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Abstract 

This paper gives an overview of a 1993 project performed at The Aerospace Corporation 
in cooperation with the Johns Hopkins Applied Physics Laboratory1 to formally verify, 
using the State Delta Verification System (SDVS), a portion of the Midcourse Space Ex- 
periment (MSX) tracking processor software. SDVS is an automated system developed at 
The Aerospace Corporation for use in formal computer verification. The tracking processor 
software is written in Ada and 1750A assembly language. The project has been one of the 
largest experiments in the formal verification of production Ada code. This paper presents 
(1) an overview of SDVS, (2) a functional overview of a portion of the MSX tracking pro- 
cessor software (the target software), (3) a discussion of the modifications that were made 
to the MSX software, and (4) a description of the correctness proofs of the modified MSX 
software and of the two different strategies used in the proofs. The modifications were due 
primarily to the presence of Ada tasks in the target software. 

'We are especially indebted to Richard Waddell and Shane Hutton of the Johns Hopkins Applied Physics 

Laboratory for their help in discussions of issues raised in this report. 
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1     Introduction 

This report is gives an overview of a 1993 project performed at The Aerospace Corporation 
(Aerospace) in cooperation with the Johns Hopkins University Applied Physics Labora- 
tory (JHU/APL) to verify a portion of the Midcourse Space Experiment (MSX) spacecraft 
tracking processor software (the target software) using the State Delta Verification System 
(SDVS). A detailed discussion of the verification effort is presented in [1]. 

The State Delta Verification System2 (SDVS) is an automated system developed at Aerospace 
for use in formal computer verification. The formal framework of SDVS is based on a form 
of classical temporal logic that provides an operational semantic representation of compu- 
tation. A program or hardware description written in one of the three high-level computer 
languages that SDVS currently supports — subsets of ISPS, VHDL, or Ada — may be 
translated by the corresponding SDVS language translator into a temporal formula that 
may then be symbolically executed. Typically, a user writes a specification in SDVS for a 
program or hardware description written in one of these three languages, and then proves 
that the SDVS translation of the program impbes its specification. 

MSX is a near-term Ballistic Missile Defense Organization program whose primary purpose 
is to conduct tracking-event experiments of targets/phenomena in midcourse. JHU/APL 
is the prime contractor for the spacecraft and is a key developer of the mission software, 
which is written in Ada and 1750A assembly language. 

In our verification experiment, we focused on a part of the MSX tracking processor software 
that processes a stream of commands into application-level messages.3 Our focus was guided 
by the important role these messages play in a tracking experiment, and was constrained by 
the pragmatic consideration that SDVS does not handle floating-point numbers and pointers 
at this time.4 Nevertheless, we had to deal with Ada software that included tasks, an 
interrupt-driven procedure, numerous interfaces to 1750A assembly routines,5 and various 
Ada constructs that were not implemented in the SDVS Ada translator when we began the 
experiment. We were able to deal, mostly satisfactorily, with the assembly routines and 
the unimplemented Ada constructs, but the tasks and the interrupt-driven procedure were 
a major problem; we had to rewrite tasks as procedures and provide a scheduler for them 
(the main program). Because of time constraints on this experiment, the scheduler did not 
encompass a great number of complicated situations that might arise in the execution of 
the original software. 

In spite of the problems we encountered because of the Ada tasking, our walk-through of 
the code and the correspondence between Aerospace and JHU/APL led to the discovery of 
two errors in the target software.6  Once the errors were corrected, we were able to prove 

2For an overview of SDVS see [2] and [3]. For more detailed accounts see [4] and [5]. 
3See [6] and [7] for a functional overview of the MSX tracking processor software. Our specifications were 

obtained primarily from [8]. 
4We started to study the inclusion of floating-point numbers and pointers in SDVS (see [9] and [10]). 
5SDVS has the capability to verify programs written in a subset of 1750A assembly language as well, but 

we could not include these subprograms in a one-year experiment. 
6We note that at the time the errors were discovered, JHU/APL had not tested the code extensively. 



that 57 types of one class of application-level messages were processed correctly by the code 
(but under ideal conditions). The interested reader will find the commented code and the 
batch proof in [l].7 

In Section 2 of this paper we give a brief overview of SDVS, and in Section 3 we give an 
overview of the MSX tracking processor software we verified. 

In Section 4 we describe our approach to the verification effort, and in Section 5 we present 
a summary of our proofs and our proof strategy. We have not included the proofs in this 
paper, because they are quite long. Our proofs rely on a simple scheduler and on restricted 
input. However, in the latter phase of the project, we started to work on an approach to 
the verification that, we think, will lead to proofs of correctness for more complex inputs 
and schedulers. 

In Section 6 we list our accomplishments, which include the verification of a substantial, 
real Ada application program consisting of about 900 lines of uncommented code. 

7The target software consists of over 900 lines of uncommented code; the batch proof is about 80 pages 
long; the actual SDVS trace of the proof is several thousand pages long. 



2     The State Delta Verification System 

The formal framework of SDVS relies on the language and techniques of mathematical logic. 
SDVS is based on a specialized temporal logic whose characteristic formulas, called state 
deltas? provide an operational semantic representation of computation. Operational verifi- 
cation systems are characterized by computational sequences (or states) that symbolically 
trace the execution of a program. A state consists of the symbolic values of the program 
variables at some point in the execution of the program. Thus, a sequence of states con- 
stitutes a sequence in time. Temporal logics are used to express and prove propositions 
involving time. Hence, a proof in SDVS is a proof in SDVS' temporal logic. 

Technically, SDVS checks proofs of state deltas. SDVS can handle proofs of claims of the 
form "if P is true now, then Q will become true in the future." Assuming P represents 
a program (perhaps with some initial assertions) and Q is an output assertion, this is an 
input-output assertion about P. SDVS can also be used to prove a claim of the form "if 
P is true now, then Q is true now;" assuming both P and Q represent programs, this 
claim asserts the implementation correctness of P with respect to Q. This is a claim that 
one program correctly implements another. Specifications of programs may be directly 
formulated in state deltas, or may themselves be programs that can be translated into state 
deltas. 

SDVS has a proof checker/theorem prover, knowledge about several computer domains (data 
types), and a set of application language translators. A user inputs either an Ada, VHDL, or 
ISPS program together with a specification for that program. The state delta representation 
of the program is obtained by invoking the appropriate application language translator, with 
the subject program as its argument. Then the user interacts with SDVS to construct a 
proof that the state delta representation of the program satisfies the specification. A proof 
may be developed interactively and then later be executed in batch mode. 

The underlying proof method used by SDVS is symbolic execution. Symbolic execution 
essentially involves executing a program or machine description from its initial state through 
successive states using symbolic values for the program variables or for the contents of 
machine registers. Of course, the computation path is often conditional on specific values; 
in these instances subproofs must be initiated to account for all possibilities. The correctness 
claims that are proved are all of the form "At certain states some conditions are true." Thus, 
during a proof there are two kinds of tasks: to go from state to state, and to prove that 
certain things are true in a given state. These are the dynamic and static aspects of the 
proof system, respectively. 

The dynamic proof language has three basic rules: straight-line symbolic execution (for 
instances where the path is not data dependent), proof by cases (at branch points), and 
induction (necessary when the number of times through a loop is data dependent, but could 
also be used for a large constant number of iterations). We are currently in the process of 
incorporating a command to handle recursive procedures. 

8The state delta operator is equivalent in expressibility strength to until, the strongest of the classical 
temporal operators [11]. State deltas were first introduced in [12]. 



Once SDVS has "arrived" at a state that the user knows (or hopes) will satisfy the conditions 
to be proved, SDVS must be convinced that these conditions are true. Thus, SDVS has some 
explicit facts about the state listed in its database, which perhaps do not include verbatim 
the required condition. The problem is then to prove the "static" theorem that those facts 
imply the required condition. The user is aided in the proof of the static theorem by SDVS' 
knowledge about domains used in the programs. A main component of the theorem prover is 

the SDVS Simplifier, which implements these domains as theories with complete or partial 
decision procedures (or solvers) [13]. The decision procedures are used to deduce properties 
about domain objects. The complete decision procedures automatically answer queries 
about propositions, equality, enumeration orderings, fragments of naive set theory, and parts 

of integer arithmetic. The partial decision procedures are part automatic and part manual, 
with the user instructing the system to use various axioms to deduce properties. Domains 
for which there are partial solvers include integer arithmetic, bitstrings, arrays, VHDL time, 
and VHDL waveforms. The Simplifier handles combinations of theories according to the 
Nelson-Oppen algorithm for cooperating decision procedures [14]. 

The adaptation of SDVS for the verification of Ada programs started in 1988 [15]. Prior 
work on Ada verification had been done elsewhere [16, 17]. The principal research issues 
that were addressed in adapting SDVS to the verification of Ada programs were (1) formally 
defining the semantics of Ada (more precisely, the subsets of Ada in which programs will 
be written and verified in SDVS), and (2) augmenting the SDVS simplifier and data-type 
theory repertoire with components necessary to support the Ada language. 

Rather than trying to deal with the entire language, we found it more appropriate to 
proceed by degrees by selecting increasingly complex Ada language subsets to incorporate 
into SDVS. Currently, the subset of Ada that has been incorporated into the SDVS Ada 
translator is roughly equivalent to Pascal without reals, but with packages. 



3     MSX Overview 

MSX is a near-term Ballistic Missile Defense Organization program whose primary purpose 
is to conduct tracking-event experiments of targets/phenomena in midcourse. In a tracking 
event, the main spacecraft systems are the command processor, the attitude processor, the 
tracking processor, the sensors, and the data-handling system (telemetry). The command 
processor receives, buffers, and relays commands for a network consisting of the ground and 
the spacecraft subsystems. The attitude processor interfaces to the attitude sensors and 
controllers. Its primary function is to determine and control the spacecraft's attitude. The 
fundamental function of the tracking processor is to generate sufficient information for the 
attitude processor to point the spacecraft at the desired target, location, or direction. The 

tracking processor is designed around a MIL-STD-1750A (1750A) microprocessor with 2K 
of ROM, 512K of RAM, and 256K of EEPROM. 

When the spacecraft is not involved in a tracking event, the tracking processor is turned 
off to conserve power. During these periods, the direction of the spacecraft is controlled 
autonomously by the attitude processor and is in "parked mode." Before a tracking event is 
to take place, the tracking processor is turned on by a real-time or delayed command. Then 
the ROM is used for power up, the software and data for the tracking event are loaded into 
storage from EEPROM to RAM, and the event begins. 

During the current event and in the preparation for the next tracking event, commands are 
generally uplinked from the ground to the command processor and relayed to the tracking 
processor via a serial port. These serial digital commands are combined by the tracking 
processor to form application-level messages, which are then stored in RAM, EEPROM, or 
both. There are eleven types of application-level messages. One of these, the data-structure 
memory-load application message (the data-structure message, for short), can modify up 
to about 120 tracking parameters used in a tracking event. The number of commands 
required to form a data-structure message is a function of the type of tracking parameter 
the data-structure message modifies. 

The target soflware we selected for verification is that part of the tracking processor software 
that processes serial digital commands from the command processor into data-structure 
messages and then stores the messages into RAM, EEPROM, or both. 

3.1     Functional Description of Verified Software 

To illustrate the type of serial digital commands required to build a data-structure message 
and the algorithm used to build the message, consider the Beacon Alignment First Object 
data-structure message. This message encodes a 3x3 real matrix that is required to be 
stored in both EEPROM and RAM. The matrix has 9 real number entries, and each real 
number requires 4 bytes. Therefore, the matrix requires a total of 36 bytes of data. 

A byte is 8 bits long; a word is 16 bits long; and a command consists of two words. In 
the Ada code, bytes and words are represented by integers constrained to specific ranges. 
Although bytes (words) have an integer parent type, they encode sequences of 0's and l's 



that are 8 (16) bits long. For example, if the byte B = 7, B encodes the bit sequence 
< 00000111 >. 

Fourteen commands are needed for the construction of the Beacon Alignment First Object 
data structure (see Table 1). The first bit of the first byte of each command is the parity 
bit (P) for the entire command. The other bits serve the functions we outline below. 

(i) Command 1: 

• The last seven bits of the first byte encode the op-code of the command. For a 
command that begins a data structure load message, the op-code is 1. 

• The second byte encodes the storage information: EEPROM, RAM, or both. 
For the Beacon Alignment First Object data structure, which according to the 
specifications must be stored in both EEPROM and RAM, this byte must have 

the value 2. 

• The third byte is the identification code, ID, of the data structure. For the 
Beacon First Alignment Object, this code is 1. 

• The fourth byte is the first byte of data, d\, for the matrix. 

(ii)  Command n where 1 < n < 12: 

• The last seven bits of the first byte encode the op-code, which is 8, for a data- 
structure load continuation command. 

• The other three bytes are the final bytes of data for the matrix: d^n_4, c?3n_3, 

and ckn-2- 

(iii)  Command 13: 

• The last seven bits of the first byte encode the continuation op-code 8. 

• The next two bytes are the next bytes of data for the matrix: d^s and d3e. 

• The fourth byte is the first byte of the 2-byte checksum. 

(iv) Command 14: 

• The last seven bits of the first byte encode the continuation op-code 8. 

• The second byte is the second byte of the checksum. 

• The third and fourth bytes are spares. 

Table 2 shows the form of the completed message. 

3.2    Ada Implementation of Verified Software 

The heart of the verified software consists of three Ada tasks - BUILD, PROCESS.MSG, and 
MANAGE_MSG_RETRIEVAL - and an interrupt-driven Ada procedure, CMDJN_HANDLER. 
When an interrupt occurs signaling that a command is ready to be retrieved from a desig- 
nated serial port, CMDJNJHANDLER services the interrupt by retrieving the command and 
storing it in a command buffer.   For an infinite number of times, if the command buffer 



Table 1: Beacon Alignment First Object Commands 

Command 1 
Command 2 

Command n 

Command 13 
Command 14 

Byte 1 Byte 2 Byte 3 Byte 4 

P 1 2 1 di 
P 8 d2 d3 d$ 

P 8 ^3n-4 ^3n-3 dzn-2 

P 8 ^35 <^36 checksum 

P 8 checksum spare spare 

Table 2: Beacon Alignment First Object Message Completed 
1 0 OP 
2 EEPROM/RAM ID 
3 d, d2 

4 d3 d$ 

n ^2(»i-3)+l ^2(n-3)+2 

20 ^35 d36 

21 checksum checksum 



is not empty, BUILD retrieves the command buffer, constructs application-level messages 
from these commands, places them in a circular message queue, and waits for a rendezvous 
with MANAGE_MSG_RETRIEVAL. Also for an infinite number of times, if the message queue 
is not empty, PROCESS_MSG will rendezvous with MANAGEJMSG.RETRIEVAL to retrieve and 
process a message from the message queue. PROCESS.MSG stores data-structure messages in 
EEPROM, RAM, or both. As its name indicates, MANAGE_MSG_RETRIEVAL synchronizes 
the other two tasks. 

Note that the interplay of the three tasks and the interrupt-driven procedure can be quite 
complex. At any particular time in the execution of the code the following may occur: 

• The command buffer may contain enough commands to build several messages, or to 
build several messages plus a portion of another, or to finish the construction of a 
message whose construction has not been completed. 

• The message queue may contain any number of messages up to the maximum number 
(30). If it already contains 30 messages, then the next message may be lost. 



4     Our Approach to the MSX Verification Experiment 

In this section we briefly discuss our approach to the verification project. In the first phase 
of the project, we studied and modified the target software, and in the second phase, we 
stated and proved correctness assertions for increasingly complex scenarios. 

4.1     Ada Modifications to the Software 

After studying the documentation for the tracking processor software ([6], [7] and [8]), we 
examined 18 library units that fell either in the area of or on the periphery of our target 
software and selected the units and the parts thereof that were needed to receive, build, 
process, and store data-structure messages in EEPROM. After this process of elimination, 
we were left with target software consisting of (1) two packages containing the three tasks 
and the interrupt-driven procedure mentioned above, (2) three packages containing type 
definitions, (3) one package containing Tartan-supplied9 functions for bit manipulations, 
and (4) four packages only marginally related to data-structure processing. The parts we 
needed from these packages constituted our new target software and consisted of around 
900 lines of code. 

We then examined the target software to note the following: 

(i) the Ada constructs not handled by the SDVS Ada translator, 

(ii) the subprograms written in 1750A assembly language, and 

(iii) the nonstandard Ada functions provided by the Tartan compiler for bit manipulations. 

We added some of the Ada constructs in item (i) to the SDVS Ada translator (integer 
subtypes and integer definition types, and for these types: type conversions, length rep- 
resentation clauses, and UNCHECKED-CONVERSION). For the rest of the Ada constructs 
in item (i), we substituted either equivalent Ada code (for example, decimal literals for 
hexadecimal literals) or nonequivalent Ada code (for example, procedures for tasks) that 
nevertheless behaved similarly under certain conditions. Our replacements were chosen so 
that the following would be true: if the modified code did not satisfy a required property, 
then the original code would not satisfy that property. For example, if our order of execu- 
tion of the procedures that were formerly tasks did not process a specific message correctly, 
then the same order of execution of the actual tasks in the original code would also not 
process the message correctly. 

For the subprograms written in 1750A assembly language, we substituted Ada code that 
functioned similarly (for example, Ada type conversions replaced assembly routines used 
for the conversions10) or Ada code that, in general, functioned differently, but correctly 

9Tartan is the compiler used by JHU/APL to compile the MSX software. 
10In the original  MSX software, type conversions were done by assembly routines because the Tartan 

compiler did not handle Ada type conversions properly. 



under the right conditions. For example, our version of the CHECK-PARITY function, whose 
original body was written in 1750A assembly language, returned the boolean value true, 
whereas the original function returned either true or false, depending on the parity of the 
object to which it was applied. This change in the function altered the behavior of the main 
program. However it did not alter the behavior of the main program under the assumption 
that all inputs have good parity, which was, in fact, one of our assumptions. 

We wrote Ada code for the Tartan-supplied bit-manipulation functions, so that we could 
compile and test the target software with the Verdix Ada compiler available at Aerospace. 
In our SDVS correctness proofs, calls to these functions were characterized by the SDVS 
adalemma facility. An adalemma is an assertion in SDVS about the behavior of an Ada 
subprogram. Adalemmas may either be proved in SDVS and used in a proof involving the 
main program, or simply asserted and used without proof. In the latter case, SDVS warns 
the user that the proof was completed with unproved adalemmas. 

We next wrote schedulers (main programs) for the procedures that replaced the three tasks 
and the interrupt-driven procedure in the original MSX software. 

Our modifications altered the functionality of the original target software. We did not verify 
the correctness of the original code. However, we verified certain properties of the modified 
code that should also be true of the original code; we think the original code would not 
have satisfied these properties if the modified code had not. 

Our approach to the verification effort was to prove specifications of increasing complexity. 
Complexity arises primarily from the execution paths allowed by the scheduler and the 
restrictions on the input to the program. 

4.2    Incremental Proof Complexity 

In our first attempt at a proof, we wrote a scheduler that processed exactly three commands, 
and we restricted the input to a block of three commands encoding a specific type of data- 
structure message. The specification stated that this one block of input was processed 
correctly as a data-structure message and stored in EEPROM. 

In our second proof, we assumed the input consists of an infinite sequence of blocks of com- 
mands, each block encoding one of two types of data-structure messages. In an infinite cycle, 
the scheduler called CMDJN.HANDLER precisely the number of times needed to retrieve the 
next block from the input, then BUILD, and finally PROCESS.MSG. The specification stated 
that for each block of commands in the input, there is a message written in EEPROM 

corresponding to the input block in the manner stipulated by the MSX documentation. 
Furthermore, the correspondence of blocks of commands to messages is one-to-one, onto, 
and order-preserving. 

Our attempts to generalize the specification in the second proof to one allowing an input 
consisting of an infinite sequence of blocks of commands, each block encoding any one of 
the 61 data-structure messages, were thwarted by the amount of time required for its proof 
to execute: the system on which we ran the proof never stayed up long enough to complete 

10 



it. We estimated it would take at least seven days for the proof to terminate. 

The problem was that in proving that the nth block of commands was processed correctly, 
each of the 61 possible cases for this block had to be considered separately (at least in our 
approach). Each case added to the execution time of the proof. One of our solutions was to 
run many separate but similar proofs. In each proof we considered only a few of the cases 
for the nth block of commands, proved only those cases, and deferred the proof for the other 
cases. But we still could not prove that four especially long data-structure messages were 
processed correctly; the proof for each one of these messages required not only more storage 
than that allowed by the SDVS image (about 70 megabytes), but even more storage than 
that allowed by the SDVS image we created specifically for the MSX verification project 
(300 megabytes). We were thus unable to verify the correctness for these four messages. 

The proofs we were constructing in SDVS were long and repetitive. To facilitate their 
construction, we prototyped three new proof commands in SDVS; this greatly reduced the 
amount of work required to develop subproofs for the 61 cases. 

Towards the latter part of the project, we realized that many of our time and storage 
problems would be solved if we proved adalemmas for some of the key subprograms in 
BUILD and in CMDJNJJANDLER. We were able to develop and prove adalemmas for two of 
the main procedures in BUILD. 

11 



5     Summary of the Correctness Theorem and the Two Proof 
Strategies 

In this section we discuss the correctness proofs for the final version of the modified target 
software: the Ada program MSX.PROGRAM.FINAL_VERSION. The body of this main program 
(i.e., the scheduler) consists of a simple (infinite) Ada loop that (1) calls CMDJN-HANDLER 
precisely the number of times needed to obtain the number of bytes required for the con- 
struction of the next data-structure message; (2) calls BUILD to construct the message; and 
(3) calls PROCESS_MSG to write the message either in EEPROM, RAM, or both. 

Stripped of detail and roughly stated in English, the correctness assertion that we proved for 
this program is, "the Ada program MSX.PROGRAM_FINAL.VERSION correctly extracts and 
reformats embedded data-structure messages from an infinite input stream of uncorrupted 
bytes." The proof of correctness, then, is a proof of the above assertion (expressed formally). 
More specifically, the formal assertion states that eventually the block of words output 
by MSX-PROGRAM-FINAL.VERSION for the nth message is the appropriately reformatted 
version of the relevant input bytes for that message. Proving this correctness assertion 
involves symbolically executing through the program to a point where the stated relationship 
between input and output is true. The formal specification and the complete proofs are 
documented in [1]. 

We attempted two different approaches to the proof: 

1. the symbolic execution of the Ada portions of the program, including symbolic ex- 
ecution through all invocations of the Ada subprograms, and the use of (prototype 
implementations of) meta-level proof commands to develop subproofs of similar cases; 

2. the abstract characterization and proof of properties for major Ada subprograms, and 
then the use of these abstract characterizations upon invocation of the subprograms. 

The first approach was attempted because we thought that the second approach would not 
be feasible within the time constraints for this experiment. Although the first approach 
was conceptually easier and the newly implemented meta-proof commands greatly assisted 
the proof construction, it took what we felt was an inordinate amount of time to execute 
the proof. In spite of the lengthy execution time, most of the proof of our correctness 
assertion was completed in SDVS: 57 out of the 61 types of data-structure messages were 
proved correct. Towards the end of the verification experiment, we embarked on the second 
approach, which was not as difficult as we first imagined.11 The characterization and proof 
for two major subprograms were completed and a third was partially completed. This 
approach greatly reduces the time/space "explosion" and will permit the verification of 
more general schedulers and input. Below we discuss each of these approaches in more 
detail. 

11 The second approach is not disjoint from the first: adalemmas may be substituted for the invocation of 
selected subprograms. 

13 



5.1     Discussion of First Proof Strategy 

First, consider verification approach (1) above. The first step in symbolically executing 
through 

MSX_PROGRAM_FINAL_VERSION is to elaborate all of the declarations. After this is done, we 
are at the main body of the program. Since the main body of the program is an infinite loop 
that processes exactly one message at a time, when the loop completes its nth iteration, the 
block of input bytes for the nth message has been processed and output. Thus after the nth 
iteration of the loop, the relationship between the input and output stated in the correctness 
assertion should hold, and so we want to execute symbolically to this point. However the n 

in the correctness assertion represents an arbitrary number, and so its value is symbolic, not 
concrete. This means we cannot simply execute symbolically through the loop n times, but 
must use a form of induction known as loop induction, which is closely related to the familiar 

form of mathematical induction. The following brief discussion illustrates the similarities. 

In the usual form of induction, to prove the statement 

VnP(n) 

we must first prove the base case 

P(0) 

and the step case 

P(n) -> P(n+ 1) 

In loop induction, to prove 

P(n) is true after n iterations of the loop, where n is an arbitrary number 

we must first prove the base case 

P(0) is true before the loop is executed, i.e., after 0 iterations 

and the step case 

// P(n) is true after n iterations of the loop, then P(n+1) is true after symbolically 
executing through the loop one more time, i.e., after n + 1 iterations 

The formula P(n) above is known as the loop invariant. We chose the loop invariant to 
be strong enough to prove the goal. Hence most of the work in developing the proof of 
correctness was in the construction of the loop invariant. 

The base case in the loop induction is straightforward, involving only two proof commands. 
Since many of the variables in the loop invariant are assigned values when they are declared, 
these variables have concrete values when the beginning of the loop is reached for the 
first time.    Thus much of the work in proving the invariant for the base case involves 
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simplifying expressions involving only concrete values, and the Simplifier can verify most of 
these automatically. 

However, in the step case, we cannot simply execute symbolically through the loop. The 
reason for this is that the number of times certain loops are executed and if certain branches 
are taken are dependent on the length of the message, which in turn is a function of the 
message identifier. In fact, the value of the message identifier completely determines the 
execution path through the loop, since the values of all variables that determine the execu- 
tion path through the loop and that are not already fixed by the invariant depend on the 
message identifier. Whenever there is only one execution path through a portion of code, 
the proof of that portion of code is straightforward (or at least involves no case splits). 

Motivated by the above observations, we split the proof of the step case into 61 cases based 
on the possible range of message identifiers for data-structure messages. As pointed out 
above, this case split ensures that there is only one execution path through the loop in each 
case, and thus that the subproof for each case has a simple structure. Thus, while this way 
of proving the step case has the disadvantage of creating 61 separate cases for this proof, it 
has the advantage that the proof of each case is relatively simple. In fact, the proofs for the 
different cases were so simple and similar in structure, differing primarily in the number of 
times certain functions were called, that we decided to implement new proof commands so 
that we could write a single meta-level proof for each of the cases. 

Because of computer crashes, we became concerned that we would not be able to execute the 
proof completely, as this execution took roughly a week. Hence, we elected to do multiple 
runs of the main proof, with each run handbng a few cases at a time. However, we were 
unable to complete 4 of the 61 cases. In these cases (which corresponded to the longest 
messages and hence those that required the most resource-intensive proofs), SDVS failed to 
complete the proof, in spite of efforts such as increasing the amount of storage in the SDVS 
image and changing the garbage-collection strategy. 

5.2    Discussion of Second Proof Strategy 

We now turn to verification approach (2). The first proof strategy had two distinct disad- 
vantages: it was time-consuming, and it did not allow for easy generalization if we changed 
the order in which the procedures in the body of the main loop were called. One approach 
we explored to overcome both of these problems was to write and prove abstract character- 
izations (known as adalemmas) for various procedures. This approach saves time in that 
using an adalemma for a procedure instead of symbolically executing through that proce- 
dure accomplishes in one proof step what typically takes many proof steps. Also, since 
an adalemma for a procedure characterizes the effect of that procedure abstractly, it can 
be used whenever that procedure is called in the program. Thus the adalemmas we wrote 
could be used in proofs of the software with different schedulers. 

Specifically, we wrote and proved adalemmas not only for the procedure that processes the 
first command of a message, but also for the procedure that is repeatedly called to process 
every remaining command of a message.   We also made substantial progress in creating 
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and proving an adalemma for the procedure that uses these two procedures to extract the 
relevant input bytes of a message and reformat them prior to additional processing. For 
one of the types of data-structure messages, we were able to modify the initial proof to 
employ these adalemmas when the procedures they characterized were called (rather than 
symbolically executing through them), and to run this modified proof successfully. For more 
information about both of these approaches, see [1]. 
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6     Main Accomplishments and Results 

This project is one of the largest experiments in the formal verification of production Ada 
code.12 The importance to the verification of the target software would have been much 

greater if the latter did not involve tasking.13 

We had previously tested SDVS on relatively short textbook-type Ada programs. The size 
of the MSX code and its complexity unveiled problems in SDVS that had not been detected 
in the proofs of smaller examples. The main problem encountered was the time and storage 
explosions that accompanied the execution of the long proofs. This problem was at least 
partially caused by the large number of ob ject declarations in the MSX software.14 

We were pleased by the way we were able to specify the input and output conditions for 
an infinite array of blocks of commands encoding correct data-structure messages. This 
specification was initially neither obvious nor entirely trivial. 

Our initial walk-through of the software and the correspondence between Aerospace and 
JHU/APL were instrumental in the discovery of two errors in the target software. We 
suspect that if there are any errors in the code, they are in those parts that we did not 
verify: our scheduler was restrictive to the point of not allowing complex situations to arise. 
For example, the message queue was always either empty or contained precisely one message. 
Furthermore, the documentation we examined for the specifications never specified precisely 
what was to be done in unusual situations, e.g. how lost commands should be handled. 

The verification effort, although restricted in scope, did add some measure of confidence in 
the correctness of the code. We were able to prove that 57 of the data-structure messages 
were received, built, and stored in EEPROM according to the specifications. 

As a result of the verification effort, we enhanced the SDVS Ada environment by extending 
the SDVS Ada translator and enhancing the SDVS Ada proof capabilities. 

I2A recent substantial experiment in the formal verification of Ada software has been the application of 
Penelope (a formal verification system for Ada developed by Odyssey Research Associates, Inc.) in a proof 
of correctness of a portion of Grady Booch's Calendar.Utilities package (about 300 lines of code) [18]. 

"We know of no formal verification system that handles Ada tasking. 
14 We tested the system with a trivial Ada program having 1000 object declarations, and ran into the same 

storage problems. 
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