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0. Statement of the Problem 
In recent years, novel optical data storage technologies have shown significant progress and 

are soon expected to enter the commercial product stage. Such promising technologies include plane 
and volume holograms, two-photon three-dimensional memories, and spectral hole-burning stor- 
age. With the demonstration of high volumetric capacity and the potential for very high data rates, 
parallel optical memories can offer solutions to the secondary storage requirements of many input/ 
output intensive computer applications, one of which is the management of very large databases. 
Most of these emerging technologies can store and retrieve data in the form of two-dimensional bit 
arrays or pages and thus, we are going to refer to them as page-oriented memories (POMs). This 
type of data access is radically different from the memory output format of conventional storage de- 
vices such as magnetic or optical disks and magnetic or optical tape. Over the next five years, it is 
anticipated that data rates in the range of 50 to 100 MB/sec will be required for high performance 
systems. Bit-serial output is generated by single disk drives, while several bits (one word) at a time 
can be read by storage devices with multiple heads and/or ports. The optical tape drive developed 
by CPvEO is one example of memory systems in the second category. In order to ensure bit error 
rates (BER) lower than 10-12 for binary data, commercial storage devices employ a variety of data 
encoding techniques which improve the raw bit error rates by several orders of magnitude. Error 
detection and correction is performed on-the-fly without slowing the data rate to the host. 

To take full advantage of the high output rate that POMs can offer, any bottleneck between the 
memory and the host must be eliminated. Traditional error control methods have been designed to 
look at only a few bits at a time and they would be inefficient and slow for memories that can retrieve 
pages as large as 106 bits. Few measurements have been done to determine the raw BER in 3D opti- 
cal memories and they report it in the range of 10-3 - 10-6. Though sufficient for images, such error 
rates are totally unacceptable for alphanumeric data. New encoding schemes are required to allow 
for fast, efficient, and parallel error control. The ideal scheme should be able to receive one page 
from the memory, perform the error control in a single step, and pass the corrected array (data bits 
only) to the host computer in parallel. 

1. Objectives and Major Tasks 
The main objective of this effort is to investigate the error control process during the data re- 

trieval phase in optical memories that can generate a two-dimensional parallel output. Specific ob- 
jectives include:  a) the identification and classification of types of errors during optical readout, 
b) development and evaluation of encoding schemes for efficient error detection and correction, and 
c) investigation of optical/optoelectronic implementation of the error control process. 

The major tasks as listed in the Statement Of Work (Sections 4.1.1-4.1.9) were as follows: 
1.1 Classification of types of errors in page oriented memories (POMs), 
1.2 Development of a set of metrics for evaluation of error control schemes for POMs, 
1.3 Development of a software package for simulation and evaluation of the error control 

process, 
1.4 Evaluation of existing array coding schemes for use in page oriented memories, 
1.5 Development of encoding schemes for page oriented memories, 
1.6 Investigation of optoelectronic techniques for parallel implementation of error detection and 
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correction in POMs, 
1.7 Continuous determination of the status of the effort through regular progress reports, 
1.8 Final report, 
1.9 Oral presentations at such times and places as designated by the Rome Laboratory personnel. 

Tasks 1.1,1.2,1.3, and 1.7-1.9 were to be 100% complete by the end of this project. Research 
leading to the objectives associated with tasks 1.4-1.6 was to begin during this research period but 
was expected to continue for another two years with additional funding, if available. 

2. Period Covered 
The research covered in this report was performed at Colorado State University from May 10, 

1995 to September 30, 1996. 

3. Personnel 
The research was performed by the PI, Dr. Pericles A. Mitkas, and his team that included Post 

Doctoral Fellow, Dr. George Betzos, and Graduate Research Assistants (GRAs), John Hutton, Mi- 
chael Porter, and Maureen Schaffer. Graduate student Umesh Mehta also contributed to this project. 
Data from our volume holographic memory system was provided by GRA Keith Richling. GRA 
Alan Simone provided some image processing tools that were used to develop certain data recovery 
procedures in the simulator. 

4. Accomplishments 
We embarked on a systematic study of the error detection and correction process for parallel 

optical memories with two-dimensional output and established the framework that will enable the 
development and evaluation of appropriate encoding/decoding techniques. During the course of this 
effort, we assumed a simple generic model of a POM that can output a page of strictly binary data 
encoded in intensity or amplitude. Later, this model may be customized to better approximate the 
conditions for different types of memories and different types of data. We have already performed 
a more detailed study of the volume holographic memory technology. 

In the following sections we describe our technical accomplishments with respect to the major 
tasks outlined in Section 1. Before we proceed, we must mention two additional tasks that were not 
listed in the original Statement Of Work: 

a) The first Workshop on Data Encoding for Page-oriented Optical Memories (DEPOM'96) 
was organized by the PI and his research team and held in Phoenix, AZ, March 27-28, 1996. The 
Workshop was sponsored by the Rome Laboratory, the Air Force Office of Scientific Research and 
Colorado State University. The purpose of this Workshop was to bring together researchers who 
are experts and/or have an interest in the following areas: Page-oriented optical memory (POM) sys- 
tems; Array codes for error control in POMs; Error generating processes in POMs; Channel charac- 
terization and modelling; Data encoding schemes for POMs; Hardware schemes for parallel error 
control and decoding in POMs. DEPOM'96 was attended by 53 people representing 14 Universi- 
ties, 10 companies, and 3 Government Agencies. The Workshop Proceedings will soon be published 
in a volume. 

b) Every effort was made to obtain raw data from the output of various POM systems that are 
under development at several research institutions in the country. We were able to get data from 
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Demetri Psaltis' group at Caltech and used them in our simulator for testing and calibrating our data 
recovery techniques. 

4.1   Classification of types of errors in page-oriented optical memories 

We performed an exhaustive review of the literature which yielded a large number of publica- 
tions. The most useful ones are listed in the Bibliography Section at the end of this report. Our inves- 
tigation yielded a large number of possible error sources that were classified as in Table 1. For most 
of these errors, mathematical models were developed or identified in the literature and were pro- 
grammed into the simulator. 

Table 1. Classification of Error Sources in POMs 

Errors due to the Nature of Data 

1. Data dependent non-uniformity 

2. Inter-symbol Interference 

Errors in the Input Process 

3. SLM contrast ratio 
4. SLM pixel crosstalk 
5. Fixed pattern on the SLM, (i.e., due to defective pixels) 
6. Gaussian beam profile 

Errors in the System 

7. Alignment 
8. Aberrations of the optical system 
9. Optical defocusing 

10. Dust 
11. Magnification 

12. Light scattering and reflection 

Errors due to the Recording Material 

13. Diffraction efficiency of the hologram 

14. Diffraction effects 
15. Recording media defects 
16. Interpixel crosstalk or intersymbol interference 
17. Edge blurring. (High frequency cut-off due to crystal size) 
18. Interpage crosstalk (Fourier Hologram) 
19. Fanning noise 

Errors in the Output Process 

20. CCD reset noise 

21. CCD preamp noise 

22. CCD integration time 



23.   Fixed pattern on the CCD (i.e., due to defective pixels) 

4.2  Development of a set of metrics for evaluation of error control codes for POMs 

The table below shows the set of parameters that we have selected to evaluate array codes. 

Length of code: n 
Number of information bits: k 

Rate: n 
Coding overhead: n-k   . 

Coding gain: g = 101og10-|^    SNR : uncoded, SNR' : coded 

Maximum number of correctable errors: d 
Maximum number of detectable errors: t 

Types of errors that can be corrected: (random, burst, etc.) 
Coding/decoding delay: Tc,Td 

Hardware complexity: H (i.e., number of gates) 
Interconnection complexity: / (i.e. number and topology of interconnects) 

Coding/decoding algorithm complexity: 0() 
Parallel implementation possibility: yes/no; if yes, degree of parallelism 
Multiple page readout requirement: yes/no; if yes, how many 

Corrected bit error rate: Pd, as a function of the raw 
bit error rate, Pe, of the system 

r x [    logioO] 
h txTdXHd 

The majority of these parameters can be represented in a single figure of merit (FOM) for the 
objective comparison of the array codes we evaluate, especially in the case of parallel implementa- 
tions of these codes: 

FOM = 

In this expression, r is the code rate, CBER and RBER are the corrected and raw bit error rates, re- 
spectively, Td is the time delay (in gate delays or clock cycles) for decoding, Hj is the hardware com- 
plexity of the decoder in number of gates or equivalent, and /j is the interconnection complexity of 
the decoder in terms of the total length of connections between bit cells in a parallel implementation. 
The higher this figure of merit, the "better" the code. Note that the quantities in the numerator delin- 
eate the efficiency (code overhead, correctability) of the code, while the denominator measures the 
decoding hardware efficiency. 

4.3  Simulator development 

A software package was developed for the simulation and evaluation of page-oriented optical 
memory systems. The package is flexible enough and can be adapted to many different technolo- 
gies. Any mathematical or analytical model for a storage medium and/or optical system can be pro- 
grammed and added to the existing routines as well as any error control code. It can also be pro- 
grammed to use any data recovery scheme that the user wishes to try on their data. 
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So far, the simulator has been used mainly to simulate a volume holographic memory system, 
since the raw data that were available to us came from our own and Caltech's holographic memories. 
In the following subsections we outline the functionality and the capabilities of the simulator and 
provide some representative examples. 

The simulator is based on an image processing program called Khoros developed at the Univer- 
sity of New Mexico. Khoros is a collection of image processing routines linked together by a visual 
user interface called Cantata, which allows users to treat routines as blocks. Each block can receive 
a two-dimensional input, perform an operation to the data, and generate an output that can be di- 
rected to another block. Blocks can contain many other blocks at different levels of nesting and can 
be arranged in any form of a directed graph. Khoros users can create their own routines and incorpo- 
rate them into the visual interface. 

4.3.1    Simulator - General overview 

The simulator is developed within the Khoros system and can be executed in the Cantata's visu- 
al programing environment. The program can be described as a directed graph in which the nodes 
are operators or routines (functions) and the links between the nodes represent paths through which 
data can be transferred from one node to another. The visual program and other objects associated 
with it, such as variables, make up a workspace which can be loaded into Cantata's interactive execu- 
tion environment as the main workspace and can be executed as a whole or in steps. 

The main components of the simulator are its nodes. These can be either simple, that is, a single 
operator or function, or collections of these into a procedure. The operators are control flow 
constructs in the language, such as loops or conditionals, and the functions or routines are complete 
programs (usually written in C) developed under the Khoros system or provided by it. These rou- 
tines can be found under certain Toolboxes and most of them perform like & filter. They read input 
data (e.g. in this case an array of bits or floating point numbers) and they produce output data that 
are the result of applying the algorithm the routine implements to the input data. For example, an 
fft routine would read an array of floating point numbers from its input and produce an array of com- 
plex numbers in its output that represent the discrete Fourier transform of the input data. 

Figure 1 shows the top level visual program that implements the simulator. It is represented 
by five procedures: Start, Data Encoding, Error Generation, ED/C Mechanism, and 
Stop. These are connected by data paths such that data are passed on from the procedure Start 
to the procedure Data Encoding, from that to Error Generation, and so on, until the data reach 
the procedure Stop. There is also a connection between the procedures Start and Stop so that 
the input data can be compared with the output data. Therefore, input data generated in the procedure 
start are encoded with the error detection and correction algorithm used in the procedure Data 
Encoding. Then the encoded data are subjected to various error processes as specified by the proce- 
dure Error Generation and are passed on for decoding and error correction to the procedure 
ED/C Mechanism. The corrected data along with the input data are finally passed on to the Stop 
procedure where statistics are gathered and the errors that were not corrected are displayed. 

Before we proceed with describing each top level procedure separately, we should indicate that 
each procedure can be modified by the user so that a specific configuration that can be implemented 
by the provided software can be tested and results can be gathered. Therefore the procedures we 

-6- 



will be describing serve primarily as examples or stubs. In addition, as more error generating pro- 
cesses, coding and decoding algorithms and other miscellaneous pieces of software are implement- 
ed, the simulator will be continue to evolve. Also, if the behavior of the simulated system needs to 
be studied over several pages of input data, the whole top level program can be embedded in a loop 
construct provided by the visual programming language. 

The procedure start generates an array of bit data which is passed on to the following proce- 
dure to serve as the array of information bits. The size of the array of data can be specified by appro- 
priately setting the parameters of the routine that generates the data, which subsequently sets the pro- 
gram variables Pagewidth and Pageheight, which are used by subsequent routines. There are 
other ways of generating input data. For example, data that reside in a system file can be used 
instead, either directly or after being reformatted by appropriate khoros routines. 

The array of bits generated by the procedure Start is then passed on for encoding to the proce- 
dure Data Encoding. In this procedure, the appropriate encoding algorithm for the system under 
study is used to produce an array of information and parity bits that will be stored in an optical 
memory and will be subjected to various error processes. The user can select from the Toolbox EC 
Coding/Decoding encoding routines. It should be noted that the size of the augmented array of bits 
is again passed on to program variables. 

The output of the previous procedure, an array of information and parity bits, is then processed 
by the Error Generation procedure (Figure 2). The bits are converted to floating point values, 
since the optical memory system is primarily analog and various transforms are applied to the array 
of data in sequence to simulate various error processes. The simulator, at this stage, does not attempt 
to simulate the devices and the processes that implement the optical memory, but rather the effects 
of various error processes on the data values. For each error process we use an adequately precise 
theoretical model to calculate the output data values from the input. At the end of the pipeline, the 
floating point data values are converted back to bits. A thresholding function can be used to accom- 
plish this or any other appropriate procedure that has been implemented. The bits will be passed 
on to the next procedure for decoding. The Error Generation procedure can be completely 
specified by the user, so that an appropriate model of an optical memory system can be simulated. 
The user can choose routines we have implemented from the Error Generation Toolbox or from stan- 
dard Khoros toolboxes to specify a pipeline that would best match the optical memory system that 
is to be simulated. Thus our simulator is generic enough and flexible to allow the study of a variety 
of optical memory systems. 

After the array of bits has been subjected to the error processes that simulate the optical memory 
system, it is processed by the decoding algorithm. This is done in the ED/C Mechanism proce- 
dure. The user can select from the Toolbox EC Coding/Decoding a decoding routine that corre- 
sponds to the encoding routine. The parity bits are checked and if errors that can be corrected are 
detected, they are corrected. Errors that are detected but cannot be corrected are reported. At this 
point statistics about the error rate of the system can be gathered. These and additional statistics can 
also be gathered at the following and last procedure Stop. It should be noted that the user is respon- 
sible for taking care that the coding and decoding algorithms correspond. 
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Finally there is the procedure stop. In this procedure statistics can be gathered, errors that 
were not corrected can be identified and the output of the optical memory and/or the errors in the 
data can be displayed. Thus in this and/or the previous procedure the RBER and the CBER can be 
computed from the input data to the system and the output data. 

4.3.2 Example use of simulator 
The example in Figure 3 illustrates the simulator's use in evaluating the performance of a code 

for correcting clustered errors. Parameters are entered that describe the memory system and nature 
of data. In this case, a data page of size lOOx 100 bits has been defined, shown in Figure 3a. A 
multiblock row and column coded data page is generated by the Data Encoding block and is 
shown in Figure 3b. The output of the Error Generation procedure is shown in Figure 3c, 
which depicts the corrupted coded data with the prominent errors sources being (in this example) 
the Gaussian beam profile and a translational misalignment of the detector. A hard decision at this 
time results in the distribution of errors shown in Figure 3d. Figure 3e depicts the results after per- 
forming the multiblock row and column decoding at the ED/C Mechanism block. The remaining 
errors in the corners and center of the page shown in Figure 3f represent clusters that have exceeded 
the correction capability of the code. 

4.3.3 Error generation and error code blocks 
Error generation is the heart of the simulation process. After the data have been encoded, the 

resulting image is subjected to corruption as close to the actual corruption that would occur in an 
optical memory system as possible. 

Periscope 
7? 

Beam 
Splitteri 

Input Device 

IPhotorefractive! 
'.       Crystal 

CCD 

Output Device 

Figure 4. Volume holographic memory system. 

The error generation block has grown during the course of this project, both in the internal com- 
ponents and the implementation considerations. We have created eight error blocks to describe com- 
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mon system errors. While these errors are currently tuned to the specifics of volume holographic 
memories, the simulator is not limited to a particular medium or technology. Any page-oriented 
memory system whose errors can be properly characterized can be coded into the simulator. 

While the error generation block began as a simple error application block, our work has shown 
that this is the unit that must be optimized to achieve a reliable simulation of real data. Initially, errors 
were applied one at a time in a serial fashion. While this allowed us to do many things with theoreti- 
cal error patterns, it did not produce good optimization results. In the future we will move to a com- 
bination of serial and parallel application of errors. Since this model is more complicated than the 
serial model, the optimization will be done using external routines. 

Each of the error code blocks that have been constructed will be briefly described below. The 
current groupings of errors are presented in Figure 4 which depicts a volume holographic memory 
system: laser, input device, photorefractive crystal, output device. The four blocks are considered 
serial error processes while the errors inside each block are applied in parallel. 

4.3.3.1 Laser source - Gaussian beam profile 
The majority of errors from the laser source is dominated by the beam profile. We have coded 

a gaussian intensity profile whose parameters are the x and y variance and the x and y beam center. 
This covers the largest variety of possible sources. 

4.3.3.2 Input device 
Spatial light modulators (SLMs) continue to be the most popular input devices for optical me- 

mories. They allow large pages to be composed at one step but they tend to introduce several types 
of errors into the memory system. The most significant error, contrast ratio, is discussed in the next 
section. Another error source, multiple diffraction orders, can cause some power attenuation and 
the subsequent spatial filtering of high order terms gives rise to pixel blurring due to high frequency 
cut-off. 

4.3.3.2.1 Contrast ratio 
When the laser beam passes through the SLM, its amplitude and phase profile are modified. 

Amplitude modulation SLMs operate by turning some pixels 'on' and some pixels 'off'. Since nei- 
ther the transmission nor the blockage of light is perfect, the output of the SLM is characterized by 
a contrast ratio. A contrast ratio of 30, for example, means that an 'on' pixel is 30 times brighter 
that an 'off pixel. Very low contrast ratio means that all pixels are close to 50% of the incident light 
power. 

4.3.3.3 Photorefractive crystal 
Even though the properties of photorefractive crystals have been studied for many years, fur- 

ther investigation on the material properties is required. Errors which are relatively well understood 
at present include the diffraction efficiency of the stored holographic grating, speckle scattering at 
the crystal surface, interpixel crosstalk, edge effects or high frequency cut-off due to finite crystal 
size (blurring), and interpage crosstalk. This is arguably the most complex and most crucial segment 
of the memory system. 

4.3.3.3.1 Diffraction efficiency/attenuation 
Diffraction occurs when the recorded holographic grating reconstructs the initial data beam. 

As more pages are recorded in the medium, the percentage of diffracted light drops to relatively low 
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levels. Most systems work in the 10-4 and lower range. This attenuation of the input reduces the 
noise margins due to the difficulty in detecting very low powers. We represent this effect as a 
constant attenuation coefficient. 

Data Reference Reference 

Diffracted Data 
Beam 

Holographic Grating 
Stored 

Holographic Grating 
Recalled 

Figure 5. Diffraction effects. 

4.3.3.3.2 Speckle scattering 

As both the image and reference beams propagate through the optical system, they will pass 
through and be reflected by several surfaces. Rough surfaces with features in the order of a wave- 
length (e.g. crystal faces, SLM, etc.), will distort the wavefront and will cause further scattering with 
varying degrees of phase lag. Propagation of this light results in the addition of these various scat- 
tered components with varying delays. Interference of these dephased but coherent wavelets results 
in the granular pattern known as speckle. This is a multiplicative noise described by [2]: 

hot(x,y) = a * IsiJx,y) * Is(x,y) sig\ (1) 

where, 

Hot 

hig 

Is 
a 

total intensity distribution 
signal distribution 
effects from imperfect surface 
proportionality constant 

The simulator handles speckle noise by generating random dephased amplitude spread func- 
tions that are determined by the specification of a height function. A random process, which requires 
a mean and variance as input, is used to specify the height function, characterizing the rough sur- 
faces. 

4.3.3.3.3 Interpage cross-talk 

In volume holographic memories a read-out image contains contributions from all pages that 
have been stored in addition to the page being referenced. When dealing with an angularly multi- 
plexed scheme, the angular dependence of the diffracted wave amplitude follows a sine function. 
The reference for that hologram will be Bragg matched to the sine's main lobe, but at the same time 
it will impinge upon the side lobes of other holograms which are stored. These Bragg mismatched 
contributions are responsible for the interpage crosstalk. 

The amount of interpage crosstalk is related to the number of holograms stored, size of the re- 
cording medium, dimension of output plane, focal length of the lenses, and wavelength of light. The 

-13- 



noise to signal ratio (NSR) can be approximated by the following equation where the NSR is defined 
in a straightforward sense with the value being the direct ratio between noise and signal [4]: 

noise 
signal 

M 

I 

where, 

y, 

sine 

m, 

M: 
m 

t 

yi: 

X: 

d: 

L y,n~yi I ]_h ym + yi 

X     f f       2/ 

,ym = m 
u 

t sin 6 

(2) 

(3) 

number of holograms, (N- 1) / 2 
G     [-M,-(M-1), ..,0, .., (M-1),M] 
thickness of medium along z direction 
focal length of lenses in the system 
position on reference plane; y,- : page referenced, 
ym : pages not referenced 

wavelength of light 
linear dimension of output plane, equal to 2y2max 

The simulator adds noise to a signal by calculating the NSR from equation (2) on a pixel per 
pixel basis and generates the error distribution. The input required for this error consists of a number 
indicating how many neighborhood pages to consider along with the various system parameters. 

4.3.3.3.4 Interpixel Cross-talk 

Interpixel cross-talk is due to the blurring caused by the finite size of the recording medium. 
Each square pixel of the data page becomes a convolution of a square and two sine functions in the 
field that is received by the detector, shown in the following equation: 

U p(0,0) = A rect\^)dx X rect\ — \dy (4) 

The energy of the signal that falls outside of the main lobe is noise, and by nature of the sine functions 
its main contributions lie in the same row or column as the pixel being considered. The transverse 
size of the crystal (D), wavelength of light (X), and focal length of lenses in the system (/) influence 
the degree of stretch in the sine functions. A SNR can be computed for a single pixel by [6]: 

s» - !i^ S : pixel separation (5) 
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The simulator takes into account that the SNR can be isolated into a single calculation for an 
individual pixel. The interpixel crosstalk procedure is shown in Figure 6. The noise distribution 
around a pixel is generated by the approximation of Equation (4). From this, a region of influence 
is extracted by removing the areas where the contributions are negligible. The sine-like plot is from 
a scan line sample showing how a pixel's energy is distributed amongst nearby pixels that lie along 
the same row. The noise distribution is also shown with a grid identifying the components that fall 
within each pixel location. The values inside each pixel region are averaged, and then the noise lev- 
els are adjusted to meet the SNR criterion of Equation (5). The resultant distribution is convolved 
with the data page in order to generate the intrapage interpixel cross-talk error. The original data 
page and resultant corrupted data page are also shown in Figure 6. A histogram accompanies the 
corrupted data page image to show the resultant spreading of the dark and light pixel distributions. 

4.3.3.4    Output device 

The output device is where the recreated page of data is detected and converted to electronic 
form. Current systems utilize charge coupled devices (CCDs) to sample the light level and output 
the page with no additional processing. Any detection or correction would have to be implemented 
in hardware during the transfer to an electronic host computer or in software on the computer itself. 

Smart photodetector arrays (SPAs) are a concept we have proposed as a way to detect the light 
and process the data before they are transferred to the host computer. By integrating a photodetector 
and some logic, we can perform simple error correction schemes in parallel before the data are 
passed to the electronic computer. This also helps increase the bandwidth of our system because 
parity bits do not need to be transferred. 

There are several types of errors that occur in optical systems in general. Of these misalign- 
ment, rotation, defocusing errors, and electronic noise are most significant at the detector array even 
though these problems could be a factor in other parts of the system. In general, we assume a rela- 
tively well aligned system. This will be true in all practical optical memory systems. 

4.3.3.4.1 Translational misalignment 

Misalignment is a system consideration for all optical systems and can cause incorrect imaging 
onto the detector array. We have studied partial pixel misalignment due to translations in both the 
x and y directions. As expected, large misalignment (50% of the pixel width or more) will we unac- 
ceptable. Smaller degrees of misalignment when coupled with other errors can produce some prob- 
lems. 

4.3.3.4.2 Rotational misalignment 

Rotation is another kind of misalignment problem. Where a translation affects all pixels equal- 
ly, rotation affects pixels further from the rotational axis more severely. Small angles can produce 
significant problems as the size of the page increases. 

4.3.3.4.3 Defocusing (blurring) 

Blurring comes from two sources: poor focusing and high frequency cut-off. When optical 
components, especially in a 4-f system required to do Fourier transforms, are not accurately posi- 
tioned along the optical axis, small image distortions can be observed. This manifests as a decrease 
in the resolution of the optical system. In addition to the focal plane alignment, each optical compo- 
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nent, due to its finite size, can block high frequency components of the optical signal. This is similar 
to low pass filtering and may lead to a reduction of contrast. Both effects result to a blurred image. 

4.3.3.4.4 Electronic noises 

The dominant noises that play a role in CCDs and other photodetector arrays—transfer noise, 
sensing noise, pattern noise, shot noise, Johnson noise, thermal noise, etc.—are additive noises that 
corrupt the data page in the last stage of the error generation process. From the device's specifica- 
tions and its operating conditions the appropriate statistical noises can be computed and then added 
to the image. 

4.4  Uses for the simulator 

The Khoros simulator has proven a valuable tool for looking at real data and estimating er- 
ror effects. It allows pages to be viewed as they would be seen through the system. Error dis- 
tributions of different types can be easily viewed, stored, printed, and manipulated. This section 
will briefly review some of the areas we have studied during the course of this project and some 
of the useful tools we have developed. 
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Figure 7. Intensity histogram. 

4.4.1    Intensity histograms 

Procedures have been created that automate the process of generating histograms of the intensi- 
ty values for a given data page. Information about the underlying random processes can be obtained 
from the histogram by examining the probability distributions for the light and dark pixels. This 
is an approach of uncovering which type of noise is most dominant—whether it follows a Gaussian, 
exponential, Rician, or some other probability distribution. The separation point between the proba- 
bility distributions represents the threshold for distinguishing the logic-high and logic-low values. 
When statistics are taken for the separated intensities, a SNR can be calculated from: 

SNR _      /^2~/^ 1 

f° 2 + a1 
1 T u2 

(6) 
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where \i\, 0\2 and   u^ , 022 are the mean and variance for the dark and light PDFs, respectively. 

4.4.2   Data extraction 

For most of the representations of a data page, the simulator treats the continuous image as a 
pixelated image with each pixel representing the average intensity over any particular data bit. In 
this structure, a 1000 X 1000 data page has a 1000 X 1000 intensity level representation. This facil- 
itates the complex operations that are performed. One-to-one matched system will provide this sort 
of output, but most systems employ SLM and CCD over-sampling where several pixels are used to 
represent a single data bit, as shown in Figure 8. 

SLM 
Plane 

CCD 
Plane 

Figure 8. Example of 3 X 3 SLM "mega-pixel" over-sampled by CCD. 

CCD Averaged 

Figure 9. Data extraction and averaging. 

Various data extraction aids extend the capabilities of the simulator which are able to angularly 
align a page, if necessary, and then extract regions of data bits. An averaging operation is performed 
upon these regions to achieve a single intensity per bit. An example of data averaging for data extrac- 
tion is shown in Figure 9. 

4.4.3    Testing error codes 

Using the encoding/decoding blocks, we studied the power of different error correcting codes. 
For example, we studied the multi-block row and column code and the self-orthogonal code based 
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on the Smith construction. Using the same error parameters, we created pages which had errors of 
almost the same distribution and quantity. We then decoded the corrupted page, compared it to the 
original page, and compared the results of the two codes. After repeating this process with several 
slightly modified error parameters, we were able to confirm some of the results we had predicted 
with our "figure of merit". 

4.4.4 Real system approximation and simulator optimization 

Much of our simulator effort has focused on accurately describing real systems. Given the in- 
put and output of a specific optical memory system, the simulator must be tuned to match output 
when presented with the input. This work gives us two very valuable tools. First, we can look at 
the parameters of the simulator after we have matched the outputs and receive some data regarding 
which error processes are most prevalent in that particular memory. Second, we can run experiments 
in the simulator to predict what the output of different configurations of the memory might be if error 
parameters are modified. 

One example of modeled system was our own experimental holographic memory setup. We 
currently record and retrieve holograms using a lithium niobate crystal. When presented with the 
input pattern, the simulator was optimized to produce an output fairly close to the real data. 

The method of tuning the error parameters turns out to be an optimization problem. Each error 
process contributes to the overall output. We believe that the four main categories of errors should 
be four serial error blocks. The errors in the input device affect all of the errors in the crystal. How- 
ever, we believe that the errors inside these block should be applied in parallel. For example, the 
interpage crosstalk in the crystal is independent of the diffraction efficiency. While there may exist 
some correlation between these errors, we believe an assumption of independence will not be too 
constraining for acceptable optimization results. Work in this area continues. 

4.4.5 Footprints 

The simulator has also helped us in our search for a way to distinguish between different errors. 
The problem arises when real output data pages are studied and we need to identify the most signifi- 
cant error in the system. We have used the simulator to look at the transforms of single error patterns. 
For example, errors due to contrast ratio produce a different spatial pattern when Fourier trans- 
formed than blurring noise. Not all patterns, however, are separable using the Fourier transform. 
Blurring, crosstalk, rotation, and translations have very similar patterns in Fourier space. Other 
transforms may allow a further distinction of these errors. 

Accurate footprints would provide another tool to analyze the data from real systems. They 
would allow the most significant error in an optical system to be identified and addressed. 

4.4.6 References 
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4.5  Evaluation of existing array coding schemes for use in POMs 

Our search of the literature yielded a large variety of error control schemes that may be suitable 
for POM systems. A representative list is given in Table 2. Note that this is only one of several 
possible classification schemes. 

Table 2. Classification of Error Control Codes for Memory Systems 

1. Codes Designed for Random Errors 
SPC (Single Parity Checksum) 
CRC (Cyclic Redundancy Check) 
Repetition 
RAC (Row and Column) 
Wing code 
Hamming 
Reed-Solomon (RS) 
Reed-Muller (RM) 
Orthogonal, Bi-Orthogonal, Simplex 
Self-Orthogonal 
Other similar codes 
• Complex-rotary techniques 
• DBBD (Differential balanced block designs) 
• SBffiD (Symmetric BIBD) 

• BCH (Bose-Chaudhuri-Hoequenghen) 
• Golay 

2. Burst Correction Codes 

• Single-burst error-correcting (SBC) 
• Multiple-burst error-correcting 

3. Burst Correction through Convolutional or Orchard Codes 
• RBC (Row Burst Correction / V-checking) 
• SEC Block Convolutional Codes 
• Difference Triangles 
• Scott and Goetschel Difference Triangle 
• Cross Interleaved Code 
• CPC (Cross Product Code) 
• Wyner-Ash 

4. Cluster Correction 

• Interleaved RAC 
• Concatenated 

• Block-block (RS) 
• Convolutional-block (RS) 
• Cross-interleaved (for bursty channels) 
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•   Coded modulation 
• BCM (Blocked Coded Modulation) 
• TCM (Trellis Coded Modulation) 

4.5.1    Evaluated array codes 
4.5.1.1    Row-and-column (RAC) array code 

This is the simplest array code [ 1 ]. Figure 8 shows that this code consists of an array of k x x k7 

information bits along with row and column parity check bits {n{ = kx + 1, n2 = k2 + 1). This 
code is capable of detecting any two errors and correcting any single error. If there are more than 
two errors present, the code may not detect all possible cases and it can also miscorrect and misdetect 
in certain cases. 

, i 

k2 

o 
3 

*i Information bits 
o 

o 

' 1 

Column checks \ 

■ Check on checks 
Figure 8. Row-and-column array code. 

m, 

«l                   »' 

... 

Figure 9. Multiblock row-and-column array code. 
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4.5.1.2 Multiblock row-and-column array code 

For the RAC code to be of any significant practical application, the array of bits must be small. 
As a solution to this problem for larger sizes, the array of information bits can be subdivided uni- 
formly into smaller arrays and each can be encoded using the RAC code. Therefore, we have an 
m,x m2 array of n, X n2 RAC "codewords" or codeblocks, as shown in Figure 9. 

4.5.1.3 Self-orthogonal block array code 

The self-orthogonal block array code [2] is a representative of a class of codes that are capable 
of correcting a larger number of random errors than the simple row-and-column (RAC) code. In 
fact, the RAC code is a special case of an orthogonal code where there is a set of two orthogonal 
parity check equations on each information bit of the array. In general, if there are 7 orthogonal par- 
ity checks on any information bit in the array, correction of [7/2 J errors is possible. Correct decod- 
ing can be performed, if at most [7/2 J errors occur in the array, where an information bit is corrected 
if the majority of the 7 parity check bits orthogonal on it fail. 

The self-orthogonal block array code can be obtained by means of the Smith construction as 
follows. Let p be prime (or a power of a prime) and let the rows and the columns of the p x p in- 
formation bit array be labeled 0, l,...,r,...,p-l and 0, l,...,c,...,p-l, respectively. Then, with 
each information bit at position (r, c) we associate (5-1 numbers, Dt(r,c) = (r + ic) mod p, where 
0 < i < 6-2 and 6 < p + 1. It has been shown that no two information bits have more than one 
common value of Djj, c) and therefore each value of Dt(r, c) defines a set of orthogonal parity 
check equations. 

4.5.1.4 A family of cluster-correcting array codes 

This is a family of codes that uses staggering across rows and columns in order to achieve a 
single cluster correction [3]. Any number of errors that occur within a rectangular block of bits can 
be corrected with such a code. However, only a single cluster can be corrected with this code. The 
size of the rectangular block that would contain the errors we wish to correct specifies limits on the 
size of the block of this code. Let the size of the rectangular cluster (block) be b\ X bj- Then the 
size of the array code block is n\ X «2> where nx > 2bxb2 - bx and n2 ^ 2blb2 and b\ divides 

«1 and £>2 divides «2- The size of the block of information bits is k{ X Ic2 = (nl — l) x [n2 — l) 
and a RAC-like array of information and row and column parity bits is produced before staggering. 
The staggering of the array is performed by first rotating the bits of rows and then the bits of columns. 

For each row i, a shift to the right by b2 (/ mod b}) places is applied and then for each column /, a 

shift down by b{ (j mod b2) places. In this way the code bits are sufficiently interleaved so that a 
cluster of errors will affect several row and column parity bits, with no error within the block affect- 
ing more than a single row and a single column parity bit. In this way, the location of the cluster 
and the errors in it can be determined so that correction can be performed. 

4.5.1.5 A single burst-correcting array code 

This is also a code based on the RAC code. The burst-correcting capability of this code is 
achieved by a special diagonal read-out of the array (Figure 10), so that each error bit will affect a 
unique set of a row and a column parity check (and no other error bit will affect those parity checks) 
but the location of the errors will be correctly identified by the read-out sequence, assuming that 
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bursts occur across rows [4]. Note that without the read-out sequence the RAC code cannot associate 
a row parity check failure with a corresponding column parity check failure, if more than one occur. 
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Column checks      ^\ N^ \ 

^ Check on checks 

Figure 10. Single burst-correcting code and read-out pattern. 

For such a code to be able to correct a burst of specified length, certain conditions on the dimen- 
sions of the array must be met. In order to correct a burst of kl bits, the size of the array of informa- 

tion bits must be k{ x jfc2,whereA:2 > 2{kx - l). The read-out starts from the top left bit in the array 
and progresses along the main diagonal. After reaching the bottom row of the array the read-out con- 
tinues with the following diagonal, i.e. starting with the bit next to the top left. The read out contin- 
ues in this way, assuming a cyclical array (i.e. the last column is followed by the first), until all the 
bits have been processed. In other words, after the check on checks bit has been processed, the diago- 
nals wrap around the array. 

4.5.1.6    Wing and multiblock wing code 

The wing code is a triangular code similar to the RAC code [5]. It consists of a set of informa- 
tion bits that form a right angle triangle with a row of parity checks forming the base of the triangle 
(Figure 11). It is more efficient than the RAC code, i.e. it uses less parity bits, but it does not have 
double error detection capability. The wing code is a single correcting code that uses two orthogonal 
parity checks on every information bit. The difference is that each parity bit checks both a "row" 
and a "column" and in this way the wing code achieves a better code rate than the RAC code. Be- 
cause it has a triangular form, it does not match the rectangular form of a page of optical memory. 
However, it might be useful as part of a coding scheme that uses it to protect the corners of the page 
and leaves the center to another coding scheme. In any case, the wing code might also need to cover 
a rectangular array of bits. To accomplish this, either the information and parity bits need to be rear- 
ranged into a rectangle or a multiblock scheme must be used. If the code block is rearranged into 
a rectangle, the simple straight interconnections of the triangular block are sacrificed and a more 
complex interconnection scheme is required. However, if two triangular blocks are used to form 
a rectangular block (Figure 12) the simple interconnection pattern of this code is retained and the 
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rectangular form requirement is satisfied. The only problem is that the resulting rectangular block 
must be of size« X (n + 1). Therefore it is not possible to form an arbitrary size rectangular block 
by combining wing code blocks. However, similar restrictions on the size of the code block are re- 
quired by several other codes, such as the cluster and burst correcting codes we have previously eva- 
luated. It should be noted that this multiblock arrangement is different than the multiple-wing code 
which attaches several information wings to the same row of parity checks (along with a separate 
single parity check bit for each wing of information bits). 

0      Information bit 

O     Parity bit 

Figure 11. A (10,6,3) wing code. 

Figure 12. A 4 X 5 rectangular block formed by two wing code blocks. 

4.5.1.7    Interleaving coding scheme for cluster error correction 

Interleaving schemes for cluster error correction are attractive because they are based on a sim- 
ple concept and are flexible. The choice of the degree (or depth) of bit interleaving controls the size 
of the cluster of errors that can be corrected and the choice of the component code controls the num- 
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ber of separate clusters that can be corrected (e.g. using a double error-correcting code, two clusters 
of errors can be corrected). This particular scheme that we evaluate was developed by Blaum and 
Brack [6], and has the property that, considering the array of bits as an image and borrowing terms 
from image processing, the cluster is not restricted to a rectangular shape but it can be any 4-con- 
nected region in the array composed of a number of pixels/bits less than or equal to the number of 
error bits the scheme can correct. 

The interleaving scheme is simpler than that of the previous cluster correcting code we have 
evaluated, however that code interleaved the bits of a single RAC code block by staggering the rows 
and the columns of the array, while this scheme interleaves the bits of several code blocks, by stag- 
gering only the rows of the array. Figure 13 shows an example of this interleaving scheme. Array 
positions with the same number represent bits that belong to the same code block. Depending on 
the size of the array and the number of errors in a cluster we want to correct, a code block may span 
a single column or it may span several columns (two in the example of Figure 13). In the case the 
code blocks span several columns, before staggering, the first one spans the 1st, n+l, 2n+l,... col- 
umns, the second code block, the 2nd, n+2, 2n+2, ..., and so on. The number of code blocks, m, 

2+   1: if e is odd. This number needed to correct any cluster of e errors must be — if e is even, or —-r 

m is called the degree of interleaving and the array is called ^-interleaved. Similarly, if e is even, 
row i must be staggered by (i mod m) x (e - 1) places, while if e is odd, by (/ mod m) x e 
places, where i = 0,1,... and (e -1) and e respectively must be relatively prime with m in each case. 
It should be noted that the number of rows and the number of columns of the array can be arbitrary, 
that is, they do not need to be multiples of m, as in the example of Figure 13, but they need to accom- 
modate the size of the component code block and the interleaving requirements. 

m 

0 1 2 3 4 0 1 2 3 4 

2 3 4 0 1 2 3 4 0 1 

4 0 1 2 3 4 0 1 2 3 

1 2 3 4 0 1 2 3 4 0 

3 4 0 1 2 3 4 0 1 2 

Figure 13. A 3-interleaved array with degree of interleaving 5. 
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4.5.2   Results of the evaluation 

The parameters for the evaluation of the array codes can be roughly divided into two sets. A 
set of coding related parameters and a set of hardware implementation related parameters. Because 
the corrected bit error rate requires special attention, it is presented separately from the other coding 
related parameters. 

4.5.2.1    Coding parameters 

We summarize the results we obtained from our evaluation of a set of eight array codes in the 
following tables. 

Table 3. Coding parameters (part a). 

Code 
Length 

n 
Information 

bits, k 
Rate 

r 
Coding 

overhead 

RAC «j x n2 
("1- !)x 

("2 - 1) 

nl + n2 ~  1 
n\n2 

n\ "*" n2 ~ 1 

MBRAC m X n' m x k' r' m X (n' - k') 

Self-orthogonal P2 + (d-Dp P2 P2 

(<5-l)p 
P2 + («3-1)/? 

Cluster 

ftj  X n2 — 

(2b,b2 - bx) 

x (2^2) 

("1- I)* 

("2-1) 

nx + n2 - 1 
nxn2 

n^ + n2 — \ 

Single burst 
«j x «2 — 

«j x (2«j — 3) 
(»!-l)x 

(n2-l) 

nx + n2- 1 n^ + n2 — \ 
nxn2 

Wing P(P+ 1) 
2 

Pip- 1) 
2 

p-\ 

P+ 1 
P 

MB Wing 
m x p' x 

(p' + 1) 

m X p' X 

ip' ~ 1) • 
r' 2 x m x p' 

Interleaving scheme m X n' m x k' r m x (n   - k') 
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Table 4. Coding parameters (part b). 

Code 
Max. 

correctable errors 
Max. 

detectable errors 
Types of 
errors 

RAC 1 2 random 

MBRAC {min = 1, max = m} {min = 2, max = 2m] random 

Self-orthogonal m m random 

Cluster bxb2 bxb2 cluster 

Single burst «j — i n, — 1 burst 

Wing i 1 random 

MB Wing {min = 1, max = 2m} {min = 1, max = 2m} random 

Interleaving scheme e 2e cluster 

In the above tables, n\ and «2 are the rows and the columns of the codeblock, respectively. In 
the case of multiblock codes, m is the number of code blocks that constitute the array, except in the 
case of the multiblock wing code where it is the number of pairs of code blocks (i.e. half the number 

of blocks). In the case of the interleaving scheme for cluster error correction, m is e2/2 if e is even, 

or (e2 + 1 )/2 if e is odd. Also in the case of multiblock codes, primed parameters represent the 

parameters of the component single block code. In the case of the self-orthogonal code, p is a prime 
number (it can also be a power of a prime number) and 8 - 1 is the number of orthogonal parity 
checks per information bit. On the other hand, in the case of the wing code, p is the number of parity 
bits. In the case of the cluster-correcting code, the size of the rectangular block of errors that can 
be corrected is b\ X £>2- 

4.5.2.2    Hardware parameters 

All the codes we have evaluated can be decoded in serial or in parallel and no code requires 
read-out of multiple pages. The remaining results of the evaluation of the hardware implementations 
of the selected codes are summarized in the following tables. The above remarks for several vari- 
ables also apply to the following tables. In what follows, hardware complexity is measured in terms 
of logic gates and timing results in terms of gate delays, unless it is mentioned otherwise. Finally, 
the interconnection complexity of an error correcting code (for parallel implementations only) is 
defined as the average length of the connections emanating from a cell (/c) multiplied by the number 
of cells. In addition, in the case of multiblock codes, this number is augmented by the average length 
of the connections emanating from a block (lb), multiplied by the number of blocks. Thus, 

I = nlr + mh 
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Table 5. Algorithm complexity 

Code 
Serial 

implementation 
Parallel 

implementation 

RAC 0(n) o(v^log(Ä)) 

MBRAC 0{m X RAC) 0(RAC + logm) 

Self-orthogonal 0{n) 0{ \log2p]) 

Cluster 0{n) 0(log(max(nl,n2))) 

Single burst O(n) 0(log(max(nl,n2))) 

Wing O(k) 0{ \log2p]) 

MB Wing 0(2m x Wing) 0(Wing + logm) 

Interleaving scheme 0(m X RAC) 0(RAC + logm) 

Table 6. Hardware complexity (serial implementation) 

Code Hardware complexity 

RAC (coding)      1 XOR gate + max(n1; n2) 1 bit memory + 
(decoding) coding hardware + 1 XOR + 1 AND + 1 OR gate 

MBRAC (coding)     HC(RAC) 
(decoding) Hd(RAC) 

Self-orthogonal (coding)     ((5-1)   p-stage shift registers + 0((d~l)p) XOR gates 
(decoding) ((3-1)   p-stage shift registers + /?2-stage shift register + 

0((d-l)(p + 1)) XOR gates + ((5-l)-majority gate 

Cluster (coding)     1 XOR gate + max(n1, n2) 1 bit memory + 

+ 1 max(nj,n2) cyclical shift register 
(decoding) 1 CPU + 0{n) memory 

Single burst (coding)      1 XOR gate + n 1 bit memory 
(decoding) 2 «-stage shift registers + [k{ + k2 + 5) XOR gates + 

3 misc. gates 
Wing (coding)      1 XOR gate + n 1 bit memory 

(decoding) 1 XOR gate + (n + p) 1 bit memory + 
+ 1 XOR + 1 AND + 1 OR gate (condition evaluation) 

MB Wing (coding)     #c(Wing) 
(decoding) if^(Wing) + 1 AND gate + 1 bit of memory 

Interleaving scheme (coding)     Hc 

(decoding) H^ 
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Figure 14. Hardware complexity (decoding, serial implementation). 
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Table 7. Hardware complexity (parallel implementation) 

Code 

RAC 

MBRAC 

Self-orthogonal 

Cluster 

Single burst 

Hardware complexity 

XOR gates (coding)      [[MV1) + Hk\-{)] + ™n{ki " 1>k2~ l) 
(decoding) [[kxik2-l) + k2ikx-l)] + min^i - l,k2- l) + 

+ ikx + k2 + 1)] XOR gates 
+ fc,Jfc2(l XOR+1 AND gate) 
+ (kx - 1) + (k2 - 1)(1 XOR+1 AND+1 OR gate) 

(coding)     mtfc(RAC) 
(decoding) mHd(RAC) + global AND hardware 

(coding)      (d-l)p\log2p] XOR gates 

(decoding) ((d-l)p(\log2p\ + l) + p2) XOR gates 

+ p2   ((5-l)-majority gates 
+ hardware for evaluating if correction is possible 

(coding) 

(decoding) 

[Jfc^-l) + k2(krl)] + min(kl - l,k2- l)J XOR gates 
+ interconnections for row and column bit rotation 
Coding hardware (for parity bit computation and bit rotation) 

+ (jfcj + k2) XOR gates 
+ 1 CPU + O(n) memory (for error detection and correction) 

(coding) 

(decoding) 

[kfa-l) + Jfc2(*r-1)] + ^^l " l>h ~ l)j XOR gates 
+ interconnections for read-out rearrangement 
Coding hardware (for parity bit computation and 

read-out rearrangement (reverse network)) + 

+ [kx + k2) XOR gates (for syndrome computation) 

+ ([log2 kx ] + [log2 k2]) OR gates (for error checking) 

+ 1  [log^min^!,/^))] -bit adder 
+ 2n AND gates (for error correction)   

Wing (coding)      pip - 2) XOR gates 
(decoding) pip - 2) XOR gate + 

+ ip - 1) (1 XOR + 1 AND + 1 OR gate) 
(hardware for condition evaluation) 

+ k (1 XOR + 1 AND) gates (for error correction) 

MB Wing (coding)      2m//c(Wing) 
(decoding) 2m//^(Wing) + global AND hardware 

Interleaving scheme (coding)     mHc + nx{m x n2-bit) circular shift registers 

(decoding) mHd + nx[m x n2)-bit circular shift registers 
+ global AND hardware 
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Figure 15. Hardware complexity (decoding, parallel implementation). 

Table 8. Interconnection complexity (parallel implementation only) 

Code Interconnection complexity 

RAC 2n 

MBRAC 2n + m X min(n1,n2) 

Self-orthogonal (max)   ^XP(P+D 

Cluster - 

Single burst - 

Wing 2k 

MBWing 2mp'{p' + 1) + m{p' + 1) 

Interleaving scheme k\m + 2) + m 
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Table 9. Coding delay 

Code 
Coding delay 

(serial) 
Coding delay 

(parallel) 

RAC 2k2k{-\ — maxC^j,^) TX0R ([log2fc,l + \iog2k2])TXOR 

MBRAC mTcd(RAC) TcJ(RAC) 

Self-orthogonal (p2 + (d-l)p)TSHIFT [log2pl TXOR 

Cluster 

[2k2k 

+ 

!-l - m^(kx,k2)]TXOR + 
"     fc,-l                     b2-\       1 

y,Lib2 + y\ ih\ T
SHIFT 

. i (=0        i 1=0   j 

([log2^ll   +   \l°B2k2\)TXOR + 
+ ((*i" l^2 + bi(b2- 1))TSHIFT 

Single burst [2&2&1-I — max(ki,k2)]TXOR + 
+ nTMEM 

(\log2k{\ + \iog2k2])TXOR + 
+ TcOMM 

Wing ^kTXOR [log2(p - \)\TX0R 

MB Wing 2mTcd(Wmg) Tcd(Wmg) 

Interleaving 
scheme 

mTcd(RAC) + 2nTMEM TJRAC) + (m - \)TSHIFT 
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Table 10. Decoding delay (serial implementation) 

Code 

RAC 

MBRAC 

Self-orthogonal 

Cluster 

Single burst 

Wing 

MB Wing 

Interleaving scheme 

Decoding delay 

2*2*2-1 - max(*i,fc2) + (*i + ki + 1
)}

T
XOR + T

CONDSER 

Check-bit computation   Check-bit comparison 

where TC0ND_SER = (k} + k2 - 2)(TX0R + 7^ + r0/?) 

(max) mr^(RAC) 

(2p2 + (d-l)p)T SHIFT 

Coding delay + 
(syndrome computation) + (k{ + k2 + l) TX0R 

(check for errors) + (*j + k2) T0R 

(if errors occurred: error bit counting) + (k{ + k2) TADD 

(if correctable errors: error correction) + 0(b{b2) CPU operations 

2nTSfnFT + nTMEM 

(2k + p)TX0R 

(condition evaluation) + (p - 1) (TX0R + TAND + T0R) 
(if correction) + TXOR   

(max) 2/ttT^Wing) 

mT dd 
(for condition evaluation) + mTAND 

(if correction) + eTXOR 
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Figure 16. Decoding delay (serial implementations). 
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Table 11. Decoding delay (parallel implementation) 

Code Decoding delay 

RAC (\\og2
k\\ + flog2*2l + \)TX0R + max(kltk2)TXOR 

MBRAC Tdd(RAQ + TAND (global AND) 

Self-orthogonal (flog2pl + 2)TX0R + TMAJ + Tcount 

Cluster Coding delay + 
(syndrome computation) + TXOR 

(check for errors) + max([log2Ä:1l, [log2&2l) T0R 

(if errors occurred: error bit counting) + [kx + k2) TADD 

(if correctable errors: error correction) + 0{b{b^) CPU operations 

Single burst Coding delay + 
(syndrome computation) + TX0R 

(check for errors) + |"log2 k2]  TOR 

(if errors occurred: error bit counting) + k2 TADD 

(if correctable errors: error correction) + klTX0R 

Wing ([log2(p-l)l +l)TX0R 

(for condition evaluation) + pTXOR 

(for correction) + TX0R 

MB Wing Tdd(Wmg) + TAND (global AND) 

Interleaving scheme (m - \)TSHlFT + Tdd(RAC) + TAND (global AND) 
■  ■—- -  

-35- 



Gate delays ys I i 

100 
Cluster_______  

s    "      Burst RAC 

Interleav. 
>                        _/ 

■ 

MBRAC 

1 

MBWing 10 j 
. 

Self-orth.     /   / 
■ U Wing 

' 

■ 

128 256 512 1024 

Block size 

Figure 17. Decoding delay (parallel implementations). 

4.5.2.3    Corrected bit-error rate 

We have theoretically computed the corrected bit-error rate of the error correcting codes we 
have evaluated using the following upper bound, 

PlPe,n) < 1 - X(") Pi a-Pe)»-1 

As an example, for the RAC code this upper bound becomes, 

Pd(Pe,n) < l-Ul-Per-nPe(l-Per-l-^^-P2
e(l-Pe)n-2^ 

Note that for the RAC code t = 2, because this code is capable of detecting two errors 

Next we plot PjiPe,«) for the codes that we analyzed for raw bit-error rates ranging between 
10"4 and 10-6 and appropriate block sizes. The corrected bit-error rate for a multiblock code is that 
of its component single block code. 
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Figure 18. Plot of logl0[Pd(Pe,«)] for the RAC code. 
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Figure 19. Plot of log10[Prf(Pe, n)] for the self-orthogonal code with r = 1/2. 
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Figure 20. Plot of logl0[Pd(Pe, n)] for the self-orthogonal code with r = 2/3. 
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Figure 21. Plot of logl0[Pd(Pe, n)] for the self-orthogonal code with r = 4/5. 
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Figure 22. Plot of logl0[Pd(Pe, n)] for the 2 by 2 cluster-correcting code. 

10000 

Figure 23. Plot of log w[Pd(Pe, n)] for the single burst-correcting code. 
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Figure 24. Plot of log10[p/Pe, n)] for the wing code. 
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Figure 25. Comparison of bit-parallel implementations of self-orthogonal, cluster-interleaved, 
multiblock wing and RAC and single block wing and RAC codes, 

including the interconnection complexity. 
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4.5.2.4    Figure of merit 
Figure 25 plots the FOM for some of the codes we have evaluated. While all the codes are 

presented on the same graph, the cluster correcting code is not intended for comparison with the ran- 
dom error correcting codes. All the implementations we compare are parallel. It is interesting to 
note that the wing and RAC codes attain some of the lowest values because they can only correct 
one error regardless of page size. The MBRAC code achieves much better values. The complex 
interconnections that the self-orthogonal code requires greatly reduce its FOM, even though this 
code can correct several errors. The cluster-interleaved code also requires complex interconnec- 

tions. 

4.6 Development of encoding schemes for page oriented memories 

There are three different avenues for accomplishing this task: a) adoption of existing array 
codes with minor changes, if they are deemed suitable for POMs, b) modification of existing array 
codes, and c) development of new encoding schemes tailored to the specific needs of optical memo- 
ries. We began with the first option and the results are included in the discussion of Section 4.5. 
Some work was performed along the lines of the second option and yielded the modified multiple 
block RAC code discussed in the bibliography reference [GOE96]. 

4.7 Investigation of optoelectronic techniques for parallel implementation of error 

detection and correction in POMs 

We have begun investigating the feasibility of using "smart" photodetector arrays (SPAs) to 
interface the optical memory to an electronic host computer. SPAs have been suggested as a means 
to overcome the limitations of CCDs [ 1 ]. Here, an optical data page is received by two-dimensional 
arrays of "smart" photodetector elements, or pixels, replacing conventional CCDs. Embedded in 
each pixel is a simple processing element. The processing elements use local electronic intercon- 
nects to perform highly parallel, fine-grain computations. The SPA can be designed to perform fast 
parallel error control and data reduction, thereby providing a more efficient interface between the 
POM and the electronic computer. This architecture optimizes the computer memory system by 
combining the massive parallelism and high speed of optics with the diverse functionality, low cost, 
and local interconnection efficiency of electronics. 

The time required to retrieve a data page from the POM and transfer it onto the photodetector 
array is, in general, independent of the page size. A higher throughput can be achieved with larger 
pages since for a page dimension, n, throughput increases with n2 (assuming a square data page). 
It is useful, then, to know the scalability of a SPA design, or how large the data page can be made, 
so that throughput can be maximized. 

4.7.1    SPA design example 
SPAs can be implemented by integrating arrays of photodetectors with VLSI logic circuits 

thereby taking advantage of the speed, density, low power, and well-established fabrication pro- 
cesses of silicon CMOS VLSI. The possible functions of SPAs are, of course, unlimited. Here we 
provide a simple example of how SPAs can perform error detection and correction. 

Array codes are highly suited to the two-dimensional data format of POMs because these codes 
treat data as two-dimensional arrays of bits [2]. The simplest array code, the RAC code, generates 

-41- 



parity bits along the rows and columns of an I x J bit data array and appends them to the original 
array. When data are read, the intersection of ones in the parity check vectors indicates the exact 
position of a single error anywhere in the (7+1) x (7+1) array. Since the cross parity code is a dis- 
tanced code, it can be used in a single-error correcting-double-error detecting mode. To achieve 
a corrected bit error rate of 10-12 for a system raw bit error rate of 10-5, code blocks can contain 
up to 80 bits. For large page sizes with uniformly distributed errors, the multiblock RAC code will 
be preferable (see also FOM discussion). 

From Previous Smart Pholodetectors 

\ 
P/n,c(j) A'n,c(j+1) 

P;n,r(i) 

s From 
Previous 
Smart 
Photodetectors 

\ 
P/Yj,r(i+1) 

Poutcffl 

't^jSD    IP ; 

data,tj) 

Pouf.r(i) 

8Tr(i+1) 

<*alar(j+i) 

Pout,r(i+1) Detector cell 

Pour, cfl+1) ^ One Smart Photodetector 

Figure 26. Smart photodetector array implementation of the RAC error correction code. 

The circuit in Figure 26 demonstrates how a RAC code can be implemented in a SPA. The 
detector cell includes a photodetector and photoreceiver circuit to convert the optical energy into 
an electrical signal. The photoreceiver circuit can be fabricated on the same substrate as the SPA 
to take advantage of the low power and high density of CMOS VLSI. A simple receiver can be de- 
signed using only 2 transistors, however, more practical designs may require several (8-12) transis- 
tors. The photodetector element may also be integrated on the SPA substrate (e.g. a silicon photo- 
diode), however because CMOS processing is not optimized for optical devices, better performance 
can be achieved by fabricating the detector separately and interfacing it to the SPA using hybrid tech- 
niques such as flip chip bump bonding and subsequent substrate removal [3]. This approach pro- 
vides additional flexibility in detector selection since many detectors such as PEN diodes, HPTs and 
APDs are not readily integrated with CMOS VLSI processing. In addition, responsivity can be in- 
creased due to backside illumination of the flip chip bonded detector. 

4.7.2    Design considerations 

4.7.2.1    Hardware Complexity 

The scalability of SPAs depends, in part, on the area of the individual pixels which comprise 
the array. The pixel area in turn depends on the complexity of the processing element. Because SPAs 
are used for fine-grain computations, local interconnections are assumed, and hardware complexity 
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can be measured in terms of the number of gates in each processing element, or pixel. Here a gate 
is assumed to be a 2-input NAND equivalent. 

Maximum page size is determined by yield-limited die size. We define integration capability 
as the average area per gate for a given fabrication technology. This empirically determined area 
estimate includes device area and average interconnect area for low complexity standard cell designs 
and can be used to conservatively model the fine-grain computing architecture of SPAs. For state- 
of-the-art VLSI processing (0.35 micron drawn minimum geometry), the integration capability is 
approximately 0.2 mil2 per gate. Given the integration capability, maximum page size can then be 
computed as a function of smart pixel complexity. Figure 27a shows the maximum page size assum- 
ing a fixed detector size of 100 um2 and a practical maximum core chip area (excluding control cir- 
cuitry and I/O pads) of 1 cm2. The fixed detector area is assumed to be the active area of an on-chip 
photodetector and is comparable to CCD pixel size [4]. Figure 27b shows the maximum page size 
for SPAs for the case of hybrid integration. Using flip chip bump bonding, smart logic can be incor- 
porated under the bump bond sites, resulting in increased scalability of the SPA. 

a) 

Gates per Smart Pixel Area per Gate (mil2) Gates per Smart Pixel Area per ( 

Figure 27. SPA page size vs. complexity vs. integration capability (SPA core area = 1 cm2) 
a) SPA with 100 um2 detector, b) SPA with flip chip bonded detector. 

Comparing Figures 27a and 27b, the on-chip detector has a small impact on SPA page size for 
state-of-the-art fabrication (i.e., Area per Gate = 0.2 mil2). However, this difference in scalability 
increases greatly with further advances in VLSI processing (i.e. line width reductions) because the 
photodetector does not scale accordingly. The flip chip bonding approach shown in Figure 27b al- 
lows for SPA designs which take full advantage of VLSI integration capability. From Figure 27b, 
low complexity (5 gates per smart pixel) SPAs of size 512 X 512 can be achieved with the next gen- 
eration CMOS technology (0.1 - 0.15 mil2 per gate). This SPA complexity approximates the circuit- 
ry required for the RAC code in Figure 26. With two generations of CMOS line width reductions 
(0.05 - 0.1 mil2 per gate), Figure 27b indicates that 512 X 512 SPAs having more complex SPA 
functionality, e.g. 10 gates per smart pixel, can be achieved. 

SPA page sizes of 512 X 512 are desirable, since 2x2 mosaic arrays of independent SPAs 
can be combined to receive 1 Mbit data pages from an optical memory. This approach has been 
demonstrated for large-format CCD arrays, with each array being edge buttable on two sides. Using 
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custom buttable packaging, "dead" space as small as 400 microns between CCD arrays has been 
achieved [5]. 

4.7.2.2    Optical Power 

Optical efficiencies of POMs are extremely low, resulting in optical power to the SPA on the 
order of a few picowatts per pixel. Such low input power requires that noise sources be reduced 
to an absolute minimum. This is accomplished by selecting a detector with low dark current and 
minimizing thermal noise from receiver biasing resistors. The latter is achieved by an integrating, 
or high impedance, front end receiver [6]. The integration time, i.e. the time needed for the optically 
generated current to charge (or discharge) a MOS receiver gate to a voltage level sufficient to sense 
the optical signal, is given by T;nt = Esw I Popt, where Esw is the electrical device switching energy 
and Popt is the input optical power. For state-of-the-art CMOS, devices can be designed with switch- 
ing energies in the range of 50-100 fJ. This assumes 3V operation and some initial biasing so that 
full signal swing is not required at the receiver input. Figure 28a shows detector integration time 
vs. electrical switching energy for several different values of optical input power. 

a) State-of-artCMOS 

 0.01 nW / pixel 

-  -0.1 nW/pixel 
0.5 nW / pixel 

■ - -   1.0nW/pixel 

•-■-'' 

-'""''           ..-•■■'"    - "' 

b)   .. 

3 io'* 

Volume Holographic Practical Limit- 
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■ ASCII encoding 
■1:5 sparse encoding 

Switching Energy (J) 
200        250        300        350 

Square Root of Page Size 

Figure 28. a) detector integration time vs. electrical switching energy 
b) SPA input optical power vs. page size. 

For detector integration to occur in 100 usec, corresponding to a best case system clock rate 
of only 10 kHz, the required optical input power per pixel is approximately 0.5 nW which is two 
orders of magnitude higher than what is available from the POM. To achieve this equivalent power 
level, a detector with gain ~ 100 is required. This amount of gain can be achieved with a phototrans- 
istor or avalanche photodiode, however, noise will also be amplified and thermal cooling of the SPA 
may be required. The low optical power budget limits the POM access time and reinforces the re- 
quirement for large page sizes to achieve high SPA throughput. 

However, for a fixed input power level, larger page sizes also result in lower optical power 
per pixel, leading to an increase in integration time as Figure 28a demonstrates. Figure 28b plots 
the required optical input power versus page size, to achieve 5 pW per pixel. Assuming detector 
gain is 100, this power level will provide for integration in 100 [isec. For large page sizes, approxi- 
mately 600 nW is required for ASCII encoding, corresponding to a code rate of 0.79 for the multi- 
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block RAC error correction code (block size = 80). This level of optical input power presents a prob- 
lem for volume holographic storage systems due to the extremely low diffraction efficiencies of 
these memories. Optical intensity is generally kept in the range of 15 mW/cm2 to prevent writing 
during the read operation. For a 1 cm3 photorefractive crystal with a diffraction efficiency of 10-6, 
a relatively high 600 mW of incident optical power would be required, causing the crystal to saturate. 
The horizontal line in Figure 28b indicates the practical limit for volume holographic memories as- 
suming a 1 cm3 photorefractive crystal. The optical power budget does not limit page size for holo- 
graphic storage applications in which the crystal has been fixed [8] thereby increasing the diffraction 
efficiency and/or the optical erase intensity. However, the memory is not readily written and effec- 

tively becomes a ROM. 
The page size of a read/write holographic memory can be increased with sparse encoding [7], 

i.e. limiting the number of "on" bits. For a 1:5 sparse code, only one bit in a group of five bits is 
illuminated. This coding scheme helps to avoid saturating the crystal by reducing the required opti- 
cal intensity, but results in a code rate of approximately 0.5 for the multiblock RAC error correction 
code. From Figure 28b, the 1:5 sparse encoding increases the page size for volume holographic me- 
mories from less than 100 X 100 pixels to 200 X 200 pixels. After accounting for the code rate 
reduction, the 1:5 sparse encoding more than doubles the amount of data per page. 

a) 

Total Power Density = 10 W/cm 

High Speed Receivers 

150       200       250       300       350 
Square root of Page Size 

b) 

150        200        250        300        350 
Square roc! of Page Size 

Figure 29. a) Static power per pixel vs. page size 
b) dynamic power density vs. page size. 

4.7.2.3    Electrical Power 
The low optical power budget of POMs requires that SPAs incorporate sensitive receiver cir- 

cuits. If an integrating receiver is used, some degree of biasing will likely be required to reduce de- 
tector integration time as previously discussed. This initial biasing will result in static power con- 
sumption. Feedback and gain stages in transimpedance receivers will also dissipate static power. 
Figure 29a shows the allowable static power per pixel assuming a maximum power density of 10 
W/cm2. Optical receivers operating up to 550 MHz have been designed with static power dissipation 
of 5 mW per receiver [9]. Such designs limit SPA page size to less than 50 X 50 pixels. However, 
the optical power budget limits detector integration time making such high speed receivers unneces- 
sary.   A 1 MHz receiver, for example, will only increase the signal conversion time by 1 usec, or 
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1 %. By leveraging this feature of POMs, slower receivers can be implemented, requiring less static 
power, and thereby allowing for larger page sizes. 

Dynamic electrical power is considered for the complete smart photodetector circuit. This in- 
cludes the SPA plus any additional addressing, sensing, control circuitry, etc. Figure 29b shows the 
dynamic electrical power density for a sample SPA circuit operating at 50 MHz assuming 1.2 U.W7 
MHz/gate. Once the area of the smart pixels surpasses the area of the address and control circuitry, 
the dynamic power density drops with increasing page size. This is because the majority of the logic, 
i.e. the smart pixels, are only switching during the error detection/correction phase which occurs in 
a matter of a few clock cycles due to the high speed of VLSI electronics. As will be discussed in 
the next section, the majority of SPA operating time is spent integrating and reading out the SPA data, 
involving relatively little logic switching. As a result, page sizes greater than 100 X 100 can easily 
dissipate the dynamic electrical power. 

4.7.3   SPA throughput 

SPA throughput depends on three factors: I) signal conversion time, 2) SPA functional latency 
and 3) SPA read-out time. Signal conversion time is the time required to integrate the optical signal 
and convert it to an acceptable electrical signal. It is on the order of 100 \isec for POMs as discussed 
in section 3.2. SPA functional latency is the time required for the SPA to perform its actual "smart" 
function, e.g. error correction, data compression, etc. Because SPAs use fine-grain computations, 
functional latency will require very few clock cycles and therefore is on the order of 10's to 100's 
of nanoseconds. Array read-out time is the time required to transfer the electronic data from the SPA 
to the host system. These three factors need not occur in sequence as pipeline operation is feasible. 
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Square Root of Page Size 
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Figure 30. a) Array read-out time vs. page size 
b) SPA throughput vs. page size for 100 usec read-out time 

SPA read-out time is, of course, design dependent. For our analysis a 64-bit output bus operat- 
ing at 50 MHz is assumed. Array read-out time as a function of page size is plotted in Figure 30a 
for several code rate values. As code rate is increased, more clock cycles are required to output the 
additional information bits to the host system resulting in longer read-out times for a fixed page size. 
For page sizes smaller than 512x512 (limited by scalability factors previously discussed), read-out 
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time is on the order of tens of microseconds - less than the signal conversion time, but greatly domi- 
nating the functional latency. To maximize overall SPA throughput, a sample and hold circuit can 
be implemented to integrate the next optical data page while the current page is processed and output 
to the host system. 

Figure 30b shows total SPA throughput at several code rate values assuming sufficient detector 
gain to achieve 100 [xsec optical integration. The array read-out clock speed can be relaxed so that 
the read-out time matches the integration time until the saturation page size is reached. The satura- 
tion page size occurs when the read-out time is 100 fxsec for a 50 MHz clock rate and can be obtained 
from Figure 30a for each code rate. At the saturation page size, the maximum throughput for the 
bus structure, 3.2 Gbps, is achieved. For page sizes larger than the saturation value, the SPA read-out 
time is greater than 100 (isec and no further gains in throughput are realized. While it is desirable 
to maximize throughput by setting the SPA page size at the saturation value for a given error correc- 
tion code, scalability constraints discussed previously require smaller page sizes. For the code rates 
shown, 1.3 - 2.3 Gbps corrected data rate can be achieved for SPA page size of 512 X 512. This 
is two orders of magnitude improvement over the uncorrected data rate of high speed frame-transfer 
CCDs [4]. 

4.7.4 Conclusions 

We have examined several practical considerations related to the design of smart photodetector 
arrays for page-oriented memory interface applications. In order to maximize the high output rates 
of POMs, SPA page size must be large. State-of-the-art VLSI integration capabilities limit SPA size 
to approximately 350 X 350 for on-chip detectors and 400 X 400 for flip-chip bonded detectors. 
This difference will be further exaggerated with subsequent advances in VLSI integration. The low 
optical power budget of volume holographic memories greatly limits SPA page size. Innovative 
coding techniques such as sparse encoding can help alleviate this problem. In general, the low opti- 
cal output power of POMs requires low dark current detectors with gain and an integrating front end 
receiver to minimize thermal noise. Integration time is on the order of 100 usec due to the low opti- 
cal power, so high performance receivers are not necessary. By implementing slower, low power 
receiver circuits, static current will not limit page size. SPA throughput is then limited by integration 
time, and a sample and hold circuit should be utilized to maximize throughput. Corrected data rates 
of 1.3-2.3 Gbps can be achieved for array sizes of 512 X 512. This yields two orders of magnitude 
improvement over the uncorrected data rate achievable with high speed frame transfer CCDs. 
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4.8 Continuous determination of the status of the effort through regular progress 

reports 

The continuous determination of the status of the effort was performed through regularly sub- 
mitted progress reports. During the course of this project we provided 15 progress reports. 

4.9 Final report 

This document constitutes the final report of the project. 

4.10 Oral presentations at such times and places as designated by the Rome 
Laboratory personnel 

We have provided oral presentations as requested. 

4.11 Future recommended research 

Although we evaluated a few array codes, with the underlying goal of finding a code that can 
provide an acceptable CBER and that can be implemented in parallel with simple hardware, as Table 
2 indicates, there are several other error correcting codes that should be considered for possible POM 
implementation. As a general rule, the more powerful the code, the more complex the hardware it 
would require for encoding and decoding a page of bits. This trade-off, will play a very significant 
role towards the production of an efficient and cost-effective POM system. 

Characterization of a POM system channel is far from complete. Although some of the compo- 
nents of a volume holographic memory system have been well studied, there is a significant amount 
of work that needs to be done to fully understand the effects produced by some components and the 
interaction of all the components in the system. A good modeling of the POM system channel will 
greatly facilitate the task of selecting or designing an error correcting code for the system. 

The simulator is a very useful tool that can be used for testing error codes and simulating real 
POM systems. It can greatly facilitate the channel modeling task and the testing of error codes. 
However, our simulator optimization work, in which we try to find the best possible values for the 
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parameters of various error processes, so that the simulated results best match the real data, is not 
complete yet. Our approach of grouping the error processes into parallel blocks which are then ap- 
plied in serial fashion to the input data, and finding values for their parameters using traditional sys- 
tem optimization techniques, has just been initiated. Further work is needed to produce a usable tool. 

Finally, implementation of SPAs is very important and further work towards that goal needs 
to be done. SPAs can provide the throughput needed for a high-performance system. A test chip 
with an array of photodetectors and a simple error correcting code, such as the multiblock RAC code, 
embedded, is currently feasible and we can readily incorporate it to our POM system for testing pur- 

poses. 
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