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ABSTRACT 

The combined filtering efficiency of a pressure array and a velocity 
array, both flush mounted in a plane boundary, are derived and stated. The 
combined filtering efficiency is factorized into active and passive filtering 
efficiencies. The active filtering efficiency for the pressure array and for the 
velocity array are assumed to be identical except for a factor of the square of 
the characteristic impedance of the fluid that occupies the semi-infinite space 
above the boundary. This active filtering efficiency is related to the 
sensitivity of the transducers in the array and to the wave vector on the 
boundary to which the array is steered. The difference between the filtering 
efficiency in the pressure array and that in the velocity array lies in the 
respective passive filtering efficiencies. This difference is used to assess the 
signal-to-noise ratio pertaining to these two arrays; the pressure array and 
the velocity array. Then an estimate is performed as to the advantage or the 
disadvantage that the pressure array may have compared with the velocity 
array. This estimate is made more explicit by considering the spectral 
density of the noise to be closely related to that of a turbulent boundary layer 
(TBL). 

INTRODUCTION 

It is assumed that the incident pressure on a boundary is spatially and temporally 

stationary so that the pressure can be defined in terms of its spectral density <&(k, CO), 

where (k) is the wave vector variable in the plane of the boundary and (CO) is the 

frequency variable. It is also assumed that the spectral components in the signal are 

uncorrelated with the spectral components of the (unwanted) noise so that 

&(k,6D) = <S>s(k,(o) + ®N(k,co) ; k = {kx,ky} , (1) 

where &s(k,(0) and <S>N(k,co) are the spectral densities of the signal and noise, 

respectively. The output 0(ks, (O) of the boundary array to the incident spectral density 

Q>(k,CD) may be formally expressed in the form 

IXflKJ QTJ&LUT INSPECTED 8 



O(ks,co) = \dk J(ks\k,co) <&(k,a>) ; dk = dkx dky ; 

J(ks\k,co) = A(ks\k,co) D(k,o)) ; ks = {ksx,ksy} , (2) 

where D(k, CO) is the filtering efficiency of the boundary -- the passive filtering efficiency- 

and A(ks \k,CO), is the filtering efficiency of the array - the active filtering efficiency -- 

steered to the specific wave vector (ks). The quantity J(ks I k,CO) is the combined 

filtering efficiency of the flush mounted array. Both the passive and the active filtering 

efficiencies are designed into the array in order to maximize the signal-to-noise ratio RN, 

which is given by 

Rs
N(ks,co) = [Os(ks,a>) I 0N(ks,(o)] , (3) 

where, from Eqs. (1) and (2), one finds that 

Os(ks,co) = \dk A(ks\k,co) D(k,co) ®s(k,co) , (4a) 

0N(ks,co)  = \dk A(ks\k,co) D\(k,a>) <!>N(k,co) . (4b) 

Thus, the maximization of RN requires the combined filtering efficiency J(ks I k,0)) 

{= [A(ks \k,CO)  D\(k, CO)]} to favorably accept the signal compon ents <f>5 (k, CO) and to 

simultaneously reject the noise components <$N(k,CO). For example, it is a fact that the 

signal <£>s(k,CO) is supersonic; i.e., 

<&s(k,co) =  <S>0S(k,co) U [l-(kcfco)] , (5) 



where U is the unit step function and k  =   I k I. It becomes necessary, therefore, to 

ensure that the combined filtering efficiency J(ks I k, CO) is supersonically viable. On the 

other hand, the noise Q>N(k, CO) possesses, by definition, the entire complement of the 

subsonic components in the incident spectral density on the boundary. Thus, although 

there may be noise components that reside in the supersonic range; i.e., 

®N(k,co) = ®0N(k,co) U[l-(kc/co)} 

+ ®lN(k,co) U[(kc/co)-\] , (6) 

the combined filtering efficiency J(ks I k,CO) is the better the more it rejects subsonic 

components. That betterment, however, should not be derived at the expense of the 

acceptance in the supersonic range. The supersonic components in the noise; namely, 

<$QN (k, CO) U[\ - (kc I CO)] are not readily distinguishable from those of the signal. To 

selectively make this distinction between these two types of supersonic components; the 

supersonic signal components and the supersonic noise components, the active filtering 

efficiency A(ks I k,CO) must attain a degree of sophistication, notwithstanding that this 

filtering efficiency may be called upon to further enhance the rejection of the subsonic 

components above and beyond that provided by the passive filtering efficiency D(k CO). 

Hypothetical but instructive illustrations of the filtering efficiencies A(ks I k, CO) and 

D(k, CO) and their utility are sketched in Fig. 1. The statements just presented are reflected 

in these illustrations. The incident spectral density is illustrated in Fig. la. The signal is 

confined to a narrow spectral region in the supersonic range. That narrow spectral region is 

centered about {ks,CO}. The noise, on the other hand, possesses supersonic and subsonic 

components. However, the larger portion of the components of the noise reside in the 

subsonic range. A typical passive filtering efficiency D(k, CO) is depicted in Fig. lb. This 

filtering efficiency accepts well in the supersonic range and rejects particularly well at the 



higher-subsonic range. The rejection at the higher-subsonic range is usually achieved by an 

introduction of a blanket on the boundary. A blanket is a device that hardly changes the 

passive filtering efficiency of the unblanketed array in the supersonic range but 

exponentially reduces this passive filtering efficiency in the high-subsonic range. The 

exponential reduction is proportional to the thickness of the blanket. A typical active 

filtering efficiency A(ks I k,CO) is depicted in Fig. lc. The selected acceptance at {ks,C0} 

and the suppression outside this spectral region are clearly illustrated in Fig lc; the 

suppression outside the spectral region {ks,CO} is enhanced, in the active filtering 

efficiency, largely by an array shading. The combined filtering efficiency is illustrated in 

Fig Id. The combined filtering efficiency is particularly effective in rejecting the 

detrimental noise component that reside in the wave vector range depicted in Fig. la at the 

wave vector {kx ,ky}  = {(co/Uc), 0}, so that in this region k  = (co/Uc), where 

Mc   = (Uc I c) is a Mach number with respect to the speed of sound (c). That Mach 

number is small compared with unity; Mc   «  1. This character in the noise is 

reminiscent of the noise generated by a turbulent boundary layer (TBL) in which the 

convective velocity is Uc. Figure 1 suggests that the combined filtering efficiency 

J(ks \k,CO),as illustrated, is particularly effective against the convective ridge in the noise 

of a TBL. On the other hand, the combined filtering efficiency is not correspondingly 

effective against the noise components that reside in the supersonic region. If these noise 

components are not too prevalent, the combined filtering efficiency may be adequate for the 

task. Otherwise, as already mentioned, a more sophisticated active array filtering efficiency 

may be required to take care of the suppression of supersonic noise components; e.g., and 

adaptive filtering efficiency. 

The foregoing exposition in this report is intended to serve merely as a review of 

material assumed familiar to the reader. In this way the intended subject matter of this 

report can be introduced more directly and without overly dwelling on concepts that are 

covered above and in other publications and reports [1-12]. The present report contrasts 



the performance of two arrays types. One is composed of embedded "pressure 

transducers" that are flush mounted in the boundary and the second of "velocity 

transducers." Both arrays are assumed to be subjected to the same incident pressure 

spectral density <3>p(k,Q)). However, each array is designed to maximize the signal-to- 

noise ratio Rx(Cö); RpN(co) for the pressure array and R^N(co) for the velocity array. 



I. THE PASSIVE FILTERING EFFICIENCY FOR A PRESSURE ARRAY 

The boundary faced by a semi-infinite spaced filled with a fluid and the coordinate 

system to be used are sketched in Fig. 2. The pressure pb and the velocity vb on the 

boundary are related, in terms of the conservation of momentum at the fluid-boundary 

interface, in the form 

p(dvbldt)  = -(dpbldz) , (7) 

where (p) is the fluid density, (t) is the temporal variable and (z) is the spatial variable 

normal to the boundary, [cf. Fig. 2.] In spectral space Eq. (7) assumes the form 

[Pb(k,co) I Vb(k,co)] = Zw(k,co) = (pc/kz) ; 

kz   = (co/c)kz , (8) 

where (c) is the speed of sound in the fluid, (k) is the wave vector variable in the plane of 

the boundary; A: = {kx,ky}, and (CO) is the frequency variable. The wave equation in the 

fluid atop the boundaiy demands 

k7   —  k^ ', 

v2il/2rr  n     /!„./,-.,Yi     :iY7„,/™\2     nl/2 k3= [l-(kc/cofY/2U [l-(kc/o))]-i[(kc/cor -l]l"U [ikcl(0)-\] ,    (9) 



where 

k2 =   \k\2   = (k2
x +  k2

y) . (10) 

The incident pressure P(k,CO) on the boundary is presented to the boundary as 

Pb(k,co) = P(k,co) [l + Rp(k,co)] , (H) 

where Rp(k,CO) is the reflection coefficient of the boundary 

Rp(k,co) = [Zp(k,co) - Zw(fc.fi))] [Zp(k,co + Zw(k,co)Yl , (12) 

and Zp(k,CD) is the mechanical surface impedance of the boundary; e.g., for a boundary 

that is equivalently a thin isotropic plate responding in flexure 

Zp(k,co) = icom [\-{klkp)
A (l + ir]p)] , (13) 

with 

k\   = [cococ/c2] . (14) 

In Eqs. (12) - (14), (m) is the mass per unit area, (kp) is the flexural wavenumber and 

(77   ) is the loss factor in the boundary. Note that the flexural wavenumber (kp) is 

defined in terms of the critical frequency (fi)c). From Eqs. (13) and (14) one obtains 

Zp(k,co) = icom [l-(/x7fi))4 (co/coc)
2 (1 + /^)] . (15) 



In Eq. (12) the surface impedance Zw(k,CO) is that of the fluid in the plane of the 

boundary . [cf. Eq. (8).] The factor [1 + Rp(k,CO)] is the "conditioning plate" filtering 

function; the filtering efficiency Cp(k,0)) of the conditioning plate is then given by 

Cp(k,co) =  \l + Rp(k,co)\2=4 \Zp(k,co)\2    IZpikM + ZcoiKco)]-1  . (16) 

Equation (16) can be cast in the more explicit form 

Cp(k,co) = 4 {Cp(k,(o) U[\-{kclco)} + Cp(k,co) U{(kc/a)-l]}  ,      (17) 

where 

Cp=(C0p/Clp) ; Cp  = (C0p/C2p) , (18) 

CQD   = [(l-O2 +(riPD2] ; C = (kc/co)4(co/coc)
2 , (19a) -op   ~ IA

A
    w   ' yip 

(Clnr
l  = [l-(kc/cof] [{l-(kc/co)2}(l-0: 

'1/7 

+ {ß + V-{kclco)l}u\T]pOYYl , (19b) 

(C2py
l =[(kc/co)2 -l][{ß + [(kc/co)2 -lf2a-Of 

+ {(kc/co)2-l]}(7]P0
2Tl , (19c) 



and the fluid loading ratio (ß) and the fluid loading parameter (ec) are defined in the 

forms 

ß = {pelcom) = (coc/co)ec ;        ec   = (pclcocm) . (20) 

The filtering efficiency Cp(k,CO) of the pressure conditioning plate is computed and 

depicted, as a function of (kc I CO), for a few representative parametric values, in Fig. 3. In 

particular, for the parametric values for which (ß) and (£) <« 1, the filtering efficiency 

of the conditioning plate is simply a factor of (4), indicating a pressure doubling of the 

incident pressure at the boundary. This case is commensurate with a rigid boundary 

condition and is substantially depicted in Fig. 3 by the solid curve. Except in the close 

vicinity and at the sonic region, where (kc I CO) * 1, the mechanical surface impedance 

Zp(k,CO) dominates the fluid surface impedance Zw(k,0)) and pressure doubling 

prevails, not only in the supersonic range but also in the covered subsonic range. 

The short dashed curve in Fig. 3 depicts the case of 

ß = (coc/co)ec ;    ec = 1(T2  and (coc I co) = 102 ;     T]p   = 10~2  .   (21a) 

It is noted that in this case the frequency (CO) lies below the critical frequency and an anti- 

resonance, followed closely by a resonance, appears in the subsonic range. This doublet, 

however, is confined to a narrow span in the (kc I CO) range. Beyond the region of the 

doublet the pressure doubling is restored; the mechanical surface impedance, however, is 

now stiffness controlled rather than mass controlled. Indeed, it is the surface stiffness of 

the plate and the surface mass of the fluid that compose the dynamic system that resonates 

at(kcfco) ~ 10. At this resonance Cp(k,CO) is peaked; a peaked ridge in the filtering 

efficiency, in the subsonic range, is always detrimental, especially if the peak coincides 

with a densely populated region of noise components. The anti-resonance has the converse 



effect. Awareness of the doublet and its features need to be kept in mind when designing a 

conditioning plate, however, within the context of a practical conditioning plate, these 

features are usually only of minor significance. Compared with the case in which (ß) and 

(£) <« 1, as exhibited by the solid curve in Fig. 3, the case specified in Eq. (21a), as 

exhibited by the short dashed curve in Fig. 3, one observes that in front of the doublet, the 

"sonic deep" in the filtering efficiency remains, but is wider and the pressure doubling is 

weakened. This weakness in the boundary conditioning extends not only over the subsonic 

range, but more significantly into the supersonic range. Again, the doublet is significant 

only if it lies in the regional vicinity of major noise components. 

The long dashed curve in Fig. 3 depicts the case of 

ß  = (coc/o))ec ;     ec=  1CT1  and  {coc I co) = 10 ;     Tjp   = 10"2  .    (21b) 

This case is similar to that stated in Eq. (21a) and, therefore, the features of the short and 

the long dashed curves in Fig. 3 are similar too. There are, however, quantitative 
1/9 

differences; e.g. in this case the dynamic system resonates at (kc I (O)  ~ (10)     rather 

than at 10. There are also quantitative commonalities; e.g., the fluid loading ratio (ß) in 

the parametric specifications in Eqs. (21a) and (21b) are identical. 

Since the subsonic components in the incident pressure on the boundary are 

contributing, by definition, to the noise only, a device that diminishes these components 

from reaching the surfaces of the transducers is desirable. However, a device of this kind 

must not effect the supersonic components. The signal is contributed, by definition, of 

supersonic components only. Therefore, any diminishing of the filtering efficiency in the 

supersonic range is considered detrimental. A suitable device of this kind is the blanket. 

The filtering efficiency B(k,CO) of the blanket is of the form 

10 



B(k,co) 

U[l-(Jcc/co)]+ exp[-2(b(o/c){(kc/(D)2-l}V2]U{(kc/co)-l]  ,(22) 

where (b) is the thickness of the blanket. The filtering efficiency B(k,a>) of the blanket, 

as a function of (kc/co), for a few representatives parametric values is depicted in Fig. 4. 

In Fig. 4 the values of (£<u/c) are selected to be (1/100), (1/30), and (2/30), 

respectively; for the first value the curve is solid, for the second it is a short dashed curve 

and for the third it is a long dashed curve. 

The passive filtering efficiency Dp(k,CO) for the pressure array is the combined 

passive filtering efficiency Cp(k,0)) of the conditioning plate and the passive filtering 

efficiency B(k,CO) of the blanket; namely 

Dp(k,co) = Cp(k,co) B{k,co) . (23) 

The passive filtering efficiency Dp(k,CO) for a pressure array, as function of (kc/co), for 

a few representative parametric values is depicted in Fig. 5. In Fig. 5 the value of the 

normalized thickness of the blanket is fixed at (bco I c)  = (1 / 30). The significant 

advantage of employing a blanket in the passive filtering efficiency is clearly demonstrated 

in comparing Figs. 3 and 5, notwithstanding that a blanket has the additional significance in 

that it introduces an increase in mechanical damping. This property of the blanket is not 

discussed herein because the type of responses that are especially influenced by this 

increase in damping are not considered in this primitive dissertation [13]. 

Designating Ap(ks I k,0)) the active filtering efficiency of the pressure array, the 

output Op(ks,(D) of this array to a pressure incident spectral density <&p(k,CO) is given 

by 

11 



Op(ks,a>)  = \dk  Jp(ks\k,a>) <3>p(k,co)  ; 

Jp(ks\k,co) = Ap(ks\k,co) Dp(k,co) , (24) 

where Jp(ks I k,co) is the combined filtering efficiency of the pressure array. 

12 



II. PASSIVE FILTERING EFFICIENCY FOR A VELOCITY ARRAY 

In analogy to Eq. (24), designating A°(ks I fc.fi>) the active filtering efficiency and 

D° (k, ft)) the passive filtering efficiency of a velocity array that is subjected to a velocity 

incident spectral density <3>v(fc,fi>), the output of this array may be expressed in the form 

Ov(ks,co) = \dk J°(ks\k,co) ®v(k,co) ; 

J°(ks\k,co) = A°(ks\k,co) D°(k,co) , (25a) 

where J$(ks I Jfc.fi)) is the combined filtering efficiency of the velocity array. From 

Eq. (8) one establishes the relationship, between the pressure spectral density Q>p(k,CO) 

and the velocity spectral density Ov(/c,fi>), to be 

Ov(*,6))   =   \\-{kclCD)2 I(pcT2Op(k,CO) , (26) 

where (pc) is the characteristic impedance of the fluid. Substituting Eq. (26) in Eq. (25a) 

one may cast the output Ov(ks,CO) of the velocity array, to a pressure incident spectral 

density <£>p(k,CO), in the form 

Ov(ks,co) = \dk Jv(ks\k,co) &p(k,(o)  ; 

Jv(ks\k,co) = Av(ks\k,co) Dv(k,co) , (25b) 

13 



where 

Av(ks\k,co) = [A°{ks\k,co)l(pcf] ;       Dv(k,co) = D°(k,co) Ev
p(k,co) ; 

Ev
p(k,co)  =  \l-(kc/cof\  . (27a) 

The factor Ep(k,CO) is dubbed the conversion filtering efficiency. 

The active filtering efficiency Av (ks I k, CO) of a velocity array is tacitly assumed to 

be similar to that of the active filtering efficiency Ap (ks I k, CO) of a pressure array. In this 

event one may state 

Ap(ks\k,co)  =  Av{ks\k,co)  = [A°(ks\k,co)/(pc)2] . (27b) 

The active filtering efficiency in both, the pressure array and the velocity array, as stated in 

Eq. (27), is steered to the wave vector (ks) on the boundary, [cf. Eq. (2).] 

The leading filtering efficiency factor B(k, CO) in the passive filtering efficiency 

Dv (k, CO) is that of the blanket. This filtering efficiency factor is stated in Eq. (22) and is 

featured in Fig. 4. The next filtering efficiency factor in Dv (k, (O) is that of the conversion 

from pressure to velocity spectral density; that factor is designated Ep (k, CO) and is 

explicitly stated in Eq. (27a). The conversion filtering efficiency Ep(k,CO), as a function 

of (kc/co), is depicted in Fig. 6a. The "superdirectivity" of this filtering efficiency in the 

supersonic range is clearly discernible in this figure. This superdirectivity culminates with 

the sharp valley and nadir in the vicinity and at the sonic region where (kc I CO)   ~  1. On 

the other hand, in the subsonic range, past the brief remainder of the sonic valley that is 

associated with the superdirectivity, the conversion filtering efficiency favors accepting the 

14 



higher and higher subsonic components at the quadratic rate of (kc/co) . As explained, 

such an increase in the filtering efficiency is detrimental to the signal-to-noise maximization 

desired in the performance of the array. The blanket appears to be a promising antidote for 

the kind of deficiency in the conversion filtering efficiency Ep (k, CO) that is exhibited in 

Fig. 6a. Figure 6b depicts the combined filtering efficiency [Ep(k,CO) B(k,CO)], as a 

function of (kc I CO), for the three normalized thicknesses used in Fig. 4; i.e., 

(bco Ic)  = (1 /100), (1 / 30) and (2 / 30). The relief that is provided by the blankets in 

mitigating the acceptance at the higher and higher ranges of {kc I CO) is clearly visible in 

Fig. 6b when compared with Fig. 6a. Finally, an observation is made with respect to the 

conversion filtering efficiency Ep(k,CO). Clearly, Eq. (25a) may be cast in the form 

Ov(ks,co) = \dk J'v(ks\k,co) Op(k,co)  ; 

J'v(ks\k,CO)  = A'v{ks\k,(Q) D'v{k,CO) , (25c) 

where 

A'v{ks\k,co) =  Ev
p{k,co) Av{ks\k,co) ; 

J'v(ks\k,co) =  Jv(ks\k,co) = Av(ks\k,co) Dv(k,co) . (28) 

The shifting of the conversion filtering efficiency Ep(k,CO), from the passive to the active 

filtering efficiency, as stated in Eq. (25c), makes the designation of superdirectivity in the 

active filtering efficiency easier to understand. In the passive filtering efficiency Dv(k,CO), 

the interpretation of the conversion filtering efficiency Ep(k,CO) is straightforward but it 

15 



does not readily connote the notion of superdirectivity. Nonetheless, for the most part in 

this report the conversion filtering efficiency is placed with the passive filtering efficiency. 

The final filtering efficiency factor in Dv (k, 00) is that of the conditioning of the 

boundary. The conversion of the spectral density from a pressure to a velocity necessitates 

that the conditioning of a boundary be maximized for velocity spectral components. The 

incident velocity V(k, CO) on the boundary is presented as 

Vb(k,CO)  =   V(k,CO)[l + Rv(k,CO)], (29) 

where Rv(k,Q)) is the reflection coefficient of the boundary 

Rv(k,oo)  = -Rp(k,co) 

= [Zw(k,co) - Zp(k,co)] [Zw(k,co) + Zp(k,o))Vl , (30) 

and again, Zp (k, CO) is the mechanical surface impedance the boundary, which for the 

velocity array is selected to be compliant; e.g., 

Zp(k,co) = (K/ico)  ;   K =  K0(l + iri0)  , (31) 

where it is customary, but not necessary, to regard (K0) a constant, independent of (k) 

and (co). [cf. Eqs. (11) - (15).] The factor [1 + Rv (k, CO)] is the conditioning compliance 

filtering function; the filtering efficiency Cv(k, CO)   of the conditioning compliance is 

given by 

Cv(k,co)  =  \l-Rp(k,co)\2 

4\Zw(k,co)\2   \Zp(k,co) + Zw(k,co)\2   . (32) 
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[cf. Eq. (16).] Equation (32) may be cast in the more explicit form 

Cv(k,co) = 4{Cv(k,co) U[l-(kc/co)] 

+ Cv(k,co) U[(kc/co)-l]} , (33) 

where 

Cv   = (Clv)-
! ; Cv    = (C2vy

l , (34) 

Clv   = [{l + [l-(kc/C0)2f2 (Tloßo)}2 + [l-(kc/co)2} ß2
0] , (35a) 

C2V   = [{l-[(kc/co)2-lf2ß0}2 + [(kclco)2-mT]0ß0)
2} , (35b) 

and the "inverse fluid loading ratio" (ß0) and the "inverse fluid loading parameter" (e0) 

are defined in the forms- 

ß0  = [K0/(copc)] = (co0/(o)e0 ;        e0  =   [K0/(co0pc)) .      (36) 

[cf. Eq. (20).] The filtering efficiency Cv(k,Co) of the velocity conditioning compliance, 

as a function of (kc I CO), is depicted in Fig. 7. In particular, for the parametric value for 

which ß0 <« 1, the filtering efficiency of the conditioning compliance is simply a factor 

of (4), indicating a velocity doubling of the incident velocity at the boundary. This case is 

commensurate with a "pressure release boundary condition" and is substantially depicted 

in Fig. 7 by the solid curve. The surface compliance (the inverse of the surface stiffness) is 
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low enough that the pressure release condition is maintained throughout the covered range 

of (kc/co); both the supersonic and the subsonic ranges are so maintained. 

The short dashed curve in Fig. 7 depicts the case of 

ß0   = (co0lco)e0 ;   e0   = 10~2  and (co0/co)  = 10 ;   r\0   = 10"1  .    (37a) 

Equation (35b) suggests that for a value of (ß0) that is small, but not very small, 

compared with unity a resonance, in the covered subsonic range, results. The resonance 

occurs in the dynamic system that is composed of the surface stiffness of the boundary and 

the fluid surface mass on the plane of the boundary. For the parametric values specified in 

Eq. (37a), the resonance is located at (kc I ' CO) ~ 10. Below the resonance, where 

(kc/co)  <   10, the pressure release condition substantially prevails, the more so the 

further (kcICO) is away from the resonance at (kc/co)  -10. Above the resonance, 

where (kc I CD)   >  10, the surface stiffness effectively increases, as (kc I CO) further 

increases, and the pressure release condition is greatly departed from. In that subsonic 

range, the departure reduces the acceptance of the filtering efficiency Cv (k, CO) inversely to 

the increase in the conversion filtering efficiency Ep (k, CO). That subsonic range is 

defined by (kc I CO)  >  10, which lies above the resonance at (kc I CO) ~ 10. This latter 

feature is depicted in Fig. 8 by the short dashed curve. In this figure the combined passive 

filtering efficiency Div (k, CO) is displayed, as a function of (kc I CO), for a set of 

parametric values that correspond to those specified for Fig. 7. The combined passive 

filtering efficiency Dlv (k, CO) is defined as the product of the conversion filtering 

efficiency Ev
p(k,Cü) and the filtering efficiency Cv(k,CO) of the compliantly conditioned 

boundary; namely 

Dlv(k,co)   =  Cv(k,co)Ev
p(k,co) . (38) 
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The short dashed curve in Fig. 8, which correspondingly is specified in Eq. (37a), supports 

the conjuncture just made with respect to the range above the resonance: In the subsonic 

range above the resonance, where (kc/co) >  10, the quadratic increase in Ev
p (k, CO) is 

counteracted by the quadratic decrease in Cp(k,CO). The quadratic increase and decrease 

are in reference to the normalized wavenumber (kc I CO). 

The long dashed curve in Fig. 7 depicts the case of 

ß0   = (co0lco)e0 ;   e0   = 10-1  <md(co0/co) =10 ;   rj0  = KT1  .       (37b) 

For the parametric values specified in Eq. (37b) the resonance is located just above the 

sonic region, which is defined by (kc / CO)  =  1. Below the resonance, where 

(kc/co)  <  1, the pressure release condition tends, but "half fails, to be established; the 

mechanical surface impedance which is stiffness controlled, is too high to maintain a 

substantially pressure release condition. Above the resonance, where (kc/CO)  »  l,the 

surface stiffness effectively increases, as (kc I CO) further increases, and the pressure 

release condition is greatly departed from. Again, in the subsonic range this departure 

reduces the acceptance of the filtering efficiency Cv (k, CO). In the subsonic range past the 

resonance location, this reduction in acceptance is inversely proportional to the increase in 

the conversion filtering efficiency Ev
p(k,CO). Again, this feature is depicted in Fig. 8 by 

the long dashed curve; this curve depicts Dlv (k, CO), as a function of (kc I CO), for the 

parametric values specified in Eq. (37b). The combined filtering efficiency D{v(k,CO) is 

as stated in Eq. (38). 

One recognizes that in this report the passive filtering efficiency Dlv (k, CO) is the 

basic passive filtering efficiency of the velocity array. Therefore, Fig. 8 is more relevant to 

a design process of a velocity array, than is Fig. 7. From Fig. 8 it emerges that, barring 

densely populated subsonic components in the close vicinity of the sonic region, the 

parametric values specified in Eq. (37b) are more suitable to achieving a well designed 
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velocity array. More suitable than those specified in Eq. (37a) and by far more suitable 

than those maintaining the "ideal pressure release condition." This statement holds despite 

the existence of a slight deterioration (by a factor of half) in the supersonic range, where 

(kc/a>)<  1, when the parametric values specified in Eq. (37b) are implemented. The 

closer the resonance is to the sonic region, where (kc / CO)  ~ 1, the better the filtering 

efficiency Cv (k, CO) of the conditioning compliance is able to counteract the detrimental 

quadratic increase of the acceptance in the conversion filtering efficiency Ep (k, CO) in the 

higher-subsonic range. Indeed, except for the doublet in Fig. 3 and the resonance in Fig. 8, 

the parametric specification in Eq. (21) for the pressure array yields filtering efficiency that 

is closely identified with the filtering efficiency for a velocity array under the parametric 

specifications in Eq. (37b). However, before rendering such a comparison one may wish 

to examine the utility of a blanket on the passive filtering efficiency of a velocity array. 

The blanket introduces the factor B{k,CO) in the passive filtering efficiency 

Dv (k, CO) of the velocity array. From Eqs. (22) and (38) one obtains 

Dv(k,co) =  D[v(k,co) B(k,co) . (39) 

The filtering efficiency B(k, CO) of a blanket is depicted in Fig. 4. The introduction of a 

blanket, of a normalized thickness of (bco I c)  = (1 / 30), on a boundary, as specified in 

Eq. (39), is computed and depicted, as a function of (kc/co), in Fig. 9. The benefit to the 

filtering efficiency derived from the introduction of a blanket is clearly visible in comparing 

Figs. 8 and 9. Again, the superiority of a design employing the parametric specification in 

Eq. (37b), over that specified in Eq. (37a) and that specified by the ideal pressure release 

condition, is made clearer in Fig. 9. This is especially true if the spectral noise components 

are similar to those proposed in Fig. 1. In this connection it may of interest to examine 

Fig. 6b in the light of Fig. 9. In Fig. 6b, one recalls, the ideal pressure release boundary is 

maintained throughout the covered spectral range of {kc I CO) and various normalized 
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thicknesses for the blanket are introduced on this ideal pressure release boundary. The 

relevant curve in Fig. 9 pertains to a blanket of a normalized thickness (b(01 c) of (1 / 30), 

as well as to the parametric specification in Eq. (37b). Comparing this curve in Fig. 9 with 

the curve in Fig. 6b, which pertains to a boundary of ideal pressure release condition 

covered by a blanket of double the thickness; i.e., a normalized thickness (bco I c) of 

(2/30), one finds that the identity between the two curves, in the respective figures, is 

reasonably close. One must be cognizant, however, that a pressure release boundary may 

be influenced unduly when subjected to changes in the prevailing hydrostatic pressure. The 

hydrostatic pressure may drastically change from one array operation to another. 

A more comprehensive examination of this and other statements made in the 

attempt to compare the pressure and velocity arrays follows. 
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III.   COMPARISON BETWEEN PRESSURE AND VELOCITY ARRAYS 

In this comparison the identify stated in Eq. (27b) is validated. In this case the 

output Op (ks, CO) of the pressure array may be expressed in the form 

Op(ks,co)  =  \dk Ap{ks\k,co) Dp(k,co) ®p(k,co) , (40a) 

and the output Ov (ks, CO) of the velocity array may be expressed in the form 

Ov(ks,co) = jdk Ap{ks\k,co) Dv(k,co) ®p(k,co) , (40b) 

where the passive filtering efficiencies of the respective arrays are 

Dp(k,co)  =  Cp(k,co) B(k,co) , (41a) 

Dv(k,co)   = Div(k,co) B(k,co) ;    Dlv(k,co) =  Cv(k,co) Ev
p(k,co) .      (41b) 

[cf. Eqs. (24) and (25).] Following the suggestion proposed in Eq. (1), it is proposed to 

cast the incident pressure spectral density in the form 

®p(k,co) = <l?pS(ks,co)   S(ks-k)+ ®pN(k,co); 

5(ks-k)  =  S(ksx-kx) ö(ksy-ky) ; ^ = {ksx,ksy} .        (42) 
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In Eq. (42) the first term in the first equation accounts for the incident spectral density of 

the signal, the second term accounts for the incident spectral density of the noise. From 

Eqs. (4), (40) and (42) one derives for the signal outputs 

°p5^'ö)) = Ap(ks\ks,(o)   Dp(ks,co) Q>pS(ks,co), (43a) 

OvS(ks,co) = Ap(ks\ks,co)   Dv(ks,co) ®pS(ks,co), (43b) 

and, by definition, (ks ) is supersonic in the sense that (I ks I c I Co)  <  1. From Eqs. (4), 

(40) and (42) one obtains for the noise outputs 

OpN(ks,a)  =  \dkJp{ks\k,CQ) ®pN(k,co) , (44a) 

OvN(ks,co) =  \dk Jp(ks I*,<») OvN(k,CO) , (44b) 

where 

Jp(ks\k,CO)  =  Ap(ks\k,CO) Dp(k,CO) , (45a) 

®vN(k,co) =  Tp"(k,co) ^pN(k,co) ; 

Tv
p{k,co) = [Dlv(k,co)/Cp(k,o))] , (45b) 

and Dp(k,CO), Cp(k,Cö) and Dlv(k,CO) are defined in Eqs. (23), (16) and (38), 

respectively. The quantity Q>vN(k,CO) is the effective spectral density of the incident 

pressure on the boundary that is presented to the filtering efficiency of an equivalent 
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pressure array. An equivalent pressure array is a velocity array in which the combined 

filtering efficiency is made to conform with that of a corresponding bonafide pressure 

array. The differences in die outputs of the two arrays are then assigned to the incident 

spectral densities that they, respectively, need to cope with. Thus, the output OvN(ks,CO) 

of the velocity array differs from the output O N(ks, CO) of the pressure array in that the 

former equivalently copes with the incident spectral density Q?vN(k,CO) whereas the latter 

correspondingly copes with the incident spectral density <S> N(k,C0). In this sense 

Tp (k, CO) facilitates the spectral amplification factor for the noise spectral density; in those 

spectral ranges in which Tp(k,CO) exceeds unity, the contribution by the incident spectral 

density & N(k,a)) to OvN(ks,CO) exceeds that to OpN(ks,0)) and in those ranges in 

which Tp(k,CO) recedes unity, this contribution to OvN(ks,G)) recedes that to 

O N(ks,CO). Thus, if, on balance, the factor Tp(k,CO) contributes more into 

OvN(ks,CO) than it substracts from it, the noise output OvN(ks,CO) in the velocity array 

exceeds the noise output OpN(ks, CO) in the pressure array. 

The signal-to-noise ratios RS
pN and R^N   a. la Eq. (3) is given by 

R*N(ks,eo)  = [OpS(ks,co)/OpN(ks,co)] , (46a) 

for the pressure array and 

R^N(ks,co) = [OvS(ks,co)/OvN(ks,co)) , (46b) 

for the velocity array, respectively. The advantage or disadvantage of the pressure array 

over the velocity array may be ascertained by estimating the "grand ratio" of the signal-to- 

noise ratios of the pressure and velocity arrays. This grand ratio R^(ks,CO) is given by 
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R?(ks,(ß) = [RS
pN(ks,co)/R^N(ks,co)] . (48) 

A value of Ry(ks, CO) that largely exceeds unity implies that the pressure array is 

superior, on the basis of signal-to-noise ratio, to the velocity array and a value of 

Rp (k , CO) that largely recedes unity implies the superiority of the velocity array over the 

pressure array. From Eqs. (43) - (47) the grand ratio R^(ks,CO) may be cast in the form 

R?(ks,(D) = [T'ik^co)]-1 [OvN(ks,co)/OpN(ks,co)] , (49) 

where (k ) is, by definition, a supersonic wave vector; i.e., (I (ks \clCO)  <   1 and 

Tp(k,CO), OpN(ks,CO) and OvN(ks,CO) are defined in Eqs. (45b), (44a) and (44b), 

respectively. The evaluations of the last two quantities; O N(ks,CO) and OvN(ks,CO), 

require the execution of integrations over known incident spectral densities. Although such 

integrations were previously performed and these types of integrations can be presently 

duplicated, there is a merit in trying to estimate these quantities without actually executing 

the integrations. The technique to be followed concentrates on the nature of the integrads 

and assesses the major contributions that various regions in the (kc I CO)- domain may be 

bringing into the outputs of the arrays. The orders of magnitude and the regions from 

which these contributions may emanate are of crucial interest in seeking initial design 

criteria for these two characteristic arrays. For this purpose the incident spectral density 

<E> N(k,C0) is assumed to possess a term <3>TBL(k,CO) that is commensurate with that 

generated on a boundary by a turbulent boundary layer (TBL). The investigation in this 

report is driven by <&TBL(k,CO) which serves as the dominant term in the spectral density 

<3> N (k, (O) of the noise incident on the boundary. 
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IV.   A RUDIMENTARY DESCRIPTION OF THE SPECTRAL DENSITY OF THE 

PRESSURE GENERATED BY A TURBULENT BOUNDARY LAYER (TBL) 

For the purposes of this report the incident spectral density <J>^ (k, CO) of the 

noise is assumed to be dominated largely by the pressure that is generated by TBL. A 

rudimentary description of that spectral density is 

®pN(k,co) z ®TBL(k,co) = [<Pnx(kx,co) + <Pcx(kx,co)] <t>ny(ky,co) ,   (49) 

where 

&llx(kx,a>)  =  a[a2 + (l+\(kxc/co)Mc I)2]  * , (50a) 

<S>ny(ky,co)  =  ß2[ ß2+(kyclco)2M2
cT

X , (50b) 

®cx(kx,co) = {[a2 + (l-[(kxc/co)Mc])
2r 

- [a2 + (l+\(kxc/co)Mc\)
2r1} , (50c) 

where a  ~ 0.1, ß  =  3a and Mc is the Mach number of the convective speed (Uc) 

with respect to the speed of sound (c) in the fluid. Plots of $>TBL(kx,0,CO) as a function 

of (kxc/C0) and of ®TBL(ky,Q,CO) as a function of (kyclco) are presented in Fig. 10 

for values of the constant a  =  1, 10-1 and 1(T2. The non-isotropic nature of the 

spectral density <$TBL(k,C0) is discernible; the convective ridge results in that most 

components in a TBL tend to assume the wave vector that is commensurate with the 

convective velocity Uc = {Uc,0}. Elsewhere in the spectral domain on the boundary, 

the TBL components are sparsed. It is understood that the convective Mach number Mc; 

26 



Mc   = (JJC I c), is usually small in arrays that are intended to be used in underwater 

application. The convective wavenumber is thus high compared with the sonic 

wavenumber and, therefore, the convective ridge lies in the high-subsonic region. For 

convective speeds of 20 knots, Mc is two orders of magnitude small. Therefore, even a 

blanket of reasonable thickness is a very effective inhibitor of the convective ridge. Indeed, 

the blanket can prevent the convective ridge from overwhelming the noise contribution to 

the output O N(k ,CO). As to whether a well designed pressure array that is reasonably 

blanketed can render the convective ridge irrelevant as a noise contributor is not yet 

resolved. There is still a controversy with regard to the distribution of the population of the 

spectral component outside the convective ridge in the spectral density of TBL, 

notwithstanding that, in addition, the high wavenumber response of the conditioning plate 

is not properly accounted for. Indeed, this controversy is reflective of the triple designation 

for the constant (a), stated in Eq. (50a) and depicted in Fig. 10. 

In this paper computed estimations that pertain to a TBL are depicted for the 

situation in which the convective Mach number Mc is two orders of magnitude small; 

namely, Mc   -  10~2. In the primitive analysis developed herein reasonable changes in 

Mc are readily implemented. Moreover, the modifications induced by these changes do 

not cause special interpretative difficulties. 
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V. THE GRAND RATIO OF A PRESSURE ARRAY TO A CORRESPONDING 

VELOCITY ARRAY 

In view of Fig. 10, the output O N(ks,CO) is roughly and conveniently 

approximated in the form of four terms 

OpN(ks,co) = 

Opm&s'0» +   °pN2^s^ +   OpM&s'O» +   V(^,ffl) '       (Ma) 

where the first term is contributed by the TBL into the supersonic range, the second by the 

TBL into the low-subsonic range, the third by the TBL into the mid-subsonic range and the 

fourth is contributed by the convective ridge of the TBL which lies, in the context of this 

report, at the high-subsonic range. Again, one is reminded that the steered wave vector 

(k  ) lies in the supersonic range; (I (ks\c/co)  <  1. Again, which of the four terms in 

Eq. (51a) dominates the output O N(ks,C0) is crucially dependent not only on the spectral 

density <&TBL(k, CO) in the TBL, but also on the filtering efficiency Jp (ks I k, CO) of the 

pressure array. This filtering efficiency is assumed to be designed to maximize the signal- 

to-noise ratio Rf}N (k y, CO), as stated in Eq. (46a). How does the estimate of the output 

O jN (k y, CO), as stated in Eq. (51a), help one to estimate the output OvN(ks, CO) and, 

hence, the signal-to-noise ratio R^N(ks,CO), as stated in Eq. (46b), and, ultimately, to 

estimate the grand ratio R{?(ks,CO), as stated in Eq. (49)? To answer this question it may 

be useful to compute and display the natures of Tp (k, CO) and ®vN (k, CO); the latter on 

the basis that OpN(k,CO) is substantially equal to ®TBL(k,CO). The spectral density 

®TBL(k, CO) in a TBL is depicted in Fig. 10. In Fig. 11 the factor Tp(k,CO) is computed 

and displayed for a number of cases that are covered in Figs. 3-9. In Fig. 11a the nearly 

ideal rigid conditioning plate for the pressure array and the nearly ideal pressure release 

conditioning compliance are entered to yield the factor Tp (k, CO). The so called 
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"superdirectivity" is discernible in the vicinity and on both sides of the sonic region. Also 

discernible is the quadratic increase in (kc/co) of Tp(k,CO) in the higher-subsonic range; 

e.g. Tp(k,CO) ~ 104when (kc/(0)~ 102. The corresponding increase in the spectral 

density <I>vN(k,CO) over that of OpN(k,(0) is depicted in Fig. 12a. The corresponding 

situation for the cross-convective domain is depicted in Fig. 12.1a. Therefore, in the 

subsonic range the velocity array is equivalently subjected to a higher incident spectral 

density than is the pressure array; the equivalence is as expressed in Eqs. (44) and (45). 

Figure 12a indicates that the increase of Q>vN(k,(0) over ®pN(k,CO), in the convective 
—2 

ridge, is a whopping 40 dB, or so, for the convective Mach number Mc of 10    . The 

convective ridge may then become a major noise source for a velocity array even if a 

pressure array successfully mitigates the contribution by this convective ridge. The 

equivalent pressure array, which simulates the velocity array, needs to deal with the 

convective ridge in <& N{k,(0). The bonafide pressure array needs merely deal with the 

convective ridge in Q> N(k,(ü). 

When a resonance in the compliantly conditioned boundary occurs in the subsonic 

range below the convective ridge, the situation is improved, as shown in Figs. 1 lb and 1 lc 

and 12b and 12c, respectively. Figure 12.1c depicts the corresponding cross-convective 

domain to Fig. 12.1c. In Figs, lib and 12b this resonance is substantially coincidental 

with the doublet that occurs in the conditioning plate for the pressure array. As already 

discussed, the resonance in the compliantly conditioned boundary mollifies the increase in 

the acceptance that is introduced by the conversion filtering efficiency Ep (k, 0)) that the 

velocity array entertains. This mollification halves, in dB, the enhancement in these figures 

as compared with that shown in Figs. 1 la and 12a. Nonetheless, the enhancement is still 

forbiddingly high. Moreover, in the lower-subsonic range there is a gain of an order of 

magnitude in these figures over the levels shown in Figs. 11a and 12a. Although in the 

lower-subsonic range the spectral density <$TDL(k,CO) is small compared with that in the 

convective ridge, both the blanket and the array shading are less effective in this lower- 
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subsonic range than in the higher-subsonic range, and therefore, this gain cannot be 

dismissed off hand in a design process. 

When the resonance in the compliantly conditioned boundary approaches the sonic 

region, the situation is improved still, as shown in Figs. 1 Id and 1 le and 12d and 12e, 

respectively. The corresponding situation in the cross-convective domain to Fig. 12e is 

depicted in Fig. 12. le. This resonance in the conditioning compliance substantially 

eliminates the increase in the acceptance that is introduced by the conversion filtering 

efficiency Ep(k,0)) that the velocity array harbors. The factor Tp(k,CO) is different from 

unity only in the region of the resonance. In this case, the resonance occupies a narrow 

subsonic region next to the sonic region and in the immediate vicinity of the same region. 

Again, although in this narrow subsonic region the spectral density <£>TBL{k,CO) is small 

compared with that in the convective ridge, the filtering efficiency of the pressure array 

may not be as effective in this subsonic range as it may be at the higher-subsonic range. 

Therefore, even a moderate gain in <t>vN(k,CO), as compared with <&pN(k,CO), in this 

narrow subsonic region, as just described, cannot be cavalierly dismissed in a design 

process, notwithstanding that the doublet in the conditioning plate is usually ignored. 

With these observations on hand and noting that Tp(k,CO), as stated herein, is 

isotropic, the output OvN(ks,C0) may be expressed äla Eq. (51a) in the approximate 

form 

OvN(ks,co) = Tv
p{ks,co) OpNl(ks,co) + Tv

p{krco) OpN2(ks,co) 

+ Tv
p{kyco) OpN3(ks,co) + T^{kA,(a) OpN4(ks,co) ,       (51b) 

where(l(^lc/ö;)<l;   1 <(l(*2 \c/co)<\0;   10<(l(^ lc/ffl) = 102; 

(I (k4 I c I a) ~ (Mc )"\ and the values of Tp , at the wave vectors k_2, k3 and k4, are 

derived on the basis of applying, in unison, primitive mean value approximations to the 
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two equations covered in Eq. (44). Applying the case depicted in Figs. 1 la and 12a to 

Eq. (51b) yields 

OvN(ks,CO) = Opm(ks,CO) + 101  Opm(ks,co) 

+   102 Opm(k,co) +   104  OpN4(ks,co) . (52a) 

Applying the case depicted in Figs. 1 lb and 1 lc and 12b and 12c to Eq. (51b) yields 

OvN(ks,co) ~_ 2 OpNl(ks,w) + 102   OpN2(ks,OJ) 

+   102 Opm(k,co) + 102 OpN4(ks,a) . (52b) 

Finally, applying the case depicted in Figs. 1 Id and 1 le and 12d and 12e to Eq. (51b) 

yields 

OvN(ks,a>) r OpNl(ks,co) + 10 OpN2(ks,co) 

+ Opm(ks,co) + OpN4(ks,a» . (52c) 

Using Eqs. (48) and (51a), the corresponding grand ratios RP(ks,CO) for the three cases 

depicted in Eq. (52), assume the estimated values 

R?(ks,co) = 

^(^.ffl) + 101  OpN2(ks,co) + 102  Opm{ks,co) + 104 OpN4(ks,co)] 

[°/Wi(^.ö)) + OpN2(ks,co) + Opm{ks,CD) + OpN4{ks,(o)Yl , (53a) 
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[Opm(ks,co) + 5X101  OpN2(ks,co) + 5X101  Opm(ks,co) + 5X101 OpN4(ks,0))] 

[OpNl(ks,(o) + 0^(^,0» + Opm(k_s,co) + Opff^a»]-1 . (53b) 

and 

WpNiVls'0^ +  10  °^(*»'ffl) +   °pNi^^ +   0pN4(*sM 

[Opm{ks,co) + OpN2(ks,co) + Opm{ks,(o) + OpNA{ks,co)Y' . (53c) 

respectively. The relative magnitudes among the terms of Eq. (51a) are crucial to the 

estimation of the grand ratio R$ (k , 0)). Equation (53) indicates, however, that for the 

three cases here considered the grand ratio Rj?(ks,(0) invariably exceeds unity and, 

therefore, assessed by the signal-to-noise ratios, the pressure array is advantaged over the 

corresponding velocity array. The question that remains is by how much? Again, Eq. (53) 

may be used to assess the quantitative advantage. Thus, for example, if the convective 

ridge is the dominant contributor to the output O N(ks,CO); i.e., if O N4(ks,CO) is the 

dominant term in O N(ks,CO) of Eq. (51a), then from Eqs. (53a) - (53c) one may deduce 

Rv(ks,CO)  r 104 , (54a) 

RP(ks,co) = 50 , (54b) 

32 



and 

RP(ks,co) r {1 + nOpN2(ks,co)/OpN4(ks,co)]} ; 

iOpN2(ks,CO)/OpN4(ks,CO)]  «  1 , (54c) 

respectively. On the other hand, again, as an example, if the low-subsonic range in the 

TBL is the dominant contributor to the output OpN (ks, CO), i.e., if OpN2 (ks,(0) is the 

dominant term in OpN(ks,(ö) of Eq. (51a), then from Eqs. (53a) - (53c) one may deduce 

that 

R?(ks,CO)  r 

{10 + 102 [Opm(ks,co)/OpN2(ks,co)} + 104 [OpN4(ks,co)/OpN2(ks,cü))} ; 

[Opm(ks,(o)/OpN2(ks,co)] « 1 ;      OpN4(ks,co)/OpN2(ks,co)} «1,    (55a) 

RP(k   a>) r 50 , (55b) 

and 

RP(ks,CO) ~ 10 , (55c) 

respectively. In both examples, in the third case, as stated in Eqs. (54c) and (55c), the 

pressure array is only marginally advantaged over the corresponding velocity array. 

Notwithstanding that in the first case, as stated in Eqs. (54a) and (55a), the advantage is 

substantially higher. Unfortunately, it is the first case that is usually cited and one then 

concludes that a corresponding velocity array, as far as the TBL is concerned, is a hopeless 
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proposition when compared with a bonafide pressure array. In this report it is argued that 

this conclusion may not be universally valid. Indeed, it is demonstrated that a properly 

designed conditioning compliance may render a corresponding velocity array a viable 

alternative to a pressure array if the noise is assumed to be contributed largely by TBL. 
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VI. A FEW DESIGN ISSUES 

The analyses, the computations and the displays in this report are primitively based 

and omit many issues that may be crucial to the validity and universality of the statements 

and conclusions made. It is not intended to raise and discuss these issues exhaustively. It 

is intended to exemplify a few of these issues and to briefly indicate their implications. 

1. The quantity <&TBL(k,(ö) may not be the only incident noise component on the 

boundary. The response of substructures, either in the immediate spatial vicinity or as 

members of the arrays, may generate subsonic components that lie within an order of 

magnitude of the sonic region; e.g., analogous to the doublet in the response of the 

conditioning plate, [cf. Fig. 3.] Under these circumstances, the resonance near the sonic 

region, which is designed to counteract the quadratic increase with (kc I CO) of the 

conversion filtering efficiency Ev
p(k,(0), may itself present a design problem. 

2. The conditioned boundary in which the array is flush mounted may not be of 

uniform surface impedance. In the report, uniformity is assumed. Nonuniformity is a 

wave vector scattering mechanism which may redistribute, in particular, the noise 

components with high wavenumbers. The gaps and the isolators that are placed between 

transducers constitute such nonuniformities. The influence of the redistribution of the 

noise components which may be caused by such nonuniformities may require design 

considerations. 

3. The surface of the array is not motionless; the boundary is convected with the 

velocity of the vehicle housing the array. If the blanket is placed on the boundary, this 

motion may trap propagating waves that lie close to the sonic region [14]. The trapping 

and the strengths of these propagating waves may be another candidate for design 

consideration. 

4. The compliance in a boundary of a velocity array is usually provided by a matrix 

of voids in an elastic plating. Be that as it may, the voids provide a scattering mechanism; 
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that mechanism is especially effective when the voids linear spatial sizes become of the 

order of magnitude or larger than the linear spatial sizes of the waves in the incident 

pressure on the elastic plating. The introduction of a thick blanket, in terms of these wave 

sizes, may mitigate that scattering mechanism. This is especially significant if the 

components in the convective ridge of TBL are commensurate with these wave sizes. In 

this connection, the blanket may inhibit the scattering mechanisms that are provided by the 

nonuniformities discussed under remark 2. The thickness and material properties of the 

blanket are yet another design consideration that may need attention. 

5. Considerations in this report are concentrated largely on a specific frequency 

(co). For a narrow frequency band (Aco) for which (Aco / CO) is small compared with 

unity, these considerations are adequately covered, even when resonances are invoked. 

However, if operations of the arrays are needed in wider frequency bands, more thorough 

assessments than those provided herein may be called upon in designing these wider 

frequency arrays. Nonetheless, it may be of interest to investigate cursorily this issue of a 

frequency bandwidth. In this vein estimates for the influence of changing the frequencies 

are computed and displayed in Fig. 13 in the format of Fig. 12. In Fig. 13 both (C0o I CO) 

and (C0C I CO) are equal and £0 and £c are both set equal to 10" . As in Fig. 12, in 

Fig. 13 the incident spectral density of a TBL is depicted by a short dashed curve. This is 

the assumed spectral density of the noise that a bonafide pressure array needs to cope with. 

The solid curve in Fig. 13 represents the spectral density that an equivalent pressure array 

needs to cope with to simulate the noise output of a corresponding velocity array. In 

Figs. 13a-13i the frequency is changed so that (co0 / CO)  = (coc I CO)  =  20, 18, 16, 14, 

12, 10, 8, 6 and 4, respectively, yet (e0) and (ec) remain equal and set at 10" . It is 

recognized that Fig. 13f is identical to Fig. 12e. The advantages and disadvantages, that 

each of these figures exhibits with respect to a pressure and a velocity array, are explainable 

within the context of this report. Remarkably, over the frequency bandwidth of a octave up 

and an octave down from the frequency set in Figs. 12e and 13f; namely, 
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(C0o 1CO)  = (C0C I CO)  =  10, the resonances in the compliantly conditioned boundary 

are maintaining a reasonable par between a bonafide pressure array and a corresponding 

velocity array. In these frequency range and parametric specifications, a bonafide pressure 

array and an equivalent pressure array need to cope, to all intents and purposes, with the 

same incident spectral density; i.e., Q>vN (k, CO)   ~  ®pN (k, CO) substantially over the 

entire (kc/CO) range. If any and as already mentioned, the closer the resonance frequency, 

in the compliantly conditioned fluid loaded boundary, is to the sonic region the more favor 

is accrued to the velocity array. This accrument does not, however, overwhelm the 

viability of the pressure array. 
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Fig. 1.    The incident spectral densities of the signal and the noise and the filtering 

efficiencies of an array of transducers flush mounted in a plane boundary. 

a. The spectral densities of the signal and the noise. 

b. The passive filtering efficiency of the array. 

c. The active filtering efficiency of the array. 

d. The combined filtering efficiency of the array. 
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Fluid (p, c) 

Boundary *-  x,kx 

2       2,2,2 r   -x   +y   +z 

x= r sin (0) cos(())) 

y=r sin (Q)sin ((()) 

z = rcos (0) 

(co/c)2 = k2
x +ky+k}\kz = k3 

kx = ((£>/c)sin (0)cos((()) "\ 

ky = ((a/c)sin(Q)sin(ty) M^/co)<l 
k3 = (co/c) cos (0) J 

0 1/2 
fc3 =- (/co/ c)[(fcc/ co)2- i]      ,(kc/(£>)> I 

Fig. 2.    The plane boundary faced by a semi-infinite space filled with a fluid defined by 

the density (p) and speed of sound (c). Sketched is the coordinate system and 

briefly outlined are the relationships between the various variables in the spatial 

and spectral domains. 
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Fig. 3.    The filtering efficiency Cp (k, (ö) of the conditioning plate of a pressure array, as 

a function of (kc/co). 

  An ideal conditioning plate [(ß) and (£)  <«  1]. 

  Parametric values specified in Eq. (21a). 

  Parametric values specified in Eq. (21b). 
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l-io- 

Fig. 4.    The filtering efficiency B(k, CO) of a blanket of thickness (b), as a function of 

(kef CO). 

  (beole) = (1/100). 

{bale) = (1/30). 

  (bco/c) = (2/30). 
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Fig. 5.    The filtering efficiency [Cp (k, CO) B(k, CO)] of a blanket conditioning plate, as a 

function of (kc I CO). The thickness of the blanket is (bco I c)  = (1 / 30). 

  An ideal conditioning plate [(/?) and (£)  <«  1]. 

  Parametric values specified in Eq. (21a). 

  Parametric values specified in Eq. (21b). 
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Fig. 6a.   The conversion filtering efficiency Ev
p (k, CO) as a function of (kc I CO). 
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Fig. 6b.  The filtering efficiency [Ev
p (k, CO) B(k)] of a blanketed conversion from 

pressure to velocity spectral density, as a function of (kcl (O). 

  (bale)  = (1/100). 

(beale)  = (1/30). 

  (bale) = (2/30). 
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Fig. 7.    The filtering efficiency Cv (£, tt)) of a compliantly conditioned boundary, as a 

function of (kc I (O). 

  An ideal pressure release condition [ß0   <«  1]. 

  Parametric values specified in Eq. (37a). 

  Parametric values specified in Eq. (37b). 
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Fig. 8.    The filtering efficiency Dlv(k,CO)  = {[Cv(k,0))  Ev
p (k, 0))]} of a compliantly 

conditioned boundary taking account of the conversion filtering efficiency, as a 

function of {kc I CO). 

  An ideal pressure release condition [ß0   <«  1]. 

  Parametric values specified in Eq. (37a). 

  Parametric values specified in Eq. (37b). 
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Fig. 9.    The passive filtering efficiency Dv(k,CO)  = {[Cv(k,a>) Ev
p(k,ü)) B(k,CO)]} 

of a blanketed compliantly conditioned boundary taking account of the conversion 

filtering efficiency, as a function of (kc I CO). 

  An ideal pressure release condition [ß0   <«  1]. 

  Parametric values specified in Eq. (37a). 

  Parametric values specified in Eq. (37b). 
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Fig. 10a. The spectral density <&TBL(k,Q)) of a turbulent boundary layer (TBL) as a 

function of (kxcl(0), with (kyc/co)  =  0, a  =  0.1, ß  =  3a, 

  a  =  1,  a  =  0.1 and a  = 0.01. [cf. Eqs. (49) and (50)]. 
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Fig. 10b. The spectral density Q?TBL(k,Cü) of a turbulent boundary layer (TBL), as a 

function of (kycIco), with (kxcl co) =  0, a = 0.1, ß  = 3a, 

  a  =  1, a  =  0.1 and a  =  0.01. [cf. Eqs. (49) and (50)]. 
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Fig. 11a. The factor Tv
p (k,(O)  = [DXv{k,CO)l Cp{k,CO)}, as a function of (kc/co). 

[cf. Eqs. (44) and (45).] 

Ideal conditions on both the pressure and velocity arrays [(/?) and (£)  <«  1] 

and[/?0   <«  1]. 
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Fig. lib. The factor Tp(k,CO)  = [D{v(k,CO)f Cp(k,0))], as a function of {keim). 

[cf. Eqs. (44) and (45).] 

Parametric values specified in Eqs. (21a) and (37a). 
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Fig. lie. The factor Tp(k,(0)  = [Dlv(k,Ct))/ Cp(k,G))], as afunction of (kclco). 

[cf. Eqs. (44) and (45).] 

Parametric values specified in Eqs. (21b) and (37a). 
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Fig. lid.The factor Tp(k,CO)  = [Dlv(k,CO)/Cp(k,co)], as a function of (kc/co). 

[cf. Eqs. (44) and (45).] 

Parametric values specified in Eqs. (21a) and (37b). 
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Fig. lie. The factor Tp (fc.fi))  = [Dlv(k,CO)/Cp(k,co)], as afunction of (kc/co). 

[cf. Eqs. (44) and (45).] 

Parametric values specified in Eqs. (21b) and (37b). 
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Fig. 12a. The equivalent spectral density <&vN(k,CO) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kyc I CO) with (kxc I CO) = 0, 

  Q>vN(k,CO) and superimposed, for comparison, $> N(k,CO). 

As in 1 la. 
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Fig. 12b. The equivalent spectral density <&vN(k,CO) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kxc I CO) with (kyc I CO) = 0, 

  <$>vN(k,CO) and superimposed, for comparison, •• ®pN(k,(D). 

As in lib. 
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Fig. 12c. The equivalent spectral density ^>vN (k, CO) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kxc I CO) with (kyc I CO) = 0, 

  Q>vN(k,CO) and superimposed, for comparison, •■ OpN(k,CO). 

As in 1 lc. 
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Fig. 12d. The equivalent spectral density <I>vN (k, CO) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kxc I CO) with (kyc I (O) = 0, 

  <&vN{k,(ü) and superimposed, for comparison, •• ®pN(k,co). 

As in lid. 
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Fig. 12e. The equivalent spectral density Q>vN(k, CO) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kxc I CO) with (kycl CO) = 0, 

  <£>vN(k,CO) and superimposed, for comparison, ■• ®pN(k,CO). 

As in lie. 
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Fig. 12.1a.    The equivalent spectral density $>vN(k,CO) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kyc / (0) with (kxc 1 CO)  =  0, 

<£>vN(k,CO) and superimposed, for comparison,  O N(k,CO). 

As in 11a. 
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Fig. 12.1c. The equivalent spectral density <£>vN(k,CO) of the pressure in a turbulent 

boundaiy layer (TBL), as a function of (kyc I (ü) with (kxc I (O) = 0, 

  Ovyy(Ä:,<a) and superimposed, for comparison,  O N{k,C0). 

As in lie. 
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Fig. 12. le. Tlie equivalent spectral density <3>vN(k,C0) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kyc 1CO) with (kxc I CO) = 0, 

  <&vN(k,CO) and superimposed, for comparison, •• ®pN(k,(D). 

As in lie. 
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Fig. 13a.       The equivalent spectral density <&vN(k,CO) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kxc I Cö) with (kyc I (o)   =   0. The 

parameters (£0) and (£c) are both set equal to 10   . 

(co0/co) = (coc/co) = 20 . 
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Fig. 13b.       The equivalent spectral density O vN (k, CO) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kxc I Co) with (kyc I CO)  =  0. The 

parameters (e0) and (ec) are both set equal to 10" . 

(co0/co) = (coc I co) = 18 . 
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Fig. 13c.       The equivalent spectral density OvN (k, CO) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kxc I CO) with (kyc I CO)   =   0. The 

parameters (e0) and (£c) are both set equal to 10   . 

(C0o/C0)  = (C0c/C0)  =  16 . 
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l-icr 

Fig. 13d.      The equivalent spectral density <I> vN (k, Co) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kxc I CO) with (kyc I CO)  =  0. The 

parameters (e0) and (ec) ai'e both set equal to 10_ . 

(co„/co)  = (coc/co)  = 14 . 
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Fig. 13e.       The equivalent spectral density O vN(k, CO) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kxc I Cd) with (kyc I CD)   =   0. The 

parameters (£0) and (£c) are both set equal to 10" . 

(co0/co) = (coc/co)  = 12 . 
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Fig. 13 f.       The equivalent spectral density O vN (k, CO) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kxc I CO) with (kyc I CO)  =  0. The 

parameters (e0) and (ec) are both set equal to 10   . 

(co0 I co)  = (coc/co)  = 10 . 
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Fig. 13g.      The equivalent spectral density O vN (k, CO) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kxc I CO) with (kyc I Cö)  =   0. The 

parameters (£0 ) and (ec ) are both set equal to 10    . 

(co0/co) = (coc/co) = 8 . 
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Fig. 13h.      The equivalent spectral density O vN (k, CO) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kxc I CO) with (kyc I CO)  =  0. The 

parameters (£0) and (ec) are both set equal to 10   . 

(co0/co)  = (coc/co)  = 6 . 
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Fig. 13i.       The equivalent spectral density OvN (k, CO) of the pressure in a turbulent 

boundary layer (TBL), as a function of (kxc I CO) with (kyc I on)  =  0. The 

parameters (e0) and (£c) are both set equal to 10   . 

(co0/co) = (coc/co) = 4 . 
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