
«^■----■■- ~—~^ Carnegie Mellon University
^-"■^■-'"-■■■'' Software Engineering Institute

Workshop on the State
Of the Practice in Dependably
Upgrading Critical Systems
April 16-17,1997
David P. Gluch
Charles B. Weinstock
(Editors)
August 1997

PBrnUDBlTHOW STATEMEWI K

Approved tat puJbBc nirttfl

SPECIAL REPORT
CMU/SEI-97-SR-014

19970919 098

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Special Report
CMU/SEI-97-SR-014

August 1997

Workshop on the State of the Practice in

Dependably Upgrading Critical Systems
April 16-17, 1997

David P. Gluch

Charles B. Weinstock

(Editors)

Approved to puÄJic rslexiscl

Dependable System Upgrade

m$ßi

Unlimited distribution sutejeel lu IIIU copyriylil—

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1997 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative

works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through SAIC/ASSET: 1350 Earl L. Core Road; PO Box 3305; Morgantown, West
Virginia 26505 / Phone: (304) 284-9000 / FAX: (304) 284-9001 / World Wide Web: http://www.saifccom/-

contact.html / e-mail: webmaster@cpqm.saic.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of

Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
voir, VA 22060-6218. Phone: (703) 767-8274 or toll-free in the U.S. — 1-800 225-3842).

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Acknowledgments iii

1. Introduction 1

1.1 Background 1

1.2 Goals and Objectives 2

1.3 Questions to Answer 2

1.4 Outcomes 3

1.5 Approach of the Workshop 3

1.6 Contents of This Report 3

2. Design for Upgrade 5

2.1 Objectives and Goals 5

2.2 Participants 5

2.3 Issues and Findings 5

2.3.1 General Issues 5

2.3.2 Guidelines for Engineering for Upgrade 6

2.3.3 Classification System 7

2.3.4 System Issues 8

2.4 Summary of Key Outcomes 8

3. COTS Upgrade 9

3.1 Objectives and Goals 9

3.2 Participants 9

3.3 Issues and Findings 9

3.3.1 Participants' Expectations 9

3.3.2 The Upgrade Cycle 10

3.3.3 To Upgrade or Not to Upgrade? 10

CMU/SEI-97-SR-014

3.3.4 Planning for Upgrade 11

3.3.5 Testing Upgrades 11

3.3.6 Architectural Implications 12

3.3.7 Recertifying and Revalidating Upgrades 13

3.4 Summary of Key Outcomes 13

4. Online Upgrade 15

4.1 Objectives and Goals 15

4.2 Participants I5

4.3 Issues and Findings I5

4.3.1 Preparing for the Upgrade 16

4.3.2 Techniques for Online Upgrades 16

4.3.3 Tools for Online Upgrade 16

4.3.4 Recovery / Fallback from Unsuccessful Upgrades 17

4.3.5 Commitment to Upgrades 17

4.3.6 Other Upgrade Issues 17

4.4 Summary of Key Outcomes 17

5. Discussion 19

References 21

Appendix A: Framework 23

Appendix B: Workshop Participants 29

Appendix C: Agenda 33

CMU/SEI-97-SR-014

Acknowledgments

The workshop was a success due to the efforts of many. We'd especially like to thank
Lorraine Nemeth and Leona Kass for their assistance in organizing and coordinating the
workshop activities.

The quality of the workshop was greatly enhanced through the efforts of the working group
chairs. Jack Goldberg, now retired from SRI International, Walt Heimerdinger, from the
Honeywell Technology Center, and Charlie Westerfield, of the Harris Corporation, all did a
marvelous job of running their subgroups. Additionally, in each group an SEI attendee was
designated to take detailed notes. These notes were to serve two purposes: to help the
chairs produce their out briefs during the workshop; and to serve as source material for this
report. We'd like to thank Peter Feiler, Mike Gagliardi, and Mark Klein for their efforts.

While the editors had the privilege of assembling it, this report is the work of all of the
workshop participants. It captures their comments, concerns, and ideas and represents their
collective wisdom. The editors would like to thank the participants for the opportunity to work
with them in addressing this important engineering problem.

CMU/SEI-97-SR-014 iii

- ~ CMU/SEI-97-SR-014

Workshop on the State of the Practice in
Dependably Upgrading Critical Systems

Abstract: This report describes the results of the Workshop on the State of
the Practice in Dependably Upgrading Critical Systems held April 16-17,
1997 at the Software Engineering Institute. The workshop addressed a broad
spectrum of issues associated with dependably and cost-effectively
upgrading systems, primarily those with reliability or real-time requirements.

1. Introduction

On April 16 and 17, 1997 a Workshop on the State of the Practice in Dependably Upgrading
Critical Systems was held at the Software Engineering Institute (SEI) in Pittsburgh,
Pennsylvania. A total of 27 technical professionals representing 20 U.S. and international
organizations participated in the working sessions. Included in the group of participants from
industry, academia, and government were eight members of the technical staff at the SEI.
Participation was by invitation only. A complete list of participants can be found in Appendix
0.

The purpose of the workshop was to explore the need for a discipline of dependable
systems upgrade and assess the nature and scope of the upgrade problem. A series of
questions and a preliminary framework (shown in 0 Framework) describing the upgrade
problem were distributed to participants before the workshop. These were intended as
guides in establishing a common vocabulary and context, while not unduly constraining the
discussion. Changes in the direction, content, and nature of the outcome based upon the
professional judgment of the team were encouraged and expected. An open exchange of
ideas was evident throughout all of the sessions.

1.1 Background

Upgrade problems exist throughout the software engineering community. These problems
are having a significant impact on the cost and capabilities of systems. The following
examples illustrate these problems:

• At 39 seconds after launch, the Ariane 5 self-destruct mechanism activated, obliterating
the rocket. (The estimated cost of the 10-year Ariane 5 program was on the order of 7
billion dollars.) The Ariane 5 was an upgrade of the Ariane 4. The upgraded software,
based in part on the Ariane 4 software, could not handle the higher velocities of the
Ariane 5 [Ariane 96].

• America Online's computer systems went down at 4am EDT on 7 Aug 1996. Service
was reportedly restored sporadically 19 hours later, around 11pm EDT. The crash was
caused by new software installed during a scheduled maintenance update [AOL 96].

CMU/SEI-7-SR-014

Beyond the dramatic impacts of unsuccessful upgrades, there are basic economic factors
motivating the need to address upgrade issues. Studies have shown that from 40 to 70% of
the total life-cycle costs associated with a software system are in maintenance activities,
i.e., changes made to the software [Ostrand 88]. One estimate of the cost of software
maintenance shows that as much as two-thirds of software production costs is in

maintenance [Leung 90].

This backdrop provided the impetus for the workshop and a foundation for exploring the
complex area of dependably upgrading critical systems.

1.2 Goals and Objectives

The goals of this workshop were to

• get the best opinions and ideas from all participants

• formulate an accurate and comprehensive perspective on the problem space

• gain some insight into the directions for solutions

The goals involved both broad issues affecting the software engineering community and
SEI-specific needs. The broad issues included explorations into the

• nature of the problem: defining the nature and scope of the problem, considering
technical, operational, and managerial perspectives

• critical issues: identifying the critical issues, considering their importance and inter-
relationships across application domains

• framework: establishing a technical, operational, and programmatic structure for system
upgrade

From the SEI perspective, the workshop provided a basis upon which to define the nature
and extent of the efforts of the SEI's Dependable System Upgrade initiative. The results of
the workshop are being used to help establish the detailed technical areas and strategy for
supporting SEI clients as they address the problems associated with dependably upgrading

systems.

1.3 Questions to Answer

Participants were given a set of questions in advance to stimulate their thinking. Specific
questions are covered in the sections to follow, but in general they encompassed the

following:

• What are the critical issues to be addressed?

• What can a framework look like?

• What other issues should be identified?

CMU/SEI-97-SR-014

1.4 Outcomes

The outcomes of the workshop were expected to include some of the following:

• a record of questions, responses, and discussions

• a listing of critical issues (technical, management, and business)

• a compilation of solutions, models, and approaches

• a presentation of results (set of slides)

• broadened personal knowledge by the attendees

• an informal compilation of workshop notes

• this report

1.5 Approach of the Workshop

The problem area was divided into three subproblems, with a subgroup for each. The three
sub-groups were

• design for upgrade

• commercial off-the-shelf (COTS) upgrade

• online upgrade

Most of the workshop time was devoted to working group sessions. The agenda for the
meeting is shown in 0 Agenda.

The remainder of this report summarizes the results of the three subgroups, plus a
summary discussion.

1.6 Contents of This Report

This report is a compendium of the discussions and outcomes of the workshop. It
represents the collective perspectives of all of the attendees, not the perspective of any
single individual. As editors, we coalesced the information into a coherent format. No
attempt was made to provide a single interpretation of the information presented.

CMU/SEI-7-SR-014

CMU/SEI-97-SR-014

2. Design for Upgrade

This chapter presents the results of the efforts of the working group that focused on the
issues associated with design for upgrade.

2.1 Objectives and Goals

It was conjectured that the cost effectiveness of upgrading systems can be improved if the
issue of upgrade is considered during design and continues to be considered throughout the

product life cycle.

To help stimulate and guide the discussion, the participants in this session were asked the
following questions:

• How important is design for upgradability?

• What design approaches should be applied to help make upgrade more cost effective?

• Can the benefits of this approach be quantified to support management decisions?

2.2 Participants

The participants in this working group were

Chair: Jack Goldberg (SRI International, retired)

Mario Barbacci (SEI)

Lynn Elliott (Guidant Medical Electronics)

Dave Gluch (SEI)

Connie Heitmeyer (Naval Research Laboratory)

George Shoemaker (Naval Undersea Warfare Center)

Bill Wood (SEI)

2.3 Issues and Findings

This section summarizes the issues and problem areas associated with designing a system
for upgradability. In this summary, we grouped the issues that were identified and discussed
into subsections. Within each subsection we grouped specific issues that were discussed
into separate paragraphs.

2.3.1 General Issues

Currently system upgrade efforts are often difficult, expensive, and ad hoc, rather than
being recognized as an important consideration in the development process or the product

CMU/SEI-7-SR-014

concept. Although many systems are upgraded during their lifetime, design for upgradability
is not usually a standard part of current software and system engineering practices.

There is a need to identify upgradability as a key feature of a system development effort
and of the system itself— to generate an awareness for the need to upgrade. Upgradability
must be addressed throughout the life cycle. It is integral to the system development

process.

During upgrades, complex problems often arise that require substantial redesigns of parts
of the system. In many cases, a change in one part of the system may necessitate changes
in other components, just to maintain integrity of the system. For example, increasing the
scale of some service may overload a limiting resource that is difficult to augment or
replace. Such limitations are, in general, easier to overcome if they are anticipated during
design and provisions are made in the design that would simplify upgrade actions.

Software cannot be considered in isolation from the system of which it is a part. A broad
system approach must be taken that addresses software, hardware, and system-wide

issues.

Broader management awareness of the need for and benefits of design for upgradability
must be achieved to provide adequate funding. This involves conveying to management
both the problems that can happen without considering upgradability (e.g., systems that are
expensive to maintain and evolve), and the advantages of designing upgradability into a
system (e.g., longer useful lifetime, lower life-cycle cost).

The general paradigm shift for upgradability in system and software design must address

how to

anticipate the nature and scale of environmental and behavioral changes over the
system life cycle

achieve high levels of orthogonality among subsystems so as to allow independent
subsystem changes

identify components requiring change to achieve desired new functionality

assess changes in system complexity that might result from a proposed upgrade

estimate practical limits to the upgradability of a design, to support change-or-replace
decisions

identify tradeoffs among upgrade objectives, such as increased scale, new functionality,
and new non-functional services

specify designs so as to simplify upgrade plans

track dependencies among components and upgrades

2.3.2 Guidelines for Engineering for Upgrade

While there are notable technical challenges associated with designing for upgrade, simply
incorporating many of the well-understood software engineering concepts into practice will

CMU/SEI-97-SR-014

significantly improve the effectiveness of upgrades. However, these concepts, by
themselves, will not solve the problem entirely. It is also important to integrate upgradability
into the design and design process and establish a paradigm for designers that includes
guidelines for "engineering choices" and tradeoffs in engineering upgrades. Specialized
methods may be needed for managing complexity, evaluation, and tradeoff analysis. It
may be possible to gain leverage from existing system capabilities to improve the quality of
the upgrade (e.g., using existing fault-tolerance functions within a system).

Some aspects of software engineering approaches that may be required or be useful in
designing for upgrade include considerations of modularity, composeability, scalability, and
integrability of designs. A design for upgrade may include controllability, observability, and
testability built into the artifact.

Issues that must be addressed in designing for upgrade include consideration of

• previous knowledge about earlier versions in the upgrade

• how to verify and validate designs

• how to assess the viability and feasibility of a potential upgrade

• human factors and human computer interaction (HCI)

Most "new" systems are updates to existing (legacy) systems rather than completely new
systems. This has the effect of making design for upgrade more difficult as most such
systems were built without any consideration of the need for future upgrades. In general the
better documented and better structured such systems are, the easier it is to upgrade or
transform them into new systems.

Designing a system for upgrade from the start can be facilitated with

• architectures that include ease of changes as a primary consideration

• automated tools for design and verification

• methods to identify and isolate the impact of an upgrade

• tools to make it possible to recognize the dependencies among system components

• cost models for defining anticipated changes and their impact

Commercial upgrade successes may be useful as a basis for effective upgrade design
practices. Other considerations include design approaches for discardability, approaches
for implementing upgrades, strategies based upon product lines, and the impact of an
upgrade on operational procedures. This includes both real changes and implicit changes.

2.3.3 Classification System

To support the design for upgrade efforts, there is a need to classify systems. The exact
classification appropriate to any particular problem may involve classification by industry,
attribute, resources required, or life-cycle model. It is not clear exactly which approach
would be most effective in all situations or any particular situation. Multiple classifications

CMU/SEI-7-SR-014

may be needed to deal effectively with upgrade issues. One scheme may address issues
across an entire industry (e.g., one technique may be appropriate for aircraft control but not
for telecommunications) while other schemes may deal with systems based upon individual
characteristics (e.g., one technique may be appropriate for single processors but not

distributed systems).

2.3.4 System Issues

An upgrade decision is subject to a number of engineering and economic issues. Managers
need guidelines and models to aid in the evaluation of upgrade plans. Important questions

include the following:

• What is the minimum size of a justifiable upgrade; would it be better to build a new
system?

• What is the feasibility of a proposed upgrade; what is the cost and the benefit, and is the
required time consistent with other business objectives?

• Will technology developments make the upgrade obsolete when it is accomplished?

• How many future upgrades to the system will be practical, and what frequency may be
expected?

Such questions can be included as part of a new design approach for system upgradability
that is an integral part of system specification, design, and maintenance throughout a
system's life cycle.

2.4 Summary of Key Outcomes

Designing for upgradability must be a key design criterion for all system designers; it should
be a part of the design culture.

Designing for upgrade involves an extension of current design methodologies, but with
special problems. There is a need for establishing appropriate (new) system engineering
methods, constructive design techniques, architectures, and tools specifically aimed at
improved system upgradability. Some of the open issues involve guidelines for systems
developers and testing and verification strategies for upgrading systems.

While there is a general need for guidelines for design for upgrade, special needs and
opportunities exist in various types of systems (e.g., control, distributed, networks, memory-
intensive systems). These differences result in unique design requirements and constraints

for effective system upgrade.

CMU/SEI-97-SR-014

3. COTS Upgrade

3.1 Objectives and Goals

As COTS software becomes an increasingly significant part of systems, developers and
customers are faced with the need to respond to upgrades in the COTS components. In
general, these upgrades are driven by the suppliers—sometimes without regard to the
impact on systems that use the components.

To help stimulate and guide the discussion, the COTS group was asked the following
questions prior to the workshop:

• What is the impact of the problem on currently deployed software?

• What is the anticipated impact as more systems rely on COTS components?

• What are the specific techniques that can be used to alleviate the problems associated
with supplier-driven COTS upgrade?

• What other issues should be identified?

3.2 Participants

The participants in this working group were

Chair: Charlie Westerfield (Harris)

Stephen Barnett (National Security Agency)

Peter Feiler (SEI)

Kathryn Kemp (National Aeronautics and Space Administration)

Mike Lane (DERA, UK)

Lui Sha (SEI)

Kevin Sullivan (University of Virginia)

Jeffrey Voas (Reliable Software Technologies)

Chris Walter (WW Group)

3.3 Issues and Findings

3.3.1 Participants' Expectations

The participants in this subgroup came from diverse backgrounds and had diverse
expectations. Specific topics of interest included the following:

• how to use COTS effectively in diverse system types including federated, mission-
critical, safety-critical, and ultra-reliable systems

CMU/SEI-7-SR-014

• how to ensure system security in the presence of COTS components as those COTS
components evolve

• how to evolve COTS-based systems effectively

• tools for COTS development and testing, including package-oriented programming,
fault-injection, analysis tools, etc.

• management issues surrounding the use and upgrading of COTS components

3.3.2 The Upgrade Cycle

It is important to recognize that, in general, the user has no control over the evolution and
release cycle of COTS components. Thus it is important to understand the COTS vendors'
product release schedule, the market, the technology, and the trend towards standards.

Some COTS components are treated like appliances by the user. They do not plan to
upgrade the component, but replace it when it wears out. Other COTS components are
upgraded only to fix problems or to meet new needs. Finally, some users continually
upgrade their COTS components as new versions are introduced. This can be to add new
functionality, to keep up with (or ahead of) the competition, or to take advantage of new

hardware capabilities.

Whichever of the above upgrade strategies the customer uses, the changes from one
version to the next may be anything from minor to major in scope as shown below:

• maintenance releases: These typically involve bug fixes with no new functionality added.
They are usually backward compatible.

• minor upgrades: These are new releases of the system that add some functionality.
They are usually backward compatible.

• technology refresh or major upgrades: This is a complete new version of a system with
new functionality. It is typically backward compatible.

• technology insertion: This is a product swap out with new system-level functionality.
Backward compatibility is not assured.

As you move down the list, the upgrade cost to the customer usually increases.

3.3.3 To Upgrade or Not to Upgrade?

When a vendor announces a new version of a COTS component, the user must decide
whether to upgrade or continue to use the old version. If the upgrade fixes a problem that
affects the user, or if it adds new functionality that is important to the application, the

decision to upgrade may be obvious.

There is a tendency to want the latest version of anything. In the absence of overwhelming
reasons to upgrade, this desire must be balanced against both the risk of upgrading and the
cost of upgrading. There may be risks associated with both upgrading (e.g., the unknown
reliability or security of the new component) and not upgrading (e.g., the old component is

^ " CMU/SEI-97-SR-014

aging and there is no longer any vendor support available). Costs include the obvious
(purchasing the upgraded component), and the not so obvious (increased operational costs,
retraining operators, cost of spares, cost of recertification). Without a proper risk/reward and
cost/benefit analysis, it is impossible to determine whether it makes sense to upgrade the

component.

One component of risk is the degree of uncertainty as to whether the upgrade will be
successful. There are several ways to alleviate, at least partially, this uncertainty. Before
deciding to upgrade, the following factors should be considered: the qualification process
used by the vendor, the number of customers already using the upgraded component with
success, the vendor's past performance and upgrade history, the logistical support that the
vendor is willing to provide, and the severity of the upgrade (major versus bug fix).

3.3.4 Planning for Upgrade

To use COTS components effectively, the system must have been designed for change.
This was the main topic of another subgroup. The key observation is that upgrading COTS
components requires planning. Concepts such as layering, packaging, and information
hiding can make upgrading easier. Even so, interfaces to the components will evolve over
time. Frameworks in specific domains can accommodate this evolution. Different domains
will have different sensitivity to change and upgrade.

Not all upgrades will be successful, so there must be a plan to deal with the failure of the
COTS upgrade. The system will either have to be repaired or returned to its pre-upgrade
configuration.

Modifying the development and validation process to require that the effects of an upgrade
(what parts of the system the upgrade will affect and how it will do so) be known in advance
should lead to less complex designs.

3.3.5 Testing Upgrades

No software is perfect, but some is better than others. Before deciding to use an upgraded
COTS component, there should be some proof that the component works and will not cause
a failure in a critical function. The COTS component must have no more than an acceptable
level of faults, and the larger system must be able to deal with those faults. Dealing with the
faults may involve simply tolerating them or rolling back to a previous version of the
component.

In certain environments (e.g., safety critical, secure), upgrading the COTS component will
require recertifying the system against some criterion. However, most COTS components
must be treated as black boxes, since their manufacturer does not make the internal
structure visible. This makes certification and even testing of upgrades difficult.

CMU/SEI-7-SR-014 11

3.3.6 Architectural Implications

The assumption that complete system retest and validation is impractical, especially in the
face of COTS components, which are typically black (or at least gray) boxes, implies that
evolving most systems will require that they be designed for change. Designing a system for
change requires

• facilitation of change through partitioning, modularization, dynamic binding, and dynamic
configuration

• scoping of change through encapsulation, documentation, simplifying and semantically
enriching the interface, and simplification of connectivity

• reducing the impact of change through the ability to perform analysis at the
architectural/system level and of the system itself

This leads to a "specification sheet" approach for components that provides functional and
non-functional properties, architectural descriptions, and configurations as a basis for
impact analysis. Some questions to be answered include the following: What are the
relevant facts that should go into a specification sheet? What aspects need to be validated?
Do the facts have a linearity property (i.e., checking of endpoints vs. discrete state space)?

The analysis will have to be performed with imperfect and incomplete information. This
leads to

• analysis of the architecture based on specification information, including propagation
and the impact of change to a component specification

• analysis and validation of the implementation of the component against the specification

Off-line impact analysis and validation [e.g., simulation, dependency analysis, supplier
(release) testing, and consumer (acceptance) testing] may be incomplete. The result is that
we need to be prepared to deal with a component violating its specification online through
detection, containment, and mitigation.

Detection mechanisms include runtime monitoring, watchdog timers, and assertion testing
(i.e., built-in test) for components and for the users of the components (since it is also useful
to protect against misuse of a component.) Sometimes we will be able to detect a problem
through direct observation of the fault or violation. Other times we will only be able to infer
the existence of a fault condition by observing the effects.

Containment mechanisms include firewalls, wrappers, timing enforcement, and the testing
and validation of firewalls. Firewalls can be in the form of runtime mechanisms or in the
form of "safe" languages (i.e., language concepts enforced by compilers and their runtime
system). Incomplete firewalling is also useful. For instance non-critical components might be
outside of the firewall, or the firewall may only be in place with respect to properties deemed
important, (e.g., security or reliability).

Mitigation mechanisms include forward and backward recovery at runtime and rollback to
the configuration in operation before the upgrade.

12 CMU/SEI-97-SR-014

Thus, in addition to the analysis of components against their specifications, and the impact
of changes in those specifications, we also must analyze or validate a fail-safe minimal
application core and the detection-containment-migration infrastructure. From an
architectural perspective, this leads to a strategy that tolerates faults generated by COTS
upgrades resulting in "COTS-assisted operational capabilities."

3.3.7 Recertifying and Revalidating Upgrades

We take as given the current certification process. Given this, and that it is burdensome, we
pose the following question: Is there a way of limiting the scope of recertification/validation
to something less than the entire system?

A problem is that we need to verify all changes and side effects of those changes—not only
the advertised changes, but also unannounced changes or even defects that may have
been introduced. The supplier presumably does white-box testing on the component,
presumably following the supplier's own process. The customer presumably is only able to
do black-box testing.

The impact of recertification can be reduced by reducing the connectivity of the component.
If all effects are funneled through a small number of connections, they can be more easily
tested.

Another technique that can sometimes be employed is hardware-based partitioning. This is
a common practice in high-reliability contexts (e.g., see DO-178B), but it is too costly in
some other contexts. Hardware sharing and the soundness of shared resources becomes
an issue.

Other approaches that might hold some promise include scoping changes in terms of the
product, system, and operation environment and statistical approaches for determining
which components need to be tested. It may also be possible to scale recertification by
using a combination of techniques and move towards incremental approaches to keep the
effort in line with change.

3.4 Summary of Key Outcomes

There are risks associated with upgrading COTS components. There are also risks
associated with not upgrading when a new version is released. Proper risk/reward and
cost/benefit analyses can provide a logical basis for the decision whether or not to upgrade.

Upgrading COTS components requires planning. Program structuring techniques can make
this easier by minimizing the impact of a change, but planning will always be necessary.

CMU/SEI-7-SR-014 fj

In a similar vein, the impact of recertification can be reduced by reducing the connectivity of
the component. If all effects are tunneled through a small number of connections, they can
be more easily tested.

14 CMU/SEI-97-SR-014

4. Online Upgrade

4.1 Objectives and Goals

Some systems provide critical services to their users and cannot be shut down for purposes
of software upgrade. The usual solution to this problem is not to upgrade unless major
system maintenance is required. Often the result is that such software becomes obsolete.

To help stimulate and guide the discussion, the online upgrade group was asked the
following questions before the workshop:

• How pervasive is this problem?

• What are some examples?

• What technologies are appropriate to solving these problems?

• What additional technologies are needed?

• What other issues should be identified?

4.2 Participants

The participants in this working group were

• Chair: Walter Heimerdinger (Honeywell)

• Felix Bachmann (Robert Bosch)

• Mike Gagliardi (SEI)

• Mike Hinchey (21st Century Systems)

• Mark Klein (SEI)

• Marc Pitarys (Wright Laboratory)

• Sampath Rangarajan (Lucent Technologies)

• Therese Smith (MIT/Lincoln Laboratory)

• Dolores Wallace (National Institute of Standards and Technology)

4.3 Issues and Findings

Successful online system upgrade requires several steps including preparation, resource
identification, selection of upgrade techniques, certification or recertification of the upgrade,
a plan for rollback or recovery from a botched upgrade, and ideally a criteria for accepting
the upgrade.

CMU/SEI-97-SR-014 15

4.3.1 Preparing for the Upgrade

Preparation for an online upgrade requires that the customer and user concerns be
identified and dealt with. There is no point to doing the upgrade, online or otherwise, if it
meets no pressing needs. It is ultimately the customer who decides what the criteria are for
upgrade acceptance.

Since this is an online upgrade, preparation will also include training the user and operator
on how to use the changed system. For some systems, this will not require any preparation
as the changes will all be behind the scenes. For other systems, this will require extensive
preparation since the way that the system operates will be affected.

An online upgrade potentially requires additional resources over more traditional upgrade
approaches. It must be possible to support both the old and new versions of the system
simultaneously. This may require additional memory, disk space, computer cycles, etc.
Being able to support multiple versions of the system places additional requirements on the
architecture and runtime system mechanisms as well.

One way to determine if there are enough resources to support online upgrade is through
the use of tools. For instance online measurement analysis tools can characterize the
resource utilization and timing characteristics of the existing application and can also be
used to characterize the new version of the application in the test environment. Other types
of tools that may be of interest include program-flow tracing tools to analyze program
structure, and program-slicing tools to isolate program sections for modification.

4.3.2 Techniques for Online Upgrades

Online upgrade requires its own infrastructure. The nature of this infrastructure will vary with
the implementation of the application to be upgraded but should include the use of
authenticated upgrade agents. The purpose of these agents is to instantiate a replacement
upgrade unit, transfer state and data from the old version to the new version, enable the
outputs for the upgraded version, and disable and ultimately remove the old version.

Depending on the implementation of the application, there may be different problems to be
solved when performing an online upgrade. Object-oriented systems present their own set
of problems. Specifically there is a need to be able to activate and deactivate threads within
objects, to allow multiple versions (as well as multiple instances) of the same object to co-
exist, to deal with transactions during replacement, and to re-route object
requests/messages after an upgrade.

4.3.3 Tools for Online Upgrade

Specialized tools can make the online upgrade process better. Examples of tools that would
be useful to any online upgrade effort would include tools to aid in certification and

16 CMU/SEI-97-SR-014

recertification of the software. Regression testing tools can be used to ensure that the
upgrade retains important functionality. Incremental testing techniques can be used to limit
the scope of testing, but this requires knowledge of which portions of the software are
affected by the change. This points to the need for tools to analyze the scope of an upgrade

and rules for using them.

4.3.4 Recovery / Fallback from Unsuccessful Upgrades

Upgrades can fail. There must be a way to back-out an unsuccessful upgrade. For online
upgrades, the challenge is to do this without causing the system to crash. In addition to
support for runtime detection of failures and containment of faults, this requires tools and
processes to map the updated system state and data back to something that the original
version is able to deal with. Techniques such as checkpoint/rollback and tools that do

reverse mapping should prove useful here.

4.3.5 Commitment to Upgrades

At some point, trust is developed in the upgraded system. This can happen over the course
of time as experience is gained in the system, or it can be helped along through the use of
acceptance tests and stress tests (e.g., fault injection). Once the new version is trusted, it
may be possible to remove the old version and to free up the resources it consumes.

Fallback ceases to be a viable option.

4.3.6 Other Upgrade Issues

The online upgrade group identified other issues worthy of study. These included semantic
dependencies (when to switch and what to switch), upgrades within a single address space
(e.g., no new process), configuration, and understanding what the old and new versions do
and how they do it.

4.4 Summary of Key Outcomes

Online upgrade requires additional resources (e.g., CPU [central processing unit] cycles,
memory, networking bandwidth) over more traditional upgrade approaches. Because of this,
its usefulness is restricted to those applications that cannot afford downtime—for
dependability, safety, or economical reasons.

Especially because online upgrade techniques are used in dependable and safety-critical
environments, close attention must be paid to details of fault containment and upgrade
rollback. Special attention must be paid to verifying and testing the proposed upgrade, or at
least the recovery mechanism, before letting it go live.

Many of the points made throughout this section apply to the upgrade problem in general.

CMU/SEI-97-SR-014 +7

CMU/SEI-97-SR-014

5. Discussion

Dependable system upgrade is a problem faced by a variety of domains, ranging from
embedded medical electronics to real-time command, control, communication, and
intelligence (C3I) systems. Although the problem is pervasive, the recognition that it
requires special attention is not. This is evidenced by the fact that most systems are not
designed with the need for upgrade in mind.

Improvement in the quality of upgrades can be realized by integrating upgrade
considerations into the design process-instituting a culture of design for upgrade.
Approaches for designing for upgrade approaches can be built upon established practices
and technologies for system and software engineering, but with specialized adaptations to
address upgrade capabilities. These adaptations may include specialized system
engineering methods, constructive design techniques, architectures, and tools specifically
aimed at improved system upgradability.

The current push to use COTS in an increasing number of system designs is aggravating
the upgrade problem. Users of COTS components are often confronted with the reality that
a vendor can dictate both the nature and the timing of upgrades, while allowing users or
customers to provide input into upgrade decisions. Yet changes in newer versions of a
COTS component may be difficult to integrate into an operational system and may have
adverse affects. On the other hand, if a customer does not integrate an upgraded version
of a component into their system, a vendor may either stop supporting earlier versions or
require a costly customer support contract. Vendors of COTS components and their
customers need to work together to ensure that cost-effective customer upgrade paths exist
and are simple to implement.

Particular problems exist for mission-critical systems with high-dependability requirements
where online upgrade may be advantageous. Additional resources are required for online
upgrade and special attention must be paid to the details of fault containment and rollback.
In this case, it is especially important to verify and test the proposed upgrade, or at least the
recovery mechanism, before enabling the execution of the upgrade.

There is an important technology transition component to the upgrade problem. While
technologies exist to ease the upgrade problem, designers are often not aware of them.
Further, even when techniques for designing systems for upgrade are known, designers are
often not trained in their use, made aware of their need and effectiveness, or encouraged to
use them.

Dependable system upgrade is a ubiquitous problem characterized by numerous challenges
and demanding requirements. All phases of a system's evolution are affected, including
system concept, design, verification, implementation, testing, and operation.
Comprehensive solutions to the problems associated with dependable upgrades will involve
bringing together and enhancing a variety of system and software engineering disciplines.

CMU/SEI-97-SR-014 19

Efforts to address these problems will involve identifying and, as appropriate, developing
innovative approaches and integrating these approaches into routine systems and software
management and engineering practice.

The Software Engineering Institute is actively working on the problems associated with
dependable system upgrade. As part of the Dependable System Upgrade initiative, there
are efforts investigating technologies and practices for online real-time upgrade (the
Simplex architecture), continuous verification and test for upgrades, and specific
awareness and technology transition issues associated with dependably upgrading
systems.

20 CMU/SEI-97-SR-014

References

[Ariane 96] ARIANE 5: Flight 501 Failure [online]. Available WWW <URL:
http://sspg1.bnsc.rl.ac.uk/Share/ISTP/ariane5rep.htm> (19 July 1996).

[AOL 96] "America Off-Line." San Francisco Chronicle (8 Aug 1996): p. A1.

[DO 178B] Software Considerations in Airborne Systems and Equipment
Certification (Document No. RCTA/DO-178B). Washington DC: RTCA,
Inc., December 1, 1992.

[Leung 90] Leung, H. K. N. & White, L. J. "A Study of Integration Testing and
Software Regression Testing," 290-300. Proceedings of the
Conference on Software Maintenance, 1990. Los Alamitos, CA: IEEE
Computer Society. Nov. 1990.

[Ostrand 88] Ostrand, T. J. & Weyuker, E. J. "Using Data Flow Analysis for
Regression Testing," 233-247. Proceedings of the Sixth Annual Pacific
Northwest Software Quality Conference, 19-20 Sept., 1988. Portland,
OR: Lawrence & Craig, 1988.

[Purtilo 91] Purtilo, James M. & Hofmeister, Christine R. "Dynamic Reconfiguration
of Distributed Programs," 560-571. Proceedings of the 11th International
Conference on Distributed Computing Systems, Arlington, Texas. Los
Alamitos, CA: IEEE Computer Society, 1991.

CMU/SEI-97-SR-014 21

22 CMU/SEI-97-SR-014

Appendix A: Framework

Introduction

Purpose

This document is a seed position paper that provides an overview of our
current thoughts on the practice of upgrading software-dependent
systems.

Synonyms for Upgrade

The term system upgrade is used here to encompass any change made
to software that modifies its capabilities or attributes. The term upgrade
often overlaps similar terms. In various contexts upgrade is also referred
to as
• maintenance
• reconfiguration
• enhancement
While in certain contexts these terms refer to upgrade, in many cases
they denote very different ideas than upgrade. For instance
reconfiguration encompasses operational aspects, like mode changes in
flight control systems.

System Upgrade

A system upgrade as used here encompasses changes in the [Purtilo 91]
• functional characteristics of individual components
• logical structure of the system (interrelationship of components)
• allocation of functions among system resources

Dependable Upgrade

The discipline of dependable software upgrade (DSU) melds three areas
of software technology:
• dependability
• maintenance
• reconfiguration

No specific development or life cycle model is assumed and the issues
relating to dependable software upgrade extend across the entire product
life cycle.

Practice of Dependable
System Upgrade

Dependable system upgrade practices encompass engineering
processes, methods, tools, and technologies for the support of
dependable system upgrade. Collectively, these are used to develop and
support software systems that can be readily modified and improved.

CMU/SEI-97-SR-014 23

Problem Space

Critical Systems

Organizations rely increasingly on software-dependent systems as critical
components of their operation and as a vital part of their infrastructure.

Upgrade Issues

Long System Life: These systems generally evolve over very long life
times.

Periodic Upgrades: Rapid evolution in software technology coupled
with frequent changes in the operational environment not controlled
by the organization require systems to be upgraded periodically to
avoid obsolescence.

Need for Improvement: Current upgrade approaches are often
difficult, costly, and ad-hoc and lack tolerance to faults that may have
been introduced by the upgrade.

Reliability Constraints

Dependable upgrades to deployed systems can be viewed as upgrades
with reliability constraints.
Reliability constraints can range from the basic need to have a quality
(reliable) upgrade to a requirement for safe uninterrupted service of an
online system, even in the event of an error in the upgraded software,
hardware, or process.

Implementation

The implementation of an upgrade can be either
• static (take the system off-line during reconfiguration) or

• dynamic (make changes on-line while the system is operating)

24 CMU/SEI-97-SR-014

Views of Dependable System Upgrade

Life Cycle View

The dimensions of the problem span the entire product life-cycle and can
be divided into practices and technologies.

Practice

Domains

Scale

The practices of dependable system upgrade encompass principles,
process, methods, and tools that addresses the broad set of
• Management

• Business and Economic

• Design and Development (Engineering)

issues relating to the development, operation, and maintenance of
software-dependent systems.

Some of the domains to be addressed include:
real-time control

transaction processing

C3I

Telecommunications

database

manufacturing

Upgrades may differ in scale. We hypothesize that the smaller the
upgrade the less difficult it is to upgrade dependably. A measure of scale
might include:

Minor (small number of lines of code, usually confined to one
module.)

Modular (replacement/modification of a whole module.)

Subsystem (replacement/modification of a subsystem.)

Version Change (major modifications to the complete system.)

Replacement (completely new system with similar intended
functionality).

These categories differ in the amount of the system which is "touched" by
the upgrade process, ranging from minuscule (<.01%) to total (100%).

CMU/SEI-97-SR-014 25

Motivation

The primary goal of upgrading a system is to improve it. The
improvement may result in a system that:
• Operates more correctly, (e.g., a bug is fixed)

• Operates more efficiently, (e.g., performance is improved, it is
cheaper to deploy, it computes more precise answers, etc.)

• Has additional capabilities, (e.g., the system has been enhanced.)

Upgrade Paradigm

There are several strategies for accomplishing an upgrade
• Direct Transfer: Turn off the old version, turn on the new one.

• Parallel Operation: Run the old one and new one in parallel, switching
to the new one only after experience dictates it will be safe.

• Legacy Backup: Running the old and new versions in parallel, using
the new version as long as it continues to work properly and reverting
to the old version when the newer version fails.

For software installed in multiple sites working together, another set of
strategies dictates how to accomplish the upgrade of those sites.
• Total System: upgrade all sites simultaneously.

• Phased: upgrade sites one at a time, making sure that everything is
working before moving on to the next site.

The former is necessary when the sites inter-operate and the new version
cannot work with the old version on different sites. The latter can work if
the old version and new version inter-operate with each other.

COTS

Introducing COTS software into a system further complicates the
dependable software upgrade process.
• Often the COTS component must be treated as a black box. There is

no visibility into its structure or internal behavior. Successful
integration of the COTS software is dependent on the manufacturer
following documented specifications. If the specifications change in
an undocumented manner interfaces may fail unexpectedly or the
system may demonstrate unanticipated behavior.

• The vendor of the COTS system usually determines when and how to
release upgrades. Completion of a system upgrade depends on the
vendor's timely completion and release of their product.
Consequently, upgrade schedules may be dictated and/or adversely
effected by the vendor. The system upgrade schedule must be
coordinated with the vendor's.

• The vendor determines which versions to continue supporting. A
system using COTS components that is not upgraded based upon the
vendor's product support and maintenance policies may contain
unsupported (obsolete) components.

26 CMU/SEI-97-SR-014

Other Thoughts on DSU
Issues

Although our tendency is to focus on systems where high dependability
as a requirement, it is also important to look at the problem in the broader
sense of overall system quality.
Perhaps this broader focus can be described as identifying the practices
and technologies that can provide quality upgrades that are cost-
effective, reliable, and efficient.

These efforts should address the goal of defining a broad practice of dependable
system upgrade and integrating that practice into software and systems engineering

CMU/SEI-97-SR-014 27

28 CMU/SEI-97-SR-014

Appendix B: Workshop Participants
Felix H. Bachmann
Robert Bosch GmbH
Kleyerstr. 94
Frankfurt, Germany 60326
Phone:412-268-6194
Fax:412-268-5758
E-Mail: fb@sei.cmu.edu

Mario Barbacci
Software Engineering Institute
4500 Fifth Ave
Pittsburgh, PA 15213-3890
Phone:412-268-7704
Fax: 412-268-5758
E-Mail: mrb@sei.cmu.edu

Stephen Barnett
National Computer Security Center
10209 Bristol Channel
Ellicott City, MD 21042
Phone:410-859-4371
Fax: 410-859-4375
E-Mail: sbarnett@romulus.ncsc.mil

Jon Dehn
Lockheed Martin
9231 Corporate Blvd.
Rockville, MD 20850
Phone: 301-640-2912
Fax: 301-640-3103
E-Mail: Jon.Dehn@lmco.com

Lynn Elliott
Guidant Medical Electronics
4100 Hamlin Ave N
St Paul, MN 55112
Phone: 612-582-2842
Fax: 612-582-7484
E-Mail: lynn.elliott@guidant.com

Peter Feiler
Software Engineering Institute
4500 Fifth Ave
Pittsburgh, PA 15213-3890
Phone:412-268-7790
Fax:412-268-5758
E-Mail: phf@sei.cmu.edu

Mike Gagliardi
Software Engineering Institute
4500 Fifth Ave
Pittsburgh, PA 15213-3890
Phone:412-268-7738
Fax:412-268-5758
E-Mail: mjg@sei.cmu.edu

Dave Gluch
Software Engineering Institute
4500 Fifth Ave
Pittsburgh, PA 15213-3890
Phone: 412-268-7069
Fax: 412-268-5758
E-Mail: dpg@sei.cmu.edu

Jack Goldberg
(Independent Consultant)
3373 Cowper Street
Palo Alto, CA 94306
Phone: 415-493-3390
Fax: 415-493-3758
E-Mail: goldberg@csl.sri.com

Walter Heimerdinger
Honeywell Technology Center MN65-2200
3660 Technology Drive
Minneapolis, MN 55418
Phone:612-951-7333
Fax:612-951-7438
E-Mail: walt@src.honeywell.com

CMU/SEI-97-SR-014 29

Constance Heitmeyer
Naval Research Laboratories
Code 5546
Washington, DC 20375
Phone: 202-767-3596
Fax:202-767-9197
E-Mail:
constance.l.heitmeyer@nrl.navy.mil

Mike Hinchey
21st Century Systems, Inc.
420 Hardscrabble Road
Chappaqua, NY 10514-3030
Phone:201-596-5750
Fax: 201-596-5777
E-Mail: hinchey@homer.njit.edu

Kathryn Kemp
NASA SW IV&V Facility
100 University Drive
Fairmont, WV 26554
Phone: 304-367-8238
E-Mail: kemp@ivv.nasa.gov

Mark Klein
Software Engineering Institute
4500 Fifth Ave
Pittsburgh, PA 15213-3890
Phone:412-268-7615
Fax:412-268-5758
E-Mail: mk@sei.cmu.edu

Mike Lane
DERA (UK)
Probert Building
Farnborough, Hampshire
England GU14 OLX
E-Mail: mjlane@dra.hmg.gb

Marc Pitarys
Wright Laboratory
WL/AASH, Bldg. 620
Wright-Patterson AFB, OH 45387-6543
Phone: 937 255-6548
Fax: 937 656-4277
E-Mail: pitarymj@aa.wpafb.af.mil

Sampath Rangarajan
Lucent Technologies Bell Laboratories
Room 2A-229
600 Mountain Avenue
Murray Hill, NJ 07974
Phone: 908 582-6687
E-Mail: sampath@research.bell-labs.com

Lui Sha
Software Engineering Institute
4500 Fifth Ave
Pittsburgh, PA 15213-3890
Phone:412-268-5875
Fax:412-268-5758
E-Mail: lrs@sei.cmu.edu

George Shoemaker
Naval Undersea Warfare Center
Code 3822, Bldg. 104
1176 Howell Street
Newport, RI 02841-1708
Phone:412-268-3420
Fax: 412-268-5758
E-Mail: gts@sei.cmu.edu

Therese Smith
Lincoln Laboratory
244 Wood Street
Lexington, MA 02173
Phone: 617-981-4179
Fax: 617-981-3220
E-Mail: tmsmith@ll.mit.edu

30 CMU/SEI-97-SR-014

Kevin Sullivan
University of Virginia
School of Engineering and Applied Science
222 Olsson Hall
Charlottesville, VA 22903-2442
E-Mail: sullivan@cs.virginia.edu

Jeffrey Voas
Reliable Software Technologies
Corporation
21515 Ridgetop Circle, Suite 250
Sterling, VA 20166
Phone: 703-404-9293
Fax: 703-404-9295
E-Mail: jmvoas@rstcorp.com

Dolores Wallace
National Institute of Standards and
Technology
NIST North, Bldg 820, RM 517
Gaithersburg, MD 20899
Phone:301-975-3340
Fax: 301-926-3696
E-Mail: wallace@nist.gov

Chris Walter
WW Group
4519 Mustering Drum
Ellicott City, MD 21042
Phone:410-418-4353
Fax:410-418-4355
E-Mail: cwalter@blaze.cs.jhu.edu

Chuck Weinstock
Software Engineering Institute
4500 Fifth Ave
Pittsburgh, PA 15213-3890
Phone:412-268-7719
Fax: 412-268-5758
E-Mail: weinstock@sei.cmu.edu

Charles Westerfield
Harris ISD
P.O. Box 98000
MS W3-7755
Melbourne, FL 32902
Phone:407-984-6281
Fax: 407-984-6323
E-Mail: cwesterf@harris.com

Bill Wood
Software Engineering Institute
4500 Fifth Ave.
Pittsburgh, PA 15213-3890
Phone: 412-268-7723
Fax: 412-268-5758
E-Mail: wgw@sei.cmu.edu

CMU/SEI-97-SR-014 31

32 CMU/SEI-97-SR-014

Appendix C: Agenda

Wednesday, April 16
8:00- 8:30 Registration

8:30- 9:15 Plenary
9:15-12:00 Working Groups
1:00- 1:30 Plenary

1:30- 5:00 Working Groups

Thursday, April 17
8:00 -10:00 Working Groups

10:15 -12:00 SEI demos/presentations
Group chairs prepare slides/reports

1:00 - 3:00 Presentations and discussion of results

CMU/SEI-97-SR-014 33

34 CMU/SEI-97-SR-014

REPORT DOCUMENTATION PAGE Form Approved
OMBNo. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
anrt in the nffir.o nf Manqnnmfint anrt Rnrinet Paoerwork Reduction Proiect (0704-0188), Washington, DC 20503. _

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE August 1997 3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Workshop on the State of the Practice in Dependably Upgrading Critical Systems
5. FUNDING NUMBERS

C —F19628-95-C-0003

6. AUTHOR(S)
David P. Gluch and Charles B. Weinstock (Editors)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-97-SR-014

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731 -2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
This report describes the results of the Workshop on Dependably Upgrading Critical Systems held April 16-17,1997 at the Software
Engineering Institute. The workshop addressed a broad spectrum of issues associated with dependably and cost-effectively
upgrading systems, primarily those with reliability or real-time requirements.

14. SUBJECT TERMS: commercial off-the-shelf (COTS) components, critical systems, dependable
systems, design for upgrade, online upgrade, system upgrade

15. NUMBER OF PAGES
40

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

z
o <0 HI

CO 111 ■_ -M ■ ^ Jh 1
LU

wo A A A A 1 f \ A 1 A A o
UJ — fipn L: 1 L kl 1 / V*kV\ 1 tn
Ot UU I n1r M 1 / f\f\ L CO
üO rsnu un JULUU r o
<== \J VV w r > t \r wm w ^* '

LU
CC

o <

Q "' *■ ^i f) V
z
o

Q
LU

N 3 o
^ DC >

1- >

0)
■U)

4->
^

UJ
m
2
3 0)

LU
CC
a.

2^ •H <r<? Z to
cd

z o 5^
1-
o

cu

<
2

M 1*0 DC
UJ

<
cc

<1) T3 to
K «H

60 z \ CQ H 4-1 H
Ö 2

Z

z o -H sa
DC o
LL

■rl

o <u
o
o

CO
£ H -H O
m rQ -H 4J z Z 0) 2 » |- CC O

r
pu

n

un

ar
d

o UJ (3
C3 -rl <l>

ac o
uj o
Q O

z < M
^
^

a. Z I

>-
LL

Z

UJ
DC

3 CJ

Q in

H O O 3
5> 4-1 TH H

4-> O
1— F <u ^^s. cc UJ c* Z "Ö 3 M-l z
UJ z cd £«s O 5 ' < 00

DC

o
1-

£2 +J
DC <+-) ^

Z o
0. cs
UJ o
cc c*

LT O M to
E> M 4-> CO
5 ft oi o

o
LO

LJJ
m
2
3
Z

oc o
Q.
UJ
DC

o o
CO

<

DC^j

CO Ü

0- _(

d

CC ft T-t rH
h- <H a p.,

O

E5

o CJ
LL LU

a

o
a 1-

<
r" 1

cj
Q

