RL-TR-97-49
Final Technical Report
July 1997

EMPIRICAL EVALUATION OF
KBSA TECHNOLOGY

Andersen Consulting

William C. Sasso

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

togrosez 08

|DTIC QUALITY LwirSUTED &

Rome Laboratory
Air Force Materiel Command
Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-49 has been reviewed and is approved for publication.

Wa.v/%%m

NANCY A. ROBERTS
Project Engineer

APPROVED:

FOR THE COMMANDER: % %ﬂw

JOHN A. GRANIERO, Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3CA, 525 Brooks Rd, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

Public reporting burden tor this collection of information is estimated to average 1 haur per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project {0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY /Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
| July 1997 Final Sep 93 - Sep 96
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS
C - F30602-93-C-0198
EMPIRICAL EVALUATION OF KBSA TECHNOLOGY PE - 62702F
PR - 5581
6. AUTHOR(S) TA -27
WU- 70
William C. Sasso
1. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Center for Strategic Technology Research
. N/A
Andersen Consulting
3773 Willow Road
Northbrook, H. 60062-6212 .
9. SPONSORING/MONITORING AGENCY NAME(S} AND ADDRESS(ES} 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
Rome Laboratory/C3CA
525 Brooks Rd. RL-TR-97-49

Rome, NY 13441-4505

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Nancy A. Roberts/C3CA/315-330-3566

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Authorized for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This report evaluates the potential impact of Knowledge-Based Software Assistant (KBSA) Technology on software
development productivity and software quality, and is submitted by Andersen Consulting to Rome Laboratory as a
deliverable under contract F30602-93-C-0198. The empirical study - including both controlled experiments and a
survey of industrial field experience - compared the impact of KBSA functionality to state-of-the market software
development technologies. An experiment was conducted to evaluate the impact of core KBSA Technology: evolution
transformations. As a benchmark, Andersen compared the productivity and software quality impacts of this
technology with that of the level of functionality present in leading object-oriented Computer-Assisted Software
Engineering (OO-CASE) tools. The data collected lead to a conclusion that KBSA Technology does have a positive
and observable impact on software development productivity and software quality.

14. SUBJECT TERMS 15. NUMBER OF PAGES
56
Empirical Evaluation, Software Development 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT]
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
Standard Form 298 gﬂev. 2-89) (EG)
Prescribed by ANSI Std. 239.18

Designed using Perform Pro, WHS/DIOR, Oct 84

Executive Summary

This report evaluates the potential impact of Knowledge-Based Software
Assistant (KBSA) technology on software development productivity and
software quality, and is submitted by Andersen Consulting to Rome
Laboratory as a deliverable under contract F30602-93-C-0198.

Andersen Consulting has conducted an empirical study of the impact of
KBSA and related technologies on software development productivity and
software quality. This study — including both controlled experiments and a
survey of industrial field experience — compared the impact of KBSA
functionality to state-of-the-market software development technologies.

In the second half of 1994, we conducted an experiment to evaluate the
impact of a core KBSA technology: evolution transformations. As a
benchmark, we compared the productivity and software quality impacts of
this technology with that of the level of functionality present in leading
object-oriented Computer-Assisted Software Engineering (OO-CASE) tools.
The experiment was designed to investigate productivity, software quality,
and time-to-completion of software projects. As a by-product of the
experimental process, we collected data on the usability of KBSA technology.

The data lead us to conclude that KBSA technology does have positive and
observable impacts on software development productivity (on the order of a
factor up to 2.7). Similarly, KBSA technology improves software quality;
improvements (on the order of a factor up to 1.15) were observed. However,
this study has not shown that KBSA technology has a positive and observable
impact on software time-to-completion.

In early 1994, we conducted an extensive electronic mail survey of the
Knowledge-Based Software Engineering' (KBSE) community to identify
practical applications of KBSE technology in industry and the Government.
We were able to identify real-world applications of this technology in the
following compahies: Andersen Consulting, AT&T Bell Labs, Boeing
Computer Services, Bull Honeywell, IBM (Canada), and Motorola. We
collected further information on these applications, and organized a panel
discussion of these application experiences at the September 1994 KBSE
Conference in Monterey, CA. From these sources, we hear that KBSE
technology is providing value in industry use today. Companies like
Andersen Consulting , Boeing Computer Services, IBM/Canada, Motorola,
and AT&T Bell Labs are taking advantage of the potential of this technology,
and are presenting their results in public discussion.

'Within this report, KBSA technologies should be considered a subset of KBSE technologies.
LDTIC QUALITY INSPLCTED 3

The major findings of this study are these:

e KBSA technology demonstrates an experimentally observable positive
impact on software development productivity (an improvement factor of
up to 2.7). This is consistent with the observations of field use, especially
the experiences reported by Andersen Consulting.

e KBSA technology demonstrates an experimentally observable positive
impact on software quality (an improvement factor of up to 1.15). This is
consistent with the observations of field use, especially the experiences
reported at Motorola and Andersen Consulting.

¢ KBSA technology is usable. Our subjects, including software development
professionals, military personnel, and graduate students, learned to use
the powerful capabilities of the KBSA Concept Demonstration System
effectively within a two-day training period.

These improvement factors may actually understate KBSA’s potential impact
significantly, as experimental design constraints made it impossible to include
some KBSA capabilities in the experimental study. The most important
lessons learned in this project are these:

1. Software experimentation is hard, but it can be done. As other studies
have suggested, our experience emphasizes the need to control for
different individual skills and learning rates in the experimental design.

2. Higher-order KBSA capabilities, such as the Bundle and Attribute-to-
Relation evolution transformations, provide biggest productivity impact,
but are perhaps least generic. This implies the need to study the specific
requirements of users as a basis for designing these transformations, at
least until we have established a set of generally applicable higher-order
transformations.

3. This study has highlighted the importance of usability aspects in the
design and implementation of KBSA technology. The suggestions made by
the experimental subjects regarding usability indicate that KBSA
technology has further to go in this dimension: KBSA is usable today, but
it can be far more usable in the future.

1. Introduction

This report presents an evaluation of the potential impact of Knowledge-
Based Software Assistant (KBSA) technology on software development
productivity and software quality, and is submitted by Andersen Consulting
to Rome Laboratory as a deliverable under contract F30602-93-C-0198.

1.1 General Motivation

Throughout both the Department of Defense and the Software Engineering
research community, an appreciation has grown of the need to balance the
development of new Software Engineering (SE) techniques and technology
with a greater ability to evaluate — in a systematic, scientific fashion — the
relative merits of the current set of SE technology. For example, in the
keynote speech at the 1992 International Conference on Software Engineering,
Professor Nancy Leveson stated

There are two stages in the early years of a new technology: (1) exploration
of the space of possible approaches and solutions to problems (i.e.,
invention) and (2) evaluation of what has been learned by this trial and
error process to formulate hypotheses that can be scientifically and
empirically tested in order to build the scientific foundations of the
technology. Most of our emphasis so far has been in the first stage (i.e.,
invention); it is time now to give more attention to the second. [Le92, p. 7]

In the same year, Mr. Lloyd Moseman (USAF) stated “I believe the time has
come for us to cease our admiration of the metrics problem, and to start
implementing some metrics.” [M092a, p. 12] More recently, he has written
that “Our collective challenge is to use measurement as a means to help
software development move from an art to a science, or even an engineering
discipline. It is difficult to improve software quality if you don’t have the
numbers to make a business case for investing in quality.” [Mo92b, p. 5]
Similarly the draft DoD Software Technology Strategy [DoD91] recognized the
need for more empirical evaluation of software technology.

Like other DoD research programs, Rome Laboratory’s Knowledge-Based
Software Assistant (KBSA) effort faced this challenge. In response, Rome
identified empirical assessment as one of the goals of the KBSA Advanced
Development Model (ADM) project [RL92]. The results of ADM assessment,
however, remain in the future. Fortunately, some KBSA technology (e.g.
[De92a] and [Ko092]) is sufficiently mature and robust to support preliminary
empirical evaluations. These partial studies can inform and guide the design
of the ADM assessment, even as they provide empirical data within the short
term.

As described in this report, Andersen Consulting has conducted an empirical
study of the impact of KBSA and related technologies on software
development productivity and software quality. This study included both
controlled experiments and industrial field experience. It compared the
impact of KBSA functionality to that of current software development
technologies. Figure 1 depicts the high-level plan of the project.

l——(Planning and Preparation)—l

Eiel? _
Controlled valuations
Experimental (Opportunistic)
Studies: :

. Application
Evolution Software Factory,
Transformations Mousetrap,

Software Refinery

[Analysis and Reporting J

1.2 Contribution of this study to KBSA Program Objectives

In 1983, Rome Laboratory’s KBSA program proposed a new software
development paradigm designed to provide dramatic increases in software
development productivity and software quality [Gr83], [Wh91]. Technical
progress has been made, and within the next year the KBSA Advanced
Development Model (ADM) will be available for field trial. However, a major
factor in motivating organizations to adopt new technologies is the
observability of their benefits, as noted originally by [Ro83] and discussed in
the specific KBSA context by [Sa91a] and [Sa91b]. This empirical evaluation of
KBSA impact on software development productivity and software quality
provides hard data to organizations considering the adoption of KBSA
technology. In addition, this project has gathered information on
experimental design and instrumentation techniques that can be used in
support of the empirical evaluation component of the KBSA ADM project.

1.3 Objectives and Scope of the Study

As initially conceived, the study was intended to consist of two tracks: (1) a set
of controlled experiments and (2) a set of opportunistic field observations.
The experiments were designed to investigate the impact of core KBSA
features on software quality and development productivity. These core
features include, for example, evolution transformation technology and the
automated capture and maintenance of traceability information. A recent
KBSA implementation, the Concept Demonstration System, has brought
these technologies to levels of robustness and usability enabling their
systematic evaluation.

The second track, consisting of opportunistic field studies, was designed to
complement the first by providing evidence and insight concerning the
transferability of the experimental results into actual software development
practice. These industrial experience studies were opportunistic in that they
were conducted as the information became available, and required flexibility
on the researcher’s part concerning the types of data collected and the degree
of experimental control present.

1.3.1 Experimental Study Track

" In the second half of 1994, we conducted an experiment to evaluate the
impact of evolution transformations, a core KBSA feature. As a benchmark,
we compared the productivity and software quality impacts of the evolution
transformation capabilities with the level of corresponding functionality
present in leading object-oriented Computer-Assisted Software Engineering
(OO-CASE) tools, such as IntelliCorp’s ProKappa [PK91a, PK91b]. The
experiment was designed to investigate these hypotheses:

¢ H1: Subjects using core KBSA functionality will complete the
experimental task in less time than subjects using OO-CASE
functionality. (productivity)

e H2: Subjects using core KBSA functionality will complete the
maintenance task with fewer errors than subjects using the OO-CASE

functionality. (quality)

* H3: Subjects using core KBSA functionality will complete the entire set
of experimental tasks in less time than subjects using the OO-CASE
functionality. (time-to-completion)

We compared the productivity of subjects using KBSA core functionality with
that of subjects using capabilities equivalent to those present in today’s
leading OO-CASE tools. To control for potential confounding factors such as
different development process models, graphical representations, menu

structures, and system terminology, we developed two versions of the KBSA
Concept Demo: one with KBSA-level functionality enabled, and one with a
lesser set of functionality enabled, representing the state-of-the-market OO-
CASE commercial technology. Further, to control against the possible impact
of previous development experience, we included not only software
development professionals but also students with relevant backgrounds as
subjects in the study. Further, we structured the data collection process to use
natural controls against variances in factors such as experience and previous
exposure to KBSA technology. A detailed description of the experimental
design, and a discussion of its underlying rationale, will be presented in
section 3 below.

1.3.2 Opportunistic Field Study Track

Experience in the trial application of Knowledge-Based Software Engineering
(KBSE) technologies' — such as use of a wide-spectrum language (Refine),
transformation capabilities, multiple views, and formal models of the
software artifact — has great relevance both to this project and to the KBSA
ADM assessment process. This approach can provide initial real-world
evidence on the scale-up and value of KBSA technologies. Therefore it
complements the experimental study described above. Further, these
observations have reinforced our confidence in the results observed in the
experiments.

In early 1994, we conducted an extensive electronic mail survey of the KBSE
community to identify practical applications of KBSE technology in industry
and the Government. In this manner, we were able to identify real-world
applications of this technology in the following companies: Andersen
Consulting, AT&T Bell Labs, Boeing Computer Services, Bull Honeywell,
IBM, and Motorola. We collected further information on these applications
via telephone interviews and analysis of published reports, and organized a
panel discussion of these applications at the September 1994 KBSE Conference
in Monterey, CA. An elaborated discussion of these applications and their
impact is presented in section 2 below.

! For the purposes of this report, the term “Knowledge-Based Software Assistant” and the acronym KBSA
will be restricted to use in reference to work sponsored by Rome Laboratory’s KBSA research program, and
the term “Knowledge-Based Software Engineering” and acronym KBSE will be used in general reference to
all uses of knowledge-based technology to enhance software engineering technology capabilities. Thus,
within this report, KBSA technologies should be considered a subset of KBSE technologies.

1.4. Proposal and Award

In response to PRDA Announcement 92-08-PKRD issued by Rome
Laboratory, Andersen Consulting developed and submitted a proposal to
conduct an empirical evaluation of KBSA technology. After evaluation by
Rome Laboratory Andersen Consulting was awarded Government Contract
F30602-93-C-0198 (dated September 21, 1993) to conduct the evaluation study
reported here.

1.5 Acknowledgments

I would like to note my gratitude to the following people, whose assistance
made the conduct and completion of this project possible:

* Mr. Ken Hu, a software engineering intern in Andersen Consulting’s
Center for Strategic Technology Research (CSTaR), who adapted the KBSA
Concept Demonstration System to support the experimental data collection
process;

* Professor Walt Scacchi of the University of Southern California, who
provided the definition of the baseline OO-CASE functionality used as an
experimental baseline;

* the original developers of the KBSA Concept Demonstration System,
including especially Michael DeBellis, Kanth Miriyala, Sudin Bhat,
Guillermina Cabral, and Steve Wagner, all (current or former) members of
the Software Engineering Laboratory at CSTaR;

* Professor Paul Bailor of the Air Force Institute of Technology, Professor Bala
Ramesh of the Naval Postgraduate School, and Professor Perry Alexander of
the University of Cincinnati, and their students, who participated in this
study as subjects;

* Kevin Benner, Ph.D., and Gerry Williams, Ph.D., colleagues at Andersen
Consulting who provided comments and suggestions regarding the
organization of this study and the presentation of its results, and the
Andersen Consulting personnel who participated in this study as subjects;
and

¢ Mr. Douglas White and Ms. Nancy Roberts of the Knowledge-Based
Software Engineering Group at Rome Laboratory, USAF.

2. Field Study Track

Experience in the trial application of KBSE technologies — such as use of a
wide-spectrum language (Refine), transformation techniques, multiple views,
and formal models of the software artifact — has great relevance both to this
project and to the KBSA ADM assessment process. This approach can
provide initial real-world evidence on the scale-up and value of KBSA
technologies. Therefore it complements the experimental study described
above. Further, these observations have reinforced our confidence in the
results observed in the experiments.

2.1. Search for Applications of KBSE Technology

Under the auspices of this project, we conducted an extensive electronic mail
survey of the KBSE community to identify practical applications of KBSE
technology in industry and the Government. In this manner, we were able to
identify real-world applications of this technology in the following
companies: Andersen Consulting, AT&T Bell Labs, Boeing Computer
Services, Bull Honeywell, IBM, and Motorola. We collected further
information on these applications, and organized a panel discussion of these
applications at the September 1994 KBSE Conference in Monterey, CA.

2.2. Sites Identified and Results Reported

In this section we will summarize the panelists’ reports of how KBSE
technology has been used in actual software development projects. In
_particular, they were asked to describe its impact on software development, by
repsonding to the following questions.

* What are the “knowledge-based” aspects of the technology you have used?
* What kind(s) of application have you used KBSE technology to support?

* What have been the most positive impacts of using the technology?
Reports of quantitative data were strongly encouraged.

* What obstacles or difficulties have you encountered in applying the
technology? What do you feel can be done to remedy them?

The synopses presented below reflect actual use of KBSE technology in
support of actual software development.

Bull HN Information Systems is currently investigating the integration of
process-centered environments (e.g., Marvel) with collaboration
environments (e.g., ConversationBuilder). After process model components
in an earlier version proved difficult to modify, Marvel was chosen to

provide an integration layer within the application, and its KBSE capabilities
are being used to enhance the flexibility and customizability of the
application’s process model [Ar94].

IBM/Toronto® has used Reasoning Systems’ Software Refinery® to build an
automated code inspection system for the PL/1 dialect used in SQL/DS (now
known as DB2/VM), a major IBM mainframe database management system
product. Since this particular dialect combines PL/1 and System 370 Assembly
language, it requires the powerful language modeling capabilities of Refinery
[BH91], [Tr92], [BH92], [HTB93].

As reported at the panel, Boeing Computer Services has used Reasoning
Systems’ Software Refinery® to develop a COBOL re-engineering facility.
These tools have then been used to re-engineer large applications (e.g., 750
KLOC), and have been very successful at supporting the evolution of these
applications. Members of the Boeing technical staff have stated that Software
Refinery has a qualitative impact, enabling re-engineering work that would
simply not be feasible without its support.

Andersen Consulting’s Denver consulting office demonstrated the
Knowledge-Based Design Assistant (KBDA) at the Andersen Consulting open
house at KBSE-93 in Chicago. KBDA is an ART-IM application that automates
the selection of code shells to improve the quality of the application while
reducing the effort required to develop it. KBDA has been used to develop
several client applications (each approximately 1,000 KLOC or larger), and has
dramatically improved programmer productivity. Reported improvements
are on the order of 5 to 1 [BSL93].

AT&T Bell Laboratories has worked with the Articulator process modeling
software, applying it to represent the software engineering processes used by a
large software development organization. When compared to the current
process description facility, an on line library containing descriptions in
natural language, the process descriptions produced using the Articulator
approach were more succinct, more accurate, more complete, more easily
understood, and more easily measured [V093]. This group also has knowledge
of developers’ experiences with AT&T Bell Labs” Designer Assistant [TSL].

Motorola has used transformation technology to produce code for real-time
communications devices. Working from specifications (e.g., abstract data
types), the technology has produced programs on the order of 2 KLOC to 3
KLOC . When compared with the code hand-crafted by engineers, the
generated code has been found to (1) contain fewer errors, (2) be more
compact, and (3) offer comparable (usually superior) performance. Non-

? Please note that this paragraph is derived from the cited works; unfortunately, no IBM/Toronto personnel
were able to participate in the panel at the KBSE Conference.

published but publicly reported results include reductions in coding time of
3.6 to 1, elimination of code defects, and — perhaps most unexpectedly —
reductions in code size by a factor of 1.2 to 1 [We94]. This latter is an especially
important impact relative to embedded systems.

In summary, KBSE technologies have begun to move out of the research
laboratory and into the real world of software development. While their use
remains restricted in scope, the panelists’ comments and their public reports
certainly offer encouraging evidence that KBSE technology can both increase
development productivity and improve software quality.

3. Experimental Study Track

As part of this project, we conducted an experiment to evaluate the impact of
core KBSA features: (1) evolution transformations, and (2) automated
maintenance of traceability information. The experiment was designed to
investigate these hypotheses:

* H1: Subjects using core KBSA functionality will complete individual
experimental tasks in less time than subjects using OO-CASE
functionality. (task-level productivity)

* H2: Subjects using core KBSA functionality will complete the set of
experimental tasks with fewer errors than subjects using the OO-CASE
functionality. (quality)

* H3: Subjects using core KBSA functionality will complete the entire set
of experimental tasks in less time than subjects using the OO-CASE
functionality. (time-to-completion)

Thus the set of hypotheses includes both task-level impact and aggregated
impact over the entire set of tasks in the experiment.

" 3.1. Comments on the Experimental Design

In planning the experimental design process, we identified several issues that
our design needed to address:

* What do we compare Concept Demo against?
* How do we control individual subject variance?
* How do we control for the learning curve?

First, we considered the question “What do we compare Concept Demo
against?” After evaluating the pros and cons of the possibilities, we chose to
compare the Concept Demo against a “baseline” version of itself. In other
words, we evaluated the productivity of subjects using KBSA core
functionality with that of subjects using a lesser set of capabilities (referred to
as the “baseline” capabilities). This enabled us to control for potential
confounding factors between different software tools such as different
development process models, graphical representations, menu structures,
and system terminology. Therefore we developed two versions of the KBSA
Concept Demo: one with KBSA-level functionality enabled, and one with the
baseline set of functionality.

To determine what functional capabilities should be included in the baseline
level of technology support, we engaged the services of Professor Walt Scacchi
of the University of Southern California. Professor Scacchi, as a leading

authority on software engineering, is familiar with both the KBSA research
program and the typical degree of support provided in “state-of-the-market”
object-oriented Computer-Assisted Software Engineering (OO-CASE)
technology, such as IntelliCorp’s ProKappa [PK91a, PK91b]. As such, he was
ideally situated to conduct an unbiased comparison of the relative capabilities
of these technologies. We used his conclusions to allocate functionality
between the baseline and full-KBSA versions of the Concept Demo.

We then turned to consideration of an issue that has been raised in earlier
empirical software engineering research: the high degree of individual
variation observed between subjects. This appears in many published reports
of empirical studies, whether the subjects are software development
professionals or students. Previous researchers have observed large
differentials in individual productivity. These differentials — sometimes
more than a factor of 2 — could confound the analysis of productivity data.
As suggested by Lee [Le89], we have employed natural controls in our
experimental design to guard against this situation. In particular, we have
structured our design such that comparisons are made between data
generated by a given subject rather than by different subjects. Further, to
control against the possible impact of previous development experience, we
included not only software development professionals but also students with
relevant backgrounds as subjects in the study.

Finally, we concerned ourselves with the potential impact of the “learning
curve” effect, another issue in this type of research. That is, the subjects are
learning about the technology at a general level as well as the specific full-
KBSA technology. For instance, in each hands-on exercise they become more
aware of how to use the Concept Demo interface as well as how to apply
evolution transformations. Thus, a possible explanation of improved subject
productivity is that it is caused by the subjects’ increasing familiarity with the
tool in general rather than with the specific impact of any functional
capability. To control for this, we designed the data collection procedure to
counterbalance the availability of full-KBSA technology. Some comparisons
were based on observations where the full-KBSA technology was used after
the baseline technology, while others were based on the opposite sequence of
observations. Thus, over the full set of data, the impact of any systematic
learning curve effect could be expected to net to zero.

3.2, Design of Experimental Studies

The general design of the research included a standard sequence of training
and data collection sessions. The training sessions, as the term is used here,
included lectures, demonstrations, hands-on trial use sessions, and group
discussion (e.g., questions and answers). In the schematic below, training
sessions are indicated by T,.

10

In each data collection session, subjects were given hands-on access to a
specific set of KBSA technology (either the baseline or the full-KBSA versions
of the KBSA Concept Demo). Data collection sessions, as we use the term,
refers to a hands-on session in which a detailed sessions log is automatically
generated by the Concept Demo, recording and timestamping the user’s
interface-level actions, as he or she performs a pre-specified set of software
development tasks. In the schematic below, data collection sessions are
indicated by DC.,.

The overall research design then can be represented as follows.
T, >DC, > T, ->DC, ->DC,; -> T, ->DC,

The Overall Research Design
(T = Training Session; DC = Data Collection Session)

In this representation, DC; and DC, represent “baseline” data collection
sessions, while DC, and DC, represent “Full-KBSA” data collection. DC; and
DC, are paired data collection sessions, meaning that an equivalent
experimental task was performed, once with the support of baseline
functionality (in DC,) and again with Full-KBSA functionality (in DC,). DC,
and DC, are similarly paired, save that DC, (the Full-KBSA data collection
session) in this case precedes DC, (the baseline data collection session).
Appendix A includes a copy of the more detailed agenda for the two-day
program.

3.3. Adaptation of the KBSA Concept Demo

We adapted the delivery version of the KBSA Concept Demonstration
System to support this research design. In particular, we made the following
modifications:

* We added a password-controlled switch enabling us to identify
whether the subject had access to the baseline functionality or the full-
KBSA functionality.

* We added a fine-grained session log feature, enabling the Concept
Demo to capture the data describing the user’s session.

e We developed task-specific knowledge-bases, containing the necessary
hypertext requirements, and definitions of formal objects (e.g., classes,
attributes, relations, etc.).

* We made robustification enhancements (e.g., by developing guards on
the execution of evolution transformations).

11

* We reviewed the usability and consistency of the user interface, and
made several interface-level changes to improve usability.

3.4 Design and Development of the Experimental Task-Sets

The design of the experimental tasks was constrained in several senses. For
example, the set of capabilities present in the Concept Demo had to support
the completion of the task-set, and had to do so in two different ways. First,
with its feature switches set to the baseline level, the Concept Demo had to
enable completion of the task-set in a manner corresponding to its
completion in an OO-CASE tool. Second, with its feature switches set to “full-
KBSA,” the Concept Demo had to provide additional support for the task-set.
In other words, the Concept Demo had to support two alternate task
completion paths: one representing the capabilities of OO-CASE tools, and the
other reflecting the incremental capabilities of KBSA. So, for example, we
disabled some more sophisticated evolution transformations (e.g., Bundle,
Define-Inverse, and Redefine-Cardinality) in the baseline version, while
continuing to provide a set of lower level transformations sufficient to enable
the subject to perform the experimental task.

There were other constraints as well. Very few of the subjects were familiar
with formal specification languages, and the two-day training and data
collection sessions did not allow for them to learn Extended Refine
Specification Language (ERSLa). This restricted the feasible set of
experimental tasks to those which could be performed using the Concept
Demo’s direct manipulation interface. This encouraged us to select some of
the more robust Concept Demo interface presentations, such as the Hypertext
views, the Entity/Relation diagram and the Class Hierarchy Diagram, as the
basis for the set of experimental tasks.

There were several other constraints on the design of the experimental tasks.
They had to be doable by motivated, trained users; we were not primarily
interested in collecting data on the difficulty that users experienced with a
piece of software as complex as the Concept Demo. This meant that each set of
tasks had to be manageable. On the other hand, the larger the number of
specification objects and the more complex the work to be done, the more
realistic the experimental task would be. The tension between these two
values led us to avoid the trivial in the design of the tasks, typically giving
the subjects sets of twenty (20) tasks to be performed on pre-defined
knowledge-bases containing up to fifty (50) formal specification objects.

After the experimental tasks were designed, the training materials and
exercises were developed. They were then informally piloted and reviewed to
ensure that the knowledge of the Concept Demo required to complete the
tasks was included in the training. The training materials included primarily
PowerPoint slides and handouts, and were supplemented by on-line

12

demonstrations of the Concept Demo software. A preliminary version of
these materials was completed by mid-July, 1994.

3.3 Conduct of the Experimental Studies

In parallel with the design of the experimental tasks and the development of
the training materials, we conducted a search for experimental subjects. We
wanted to include both Department of Defense software development
personnel and commercial software developers. The latter we recruited as
volunteers from within Andersen Consulting, and the former we were
fortunate to find through the assistance of faculty members at the Air Force
Institute of Technology (AFIT) and the Naval Postgraduate School (NPS).

Between July and December, 1994, we conducted a series of five experimental
studies. In each case, subjects participated in a formal training program
(approximately eight hours of presentation and discussion) and performed a
series of hands-on exercises, totaling approximately eight hours of time using
the Concept Demo itself. A copy of the training program agenda is included as
Appendix A.

3.3.1. AFIT Pilot Study

With the cooperation and assistance of Professor Paul Bailor of the Air Force
Institute of Technology (AFIT), we conducted a pilot experimental session at
that location on July 19th and 20th, 1994. In the true spirit of pilot tests, the
AFIT session enabled us to identify several critical issues in our training
program and the experimental version of the Concept Demo. First, we
revised the training to include a separate topic introducing the trainees to the
Concept Demo interface, with an accompanying hands-on exercise to convey
a sense of the interface operations and the Concept Demo’s typical response
time. We also made adjustments to the session logging mechanism, enabling
us to track the subjects’ interface-level activity at a finer level of granularity.
We further revised several of the experimental task descriptions, and adapted
the knowledge-bases that support those exercises.

The AFIT subjects were all Air Force officers in a graduate program in
Computer Science. Most had some experience in software development. A
profile of these subjects, including their previous level of exposure to KBSA
technology, is presented in Table 3.4.2.1-1 (below). Due to the pilot nature of
this study, no data was considered usable.

3.3.2. AC1 Pilot Study
A second pilot session was conducted at Andersen Consulting’s Center for

Strategic Technology Research (CSTaR) in Chicago, IL, on August 24th and
25th. The AC1 subjects were all experienced Andersen Consulting employees

13

(software development consultants). Further adjustments to the
experimental design were made as a result of this pilot study. A profile of
these subjects, including their previous level of exposure to KBSA
technology, is presented in Table 3.4.2.1-1 (below). Due to the pilot nature of
this study, no quality data was considered usable.

3.3.3. NPS Experimental Study

With the cooperation and assistance of Professor Bala Ramesh of the Naval
Postgraduate School (NPS) in Monterey, CA, we conducted a training and
data collection session there on October 20th and 21st. This was a very
successful study; we captured 45 matched-pair data sets of KBSA development
productivity impact. These subjects were all military — mainly naval —
officers in a graduate program in management information technology. A
profile of these subjects, including their previous level of exposure to KBSA
technology, is presented in Table 3.4.2.1-1 (below).

3.3.4. AC2 Experimental Study
Another training and data collection session was conducted at Andersen

Consulting’s Center for Strategic Technology Research (CSTaR) in Chicago,
IL, on October 24th and 25th. The AC2 subjects were all experienced Andersen

‘Consulting employees (software development consultants). A profile of these

subjects, including their previous level of exposure to KBSA technology, is
presented in Table 3.4.2.1-1 (below). This was a very successful study; we
captured 22 matched-pair data sets of KBSA development productivity
impact.

3.3.5. UC Experimental Study

With the cooperation and assistance of Professor Perry Alexander of the
University of Cincinnati (UC) in Cincinnati, OH, we conducted a training and
data collection session there on December 21st and 22nd. The UC subjects
included one professional software developer and four graduate students in
Electrical and Computer Engineering. A profile of these subjects, including
their previous level of exposure to KBSA technology, is presented in Table
3.4.2.1-1 (below). This was a very successful study; we captured 27 matched-
pair data sets of KBSA development productivity impact.

3.4. Collection and Analysis of Data
After discussing the techniques used to capture the data, we will present the
productivity, quality, and time to completion data in summary form, describe

the statistical techniques employed, and present our evaluations of the
hypotheses in light of the data.

14

3.4.1 Data Collection Techniques

We used two major data collection mechanisms: (1) surveys completed by the
subjects and (2) the Concept Demo’s automated session log facility.

Survey forms were used to capture information about the subjects’ relevant
background knowledge and experience, usability data, and suggestions
concerning alternative interface and functional capabilities that could be used
in later KBSA technology.

The session log facility was added to the KBSA Concept Demo to support
automated collection of developer productivity and software quality data.
Subjects enabled this facility themselves (by invoking a menu option), so they
were always aware when it was running. When they disabled the option, it
wrote the current state of the knowledge-bases to the session log file. This
gave us a time-stamped record of the actions invoked during the session, and
the complete outcome of their work, in terms of the underlying formal
specification of the knowledge-base contents.

3.4.2. Presentation of the Data

This section presents summarized (and in one case, normalized) data

- collected during the experimental sessions conducted at the Naval
Postgraduate School (NPS), Andersen Consulting (AC2), and University of
Cincinnati (UC).

3.4.2.1. Background and Usability Data

After each hands-on exercise, the subjects completed short survey forms in
which they rated the degree of ease or difficulty that they encountered in
completing the exercise. This was a simple six-point scale from very easy to
very hard, in response to the question “Overall, how easy or difficult was it
for you to complete this hands-on exercise?” The data are summarized in the
following table.

These data support the position that the subjects — in their own opinions —
were in general able to use the KBSA Concept Demo software without
material difficulty. Out of 102 reports, only one exercise was reported as
“somewhat hard”, and only sixteen were reported as “slightly hard.” These
reports were from subjects with a maximum of two days of hands-on
experience with the software. While the experimenters’ observations and
comments from the subjects (as reported in Appendix B) make it clear that
they identified aspects of the Concept Demo interface and functionality that
could be improved, these data support the position that a suitable graphical
interface will enable software development professionals to use KBSA
technology in a comfortable and effective manner.

15

Averages by Group

Familiarity with AFIT AC1 NPS AC2 UC
1. OO Development Concepts 1.91 133 110 1.00 1.67
2. OO Development Experience 114 056 080 0.67 117
3. CASE Experience 082 111 100 1.00 0.67
4. Software Refinery® Experience 095 000 0.00 0.00 117
5. KBSA Experience 0.00 0.00 000 0.00 0.00
6. KBSA Concepts 091 000 040 000 1.50
7. Formal Methods Concepts 123 122 110 033 200
8. Formal Methods Exprerience 0.91 100 080 033 2.00
9. Years of SE Experience 2.59 328 060 4.08 1.67

Key for questions 1 through 8: None = 0; Some = 1; Strong = 2; Very Strong = 3

TABLE 3.4.2.1-1
AVERAGE SUBJECT FAMILIARITY WITH KBSA

Very Easy Somew’t Slightly Slightly = Somew’t Very

Easy Easy Hard Hard Hard
NPS 15 16 5 11
AC2 8 16 8 5 1
ucC 5 11 1
Total 28 43 14 16 1

TABLE 3.4.2.1-2:
USABILITY FEEDBACK

Further, these data suggest that the productivity and quality data presented
below is valid in the sense that subjects expressed confidence that they had
been able to perform the hands-on tasks for the data collection sessions in an
adequate manner.

3.4.2.2. Productivity Data

For several of the hands-on exercises, subjects were instructed to enable the
session log function in the experimental version of the Concept Demo
software. This created a timestamped log of all user operations at the
interface level and Concept Demo internal operations at the level of the
knowledge base, enabling us to determine the time required to perform a

16

given task using one of the two alternative sets of KBSA capabilities (full-
KBSA and baseline). In groups of two matched exercises, each subject used
first one set of capabilities (either baseline or full-KBSA) and then the other to
perform equivalent experimental tasks. The session logs enable us to compare
the time required to perform these tasks with these different capabilities.

The data presented here are the (signed) differences between the time
required to perform the task with full-KBSA capabilities and the time
required with baseline capabilities. Thus negative values represent cases
where the full-KBSA capabilities reduced the time required to perform a
given task. Blank cells indicate that the subject’s data was not usable for that
task. This could mean, for example, that the subject used the same baseline
functionality — which was always available — to perform the task, even
though the advanced functionality was enabled.

These data have been normalized by expressing this difference as a percentage
of the time required using full-KBSA capabilities, in order to filter the effect of
differences in hardware and network capacity across the pool of subjects. Each
subject worked on the same machine throughout the data collection process.

NPS-1 usr31 usr33 usr36 usr37 usr39 usr40

Bundle -39 -336 -320 -42 -128 -137
Att->rel’n -207 -396 -573 -66 -105
Create inv -141 -87 -222 -61
Create inv -115 -162 -134 -306 -62 -234
Att->rel’n -34 -228 -146 -88 -85
Create inv -86 -92 -88 -194

TABLE 3.4.2.2-1:
NPS-1 PRODUCTIVITY DATA

Table NPS-1 above can be interpreted as follows. Each column displays the
data representing one subject’s experiences. For subject usr31, for example, we
have only two matched pairs of data. From the value representing the
difference between the first pair of matched values (that is, the value “-39”),
we note that the full- KBSA technology allowed the subject to perform one of
the experimental tasks more quickly: further, we can say that the task was
completed 39% more quickly. Similarly, further down in the column, we note
that Subject usr31 was able to perform a create-inverse operation 115% more
quickly using the full-KBSA technology.

A few positive values can be observed; for example, several occur in the
bottom row of Table AC2-2. These positive values indicate matched pairs of

17

data values where the subject performed the operation in less time using the
baseline functionality. Over the full set of 99 matched pairs of data values, in
3 cases the baseline functionality enabled the subject to complete the
operation in less time.

NPS-2 usr32 usr37 usr39 usr40
Att->rel'n -75 -89 -83 -135
Att->rel’n -133 -93 -263 -274

Bundle -126 -102
Att->rel’'n -84 -273 -286 -498
Bundle -277 -346
Create inv -188 -2 -33 -34

TABLE 3.4.2.2-2:
PRODUCTIVITY DATA: NPS-2

AC2-2 usr4?2 usr43 usrd4 usr45
Att->rel’n -123 -134 -71 -52
Att->rel’'n -88 -170 -72 -130
Bundle -9 -78 -16
Att->rel’'n -211 -72 -65 -58
Bundle -317 -382 -210
Create inv -67 +59 +15 -19

TABLE 3.4.2.2-3:
PRODUCTIVITY DATA: AC2-2

UC-1 usr 51 usr 52 usr 53
Bundle -567 -283
Att->relation -238 -518 -10
Create inv +49 -22 -86
Create inv -18 -21 -57
Att->relation -553 -82
Create inv -164 -70

Create inv -1 -37

TABLE 3.4.2.2-4:
PRODUCTIVITY DATA: UC-1

18

UC-2 usrb1 usrb2 usrb3
Att->relation -30 -30
Att->relation -357 -68
Bundle -372 -312 -60
Att->relation -28
Bundle -531 -74
Create inv

TABLE 3.4.2.2-5:
PRODUCTIVITY DATA: UC-2

Throughout these tables, the high predominance of negative values indicates
that full-KBSA capabilities did in fact reduce the time required to perform the
tasks. The high variances present in a given row can be attributed, at least in
part, to individual variation between different subjects. The variance within a
column may be explained, in part, by the differential power of the full-KBSA
transformations: for example, the Bundle transformation performs more
than does the create-inverse transformation, so the difference values for
Bundle tasks were consistently higher than those for create-inverse tasks.

3.4.2.3. Data on Software Quality and on Time to Completion

As the final step in completing each exercise, subjects disabled the session log
function , which invoked the copying of the current contents of the ’

- knowledge-base to the log file. In the analysis presented in the previous
section, we compared the time required to perform specific, well-defined
activities in the development of a formal specification. The comparison of the
two versions of that specification — one developed with the baseline
functionality and the other with the full-KBSA functionality — enables
comparison of the degree of completeness and internal consistency of the
matched pair of underlying specifications developed by each subject

AC2 , Baseline Full-KBSA Difference
Completeness Time Completeness Time Completeness Time

usr42 88% 1123 100% 755 12% -368
usr43 69% 3370 75% 2558 6% -812
usr44 85% 1478 100% 1261 15% <217
usr45 88% 1201 100% 1133 12% -69

Averages 83% 1793 94% 1427 11% -366

TABLE 3.4.2.3-1:
AC2 QUALITY AND TIME TO COMPLETION DATA

19

NPS Baseline Full-KBSA Difference
Completeness Time Completeness Time Completeness Time

usr32 85% 2015 100% 2016 15% +1
usr37 85% 1461 100% 1934 15% +473
usr39 85% 2103 92% 1454 7% -649
usr40 85% 1859 100% 1323 15% -536
Averages 85% 1859 98% 1682 13% -178

TABLE 3.4.2.3-2:
NPS QUALITY AND TIME TO COMPLETION DATA

These tables should be read as follows. The second and third columns from
the left (“Baseline Completeness” and “Time”) contain data reporting the
completeness (quality) and time to completion of subjects using the baseline
capabilities to perform the complete experimental exercise. The fourth and
fifth columns from the left (“Full-KBSA Completeness” and “Time”)report
the completeness and time to completion for that same subject, as he or she
used the full-KBSA capabilities. The sixth column is the difference between
the second and fourth columns, with a positive value indicating a higher
degree of completeness was achieved with full-KBSA support. The seventh
column is the difference between the third and fifth columns, with negative
values indicating that the exercise was completed in less time using the full-
KBSA capabilities.

Data in these tables is not available for all subjects. In some cases, subjects did
not invoke the log-session capability, or did not do so correctly. In other cases,
a subject may not have been present for both sessions required to perform the
comparison. At the Naval Postgraduate School, for example, some subjects
had other classes or school commitments to attend, forcing them to miss
some of the exercises. That is, a subject may not have completed one of the
hands-on exercises, rendering his or her log incomplete with respect to the
quality and time-to-completion analyses. Finally, in some cases a subject
encountered a termination condition or invoked the Concept Demo’s
“Abort” function, rendering that set of data unusable.

The data presented here generally tend in the expected directions, but some
ambiguity is present, especially with respect to usr37 from the Naval
Postgraduate School. That user completed one hands-on exercise significantly
faster with the baseline capabilities than with the full-KBSA capabilities.
Additional analysis of the session log for that exercise had failed to identify
any anomalous events (e.g., a long period of inactivity or a system failure of
some sort) that might be considered an external corruption of the data.

20

3.4.3. Discussion of the Statistical Tests

Because of the small sample sizes employed in this study, and the unknown
nature of their underlying distribution(s), we have used two non-parametric
statistical tests to analyze the data: the Sign Test and the Wilcoxon Matched-
Pairs Signed-Ranks Test. The latter, because it takes advantage of more
information about the relationships within the data, is considered more
powerful. A complete description of the underlying rationale and means of
performing each test can be found in [Si56]. Appendix C presents abbreviated
discussions of the logic, method, and application of each of these tests.

3.4.3. Conclusions Regarding the Evaluation of the Hypotheses

With respect to H1 (development productivity), the five data sets analyzed all
support rejection of the null hypothesis regarding development productivity
at level p = .05. We conclude that KBSA technology does have a positive and

observable impact on software development productivity.

With respect to H2 (software quality), the combined data sets analyzed support
rejection of the null hypothesis regarding software quality at level p = .05. We
conclude that KBSA technology does have a positive and observable impact
on software quality.

Finally, with respect to H3 (software-time-to-completion), the combined data
sets analyzed do not support rejection of the null hypothesis regarding time
to completion at level p = .05. We conclude that this study has been unable to
show that KBSA technology has a statistically significant positive and
observable impact on software time-to-completion.

21

4. Discussion of Findings
4.1. Usability of the Concept Demonstration System

We collected quantitative data on usability via survey forms that each subject
completed after each hands-on exercise. Further, we could not help but form
subjective impressions as we observed the subjects using the Concept Demo.
In general, our subjective impression was that the subjects were able to use a
specific feature of the Concept Demo after a half-day of training®. For example,
they were able to load a knowledge-base, generate and manipulate several
diagrams depicting the hypertext node structure (or a class hierarchy, or an
E/R diagram), and navigate through these structures successfully. After two
days, they were generally able to navigate between graphical presentations fo
formal requirements and hypertext expressions of informal requirements,
and to perform typical development and maintenance tasks (via evolution
transformations).

While we did not formulate any hypotheses on Concept Demo usability, the
data presented in the previous section demonstrate that the Concept Demo’s
direct manipulation interfaces can, in general, be used with relative ease and
material success by subjects with as little training as two days.

Results: Usability

16 o Military
- a Commercial

144 o Student

12 4

10 4

8

6 -

4

2.

0. 1 m

Very Easy Somewhat Slightly Slightly Somewhat
Easy Easy Hard Hard

3 This is not true of the pilot subjects at AFIT. Based on the initial difficulty that they encountered, we
revised several elements of the training program and added an introductory “Working With the Concept
Demo Interface” hands-on exercise. This appeared to make a great deal of difference in the experience of
subsequent experimental subjects.

22

On the other hand, the subjects clearly felt that the Concept Demo could be
made far more usable. We encouraged them to give us feedback on how the
its usability could be improved, and they were not shy about doing so.
Appendix B presents a summary of their comments. Here, we note that the
bulk of the subjects’ comments can be organized into three major categories:
(1) Concept Demo implementation issues, such as response time and
performance; (2) KBSA functionality issues, such as suggestions for new
features; and (3) issues dealing with the design of the Concept Demo interface
itself.

4.2 KBSA Impact on Developer Productivity

The data presented in section 3 (above) also support the claim that KBSA
technology improves developer productivity. Over a series of 99 observations,
full KBSA technology supported the completion of the task in less time (than
baseline technology) in 96 cases. These differentials were often on the order of
300%. In other words, task performance supported by the baseline OO-CASE
technology required four times longer than that required when advanced
KBSA technology was available.

Using a nonparametric statistical technique, the Sign Test ([Siegel p. 75] and
described in detail in Appendix C), we can reject the null hypothesis at a level
of significance of .05, and thus accept the alternate hypothesis that KBSA
technology has a positive impact on developer productivity.

This conclusion must be qualified in several important dimensions. First, our
data was captured in an experimental setting, not in an actual development
context. To some extent, however, this qualification is itself counterbalanced
by the reports of field use of KBSA-like technology reported earlier in section
2 (above). Second, our claim of increased productivity pertains to the
development and maintenance of formal specifications, rather than to the
full life cycle of software development and maintenance. Again, the reader
must determine the degree to which he or she is willing to consider that this
qualification is countered by the field experience reports.

This positive impact was especially impressive when one considers the
higher-order evolution transformations,. such as Attribute-to-Relation and
Bundle. The typical observed impact of these two transformations was often
on the order of 200% (indicating a reduction of 3 to 1) to 400% (indicating a
time reduction of 5 to 1).

These “reduction factors” offer an alternative view of these results. Analysis
of the normalized data presented in section 3 (above) generates the following
reduction factors for specific full-KBSA transformations and for full-KBSA
technology overall.

23

o Baseline

m KBSA

NP5 AC2 UucC1 Average
Bundle -185% -169% -314% -220%
Attribute-Rel'n -192% -104% -191% -168%
Create-Inverse -125% -3% -43% -84%
Full-KBSA -166% -103% -168% -153%
TABLE 4.2-1

COMPARISON OF AVERAGE IMPACT BY SUBJECT GROUP
AND TRANSFORMATION TYPE

The values presented here are derivative from tables presented in earlier
sections. For example, the -185% average impact of the Bundle
transformation among the NPS subjects is derived from the data presented in
rows labeled “Bundle” in Tables 3.4.2.2-1 and 3.4.2.2-2. Similarly, the AC2
average values are dervied from the specific data in Table 3.4.2.2-3, and the
UC averages derived from the data presented in Tables 3.4.2.2-4 and 3.4.2.2-5.
Please note that, since the number of observations varied significantly
between subject groups (i.e., NPS, AC2, and UC), the values presented here in
the column labeled “Average” represent the average across the full set of
individual observations, not the average of the three subject-group averages
presented in this table itself. Thus, to derive the overall average impact of the
Bundle transformation (-220%), one has to refer to the “Bundle” rows in all of
the tables presented in section 3.4.2.2 above.

24

However, for several reasons, both of these views of the data probably
represent conservative estimates of the impact of KBSA technology. First, it
was fairly difficult to define the baseline capability, and we chose to be liberal
in doing so. That is, we consistently included functionality in the baseline
when we encountered differing opinions as to whether that functionality was
present in state-of-the-market OO-CASE technology today. Thus the baseline
that we tested against was a strong baseline. Second, we encountered certain
technical constraints on the degree to which we could disable certain KBSA
functionality in implementing the baseline version. Thus, short of building a
completely new implementation of the Concept Demo, which was clearly
outside the scope of this project, we were forced to compare the advanced
KBSA technology against a strong implementation of a strong baseline
functionality. Finally, our subjective experience leads us to subscribe to the
theory that KBSA technology is additive or cumulative beyond the degree to
which we could test. For example, our subjects made minimal use of the
capabilities of the Concept Demo’s Development History mechanism, since
we did not attempt to have them “simulate development errors” or to
simulate parallel development paths to be merged into a single, consistent
specification. We believe that the strong synergy that exists between those
full-KBSA technologies we tested and others we did not test will further
increase this initially observed impact.

The impact of the higher-order transformations has an important implication
for developers of future KBSA technology, such as the KBSA Advanced
Development Model (ADM). To provide effective support, they will need to
pay close attention to the specific development tasks they intend to support,
in order to design the appropriate set of evolution transformations. The set of
generic evolution transformations is only a set of potential building blocks —
analogous to an alphabet. But these building blocks can be flexibly combined
in many ways to form the really meaningful units, corresponding to words,
sentences, and paragraphs in language. The important question, however,
concerns the nature of those combinations — they must be appropriate to the
needs of the KBSA-supported developers. In our experimental setting, we had
the luxury of defining tasks that were appropriate to the pre-existing
advanced transformations (e.g., Bundle); in field use of the ADM and
subsequent KBSA technology, that will not be a viable option. So the needs
and methods of the users must be understood, and appropriate higher-order
transformations designed based on that understanding.

4.3. KBSA Impact on Software Quality
The actual data relating to the software quality impact of KBSA technology —

that is, to the internal consistency and completeness of the underlying formal
specification — are presented in section 3.4.2.3 (above).

25

Using a nonparametric statistical technique, the Sign Test [Si56, p. 75], we can
reject the null hypothesis at a level of significance of .05, and accept the
alternate hypothesis that KBSA technology has a positive impact on software
quality. An alternative view of these results is presented in the following
diagram.

0.95

o Baseline

0.9
m KBSA

0.85

0.8 -

nwuoz
o>

One potential qualification of this conclusion concerns its external validity:
that is, to what extent is the result observed in the experiment likely to be
manifest in real-worls software development? In other words, to what degree
does the internal consistency of a formal specification can act as an indicator
of the quality of a deliverable software application? We strongly believe that
(1) a more consistent formal specification enables more efficient and accurate
code generation and (2) a more consistent formal specification is a better
starting point for code generation. However, we recognize that the generation
of executable code from formal specifications is another major step in the
KBSA-supported software development process, and that the KBSA impact
on software quality of the final deliverable is suggested rather than directly
indicated by our experimental data.

Once again, the impact of KBSA technology may here be understated, due to
the consistency checking functionality enabled by the underlying formal

26

specifications. For example, this functionality would include the Concept
Demo’s Static Analysis and Resource Analysis capabilities. These were not
used in the experimental study, as their use involved either the (demo-level)
Agenda Mechanism or writing of formal specifications in ERSLa.

4.4. KBSA Impact on Time to Completion

The actual data relating to the development period impact of KBSA
technology — that is, to the time to completion for development of a formal
specification — are presented in section 3.4.2.3 (above).

As discussed in Appendix C, neither of two nonparametric statistical
techniques, the Sign Test [Si56 p. 75] and the Wilcoxon Matched-Pairs Signed-
Ranks Test [Si56, p. 83] enables us to reject the null hypothesis at a level of
significance of .05. Therefore, we conclude that this study has been unable to
demonstrate that KBSA technology has a statistically significant positive and
observable impact on software time-to-completion.

27

5. Conclusions and Lessons Learned
5.1 Conclusions

5.1.3. KBSE technology is providing value in industry use today. Companies
like Andersen Consulting , Boeing Computer Services, IBM/Canada,
Motorola, and AT&T Bell Labs are taking advantage of the potential of this
technology, and are presenting their results in public discussion.

5.1.2. KBSA technology demonstrates an experimentally observable positive
impact on software development productivity. This is consistent with the
observations of field use, especially the experiences reported by Andersen
Consulting.

5.1.3. KBSA technology demonstrates an experimentally observable positive
impact on software quality. This is consistent with the observations of field
use, especially the experiences reported at Motorola.

5.1.4. KBSA technology is usable in its current state. Our subjects, including
software development professionals, military personnel, and graduate
students, learned to use a powerful subset of the capabilities of the KBSA
Concept Demonstration System effectively within a two-day training period.

5.2 Lessons Learned

5.2.1. Software experimentation is hard, but it can be done. As other studies
have suggested, our experience emphasizes the need to control for different
individual skills and learning rates in the experimental design.

5.2.2. Higher-order evolution transformations, such as the Bundle and
Attribute-to-Relation transformations, provide biggest productivity impact,
but are perhaps most domain-specific. This implies the need to study the
specific needs of users as a basis for designing these transformations, at least
until we have established a set of generally applicable higher-order
transformations.

5.2.3. This study has highlighted the importance of usability aspects in the
design and implementation of KBSA technology. The suggestions made by
the experimental subjects regarding usability indicate that KBSA technology
has further to go in this dimension: KBSA is usable today, but it can be far
more usable in the future.

28

6. Bibliography

[AC92} Andersen Consulting. Software Test Description: Knowledge-Based
Software Assistant concept Demonstration System. CDRL A007,
Government Contract F30602-89-C-0160. September, 1992.

[Ar94] Arnold, J. “Toward Collaborative Software Processes.” (draft) position
paper for the 9th International Software Process Workshop (1994).

[BHI1] Buss, E., and J. Henshaw. “A Software Reverse Engineering
Experience.” IBM/Toronto technical report TR-74.065: September, 1991.

[BH92] Buss, E., and J. Henshaw. “Experiences in Program Understanding.”
IBM/Toronto technical report TR-74.105: July, 1992.

[BSL93] Burton, S., K. Swanson, and L. Leonard. “Quality and Knowledge in
Software Engineering.” Al Magazine: Winter 1993.

[De92a] M. DeBellis, K. Miriyala, and W. C. Sasso. “Demonstration
Description: The KBSA Concept Demonstration System” in W. Lewis
Johnson, ed., KBSE ‘92: Proceedings of the Seventh Knowledge-Based
Software Engineering Conference. McLean, VA: September 20-23, 1992.

[De92b] M. DeBellis, K. Miriyala, S. Bhat, W. C. Sasso, and O. Rambow. Final
Report: Knowledge-Based Software Assistant concept Demonstration
System. CDRL:A007, Government Contract F30602-89-C-0160. October,
1992.

[DoD91] Department of Defense. Software Technology Strategy (draft).
DDR&E: December, 1991.

[Gr83] C. Green, D. Luckham, R. Balzer, T. Cheatham, and C. Rich. Report on a
Knowledge-Based Software Assistant. RADC-TR-83-195 (August 1983).

[HTB93] Henshaw, J., J. Troster, and E. Buss. “Filtering for Quality.”
IBM/Toronto technical report TR-74.132: September, 1993.

[K092] Kotik, G., and L. Markosian. “Knowledge-Based Software
Reengineering Tools” in W. Lewis Johnson, ed., KBSE ‘92: Proceedings
of the Seventh Knowledge-Based Software Engineering Conference.
McLean, VA: September 20-23, 1992.

[Le89] Lee, A. “A Scientific Methodology for MIS Case Studies.” MIS
Quarterly, March 1989.

29

[Le92] Levenson, N. G. “High-Pressure Steam Engines and Computer
Software” in L. A. Clarke and C. Ghezzi, eds., Proceedings of the 14th
International Conference on Software Engineering: Melbourne,
Australia (May 11-15, 1992).

[M092a] Moseman, L. K., II. “View From the Secretariat: Metrics Are
Meaningful” in Crosstalk issue number 35 (August 1992), p. 12.

[Mo092b] Moseman, L. K., II. “Improving Software Quality Through
Measurement” in Crosstalk issue number 36 (September 1992), pp. 2-5.

[RL92] Rome Laboratory. KBSA Advanced Development Model (ADM). RFP
F30602-92-R-0039 (June, 1992).

[Sa90a] Sasso, W. C. “Empirical Study of Re-Engineering Behavior: Design
Recovery by Experienced Professionals.” Software Engineering: Tools,
Techniques, Practices 1(1): March 1990.

[Sa90b] Sasso, W. C. Four Dimensions of Project Management: Design,
Engagement, Administration, and Facilities. Andersen Consulting
Internal Report: October, 1990.

[Sa91] Sasso, W. C. Refine Users Study: Preliminary Summary of Findings.
Andersen Consulting Internal Report: May, 1991.

[Si56] Siegel, S. Nonparametric Statistics for the Behavioral Sciences. McGraw-
Hill. New York: 1956.

[TSL] Terveen, L., P. Selfridge, and M. D. Long. “’Living Design Memory’ —
Framework, Systems, Lessons Learned.” draft paper, currently under
review for publication.

[Tr92] Troster, J. “Assessing Design-Quality Metrics on Legacy Software.”
IBM/Toronto technical report TR-74.103: September, 1992.

[Vo93] Votta, L. “Comparing One Formal to One Informal Process
Description.” position paper for the 8th International Software Process
Workshop (1993). '

[We94] Weigert, T. Personal Communication. December, 1994.

Appendix A: Public Training Agenda

KBSA Concept Demonatration
Trainingand Data Collection Program Agenda

1. General introduction to KBSA (classroom)
Focus of the evaluation
Usability of transformations
Experiences with transformation-based development
Current status of KBSA
Brief history of KBSA
Concept Demo
Advanced Development Model
AC: relationship to other AC development tools
Explanation of the training and exercises
Artificial software development process
CD not completely functional, so scope of exercises is limited
Cooperative attitude requested (don’t overwrite objects)
Advantages of CD access
Completion of trainee experience survey

2. Lecture/discussion: CD User Interface (classroom)
CD user interface conventions
Baseline process model for class hierarchy definition
CD session manager/log

3. Hands-on session 1: warm-up
Using the CD interface
Browsing existing CD artifacts (e.g., hypertext)
Defining a class hierarchy (baseline version)
Starting /stopping the session log

4. Lecture/discussion: CD Process Model (classroom)
High-level model overview
Intermediate process model description: Domain Specification
Baseline process model for E/R manipulation
Baseline process model for traceability

5. Hands-on session 2: Basic specification development
Adding relations and attributes in an ER diagram
baseline attribute/relations transformations
Creating traceability links between objects and hypertext
baseline traceability transformations

Appendix A: Public Training Agenda

6. Hands-on session 3: base uability data collection
Defining a class hierarchy (as above in 3)
Adding relations and attributes in an ER diagram (as above in 5)
Creating traceability links between objects and hypertext (as in 5)
CD analysis features automate evaluation of the threshold criterion

7. Lecture/discussion 3: Building a domain specification
Using transformations to build a domain specification

8. Hands-on 4: Building a domain specification
Hands-on practice with building a domain specification

9. Hands-on 5: Usability data collection
Session log initiation
Building a domain specification
Save kb-module
Analysis of product and session log

10. Lecture/discussion 4: Maintaining an existing domain specification
Application of KBSA functionality for domain spec maintenance
Walkthrough of maintenance task

11. Hands-on 6: Maintaining an existing domain specification
Hands-on practice with maintenance task

12. Hands-on 7: Usability data collection
Session log initiation
Maintaining a domain specification
Save kb-module
Analysis of product and session log

13. Lecture/discussion 5: Adapting an existing domain specification
Application of KBSA functionality for adaptation
Walkthrough of adaptation task

14. Hands-on 8: Adapting an existing domain specification
Hands-on practice with adaptation task

15. Hands-on 9: Usaability data collection
Session log initiation
Adapting a domain specification
Save kb-module
Analysis of product and session log

| —

Appendix A: Public Training Agenda

13. Lecture/discussion 6: De-briefing
Questions and answers
Subjective feedback from trainees

14. Hands-on 10: Unstructured experimentation
An opportunity for hands-on CD experimentation (optional)

Appendix B: Subjects’ Usability Feedback

Subjects’ Usability Feedback

This report presents feedback from Concept Demo users who have participated
in the EE PRDA training and evaluations. This feedback has been screened, and
comments specifically related to the Concept Demo implementation have been
removed. 103 comments remained; they can be subjectively organized into six
major categories:

1. Better presentation of system status information (11 comments): AFIT-1,
AFIT-5, AFIT-8, AC1-6, NPS-15, AC2-1, AC2-13, AC2-32, UC-2, UC-17, and
UC-18.

2. Help finding, manipulating, and interpreting specific objects, mainly display-
level objects such as windows and icons (18 comments): AFIT-3, AFIT-4,
AFIT-9, AC1-1, AC1-10, AC1-13, NPS-4, NPS-6, NPS-9, AC2-7, AC2-9, AC2-
27, AC2-28, UC-5, UC-7, UC-8, and UC-19.

3. Discrepancies from accepted or familiar interface standards (16 comments):
AFIT-2, AC1-2, AC1-3, AC1-8, AC1-9, NPS-1, NPS-5, NPS-10, NPS-13, AC2-2,
AC2-3, AC2-8, AC2-12, AC2-20, AC2-22, and AC2-26.

4. More intelligent assistance for users (12 comments): AFIT-6, AC1-7, AC1-12,
NPS-14, NPS-23, AC2-6, AC2-10, AC2-11, AC2-17, UC-1, UC-6, and UC-20.

5. Difficulty of use or ease of use (27 comments): AC1-4, AC1-5, NPS-3, NPS-7,
NPS-8, NPS-11, NPS-16 through NPS-22, AC2-4, AC2-14, AC2-18, AC2-23,
Ac2-25, AC2-31, UC-10 through UC-16, and UC-21.

6. Other comments (19 comments), including response time issues (2 comments:

- AFIT-7, and UC-3); extensions to the existing Concept Demo functionality (3
comments: AFIT-11, AC2-21, and UC-4); understanding the Concept Demo’s
conceptual design or process model (4 comments: AC2-5, AC2-16, AC2-24,
and UC-9); compliments (6 comments: NPS-12, NPS-24 through NPS-26,
AC2-15, AC2-19; and preferences for more keyboard-driven (rather than
mouse-driven) interaction (4 comments: AFIT-10, NPS-2, AC2-29, and AC2-
30).

This categorization, while not perfect, suggests that users of KBSA technology
pay attention to (at least) the following five principles of human/computer
interaction:

1. Help me (the user) understand the current status of the KBSA system. I need to
know whether I should wait for the operation to complete, or whether I should
take some action because the system is in a state of malfunction. I especially need
to know when the system is waiting for me (e.g., to enter some data).

B-1

Appendix B: Subjects’ Usability Feedback

II. Design the interface itself to help me use it; use different icons, shapes, colors,

and naming conventions to help identify different types of objects (e.g., a formal
spec versus a hypertext node, or a user-creed link versus a system-created link).

Give me a mechanism that provides direct-access to an object if I know its name,
such as a “Find” facility in a word processor.

III. Use consistent, standard, and familiar diagramming and naming conventions;

don’t mix the entity /relation model with the object-oriented model, and use a
familiar representation of the object-oriented model, not one that is
unconventional and unique to the Concept Demo.

IV. The KBSA interface ought to be at least as intelligent as current commercial

interfaces: for example, it ought to disable and “gray out” inappropriate
evolution transformation selections (such as “Attribute to Relation” if the
selected object doesn’t currently have any user-defined attributes).

V. The KBSA interface ought to be at least as easy to use as current commercial

interfaces: for example, it ought to provide “cut and paste” and “drag and drop”
capabilities in support of the specification editing process.

The specific comments below are offered in the hope that they will inform the
design and implementation of the ADM user interface, especially those interface
- elements related to specification development using evolution transformations.

Comments from members of the AFIT session (7/19-20)

AFIT-1. Status window messages could be finer-grained: e.g., generating menu,
awaiting user’s menu selection, and menu aborted would all be more
informative than the CD’s standard task executing (even when awaiting user
menu selection).

AFIT-2. A “quit-CD” option (less brutal than killing the Refine process) would be
desirable.

AFIT-3. Provide a “direct access to object” capability; let me enter the object’s
name and have it displayed in a default manner, or provide a menu of display
options. -

AFIT-4. Allow a customizable user interface, so that each user can define
window display priorities (e.g., “I want the E/R window on top at the end of
every operation”).

AFIT-5. We appreciated the option of turning off the display of all kb-changes in
the output window.

B-2

‘——*

Appendix B: Subjects’ Usability Feedback

AFIT-6. Consider a MacIntosh-like menu capability that disables and grays out
operations when they cannot be performed. For example, disable/gray out
“ Attribute to Relation” for entities without any attributes currently defined.

AFIT-7. If response time is slow}, then consider adding a buffer into which a
stream of operations could be entered, and then executed at the system’s leisure.

AFIT-8. Where it is possible to generate more specific error messages (i.e., more
specific than “Task not completed”), it would be appreciated.

AFIT-9. A “Find window” or “List currently displayed windows” option would
be appreciated.2 One AFIT participant suggested that a multi-screen display
option be considered.

AFIT-10. Consider the use of key-commands (e.g., CTL-X to cut/delete), as an
alternative to cascading menu selections (primarily for power users).

AFIT-11. Consider implementing support for Extended E/R diagram capabilities.
Comments from members of the Andersen Consulting session (8/29-30)

AC1-1. The indication of the active window (green border) is pretty subtle; can it
be made more easily visible?

AC1-2. 1 found the naming conventions somewhat unconventional (e.g.,
“transformation” and “abort”).

AC1-3. Dialog window conventions are non-standard. For example, the dialog
window is not active unless the cursor is within the window frame. This is
different from the click and sustain convention used in PC GUI-based OSs.

AC1-4. I would like to be able to mark a hypertext string and then say “define a
class with this string as its name.” This would eliminate some typing errors, and
save a few interaction steps.

AC1-5.1 couldn’t find a “cut and paste” option that would enable me to move a
group of subclasses within the class hierarchy. I looked for one when I defined
several subclasses of class X, and then realized that I had intended to define them
as subclasses of class Y.

1AFIT was running the CD on Sparc2s. However, the Andersen subjects running on Sparc10s also
experienced slow response time, and often “got ahead of the CD interface.”

2The AFIT users tended to want to have six or more large windows open at a time, so they could
see all the different things that were happening. This led to stacks of windows, that they had to
sort through after each transformation.

B-3

Appendix B: Subjects’ Usability Feedback

AC1-6.I'd like to have more detail /better explanations in the error message
presented in the Status window.

AC1-7.1 think there should be a more dramatic sign to show the completion of
each operation so that users can’t initiate another operation prematurely, causing
system errors.

ACI1-8. The distinction between user-created relationships and system-
maintained links (e.g., “created-by” or “formalized-by”) should be evident in the
diagrams. For example, use a different types of arrow or a dashed line for system
maintained links.

AC1-9. Would suggest adoption of window and mouse movement conventions
based on Windows (or some other appropriate) standards.

AC1-10. Objects, classes, hypertext objects, etc. should be displayed using
different icons to facilitate recognition.

AC1-11. When reshaping a window, the icons in it should be re-displayed
proportionately without forcing the user to zoom in or out. Or else a combined
reshape/zoom command, since we always do them in sequence.

AC-12. When defining a new attribute, the range type should have a default
value, or else the operation should check to ensure that the definition has been

completely specified before “Do It” is enabled. Tab keys should be available to
move from field to field in data entry boxes with multiple fields.

AC1-13.I'd like to have a “find object” command to navigate large Semantic Net
Diagrams with lots of nodes and links displayed.

Comments from members of the Naval Postgraduate School session (10/20-21)

NPS-1. Commands were too “bulky” — I didn’t like the nested command
sequences required to do things like zooming.

NPS-2. Commands should be placed where a knowledgeable person could use
the keyboard (??).

NPS-3. I experienced some confusion about when to use mouse-left, mouse-
middle, or mouse-right.

NPS-4. It would be easier if the program didn’t lay new windows directly on top
of old windows.

NPS-5. Implement “cut and paste” for adding attributes and relations. It would
save the developer a great amount of time and reduce errors.

B-4

e

Appendix B: Subjects’ Usability Feedback

NPS-6. I confused the Hypertext Graph window and the Used-by Relations
window when searching for the Graph Classes function.

NPS-7. When entering multiple subclasses (separated by a space) an error in one
caused an error message (“name already exists”) but the only apparent method
to recover was to abort and re-key the entire list, which was inconvenient.

- NPS-8. Default options need to be more easily identified, understood, and
accessed.

NPS-9. Diagram layout includes crossing lines, which are difficult to read as
complexity increases.

NPS-10. Standard typing conventions (e.g., backspace) should function in the
standard way.

NPS-11. Overall an outstanding concept. DoD needs this kind of tool. It needs to
be “friendlier.”

NPS-12. The second exercise went quickly and was fairly easy. As a new user, |
felt fairly comfortable after the first [exercise].

NPS-13. The mouse buttons get éonfusing: left, middle, right? Windows appear
in a place decided by the system, not the last place I placed it. This is frustrating.
Class hierarchy screen doesn’t seem to fill up. Zooming is a bit unfriendly.

NPS-14. I couldn’t remember how to pop-up the ER diagram, and the CD doesn't
help me [remember].

NPS-15. The status window could be improved. It is not clear when the program
is executing a task when the message “task canceled” is in the window.

NPS-16. “Cut and paste” or “click and drag” capability from the hypertext to the
ER model would prevent a lot of re-keying. Is there a way to automate that and
have the ER diagrams updated directly from hypertext (i.e., in adding attribute
and relation definitions)?

NPS-17. “Click and drag” (or even “highlight and copy”) capability would be
nice. Relatively easy to use.

NPS-18. A list of options for text entry would be nice ... -

NPS-19. Reopening the add attribute window for each attribute is inefficient.

B-5

Appendix B: Subjects’ Usability Feedback

NPS-20. Retyping the attribute name in the add attribute window (vice being
able to copy it into the window) is inefficient.

NPS-21. Too much typing! Perhaps a list of options from the hypertext document
can be used to access a mouse-selectable set of operations on superclasses or
attributes on entities.

NPS-22. It would be great if you could “click and drag” attributes, etc.

NPS-23. It would help significantly if there was a “help” facility.

NPS-24. Really interesting software. It gets more understandable with practice.
NPS-25. Great program!

NPS-26. Overall this is an amazing product. With a better interface, including
function keys and a top menu bar, it could be easy to use. I look forward to the
ADM.

Comments from members of the Andersen Consulting session (10/24-25)

AC2-1.1 got ahead of myself [and the Concept Demo] in entering commands. I
found myself rarely looking at the Status Window. Maybe it would be useful to
highlight the Status Window when a task is being executed. Should /could there
be a mechanism to show how many tasks are pending (if more than one)?

AC2-2. Don’t use “abort” as the term for closing a menu; use “close” or “exit” or
“cancel.” Abort sounds like you are killing the application (i.e., Space Shuttle
Abort).

AC2-3. On menus, give some indication for those selections that will bring up
another menu; this tells the user what to expect navigation-wise if he makes the
selection. For example, use the menu selection <Open ...> rather than <Open> if
the selection of open will generate another menu.

AC2-4.1 am still unclear as to the functions of the three mouse keys. It is not
intuitive what functions lie under each mouse-key (1,m,r).

AC2-5. 1 had difficulty in understanding the differences between hypertext nodes
and their definitions and class definitions [for classes described in the hypertext
node]. Good discussion made these differences clearer.

AC2-6. In renaming an object (e.g., a subclass), it may be helpful to default to the
current spelling rather than typing the entire word again. Most spelling errors
are quite simple, a character or two. This could speed things up a bit.

B-6

Appendix B: Subjects’ Usability Feedback

AC2-7. As a user-selectable interface feature, when new subclasses are added, the
Graph Classes window could automatically zoom out to that all sub-classes can
be seen on the screen.

AC2-8. Menus are extremely cluttered and could be better organized and
partitioned.

AC2-9. It seemed unclear whether the links were actually made to the attributes
as they were not visible as they could not be viewed in the Semantic Net Model.
Otherwise the exercise was good, ...

AC2-10. ...except for having to constantly delete what is in [attribute-name] fields
[in the Add Attribute dialogue box].

AC2-11. Relation-range field should initialize to blanks when defining a relation.

AC2-12. Dialogue boxes in the Semantic Net Model are too small to hold text (or
the text is too large).

AC2-13. CD System needs [to display] “confirmation on deletion.

AC2-14. Tool needs to be simplified in its interface. There are too many different
commands and it’s not intuitive how to access them.

AC2-15. Showed how the extended features [full KBSA functionality] made the
work easier. Again the interface is intuitive, and the tasks, though repetitive,
remained interesting.

AC2-16. Again, the task was easily understandable, with some small problems on
" “bundling.”

AC2-17. The attribute to relation and bundle operations are quite easy to use. The
only point that may be important is that I tended to forget to put the target entity
[of attribute to relation] into the ER diagram, which wasted time.

AC2-18. Hint: for the most likely users of this tool, some of the nomenclature can
be more intuitive (rather than computer science jargon).

AC2--19. Overall the CD is a powerful tool, but whether or not its unique
functions can be applied to real-world issues remains the test.

AC2-20.Iwant to do “drop and drag” for hooking things together and sorting

out classes. Not menus. Prefer this as [it is] used in a lot of CASE tools rather
than menus.

B-7

Appendix B: Subjects’ Usability Feedback

AC2-21. [It would be] nice to have a tool box or GUI front end from which you
could select icons for classes, types of lines to show relations, etc.

AC2-22. Be sure to use standard OO terminology and conventions: otherwise
product will not be acceptable in the Object World.

AC2-23. It was not immediately apparent how we could get rid of an attribute.
After we saw how it works, it’s okay but the way it is done is still perceived as
cumbersome [?] and not intuitive.

AC2-24. Given the wide array of [possible ways of] doing certain operations, is
there a recommended method? Could you integrate [?] the various methods of
accomplishing the same operation?

AC2-25. Overall, I get the feeling that the CD model is more difficult than it
could be with regard to maintenance. Maintenance should be equivalent to or
easier than creating new objects in ease of use since it is probably done more than
creation.

AC2-26. Do not care for having to press return prior to using mouse to move to
the next data entry field.

AC2-27. Still have difficulty remembering from which model one can perform
which functions. Would be helpful if this were more consistent ... do not feel that,
due to this, this [tool] is terribly easy to master.

AC2-28. It would be nice to have different types of objects (e.g., hypertext versus
class definitions versus relation definitions) indicated in displays with different
types of display icons.

AC2-29. The interface is fairly intuitive, but it would be nice to not be so “mouse-
dependent” but be able to use the keyboard more.

AC2-30. Use hot keys, field tabs ...

AC2-31. The back-end implementation of the KB etc. should be hidden from the
designer/programmer. OO has a huge learning curve and the terminology [e.g.,
menu selections, window titles] used should reflect the vocabulary of the Object
World, not the KB world. KB objects do not always map to system/C++ objects ...
why make me aware of KB objects that don’t map to my business models/object
models? Use OO terminology /vocabulary in the presentation layers. Use the OT
paradigm, not the KB one.

AC2-32. When adding a new attribute in the Semantic Net Mode], if the attribute-
domain is incorrect the status window displays “error occurred during task ...

B-8

—

Appendix B: Subjects’ Usability Feedback

continue.” To the user, the root of the error is not mentioned, and thus it may be
unclear exactly what is wrong.
Comments from the University of Cincinnati session (12/21-22)

UC-1. Should have warned us that an object with that name already exists when
we rename another object with a name that is already taken.

UC-2. Pointer icon should change to a stopwatch when CD is executing.

UC-3. There must be a way to improve response time (like keeping the E/R
diagram uncluttered).3

UC-4. Add functionality to support user-defined evolution transformations.
UC-5. Too many pop-up windows to follow.

UC-6. Like it better when a name is not supplied in the define attribute window.
UC-7. The diagrams should auto-zoom.

UC-8. Mouse-left always brings a window forward when one might want to keep
it in the background :-).

UC-9. The Requirements Traceability Diagram doesn’t automatically update (like
the Semantic Net Model diagram does) making the former less useful.

UC-10. Provide the ability to remove all of a particular kind of link from the
current display window (and to keep it removed).

UC-11. Provide the ability to define multiple attributes at once (analogous to the
“Add Subclass” function in the Class Hierarchy diagram).

UC-12. Provide the ability to clear links and keep them cleared after new
attributes are added.

UC-13. Eliminate necessity of hitting returp-key in data entry boxes.

UC-14. Currently active window is always pulled forward, even when you don’t
want it to be (forward).

3 The University of Cincinnati subjects were running the Concept Demo on Sparc Classics with
small amounts of memory and sub-minimal swap space allocations. Performance was painfully
slow there.

B-9

Appendix B: Subjects’ Usability Feedback

UC-15. Ability to move a group of subclasses to a new superclass would be
helpful.

UC-16. Cut and paste functi‘onality (e.g., from hypertext to graphs) would be
helpful.

UC-17. You'd better give more (descriptive) error messages because users may
not understand the underlying data model precisely.

UC-18. Need more informative error reporting.

UC-19. The way that diagrams automatically reset their position (after it has been
manually set only a few moments before) is annoying.

UC-20. When defining a new relation that has the same name as an existing
relation, the Concept Demo should give a warning.

UC-21. When selecting a range parameter with the mouse, the desired parameter

may not be visible. If that is the case, allow the user to click on “nothing” and
interpret that as a request for the Concept Demo to bring up a data entry box.

B-10

e

Appendix C: Description of the Statistical Tests

DESCRIPTION OF THE STATISTICAL TESTS

C-1. The Sign Test

The sign test assumes that we have a set of related samples, and that we can
determine the direction of the difference between treatments for each sample.
Our data fulfills that criterion in that we have the timestamped session-log
measure of how long it took to perform a given task working with the full set
of KBSA technology, versus how long it took to perform that task with the
baseline technology.

If there is really no difference between the technologies, as stated in the null
hypothesis, we would expect these differences to be distributed in random
fashion. We would anticipate that the baseline times would be greater than
the full-KBSA times in about half the cases, and vice versa in the other half.
In probabilistic terms,

P(Baseline > Full-KBSA) = P(Full-KBSA > Baseline) = .5

In other words, the probability that the baseline time will be greater than the
full-KBSA time is equal to the probability of the inverse; both have
probability equal to .5. According to the null hypothesis, this should be true.
But if we observe a consistent pattern of time differences (e.g., that the
baseline times are consistently larger than the full-KBSA times), we will have
to reject the null hypothesis. As described in Siegel ([Si56], p. 75), these are the
steps in the application of the Sign Test:

A. Determine the sign of the difference between the members of each
pair.

B. By counting the number of pairs, determine the value of N (equal to
the number of pairs where the difference is non-zero).

C. The method for determining the probability associated under
of a value as extreme as the observed value of x depends on the size of
N:

a. If N is 25 or smaller, a table is used to determine the
probability of observing x in a sample of size N under H,.

b. If N is larger than 25, z is computed according to the following
formula:

z = ((x £.5) - .5* N)/(5 *(N**5))

C1

Appendix C: Description of the Statistical Tests

Reference to another table enables the determination of the probability
of observing that value of z under H,.

H1 Data Pairs Value of N Threshold (x) Value of x Conclusion

NPS T7/T5 30 n/a 30 Reject H,
NPS T6/P7 20 15 20 Reject H,
AC2T6/P7 22 16 20 Reject H,
UCT5/T7 17 13 16 Reject H,
UC Té/P7 10 9 10 Reject H,

H2 Data Sets Value of N Threshold (x) Value of x
Combined
NPS/ AC2 8 8 8 Reject H,

H3 Data Sets Value of N Threshold (x) Value of x

Combined

NPS/AC2 8 8 6 Cannot
Reject H,

C-2. The Wilcoxon Matched-Pairs Signed-Ranks Test

The Sign Test considers the direction of the difference between pairs of related
data. If the size or magnitude of the difference can be considered, a more
powerful test can be employed. The Wilcoxon Matched-Pairs Signed-Ranks
Test weights the relative importance of test cases, to give more weight to
those pairs exhibiting a large difference between the two conditions. In the
context of this study, this test will emphasize cases where a large difference in
the task performance time is observed, regardless of the direction of that
difference. Because of the small number of observations available for the H3
data set, we will apply this test to them. As described by Siegel (1956, p. 83), the
test is performed in this manner:

A. For each matched pair, determine the signed differenced; between
the two scores.

B. Rank these d; without respect to sign. With tied values ofd, assign
the average of the tied ranks.

C. Assign to each rank the sign (+ or -) which it represents.

D. Determine T = the smaller of the sums of the like-signed ranks.

EEEEEEE—

Appendix C: Description of the Statistical Tests
E. By counting, determine N = the total number of d; having a sign.
F. The procedure for determining the significance of the observed
value of T depends on the size of N: either reference to a table or
computation and reference to a table is required.
H3 Data Sets ~ Value of N Threshold of Rank Total
Rank Total
Combined
NPS/AC2 8 4 7 Cannot
’ Reject H,
¢U.S. GOVERNMENT PRINTING OFFICE: 1997-509-127-61021
C-3

MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence,
reliability science, electro-magnetic technology, photonics, signal
processing, and computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

