A(-,B wp(S2, R))

34

To relate these formal semantics to the GIM, note that B is modeled using the

imperative-exp attribute. The sequence of statements S1 is modeled by the imperative-

then-part attribute and the sequence S2 is modeled by the imperative-else-part at-

tribute. The formal semantics for selective control flow as modeled in the GIM are now

defined.

The formal semantics for selective control flow in the GIM when the sequence S2

is empty deserve special attention. If S2 is empty, then no change in state occurs if the

boolean expression B evaluates to false. Let skip represent a statement that has no effect

on the state of a program.

Definition III.4. wp(skip, R)= R

Selective control flow in the GIM when S2 is empty takes the following form.

if B then S1 else skip

The formal semantics for this form of selective control in the GIM is defined below.

Definition 111.5. wp(if B then S1 else skip, R) = (B =* wp(S1, R)) A (-,B =* R)

3.6 Imperative Iterative Control

The imperative paradigm also includes a control mechanism for repeating a sequence

of statements known as iterative control flow. With iterative control flow, the sequence

of statements is repeated while some boolean expression is true. Let B represent the

boolean expression that controls the iteration and S1 represent the sequence of imperative

statements that are repeated. The general form of iteration in the imperative paradigm is

defined as

while B

S1

Execution of the sequence S1 continues while the boolean B is true.

35

Iteration in the GIM is modeled using ASTs built from the imperative-iteration

class. Figure 13 shows the class description for the imperative-iteration class. The

imperative-iteration

iter-exp: imperative-expression
iter-body: seq(imperative-program-construct)

Figure 13 Imperative-Iteration Class

iter-exp attribute models the boolean expression B and the iter-body attribute models

the sequence of statements Si.

For example, the following while statement from Pascal provides an example of

imperative iteration.

WHILE Destination > Distance2 DO
BEGIN

Time := Time + Interval;
Distance2 := Distance2 + Increment

END

This WHILE statement is modeled using the imperative-iteration object shown in

Figure 14. Other imperative programming languages include statements that implement

(imperative-iteration)

iter-exp I I iter-body

(imperative-greater-than) -assignment)/ tl~~(mperative-slne)

(imperative-assignment)

Figure 14 Imperative-Iteration Object

imperative iteration, for example, the while statement in C and the loop statement in Ada.

These statements and statements in other programming languages provide several options

for implementing imperative iteration. The GIM imperative-iteration class provides

one canonical form to represent these looping mechanisms. Chapter VIII demonstrates the

conversion of the FORTRAN DO loops, FOR loops, and loops formed through the structured

use of the GOTO statement.

36

The formal semantics of iteration in the GIM are defined using a weakest precon-

dition notation based on the guarded loop mechanism. Given a precondition P and a

postcondition R, let Hk(R) represent the set of all states in which

while B do S1

will establish R in at most k iterations [19].

The formal semantics for iterative control flow in the GIM are defined below.

Definition 111.6. wp(while B do S1, R) = (3k: 0 < k A Hk(R))

To tie this general definition to the specific model of iterative control flow in the GIM,

recall that B is modeled by the iter-exp attribute and S1 is modeled by the iter-body

attribute of the imperative-iteration class.

Admittedly, the task still remains to define Hk(R). There is no attempt in my

research to define loop invariants [19] for iteration in the GIM. What is provided is a

general definition of the formal semantics for iterative control flow.

3. 7 Imperative Subprograms

The imperative paradigm allows a programmer to group a sequence of statements

together into a suitable abstraction unit that may be referenced by name. This mechanism

is known as the subprogram [23], which gives a name to a sequence of statements. A

subprogram call invokes the abstraction unit, i.e. forces control to transfer to the called

unit, which upon completion returns control to the calling point [23].

Parameter passing conventions allow explicit communication between a subprogram

and a call to the subprogram [23]. A formal parameter appears in the definition of a

subprogram, and an actual parameter appears in the call of a subprogram. Note that

the names of the identifiers used as actual parameters need not match the names of the

37

identifiers of the formal parameters of a subprogram. In fact, an actual parameter need

not be an identifier at all , but can be an expression as well1 .

The following definitions are needed to define subprograms more fully.

Definition 111.7. A data item has a definition [2] in an imperative subprogram when the

subprogram includes an assignment statement or an input statement that assigns a value

to the data item.

Definition 111.8. A subprogram parameter is an output parameter if the subprogram in-

cludes a definition of the parameter. A parameter is also an output parameter if the

subprogram invokes another subprogram and the parameter is an output parameter of the

called subprogram.

Definition 111.9. A data item has a use [2] in an imperative subprogram when any of

part of a statement in the subprogram references the data item and obtains its value.

Definition III.10. A subprogram parameter is an input parameter if a use of the param-

eter occurs before a definition of the parameter.

Specific exemplars of the subprogram in the GIM include procedures and functions.

A procedure in the GIM is a subprogram that does not explicitly return a value at the

end of its processing. Instead, all values returned from procedures are returned via output

parameters. For this research, the following restriction applies to procedures in the GIM.

Restriction III.1. A formal parameter of a procedure must not be both an input and an

output parameter.

Appendix D provides a process for converting procedures with a parameter that is both an

input and output parameter into a procedure that has no such parameters. A function in

the GIM is a subprogram abstraction that does return a value at the end of its processing.

For this research, the following restriction applies to functions in the GIM.

Restriction 111.2. All functions in the GIM return a single value at the end of their

execution and have no output parameters.

iThis aspect of parameter passing will be restricted by the re-engineering methodology, as described in

Section 3.11.

38

This research provides no process for converting a function with output parameters into a

function with no output parameters.

3.8 Imperative Designs

In order to model the collection of subprograms as a whole, the subprograms are

stored in an AST built from the GIM class imperative-design. Figure 15 shows the class

imperative-design

imperative-programs: seq(imperative-subprogram)
imperative-files: seq(imperative-file)

Figure 15 GIM Imperative Design Class

description of the imperative-design class. The imperative-programs attribute holds

the collection of subprograms that comprise the design. The imperative-files attribute

holds the collection of input/output files being modeled for this design. See Section 3.21

and Section 3.22 for discussions of how input and output statements and files are modeled

in the GIM.

3.9 Imperative Procedures

Many imperative languages include a construct for declaring procedures. In FOR-

TRAN, the SUBROUTINE statement is used to define the name, formal parameters, and

statements of a procedure.

For example, the FORTRAN code shown in Figure 16 defines the procedure VADD.

The sequence of statements included in the body of this procedure will be executed anytime

the VADD procedure is called. A call to this procedure must include actual parameters

that match the types of 1OP, R1, R2, and R3. Other examples of programming language

constructs that implement procedures are the procedure constructs in Pascal and Ada.

The declaration of a procedure is modeled in the GIM using ASTs built from the

imperative-procedure class. Figure 17 shows the class description for the imperative-

procedure class. The imp-proc-identifier attribute is used to model the name of the

procedure. The imp-proc-formals attribute models the sequence of formal parameters

39

SUBROUTINE VADD(IOPR1.R2,R3)

INCLUDE 'bdinclf
C
C THIS ROUTINE PERFORMS VECTOR ADDITION FOR THREE DIMENSIONAL
C VECTORS
C

DIMENSION RI(3),R2(3),R3(3)
F = FLOAT(IOP)
R3(1) = R1(1) + F*R2(1) 10

R3(2) = R1(2) + F*R2(2)
R3(3) = R1(3) + F*R2(3)
RETURN
END

Figure 16 FORTRAN Subroutine VADD

imperative-procedure

imp-proc-identifier : symbol
imp-proc-formals : seq(imperative-variable)
imp-Proc-statements : seq(imperative-programn-construct)

Figure 17 GIM Procedure Class

defined for the procedure. The imp-proc-statements attribute holds the sequence of

statements from the procedure. Figure 18 shows the AST object that models the FOR-

TRAN procedure VADD shown in Figure 16.

The declaration of a subprogram does not change the state of a program. It is

the invocation of the subprogram that may affect the state. For this reason, the formal

semantics for subprogram declarations defined in this section serve only as a foundation

for the definition of the formal semantics of subprogram invocations.

Let S1 represent the sequence of statements declared in a subprogram. Let P rep-

resent the precondition of S1 and let R represent the postcondition of S1 such that the

following holds.

{P}

S1

{R}

40

imp-proc-identifier imp-proc-statements

((imperative-vral) ivariable) aabe (imperative-variable) (imperatitve-assignment)" ..

i7 oomeatievibe =(imperative.-assignment)

(imperative-variable)

(imperative-variable)

Figure 18 Modeling a Procedure

For a subprogram p, let : be a vector representing the input parameters of p. Let

2 be a vector representing the output parameters of p. Each procedure declaration in the

GIM takes the following form.

procedure p(t, 2)

{P}
S1

{R}

3.10 Imperative Functions

Many imperative languages also provide a mechanism for declaring functions. For

example, the FORTRAN FUNCTION statement declares a function that returns a specific

type of value from the execution of the statements in the function.

As an example, consider the FORTRAN function declaration found in Figure 19.

This function returns a value of type DOUBLE PRECISION after the statements in the body

of the function are executed. A call to this function must include actual parameters that

match the data type of BETA, XLAMDA, and DIAM.

Functions in the imperative paradigm are modeled in the GIM using the imperative-

function class. Figure 20 shows the class description for the imperative-function class.

The imp-func-identifier attribute holds the name of the function being modeled. The

imp-func-formals attribute models the sequence of formal parameters defined for the

41

DOUBLE PRECISION function PRDIV(BETA,XLAMDA,DIAM)

INCLUDE 'bdincl.f

C
C CALCULATES THE PROJECTOR BEAM DIVERGENCE FOR A GIVEN OPTICS
C SIZE THIS IS BASED ON THE RAYLEIGH (AIRY DISK) CRITERION.
C

DATA FAC/1.220DO/

QUAL = MAX(BETA,1.0D0) 10
PDIAM = MAX(DIAM,O.1DO)
WAVELN = XLAMDA*1.D-06
PRDIV = QUAL*WAVELN*FAC/PDIAM
RETURN
END

Figure 19 FORTRAN Function PRDIV

imperative-function

imp-func-identifier: symbol
imp-func-formals: seq(imperative-variable)
imp-func-statements : seq(imperative-program-construct)
imp-function-return-type: imperative-data-type

Figure 20 GIM Function Class

function. The imp-func-statements attribute holds the sequence of statements from the

function. The imp-function-return-type attribute models the data type of the value

returned from the function. The FORTRAN function PRDIV shown in Figure 19 is modeled

in the GIM using the imperative-function object shown in Figure 21.

Because of Restriction 111.2, the formal semantics of a function declaration are defined

more restrictively than the formal semantics of a procedure declaration. For a function f,

let fr be a vector representing the input parameters in f. Each function declaration in the

GIM takes the following form.

function f(.)

{P}
S1

{R}

42

(impratie-fnctin)) imp-func-statements

iinp-fuinc-identifler Finip-fimc-formals
((imperative-variable) =(imp e rati v e-vari able) I - tv-sinet

imp-function-return-type (mperative-variable
(impterative-real)

(imperative-variable)

Figure 21 Modeling a Function

In order to define the semantics for the value that is returned from the function f,

a modified representation of imperative functions is used. Let y represent the value that

is returned from f. Let f' be a procedure that takes the same input parameters as f, and

includes y as the single output parameter. The statements in f' are the statements from

f, viz. S1. The procedure f' takes the following form.

procedure f'(t, y)

{P}
S1

{R}

This modified representation of imperative functions is used to define the semantics

of a function invocation, as described in Section 3.12.

3.11 Imperative Procedure Invocation

If an imperative language provides a way to define a subprogram, it will also provide

a way to invoke the subprogram. This subprogram call mechanism refers to the called

subprogram by name and passes any actual parameters required by the subprogram. This

section defines one of the specific implementations of the subprogram call, viz. procedure

calls.

An imperative procedure is invoked using an imperative procedure call, which is a

kind of statement in the GIM. The call to a procedure is modeled in the GIM using ASTs

built from the imp-procedure-call class. Figure 22 shows the class description for the

43

imp-procedure-call

imp-proc-call-identifier: symbol
imp-proc-call-actuals : seq(imperative-variable)

Figure 22 Imperative Procedure Call Class

imp-procedure-call class. The imp-call-identifier attribute holds the name of the

procedure being invoked. The imp-call-actuals attribute holds the actual parameters

used in the procedure call.

For example, in FORTRAN, the invocation of a defined SUBROUTINE is implemented

using the CALL statement. The FORTRAN procedure VADD shown in Figure 16 is invoked

with the following CALL statement.

CALL VADD(i, Ri, R2, R3)

This procedure call invokes the procedure VADD and passes in the parameters 1, Ri, R2,

and R3.

imp-proc-call-identifier imp-proc-call-actuals

C (imperative-variable)D ative-literal-integer)

(imperative-variable)(i(mperative-variable)

Figure 23 Imperative Procedure Invocation Object

Figure 23 shows how this invocation of VADD is modeled in the GIM using an in-

stance of the imp-procedure-call class. Because of the nature of the object extraction

methodology, actual parameters used in subprogram calls must be variables. This leads to

the following restriction on subprogram calls.

Restriction 111.3. All actual parameters in subprograms calls must be variables.

44

For this reason, actual parameters such as the integer 1 in Figure 23 are replaced

by a temporary variable and an assignment statement is added to assign this variable the

value of the parameter. For example, the original GIM call to VADD is shown below.

VADD (1, Ri, R2, R3)

The updated call to VADD with the integer actual parameter replaced by a variable is shown

below.

TEMP-29 := 1;

VADD (TEMP-29, Ri, R2, R3);

The formal semantics of a procedure call are defined as follows. Let p be a procedure

and let S1 be the sequence of statements declared in p. Let a be a vector representing the

actual parameters that correspond to input parameters in p. Let E be a vector representing

the actual parameters that correspond to output parameters in p. An invocation of the

procedure p takes the following form. 2

To invoke p, the actual parameters are copied to the formal parameters and control flow

transfers to p. Executing the procedure call is equivalent to executing the following se-

quence.

a, Si, Ei

Using weakest precondition notation, the semantics for a procedure call are defined below.

Definition II1.11. wp(p(a, Z), R) = wp(I- := a,S1, e], R)

3.12 Imperative Function Invocation

This section defines the other specific implementation of the subprogram call, viz. the

function call. Most imperative languages invoke declared functions by using the name of

the function and passing in the required parameters. A function call is a kind of expression.

2 Here, p represents both the procedure entity and the identifier that names the procedure.

45

Because of Restriction 111.3, expressions do not appear in procedure calls but do appear in

assignment, selective, and iterative statements. This implies function calls do not appear

in procedure calls in the GIM, but can appear in the other statements. The call to a

function is modeled in the GIM using the imp-function-call class. Figure 24 shows

imp-function-call

imp-fun-call-identifier: symbol
imp-fun-call-actuals: seq(imperative-variable)

Figure 24 Imperative Function Call Class

the class description for the imp-function-call class. The imp-fun-call-identifier

attribute holds the name of the procedure being invoked. The imp-fun-call-actuals

attribute holds the actual parameters used in the function call.

An important difference between the invocation of procedures and functions in the

imperative paradigm is that procedure calls can only appear as whole statements and not

part of another statement. Function calls can only appear as part of an expression that is

part of another statement and not as whole statements themselves.

For example, the FORTRAN function PRDIV shown in Figure 19 is invoked as part

of the following statement.

SIGPR = PRDIV(BETA, XLAMDA, DIAM)

This function call invokes the function PRDIV passing in the parameters BETA, XLAMDA, and

DIAM. The result of this function call is used as the expression assigned to the variable

SIGPR. Figure 25 shows how the invocation of PRDIV is modeled in the GIM using an

imp-fun-call-identifier imp-fun-call-actuals

(imperative-variable)

(imperative-variable)

Figure 25 Imperative Function Invocation Object

46

instance of the imp-function-call class.

The formal semantics for function calls in the GIM are defined as follows. Let f

be a function and let S1 be the sequence of statements declared in f. Let a be a vector

representing the actual parameters that correspond to the input parameters in f. Since

every function appears as part of an expression in some statement, let S represent the

statement in which f appears. Recall the modified representation of a function presented

in Section 3.10 includes one output parameter, y, which represents the value returned from

the function f. Let f' be the procedure that represents f with the input parameters from

f and the additional parameter y. Let b represent the actual parameter that corresponds

to y.

Using these definitions, an invocation of the function f takes the following form.

f (d)

An invocation of the procedure, f', takes the following form.

f'(a,b)

The difference between the invocations of f and f' is that the invocation of f is part of S

and the invocation of f' is a single statement. Invoking f is equivalent to invoking f' and

then substituting b in S for any invocations of f. This provides a formal representation of

the value returned from f. The substitution of b for the call to f in S is represented by

the following notation.

Sf (a)

In this way, the call to f is equivalent to the following sequence of statements.

[f' (4, b), Sb

47

As defined in Section 3.11, when the procedure f' is invoked, the actual parameters in

5 are copied to the formal parameters in t and control flow transfers to f'. After execution

of the function, the value of y is copied to b. Hence, executing the call to f' is equivalent

to executing the following sequence.

[.t := , Sl, b := y]

Using weakest precondition notation, the formal semantics of a call to function f,

where the statement S contains f(d), are defined below.

Definition 111.12. wp(S, R) = wp([d := Z, S1, b := y (a)], R)

3.13 Recursion

In the imperative paradigm, it is possible for a subprogram to invoke itself in a process

known as recursion. Knuth [37] claims that any recursive algorithm can be transformed

into an iterative algorithm. For this reason, the GIM does not model recursion. This leads

to the following restriction.

Restriction 111.4. Subprograms to be modeled in the GIM are not allowed to make calls

to themselves.

Even more restrictively, the call tree consisting of the graph of subprogram calls made

in a collection of imperative subprograms is assumed to be a directed acyclic graph or DAG.

Restriction 111.5. The call tree of a collection of imperative subprograms must be a di-

rected acyclic graph.

3.14 Imperative Variables

Each variable that is set or used in an imperative program is modeled in the GIM

AST by building an imperative-variable object. Figure 26 shows the class description

for the imperative-variable object. The imp-data-scope attribute models the name of

the procedural abstraction in which this variable is defined. The imp-data-identifier

attribute models the name of the imperative variable. The imp-data-type attribute is an

48

imperative-variable

imp-data-scope: symbol
imp-data-identifier: symbol
imp-data-type: imperative-data-type
imp-data-indices : seq(imperative-data-construct)
imp-constant-value: any-type

Figure 26 Imperative-Variable Class

object that describes the data type of the imperative variable. The imp-data-indices

attribute stores the GIM representations of the indices for this variable, if any. The

imp-constant-value attribute stores the value assigned to the variable if the variable

is a constant.

(imperative-variable)

imp-data-scope = WC
imp-data-identifier f mfpgrc
imp-data-indices =]
,mp-constant-value = *undefined*

imp-data-type

(imperative-integer)

imp-type-size = 4

Figure 27 Imperative-Variable Object

For example, Figure 27 shows how the C integer variable mfpgrc, defined in a pro-

cedure wc, is represented in the GIM. Here, the variable mfpgrc is modeled by building

an instance of the imperative-variable class representing an integer variable with no

indices and no constant value. The imp-data-scope attribute is set to the symbol WC

since this is the name of the procedure in which this variable is defined. Scoping issues are

discussed in more detail in Section 3.16. The data type of mfpgrc is modeled using the

imperative-integer object in the GIM. Certain data types are modeled in the GIM as

discussed in Section 3.15.

3.15 Imperative Data Types

In order to model variables in the GIM, certain data types are also modeled. The

data types being modeled are:

49

Integer zero and positive and negative whole numbers

Real rationals and irrationals

Boolean true and false logical values

Character single alpha characters

String sequences of characters

Array homogeneous collections of elements accessed with an index.

Each of the classes representing these data types has an attribute imp-type-size

that indicates the number of bytes associated with the data type. Some imperative lan-

guages allow the programmer to specify the size of the data type at the declaration of a

variable. Other languages do not allow this, but include types of different sizes to meet

data storage requirements. Programmer-defined data type sizes are modeled in the GIM

by storing the specified size in the imp-type-size attribute. For languages that do not

allow the programmer to define the size of the data type, the size of the built-in type must

be determined and stored into the imp-type-size attribute.

For example, in the FORTRAN programming language, the programmer is allowed

to declare the size of the data type when declaring variables. The MFPGRC variable from

Section 3.14 can be declared as shown below.

INTEGER*4 MFPGRC

The integer data type is represented using the imperative-integer object. Figure 28

imperative-integer

imp-type-size = integer

Figure 28 Imperative-Data-Type Class

shows the class description for imperative-integer. The imp-type-size attribute indi-

cates the size of the data type. The four byte FORTRAN integer data type used to declare

MFPGRC in the example above is represented using the imperative-integer object shown

in Figure 29.

In the C programming language, the programmer must use intrinsic data types to

specify the size of data storage locations. The int data type in C is normally the natural

50

((imperative-integer)

imp-type-size = 4

Figure 29 Four Byte Integer Object

size for a particular host machine: either 16 or 32 bits [35]. The short or long qualifier

can be applied to the basic C types to change the number of bytes used for the variable.

A short integer is often 2 bytes and a long integer is often 4 bytes [35]. In order to model

these data types in the GIM, the size of the intrinsic data types and qualifiers must be

determined for a specific compiler in order to store the correct value for the imp-type-size

attribute of the imperative data type objects.

In C, the MFPGRC variable can be declared as follows:

short MFPGRC;

Here, an imperative-integer object with the imp-type-size attribute set to 2 correctly

models the data type of the MFPGRC variable, as shown in Figure 30.

((imperative-integer)
imp-type-size = 2

Figure 30 Two Byte Integer Object

3.16 Imperative Scoping Issues

In the imperative paradigm, the "visibility" a variable has to subprograms is known

as the scope [72] of the variable. A subprogram that defines a variable has visibility to it,

but different imperative programming languages provide different rules for the visibility of

the variable to other subprograms.

Each subprogram in the GIM has a local scope in which the variables declared are

not visible to any other subprograms. The GIM subprogram that declared the variable

can share its value by passing the variable to other subprograms as a parameter. Passing a

local variable to another subprogram as an actual parameter has the effect of making the

variable visible to the called subprogram. In the imperative paradigm, this is termed pass

by reference parameter passing [16]. All parameters in the GIM are passed by reference.

51

Variables declared in the main program are considered to be in the global scope. Some

imperative programming languages allow subprograms to directly access variables declared

in the global scope, i.e. without passing the variable to the subprogram via a parameter.

This is not modeled in the GIM and leads to the following restriction on variable scoping

in the GIM.

Restriction 111.6. All variables in a subprogram are either declared locally or are formal

parameters of the subprogram.

In the imperative paradigm, some programming languages allow subprograms to be

declared inside another subprogram. This leads to a nesting of variable scopes where

variables in the "outer" subprogram are visible to the "inner" subprogram. Declaring a

subprogram inside another subprogram is not modeled in the GIM which leads to the

following restriction on declaring subprograms in the GIM.

Restriction 111.7. Subprograms can not be declared inside of another subprogram. They

are all declared in the main program's global scope.

3.17 Imperative Homogeneous Data Structures

In the imperative paradigm, collections of homogeneous elements can be built using

constructs such as lists and arrays. The only such collection modeled in the GIM is the

array. An array is an indexable collection of homogeneous elements. Variables in the GIM

can be of the data type array. The indices used to access an array element are modeled

using the imp-indices attribute of the imperative-variable class.

For example, an access to the first element of a FORTRAN array R used in a subpro-

gram VADD is modeled in the GIM as shown in Figure 31 The imp-data-indices attribute

models the expression or variable being used to access the element of the array. In the

figure, the access to the first element of the array R is modeled by storing the literal value

1 as the index into the array.

52

((imperative-variable)

p-data-scope = VADD
ilp-data-identifier =R

imp-constant-value = *undefined*

imp-data-type imp-data-indices
1 7

((imperative-array) (imperative-literal-integer)

Figure 31 Imperative Array Access Object

3.18 Imperative Heterogeneous Data Structures

Some programming languages in the imperative paradigm, allow the programmer to

build collections of heterogeneous data items, e.g. records in Pascal and structs in C. These

heterogeneous data structures are not modeled in the GIM, which leads to the following

restriction.

Restriction 111.8. The GIM does not model heterogeneous data structures.

3.19 Imperative Pointers

Some imperative programming languages allow the programmer to store the address

of a variable and then access the variable via the address. This mechanism is typically

referred to as using pointers to variables. Pointers are not modeled in the GIM, which

leads to the following restriction.

Restriction 111.9. The GIM does not model pointers.

3.20 Imperative Expressions

In the imperative paradigm, expressions can be literal values, unary or binary ex-

pressions with operators, function calls, or even variables. This section describes how

expressions are modeled in the GIM.

Literal values in the GIM are modeled by the imperative-literal-constant class.

Figure 32 shows the class description for the imperative-literal-constant class. The

53

imperative-literal-constant

imperative-literal-value: any-type

Figure 32 Modeling Imperative Literal Constants

imperative-literal-value attribute models the value of the literal. Figure 33 shows all

imperative-literal-boolean
imperative-literal-integer
imperative-literal-real
imperative-literal-string

Figure 33 List of Imperative Literal Constants

the literal constants currently modeled in the GIM. Each literal shown is modeled as an

AST defined as a subclass of the imperative-literal-constant class. Literal constants

other than those listed in Figure 33 are not modeled in the GIM, but could easily be

modeled by defining a new subclass under the imperative-literal-constant class that

describes the new literal constant.

Unary expressions in the GIM are modeled using the imperative-unary-expression

class. Figure 34 shows the class description for the imperative-unary-expression class.

imperative-unary-expression

imp-unary-operand: imperative-expression

Figure 34 Modeling Imperative Unary Expressions

The imp-unary-operand attribute models the single operand of the unary expression.

Figure 35 shows all the unary expressions currently modeled in the GIM. Each unary

expression shown is modeled as an AST defined as a subclass of the imperative-unary-

expression class. As with literal constants, any unary expressions other than those listed

in Figure 35 are not modeled in the GIM but can be by building a new subclass that

defines the new unary expression.

Binary expressions in the GIM are modeled by the imperative-binary-expression

class. Figure 36 shows the class description for imperative-binary-expression class. Bi-

nary expressions in the imperative paradigm either have two operands or multiple operands.

54

imperative-negate

imperative-not

Figure 35 List of Imperative Unary Expressions

imperative-binary-expression

imp-bin-exp-operand-1 : imperative-name
imp-bin-exp-operand-2: imperative-data-construct
imp-bin-exp-seq : seq(imperative-expression)

Figure 36 Modeling Imperative Binary Expression

For this reason, the imperative-binary-expression class has three attributes for mod-

eling the operands of the expression. The imp-bin-exp-operand-1 and imp-bin-exp-

operand-2 attributes hold the two operands if the binary expression has only two operands.

When the same binary expression is repeated for multiple operands, such as in the expres-

sion A + B + C, the multiple operands are modeled in the imp-bin-exp-seq attribute.

Certain binary expressions can be repeated in this way, e.g. addition and subtraction.

Others can not be repeated in this way, e.g. <, <=, and >. Figure 37 lists all the binary ex-

imperative-division
imperative-equal
imperative-exponent
imperative-greater-than-or-equal
imperative-greater-than imperative-addition
imperative-less-than-or-equal imperative-and
imperative-less-than imperative-concat
imperative-not-equal imperative-multiplication
imperative-subtraction imperative-or

(a) Two operand. (b) Sequence.

Figure 37 List of Binary Expressions Modeled in the GIM

pressions that are modeled in the GIM. The binary expressions that can not be repeated are

shown in Figure 37(a). These expressions are modeled using the imp-bin-exp-operand-1

and imp-bin-exp-operand-2 attributes. The binary expressions that can be repeated

are shown in Figure 37(b). These expressions are modeled using the imp-bin-exp-seq

attribute.

55

As with literal constants and unary expressions, any binary expressions not shown

in Figure 37 are not modeled by the GIM. This new binary expression could be modeled

by adding a subclass to the imperative-binary-expression class that defines the new

binary expression.

3.21 Imperative Input

Programming languages in the imperative paradigm allow the programmer to interact

with the user via input and output statements. These statements, if directed towards a

file, allow the programmer to implement persistent storage of data. This section describes

how input statements in imperative languages are modeled in the GIM.

In order to receive data values from outside an imperative program, imperative pro-

gramming languages provide the programmer with an input statement. This statement

can be used to communicate with the user or used to input data from a file. The Cobol

programming language actually has two statements: one for inputting low-volume data

and one for inputting data from a file. For example, the following Cobol ACCEPT statement

is used to input a program name from the user using the console typewriter.

ACCEPT PROGRAM-NAME FROM CONSOLE.

Input statements are modeled in the GIM using the imperative-input object.

Figure 38 shows the class description for this object. The imp-in-logical-file attribute

imperative-input

imp-in-logical-file : imperative-data-construct
imp-input-list: seq(imperative-data-construct)

Figure 38 Imperative Input Class

is used to model from where the input is coming. When the input comes from the user,

the attribute is set to an accepted value that models that fact. The imp-input-list

attribute holds the sequence of data items being input. Figure 39 shows how the Cobol

ACCEPT statement is modeled in the GIM, assuming the PROGRAM-NAME variable is defined

in a procedure called GET-INFO. The imp-in-logical-file attribute, in this example,

has been arbitrarily set to the symbol console in order to represent input from the user

56

(imperative-input)

imp-in-logical-file = 'console

imp-input-list

((imperative-name)
I]imp-scope = WC I

limp-identifier = PROGRAM-NAME

imp-indices = []

Figure 39 Imperative Input Object

console. As long as this attribute is set consistently, receiving input from the user can be

modeled in this way.

In imperative languages, when the programmer wants to input from a file, the file

must first be "opened". The act of opening a file establishes the link between the physical

file on disk and the logical file in the program. The status of the file, e.g. opened for input

or output, and the access mode of the file, e.g. direct or sequential, are also established

when the file is opened. This information about the file is modeled in the GIM using

the imperative-file object. Figure 40 shows the class description for this object. The

imperative-file

imp-designator: imperative-data-construct
imp-file-name: imperative-data-construct
imp-access: symbol
imp-status: symbol

Figure 40 Imperative File Class

imp-designator attribute holds name of the logical file as referenced in the program.

The imp-access attribute holds the access type, direct or sequential, for the file. The

imp-status attribute holds the status of the file, opened either for input or output. In

Cobol, the OPEN statement is used to open a file. The following Cobol OPEN statement

opens a file MASTER-FILE for input. The access mode is assumed to be sequential.

OPEN INPUT MASTER-FILE

Figure 41 shows how this file is modeled in the GIM. The name of the file being opened is

used as the file designator.

57

i (imperative-file)
imp-designator = MASTER-FILE
imp-status -INPUT
imp-access = SEQUENTIAL

Figure 41 Modeling MASTER-FILE

Once files are opened, input statements are used to input data from the files. In

Cobol, the READ statement is used to input data from a file. For example, the following

READ statement reads the next record from the file MASTER-FILE and stores it into the

variable MASTER-WORK.

READ MASTER-FILE INTO MASTER-WORK
AT END PERFORM END-DATA-MASTER.

Figure 42 shows how this READ statement is modeled in the GIM. The imp-in-logical-

((imperative-input)

imp-in-logical-file imp-input-list

(imperative-name) (imperative-name)
imp-scope = GET-INFO (imp- petie = T-N O

imp-identifier - MASTER-FILE imp-scope = GET-INFO
imp-indices = Iimp-identifier =MASTER-WORK

i iimp-indices = []

Figure 42 Modeling the COBOL Read

file attribute, in this example, has been set to an imperative name object referring to

the file MASTER-FILE in order to indicate the input is coming from this specific file.

The semantics of the GIM input statement are similar to the semantics of the GIM

assignment statement. Both statements define values for variables. Abstractly, an input

statement in the GIM is equivalent to calling a subprogram where all the parameters are

output from the subprogram.

For example, let I represent an input statement and let d represent a vector holding

the variables that appear in I. Let t represent a vector of variables returned from the

input statement after the values are read from the indicated file (or the console). Then,

58

execution of the GIM input statement is equivalent to the following sequence:

[I, d :=

The formal semantics for the input statement I are defined below.

Definition 111.13. wp(I(d), R) = wp([I(a), d := t], R)

3.22 Imperative Output

This section describes how output statements in imperative languages are modeled

in the GIM. In order to communicate the values of variables outside a program, imper-

ative programming languages provide the programmer with an output statement. This

statement is used to communicate with the user or store values in data files. The output

statement is modeled in the GIM using the imperative-output object. Figure 43 shows

imperative-output

imp-out-logical-file : imperative-data-construct
imp-output-list: seq(imperative-data-construct)

Figure 43 Imperative-Output Class

the class description for this object. The imp-out-logical-file attribute is used to store

the logical link to a file opened for output. The imp-output-list attribute holds the list

of data items to be output. The data items are modeled using imperative-output-item

objects. Figure 44 shows the class description for the imperative-output-item object.

imperative-output-item

imp-out-item: imperative-expression
imp-format: imperative-format

Figure 44 Imperative Output Item

The imp-out-item attribute holds the expression to be output. The imp-format attribute

holds formatting information for the item to be output. This attribute models the output

formatting implemented in some imperative languages, e.g. total number of spaces in the

59

output or number of digits to output after the decimal point. If the output item is not

being formatted in any way, the imp-format attribute is empty.

In COBOL, there are two output statements: one for low-volume output and the

other for output to a data file. The DISPLAY statement is used in COBOL to output data

to the user. For example, the following COBOL DISPLAY statement is used to prompt the

user for the program name outputting to the console screen.

DISPLAY 'ENTER PROGRAM NAME'

UPON CONSOLE.

Figure 45 shows how the COBOL DISPLAY statement is modeled in the GIM. In this

im (imperative-output)

ip-out-logical-file = 'STD-OUT/

Simp-output-list

Em (imperative-output-item)

imp-out-item = 'ENTER PROGRAM NAME'
imp-format = *undefined* I

Figure 45 Modeling the COBOL Display

example, the imp-out-logical-file attribute has been set to the symbol STD-OUT to

indicate output to the standard output port. As with input, as long as the standard

I/O ports are modeled consistently, output to the user can be modeled in this way. The

imp-format attribute is empty indicating this output is not formatted.

In COBOL, the WRITE statement is used when the programmer wants to output data

values to a file. After the file has been opened for output, a data record is associated with

the file and this data record can be output to the file. While this mechanism is more com-

plicated than the mechanism in COBOL for reading from a file, writing to a file can still be

modeled in the GIM by determining with which file a record is associated and storing this

information in the imperative-output object. For example, the following COBOL pro-

gram, ADDRESS-LISTING, declares a file ADDRESS-LIST, declares a record OUTPUT-RECORD

associated with the file, opens the file for output, and writes a record to the file.

60

PROGRAM-ID.

PROGRAM-ADDRESSES.

FILE-CONTROL.

SELECT ADDRESS-LIST ASSIGN TO UR-1403-S-OUTFILE.

FILE SECTION.

FD ADDRESS-LIST
01 OUTPUT-RECORD.

05 LAST-NAME PICTURE X(12).

PROCEDURE DIVISION.

MAIN-ROUTINE.

OPEN OUTPUT ADDRESS-LIST

ACCEPT OUTPUT-RECORD FROM CONSOLE.

WRITE OUTPUT-RECORD.

Figure 46 shows how the COBOL WRITE statement is modeled in the GIM. In this example,

((imperative-output))

imp-out-logical-file - imp-output-listLi (imperative-name) N (imperative-name)

imp-scope = PROG-ADDRESS imp-scope = PROG-ADDRESS
imp-identifier - ADDRESS-LIST imp-scoper OGTPUTRECR
mp-indices imp-indices =

Figure 46 Modeling the COBOL Write

the connection between OUTPUT-RECORD and the file ADDRESS-LIST is used to determine

the value of the imp-out-logical-file attribute. Even though the logical file is not

explicitly referenced in the WRITE statement, the indirect reference can be used to model

output to the file.

The semantics of the GIM output statement are defined using the weakest precon-

dition notation. Semantically, the output statement is not allowed to change the state of

the program. Let 0 represent an output statement in the GIM. The formal semantics of

the output statement are defined as

Definition 111.14. wp(O, R) = R

61

This means the GIM output statement can have no side-effects that would change the

state. In this way, the input and output statements provided by imperative programming

languages are modeled in the GIM.

The following sections provide formal definitions for imperative subprograms and

subprogram calls. These definitions are used throughout the rest of this document to build

formal transformations.

3.23 Formalizing GIM Statements and Expressions

This section presents formal representation for GIM statements and expressions.

These formal representations are used in the formal transformations presented in Chap-

ter VI. Let x represent a GIM variable and let e represent a GIM expression. A GIM

assignment statement is represented formally by the following tuple.

<x, :=,e>

This tuple indicates that x is the variable to be assigned the value of the expression. e. The

symbol is a syntactic token that distinguishes this tuple as an assignment statement.

Let e represent a GIM expression and let S1 and S2 represent sequences of GIM

statements. A GIM selection statement is represented by the following tuple.

< if, e, then, S1, else, S2 >

This tuple indicates that the sequence of statements S will be executed if the expression

e evaluates to true otherwise the S 2 sequence will be executed. The if, then, and else

symbols are syntactic tokens used to identify this tuple.

Similarly, let e represent a GIM expression and let S 3 represent a sequence of GIM

statements. The GIM iteration statement is represented by the following tuple.

< while, e, S3 >

62

This indicates that the sequence of statements S 3 will be executed while the expression e

is true. The while symbol is a syntactic token used to identify this tuple.

Let E represent a sequence of expressions. The GIM input and output statements

are represented formally by the following tuples.

<input, iport, E >

<output, oportE >

These tuples indicate the expressions in the sequence E are either input from the

input port iport or output to the output port oport.

Expressions in the GIM are represented formally by the following tuples. Let el and

e2 be GIM expressions.

< el, +, e2 >

<e 1 , and, e 2 >

< el, concat, e2 >

< ej, /e2 >

< e,- e2 >

< *l, e2 >

< e > e 2 >

< el, >, e2 >

< el, <=, e2 >

< el, <, e 2 >

< el, *e 2 >
< el, <>e 2 >

< el, or, e2 >

< el,-,e2 >
--,el >

< not, el >

63

3.24 Formalizing Imperative Subprograms

This section explains how subprograms modeled by the GIM imperative-procedure

and imperative-function ASTs can be represented more mathematically.

The following definitions are used to formally define subprograms.

ids - A symbol storing the subprogram's name.

P, - The sequence of input parameters.

Pout - The sequence of output parameters.

Prt - The sequence of returned values.

P1,, - The sequence of local variables.

- The sequence of statements from the subprogram.

Thus, a subprogram is defined by the following tuple.

< ids, Pin, Pout, Pret, Poc, E >

Several of the attributes of imperative subprograms are sequences of imperative vari-

ables, viz. Pi, Po.t, Pret, and Poc. In order to manipulate these sequences formally, the

four special sequence operators, E, G, C, and pos are defined below.

S1DS2 = S, concat [x I x E S 2 A x JS1]

S1eS 2 = [xlxES1 A xOS 2]

S 1 E S 2 = Vx E S1 - xE S 2

pos(x, E) Let the pos operation indicate the ordinal position of the element x in the se-

quence E.

For example, Figure 47 shows the imperative subprogram UPLREQ. This subprogram

is formally defined by the following tuple.

64

DOUBLE PRECISION function UPLREQ(ZCOS,XLAMDA,SIGTRB)

INCLUDE 'bdincl.f
C

DATA SIGTO/3.75D-06/
C

TMP1 = XLAMDA*ZCOS*ZCOS*ZCOS
TMP2 = TMP1**0.200

C
C SIGUP IS THE UPLINK BEAM DIVERGENCE DUE TO TURBULENCE FOR 10
C A BEAM WITH NO PHASE CORRECTION.
C

SIGUP = SIGTO/TMP2
C

IF(SIGTRB. GT.0.0) THEN
UPLREQ = SIGUP/SIGTRB
ELSE
UPLREQ = 1000000.0O0
END IF
RETURN 20
END

Figure 47 FORTRAN Function UPLREQ

< UPLREQ, Pin, Pout, Pret, Ploc, E > where

Pi= [ZCOS, XLAMDA, SIGTRB] and

Pou = [] and

Pret [UPLREQ] and

P1o,= [SIGTO, TMP1, TMP2, SIGUP] and

E = statements between DATA and END

The input parameters of UPLREQ are the data items ZCOS, XLAMDA, and SIGTRB.

UPLREQ has no output parameters and the data item returned from the execution of the

UPLREQ function is represented by including the identifier UPLREQ in the Pret sequence. The

local variables of UPLREQ are the data items SIGTO, TMPI, TMP2, and SIGUP. The sequence

of imperative statements between the BEGIN and the END of UPLREQ comprise E.

65

3.25 Formalizing Imperative Subprogram Calls

This section provides formal definitions of the GIM imp-procedure-call entity, a

kind of statement, and the GIM imperative-function-call entity, a kind of expression.

The calling relationship between any two subprograms can be defined formally as

follows. Let S be the calling subprogram and let S 2 be the called subprogram. Let ids 2

be a symbol that holds the name of the called subprogram. Let Pforms be a sequence of

variables that are formal parameters of the calling subprogram, i.e. (Pins1 D Poats,1). Let

Pacts, be a sequence of variables that are actual parameters in the calling subprogram,

where Pats1 E (Pf orms ED Poc0 s,). Thus, a call to the subprogram S2 by subprogram S1

is represented by the following tuple.

< idS 2 , Pacts1 >

In the imperative paradigm, the number, order, and type of parameters in Pactsl must

match the number, order, and type of the parameters in Pforms2 of the called subprogram.

This link between an actual parameter in a call to a subprogram and the formal

parameter in the called subprogram is important in re-engineering. Even though one

subprogram can have multiple calls to another subprogram or can call many other sub-

programs, a static mapping between actuals and formals of each call can be built. For

each call to a subprogram, the order of the actual parameters determines to which formal

parameter in the called subprogram the actual parameter is mapped.

Definition 111.15. The It map links an actual parameter from the calling program to a

single formal parameter in the called subprogram.

Let I be a call from subprogram S1 to subprogram S 2 . Let pl be an actual parameter

in 1. Let P2 be a formal parameter in the subprogram S 2 . Let pos(p, Pact,) indicate the po-

sition the parameter pl takes in the sequence of actual parameters Pact,. Let pos(p2, Pform2)

indicate the position of P2 in the sequence of formal parameters Pform2.

The it relation is defined formally as follows.

66

A(PI) = P2 where

I = < ids 2 ,Pactl > and

S2 = < ids 2, Pin, Pout, Pret, Plioc, E > and

Pform = Pin D Pout and

Pi E Pact, and

P2 E Pform and

pos(p, Pact,) = pos(p2, Pform)

DOUBLE PRECISION function PRDIV(BETA,XLAMDA,DIAM)

INCLUDE 'bdincl.f'
C
C CALCULATES THE PROJECTOR BEAM DIVERGENCE FOR A GIVEN OPTICS
C SIZE THIS IS BASED ON THE RAYLEIGH (AIRY DISK) CRITERION.
C

DATA FAC/1.220D0/

QUAL = MAX(BETA,1.ODO) 10
PDIAM = MAX(DIAM,0.1DO)
WAVELN = XLAMDA*1.D-06
PRDIV = QUAL*WAVELN*FAC/PDIAM
RETURN
END

Figure 48 FORTRAN Function PRDIV

For example, Figure 48 shows the declaration of the imperative subprogram PRDIV

that has three formal parameters, BETA, XLAMDA, and DIAM.

Figure 49 shows the partial declaration of the subprogram RELAY and the call to the

subprogram PRDIV. In this example, let

1 = < PRDIV, [B, X, DIAM] >

Thus, the actuals in I and the formals from relay are defined as follows.

Pact = [B, X, DIAM] and

PformpaDIV = [BETA, XLAMDA, DIAM]

67

SUBROUTINE RELAY(B,X,DIAM)

INCLUDE ' bdincl, f
C
C DESE RESEARCH AND ENGINEERING, INC. (21 MAY 1985)
C
C
C FIRST THE PROJECTOR DIVERGENCE
C

SIGPR = PRDIV(B,XDIAM) 10
SIGPSQ = SIGPR*SIGPR

C
RETURN
END

Figure 49 FORTRAN Subroutine RELAY

Let -1 4 represent a t mapping from an actual parameter to a formal parameter.

Hence, the following mappings are included in the p relation.

RELAY::B - PRDIV::BETA

RELAY::X PRDIV::XLAMDA

RELAY::DIAM - PRDIV::DIAM

Note that the identifiers used to name the parameters may or may not be the same.

In the example, the scope of the parameter is used to differentiate between actuals and

formals using the same identifier. For example, the PRDIV: : prefix indicates the scope of

a variable is PRDIV. In this way, the DIAM variable from PRDIV is distinguished from the

DIAM variable in RELAY.

3.26 Formalizing Imperative Designs

This section provides a formal representation for imperative designs. Formal trans-

formations that add subprograms to a design and remove subprograms from a design are

also provided.

The formal definition of an imperative design is provided below. Let S* represent

the set of subprograms included in the design. An imperative design, SD, is represented

68

formally by the following tuple.

SD = S*

An imperative design consists of the set of imperative subprograms to be included in the

design.

Let T + be a transformation of an imperative design that adds a new subprogram to

an existing design and returns a new imperative design. Let SD represent an imperative

design and let S represent the subprogram to be added to the design. The transformation

is defined below.

T+(SD, S) = SD' where

SD' = SDU{S}

Let T - be a transformation of an imperative design that removes a subprogram

from an existing design and returns a new imperative design. Let SD represent an im-

perative design and let S represent the subprogram to be removed from the design. The

transformation is defined below.

T-(SD, S) = SD' where

SD' = SD-{S}

3.27 Summary

This chapter has defined the Generic Imperative Model (GIM) that is used to model

assignment, variables, expressions, and control flow constructs in imperative programming

languages.

Several restrictions have been placed on the GIM. Some of these restrictions are

meant to canonicalize the representations in the GIM. Others place limits on which imper-

ative entities can possibly be modeled using the GIM. Specifically, Restriction III.1 states

that a parameter of a procedure can not be both an input and an output parameter. This

69

restriction is meant to simplify the way parameters are modeled. This restriction is not

unreasonable since any procedures that do not meet the restriction can be converted using

the process presented in Appendix D. Similarly, Restriction 111.2 does not allow functions

to include output parameters or return more than a single data item. It is hypothetically

possible to convert such functions into procedures and then represent the procedures in

the GIM. Restriction 111.3 requires all parameters in subprogram calls to be variables.

Parameters that are not variables are easily converted to a temporary variable, so this is

a reasonable restriction of the GIM. Restrictions III.4 and 111.5 limit subprogram calls to

non-recursive calls. This restriction is reasonable because Knuth [37] argues any recursive

algorithm can be represented using an iterative algorithm. Restriction 111.6 does not allow

global variables to appear in subprograms. This means subprograms with variables other

than formal parameters or local variables must first be converted into the proper form. It

is hypothetically possible to convert global variables into formal parameters throughout

the call tree of a legacy system, so this restriction is not unreasonable. Restriction 111.7

does not allow one subprogram to be declared inside another subprogram. The scoping

issues involved in this nesting of subprograms is more complicated than that of imper-

ative variables, but it is hypothetically possible to convert the nested subprograms into

subprograms declared at the global level.

None of the restrictions discussed above preclude the representation of imperative

entities in the GIM. However, Restriction 111.8 states that heterogeneous data types are

not modeled in the GIM. Restriction 111.9 states that pointers are not modeled in the

GIM. These two restrictions limit the entities that can be modeled by the GIM. If the

legacy system includes either heterogeneous data types or pointers, the system can not be

represented using the GIM. This is not unreasonable for the FORTRAN language, but is

a limitation for languages such as C or Pascal. The GIM is easily extended by adding new

ASTs to represent the new constructs and by defining formal semantics for them using

weakest preconditions.

Overall, the GIM provides a canonical form for representing imperative programs.

The GIM is used throughout the following chapters to represent subprograms that are

being converted from the imperative paradigm to the object-oriented paradigm.

70

IV. The Generic Object Model

4.1 Introduction

This chapter defines the Generic Object-Oriented Design Model (GOM) which has

been developed to model the objects, classes, methods, and messages typically built as part

of an object-oriented programming language. A general discussion of the object-oriented

paradigm is presented first, followed by detailed descriptions of how the entities in this

paradigm are modeled using abstract syntax trees (ASTs). The classes that define the

GOM ASTs are presented using Rumbaugh's OMT notation [62]. The formal semantics

of the program constructs are defined using the weakest precondition notation.

In order to scope this research, the GOM was built to model 00 languages that use

sequences of imperative statements in the methods. Usually these languages started in the

imperative paradigm and 00 extensions were added in new versions of the languages, e.g.

Ada 95 and C++. For this reason, imperative assignment, sequential control, selective

control, and iterative control constructs are included in the GOM. These constructs must

be adapted for use in the GOM because GOM expressions now include accesses to object

attributes (as explained in Section 4.6) and possibly messages to other objects (as explained

in Section 4.8).

Since the GOM provides a canonical form for representing object-oriented languages,

00 languages such as Ada 95, C++, and Java can be modeled using the GOM. Since the

focus of this research was to produce an 00 design, no attempt was made to recover GOM

ASTs from 00 code. Instead, rudimentary transformations from the GOM to Ada 95

were developed as a proof-of-concept prototype. This prototype research is discussed with

the feasibility demonstration in Chapter VIII. For these reasons, throughout the rest of

this chapter, examples are given that have more of a forward engineering flavor (from the

GOM to a specific language) than a reverse engineering flavor (from an 00 language to

the GOM).

In order to visualize the ASTs built in the GOM, a surface syntax has been developed

for each entity in the GOM. The surface syntax is termed the Generic Object-Oriented

71

Language (GOL) and is shown in Appendix B. The GOL was built only as a tool for viewing

the GOM ASTs and is not intended as a new object-oriented programming language.

4.2 The Object-Oriented Paradigm

As discussed in Chapter III, the object-oriented paradigm is one of the four program-

ming language paradigms [16]. Korson and McGregor [38] characterize the object-oriented

paradigm using the following concepts:

Classes A class is a template that defines the attributes and operations for each
instance of the class.

Objects An object is an instance of a class. Objects model real-world entities that
have state, behavior, and identity.

Methods A method is a sequence of object-oriented statements that implement a
specific behavior.

Messages A message invokes a specific method in an object. Messages are sent to
a target object that must be able to execute the method being invoked.

Inheritance The classes in an object-oriented design are organized in a class hier-
archy where certain classes inherit the attributes and operations from other classes
in the hierarchy.

Polymorphism In an object-oriented design, it is possible to have methods (from
different classes) with the same name. Polymorphism means the appropriate method
will be executed based on the class of an object instance.

The GOM provides a canonical form for modeling each of these aspects of object-

oriented languages. The object-oriented statements in each method in the GOM are as-

sumed to be based on imperative control flow constructs. It is also assumed that one special

method is given the flow of control as the object-oriented system begins execution. This

special method is termed the main method. The following sections define the ASTs that

store the knowledge about these entities. Where applicable, the formal semantics of these

entities is also defined.

Because of the intertwining of the aspects of the 00 paradigm, it is hard to present

them in an order that does not include any forward references to other aspects. Because of

this, it is assumed that the reader has a rudimentary understanding of the Object-Oriented

72

paradigm as aspects of the GOM are discussed. There are several good references that

explain the 00 paradigm in great detail, and the reader is referred to them [9,10,38,62].

4.3 The GOM Domain Model

This section presents a brief overview of the ASTs that are included in the GOM

domain model. Figure 50 shows a partial representation of the GOM domain model. The

GOM-Entity

GOM-design
GOM-destgnen GOM-class GOM-data-constructGOM-statement . - ,

GOM-l GOM-variable GOM-expressionOM-io : 'GOM-method
GOM-data-type

GOM-assignment GOM-iteration
GOM-selection , GOM-tunctional-method 7Z GOM-attribute-access

GOM-procedural-message GOM-procedural-method GOM-functional-message

Figure 50 GOM Domain Model

overall superclass of the domain is the GOM-entity AST. The GOM-design class mod-

els collections of classes as defined in Section 4.5. The abstract class GOM-statement is

the superclass for all object-oriented programming statements modeled in the GOM. The

GOM-data-construct class is the superclass of object-oriented expressions, data types,

attribute accesses, functional messages, and variables modeled in the GOM. Each of the

lower-level classes in the GOM domain model are described in the rest of this chapter.

4.4 Classes

In the 00 paradigm, classes define templates for objects. They define the attributes

each instance of the class will have and store the behavior each instance is capable of

executing. Classes are modeled in the GOM using the gom-class class. Figure 51 shows

gom-class

gom-name: symbol
gom-attrs : set(gom-attribute)
gom-opers: set(gom-method)
gom-super: symbol

Figure 51 GOM Class Class

73

the class description for the gom-class class. The gom-name attribute holds a symbol

that represents the name of the class. The gom-attrs attribute of this class holds the

attributes of classes being modeled in the GOM. The gom-opers attribute of this class

holds the methods for the class being modeled. The gom-super attribute holds the symbol

representing the superclass from which this class inherits. The symbol USER-OBJECT is pro-

vided to represent the overall superclass at the root of the class hierarchy. As an example,

class CLASS-5 attributes RHOSTD, LAMBDA, ANGFAC
method RHO (C-5): real

begin

RHO := GET-RHOSTD (C-5)

end
superclass USER-OBJECT

Figure 52 Class CLASS-5

Figure 52 shows the class CLASS-5 (using GOL syntax). This class has three attributes

named RHOSTD, LAMBDA, and ANGFAC and one method named RHO. The class inherits from

the super class USER-OBJECT. Figure 53 shows how the class CLASS-5 is modeled in the

(gom-class)
gom-name: CLASS-5
gom-super: USER-OBJECT

gom-attrs gom-opers

(gom-variable) (gom-method)) /

/ ~(gom-variable) -1

(gom-variable)

Figure 53 GOM Class Object

GOM. The attributes RHOSTD, LAMBDA, and ANGFAC are stored in the gom-attrs attribute.

The method RHO is stored in the gom-opers attribute. The USER-OBJECT symbol is stored

in the gom-super attribute to represent the fact that this class inherits from the class

named USER-OBJECT.

74

Each class in the 00 paradigm must be able to instantiate instances of the class.

The gom-instantiate object is used to model this ability of a class. Since almost every

00 language has a unique way to instantiate an instance of a class, the gom-instantiate

object provides a canonical form for modeling object instantiation. Figure 54 shows the

gom-instantiate

gom-inst-class: symbol

Figure 54 GOM Instantiate Class

class description for the gom-instantiate object. The gom-inst-class attribute holds a

symbol representing the name of the class being requested to instantiate a new instance.

The GOL surface syntax for this class is the keyword new followed by the value of the

gom-inst-class attribute. The gom-instantiate class models the intrinsic behavior of

a class to create new instances. As with 00 objects being modeled, there is no need to

define formal semantics for 00 classes being modeled. Classes do not directly affect the

state of the 00 system.

4.5 Modeling Object-Oriented Designs

In order to model the collection of classes in an 00 design as a whole, classes are

stored in an AST built from the GOM class gom-design. An instance of the gom-design

class stores all the classes in the class hierarchy defined for a specific object-oriented design.

Figure 55 shows the class description of the gom-design class. The gom-classes attribute

gom-design
gom-classes: seq(gom-class)
gori-files: seq(gom-file)

Figure 55 GOM Design Class

holds the collection of classes that comprise the design. The gore-files attribute holds

the collection of input/output files being modeled for this design. See Section 4.26 and

Section 4.27 for discussions of how input and output statements and files are modeled in

the GOM.

75

4.6 Objects

The basic building block for the object-oriented paradigm is the object. An object

has state, behavior, and identity [9]. Objects are modeled in the GOM by using variables

whose data type refers to a class. The variable is the handle into the object and is used to

access the attributes of the object and to receive messages from other objects. Variables

are discussed in Section 4.18, but an example of a variable used to model an object is

presented here for clarity. Figure 56 shows an example of a variable that models an object

(gom-variable)

gom-name = C- 15
gom-var-scope - PRDIV
gom-indices = [1
gom-var-type - CLASS-1

Figure 56 An Object Instance Variable

instance built from class CLASS-1. This variable is modeled by building an AST from

the class gom-variable. In the figure, the gom-name attribute holds the symbol C-15

which models the identifier for the variable. The variable is referenced by this identifier in

GOM statements to provide access to the object and its attributes. The gom-var-scope

in this example holds the symbol PRDIV to represent the fact that this variable is declared

in the scope of the PRDIV method. Scoping issues for GOM variables are discussed in

Section 4.21. The gom-var-type attribute is set to the data type gom-instance which

indicates the variable is an instance of CLASS-1. For simplicity, the fact that C-15 is an

instance of CLASS-1 is represented in the figure by using a symbol.

Each object from an 00 program is an instance of a class, which defines the at-

tributes of the object. Each object has a copy of these attributes defining a separate state

space for each object instance. Each 00 programming language provides a way to access

these attributes of the object. The access of an object attribute is modeled in the GOM by

the gom-attr-access class. Figure 57 shows the class definition for the gom-attr-access

class. The go-tar-object attribute holds the variable representing the target object

whose attribute is being accessed. The gom-attrib attribute holds the variable represent-

ing the name of the attribute to be accessed. For example, Figure 58 shows an access

76

gom-attr-access

gom-tar-object: gom-variable
gom-attrib : gom-variable

Figure 57 Attribute Access Class

:(gom-attr-access)

gom-tar-object
gom-attrib

(gom-variable) (gom-attribute)
gom-name = C-1 gom-name = A
gom-var-scope - PRDIV goe-var-scope = CLASS-1
gom-var-type = CLASS-i gor-var-type = gom-real
gom-indices gom-indices = []

Figure 58 Attribute Access Object.

of the attribute A of the object C-1. The GOL surface syntax for this attribute access is

C-1. A, thus C-1 is the GOM variable holding the target object and A is the name of the

attribute being accessed.

There is no need to define formal semantics for 00 objects being modeled in the

GOM. Objects hold pieces of the state of an 00 system, but they do not change the state

directly. The programming language statements in the methods of objects do change the

state and formal semantics for these statements are defined in the sections that describe

how these statements are modeled.

4.7 Methods

A method in the 00 paradigm is a named sequence of object-oriented programming

language statements that is stored in a class. The statements that are modeled in the GOM

include assignment, sequential control flow, selective control flow, iterative control flow, and

subprogram invocation of non-user-defined subprograms. A method has formal parameters

and may or may not return a value. Methods are modeled in the GOM using ASTs built

from the goe-method class. Figure 59 shows the class description for the goi-method

class. The goi-name attribute stores a symbol representing the name of the method. The

77

gom-method

gom-name: symbol
gom-params: seq(gom-parameter)
gom-stmts: seq(gom-program-construct)
gom-retum-type: gom-data-type

Figure 59 GOM Method Class

gom-params attribute stores the formal parameters of the method. Each formal parameter

is a GOM variable. The number, order, and type of these parameters is important for

consistency and is always maintained. The gom-stmts attribute models the sequence

of programming language constructs that comprise the method. The gom-return-type

attribute models the return type (if any) of the method. If the method does not return a

value, then this attribute is undefined.

class CLASS-5 attributes RHOSTD, LAMBDA, ANGFAC

method RHO (C-5): real

begin
RHO := GET-RHOSTD (C-5)

end

superclass USER-OBJECT

Figure 60 Class CLASS-5

For example, Figure 60 shows the class CLASS-5 (using GOL syntax). CLASS-5 has

a single method named RHO. This method has one formal parameter, C-5, which is the

target object of the method and an instance of CLASS-5. The RHO method returns a value

of type goe-real and has one statement in the body of the method. Figure 61 shows how

the RHO method is represented using a gom-method AST. The name of the method, RHO, is

stored in the gom-name attribute, the formal parameter C-5 is stored as the only element

of the gom-params attribute1 . The single statement is stored in the gom-stmts attribute.

Methods in the 00 paradigm are analogous to imperative subprograms. Methods

that return a value after execution are similar to imperative functions. This kind of method

'For simplicity, the fact that C-5 is an instance of CLASS-5 is represented in this diagram by using a
symbol.

78

(gom-method)
gom-name: RHO
gom-retum-type: gom-real

gom-params gom-statements

(gom-variable)(gom-assignment)gom-name : C-5 ()

gom-var-scope : RHO
gom-var-type : CLASS-5
gom-indices :[]

Figure 61 GOM Method Object

is referred to in the rest of this document as a functional method. Methods that do

not return a value after execution, but, instead, communicate through input and output

parameters are similar to imperative procedures. This kind of method is referred to in

the rest of this document as a procedural method. Both methods and subprograms define

formal parameters where the number, order, and type of the parameters must be matched

by the actual parameters in a message or a subprogram call, respectively.

Because methods in the GOM are built from subprograms in the GIM, certain prop-

erties of GIM subprograms are carried forward in the transformation and now apply to

GOM methods. Specifically, for both functional and procedural GOM methods, the fol-

lowing restriction applies.

Restriction IV.1. A formal parameter of a method must not be both an input and an

output parameter.

For functional methods, the following restriction applies.

Restriction IV.2. All functional methods must return a single value at the end of their

execution and have no output parameters.

As with GIM subprograms, the declaration of a GOM method does not change the

state of a program. A message that invokes the method is allowed to change the state, thus

the formal semantics for method declarations provided in this section serve as a foundation

for the definition of the formal semantics of messages.

79

Given a precondition P, a postcondition R, and a sequence of 00 statements S1, it

is assumed that P and R exist such that the following holds.

{P}
S1

{R}

For a method m, let t be a vector representing the input parameters of m. Let Z be a

vector representing the output parameters of m. A procedural GOM method takes the

following general form.

method m(:, 2)

{P}
S1

{R}

A functional GOM method takes the following general form.

method m(i)

{P}
S1

{R}

In order to define the semantics for the value that is returned from the method m, a

modified representation is used. Let y represent the value that is returned from m. Let

M' be a method that takes the same input parameters as m, and includes y as the single

output parameter. The statements in m' are the statements from m, viz. S1. The method

m' takes the following form.

method m'(:, y)

{p}
S1

{R}

These general forms define the formal semantics for method declarations in the GOM. To

tie this general form to the specific representation in the GOM, recall that the sequence of

00 statements, S1, in the method is modeled by the gom-stmts attribute in the GOM.

80

4.8 Messages

In the 00 paradigm, objects communicate by sending messages. Messages are re-

quests from one object (the sending object) to another object (the target object). If the

target object has a method that corresponds to the message received, then the target ob-

ject executes this method. Messages have actual parameters that must match in number,

order, and type to the formal parameters of the requested method.

Rumbaugh [62] describes the abstract notion of flow of control in the 00 paradigm

as a collection of concurrently-active objects sending messages to each other. Rumbaugh

uses state diagrams in his dynamic model to represent this interaction of objects. Since

the GOM was built to model 00 languages that use sequences of imperative statements in

their methods, flow of control in the GOM is modeled using a procedure-driven approach

versus using concurrent tasks. Specifically, flow of control is passed from the sending object

to the target object when the message is sent, and it is returned to the sending object when

the method completes execution.

Messages are modeled in the GOM by using instances of the gore-message class.

Figure 62 shows the class description for the gom-message class. The gom-call attribute

gom-message

gom-call: symbol
gom-actuals: seq(gom-variable)

Figure 62 GOM Message Class

stores a symbol representing the name of the method to be executed in the target object.

The gom-actuals attribute stores the sequence of GOM variables that represent the actual

parameters of the method. The first parameter in the sequence of actual parameters is

always the target object. For example, consider the following assignment statement (shown

in GOL syntax).

SIGTRB := RHO (C-7);

This assignment statement includes a message that invokes the RHO method shown in

Figure 60. Figure 63 shows how the message is represented using an AST built from the

81

(gom-message)

gom-call: RHO

I gom-actuals

(gom-variable)
gom-name: C-7
gore-vat-scope : BOUNCE
gom-var-type: CLASS-5

gom-indices: []

Figure 63 GOM Message Object

gom-message class. The gom-call attribute is set to the symbol RHO to indicate the name

of the method to be invoked. The gom-actuals attribute holds the sequence with the

single actual parameter C-7. This parameter is represented as a GOM variable which is

named C-7, is in the scope of PRDIV, and is an instance of CLASS-5 2. Since C-7 is the first

parameter of the message, it is the target object.

Messages in the 00 paradigm are analogous to subprogram calls in the imperative

paradigm. A message that invokes a functional method is similar to a function call. This

kind of message is referred to in the rest of this document as a functional message. Func-

tional messages are a kind of 00 expression, i.e. they do not comprise a statement on

their own. A message that invokes a procedural method is similar to a procedure call.

This kind of message is referred to in the rest of this document as a procedural message.

Procedural messages are a kind of 00 statement.

The semantics of messages in the GOM are defined using the weakest precondition

notation as well as the general form of method declarations defined in Section 4.7. Let m

be a procedural method, and let g be a procedural message that invokes m. Let a be a

vector representing the actual parameters that correspond to input parameters in m. Let

E be a vector representing the actual parameters that correspond to output parameters in

m. The message g takes the form

m(d, E)

2 For simplicity, this instance of CLASS-5 is represented in this figure as the symbol CLASS-5

82

As defined in Section 4.7, the gom-stmts attribute of a GOM method declaration models

a sequence of GOM statements. Let Slm be this sequence of statements from the method

m. Recall from Section 4.7 that t is a vector representing the input parameters of m,

and 2 is a vector representing the output parameters of m. When a message is sent to an

object, the formal parameters of the method being requested are set to the values of the

actual parameters from the message. The method corresponding to the message sent is

then executed. Formally, this is equivalent to executing the following sequence.

[. := Sim, :=]

Using weakest precondition notation, the semantics for the message g is defined as follows.

Definition IV.1. wp(m(d, E), R) = wp([. := a, S1m, := 2], R)

The formal semantics for functional messages are defined more restrictively as follows.

Let m be a functional method, let S1 be the sequence of statements declared in m, and

let g be a functional message that invokes m. Let a be a vector representing the actual

parameters that correspond to input parameters in m. Since every such method appears as

part of an expression in some statement, let S represent the statement in which m appears.

Recall the modified representation of a method presented in Section 4.7 includes one output

parameter, y, which represents the value returned from m. Let m' be the method that

represents m with the formal parameters from m and the additional parameter y. Let b

represent the actual parameter that corresponds to y.

Using these definitions, the invocation of m takes the following form.

The invocation of the method m' takes the following form.

m'(a, y)

The difference between the invocations of m and m' is that the invocation of m is part of S

and the invocation of m' is a single statement. Invoking m is equivalent to invoking m' and

83

then substituting b in S for any invocations of m. This provides a formal representation

of the value returned from m. The substitution of b for the call to m in S is represented

by the following notation.

5M(a)
S (

In this way, the call to m is equivalent to the following sequence of statements.

(b), s'da]

When the method m' is invoked, the formal parameters of m' are set to d and the

statements in S1 are executed. After execution, the parameter b is set to the value y.

Formally, the invocation of m' is equivalent to executing the following sequence.

[.t :-- , S1, b := y]

Using weakest precondition notation, the formal semantics for the message g are defined

as follows.

Definition IV.2. wp(m(a), R) = wp([; := a, S1, b :- y, Sb(a)], R)

4.9 "GET-" and "SET-" Messages

In order to provide a better encapsulation of extracted objects, the following restric-

tion applies.

Restriction IV.3. Object attributes are accessed and assigned values only through "GET-"

and "SET-" messages sent to the object.

Figure 64 shows the GET-ZCOS and SET-ZCOS methods used for accessing and assign-

ing a value to the ZCOS attribute.

The general form of a "SET-" message is

SET-a(r, e)

84

method GET-ZCOS (C-10): real

begin

GET-ZCOS := C-10.ZCOS

end

method SET-ZCOS (C-11, VAL-1O)
begin

C-11.ZCOS := VAL-1O
end

Figure 64 "SET-" and "GET-" Methods for ZCOS

where a is the name of the attribute being assigned a value, r is the target object, and e is

the expression to which the attribute a is set. The formal semantics for a "SET-" message

are defined using the weakest precondition notation. Given a postcondition R, let R'-'

represent R with all free occurrences of the attribute a from 'r simultaneously replaced

with e. The semantics for the general form of the "SET-" message are defined below.

Definition IV.3. wp(SET-a(r, e), R) = R7, a

The general form of a "GET-" message is shown below.

GET-a(r)

Here, a is the name of an attribute being accessed and r is the target object. The "GET-"

message for an attribute returns the value of the attribute a from the target object -.

Since the "GET-" message is returning a value, it is similar to a function invocation from

the imperative paradigm. Because of this similarity, the formal semantics for a "GET-"

message are defined using a modified version of the "GET-" method. The modified version

includes a single output parameter, y, which represents the value returned from the "GET-

" method. Let b represent the actual parameter that corresponds to the formal parameter

y. The invocation of the modified "GET-" method takes the following form.

GET-a(r, b)

85

The execution of this modified "GET-" message is equivalent to executing the following

sequence.

[y := T.a, b:= y]

As with function invocation, the value of b replaces the original "GET-" message in the

statement that includes it. Let S be the statement that includes the "GET-" message.

LtGET-a(7-)Let Sb represent the textual substitution of b for each occurrence of the "GET-a"

message in the statement S. The formal semantics of a "GET-" message are defined as

follows.

Definition IV.4. wp(GET-a(T), R) = wp([y :--7.a, b:= y, SG!ETa(r)] R)

The "GET-" and "SET-" methods for each attribute of each class in the object-

oriented design must be provided before the design can be implemented. This research

provides a transformation, r,, in Section 6.11.2 which formalizes the automatic generation

of these methods and their addition to the set of operations for each class in the design.

4.10 Inheritance

In the GOM, the collection of classes in an object-oriented design is modeled as a

class hierarchy where certain classes inherit the attributes and operations from one or more

other classes. This concept of inheritance is represented in the GOM by the gom-super

attribute of ASTs built from the gom-class class. The gom-super attribute indicates from

which class a specific class inherits.

class CLASS-5 attributes RHOSTD, LAMBDA, ANGFAC
method RHO (C-5): real

begin
RHO := GET-RHOSTD (C-5)

end
superclass USER-OBJECT

Figure 65 CLASS-5 inherits from USER-OBJECT

86

For example, Figure 65 shows the class CLASS-5 (using GOL syntax). CLASS-5 inher-

its from the class named USER-OBJECT. To represent inheritance, the gom-super attribute

holds the symbol that represents the name of the class from which this class inherits.

4.11 Polymorphism

There is support for modeling polymorphism in the GOM, i.e. declaring methods

with the same name in different classes is allowed. This support is rather rudimentary

because the concept of an abstract class is not supported by the GOM. By including abstract

classes in the GOM, it would be possible to model class-wide operations as implemented

by the Ada 95 language.

4.12 Object-Oriented Assignment

Several imperative programming language constructs appear in the GOM including

the assignment construct. As discussed in Section 3.3, assignment takes the general form

of x := e, where x is a variable and e is an expression. The object-oriented version of

the assignment construct now allows x to be an attribute access, which models the way

attributes of objects are assigned values. The expression e is also allowed to be an attribute

access or a message to another object. 00 assignment statements are modeled in the GOM

using instances of the gom-assignment class. Figure 66 shows the class description for the

gom-assignment

gom-assign-lhs: gom-variable
gom-assign-rhs : gom-data-construct

Figure 66 GOM Assignment Class

gom-assignment class. The gom-assign-lhs attribute models the variable or attribute

being assigned a value, i.e. x. The go-assign-rhs attribute models the expression e.

For example, consider the following assignment statement (shown using GOL surface

syntax).

SIGTRB := RHO (C-7)

87

This assignment statement assigns the value returned from the RHO message. Figure 67

(gom-assignment)

gom-assign-lhs gom-assign-rhs

((gom-variable)) (gom-message))

Figure 67 GOM Assignment Object

shows the AST built to model this assignment statement. The gom-assign-lhs attribute

models the GOM variable SIGTRB, which is in the scope of PRDIV, and is of type gori-real.

The gom-assign-rhs attribute models the RHO message which returns a value of type

gori-real (see Figure 63).

The formal semantics for an 00 assignment statement are defined using the weakest

precondition notation. Given a postcondition R, let R' represent R with all free occur-

rences of x simultaneously replaced with e [19]. The semantics for the general form of the

GOM assignment, x = e are defined below.

Definition IV.5. wp(x := e, R) = Re

To relate these semantics to the GOM, note that the gom-assign-lhs attribute

models x and the gom-assign-rhs models e.

4.13 Object-Oriented Sequential Control

As in the imperative paradigm, the default control mechanism for executing state-

ments in the 00 paradigm is sequential control. When methods are being executed, the

statements are executed one after another in a sequential manner. As in the GIM, sequen-

tial control flow is modeled in the GOM by storing the statements to be executed in a

sequence. The order of the sequence indicates the order in which the statements are to be

executed.

For example, in the collection of statements shown below, <00 Statement 1> is

executed first followed by <00 Statement 2> followed by <00 Statement 3>.

<00 Statement 1> <00 Statement 2> <00 Statement 3>

88

This collection of statements is modeled in the GOM using the following sequence.

[<00 Statement 1>, <00 Statement 2>, <00 Statement 3>]

The formal semantics for sequential control flow are defined using the weakest pre-

condition notation. Let S1 and S2 be statements, then the semantics for the sequential

composition of these two statements in the GOM is defined below.

Definition IV.6. wp([S1, S2], R) = wp(S1, wp(S2, R))

The formal semantics of sequential control flow in the GOM are identical to the

formal semantics of sequential control flow in the GIM. As in the GIM, the representation

of sequential control flow in the GOM is based on function composition [25], which is

associative, so the GOM representation of sequential control flow is associative.

Theorem IV.1. wp([S1, [S2, S3]], R) = wp([[S1, S2], S3], R)

Proof.

wp([S1, [S2, S3]], R) = wp(S1, wp([S2, S3], R))

= Wp(Si,wp(S2,wp(S3, R)))

= wp([S1, S2], wp(S3, R)) (by function composition)

= wp([[Si, S2], S3], R)

Since the weakest precondition for the sequences [S1, [S2, S3]] and [[S1, S2], S3] are equal,

the sequence [S1, S2, S3] is often used in this document to represent these sequences. In

addition, singleton sequences and empty sequences are also used when convenient.

4.14 Object-Oriented Selective Control

As defined in the imperative paradigm (see Section 3.5), selective control flow consists

of a selection between two or more statements. Since the statements to be executed

represent one or more sequentially composed statements, they are modeled as sequences

of statements in the GOM. Selective control flow constructs are modeled in the GOM

89

gom-selection

gom-exp : gom-data-construct
gore-then-part : seq(gom-program-construct)
gom-else-part : seq(gom-program-construct)

Figure 68 GOM Selection Class

using ASTs built from the gom-selection class. Figure 68 shows the class description

for the gom-selection class. The gom-exp attribute models the 00 expression that

controls which statements will be executed by the selective programming construct. The

gom-then-part models the sequence of 00 statements that are executed when the 00

expression in gom-exp is true. The go-else-part models the sequence of statements

that will be executed if the gom-exp is false. As in the GIM, Si must contain at least one

statement, but S2 may be empty. ASTs where S1 and S2 have at least one statement

model object-oriented if-then-else statements. ASTs where S2 is empty model object-

oriented if-then statements.

For example, the if-then-else statement shown below (using GOL syntax) provides

a good example of selective control flow in the GOM.

if GET-SIGTRB (C-12) > 0.0 then

UPLREQ SIGUP / GET-SIGTRB (C-12)
else

UPLREQ 1000000.OdO
endif

This statement makes a selection based on the result of the GET-SIGTRB message, which is

sent to the target object C-12. The statement selects between two assignment statements

that assign values to the variable UPLREQ. Figure 69 shows the object instance that mod-

gom-exp gore-else-part

F igom-then-part

(gom-greater'than) ((gom'assignment) ((gom-assignment)

Figure 69 GOM Selective Control Flow Example

els this GOM if-then-else statement. The gom-exp attribute models the greater-than

90

boolean expression that controls the selection and the two assignment statements are mod-

eled by the gom-then-part and the goi-else-part attributes.

The formal semantics of selective control flow in the GOM are defined using the

weakest precondition notation. Let B represent an 00 boolean expression and let S1 and

S2 represent sequences of 00 statements. The selective control flow constructs in the

GOM take the following form

if B then S1 else S2

Recall that S1 is executed if B is true and S2 is executed if B is false. The semantics of

this GOM form of selective control flow are defined below.

Definition IV.7. wp(if B then S1 else S2, R) =

(B =* wp(S1, R)) A (-,B =* wp(S2, R))

To relate these formal semantics to the GOM, note that B is modeled using the

gom-exp attribute. The sequence of statements S1 is modeled by the gom-then-part

attribute and the sequence S2 is modeled by the goi-else-part attribute. The formal

semantics for GOM selection is now defined.

As in the imperative paradigm, the formal semantics for selective control flow when

the sequence S2 is empty are defined using the skip command. Recall from Section 3.5

that the formal semantics of the skip command are wp(skip, R) = R.

Selective control flow in the GOM when S2 is empty takes the form

if B then S1 else skip

The formal semantics for this form of selective control flow in the GOM is defined below.

Definition IV.8. wp(if B then S1 else skip, R) = (B =t wp(S1, R)) A (-,B . R)

4.15 Object-Oriented Iterative Control

Iterative control flow, as defined in the imperative paradigm (see Section 3.6) is a

mechanism for repeating sequences of statements. The execution of a sequence of state-

91

ments continues while some boolean expression is true. Iterative control flow in the GOM

is modeled using ASTs built from the gom-iteration class. Figure 70 shows the class de-

gom-iteration

gom-iter-exp: gom-expression
gom-iter-body: seq(gom-program-construct)

Figure 70 GOM Iteration Class

scription for the go-iteration class. The gom-iter-expr attribute models the boolean

expression that controls the iteration. The gom-iter-body holds the sequence of state-

ments that are executed each time through the iteration.

For example, the while loop shown below (using GOL syntax).

IL := 1;
while IL <= GET-NLASER (C-14) do

begin

LLAS (IL) 0;

TLAS (IL) 0;

IL := IL + 1
end

This while loop is an example of iterative control flow in the object paradigm. Figure 71

((gom-iteration)

gom-iter-exp J gom-iter-body((gom-less-than-or-equal) ((gom-assignment)(gmasgmn)gmasgmn)i

(gom- assiglment)

(gom-assignment)

Figure 71 GOM Iteration Object

shows the AST that models this while loop in the GOM. The gom-ter-exp attribute

holds the less-than-or-equal expression that controls the iteration. The gom-iter-body

holds the three assignment statements in the body of the loop.

The GOM model of iteration provides a canonical form for representing imperative-

style iteration in the object paradigm. Several 00 programming languages provide pro-

92

gramming constructs that implement iteration including the while statement in C++ and

the loop statement in Ada 95. The feasibility demonstration (see Chapter VIII) provides

rudimentary examples of converting certain GOM entities into Ada 95 code.

As with the other control flow constructs, the formal semantics for iterative control

flow are defined using the weakest precondition notation. Given a precondition P and a

postcondition R, let Hk(R) represent the set of all states in which

while B do S1

will establish R in at most k iterations [19]. The formal semantics for iterative control flow

in the GOM are defined below.

Definition IV.9. wp(while B do S1, R) = (3k: 0 < k A Hk(R))

To tie this general definition to the specific model of iterative control flow in the

GOM, recall that B is modeled by the gom-iter-exp attribute and S1 is modeled by the

gom-iter-body attribute of the gom-iteration class.

As in the GIM, the task still remains to define Hk(R). There is no attempt in this

research to define loop invariants [19] for iteration in the GOM. The set of states Hk(R)

defines the semantics of iteration in the GOM to a level of detail sufficient for this research.

4.16 Object-Oriented Subprogram Invocation

Even though the primary means of communication in the 00 paradigm consists

of objects sending messages to each other, there is still a need to model subprogram

invocations in the GOM. Specifically, there will still be calls to utility subprograms such as

SIN and COS that must be modeled in the GOM. Since this research involves re-engineering

GIM subprograms to the GOM, all user-defined subprograms must be converted to methods

and all calls to user-defined subprograms must be converted to messages. This leads to

the following restriction of the GOM.

Restriction IV.4. Only calls to non-user-defined subprograms are modeled by subprogram

invocations in the GOM.

93

As in the imperative paradigm, there are two types of subprogram invocation, viz.

procedure calls and function calls. If the non-user-defined subprogram being called is

a procedure, then the gom-procedure-call class is used to model the procedure call.

Figure 72 shows the class definition for the gom-procedure-call class. The attribute gom-

gom-procedure-call

gom-proc-call-identifier: symbol
gom-proc-call-actuals : seq(gom-data-construct)

Figure 72 GOM Procedure Call Class

proc-call-identifier holds a symbol that represents the name of the procedure being

called. The gom-proc-call-actuals attribute holds the sequence of actual parameters

sent to the procedure.

If the non-user-defined subprogram being called is a function, then the go-function-

call class is used to model the function call. Figure 73 shows the class description for the

gom-function-call

gom-fun-call-identifier: symbol
gom-fun-call-actuals: seq(gom-data-construct)

Figure 73 GOM Function Call Class

gom-function-call class. The attribute gom-fun-call-identifier models the name

of the function being called. The gom-fun-call-actuals attribute models the actual

parameters that are passed to the called function.

The formal semantics for calls to non-user-defined procedures in the GOM are sim-

ilar to the semantics for procedure calls in the GIM (see Section 3.11). As in the GIM,

procedures modeled in the GOM are not allowed to have parameters that are both in-

put and output parameters, thus calls to non-user-defined procedures must have no such

parameters.

Let p be a non-user-defined procedure and let Si be the sequence of statements

declared in p. Let d be a vector representing the actual parameters that correspond to

input parameters in p. Let E be a vector representing the actual parameters that correspond

94

to output parameters in p. An invocation of p takes the form:

To invoke p, the actual parameters are copied to the formal parameters and control flow

transfers to p. Assume the vectors t and are the vectors representing the input and output

parameters of the non-user-defined procedure, respectively. Executing the procedure call

p is equivalent to executing the following sequence

a, Si, := f]

Using weakest precondition notation, the semantics for a call to a non-user-defined proce-

dure are defined below.

Definition IV.10. wp(p(d, E), R) = wp([. := d, Si, := 2], R)

The formal semantics for calls to non-user-defined functions in the GOM are similar

to the semantics for function calls in the GIM (see Section 3.11). As in the GIM, a

restriction is placed on functions as defined below.

Restriction IV.5. Non-user-defined functions must have no output parameters.

Let f be a non-user-defined function and let S1 be the sequence of statements de-

clared in f. Let d be a vector representing the actual parameters that correspond to the

input parameters in f. Since every function appears as part of an expression in some state-

ment, let S represent the statement in which f appears. Recall the modified representation

of a function presented in Section 3.10 includes one output parameter, y, which represents

the value returned from the function f. Let f' be the procedure that represents f with

the formal parameters from f and the additional parameter y. Let b represent the actual

parameter that corresponds to y. Using these definitions, an invocation of the function f

takes the following form.

f 0~)

95

An invocation of the procedure, f', takes the following form.

f '(d, b)

The difference between the invocations of f and f' is that the invocation of f is part of S

and the invocation of f' is a single statement. Invoking f is equivalent to invoking f' and

then substituting b in S for any invocations of f. This provides a formal representation of

the value returned from f. The substitution of b for the call to f in S is represented by

the following notation.

Sf(a)b

In this way, the call to f is equivalent to the following sequence of statements.

As defined in Section 3.11, when the procedure f' is invoked, the actual parameters in

a are copied to the formal parameters in t and control flow transfers to f'. After execution

of the function, the value of y is copied to b. Hence, executing the call to f' is equivalent

to executing the following sequence.

[:= a, S1, b := y]

Using weakest precondition notation, the formal semantics of a call to the non-user-defined

function f are defined below.

Definition IV.11. wp(f(d), R) = wp([f. := a, S1, b : y, s[(a)], R)

4.17 Recursion

In the object paradigm, it is possible for a method to send a message that invokes

itself, which is termed recursion. The GOM does not model recursion, which leads to the

following restriction.

96

Restriction IV.6. Methods modeled in the GOM are not allowed to send messages in-

voking the method recursively.

Even more restrictively, the call tree consisting of the graph of messages sent between

objects is assumed to be a directed acyclic graph.

Restriction IV.7. The call tree of messages sent between objects must be a directed

acyclic graph.

4.18 Variables

As in the imperative paradigm, variables are used to store pieces of information in the

object-oriented paradigm. Variables appear in 00 programs as local variables or formal

parameters of methods. Local variables are declared in the local scope of a method and

the value of the variable is lost when execution of the method ends. Formal parameters of

methods are variables that are declared in the method and used to pass data items into

the method. This section defines the AST class used to model variables in the GOM and

presents an example of modeling a variable.

Both local variables and formal parameters are modeled in the GOM by using the

gore-variable class. Figure 74 shows the class description for the gore-variable class.

gom-variable

gom-name: symbol
gom-var-scope: symbol
gom-var-type: gom-data-type
gom-indices: seq(gom-data-construct)

Figure 74 GOM Variable Class

The goa-name attribute holds a symbol that represents the name of the variable. The

goa-var-scope holds a symbol that represents the scope of this variable. See Section 4.21

for a discussion of scoping issues in the GOM. The gom-var-type attribute models the

data type of the variable. Section 4.20 describes and lists the data types modeled in the

GOM. If a variable is an array with indices, the goi-indices attribute is used to model

the access into the array.

97

(gom-variable)
gom-name: PDIAM
gom-var-scope: PRDIV
gom-var-type: gom-real

\ gom-indices : []

Figure 75 GOM Variable Object Example

For example, Figure 75 shows how the local variable PDIAM, defined in a method

PRDIV, is represented in the GOM using an instance of the gom-variable class. The

gom-var-scope attribute is set to the symbol PRDIV to indicate this variable is in the scope

of the method PRDIV. The data type of PRDIV is modeled using the gom-real object. The

gori-indices attribute holds an empty sequence to indicate this variable has no indices.

4.19 Attributes

In the object paradigm, data items are also stored as attributes of objects. As de-

scribed in Section 4.4, classes define a template for objects by declaring attributes that are

built into each instance of the class. This forms a collection of variables associated with

the object that are accessed as attributes of the object. This section defines the AST class

that models object attributes in the GOM and presents an example of how an attribute is

modeled.

Attributes are modeled in the GOM using the gom-attribute class. Figure 76 shows

gom-attribute

gom-name: symbol
gom-var-scope: symbol
gom-var-type: gom-data-type
gom-indices: seq(gom-data-construct)

Figure 76 GOM Attribute Class

the class definition for the gom-attribute class. The gom-name attribute holds a symbol

that represents the name of the attribute. The goin-var-scope attribute holds a symbol

that represents the scope of this attribute. The gom-var-type attribute models the data

type of the attribute. If an attribute is an array, the gom-indices attribute is used to model

98

the indices used when accessing the array. Note that the classes that model variables and

attributes in the GOM are identical. This is because of the similarity between attributes

and variables in the 00 paradigm.

class CLASS-2 attributes ZCOS
method GET-ZCOS (C-10): real

begin

GET-ZCOS := C-10.ZCOS

end

method SET-ZCOS (C-11, VAL-10)
begin

C-11.ZCOS := VAL-1O

end

superclass USER-OBJECT

Figure 77 Example of ZCOS Attribute

For example, consider the class shown in Figure 77. The CLASS-2 class has one at-

tribute, ZCOS. The "SET-" and "GET-" methods are also shown in the figure. As described

in Section 4.4, the gom-attrs attribute of the class gom-class models the attributes of

a class. These attributes are modeled using instances of the gom-attribute class. For

(gom-attribute)
gom-name: ZCOS
gom-var-scope: CLASS-2
gom-var-type: gom-real

\ gome-indices : []

Figure 78 GOM Attribute Object Example

example, Figure 78 shows the gom-attribute object that models the ZCOS attribute of

the CLASS-2 class. The gom-name attribute holds the symbol ZCOS. The gom-var-scope

attribute holds the symbol CLASS-2 to represent the fact that ZCOS is declared in the scope

of CLASS-2. The gom-var-type attribute models the data type of the attribute, which in

this example is real.

99

4.20 Data types

This section describes the data types that are used when modeling variables in the

GOM. The data types being modeled are as follows.

Instance object instances of a class

Integer zero and positive and negative whole numbers

Real rationals and irrationals

Boolean true and false logical values

Character single alpha characters

String sequences of characters

Array homogeneous collections of elements accessed with an index.

The Instance data type is used as the data type of variables in the GOM that are

instances of a class. Each of the data types presented here is modeled using a separate class

in the GOM. In order to model a specific data type in the GOM, the data type attribute of

GOM variables and GOM attributes holds an instance of an AST built from the class that

models the data type of the variable or attribute. Examples of this are shown in Figure 75

and Figure 78.

As discussed in Section 3.15, the number of bytes associated with an imperative data

type can be specified by the user or derived from pre-defined data types. This is true in

the object paradigm as well, so each class that models an object-oriented data type has an

attribute gor-type-size that models the number of bytes associated with the data type.

4.21 Scoping Issues

As in the imperative paradigm, each variable in the object-oriented paradigm has a

scope associated with it that refers to its "visibility". A method that defines a variable

has visibility to the variable. A variable that is an instance of a class provides visibility to

the attributes of the instance. Attributes in the object-oriented paradigm also have scope.

This section describes how the scope of variables and attributes in the GOM is modeled.

In the GOM, each method has a local scope much as subprograms in the GIM have

a local scope. If a variable is declared in a method, this local variable is only visible to the

declaring method. The formal parameters of a method are also only visible to the declaring

100

method. In order for statements in a method to access the attributes of an instance, the

instance must be a local variable or a formal parameter of the method.

Some object-oriented programming languages allow variables declared outside the

local scope to be accessed by a method. This type of access is not allowed in the GOM,

which leads to the following restriction.

Restriction IV.8. All variables in a GOM method are either declared locally or are formal

parameters of the method.

In the object paradigm, a method passes information to other methods by including

variables as parameters of messages. As in the imperative paradigm, parameters are either

input or output, i.e. the value of the parameter is either read in the method or written to

in the method. If one method passes a variable to another method as an output parameter,

the method being called changes the value of the variable in the calling method. As in

the imperative paradigm, this is termed pass by reference parameter passing [16]. All

parameters are passed by reference in the GOM.

In some object-oriented programming languages, one method can be declared inside

another method. This means the method would be visible only to the method in which it

was declared. Limiting the visibility of a method in this way is not allowed in the GOM,

which leads to the following restriction.

Restriction IV.9. Methods cannot be declared inside of another method.

Each of the methods declared in the GOM must be part of a class, i.e. in the set of

operations for a class. This means a particular class has visibility to each of the methods

declared within it. When a message is sent to a target object, the class of the object is used

to determine with method to invoke. This mechanism is represented and canonicalized in

the GOM by requiring each class to be declared in one overall global scope. This leads to

the following restriction on the GOM.

Restriction IV.10. Classes cannot be declared inside of another class.

101

4.22 Homogeneous Data Structures

As in the imperative paradigm, collections of homogeneous elements can be built in

the object paradigm using constructs such as lists and arrays. The only such collection

modeled in the GOM is the array. Arrays are represented in the GOM by building variables

and attributes of the data type gom-array (see Section 4.20).

For example, the following statement includes an access to the array variable GEOM.

RANGE := RANGE + GEOM (K)

The GOM AST shown in Figure 79 models this access to the Kth element of the GEOM array

variable.

(gom-variable)

gom-name = GEOM
gom-var-scope - PRDIV
gom-var-type = gom-array

Sgom-indices

((gom-variable)
gom-name = K
gom-var-scope = PRDIV
gom-indices = []
gom-var-type = gom-integer

Figure 79 GEOM Array Variable Access Object

If an attribute of an object is an array, then the indices used to access the array

are passed as parameters to the "GET-" or "SET-" message that accesses the attribute.

For example, the following statement accesses the Kth element of the GEOM attribute of the

instance variable C-10.

RANGE := RANGE + GET-GEOM (C-10, K)

The GEOM attribute is an array and the GET-GEOM message is used to access the elements

of the array. In the statement, the message GET-GEOM (C-10, K) is sent to the target

object C-10 requesting element K from the GEOM array attribute. The GOM AST shown in

Figure 80 models the message used to access the Kth element of the GEOM array attribute.

102

(gom-message)

gom-call: GET-GEOM

I gom-actuals

(gom-variable)
gom-name = C- 10
go-var-scope = PRDIV
gom-indices = []
gom-var-type = CLASS-10

(goin-variable)
gom-name = K

om-var-scope = PRDIV
om-indices = []
om-var-type = gom-integer

Figure 80 GEOM Attribute Array Access Object

The first parameter of the message is the target object C-10 and the second parameter is

the variable K. This variable holds the index of the element to be retrieved from the array.

To set the value of an array attribute, the appropriate "SET-" message is used. For

example, the following statement sets the Kth element of the GEOM attribute to the value

of the RANGE variable.

SET-GEOM (C-10, K, RANGE)

In this statement, the message SET-GEOM (C-10, K, RANGE) is sent to the target

object C-10 in order to set the Kth element to the value of the RANGE variable. The GOM

AST shown in Figure 81 models the "SET-" message. The first parameter is the target

object C-10, the second parameter is the index variable K, and the final parameter is the

variable to which the array element will be set, i.e. the RANGE variable.

Figure 82 shows the GET-GEOM and SET-GEOM methods used for accessing and assign-

ing a value to the GEOM array attribute.

103

(gom-message)

gor-call: SET-GEOM

I gom-actuals

(gomn-variable)
gom-name = C- 10
gom-var-scope - PRDIV
gor-indices = [1
gom-var-type = CLASS-10

(gomn-variable)
gom-name = K
gom-var-scope - PRDIV
goin-indices = []
gom-var-type = gom-integer

(gom-variable)
gom-name = RANGE
gom-var-scope f PRDIV
gor-indices = []

goin-var-type f gore-integer

Figure 81 GEOM Attribute Array Access Object

4.23 Heterogeneous Data Structures

Some object-oriented programming languages allow the programmer to build collec-

tions of heterogeneous data items, for example, records in Ada 95 and structs in C++.

These heterogeneous data structures are not modeled in the GOM.

Restriction IV.11. The GOM does not model heterogeneous data structures.

4.24 Pointers

As in the imperative paradigm, some object-oriented programming languages allow

the programmer to store the address of a variable and then access the variable via the

address. This mechanism is referred to as using pointers to variables. Pointers are not

modeled in the GOM.

Restriction IV.12. The GOM does not model pointers.

104

method GET-GEOM (C-10, IDX-1): real

begin

GET-GEOM := C-10.GEOM (IDX-1)

end

method SET-GEOM (C-1i, IDX-2, VAL-1O)
begin

C-11.GEOM (IDX-2) := VAL-1O

end

Figure 82 "SET-" and "GET-" Methods for GEOM

4.25 Object- Oriented Expressions

In the object-oriented paradigm, expressions can be literal values, unary or binary ex-

pressions with operators, non-user-defined function calls, functional messages, or variables.

This section describes how expressions are modeled in the GOM.

Literal values in the GOM are modeled by the gom-literal-constant class. The

gom-literal-constant

gom-literal-value : any-type

Figure 83 Modeling Object-Oriented Literal Constants

class description for the gom-literal-constant class is shown in Figure 83. The gom-

literal-value attribute models the value of the literal. Figure 84 shows the literal con-

gom-literal-integer
gom-literal-real
gom-literal-boolean
gom-literal-string

Figure 84 Object-Oriented Literal Constants

stants currently modeled in the GOM. Each literal shown is modeled as an AST defined

as a subclass of the gom-literal-constant class. As in the GIM, literal constants other

than those listed in Figure 84 are not modeled in the GOM, but can be modeled by defin-

ing a new subclass under the gom-literal-constant class that describes the new literal

constant.

105

Unary expressions in the GOM are modeled using ASTs built from the gom-unary-

expression class. Figure 85 shows the class description for the gom-unary-expression

gom-unary-expression

gom-unary-operand: gom-expression

Figure 85 Modeling Object-Oriented Unary Expressions

class. The gom-unary-operand attribute models the single operand of the unary expres-

sion. Figure 86 shows all the unary expressions modeled in the GOM. Each unary ex-

gom-negate
gom-not

Figure 86 List of Object-Oriented Unary Expressions

pression shown is modeled as an AST defined as a subclass of the gom-unary-expression

class. As with literal constants, any unary expressions other than those listed in Figure 86

are not modeled in the GOM but can be built as a new subclass that defines the new unary

expression.

Binary expressions in the GOM are modeled by the goai-binary-expression class.

Figure 87 shows the class description for gom-binary-expression class. As in the impera-

gom-binary-expression

gom-bin-exp-operand-1 : gom-expression
gom-bin-exp-operand-2: gom-expression
gom-bin-exp-seq: seq(gom-expression)

Figure 87 GOM Binary Expressions Class

tive paradigm, binary expressions in the object-oriented paradigm have either two operands

or multiple operands. For this reason, the goi-binary-expression class has three at-

tributes for modeling the operands of the expression. The gom-bin-exp-operand-1 and

gom-bin-exp-operand-2 attributes hold the two operands if the binary expression has

only two operands. When the same binary expression is repeated for multiple operands,

such as in the expression ZCOS * ZCOS * ZCOS, the multiple operands are modeled using

the gom-bin-exp-seq attribute. Certain binary expressions can be repeated in this way,

106

e.g. addition and multiplication. Others cannot be repeated in this way, e.g. <, <=, and

gom-division
gore-equal
gom-exponent
gom-greater-than-or-equal
gom-greater-than gom-addition
gon-less-than-or-equal gom-and
gom-less-than gom-concat
gom-not-equal goi-multiplication
gorn-subtraction gom-or

(a) Two operand. (b) Sequence.

Figure 88 Object-Oriented Binary Expressions Modeled in the GOM

Figure 88 lists all the binary expressions that are modeled in the GOM. The binary

expressions that cannot be repeated are shown in Figure 4.88(a). These expressions are

modeled using the gom-bin-exp-operand- 1 and gom-bin-exp-operand-2 attributes. The

binary expressions that can be repeated are shown in Figure 4.88(b). These expressions

are modeled using the gom-bin-exp-seq attribute.

As with literal constants and unary expressions, any binary expressions not shown

in Figure 88 are not modeled in the GOM. New binary expressions are modeled by adding

a subclass to the gom-binary-expression class to define the new binary expression.

4.26 Object-Oriented Input

This section defines the ASTs that are used to model input statement from object-

oriented programming languages. Most object-oriented programming languages allow the

programmer to input data items from a file or the console. The GOM models this aspect

of object-oriented programming languages using ASTs as defined below.

Input statements are modeled in the GOM by using ASTs built from the goi-input

class. Figure 89 shows the class description for the gom-input class. The gom-in-logical-

file attribute is used to model the source of the input. In the GOM, input coming from

107

gom-input

gom-in-logical-file: gom-data-construct
gom-input-list: seq(gom-format-item)

Figure 89 GOM Input Class

the user is modeled by setting this attribute to the symbol CONSOLE. The gom-input-list

attribute models the sequence of items being input.

For example, the following input statement (shown in GOL syntax)

read (CONSOLE, NLASER)

inputs the value of the variable NLASER from the console, which is indicated by the symbol

CONSOLE as the first parameter of the statement. Figure 90 shows how this input statement

(gom-input)
gom-in-logical-file = 'CONSOLE

gom-input-list

C _ (gom-variable)

Figure 90 GOM Input Object

is modeled using an AST in the GOM. The gori-in-logical-file attribute holds the

symbol CONSOLE to indicate the input is coming from the user. The gori-input-list

attribute is a singleton list holding the NLASER variable.

As in the imperative paradigm, object-oriented programming languages also allow

the programmer to input data from a file. Before inputting data from the file, the file

must be "opened" to establish the logical link to the physical file on disk. These files are

modeled in the GOM using ASTs built from the goi-file class. Figure 91 shows the class

description for the goi-file class. The gom-designator attribute holds the name of the

logical file as referenced in the program. The goi-file-name attribute holds the name of

the physical file. The goi-access attribute holds the access type for the file, e.g. direct or

sequential. The goi-status attribute holds the status of the file, opened either for input

or output. ASTs built to model files are stored as attributes of a design in the GOM.

108

gom-file

gom-designator: gom-data-construct
gom-file-name: gom-data-construct
gom-access: symbol
gom-status : symbol

Figure 91 GOM File Class

The semantics of the GOM input statement are similar to the semantics of the GOM

assignment statement. Both statements define values for variables. In general, an input

statement in the GOM is equivalent to a subprogram call where all the parameters are

output from the subprogram.

For example, let I represent an input statement and let a represent a vector of

variables in the goa-input-list attribute of I (as modeled in the GOM). Let t represent

a vector of variables returned from the execution of the input statement after the values

are read from the indicated file (or the console). Execution of the GOM input statement

is equivalent to the following sequence:

[1(a), d := t]

The formal semantics for the GOM input statement I(d) are defined as follows.

Definition IV.12. wp(I(a), R) = wp([I(d), d :=4T], R)

This indicates each of the variables in the vector & is set to the values returned by

the input statement I(d).

4.27 Object-Oriented Output

This section defines the ASTs that are used to model output statements from object-

oriented programming languages. Most object-oriented programming languages allow the

programmer to output data items to a file or to the console. The GOM models this aspect

of object-oriented languages as defined below.

Output statements in the GOM using ASTs built from the goa-output class. The

class description for the goi-output class is shown in Figure 92. The goi-out-logical-

109

gom-output

gom-out-logical-file : gom-data-construct
gom-output-list: seq(gom-format-item)

Figure 92 GOM Output Class

file attribute represents whether the output is being sent to the console or to an output

file. In the GOM, the symbol STD-OUT is stored in this attribute if the output is going

to the console. The gom-output-list models the sequence of data items that are being

output.

For example, the following output statement (shown in GOL syntax)

write (STD-OUT, " NLASER =", NLASER);

outputs two data items to the console. The string literal " NLASER =" is output followed

by the value of the variable NLASER. Figure 93 shows the AST used to model this output

(gom-output)
gam-out-logical-file = STD-OUT

gom-output-list

(gom-Iiteral-charstring)

(gom-variable)=

Figure 93 GOM Output Object

statement in the GOM. The goa-out-logical-file attribute holds the symbol STD-OUT

to indicate the output is being sent to the standard output port. The gom-output-list

attribute holds the sequence of two data items representing the string literal "NLASER

and the variable NLASER.

In the GOM, an output statement is not allowed to change the state of the program.

Let 0 represent a GOM output statement and let d represent a vector of data items

appearing in the output statement 0. The semantics of GOM output statements is defined

as follows.

110

Definition IV.13. wp(O(d), R) = R

This means the GOM output statements are restricted from changing the state of

the program.

The following sections provide formal definitions for object-oriented classes, methods,

messages, and designs. Formal transformations of an object-oriented design are provided

at the end of this section.

4.28 Formalizing GOM Statements and Expressions

This section presents formal representations of GOM statements and expressions. Let

x represent a GOM variable and let e represent a GOM expression. A GOM assignment

statement is represented formally by the following tuple.

< x, :=,e >

This tuple indicates that x is the variable to be assigned the value of the expression e. The

: symbol is a syntactic token that distinguishes this tuple as an assignment statement.

Let e represent a GOM expression and let S1 and S2 represent sequences of GOM

statements. A GOM selection statement is represented formally by the following tuple.

< if, e, then, S1, else, S2 >

This tuple indicates that the sequence of statements S1 will be executed if the expression

e evaluates to true otherwise the S2 sequence will be executed. The if, then, and else

symbols are syntactic tokens used to identify this tuple.

Similarly, let e represent a GOM expression and let S3 represent a sequence of GOM

statements. The GOM iteration statement is represented by the following tuple

< while, e, S 3 >

111

This indicates that the sequence of statements S 3 will be executed while the expression e

is true. The while symbol is a syntactic token used to identify this tuple.

Let E represent a sequence of expressions. The GOM input and output statements

are represented formally by the following tuples.

< input, iport, E >

<output, oport, E >

These tuples indicate that the expressions in the sequence E are either input from the

input port iport or output to the output port oport.

Expressions in the GOM are represented formally by the following tuples. Let el and

e2 be GOM expressions.

< el,+,e2 >

< el, and, e 2 >

< el, concat, e2 >

< e, /,e 2 >

< el,=,e2 >

<e, **le2 >

< el,>=,e2 >

< el, >, e2 >

< el,<=,e2 >

< el, <, e2 >

< el,*,e 2 >

< el,<>,e 2 >

< el, or, e2 >

< el, - e2 >

< -- el >

< not, el >

These formal representations are used in the formal transformations presented in Chap-

ter VI.

112

4.29 Formalizing Object-Oriented Classes

This section describes how classes modeled by the gom-class AST can be defined

more mathematically. The formal definition of an object-oriented class is presented below.

idc - A symbol storing the name of the class.

D - The set of instance attributes.

- The set of instance methods.

A - The symbol storing the name of the superclass.

Thus, an object-oriented class, C, is defined formally as

C = <idc, cQCA>

class CLASS-2 attributes ZCOS, XLAMDA, SIGTRB
method GET-ZCOS (C-10): real begin GET-ZCOS := C-1O.ZCOS

end

method SET-ZCOS C-11, VAL-1O) begin C-11.ZCOS VAL-10

end
method GET-XLAMDA (C-10): real begin

GET-XLAMDA := C-10.XLAMDA end
method SET-XLAMDA (C-11, VAL-I1) begin

C-1I.XLAMDA := VAL-i end
method GET-SIGTRB (C-10): real begin

GET-SIGTRB := C-10.SIGTRB end
method SET-SIGTRB (C-11, VAL-12) begin

C-11.SIGTRB := VAL-12 end
superclass USER-OBJECT

Figure 94 Class CLASS - 2

For example, Figure 94 shows a class (using GOL syntax) that has three attributes

ZCOS, XLAMDA, and SIGTRB. The class inherits from the class USER-OBJECT and includes

the appropriate methods to set and access its attributes. This class is formally defined by

the following tuple.

113

C = < CLASS-2, (c, £Qc, USER-OBJECT > where

4c = {ZCOS, XLAMDA, SIGTRB} and

QC = {SET-ZCOS, SET-XLAMDA, SET-SIGTRB,
GET-ZCOS, GET-XLAMDA, GET-SIGTRB }

The name of the class is the symbol CLASS-2. The attributes of the class are repre-

sented by the set of data items ZOOS, XLAMDA, and SIGTRB. The operations of the class

are represented by the set of methods including SET-ZOOS, SET-XLAMDA, SET-SIGTRB,

GET-ZCOS, GET-XLAMDA, GET-SIGTRB. Each operation is represented by a formal definition

as presented in the following section.

4.30 Formalizing Object-Oriented Methods

This section explains how methods represented using gom-method ASTs can be de-

fined more mathematically. Methods are defined as follows.

idM - A symbol storing the name of the method.

r - The target object.

Qobj - The sequence of objects passed to the method (other than r).

Qform - The sequence of formal parameters.

Qret - The sequence of returned values.

Q oc - The sequence of local variables.

IF - The sequence of object-oriented statements.

Thus, an object-oriented method is defined by the tuple:

< idM, -r, Qobj, Qform, Qret, Qloc, T >

All object-oriented methods are elements of Q of some object-oriented class.

For example, Figure 95 shows the method UPLREQ. This method expects an instance

of the class CLASS-2 to be passed in as the target object. The method returns a value of

type real. This method is defined formally using the following tuple.

114

class CLASS-2 attributes ZCOS, XLAMDA, SIGTRB

method UPLREQ (C-12): real

begin

SIGTO 3.75d-6;

TMP1

GET-XLAMDA (C-12) * GET-ZCOS (C-12) * GET-ZCOS (C-12)
* GET-ZCOS (C-12);

TMP2 TMP1-0.2;
SIGUP SIGTO / TMP2;
if GET-SIGTRB C-12) > 0.0 then

UPLREQ SIGUP / GET-SIGTRB (C-12)

else

UPLREQ 1000000.OdO

endif

end

superclass USER-OBJECT

Figure 95 Method UPLREQ

<UPLREQ,r, Qobj, Qform, Qret, Qlo, P> where

r = C-12 and

Qobj = [] and

Qform - [] and

Qret = [UPLREQ] and

Q1o, = [SIGTO, TMP1, TMP2, SIGUP] and

= the statements between the BEGIN and the END

The name of the method is the symbol UPLREQ. The data item C-12 holds the target

object passed to the method. UPLREQ expects no other objects or parameters to be passed

since the Qobj and Qf arm sequences are empty. The data item returned from this method

is represented by including the name of the method in the Qret sequence. The local

variables of UPLREQ are the data items SIGTO, TMP1, TMP2, and SIGUP. The sequence of

object-oriented statements between the BEGIN and the END of UPLREQ comprise IF.

115

4.31 Formalizing Object-Oriented Messages

This section explains how messages represented using the gom-message AST can be

defined more mathematically. Messages are defined formally below.

id, - a symbol that holds the name of the method to be invoked.

Qact - a sequence of variables that are the actual parameters passed to the method.

Qform - a sequence of variables that are formal parameters of the method to be invoked.

Let C1 be a class that has a method 01. Let C2 be a class that has a method 02 that

is invoked in 01. Then, the message sent in method o is represented by the tuple

< ido2 ,Qact >

In the object-oriented paradigm, the number, order, and type of parameters in Qact must

match the number, order, and type of the parameters in Qform.

class CLASS-5 attributes PHASE, ZENITH, UPLFAC

method RELAY-PHASE C-14, C-22, PHASE)
begin

PHASE := UPLREQ C C-22)
end

superclass USER-OBJECT

Figure 96 Class with method RELAY-PHASE

For example, as shown in Figure 96, the message UPLREQ (C-22) is being sent by

the RELAY-PHASE method. The target object of this message is C-22 and this instance is

being asked to execute the method UPLREQ. The object C-22 is an instance of the class

CLASS-2. Figure 97 shows the class CLASS-2 and the (partially declared) method UPLREQ.

The message UPLREQ (C-22) is defined formally by the tuple

< UPLREQ, [C-22] >

Since this message is invoking the UPLREQ method, the UPLREQ identifier is the first item

in the tuple. The singleton sequence containing C-22 represents that this call is passing in

a single parameter, which is the target object C-22.

116

class CLASS-2 attributes ZCOS, XLAMDA, SIGTRB

method UPLREQ (C-12): real
begin

end

superclass USER-OBJECT

Figure 97 Class with method UPLREQ

4.32 Formalizing the Object Model

Rumbaugh [62] defines an object model in his Object Modeling Technique (OMT).

The object model includes definitions for the classes, inheritance, and aggregation as-

sociations in an object-oriented design. This section provides a formal definition of an

object-oriented design, a discussion of the inheritance and aggregation associations in the

design, and formal transformations for the object model.

The formal definition of an object-oriented design is given below. Let C* be a set

of object-oriented classes to be included in an object-oriented design. An object-oriented

design is represented formally using the following one-tuple.

OOD = C*

An object-oriented design consists of the set of classes to be included in the design. One

of these classes in the design is the system class that includes the main method, which is

given the flow of control when execution begins.

Inheritance associations are represented in a design by references to the superclass

in a class description, i.e. the A item in the tuple representing a class. An aggregation

association exists between two classes when object instances of one class are stored as

instance attributes of the other class.

Blaha [7] discusses several primitive transformations for object models. The trans-

formations defined to formalize the PBOI method include removing or adding a class and

removing or adding an attribute. A mathematical description for these transformations is

provided below.

117

Let T + be a transformation of the object model that adds a new class to an existing

design and returns a new object-oriented design. Thus,

T+(OOD,C) = OOD' where

OOD' = OODU{C}

Let T- be a transformation of the object model that removes a class and returns a

new object-oriented design. Thus,

Tc (OOD, C) = OOD' where
OOD' = OOD-{C}

Let T + be a transformation of the object model that adds a new attribute to a

specific class and returns a new object-oriented design. Thus,

T+(OOD, C, a) = OOD' where

C =< idc, (e, Qc, A > and

C' < idc,4c U {a},tc,A > and

OOD' = T+(Tj(OOD,C),C')

Let Ta be a transformation of the object model that removes an attribute of a specific

class and returns a new object-oriented design. Thus,

Ta-(OOD,C,a) = OOD' where

C =<idCbCQCA> and

C' = <idc,DC - {a},Qc,A> and

OD' = Tc+(Tr(OOD, C), C')

Blaha [7] does not address the addition or removal of a method from a class. These

additional transformations are introduced below for adding and removing a method, o, of

a class, C.

Let T + be a transformation that adds a new method to a class and returns a new

object-oriented design. Thus,

118

T+(OOD, C, o) = OOD' where

C =<idcICQc, > and

C' <idC,bC, c U{o},A> and

OOD' = Tr+(Tc-(OOD, C),C')

Let T m be a transformation that removes a method from a class and returns a new

object-oriented design. Thus,

T;(OOD,C,o) = OOD' where

C =<idc,4c,Qc,A> and

C' =<idc,'Dc,)c- {o},A> and

OD' = T + (Tc(OOD, C), C')

4.33 Summary

This chapter has defined the Generic Object-Oriented Design Model (GOM) which

models objects, classes, methods, messages, assignment, variables, expressions, and control

flow in object-oriented programming languages. Several restrictions have been placed on

the GOM. Some restrictions are intended to canonicalize the representations of object-

oriented entities. Other restrictions place limits on which 00 entities can possibly be

modeled using the GOM.

Specifically, Restriction IV.1 states that neither functional nor procedural methods

can have a parameter that is both and input and an output parameter. This restriction

is not unreasonable since any method that does not meet this restriction can be converted

using a process similar to the one presented in Appendix D.

Similarly, Restriction IV.2 does not allow functional methods to return more than one

data item. Hypothetically, functional methods of this type can be converted to procedural

methods that return multiple values.

Restriction IV.3 is intended to canonicalize the accessing and assigning of object

attributes and does not limit which entities can be model using the GOM.

119

Restrictions IV.6 and IV.7 limit messages to non-recursive invocations. This restric-

tion is reasonable because Knuth [37] argues any recursive algorithm can be represented

using an iterative algorithm.

Restriction IV.8 does not allow global variables to appear in methods. This means

methods with variables other than formal parameters or local variables must first be con-

verted into the proper form. It is hypothetically possible to convert global variables into

formal parameters throughout the call tree of an object-oriented system, so this restriction

is not unreasonable.

Restriction IV.9 does not allow one method to be declared inside another method.

The scoping issues involved in this nesting of methods is more complicated than that of

variables, but it is hypothetically possible to convert the nested methods into methods

declared at the global level. Similarly, Restriction IV.1O does not allow one class to be

declared inside another class. This is a minor restriction since declaring classes inside of

other classes is not a common practice in object-oriented programming.

Restriction IV.4 requires that only calls to non-user-defined subprograms are modeled

by subprogram invocations in the GOM. This means that the GOM represents a "pure"

object-oriented design where no mixing of the imperative paradigm and the object-oriented

paradigm is allowed. This restriction presents a limitation if the design to be modeled does

include such a mixture.

None of the restrictions discussed above preclude the representation of object-oriented

entities in the GOM. However, Restriction IV.11 states that heterogeneous data types

are not modeled in the GOM. Restriction IV.12 states that pointers are not modeled in

the GOM. These two restrictions limit the entities that can be modeled by the GOM.

If the object-oriented system being modeled includes either heterogeneous data types or

pointers, the system cannot be represented using the GOM. This is not unreasonable when

re-engineering from the GIM, but is a more serious limitation for representing languages

such as C++ or Ada 95.

As presented in this chapter, the GOM provides a canonical form for modeling en-

tities in the object paradigm. Most of the restrictions placed on the GOM are meant to

120

canonicalize and simplify the representation of these entities. The GOM is used throughout

the following chapters to represent object-oriented entities.

121

V. Identifying Objects

5.1 Introduction

This chapter introduces a novel method, Parameter-Based Object Identification

(PBOI), for recovering objects from legacy imperative programs. The method is based

on fundamental axioms that relate programs written in imperative languages such as C or

Cobol to objects and classes written in object-oriented languages such as Ada 95 or C++.

This chapter provides an informal introduction to the object identification methodology.

Transformations that formalize the methodology are presented in Chapter VI.

In order to focus the task of transforming imperative subprograms to the object-

oriented paradigm, a taxonomy of imperative subprograms has been developed. This

chapter describes the taxonomy, which classifies all imperative subprograms into one of

six categories and explains how the object identification methodology is used to convert

subprograms in each of the categories. Finally, the chapter describes how the process of

program slicing [76] is used to focus the transformation task even further.

5.2 Taxonomy of Imperative Subprograms

This section describes the taxonomy of imperative subprograms built to focus the

task of re-engineering imperative legacy code to the object paradigm. By defining this

taxonomy, an imperative subprogram can be converted to the object paradigm by deter-

mining the classification of the subprogram and then applying the formal transformation

appropriate to that category of subprogram. The taxonomy reduces the re-engineering

task to defining the transformations for the six categories of subprograms identified. The

following definitions are used to build the taxonomy.

Definition V.1. One subprogram calls another subprogram by using the name of the sub-

program to invoke the other subprogram.

Definition V.2. Cub is the collection of calls a subprogram makes to other subprograms.

Definition V.3. An imperative procedure produces a data item if the data item is an

output parameter.

122

Definition V.4. An imperative function produces the data item returned at the end of its

execution.

Definition V.5. Ppro is the collection of data items produced by a subprogram.

The taxonomy of imperative subprograms considers whether or not a subprogram

calls another subprogram and whether the subprogram produces zero, one, or multiple

data items. The distinction between producing zero or one data item is important for the

classification of the main program, i.e. the subprogram that is given the flow of control as

the system begins execution. Figure 98 shows the taxonomy of imperative subprograms

based on the sizes of Csub and Ppro.

IPproI= IPprol IPro1>1
I Csb I= 0 0 2 4
I Cs J> 0 1 3 5

Figure 98 Subprogram Taxonomy

Category 0 subprograms produce no data items and call no other subprograms. These

subprograms could consist of output statements or busy/wait loops. Category 1 subpro-

grams produce no data items but call other subprograms. These subprograms could be

driver programs or the main program. Category 2 subprograms produce a single data item

and call no other subprograms. Category 3 subprograms produce a single data item and

call other subprograms. Category 4 subprograms produce multiple data items and call no

other subprograms. Category 5 subprograms produce multiple data items and call other

subprograms.

Since any imperative subprogram can be classified into one of these six categories, the

process of transforming the subprogram from the GIM to the GOM is reduced to building

transformations for each category.

5.3 Parameter-Based Object Identification

Parameter-Based Object Identification (PBOI) is a novel method for identifying ob-

jects in imperative legacy code based on the data items passed as parameters in imperative

123

subprogram calls. The PBOI method provides a rationale for converting imperative sub-

programs into classes and methods that implement the subprograms. The overall rationale

for the PBOI method is based on the following thesis.

Thesis V.1. Object attributes manifest themselves as data items passed from subprogram

to subprogram in the imperative paradigm.

Object attributes are extracted from the parameters of imperative subprograms using

specific transformations defined by the PBOI methodology. Once the attributes of an

object are built into a class, the behavior associated with the attributes is built into the

class.

In this methodology, it is assumed that all data items in an imperative subprogram

are either passed as parameters to the subprogram or declared locally in the subprogram.

In this way, the main program is the origin of all data items being passed to the imperative

subprograms.

The PBOI methodology starts the transformation process at the main program. Be-

fore the main program is transformed each of the subprograms called by the main program

is transformed to the object-oriented paradigm. Similarly, each of the subprograms called

by a Category 1, 3, or 5 subprogram is converted before the subprogram itself is converted.

This depth-first style of transformation results in incremental designs being merged together

at different steps in the transformation.

The following sections define the PBOI method in detail as it applies to the six

categories of imperative subprograms. The discussions of the different categories are not

presented in numerical order, but in an order that more closely fits the incremental nature

of the PBOI method.

5.4 Converting Category 2 Subprograms

As a starting point, consider the conversion of Category 2 imperative subprograms.

These subprograms produce one data item without calling any other subprograms, so an

analogous entity is needed from the object paradigm. In his Object Modeling Technique

(OMT), Rumbaugh [62] distinguishes between object-oriented operations that have side

124

effects and those that merely compute a functional value. He labels the latter form of

operation queries. Queries with no arguments except the target object are considered

derived attributes [621 of the object. Imperative functions fit this description, so the PBOI

method uses the following thesis to convert Category 2 functions to the object-oriented

paradigm.

Thesis V.2. Category 2 imperative functions implement derived attribute queries of ob-

jects.

Category 2 imperative procedures have a single output parameter, so the PBOI

method uses the following thesis to convert Category 2 procedures to the object-oriented

paradigm.

Thesis V.3. Category 2 imperative procedures implement side-effecting operations of ob-

jects.

Based on these two theses, the PBOI methodology converts each formal parameter

of a Category 2 subprogram into an attribute of a class and transforms the subprogram

into a method of the class.

real function CAPTURE
(BEAMRA, AXMAJ, AXMIN, ANGFAC)

begin

TILTFA DSIN (ANGFAC);
RMAREA AXMAJ * AXMIN;

EFAREA RMAREA * TILTFA;
BMAREA BEAMRA * BEAMRA;

if EFAREA <= BMAREA * 6.OdO

then USED EFAREA / BMAREA;
CAPTURE 1.OdO - DEXP (-USED)

else CAPTURE := 1.OdO endif

end

Figure 99 Imperative function CAPTURE

For example, consider the imperative function CAPTURE shown in Figure 99. This

function is shown using the GIL surface syntax. The CAPTURE function is a Category 2

subprogram that returns a single value of type real. The parameters BEAMRA, AXMAJ, AXMIN,

125

and ANGFAC are passed into the function and used by the statements of the function to

calculate the value returned. The CAPTURE function is converted to the object-oriented

paradigm using the PBOI method. Figure 100 shows the class and method built for

CAPTURE.

class CLASS-2 attributes

AXMIN, AXMAJ, BEAMRA, ANGFAC

method CAPTURE (C-2): real

begin

TILTFA DSIN (GET-ANGFAC (C-2));
RMAREA GET-AXMAJ (C-2)
* GET-AXMIN (C-2);

EFAREA RMAREA * TILTFA;
BMAREA GET-BEAMRA (C-2)

* GET-BEAMRA (C-2);

if EFAREA <= BMAREA * 6.OdO
then USED EFAREA I BMAREA;
CAPTURE 1.0dO - DEXP (-USED)

else CAPTURE := 1.OdO endif
end

superclass USER-OBJECT

Figure 100 Class and method built for CAPTURE

This class and method are represented in the figure using the GOL surface syntax.

Note that each of the parameters BEAMRA, AXMAJ, AXMIN, and ANGFAC are attributes of

the class CLASS-2. The method that implements the CAPTURE subprogram has been built

as the single method of CLASS-2. This method expects one parameter, C-2, which is an

instance of CLASS-2, and the method returns a value of type real. The statements of the

method now access the BEAMRA, AXMAJ, AXMIN, and ANGFAC data items from the object C-2

in order to calculate the value returned from the method.

Because of Restriction IV.3, the BEAMRA, AXMAJ, AXMIN, and ANGFAC attributes are

accessed using the "GET-" and "SET-" methods. Each "GET-" and "SET-" method is

generated for each attribute and added to the set of operations for the class. Similarly,

a method to instantiate instances of the class is needed, so a "CREATE-" method is

generated for each class. These methods are not generated until the main program is

126

transformed, which explains why they do not appear in Figure 100. The transformation

that formalizes the generation of these methods is presented in Section 6.11.2.

The conversion of Category 2 procedures is identical to the conversion of Category 2

functions except that the single output parameter is converted to an attribute of the new

class built for the subprogram. By using this part of the PBOI method, all Category 2

subprograms can be converted to the object-oriented paradigm.

5.5 Converting Category 0 Subprograms

A Category 0 subprogram produces no data items and calls no other subprograms.

These subprograms may be routines that include imperative-output statements, or they

may be needed in the system for timing considerations. Category 0 subprograms are

treated as a special case of Category 2 subprograms. All Category 0 subprograms are

transformed to the object-oriented paradigm by using the transformation defined for Cat-

egory 2 subprograms.

5.6 Converting Category 3 Subprograms

Category 3 subprograms produce a single data item and call other subprograms.

Since Category 3 subprograms call other subprograms, the attributes of objects that have

already been built can be analyzed using the PBOI methodology. This section describes the

depth-first analysis that is done to the object-oriented design while transforming Category

3 subprograms to the object-oriented paradigm.

The first step in converting a Category 3 subprogram is to transform all of the

subprograms that it calls. Then a new class with a method that implements the Category

3 subprogram is built. Initially this class has an attribute built from each of the parameters

of the subprogram, as was done for Category 2 subprograms. As Category 3 subprograms

are converted to the object-oriented paradigm, the attributes of this class, as well as the

attributes of the other classes in the design, are filtered to determine which should remain

attributes and which should be converted from attributes to parameters of the methods.

127

Specifically, consider the case where a Category 3 subprogram S, makes one call to

another subprogram S2 (S 2 may be from any category in the taxonomy). Each of the

actual parameters from S in the call to S2 is linked to a corresponding formal parameter

in the declaration of S2 . Let C 1 represent the class built for S1 and let C2 represent the

class built for S2.

An actual parameter from S1 may or may not also be a formal parameter of S1, and

the corresponding formal parameter in S2 may be an attribute of C 2 or a parameter of the

method in C2. Figure 101 shows the four cases considered for each actual parameter when

converting a Category 3 subprogram. In each PBOI case, a specific change is made to the

Actual is Formal Actual is not Formal

Formal is Attribute PBOI Case 1 PBOI Case 3
Formal is Parameter PBOI Case 2 PBOI Case 4

Figure 101 PBOI Cases

design developed so far as explained below.

PBOI Case 1 The data item remains an attribute of C2 and is removed as an attribute

of C 1 .

PBOI Case 2 The data item is converted from an attribute of C 1 to a parameter of Cl's

method.

PBOI Case 3 The data item is converted from an attribute of C2 to a parameter of C 2's

method.

PBOI Case 4 No change is required for the design.

In Case 1, the data item has already been made an attribute of C2 , so it should not

be built as an attribute of another class, i.e. C 1 . In Case 2, it has been determined through

some earlier filtering that the data item should not be an attribute, so it is not built as an

attribute of C1. In Case 3, the data item is not being passed down from the main program,

so it is not part of an object. Thus, it is filtered out of C 2 and moved to a parameter. In

Case 4, the data item is not being passed down and it is already a parameter instead of an

attribute. These four cases are used to evaluate the entire design built so far when each

128

Category 3 subprogram is converted to the object-oriented paradigm. For clarification, an

example is given in the following sections for each of the PBOI cases.

5.6.1 PBOI Case 1. As an example of PBOI Case 1, consider the Category

3 subprogram BOUNCE shown in Figure 102 (using the GIL surface syntax). The BOUNCE

real function BOUNCE (ANGFAC, RNGFAC, PROJRA,

SIGB, RANGE, AXMAJ, AXMIN, XLAMDA)

begin

RHOSTD 0.95 * PROJRA * ANGFAC;

BEAMRA

RADIUS (PROJRA, SIGB, RNGFAC, RANGE);

BOUNCE
CAPTURE (BEAMRA, AXMAJ, AXMIN, ANGFAC)

* RHO (RHOSTD, XLAMDA, ANGFAC)

end

Figure 102 Subprogram BOUNCE

subprogram calls the Category 2 subprogram RADIUS shown in Figure 103, as well as the

CAPTURE and RHO subprograms (not shown in the figures). Figure 104 shows the class built

for the RADIUS subprogram (using the GOL surface syntax) by using the rule for Category

2 subprograms. Note that the formal parameters of RADIUS have been built as attributes

of the class CLASS-1.

real function RADIUS

(PROJRA, SIGB, RNGFAC, RANGE)
begin
if RNGFAC > 0.0 and RANGE > 0.0

then SIGABS := DABS (SIGB);

SLOPE SIGABS - PROJRA / RANGE;
SPOT SIGABS * RANGE;

RAD DABS (PROJRA + SLOPE * RNGFAC);
RADIUS DMAX1 (SPOT, RAD)

else

RADIUS PROJRA endif

end

Figure 103 Subprogram RADIUS

129

In the call to RADIUS, the actual parameters PROJRA, SIGB, RNGFAC and RANGE are also

formal parameters of the BOUNCE subprogram. These four data items provide an example

class CLASS-i attributes

RANGE, RNGFAC, SIGB, PROJRA
method RADIUS (C-1): real
begin

if GET-RNGFAC (C-1) > 0.0 and

GET-RANGE (C-i) > 0.0
then SIGABS DABS (GET-SIGB (C-i));

SLOPE := SIGABS - GET-PROJRA (C-i)
/ GET-RANGE C C-i);

SPOT SIGABS * GET-RANGE (C-i);

RAD DABS (GET-PROJRA (C-i) +

SLOPE * GET-RNGFAC (C-i));

RADIUS DMAX1 (SPOT, RAD)

else RADIUS := GET-PROJRA (C-i) endif

end
superclass USER-OBJECT

Figure 104 Class and method built for RADIUS

of PBOI Case 1 and remain attributes of CLASS-1.

Figure 105 shows the initial class and method built for the Category 3 subprogram

BOUNCE. Note that the subprogram calls to RADIUS, CAPTURE, and RHO have not yet been

transformed to messages, i.e. the transformation is incomplete. Also note that each of

the parameters from the subprogram BOUNCE has been built as an attribute of the class

CLASS-4 including the formal parameters PROJRA, SIGB, RNGFAC and RANGE. Since these

data items are passed to the RADIUS subprogram and have been built as attributes of the

class built for RADIUS, they are examples of PBOI Case 1 and are converted from attributes

of CLASS-4 to attributes of CLASS-1.

Figure 106 shows CLASS-4 after the attributes PROJRA, SIGB, RNGFAC and RANGE have

been converted from CLASS-4 to CLASS-1. As shown in the figure, these data items are

no longer attributes of CLASS-4. The message GET-PROJRA is now sent to the object C-5,

an instance of CLASS-i, instead of being sent to the object C-4, an instance of CLASS-4.

130

class CLASS-4 attributes ANGFAC, RNGFAC, PROJRA,

SIGB, RANGE, AXMAJ, AXMIN, XLAMDA

method BOUNCE (C-4): real

begin

RHOSTD := 0.95 * GET-PROJRA (C-4)
* GET-ANGFAC (C-4);

BEAMRA :=

RADIUS C PROJRA, SIGB, RNGFAC, RANGE);
BOUNCE :=

CAPTURE (BEAMRA, AXMAJ, AXMIN, ANGFAC)
* RHO C RHOSTD, XLAMDA, ANGFAC)

end

superclass USER-OBJECT

Figure 105 Initial class built for BOUNCE

The call to the subprogram RADIUS has been transformed into a message sent to C-5 that

invokes the RADIUS method of CLASS-1.

5.6.2 PBOI Case 2. As an example of PBOI Case 2, consider another version

of CLASS-1 shown in Figure 107 that might have been built for the RADIUS subprogram.

The class shown in the figure includes the PROJRA data item as a parameter to the RADIUS

method instead of as an attribute of the class CLASS-1. This data item provides an example

of PBOI Case 2. Figure 105 shows the initial class built for the BOUNCE subprogram. Each

of the formal parameters of the subprogram BOUNCE has been built as an attribute of

CLASS-4, including the PROJRA data item. In this example, the PROJRA data item is passed

to the RADIUS subprogram but was not built as a parameter of the class built for RADIUS.

This is an example of PBOI Case 2, so the data item PROJRA is transformed from an

attribute of CLASS-4 into a parameter of the methods of CLASS-4.

Figure 108 shows the updated class after converting the data item PROJRA from an

attribute of CLASS-4 into a parameter of the BOUNCE method. The PROJRA data item is

passed as an actual parameter to the RADIUS method. The message GET-PROJRA (C-4)

that was used to access PROJRA as an attribute of the class has been converted to an access

of the parameter PROJRA. The class in the figure has also been updated to convert the data

items SIGB, RNGFAC and RANGE from attributes of CLASS-4 to attributes of CLASS-1 since

131

class CLASS-4 attributes

ANGFAC, AXMAJ, AXMIN, XLAMDA

method BOUNCE (C-4, C-5): real

begin

RHOSTD := 0.95 * GET-PROJRA (C-5)

* GET-ANGFAC (C-4);
BEAMRA RADIUS (C-5);

BOUNCE

CAPTURE (BEAMRA, AXMAJ, AXMIN, ANGFAC)
* RHO (RHOSTD, XLAMDA, ANGFAC)

end

superclass USER-OBJECT

Figure 106 Updated class built for BOUNCE

these data items are examples of PBOI Case 1. The message RADIUS C-5, PROJRA)

now matches the signature of the method RADIUS and is passed an instance of CLASS-i

and the parameter PROJRA.

5.6.3 PBOI Case 3. As an example of PBOI Case 3, Figure 109 shows the

Category 3 imperative subprogram BOUNCE and the Category 2 subprogram CAPTURE, which

is called by BOUNCE. The class originally built for the CAPTURE subprogram is shown in

Figure 110. Since CAPTURE is a Category 2 subprogram, each of the parameters, including

the data item BEAMRA, is converted into an attribute of the class CLASS-2. The BEAMRA

data item is not a formal parameter of the subprogram BOUNCE, so it does not remain an

attribute of CLASS-2. This data item is an example of PBOI Case 3, so it must be converted

from an attribute of CLASS-2 into a parameter of the CAPTURE method. Figure 111 shows

CLASS-2 after this change has been made. Figure 105 shows the initial class built for

the BOUNCE subprogram. The data item BEAMRA is not a formal parameter of the BOUNCE

subprogram, so it has not been built as a parameter of the class CLASS-4. There is no

change required by PBOI Case 3 to the attributes of CLASS-4 or the parameters of the

BOUNCE method. The only change made to the statements of the method is to ensure the

BEAMRA data item is passed as a parameter of the CAPTURE message. To illustrate, note

132

class CLASS-i attributes RANGE, RNGFAC, SIGB

method RADIUS (C-i, PROJRA): real

begin

if GET-RNGFAC (C-1) > 0.0 and
GET-RANGE (C-1) > 0.0

then SIGABS DABS (GET-SIGB (C-i));

SLOPE := SIGABS - PROJRA

/ GET-RANGE (C-i);
SPOT SIGABS * GET-RANGE (C-i);

RAD DABS (PROJRA + SLOPE *

GET-RNGFAC CC-1));
RADIUS := DMAXI (SPOT, RAD)

else RADIUS := PROJRA endif

end

superclass USER-OBJECT

Figure 107 Class built for RADIUS

that the AXMAJ, AXMIN, and ANGFAC data items are examples of PBOI Case 1, so they are

converted from attributes of CLASS-4 to attributes of CLASS-2.

Figure 112 shows CLASS-4 after this transformation has been done and the call

to CAPTURE has been converted into a message. As shown in the figure, the message

CAPTURE (C-6, BEAMRA) invokes the CAPTURE method in CLASS-2. The instance variable

C-6 now includes the AXMAJ, AXMIN, and ANGFAC data items as attributes (because of PBOI

Case 1), and the BEAMRA data item is passed as an actual parameter of the message (because

of PBOI Case 3).

5.6.4 PBOI Case 4. As an example of PBOI Case 4, consider the version of

CLASS-2 shown in Figure 111. This class has been built for the subprogram CAPTURE and,

for this example, the data items AXMAJ, AXMIN, and ANGFAC have been built as attributes

of the class. For this example, the data item BEAMRA has been built as a parameter of the

CAPTURE method. As shown in Figure 109, the BEAMRA data item is a formal parameter of

the CAPTURE subprogram.

Figure 113 shows the initial class built for the BOUNCE subprogram, as originally

presented in Figure 105. The BEAMRA data item is not a formal parameter of the BOUNCE

133

class CLASS-4 attributes

ANGFAC, AXMAJ, AXMIN, XLAMDA

method BOUNCE (C-4, C-5, PROJRA): real

begin

RHOSTD := 0.95 * PROJRA
* GET-ANGFAC (C-4);

BEAMRA RADIUS (C-5, PROJRA);

BOUNCE

CAPTURE (BEAMRA, AXMAJ, AXMIN, ANGFAC)
* RHO (RHOSTD, XLAMDA, ANGFAC)

end

superclass USER-OBJECT

Figure 108 Updated class built for BOUNCE

subprogram (as shown in Figure 109). Since BEAMRA is not a formal parameter and it has

not been built as an attribute of CLASS-2, it is an example of PBOI Case 4. In this case,

there are no changes required to either CLASS-2 or CLASS-4. The only change made to

the statements of the method BOUNCE is to ensure that BEAMRA is included as an actual

parameter of the CAPTURE message.

Figure 114 shows CLASS-4 after the data items AXMAJ, AXMIN, and ANGFAC are con-

verted from attributes of CLASS-4 to attributes of CLASS-2 (because of PBOI Case 1) and

the call to CAPTURE has been converted to a message. As shown in the figure, the message

CAPTURE (C-6, BEAMRA) includes C-6, an instance of CLASS-2, and the data item BEAMRA

passed as actual parameters.

5.6.5 Eliminating Duplicate Classes. In the call tree of an imperative design, it

is possible that one subprogram will have multiple calls to another subprogram. Since the

first step in converting a Category 3 subprogram is to transform all of the subprograms

that it calls, the subprogram that is called multiple times will be converted multiple times.

This introduces duplicate classes into the design returned to the Category 3 subprogram.

Furthermore, there may be different combinations of PBOI cases for each of the calls to a

subprogram. This means the signature of the method built for one call to a subprogram

may not match the signature of the method built for another call to the subprogram.

134

real function CAPTURE

(BEAMRA, AXMAJ, AXMIN, ANGFAC)
begin
TILTFA DSIN (ANGFAC);

RMAREA AXMAJ * AXMIN;

EFAREA RMAREA * TILTFA;

BMAREA BEAMRA * BEAMRA;

if EFAREA <= BMAREA * 6.OdO

then USED EFAREA / BMAREA;

CAPTURE 1.0dO - DEXP (-USED)

else CAPTURE := 1.OdO endif

end

real function BOUNCE
C ANGFAC, RNGFAC, PROJRA, SIGB,
RANGE, AXMAJ, AXMIN, XLAMDA)

begin

RHOSTD 0.95 * PROJRA * ANGFAC;

BEAMRA

RADIUS C PROJRA, SIGB, RNGFAC, RANGE);
BOUNCE :=
CAPTURE (BEAMRA, AXMAJ, AXMIN, ANGFAC)

* RHO (RHOSTD, XLAMDA, ANGFAC)

end

Figure 109 Subprograms CAPTURE and BOUNCE

To resolve this possible mismatch between the signature of methods in duplicate

classes, the duplicate classes are identified and eliminated as part of the conversion of

Category 3 subprograms. Two duplicate classes are replaced in the design with a new class

that is built as follows. The sets of attributes from the two duplicate classes are compared

and any attributes not in the intersection are moved from attributes to parameters. The

attributes in the intersection become attributes of the new class. Since both duplicate

classes include a method that implements a single subprogram, the set of operations for

the new class includes the method built for this subprogram. The resulting class replaces

the two duplicate classes in the design. If any other methods include calls to the methods

from the duplicate classes, these calls are updated to match the signature of the method

in the new class.

135

class CLASS-2 attributes
AXMAJ, AXMIN, ANGFAC, BEAMRA

method CAPTURE (C-2): real

begin

TILTFA DSIN (GET-ANGFAC C-2));

RMAREA GET-AXMAJ (C-2) *

GET-AXMIN (C-2);

EFAREA RMAREA * TILTFA;

BMAREA GET-BEAMRA C-2) *

GET-BEAMRA (C-2);
if EFAREA <= BMAREA * 6.OdO

then USED := EFAREA / BMAREA;

CAPTURE 1.0dO - DEXP (-USED)

else CAPTURE 1.OdO endif

end

superclass USER-OBJECT

Figure 110 Original class built for CAPTURE

For example, Figure 115 shows two classes built for the subprogram CAPTURE. The

signatures of the two methods do not match since BEAMRA is passed as a parameter in one

version and ANGFAC is passed as a parameter in the other. The classes are easily identified

as duplicates because the names of the two classes are the same. These duplicate classes

are replaced in the design by the class shown in Figure 116. The new version of CLASS-2

includes attributes from the intersection of the sets of attributes from the duplicate classes.

The single operation in the new class is the method from the duplicate classes updated to

properly access the attributes and parameters of the new class.

Duplicate classes may also be introduced into the design when different subprograms

call the same subprogram. These duplicates will be identified and eliminated when the

call subtrees that include the two calling subprograms join. This is guaranteed to happen

at least at the main program.

5.7 Converting Category 1 Subprograms

Category 1 subprograms produce no data items but call other subprograms. These

subprograms provide another opportunity to extract objects using the PBOI methodology.

136

class CLASS-2 attributes AXMAJ, AXMIN, ANGFAC

method CAPTURE (C-2, BEAMRA): real

begin

TILTFA DSIN (GET-ANGFAC C-2));

RMAREA GET-AXMAJ (C-2) *

GET-AXMIN (C-2);

EFAREA RMAREA * TILTFA;

BMAREA BEAMRA * BEAMRA;

if EFAREA <= BMAREA * 6.OdO
then USED := EFAREA / BMAREA;

CAPTURE 1.OdO - DEXP (-USED)

else CAPTURE 1.OdO endif
end

superclass USER-OBJECT

Figure 111 Updated class built for CAPTURE

Typically, the main program is classified as a Category 1 subprogram. All Category 1

subprograms other than the main program are transformed using the PBOI methodology

defined for Category 3 subprograms. Because of the unique handling of the main program,

the following assumption applies.

Assumption V.1. The main program of the system that is being converted to the object

paradigm is uniquely identified.

There is no attempt in this research to identify the main program automatically.

Since it is at the top of the call tree of imperative subprograms, such automatic identifica-

tion of the main program should be straightforward to implement. The main program is

transformed to the object-oriented paradigm as described in the following section.

5.8 Converting the Main Program

The main program of a system provides a unique opportunity to update the object-

oriented design developed so far and is transformed using the rationale defined in this

section. Before the main program is transformed, each of the subprograms called by the

main program is transformed to the object-oriented paradigm. This depth-first transfor-

mation results in an object-oriented design that includes classes built for all of the sub-

137

class CLASS-4 attributes RNGFAC, PROJRA, SIGB,

RANGE, XLAMDA

method BOUNCE (C-4, C-6): real
begin

RHOSTD := 0.95 * GET-PROJRA (C-4)

* GET-ANGFAC (C-6);
BEAMRA :=

RADIUS (PROJRA, SIGB, RNGFAC, RANGE);

BOUNCE :=
CAPTURE C-6, BEAMRA)

* RHO C RHOSTD, XLAMDA, ANGFAC)
end

superclass USER-OBJECT

Figure 112 Updated class built for BOUNCE

programs in the system (except the main program). A special class is built for the main

program to represent the overall system class in the object-oriented design. This class has

no attributes and only one method which implements the main program. The name of

this class is CLASS-SYSTEM. In this way, the entire imperative design is converted into an

object-oriented design using depth-first transformations.

In this research, an assumption is made that all data items in the imperative sub-

programs are either passed as parameters to the subprogram or declared locally in the

subprogram; thus the main program is the origin of all data items being passed to the

imperative subprograms. For this reason, the data items in the main program are used to

create all of the instances required throughout the entire object-oriented design. Creating

every object instance from data items in the main program leads to the following thesis.

Thesis V.4. Attributes that can be linked to the same main program data item are part

of the same object.

This is used as the rationale for two design updates done at this stage of the main

program transformation, as discussed in Section 5.8.1 and Section 5.8.2.

Since each of the subprograms called by the main program has been converted to

a method, the subprogram calls in the main program must be transformed into messages

that invoke these methods. Each method includes one or more object instances in its

138

class CLASS-4 attributes ANGFAC, RNGFAC, PROJRA,

SIGB, RANGE, AXMAJ, AXMIN, XLAMDA
method BOUNCE (C-4): real

begin

RHOSTD := 0.95 * GET-PROJRA (C-4)

* GET-ANGFAC (C-4);
BEAMRA :=

RADIUS (PROJRA, SIGB, RNGFAC, RANGE);
BOUNCE :=

CAPTURE (BEAMRA, AXMAJ, AXMIN, ANGFAC)
* RHO (RHOSTD, XLAMDA, ANGFAC)

end

superclass USER-OBJECT

Figure 113 Initial class built for BOUNCE

signature, so these instances must be created by the main program. Data items which

appear as parameters in the imperative paradigm must be built as attributes of object

instances in the object paradigm. The assignment statements that create these instances

are inserted in the sequence of main program statements just before the message.

For example, Figure 117 shows the partial declaration of the subprogram LNKCAL-

DWELLT. Assume this subprogram is called by the main program BMDSIM1. The formal

parameters BETA, XLAMDA, and DIAM are shown in the figure as part of the signature of this

subprogram. Figure 118 shows the partial declaration of the class CLASS-20 which has the

method LNKCAL-DWELLT that implements the subprogram LNKCAL-DWELLT from Figure 117.

The signature of the method is radically different from the signature of the subprogram

because the data items BETA, XLAMDA, and DIAM are now attributes of a class and do not

appear as parameters in the signature of the method. Instead, an instance of the class

that has BETA, XLAMDA, and DIAM as attributes is included in the method LNKCAL-DWELLT,

viz. C-22. The instance object C-22 is a formal parameter of the method LNKCAL-DWELLT

and a corresponding object must be passed as an actual parameter of any messages that

invoke the method LNKCAL-DWELLT. Since, in this example, the LNKCAL-DWELLT method is

invoked by the main program BMDSIM1, the main program must build an instance to send

in the message that invokes LNKCAL-DWELLT.

139

class CLASS-4 attributes RNGFAC, PROJRA, SIGB,

RANGE, XLAMDA

method BOUNCE (C-4, C-6): real

begin

RHOSTD := 0.95 * GET-PROJRA (C-4)

* GET-ANGFAC (C-6);

BEAMRA :=

RADIUS (PROJRA, SIGB, RNGFAC, RANGE);
BOUNCE :=

CAPTURE C-6, BEAMRA)
* RHO (RHOSTD, XLAMDA, ANGFAC)

end

superclass USER-OBJECT

Figure 114 Updated class built for BOUNCE

Figure 119 shows the class CLASS-5 that, in this example, is the class of which C-22

is an instance. Note the method CREATE-CLASS-5 shown in the figure. This method

is used to build new instances of CLASS-5 and is generated automatically when using

the PBOI methodology. Section 6.11.2 presents the transformation that formalizes the

generation of this method. Figure 120 shows the class CLASS-SYSTEM built for the main

program BMDSIM1. Some of the statements from the main program are shown in the

figure. Specifically, the message that invokes the LNKCAL-DWELLT method is shown, and

the message that creates C-22 is shown. Since C-22 must be passed to the LNKCAL-DWELLT

method, it must first be created and inserted into the statements of the BMDSIM1 method.

The variable C-22 (a computer-generated name) is assigned the object instance returned

from the CREATE-CLASS-5 method shown in Figure 119. Note that the signature of the

LNKCAL-DWELLT message is incomplete. If there are any other objects in the signature of the

LNKCAL-DWELLT method, assignment statements are built and inserted into the statements

of BMDSIM1.

5.8.1 Removing Duplicate Object Instances. Following the creation of object

instances and the transformation of subprogram calls into messages, the next design update

is to replace duplicate object instances. Duplicate object instances are defined as follows.

140

class CLASS-2 attributes AXMAJ, AXMIN, ANGFAC

method CAPTURE (C-2, BEAMRA):real
begin

TILTFA DSIN (GET-ANGFAC C0-2));
RMAREA GET-AXMAJ (0-2)*

GET-AXMIN (C0-2);

EFAREA RMAREA * TILTFA;
BMAREA BEAMRA * BEAMRA;

if EFAREA <= BMAREA *6.OdO

then USED :=EFAREA /BMAREA;
CAPTURE 1.OdO - DEXP (-USED)

else CAPTURE 1.OdO endif

end
superclass USER-OBJECT

class CLASS-2 attributes AXMAJ, AXMIN, BEAMRA

method CAPTURE (C-2, ANGFAC):real

begin

TILTFA DSIN C ANGFAC);
RMAREA GET-AXMAJ (C0-2)*

GET-AXMIN (0-2);

EFAREA RMAREA * TILTFA;

BMAREA GET-BEAMRA C0-2) *GET-BEAMRA C -2);

if EFAREA <= BMAREA *6.OdO

then USED :=EFAREA /BMAREA;
CAPTURE 1.OdO - DEXP (-USED)

else CAPTURE 1.OdO endif

end
superclass USER-OBJECT

Figure 115 Duplicate classes built for CAPTURE

141

class CLASS-2 attributes AXMAJ, AXMIN

method CAPTURE (C-2, BEAMRA): real

begin

TILTFA DSIN (ANGFAC);

RMAREA GET-AXMAJ (C-2) *

GET-AXMIN (C-2);

EFAREA RMAREA * TILTFA;

BMAREA BEAMRA * BEAMRA;

if EFAREA <= BMAREA * 6.OdO

then USED := EFAREA / BMAREA;

CAPTURE 1.0dO - DEXP C-USED)
else CAPTURE 1.OdO endif

end

superclass USER-OBJECT

Figure 116 Class to replace the duplicates

procedure LNKCAL-DWELLT (... , BETA, XLAMDA, DIAM, ...)
begin

end

Figure 117 Partial Signature of Subprogram LNKCAL-DWELLT

Definition V.6. Separate object instances that are built from the same class using the

same data items are duplicate object instances.

Duplicate object instances which are identified in the main program are replaced with a

single object instance built from the class. This is done to avoid duplicate copies of the

instance attributes which may be updated by different methods. Having duplicate object

instances would result in an inconsistent system state, so they are eliminated.

For example, Figure 121 shows the overall system class CLASS-SYSTEM built for the

main program BMDSIM1. As shown in the figure, the three variables C-22, C-32, and C-36

are created before being passed as actual parameters in the LNKCAL-DWELLT message. These

three variables are all instances of CLASS-5, which is also shown in the figure. These in-

stances are built by using the class's creation method, CREATE-CLASS-5. All three objects

are built from the data items BETA, XLAMDA, and DIAM, thus all three objects are duplicate

142

class CLASS-20 attributes MIRR, MIRF, SLACT, IENG, SLANG

method LNKCAL-DWELLT (..., C-22, ... ,)
begin

end

Figure 118 Partial Signature of Method LNKCAL-DWELLT

class CLASS-5 attributes BETA, XLAMDA, DIAM

method CREATE-CLASS-5 (A-BETA, A-XLAMDA, A-DIAM): a CLASS-5

begin

INST-CLASS-5 := new (CLASS-5);
SET-BETA (INST-CLASS-5, A-BETA);

SET-XLAMDA (INST-CLASS-5, A-XLAMDA);

SET-DIAM (INST-CLASS-5, A-DIAM);

CREATE-CLASS-5 := INST-CLASS-5

end

Figure 119 Partial Class Containing Attributes BETA, XLAMDA, and DIAM

object instances. Figure 122 shows how method BMDSIM1 is updated by replacing the du-

plicate object instances C-22, C-32, and C-36 with the single instance C-60. The C-60

instance is created using the CREATE-CLASS-5 and passed to the LNKCAL-DWELLT method

in place of C-22, 0-32, and C-36. The instance C-60 is passed as three actual parameters

in order to properly replace the object instances C-22, C-32, and C-36 in the invocation of

LNKCAL-DWELLT. This allows the LNKCAL-DWELLT method to remain unchanged and prop-

erly refer to the instance C-60 using its three formal parameters. Future research should

explore the changes required to methods such as LNKCAL-DWELLT in order to refer to a

single formal parameter when eliminating duplicate objects.

5.8.2 Merging Overlapping Classes. The second update done to the design when

transforming the main program is to merge classes that overlap.

Definition V.7. A class overlaps another class when an instance of each class is built

using at least one common data item.

143

class CLASS-SYSTEM attributes

method BMDSIM1 ()
begin

C-22 := CREATE-CLASS-5 (BETA, XLAMDA, DIAM);

LNKCAL-DWELLT (C-46, ... , C-22, ...

end

Figure 120 Creating an Instance of CLASS-5

In this case, the overlapping classes are merged into a new class. The merging of two

classes unions the attributes and operations of the classes into a new class. A single new

instance that is built from this new class replaces the two separate instances. Throughout

the entire design, any instances from the overlapping classes are replaced by an instance

of the new class. As with duplicate object instances, overlapping classes are merged in

order to avoid duplicating instance attributes which may be changed by different methods.

Building object instances from overlapping classes would result in an inconsistent system

state, so the classes are merged.

For example, Figure 123 shows overlapping classes CLASS-19 and CLASS-17 as well

as the overall system class CLASS-SYSTEM built for the main program BMDSIM1. As shown

in the figure, the instance C-56 is built as an instance of CLASS-19 using the data items

DWELLT and NMIRL. The instance C-57 is built as an instance of CLASS-17 using the data

item DWELLT. By Definition V.7, classes CLASS-19 and CLASS-17 overlap and are merged

into one new class.

Figure 124 shows the result of merging CLASS-19 and CLASS-17 into the new class

CLASS-20. The attributes of CLASS-20 are the union of the attributes of CLASS-19 and

CLASS-17. The names of the attributes in CLASS-20 match the names of the data items in

the main program. The attribute names are changed because the names of the attributes

in overlapping classes do not always match.' As shown in the figure, CLASS-20 includes

'Recognizing differently-named attributes that represent the same data item is done using the transitive

closure of the ja relation, as described in Section 6.8.2

144

class CLASS-5 attributes BETA, XLAMDA, DIAM

method CREATE-CLASS-5

(A-BETA, A-XLAMDA, A-DIAM): a CLASS-5

begin

INST-CLASS-5 := new (CLASS-5);

SET-BETA (INST-CLASS-5, A-BETA);

SET-XLAMDA (INST-CLASS-5, A-XLAMDA);

SET-DIAM (INST-CLASS-5, A-DIAM);

CREATE-CLASS-5 := INST-CLASS-5

end

class CLASS-SYSTEM attributes

method BMDSIM1 ()
begin

C-22 CREATE-CLASS-S BETA, XLAMDA, DIAM);

C-32 CREATE-CLASS-5 (BETA, XLAMDA, DIAM);
C-36 CREATE-CLASS-5 C BETA, XLAMDA, DIAM);

LNKCAL-DWELLT (C-46, C-22, C-32, C-36, ...

end

Figure 121 Duplicate object instances

all of the methods from CLASS-19 and CLASS-17. The new instance C-61 is created using

the creation method from CLASS-20 and passed to the LNKCAL-DWELLT message in place of

C-56 and C-57. The design is updated by removing CLASS-19 and CLASS-17 and adding

CLASS-20. All instances of the classes CLASS-19 and CLASS-17 are converted to instances

of the class CLASS-20 throughout the entire design. In this way, the design is updated to

remove the overlapping classes when transforming the main program.

5.9 Converting Category 4 Subprograms

Category 4 subprograms produce multiple outputs without calling other subpro-

grams. By using program slicing [22,76], a multiple-output subprogram is converted into

independent program slices that each produce a single output. These program slices are

used to build new imperative subprograms, so a Category 4 subprogram is sliced into

145

class CLASS-SYSTEM attributes

method BMDSIM1 ()
begin

C-60 := CREATE-CLASS-5 (BETA, XLAMDA, DIAM);

LNKCAL-DWELLT (C-46, C-60, C-60, C-60, ...

end

Figure 122 Duplicates removed

multiple Category 2 subprograms. This program slicing process is discussed in detail in

Section 5.11.

5.10 Converting Category 5 Subprograms

A Category 5 subprogram produces multiple outputs and calls other subprograms. As

with Category 4 subprograms, program slicing is used to convert a Category 5 subprogram

into multiple slices. These slices are used to build new imperative subprograms that may

or may not call other subprograms, so the Category 5 subprograms are sliced into new

subprograms that are classified as either Category 3 or Category 2 subprograms. This

process of program slicing is discussed in detail in Section 5.11.

5.11 Program Slicing

This section defines how program slicing is used in the PBOI method to simplify the

transformation task. Program slicing has already been defined in the literature [22,30,76].

In this research, a new imperative subprogram is built by providing an appropriate name

and using a program slice as the sequence of statements in the subprogram. The sequence of

formal parameters for this new subprogram consists of all of the original formal parameters

that are referenced in the program slice.

By using program slicing in this way, the behavior of a Category 4 or Category 5

subprogram is projected into multiple subprograms. Each of the subprograms produces one

146

class CLASS-19 attributes A, NVAL

method MAXA-NMAX (C-45, NMAX, AMAX)
begin

end

class CLASS-17 attributes DWELLT
method DASET-DWELLT (C-43, DT, TLASE)

begin

end

class CLASS-SYSTEM attributes
method BMDSIM1()

begin

C-56 CREATE-CLASS-19 CDWELLT, NMIRL);
C-57 CREATE-CLASS-17 (DWELLT);

LNKCAL-DWELLT (C-46, .. , C-56, C-57);

end

Figure 123 Overlapping object classes

147

class CLASS-20 attributes NMIRL, DWELLT

method CREATE-CLASS-20

(A-NMIRL, A-DWELLT): a CLASS-20

begin

INST-CLASS-20 := new (CLASS-20);
SET-NMIRL (INST-CLASS-20, A-NMIRL);
SET-DWELLT C INST-CLASS-20, A-DWELLT);
CREATE-CLASS-20 := INST-CLASS-20

end

method MAXA-NMAX (C-45, NMAX, AMAX)
begin

end

method DASET-DWELLT (C-43, DT, TLASE)

begin

end

class CLASS-SYSTEM attributes

method BMDSIM1 ()
begin

C-61 := CREATE-CLASS-20 (NMIRL, DWELLT);

LNKCAL-DWELLT (C-46, ..., C-61, C-61);

end

Figure 124 Overlapping classes merged

of the data items originally produced by the Category 4 or Category 5 subprogram. Since

the PBOI method relies on the parameters being passed from subprogram to subprogram

and the new subprograms include only those parameters required to produce the data item,

program slicing has grouped these parameters according to how they are used instead how

they are organized. This new grouping helps the PBOI method move away from the

structured analysis and design that was done on the original system (if any) and move

towards an object-oriented design.

For example, Figure 125 shows the imperative subprogram BOOSTR using GIL syntax.

This is a Category 4 subprogram because it produces the two data items R and V and calls

no other (user-defined) subprograms. Figure 126 shows the new imperative subprogram

148

procedure BOOSTR (ITYPE, T, R, V)
begin

RE 6378.16d0;

P12 1.570796327d0;

ITYP ABS (ITYPE);
if ITYP = 1
then ALT -5.71d0 + (0.24d0 + 0.00363d0 * T) * T;

RANG -0.172d0 + (-0.419d0 + O.0112dO * T) * T;
VEL -0.196d0 + (0.0236d0 + 1.6d-6 * T) * T;

GAMA 1.12dO + (-0.00751d0 + 1.82d-5 * T) * T
else endif;

if ALT < 0 then ALT := 0 else endif;

if RANG < 0 then RANG := 0 else endif;

if GAMA > P12 then GAMA := P12 else endif;

PM := RE + ALT;

THETA RANG / RE;
R (1) RM * DCOS (THETA);
R (2) RM * DSIN (THETA);
R (3) 0;
BETA := THETA + P12 - GAMA;

V (1) VEL * DCOS (BETA);
V (2) VEL * DSIN (BETA);

V (3) 0
end

Figure 125 Imperative subprogram BOOSTR

built from the program slice for the data item R. The name of the subprogram is built

by appending the data item identifier onto the name of the original subprogram, hence

the name BOOSTR-R. The formal parameters of the new subprogram are the data items

ITYPE, T, and R. The new subprogram is classified as a Category 2 subprogram because

it produces the single data item R and calls no other subprograms. Figure 127 shows the

new imperative subprogram built from the program slice for the data item V. This new

subprogram is classified as a Category 2 subprogram because it produces the single data

item V and calls no other subprograms.

149

procedure BOOSTR-R (ITYPE, T, R) begin

RE := 6378.16d0;
ITYP := ABS (ITYPE);
if ITYP = 1
then ALT -5.71d0 + (0.24d0 + 0.00363d0 * T) * T;

RANG := -0.172d0 + (-0.419d0 + 0.0112d0 * T) * T

else endif;

if ALT < 0 then ALT := 0 else endif;

if RANG < 0 then RANG := 0 else endif;

RM := RE + ALT;

THETA RANG / RE;

R (1) RM * DCOS (THETA);

R (2) RM * DSIN (THETA);

R (3) 0
end

Figure 126 Imperative subprogram BOOSTR-R

5.12 Inter-Procedural Slicing

When a subprogram being sliced includes calls to other subprograms, a more robust

program slicing process is required. Inter-procedural slicing [30] is a special form of program

slicing that builds a program slice from a subprogram taking into consideration the calls

being made to other subprograms. Only the calls to subprograms that are producing data

items required for the slice are included in the program slice.

This research uses inter-procedural slicing when slicing Category 5 subprograms. A

new subprogram is built from the program slice generated, as explained in Section 5.11.

For example, Figure 128 shows the Category 5 subprogram TRAJ, which includes calls to

the BOOSTR-R subprogram and BOOSTR-V subprogram. Originally, the TRAJ subprogram

called the BOOSTR subprogram. Because BOOSTR is a Category 4 subprogram it has already

been sliced and the calls to the new subprograms have replaced the call to BOOSTR. In this

research, any calls in a Category 5 subprogram that sliced using inter-procedural slicing

must produce a single data item, i.e. calls to Category 2 or Category 3 subprograms. An

overall process that meets this constraint is used to convert Category 4 and Category 5

subprograms as explained in Section 5.15. Since the TRAJ subprogram includes the calls to

BOOSTR-R and BOOSTR-V, inter-procedural slicing must be used. For example, Figure 129

150

procedure BOOSTR-V (ITYPE, T, V) begin
RE 6378.16d0;

P12 1.570796327d0;

ITYP ABS (ITYPE);

if ITYP = I

then RANG := -0.172d0 + (-0.419d0 + 0.0112dO * T) * T;

VEL -0.196d0 + (0.0236d0 + 1.6d-6 * T) * T;

GAMA 1.12dO + (-0.00751d0 + 1.82d-5 * T) * T

else endif;
if RANG < 0 then RANG := 0 else endif;

if GAMA > P12 then GAMA := P12 else endif;

THETA := RANG / RE;

BETA := THETA + P12 - GAMA;

V (1) VEL * DCOS (BETA);

V (2) VEL * DSIN (BETA);
V (3) 0
end

Figure 127 Imperative subprogram BOOSTR-V

shows the result of inter-procedural slicing the TRAJ subprogram for the data item R.

The TRAJ-R subprogram includes a call to the BOOSTR-R subprogram, but not a call to

the BOOSTR-V subprogram. This is because the data item produced by the BOOSTR-V

subprogram is not needed for the slice on data item R in TRAJ-R. Figure 130 shows the

result of inter-procedural slicing the TRAJ subprogram for the data item V. The TRAJ-V

subprogram includes a call to the BOOSTR-V subprogram but not the BOOSTR-R subprogram.

5.13 Masking Output Parameters

Program slicing does not always convert a Category 4 or Category 5 subprogram

into a Category 2 or Category 3 subprogram. In some cases, one output data item must

be defined in order to produce a second output data item. Thus, if both data items were

originally produced by the subprogram, then the new subprogram built from a program

slice on the second output data item will still include the first output data item and will

be classified as either a Category 4 or Category 5 subprogram.

For example, Figure 131 shows the Category 4 subprogram LASP. This subprogram

151

procedure TRAJ

(ITYPE, T, VI, RBO, VBO, TBO, TFBOT, AR, R, V)
begin

XMU 398601.2d0;

WDOT 7.292115600000001d-5;

if T < TBO
then BOOSTR-R (ITYPE, T, RP);

BOOSTR-V (ITYPE, T, VP);

MTRT (RP, AR, RO);

MTRT (VP, AR, VT);

TEMP-40 := 1;

VADD (TEMP-40, VT, VI, VO)

else endif;

DLONT := -WDOT * T;

TEMP-41 := 1;

MAT (TEMP-41, DLONT, ARL);
MTRT (RO, ARL, R);
MTRT (VO, ARL, V)

end

Figure 128 Original imperative subprogram TRAJ

produces the data items BFLUX, BFLU, and TD. Figure 132 shows the new subprograms

LASP-BFLUX, LASP-BFLU, and LASP-TD, built from the program slices for each of these

three data items. Note that the LASP-TD subprogram still includes definitions of the BFLUX

and BFLU output data items. In fact, there is no difference between the LASP subprogram

and the LASP-TD subprogram. The new subprogram is still classified as a Category 4

subprogram and has not been converted to a Category 2 subprogram.

To solve this problem, certain data items in the new subprogram can be masked so

that they are not produced by the subprogram. To mask a data item, a new local variable

is created and any references to the data item are replaced with references to the local

variable. Because of Restriction III.1, the data items being masked cannot be both input

and output parameters. This means there is no need to initialize the local variable used

to mask a data item. The definition of the data item becomes a definition of the local

variable, thus the data item is no longer produced by the new subprogram. Figure 133

shows the LASP-TD subprogram after the BFLUX and BFLU data items have been masked.

152

procedure TRAJ-R

(ITYPE, T, RBO, VBO, TBO, TFBOT, AR, R)
begin

XMU 398601.2d0;

WDOT 7.292115600000001d-5;

if T < TBO
then BOOSTR-R (ITYPE, T, RP);

MTRT (RP, AR, RO)

else endif;

DLONT := -WDOT * T;

TEMP-41 := 1;

MAT C TEMP-41, DLONT, ARL);
MTRT (RO, ARL, R)
end

Figure 129 Imperative subprogram TRAJ-R

These data items still appear in the signature of the LASP-TD subprogram in order to

localize the masking process. The identifiers that are used for the formal parameters must

not match the identifiers used for the local variables in order to created the disconnect

that masks the output parameters.

5.14 Conservative Slicing

By including all statements from a subprogram that are needed to produce a data

item, statements that appear to be unnecessary appear in the program slice. For example,

Figure 134 shows the program slice built for the data item R from the subprogram KEP. The

second while loop in the subprogram is unnecessary code, but appears in the program slice

because definitions of the data item I are required to produce R. Extra statements such

as this while loop are included in the slice because this research is using a conservative

approach to program slicing. There is no attempt in the research to optimize the slices or

filter unnecessary statements.

153

procedure TRAJ-V

(ITYPE, T, VI, RBO, VBO, TBO, TFBOT, AR, V)
begin

XMU 398601.2d0;

WDOT 7.292115600000001d-5;

if T < TBO
then BOOSTR-V (ITYPE, T, VP);

MTRT (VP, AR, VT);

TEMP-40 := 1;

VADD (TEMP-40, VT, VI, VO)

else endif;

DLONT := -WDOT * T;

TEMP-41 := 1;

MAT (TEMP-41, DLONT, ARL);

MTRT C VO, ARL, V)
end

Figure 130 Imperative subprogram TRAJ-V

procedure LASP
(POWL, EFFNCY, AREA, CFLUM, CFLUS, XKF, BFLUX, BFLU, TD)
begin

BFLUX EFFNCY * POWL / AREA;

BFLU CFLUM + XKF * CFLUS;

TD := BFLU / BFLUX

end

Figure 131 Imperative subprogram LASP

5.15 Slicing for the Main Program

This section defines the overall process used to ensure all Category 4 and Category

5 subprograms are converted to Category 2 or Category 3 subprograms. The overall

collection of imperative subprograms to be converted to the object-oriented paradigm is

stored in a structured design, as described in Section 3.7.

The first step in this process is to build a program slice for each of the data items

produced by a Category 4 or Category 5 subprogram. Inter-procedural slicing is not used

at this point. A new subprogram is built for each program slice and added to the structured

design. Next, the original subprogram calls in all Category 3, Category 5, and Category 1

154

procedure LASP-BFLUX (POWL, EFFNCY, AREA, BFLUX) begin
BFLUX := EFFNCY * POWL / AREA end

procedure LASP-BFLU (CFLUM, CFLUS, XKF, BFLU) begin

BFLU := CFLUM + XKF * CFLUS end

procedure LASP-TD
(POWL, EFFNCY, AREA, CFLUM, CFLUS, XKF, BFLUX, BFLU, TD)
begin

BFLUX EFFNCY * POWL / AREA;
BFLU CFLUM + XKF * CFLUS;
TD := BFLU / BFLUX

end

Figure 132 Imperative subprogram LASP-TD

procedure LASP-TD
(POWL, EFFNCY, AREA, CFLUM, CFLUS, XKF, BFLUX, BFLU, TD)
begin
LOCAL-i EFFNCY * POWL / AREA;

LOCAL-2 CFLUM + XKF * CFLUS;
TD := LOCAL-2 / LOCAL-i

end

Figure 133 BFLUX and BFLU masked

subprograms other than the main program are replaced by calls to the new subprograms

just created. This means all the original Category 4 and Category 5 subprograms are still

in the structured design, but the only calls to such subprograms are in the main program.

At this point, program slices are built using inter-procedural slicing for each data item

produced by a subprogram that is called from the main program. New subprograms are

built from these program slices. Each call to the original subprogram is replaced by calls to

the new subprograms. Note that calls to Category 0 and Category 1 subprograms are not

changed. The calls to Category 2 and Category 3 subprograms are also not changed because

a subprogram built from the program slice of a Category 2 or Category 3 subprogram is

identical to the original subprogram.

155

procedure KEP-R (RO, VO, T, XMU, R)
begin

I := 1;
while I <= 3 do

begin

R (I) := RO (I) + VO (I);
I I +1
end;

I :=1;

while I <= 3 do

begin

I :=I +

end

end

Figure 134 Imperative subprogram KEP-R

However, it is important to use inter-procedural slicing for Category 3 subprograms

because they are allowed to call subprograms from any other category. The first two

steps presented above ensure the calls to Category 4 or Category 5 subprograms have

already been converted into calls to new subprograms. Inter-procedural slicing ensures

that only the calls to subprograms that produce data items required for the program slice

are included in the program slice.

For example, Figure 135 shows an alternate version of the TRAJ subprogram that is

classified as a Category 3 subprogram producing the single data item R. By using inter-

procedural slicing on this Category 3 subprogram, the subprogram calls not producing data

items for the program slice are eliminated. Figure 136 shows the updated TRAJ subprogram.

Note the call to BOOSTR-R and two calls to MTRT have been eliminated. Subprogram calls

such as these constitute dead code [22] and are eliminated by inter-procedural slicing.

In the main program, the calls to Category 4 and Category 5 subprograms are re-

placed with calls to the new subprograms built from program slices. In this way, none

of the Category 4 or Category 5 subprograms are called by any of the subprograms in

the design. Furthermore, by using inter-procedural slicing, all of the subprograms called

156

procedure TRAJ

(ITYPE, T, VI, RBO, VBO, TBO, TFBOT, AR, R)
begin

XMU 398601.2d0;

WDOT 7.292115600000001d-5;

if T < TBO
then BOOSTR-R (ITYPE, T, RP);

BOOSTR-V (ITYPE, T, VP);

MTRT (RP, AR, RO);
MTRT (VP, AR, VT);

TEMP-40 := 1;

VADD (TEMP-40, VT, VI, VO)
else endif;

DLONT := -WDOT * T;

TEMP-41 := 1;
MAT (TEMP-41, DLONT, ARL);

MTRT (RO, ARL, R);

MTRT (VO, ARL, V)

end

Figure 135 TRAJ as a Category 3 subprogram

by the main program produce exactly one data item. Several transformations have been

defined that formalize this conversion process. Chapter VI presents these transformations.

5.16 Discussion

The conversion of imperative subprograms to the object paradigm using the PBOI

methodology results in a rudimentary object-oriented design. The inheritance associa-

tions are rudimentary because the inheritance built during the conversion is a flat hier-

archy where every class built in the object model inherits from the overall super class

USER-OBJECT. The aggregation associations are also rudimentary because, while allowed,

aggregation associations are not identified by the PBOI methodology. This discussion

leads to the following limitations on the conversions from the imperative subprograms to

the object paradigm.

Limitation V.1. Every class in the design extracted using the PBOI methodology inherits

from the overall super-class USER-OBJECT.

157

procedure TRAJ

(ITYPE, T, RBO, VBO, TBO, TFBOT, AR, R)
begin

XMU 398601.2d0;

WDOT 7.292115600000001d-5;

if T < TBO
then BOOSTR-R (ITYPE, T, RP);

MTRT (RP, AR, RO)

else endif;

DLONT := -WDOT * T;

TEMP-41 := 1;

MAT C TEMP-41, DLONT, ARL);
MTRT (RO, ARL, R)
end

Figure 136 Updated Category 3 subprogram TRAJ

Limitation V.2. Aggregation associations are not identified by the PBOI methodology.

These two limitations are not unreasonable. Future research could possibly remove

these limitations by expanding the PBOI methodology.

5.17 Summary

This chapter has provided an informal description of how imperative subprograms

are transformed to the object-oriented paradigm along with some rationale for the ap-

proach. The Parameter-Based Object Identification (PBOI) method for extracting objects

from imperative subprograms was presented. The taxonomy of imperative subprograms

used to simplify the development of the PBOI method was also presented. Each category

of imperative subprogram was explained and the PBOI transformation for converting that

category of subprogram to the object-oriented paradigm was defined. The process of con-

verting Category 4 and Category 5 subprograms to Category 2 and Category 3 subprograms

by using program slicing and inter-procedural slicing was also explained. Transformations

that formalize the PBOI method have been defined and are presented in the following

chapter.

158

VI. Formal Transformations

6.1 Introduction

This chapter presents transformations that formalize the PBOI methodology, which

was presented in Chapter V. Proof that these transformations maintain functional equiva-

lence is presented in Chapter VII. Table 1 shows the order in which the transformations are

presented in the chapter. The transformations that convert statements and expressions are

presented first, since the transformations for subprograms build on them. Transformations

for each category of subprogram are presented followed by the formalized transformations

for program slicing. Finally, the transformations for the main program are presented along

with the transformation for the entire imperative design.

In order to formally classify a subprogram S, let Cati(S) indicate the category to

which a subprogram belongs, such that Cati(S) is true when S is a Category i subprogram.

Let CatM(S) indicate that the subprogram S is a Category 1 subprogram that is also the

main program.

6.2 Transforming Statements (0)

This section defines the formal transformation for converting GIM statements to

GOM statements. This transformation is used when converting a subprogram to the object

paradigm. Recall from Section 3.24 that a GIM subprogram is defined by the following

tuple.

< ids, Pin, Pout, Pret, Poc, E >

The GOM entity that is analogous to a GIM subprogram is the method. In order to convert

the GIM subprogram to the object paradigm, the GIM subprogram is converted to a GOM

method, which is represented as a tuple of the following form.

< ids, Qtar, Qobj, Qform, Qret, Qioc, 'IT >

159

Transformation J Constructs

0, Ov variables

0e OE expressions

0 statements
6e accesses in expressions
6 variable accesses

6e 1 accesses in expressions
b- 1 attribute accesses

U_ subprograms

0'2 Category 2 subprograms
TAt parameters to attributes

TI - 1 attributes to parameters

-y attribute accesses
TA attributes

Tlr, known attributes
Tpboi Tpbo2 'Tpb rboi subprograms

Tpboi subprograms

Vm subprogram calls
Ve calls in expressions

v calls in statements

T/v calls in subprograms
Tov messages in methods

TPs duduplicate classes
0'3 Category 3 subprograms
ar1 Category 1 subprograms

T__ _i_ duplicate objects
- _ "GET-", "SET-", and "CREATE-" methods

Tcm erge ___ _ classes
T as s
T,. 8 es assignment statements

VM main program messages
T t main program messages

UM main program
T~ iL a T ts program slices

TPs a n main program slice calls

UYF imperative design

Table 1 Formal transformations

160

As an imperative subprogram is converted to an object-oriented method, each imperative

statement in E must be converted to an object-oriented statement in T. One difference

between an imperative statement and an object-oriented statement is the way these state-

ments access data items. In an imperative statement, data items are stored in variables

including local variables and parameters. These variables are accessed by using the name

of the variable. In object-oriented statements, data items may be stored in attributes of

objects. These data items must be accessed either directly by using the name of the at-

tribute and the name of the object or indirectly by sending a message to the appropriate

object. Because of this difference, each GIM statement must be converted to a GOM

statement.

Part of the conversion process is to transform each GIM variable into a GOM variable.

Let 0, be the transformation that converts a GIM variable into a GOM variable. Let v

be a GIM variable and let v' be a GOM variable. In order to formalize the conversion, a

notation is presented here that denotes the class of AST that represents the GIM entity and

the GOM entity. For example, GOM variables are represented using the go-variable

class. This is formalized by using a boolean function named gom-variable that returns

true if the entity is a gom-variable and false otherwise. The 0, transformation is defined

below.

0, (v) = v' where

gim-variable(v) and gom-variable(v') and

VV1, V2

0v(V1) = 0,(V2) =*V1 = V2

Since GIM input statements include sequences of variables, the following transfor-

mation of sequences of variables is presented. Let V represent a sequence of GIM variables

and let V' represent a sequence of GOM variables. Let pos(v, V) represent the ordinal

position of the variable v in the sequence V. The Ov transformation converts V to V' as

defined below.

161

Ov(V) = V' where
VvEV

V' = O(v) and

v I E V' and

pos(v, V) = pos(v', V')

Another part of the conversion process is to transform each of the GIM expressions

into GOM expressions. Let 0 e be the transformation that converts a GIM expression into

a GOM expression. Let e be a GIM expression and let e' be a GOM expression. The 0,

transformation is defined as shown in Figure 137.

GIM output statements include a sequence of expressions. In order to transform such

sequences, let OE represent a formal transformation of a sequence of expressions. Let E be

a sequence of expressions. Let pos(e, E) represent the ordinal position of a expression e in

the sequence of expressions E. The transformation is defined below.

OE(E) = E' where

VeEE

e' = Oe(e) and

e E E' and

pos(e,E) = pos(e',E')

Let 0 be a transformation that converts a sequence of imperative statements into

a sequence of object-oriented and imperative statements. Let E represent a sequence of

imperative statements and let V' represent a sequence of object-oriented and imperative

statements. Let pos(s, E) represent the ordinal position of a statement s in the sequence

E. The 0 transformation uses the 0v, 0 e, Ov, and OE transformations and is defined

as shown in Figure 138. GIM procedure call statements are not transformed to object-

oriented statements by the 0 transformation. GIM function calls in expressions are not

transformed by the 0 e transformation. This explains why V, is a mixture of imperative

statements and object-oriented statements.

162

0,e(e) = e' where

imperative-variable(e) - e' = 0(e) and

imperative-function-call(e) = . e' =e and

imperative-literal-boolean(e) gom-literal-boolean(e') and e =e' and

imperative-literal-integer(e) ~-gom-literal-integer(e') and e = e' and

imperative-literal-real(e) - gom-literal-real(e') and e = e' and

imperative-literal-string(e) = '- gom-literal-string(e') and e =e' and

imperative-addition(e) and e =< el, +, e2 > = '

gom-addition(e') and e' =< 0,(el), ±, 0, (e 2) > and

imperative-and(e) and e < <el, and, e2 > = '

gom-and(e') and e' = 0, el), and, 0,(e 2) > and

imperative-concat(e) and e = < ei, &, e2 > =

gom-concat(e') and e' = < Oe(ei), &, 0,(e2) > and

imperative-division(e) and e < <el, /, e2 > =:>

gomn-division(e') and e' < 9e (el), /, Oe (e2) > and

imperative-equal(e) and e < <el, =, e 2 > =>

gom-equal(e') and e' < <Oe (el), =, 0,(e2) > and
imperative-exponent(e) and e < <el, **,e2 > =>

gom-exponent(e') and e' < Oe(ei), ,e(e2) > and

imperative-greater-than-or-equal(e) and e < <el, >=, e 2 >

gom-greater-than-or-equal(e') and e' < <Oe(el), >=, Oe (e2)> and

imperative-greater-than(e) and e = < el, >, e2 > =>

gom-greater-than(e') and e' = < 0 el), >, 0,e(e2) > and
imperative-less-than-or-equal(e) and e < <el, <=, e2 > =>

gom-less-than-or-equal(e') and e' < <Oe(el), <=, Oe (e2)> and

imperative-less-than(e) and e < <e1, <,6e2 > =>

gomn-less-than (e') and e' < 0 el6), <, Oe (e2) > and
imperative-multiplication(e) and e = <el, *', e2 > = >

gom-multiplication(e') and e' < 9e (el), *, Oe (e2) > and

imperative-not-equal(e) and e < <61, < >,6e2> =:t

gom-not-equal(e') and e' < Oe (el), < >,Oe (e2) > and

imperative-or(e) and e < <el, or, e2 > #'

gom-or(e') and e' < <Oe (el), or, Oe (e2) > and
imperative-subtraction(e) and e <61l, -,6e2 > #'

gom-subtraction(e') and e' <Oe (el), -, 0,e(e2) > and

imperative-negate(e) and e < <-, el > = >

gom-negate(e') and 6' < <,e (el) > and

imperative-not(e) and e =< not, e1 > =>

gom-not(e') and e' =< not, Oe(e) >

Figure 137 The 0e transformation

163

0(E) = ! where

For each s E E

imperative-procedure-call(s) = s = s and

S = < X, :=,e >

s' = < 0,(x), Oe(e) > and

s = < if, e, then, S1, else, S 2 > =€

s =< if, Oe(e), then, 0(SI), else, 0(S2) > and

s = < while, e, S3 > = s' = < while, Oe(e), 0(S 3) > and

s = < input, iport, V > s' = < input, iport, 0V(V) > and

s = < output, oport, E > = s' = < output, oport, 0E() > and

sI E V and

pos(s, E) = pos(s', ')

Figure 138 The 0 transformation

6.3 Transforming Accesses (6)

As discussed in Section 5.3, when converting a GIM subprogram to the GOM using

the PBOI method, certain variables in the subprogram are converted to attributes of

the class built for the subprogram. After a variable has been converted to an attribute,

the statements in the GOM method must be updated to access the data item from the

object attribute instead of the variable. The formal transformation for converting variable

accesses in GOM statements to attribute accesses of an object is defined in this section.

6.3.1 Transforming Expressions (Se). As part of the conversion of variable ac-

cesses to attribute accesses, it is necessary to transform the GOM expressions found in

GOM statements. This section discusses a formal transformation of GOM expressions

that replaces references to variables with accesses of attributes.

Let 6e be a transformation that converts an expression with variable accesses into

an expression with object attribute accesses. Let e be a GOM expression, let c be an

instance of a class C, and let A be a set of GOM variables. Let GET-a represent the

symbol resulting from prepending "GET-" to the GOM variable a. The 6, transformation

is defined as shown in Figure 139. This transformation replaces all occurrences of a in the

164

be(e,c,A) = e' where

gom-variable(e) and e = a and a E A = e' = < GET-a,[c]>

gom-variable(e) and e = a and a 0 A =e = e and

e = < GET-a,[c] >=>e' = eand

gom-function-call(e) => e' = e and

gom-literal-boolean(e) :e = e and

gom-literal-integer(e) = e'- e and

gom-literal-real(e) = e' = e and

gom-literal-string(e) =. e' = e and

e = < el, +, e2 > =:> el = < 6e(el), +, be(e2) > and

e = < el, and, e2 > ' e= <be(el), and, 6e(e2) > and

e = <el, &, e2 >= e <6 e(el), &, 6 e(e2) > and

e = <el, /,e2 >= e' <e(el), /,6e(e2) > and

e = < el, =,e2 > = e < e(el), =, 6,e(e2) > and

e = <el, **,e2 > => e' =< be(el), **, be(e2) > and

e = <el,>=,e 2 > == el =<e (el),>=,6,e(e2) > and

e =< el,>,e2 > = ' el = <be(el),>, e(e2) > and

e = <el,<=,e 2 > => e' = < e(el),<=, e(e2) > and

e < el,<,e 2 > => el = <be(el),<,be(e2) > and

e < el, *,e2 > =* el = < e(el), *, be(e2) > and

e = <el,<>,e 2 > => el <Se(el),<>,6e(e2) > and

e =< el, or, e2 > ' e' =< e(el), or, 6e(e2) > and

e = <el,-,e 2 >= el < 6 e(el),-,be(e2)> and

e =< -, el > =. e' = < -, ,e(el) > and
e =< not, el > => el = < not,be (el) >

Figure 139 The be transformation

165

expression e with GOM "GET-" messages that accesses the attribute a from the object

instance c. If none of the GOM variables in the set A are part of the expression e or the set

A is empty, then the original expression e is returned. For example, the following expression

(shown in GOL syntax) shows a GOM multiplication expression with the XLAMDA and ZOOS

variables.

XLAMDA * ZOOS * ZOOS * ZOOS

Let e represent this expression and let C-18 be an object instance variable. Consider the

following transformation.

e(e, C-18, { ZCOS })

This transformation replaces all variable accesses of ZCOS in e with messages that access the

attribute ZCOS from C-18. The following expression shows the result of this transformation.

XLAMDA * GET-ZCOS (0-18) * GET-ZOOS (0-18) * GET-ZOOS (C-18)

All accesses to the data item ZCOS are now "GET-" messages that access the attribute

from C-18.

6.3.2 Transforming GOM Variable Accesses. Now that accesses to variables

in expressions can be transformed, a formal transformation is presented that converts a

sequence of statements that include variable accesses into a sequence of statements that

include attribute accesses. Let 6 be a transformation that converts GOM variable accesses

in sequences of statements to GOM object attribute accesses. Let IQ be a sequence of

GOM statements, let c be an instance of a class C and A be a set of GOM variables. Let

SET-a represent the symbol resulting from prepending "SET-" to the name of the GOM

variable a. Recall that the tuple < SET-a, [c, e] > represents a message named SET-a

with two parameters, c and e. Let instance(c, C) represent whether or not an object c is

an instance of class C. The 6 transformation is defined as shown in Figure 140. This is

a recursive transformation that uses the structure of the GOM statements to transform

each access to the GOM variables a in A to GOM messages that access a as an attribute.

If the statement in T is an assignment to a, then the entire statement is transformed to a

166

b(xF,c,A) = ' where

instance(c, C) and

C = < idc,(Dc, fc,A >

V a E A and V s E '

a E 1C and

s = <a, :=,e >

= < SET-a, [c, 6 e(e, c, A)] > and

s =<x, :=,e> and x A =

s' = < x, :=, e(e,c,A)> and

s = < if, e, then, S1, else, S 2 > =

s' = < if, e(e, c, A), then, b(S1, c, A), else, 8(S2, c, A) > and

s = < while, e, S3 >

s= < while, be(e, c, A), 6(S 3 , c, A) > and

s = < output, oport, E> =

= < output, oport, El > and

E' = [be(e,c,A) e E E] and

st E V

Figure 140 The b transformation

GOM "SET-" message. The expression e in the assignment statement is transformed using

the be transformation in order to transform any accesses to a in e. If the statement is an

assignment to a variable other than a, the expression e must be transformed using the b,

transformation. If the statement is a selection statement, the expression e is transformed

by the 6e transformation and the sequences of statements S1 and S2 are transformed by

using the 6 transformation recursively. If the statement is an iteration statement, the

expression e is transformed using the be transformation and the sequence of statements S 3

is transformed by using the 6 transformation recursively. If the statement is an input or

an output statement, then the sequence of expressions, E, in the statement is transformed

by using the be transformation on each of the expressions in the sequence. If none of the

GOM variables in the set A are accessed in the statements in PF or the set A is empty, then

the original statements in 'I are returned unchanged.

167

6.3.3 Transforming Attribute Accesses (6-1). As part of the PBOI method, in

some cases it is necessary to convert an attribute of a class back into a formal parameter

of a method. In this case, the attribute accesses must be converted back to accesses of a

variable since a formal parameter in a method is a variable defined by the method. This

means the 6 and 6e transformations must be reversible.

Let b; 1 be a transformation that converts object attribute accesses in GOM expres-

sions to variable accesses. Let e be a GOM expression, let c be an instance of a class

C, and let A be a set of GOM variables. Let GET-a represent the symbol resulting from

prepending "GET-" to the GOM variable a. The 6-' transformation is defined as shown

in Figure 141. This transformation replaces all occurrences of GOM "GET-" messages

that access the attribute a in the expression with a reference to a. If none of the GOM

variables in the set A are part of the expression e or the set A is empty, then the original

expression e is returned.

The inverse of the transformation of statements is defined below. Let 6- ' be a trans-

formation that converts GOM object attribute accesses in statements to GOM variable

accesses. Let •I be a sequence of GOM statements, let c be an instance of a class C and

A be a set of GOM variables. Let SET-a represent the symbol resulting from prepend-

ing "SET-" to the name of the GOM variable a. The 6-' transformation is defined as

shown in Figure 142. This is a recursive transformation that uses the structure of the

GOM statements to transform each attribute access of a into a reference to the variable

a. If the statement in IF is a "SET-" message that sets the value of a, then the "SET-"

message is replaced with an assignment statement that sets the value of the variable a.

The expression e from the message is transformed using the 6-' transformation in order

to transform any accesses of a. If the statement is an assignment to a variable other than

a, the expression e must be transformed using the 6;-1 transformation. If the statement

is a selection statement, the expression e is transformed by the 6-1 transformation and

the sequences of statements S1 and S2 are transformed by using the 6- 1 transformation

recursively. If the statement is an iteration statement, the expression e is transformed

using the b;-1 transformation and the sequence of statements S 3 is transformed by using

the 6-1 transformation recursively. If the statement is an input or an output statement,

168

be (e,c,A) = e' where

e = < GET-a, [c] > and a E A = gom-variable(e') and e' a and

e = < GET-a,[c] >anda 0A = e' = eand

gom-variable(e) => e' = e and

gom-function-call(e) = e' = e and

gom-literal-boolean(e) =: e' = e and

gom-literal-integer(e) = e' = e and

gore-literal-real(e) = e' = e and

gom-literal-string(e) => e' = e and
e = < el, +,e2 > ==. e' =<3e(e), +,6e(e2)> and
e = < e, and, e2 > e' -==< (el), and, 1 (e2) > and

e = < el, &,e 2 > =t el = < -l(el), &,6e'(e2)> and

e = < el, /,e2 > = e' = < e(el), /,Sb(e2) > and

e = < el, =,e2 > e' =< e'(el), , 6e1(e 2) > and

e = < el, **,e 2 > = e = < bel(el), **,el(e2) > and

e = < el,> ,e 2 > = e - < 6e'(el),> =, be1 (e 2) > and

e = < e,>,e2 > = e' =< 6,l(el),>,e1(e2) > and

e =- < el,<=,e 2 > el < be(e),<, e(e2) > and

e = < el,<,e2 > == e' = <be1 (e),<,b-1(e2) > and

e = <e, *,e2> = e' = < (el), *, 6 -(e2)> and

e =<el,<>,e 2 >= e = < - 1 (el),<>,6'(e 2) > and

e = < el, or, e2 > € el = < 6e(el), or, 6e 1 (e2) > and

e = < el,-,e2 > el = < be'(ej),-76e'(e2) > and

e = <-,el > =* e' = <-,6el(el) > and
e = < riot, el > =4 el = < not, 6e1(el) >

Figure 141 The 6e 1 transformation

169

5- 1(T , c, A) = I' where

V a E A and V s E 'IF

s = < SET-a, [c, e] >=

s' = <a, :=,bl(e,c,A) > and

S = < X, :=,e > ='

s =< x, :=,bel(e,c,A) > and

s = < if, e, then, S1, else, S 2 > =

st = < if, e 1 (e,c,A), then, 6-1(S1,c,A), else, 6- 1 (S 2 , c,A) > and

s = < while, e,$ 3 > =S

s' = < while, 5e 1 (e, c, A), b- 1 (S 3 , c, A) > and

s = < input, iport,E> =

s= < input, iport, E' > and

E' = [bel(e,c,A) l e EE] and

s = < output, oport, E> =

s= < output, oport, El > and

E' = [6e'(e,c,A) e EE] and

sI E IF

Figure 142 The 6- 1 transformation

then the sequence of expressions, E, in the statement is transformed by using the b[1

transformation on each of the expressions in the sequence. If none of the GOM variables

in the set A are accessed in the statements in I or the set A is empty, then the statements

in IF are returned unchanged.

6.4 Transforming Subprograms (a)

This section defines the high-level transformation, o, that applies lower-level transfor-

mations to formalize the PBOI method defined in Section 5.3. The a- transformation uses

the taxonomy of GIM subprograms defined in Section 5.2 to classify the input subprogram

and apply the transformation appropriate for that category of subprograms.

Let S represent an imperative subprogram and OOD represent the object-oriented

design developed so far. The a transformation is defined as follows.

170

o-(OOD, S) OOD' where

Cato(S) O QOD' = 0-2(OOD, S) and

Catl(S) OOD' = a 1i(OOD, S) and

Cat2 (S) =O OOD' = 0 2 (OOD, S) and

Cat3 (S) =O QOD' = a-3 (OOD,S)

Note that Category 0 subprograms are treated as a special case of Category 2 sub-

programs, so the 02 transformation, defined in the following section, is used to transform

both Category 0 and Category 2 subprograms. The transformations for Category 1 and

Category 3 subprograms are defined in Section 6.8. The transformations that formalize

the program slicing process used to convert Category 4 and Category 5 subprograms are

defined in Section 6.12.

6.5 Transforming Category 2 Subprograms (0-2)

This section describes the formal transformation of Category 2 subprograms to the

object paradigm. As defined in Section 5.3, the PBOI method assumes Category 2 subpro-

grams implement derived attribute queries. According to Proposition V.2, each Category 2

subprogram is converted to a method in a class where the attributes of the class are built

from the formal parameters of the Category 2 subprogram (see Section 5.3).

The formal transformation a2 transforms an imperative subprogram, S, into a class,

C, which includes a method that implements S. The new class, C, is added to the object-

oriented design developed so far, OOD, and an updated design OOD' is returned from the

transformation.

Let idc be a symbol representing the name of the newly formed class C. This symbol

can be a computer generated one or can be provided by the user. Let A0 be a symbol that

represents the name of the overall super-class ('USER-OBJECT) from which every object

inherits in the design being developed. Let c represent a parameter that holds an instance

of the class C. Then, the transformation a2 for a Category 2 subprogram S is defined as

follows.

171

92(OOD, S) = OOD' where

S = < ids, Pin, Pout, Pret, Poc, Es > and

Pf orm = Pin Pout and

C = < idc, 1c, Qc, o > and

1c -range(Ov(Pform)) and

Qret -v(Pret) and

Qoc Ov(Ploc) and

T~c =5 6 (0(Fs),c, 4 c) and

Qc = {< ids, c, 0 ,0, Qret, Qoc, Tc >} and

OOD' = T+(OOD,C)

This transformation builds an object-oriented class C from the imperative subpro-

gram S by first transforming all the input parameters in Pin and output parameters in Pout

into instance attributes, I)C, of C by using the Ov transformation. The return value and

the local variables are also converted to GOM variables using Ov. The newly formed class

C is a subclass of A0 and includes one method in Qc that implements the functionality

of the imperative subprogram. The newly formed method is named using the name of

the imperative subprogram ids. The method must be passed an instance of the class C

as the target object and is not passed any other objects or input or output parameters.

Each statement of the subprogram in Es is transformed into an object-oriented statement

using the 0 transformation. In these statements, all accesses to the variables that are now

included in c are changed to accesses of these attributes by using the 6 transformation.

The new class C is added to the object design by using the T+(OOD, C) transformation.

6.6 Transforming Parameters

This section presents formal transformations for manipulating parameters of methods

and attributes of classes. As presented in Section 5.3, in some cases when using the PBOI

method it is necessary to add or remove attributes of classes. In order to maintain the

visibility to the data item, an attribute removed from a class is added as a parameter to each

method of the class. Conversely, when an attribute is added to a class the corresponding

parameter is removed from each of the methods of the class.

172

For these reasons, formal transformations that convert parameters of the methods of

a class into attributes of that class (and vice versa) have been developed. The transforma-

tions presented in Section 4.32 for adding and removing an attribute of a class (T+ and

Ta) are sufficient for developing a design, but are not rigorous enough for re-engineering.

They do not consider the effects on the methods of a class that adding or removing an

attribute will have. The transformations T+ and T- will not be used when converting

GIM subprograms to the GOM. Instead, the following transformations will be used to add

and delete attributes of a class.

6.6.1 Moving Parameters to Attributes (TA'. Let T be a transformation that

moves parameters of the methods of a class to attributes of the class. Let OOD represent an

object-oriented design, let C represent a class, and let A represent a set of GOM variables

to be converted from parameters to attributes. Let seq(A) represent the conversion of the

set A to a sequence of arbitrary order. The T6 transformation is defined as shown below.

Tb(OOD, C, A) = C' where

C = < idC, CQc, A > and

Vc = (Dc U A and

For each o E Qc

o = < id, c, Qobj, Qform, Qret, Qloci, > and

= < ido, c, Qobj, Qform e seq(A), Qret, Qzo, b(IF, c, A) > and

o Q' and

C'C C

In this transformation, the attributes in A are added to the set of attributes for

the class, i.e. DC. Each method o of the class C is transformed by using the sequence

subtraction operation e to ensure the data items in A are not in the sequence of formal

parameters. All accesses to the data items in A in the statements of o' are transformed to

attribute accesses of c using the 6 transformation (see Section 6.3). If the set A is empty,

then the TA6 transformation adds no attributes and changes no statements, so the class C

is not changed by the transformation. The transformed class C' is returned as the result

of the transformation.

173

6.6.2 Moving Attributes to Parameters (TA'). When using the PBOI method, it

is also necessary to transform attributes of classes into parameters of its methods. For this

reason, the "inverse" of the T6 transformation is defined. Let T6- 1 be a transformation

that converts a set of attributes of a class into parameters of the methods of the class.

Let OOD represent an object-oriented design, let C represent a class, and let A represent

a set of data items to be converted from attributes to parameters. Let seq(A) represent

the conversion of the set A to a sequence of arbitrary order. The TA - 1 transformation is

defined as follows.

Tj (O OD, C,A) = C where

C =<idC,45cQCA> and

(V = (c-A and

For each o E Qc

o = < ido, C, Qobj, Qform, Qret, QlocP > and

0 < ido, c, Qobj, Qform E seq(A), Qret, Q , 1 (P, c, A) > and
o' E Q~C and

C' = < idc, 'c, ', A >

In this transformation, the attributes in A are removed from the set of attributes

for the class, Ic. Each of the methods in the class are transformed by adding the data

items in A as parameters of o. Finally, the 6- 1 transformation is used to convert all

attribute accesses in the statements of o' to variable accesses. If the set A is empty, then

the TA- 1 transformation removes no attributes and changes no statements, so the class C

is not changed by the transformation. The updated class C' is returned as the result of

the transformation. Note that the T6 transformation and the TA- transformation are not

true inverses because TA- 1 (TA(OOD, C, A), C, A) :A C. This is because the order of some

parameters may have changed.

6.7 Transforming Attributes (7)

This section defines a formal transformation for moving an attribute from one class

to another. In some cases when using the PBOI method (see Section 5.3), it may be

determined that a parameter should be built as an attribute of one class instead of another.

174

To formalize this case, a transformation is needed that moves an attribute from one class

to another. This section presents this formal transformation and a simplified version of

the transformation.

To define the transformation that moves an attribute from one class, C1, to another

class, C2, a transformation is needed that replaces instances of C1 with instances of C2 in

any messages where C1 is the target object. Let - be a transformation that changes all

attribute accesses of specific attributes from an instance of one class to an instance of a

second class. Let A be a subset of attributes from a class C1. Let cl be an instance of C1

and C2 be an instance of the class C2 . Let T be a sequence of object-oriented statements.

Then,

' - -yQ, cl, c 2 , A)

where I' is a sequence of object-oriented statements where all attribute accesses of the

attributes in A from the instance cl are now attribute accesses of the attributes in A for

the instance c2 .

For example, consider the following statement

X := GET-BETA (C-8)

The following transformation

-y([x := GET-BETA (C-8)], C-8, C-9, { BETA})

results in the following updated statement

X := GET-BETA (C-9)

The access of BETA now comes from C-9 instead of C-8.

Using the -y transformation, it is now possible to define the Ty transformation that

moves attributes from one class to another. Let OOD represent an object-oriented design,

let C1 be a class, let Cl be an instance of CI, let C2 be a class, and let c2 be an instance

of C2. Let A be a set of attributes of C1 that will be moved from C1 to C2 . The T

175

transformation assumes that the instance Cl is passed as a parameter to the methods of

the class C2 in order to have visibility to the attributes in A. The T transformation is

defined as follows.

T7(OOD,C1,C 2,A) = OOD' where

C1 = < idc1, (Dc, QC1, AC, > and

instance(cl, C1) and

C 2 = < idc,, Tc2, Qc2, Ac2 > and

instance(c2 , C 2) and

(*c =--4 c, - A and

VC2 = 4c 2 U A and

For each 0 E Q2c

o = < ido, cl, Qobj, Qform, Qret, Qoc, i! > and

0 = < ido, Cl, Qobj ([c2], Qform, Qret, Qloci, -1(Q, C1 , c 2 , A) > and

of E Q'4c and
For each o E Qc2

o = < ido, C2,Qobj, Qform, QretQ Qo, F > and

0 < ido, C2, Qobj, Qform, Qret, QlocY('FC l, C2, A) > and

o' Q' and
C' = < idc, Q', , A c, > and

C2 < idc 2, V 2, Q ,c2 Ac > and
OOD' = T+(Tc(T+(Tc(OOD,)

This transformation removes the attributes in A from C1 and adds them to the set of

attributes in C2. Each method in C, is updated by adding the instance C2 to the sequence

of objects passed into the method. The statements of each method are changed by the

-y transformation to send any accessing and assigning messages to c2 instead of cl. The

statements of each method are changed by the -y transformation to also send any accessing

and assigning messages to c2 instead of cl. The methods in both C1 and C2 now access

the attributes in A from the instance c2. If the set A is empty, then the TY transformation

moves no attributes and neither C1 nor C2 are changed by the transformation. The updated

classes are added to the design OOD in order to produce the updated design OOD'.

As an example, Figure 143 shows an object-oriented design with two classes where

the GOM variable DIAM is an attribute of CLASS-4. The PRDIV method is passed C-9, an

176

instance of CLASS-4, in order to access the DIAM attribute. Figure 144 shows the result of

the transformation

TI(OOD, CLASS-4, CLASS-5, DIAM)

The DIAM attribute has been moved from CLASS-4 to CLASS-5 and the methods have been

updated to reflect this change.

The TA transformation can be simplified if it is known that the attributes in A are

already attributes of C 2 and the desired processing is to make appropriate updates to C1.

Given this precondition, define T3' as follows.

T (OOD, C1, C2 , A) = C' where

C1 = < idcl,Ifc, 9c , Ac, > and

instance(cl, C1) and

instance(c2, C2) and

* -= 4)ci - A and

For each o E 9c,

0 = < ido,,Cl, Qobj, Qorm Qre, Qloc, 'F > and

o0 ---< ido, cl, Qobj ([c21, Qform, Qret, Qloc, y(P, cl, C2, A) > and
o ' and

C'= < idl 5 ,A, >

Since it is assumed that the attributes in A have already been built as attributes of

C2, this transformation removes the attributes from the set of attributes for C1 but makes

no change to the set of attributes for C2. Similarly, only the methods of C 1 are updated

to access the attributes in A from c2 instead of cl. The methods in C2 are assumed to

already access the attributes from c2. If the set of attributes A is empty, then the T'

transformation removes no attributes, so C1 is not changed by the transformation. The

updated class C, is returned as the result of this transformation.

For example, Figure 145 shows the DIAM attribute as an attribute of both CLASS-4 and

CLASS-S. This attribute is being accessed correctly in CLASS-5 and moving the attribute

from CLASS-4 to CLASS-5 is a matter of making the correct updates to CLASS-4. Figure 146

177

class CLASS-4 attributes DIAM, UPLFAC, ZENITH

method RELAY-PHASE (C-8, PHASE)
begin

PHASE 1;

SIGPR GET-DIAM (C-8);

PHASE UPLREQ (SIGPR)
end

superclass USER-OBJECT

class CLASS-5 attributes BETA, XLAMDA

method PRDIV (C-3, C-9): real begin

FAC 1.22d0;
QUAL MAX C GET-BETA C-3), 1.OdO);

PDIAM MAX (GET-DIAM C-9), O.ldO);

WAVELN GET-XLAMDA (C-3) * 9.9d-7;

PRDIV QUAL * WAVELN * FAC I PDIAM
end

superclass USER-OBJECT

Figure 143 DIAM as Attribute of CLASS-4

class CLASS-4 attributes UPLFAC, ZENITH

method RELAY-PHASE (C-8, C-9, PHASE)
begin

PHASE 1;
SIGPR GET-DIAM (C-9);

PHASE UPLREQ (SIGPR)
end

superclass USER-OBJECT

class CLASS-5 attributes BETA, XLAMDA, DIAM

method PRDIV (C-3): real begin

FAC 1.22d0;
QUAL MAX (GET-BETA (C-3), 1.OdO);

PDIAM MAX C GET-DIAM C-3), 0.1dO);
WAVELN GET-XLAMDA (C-3) * 9.9d-7;

PRDIV QUAL * WAVELN * FAC I PDIAM
end

superclass USER-OBJECT

Figure 144 DIAM as Attribute of CLASS-5

178

class CLASS-4 attributes DIAM, UPLFAC, ZENITH

method RELAY-PHASE (C-8, PHASE)
begin

PHASE 1;

SIGPR GET-DIAM (C-8);

PHASE UPLREQ (SIGPR)
end

superclass USER-OBJECT

class CLASS-5 attributes BETA, XLAMDA, DIAM
method PRDIV (C-3): real begin

FAC 1.22d0;

QUAL MAX C GET-BETA CC-3), 1.OdO);
PDIAM MAX (GET-DIAM C-3), O.ldO);

WAVELN GET-XLAMDA (C-3) * 9.9d-7;

PRDIV QUAL * WAVELN * FAC I PDIAM
end

superclass USER-OBJECT

Figure 145 DIAM as Attribute of CLASS-4 and CLASS-5.

shows the result of applying the following transformation

TA^(OOD, CLASS-4, CLASS-5, DIAM)

The DIAM attribute is removed from CLASS-4 and C-9, the instance of CLASS-5, is added

as an object parameter to the RELAY-PHASE method. The GET-DIAM message is updated

to access DIAM from C-9 instead of C-8.

179

class CLASS-4 attributes UPLFAC, ZENITH

method RELAY-PHASE (C-8, C-9, PHASE)
begin

PHASE 1;

SIGPR GET-DIAM (C-9);
PHASE UPLREQ (SIGPR)
end

superclass USER-OBJECT

class CLASS-5 attributes BETA, XLAMDA, DIAM

method PRDIV (C-3): real begin
FAC 1.22d0;

QUAL MAX C GET-BETA C-3), 1.OdO);
PDIAM MAX C GET-DIAM C-3), 0.1dO);

WAVELN GET-XLAMDA (C-3) * 9.9d-7;

PRDIV QUAL * WAVELN * FAC I PDIAM
end

superclass USER-OBJECT

Figure 146 DIAM as Attribute of CLASS-5

180

6.8 Transforming Category 3 Subprograms

This section discusses the transformations that formalize the conversion of Category

3 subprograms. As defined in Section 5.3, there are four cases to consider when extracting

object attributes from the imperative subprogram calls found in Category 3 subprograms.

Some fundamental mappings required for all the PBOI transformations are presented first

followed by the transformations that formalize each of the four cases. The overall high-

level transformation that determines which of these transformations to apply is presented

at the end of this section.

6.8.1 Linking Classes and Subprograms (p). In order to build the PBOI trans-

formations, a mapping is needed that links an imperative subprogram to the class that

was built for the subprogram. Let p represent this mapping as defined below.

p(S) - C such that

S < ids, Pin, Pout, Pret, Ploc, Es > and

C < idc,Ic, c, Ao > and

o < ids, c, Qobi, Qform, Qret, Qlo,, P > and

o E QC

This mapping links the imperative subprogram S to a class that has a method o with

the same name as S, i.e. ids.

Since, at this point in the development of the design, there is only one class built

for each subprogram and each class is built from only one subprogram, the p mapping is

invertible. Let the p-1 mapping map a class C to the subprogram from which C was built.

The p- 1 mapping is defined as follows.

p-1 (C) = S such that

C < idc,ibc, c, Ao > and

o = < ids, c, QobJ, Qform, Qret, Qlo,, ly > and

o E PC and
S = < ids, Pin, Pout, Pret, Ploc, Es >

This mapping links the class C that was built for the subprogram S to this subprogram S.

181

Tpboi(OOD, S, P) = OOD' where

CI = p(S) and

VpEP
P' = {p 1 3C 2 E p*(S) such that

a' 0, O(IL*(p)) and a' E Ic 2 } and
CI= T (OOD, C1, C2 ,0,(P')) and

C E OOD' A CI V OOD'

Figure 147 The Tpboi transformation

6.8.2 Formalizing PBOI Case 1. The first case for converting Category 3 sub-

programs is that the formal parameter is an attribute and the actual parameter is also

a formal. This section develops the transformation that formalizes the PBOI Case 1 as

presented in Section 5.3. When transforming a subprogram S, the transformation required

for PBOI Case 1 is to move attributes from the class built for S to another class in the

design. This transformation is done on any of the formal parameters in S that can be

linked to the attributes of another class through the O, transformation and the JL* relation.

An example is given at the end of the section.

Let Tfl. be the transformation that formalizes the first PBOI case. Recall from

Section 3.25, the /t relation maps an actual parameter of a subprogram call to a formal

parameter in the called subprogram. Let .* represent the transitive closure of the it

relation. Let call(S1 , S 2) be a relation from subprogram S1 to subprogram S 2 that indicates

S1 includes an imperative subprogram call to S2. Let call*(S) represent the transitive

closure of the call relation for an imperative subprogram S. This is also termed the call tree

of S. Let p*(S) represent the set of classes built for the subprograms in the call tree of S.

Let OOD represent an object-oriented design, let S represent an imperative subprogram,

and let P represent the set of actual parameters from S that are also formal parameters of

S. The T' oitransformation is defined as shown in Figure 147. This transformation moves

each attribute in C1 that has already been built as an attribute in C 2 from C1 to C2 using

the T' transformation. The transitive closure of the links between actual parameters and

formal parameters, jI*, is used to find formal parameters of subprograms that are in the

182

call tree of S that have been converted to attributes (using 0,) of the corresponding class.

The set P' collects each of the parameters from P that is linked to an attribute a' through

, *(p) and 0,. Each a' is an attribute of a class in the set of classes built for the call tree

of S. The set P' is used in the T]' transformation to indicate which attributes of C1 to

move from class C1 to class C2. The T' transformation is used because the attribute a' is

already an attribute of class C2. The original class C1 is removed from the design and the

updated class C' is added to the design in order to produce the updated design OOD'.

For example, Figure 148 shows the subprograms, RADIUS, CAPTURE, and BOUNCE.

The BOUNCE subprogram calls the RADIUS and CAPTURE subprograms, so the mappings

call(BOUNCE, RADIUS) and call(BOUNCE, CAPTURE) are in the transitive closure

call*(BOUNCE). Figure 149 shows the classes built for RADIUS, CAPTURE, and BOUNCE

before applying the T'po transformation. Since RADIUS and CAPTURE are called by BOUNCE,

the transformations from a subprogram to a class have already been done. The RADIUS

subprogram has been transformed into CLASS-i, which is shown in the figure. The CAPTURE

subprogram has been transformed into CLASS-2, which is also shown in Figure 149. The

transformation of the subprogram BOUNCE is incomplete in this example, but the class

being built for BOUNCE is shown as CLASS-4 in the figure. Notice at this point in the

transformation of BOUNCE, none of the subprogram calls to other subprograms have been

converted to messages. Also note that CLASS-4 currently has the attributes AXMAJ, AXMIN,

ANGFAC, PROJRA, SIGB, RNGFAC, RANGE, and other attributes.

Let OOD represent the design that includes these classes built for BOUNCE, CAPTURE,

and RADIUS. Consider the following transformation.

Tpboi(OOD, BOUNCE, { AXMAJ, AXMIN, ANGFAC, RANGE, RNGFAC, SIGB, PROJRA })

This transformation is used to update OOD based on whether the parameters AXMAJ,

AXMIN, ANGFAC, PROJRA, SIGB, RNGFAC, and RANGE have been built as attributes of any of the

classes built for the call tree of BOUNCE. Note in Figure 148, BOUNCE calls RADIUS passing the

PROJRA, SIGB, RNGFAC, and RANGE data items as actual parameters. The formal parameters

that correspond to these actual parameters are the parameters PROJRA, SIGB, RNGFAC, and

183

real function RADIUS (PROJRA, SIGB, RNGFAC, RANGE)
begin

if RNGFAC > 0.0 and RANGE > 0.0

then SIGABS := DABS (SIGB);

SLOPE SIGABS - PROJRA / RANGE;

SPOT SIGABS * RANGE;
RAD DABS (PROJRA + SLOPE * RNGFAC);
RADIUS DMAX1 (SPOT, RAD)

else
RADIUS PROJRA

endif

end

real function CAPTURE (BEAMRA, AXMAJ, AXMIN, ANGFAC)
begin

TILTFA DSIN (ANGFAC);
RMAREA AXMAJ * AXMIN;

EFAREA RMAREA * TILTFA;

BMAREA BEAMRA * BEAMRA;
if EFAREA <= BMAREA * 6.OdO
then USED EFAREA / BMAREA;

CAPTURE 1.OdO - DEXP (-USED)

else CAPTURE := 1.OdO

endif

end

real function BOUNCE (ANGFAC, RNGFAC, PROJRA, SIGB,

RANGE, AXMAJ, AXMIN, XLAMDA)

begin

RHOSTD 0.95 * PROJRA * ANGFAC;
BEAMRA RADIUS (PROJRA, SIGB, RNGFAC, RANGE);

BOUNCE
CAPTURE C BEAMRA, AXMAJ, AXMIN, ANGFAC)

* RHO (RHOSTD, XLAMDA)

end

Figure 148 Subprograms RADIUS, CAPTURE, and BOUNCE

184

class CLASS-i attributes RANGE, RNGFAC, SIGB, PROJRA

method RADIUS (C-1): real begin

if GET-RNGFAC (C-i) > 0.0 and GET-RANGE (C-1) > 0.0

then SIGABS DABS (GET-SIGB (C-i));
SLOPE SIGABS - GET-PROJRA (C-i) / GET-RANGE (C-i);
SPOT := SIGABS * GET-RANGE (C-i);

RAD := DABS (GET-PROJRA (C-i) + SLOPE * GET-RNGFAC (C-i));
RADIUS := DMAXi (SPOT, RAD)

else RADIUS := GET-PROJRA (C-i) endif

end

superclass USER-OBJECT

class CLASS-2 attributes BEAMRA, AXMAJ, AXMIN, ANGFAC

method CAPTURE (C-2): real

begin
TILTFA DSIN (GET-ANGFAC (C-2));

RMAREA GET-AXMAJ (C-2) * GET-AXMIN (C-2);

EFAREA RMAREA * TILTFA;

BMAREA GET-BEAMRA CC-2) * GET-BEAMRA C C-2);
if EFAREA <= BMAREA * 6.OdO

then USED EFAREA / BMAREA;
CAPTURE 1.OdO - DEXP (-USED)

else CAPTURE := 1.OdO

endif

end
superclass USER-OBJECT

class CLASS-4 attributes ANGFAC, RNGFAC, PROJRA, SIGB,

RANGE, AXMAJ, AXMIN, XLAMDA

method BOUNCE (C-4): real

begin
RHOSTD := 0.95 * GET-PROJRA (C-4)

* GET-ANGFAC (C-4);
BEAMRA RADIUS (PROJRA, SIGB, RNGFAC, RANGE);

BOUNCE

CAPTURE C BEAMRA, AXMAJ, AXMIN, ANGFAC)
* RHO (RHOSTD, XLAMDA)

end

superclass USER-OBJECT

Figure 149 Classes Built for RADIUS, CAPTURE, and BOUNCE

185

RANGE declared in RADIUS. This means the following mappings are in the transitive closure
/*.

BOUNCE:: PROJRA - RADIUS:: PROJRA

BOUNCE:: SIGB - RADIUS:: SIGB

BOUNCE:: RNGFAC - RADIUS :: RNGFAC

BOUNCE:: RANGE 2 RADIUS:: RANGE

Also note that each of these formal parameters have been built as an attribute of the

class built for RADIUS, i.e. CLASS-1 shown in Figure 149. All of this information means

the Tb transformation is performed and the PROJRAM, SIGB, RNGFAC, and RANGE attributespboi

are moved from CLASS-4 to CLASS-i using the TA' transformation. All accesses to PROJRA,

SIGB, RNGFAC, and RANGE in CLASS-4 are changed from accessing instances of CLASS-4 to

accessing instances of CLASS-1.

Similarly, BOUNCE calls CAPTURE passing the BEAMRA, AXMAJ, AXMIN, and ANGFAC data

items as actual parameters. The formal parameters that correspond to these actual pa-

rameters are the BEAMRA, AXMAJ, AXMIN, and ANGFAC parameters. The following mappings

are in the transitive closure IL*.

BOUNCE:: BEAMRA ! CAPTURE:: BEAMRA

BOUNCE:: AXMAJ --- * CAPTURE :: AXMAJ

BOUNCE:: AXMIN - CAPTURE :: AXMIN

BOUNCE:: ANGFAC - CAPTURE:: ANGFAC

Note that only the AXMAJ, AXMIN, and ANGFAC parameters are both formal and actual

parameters in BOUNCE. In adherence with PBOI Case 1, these data items are sent to the

Tlboi transformation, but the BEAMRA data item is not. Also note that the AXMAJ, AXMIN,

and ANGFAC parameters have been built as attributes of the class CLASS-2. This means

the AXMAJ, AXMIN, and ANGFAC attributes of CLASS-4 are moved from CLASS-4 to CLASS-2

using the T' transformation. All accesses of AXMAJ, AXMIN, and ANGFAC attributes are

converted from accessing instances of CLASS-4 to accessing instances of CLASS-1.

Figure 150 shows the result of the T'bo transformation. Note in the GET-PROJRA

message, the PRORA attribute is now obtained from C-5, an instance of CLASS-i, instead

186

class CLASS-4 attributes XLAMDA

method BOUNCE (C-4, C-5, C-6): real

begin

RHOSTD := 0.95 * GET-PROJRA (C-5)
* GET-ANGFAC C-6);

BEAMRA RADIUS (PROJRA, SIGB, RNGFAC, RANGE);

BOUNCE

CAPTURE (BEAMRA, AXMAJ, AXMIN, ANGFAC)

* RHO (RHOSTD, XLAMDA)

end

superclass USER-OBJECT

Figure 150 Updated CLASS-4 for BOUNCE

of C-4, an instance of CLASS-4. In the GET-ANGFAC message, the ANGFAC attribute is now

obtained from C-6, an instance of CLASS-2, instead of C-4, an instance of CLASS-4. The

T' transformation has added C-5 and C-6 as formal parameters of the method BOUNCE.

6.8.3 Formalizing PBOI Case 2. The second case for converting Category 3

subprograms is that the formal parameter is a parameter of the method and the actual

parameter is a formal. This section defines the transformation that formalizes the second

PBOI case as presented in Section 5.3. The transformation needed in this case is to identify

parameters of a called subprogram that are not attributes and move them to parameters

of the method built for the calling subprogram. The transformation is defined and an

example is given.

Recall from Section 6.8.2, /1* represents the transitive closure of the t relation,

call*(S) (the call tree of S) represents the transitive closure of the call relation, and p*(S)

represents the set of classes built for the subprograms in the call tree of S. Let OOD

represent an object-oriented design, let S represent the subprogram to be transformed,

and let P be the set of data items to consider in the transformation.

Using these definitions, the T 2bo transformation that formalizes PBOI Case 2 is

defined as shown in Figure 151. This transformation checks each of the classes built for

the subprograms in the call tree of S. For any data item p, if there are no classes that

have built an attribute that is linked to the parameter p through the I* mapping, then

187

Tpboi(OOD, S, P) = OOD' where

P' = {PI p P and -,3 C 2 E p*(S) such that

a' = Ov.(t*(p)) and a' E Dc 2} and

C, = p(S) and
C/ = T-I (OOD, C1 ,0,(P')) and

OOD' = T+(T5(OOD,C1),C')

Figure 151 The Tpboi transformation

an instance of PBOI Case 2 has been found. The set P' collects these data items so they

can be changed from attributes to parameters. All of the data items in P' are changed

from attributes of the class built for S, i.e. C1, into parameters of the methods of C,

using the TA5- ' transformation. Once p is converted to a GOM variable using the 0,

transformation, it is appropriate to move the variable from an attribute to a parameter

because both attributes and parameters are variables in the object paradigm. For example,

Figure 152 shows the subprograms CAPTURE and BOUNCE (whose statements do not match

those shown in Figure 148). The BOUNCE subprogram calls the CAPTURE subprogram,

so the mapping call(BOUNCE, CAPTURE) is one of the mappings in the transitive

closure call*(BOUNCE). Figure 153 shows the classes built for CAPTURE and BOUNCE.

The subprogram CAPTURE has been completely transformed since it is called by BOUNCE.

CLASS-4 in the figure is the incomplete class being built for BOUNCE. At this point in the

transformation, none of the subprogram calls have been converted to messages in CLASS-4.

Let OOD represent the design that includes the classes built for BOUNCE and CAPTURE.

Consider the transformation

Tpboi(OOD, BOUNCE, { AXMAJ, AXMIN, ANGFAC })

This transformation is used to update OOD based on whether the parameters AXMAJ,

AXMIN, or ANGFAC have been built as attributes of any of the classes in the call tree of

BOUNCE. Note in the figure that even though BOUNCE calls the other subprograms RADIUS and

RHO, the AXMAJ, AXMIN, and ANGFAC data items are only passed to the CAPTURE subprogram.

188

real function CAPTURE (BEAMRA, AXMAJ, AXMIN, ANGFAC)
begin

TILTFA DSIN (ANGFAC);

RMAREA AXMAJ * AXMIN;

EFAREA RMAREA * TILTFA;

BMAREA BEAMRA * BEAMRA;

if EFAREA <= BMAREA * 6.OdO

then USED EFAREA / BMAREA;
CAPTURE 1.0dO - DEXP (-USED)

else CAPTURE := 1.OdO

endif

end

real function BOUNCE (ANGFAC, RNGFAC, PROJRA, SIGB,

RANGE, AXMAJ, AXMIN, XLAMDA)

begin

RHOSTD 0.95 * ANGFAC;

BEAMRA RADIUS (PROJRA, SIGB, RNGFAC, RANGE);

BOUNCE
CAPTURE (BEAMRA, AXMAJ, AXMIN, ANGFAC)

* RHO (RHOSTD, XLAMDA)
end

Figure 152 Subprograms CAPTURE and BOUNCE

This means, for this example, the only possible class that could have attributes that are

linked to these data items through the I* relation is the class built for CAPTURE. As is seen

in Figure 152, the actual parameters AXMAJ, AXMIN, and ANGFAC are linked to the formal

parameters AXMAJ, AXMIN, and ANGFAC, respectively, declared in the CAPTURE subprogram.

This means the following mappings are in the transitive closure /*.

BOUNCE:: AXMAJ - CAPTURE :: AXMAJ

BOUNCE:: AXMIN - CAPTURE :: AXMIN

BOUNCE:: ANGFAC - CAPTURE:: ANGFAC

As shown in Figure 153, the AXMAJ and AXMIN data items have been built as attributes

of the class CLASS-2, but the ANGFAC data item has not been built as an attribute. The

ANGFAC data item is a parameter of the method that implements CAPTURE. This means

in the T bo transformation, the only data item in the set P1 is ANGFAC. This attribute is

189

class CLASS-2 attributes BEAMRA, AXMAJ, AXMIN

method CAPTURE (C-2, ANGFAC): real

begin

TILTFA DSIN (ANGFAC);

RMAREA GET-AXMAJ (C-2) * GET-AXMIN (C-2);

EFAREA RMAREA * TILTFA;

BMAREA GET-BEAMRA (C-2) * GET-BEAMRA (C-2);

if EFAREA <= BMAREA * 6.OdO

then USED EFAREA I BMAREA;
CAPTURE 1.0dO - DEXP (-USED)

else CAPTURE := 1.OdO

endif

end

superclass USER-OBJECT

class CLASS-4 attributes ANGFAC, RNGFAC, PROJRA, SIGB,

RANGE, AXMAJ, AXMIN, XLAMDA

method BOUNCE (C-4): real

begin

RHOSTD 0.95 * GET-ANGFAC (C-4);
BEAMRA RADIUS (PROJRA, SIGB, RNGFAC, RANGE);

BOUNCE

CAPTURE (BEAMRA, AXMAJ, AXMIN, ANGFAC)
* RHO (RHOSTD, XLAMDA)

end

superclass USER-OBJECT

Figure 153 Classes Built for CAPTURE and BOUNCE

removed from CLASS-4 and added as a parameter to the method that implements BOUNCE

by using the T47' transformation. Figure 154 shows the result of the T2 transformation.

The ANGFAC data item has been changed from an attribute of CLASS-4 to a parameter

of the BOUNCE method. The message GET-ANGFAC (C-6), which accesses the attribute

ANGFAC, has been changed to access the parameter ANGFAC. This updated class replaces

the original class in the design OOD to produce the updated design OOD'.

6.8.4 Formalizing PBOI Case 3. The third case for converting Category 3 sub-

programs is that the formal parameter is an attribute and the actual parameter is not a

formal. This section defines the transformation that formalizes the third case for PBOI

190

class CLASS-4 attributes RNGFAC, PROJRA, SIGB,

RANGE, AXMAJ, AXMIN, XLAMDA

method BOUNCE (C-4, ANGFAC): real

begin

RHOSTD 0.95 * ANGFAC;

BEAMRA = RADIUS (PROJRA, SIGB, RNGFAC, RANGE);

BOUNCE

CAPTURE (BEAMRA, AXMAJ, AXMIN, ANGFAC)
* RHO (RHOSTD, XLAMDA)

end
superclass USER-OBJECT

Figure 154 Updated Class for BOUNCE

as described in Section 5.3. This case identifies parameters from the called subprogram

that have been built as attributes of a class but are not formal parameters of the calling

subprogram. The transformation needed for this case is to move the identified data items

from attributes to parameters. The transformation for case three is defined below followed

by an example.

As defined in Section 6.8.2, p* represents the transitive closure of the p, relation,

call* (Si) (the call tree of S) represents the transitive closure of the call relation, and p* (Si)

represents the set of classes built for the subprograms in the call tree of S1. Let OOD

represent an object-oriented design, let S1 represent the subprogram being transformed,

and let P be the set of data items being considered in the transformation. Let /i*(P')

represent the set of data items resulting from the application of /L* to the data items in P'.

Using these definitions, the transformation that formalizes PBOI Case 3 is defined

as shown in Figure 155. This transformation is fundamentally different from the transfor-

mations that formalize PBOI Case 1 and PBOI Case 2. The changes that were made to

the design OOD in Case 1 and Case 2 were made only to the class that was built for the

subprogram S. In the transformation for Case 3, no change is required for the class built

for S1, but other classes in the call tree of S1 may be changed. If a class is found in p*(Si)

that has an attribute that can be linked to a parameter p through 0, and the J* relation,

then each of the classes built for the subprograms that include p as a formal parameter is

191

Tp3boi(OOD, $1, P) = OOD' where

C1 = p(S1) and

P' = {p p E P and 3 C3 E p*(S1) such that

Y'= -- v(/t*(p)) and b' E 4)c3} and

V C2 E OOD

S2 = p- 1 (C 2) and

S2 =< ids 2 , Pins2, Pouts2, PretPloc,ES2 > and

Pforms2 = PinS2 (Pouts2 and

A = {a' P' E P' and a' = tt*(p') and a' E Porms2}

C' = Tb-1 (OOD, C 2 , 0,(A)) and

C E OOD' A C2 0 OOD'

Figure 155 The T3b. transformation

transformed. The set P' collects any such parameters from P. All the classes in the design

oOD are examined to see if they require an update. The subprogram that is associated

with each class C2 is determined (by using p- 1) and the formal parameters of this subpro-

gram S2 are examined. If S2 has a formal parameter that can be linked to p' E P' by the

*(p') transitive closure, then the T'bo transformation must ensure this parameter has not

been built as an attribute. The T6_ 1 transformation is used to transform the attributes

associated with such parameters into parameters of the methods of C2.

Let the term call path represent a mapping in the call*(Si) transitive closure such

that call(Sl,S 2) indicates a call path from S1 to S2. Since the call*(Si) relation is a

transitive closure, there may be multiple call mappings in call*(Si) of the form call(S1, S")

and call(Sn, Sm) and call(Sm, S 2) that were used to build the mapping call(Si, S 2). All

these subprograms, S1, Sn, Sm, and S 2 , are considered to be in the call path from S

to S 2 . Let S3 = p-'(Cl), where C1 is the class that has built the parameter p as an

attribute. The T3 bo transformation is built specifically to update all the classes that have

been built for the subprograms in the call path from S and S3 . This is a critical part of

the transformation because each method that implements the subprograms in the call path

from S1 to S3 must now access p as a parameter instead of as an attribute of some object.

192

This is why each of the classes in the design OOD is checked and the I*(p') transitive

closure is used to identify such parameters.
In some classes, the data item a' will not be an attribute of the class C2 . The TA-

transformation will make the correct transformation because set difference is used by the

TA7- transformation to remove a' from the set of attributes for the class. Whether or not

a' is in the set of attributes, the result is a set of attributes that does not contain a'. In

some cases, the data item a' will already be a parameter of the methods of a class. In this

case the TA transformation will make the correct transformation because the E operation

(defined in Section 3.24) is used to add a' to the sequence of formal parameters of each

method. The E operation adds a parameter to a sequence of parameters without allowing

duplicates. Whether or not a' is originally in the sequence of parameters for the method,

the result is a sequence of parameters that now includes a'.

As an example, Figure 156 shows the subprograms RHO, BOUNCE, and RELAY-PHASE.

These subprograms have been altered from previous examples. The RELAY-PHASE subpro-

gram calls the BOUNCE subprogram, so the call(RELAY-PHASE, BOUNCE) mapping is

included in the transitive closure call*(RELAY-PHASE). The BOUNCE subprogram calls

the RHO subprogram, so the call(BOUNCE, RHO) and the call(RELAY-PHASE, RHO)

mappings are also included in the transitive closure call*(RELAY-PHASE). In this ex-

ample, the call path from RELAY-PHASE to RHO includes the subprograms RHO, BOUNCE, and

RELAY-PHASE.

The classes built for these subprograms are shown in Figure 157. The subprograms

BOUNCE and RHO have already been transformed since they are called by RELAY-PHASE.

The incomplete class being built for RELAY-PHASE is shown in the figure as CLASS-5. The

subprogram call to BOUNCE has not yet been converted to a message.

Let OOD represent the design that includes these three classes. Consider the trans-

formation

T3boi(OOD, RELAY-PHASE, { RHOSTD, XLAMDA })

193

real function RHO (RHOSTD, LAMBDA)

begin

RHO := RHOSTD * LAMBDA

end

real function BOUNCE (ANGFAC, RNGFAC, PROJRA, SIGB,

RANGE, AXMAJ, AXMIN, RHOSTD, XLAMDA)

begin

BEAMRA = RADIUS (PROJRA, SIGB, RNGFAC, RANGE);

BOUNCE
CAPTURE (BEAMRA, AXMAJ, AXMIN, ANGFAC)

* RHO (RHOSTD, XLAMDA)

end

procedure RELAY-PHASE (DIAM, UPLFAC, RNGFAC, ZENITH, SIGB,

AXMAJ, AXMIN, PHASE)
begin
PHASE := 1;

RHOSTD 0.95;
ANGFAC UPLFAC * 3.14159;

PROJRA DIAM / 2;

RANGE ZENITH * PROJRA * ANGFAC;

XLAMDA 0.625;

PHASE BOUNCE ANGFAC, RNGFAC, PROJRA, SIGB,

RANGE, AXMAJ, AXMIN, RHOSTD, XLAMDA)

end

Figure 156 Subprograms RHO, BOUNCE, and RELAY-PHASE

194

class CLASS-3 attributes RHOSTD, LAMBDA

method RHO (C-3): real

begin

RHO := GET-RHOSTD (C-3) * GET-LAMBDA (C-3)

end
superclass USER-OBJECT

class CLASS-4 attributes

method BOUNCE (C-4, C-5, C-6, C-7): real

begin

BEAMRA RADIUS (C-5);
BOUNCE CAPTURE (C-6, BEAMRA) * RHO (C-7)

end

superclass USER-OBJECT

class CLASS-5 attributes DIAM, UPLFAC, RNGFAC, ZENITH, SIGB,

AXMAJ, AXMIN, PHASE
method RELAY-PHASE (C-8)

begin
SET-PHASE (C-8, 1);

RHOSTD 0.95;

ANGFAC GET-UPLFAC (C-8) * 3.14159;

PROJRA GET-DIAM (C-8) / 2;
RANGE GET-ZENITH CC-8) * PROJRA * ANGFAC;

XLAMDA 0.625;
SET-PHASE (C-8, BOUNCE (ANGFAC, RNGFAC, PROJRA, SIGB,

RANGE, AXMAJ, AXMIN, RHOSTD, XLAMDA))

end

superclass USER-OBJECT

Figure 157 Classes Built for RHO, BOUNCE, and RELAY-PHASE

195

This transformation updates the OOD to comply with PBOI Case 3 since the data items

RHOSTD and XLAMDA are actual parameters but are not formal parameters in the subpro-

gram RELAY-PHASE. As shown in the figure, the RELAY-PHASE subprogram calls the BOUNCE

subprogram passing RHOSTD and XLAMDA as actual parameters. The corresponding formal

parameters in BOUNCE are the RHOSTD and XLAMDA formal parameters. This means the

following mappings are in the transitive closure /*.

RELAY-PHASE:: RHOSTD -- BOUNCE:: RHOSTD

RELAY-PHASE:: XLAMDA -- BOUNCE:: XLAMDA

The subprogram BOUNCE calls the subprogram RHO passing the RHOSTD and XLAMDA

parameters as actual parameters. The formal parameters that correspond to these actual

parameters are the RHOSTD and LAMBDA formal parameters declared in RHO. This means the

following mappings are in the transitive closure IL*.

BOUNCE:: RHOSTD --- * RHO:: RHOSTD

BOUNCE:: XLAMDA - RHO :: LAMBDA

RELAY-PHASE:: RHOSTD -- RHO :: RHOSTD

RELAY-PHASE:: XLAMDA - RHO :: LAMBDA

Notice in Figure 157, the class CLASS-3 built for RHO has built the RHOSTD and

LAMBDA data items as attributes of the class. This means a class exists in the call tree for

RELAY-PHASE that includes an attribute that can be linked to the RHOSTD and XLAMDA data

items in RELAY-PHASE. Both RHOSTD and XLAMDA are collected into the set P' for further

evaluation. The Tboi transformation continues by examining each class in the design OOD

to see if it needs to be transformed.

For this example, OOD includes the three classes CLASS-3, CLASS-4, and CLASS-5.

For CLASS-5, thepboi transformation uses the p- 1 mapping to find the subprogram

RELAY-PHASE. The set A for this subprogram is empty since, in this example, each p'

is a variable defined in RELAY-PHASE and there are no mappings in /j* that map data items

in RELAY-PHASE to other data items in RELAY-PHASE. The only way for those mappings to

be in ,j* would be from a recursive call to RELAY-PHASE, and recursion is not allowed in the

196

GOM. This means the empty set A is passed to the TA- transformation and no change is

made to CLASS-5, as required.

For CLASS-4, the subprogram associated with this class is the BOUNCE subprogram.

The set A for BOUNCE is { RHOSTD, XLAMDA } since these data items have mappings in It* to

the RHOSTD and XLAMDA data items, respectively, in RELAY-PHASE. The TA transformation

is passed these data items which ensures RHOSTD and XLAMDA aren't attributes of CLASS-4,

but are parameters of the methods of CLASS-4.

class CLASS-4 attributes
method BOUNCE (C-4, C-5, C-6, C-7, RHOSTD, XLAMDA): real

begin

BEAMRA RADIUS (C-5);
BOUNCE CAPTURE (C-6, BEAMRA)
* RHO (C-7, RHOSTD, XLAMDA)

end
superclass USER-OBJECT

Figure 158 Updated Class for BOUNCE

Figure 158 shows the result of this transformation. The RHOSTD and XLAMDA data

items are not attributes of CLASS-4, but are formal parameters of the method BOUNCE and

actual parameters in the message RHO.

For CLASS-3, the subprogram associated with this class is the RHO subprogram. The

set A for RHO is { RHOSTD, LAMBDA } since these data items have mappings in 1&* to the

RHOSTD and XLAMDA data items, respectively, in RELAY-PHASE. The TA transformation

is passed { RHOSTD, LAMBDA } which ensures RHOSTD and LAMBDA are not attributes of

CLASS-3, but are parameters of the methods of CLASS-3.

Figure 159 shows the result of the TA' transformation on CLASS-3. The RHOSTD

and LAMBDA data items are now parameters of the RHO method instead of attributes of the

CLASS-3 class. The three updated classes are included in the updated design returned

from the T3b transformation.

197

class CLASS-3 attributes

method RHO (C-3, RHOSTD, LAMBDA): real
begin

RHO := RHOSTD * LAMBDA

end

superclass USER-OBJECT

Figure 159 Updated Class for RHO

Tpboi(OOD, S, P) = OOD' where

P = l{PIP E P and -,3 C1 E p*(S) such that

a' Ov (/*(p)) and a' E dc,} and

OOD' = OOD

Figure 160 The T 4 transformation

6.8.5 Formalizing PBOI Case 4. The fourth case for converting Category 3

subprograms is that the formal parameter is a parameter of the method and the actual pa-

rameter is not a formal. This section defines the formal transformation that formalizes the

fourth case of the PBOI method, as defined in Section 5.3. This case identifies parameters

of the called subprogram that are not attributes of a class and are not formal parameters

of the calling subprogram. There is no change to the object-oriented design required for

this case. The transformation is defined below and an example is given at the end of this

section.

As defined in Section 6.8.2, /1* represents the transitive closure of the /. relation,

call* (S) (the call tree of S) represents the transitive closure of the call relation, and p* (S)

represents the set of classes built for the subprograms in the call tree of S. The T4b.iformal

transformation is defined in Figure 160. This transformation checks each class in the set

of classes built for the subprograms in the call tree of S. If none of the classes have an

attribute that can be linked through the IL* relation to the parameter p, then there is no

change required in the design.

For example, consider the RADIUS and BOUNCE subprograms shown in Figure 161.

These subprograms have been changed slightly to illustrate PBOI Case 4. The PROJRA

198

real function RADIUS (PROJRA, SIGB, RNGFAC, RANGE)
begin

if RNGFAC > 0.0 and RANGE > 0.0

then SIGABS := DABS (SIGB);

SLOPE SIGABS - PROJRA / RANGE;

SPOT SIGABS * RANGE;
RAD DABS (PROJRA + SLOPE * RNGFAC);

RADIUS DMAX1 (SPOT, RAD)

else

RADIUS PROJRA

endif

end

real function BOUNCE (ANGFAC, RNGFAC, SIGB,
RANGE, AXMAJ, AXMIN, XLAMDA)

begin
PROJRA XLAMDA * 3.14159;

RHOSTD 0.95;

BEAMRA RADIUS C PROJRA, SIGB, RNGFAC, RANGE);
BOUNCE

CAPTURE (BEAMRA, AXMAJ, AXMIN, ANGFAC)
* RHO (RHOSTD, XLAMDA)

end

Figure 161 Subprograms RADIUS and BOUNCE

199

class CLASS-i attributes RANGE, RNGFAC, SIGB

method RADIUS (C-i, PROJRA): real begin

if GET-RNGFAC (C-1) > 0.0 and GET-RANGE (C-i) > 0.0

then SIGABS DABS (GET-SIGB (C-1));
SLOPE SIGABS - PROJRA / GET-RANGE (C-1);

SPOT SIGABS * GET-RANGE (C-1);

RAD DABS (PROJRA + SLOPE * GET-RNGFAC C C-1));
RADIUS DMAXi (SPOT, RAD)

else

RADIUS PROJRA

endif

end

superclass USER-OBJECT

class CLASS-4 attributes ANGFAC, RNGFAC, SIGB,

RANGE, AXMAJ, AXMIN, XLAMDA

method BOUNCE (C-4): real
begin

PROJRA XLAMDA * 3.14159;

RHOSTD 0.95;

BEAMRA RADIUS C PROJRA, SIGB, RNGFAC, RANGE);
BOUNCE

CAPTURE (BEAMRA, AXMAJ, AXMIN, ANGFAC)
* RHO C RHOSTD, XLAMDA)

end

superclass USER-OBJECT

Figure 162 Classes Built for RADIUS and BOUNCE

data item is now a local variable of the BOUNCE subprogram. In the example, the BOUNCE

subprogram calls the RADIUS subprogram, so the call(BOUNCE, RADIUS) mapping is

included in the transitive closure call*(BOUNCE). Figure 162 shows the classes that

are built for the RADIUS and BOUNCE subprograms. The RADIUS subprogram has been

completely transformed into class CLASS-I since it is called by BOUNCE. This class is different

than the other example transformation of RADIUS (see Figure 149). In Figure 162, the

PROJRA data item has not been built as an attribute of the class built for RADIUS. The

incomplete class being built for BOUNCE is CLASS-4 as shown in the figure.

200

Let OOD represent the design developed so far that includes these two classes. Con-

sider the transformation

Tpboi(OOD, BOUNCE, PROJRA)

This transformation checks all the classes built for the subprograms in the call tree of

BOUNCE to see if any of the classes have an attribute that can be linked through the /L*

relation to the PROJRA data item. The BOUNCE subprogram calls the RADIUS subprogram

passing in PROJRA as an actual parameter. The formal parameter that corresponds to

this actual parameter is the PROJRA formal parameter declared in RADIUS. This means the

following mapping is in the transitive closure lt*(BOUNCE :: PROJRA).

BOUNCE:: PROJRA - RADIUS:: PROJRA

The PROJRA data item in RADIUS has not been built as an attribute. Since in the call

tree of BOUNCE the PROJRA data item is passed only to the RADIUS subprogram, it can be

concluded that there is not a class in the call tree of BOUNCE that has built PROJRA as an

attribute.

6.8.6 Formalizing PBOL This section defines the high-level transformation com-

bining the four transformations that formalize the four PBOI cases. The formal transfor-

mation is defined and an example is given.

Let OOD represent an object-oriented design, let S represent the subprogram being

transformed. Let Csubs be the set of imperative subprogram calls in S. Let P*,t be the

sequence collecting all the actual parameters from all the subprogram calls in S, such that

duplicate parameters are not included and the order of the sequence is arbitrary. Let Tpboi

be the high-level transformation that determines which of the four PBOI transformations

to apply. The Tpboi transformation is defined as shown in Figure 163. This transformation

is used to update the object-oriented design developed so far by applying the four PBOI

transformations defined in the previous sections. This high-level transformation examines

the subprogram calls that the input subprogram S makes and determines which PBOI for-

mal transformation to apply for each actual parameter p of the call. The reduce operation

201

Tpbo(OOD, S) = 00D4 where

S = < ids, Pin, Pout, Pret, Ploc, ES > and

Pform = Pin E Pout and
Pa* = reduce(e, [Pactn I 1 E Csubs and

1 = < idSn,,Pactn >]) and
00D1 = Tboi(OOD, S, Pform n Pac) and

2*

00D2 = Tpboi(OOD1, S, Pf rm n Pact) and

00D3 = Tpboi(00D 2 ,Pfarm - Pact) and

00D4 = Tpboi(OOD3, S, Pfarm - Pa*ct)

Figure 163 The Tpboi transformation

is used to apply the E operator in order to combine the sequences of actual parameters.

Each actual parameter is checked to see if it is also a formal parameter of the calling sub-

program S. If an actual parameter is also a formal parameter, then either PBOI Case 1 or

PBOI Case 2 applies. If the actual parameter is not a formal parameter then either PBOI

Case 3 or PBOI Case 4 applies.

6.9 Transforming Subprogram Calls

This section defines the formal transformations used to convert imperative subpro-

gram calls to object-oriented messages. These transformations are used when converting

Category 3 subprograms. Let Vm be the transformation that converts subprogram calls to

messages. In order to transform a subprogram call 1 into a message m, it is assumed that

the method to be invoked by m already exists in some class C. Let instance(c, C) represent

whether or not an object c is an instance of class C. The Vm transformation is defined as

shown in Figure 164. This transformation ensures that each of the actual parameters in

the subprogram call I is either an attribute of the target object c, an attribute of one of

the other objects passed to the method, or a formal parameter of the method. The target

object, each of the other objects required, and the formal parameters are built as actual

parameters of the message m.

202

Vm(S, 1) = m where
1 = < id.,Pact > and

(3 C 2 E p*(S) such that

C 2 = < idc 2 , (Dc 2 , QC2 ,A o > and

Qc 2 = {< idsn, 2,Qobj2,QforM2 ,Qret 2,QloC 2, J!C 2 >})and

instance(c, C2) and

V p E Pact

[a' = Ov(II*(p)) and a' E -c 2] or

[3 C 3 E p*(S) such that

C3 < idc,, 4c 3 , Qc3 , Ao > and

V Ov(-t*(p)) and b' E 4)c3 and

instance(q, C3) and

q E Qobj2 and q E Qobj and q E Qobj] or

[d' = O9(p*(p)) and d' G Qform2 and

P' = Ov(p) and p' E Q orm] and

Q'ct = [c] E Q'bj E Q'form and
m = < idSn IQ'ct >

Figure 164 The vm transformation

203

The ve transformation, shown in Figure 165, is defined to use the Vm transformation

in order to transform each function call in an imperative expression. This transformation

uses the formal definition for each imperative expression in its definition.

In order to transform subprogram calls in each statement and expression, the v

transformation has been defined as shown in Figure 166. This transformation uses the

formal definitions of imperative statements in its definition. Recall that pos(s, T) indicates

the ordinal position of a statement, s, in the sequence, IF. This transformation takes as

input a sequence of imperative statements and object-oriented statements. The resulting

sequence is a sequence of object-oriented statements where the subprogram calls from the

imperative statements and expressions have been replaced by messages.

Let T1' be the formal transformation that takes an object-oriented design, a subpro-

gram, and a class and replaces all the subprogram calls in the statements of the class'

method with messages. This transformation is defined as follows.

T(OOD, S, C) = QOD' where

C < idc,,Pc, Tc, Ao > and

Pic = {< ido, 7, Qobj, Qform, Qret, Qoc, To >} and

= v(S, TO) and

= {< ido, T, Qobj, Qform, Qret, QlocP V >} and

C' < idC, C, Q'c, Ao > and

QOD' = T+(T,-(OOD,C),C')

Each subprogram call in T1o is replaced by corresponding message by using the v

transformation. These updated statements are used to update the method in Q' in the

updated class C'. This class replaces the class C in the design and the updated design is

returned as the result of the transformation.

For example, Figure 167 shows the class CLASS-3 containing the method RHO. The

original imperative subprogram call to the subprogram RHO is given below.

RHO (RHOSTD, XLAMDA, ANGFAC)

Let C-7 be an instance of CLASS-3. The subprogram call is transformed into the following

message.

204

ve(S,e) = e' where

e = < ids,,,Pact > = e' = vm(S,e) and

gom-variable(e) = e' = e and

e = < GET-a,[c] >= 'e' = eand

gom-literal-boolean(e) =e' = e and

gom-literal-integer(e) = e' = e and

gom-literal-real(e) == e' = e and

gom-literal-string(e) = e' = e and

e = <el, +,e2> => el <ve(Sel), +,ve(Se2)> and

e = <el, and, e2 > => e' = <ve(S, el), and, ve(S, e2)> and

e = < el, &,e 2 > => e' =< ve(S, el), &,ve(S, e2) > and

e = < el, /,e2 > = e' < ve(S, el), /,ve(S, e2) > and

e = < el, =,e 2 > = e' =<ve(Sel), =,ve(Se2) > and

e = <el, **,e 2 > =t> el =<ve(S, el), **,ve(S, e2) > and

e = < el,>=,e 2 > => e' < ve(Sei),>=,ve(Se2) > and

e = < el, >,e2 > => el = <ve(S el),>,ve(S e2) > and

e = <el, <=,e 2 > = e' = <ve(S, el), <=, ve(S, e2)> and

e = < el, <, e2 > el = < ve(S, el), <,ve(S, e2) > and

e = <el *,e2 > => e' = <ve(S, el), *,ve(S, e2)> and

e = < el, <>,e 2 > = e' =<ve(S, el), <>, ve(S, e2) > and

e = < el, or, e2 > => e' < ve(S, el), or, ve(S, e2) > and

e = <el,-,e 2 > => e' <ve(S, el),-,ve(S, e2)> and

e = <-,el > => el = <-,ve(S, el) > and
e = < not, el > = > el = < not, v(S, el) >

Figure 165 The ve transformation

205

v(S, T) = ' where
VsE

s = < ids,, Pact >

s Vm(S, s) and

S = < X, :=,e > ==

s' =< x, :=,ve(S,e) > and

s = < if, e, then, S1, else, S 2 > =

s= < if, ve(S,e), then, v(S, S1), else, v(S, S2) > and

s = < while, e, S3 >=

= < while, ve(S, e), v(S, S3) > and

s = < output, oport, E> >

s= <output, oport, E' > and

E' = [ve(S,e) e EE] and

s' E IF' and

pos(s, I) = pos(s, ')

Figure 166 The v transformation

RHO (C-7, RHOSTD)

using the Tv transformation. The RHOSTD actual parameter is passed as a parameter of

the message, the XLAMDA actual parameter has become the LAMBDA attribute of CLASS-3,

and the actual parameter ANGFAC has also become an attribute of CLASS-3.

When duplicate classes are eliminated from the object-oriented design using the

PBOI methodology, the signature of methods in the resulting class may be changed. The

signatures of any messages that call these methods must be updated to match. Let the

class CLASS-3 attributes LAMBDA, ANGFAC

method RHO (C-3, RHOSTD): real

begin

RHO := RHOSTD

end
superclass USER-OBJECT

Figure 167 Class CLASS-3 with Method RHO

206

TV(OOD, C) = OOD' where

C =<idc,4Icc,Ao> where

PC = {< idsnr,QabjQformQretQloc,5'o >} and

VC1 E OOD

C1 = < idcl,Dc1 ,l 5c, 7Ao > and

P~c, = {< ido, T, Qobjl, Qformi, Qreti, Qloci, P0o >} and

For each m E C.bo
m = <idSnQact >=

vs(act, Qf orm) and
= <idsn, Q'at > and m' E Csub and

m # < idSnQact > =>

m! = m and m' E C'.Ubo and

Iff = TIO, with m E C.bo replaced by m' E Csbo and

Q1 -= {< ido, T Qobjl, Qformi, Qreti, Qlocl, o1 0 >} and

C = < idc, Pc, Q' 1 , Ao > and

C1 . OOD' and C E OOD'

Figure 168 The Tov transformation

Tov transformation represent this updating of message signatures as defined below. Let

OOD represent an object-oriented design, let Cmsgo represent the collection of messages

in a method. Let vs(Qact, Qform) represent whether or not the number, order, and type of

the actual parameters in Qact match the number, order, and type of the formal parameters

in Qf arm. The Tov transformation is shown in Figure 168. This transformation checks each

method in each class in OOD for messages being sent to the method in C. If the call

identifier of the message m matches the name of the method in C, then the v, condition

is used to ensure the signature of m matches the formals in Q! arm. The updated message,

mi, replaces m in C' and this updated class replaces C1 in OOD. If the call identifier of m

is not referring to the method in C, then no update is required and the original message,

m, is stored in C'.

207

6.10 Category 3 Subprogram Transformation (03)

This section defines the formal transformation used to convert Category 3 subpro-

grams to the object paradigm. As discussed in Section 5.3, the transformation of Category

3 subprograms to the object paradigm uses the PBOI method to update the object design

developed so far.

At this point of the transformation, there may be several classes in the design that

have been built for the same subprogram. This is because a subprogram may be called

multiple times and a new class is built for the subprogram for each of the calls. These

classes built for the same subprogram are termed duplicate classes because they have the

same name. Duplicate classes are eliminated from the design by merging any duplicate

classes into a new class that replaces the duplicates throughout the entire design. The set

of attributes for the new class is the intersection of the sets of attributes from the duplicate

classes. The set of operations for the new class is the union of the sets of operations from

the duplicate classes. The formal transformation that defines the removal of duplicate

classes is defined below.

Let Tdass represent the formal transformation that removes duplicate classes from

the object-oriented design. Let OOD represent an object-oriented design. The TdcluaPs

transformation is defined as shown in Figure 169.

This transformation examines all pairs of classes in OOD. Duplicate classes are

identified by comparing the name of the class. This implies the generated name of a class

must be the same each time a class is built for a subprogram. If the names of two classes

C1 and C2 are the same, then a new class C3 is built to represent the intersection of these

two classes. The attributes of 03 are built by initially unioning (c, and (bc2 and then

using the TA 1 transformation to remove those attributes not in the intersection of 1c,

and Ic 2 . The operations of C3 are built by unioning QC1 and Qc 2 . The union is based on

the fact that two operations are equal if they have the same name. The C3 class replaces

the two duplicate classes in OOD'. The final step of the transformation is to ensure any

calls to the updated method in C3 match the signature of the method.

208

dup
Telass(OOD) = OOD" where

VC 1 and C2 E OOD

C1 C 2 and

C1 = < idc,Dc,, c1 , Ao > and

C2 =< idcDc,, c2,, o > =-

C3 = < idc, (C3,c 3,Ao > and

,c, = 4c U 4c 2 and

Qc3 = Qc1 U fc 2 and

A = (Dc, U Dc 2) - (Dc1f n c2) and

C' TA-'(OOD, C3 , A) and

C1 OOD' and C2 OOD' and

C3 E OOD' and

OOD" = To(OOD', C3)

Figure 169 The TduP transformationclass

Now that the transformation for eliminating duplicate classes has been defined, the

transformation of Category 3 subprograms is defined as follows. Let OOD represent an

object-oriented design, let S represent the Category 3 subprogram to be transformed. Let

OOD' represent the updated object-oriented design that results from converting S to the

object paradigm. Let Pform be the sequence of formal parameters from the subprogram S.

Let Csubs be the set of imperative subprogram calls in S. The formal transformation for

Category 3 subprograms is defined as shown in Figure 170. This transformation converts

each of the subprograms called by S and unions all the designs that are returned. This is

done by applying the a transformation to each of the subprograms in C*ubs . Initially, a

class is built to represent the Category 3 subprogram by building all the formal parameters

of the subprogram as attributes of the class. The subprogram S is initially transformed into

a method included in fc. Each statement in the subprogram is transformed into an object-

oriented statement by 0 and accesses to parameters of the subprogram are transformed by

b into attribute accesses of the instance object r. This initial class is added to the design

built so far, viz. OOD', and the resulting design is passed to the PBOI transformation

along with S. Since the PBOI transformation has the potential to change the class C,

209

a3(OOD, S) = OOD (4) where

S = < ids, Pin, Pout, Pret, Po, Es > and

Pform = Pin E Pout and

V I E Csubs

1 = < idsn, Pactn > and

Sn E cI*bs
n

OOD' = U(a(OOD, S)) where Si E C*Ubs and

C = < idc,4c, c, Ao > and

4c = range(Ov(Pf orm)) and

7 is an instance of C and

IF = 6(8(Es), r, @c) and

Qret = Ov(Pret) and

Qlo, = Ov(Poc) and

)c = {< ids,r,r , 0, Qret, Qlo, IF >} and
OOD" = Tpboi(Tt (OOD',C),S) and

C' = updated C E OOD" and

OOD"'. Tv(OOD" , S, C') and

OOD (4) = T dp (OOD"')

Figure 170 The 0'3 transformation

210

procedure RELAY-EFFNCY

(BETA, XLAMDA, DIAM, UPLFAC, SIGJ, ZENITH, MIRRORS, GEOM,
AXMAJ, AXMIN, SIGJR, EFFNCY)

begin

if MIRRORS > 0

then RNGFAC := 0.0;

K := 1;

while K <= MIRRORS do begin

ANGFAC GEOM (1, K);

RNGFAC RNGFAC + GEOM (2, K);

TRANS TRANS
* BOUNCE (ANGFAC, RNGFAC, PROJRA, SIGB,

RANGE, AXMAJ, AXMIN, XLAMDA);

K K + I
end

else endif;

ANGFAC GEOM (1, MIRRORS + 1);
EFFNCY TRANS

end

Figure 171 Partial declaration of RELAY-EFFNCY

the class C' represents this updated class after the PBOI transformation. This updated

class C' is passed to the T1v transformation in order to transform the subprogram calls in

C' to messages. The class returned from the TV transformation replaces C' in the design.

The TdUP transformation is used to remove duplicate classes and the resulting design isTe class

returned as the result of the transformation.

For example, Figure 171 shows the partial declaration of the imperative subprogram

RELAY-EFFNCY (using GIL syntax). This subprogram is a Category 3 subprogram that

calls the BOUNCE subprogram. The first step in converting RELAY-EFFNCY to the object

paradigm is to transform the BOUNCE subprogram and store the resulting design in OOD'.

Next, an initial class C is built for the RELAY-EFFNCY subprogram and added to this

design. The partial declaration of this class is shown in Figure 172. This class has an

attribute built from each of the formal parameters of the RELAY-EFFNCY subprogram. The

operations for this class include one method built to implement RELAY-EFFNCY. For brevity,

211

class CLASS-9 attributes BETA, XLAMDA, DIAM, UPLFAC,

SIGJ, ZENITH, MIRRORS, GEOM, AXMAJ, AXMIN, SIGJR, EFFNCY

method RELAY-EFFNCY (C-39)

begin

end

superclass USER-OBJECT

Figure 172 Classes after PBOI Transformation

the statements of this method are not shown. The class CLASS-9 is added to the design

OOD' and the resulting design is passed to the Tpb0 i transformation.

6.11 Transforming Category 1 Subprograms (o1)

This section defines the formal transformation for converting Category 1 subprograms

to the object-oriented paradigm. As explained in Section 5.8, the main program is typically

classified as a Category 1 subprogram. Category 1 subprograms other than the main

program are transformed to the object paradigm using the Category 3 transformation, U3.

More formally, let OOD represent an object-oriented design, let S be an imperative

subprogram, and let M be the main program. Recall from Section 5.8 that the main pro-

gram for a system of imperative subprograms is identified by the user. The transformation

of any Category 1 subprogram is defined as follows.

0I(OOD, S) = OOD' where

S # M =O QOD' = 0 3(OOD, S) and
S = M =,OOD' = oM(OOD, S)

This transformation determines whether the input subprogram is the main program

or not. If it is not the main program, then the 0 3 transformation is used. If it is the main

program, then the o"M transformation specifically defined for the main program is used.

The rationale for the transformation of the main program is given in Section 5.8.

Specifically, there are three updates done on the design while transforming the main pro-

gram. First, duplicate object instances are replaced in the main program with a single

212

object instance. Second, the "GET-", "SET-", and "CREATE-" methods are added to

each class in the design. Finally, overlapping classes in the design are merged into a new

class and instances of the overlapping classes are replaced with a single instance of the new

class. The transformations that formalize these updates are defined below and an example

of each transformation is provided.

6.11.1 Removing duplicate objects. This section defines the transformations

needed to remove duplicate objects from the main program. Two duplicate objects are

instances of the same class that are built using the same data items. Duplicate objects are

eliminated by replacing the two assignment statements that are used to build the instances

with a new assignment statement that builds just one instance. In order to replace the two
dup Vdup tasomtosaedfndi

variables that hold the duplicate objects, the ve and v transformations are defined in

this section.
dup

The ve transformation replaces any occurrences of the v1 variable in an expression

e with the v2 variable, which results in a new expression e. Let the pos(v, P) predicate

indicate the ordinal position of a variable, v, in the sequence, P. The vd transformation

is defined as shown in Figure 173.

The vduP transformation has been defined as shown in Figure 174. This transforma-

tion uses the formal definitions of imperative statements in its definition.
,dup

Let Tobj represent the transformation that removes duplicate object instances from

the object-oriented design. Let OOD represent the object-oriented design, let C represent

the overall system class built for the main program, and let idmain be the name of the main

program. The Tdup transformation is defined as shown in Figure 175. This transformationobj

compares the assignment statements in the method built for the main program in order to

find "CREATE-" messages that are instantiating duplicate objects. The transformation

replaces the il and i 2 assignment statements with the i 3 assignment statement and the

variables v1 and V2 with the variable v 3 .

For example, Figure 176 shows the overall system class CLASS-SYSTEM. The variables

C-5 and C-6 hold object instances that are passed to the BOUNCE method. Both object

instances are built from CLASS-2 using the data items ANGFAC and BEAMRA and are duplicate

213

v duP(e, V1,V 2) = e' where
e = < ids, Pact > and vi E Pact =

e < idsn P~at > and

V1 Pact and V2 E Pact and

pos(vI, Pact) = pOS(V2, Pact) and

gom-variable(e) ande = vl =i

e= v2 and

gom-literal-boolean(e) = e' = e and

gom-literal-integer(e) = e = e and

gom-literal-real(e) = e' = e and

gom-literal-string(e) = . e' = e and

e = < el, +,e2 > => el = < veP(el,V1,V 2), +,viep(e2 ,V1,V 2) > and
e = <el, and, e2 > = el = < v dP(el,V1,V2), and,Vdup(e 2 ,V1 ,V2) > and

e = < el, &,e 2 > : el - < vduP(el,V1,V 2), &,vduP(e 2 ,V1 ,V 2) > and

e = < el, e2 > e' = < vdup(el , iVV 2), /, vduP(e2, V, V2) > and

= < ei, =,e2 > e' = < vdUP(el,vi ,V2), =, Vdup(e2,VI, V2) > and

e = < e~, e2 > e' = <u(el,Vl,V 2), **,vdP(e2 ,Vl,V 2) > and

el, >=-, e 2 > => e = < v up(el, Vv 2), >=, vup(e 2 ,V1, v 2) > and

e = < el,>,e2 > = e= = < vduP(el,VlV 2),>,vduP(e2 ,V1,V 2) > and

e -- < e,=, e2 > => el' < vduP(el,V1,VA <=,vduP(e2,V1,V2) > and
e --- < e l, < , e 2 > € e' --= d P e , l V) , , d u ~ 2 v ~ 2 > a n d

e =< el, $ e > =€ eI
= <iuP(e,Vi, v2), *, VdeUP(e 2 ,vl, V2) > and

e = < el,<>,e2 > = e = < vdu(el,Vl V2),>,d(e2,vl,V2) > and

e = < el, or, e2 > => e' = < v.duP(el,Vl,V2), or,vduP(e2,Vl,V 2) > and

e = < e,-, e 2 > == < vuP(e, V, v 2), , vduP(e 2 , VI, v 2) > and

e = < -,e > e = < -,vduP(el,V1,V2) > and

e = < not, el > ==' el = < not, vdup(el,V1,V 2) >

Figure 173 The vdeu transformation

214

vdp(xp , v 1,v 2) = I where

VsEI

s = < ids, Pact > and vj E Pact =

S =< idsn, Pat > and

V1 Pact and v2 E P'at and

poS(v 1 , Pct) = poS(v2, Pct) and

s = < x, :=,e >=
I = <x, :=,vduP(e, v1,v 2) > and

s = < if, e, then, Si, else, S 2 > =

s = < if, vduP(e, V1, V2), then, vdup(S, v, v 2), else, vduP(S2 , v1, v 2) > and

s = < while, e, S3 >=

s'= < while, vdup(e, V1 , v2),vduP(S 3 , V1 , v 2) > and

s = < output, oport, E> =

s= < output, oport, E' > and

E' = [vdu(e, v,v 2) I e E El and

s' EI" and
pos(s,T) = pos(s',V')

Figure 174 The vduP transformation

Tb j(OOD, C) = OOD' where

C = < CLASS-SYSTEM, (Dc, Qc, A0 > and

Qc = {< idmain, 7, 0, 0, Qret, QIoc, TI >} and
V ii and i 2 E T and

[il = <v1 , :=, < CREATE - C1, [di, d2 ,... , d]> > and

i2 =< V2, :=,< CREATE-C 1,[di,d 2 ,... ,dn] > > =
i3 =< V3, :=, < CREATE - C1, [d, d2,.. dn] > > and

il IQ' and i2 0 V' and i 3 E T and

pos(il,'I!) = pos(i3 , Q') and

I" vduP(R , ,v 1 ,v 3) and

'I" -=. vdup(R, V2 , V3) and

Q = {< idmain, T, O, 0, Qret,Qoc,'' >} and

C' = < CLASS-SYSTEM, 4c, ', Ao > and

OOD' = T+(Tcj(OOD,C),C')

Figure 175 The Tdup transformation
obi

215

class CLASS-2 attributes ANGFAC, BEAMRA

method CREATE-CLASS-2

(A-ANGFAC, A-BEAMRA): a CLASS-2

begin

end

class CLASS-SYSTEM attributes

method BMDSIMI (C-9)
begin

C-5 CREATE-CLASS-2 ANGFAC, BEAMRA
C-6 CREATE-CLASS-2 (ANGFAC, BEAMRA);
BOUNCE (C-4, C-5, C-6);

end

Figure 176 Duplicate object instances

object instances. Figure 177 shows that the method BMDSIM1 has been updated by replacing

class CLASS-SYSTEM attributes

method BMDSIM1 (C-9)
begin

C-7 := CREATE-CLASS-2 (ANGFAC, BEAMRA);

BOUNCE (C-4, C-7, C-7);

end

Figure 177 Duplicates removed

the duplicate object instances. The variables C-5 and C-6 have been replaced with the

variable C-7. The new instance is instantiated using the CREATE-CLASS-2 method, stored

in C-7, and passed to the BOUNCE method in place of C-S and C-6.

6.11.2 Generating Methods (r.). As part of the transformation to merge over-

lapping classes, the "SET-", "GET-", and "CREATE-" methods are added to each class

216

class CLASS-17 attributes DWELLT

method CREATE-CLASS-17 (A-DWELLT): a CLASS-17
begin

INST-CLASS-17 := new (CLASS-17);
SET-DWELLT (INST-CLASS-17, A-DWELLT);

CREATE-CLASS-17 INST-CLASS-17

end
method GET-DWELLT (C-1O): real

begin

GET-DWELLT := C-IO.DWELLT

end
method SET-DWELLT (C-11, VAL-1O)

begin

C-11.DWELLT := VAL-1O

end

Figure 178 Instantiation Method for CLASS-17

in the object-oriented design. This section defines a formal transformation that generates

these methods.

Figure 178 shows the "SET-", "GET-", and "CREATE-" methods for the class

CLASS-17. The mechanics of "SET-" and "GET-" methods were covered in Section 6.3,

so they won't be covered further here. The "CREATE-" method for this class is explained

in detail.

The CLASS-17 class has only one attribute DWELLT, so the "CREATE-" method for

this class expects one parameter that is used to initialize the attribute. The "CREATE-"

method includes a call to the intrinsic functional method named new, which returns a

new instance of the class. The INST-CLASS-17 local variable holds the newly instantiated

object and is sent the "SET-" method to assign the input value of the DWELLT attribute.

Finally, the new initialized instance is returned as the result of this method call.

Let K be a transformation that adds the "SET-", "GET-", and "CREATE-" methods

to a class. Let C be a class, and let r be the target object, which is an instance of C. Let

0 be an expression that will be passed as the new value in "SET-" methods. Let SET-a

represent a symbol that results from prepending "SET-" to the name of the attribute

217

K(C) = C' where

C = < idc,,c, c,A > and

For each a E Ic

s = <SET-a,I,[],[],[],[],[],H> and

[I [< r.a, :=,/3>] and

g = GET-ar,[1,[1,[1,[a],[IF > and

= [< GET-a, :=,7.a >] and
s E and gEQ

For each a E -c

A-a E X and

< SET-a, [INST-idc, A-a] > E 0 and

E = [< INST-idc, :=, new(idc) >,

< CREATE-idc, :=, INST-idc >] and

r = < CREATE-idc, T, x, [INST-idc], [INST-idc], > and

r E 2C and

C' = < idc, Dc, Q', A >

Figure 179 The r. transformation

a E Dc. Similarly, let GET-a represent the symbol resulting from the prepending of "GET-

" to the name of a. Let CREATE-idc represent the symbol that results from prepending

"CREATE-" to the name of the class C. Let A-a represent the symbol resulting from

prepending "A-" to the name of a. This symbol is used for formal parameters in the

"CREATE-" method. Let X represent the sequence of these formal parameters. Let

INST-id_{C} represent the symbol resulting from prepending "INST-" to the name of

the class C. Let b represent the sequence of "SET-" messages used to assign the input

values to the object attributes. The r, transformation is defined as shown in Figure 179.

All the methods shown in Figure 178 are generated by the transformation

(CLASS-17)

218

-1(C) = C' where

C = < idc,'c,Pc,A > and

For each a E 4I~c

s = < SET-a,r,[],[3]],[],[],I > and

g = <GET-a,7,[],[],[],[a],[],,k> and
s o and g o and

r = < CREATE-idc, 7, [, X, [INST-idc], [INST-idC], E > and

r _Q and

C' = < idc, -PC, Q, A >

Figure 180 The .- 1 transformation

The r. transformation returns a new class C' that must replace the old class C in the object

design. This updating of the object design is not shown here.

As part of the PBOI method, it is in some cases required to remove the "SET-",

"GET-", and "CREATE-" methods from a class. For example, when merging two classes.

For this reason, the r. transformation is reversible. The "inverse" transformation for r. is

defined below.

Let r-1 be the inverse of K. The r transformation is defined as shown in Figure 180.

All the methods shown in Figure 178 are removed by the transformation

-1 (CLASS-17)

As with r, the n- 1 transformation returns a new class C' that must replace the old class

C in the object design. This updating of the object design is not shown.

6.11.3 Merging overlapping classes. The Terge transformation is used in the.class

main program to merge overlapping classes. Let OOD represent the design built so far and

let C represent the class built for the main program. Let set(Q) represent the conversion

of the sequence Q to a set. Let Qact represent a sequence of actual parameters and

let Qform represent a sequence of formal parameters. Let Vs(Qact, Qform) indicate the

number, order, and type of the parameters in Qact matches the number, order, and type

219

of the parameters in Qf orm. The Tmerge transformation is defined as shown in Figure 181.class

This transformation examines each assignment statement in the method built for the main

program in order to find "CREATE-" messages that are building instances of overlapping

classes. The classes from the "CREATE-" messages in the il and i 2 assignment statements

are merged to form the new class C3 . The overlapping classes C1 and C2 do not appear

in the updated design, but the new class does. The actual parameters for the "CREATE-

) message in the new assignment statement i 3 are built from the actual parameters in

the "CREATE-" messages in il and i 2 . The v predicate ensures that this new sequence

of actual parameters matches the number, order, and type of the formal parameters in

the "CREATE-" method of the new class C3 . The il and i 2 assignment statements are

replaced by the new assignment statement i 3 and the variables v1 and v2 are replaced by

the variable v3 . The updated system class replaces the original system class in the QOD'

design and the resulting design is returned as the result of the transformation.

For example, Figure 182 shows the classes CLASS-2, CLASS-3, and CLASS-SYSTEM.

In the BMDSIM1 method, the variable C-5 holds an instance of CLASS-2 that is built using

the data items ANGFAC and BEAMRA. The variable C-8 holds an instance of CLASS-3 that

is built using the data items ANGFAC and RHOSTD. Since the sequence of actuals have the

ANGFAC data item in common, the classes CLASS-2 and CLASS-3 overlap and are merged

into one new class.

Figure 183 shows the result of merging CLASS-2 and CLASS-3 into the new class

CLASS-10. In the BMDSIM1 method, the variable C-11 holds the new instance instantiated

from CLASS-10. The C-1i variable is passed to the BOUNCE message in place of the variables

C-5 and C-8. The design is updated by removing CLASS-2 and CLASS-3 and adding

CLASS-10.

6.11.4 Converting the Main Program. This section defines the formal transfor-

mation required to convert the main program. In the main program, as the calls to other

subprograms are transformed into messages, the object instances required by the signature

of the method being invoked must be built. For each message being built, it is assumed

that the corresponding method exists in some class in the design.

220

merge OD hr

clas s (OOD, C) = OOD" where

C = < CLASS-SYSTEM, 0, Qc, A0 > and

Qc = {< idmain, T, 0, 0, 0, Qoc, 'I >} and

il and i 2 E IF and

pos(il,l) < pos(i2, T) and

il = < vj, :=,< CREATE - C1, Qact, > > and

i2 = < V2, :, < CREATE - C 2, Qat 2 > > and

set(Qactl) nl set(Qt 2) #1 0 =>

Ci E OOD and C = - (C1) and

C2 E OOD and C2 = r.-1(C 2) and

C' = < idc,, T),, Qc%, Ao > and

C2 -= < idc2, T , QC2, Ao > and

C3 = < idc3 , DC3 , Qc 3 , Ao > and

-Ibc 3 = (bc U (Dc, and

Qc, = QC, U Qc, and

C1 O OOD' and C 2 0 OOD' and K(C3) E OOD' and

i3= < V3 , :=, < CREATE - C 3 , Qact3 > > where

Qact3 = Qactj (Qact2 and

Vs (Qact3 , QformcREATEC 3) and

il J ' and i 2 V IF' and i 3 E 9 and

pos(il, T) = pos(i3, V') and

=/I " vdup(xV 1 ,V 3) and

VI= vduP(XP,v 2 ,v 3) and

'= {< idmain, T, 0, 0, Qret, Qloc, I" >} and

C' < CLASS-SYSTEM, 4c, Q' , Ao > and

OOD" = T,+(T-(OOD',C),C')

Figure 181 The T,7merge transformation

221

class CLASS-2 attributes ANGFAC, BEAMRA

method CREATE-CLASS-2

(A-ANGFAC, A-BEAMRA): a CLASS-2

begin

end
method CAPTURE (C-2) real

begin

end

class CLASS-3 attributes ANGFAC, RHOSTD

method CREATE-CLASS-3

CA-ANGFAC, A-RHOSTD): a CLASS-3
begin

end

method RHO (C0-3) real

begin

end

class CLASS-SYSTEM attributes

method BMDSIM1 (C-9)

begin

C-5 CREATE-CLASS-2 (ANGFAC, BEAMRA)
C-8 CREATE-CLASS-3 CANGFAC, RHOSTD)
BOUNCE C C-4, C-5, C-8)

end

Figure 182 Overlapping object classes

222

class CLASS-1O attributes ANGFAC, BEAMRA, RHOSTD

method CREATE-CLASS-10

(A-ANGFAC, A-BEAMRA, A-RHOSTD): a CLASS-10

begin

end
method CAPTURE (C-10) real

begin

end

method RHO (C-10) real

begin

end

class CLASS-SYSTEM attributes

method BMDSIM1 (C-9)
begin

C-11

CREATE-CLASS-10 (ANGFAC, BEAMRA, RHOSTD);

BOUNCE (C-4, C-11, C-11);

end

Figure 183 Overlapping classes merged

223

The Tmas transformation generates a sequence of assignment statements that instan-

tiate the object instances required and stores them in variables used as actual parameters

in the message. Let v, represent a GOM variable generated to hold the target object in-

stance. Let vi represent one of the variables generated to hold the other object instances

required for a specific message, m. Let the vs(Qactl, Qformo) predicate indicate whether

or not the number, order, and type of the actual parameters in Qact, match the number,

order, and type of the parameters in Q, ormo. The Ta s transformation is shown in Fig-

ure 184. This transformation builds an assignment statement, asi, that includes a call to

the "CREATE-" message from class C2 in order to instantiate the target object c. The

actual parameters to be sent to the "CREATE-" message are determined by using the p*

transitive closure and the actual parameters from the subprogram call 1. The assignment

statement asi stores the instance into the variable v,. For each object instance q in Qobj,

an assignment statement is built that includes a call to the "CREATE-" message from q's

class Ci. The assignment statement stores the instance in the variable vi.

For example, consider the following message from the main program.

BOUNCE (C-4, C-5, C-8);

This message is passing the C-4, C-5, and C-8 object instances to the BOUNCE method. The

target object of the message is C-4, an instance of CLASS-4, which includes the BOUNCE

method. For this example, assume that C-5 and C-8 are instances of CLASS-2 and CLASS-3,

respectively. The original call to the subprogram BOUNCE is shown below.

BOUNCE (XLAMDA, ANGFAC, BEAMRA, RHOSTD);

The sequence of statements generated to build the instances required for this message are

shown below.

C-4 CREATE-CLASS-4 (XLAMDA);
C-5 CREATE-CLASS-2 (ANGFAC, BEAMRA);
C-8 CREATE-CLASS-3 (ANGFAC, RHOSTD);

The sequence of assignment statements returned from the T a s8 transformation must

be spliced into the sequence of statements in the main program right before the message

224

Tas(OOD,1, m) = AS where

1 =< ids, Pat > and

m = <ids, Qadt> and

Qact =[c] E) Qobj E) Qf.arm and

instance(c, C2) and

C 2 E QOD and
C2 =< idc2 , 4DC2 , c2 , Ao> and
o E Q2c2 and

o = {l< CREATE-idc 2, T, [I1,Qform,,I Qreto, Qi0o0 , TIo > } and

Qact1 [OV,(dk) I dk G Pact and
ov,(,*(dk)) E Qf ormn, I and

vs (Qacti, Qf arm0) and

AS 1 =[< vc, :=, < CREATE-C2, Qactl > >]I and

V q E Qobj

instance(q, Ci) and

Ci E QOD and
Ci = <idc, c, Qcj, Ao > and

0i E c and
oi= {< CREATE-Gi, roi,[IQ form0. IQreto,, Qli0 c0 , 'Poi >} and

Qacti = [dj I IL*(d) E Qf arma.] and

V3 (Qactii Qf arm0i) and

asi < vi, :=,< CREATEidc,Qacti >> and

asi G AS 2 and

AS = AS 1 E)AS 2

Figure 184 The T,,8 transformation

225

va(OOD, S,e) = AS where

e = < ids,, Qact >=

AS = Ta (OOD, e, vm(OOD, S,e)) and

e = <el, +,e2> => AS = va, (OOD, S, el) (va, (OOD, S, e2) and

e = < el, and, e2 > =. AS = va,(OOD, S, el) (va,(OOD, S, e2) and
e =-< el, &,e2 > == AS = v S(OOD,S, el) vea

8(OOD, S, e2) and

e = < el, /,e2 > = AS -- i4 8(OOD, S, e) @ va 8(OOD, S, e2) and

e = <e1, =,e2 > =' AS = va 8(OOD, S, e) e v 8(OOD, S,e2) and

e =< el, **,e 2 > = AS = va4S(OOD, S, e) G v 8(OOD, S, e2) and

e --- <el, >=-, e2> :' AS = va8(OOD, S, e) e vaeS(OOD, S, e2) and
e = <e 1 ,>,e 2 > AS = va 8 (OOD, S, el) e veas(OOD, S, e2) and

e = < el, <=,e2 > AS = va(OOD,S,ei) e va 8(OOD,S,e2) and

e = <el,<,e2 > = AS = va 8(OOD, S, elE) vas(OOD, S, e2) and

e = <el, e2 > = AS = vas(OOD,S,ei) e vas(ooD,S,e2) and

e -- <e,<>, e 2 > = AS =v(OOD, S, el) E va(OOD, S, e2) and

e = <el, or,e 2 > = AS = v 8(OOD, S, el) (D va,(OOD, S, e2) and

e = <el,-,e2 > =* AS = va, (OOD, S, el) E va,(OOD, S, e2) and

e - <-,ei > = AS = va,(OOD, S, el) and

e =< not, e > = AS = va,(OOD, S, el)

Figure 185 The v e)E transformation

m. The va, transformation, defined in Figure 185, is used to build the sequence of assign-

ment statements for functional messages that appear in expressions. Let OOD represent

the object-oriented design, and let S represent the original subprogram. The VM trans-

formation is defined to update the statements from the main program, A, by replacing

all subprogram calls with messages. For procedural messages, the sequence of assignment

statements generated by the Ta8 transformation is spliced into I before the message. For

functional messages, the sequence of assignment statements is spliced into P right before

the statement that includes the message. The vM transformation is defined in Figure 186.

This transformation uses the Vm and ve transformations to transform subprogram calls

into messages. The reduce operation is used for output statements in order to combine

the results of the va, transformation of the expressions using the D operator.

226

VM(S, T') = V! where

VsEI

= P1 E [S] [) 12 and

s = < ids,,, Pact >

S' = vm(S, s) and

AS = Tas(OOD,s,s') and

S = < X, :=,e =

s' = < x, :=,ve(S,e) > and

AS = va, (OOD, S, e) and

s = < if, e, then, S1, else, S 2 > ='

s = < if, v,(S, e), then, vM(S, S), else, vM(S, S2) > and

AS = va,(OOD, S, e) and

s = <while, e, S 3 > =>

s' = <while, ve(S,e),vM(S, S3) > and

AS = vas(OOD, S,e) and

s = < input, iport,E> =>

S s and

s = < output, oport,E> =>

' = < output, oport, E' > and

E' = [ve(S,e) Ie E E] and

AS = reduce(e, [va, (OOD, S, e) e E E]) and

I' = T1 D AS E [s'] E T 2 and

Figure 186 The VM transformation

227

class CLASS-SYSTEM attributes

method BMDSIM1 (C-9)
begin

BOUNCE (XLAMDA, ANGFAC, BEAMRA, RHOSTD);

end

Figure 187 BMDSIM1 before BOUNCE converted

The formal transformation T ! applies the VM transformation to the main method

of the overall system class and is defined as follows. Let OOD represent an object-oriented

design, let M represent the main program from the imperative system, let C represent the

CLASS-SYSTEM built for the main program.

T 4 (OOD, M, C) = OOD' where

C = <CLASS-SYSTEM, 0, QC, A0 > and

Pc = {< idmain, T,0 AOQiocP main >l and
'main = VM(M, main) and

Qc {< idmain, T, 0, 0, 0, Qlocjmain >} and

C' = < CLASS-SYSTEM, 0, Q' , A0 > and

OD' = T+(T (OOD, C), C')

For example, Figure 187 shows the CLASS-SYSTEM main program method BMDSIM1

before the Train transformation. The BOUNCE subprogram call has not yet been converted

to a message. Figure 188 shows the BMDSIM1 method after the BOUNCE subprogram call

has been converted to a message and the object instances required for the message have

been inserted.

In order to convert the main program, the aM transformation is defined in Figure 189.

Let OOD represent an object-oriented design and let M represent the main program.

This transformation takes the main program, M, as input and unions the designs built

from applying a to each of the subprograms called by M. Each subprogram called by

the main program will also apply a to any subprograms it calls. This formalizes the

depth-first approach used in the PBOI methodology. The resulting designs are unioned

228

class CLASS-SYSTEM attributes

method BMDSIM (C-9)
begin

C-4 CREATE-CLASS-4 (XLAMDA);

C-5 CREATE-CLASS-2 C ANGFAC, BEAMRA);
C-8 CREATE-CLASS-3 (ANGFAC, RHOSTD);

BOUNCE (C-4, C-5, C-8);

end

Figure 188 BMDSIM1 after BOUNCE converted

together to build OOD'. The CLASS-SYSTEM class is built with no attributes and the main

program statements are converted using the 0 transformation. There is no need to use the

6 transformation because CLASS-SYSTEM has no attributes. Each of the subprogram calls

is converted to a message using the Tr transformation. Duplicate classes are removed by

the T dup transformation, duplicate objects are removed by the TdbP transformation, and

overlapping classes are merged using the T' 9eg transformation.class

6.12 Eliminating Category 4 and Category 5 Subprograms

This section defines the formal transformations used to convert Category 4 and Cate-

gory 5 subprograms (in the GIM) into collections of Category 2 or Category 3 subprograms

(in the GIM). These transformations are built using the formal definitions of a subprogram

and subprogram call provided in Chapter III. Since only procedures are allowed to have

multiple outputs, the transformations are restricted to this form of subprogram.

As presented in Chapter III, a procedure, S, is represented by the following tuple.

< ids, Pi., Pou.t, [], P&o, E >

Let Ep represent the program slice on the statements in E required to produce p.

Weiser [76] defines a program slice as a projection of the behavior of the original procedure.

Let 7r represent a function that indicates a sequence of statements, EP, projects the behavior

229

trM(OOD, M) = OOD (5) where

M = < idmajn,0,0,0,Ploc,EM > and

V 1 E CubM

1 = < idSn, Pact > and

n

OOD' = U(o(OOD, Si)) where Si E C*.bM and
i=1

OOD" = Tass(OOD') and

V Ci G OOD"
K(Ci) E OOD'" and

C = < CLASS-SYSTEM, 0, Qc, Ao > and

instance(T, C) and

IF = O(EM) and

Qoc = 9v(Ptoc) and

Q2c ={< idmain, T, 0 , 0 , 0 , Qoc, TI >} and

OOD (4) T 1 ,(OOD"', M, C) and

C' = updated C E OOD(4) and

OOD (5) = T buP(OOD(4), C') and

C" = updated C' E OOD (5) and

OOD(6) = T-a "e(OOD(5), C")

Figure 189 The aYM transformation

of another sequence of statements, E, in order to produce a variable p. Formally,

= 7r(EpA

Any sequence of statements that meets the condition, 7r, is a program slice of the original

procedure and produces the single data item p. A new subprogram built from this program

slice is represented as a tuple that is defined as follows. Let idsp represent the name of

the new subprogram. Let Pi, represent the input parameters that are referenced in the

program slice, such that Pi Pi,,. Let PtoP represent any local variables referenced in

the program slice, such that Ptocp g PtoP. Given a data item, p E Pout that is produced

230

by E, the program slice, EP, is defined as shown below.

< idsp, Pi.p,,[p], [], Pto,T r(Ep) >

As presented in Chapter III, a call to procedure S is defined by the following tuple.

< ids, Pact >

In order to differentiate between the actual parameters that are input parameters

and the actual parameters that are output parameters, the representation of a procedure

call is extended as follows. Let Pacti, represent the input actual parameters and let Pactot

represent the output actual parameters, such that Pacti, D Pact, - Pact. The procedure

call is represented by the following tuple.

< ids, Pacti,, Pact0 .t >

A call to the new subprogram Sp is represented as follows. Let Pactj~p represent the

input actual parameters that match formal parameters from the new subprogram. Let a

represent the output actual parameter that corresponds to the output formal parameter p

from the new subprogram, i.e. ft(a) = p. The procedure call to Sp is represented by the

following tuple.

< idsp, Pactinp [a] >

6.12.1 Build Slices Transformation. As defined in Section 5.15, the first step in

converting Category 4 and Category 5 subprograms is to build one new subprogram for

each of the data items produced by the Category 4 or Category 5 subprograms. This section

defines the formal transformation used to generate the program slices for all Category 4 and

Category 5 subprograms. Once the slices are built, the transformation for inter-procedural

slicing is used to call each program slice as needed. That transformation is also defined in

this section.

231

Tbuild(SD) = SD' where

For each S E SD

S = < ids, Pin,Pout,[],Poc, Es > and

S E SD' and

Cat4 (S) or Cat5 (S)

[V p E Put

Sp = < idsp, Pi,, [p],P1.,,, r(ES) > and

Sp E SD']

Figure 190 The T b u i ld transformation

Let T b uild represent the transformation that builds each of the program slices for

Category 4 and Category 5 subprograms. Let SD represent a collection of imperative

subprograms. Let Esp represent the program slice generated for the data item p from the

subprogram S. The Tbuild transformation is defined as shown in Figure 190.

This transformation generates a program slice for each output parameter, p, of Cate-

gory 4 and Category 5 subprograms. Each of the original subprograms is included in SD',

and the subprograms built from the program slices are also included. The next step is to

change each subprogram call to a Category 4 or Category 5 subprogram into a sequence

of calls to the new subprograms built from its program slices.

Let T a u s represent the transformation that builds the sequence of calls to the new

subprograms. Let SD represent a collection of imperative subprograms, and let S repre-

sent one of these subprograms. The Ta s transformation is defined in Figure 191. This

transformation creates a sequence of subprogram calls, Ls. for each call in S that is in-

voking a Category 4 or Category 5 subprogram. The Ls. sequence collects the calls to

the new subprograms that are built from the program slices. Each data item in S that is

produced from the Category 4 or Category 5 subprogram is now produced in S' by calling

the new subprogram. The updated subprogram, S', is added to the updated design, SD',

which is returned as the result of the transformation.

232

TcaSl(SD, S) = SD' where

S = < ids, Pin, Pout, Pret, Poc, Es > and

V s E ES

Es = Es D [s] E) ES2 and
s = < ids,, Pactin, Pacto.t > =>

Sn E SD and

Sn = < idsn, Pin, Pout, [], Poc, ESn > and

I Pout I > 1 =V

V p E Pout

Sp = < idp, Pinp, [],, Poep, ESp > and

Sp E SD' and

Ls, = [Ip I lp = < idsp, Pactinp, [P] > and

Pactinp = [a I a E Pactin and

b E Pinp and p.(a) = b] and

IPout I <= 1 =
Lsn = [s] and

S = Es, (Lsn () Es2 and
s :A < idSn I PaCtin I Pactout >

Es = ES (@ s] (D s2 and

S' = < ids, Pin, Pot, Pret, Poc, 's > and

SD' = T+(Ts(SD,S),S')

Figure 191 The TpclIs transformation

233

Let TMsain represent the transformation that builds all the program slices and updates

the imperative subprograms to call the program slices instead of the Category 4 and

Category 5 subprograms. Let SD represent a collection of imperative subprograms.

T~ain(SD) = SD" where

SD' S build(SD) and

SD" TPlS (SD', S)

The result of this transformation is an imperative design where each Category 4 and

Category 5 subprogram has been replaced by the procedures built from program slicing

the subprogram. Each subprogram in this design is updated to call the program slices

instead of the Category 4 or Category 5 subprogram.

6.13 Converting an Imperative Design

The PBOI method, as a whole, converts a collection of imperative subprograms into

a collection of classes and methods. The collection of imperative subprograms is repre-

sented as an imperative design, and the collection of classes and methods is represented as

an object-oriented design. The conversion of the imperative design begins with the main

program, which is identified by the user (see Assumption V.1 in Chapter V). The trans-

formation that formalizes the conversion of the imperative design to an object-oriented

design is the UF transformation. This transformation is defined below.

Let SD represent an imperative design, and let OOD represent an object-oriented

design. The UF transformation is defined as follows.

aF(SD) = OOD where
SD' = T(SD) and

PS

M' E SD' and CatM(M') and

OOD = o(O, M')

This transformation uses the Ts ain transformation to build a new imperative design

without Category 4 or Category 5 subprograms. The oM transformation is used to convert

the main program of this imperative design. The result of this transformation is the object-

oriented design OOD.

234

6.14 Summary

This chapter has presented transformations that formalize the conversion of imper-

ative statements, expressions, parameters, attributes, and subprograms using the PBOI

method. Section 6.1 provides a table listing the transformations that are presented in this

chapter. The transformations that formalize the program slicing process have also been

presented in this chapter. Using these transformations, a collection of imperative subpro-

grams can be converted to a functionally equivalent collection of classes and methods that

implement the subprograms. This claim is discussed and proven in the following chapter.

235

VII. Proving Functional Equivalence

7.1 Introduction

In order to evaluate the Object-Oriented (00) design that is extracted using the

PBOI methodology, a proof is developed in this chapter that shows the extracted 00 code

(represented in the GOM) is a consistent implementation of the original imperative code

(represented in the GIM). Given the same input, a consistent implementation produces

the same output as the original code. To build this proof, the behavior of both the original

imperative code and the extracted 00 code are defined.

Let F be the original imperative code as represented in the GIM. Let F' be the

extracted 00 code as represented in the GOM. One undesirable approach for showing F'

is a consistent implementation of F is to delineate all the inputs and outputs for F and

show that an input given to F' produces the same output as F. This is an impractical

approach and is not discussed further. At the highest level, F represents the main program

from the imperative design and F' represents the main method from the object-oriented

design. The transformation that converts F to F' is the UF transformation, i.e. F' -

OF(F). Since the semantics of both F and F' are expressed using the weakest precondition

notation, the proof of functional equivalence is based on their weakest preconditions. Given

a postcondition R, the semantics of F are defined as follows.

{wp(F, R) } F { R }

Since the postcondition and weakest precondition are predicates (expressions) defined in

terms of imperative variables, they must be transformed as well. The O transformation

built to convert expressions is used to convert these predicates. Hence, the semantics of

F' are defined as follows.

{ wp(F', 0e(R) } F' { e(R) }

If it can be proven that the transformation of imperative subprograms is a mor-

phism [46], it can be proven that the weakest precondition predicate is "preserved" by the

236

transformation. If this can be proven, then the semantics for the imperative subprograms

are equivalent to the semantics of the object-oriented methods, i.e. they are functionally

equivalent. The aF transformation is a morphism if the following equality can be proven

correct.

Ge(wp(F, R)) 4* Wp(OF(F), Oe(R))

The rest of this chapter provides lemmas, theorems, and proofs which are used to

prove that this equality holds. Since the UF transformation uses several other transforma-

tions, proofs are presented that prove these transformations maintain functional equiva-

lence. The proofs for the 0 and 6 transformations are presented first, followed by proofs

for the v and a transformations. The proof for the OTk transformation is presented in

Section 7.6, at the end of the chapter.

7.2 Proof for Statement Transformations (0)

The 0 transformation is used to convert a sequence of GIM statements to a se-

quence of GOM statements. Theorems are presented and proven below showing that the 0

transformation of assignment statements, input statements, output statements, sequential

control flow, selective control flow, and iterative control flow maintains functional equiva-

lence. Imperative subprograms and subprogram calls are not transformed by 0, but by a

and v, respectively. The proofs for a and v appear in Section 7.4.

Since the textual substitution [19] notation, R', is used for defining the semantics of

assignment statements, the following lemma is provided for Oe(R').

Lemma V11.1. 0e(Rxe) -4' 0e(R)o (x)

Proof. 1. The notation Rx symbolizes the simultaneous replacement of all free occur-
rences of x with e in the predicate R.

2. When Oe is applied to R x on the left-hand-side of the equality, the textual substitution
is done first and the Oe transformation is applied to R as well as the newly substituted
occurrences of e, i.e. Oe(e).

237

3. When the 0e transformation is applied to R on the right-hand-side of the equality,

the occurrences of x are converted using O(x) so the substitution in 0e(R) works

properly.

4. The 0e transformation is applied to e before it replaces O(x) in 0e(R) so that the 0e

transformation of R is complete after the substitution.

5. Thus, on both sides of the equality, 0e is applied to all newly substituted occurrences

of e in R.

El

7.2.1 Proof for Assignment Statements. The following theorem is proven in

order to shown that the transformation of assignment statements preserves functional

equivalence.

Theorem VII.1. The 0 transformation of assignment statements in the GIM preserves

functional equivalence.

Proof.

wp(O(< x, :=, e >), MeR)) <

WP(< 0v(X),:=,0e(e) >, MeR)) <*

0k, ~(e) =

Oe(Rx) * by Lemma VII.1

Oe(Wp(< x, :=, e >, R))

El

7.2.2 Proof for Input and Output Statements. The following theorem is proven

in order to shown that the transformation of input statements preserves functional equiv-

alence. The proof is given for a sequence of 2 inputs. The extension to arbitrary length

sequences is obvious.

Theorem VII.2. The 0 transformation of input statements in the GIM preserves func-

tional equivalence.

238

Proof.

wp(O(< input, iport, [v, V21 >), 0,(R)) *

wp(< input, iport, Ov([vl, v2]) >, 0e(R))

wp(< input, iport, [ov(v), E,(V2)] >, Oe(R)) *
WP([< ov(Vl),:=, oe(Xl) >, < ov(V2),:=, oe(X2) >j, oe(R)) <*

(P([< o t(vp),u:=, te(xl) >, p ,OR) ,(2() €

e() (
0, (vl) 1V2)

O,_((RXII)V2) * by Lemma VII.1I
V2

oe(p(< vi, :=, X1 >, Wp(< V2, :=, X2 >, R)))
Oe(Wp([< Vl,:=, X1 >, < V2,:=, X2 >], R)) =

Oe(wp(< input, iport, EV, V21 >, R))

F]

The following theorem is proven in order to shown that the transformation of output

statements preserves functional equivalence.

Theorem VII.3. The 0 transformation of output statements in the GIM preserves func-

tional equivalence.

Proof.

wp(0(< output, oport, E >), 0,(R)) <

wp(< output, oport, OE(E) >, Oe(R)) 4

e (R) *

Oe(Wp(< output, oport, E >, R))

7.2.3 Proof for Skip Statement. The following theorem is proven in order to

shown that the transformation of skip statements preserves functional equivalence.

Theorem VII.4. The 0 transformation of skip statements in the GIM preserves func-

tional equivalence.1

1 There is no surface syntax defined for the skip statement.

239

Proof.

wp(0(skip), 0e(R)) *4

wp(skip, 0,(R)) ,

0e(R) *

9e(wp(skip, R))

7.2.4 Proof for Sequential Control Flow. The following theorem is proven in

order to shown that the transformation of sequences of statements preserves functional

equivalence.

Theorem VII.5. The 0 transformation of sequential control flow for sequences of assign-

ment, input, output, and skip statements preserves functional equivalence.

Proof. Since it has already been proven that the 9 transformation maintains functional

equivalence for the assignment, input, output, and skip statements, the following equality

holds.

Wp(o([sl, S21), oe(R)) ,
WP([0(s1),0O(s2)], O (R)) ,
Wp(O(s1),wp(O(s2), Oe(R))) ,4
WP(0(s1),0e(WP(s2, R))) ,

Oe(Wp([si, S2], R))

7.2.5 Proof for Selective Control Flow. This section provides a proof showing that

the 0 transformation of selective control flow statements maintains functional equivalence.

The following theorem is proven below.

Theorem VII.6. The 0 transformation of selective control flow in the GIM preserves

functional equivalence.

240

Proof by Induction. 1. Base Case: The proof of Theorem VII.5 shows that 0 maintains

functional equivalence for sequences of assignment, input, output, or skip statements.

Thus, the following equality holds.

wp(O(< if, e, then, S1, else, S2 >), 0,(R)) <*

wp(< if, 0e(e), then, 0(S1), else, 0($2) >), Oe(R)) <*

((Oe(e) = wp(O(Si), Oe(R))) A (Oe(e) =* wp(O(S2), Oe(R)))) .4

((Oe(e) Oe 0(wp(S, R))) A (--Oe(e) * Oe(wp(S2, R)))) <

(0e((e => wp(S, R))) A 0e((-e => wp(S2, R))))

0e(((e => wp(S, R)) A (-,e = wp(S 2, R)))) *

0e(wp(< if, e, then, S1, else, S2 >, R))

2. Inductive Hypothesis: Assume the sequences of statements S1 and S 2 also include

if-then-else statements, and the 0 transformation correctly transforms an if-then-else

statement with an arbitrary number, n, of nested if-then-else statements.

3. Inductive Step: Prove that adding the n + 1 nested if-then-else statement maintains

the functional equivalence. Since this new nested if-then-else is the final nested

statement, it includes only assignment, input, output, or skip statements in the

sequences S1 and S2. The functional equivalence is maintained for this statement as

shown for the base case.

El

The corollary shown below follows from the proof that the 0 transformation of the

selective statement maintains functional equivalence.

Corollary VII.1. The 0 transformation of sequential control flow for sequences of assign-

ment, input, output, skip, and selective statements preserves functional equivalence.

7.2.6 Proof for Iterative Control Flow. This section provides a proof showing that

the 0 transformation of iterative control flow statements maintains functional equivalence.

Theorem VII.7. The 0 transformation for iterative control flow in the GIM preserves

functional equivalence.

241

Proof by Induction. 1. Base Case: The proof of Theorem VII.5 shows that 0 maintains

functional equivalence for sequences of assignment, input, output, or skip statements.

Thus, the equality shown in Figure 192 holds.

2. Inductive Hypothesis: Assume the sequence of statements S 3 also includes while

statements, and the 0 transformation correctly transforms a while statement with an

arbitrary number, n, of nested while statements.

3. Inductive Step: Prove that adding the n + 1 nested while statement maintains func-

tional equivalence. Since this new nested while is the final nested statement, it

includes only assignment, input, output, or skip statements in the sequence S 3 . The

functional equivalence is maintained for this statement as shown for the base case.

El

The corollary shown below follows from the proof that the transformation of iterative

statements maintains functional equivalence.

Corollary VII.2. The 0 transformation of sequential control flow for sequences of assign-

ment, input, output, skip, selective, and iterative statements preserves functional equiva-

lence.

Given that proofs have been provided for selective and iterative control flow, the

following two corollaries follow from these proofs.

Corollary VII.3. The 0 transformation of selective control flow for sequences of assign-

ment, input, output, skip, selective, and iterative statements preserves functional equiva-

lence.

Corollary VII.4. The 0 transformation of iterative control flow for sequences of assign-

ment, input, output, skip, selective, and iterative statements preserves functional equiva-

lence.

Finally, the corollary shown below follows from all of the proofs and corollaries pro-

vided for the 0 transformation to this point. This corollary provides an assertion that the

0 transformation preserves functional equivalence for each of the statements defined in the

GIM, except subprogram definitions and calls.

242

wp(O(< while, e, 3 >), e(R))

wp(< while, e(e), (3) >), e,(R)) it o

wp([< if, 0e(e), then, 9(S 3), else, 0([skip]) >, iteration 1

< if, 0e(e), then, 0(S 3), else, 0([skip]) >, iteration 2

< if, 0e(e), then, (S3), else, 9([skip]) >],0,(R)) < iteration k
wp(< if, 0,(e), then, ((S3) , e l([skip]) >, (R) iteration 1

wp(< if, Oe(e), then, ($3), else, ([skip]) >, iteration 2

wp(< if, 0(e), then, (S 3), else, ([skip]) >,Be(R)))) 4* iteration k

wp(< if, Oe(e), then, (3), else, e([skip]) >, iteration 1

wp(< if, Oe(e), then, ($3), else, ([skip]) >, iteration 2

9e(wp(< if, e, then, S3, else, [skip] >, R)))) * iteration k

wp(< if, ie(e), then, t(3), else, 0([skip]) >, iteration 1

0e((< if, e, then, S 3 , else, [skip] >, iteration 2

wp(< if, e, then, S 3, else, [skip] >, R)))) iteration k

Oe(W p(< if, e, then, S3, else, [skip] >, iteration 1

wp(< if, e, then, 53, else, [skip] >, iteration 2

wp(< if, e, then, S3, else, [skip] >, R)))) iteration k
0,(wp([< if, e, then, S3, else, [skip] >, iteration 1

" if, e, then, S3, else, [skip] >, iteration 2

" if, e, then, S3, else, [skip] >], R)) <= iteration k

9e(wP(< while, e, S3 >, R))

Figure 192 Proof for iterative base case.

243

Corollary VII.5. The 0 transformation of sequences of assignment, input, output, skip,

selective, and iterative statements preserves functional equivalence.

7.3 Proof for Parameters and Attributes (b)

This section presents theorems and proofs that the 6 transformation preserves func-

tional equivalence. This transformation is used by the o transformation when GOM pa-

rameters are moved to attributes and vice versa. Since the 6 transformation converts

accesses of GOM variables into "GET-" and "SET-" messages, it must proven that an ac-

cess to variable is functionally equivalent to a "GET-" message. It must also be proven that

the assignment of a GOM variable is functionally equivalent to a "SET-" message. These

transformations involve only GOM entities, so there is no need to convert the postcondition

using 0e. Let R represent a postcondition represented using GOM variables.

The following theorem is proven below in order to show that the 6 transformation of

an access of a variable into a "GET-" message preserves functional equivalence.

Theorem VII.8. The access of a variable, a, in a statement is functionally equivalent to

a call to the "GET-a" message.

As an example of this theorem, consider the expression that appears on the right-

hand-side of an assignment statement. The following proof shows that if this expression is

the variable a, then the semantics of the assignment statement are preserved.

244

Proof.

wp(b([< x', :=, a >], c, {a}), R')

wp(< x', :-,Se(a) >, R')
wp(< x', =,< GET-a, [c] > >, R')

p([y:= c.a, b:= y,< x, :=, b>], R) *

WP(y := c.a, p(b := y, p(< ', :=, b >, R')))

wp(y :=c.a,wp(b :=y, R'x')) <>
wp(y := c.a, (R b) *

((R'x')b)yo<bp y c.a,

c.a
RIXI

a
wp(< x1, :=,a>, R1)

Other examples of these expressions are limited to the expressions that appear in the

boolean tests of selective and iterative statements. Similar arguments are made for these

expressions, so in general, Theorem VII.8 holds for any statement in the GOM.

The following theorem is proven below in order to show that the 6 transformation of

an assignment of a variable into a "SET-" message preserves functional equivalence. Let

R' represent a postcondition represented using GOM variables.

Theorem VII.9. The assignment of a variable, a, is functionally equivalent to a call to

the "SET-a" message.

Proof.

Rp(6([< a, :=, e >],c,{a}), R)
WP(< SET-a, [c, 6 (e)] >, R') =

R c a
l, (e)

&a (e))
wp (< a, :=, (e) >,R' =

wp(< a, :=, e >, R') from Theorem VII.8.

245

Similarly, the 5 transformation converts an access of a specific object attribute

into an access of a GOM variable. Specifically, each "GET-a" message is converted into a

reference to the variable a, and each "SET-a" message is converted into an assignment to

a. The following theorem is proven in order to show that replacing the "GET-a" message

with an access of a variable, a, in an expression maintains functional equivalence. Let R'

represent a postcondition represented using GOM variables.

Theorem VII.10. The call to a "GET-a" message in a statement is functionally equiv-

alent to the access of the variable, a.

As an example of this theorem, consider the expression that appears on the right-

hand-side of an assignment statement. The following proof shows that replacing the

"GET-a" message with an access to the variable a maintains the functionality of the

assignment statement.

Proof.

wp(6-1([< x, :=, < GEW-a, [c] > >], c, {a}), R') €

wp(< x, :=,a>, R') =

R'x
Rc.a

wp (y :=c. a, (' b) =

wp(y c.a, wp(b y, R'x))
wp(y :--c.a, wp(b : y, wp(< x, :--,b >, R')))

wp([y :=c.a, b := y, < x, :=, b >], R') €

wp(< x, :=, < GET-a, [c] >>, R')

Other examples of these expressions are limited to the expressions that appear in the

boolean tests of selective and iterative statements. Similar arguments are made for these

expressions, so in general, Theorem VII.10 holds for any statement in the GIM.

The following theorem is proven in order to show that replacing the "SET-a" message

with an assignment of a variable, a, maintains functional equivalence. Let R1 represent a

postcondition represented using GOM variables.

246

Theorem VII.11. The "SET-a" message is functionally equivalent to an assignment of

the variable a.

Proof.

RIc~a
wp(< SET-a, [c, e] >, R')

7.4 Proof for Subprogram Conversion (or)

The following inductive proof shows that the a transformation of imperative subpro-

grams whose statements also include procedure calls maintains functional equivalence.

Theorem VII.12. The a transformation of imperative subprograms where Zs is com-

prised of assignment, input, output, skip, selective, and iterative statements, as well as

procedure calls, preserves functional equivalence.

Proof by Induction. 1. Base Case: The a transformation of a subprogram that calls a

procedure whose Es is comprised of assignment, input, output, skip, selective, and

iterative statements preserves functional equivalence. Using Corollary VII.5, the base

case is proven by showing the Vm transformation of such a call preserves functional

equivalence.

247

wp(vm(S, < ids, Pin, Pout >), Oe(R)) 4
wp<ids, Ov(Pin), Ov(Pou.t), >, O (R))

wp([::=Ov(Pn),O(S1),Ov(Pout) :-], Oe(R)) €

wp(, :=Ov(Pn),wp(O(S1),wp(Ov(Pout) := , Oe(R))))
wp(. := Ov(Pi,),wP(O(SI),O (R)'v(P° t)))) €

wp(.t := Ov(Pi), wp(O(S1), 0,(RP° *))€:

wp(. := Ov(Pi,),O !(wp(S1, RP°'o))) €
0e(wp(S1, RP'f -

0,(wp(S1, R-f°ut',) :

Oe(wp(-t := Pin, wp(S1, R;°"t)))

Oe(wp(: Pi, wp(S1, wp(Pout 2 R)))) z
Oe (wp (P: Pin, S$1, Pot : = R)) €
Oe(wp(< ids, Pin, Pout >, R))

2. Inductive Hypothesis: Assume Es of the called procedure also includes calls to other

procedures. Since o- is used to transform these called procedures, assume that the

a transformation correctly transforms an arbitrary number, n, of nested procedure

calls.

3. Inductive Step: Prove that adding the n+1 nested procedure call maintains functional

equivalence. Since this new nested procedure call is the final nested call, it includes

only assignment, input, output, skip, selective, or iterative statements in F's. The

functional equivalence is maintained for this call as shown for the base case.

Corollary VII.6. The a- transformation of imperative subprograms where Es includes

statements with expressions that include function calls preserves functional equivalence.

7.5 Proof for Program Slicing (Tpain)

This section presents a proof that the Tmsain transformation preserves functional

equivalence. This transformation builds a program slice for each data item being produced

from a Category 4 or Category 5 subprogram using the projection function ir. The col-

248

lection of program slices produced duplicate the functionality of the original subprogram.

This is expressed formally as shown below. Let E represent the sequence of statement from

the original subprogram which produces data items a and b.

wp(E, R) * wp([7r(E, a), 7r(r, b)])

The Tp'atf transformation uses the T c a l s transformation to replace each call to a Category

4 or Category 5 subprogram with a sequence of calls to the program slices built for the

subprogram. The proof of the following theorem shows that these transformations preserve

functional equivalence.

Theorem VII.13. The transformation of GIM subprograms and subprogram calls using

the T c a u s transformation preserves functional equivalence.

Proof.
calls

wp(Tps (Q< ids, Pi, [a, b] >]), R) <*

wp([< ids, Pina [a] >, < ids, Pin, [b] >], R) =

wp(< ids, Pin, [a] >, wp(< ids, Pinb, [b] >, R)) €<,

wp([a :=Pina, Ir(E, a), a :=z], wp([b := Pinb, 7r(E, b), b := v], R)) <*
WP ([-ta :=Pin, I r (E, a), a :=Z, -tb : = Pinb, 7r (E, b), b :=v], R) <*

W P([P a : Pina , I Xb :=Pinb, *7r (E , a) , a : --- z, 7r (E , b), b --v], R) €

wp([-;-a : Pin., Xtb :Pinb, 7r(E, a), 7r(E, b), a := z, b:-- v], R) €

WP([-ta :=Pina t5 A=Pnd], wp([7r(r-, a), 7r(rE, b)], wp([a := z, b := v], R))) €

WP([P: Pin], wp(Es, wp([a := z, b:= v], R))) €

WP([-;:= Pin, Es, a := z, b := v], R) €

wp(< ids, Pin, [a, b] >, R)

7.6 Proof for Imperative Design (0oF)

This section provides a proof that the object-oriented code extracted using the PBOI

methodology is a consistent implementation of the legacy imperative code. As discussed

in Section 7.1, the functionality of the imperative code is embodied at the highest level in

249

the main program, F. The functionality of the object-oriented code is embodied at the

highest level in the main method, F'. The 0 F transformation is used to transform F to

F', and this section provides a proof that the UF transformation produces an F that is

functionally equivalent to F.

Theorem VII.14. The 0 F transformation preserves functional equivalence.

Proof.

WP(aF(F),Oe(R)) <*

Wp,(Tmain (F)), Oe(R))

Oe(wp(Tmaain(F), R))

Oe(wp(F, R))

Since this proof shows that the 0F transformation preserves functional equivalence, the

object-oriented design extracted using the PBOI methodology is functionally equivalent to

the legacy imperative design.

7.7 Summary

This chapter presented several definitions, theorems, and proofs in order to show

that using the PBOI methodology results in an object-oriented design which is a consis-

tent implementation of the original imperative design. The overall functionality of the

imperative design was proven to be maintained in the extracted object-oriented design.

This was done by proving that the UF transformation preserves functional equivalence.

The following chapter presents a feasibility demonstration of the PBOI methodology.

250

VIII. Feasibility Demonstration

8.1 Introduction

This chapter discusses the proof-of-concept prototype developed to implement the

PBOI methodology. As a feasibility demonstration, a legacy imperative system consisting

of over 3000 lines of FORTRAN-77 code was converted to the object-oriented paradigm.

This chapter describes the transformations used to convert FORTRAN-77 code to the GIM

and presents a summary of the legacy system that was converted. A description of the

extracted object-oriented design is presented at the end of the chapter.

8.2 Converting FORTRAN to the GIM

The GIM has been developed in order to provide a canonical form for representing im-

perative programming languages. As a proof-of-concept, automatic transformations from

FORTRAN-77 to the GIM have been developed. These transformations were built using

the Software RefineryT M development environment. The Refine/FORTRANT M reverse

engineering tool, part of Software RefineryT M , includes a domain model and grammar for

FORTRAN-77. Refine/FORTRAN parses in FORTRAN source code and builds Abstract

Syntax Trees (ASTs) that store information about the source code. The transformations

build new GIM ASTs based on these FORTRAN-77 ASTs.

The first step in re-engineering a legacy system is to parse each subprogram using

Refine/FORTRAN T M . Refine/FORTRAN T M has a constraint that each of the subpro-

grams must reside in its own file, and the files to be parsed are collected into a system.

An AST is built for the system and each AST for a subprogram is part of this AST. After

parsing, the system AST is stored in one file called the analysis file. The analysis file is

loaded into the re-engineering prototype, so the transformations can be applied to each

AST.

A typical transformation has the following form.

< FORTRAN AST > - < GIMAST >

251

The approach taken in the prototype is to generate a new GIM AST using the trans-

formations, as opposed to transforming the existing FORTRAN ASTs. This means as

FORTRAN ASTs are found that match the left-hand-side of the transformation, the

GIM AST from the right-hand-side of the transformation is built. The identifiers on

the left-hand-side indicate ASTs from the FORTRAN-77 domain model provided in the

Refine/FORTRANTM User's Guide [55] and the identifiers on the right-hand-side indicate

ASTs from the GIM domain model as defined in Chapter III. All of the transformations

are applied to each node in the FORTRAN AST by using the REFINE pre-order traversal

command. The traversal begins with the FORTRAN AST representing the overall system.

A Refine/FORTRAN TM workbench has been built that displays a subprogram from

the legacy system (using the FORTRAN-77 surface syntax) and the corresponding sub-

program as represented in the GIM (using the GIL surface syntax). Figure 193 shows this

workbench. The upper-left subwindow of the workbench shows the original FORTRAN

legacy subroutine. The upper-right subwindow shows the GIM representation of this sub-

routine. The two subwindows are hyper-linked to show the connection between the legacy

FORTRAN code and the representation of the code in the GIM. When the cursor is over an

AST entity in the GIL Window, the surface syntax of the corresponding FORTRAN AST

is highlighted in the Legacy System Window. In the figure, the cursor is over the GIM

addition expression R1 (2) + F * R2 (2), as indicated by the rubber-band box. The

FORTRAN AST entity from which this expression was transformed is highlighted in the

Legacy System Window using reverse video. Note that the entire FORTRAN subroutine

is not visible in the upper-left subwindow, but the scroll bar can be used to view the rest of

the subroutine. The workbench also shows the control flow graph and structure chart for

the VADD subprogram. The structure chart is provided as part of the Refine/FORTRANTM

workbench; the control flow graph is not.

Because of the limited documentation provided with Refine/FORTRANTM, it was

difficult to determine the attributes of an AST node included in the FORTRAN-77 do-

main model without parsing a statement that builds the node. For this reason, only the

transformations that were needed to convert the selected proof-of-concept legacy system

were developed in the prototype.

252

File Slice Windows

Legacy System Wvindow GIL Window
SUBROUTINE SATS(IOP,R±,RU.RO3) poV -r 5500 (ICR. Ri. R2, R3) b55i.

F t- FLOAT C ISF11
INCLUDE 'bdInSI.f' R 1OC) S- RU (C) ..F .C R2 C 1);

C R 2) ;
C LE R. ESEARCH CRPRTION (I DETCEE 004) R3 3)

c THIS ROUTINE PEFORMS VECTOR ADDITION FOR THREE DIFESORLi
C VECTORS

C INPUCT
C ICR - OFION TO AD OR SUBTRACT

lid. Ml C -1 SBTRRCT
______ C RCIt) FIRST VECTOR

C ROUT) SECOND VECTOR TO BE ADDED TO OR SUBTRACTED MROR

A~s. C 3(i) RESUTANT VECTOR

Zoc~hF -FLOAT(IOR)

R3 I.) - RiUCCO F.R2CC)
DSST O~t RO<D) -

[I ~Control Flow Graph Structure Chart

E E

Figure 193 FORTRAN Workbench

253

Program level objects
EXECUTABLE-PROGRAM
PROGRAM-UNIT
END-STATEMENT
HEADER-STATEMENT
PROGRAM-STATEMENT
SUBROUTINE-STATEMENT
PARAMETER
Variables object
INDEXABLE-NAME
IDENTIFIER
IMPLICIT-STATEMENT
TYPE-STATEMENT
TYPE-BYTE
TYPE-CHARACTER
TYPE-DOUBLE-PRECISION
TYPE-INTEGER
TYPE-LOGICAL

TYPE-REAL
NAME-DECLARATOR
POSSIBLY-INITIALIZED-NAME
DIMENSION-DECLARATOR
SIMPLE-LENGTH-DECL
COMMON-DECLARATOR
COMMON-STATEMENT
EQUIVALENCE-DECLARATOR
EQUIVALENCE-STATEMENT
DIMENSION-STATEMENT

RECORD-VAR-DECL
STRUCT-REFERENCE

STRUCT-ACCESS

Table 2 Fortran ASTs Used

254

Expressions objects
ADD-EXPRESSION
AND-EXPRESSION
CONCATENATE-EXPRESSION
DIVIDE-EXPRESSION
EQ-EXPRESSION
EQV-EXPRESSION
EXPONENTIATE-EXPRESSION
GE-EXPRESSION
GT-EXPRESSION
LE-EXPRESSION
LT-EXPRESSION
MULTIPLY-EXPRESSION
NE-EXPRESSION
NEQV-EXPRESSION

OR-EXPRESSION
SUBTRACT-EXPRESSION

LITERAL-FALSE
LITERAL-TRUE
LITERAL-INTEGER

LITERAL-RIGHT-TEXT
LITERAL-DP
LITERAL-REAL

LITERAL-CHARSTRING
LITERAL-HOLLERITH
IFIDENTITY-EXPRESSION
NEGATE-EXPRESSION
NOT-EXPRESSION
NULL-EX
Assignment objects
ASSIGNMENT-STATEMENT

PARAMETER-STATEMENT
Control flow statement objects

CONTINUE-STATEMENT
RETURN-STATEMENT
INCLUDE-STATEMENT
LABEL-DEFINITION
LABEL-USE
UNCONDITIONAL-GOTO
CALL-STATEMENT
BLOCK-IF-STATEMENT
LOGICAL-IF-STATEMENT
IF-THEN-ELSE-STATEMENT
D O-STATEMENT

Table 3 Fortran ASTs Used (cont)

255

I/O statements
OPEN-STATEMENT
READ-STATEMENT
WRITE-STATEMENT
PRINT-STATEMENT
FORMAT-STATEMENT
FORMAT-COMMA-SEPARATOR
FORMAT-CLOSER
UNIT-IDENTIFIER
FORMAT-IDENTIFIER
IO-FULL-SPECIFIER
LIT-STRING-FORMAT
FORMAT-SLASH-SEPARATOR
FORMAT-DOUBLE-SLASH

X-FORMAT
I-FORMAT
F-FORMAT
E-FORMAT
O-FORMAT
Z-FORMAT
R-FORMAT
A-FORMAT

Table 4 Fortran ASTs Used (cont)

256

Table 2, Table 3, and Table 4 show the domain model ASTs that are included in

the prototype. The other ASTs shown in Chapter 14 of the Refine/FORTRAN T M User's

Guide [54] were not used. A separate process was used to evaluate the completeness of the

transformation after the pre-order traversal process completed execution. This process is

described in detail in Section 8.3.

The following sections describe the transformations that have been developed and in-

cluded in the prototype. These transformations convert FORTRAN statements, variables,

and expressions to the GIM.

8.2.1 FORTRAN Assignment Statement Transformation. Variables in FOR-

TRAN are assigned values using the assignment statement and the data statement. The

transformation of these two statements is shown in Figure 194.

assignment-statement - imperative-assignment

data-statement - imperative-assignment

Figure 194 Assignment Transformations

The following FORTRAN assignment statement is represented using the FORTRAN

assignment-statement AST.

RM = VMAG(R)

The variable on the left-hand-side of this assignment is converted to a GIM variable and

stored in the left-hand-side attribute of the GIM imperative-assignment AST. The ex-

pression on the right-hand-side of this assignment is converted to a GIM expression and

stored in the right-hand-side attribute of the GIM AST. The GIM AST built from this

transformation is shown below using GIL syntax.

RM := VMAG (R);

The FORTRAN AST that represents the following DATA statement is transformed to

the GIM by building two imperative-assignment ASTs.

DATA TWOPI/6. 2831853072D0/ , XMU/398601.2D0/

257

Each data item being initialized is converted to a GIM variable and stored in the left-

hand-side attribute of a GIM imperative-assignment AST. The corresponding value for

each data item is converted to a GIM expression and stored as the right-hand-side of the

assignment statement. The two GIM assignment statement ASTs generated for this data

statement are shown below using GIL syntax.

TWOPI := 6.2831853072D0;
XMU := 398601.2D0;

Because of the syntactic complexity allowed for data statements, a restriction is placed on

the data statements that are transformed using the prototype. Specifically, the number

of the data elements being assigned values must match the number of the data constants

provided.

8.2.2 FORTRAN Sequential Control Flow Transformation. Sequential control

flow in the FORTRAN AST is represented by storing statements in sequences. Sequences

are also used in the GIM to store the ASTs built from the transformation of these state-

ments. Specifically, statements in a sequence are transformed one after another (sequen-

tially), and the corresponding GIM AST built from the transformation is appended to the

corresponding sequence in the GIM. Sequences are used in FORTRAN ASTs to represent

the statements in subprograms, if-then-else statements, and looping statements.

8.2.3 FORTRAN Selective Control Flow Transformation. Selective control flow

in the FORTRAN programming language is implemented by the if-then-else statement,

the if-then statement, and the logical-if statement. Since an if-then statement is

an if-then-else statement without an else part, both statements are represented using

the REFINE/FORTRAN block-if-statement AST.

Figure 195 shows the transformations that have been built in the prototype to convert

FORTRAN selective control flow.

For example, consider the following FORTRAN if-then-else statement.

258

block-if-statement -- imperative-selection

logical-if-statement - imperative-selection

Figure 195 Selective Control Flow Transformations

IF(ITYPE.LT.0) THEN
CALL CSP(RT,RBO,TFBOT,XMU,VBOPP)
ELSE
CALL CSP(RBO,RT,TFBOT,XXMU,VBO)
END IF

The attributes of the FORTRAN block-if-statement AST that represents this statement

are used to build the GIM imperative-selection AST shown below (using GIL syntax).

if ITYPE < 0 then
CSP (RT, RBO, TFBOT, XMU, VBOPP);

else
CSP (RBO, RT, TFBOT, XMU, VBO)

endif
The FORTRAN expression is converted to a GIM expression and stored as the expression

of the imperative-selection AST. Each statement in the then part is converted and

stored in the then part of the imperative-selection AST. Each statement in the else

part is also converted and stored in the else part of the imperative-selection AST.

The transformation of the FORTRAN if-then statement is only slightly different.

The following statement is represented using the FORTRAN block-if-statement AST.

IF(THETA.GT.PI) THEN
ITYPE = -ABS(ITYPE)

THETA = 2.DO*PI - THETA
END IF

In this case, the else part of statement is empty, which is represented in the FORTRAN

AST as an empty sequence. The expression from this AST is converted and stored as

before, and the statements from the then part are converted and stored. The empty else

part of this statement is also represented as an empty sequence in the GIM AST. The GIM

AST is shown below using GIL syntax.

if THETA > PI then

ITYPE -ABS (ITYPE);
THETA 2.OdO * PI - THETA

259

else
endif;

The GIL syntax for the if-then statement is not like the FORTRAN syntax because

the GIL syntax includes the else keyword even if there are no statements in the else part

of an if-then-else statement.

The FORTRAN logical-if statement provides a short-hand syntax for the if-then

statement. The following statement is represented using the FORTRAN logical-if AST.

IF(ALT.LT.O.) ALT = 0

As with the if-then statement, the expression is converted to a GIM expression and

stored. The logical-if always includes a single statement, so this statement is converted

and stored in a sequence in the then part of the GIM AST. An empty sequence is stored

in the else part of the AST as was done with the if-then statement. The GIM AST is

shown below using GIL syntax.

if ALT < 0 then
ALT := 0

else

endif;

The FORTRAN programming language also provides a way to nest if-then-else

statements together into one statement. For example, the following FORTRAN statement

is represented using a REFINE/FORTRAN block-if-statement AST.

IF(ITYP.EQ.1) THEN
ALT = -5.71D0
ELSE IF(ITYP.EQ.2) THEN
ALT = -1.57D0
ELSE IF(ITYP.EQ.3) THEN

ALT = -9.46D0
END IF

Note that there is only one END IF keyword even though there are multiple IF clauses

in this statement. In the AST, the ELSE IF branches of the statement are collected into

a sequence of block-if-statements. Since not all imperative languages provide such a

way to nest if-then-else statements, this statement is transformed into an equivalent

collection of embedded if-then-else statements. The transformed statement is shown

below.

260

if ITYP = 1 then

ALT :=-5.71d0;

else

if ITYP = 2 then

ALT :=-1.57d0;

else
if ITYP = 3 then

ALT := -9.46d0;

else

endif

endif

endif;

At the top level, this is a single if-then-else statement with a second if-then-else

statement embedded in the else clause. A third if-then-else statement is embedded in

the else clause of the second if-then-else statement.

Appendix C shows a proof that the transformation of nested if-then-else state-

ments to embedded if-then-else statements maintains the functionality of the original

FORTRAN statement.

8.2.4 FORTRAN Iterative Control Flow Transformation. Structured iterative

control flow in the FORTRAN language is implemented using the do statement and the

proper combination of the if-then statement and the goto statement. Let -0 represent

the transformation that only builds a GIM imperative-iteration AST if this proper

combination of statements is used. The transformations built in the prototype for convert-

ing FORTRAN iterative control flow constructs are shown in Figure 196.

do-statement -- imperative-iteration
goto

block-if-statement - imperative-iteration

Figure 196 Iterative Control Flow Transformations

The following do statement is represented using the FORTRAN do-statement AST.

DO 100 I=1,3
U(I) = R(I)/RM

100 CONTINUE

261

The attributes of this AST are used to build the GIM imperative-iteration AST as

follows. The label 100 is used to indicate syntactically which statements will be iterated.

The FORTRAN AST has an attribute that stores this sequence of statements, so each

statement is converted to the GIM and stored in the imperative-iteration AST. The

loop variable syntax I=1,3 is represented by an attribute for the loop variable, the initial

value and the final value. A GIM imperative-assignment AST is generated to assign the

initial value to the loop variable and is returned as part of the imperative-iteration

AST transformation. This, in effect, inserts an assignment statement into the sequence of

GIM statements right before the imperative-iteration statement. The expression built

for the GIM imperative-iteration AST is always a less-than-or-equal expression that

tests whether the loop variable is less than or equal to the final value. The transformed

GIM imperative-iteration AST is shown below using the GIL syntax.

I := 1;

while I <= 3 do

begin

U (I) R (I) / RM;
I I + 1

end

The only if-then statements transformed into imperative-iteration ASTs have

a single goto statement as the last statement of the then clause. This goto statement

must cause program control to return to the line that includes the if-then statement. For

example, the following if-then statement has such a goto statement.

150 IF(C2.GT.1.OD0) THEN

E = E - DE
DE = DE/2.

E = E + DE
Cl = I.ODO - E**2
C2 = C1I/C2GAM

GO TO 150
END IF

This if-then statement is transformed into the following GIM iterative statement.

262

while C2 > 1.OdO do begin

E E - DE;

DE DE / 2;
E E + DE;
C1 l.OdO - E-2;

C2 C1 / C2GAM

end;

8.2.5 FORTRAN Subprogram Transformation. Imperative subprograms are im-

plemented in the FORTRAN language by the subroutine statement and the function

statement. Subroutines are invoked using the FORTRAN call statement. Functions are
call

invoked by using the function's identifier in an expression. Let -l represent the trans-

formation that only builds a GIM imp-function-call AST if the identifier refers to a

function begin invoked. The transformations that have been built in the prototype to

convert these entities are shown in Figure 197.

subroutine-statement - imperative-procedure

function-statement -- imperative-function

call-statement - imp-procedure-call

identifier --- imp-function-call

Figure 197 Subprogram Transformations

SUBROUTINE VADD (IOPR1,R2,R3)

INCL UDE ' bdincl. f'
C
C THIS ROUTINE PERFORMS VECTOR ADDITION FOR THREE DIMENSIONAL
C VECTORS
C

DIMENSION RI (3) ,R2(3) ,RS(3)
F = FLOAT(IOP)
R3(1) = R1(1) + F*R2(1) 10
R3(2) = R1(2) + F*R2(2)
R3(3) = R1(3) + F*R2(3)
RETURN
END

Figure 198 FORTRAN Subroutine VADD

263

For example, Figure 198 shows the FORTRAN subroutine VADD. The attributes of

the FORTRAN AST built for VADD are used to build an imperative-procedure AST in

the GIM as follows. The subroutine identifier is converted into a GIM variable and stored

as the identifier of the imperative-procedure AST. The formal parameters IOP, R1, R2,

R3 are converted into GIM variables and stored (in the same order) in the sequence of

formal parameters for the GIM AST. Each statement from the subroutine is converted

into a GIM statement and stored (in the same order) in the sequence of statements for

the imperative-procedure AST. The GIM AST built from this transformation is shown

below using GIL syntax.

procedure VADD (IOP, R1, R2, R3)
begin

F FLOAT (1OP);
R3 (1) Ri (1) + F * R2 1 1);
R3 (2) Ri (2) + F * R2 (2);
R3 (3) R1 (3) + F * R2 (3)
end

Note that the comments from the FORTRAN subroutine are not modeled in the GIM AST.

There is a attribute in the REFINE/FORTRAN AST that stores the comments from a

subroutine, but no attempt is made in this research to carry the comments forward. The

FORTRAN call statement that invokes VADD is shown below.

CALL VADD(-i,RB,R(i,J,K),RRB)

The call identifier from the FORTRAN AST is converted to a GIM variable and stored

as the identifier of the imp-procedure-call AST. The sequence of actual parameters is

converted to a sequence of GIM variables (with the same order) and stored as the actual

parameters in the GIM AST. Because of Restriction 111.3, an extra step is performed in this

transformation to ensure all actual parameters are variables. Specifically, the -i parameter

in the call to VADD is replaced by a temporary variable and an assignment statement is

inserted before the call. The two GIM ASTs built from this transformation are shown

below using GIL syntax.

TEMP-29 := -1;
VADD (TEMP-29, RB, R (1, J, K), RRB);

264

8.2.6 FORTRAN Variable Transformation. Each FORTRAN variable in the

legacy system must be converted to a GIM variable. The representation of variables in

the GIM consists of two parts. An imperative-variable AST is built for each variable

and stored in the Imperative Symbol Table (IST). All of the information needed to build

an imperative-variable is taken from the FORTRAN symbol table generated during

compilation. The symbol table includes the variable's identifier, scope, data type, and a

constant value (if any). If the FORTRAN variable is an array, the indices are not stored

with the variable since the entire array is considered one variable.

References to a FORTRAN variable are modeled using the imperative-name AST

shown in Figure 199.

imperative-name

imp-scope: symbol
imp-identifier: symbol
imp-indices: seq(imperative-data-construct)

Figure 199 Imperative Name Class

A new instance of this class is built for each reference to a FORTRAN variable. If

the variable is an array, the array indices are converted to GIM expressions and stored

in the imperative-name object. When a FORTRAN variable is transformed, the IST is

checked to see if an imperative-variable AST has already been built to represent the

FORTRAN variable. If not, an imperative-variable is built and stored in the IST.

Using the imperative-name AST was meant to simplify the process of representing

variables. However, in hind-sight, it is just as easy to represent each FORTRAN variable

using an instance of the imperative-variable class. The only difference between an

imperative-name AST and an imperative-variable AST is that an imperative-name

doesn't store the data type and an imperative-variable doesn't store the indices of an

array variable. These two ASTs should be combined into one.

Because of the information provided by the FORTRAN symbol table, declarations

of variables are not transformed or modeled in the GIM. This means FORTRAN common

statements and dimension statements have no corresponding construct in the GIM. Since

265

there is no modeling of variable declarations in the GIM, a system built to convert GIM

ASTs into an imperative language such as C would have to automatically generate the

appropriate declarations for each variable as required by the language. There is no surface

syntax provided for a GIM imperative-variable ASTs, only imperative-name ASTs.

8.2.7 FORTRAN Data Types Transformation. The transformations built to

convert FORTRAN data types (except implicit types and built-in types) are shown in

Figure 200.

type-integer - imperative-integer

type-byte imperative-integer

type-real -* imperative-real

type-double-precision imperative-real

type-logical - imperative-boolean

type-character - imperative-string

array-type imperative-array

Figure 200 Data Type Transformations

For implicit types, if the type-expr-name attribute of the type-expr-type attribute of an

implicit-type FORTRAN AST equals the symbol real, then an imperative-real GIM

AST is built. If the attribute equals the symbol integer, an imperative-integer GIM

AST is built. Similarly, if the type-expr-name attribute of a built-in-type FORTRAN

AST equals the symbol real, then an imperative-real GIM AST is built. If the attribute

equals the symbol integer, an imperative-integer GIM AST is built.

8.2.8 FORTRAN Expression Transformation. A FORTRAN expression can be

either a variable, a binary expression, a unary expression, or a literal constant value. This

section describes each of the transformations for these kinds of expressions. The trans-

formation of a variable is described in Section 8.2.6. The transformations included in

the prototype for FORTRAN binary expressions are shown in Figure 201. The trans-

formations built to convert FORTRAN unary expressions are shown in Figure 202. The

transformations built to convert FORTRAN literal expressions are shown in Figure 203.

266

add-expression - imperative-addition

and-expression - imperative-and

concatenate-expression -- imperative-concat

divide-expression -* imperative-division

eq-expression - imperative-equal

eqv-expression - imperative-equal

exponentiate-expression - imperative-exponent

ge-expression - imperative-greater-than-or-equal

gt-expression -- imperative-greater-than

le-expression -- imperative-less-than-or-equal

It-expression -- imperative-less-than

multiply-expression - imperative-multiplication

ne-expression - imperative-not-equal

neqv-expression - imperative-not-equal

or-expression - imperative-or

subtract-expression imperative-subtraction

Figure 201 Binary Expression Transformations

negate-expression -* imperative-negate

not-expression - imperative-not

null-ex -- imperative-null

Figure 202 Unary Expression Transformations

8.2.9 FORTRAN Input/Output Transformation. Input is implemented in the

FORTRAN language by the read statement. Output is implemented by the write and

format statements. The transformations built in the prototype to convert FORTRAN

input and output statements are shown in Figure 204.

8.3 Completeness of the Transformation

Since transformations were not built for the entire domain model provided by RE-

FINE/FORTRAN, a process was defined to assess the completeness of the transformation.

Specifically, as the FORTRAN AST was being transformed, each transformation set a flag

267

literal-false - imperative-literal-boolean

literal-true - imperative-literal-boolean

literal-hex -* imperative-literal-integer

literal-integer - imperative-literal-integer

literal-octal -- imperative-literal-integer

literal-real -- imperative-literal-real

literal-quad - imperative-literal-real

literal-double -* imperative-literal-real

literal-charstring -* imperative-literal-charstring

literal-hollerith - imperative-literal-charstring

literal-right-text - imperative-literal-charstring

Figure 203 Literal Expression Transformations

read-statement -- imperative-input

write-statement - imperative-output

format-statement - imperative-output

Figure 204 Input and Output Transformations

on the AST node being transformed. A separate traversal of the FORTRAN AST examines

each node and report any nodes not transformed. This process proved to be quite effective

and uncovered problems with the overall transformation that were easily corrected. An

excerpt from the transcript generated by the conversion of the ANG subprogram is shown

below.

Converting "ANG" to the GIM...

No side effects in this function.

Checking transformation completeness...

The transformation was complete.

Total number of tree nodes: 60
Number of untransformed nodes: 0

Percentage of AST transformed: 100.0%

Saving to pob...

Saving AST and Symbol Table in file...
Saving surface syntax in file...

268

This transcript reports the conversion of ANG is 100% complete. There are 60 tree nodes in

the ANG FORTRAN AST, and the new AST is saved to the Persistent Object Base (POB).

The complete transcript from the conversion of the 3000 line FORTRAN-77 legacy system

is shown in Appendix E.

8.4 The Ballistic Missile Defense Simulation System

The legacy imperative system that was selected for the feasibility demonstration is

the Ballistic Missile Defense Simulation (BMDSIM) system [36]. This system consists of

53 subprograms including the main program, BMDSIM1. This system was developed for use

as a real production system and is not a toy system developed just for this research.

Table 5 and Table 6 show a summary of these subprograms. The type of subpro-

gram (function or procedure), the subprogram identifier, the category' into which this

subprogram is classified, and the set of data items produced are presented in the table.

Some of the subprograms in BMDSIM were re-structured to eliminate unstructured

uses of GOTO statements. There were no global variables in the system and none of the

parameters were both input and output parameters. The RAND function had an output

parameter, so the function was converted into a procedure with two output parameters.

After these changes, the total number of lines of code was 3109.

8.5 Eliminating Category 4 and Category 5 subprograms

As described in Chapter VI, the first step in converting a legacy system is to eliminate

the Category 4 and Category 5 subprograms by using program slicing. Figure 205 shows

how the original 53 subprograms are classified according to the taxonomy of subprograms.

After program slicing, the BMDSIM system consisted of 105 subprograms including the

main program. Figure 205 also shows how each of these 105 subprograms are classified.

Tables 7, 8, and 9 show a summary of the new subprograms generated by program

slicing. The tables show the name of each subprogram in BMDSIM. For any Category 4 or

One of the six categories from the taxonomy of imperative subprograms presented in Chapter V.

269

Type Subprogram Cat I Data Items Produced

Function ANG 2
Function ANGLE 3
Procedure ASSIGN 5 DWELLA, IENG, IZTAB, LLAS, LMIRS,

NBPCR, RBENG, TLAS, TMIRS
Main Program BMDSIM1 1
Procedure BOOSTR 4 R, V
Procedure BOSTIT 5 AR, ITYPE, RBO, RL, RT, TBO,

TFBOT, VBO, VI
Function BOUNCE 3

Function CAPTURE 2
Procedure CROSS 2
Procedure CSP 3
Function CUV 2
Procedure DASET 4 DALASM, DWELLT, IASGN
Function DOT 2
Procedure KEP 4 R, V
Procedure LASP 4 BFLU, BFLUX, TD
Procedure LNKCAL 5 DALASM, DWELLT, IASGN, PHASE
Procedure LNKCK 4 MIRF, RANGE
Procedure LNKORD 4 DWELLA, DWELLT, LIASGN
Procedure MAT 2
Procedure MAXA 4 AMAX, NMAX
Procedure MIRGEO 3
Procedure MIRVIS 5 MIRF, MIRR
Procedure MTM2 3
Procedure MTM3 3
Procedure MTPD 2
Procedure MTRT 2
Procedure ORBEL 4 A, E

Table 5 Subprograms from BMDSIM

270

Type Subprogram Cat IData Items Produced I
Function PKILL 2

Procedure POSVEC 2
Procedure POSVECS 2
Function PRDIV 2 __________________

Function RADIUS 2
Procedure RAND 4 RANDVAL, RSEED

Procedure RELAY 5 AREA, DALAS, EBRITE, EFFNCY, PHASE
Function RHO 2 __________________
Procedure RRBVIS 5 RIANG, RRBM, SLANG
Procedure RRPVIS 5 RPANG, RRPM
Function RTAN 2 __________________
Procedure SBMIT 5 DETAO, DRAO, ETAG, ORATE,

Procedure SBMLOC 2 __________________
Procedure SBMPOS 5 ETA, R, RA
Procedure SELEGL 4 IDX, ILS, JIS, J2S,

Function SGN 2 __________________
Function SUV 2 __________________
Procedure TFBT 2 __________________

Procedure TPANG 5 ALP, THE, XING
Procedure TRAJ 5 R, V
Procedure UNIT 3
Function UPLREQ 2 _________________

Function UPTRNS 2 __________ ________

Procedure VADD 2 ___________________

Procedure VISCK 5 MCK, RRM
Function VMAG 2 ___________ _______

Table 6 More Subprograms from BMDSIM

271

Category Before Slicing After Slicing

0 0 0
1 1 1

2 22 52

3 8 52

4 9 0

5 13 0

Total 53 105

Figure 205 Subprograms Classified

Category 5 subprogram, the names of the new subprograms built from it and the category

of the new subprogram are shown. The final column indicates on which of the slices the

process of masking had to be used.

8.6 Implementing the PBOI

The next step in the conversion process is to transform the subprograms represented

in the GIM into classes and methods represented in the GOM. This is done using the PBOI

methodology described in Chapter V. Each of the PBOI transformations was implemented

in the prototype using the REFINE programming language. Every attempt was made to

match the names of the REFINE functions with the transformations they implement. The

mappings from GIM AST entities to GOM AST entities are shown in Appendix F.

A RefineTM workbench has been built that displays both the imperative subpro-

gram (shown using GIL syntax) and the object-oriented class and method (shown using

GOL syntax) extracted from this subprogram. Figure 206 shows an example of this work-

bench. The upper-left subwindow of the workbench shows the GIL representation of the

GIM subprogram being transformed. The subprogram is transformed manually using the

sigma option (not shown) from the Transformations menu. Once the subprogram is

transformed, the upper-right subwindow displays the extracted class and method. The

lower-left subwindow displays the object-oriented design (that has been extracted to this

point) using class diagrams. The class diagram shows a class as a box displaying the name

of the class, the name of its methods, and the name and type of its attributes. Finally,

the lower-right subwindow displays the AST that represents the overall design. The GOM

272

ISubprogram [Cat ISlices [Cat] Masked
ANG 2
ANGLE 3___
ASSIGN 5 ASSIGN-DWELLA 3 X

ASSIGN-IENG 3 X
ASSIGN-IZTAB 3 X
ASSIGN-LLAS 3 X
ASSIGN-LMIRS 3 X
ASSIGN-NBPCR 3 X
ASSIGN-RBENG 3 X
ASSIGN-TLAS 3 X
ASSIGN-TMIRS 3 X

BMDSIM1 1 _____

BOOSTR 4 BOOSTR-R 2___
BOOSTR-V 2

BOSTIT 5 BOSTIT-AR 3 X
BOSTIT-ITYPE 3 X
BOSTJT-RBO 3 X
BOSTIT-RL 3
BOSTIT-RT 3 X
BOSTIT-.TBO 2___
BOSTIT-.TFBOT 3 X
BOSTIT-VBO 3 X
BOSTIT-VI 2___

BOUNCE 3 ______

CAPTURE 2 ______

CROSS 2
CSP 3 _ _ _ _ _ _ _

CUV 2___

DASET 4 DASET-DALASM 2___
DASET-DWELLT 2___
DASET-IASGN 2

DOT 2___

KEP 4 KEP-R 2
___ __ _ __ KEP-V 2

LASP -4 LASP-BFLU 2 ___

LASP-BFLUX 2 ___

_________ LASP-TD 2 X

Table 7 Slices for Category 4 and Category 5 Subprograms

273

Subprograms Cat ISlices]Cat Masked~

LNKCAL 5 LNKCAL-DALASM 3 X
LNKCAL-DWELLT 3___

__LNKCAL-IASGN 3 X
LNKCAL-PHASE 3

LNKCK 4 LNKCK-MIRF 2
LNKCK-RANGE ?

LNKORD 4 LNKORD-DWELLA 2 X
__LNKORD-DWELLT 2

LNKORD-LIASGN 2 X
MAT 2
MAXA -4 MAXA-AMAX 2___

MAXA-NMAX 2 X
MIRGEO 3
MIRVIS 5 MIRVIS-MIRF?

________MIRVIS-MIRR 3 _ _ _

MTM2 3___
MTM3 3
MTPD 2
MTRT 2
ORBEL -4 ORBEL-A 2 X

______ ORBEL-E 2 X
PKILL 2
POSVEC 2
POSVECS 2
PRDIV 2 __ _ _ _ _ _

RADIUS 2
RAND 4 RAND-RAND VAL 2 X

RAND-RSEED 2___
RELAY -5 RELAY-AREA 3

RELAY-DALAS 3 X
RELAY-EBRITE 3
RELAY-EFFNCY 3
RELAY-PHASE 3

RHO 21

Table 8 More Slices for Category 4 and Category 5 Subprograms

274

ISubprogram [Cat ISlices Cat Maskedj

RRBVIS 5 RRBVIS-RIANG 3___
RRBVIS-RRBM 3
RRBVIS-SLANG 3___

RRPVIS 5 RRPVIS-RPANG 3___
RRPVIS-RRPM 3___

RTAN 2___

SBMIT 5 SBMIT-DETAO 3 X
SBMIT-DRAO 3 X
SBMIT-ETAO 3 X
SBMIT-ORATE 2___
SBMIT-RAO 3 X
SBMIT-RSEED 3

SBMLOC 2 _____

SBMPOS 5 SBMPOS-ETA 3 ___

SBMPOS-R 3 ___

SBMPOS-RA 3___
SELECL 4 SELECL-IDX 2 ___

SELECL-ILS 2 ___

SELECL-J1S 2 ___

SELECL-J2S 2 ___

SELECL-K15 2 ___

SELECL-K2S 2 ___

SELECL-TNGAGE 2
SGN 2
SUV 2 __ _ _ _ _ _

TFBT 2 __ _ _ _ _ __ _ _

TPANG 5 TPANG-ALP 3
TPANG-THE 3 X
TPANG-XINC 3___

TRAJ -5 TRAJ-R 3___
TRAJ-V 3___

UNIT 3
UPLREQ 2
UPTRNS 2 ______

VADD 2 _ _ _ _ _ _ _ _ _

VISCK 5 VISCK-MCK 3___
______ __VISCK-RRM ?_ __

VMAG 2_______

Table 9 More Slices for Category 4 and Category 5 Subprograms

275

File Slice Transformnations Windows

GIL Subprogram Window GOL Class Window
procedure VADD I OP, Ri, R2, R3) begin cles CLASS-i attributes R3, R2, Ri, IOP

FLOP) IOlP): nehod VADD (C-i) begin
R3 1i) Ri1 1) *F aR2 1): F =FLOAT (SET-COP (C-i)))-
R3 12) :=Ri 2) F aR2 C2) SET-Ri C-1. 1, GET-Ri(C-i, 1) *F GET-R
R3(3) :RI C3) F R2 (3) SETR3 C-1.2,
end SET R3 C-i, 3, GET-RI C-i, 3) *F a ET-R

eand
..a,.l... USER-OBJECT

W0 F-] Class Diagram Chart Current Design AST
... gon-ClaSS

gas-varable
on-vaiab
nevaibl
ne-Vlaable

E] gan-vm nehod
gasn-parameter
g asn- asignment1~1~NCLASS-is Paeo gas-yanlabie

YADDgas-function-call
C!I. 1~ 3 1 Z:1 ,eu-seas age

:12 . nzz, .. 3a . g0s-parameter
lop Int".c i 31a * gas-literai-integer

iw a ~ gan-addlar
gas- nessage

gos- parameter
oom-llleralInteger

I go-adaan
gos- mesaag

....

Figure 206 GOM Workbench

276

ASTs shown in this subwindow are hyper-linked with the GOL surface syntax shown in

the upper-right subwindow.

Each of the 105 Category 2 and Category 3 subprograms from the BMDSIM system

was converted to the object-oriented paradigm using the prototype. This resulted in an

object-oriented design with 104 classes and 104 methods. The main program was also

converted which added another class and method to the design.

During the conversion of the main program, 770 create messages were built for 511

distinct object instances. After removing duplicate objects, 109 create messages remained

for 109 distinct object instances. After removing overlapping classes, the design consisted

of 43 classes. Of these classes, 33 classes had only one method, 6 classes had between 2

and 11 methods, and 4 classes had between 29 and 47 methods.

In order to address the reasonableness of the objects being extracted, an informal

semantic analysis was done. The comments in the BMDSIM system were examined to

develop a rudimentary domain model. The extracted objects were compared against this

domain model in order to find a correlation between the objects and a semantic entity from

the domain. This analysis found that the extracted objects tended to contain attributes of

a single domain entity, as opposed to multiple domain entities. The number of attributes in

the extracted objects tended to be less than the number of attributes in the domain entity.

That is, the extracted objects described pieces of the domain entities. This could be due to

the rudimentary nature of the domain model developed. The entire methodology described

to this point has been fully automated. To add semantics to the extracted objects may

require a cooperative effort involving the analyst. Further analysis of the semantic nature

of the extracted objects is left as future research.

8.7 Analysis

The prototype was built on a SUN SPARC 5 workstation with 128MB of memory.

Using the prototype, the conversion of BMDSIM to the GIM takes less than 20 minutes

and the elimination of Category 4 and Category 5 subprograms takes approximately one

hour. The prototype converts GIM subprograms to the GOM using the PBOI methodology

277

(except for merging overlapping classes) in approximately 24 hours. Merging overlapping

classes using the prototype requires an additional 12 hours. Because of its inefficiency,

using the prototype to convert millions of lines of imperative code is not feasible.

8.8 Summary

This chapter has presented the results of the feasibility demonstration. A summary

of the BMDSIM system and its subprograms was provided along with the subprograms re-

sulting from program slicing. The specific transformations used to transform FORTRAN

to the GIM were described in this chapter. The object-oriented design extracted from

BMDSIM was also described. This transformation of BMDSIM using the prototype im-

plementation demonstrates the conversion of a FORTRAN system to an object-oriented

design is technically feasible.

278

IX. Contributions

9.1 Introduction

This chapter lists the contributions this research makes to the field of re-engineering.

9.2 Major Contributions

This research makes the following major contributions.

1. The Generic Imperative Model (GIM).

2. The Generic Object-Oriented Design Model (GOM).

3. The Parameter-Based Object Identification (PBOI) methodology.

4. The transformations that formalize the PBOI methodology.

5. A proof that the object-oriented design is a consistent implementation of the legacy
code.

The GIM is significant because it provides a canonical form for imperative program-

ming languages. This allows legacy code that does the same to look the same. There

are several advantages to using the GIM in this research or other research involving im-

perative programming languages. First, the GIM is programming language independent,

which means the representation is not tied to one specific programming language. By using

the GIM in the prototype, legacy code in another language can be re-engineered once the

transformations from that language to the GIM are developed. In this way, the GIM allows

the prototype to be easily extended to other languages. Second, the GIM is program con-

struct independent. This allows the GIM to represent imperative control flow structures

in easily understood canonical forms. For example, there are many programming language

implementations of the selective control flow construct from imperative languages, but the

GIM is able to represent if-then statements, if-then-else statements, nested and embedded

if-then-else statements, and case statements using a single control flow construct. This

greatly simplifies the task of building formal transformations and prototypes based on the

GIM constructs. Third, the GIM provides constructs for representing simulated control

flow constructs so they can be transformed into a canonical form. For example, imperative

iteration can be simulated with an if-then statement and a goto statement. This simulated

iteration is converted into a GIM iteration construct, which simplifies the representation

279

of the imperative code. From these three advantages, it is clear that any research based on

the GIM is simplified because the number of imperative programming language constructs

to consider has been greatly reduced. Finally, the GIM provides a formal definition of each

of the imperative programming language constructs based on the weakest precondition

notation.

The GOM is an important contribution because it provides a canonical form for

object-oriented programming languages. Much like the GIM, the GOM is programming

language independent, program construct independent, and recognizes simulated control

flow constructs. The GOM has been built primarily as a tool for forward engineering, so

it provides a model from which an object-oriented program can be produced. By building

transformations from the GOM to a specific object-oriented language, the programming

constructs that best implement the canonical forms from the GOM can be used to generate

the object-oriented program. As in the GIM, any research based on the GOM is simplified

because the number of object-oriented constructs to consider is reduced. The GOM also

provides formal definitions for object-oriented constructs including classes, objects, meth-

ods, and messages. Defining the formal semantics of these constructs using the weakest

precondition notation is original research in this field.

The PBOI methodology is the most important contribution of this research because it

provides a new way to extract objects from legacy imperative code. There have been other

object identification methods presented in the literature (see Chapter I), but the PBOI

methodology results in an object-oriented design that is a consistent implementation of the

legacy imperative system. Other researchers have developed systems to extract functionally

equivalent objects, but these researchers do not provide a proof of this claim. The object-

oriented design extracted using the PBOI methodology is valuable because it produces the

same output as the legacy system given the same input. The PBOI methodology is similar

to the GBOI, TBOI, and RBOI methodologies because it extracts objects from legacy code.

The PBOI methodology is significantly better because it extracts functionally equivalent

objects, it has been formalized using mathematical transformations, a proof-of-concept

prototype implementation has been developed, and it has been demonstrated on a (real

world) 3000-line FORTRAN legacy system.

280

Using formal transformations to define the PBOI methodology is a significant con-

tribution because it casts the methodology in a consistent, unambiguous, and provably

correct form. The transformations demonstrate how an entire methodology for converting

imperative subprograms can be expressed using formal methods. The transformations are

based on the formal definitions of imperative subprograms, subprogram calls, and pro-

gramming statements, which are minor research contributes as discussed in Section 9.3.

Other researchers can use this work as an exemplar of how to express the transformation of

imperative subprograms using the power of formal methods. These transformations were

fully automated using the RefineTM programming language, as described in Chapter VIII.

The proof that the PBOI methodology extracts an object-oriented design that is a

consistent implementation of the legacy imperative code is a significant contribution in

the area of re-engineering because it is the first such proof. Without defining any of the

specific input or output values from the legacy imperative code, it has been proven that

the extracted object-oriented design produces the same output as the legacy imperative

code given the same input. This means it is not necessary to implement the design to

prove it is consistent with the legacy code. The proofs of the individual theorems also

provide exemplars of how to prove the consistency of formal transformations using weakest

precondition arguments.

These major contributions combine to provide a significant advance in the area of

re-engineering, viz. the definition, formalization, proof, and automation of a novel method-

ology for extracting a functionally equivalent object-oriented design from legacy imperative

code. The minor contributions of this research are discussed in the following section.

9.3 Minor Contributions

This research also makes the following minor contributions.

1. A taxonomy of imperative subprograms.

2. The formal definitions of imperative subprograms, object-oriented classes, object-
oriented methods, and object-oriented messages.

3. The Generic Imperative Language (GIL).

4. The Generic Object-Oriented Language (GOL).

281

5. The it relation that links actual parameters to formal parameters.

6. The proof-of-concept prototype built for the FORTRAN language.

The taxonomy of imperative subprograms provides a meaningful way to classify any

imperative subprogram. It focuses the job of re-engineering to six well defined categories.

Other research on imperative subprograms can also use the taxonomy in the same way.

The attributes that define the taxonomy could be modified to reflect different aspects of

imperative subprograms.

The formal definitions of imperative subprograms, subprogram calls, statements,

and designs presented in Chapter III are a consistent and unambiguous representation

of imperative programming language constructs. They provide a foundation for formal

transformations of imperative constructs that can be used to develop new transformations

in other research. The formal definitions of object-oriented classes, methods, messages,

statements, and designs provide a consistent and unambiguous representation of object-

oriented programming language constructs. In this research, these definitions provide the

representation of the target of the formal transformations. The definitions of imperative

and object-oriented constructs are used extensively in the proof of functional equivalence.

These representations simplify the proof because of their formal nature.

The GIL and the GOL provide a surface syntax for the GIM and the GOM, respec-

tively. They have been implemented using a grammar that defines the surface syntax of

GIM and GOM constructs. The GIL and the GOL demonstrate the use of a surface syntax

as a convenient user interface to Abstract Syntax Trees. The surface syntax defined for

the GIM and the GOM provide a user-friendly interface to the entities being transformed.

In this way, the GIL and GOM are intended to be used to view an AST that has already

been built. Since the GIL and the GOL have been built using a grammar, they can also

be used to build ASTs using the syntax of the grammar. Implementing and testing this

aspect of these languages is beyond the scope of this research, but the idea of defining a

generic imperative language and a generic object-oriented language is appealing. Building

the GIL and the GOL is a minor contribution that can be used as a stepping stone to

future research.

282

The IL relation proved to an invaluable aid in the formalization of subprogram signa-

tures. The transitive closure of It is an effective way to determine which actual parameter is

linked to a formal parameter that has been converted to an attribute of a class. It may be

possible to apply this relation to other applications that update signatures of subprograms.

Finally, the proof-of-concept prototype demonstrates that legacy systems written in

FORTRAN-77 can be converted to the GIM. It also shows that the entire PBOI methodol-

ogy can be automated. The transformations that define the PBOI were easily implemented

using the REFINETM programming language, which demonstrates the utility of such for-

mal definitions and languages such as REFINE.

These minor contributions aided this research in achieving the overall goal of ex-

tracting functionally equivalent object-oriented designs from imperative legacy code. The

items identified for future research are discussed in the following section.

9.4 Summary

This chapter has explained why the GIM, the GOM, the PBOI methodology, and

the formal transformations are significant contributions to the field of re-engineering. The

following chapter discusses future research and overall conclusions.

283

X. Future Research and Conclusions

10.1 Introduction

This chapter summarizes several ideas for future research that could easily extend

this research. Concluding remarks are included at the end of this chapter.

10.2 Future Research

The following sections discuss items that should be done as future research.

10.2.1 Data dependencies. The PBOI methodology may be too aggressive when

determining which parameters should be attributes of classes. Specifically, PBOI Case 3

should be scrutinized and possibly extended as follows. It may be the case that a local

variable is directly data dependent on an input parameter of a Category 3 subprogram.

When this local variable is passed as a parameter to another subprogram, it will not

remain as an attribute of a class. This is because it is a local variable.

However, it may be possible to extract more semantically meaningful objects by

allowing the data item linked to this local variable to remain an attribute of a class. This

is based on the local variable's data dependency to the formal parameter. There are three

dependency cases to consider.

direct One or multiple assignment statements link the local variable back to the formal

parameter.

indirect The local variable is produced from a subprogram call that includes the formal

parameter as an input parameter.

hybrid A combination of both direct and indirect data dependencies.

An issue remains as to which data item should be built as the attribute of the class.

Is the formal parameter of the called subprogram the attribute or a different view of the

attribute? Is the formal parameter of the calling subprogram the attribute? Where should

the code that changes the formal parameter into the local variable be placed as a method?

284

10.2.2 Arrays. Arrays present an interesting challenge. There are several things

that have been left as future research. Specifically, a common method for storing data in

the imperative paradigm is to build parallel arrays of data. It has been proposed that the

attributes of a candidate object can be derived from the arrays because the values of the

attributes of a single instance are stored at the same index in the arrays. Future research

should convert these parallel arrays of attributes into a single array of instances with the

appropriate attributes.

Another popular method for storing homogeneous attributes of candidate objects is

to use a single array to represent all the attributes. A second array or another dimension

of the array is used to store the instances of the objects. These arrays of attributes could

be converted into parallel arrays of attributes and then converted into a single array of

objects with attributes.

10.2.3 Modifying the Design. The process of merging overlapping classes based

on the overlap of a single data item may be too aggressive. As described in the Feasibility

Demonstration (see Chapter VIII), the design extracted for the BMDSIM legacy system

included classes with large numbers of attributes and methods. Future research should

explore different heuristics for the updates done to the design when the main program is

being transformed.

One possibility is to merge two classes only when the attributes of one class are a

subset of the attributes of the other class. This is a more restrictive heuristic for merging

that may avoid building classes with such large numbers of attributes and methods. This

may introduce duplication of system state variables, however, so a method for combining

these classes without duplicating the imperative state variables must be developed. One

possibility is to change attributes not in the intersection into parameters in the methods

of the effected classes.

Another issue is the lack of analysis that is done on the subprograms that are called by

the main program. The formal parameters of these subprograms are built as attributes of

classes, but there is no filtering of these data items to see if they should remain as attributes.

285

It may be the case that changing one or more of these attributes into a parameter helps

to avoid the problem of building classes with large numbers of attributes and methods.

During the conversion of the BMDSIM legacy system, several classes in the extracted

design included no attributes. Future research could examine these classes and possibly

merge them into one utility class. There appears to be a difference between a class where

the attributes have been converted solely into attributes of other classes and a class where

the attributes have been converted solely into parameters.

Currently, object instances are built only when the main program is being converted.

It is possible to recognize that some collection of local variables in a subprogram actually

represent an object and the object can be instantiated at the correct point in the subpro-

gram. This might improve the prospects of identifying more "meaningful" objects from

the GIM.

Finally, in order to add semantics to the extracted objects, some interaction with

the user may be required. An extension to the prototype could include this interaction

to determine if extracted objects should be combined to more closely resemble domain

entities. If domain entities are expressed formally, it may be possible for the computer to

compare the domain entities to the extracted objects.

10.2.4 Program Slices. The program slicing done to eliminate Category 4 and

Category 5 subprograms produces inefficient slices. Future research could explore ways to

optimize these slices and produce less conservative slices. Similarly, some of the program

slices that are built during this process are repeated in whole as part of another program

slice. Such slices could be built as object methods and called by the encompassing program

slice. Finally, the same imperative output statement may appear in multiple slices which

may cause spurious output when the design is finally implemented and executed. A more

detailed analysis of the variables being output could be done as future research in order to

ensure the same output statement does not appear in multiple slices.

10.2.5 The Generic Unstructured Model. It may be possible to add a front-end

to the reverse engineering methodology that automatically re-structures imperative code.

286

Unstructured legacy code could be transformed into a canonical form, (termed the Generic

Unstructured Model (GUM)) that models the unstructured use of goto statements. The

transformation of GUM entities to GIM entities would provide a canonical means for re-

structuring legacy imperative systems.

10.2.6 Extensions. Currently, the prototype transforms only FORTRAN-77 to

the GIM. Future research should explore the conversion of other imperative languages to

the GIM. Reasoning SystemsTM currently provides language tools only for FORTRAN, C,

Cobol, and Ada, which restricts the extension of the prototype to these languages until

parsers for other languages can be built. Some prototype transformations have been done

for Ada 83. Specifically, four different forms of iteration in Ada have been canonicalized into

one representation in the GIM. To extend the GIM further, other imperative entities such

as heterogeneous data types and pointers could be added to the GIM. If larger systems with

millions of lines of imperative code are to be transformed, the efficiency of the prototype

must be improved.

10.3 Conclusions

It is clear that this research has been completed successfully. The objectives defined

in the Problem Statement (see Chapter II) have been met. The GIM provides the desired

canonical form for re-engineering legacy imperative code, as presented in Chapter III.

The GOM provides the desired canonical form for the object-oriented target system, as

presented in Chapter IV. Several in-depth examples of how the PBOI methodology ex-

tracts objects from GIM subprograms were presented in Chapter V. The PBOI formal

transformations presented in Chapter VI define the PBOI methodology in an unambigu-

ous, consistent, and provably correct manner. Using the PBOI methodology is desirable

because the extracted object-oriented design is functionally equivalent to the legacy im-

perative code. The proof of this claim was presented in Chapter VII. It is feasible to

automate this methodology as demonstrated in Chapter VIII. It should be clear to the

reader that this research makes significant contributions to the field of re-engineering.

287

Appendix A. The Generic Imperative Language

A.1 Introduction

This appendix includes the surface syntax developed for the Generic Imperative

Language (GIL'). The surface syntax provides an easy way to view the GIM representation

of an imperative program. The GIL is not intended to be used as a forward-engineering

programming language.

The notation used to present the surface syntax is taken from the Software RefineryTM

Dialect tool [53]. Each production for producing surface syntax is presented using the fol-

lowing format:

<GIM object> [<surface syntax constructs>]

The left-hand-side of this production gives the GIM object for which this surface syntax

is defined, and the right-hand-side shows the sequence of constructs used to define the

surface syntax. This sequence can include attributes of the object or literal syntax tokens.

Optional constructs are enclosed in braces, i.e. f }. Sequences of constructs are indicated

by listing an attribute of the object followed by a star token (*) or plus token (+) followed

by the delimiter token. The star token indicates zero or more members of the sequence

and plus token indicates one or more members. For example, the surface syntax for GIM

imperative-name objects is shown below.

imperative-name ::= [imp-identifier !! imp-has-indices
"(imp-indices + "," ")"]

builds imperative-name,

This production means the surface syntax for an imperative-name is the value of the

imp-identifier attribute followed by any indices in the imp-indices attribute separated

by commas. The imp-has-indices attribute is a boolean attribute used to determine if

the imperative-name is an array being accessed.

A.2 The Generic Imperative Language

The productions that define the GIL grammar are presented below.

'Pronounced "Jill", as in Jack and Jill.

288

" in-package("RU")
!! in-grammar('syntax)

grammar Generic-Imperative-Language

file-classes imperative-subprogram

productions

%--
'A imperative design
S---

imperative-design ::= [imperative-programs + ""]
builds imperative-design,

%--
'A data types
%--

imperative-integer ::= ["integer"]
builds imperative-integer,

imperative-real ::= ["real"]
builds imperative-real,

imperative-boolean ::=["boolean")
builds imperative-boolean,

imperative-character ::= ["character"]
builds imperative-character,

imperative-string ::= ["string"]
builds imperative-string,

imperative-array ::= ["array" "C" imp-array-dimensions * "," ")"
"of" imp-array-element-type I

builds imperative-array,

imperative-index-type ::= [imp-index-lower-bound ".." imp-index-upper-bound
builds imperative-index-type,

%--
'A variables and names
%'--

imperative-name ::= [imp-identifier -!! imp-has-indices]
builds imperative-name,

imperative-name ::= [imp-identifier !! imp-has-indices
"C" imp-indices + "," ")")

builds imperative-name,

% ---
'A binary expressions
% ---

289

imperative-addition ::= [imp-bin-exp-seq ++ "+"]
builds imperative-addition,

imperative-and ::= [imp-bin-exp-seq ++ "and"]

builds imperative-and,

imperative-concat ::= [imp-bin-exp-seq ++ "Ic"]

builds imperative-concat,

imperative-division ::= [imp-bin-exp-seq ++ "/"]
builds imperative-division,

imperative-equal ::= [imp-bin-exp-operand-1 "" imp-bin-exp-operand-2
builds imperative-equal,

imperative-exponent ::= [imp-bin-exp-operand-I "'" imp-bin-exp-operand-2)
builds imperative-exponent,

imperative-greater-than-or-equal ::= [imp-bin-exp-operand-i ">=" imp-bin-exp-operand-2)
builds imperative-greater-than-or-equal,

imperative-greater-than ::= [imp-bin-exp-operand-1 ">" imp-bin-exp-operand-2
builds imperative-greater-than,

imperative-less-than-or-equal ::= [imp-bin-exp-operand-I1 "<=" imp-bin-exp-operand-2]
builds imperative-less-than-or-equal,

imperative-less-than ::= [imp-bin-exp-operand-I "<" imp-bin-exp-operand-2]
builds imperative-less-than,

imperative-multiplication ::= [imp-bin-exp-seq 4+ "*"]

builds imperative-multiplication,

imperative-not-equal ::= [imp-bin-exp-operand-1 "1=" imp-bin-exp-operand-2)
builds imperative-not-equal,

imperative-or ::= [imp-bin-exp-seq ++ "or")
builds imperative-or,

imperative-subtraction ::= [imp-bin-exp-seq ++ "-")

builds imperative-subtraction,

% --
' unary expressions
' --

imperative-negate I="-" imp-unary-operand]
builds imperative-negate,

imperative-not ::= ["not" imp-unary-operand]
builds imperative-not,

imperative-null ::= ["]
builds imperative-null,

290

'A literals

imperative-literal-true ::= "true"
builds imperative-literal-true,

imperative-literal-false ::= "false"
builds imperative-literal-false,

imperative-literal-integer ::= imperative-literal-value

builds imperative-literal-integer,

imperative-literal-real ::= imperative-literal-value
builds imperative-literal-real,

imperative-literal-charstring ::= imperative-literal-value
builds imperative-literal-charstring,

imperative-literal-newline ::= "'1."
builds imperative-literal-newline,

%--
'A assignment
%--

imperative-assignment ::= [imp-assign-lhs ":=" imp-assign-rhs]
builds imperative-assignment,

'--
'A selection
'--

imperative-selection ::= ["if" imperative-exp "then"
imperative-then-part +

"else'

imperative-else-part + ";"

"endif"]
builds imperative-selection,

',---
'A iteration
%--

imperative-iteration ::= ["while" iter-exp "do"
["begin"

iter-body +
"end"]

I
builds imperative-iteration,

'A--
'A imperative subprograms
%--

imperative-procedure ::= ["procedure" imp-proc-identifier

291

"C" imp-proc-formals * "," ")"

["begin"
imp-proc-statements + I;"

"end"]

builds imperative-procedure,

imp-procedure-call [imp-proc-call-identifier
"" imp-proc-call-actuals * "," ")")

builds imp-procedure-call,

imperative-function ::= [imp-function-return-type "function" imp-func-identifier
"C" imp-func-formals * "," ")"

["begin"

imp-func-statements + ";"
"end"]

]
builds imperative-function,

imperative-function-call [imp-fun-call-identifier
"(" imp-fun-call-actuals * "," ")" J

builds imperative-function-call,

'--
'. output statements
'--

imperative-input ::= ["read" "C" imp-in-logical-file ","

imp-input-list + "," ")")
builds imperative-input,

imperative-output ::= ["write" "(" imp-out-logical-file ","

imp-output-list + "," ")")
builds imperative-output,

imperative-format-item ::= [imp-fmt-item
builds imperative-format-item,

imperative-format-item ::= [imp-fmt-item imp-fmt-format]
builds imperative-format-item,

imperative-format-integer ::= ["i" imp-format-width]
builds imperative-format-integer,

imperative-format-integer ["I" imp-format-width]
print-only,

imperative-format-decimal ["d" imp-format-width "." imp-decimal-part-width
builds imperative-format-decimal,

imperative-format-decimal ::=["D" imp-format-width '." imp-decimal-part-width)
print-only,

imperative-format-scientific ::= ["'e" imp-format-width]
builds imperative-format-scientific,

292

imperative-format-scientific ::= ["E" imp-format-width]
print-only,

imperative-format-string ::= ["s" imp-format-width I
builds imperative-format-string,

imperative-format-string ::= ["S" imp-format-width I
print-only

start-classes imperative-ast, imperative-subprogram

no-patterns

precedence

for imperative-expression brackets "C" matching ")"

(same-level "or" associativity left),
(same-level "and" associativity left),
(same-level "not" associativity right),

(same-level "<", "<=", "=", ">=1', "1>", "1/= associativity none),

(same-level "+", "-" associativity left),
(same-level "*", "I" associativity left),
(same-level "" associativity right)

end

293

Appendix B. The Generic Object-Oriented Language

B.1 Introduction

This appendix includes the surface syntax defined for the Generic Object-Oriented

Language (GOL'). This surface syntax is not intended for use as a forward-engineering

programming language, but as a user-friendly interface to the Generic Object-Oriented

Model (GOM) ASTs. Instead of printing each GOM AST and comparing the values of the

attributes of the AST, the GOL provides a short-hand view that is used to quickly and

easily view the attributes of a GOM AST.

The notation used to present the surface syntax is taken from the Software RefineryTM

Dialect tool [53]. Each production for producing surface syntax is presented using the fol-

lowing format:

<GOM object> : <surface syntax constructs>]

The left-hand-side of this production gives the GOM object for which this surface syntax

is defined, and the right-hand-side shows the sequence of constructs used to define the

surface syntax. This sequence can include attributes of the object or literal syntax tokens.

Optional constructs are enclosed in braces, i.e. { }. Sequences of constructs are indicated

by listing an attribute of the object followed by a star token (*) or plus token (+) followed

by the delimiter token. The star token indicates zero or more members of the sequence

and plus token indicates one or more members. For example, the surface syntax for GOM

GOM-Variable objects is shown below.

GOM-Variable ::= [gom-name H gom-has-indices

"(" gom-indices + "," ")"]
builds GOM-Variable,

This production means the surface syntax for an GOM-Variable is the value of the

gom-name attribute followed by any indices in the gom-indices attribute separated by

commas. The gom-has-indices attribute indicates whether or not this variable access

includes indices into an array.

1Pronounced "gal" as in "golf".

294

B.2 The Generic Object-Oriented Language

The productions that define the GOL grammar are presented below.

!in-package("RU")
Hin-grammarC'syntax)

grammar Generic-OO-Language

file-classes GOM-Design

productions

7. overall design class

GOM-Design :=[GOM-classes +""
builds GOM-design,

% 00 objects

GOM-Class :=["class" gom-nanie
["attributes" gom-attrs * I'l
[gom-opers * '"]
["superclass" gom-superl]

builds GOM-Class,

GOM-Instantiate ::="lnew" "C" gom-inst-class ""

builds GOM-Instantiate,

GOM-Method :=["method" gom-nane "C" [gom-params * ","1 "9)"

! gom-rtns-val
"begin"

[gom-stmts*
"end"]

builds GOM-Method,

GOM-Method :=["method" gom-nanle "C" [gom-params *"")

H! gom-rtns-val "1:" gom-return-type
"begin"

[gom-stmts 11* 1
"end"]

builds GOM-Method,

GOM-Message [gom-call "(I" gom-actuals*""""]
builds GOM-Message,

%j variables, attributes, and parameters

295

GOM-Variable :=[gain-name !!goin-has-indices]

builds GOM-Variable,

GOM-Variable ::[gain-name !gain-has-indices
"C" gai-indices +""")J

builds GOM-Variable,

GOM-Attribute ::- [gain-name ! gom-has-indices]
builds GOM-Attribute,

GOM-Attribute:= [gain-name H gai-has-indices
"C" gai-indices + ""')

builds GOM-Attribute,

GOM-Attr-Access:= [gom-tar-object "." gom-attrib I
builds GOM-Attr-Access,

GOM-Paranmeter :=[gain-name -!! gain-has-indices]
builds GOM-Parameter,

GOM-Parameter :-[gain-name H! gai-has-indices
"C" gai-indices + ""')

builds GOM-Parameter,

% data types

GOM-integer :=["integer"]
builds GOM-integer,

GOM-real :-["real"]l
builds GOM-real,

GOM-bolean ::="boalean"]
builds GOM-boole an,

GOM-character:= ["character"]
builds GOM-character,

GOM-string:= ["string"]
builds GOM-st ring,

% arrays

GOM-array ["= array"l "C" gai-array-dimensions*""""
"of" gai-array-element-type I

builds GOM-array,

GOM-index-type := [gai-index-lower-bound ". ." gain-index-upper-bound)
builds GOM-index-type,

'instances

GOM-instance ["a"l gai-instance-of I
builds GOM-instance,

296

binary expressions
% --

GOM-addition ::= [GOM-bin-exp-seq ++ "+"]
builds GOM-addition,

GOM-and ::= [GOM-bin-exp-seq ++ "and"]
builds GOM-and,

GOM-concat ::= [GOM-bin-exp-seq ++ "'"]
builds GOM-concat,

GOM-division ::= [GOM-bin-exp-seq ++ "/"]
builds GOM-division,

GOM-equal ::= GOM-bin-exp-operand-I GOM-bin-exp-operand-2]

builds GOM-equal,

GOM-exponent ::= GOM-bin-exp-operand-i "" GOM-bin-exp-operand-2]
builds GOM-exponent,

GOM-greater-than-or-equal ::= [GOM-bin-exp-operand-i ">"

GOM-bin-exp-operand-2]
builds GOM-greater-than-or-equal,

GOM-greater-than ::= [GOM-bin-exp-operand-i ">" GOM-bin-exp-operand-2]
builds GOM-greater-than,

GOM-less-than-or-equal ::= [GOM-bin-exp-operand-i "<"

GOM-bin-exp-operand-2)
builds GOM-less-than-or-equal,

GOM-less-than ::= [GOM-bin-exp-operand-I "<" GOM-bin-exp-operand-2]
builds GOM-less-than,

GOM-multiplication ::= [GOM-bin-exp-seq ++ "*"]

builds GOM-multiplication,

GOM-not-equal ::= [GOM-bin-exp-operand-1 "/=" GOM-bin-exp-operand-2
builds GOM-not-equal,

GOM-or ::= [GOM-bin-exp-seq ++ "or"]
builds GOM-or,

GOM-subtraction ::= GOM-bin-exp-seq ++ "-"]

builds GOM-subtraction,

%--
A unary expressions
% --

GOM-negate := '-" GOM-unary-operand)
builds GOM-negate,

297

GM-not ::= ["not" GOM-unary-operand)
builds GOM-not,

GOM-null ::= [" "]

builds GOM-null,

%--
'A literals
%'---

GOM-literal-true ::= "true"
builds GOM-literal-true,

GOM-literal-false ::= "false"
builds GOM-literal-false,

GOM-literal-integer ::= GOM-literal-value
builds GOM-literal-integer,

GOM-literal-real ::= GOM-literal-value
builds GOM-literal-real,

GOM-literal-charstring ::= GOM-literal-value
builds GOM-literal-charstring,

GOM-literal-newline ::= "' ,"
builds GOM-literal-newline,

' ---
'A assignment
%'---

GOM-assignment ::= [gom-assign-lhs ":=" gom-assign-rhs]
builds GOM-assignment,

' --
'A selection
' --

GOM-selection ::= ["if" gom-exp "then"
gom-then-part +

"else"
gom-else-part +

"endif")
builds GOM-selection,

% ---
'A iteration
' --

GOM-iteration ::= ["while" gom-iter-exp "do"
["begin"

gom-iter-body + ";"
"end"]

J
builds GUM-iteration,

298

% non-user-defined subprogram calls
%'-

GOM-function-call [gom-fun-call-identifier
"C" gom-fun-call-actuals * "," ")")

builds GOM-function-call,

GOM-procedure-call E gom-proc-call-identifier
"C" gom-proc-call-actuals * "," ")"]

builds GOM-procedure-call,

%--
' output statements

'--

GOM-input : (= ("read" "C" gom-in-logical-file ","

gom-input-list + "," ")"J
builds GOM-input,

GOM-output ::= ["write" "(" gom-out-logical-file ","

gom-output-list + "," ")")

builds GOM-output,

GDM-format-item ::= [gom-fmt-item

builds GOM-format-item,

GOM-format-item ::= [gom-fmt-item gom-fmt-format]
builds GOM-format-item,

GOM-format-integer ::= ["'i" gom-format-width J
builds GOM-format-integer,

GDM-format-integer ["'1" gom-format-width]
print-only,

GOM-format-decimal E1"'d" gom-format-width "." gom-decimal-part-width
builds GDM-format-decimal,

GOM-format-decimal ::= ["D" gom-format-width "." gom-decimal-part-width]

print-only,

GDM-format-scientific ::= ["e" gom-format-width)
builds GOM-format-scientific,

GOM-format-scientific ::= E"E" gom-format-width J
print-only,

GDM-format-string ::= "'s" gom-format-width)
builds GOM-format-string,

GOM-format-string ::= ["S" gom-format-width J
print-only

start-classes GOM-Design, GOM-Class

299

no-patterns

precedence

for GOM-expression brackets "C" matching 19'

(same-level "or" associativity left),
(same-level "and" associativity left),
(same-level "not" associativity right),
(same-level "&" associativity right),

(same-level 1,'<=", '"=1, ",>=', "'>"1, /="' associativity none),

(same-level '+", "-" associativity left),
(same-level "*", "I" associativity left),
(same-level "'" associativity left)

end

300

Appendix C. Nested If Proof

Prove:

wp(if B1 then S elsif B 2 then S2 else S3, R) 4

wp(if B1 then S else (if B 2 then S2 else S3), R)

Proof:

wp(if B1 then S elsif B 2 then S2 else S3, R) €

(B1 == wp(Si, R)) A

((-1 B 1 A B 2) ==> wp(S 2, R)) A
((- B 1 A - B 2) ==* wp(S3, R)) ,

(B1 ==* wp(S1, R)) A
(- (B1 V - B 2) =#> wp(S2, R)) A
(-" (B1 V B 2) ==* wp(S 3 , R)) €

(B 1 ==> wp(Si, R)) A
((B 1 V - B 2) V wp(S2, R)) A

((B 1 V B 2) V wp(S 3, R)) €

(BI ==> wp(Sl, R)) A
(B V (-1 B2 V wp(S2, R))) A

(B1 V (B2 V wp(S3, R))) <*

(B1 =* wp(Si, R)) A
(B1 V ((-- B 2 V wp(S 2 , R)) A (B 2 V wp(S3, R)))) <*

(B1 === wp(S1, R)) A
(B 1 V ((B 2 === wp(S 2 , R)) A (-, B 2 ==> wp(S 3 , R)))) 4

(B1 => wp(Si, R)) A
(- B 1 == ((B 2 ==> wp(S2, R)) A (-, B 2 = wp(S 3, R)))) #=

(B 1 ,= wp(S1 , R)) A

(-i B 1 == wp(if B 2 then S2 else S3, R)) <=

wp(if B1 then S1 else (if B 2 then S2 else S3), R) =

Q.E.D.

301

Appendix D. Parameter Transformation Proof

D. 1 Introduction

This appendix explains how to convert a procedure that has at least one parameter

that is both an input parameter and an output parameter into a procedure with parameters

that are either input only or output only.

D.2 New Procedure Definition

Because of the importance of the distinction between input and output parameters

when converting the GIM to the GOM, parameters that are both input and output param-

eters require special processing. A new vector of output parameters is used to represent

the "output" aspect of the input/output parameters. The original parameters are assumed

to be input only and the new output parameters hold the new values returned from a pro-

cedure call. These new values are stored in the original data items by using an assignment

statement after the call to the procedure.

Let 9out represent the vector of output parameters needed to represent the "output"

aspect of the input/output parameters in Y. Let PYo4 represent the precondition P with

all occurrences of the parameters in 9 replaced by the parameters in Yout. Let bodyyo

represent the body of procedure p, with all occurrences of the parameters in 9 replaced by

the parameters in Yout. Using these definitions, a new procedure p' is built that accepts

the new output parameter gout.

procedure pl(., Y, gout, 2)

{P}
gout := 9;

bodygo~t

{R}

The body of p' includes as its first statement an assignment statement to assign all

the output parameters in 9out the initial values of Y. All references to 9 in the original

302

body of procedure p (and the precondition P) have been replaced by references to out to

create the rest of the body of the procedure p'.

If the precondition and the postcondition for p' are the same as the precondition and

the postcondition for p, then the semantics of p' are the same as that of p, i.e. the two

procedure definitions are equivalent. The proof of this is shown below.

Proof. 1. The postcondition R is given as the postcondition for both p and p'.

2. All references to 9 are replaced by references to gout in both body and P for p', thus

RoY is the precondition for body-
1/out 1/out,

3. wp(qout := P, Po) = (Pq-
)o-t = P, thus the precondition for p' is P.

4. Since the precondition and postcondition are the same for p and p', the semantics

for these two procedure definitions are the same.

D.3 New Procedure Call

Let bout represent a vector of output parameters that represent the "output" aspect

of the input/output parameters in b. The invocation of the new procedure p' has the form

p'(6, L) Lout,);

L:= Lout

The original b parameters are used as input only parameters. The new bout vector

holds the output parameters and these new values are stored back into the b parameters

after the call to p' using an assignment statement. Each call to p, is now followed by such

an assignment statement.

Let body' represent the body of statements from procedure p'. The execution of a

call to procedure p' is equivalent to

303

body';
bout := gou;

This sequence clearly shows how the new output parameters in bout are set to the

values in the parameters gout returned from the procedure p'.

Let 0' represent the execution of p. The semantics for this procedure call are defined

as

Wp~'(1) out)jR)= wp(1',R)

The assignment statement following the procedure call is required in order to maintain the

semantics of the original procedure call. Thus, it is more proper to define the semantics

for the new form of procedure call as

wp(p'(d, bout,); b:= bout,R) = wp(P', wp(b := bout,R))

In order to prove that the addition of the new vectors Pout and bout is correct, it must

be proven that the new form of the procedure call maintains the semantics of the original

procedure call. Specifically, it must be proven that the following is true.

wp(p(d, b,), R) * wp(p'(d, b, bou,); := bou, R)

The proof is shown below.

304

Proof.

* wp(5t:= d; V:= b; body; b:= y; c := 2, R)

<* wp(wp(2, := a, wp(g:= b, wp(body, wp(b:= y, wp(:=, R))))))

wp(:=ia; y := b; got := g; body~o; Lout := gout; b:= Lout; :=, R)

Swp(2 :a; y :b; body'; bout gout; E:= 2, RL)

wp(:a; y :b; body'; bout gout; E:= 2, wp(b bout, R))

* wp(p'(, b, bout,); b:= bot,R)

305

Appendix E. BMDSIM Conversion

Transcript Converting "BMDSIM1" to the GIM...

This appendix shows the complete transcript Warning: Make sure STOP statement is

of the conversion of the 53 BMDSIM subpro- last statement in main program

grams from FORTRAN to the GIM. Checking transformation completeness...

The transformation was complete.
.> (rfu::test-conversion) Total number of tree nodes: 2084
Not re-loading analysis... Number of untransformed nodes: 0

Percentage of AST transformed: 100.0%
Converting "ANG" to the GIM... Saving to pob...
No side effects in this function. Saving AST and Symbol Table in file
Checking transformation completeness... Saving surface syntax in file

The transformation was complete. Converting "BOOSTR" to the GIM...
Total number of tree nodes: 60 Checking transformation completeness...
Number of untransformed nodes: 0
Percentage of AST transformed: 100.0% The transformation was complete.
Saving to pob... Total number of tree nodes: 338
Saving AST and Symbol Table in file Number of untransformed nodes: 0
Saving surface syntax in file Percentage of AST transformed: 100.0%

Saving to pob...
Converting "ANGLE" to the GIM... Saving AST and Symbol Table in file
No side effects in this function. Saving surface syntax in file

Checking transformation completeness...
Converting "BOSTIT" to the GIM...

The transformation was complete. Checking transformation completeness...
Total number of tree nodes: 92
Number of untransformed nodes: 0 The transformation was complete.
Percentage of AST transformed: 100.0% Total number of tree nodes: 559
Saving to pob... Number of untransformed nodes: 0
Saving AST and Symbol Table in file Percentage of AST transformed: 100.0%
Saving surface syntax in file Saving to pob...

Saving AST and Symbol Table in file
Converting "ASSIGN" to the GIM... Saving surface syntax in file
Checking transformation completeness...

Converting "BOUNCE" to the GIM...
The transformation was complete. No side effects in this function.
Total number of tree nodes: 609 Checking transformation completeness...
Number of untransformed nodes: 0
Percentage of AST transformed: 100.0% The transformation was complete.
Saving to pob... Total number of tree nodes: 71
Saving AST and Symbol Table in file Number of untransformed nodes: 0
Saving surface syntax in file Percentage of AST transformed: 100.0%

Saving to pob...
Saving AST and Symbol Table in file
Saving surface syntax in file

306

Converting "CAPTURE" to the GIM... Converting "DASET" to the GIM...
No side effects in this function. Checking transformation completeness...
Checking transformation completeness...

The transformation was complete.The transformation was complete. Total number of tree nodes: 169

Total number of tree nodes: 82 Number of untransformed nodes: 0

Number of untransformed nodes: 0 Per of Atransformed:100.0%

Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%

Saving to pob... Saving to pob...

Saving AST and Symbol Table in file Saving AST and Symbol Table in file

Saving surface syntax in file Saving surface syntax in file

Converting "CROSS" to the GIM... Converting "DOT" to the GIM...

Checking transformation completeness... No side effects in this function.
Checking transformation completeness...

The transformation was complete. The transformation was complete.
Total number of tree nodes: 86
Number of untransformed nodes: 0 Number of tr e nodes: Number of untransformed nodes: 0
Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%
Saving to pob...
Saving AST and Symbol Table in file Saving to pob...Saving AST and Symbol Table in file
Saving surface syntax in file Saving surface syntax in file

Converting "CSP" to the GIM... Converting "KEP" to the GIM...
Checking transformation completeness... Checking transformation completeness...

The transformation was complete. The transformation was complete.
Total number of tree nodes: 529 Total number of tree nodes: 102
Number of untransformed nodes: 0 Number of untransformed nodes: 0
Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%
Saving to pob...
Saving AST and Symbol Table in file Saving to pob...Saving AST and Symbol Table in file
Saving surface syntax in file Saving surface syntax in file

Converting "CUV" to the GIM... Converting "LASP" to the GIM...
No side effects in this function. Checking transformation completeness...
Checking transformation completeness...

The transformation was complete.
The transformation was complete. Total number of tree nodes: 64

Total number of tree nodes: 85

Number of untransformed nodes: 0 Number of untransformed nodes: 0

Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%

Saving to pob... Saving to pob...

Saving AST and Symbol Table in file Saving AST and Symbol Table in file

Saving surface syntax in file Saving surface syntax in file

307

Converting "LNKCAL" to the GIM... Converting "MAXA" to the GIM...
Checking transformation completeness... Checking transformation completeness...

The transformation was complete. The transformation was complete.
Total number of tree nodes: 703 Total number of tree nodes: 62
Number of untransformed nodes: 0 Number of untransformed nodes: 0
Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%
Saving to pob... Saving to pob...
Saving AST and Symbol Table in file Saving AST and Symbol Table in file
Saving surface syntax in file Saving surface syntax in file

Converting "LNKCK" to the GIM... Converting "MIRGEO" to the GIM...
Checking transformation completeness... Checking transformation completeness...

The transformation was complete. The transformation was complete.
Total number of tree nodes: 178 Total number of tree nodes: 348
Number of untransformed nodes: 0 Number of untransformed nodes: 0
Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%
Saving to pob... Saving to pob...
Saving AST and Symbol Table in file Saving AST and Symbol Table in file
Saving surface syntax in file Saving surface syntax in file

Converting "LNKORD" to the GIM... Converting "MIRVIS" to the GIM...
Checking transformation completeness... Checking transformation completeness...

The transformation was complete. The transformation was complete.
Total number of tree nodes: 316 Total number of tree nodes: 357
Number of untransformed nodes: 0 Number of untransformed nodes: 0
Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%
Saving to pob... Saving to pob...
Saving AST and Symbol Table in file Saving AST and Symbol Table in file
Saving surface syntax in file Saving surface syntax in file

Converting "MAT" to the GIM... Converting "MTM2" to the GIM...
Checking transformation completeness... Checking transformation completeness...

The transformation was complete. The transformation was complete.
Total number of tree nodes: 149 Total number of tree nodes: 65
Number of untransformed nodes: 0 Number of untransformed nodes: 0
Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%
Saving to pob... Saving to pob...
Saving AST and Symbol Table in file Saving AST and Symbol Table in file
Saving surface syntax in file Saving surface syntax in file

308

Converting "PKILL" to the GIM...
Converting "MTM3" to the GIM... No side effects in this function.
Checking transformation completeness... Checking transformation completeness...

The transformation was complete. The transformation was complete.
Total number of tree nodes: 75 Total number of tree nodes: 63
Number of untransformed nodes: 0 Number of untransformed nodes: 0
Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%
Saving to pob... Saving to pob...
Saving AST and Symbol Table in file Saving AST and Symbol Table in file
Saving surface syntax in file Saving surface syntax in file

Converting "MTPD" to the GIM... Converting "POSVEC" to the GIM...
Checking transformation completeness... Checking transformation completeness...

The transformation was complete. The transformation was complete.
Total number of tree nodes: 84 Total number of tree nodes: 85
Number of untransformed nodes: 0 Number of untransformed nodes: 0
Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%
Saving to pob... Saving to pob...
Saving AST and Symbol Table in file Saving AST and Symbol Table in file
Saving surface syntax in file Saving surface syntax in file

Converting "MTRT" to the GIM... Converting "POSVECS" to the GIM...
Checking transformation completeness... Checking transformation completeness...

The transformation was complete. The transformation was complete.
Total number of tree nodes: 71 Total number of tree nodes: 85
Number of untransformed nodes: 0 Number of untransformed nodes: 0
Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%
Saving to pob... Saving to pob...
Saving AST and Symbol Table in file Saving AST and Symbol Table in file
Saving surface syntax in file Saving surface syntax in file

Converting "ORBEL" to the GIM... Converting "PRDIV" to the GIM...
Checking transformation completeness... No side effects in this function.

Checking transformation completeness...
The transformation was complete.
Total number of tree nodes: 377 The transformation was complete.
Number of untransformed nodes: 0 Total number of tree nodes: 58
Percentage of AST transformed: 100.0% Number of untransformed nodes: 0
Saving to pob... Percentage of AST transformed: 100.0%
Saving AST and Symbol Table in file Saving to pob...
Saving surface syntax in file Saving AST and Symbol Table in file

Saving surface syntax in file

309

Converting "RADIUS" to the GIM... Converting "RRBVIS" to the GIM...
No side effects in this function. Checking transformation completeness...
Checking transformation completeness...

The transformation was complete.The transformation was complete. Total number of tree nodes: 419

Total number of tree nodes: 84 Number of untransformed nodes: 0
Number of untransformed nodes: 0 Per of Atransformed:100.0%

Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%

Saving to pob... Saving to pob...

Saving AST and Symbol Table in file Saving AST and Symbol Table in file

Saving surface syntax in file Saving surface syntax in file

Converting "RAND" to the GIM... Converting "RRPVIS" to the GIM...

Checking transformation completeness... Checking transformation completeness...

The transformation was complete. The transformation was complete.Thetansformaton wase ompleteTotal number of tree nodes: 201
TNumber of trn e nodes: 0 Number of untransformed nodes: 0
Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%

Saving to pob... Saving to pob...

Saving AST and Symbol Table in file Saving AST and Symbol Table in file

Saving surface syntax in file Saving surface syntax in file

Converting "RELAY" to the GIM... Converting "RTAN" to the GIM...Conering ra Y"mton c eth e n... No side effects in this function.
Checking transformation completeness... Checking transformation completeness...

The transformation was complete. The transformation was complete.
Total number of tree nodes: 459 Totansformo wr s noete.
Number of untransformed nodes: 0 number of tree nodes: 41NNumber of untransformed nodes: 0
Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%
Saving to pob... Saving o A tn r :0
Saving AST and Symbol Table in file Saving to pob...
Saving surface syntax in file Saving surface syntax in file

Converting "RHO" to the GIM... Converting "SBMIT" to the GIM...
No side effects in this function. Checking transformation completeness...
Checking transformation completeness...

The transformation was complete. The transformation was complete.
Total number of tree nodes: 22 Total number of tree nodes: 195TNumber of trn e nodes: 2 Number of untransformed nodes: 0
Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%

Saving to pob... Saving to pob...

Saving AST and Symbol Table in file Saving AST and Symbol Table in file

Saving surface syntax in file Saving surface syntax in file

310

Converting "SBMLOC" to the GIM... Converting "SUV" to the GIM...
Checking transformation completeness... No side effects in this function.

Checking transformation completeness...
The transformation was complete.
Total number of tree nodes: 77 The transformation was complete.
Number of untransformed nodes: 0 Total number of tree nodes: 80
Percentage of AST transformed: 100.0% Number of untransformed nodes: 0
Saving to pob... Percentage of AST transformed: 100.0%
Saving AST and Symbol Table in file Saving to pob...
Saving surface syntax in file Saving AST and Symbol Table in file

Saving surface syntax in file
Converting "SBMPOS" to the GIM...
Checking transformation completeness... Converting "TFBT" to the GIM...

Checking transformation completeness...
The transformation was complete.
Total number of tree nodes: 167 The transformation was complete.
Number of untransformed nodes: 0 Total number of tree nodes: 94
Percentage of AST transformed: 100.0% Number of untransformed nodes: 0
Saving to pob... Percentage of AST transformed: 100.0%
Saving AST and Symbol Table in file Saving to pob...
Saving surface syntax in file Saving AST and Symbol Table in file

Saving surface syntax in file
Converting "SELECL" to the GIM...
Checking transformation completeness... Converting "TPANG" to the GIM...

Checking transformation completeness...
The transformation was complete.
Total number of tree nodes: 325 The transformation was complete.
Number of untransformed nodes: 0 Total number of tree nodes: 162
Percentage of AST transformed: 100.0% Number of untransformed nodes: 0
Saving to pob... Percentage of AST transformed: 100.0%
Saving AST and Symbol Table in file Saving to pob...
Saving surface syntax in file Saving AST and Symbol Table in file

Saving surface syntax in file
Converting "SGN" to the GIM...
No side effects in this function. Converting "TRAJ" to the GIM...
Checking transformation completeness... Checking transformation completeness...

The transformation was complete. The transformation was complete.
Total number of tree nodes: 19 Total number of tree nodes: 217
Number of untransformed nodes: 0 Number of untransformed nodes: 0
Percentage of AST transformed: 100.0% Percentage of AST transformed: 100.0%
Saving to pob... Saving to pob...
Saving AST and Symbol Table in file Saving AST and Symbol Table in file
Saving surface syntax in file Saving surface syntax in file

311

Converting "UNIT" to the GIM...
Checking transformation completeness...

The transformation was complete.
Total number of tree nodes: 47
Number of untransformed nodes: 0
Percentage of AST transformed: 100.0%
Saving to pob...
Saving AST and Symbol Table in file
Saving surface syntax in file

Converting "VISCK" to the GIM...
Converting "UPLREQ" to the GIM... Checking transformation completeness...
No side effects in this function.
Checking transformation completeness... The transformation was complete.

Total number of tree nodes: 164
The transformation was complete. Number of untransformed nodes: 0
Total number of tree nodes: 67 Percentage of AST transformed: 100.0%
Number of untransformed nodes: 0 Saving to pob...
Percentage of AST transformed: 100.0% Saving AST and Symbol Table in file
Saving to pob... Saving surface syntax in file
Saving AST and Symbol Table in file
Saving surface syntax in file Converting "VMAG" to the GIM...

No side effects in this function.
Converting "UPTRNS" to the GIM... Checking transformation completeness...
No side effects in this function.
Checking transformation completeness... The transformation was complete.

Total number of tree nodes: 37
The transformation was complete. Number of untransformed nodes: 0
Total number of tree nodes: 384 Percentage of AST transformed: 100.0%
Number of untransformed nodes: 0 Saving to pob...
Percentage of AST transformed: 100.0% Saving AST and Symbol Table in file
Saving to pob... Saving surface syntax in file
Saving AST and Symbol Table in file
Saving surface syntax in file Overall number of nodes in analysis: 11451.0

Overall number of untransformed nodes: 0.0
Converting "VADD" to the GIM... Percentage of analysis transformed: 100.0%
Checking transformation completeness...

The transformation was complete.
Total number of tree nodes: 81
Number of untransformed nodes: 0
Percentage of AST transformed: 100.0%
Saving to pob...
Saving AST and Symbol Table in file
Saving surface syntax in file

312

Appendix F. Mapping GIM Entities to the GOM

Figures 207 through 214 show the mappings between GIM entities and GOM entities. The

transformations are shown in an abbreviated format where the GIM entity on the left-

hand-side of the transformation is converted into the GOM entity on the right-hand-side.

These transformations are straightforward given the description of the GIM in Chapter III

and the description of the GOM in Chapter IV.

imperative-assignment - gom-assignment

imperative-selection - gom-selection

imperative-iteration - gom-iteration

Figure 207 Control Flow Constructs

imp-subprogram-call -* gom-procedure-call

imperative-function-call - gom-function-call

imp-subprogram-call -u gom-message

imperative-function-call -- gom-message

Figure 208 Subprogram Calls

imperative-variable - gom-variable

imperative-name -* gom-variable

Figure 209 Data Storage Constructs

313

imperative-integer -* gom-integer

imperative-real -* gom-real

imperative-boolean - gom-boolean

imperative-character - gom-character

imperative-string - gom-string

imperative-array - gom-array

imperative-index-type -* gom-index-type

Figure 210 Data Type Classes

imperative-literal-boolean - gom-literal-boolean

imperative-literal-integer - gom-literal-integer

imperative-literal-real - gom-literal-real

imperative-literal-charstring -* gom-literal-charstring

imp erative-literal-newline - gom-literal-newline

Figure 211 Literals

314

imperative-addition - gom-addition

imperative-and - gom-and

imperative-concat - gom-concat

imperative-division - gom-division

imperative-equal - gom-equal

imperative-exponent - gom-exponent

imperative-greater-than-or-equal - gom-greater-than-or-equal

imperative-greater-than - gom-greater-than

imperative-less-than-or-equal - gor-less-than-or-equal

imperative-less-than - gom-less-than

imperative-multiplication - gom-multiplication

imperative-not-equal - gom-not-equal

imperative-or - gom-or

imperative-subtraction - gom-subtraction

Figure 212 Binary Expressions

imperative-negate -- gom-negate

imperative-not -- gom-not

imperative-null - gom-null

Figure 213 Unary Expressions

imperative-file -- gom-file

imperative-input - gom-input

imperative-output - gom-output

imperative-format - gom-format

Figure 214 Input and Output

315

Bibliography

1. Achee, B.L. and Doris L. Carver. "A Greedy Approach to Object Indentification in
Imperative Code." 3rd Workshop on Program Comprehension. 4-11. November 1994.
7 May 97.

2. Aho, Alfred V., et al. Compilers: Principles, Techniques, and Tools (2nd Edition).
Reading, MA: Addison Wesley, 1988.

3. Barnes, J. G. P. Programming in Ada. Wokingham, England: Addison-Wesley, 1994.

4. Biggerstaff, T. J., et al. "Program Understanding and the Concept Assignment Prob-
lem," Communications of the ACM, 37(5):72-82 (May 1994).

5. Biggerstaff, Ted J. "Design Recovery for Maintenance and Reuse," IEEE Computer,
36-49 (Jul 1989).

6. Biggerstaff, Ted J., et al. "The Concept Assignment Problem in Program Understand-
ing." Proceedings of the 15th International Conference on Software Engineering, edited
by Edna Straub. 483-498. Los Alamitos, CA: IEEE Computer Society Press, May
17-21 1993.

7. Blaha, Michael and William Premerlani. "A Catalog of Object Model Transforma-
tions." Proceedings of the Third Working Conference on Reverse Engineering. 87-96.
Nov 1996.

8. Boehm, Barry W. Software Engineering Economics. Prentice Hall, 1981.

9. Booch, Grady. Object-Oriented Analysis and Design (2nd Edition). Redwood City,
CA: The Benjamin/Cummings Publishing Company, Inc., 1994.

10. Booch, Grady and James Rumbaugh. Unified Method (0.8 Edition). Rational Software
Corporation, 280 San Tomas Expressway, 1995.

11. Budd, Timothy. Object-Oriented Programming. Reading, MA: Addison-Wesley, 1991.

12. Byrne, Eric J. "A conceptual foundation for software re-engineering." Proceedings of
the International Conference on Software Maintenance. 216-235. IEEE Computer
Society Press, Nov 1992.

13. Chikofsky, Elliot and James Cross. "Reverse Engineering and Design Recovery: A
Taxonomy," IEEE Software, 7(1):13-17 (Jan 1990).

14. Choi, Song C. and Walt Scacchi. "Extracting and Restructuring the Design of Large
Systems," IEEE Software, 7(1):66-71 (Jan 1990).

15. DeLoach, Scott. Appendix A: Generic OMT Abstract Syntax Tree. PhD dissertation,
Air Force Institute of Technology, Dayton, OH, Jun 1995.

16. Dershem, Herbert L. and Michael J Jipping. Programming Languages: Structures and
Models. Boston, MA: PWS Publishing Co, 1993.

316

17. Detienne, F. and E. Soloway. "An Empirically-Derive Control Struture for the Pro-
cess of Program Understanding," International Journal of Man-Machine Studies,
33(3):323-342 (1990).

18. Dijkstra, E. W. A Discipline of Programming. Prentice-Hall, 1976.

19. Dromey, Geoff. Program Derivation: The Development of Programs from Specifica-
tions. Sydney, Australia: Addison Wesley, 1989.

20. Ferrante, J., et al. "The Program Dependence Graph and Its Use in Optimization,"
A CM Transactions on Programming Languages and Systems, 9(3):319-349 (Jul 1987).

21. Gall, Harald and Ren6 Kl6sch. "Finding Objects in Procedural Programs: An Alter-
native Approach." In Wills et al. [78], 208-216.

22. Gallagher, Keith B. and James R. Lyle. "Using Program Slicing in Software Mainte-
nance," Transactions on Software Engineering, 17(8):751-761 (Aug 1991).

23. Ghezzi, Carlo and Mehdi Jazayeri. Programming Language Concepts. New York: John
Wiley and Sons, 1982.

24. Grassman, Winfried Karl and Jean-Paul Tremblay. Logic and Discrete Mathematics.
Upper Saddle River, New Jersey: Prentice Hall, 1996.

25. Gries, David. The Science of Programming. Springer-Verlag, 1981.

26. Harandi, Mehdi T. and Jim Q. Ning. "Knowledge-Based Program Analysis," IEEE
Software, 7(1):74-81 (Jan 1990).

27. Harris, David R., et al. "Recognizers for Extracting Architectural Features from Source
Code." In Wills et al. [78], 252-261.

28. Hartman, John. Automatic Control Understanding for Natural Programs. PhD disser-
tation, University of Texas at Austin, Technical Report AI 91-161, 1991.

29. Hausler, Philip A. and Mark G. Pleszkoch. "Using Function Abstraction to Understand
Program Behavior," IEEE Software, 7(1):55-63 (Jan 1990).

30. Horwitz, S., et al. "Interprocedural Slicing Using Dependence Graphs." Proceedings
of the A CM SIGPLAN 88, Conference on Programming Language Design and Imple-
mentation. 35-46. Jun 1988.

31. Hutchens, D. H. and V. R. Basili. "System Structure Analysis: Clustering with
Data Bindings," IEEE Transactions on Software Engineering, SE-11 (8):749-757 (Aug
1985).

32. Jacobson, Ivar. Object-Oriented Software Engineering. Wokingham, England:
Addison-Wesley, 1992.

33. Jacobson, Ivar and Fredrik Lindstr~m. "Re-engineering Old Systems to an Object-
Oriented Architecture." OOPSLA Proceedings. 340-350. 1991.

34. Johnson, W. Lewis and Ali Erdem. "Interactive Explanation of Software Systems."
Proceedings of the 10th Knowledge-Based Software Engineering Conference. 1995.

317

35. Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language. Prentice
Hall, 1988.

36. Kirkpatrick, Wally. A Method for Improving Technology Research and Develop-
ment Decisions Regarding BMD and ASAT. DESE Research and Engineering, Inc.,
Huntsville, AL, July 1985. 14 July 97.

37. Knuth, Donald E. "Structured Programming with go to Statements," Computing
Surveys, 6(4):262-301 (Dec 1974).

38. Korson, Tim and John D. McGregor. "Object-Oriented: A Unifying Paradigm," Com-
munications of the ACM, 33(9):40-60 (Sep 1990).

39. Kozaczynski, W., et al. "Program Concept Recognition and Transformation," Trans-
actions of Software Engineering, 18(12):1065-1075 (Dec 1992).

40. Letovsky, S. and E. Soloway. "Delocalized Plans and Program Comprehension," IEEE
Software, 3(3):41-48 (May 1986).

41. Letovsky, Stanley. Plan analysis of programs. PhD dissertation, Yale University, Dec
1988.

42. Liu, S. S. and N. Wilde. "Identifying Objects in a Conventional Procedural Language:
An Example of Data Design Recovery." Proceedings of the Conference on Software
Maintenance. 266-271. Nov 1990.

43. Livadas, Panos E. and Theodore Johnson. A New Approach to Finding Objects in
Programs. Technical Report SERC-TR-63-F, University of Florida, Jun 1993.

44. Lowry, Michael R. and Robert D. McCartney, editors. Automating Software Design,
1. Menlo Park, CA: AAAI Press / The MIT Press, 1991.

45. Lutsky, Patricia. "Automating Testing by Reverse Engineering of Software Documen-
tation." In Wills et al. [78], 8-12.

46. MacLane, Saunders and Garrett Birkhoff. Algebra (Third Edition). New York, NY:
Chelsea Publishing Company, 1993.

47. Newcomb, Phillip. "Re-engineering Procedural into Object-Oriented Systems." In
Wills et al. [78], 237-251.

48. Ning, J. Q., et al. "Automated Support for Legacy Code Understanding," Communi-
cations of the ACM, 37(5):50-57 (May 1994).

49. Olsem, Michael R. and Chris Sittenauer. Reengineering Technology Report. Technical
Report Vol 1, Hill AFB, UT: Software Technology Support Center, Aug 1993. 17 Jul
97.

50. Ong, C. L. and W. T. Tsai. "Class and Object Extraction from Imperative Code,"
Journal of Object-Oriented Programming, 6(1):58-68 (Mar 1993).

51. Quilici, Alex. "A Memory-Based Approach to Recognizing Programming Plans," Com-
munications of the ACM, 37(5):84-93 (May 1994).

318

52. Quilici, Alex and David N. Chin. "DECODE: A Cooperative Environment for Reverse-
Engineering Legacy Software." In Wills et al. [78], 156-165.

53. Reasoning Systems Inc, Palo Alto, CA. DIALECT User's Guide, July 1989.

54. Reasoning Systems Inc, Palo Alto, CA. REFINE User's Guide, May 1990.

55. Reasoning Systems Inc, Palo Alto, CA. REFINE/FORTRAN User's Guide, March
1994.

56. Reubenstein, Howard B. and Richard C. Waters. "The Requirements Apprentice:
Automated Assistance for Requirements Acquisition," IEEE Trans on Software Engi-
neering, 17(3):226-240 (Mar 1991).

57. Rich, Charles. "A Formal Representation for Plans in the Programmer's Apprentice."
Proceedings of the 7th International Joint Conference on Artificial Intelligence, edited
by Michael L. Brodie, et al. 1044-1052. New York: Springer-Verlag, Aug 1981.

58. Rich, Charles and Yishai A. Feldman. "Seven Layers of Knowledge Representation
and Reasoning in Support of Software Development," IEEE Trans on Software Engi-
neering, 18(6):451-469 (Jun 1992).

59. Rich, Charles and Richard Waters. "The Programmer's Apprentice: A Research
Overview," IEEE Computer, 10-25 (Nov 1988).

60. Rich, Charles and Linda M. Wills. "Recognizing a Program's Design: A Graph-Parsing
Approach," IEEE Software, 7(1):82-89 (Jan 1990).

61. Rugaber, Spencer. White Paper on Reverse Engineering. Technical Report, Atlanta,
GA: Georgia Institute of Technology, Mar 1994.

62. Rumbaugh, James and Michael Blaha. Object-Oriented Modeling and Design. New
Jersey: Prentice-Hall, Inc., 1991.

63. Shlaer, S. and S. J. Mellor. Object Lifecycles - Modeling the World in States. Engle-
wood, Cliffs: Yourdon Press, 1992.

64. Shooman, Martin L. Software Engineering. McGraw Hill Book Company, 1983.

65. Smith, Douglas R. "KIDS: A Semiautomatic Program Development System," IEEE
Transactions on Software Engineering, 16(9):1024-1043 (Sep 1990).

66. Smith, Douglas R. Classification Approach to Design. Technical Report KES.U.93.4,
3260 Hillview Ave: Kestrel Institute, Nov 1993.

67. Sneed, H. "Migration of Procedurally Oriented COBOL Programs in an Object-
Oriented Architecture." Proceedings of the Conference on Software Maintenance. 105-
116. Nov 1992.

68. Sneed, Harry M. and Erika Nyiry. "Extracting Object-Oriented Specifications from
Procedurally Oriented Programs." In Wills et al. [78], 217-226.

69. Soloway, E. and K. Erdlich. "Empirical Studies of Programming Knowledge," IEEE
Transactions on Software Engineering, 10(5):595-609 (1984).

319

70. Soloway, Elliot and W. Lewis Johnson. "PROUST: Knowledge-Based Program Un-
derstanding," IEEE Transactions on Software Engineering, SE-11(3):267-275 (Mar
1985).

71. Stroustrup, Bjarne. The C++ Programming Language. ATT Bell Labs, New Jersey,
Jul 1987.

72. Tennent, R. D. Principles of Programming Languages. New York: Prentice-Hall, 1981.

73. Tiemens, Tim. Cognitive Models of Program Comprehension. Technical Report, Soft-
ware Engineering Research Center, Georgia Tech, Dec 1989.

74. Waters, Richard C. "The Programmer's Apprentice: A Session with KBEmacs," IEEE
Transaction on Software Engineering, 11(11):1296-1320 (Nov 1981).

75. Waters, Richard C. "Program Translation via Abstraction and Reimplementation,"
IEEE Transactions on Software Engineering, 14 (8):1207-1228 (Aug 1988).

76. Weiser, M. "Program Slicing," IEEE Transactions on Software Engineering, SE-
10(4):352-357 (Jul 1984).

77. Wilde, N., et al. "Dependency Analysis Tools: Reusable Components for Software
Maintenance." Proceedings of the Conference on Software Maintenance. 126-131. Oct
1989.

78. Wills, Linda, et al., editors. Second Working Conference on Reverse Engineering, Los
Alamitos, CA: IEEE Computer Society Press, Jul 1995.

79. Yeh, Alexander S., et al. "Recovering Abstract Data Types and Object Instances from
a Conventional Procedural Language." In Wills et al. [78], 227-236.

320

Vit~a

M~ajo:r Ricky F Sward ______ gl~ut'f~

Owc Sahmlitatorim i of Lyiville-Sully High School in Mlay 1981. In May 1985 lie reVCived

a Biachlelor of Science degree in Computer Science from Iowa State University. Major

Swvard was a Distinguished Graduate of the Iowa State University R.OTC programi. His

fii'!t assignmenwft was to the- Missile Warning Directorate at HQ Strategic Air Commiand

in Oinaha, NE. W~hile in Omaqha,

Major Sward was then selected to attend an AFlT/Cl degree p)rograml at the University

of Colorado, Boulder. He received a Master of Science degree! in Informnation Systems and

a Mkaster of Science degee in Compifter Scieuce in Jul 1991. Major Sward was aissignled to

the USAF Academy as an Instructor in the Computer Science department. Iu May 1994

Major Sward received the Outstanding Academ-y Educator award, w~hich is given to the top

]nlSt.Tuctor in each department. In Sep 1994, Major Sward reported to Wright-Patterson.

AFB to enter the PhD programn. Upon graduiation, Major Sward will return to the USAF

Acade-my as: an As-istant Professor in tbe Computer Science department.

321

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I September 1997 Doctoral Dissertation
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Extracting Functionally Equivalent Object-Oriented Designs from Legacy Imperative
Code.

6. AUTHOR(S)
Ricky E. Sward, Major, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology REPORT NUMBER

2750 P St AFIT/DSIENG/97-04
WPAFB, OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Mr Douglas A. White AGENCY REPORT NUMBER

Rome Lab/C3CB
525 Brooks St
Rome, NY 13441-4505

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

This research defines a methodology for automatically extracting functionally equivalent object-oriented designs from
legacy imperative programs. The Parameter-Based Object Identification (PBOI) methodology is based on fundamental
ideas that relate programs written in imperative languages such as C or COBOL to objects and classes written in
object-oriented languages such as Ada 95 or C + +. Transformations have been developed that formalize the PBOI
methodology and a formal proof is provided showing the extracted object-oriented design is functionally equivalent to the
legacy imperative system. To focus the task of re-engineering, generic models of imperative programming languages and
object-oriented programming languages have been developed. The formal transformations convert imperative subprograms
represented in the Generic Imperative Model (GIM) into classes and objects represented in the Generic Object-Oriented
Design Model (GOM). A taxonomy of imperative subprograms has also been developed which classifies all imperative
subprograms into one of six categories. A proof-of-concept prototype has been developed and a 3000-line FORTRAN-77
system has been converted to an object-oriented design as a feasibility demonstration.

14. SUBJECT TERMS 15. NUMBER OF PAGES

reverse engineering, re-engineering, formal transformations, formal proofs, object-oriented 345
design, imperative programming languages, object-oriented programming languages, software 16. PRICE CODE
engineering
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

