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Dominant Run-Length Method For Image Classification 

Xiaoou Tang 

Department of Applied Ocean Physics and Engineering 
Woods Hole Oceanographic Institution 

Woods Hole, MA 02543 

Abstract — In this paper, we develop a new run-length texture feature extraction algorithm that 

significantly improves image classification accuracy over traditional techniques. By directly using part or 

all of the run-length matrix as a feature vector, much of the texture information is preserved. This 

approach is made possible by the introduction of a new multi-level dominant eigenvector estimation 

algorithm. It reduces the computational complexity of the Karhunen-Loeve Transform by several orders 

of magnitude. Combined with the Bhattacharyya distance measure, they form an efficient feature 

selection algorithm. The advantage of this approach is demonstrated experimentally by the classification 

of two independent texture data sets. Perfect classification is achieved on the first data set of eight 

Brodatz textures. The 97% classification accuracy on the second data set of sixteen Vistex images further 

confirms the effectiveness of the algorithm. Based on the observation that most texture information is 

contained in the first few columns of the run-length matrix, especially in the first column, we develop a 

new fast, parallel run-length matrix computation scheme. Comparisons with the co-occurrence and 

wavelet methods demonstrate that the run-length matrices contain great discriminatory information and 

that a method of extracting such information is of paramount importance to successful classification. 





I. INTRODUCTION 

Texture is the term used to characterize the surface of a given object or region and it is undoubtedly one 

of the main features utilized in image processing and pattern recognition. Texture analysis plays a 

fundamental role in classifying objects and segmenting the significant regions of a given image. A 

solution to the texture analysis problem will greatly advance the image processing and pattern 

recognition fields and bring great benefit to many possible industrial applications [29]. However, the 

diversity of natural and artificial textures makes it difficult to give a universal definition of texture, 

resulting in a large number of texture analysis techniques. 

A good survey of traditional statistical texture analysis methods was given in [29]. They include the 

spatial gray level dependence method (SGLDM) [13] [14], the gray level run length method (GLRLM) 

[4] [7] [12], the gray level difference method (GLDM) [30], and the power spectrum method (PSM) [17] 

[21]. SGLDM is based on the estimation of the second-order joint probability density functions (PDF) of 

the gray levels of two pixels separated by a distance d in a direction a. It is the most widely used texture 

analysis method due to its consistently superior performance over the other three methods. The GLRLM 

estimates the PDF of the gray level run lengths of texture. The GLDM method uses functions of the first 

order PDF of the gray level difference of two nearby pixels to compute texture features, while the PSM 

method studies the power spectrum statistics in the frequency domain. The performance ranking of the 

four methods from good to poor are generally, SGLDM, GLDM, PSM and GLRLM. 

A new multi-channel approach called "texture energy analysis" was first introduced by Laws [20]. 

Laws used a set of small empirical filter masks to filter the texture image, then computed the variances in 

each channel output as the texture features. The shapes of the filter masks are similar to directional edge 

detectors. Later Ade [1] and Unser [27] [28] developed the eigenfilter approach, with Laws' empirical 

filter banks replaced by the eigenvectors of the covariance matrix of the local texture neighborhood 

vectors. Both the Laws filter and the eigenfilter approaches are shown to have texture classification 

capability comparable to that of the co-occurrence method. 

Almost parallel to the development of the eigenfilter theory, the Gabor filter became increasingly used 

in designing texture analysis algorithms [9] [10] [16] [22]. Jain et al. [16] and Dunn et al. [9] developed 

several filter design procedures using Gabor functions. Malik and Perona [22] derived a filter bank 

combination structure mimicking the human early vision system, which perhaps has provided the most 

detailed justification for a particular filter-bank structure [9]. 

However, the filter outputs of the above multichannel approaches are not orthogonal, thus leading to a 

large overcomplete representation of the original image. Recent advances in wavelet [8] [23] [24] [25] 

and wavelet packet theory [5] [25] provide a promising solution for this problem. The texture research 

community is currently devoting considerable effort to wavelet applications in texture analysis [3] [15] 

[18]. Henke-Reed and Cheng [15] performed a wavelet transform to texture images, using the energy 

ratios between frequency channels as the features. Chang and Kuo [3] developed a tree structured wavelet 

transform algorithm for texture classification and segmentation, which is similar to the wavelet packet 

best basis selection algorithm of Coifman and Wickerhauser [5]. Both the standard wavelet features and 



the wavelet packet energy features were used directly as texture features by Laine and Fan [18] in their 

texture classification work. 

Many comparison studies have been conducted for various statistical texture analysis methods. Weszka 

et al. [30] experimentally compared features on terrain images and found that the co-occurrence features 

were best among those studied, ranking ahead of the GLDM, the PSM and the run-length method. 

Conners and Harlow [6] compared features on generated textures and drew similar conclusions. Unser 

[27] showed that the eigenfilter features gave texture classification performance comparable to that of the 

co-occurrence features. Wavelet features have been demonstrated by Chang and Kuo [3] to give 

performance similar to that obtained by the eigenfilter features. One definite conclusion that can be 

drawn from these and many other texture studies is that the run-length features are the least efficient 

texture features. The applications of the run-length method have been very limited compared to other 

approaches, since introduced by Galloway [12]. 

In this paper we investigate this least used method from a new approach. By using a new multi-level 

dominant eigenvector estimation algorithm and the Bhattacharyya distance measure for texture feature 

selection, we demonstrate that texture features extracted from the run-length matrix can give great 

classification results. We then experimentally compare the new run-length method with the widely used 

co-occurrence method and the recently proposed wavelet method. 

This paper is organized into four sections. Section II introduces the original definition of the run-length 

matrix and several of its variations, then reviews the traditional run-length features and describes the new 

run-length feature extraction algorithm. Section III presents the texture classification experimental 

results. The conclusions are summarized in Section IV. 

II. METHODOLOGY 

A. Definition of the run-length matrices. 

With the observation that, in a coarse texture, relatively long gray-level runs would occur more often and 

that a fine texture should contain primarily short runs, Galloway proposed the use of a run-length matrix 

for texture feature extraction [12]. For a given image, a run-length matrix p(i, j) is defined as the number of 

runs with pixels of gray level i and run length;'. An example of the run-length matrices is shown in Fig.l, 

where four directional run-length matrices are computed from the original image. Various texture features 

can then be derived from these matrices. 

In this paper, we design several new run-length matrices, which are slight but unique variations of the 

traditional run-length matrix. For a run-length matrix p(i, j), let M be the number of gray levels and N be 

the maximum run length. The four new matrices are defined as follows. 

Gray Level Run Length Pixel Number Matrix - GLRLPNM: 

Pp(iJ) = P(ij)j- (1) 



Each element of the matrix represents the number of pixels of run-length; and gray-level /. Compared to 

the original matrix, the new matrix gives equal emphasis to all length of runs in an image. 

Gray Level Run Number Vector - GLRNV: 

N 

pg(i) = ^p(i,j). (2) 

This vector represents the sum distribution of the number of runs with gray level i. 

Run Length Run Number Vector - RLRNV: 

M 

PrU) = ^P(iJ)- (3) 
1= 1 

This vector represents the sum distribution of the number of runs with run length;'. 

Gray Level Run-Length-One Vector - GLRLOV: 

p0(i) = P(i,l). (4) 

Figure 2 shows the four directional run-length matrices of several natural texture samples. Notice that the 

first column of each of the four directional run-length matrices is overwhelmingly larger than the other 

columns. This may mean that most texture information is contained in the run-length-one vector. The 

advantages of using this vector are that it offers significant feature length reduction and that a fast parallel 

run-length matrix computation can replace the conventional serial searching algorithm. For example, the 

positions of pixels with run length one in the horizontal direction can be found by a logical "and" 

operation on the outputs of the forward and backward derivative of the original image: 

f(i, j) = x(i, j)-x(i, j-l), (5) 

b(i, j) = x(i,j-l)-x(i, j), (6) 

o(i,j) = f(i,j)nb(i,j), (7) 

where x(i, j) is the texture image whose pixels outside the image boundary are set to zero, and n repre- 

sents the logical "and" operation. Then p0{i) can be obtained by computing the histogram of x(i, j)o(i j)=i- 

To find the starting pixel position for runs with length two, a similar scheme can be employed, 

f2(iJ) = (/(U)*0)-o(U), (8) 

b2(i,j) = (b(i,j)*0)-o(i,j), (9) 

o2(iJ) = f2(i,j)nb2(i,j+l). (10) 

In fact, the gray level run number vector pJi) can also be obtained with the above approach by 



computing the histogram of x(i, j)/(/,,)*o • 

The matrix and vectors defined above are not designed for the extraction of traditional features. Along 

with the original run-length matrix, they are used in the new feature extraction approach in section II-C. 

The next section gives a review of the traditional feature extraction. 

B. Traditional run-length features 

From the original run-length matrix p(i, j), many numerical texture measures can be computed. The five 

original features of run-length statistics derived by Galloway [12] are: 

Short Run Emphasis (SRE) 

M    N N 
SRE = -Y. S P&JVJ = f X PrUVj. (ID 

Long Run Emphasis (LRE) 

M N N 

LRE = ^^piiJ)'j   = 7T?<p'U)-j ' (12) 

Gray Level Nonuniformity (GLN) 

M  f  N \2 M 

Run Length Nonuniformity (RLN) 

N   / M N2 N 
GW4IX^ =i-S^')2' (14) 

Run Percentage 

RP = ^, (15) 
nP 

where rar is the total number of runs and np is the number of pixels in the image. Based on the observation 

that most features are only functions of pr(j), without considering the gray level information contained in 

pg(i), Chu et al. [4] proposed two new features, 

Low Gray-level Run Emphasis (LGRE) 



M    N M 

LGRE = -yL £ p&JVi = jr5>«<i'>/''2' (16) 
r
i=lj=l 

High Gray-level Run Emphasis (HGRE) 

M     N u 
HGRE = -^ I p{i>j)■f = jr5>*(/>'/2' (17) 

to extract gray level information in the matrix. In a more recent study, Dasarathy and Holder [7] described 

another four feature extraction functions following the idea of joint statistical measure of gray level and 

run length, 

Short Run Low Gray-level Emphasis (SRLGE) 

M     N 

SRLGE = ^" X    X P^> jy{i2 • J2)' (18) 

Short Run High Gray-level Emphasis (SRHGE) 

M     N 

SRHGE = i- £    £  p{i,j)i2/j\ 
ri=U=l 

(19) 

Long Run Low Gray-level Emphasis (LRLGE) 

M     N 

LRLGE = ^£     J,  P(i,j)j2/i\ (20) 
ri=lj=l 

Long Run High Gray-level Emphasis (LRHGE) 

M     N 

LRHGE = - y    V   jP(i, j) ■ i2 ■ / - (21) 
ri=lj=l 

Dasarathy and Holder [7] tested all eleven features on the classification of a set of cell images and 

showed that the last four features gave much better performance. However, the data set they used was 

small, with only 20 samples in each of the four image classes. In Section III, we test these features on a 

much larger data set with 225 samples in each of eight image classes. 

These features are all based on intuitive reasoning, in an attempt to capture some apparent properties of 

run-length distribution. For example, the eight features illustrated in Fig. 3 are weighted-sum measures of 



the run-length concentration in the eight directions, i.e., the positive and negative 0-, 90-, 45-, and 135- 

degree directions. Similar to the way in which these features are derived, we could define more ad hoc fea- 

tures. Two drawbacks of this approach kept us from doing so: there is no theoretical proof that, given a cer- 

tain number of features, maximum texture information can be extracted from the run-length matrix, and 

many of these features are highly correlated with each other. For example, for an image with high long-run 

emphasis, the short-run emphasis must be relatively small, so the long-run-emphasis features and the 

short-run-emphasis features essentially measure the same texture property. 

C. Dominant run-length method (DRM) 

Instead of developing new functions to extract texture information, we use the run-length matrix as the 

texture feature vector directly to preserve all information in the matrix. However, this again introduces two 

problems: the large dimensionality of the feature vector and the high-degree correlation of the neighbor- 

hood features. 

To alleviate the first problem, observe the run-length matrix in Fig. 2 more closely. We see that most non- 

zero values concentrate in the first few columns of the matrix. Moreover the information in these first few 

columns, i. e., the short-run section, is correlated with that of the rest of the matrix, i. e., the long-run sec- 

tion, because for each row of the run-length matrix an image with a high long-run value will have a smaller 

short-run value. By using only the first few columns as the feature vector, the information in the long run 

section is not simply discarded but is mostly preserved in the feature vector. Another advantage of using 

only the first few columns is that the fast parallel run-length matrix computation algorithm described in 

section II-A can be employed. In the extreme case, only the first column of the matrix, the run-length-one 

vector, is used. 

To further reduce the feature vector dimension and to decorrelate neighboring element values in the 

matrices, we use the principal component analysis method, also called Karhunen-Loeve Transform (KLT), 

and then use the Bhattacharyya distance measure to rank the eigenfeatures according to their discrimina- 

tory power. 

Dominant principle component analysis: 

To compute the Karhunen-Loeve Transform, let xt be a feature vector sample. We form an n by m matrix 

*,(1)*2(1) ...xm(l) 

*,(2) x2(2) ... xm(2) 

*i(») x2(n) ... xm(n) 

(22) 

where n is the feature vector length and m is the number of training samples. The eigenvalues of the sample 

covariance matrix are computed in two ways, depending on the relative size of the feature vector and the 



training sample number. If the feature vector length n is a small number, eigenvalues are computed by a 

standard procedure. The sample covariance matrix is estimated by 

W = ££(*,-n)(*,-n)r = ± AA' (23) 
i= 1 

where (I is the mean vector. The eigenvalues and eigenvectors are computed directly from W. However, for 

the feature vector formed by the four directional run-length matrices, n is a large number. For a neighbor- 

hood of 32x32 with 32 gray levels, n can reach a maximum of 4096. This means the covariance matrix is of 

size 4096x4096. Direct computation of the eigenvalues and eigenvectors becomes impractical. Fortunately, 

if the sample image number m is much smaller than n, the rank of W will only be m-\. A more efficient 

way to compute the eigenvectors is the dominant eigenvectors estimation method [11]. Consider the eigen- 

vector et of A A/m, such that 

—A Ae- = X-e;. m 
(24) 

By multiplying both sides by A, we have 

^AAT(Aei) = \(Aei), (25) 

W(Aei) = H^ed. (26) 

This shows that Ae± is the eigenvector of covariance matrix W. Therefore, we can compute the eigenvectors 

of a small m by m matrix A A/m, then calculate the first m eigenvectors of W as Ae^. 

In the case where both m and n are large, we divide the training samples into g = m/k groups of vectors, 

A = (27) 

and apply the algorithm described above on each one of the g sample groups A,-. Then, the k dominant 

eigenvalues and eigenvectors are computed as the average of the computed g groups of eigenvalues and 

eigenvectors. 

However, there are several implementation difficulties with this grouping approach. The number of sam- 

ples in each group must be large enough and the samples must be uniformly selected from the whole data 

set to capture the dominant distribution directions of the original data set, so that the dominant eigenvec- 



tors in each group approximate the dominant eigenvectors of the whole data set. Furthermore finding the 

corresponding eigenvectors among all groups is a nontrivial process. 

Multi-level Dominant Eigenvector Estimation (MDEE) method. 

To avoid these problems, we propose a new Multi-level Dominant Eigenvector Estimation method. 

Instead of grouping column vectors as in equation (27), we group the matrix in the row direction. By 

breaking the long feature vector into g = n/k groups of small feature vectors of length k, 

A = 

B. 

*i< 

Br 

*i(i)*2(i) - 

xx(k) x2(k) ... 

x}(k + 1) x2(k+ 1) .. 

x}(2k)     x2(2k)   .. 

•■ xm(k)_ 

... xm(k+l) 

...   xm(2k) 

xx{n) x2(n) 

xlttg-l)k+l)x2«g-l)k+l) xm((g-l)k+l) 

*m(") 

(28) 

we can perform the KLT on each of the g group short feature vector set Bt. Then a new feature vector is 

formed by the first few selected dominant eigenfeatures of each group. The final eigenvectors are com- 

puted by applying the KLT to this new feature vector. To prove that the eigenvalues computed by MDEE 

are a close approximation of the standard KLT, we study the two-group case here. The feature vector 

matrix and its covariance matrix are 

A = (29) 

W = AA 
B2BX B2B2 

w2l w2 

(30) 

The averaging coefficients are omitted in the equations for simplicity. Let the eigenvector matrices of the 

covariance matrices Wj and W2 be T} and T2 respectively, then 

T\WJX = A, , (3D 

T'2W2T2 = A2. (32) 

10 



where A,  and A2 are the diagonal eigenvalue matrices. The effective rotation matrix for the first-step 

group KLT is 

T = 
7,  0 

0 Tn 
(33) 

T is also an orthogonal matrix, since 

TTT = 
T\TX 

TT
2T2 

(34) 

So, after the first-step group KLT, the covariance matrix of the rotated feature vector, 

Wr T WT T[WnT2 

r2wlxTx 

Alfc   0" Cbb Cbs 
T 

= 
.0   Au 

Cbb Cbs A2fc   0 

ysb  ^ss_ L°   A2. 

(35) 

is a similar matrix of the original feature vector covariance matrix W, because of the orthogonality of the 

rotation matrix T. Since similar matrices have the same eigenvalues, we can use the right most term of 

equation (35) to discuss the impact on W of keeping only the first few dominant eigenvalues in each group. 

In equation (35), Anb and Ans represent the larger dominant eigenvalue section and the smaller negligible 

eigenvalue section of the eigenvalue matrix A„ respectively, for n = 1 or 2. C^., where x = b or s, repre- 

sents the cross-covariance matrix of the two groups of rotated features. By keeping only the dominant 

eigenvalues, the new feature vector covariance matrix becomes 

Wd = A-ifc Chb 

Cbb A-22, 

(36) 

The terms removed from Wr are Au, A2s, Css, Cbs and Csb. Since most energy is contained in the domi- 

nant eigenvalues, the loss of information due to Au and A2s should be very small. The energy contained in 

the cross-covariance matrix of the two small energy feature vectors, Css, should therefore be even smaller. 

We can also show that Cbs and Csb cannot be large either. If the two group features ßj and S2 are fairly 

uncorrelated with each other, then all the cross-covariance C^ matrices in (35) will be very small. On the 

other hand, if the two group features are strongly correlated with each other, the dominant eigenfeatures of 

the two group will be very similar. Therefore the cross-covariance matrix Cbs of group-two large features 

with group-one small features will be similar to the cross-covariance matrix of the group-one large features 

with group-one small features, which is zero due to the decorrelation property of the KLT transform. 

11 



When the two group features 5j and B2 are partially correlated, the correlated part should be mostly sig- 

nal, since noise parts of the variable Bx and B2 rarely correlate with each other. The basic property of the 

KLT is to preserve all signal energy in the first few large eigenvalues. Therefore, most signal energy in B2, 

and especially most of the B2 signal energy that is correlated with Bh will be preserved in the large eigen- 

value section of B2 covariance matrix. The energy that is discarded in the small eigenvalue section of B2 

will contain little if any energy that is correlated with Bx. Therefore, Cbs and Csb should be very small, and 

we will not lose much information by removing them from the covariance matrix Wr 

Now that we have shown that the covariance matrix Wd is a close approximation of Wn and Wr is a simi- 

lar matrix of W, we can say that the eigenvalues from Wd, i.e., by the MDEE method, are indeed a close 

approximation of the eigenvalues computed from W, i.e., by the standard KLT method. 

Significant reduction of computational time can be achieved by the MDEE over the standard KLT. For 

example, if a feature vector of length n = 1000 is broken into 10 vector groups of length 100, and 10% of 

the eigenfeatures in each group are saved for the second-level eigenvalue computation, the computational 

complexity for the MDEE is ll(n/10)3, which is nearly two orders of magnitude faster than the KLT's 

10003. Furthermore, the algorithm offers an excellent opportunity for parallel computation. If all individ- 

ual group KLTs are computed in parallel, a near three-order-of-magnitude speed increase can be achieved 

for this example. 

However, it is well known that the KLT features are optimal for data representation but not necessarily 

the best for discrimination. To measure the class separability of each feature, some other criterion must be 

employed. We choose the Bhattacharyya distance measure. 

Bhattacharyya Distance Measure: 

We select the Bhattacharyya distance in this work because it has a direct relation with the error bound of 

the Gaussian classifier and has a simple form for features with normal distributions. As indicated by Fuku- 

naga [11], for a two-classes problem 

e(CiiC2) < [P(c,)P(c2)]
2exp[-&,(CiiC2)], (37) 

where P(ct) is the prior probability of class cb e is the probability of error for a Gaussian classifier and ß^ is 

the Bhattacharyya distance. Because its inverse gives the upper bound on the probability of error, ß^ can be 

an effective measure of class separability. For a normal distribution, $d has the analytical form 

T(W1 + W2yi i     \(wi + w2) 
ß*„c2) = gdi,-^) [—2—1   ^-^ + 2lnlw|i/2|w|1/2 IWi      |1V, 

(38) 

where (ij, \i2 and Wlt W2 are the mean vectors and covariance matrices of the two class distributions. The 

many possible combinations of several features and the possibility of covariance matrix singularity make it 

impractical to compute the Bhattacharyya distance for several features at once. The one-at-a-time method 

12 



is adopted instead. The formula is the same as equation (38), only with the covariance matrix W replaced 

by the variance and the mean vector \i replaced by the class mean. As for multi-class problems, the overall 

probability of error can be bounded by [19] 

M    U 

£^Z5>(c„c,)> (39) 
;>;■; = 1 

where 8 and £(ci,c]) & J = -^>2>—> ^0 are the probabilities of overall error and the pair-wise error between 

class / and j respectively. From Equations (37) and (39) we select the features according to the minimum 

total upper error bound. Because the test data size is the same for all classes in our experiment, the prior 

probabilities P(ci) are equal for all classes. Thus, we select features with small values of 

M    M 

^ = ZXexpHW,.)]- (40) 

Throughout the experiments in section HI, we select the first 30 features with largest eigenvalues, rank 

these KLT-decorrelated features by their Sb values, and use the first n features with the smallest Sb for clas- 

sification. We run the feature length n from 1 to 30 to select the one that gives the best performance as the 

final feature vector length. This is apparently not an optimal searching approach, since a combination of 

the first n best individual features may not be the best length n feature vector. However, the experimental 

results suggest it to be a close approximation. Since all features are first decorrelated by the KIT trans- 

form, as we increase the feature length each additional feature brings in new uncorrelated information and 

noise. When their Sb values increase to a certain point, the new features start to bring in more noise than 

information, suggesting that a suboptimal feature length is reached. The experiments show that most best 

feature lengths are between 10 and 20. 

D. Classification algorithm 

Since the main focus of this work is the feature extraction algorithm, we use a simple Gaussian classifier 

for the experiments. Let the class mean and covariance matrix of the feature vector x be m^ and W; respec- 

tively, a distance measure is defined as [26] 

Di = (*-ji,.)rW:,(x-jiI.) + ln|W|.|, (41) 

where the first term on the right of the equation is actually the Mahalanobis distance. The decision rule is 

xe CL     when£>L = mr'n{D,}. (42) 

III. EXPERIMENTS AND DISCUSSION 

In this section, two separate data sets are used for the texture classification experiment. We first make 

detail comparison between various DRM features and the traditional run-length features on the 

classification of eight Brodatz images. We then compare the best DRM features with the co-occurrence 

13 



features and the wavelet features on the classification of a larger data set — sixteen Vistex images. 

A. Data description 

The first data set comprises the eight Brodatz images [2], which are shown in Fig. 4. Each image is of 

size 256x256 with 256 gray levels. The images are first quantized into 32 gray levels using equal-probabil- 

ity quantization. Each class is divided into 225 sample images of dimension 32x32 with fifty percent over- 

lapping. Sixty samples of each class are used as training data, so the training data^size is 480 samples and 

the testing data size is 1320. 

As we will see from the result on the above data set, most of our new algorithms give perfect classifica- 

tion. To further compare the performance of these new algorithms and their consistency when applied to a 

larger natural image set, we conducted a second experiment on a set of sixteen images from Vistex texture 

image database established by the MIT Media Lab. Unlike Brodatz images which are mostly obtained in 

well controlled studio conditions, the Vistex images were taken under natural lighting conditions. They 

pose a more realistic challenge for texture classification algorithms. Table 1 is the description of the sixteen 

Vistex images shown in Fig.5. The same 32 gray level quantization is applied to each image. This quantiza- 

tion will make all the image classes have the same flat histogram, indistinguishable by mean and variance 

features. However, unlike most texture classification experiments, no adaptive histogram equalization is 

applied to the images to compensate the nonuniform lighting. This makes the classification more difficult 

and the classification result a closer reflection of real-world applications. Each class is again divided into 

225 samples of dimension 32x32 with fifty percent overlapping. Sixty samples of each class are used as 

training data. So the training data has 1920 samples and the testing data has 2640 samples. 

B. Classification using the traditional run-length features 

Table 2 shows the classification results using the traditional run-length features directly on the Brodatz 

images. Similar to [7], the feature groups tested are the original five features of Galloway [12], the two 

features of Chu et al. [4], and the four new features of Dasarathy and Holder [7]. All four-direction 

features are used. Contrary to the good classification results on only four classes of 80 samples in [7], all 

groups of features perform poorly here. With only 35% classification accuracy, the result of using all 

three group features together is much worse than any single group features. However, by applying the 

feature selection algorithms, i.e., KLT plus Bhattacharyya distance measure, to the feature vector before 

classification, improved results are shown in Table 3. In this case, the feature vector containing all three 

group features achieves 88% accuracy, far better than any single group features. This is mainly because 

of the close correlation of the three groups of features. 

To see the degree of correlation, we compute the auto-correlation coefficient matrix of the complete 

run-length feature vector shown in Fig. 6. Many coefficient values in the matrix are close to one and the 

high correlations can also be seen in the scatter plots of several strongly correlated features, as illustrated 

in Fig. 7. The poor classification performance of correlated features indicates that additional features 

bring in a great deal of noise, which overwhelms any marginal benefit of mostly redundant information 

contained in the added features. This shows the importance of using the KLT transform to extract 

14 



decorrelated information. 

C. Classification using the new DRM features 

Figures 8 and 9 show the scatter plots of the top eight features obtained by applying the MDEE 

transform on the original run-length matrix and on the run-length-one vector, respectively. Almost 

perfectly separable clustering can be seen for most of the eight image classes in both cases, in sharp 

contrast to the overlapping clusters in Fig. 7 using the traditional feature vector. 

The classification results using the DRM features are summarized in Table 4. Notice the dramatic 

reduction of feature length from several hundreds to around ten, comparable with the traditional feature 

vector length. The results indicate that a compact, optimal run-length feature vector can be extracted by 

the MDEE method, without resort to ad hoc functions. 

With only such a small number of features, perfect classification is achieved with the original matrix 

and with most of the new matrices and vectors. The only exceptions in Table 4 are the RLRN vector and 

the long-run region of the run-length matrix. The poor performance of the long-run region matrix and the 

good performance of the short-run region matrix indicate that most texture information is indeed 

concentrated in the short-run region. This also helps to explain the poor performance of the RLRN vector. 

Since most information is stored in the first few columns of the run-length matrix, the only important 

features in RLRN are the first few features, which are the summation of the first few columns. The gray 

level information is totally lost. 

D. Comparison with other methods 

We now compare the new run-length method with the widely used co-occurrence method and the 

recently proposed wavelet method on a larger and more difficult Vistex data set. For the co-occurrence 

method, thirteen co-occurrence features—Contrast, Correlation, Entropy, and Variance, etc.—are 

computed for each of the four directions as described in [14]; for the wavelet method, the texture feature 

used for each wavelet decomposition channel is the energy feature: 

M     N   f M     N 

™iz : • <43> 
i = 1 j = 1 ^ i = 1 j = 1 

where x(i, j) denotes an element of the wavelet packet coefficient in each frequency channel and M and N 

are the size of the channel. The same feature selection method in section II-C is applied to the co- 

occurrence and wavelet feature vectors. 

The classification results on the sixteen Vistex images using various DRM features are first shown in 

Table 5. About 97% classification accuracy is achieved by most feature vectors. An especially interesting 

result is that the run-length-one vector gives excellent performance, similar to that of the original full 

matrix. This confirms that the fast, parallel processing algorithm can be used to extract useful run-length 

texture features. 

Classification results using co-occurrence and wavelet features on the sixteen Vistex images are shown 

15 



in Table 6. From the results, we can see that the run-length features are no longer the least effective 

features. In fact, the run-length features perform comparably with the co-occurrence features and better 

than the wavelet features. This demonstrates that there is rich texture information contained in the run- 

length matrices and that a method of extracting such information is of paramount importance to 

successful classification. 

The poor results of the wavelet features are inconsistent with several previous studies [3] [18], where 

wavelet features generate near perfect classifications. This is mainly because that we use a much smaller 

texture sample size, 32x32, than the ones used in most previous studies, 64x64 or 128x128 [3] [18]. Such 

a small image size may not be enough to estimate a stable frequency energy distribution. However, it is 

important for any texture classification algorithm to give good performance on small size images, so that 

they can be useful for more difficult image segmentation applications. 

To confirm this sample size effect, we divide each Vistex image class into 169 sample images of 

dimension 64x64 with 75% overlapping between neighborhood samples. Only 39 samples in each class 

are used as training data, so the training data size is 624 samples and the testing data size is 2080 

samples. Table 7 shows the classification results. Near perfect classifications are achieved by all three 

methods, similar to results in [3] [18]. As we increase the training data size to 1456 samples and decrease 

testing data size to 1248, all three feature vectors produce perfect classifications, as shown in Table 8. 

IV. CONCLUSION 

In this paper, we extract a new set of run-length texture features that significantly improve image 

classification accuracy over traditional run-length features. By directly using part or all of the run-length 

matrix as a feature vector, much of the texture information is preserved. This approach is made possible 

by the introduction of a new multi-level dominant eigenvector estimation method. The MDEE reduces 

the computation complexity of KLT by several orders of magnitude. Combined with the Bhattacharyya 

distance measure, they form an efficient feature selection algorithm. 

The advantage of this approach is demonstrated experimentally by the classification of two independent 

texture data sets. Perfect classification is achieved on the eight Brodatz images. The 97% classification 

accuracy on the sixteen Vistex images further confirms the effectiveness of the algorithm. 

Experimentally, we observe that most texture information is stored in the first few columns of the run- 

length matrix, especially in the first column. This observation justifies development of a new, fast, 

parallel run-length matrix computation scheme. 

Comparisons of this new approach with the co-occurrence and wavelet methods demonstrate that the 

run-length matrices possesses as much discriminatory information as these successful conventional 

texture features and that a good method of extracting such information is key to the success of the 

classification. We are currently investigating the application of the new feature extraction approach on 

other texture matrices. We hope our work here will also renew the interest in run-length texture features, 

and will promote more future applications. 
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Fig. 1. Four directional gray-level run-length matrices. 

19 



Texture image samples 

* -§."« m # ) 
*E {i|I I 

5 .i j i i i 

1' i t § 
i.   — Ti- 

Runlength matrices in four directions 

dir-0 dir-45dir-90dir-135    0    Q      ,      , 
Run length ' 

z 

CO c 
3 

dir-0 dir-45dir-90dir-135    0    Q      ,     , 
Run length J 

CD 

E 
z 

50- 

dir-0 dir-45 dir-90dir-135 
Run length 

0 
™ 40 

20 
Gray level 

CD 
.Q 

E 
z dir-0 dir-45 dir-90dir-135 

Run length 
0 

on  40 

20 
Gray level 
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most column of each directional matrix is the run-length-one vector, which has much 
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Fig. 3. Run-emphasis regions of several traditional run-length texture features. 
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Fig. 4. Eight Brodatz textures. Row 1: burlap, seafan, ricepaper, pebbles23; Row 2: 
tree, mica, straw, raffia. 

Fig. 5. Sixteen Vistex textures. Descriptions are in Table 1. 
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Fig. 7. Scatter plots of several highly correlated traditional run-length texture features of 
the eight Brodatz textures. Due to overlap, not all eight class symbols can be discerned. 
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Fig. 9. Scatter plots of the top eight features extracted by applying a MDEE 
transform on the run-length-one vector of the Brodatz textures. Linearly 
separable clustering is observed for most of the eight texture classes. 
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Table 1: Vistex texture images description. 

Image name Contents Lighting Perspective 

Bark.0008 tree bark daylight direct right frontal plane 

Brick.0004 brick daylight indirect right frontal plane 

Buildings.0009 building daylight indirect oblique 

Fabric.0001 straw rattan artificial incandescent frontal plane 

Fabric.0005 fur artificial incandescent frontal plane 

Fabric.0013 wicker daylight indirect frontal plane 

Fabric.0017. carpet backing daylight indirect frontal plane 

Flowers.0007 flowers daylight direct frontal plane 

Food.0000 lima beans artificial incandescent frontal plane 

Food.0005 coffee grounds artificial strobe frontal plane 

Grass.0002 grass straw daylight direct frontal plane 

Leaves.0002 plant leaf daylight direct frontal plane 

Metal.0001 metal reflector sheet artificial strobe frontal plane 

Tile.0007 ceiling tile artificial strobe frontal plane 

Water.0006 water daylight direct oblique 

Wood.0002 wood daylight indirect frontal plane 

Table 2: Brodatz texture classification results using the traditional run-length features. 

Feature 
name 

Original 
feature 
length 

Number of 
selected 
features 

Correct classification rate 

Training data Testing data All data 

G5 20 20 64.6 60.7 61.7 

C2 8 8 61.2 41.8 47.0 

D4 16 16 84.4 59.1 65.8 

ALL 44 44 35.6 35.4 35.4 

24 



Table 3: Brodatz texture classification results using the new feature selection method on the 
traditional run-length features. 

Feature 
name 

Original 
feature 
length 

Number of 
selected 
features 

Correct classification rate 

Training data Testing data All data 

G5 20 12 88.5 74.9 78.6 

C2 8 8 61.2 41.8 47.0 

D4 16 16 84.4 59.1 65.8 

ALL 44 24 99.4 83.7 87.9 

Table 4: Brodatz texture classification results using the new dominant run-length matrix 
features. 

Feature name 
Original 
feature 
length 

Number 
of selected 

features 

Correct classification rate 

Training 
data 

Testing data All data 

p: columns 1:4 512 11 100.0 100.0 100.0 

p: columns 5:32 3584 8 53.3 41.3 44.5 

p: whole matrix 4096 11 100.0 100.0 100.0 

pp: columns 1:4 512 7 100.0 100.0 100.0 

pp: columns 5:32 3584 17 69.6 41.4 48.9 

pp: whole matrix 4096 10 100.0 100.0 100.0 

pg: GLRNV 128 8 100.0 100.0 100.0 

pr: RLRNV 128 20 95.2 63.9 72.3 

p0: GLRLOV 128 11 100.0 100.0 100.0 
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Table 5: Vistex texture classification results using the new dominant run-length matrix 
features. 

Feature name 
Original 
feature 
length 

Number of 
selected 
features 

Correct classification rate 

Training 
data 

Testing data All data 

p: columns 1:4 512 17 99.9 96.8 97.6 

p: whole matrix 4096 18 99.9 98.0 98.5 

pp: columns 1:4 512 19 100.0 96.8 97.6 

pp: whole matrix 4096 24 100.0 97.5 98.1 

pg: GLRNV 128 23 100.0 93.9 95.6 

p0: GLRLOV 128 18 99.8 97.0 97.8 

Table 6: Vistex Texture classification results using the co-occurrence, the wavelet, and the 
new run-length features. 

Original 
feature 
length 

Number 
of selected 

features 

Correct classification rate 

Feature name Training 
data 

Testing data All data 

Co-occurrence 52 29 100.0 97.4 98.1 

13 

1 
Level 2 16 13 98.2 90.6 92.7 

Level 3 64 20 98.6 90.1 92.4 

All Levels 84 15 97.9 90.6 92.5 

Run-length 4096 18 99.9 98.0 98.5 
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Table 7: Vistex Texture classification results using the co-occurrence, the wavelet, and the 
run-length features, with image sample size 64x64, and training image #: testing image # = 

624:2080. 

Original 
feature 
length 

Number 
of selected 

features 

Correct classification rate 

Feature name Training 
data 

Testing data All data 

Co-occurrence 52 24 100.0 99.8 99.8 

-4-> 

1 

Level 2 16 10 100.0 99.5 99.6 

Level 3 64 12 100.0 99.3 99.5 

Level 4 256 22 100.0 98.2 98.6 

All Levels 340 24 100.0 98.1 98.5 

Run-length 8192 13 100.0 100.0 100.0 

Table 8: Vistex Texture classification results using the co-occurrence, the wavelet, and the 
run-length features, with image sample size 64x64, and training image # : testing image # = 

1456:1248. 

Original 
feature 
length 

Number 
of selected 

features 

Correct classification rate 

Feature name Training 
data 

Testing data All data 

Co-occurrence 52 13 100.0 100.0 100.0 

4-» 

13 > 

Level 2 16 10 99.9 100.0 100.0 

Level 3 64 15 100.0 99.9 100.0 

Level 4 256 24 100.0 99.9 100.0 

All Levels 340 27 100.0 100.0 100.0 

Run-length 8192 11 100.0 100.0 100.0 

27 



DOCUMENT LIBRARY 
Distribution List for Technical Report Exchange - February 1996 

University of California, San Diego 
SIO Library 0175C 
9500 Gilman Drive 
Lajolla, CA 92093-0175 

Hancock Library of Biology & Oceanography 
Alan Hancock Laboratory 
University of Southern California 
University Park 
Los Angeles, CA 90089-0371 

Gifts & Exchanges 
Library 
Bedford Institute of Oceanography 
P.O. Box 1006 
Dartmouth, NS, B2Y 4A2, CANADA 

Commander 
International Ice Patrol 
1082 Shennecossett Road 
Groton, CT 06340-6095 

NOAA/EDIS Miami Library Center 
4301 Rickenbacker Causeway 
Miami, FL 33149 

Research Library 
U.S. Army Corps of Engineers 
Waterways Experiment Station 
3909 Halls Ferry Road 
Vicksburg, MS 39180-6199 

Institute of Geophysics 
University of Hawaii 
Library Room 252 
2525 Correa Road 
Honolulu, HI 96822 

Marine Resources Information Center 
Building E38-320 
MIT 
Cambridge, MA 02139 

Library 
Lamont-Doherty Geological Observatory 
Columbia University 
Palisades, NY zl0964 

Library 
Serials Department 
Oregon State University 
Corvallis, OR 97331 

Pell Marine Science Library 
University of Rhode Island 
Narragansett Bay Campus 
Narragansett, RI 02882 

Working Collection 
Texas A&M University 
Dept. of Oceanography 
College Station, TX 77843 

Fisheries-Oceanography Library 
151 Oceanography Teaching Bldg. 
University of Washington 
Seattle, WA 98195 

Library 
R.S.M.A.S. 
University of Miami 
4600 Rickenbacker Causeway 
Miami, FL 33149 

Maury Oceanographic Library 
Naval Oceanographic Office 
Building 1003 South 
1002 Balch Blvd. 
Stennis Space Center, MS, 39522-5001 

Library 
Institute of Ocean Sciences 
P.O. Box 6000 
Sidney, B.C. V8L 4B2 
CANADA 

National Oceanographic Library 
Southampton Oceanography Centre 
European Way 
Southampton SO 14 3ZH 
UK 

The Librarian 
CSIRO Marine Laboratories 
G.P.O. Box 1538 
Hobart, Tasmania 
AUSTRALIA 7001 

Library 
Proudman Oceanographic Laboratory 
Bidston Observatory 
Birkenhead 
Merseyside L43 7 RA 
UNITED KINGDOM 

IFREMER 
Centre de Brest 
Service Documentation - Publications 
BP 70 29280 PLOUZANE 
FRANCE 



50272-101 

REPORT DOCUMENTATION 
PAGE 

1. REPORT NO. 
WHOI-97-07 

4. Title and Subtitle 
Dominant Run-Length Method for Image Classification 

7. Author(s)      Xiaoou Tang 

9. Performing Organization Name and Address 

Woods Hole Oceanographic Institution 
Woods Hole, Massachusetts 02543 

12. Sponsoring Organization Name and Address 

Office of Naval Research 

3. Recipient's Accession No. 

5. Report Date 
June 1997 

8. Performing Organization Rept. No. 
WHOI-97-07 

10. Project/Task/Work Unit No. 

11. Contract(C) or Grant(G) No. 

(C)     N00014-93-1-0602 

(G) 

13. Type of Report & Period Covered 

Technical Report 

14. 

15. Supplementary Notes 

This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept., WHOI-97-07. 

16. Abstract (Limit: 200 words) 

In this paper, we develop a new run-length texture feature extraction algorithm that significantly improves image 
classification accuracy over traditional techniques. By directly using part or all of the run-length matrix as a feature vector, 
much of the texture information is preserved. This approach is made possible by the introduction of a new multi-level 
dominant eigenvector estimation algorithm. It reduces the computational complexity of the Karhunen-Loeve Transform by 
several orders of magnitude. Combined with the Bhattacharyya distance measure, they form an efficient feature selection 
algorithm. The advantage of this approach is demonstrated experimentally by the classification of two independent texture 
data sets. Perfect classification is achieved on the first data set of eight Brodatz textures. The 97% classification accuracy 
on the second data set of sixteen Vistex images further confirms the effectiveness of the algorithm. Based on the 
observation that most texture information is contained in the first few columns of the run-length matrix, especially in the 
first column, we develop a new fast, parallel run-length matrix computation scheme. Comparisons with the co-occurrence 
and wavelet methods demonstrate that the run-length matrices contain great discriminatory information and that a method 
of extracting such information is of paramount importance to successful classification. 

17. Document Analysis     a. Descriptors 
Texture Image Classification 
Run Length 
Karhunen Loeve Transform 

b. Identifiers/Open-Ended Terms 

c. COSATI Field/Group 

18. Availability Statement 

Approved for public release; distribution unlimited. 

19. Security Class (This Report) 

UNCLASSIFIED 
20. Security Class (This Page) 

(See ANSI-Z39.18) 

21. No. of Pages 
27 

22. Price 

See Instructions on Reverse OPTIONAL FORM 272 (4-77) 
(Formerly NTIS-35) 
Department of Commerce 


