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0    EXECUTIVE SUMMARY 

The design of microwave components is driven by electromagnetic considerations, but these devices 
always fail because of thermomechanical weaknesses. Therefore, it is necessary to apply concur- 
rent engineering principles early in the design phase to ensure that all aspects of the design are 
being met. The major issues addressed in this report deal with current practices for integrating 
data-representation and analysis techniques for coupled computational electromagnetic (CEM) and 
thermomechanical (TM) problems, solving canonical coupled TM and CEM problems, and related 

matters, such as mesh refinement. 

Current Practices: In a typical example of software for solving coupled problems, as described 
in Chapter 2, a supervisor, called FLYSTRYD, is required to control the activities of the various 

analysis codes. 
Instead of just transferring the interesting data from the output files of one application software 

to the input files of another, the supervisor carries out that transfer between different meshes and 
geometries. A consequence of this is that FLYSTRYD must handle two data-bases at the same time. 
Those data-bases contain two different models of the same physical problem—for instance, elec- 
tromagnetic and mechanical models. This allows the supervisor to interpolate important physical 
quantities on different meshes. Interpolation is performed, as usual, by way of the shape functions 
of the finite elements. The difficulty arises because of the wide variety of types of elements of the 

different analysis codes. 
When the geometries of the various physical models differ, one has to use projection or extrapo- 

lation techniques to provide the correct data. Projection is used when a physical quantity is defined 
on a source region which does not exist in the target model. On the other hand, extrapolation is 
necessary to define a quantity in a region that did not exist in the source domain. 

Analysis of Canonical Problems: The two principal canonical problems chosen for this study 
involve thermo-electromagnetic interactions in a parallel plate capacitor, whose plates are separated 
by a material whose electrical conductivity varies with temperature and electric field. This makes 
the electrical problem nonlinear, but the thermal problem remains linear. 

We developed an algorithm to solve coupled CEM and TM problems using the finite-element 
code, TOPAZ, and found it to be stable under a wide range of electical and thermal parameters. We 
then introduced the theta-algorithm, which is a sequence-accelerating algorithm, and found that 
the limit of the slowly converging sequence of TOPAZ iterates can be found quickly and efficiently. 

In a final study, we attempted to force a condition that might require different grids to be used 
for the electrical and thermal problems, without changing the geometry or boundary conditions. 
That such a condition might exist rests with the nonlinear electrical conductivity profile of the 
material. We found that when T is about 60° C and E is about 1170 V/m, the largest change in 
temperature between two adjacent nodes is 2.7%, and the largest change of electric field is 0.7%. 
Thus, there is no need to change the grid. When T is about 120° C and E is about a few hundred 
V/m, however, the largest change of temperature between two adjacent nodes is 3.4%, and the 
largest change of electric field is about 20%. Now, it may be necessary to use different grids to 
solve the electrical and thermal problems. 

Related Matters: We introduce the concepts of a priori and a posteriori error indicators, and 
explain their use in adaptive mesh generation. An a priori error estimate is one that is theoretically 
known before a computation is made. The coefficients in the expansion for the error estimate, 
however, may not be known. Such error estimates may not be precise enough to be used in practice 
without making some computations, i.e., performing a numerical experiment. The resulting error 

in 



estimate then becomes a posteriori, that is, after the experiment is performed. 
Furthermore, we define an optimal mesh: A mesh is said to be optimal when the measure 

of error in the solution is equal for each element in the mesh. Those measures of error that are 
commonly used are the energy norm, relative percentage energy norm error, and local and global 
effectivity indices. The effectivity index, 0 = ||e||/||e||ex, where ||e|| and \\e\\ex are computed and 
exact errots, respectively, in the energy norm. 

The mesh refinement algorithm can be made efficient through the use of the /ip-adaptive analysis 
technique. In this technique, the mesh width, h, or the order of the approximating polynomial, p, 
are adapted to the problem at hand in such a way that an optimal mesh is generated. 

Conclusion: 'Grid-reusability,' that is the use or reuse of grid-related data depends upon problem 
conditions that are as diverse as geometry, the physical model, and materials properties. Nonlin- 
earities that arise when a physical parameter depends upon the value of the field variable being 
sought can thoroughly complicate gridding requirements to such an extent that a priori guidelines 
are not available. The grid and its associated data will vary as the solution is computed iteratively. 

The question of grid-reusability has surfaced only rather recently, as designers begin to address 
the question of concurrent engineering in a rigorous, self-consistent manner. We have shown a few 
examples in which researchers are addressing this aspect of CAE software development, but we are 
unaware of this problem being dealt with in commercial software. 

The grand challenge of the immediate future is to extend the research reported herein to the 
problem of doing adaptive meshing on two or more grids for the purpose of optimally solving 
coupled problems with nonlinearities. What role will /ip-adaptive analysis play in meeting this 
challenge? 

IV 



1    INTRODUCTION 

The design of microwave components is driven by electromagnetic considerations, but these devices 
always fail because of thermomechanical weaknesses. Therefore, it is necessary to apply concurrent 
engineering principles early in the design phase to ensure that all aspects of the design are being 
met. This includes, of course, the underlying electromagnetic requirements, as well as thermo- 
mechanical considerations. This is especially true as components are being designed with an ever 
increasing density of active and inactive, heat generating, elements. Prom the perspective of the 
designer of microwave components, the problem now involves a number of different physical models 
which come into play: electromagnetics, thermomechanics, and perhaps fluid flow. Now the design 
problem involves computational electromagnetics (CEM), computational mechanics, and perhaps 
computational fluid dynamics (CFD). Each of these areas requires its own data base and compu- 
tational algorithm. From the perspective of the software designer of a computer-aided engineering 
(CAE) package, the problem becomes one of efficiently communicating between the algorithms and 
data bases that each of the physical models requires. 

The research effort reported herein addressed the rather broad area of algorithms and software 
needs for solving coupled problems by focusing on the following issues: 

1. Investigate current practices for integrating data-representation and analysis techniques for 
various microelectronics-related engineering disciplines, such as computational electromag- 
netics and thermomechanics. 

2. Establish a set of canonical test problems whose purpose is to determine the goodness qual- 
ities of solutions involving the coupling of electromagnetic and thermo-mechanical analyses, 
that are typically encountered in the design of T/R modules. Conduct an empirical (compu- 
tational) study using these models in order to learn as much as possible about the intricacies 
of solving such coupled problems. 

3. Investigate related matters, such as adaptive meshing, error analysis, and extrapolation of 
solutions. 

Chapter 2 of this report deals with current practices for integrating data-representation and 
analysis techniques for coupled thermomechanical and electromagnetic problems. In a typical 
example described in Chapter 2, a supervisor, called FLYSTRYD, is required to control the activities 
of the various analysis codes. 

Instead of just transferring the interesting data from the output files of one application software 
to the input files of another, the supervisor carries out that transfer between different meshes and 
geometries. A consequence of this is that FLYSTRYD must handle two data-bases at the same time. 
Those data-bases contain two different models of the same physical problem—for instance, elec- 
tromagnetic and mechanical models. This allows the supervisor to interpolate important physical 
quantities on different meshes. Interpolation is performed, as usual, by way of the shape functions 
of the finite elements. The difficulty arises because of the wide variety of types of elements of the 
different analysis codes. 

When the geometries of the various physical models differ, one has to use projection or extrapo- 
lation techniques to provide the correct data. Projection is used when a physical quantity is defined 
on a source region which does not exist in the target model. On the other hand, extrapolation is 
necessary to define a quantity in a region that did not exist in the source domain. 

The second item is the central element of this project, and is discussed in Chapter 3. The two 
principal canonical problems chosen for this study involve thermo-electromagnetic interactions in 



a parallel plate capacitor, whose plates are separated by a material whose electrical conductivity 
varies with temperature and electric field. In the initial numerical experiments, the material is 
taken to be Barium-Titanate, but the conductivity is then changed later in order to determine its 
effects on the solution of the problem. 

The geometry of the problems is rather simple, but the mesh requirements may still become 
complicated by the physics involved. For example, the thermal convection coefficient can play a 
significant role in the mesh requirements, even though the geometry is quite regular. Because the 
electrical conductivity is a function of the electric field, the problem is nonlinear in the electrical 
variables, and because the same conductivity is also a function of temperature, the electrical and 
thermal problems are coupled. In these problems, the thermal conductivity is assumed to be a 
constant, regardless of the temperature and electric field. Hence, the thermal problem is linear. 

The nonlinearities can introduce some significant effects on the grid requirements for the thermal 
and electromagnetic problems. The electrical conductivity of Barium Titanate exhibits distinctly 
different behavior in two temperature ranges. In the lower range (between 0°C and 100°C), the 
conductivity increases slightly with temperature, which is typical of a semiconductor, while in the 
upper range (above 100°C), the conductivity decreases, which is reminiscent of a metal. 

Our results are summarized as: 

(a) In the range 0°C < T < 100°C, for example, when T is about 60 °C and E is about 1170 V/m, 
the largest change of temperature between two adjacent nodes is 2.7% and the largest change of 
electrical field is about 0.7%, and there is no need to change the grid. 

(b) In the range 100°C < T < 140°C, for example, when T is about 120 °C and E is about a 
few hundred V/m, the largest change of temperature between two adjacent nodes is 3.4%, and the 
largest change of electrical field is about 20%. In this case, it may be necessary to use two different 
grids to solve the electrical problem and the thermal problem. 

When the temperature is above 100°C, a slight change of temperature will cause a large change 
of electric field, and this is depends solely on the non-linearity of the material. One must con- 
sider several factors in order to get the temperature above 100°C for this particular material, but 
the thermal load (a(E,T) * E2) is the most important one. The ambient temperature, initial 
temperature, and convection coefficient also play key roles in this problem. 

For instance: 

(a) When the thermal load is about 3.0 x 106 to 4.0 x 106, we need to consider using different 
grids. It doesn't matter what the ambient temperature is as long as the convection coefficient 
is small enough to keep the temperature in the range between 100°C and 140°C. For this 
particular type of material, if we rescale the electrical conductivity a by a factor of 1.67, the 
thermal load will then be in the range of 3.0 x 106 to 4.0 x 106, and the results shown in the 
second table are obtained (a relatively big change in .E-field and small change in T). 

(b) If the ambient temperature is in the region of 100°C to 140°C, and if the convection coefficient 
is large enough to keep the temperature within the body close to the ambient temperature, 
then it may be necessary to use different grids for the T and E calculation. Ambient temper- 
atures, however, are normally around 20°C, so that this case is rare. 

(c) In conclusion, therefore, the question of whether or not to change the grid for the E and 
T calculation depends upon the non-linearity of the material for a problem with a simple 
geometry, such as Canonical Problem No. 2. For Canonical Problem No. 3, however, the 
situation is very different and further studies should be done. 



We introduce the ^-algorithm in Chapter 3, and demonstrate its ability to accelerate the con- 
vergence of the iterations between the thermal and electrical aspects of the coupled problem. 

The first part of Chapter 4 consists of a summary and literature search that deal with a number 
of things, such as the display of scalars and vectors, to a review of hardware and software, to 
the very important subject of mesh generation. These topics are of fundamental importance in 
relating computational electromagnetics to computer-aided engineering and design. The second 
part of the chapter deals with the subject of extrapolation of solutions to reduce the effects of 
truncation error caused by meshing. We introduce the concepts of a priori and a posteriori error 
indicators, and explain their use in adaptive mesh generation. An a priori error estimate is one 
that is theoretically known before a computation is made. The coefficients in the expansion for the 
error estimate, however, may not be known. Such error estimates may not be precise enough to be 
used in practice without making some computations, i.e., performing a numerical experiment. The 
resulting error estimate then becomes a posteriori, that is, after the experiment is performed. 

Furthermore, we define an optimal mesh: A mesh is said to be optimal when the measure 
of error in the solution is equal for each element in the mesh. Those measures of error that are 
commonly used are the energy norm, relative percentage energy norm error, and local and global 
effectivity indices. The effectivity index, 0 - ||e||/||e||e:c, where ||e|| and \\e\\ex are computed and 
exact errors, respectively, in the energy norm. 

In Chapter 5, we point out that the results of this study suggest that the properties of a grid are 
mandated by the physical model, as well as the geometry. As Canonical Problems No. 2 and 3 of 
Chapter 3 showed, the gridding requirements for a TM problem can differ considerably from those 
for a CEM problem, even if the geometry of each problem is a simple rectangle. The distinction 
between the two problems and their meshes lies in the nature of the boundary conditions and the 
nonlinear behavior of the material parameters; i.e., it is the physical model that distinguishes the 
needs of each problem. 

The major implementation problem in handling coupled analyses will be in supervising the 
transfer of data between the two meshes, and in adapting each mesh so that it becomes optimal for 
its respective problem domain. Little, apparently, has been done in the area of adaptive gridding 
for coupled problems, and we propose that Canonical Problem No. 3 could be the basis for a future 
research effort in this area. Even though the geometry for this problem is a simple rectangle, the 
physical models would present several areas where a grid would have to adapt in order to become 
optimal. The nonlinearity in the electrical conductivity might drive the grid adaptation, as well as 
the electrical singularity at the edge of the upper electrode. The thermal grid might have to adapt 
in response to the value of the convection coefficient. Canonical Problem No. 3 could also be the 
basis for further studies in /ip-adaptive analysis of coupled problems. 
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2    CURRENT PRACTICES 

This chapter raises the question of what features are necessary in a software package that efficiently 
solves coupled problems. The development of such software is an active field of study, and we 
undertook a survey of the literature in CEM to learn of this activity. The following is based on 
that survey. 

In [1] a unified data-base (DB) for data exchange among field computation and CAE programs 
is presented. The DB consists of four units, by function: 

1. The pre-processing unit contains: 

• a commercial solid modeling system called Geomod. 

• a commercial mesh generating system, Supertab. 

• an automatic mesh generator for electromagnetic field design. 

• an object manager which provides a set of operations for maniupulating data stored 
in the database. These operations enable information to be treated as objects instead 
of FORTRAN arrays. This frees users from the internal representation of objects, and 
enables designing at a high level of abstraction. 

2. The processing unit contains three established field processors. They are: 

• Flux3d, which uses the finite element (FE) method. 

• Phi3d, which uses the boundary-integral equation (BIE) method. 

• Trifou, which uses a mixed FE-BIE method. 

3. The post-processing unit is made up of two post-processors. Current efforts consist of 
developing a common post-processor for all three field codes. 

4. The data administration unit is an interactive data-structuring module, through which the 
data administrator creates and maintains the basic TDS. (TDS is an abbreviation for a unified 
data structure called the TRIFLUX data structure, which is based on the characterization 
of operational data used in the three field codes. It contains geometrical data structure, 
finite-element data structure, inductors, and material properties.) 

This type of system is useful in solving integrated problems, such as those involving electromagnetic, 
structural, and thermal variables. These are precisely the same problem one faces in designing 
microwave tubes. Clearly, the data administration unit, that was just described, is relevant to the 
questions that we are addressing here. 

An alternative approach to handling the data base for computer modeling would be to store 
the geometry and material information in a "universal" data base to be accessed by all analysis 
programs. The model would be sliced by planes to create a series of cross sections. Each cross 
section would be stored as a bit map, with the "color" of each pixel indicating the material. Material 
properties, such as magnetic permeability, thermal conductivity, or modulus of elasticity would be 
stored in a table. Since meshing is dependent on the type of analysis performed, this information 
would not be included in the universal data base, but rather generated from it by one or more 
mesh preprocessors. Each analysis code would utilize a mesh preprocessor appropriate for the type 
of mesh it requires. While this approach may place a greater load on the mesh generator, it does 
provide a common model data base for all analysis programs. 



The tool described in [2] utilizes the object oriented language, SMALLTALK, to allow descrip- 
tions of device classes, parameterizations and graphical-aided creations and modifications, use of 
part-whole hierarchy and multiple inheritance, in a highly uniform environment. It also serves as 
an interface to finite-element packages. 

The work described in [1] has been extended recently to solving coupled problems that in- 
volve electromagnetic, mechanical and acoustic aspects [3]. The physical domains to be modeled 
span the range of electromagnetics to acoustics, and the solution algorithms include finite-elements 
(electromagnetics and mechanics), and boundary-integral equations (acoustics). A Supervisor FLY- 
STRYD is developed that links the three successive computations of electromagnetic, mechanical, 
and acoustic quantities. Electromagnetic problems are solved using FLUX3D, mechanical problems 
using SYSTUS, and acoustics using ASTRYD. See Figure 1. FLYSTRYD interpolates significant 
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Figure 1: Relationship between the various programs. 

physical quantities on different meshes by means of the shape functions that are defined on each 
mesh. The mesh generator of FLUX3D is provided to SYSTUS through FLYSTRYD. The reason 
for this is that electromagnetic mesh generators are generally more efficient for coupled problems, 
because they must be able to mesh the complex air regions surrounding the body of interest. A 
typical application for such mixed-modeling is the analysis of an oil-filled power inductor for the 
electric utility industry (Figure 2). 

In Figures 3 and 4, we note that instead of just transferring the interesting data from the 
output files of one application software to the input files of another, the supervisor carries out that 
transfer between different meshes and geometries [3]. A consequence of this is that FLYSTRYD 
must handle two data-bases at the same time. Those data-bases contain two different models of 
the same physical problem—for instance, electromagnetic and mechanical models. This allows 
the supervisor to interpolate important physical quantities on different meshes. Interpolation is 
performed, as usual, by way of the shape functions of the finite elements. The difficulty arises 
because of the wide variety of types of elements of the different analysis codes. In this application, 
acoustic elements at the interface are mostly surface elements, while the electromagnetic mesh is 
composed of tetrahedrons. The electromagnetic mesh is usually composed of a great number of 
elements, so as to define correctly thin surfaces as, for instance, air gaps. Because the mechanical 
problem uses more nodal unknowns than does the electrical problem, the number of elements of 
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Figure 2: An oil-filled power inductor for the electric utility industry. 
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Figure 4: A closer look at FLYSTRYD. 



the mechanical mesh is smaller [3]. 
The authors of [3] stress that the mechanical mesh is provided to SYSTUS by FLUX3D through 

FLYSTRYD. Though the mechanical and electrical meshes are different, the mesh generator of 
FLTJX3D appeared to be more efficient when confronted with a complex electromagnetic structure 
as occurs in the power inductor problem (recall Figure 2). This is generally true, because elec- 
tromagnetic finite-element meshes must be able to mesh the air domain, which may have a very 
complex shape. 

When the geometries of the various physical models differ, one has to use projection or extrapo- 
lation techniques to provide the correct data. Projection is used when a physical quantity is defined 
on a source region which does not exist in the target model. On the other hand, extrapolation is 
necessary to define a quantity in a region that did not exist in the source domain. The inductor 
provides a good example; in the mechanical analysis of [3], the cooling and rigidification armature 
of the tank was modeled with linear elements. In the acoustic model, however, the same physical 
structure had to be modeled by a surface of complex shape, because those cooling elemetns proved 
to be important for the acoustic elements. Transmission of normal acceleration from the simplified 
flat tank surface of the mechanical domain to the actual shape of the tank is a good example of 
the use of extrapolation techniques [3]. 

A similar problem is faced in other applications of coupled electromagnetic and mechanical 
problems. In [4], in which one computes mechanical forces of electromagnetic origin, the load 
on the vacuum vessel was obtained using an electromagnetic finite-element code that utilized 763 
triangular elements, with 442 nodes. The finite-element model for the mechanical stress analysis, 
however, used a finer mesh, with different elements. This required that an interface code be 
developed that would allow the calculated electromagnetic loads to be applied to the stress analysis 
model. 

The main feature of this code is a load transfer from a point located on one model to the 
geometrically closest point on another model. This approach is enhanced in order to control some 
integral characteristics of a load field, such as average forces and moments. The mapped load field 
is adjusted in such a way that average forces and moments are coincident, both for the entire models 
and for the same characteristic part of the models. The difference in the force component before 
and after interpolation does not exceed 3.4%, and that for the moments is about 2.7% [4]. 

9/10 



3    ANALYSIS OF CANONICAL PROBLEMS 

3.1 Introduction 

This chapter deals with the central theme of this research, which is to perform numerical experi- 
ments on coupled thermal-electromagnetic problems, and draw conclusions from those experiments. 
Thus, the first question to be raised was to determine suitable canonical problems that would pro- 
vide those answers that we sought. We chose to emphasize thermal-EM problems, rather than 
other coupled problems, because these problems are typical of those that are met in designing 
high-power analog circuit modules, such as T/R modules. Furthermore, the problems chosen could 
be solved entirely through the use of one finite-element code, namely TOPAZ, a three-dimensional 
LaPlace-Poisson solver that was developed at the Lawrence Livermore National Laboratory. 

The problems had to be simple enough that important features would not be obscured by 
unnecessary complexities, yet rich enough to display those features that we decided were important 
to the research. 

3.2 Definition of the Problems 

3.2.1     Problem 1:   Three-dimensional heat-flow with a temperature-dependent ther- 
mal conductivity 

Problem 1, which is illustrated in Figure 5, is based on a model of heat-flow in T/R modules and 

z 
h 
' 1« 

/ 

/ ;»/*r / 
"    2u   i     ' 

/Z=L 

'                      Y 
!                   * 

,' 
v.        -/    -».x 

/ 
T=T 0 

/z=o 

Figure 5: Three-dimensional heat-flow in a body with a temperature-dependent thermal conduc- 
tivity. The lateral surfaces are insulated, while the bottom is maintained at temperature To, and 
the top receives power, P0, through the power dissipation surface, whose area is Auv. 

multichip modules. The four lateral surfaces of a block of material are maintained under adiabatic 
conditions, while the distribution of heat-flux is defined over the top surface (a 'generalized adiabatic 
condition'), and the bottom surface is maintained at temperature T0. The Z-dimension is greatly 
exaggerated in the figure. Though it is not a coupled problem, it was chosen because we were able to 
compute an analytic solution to it, even in the case in which the thermal conductivity depends upon 
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the unknown temperature which makes it nonlinear. The thermal conductivity versus temperature 
profile is chosen to be representative of a number of materials that are of interest to T/R modules. 
This problem also allows us to validate TOPAZ's ability to solve nonlinear problems in three- 
dimensions, and allowed us to become familiar with its use. 

3.2.2    Problem 2: A coupled CEM and thermal problem in free-space 

Problem 2, which is shown in Figure 6, is a simplification of the problem studied in [8]. It is 
basically an 'infinite', parallel-plate, axisymmetric capacitor, whose dielectric is barium titanate 
BaTiC>3. The conductivity of BaTiC>3 is a function of temperature and electric field, as illustrated 
in Figure 7 [8]. Hence, the problem is nonlinear. This, together with the fact that the geometry 
is quite simple, and that both the thermal and electrical parts of the problem can be solved using 
TOPAZ are the reasons for choosing this problem and the next one. 

dV 

dn 

dT 
X -^ -nCT-T  „) = 0 

dn u 

R»- 

V= V, 
dT 

O'dn 

a, X, p,  c,a 

V=0,-^ = 0 
dn 

V- (oVv) = o 
dT V-ayr)+pc-^-=G(Vv) 
dt 

0 = 0(T,E) 

Figure 6: An axisymmetric coupled CEM and thermal problem.  The electrical conductivity is a 
function of temperature and electric field, which makes the coupled problem nonlinear. 

The material constants are as follows: 

Material Constants for B arium Titanate [8] 

a 
(S/m) 

A 
(W/mK) 

cp 
(J/m L3K) 

a 
(W/m2 

K) 
— 4.5 3.00 x 10ö 20 

and the electrical conductivity as a function of temperature and electric field is shown in Figure 7. 

The meshes for the EM and TM parts will probably be distinct; this is especially so if the thermal 
problem is modeled as having a conducting lateral surface, instead of the convective boundary 
condition shown in Figure 6, or if the convection coefficient, a, is large. The mesh for the thermal 
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1«0 

Temperature (°Q 

Figure 7: Electrical conductivity of Barium Titanate as a function of electric field and temperature 
[8]. 

problem in the former case must extend to infinity, with Dirichlet conditions on the temperature 
at infinity. That is, the temperature is specified far from the lateral surfaces. 

The thermal boundary conditions shown in Figure 6 correspond to having having the top 
and bottom surfaces insulated, and the lateral surface cooled by convection, with the convective 
coefficient equal to a. The convection boundary condition is often referred to as a mixed boundary 
condition of the third kind. The condition at the radius, r = 0, is that there is no heat flux in the 
radial direction. The larger a is, the steeper will be the thermal gradient in the radial direction, 
and this will have an effect on the meshing requirements for the thermal problem, even though the 
electrical problem will have a rather uniform field, if the capacitor's height is small compared to 
its radius. 

Homogeneous (Neumann) boundary conditions, in which the normal derivative is specified, 
indicate that the surface is insulated, in the case of a thermal problem, and that there is no 
electric current flowing through that surface, in the case of an electric problem. Hence, these 
distinct boundary conditions for the electric and thermal aspects of the problem, mean that the 
mesh generator-preprocessor must keep track of those parts of the mesh that are used to solve the 
thermal problem and those used to solve the electromagnetic problem. 

This problem requires only a Poisson (or Laplace) solver to compute the electric and thermal 
fields; hence, we can use TOPAZ3D to do the entire coupled problem. 

3.2.3     Problem 3: Another coupled CEM and thermal problem in free-space 

Problem 3 differs from Problem 2 in that the electrical boundary conditions on the top surface are 
more complicated. See Figure 8. All other conditions of the problem are identical to Problem No. 
2. If we ignore any nonlinearities in Canonical Problem No. 2, then the electric field throughout 
the body is virtually uniform, if the radius is much larger than the height; i.e., there is little 
fringing. This means that the thermal loading is also virtually uniform. In Canonical Problem No. 
3, however, we expect that the thermal and electrical meshes will both be more complicated than 
the meshes in Problem No. 2; the grading of the meshes will be more severe near the top electrode. 
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dV 

dn 
= 0 

X — - a(T-T n ) = ° 
dn u 

dn dn 

a, X, p, c,a 

v= v„ 

dn 

V- (aVV) = 0 
dT V-(^VT)+pc-^-=o(VV) 
dt 

a = a(T,E) 

Figure 8: An axisymmetric coupled CEM and thermal problem. This problem differs from Canoni- 
cal Problem No. 2, in that the electrical boundary condition on the top surface is more complicated, 
due to the fact that the electrode does not cover the entire surface. 
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3.3    TOPAZ 

T0PAZ3D [7], a three-dimensional, implicit, finite-element code for solving thermal problems (or 
general Laplace-Poisson equations), was applied to all three problems. There are a number of 
features of T0PAZ3D that make it useful for our problems: 

• it solves for steady state or transient temperature fields on three dimensional geometries 

• material properties may be temperature dependent and isotropic or orthotropic (three mutu- 
ally perpendicular planes of symmetry) 

• time and temperature dependent boundary conditions can be specified:  temperature, flux, 
convection, and radiation 

T0PAZ3D solves the differential equation of heat-flow (generalized Poisson equation): 

pcdt ~ ßx 

subject to the boundary condition: 

r   ßß] ß [    ßß] ß r, de] 
ox. dy rm ßz Zßz. 

+ qg    in ü , ;i) 

kx-^-nx + kx—nx + kx—nx + ßß = 7    on 1 , 
ox ßx ßx 

and initial condition (transient problems): 

ß = e(x,y,z)    at t = to (3) 

The T0PAZ3D finite element discretization uses an 8-node trilinear hexahedral element, that 
can degenerate into a 6-node triangular prism, or a 4-node tetrahedron, as shown in Figure 9 

2 N 

Figure 9: Elements used in the T0PAZ3D finite-element discretization. 
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3.4    An Algorithm for Solving Coupled Nonlinear Problems 

An algorithm for solving the coupled nonlinear problems 2 and 3 is presented in Figure 10, and is 
explained by the following steps: 

Set T 
0 

Extract   a (T„ , E) From NURBS Fit 

Solve Nonlinear EM Problem: a(T„, E), E 

I 
Compute Thermal Load:   a (Tn> E) E 

Figure 10: An algorithm for solving coupled nonlinear CEM/TM problems. 

1. Data Fitting:   Using a constant value of temperature, perform a NURBS (Non-uniform 
Rational B-Spline) fit to the conductivity data as a function of electric field. 

2. Electrical Problem: Solve, V • (<rVV) = 0, with a nonlinear conductivity, that depends 
only upon the electric field: a = c(E). 

3. Thermal Problem: Using a(W)2 as the distributed thermal load, compute the tempera- 
ture, T. Use constant values for A, pc, and a, as given in the table of material constants. 
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Canonical Problem No. 1 

Solution of the problem. We use the transformation 

fT(x,y,z) 
0(x,V,z)= I  k(T)dT , 

■JTo 

which yields Laplace's equation 

V20 = O 

(4) 

(5) 
Note that the equation for 0 is valid regardless of the nature of the thermal coefficient, k(T). 
LaPlace's equation for temperture is valid only in a region of uniform, linear, and isotropic thermal 
coefficient. 

We will apply (5) to an infinite slab, rather than to the canonical problem shown in Figure 5. 
In this problem we require that 6(x,y,0) = 0, and 80(x,y,z)/dz\z=L = heat flux at z = L = 
jo4uv[sm(kxu)/kxu][sm(kyv)/kyv]. 

The two-dimensional spatial transform of 0 satisfies d20/dz2 - l20 = 0. The solution of this 
equation is 0(kx, ky, z) = Iexp(/z) + B exp(-Jz). The boundary conditions are expressed in terms 
of the transform coefficients as 

Ä + B   =   0 

AelL - Be ■IL 
=   -Jo 

Auv s\Ti{kxu) sm{kyv) 
I       kxu        kyv 

The solution of (6) is 

A   =    - 

. Auv sm(kxu) sm(kyv) _lL 

I       kxu        kyv 
1 + e~2lL 

B    = 

which means that 

joAuv 

. Auv sm(kxu) sm(kvv)    1T 
3o—, Y —T-Z—t-e iL 

I       kxu        kyv 
1 + e~2lL 

sm(kxu) sm(kyv) 

"(kX, Ky, Z)   — 
KXU        kyV e-l(z+L) _ e-l{L-z) 

I 

(6) 

(7) 

1 + e~2lL 

Note that 0(1, z) -* -j0Auvz as / -»• 0. The inverse transform produces the final result 

s'm(kxu) s'm(kyv) 

(8) 

A-K* II /C;pW KyV 

1 + e~2lL 

e-l(z+L) _    -l(L-z) 

I e-i(
k**+kyy)dkxdky .      (9) 

A one-dimensional model results if the heat-flux source is applied uniformly over the entire 
surface, z = L. In that case, the transform of the heat-flux approaches j0Ax26(kx)6(ky) as (u, v) -»■ 
(oo,oo). Then the solution, (9), becomes 

eiz) = -joz • 
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A finite-dimensional model is obtained when the lateral dimensions of the chip are bounded 
in the (x,y)-plane. If the length in the x-direction is a, and that in the y-direction is b, then the 
solution that corresponds to (9) is the Fourier series given by 

.  ,2m-K  .   .   .2nn  . 
sm( u) sin( —r-v) 

a b 
2mn 2n-K 

v    y'   '        ab      ^     ^ l + e~2lL 
m=—oo n=-oo ' 

-l{z+L) _ p-l{L-z) 

I 

m       n lib lb       . 

-J2TT( — x + -y) 
e a        b 

(11) 
where I2 = 2?r2 [(m/a)2 + {n/b)2}. Note the similarity between (9) and (11) when dkx = 2ir/a and 
dky = 2-K/b. In fact, the use of a Fourier series representation over a bounded domain of the Fourier 
integral, (9), is precisely the idea behind the FFT. The total heat input is given by P0 = jo^uv. 

a. Application to a Linear Problem. After evaluating 9(x,y,z) from (9), we can solve linear 
and nonlinear heat-flow problems by using (4). First, we demonstrate the procedure on a linear 
problem, in which k is independent of temperature. 

The integral in (4) yields 

k(T)dT=k[T(x,y,z)-T0] , (12) 
To 

from which we get 

T(w) = T0 + fe^ 
k 

(13) 

b. Application to a Nonlinear Problem. A number of materials of interest to T/R modules 
have a nonlinear thermal coefficent, which can generally be modeled over a limited temperature 
range as 

KT) = j^r , (14) 

where K0 and T0 are characteristic for each material [5] [6].   (Do not confuse T0 here with the 
temperature of the thermal bath in Figure 5.) For example, K0 = 32 W/mm, T0 = 80K for silicon. 

Hence, 

Tb 

9(x,y,z)   =     I bk(T)dT 
JTa 

=   ^oln|^-^|, (15) 

from which we get 

Th = T0 + (Ta - To)ee^y^K° . (16) 

The solution for the temperature in Figure 5 is, therefore, 

T(x, y, z) = Toi + (lb - Toi) exp(0(z, y, z)/K01) , (17) 

where T0i and K01 are the two parameters that appear in (14). 
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We have computed the temperature distribution for Figure 5, using the following parameter 
values (lengths in meters, temperatures in degrees K): 

a — b = 6.35 x 10_d 

L = 2.24 x 1(T3 

z = 2.1 x 10"3 

Po = -6.05 Watts 

To = 300°K 

Toi = 80°K 

Km = 3.2 x 104 Watts/meter (18) 

Results for values of x along the line (y = 0,z = 2.1 X 10~3) and for various values of the 
power-dissipation surface parameters, (u,v), are given in Table 1. 

X 
TOO 

u = v = 2.112 x 10~ö « = D = 0.5X 10_a u - v = 0.0 

0 0.30361E+03 0.31701E+03 0.35044E+03 
2.48 x 10-4 0.30360E+03 0.31583E+03 0.32245E+03 
4.96 x 10~4 0.30357E+03 0.31186E+03 0.31127E+03 
7.44 x 1(T4 0.30351E+03 0.30751E+03 0.30703E+03 
9.92 x 10-4 0.30342E+03 0.30513E+03 0.30488E+03 
12.4 x 1(T4 0.30330E+03 0.30374E+03 0.30360E+03 
14.9 x 10~4 0.30314E+03 0.30268E+03 0.30277E+03 
17.4 x 1(T4 0.30291E+03 0.30227E+03 0.30220E+03 
19.8 X 10"4 0.30258E+03 0.30185E+03 0.30181E+03 
22.3 X 10~4 0.30215E+03 0.30156E+03 0.30153E+03 
24.8 x 10~4 0.30184E+03 0.30137E+03 0.30134E+03 
27.3 x 10~4 0.30165E+03 0.30124E+03 0.30121E+03 
29.8 x 10~4 0.30155E+03 0.30117E+03 0.30114E+03 

Table 1: Solution of Problem No. 1 for various values of the power-dissipation surface parameters, 
(u,v). 

c. Solution via TOPAZ We used symmetry to reduce the problem to one-fourth of its original 
size, and introduced a grid consisting of 13 X 13 X 5 (X x Y x Z) nodes. This served as a test of 
the ability of TOPAZ3D to solve nonlinear problems, as will be required in the next problem. 

TOPAZ3D allows a database consisting of eight pairs of temperature versus thermal conductiv- 
ity entries to be used for the interpolation that is required in solving nonlinear problems. Further- 
more, it requires an initial temperature to start the iteration process. We found that the solution 
of this problem was rather insensitive to the starting temperature, but was much more sensitive to 
the distribution of the database entries, as we would suspect, since the quality of the interpolation 
of k versus T depends on that distribution. 

In our first exercise, we used the following data for the database, which was derived from (14): 
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T k(T) 
300° K 145.45 
305 142.22 
310 139.13 
315 136.17 
320 133.33 
325 130.61 
330 128.00 
335 125.49 

In Table 2, we compare the TOPAZ results with the analytic results for u = v 
The initial value for the temperature iterations is 317°K. 

0.5 x 10~3. 

Table 2: Comparison of TOPAZ and Analytic Results. 
X Y Z Node# Topaz (T) Analytical Results (T) 

0 0 2.1E-03 424 316.61 317.01 
0.5E-3 0 2.1E-03 489 311.61 Don't have this point 

(311.79 via interpolation) 

0.992E-3 0 2.1E-03 554 305.08 305.13 
1.49E-3 0 2.1E-03 619 302.78 302.68 
1.98E-3 0 2.1E-03 684 301.84 301.85 
2.48E-3 0 2.1E-03 749 301.34 301.37 
3.175E-3 0 2.1E-03 814 301.13 Don't have this point 

In a second exercise, we extended the T\ 
values for the database: 

T8 temperature range, and derived the following 

T k(T) 
90° K 3200. 
180 320. 
280 160. 
380 106.67 
480 80. 
580 64. 
680 53.33 
780 45.71 

Clearly, the spread in the values of k(T) is much greater than in the first exercise, and the 
computed results (with a starting temperature of 325°K) are shown in Table 3. 

The greatest discrepancy between the analytical and TOPAZ results occurs near the heat source, 
as we might suspect. The difference in the results of these two exercises is due to the fact that in 
the second case we are interpolating values of the thermal conductivity over a much larger range 
than in the first case, and this leads to slightly less accurate values for the conductivity. 

The three-dimensional heat flow problem that was just solved analytically and by means of 
TOPAZ3D, while interesting in its own right, merely served to establish the ability of TOPAZ3D 
to solve nonlinear LaPlace or Poisson problems. The fact that we had an analytical benchmark to 
compare the TOPAZ solution was of extreme importance for the validation effort. The next two 

20 



Table 3: Comparison of TOPAZ and Analytic Results. 
X Y Z Node# Topaz (T) Analytical Results (T) 
0 
0.5E-3 

0.992E-3 

0 
0 

0 

2.1E-03 
2.1E-03 

2.1E-03 

424 
489 

554 

316.076 
311.254 

304.937 

317.01 
Don't have this point 
(311.79 via interpolation) 
305.13 

1.49E-3 
1.98E-3 

0 
0 

2.1E-03 
2.1E-03 

619 
684 

302.700 
301.789 

302.68 
301.85 

2.48E-3 0 2.1E-03 749 301.306 301.37 
3.175E-3 0 2.1E-03 814 301.099 Don't have this point 

problems, however, are the crux of our numerical experiments during this project, and neither of 
them has an analytic solution. Nevertheless, we can apply TOPAZ3D to them with confidence, 
since we have already validated TOPAZ3D's ability to solve nonlinear problems. 
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Canonical Problem No. 2 

a. Analysis of Uncoupled CEM and TM Problems. The solution of the uncoupled thermal 
and electromagnetic problems, even in the absence of any nonlinearities, will give us considerable 
insight into the gridding requirements. This is due to the fact that the convection coefficient a will 
play a significant role in the thermal problem, but not the electrical one, and as a result the grid for 
the thermal problem may differ considerably from the grid for the electrical problem, even though 
the geometry, which is quite simple, is identical for both problems. We will take the radius of the 
disk to be 10mm, and the height to be 2.5mm in the numerical experiments. 

Electrical problem. Let V0 = 10 V in Figure 6; then the potential distribution and electric field 
are shown in Figures 11 and 12. These are the solutions that one would expect for an 'infinite,' 
plane-parallel capacitor. 
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Figure 11:  Potential distribution for Canonical Problem No. 
problems are uncoupled. 
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Figure 12: Electric field distribution for Canonical Problem No. 2, when the electric and thermal 
problems are uncoupled. 

23 



Thermal problem. There are a number of interesting cases to consider for the thermal problem. 
Unlike the electromagnetic problem, the gradients for the thermal problem are predominately in 
the radial direction, and, as will be seen, are strongly dependent upon the convective heat-transfer 
coefficent, a. The ambient temperature T0 = 20° in all of the thermal problems, and we use c^VF)2 

as the thermal load, where V is obtained from the electric calculation (this is the only degree of 
coupling in these otherwise uncoupled problems). 

In Figure 13, we see the isothermal contours under the condition that VQ = IV, a = 20. Note 
that the relative thermal gradient in the radial direction is rather modest. 
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Figure 13: Isothermal contours when V0 = IV, a = 20. The right-hand edge is the exposed surface 
at which convection takes place. 

When the convection coefficient is increased to a = 200, then the isothermal contours become 
those shown in Figure 14. Clearly, convection is playing a more significant role in cooling the slab. 
The relative temperature gradient remains modest, but is three-times as large as in Figure 13. 

The more interesting results seem to occur with a larger electrical excitation, which results in a 
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Figure 14: Isothermal contours when V0 

at which convection takes place. 
IV, a = 200. The right-hand edge is the exposed surface 
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larger thermal loading. For example, consider the results of Figure 15, for which V0 = 10V, a = 20. 
The temperatures are about 100 times larger than those of Figure 13, as we would expect for a 
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Figure 15: Isothermal contours when V0 = 10F, a = 20. The right-hand edge is the exposed 
surface at which convection takes place. The temperatures are about 100 times larger than those 
of Figure 13. 

linear problem in which the excitation is 100 times larger than its original value. The gradient, 
however, is still rather modest. 

The final result for this series of tests is shown in Figure 16. The parameters for this problem 
are V0 = 10F, a = 200. This combination of parameters produces a significant radial thermal 
gradient, and could require a finer mesh in the radial direction. 

These tests indicate that, even though the geometry is quite simple, there is a significant differ- 
ence in the grid requirements between the electrical and thermal problems. Indeed, the electrical 
gradients are in the z-direction, whereas the thermal gradients are in the radial direction. Fur- 
thermore, the thermal gradients are determined by the convection coefficient, a, which controls the 
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Figure 16:  Isothermal contours when V0 = 10F,  a = 200.   The right-hand edge is the exposed 
surface at which convection takes place. These parameters produce a significant thermal gradient. 
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thermore, the thermal gradients are determined by the convection coefficient, a, which controls the 
radial boundary condition. To put it another way, the physics of the problem, not the geometry, 
governs the nature of the mesh and the resulting solution for the fields. 

Even though the thermal load in Figure 16 is exactly 100 times greater than that of Figure 14, 
the resulting temperatures are not 100 times greater, because the convection boundary condition 
is much more effective in cooling the slab. This follows because the convection thermal gradient is 
proportional to the difference between the ambient and actual temperatures. In Figures 13 and 15, 
however, o = 20, which limits the convective flux to smaller values. 

b. Analysis of Nonlinear Coupled CEM and TM Problem. The coupled problem will be 
solved on the axisymmetric grid shown in Figure 17. The numbers to the left and below the figure 
label the rows and columns, whereas the other numbers label the nodes of the grid. 

Z 

10    12   18     24    30    36    42   48     54   60 

9 11 17 23 29 35 41 47 53 59 

7 8 16 22 28 34 40 46 52 58 

5 6 15 21 27 33 39 45 51 57 

2 4 14 20 26 32 38 44 50 56 

1 3 13 19 25 31 37 43 49 55 

66 

65 

64 

63 

62 

61 

Cooled Surface 

9     10   11 

AXI-SYMMETRIC GRID FOR COUPLED EM-TM PROBLEM 

Figure 17: An axi-symmetric grid for the coupled EM-TM problem. 

In applying the algorithm of Figure 10, we start with the trial temperature of 20° C, which 
from Figure 7 produces the following interpolated conductivity data: 

a    =    1.67 for E = 0 
=    1.85 for E = 2200 

2.3 for E = 4400 
=    2.72 for E = 6600 

3.2 for E = 8800 

The first two steps of the algorithm are illustrated next: 

Step I: Solve V • (CTW) = 0 (A nonlinear EM problem) 

a = a(£,T)at T = T0 = 20° C 

Let Ti = 20° C, Ta = 20° C, and a = 20, V0 = 1 Volt 

Result is E = 6.6814 x 102 V/m, uniformally distributed throughout the material 

a{T - 20°, E = 668.14) = 1.72 (interpolated from graph) 

Step II: Solve V • (AVT) = <r(W)2 (A linear TM problem) 
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Ti = 20° C, Ta = 20° C, a = 20, A = 4.5 (independent of T or £) 

thermal load: cr(W)2 = 1.72 x (668.14)2 = 7.68 X 105 Watts/m3 

In order to proceed into the third step, which is another electrical problem, we must decompose 
the original body into ten parts, in order to accomodate TOPAZ3D. Each part corresponds to one 
of the columns of the grid. The third step and its results are listed next: 

Step III: Solve V • (CTW) = 0 (A nonlinear EM problem) 

a — a(E,T(r)) = a{E,r) (electrically inhomogeneous body because of temperature variation) 

rerun problem with original ten sections of homogeneous (but nonlinear) materials 

the results listed below are the input to a fitting program that uses DT-NURBS to interpolate 
the conductivity data 

Results: 

vol. flux density=<7£2 

816.01*816.01*2.118 
815.82*815.82*2.117 
815.21*815.21*2.115 
814.22*814.22*2.111 
812.62*812.62*2.106 
810.42*810.42*2.099 
807.62*807.62*2.091 
804.42*804.42*2.082 
800.62*800.62*2.071 
796.22*796.72*2.059 
794.02*794.02*2.046 

The thermal volume flux density shown in the last column is then input into the next thermal 
problem, and that result gives the input to another electrical problem. The result after that cycle 
and the next few iterations follows: 

Node No.    Temp      E(V/m)    Temp      E(V/m)    Temp      E(V/m)    Temp 

Node No. Temp E(V/m) Interp. 

1 43.49 816.01 2.118 

3 43.44 815.82 2.117 

13 43.31 815.21 2.115 

19 43.09 814.22 2.111 

25 42.79 812.62 2.106 

31 42.41 810.42 2.099 
37 41.93 807.62 2.091 

43 41.38 804.42 2.082 

49 40.73 800.62 2.071 

55 40.01 796.22 2.059 

61 39.20 794.02 2.046 

1 44.665 823.22 46.197 833.215 45.761 830.415 46.034 
3 44.560 823.02 46.090 832.815 45.649 830.015 45.924 
13 44.316 822.02 45.839 831.616 45.389 828.815 45.667 
19 43.920 820.02 45.433 829.616 44.967 826.615 45.250 
25 43.370 817.02 44.869 826.616 44.382 823.416 44.672 

31 42.667 813.02 44.151 822.416 43.637 819.215 43.935 
37 41.812 808.22 43.279 817.415 42.734 814.015 43.043 
43 40.807 802.42 42.259 811.615 41.677 807.815 41.991 
49 39.655 795.62 41.096 804.615 40.472 800.619 40.808 
55 38.358 787.82 39.794 796.815 39.123 792.615 39.477 
61 36.922 783.62 38.360 792.819 37.638 788.415 38.011 

c. Another Analysis of the Nonlinear Coupled CEM and TM Problem. We are going to 
revisit the last problem, but with a new conductivity profile, in which the values shown in Figure 7 
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are all multiplied by 10. This transforms the material into a 'super' Barium Titanate. Furthermore, 
we raised the value of the convection coefficient, a, to be 200. Our interest is in seeing if there are 
significant changes in the way the algorithm of Figure 10 must be applied, or if there are significant 
changes in the solution for the electric and temperature fields. 

When we applied the algorithm in the same manner as before, we found that the convergence 
was unaffected, and that the results, as shown in Table 4, were quite reasonable. The first row 
associated with each node corresponds to the temperature at that node, and the second row the 
electric field. 

Table 4: Results of Iterative Solution Algorithi TL. 

Iteration No. 

Node No. 1 2 3 4 5 21 22 

1 23.2023 27.8183 23.6086 26.9054 23.9475 • ■ 24.9543 25.1567 

68.80 71.72 69.08 71.16 69.28 70.08 69.92 

3 23.1951 27.8122 23.6018 26.8993 23.9408 • • 24.9479 25.1503 

68.80 71.72 69.08 71.16 69.28 70.08 69.92 

13 23.1782 27.7981 23.5858 26.8850 23.9252 • ■ 24.9330 25.1355 

68.80 71.72 69.06 71.14 69.28 70.06 69.92 

19 23.1508 27.7751 23.5597 26.8617 23.8998 • ■ 24.9087 25.1114 

68.80 71.70 69.04 71.12 69.26 70.04 69.92 

25 23.1127 27.7431 23.5235 26.8294 23.8644 • • 24.8750 25.0778 

68.78 71.68 69.02 71.12 69.24 70.02 69.88 

31 23.0638 27.7021 23.4771 26.7879 23.8191 •• 24.8317 25.0348 

68.74 71.66 69.00 71.10 69.22 70.00 69.86 

37 23.0041 27.6521 23.4204 26.7373 23.7638 • • 24.7789 24.9823 

68.70 71.64 68.98 71.06 69.18 69.98 69.82 

43 22.9337 27.5631 23.3535 26.6776 23.6985 • • 24.7165 24.9203 

68.66 71.60 68.94 71.02 69.14 69.94 69.78 

49 22.8526 27.5250 23.2765 26.6088 23.6232 • • 24.6447 24.8489 

68.62 71.56 68.90 70.98 69.10 • 69.90 69.74 

55 22.7608 27.4480 23.1892 26.5309 23.5381 •• • 24.5634 24.7681 

68.56 71.52 68.84 70.94 69.06 • 69.86 69.70 

61 22.6583 27.3621 23.0918 26.4440 23.4430 • • • 24.4726 24.6779 

68.52 71.48 68.80 70.92 69.04 • 69.84 69.68 

Hence, we conclude that the algorithm performs stably over a wide range of material and 
physical parameters for this problem. 

It is clear from these two examples that, though the algorithm converges, it does so slowly. To 
be sure, the results could be useful for some engineering design purposes after only two or three 
iterations, but it would be attractive to be able to estimate the limit of the sequence of iterations. 

There are a number of sequence-accelerating algorithms that exist in the mathematics literature, 
and one that we have applied to this problem is called the ^-algorithm [47], which is defined by: 

Q(") 72k+2 
oOH-1) 72k + 

■Jn+2)       Jn+iy 
°2k        ~ °2k 

«(n+2)   Jn+iy 
°2k+l        a2k+l 

a{n+2) 
°2k+l ZP2fe+l   + P2fc+1 
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a2k+l     ~ a2k-l   ~r 
1 

°2k         ~ °2k 

flW     = 0 

P0      - "n 

In Table 5 we include the results of applying it to the iterations shown above for Node No. 1: 

Table 5: Result of 6-Algorithm Iterations. 

n °0 e™ d(n) An)                An)                An)                An)                An) 
c6              a8              <710             c12             c14 

1 23.2023 25.5301 25.1896 46.7976    25.2572    25.0773    25.0772    25.0785 
2 27.8183 25.3972 26.3146 25.5808    25.0772    25.0773    25.0775 
3 23.6086 25.3042 25.1399 24.9870    25.0773    25.0778    24.8970 
4 26.9054 25.2375 24.7454 25.0774    25.0772    25.1448    25.0262 
5 23.9475 25.1883 25.0401 25.0772    24.9579    25.0097 
6 26.3346 25.1534 25.0753 25.0750    25.0154    25.0789 
7 24.2122 25.1282 25.0785 25.0218    25.0510    25.0604 
8 25.9539 25.1088 25.0601 25.0787    25.0801 
9 24.4269 25.0951 25.0741 25.0499    25.0694 

10 25.6894 25.0859 25.0794 25.0693    25.0638 
11 24.5870 25.0797 25.0700 25.0651 
12 25.5126 25.0759 25.0685 25.0638 
13 24.7083 25.0721 25.0643 25.0638 
14 25.3907 25.0678 25.0638 
15 24.8017 25.0649 25.0638 
16 25.2943 25.0638 25.0638 
17 24.8690 25.0638 
18 25.2291 25.0627 
19 24.9231 25.0618 
20 25.1837 
21 24.9543 
22 25.1567 

Note that the initial data, (n) 9\   , which are the results of the TOPAZ iterations, still differ by 
0.2024 after twenty-two iterations.   After fourteen stages of application of the theta algorithm, 
however, the difference between 6\J and 6\J in the top row1 is only 0.13 X 10-2, which means that 
we have reduced the error by more than two orders-of-magnitude. Because the theta algorithm is 
quite fast, we can recommend it for application to iterations of this sort. This algorithm has been 
applied to the computation of Green's function in electromagnetic problems [48]. 

d.   A final analys is of the nonlinear coupled problem.   In this final study of Canonical 
Problem No.   2, we attempt 1 to force a condition that might require different grids to be used 
for the electrical and thermal analyses. That is, we seek conditions on the various parameters of 

row. 1 Converge nee of the 6 -algorithm is along this 
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the problem that would cause the gradient of one field to greatly exceed that of the other. Our 
approach is purely empirical, but it is guided by the guess that we will need to operate in that 
range of Figure 7 for which conductivity changes rapidly with temperature. This is above the knee, 
which is roughly 100°C. In this region of operation, a small change of temperature ought to produce 
a large change in electric field. 

Our results are summarized as: 

(a) In the range 0°C < T < 100°C, for example, when T is about 60 °C and E is about 1170 V/m, 
the largest change of temperature between two adjacent nodes is 2.7% and the largest change of 
electrical field is about 0.7%. 

Node E(V/m) T{°C) 
1 1181.22 64.3650 

3 1180.82 64.2576 

13 1179.22 64.0070 

19 1176.62 63.5988 

25 1173.22 63.0311 

31 1168.82 62.3031 

37 1163.22 61.4145 

43 1156.43 60.3652 

49 1147.82 59.1550 

55 1138.22 57.7839 

61 1133.62 56.2519 

There is no need to change the grid. 

(b) In the range 100°C < T < 140°C, for example, when T is about 120 °C and E is about a 
few hundred V/m, the largest change of temperature between two adjacent nodes is 3.4%, and the 
largest change of electrical field is about 20%. 

Node E(V/m) T{°C) 
1 340.863 127.087 

3 345.608 126.828 

13 361.463 126.223 

19 390.711 125.238 

25 434.027 123.867 

31 491.436 122.110 

37 563.231 119.965 

43 665.433 117.432 

49 800.233 114.511 

55 954.233 111.202 

61 1036.05 107.504 

In this case, it may be necessary to use two different grids to solve the electrical problem and the 
thermal problem. 

Now we consider the key parameters that may force one to use different grids. According to 
the results that are tabulated above, we know that when the temperature is above 100°C, a slight 
change of temperature will cause a large change of electric field, and this is depends solely on the 
non-linearity of the material. One must consider several factors in order to get the temperature 
above 100°C for this particular material, but the thermal load (a(E,T)*E2) is the most important 
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one. The ambient temperature, initial temperature, and convection coefficient also play key roles 
in this problem. 

For instance: 

(a) When the thermal load is about 3.0 X 106 to 4.0 X 106, we need to consider using different 
grids. It doesn't matter what the ambient temperature is as long as the convection coefficient 
is small enough to keep the temperature in the range between 100°C and 140°C. For this 
particular type of material, if we rescale the electrical conductivity a by a factor of 1.67, the 
thermal load will then be in the range of 3.0 x 106 to 4.0 x 106, and the results shown in the 
second table are obtained (a relatively big change in .E-field and small change in T). 

(b) If the ambient temperature is in the region of 100°C to 140°C, and if the convection coefficient 
is large enough to keep the temperature within the body close to the ambient temperature, 
then it may be necessary to use different grids for the T and E calculation. Ambient temper- 
atures, however, are normally around 20°C, so that this case is rare. 

(c) In conclusion, therefore, the question of whether or not to change the grid for the E and 
T calculation depends upon the non-linearity of the material for a problem with a simple 
geometry, such as Canonical Problem No. 2. For Canonical Problem No. 3, however, the 
situation is very different and further studies should be done. 
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Canonical Problem No. 3 

a. Analysis of uncoupled CEM and TM problems. As before, we gain some insight into 
the nature of the coupled problems by first running uncoupled problems, except that we take the 
thermal loading to be cr(Vy)2, where V is computed from the pure electric problem. The upper 
electrode has a radius of 3mm. 

Electrical problem. Let V0 — 1 V in Figure 8; then the potential distribution and electric field 
are shown in Figures 18 and 19. We attempt to produce a more accurate solution by putting more 
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Figure 18: Potential distribution for Canonical Problem No. 3, when the electrical and thermal 
problems are uncoupled. 

radial cells in the vicinity of the upper electrode; the result is shown in Figure 20. One must 
generally resort to special techniques, such as the use of adaptive optimal gridding, based upon a 
posteriori error estimates, or the use of special basis functions in order to accurately reproduce the 
electric field in the vicinity of the edge of the upper electrode. 
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Electric Field: Problem 3, VO = 1 
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Figure 19: Electric field distribution for Canonical Problem No. 3, when the electrical and thermal 
problems are uncoupled. 
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Thermal problem. The thermal problem was solved using the same mesh of Figures 18 and 19. 
The temperature profile for the case in which Vb = IV, a = 20 is shown in Figure 21, and for 
VQ = 10V, a = 20 in Figure 22. Clearly, even though the temperature profile in Figure 21 is not 
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Figure 21: Isothermal contours when Vb = IV, a = 20 for Canonical Problem No. 3. The right- 
hand edge is the exposed surface at which convection takes place. These parameters produce a 
modest thermal gradient. 

uniform, the radial gradient is modest, in contrast to the result of Figure 22, which shows a much 
greater gradient. This result is dependent entirely upon the excitation voltage, not the geometry, 
which is the same in both problems. 

b. Analysis of coupled CEM and TM problems. The solution of this coupled problem is 
obtained in precisely the same way as Problem No. 2, the only difference being that the initial 
body must be decomposed into Ne bodies, where Ne is the number of elements in the thermal 
mesh. This is due to the fact that the electric field is no longer relatively uniform with z, as it was 
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Figure 22: Isothermal contours when V0 = 10F, a = 20 for Canonical Problem No. 3. The right- 
hand edge is the exposed surface at which convection takes place. These parameters produce a 
significant thermal gradient. 
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in Problem No. 2. This has the disadvantage of requiring more preprocessing of data, in order to 
continue the iterations. Of course, this would be done with a 'supervisor' in a production code. 

The grid that is used to solve the coupled problem is shown in Figure 23. It is identical to that 
used for Canonical Problem No. 2, except that the upper electrode extends only to node 18, and 
nodes 10 and 11 are interchanged. The slab is 2.5mm thick, and its radius is 10mm. The upper 
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Figure 23: Mesh for Canonical Problem No. 3. 

electrode has a radius of 2mm, in contrast to the situation in Paragraph 4.1, for the uncoupled 
problem. 

The only calculation that we will report for the coupled problem concerns the application of 
the theta-algorithm for the temperature of Node 1. The results are shown in Table 6. 

Table 6: Result of fl-Algorithm Iterations for Node 1. 

n u0 
0<n) 

1 27.3913 24.5809 24.6234 

2 22.3278 24.4499 

3 26.6362 24.3397 

4 22.4491 24.2467 

5 26.0754 

6 22.5634 

7 25.6480 

Note that after only four iterations, the ^-algorithm has reduced the estimated error by two 
orders-of-magnitude. 

In order to check the convergence of the solution with mesh fineness, we doubled the number 
of cells in the grid, and computed the change in the electric field at nodes 18 and 17 in the original 
grid. (There is no coupling between thermal and electrical variables in this test.) The electric field 
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at node 18, which is at the edge of the upper electrode, increased by 35%, whereas the field at 
node 17 decreased by only 7.4%. The field values at nodes 1, 2, 5, 7, 9, and 11, i.e., along the axis 
of symmetry, changed by amounts varying between 1.6% and -5.8%. This indicates that the field 
varies smoothly in space, except at the edge of the upper electrode, as we know from theoretical 
considerations. 

The optimum grid for this problem would have enough cells around the edge of the upper 
electrode, such that the error distribution throughout the entire grid is uniform. This matter is 
discussed in more detail in Chapter 4. We can summarize this point in another way by comparison 
with the mesh required for Canonical Problem No. 2. The geometry ofthat problem is identical to 
that for this one, except that the boundary conditions are significantly different, and this induces 
considerably different mesh requirements. 
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4    RELATED MATTERS 

The driving issue of this research has been associated with computational matters for coupled 
problems, especially those relating to the reusability of grids and grid-related data. Up to this 
point, however, we have not spent a great deal of time worrying about the structure or nature of 
the grid, especially about refining it in order to improve the accuracy of the solution. Indeed, that 
was not a part of the research aims. The grid is, of course, crucial to the solution of any discretized 
functional equation, especially so when the discretization involves the finite-element method. A 
poor grid may not even allow the analysis modules to work. Thus, in this chapter we turn our 
attention to a number of related matters, especially those involving the grid, and use this chapter, 
together with Chapter 3, as a jumping-off point for proposing future work, as described in Chapter 
5. 

The first part of this chapter consists of a summary and literature search that deal with a number 
of things, such as the display of scalars and vectors, to a review of hardware and software, to the 
very important subject of mesh generation and error analysis. These topics are of fundamental 
importance in relating computational electromagnetics to computer-aided engineering and design. 
The second part of the chapter deals with the subject of extrapolation of solutions to reduce the 
effects of truncation error caused by meshing. 

4.1     CEM Computational Models and Mesh Generation 

Several sophisticated numerical algorithms are introduced in [9]: adaptive meshing, multigrid, 
and semi-implicit schemes. Adaptive techniques require eleborate and complicated data structures 
and must attempt to minimize the computational overhead of the error estimation and of the 
implementation of the adaptive process. The adaptive methods consist of refining the mesh size h 
(/i-method), increasing the density of grid points by relocating nodes (r-method), and increasing 
the order, p, of the interpolating polynomial (p-method), or combinations of these techniques. 
Adaptive local grid refinement techniques, both fixed and dynamic, afford enormous potential for 
local accuracy improvements in many large-scale problems. 

Multigrid methods, or multilevel methods, are a class of iterative algorithms designed to im- 
prove the convergence rate of relaxation methods for solving a set of linear equations Ax = b. 
Conventional relaxation methods, such as Jacobi, Gauss-Seidel, and SOR, are more effective at 
eliminating error components at certain frequencies of the spectrum of the grid operator. Multi- 
grid methods try to improve the convergence rate by constructing a grid operator that eliminates 
those frequencies which the relaxation method does not handle well. Multigrid methods arose from 
applications posing an elliptic PDE on a spatial domain, where discretization of the PDE resulted 
in a linear set of equations. The domain of the set of equations has direct physical relevance: it 
represents the underlying physical grid. Thus, the term geometric multigrid2. 

Multigrid algorithms solve problems by starting with a fine mesh, then sequentially coarsening 
it through several levels, and then returning to the fine mesh. On each mesh a few "passes" or 
iterations are used to get approximate solutions, which are then interpolated or restricted to the 
next mesh. Multigrid algorithms process a cycle from the fine to the coarse grids and back to the 
fine grids, but on each grid level the problem can be treated in parallel similarly to the parallel 
algorithms for "simple" grids. Parallel grid algorithms are usually iterative methods that calculate 
the value of a grid function at one point as a function of values defined at neighboring points (also 
called relaxation).  The iteration can be characterized as Jacobi-type, wherein the new iterate at 

2 personal communication from Chris Doyle 
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a grid point is calculated by using only old neighboring values, or Gauss-Seidel-type, which use 
already calculated new neighboring values. Jacobi-type methods are completely parallel since the 
calculation in each grid point can be performed independently. If the number of grid points is N, 
then the parallelism is also N. The parallelism of Gauss-Seidel methods depends on the order in 
which the grid points are processed. 

High speed computers, with large memories, together with improved numerical techniques, 
have led to the solution of ever more complex and higher-dimensional problems. Because of this, 
computer graphics has come to play an important part as a post-processor. In order to address 
increasingly larger volumes of output data, and because of the difficulty of grasping solutions 
expressed as multidimensional fields, we require highly efficient and simple means of visualizing the 
data. Computer graphics using suitable shapes and colors (hue and lightness) can assist visulization 
of output data, and interactive computer graphics makes the best use of human perception. 

Paper [10] discusses the display of distributed scalars and vectors, especially electric and mag- 
netic fields. As an example of distributed multi-scalars, one may display the relationship between 
the distribution of eddy-currents caused by a magnetic field and the magnetic flux density distribu- 
tion by displaying the eddy-current by arrow length, and the magnetic flux density by the color of 
each arrow. A stereograph is very useful for displaying vectors distributed in a three-dimensional 
field. Arrows and stream lines with pseudo-colors are useful. For example, pseudo-colors on the 
flux lines give the value of magnetic flux density, and the tangent at each point of the line gives the 
direction of the flux line. One can also use graphical techniques to display such things as errors due 
to the choice of the unknown variable, the approximation functions, and on the display techniques, 

themselves. 
The authors of [11] present an analysis of the present and prospective generation of computer 

hardware and system software for computer-intensive applications of computer-aided analysis and 
design. They conclude that of the three classes of machines: mainframes and superminicomput- 
ers; supercomputers and minisupercomputers; and workstations, superworkstations, and personal 
computers, the latter will assume the dominant role in computer-aided design and analysis. This 
is due to the intrinsic matching with an interactive environment, the improvements in performance 
already available and coming (this was written long before the announced 100 MIPS worksta- 
tions, which are to be out by the end of this year), and the very significant decrease in prices and 
price/performance ratios. Of course, these machines are possible because of the availability of faster 
CISC and/or RISC processors, and because they are designed with Cray-like vector features and 

low-level parallelism. 
A CAD user should be concerned with two things above all: a careful benchmarking of his 

machine, to evaluate realistic performances, and the quality of the system software. The authors 
of [11] suggest that the Livermore Kernels, rather than the LINPACK benchmark, is the most 
representative environment of an electromagnetic analysis code. This benchmark is built using 
a set of the most computationally intensive kernels of scientific programs in use at the Lawrence 
Livermore National Lab. The authors further conclude that manufacturers of hardware will consider 
the key feature in selling their products to be such software-related matters as operating systems, 
the compilers, and utilities, such as graphics library/device-drivers sets. 

Finally, massive parallelism will be applied to solve specific analysis problems, with massively 
parallel systems becoming more readily available. 

Adaptive meshing is an active field of research in computational electromagnetics, just as it is 
in computational fluid dynamics, and computational mechanics. It is motivated by the need to 
produce more robust and user-friendly finite-element analysis environments. For CEM analysis, 
the range of differential equations and material properties of interest in practical applications is 
very wide, so that proposed algorithms should be as robust, reliable and flexible as possible if they 
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are to be used in general purpose electric and magnetic analysis codes. An additional difficulty 
for these specific areas is the very significant geometrical complexity of a large number of devices 
of practical interest. This poses additional challenges to adaptive meshing algorithms, that should 
be able to cope automatically with intricate interface boundaries, that separate regions that often 
contain very different material properties, including nonlinear materials. The remaining papers 
deal with these, and other issues. 

Paper [12] describes a 3D automatic mesh generator that is used in the Laplace-solver, Phi3d. 
Phi3d uses the boundary-integral method, wherein potentials and fields are computed from fictitious 
source densities uniquely situated on the surfaces of homogeneous regions of space. Thus, only the 
surfaces need to be discretized, and the mesh generator that does this discretization is based on a 
combination of two different main algorithms: 

• automatic generation of triangles for plane surfaces, as is usually done in 2D, including geo- 
metric improvements and refinements, 

• automatic generation of quadrangles for curved surfaces, using linear Coons patches. 

Furthermore, some simple surfaces are directly meshed when generated from a data base of primitive 
objects, such as spheres, cubes, cylinders, etc., by translating such a primitive surface along a line, 
or by rotation around an axis. 

Paper [13] deals with the automatic generation of 3D meshes with a prescribed boundary. The 
algorithm generates a tetrahedral mesh using a variant of the Delaunay-Voronoi technique for two- 
dimensions. A quality factor for each element of the mesh is introduced, which is a measure of the 
ratio of the radius of the largest inscribed sphere within the tetrahedron, to the longest edge of the 
tetrahedron. This quality factor should be close to unity for a mesh of good quality. 

A new method for generating tetrahedra for open-boundary, 3D, finite-element problems in 
magnetic field analysis is presented in [14]. A topological mapping is used for the multi-media 
region, which includes cores and coils, and a multi-layer space-dividing technique for the surrounding 
air. Typically, the interior region, which contains different media, requires a dense, complex, mesh, 
whereas the mesh in the exterior region is usually much simpler, and uses coarser elements near 
the ultimate boundary. 

The aim of [15] is to discuss the sources of error and their influence on the different field 
quantities of a finite-element calculation, and to show some methods to increase and control the 
accuracy of the solution. A finite-element solution that is based on the use of scalar and vector 
potentials may have a number of error sources: 

• The approximation of the potential causes an error according to the order of the shape 
functions used. 

• The finite-element approximation of the field does not generally satisfy the condition VB = 0, 
when the scalar potential is used, or V X H = 0 when the vector potential is used. In the 
second case, due to this boundary error, the tangential component of the magnetic field 
strength, H, is not continuous on the boundary of two adjacent elements. 

• Due to the discretization of the problem area by means of finite elements, large errors may 
occur if the mesh is either too coarse, or unsymmetrical. 

• There exists an error related to the residual left over after the solution of the system of 
equations. This error depends upon the computer precision and the method used for the 
solution of the equation. 
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• In post-processing, approximations are used to evaluate the potentials and to derive local 
(magnetic induction and field strength) and integral (magnetic energy, flux, and forces) field- 
quantities. These approximations can also be sources of error, as, for example, in calculating 
forces by means of the Maxwell stress-tensor. 

• Besides these basic errors of the solution method, errors may be introduced also in the model- 
ing process: the location of the external boundary can affect the internal field if its distance 
to the internal field region is too small; saturation effects in iron requires a sufficiently detailed 
mesh in critical regions. 

It is found that integral quantities, which are computed directly from the potential, such as flux 
and energy, are as accurate as the approximation of the potential. Local quantities, or integral 
quantities, such as induction, magnetomotive force, mechanical forces, and losses, which are derived 
from derivatives of the potential, i.e., from local fields are more sensitive to errors, not only in the 
potential, but also to discretization and boundary errors. 

These errors can be reduced by using higher-order elements, or by using adaptive mesh refine- 
ment processes. A local adaptive refinement technique, restricted to sensitive regions, is developed 
in [15]. In this way accuracy of the local quantity is achieved with an effort that is less demanding 
than overall refinement of the mesh. 

In [16] adaptive mesh refinements are incorporated into the boundary-integral method to pro- 
duce accurate calculations of electromagnetic fields. The boundary-integral method requires a 
discretization of physical boundaries, only, and efficiently solves unbounded field problems. It is 
important to establish adaptive mesh refinement algorithms that are based on proper error esti- 
mates. This has been done for finite-elements to regulate local error fluctuations (indeed, that is 
the subject of many of these papers). Because the finite-element method is based on differential 
equations, its local error at any point can be easily estimated from the calculated results around 
the point. The error for the boundary-integral equation, however, is directly affected by all other 
calculated results along the entire boundary, and only a few results for adaptive mesh refinement 
have been reported so far. The authors of [16] introduce two adaptive mesh refinement schemes 
for the boundary-integral method, which allow the accurate calculation of electromagnetic fields in 
unbounded domains. Refinements are based on local error estimates of the calculated potential and 
its normal derivative on the boundaries. The simplest error estimates may be differences between 
two adjacent potential values and their normal derivatives. If either difference is greater than a 
prescribed tolerance, then a new node is added in the element containing the two adjacent noeds. 
The error at this node is calculated from the integral equation. These schemes are applied to the 
analysis of striplines with edge singularities. 

The preceding paper used potential values at adjacent nodes as a local error estimator; in [17] 
a sensitivity analysis is developed that is based on the perturbation of local energy with nodal 
position, and this is used as the criterion for mesh refinement. This is a reasonable error criterion 

because: 

• the sensitivity is higher in the region where the field is not sufficiently smooth, i.e., where 
the interpolation error is greater. The sensitivity is higher where the change of flux density 
with nodal displacement is considerably different in the elements surrounding the node under 
study, or in the deformed elements due to the displacement of this node. In the other case 
the sensitivity is zero if the changes in flux density vanish in the deformed elements, which 
is the case for linear potential distribution. It is evident that the sensitivity measures the 
change of the potential gradient instead of the potential; 

• the sensitivity is higher in the region where the energy density is greater; 
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• the larger the element, the higher the sensitivity to nodal position. 

The adaptive mesh generation algorithm of [17] is: 

1. define the initial discretization points on the boundaries: 

2. generate the mesh by Delaunay triangulation; 

3. optimize the position of the interior nodes; 

4. solve the problem; 

5. calculate the sensitivity of the nodal position for all nodes; 

6. determine the position of additional nodes; 

7. insert successively the new nodes in the preceding mesh; 

8. repeat steps 3 to 7 until the change of energy is lower than the given precision. 

The results presented in [17] show that this algorithm consistently reduces the number of nodes for 
the final solution by a factor of two to three. 

While adaptive refinement methods are well accepted in the solution of the Poisson equation of 
potential theory, little work seems to have been reported in solving the wave equation, or equations 
derived from it, such as the Helmholtz equation for nonzero frequencies. In [18] this question is 
addressed in the context of solving the scalar wave equation V2</> = k24>. Some significant differences 
exist between solving this equation using finite-elements and the Poisson equation. For example, 
the finite-element matrix equation takes the form: 

Ax = ATx, 

where A is an eigenvalue parameter. These eigenvalue correspond directly to the wavenumber, k, 
identified in the wave equation. 

To apply adaptive mesh generation, whose twin goals are economy and confidence in solution, 
we may examine the error in the eigenvalue, A, or the eigenvector, x. A peculiarity of waveguide 
analysis is that we are usually not interested in all modes (eigenvalues) of a guide, but only in the 
dominant mode corresponding to the lowest eigenvalue, and sometimes also in the next for design 
reasons [18]. But the requirements of economy are different for any two modes. For example, a fine 
mesh close to the lower left corner of a rectangular guide may be required to compute the TMu 
mode accurately, because that is where the field is concentrated, but such a mesh will not help in 
computing the TM51 mode, because the electric field components are virtually unchanged in that 
region [18]. Thus, we must identify the particular mode (or modes, as the case may be) that we 
seek, and apply the error criterion to the eigenvalue or eigenvector associated with it. 

Paper [18] develops two adaptive schemes for eigenvalue problems. The first examines the 
change in the eigenvalue of the mode we are interested in, and repeatedly refines the mesh until 
the change is acceptable. This scheme is reliable, but not as econimical as the second. The second 
scheme examines the change in the normalized eigenvector from mesh cycle to mesh cycle, and 
accordingly refines the mesh at selective locations where the change is unacceptably high. This 
procedure accurately extracts a particular mode of the guide at great economy, as reported by the 
author. 

Papers [19], [24], [31] present an analysis of both comparative and absolute performances of a set 
of adaptive strategies for mesh refinement in CEM. This analysis is performed by implementing, in 
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a uniform preprocessing environment, a number of adaptive meshing algorithms. These algorithms 
are used to solve a test case, that has an analytic solution, and features some of the most challenging 
situations for adaptive schemes, such as assessing both the visual quality of the resulting mesh and 
the difference between the real error of the solution and the estimate of the error provided by the 
methods. 

The analysis, which uses triangular, first-order elements, is restricted to the use of a posteriori 
error estimators, that require a single problem solution and working out the error estimator on 
an element-by-element basis. These procedures are judged to be more reliable in implementation, 
since they minimize conceptual coding complexities in complicated geometries, when compared to 
procedures that are based on the estimate of a higher-order solution on the support area of each 
node. These procedures also provide a greater robustness in cases of practical interest with several 
different materials. 

In particular, three methods have been identified as providing the most reliable and consistent 
results, namely the "local error problem" algorithm, the "complete residual" algorithm, and the 
"field difference" algorithm. The results of [19] are that the complete residual method, which is 
based on the estimate of error in the solution, paroduces meshes notably less thickened around 
sharp edges, and with fewer nodes in general. This provides acceptable overall meshes, but not 
meshes that are particularly optimized for the evaluation of local quantities. Much better results 
for the estimation of local values of gradient or curl of the solution have been obtained with the 
field difference procedure and with the local error problem approach. The latter procedure may be 
tuned, but at the cost of computational time. 

In the mesh refinement algorithms developed in [19], [24], [31], the key quantity that determines 
which elements are to be refined is the refinement indicator 77; on the element ft;, and is defined by: 

Vi = + U       KW.||~||2' \  EjLiHVfiill2   v      'E?=il|fi;l 

The quantity e; is the estimated error on the finite-element solution «;, N is the total number of 
elements in the whole domain ft, and K is a weighting factor to be selected in the range 0 to 1. This 
allows one to define 77; in terms of the estimated error on the solution, on its gradient (or curl), or 
on both. Another tuning parameter, 0 < a < 1, is defined by 

77; > CrTjmax, 

where r]max is the maximum value of the refinement indicator among all elements. The parameters 
K and a are tuned during the various tests. 

Papers [24, 31] apply the strategy of [19] to an electrostatic potential problem for an L-shaped 
two-dimensional region, having Dirichlet and Neumann boundary conditions. This problem has an 
analytical solution, which is compared to the finite-element solution. 

Paper [20] returns to the subject of boundary-integral equations, and considers the application of 
knowledge-based methods for constructing meshes. Because the boundary-integral method solves 
for sources located on the boundaries between three-dimensional regions, it follows that a two- 
dimensional mesh generator, such as those used in finite-elements, is required. 

The application of knowledge-based methods, such as expert systems, is effective in those prob- 
lems which require experience and skills. In particular, when generating triangular meshes, there 
are many rules which must be applied when approximating unknowns, arranging boundary surfaces, 
considering the geometries of boundary surfaces and the boundary conditions of the computational 
model.   Furthermore, know-how may be added to these rules, which will result in flexibility and 
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expandibility. In [20] a mesh generator using a knowledge base which consists of these rules is 
proposed. The knowledge base is separated from the execution module and described by LISP in 
order to achieve the flexibility and expandability. Furthermore, the kernel of the mesh generator is 
coded in LISP, because LISP is more flexible and expandable than procedural languages, such as 
FORTRAN and C. When the functions which are called according to the rules in the knowledge 
base are prepared, the kernel carries out meshing by a production system using the knowledge base. 
In addition, a data structure which is suitable for LISP is proposed in order to treat the complex 
data structure in the meshing processes. The triangular-mesh generator described in [20] consists 
of the kernel, knowledge-base, functions for the mesh generator, and data for the computational 
model. 

The next three papers continue the theme of knowledge-based and data-based methods for CEM. 
Knowledge-based programs would appear to be able to provide a high-level capability, which, when 
coupled with conventional numerical analysis routines, can produce a computer system capable of 
aiding a designer in the exploration of design space. In fact, software tools have been developed [21] 
which permit an experienced designer to transfer his expertise regarding the analytical model of a 
device. The interesting factor is that the transfer and the execution of knowledge are both performed 
explicitly, that is, symbolically. Knowledge is declaratively represented instead of programmed 
procedurally. This facilitates the creation of design tools, usually referred to as "expert systems," 
to be used by non-expert designers [21]. 

One component of knowledge that lacks explicit representation in present-day expert systems 
for magnetics is that of bounds on parameter values [21]. In realistic designs, parameters rarely 
have definite values associated with them; rather, they are likely to be given along with some 
tolerance, or perhaps a discrete set of allowable values, as, for example, lamination thicknesses in 
an electrical machine. Although an expert designer may impose restrictions on the possible range of 
values a parameter may have, the complete implications of these restrictions are usually unforeseen 
by the expert, and this may lead to an inconsistent knowledge base. If a design is tested simply 
in a numerical analysis system, it is unlikely that any inconsistencies in the specification, such 
as an impossible lamination thickness, would be identified-it is the job of the expert designer to 
recognize this problem. Propagation of interval labels (interval inference) can enhance the design 
process by uncovering such inconsistencies at the modeling stage. Similarly, end-users would benefit 
from interval specifications on design parameters because the solution space for valid designs is 
effectively reduced. The value bounds provide the non-expert with information allowing him to 
proceed towards the desired goal much more quickly. 

Paper [21] describes a calculus of interval mathematics and applies it to the development of 
an expert system for computer aided design of electromagnetic devices. Interval mathematics was 
introduced in 1966, and is now a well-established subject [21]. It has traditionally been used for 
bounding errors due to machine arithmetic and errors propagated from inexact data in numerical 
methods. The premise is that the computed interval with finite precision endpoints is a bounding 
box for the actual infinite precision result. A complete package that performs interval mathematics 
must be capable of performing set-function operations, such as union and intersection, as well as 
the usual mathematical (algebraic) operations. The formulas given below are typical of interval 
mathematics: 

A + B = [a1 + b1,a2 + b2] 
A - B = [ax - 62,a2 - 6X] 
A-B = [min{a16i,aiö2,a26i,a2ö2}, max{a161,ai62, a26i, a262}] 
A/B = [aua2]-[l/b2,l/b1], 

where A = [ai,a2], B = [61,62], and / is not defined if 0 G [61,62]- 
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The use of interval techniques is not restricted to expert systems, however. They may also find 
applications in low-level numerical algorithms for electromagnetics [21]. 

When finite-element, or finite-difference, methods are used to solve open-boundary problems, 
one has the added inconvenience of establishing a "boundary at infinity" to close the solution space. 
This causess a lot of wasted computation, so if one can establish an efficient way of arranging the 
computations, one will have gained something. This is especially true if the scattering body (or the 
object under consideration) is changed; there need not be a corresponding change in the conditions 
at infinity. Hence, if the problem is solved once, one may be able to establish a data-base that 
represents the conditions at infinity for other variations of the problem. Paper [22] describes such 
an arrangement. 

In [23] a unified data-base (DB) for data exchange among field computation and CAE programs 
is presented. The DB consists of four units, by function: 

1. The pre-processing unit contains: 

• a commercial solid modeling system called Geomod. In Geomod, objects can be created 
by constructive solid geometry, by sweeping and skining techniques. 

• a commercial mesh generating system, Supertab, which is oriented towards mechanical 
engineering. Supertab is capable of meshing complex geometrical shapes and sculptured 
surfaces. 

• an automatic mesh generator for electromagnetic field design. This generator works on 
polyhedral geometries, and is capable of meshing non-convex regions. 

• an object manager which provides a set of operations for maniupulating data stored 
in the database. These operations enable information to be treated as objects instead 
of FORTRAN arrays. This frees users from the internal representation of objects, and 
enables designing at a high level of abstraction. 

2. The processing unit contains three established field processors. They are: 

• Flux3d, which uses the finite element (FE) method. It solves non-linear and linear 
magnetostatic, electrostatic and magnetodynamics problems. 

• Phi3d, which uses the boundary-integral equation (BIE) method. Phi3d can solve linear 
electrostatic, magnetostatic and high-frequency magnetodynamics problems. 

• Trifou, which uses a mixed FE-BIE method. Trifou uses edge elements for solving linear, 
low-frequency magnetodynamics problems. 

3. The post-processing unit is made up of two post-processors. Current efforts consist of 
developing a common post-processor for all three field codes. 

4. The data administration unit is an interactive data-structuring module, through which the 
data administrator creates and maintains the basic TDS. (TDS is an abbreviation for a unified 
data structure called the TRIFLUX data structure, which is based on the characterization 
of operational data used in the three field codes. It contains geometrical data structure, 
finite-element data structure, inductors, and material properties.) 

This type of system is useful in solving integrated problems, such as those involving electromagnetic, 
structural, and thermal variables. These are precisely the same problem one faces in designing 
microwave tubes. 
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In [25] a mesh refinement algorithm for arbitrary tetrahedral meshes has been developed. The 
algorithm is suitable for use in a variety of adaptive mesh refinement schemes, and has the following 
features: (1) it can be applied to both optimal (Delaunay) and non-optimal meshes, (2) new nodes 
are inserted using a "perturbed" edge bisection to prevent crossing edges, and (3) the Delaunay 
ceiterion is applied locally over each tetrahedron selected for refinement, the advantage of the 
local Delaunay subdivision is that it decouples the subdivision process which reduces computation 
time. The method has been successfully applied to several magnetostatic problems modeled using 
first-order tetrahedra, and has produced refined meshes of over 215,000 elements. 

The mesh refinement process consists of three steps: First, the areas of the field region requiring 
refinement are identified either manually or automatically using a suitable error criterion. Second, 
the elements in the identified areas are subdivided in a manner which preserves the essential fetaures 
of the original mesh. Finally, the refined mesh is solved using the finite-element method. This 
process is repeated until the required accuracy is achieved or the computational limits are reached. 

The first-order tetrahedra used in [25] maintain continuity of the normal component of magnetic 
induction between elements, but not the tangential component of the magnetic field intensity. The 
violation of the continuity of tangential H at the element interfaces is used as a measure of the 
local smoothness of the field, from which the error measure for remeshing is derived. Two forms 
expressing this smoothness are examined. The first is in the form of a current sheet at the element 
interfaces, which is a consequence of the discontinuity in tangential H, and the second is an energy 
measure obtained by "weighting" these current sheets with the corresponding vector potential 
solution. 

In [26] the mesh generation process for two-dimensional problems is discussed, and a new mesh 
generator based on expert-system methods is presented. For every corner of a closed polygon, 
the corner-angle conditions are analyzed and different types of mesh primitives are generated. In 
every step of the mesh generation process, the conflict with the existing mesh is recognized, and an 
optimal action is chosen. Thus, any area surrounded by a polygon even with a very sophisticated 
contour can be successfully covered with a basis mesh. This mesh is further improved by side- 
swapping and node-shifting algorithms, both optimizing the shape of the elements and the location 
of the nodes. Problem-oriented adaptive mesh refinement algorithms provide further optimization 
according to suitable criteria. 

The rules for forming the mesh are: 

• The number of elements should be as small as possible for a desired accuracy of the solution. 

• 

• 

The triangles should differ as little as possible from equilaterals. This provides the required 
high quality of the approximation. 

A constant decay of the density of elements should be provided to bridge the gap between 
areas with a coarse density of node-chains and areas with high density. 

Existing mesh generators may be classified into two categories: Interpolation mesh generators, 
which construct a mapping from a canonical domain onto the structure to be analyzed. These 
require an initial gross partitioning of the structure into simpler sub-blocks, and also have difficulty 
in carrying out local mesh refinement [27]. The second category, automatic triangulating mesh 
generators based on Dirichlet tessellation and dual Delaunay triangulation, work well for two- 
dimensional applications, and easily accommodate local mesh grading, but have problems, such as 
slivers, degeneracy, and exterior boundary alteration for three-dimensional applications [27]. These 
generators also rely on user-supplied nodal points on the surface of the structure, and have diffulty 
imposing local mesh restrictions which are not compatible with the Delaunay criteria [27]. 
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Researchers have turned to artificial neural networks in an attempt to reduce these excessive 
demands. Work in the area of neural networks has demonstrated simple, self-organizing, topology- 
preserving mappings that have asymptotic characteristics quite similar to the Dirichlet tessellation. 
The authors of [27] present an automatic mesh generator, SOFT (Self-Organizing Finite-element 
Tessellation), that is based on self-organizing neural networks. Both interpolation mapping and 
Dirichlet tessellation characteristics are asymptotically incorporated in the new mesh generator. 

A new technique for three-dimensional mesh refinement and adaptive mesh generation is pre- 
sented in [28]. A procedure for refining three-dimensional tetrahedral meshes, based on Delauney 
criteria, is developed. Additional nodes are inserted on an existing mesh, and the tetrahedra pro- 
duced are transformed, so that an optimum mesh is formed. Solution of a problem with an initial 
coarse mesh is followed by successive refinements. Furthermore an a posteriori error analysis is 
employed to estimate local errors and refine the mesh at those regions. The discontinuity of the 
normal field gradients on common interfaces, is proposed as a criterion for error estimation. Several 
different examples using the proposed technique are presented to illustrate the method. 

There are two types of adaptive methods available in finite-element analysis, /i-type and p-type. 
In h-ty-pe adaption, with which the previous papers were concerned, the degrees of freedom are 
added to the mesh by re-meshing, i.e., by building another mesh with smaller finite elements in 
some places. The name stems from the fact that the maximum dimension of a finite element is 
usually designated with an h. In p-type adaption, on the other hand, only one mesh is used [29]. 
The extra free parameters are added by raising the polynomial order of some of the elements. This 
is only possible if the elements are hierarchal in nature, i.e., if mixing of polynomial orders within 
the same mesh is permitted [29]. An advantage of p-type adaption is that it avoids re-meshing. In 
two-dimensions, fairly efficient algorithms are available for automatic mesh refinement; nevertheless, 
re-meshing can be expensive. In three-dimensions the difficulties and expense of mesh generation 
are much greater. For this reason alone, it is worth pursuing the development of p-type methods. 

A further advantage of p-type adaption applies especially in the case of high-frequency prob- 
lems. Away from singularities, increasing polynomial order (p-refinement) gives a better rate of 
convergence than using a larger number of fixed-order elements. In low-frequency problems, a 
high density of degrees of freedom is needed near singularities, but lower densities are needed 
further away, in homogeneous regions, where the field becomes increasingly uniform. Thus, the 
discretization is determined to a large extent by singularities-sharp corners, thin sheets of current 
or charge, and so on. Consequently, p-refinement has less to offer low-frequency analysis. On the 
other hand, homogeneous regions in microwave and optical devices still have considerable, wavelike, 
field variations, and require a relatively high density of degrees of freedom. It is to be expected 
that p-type adaption would be particularly effective for such devices. Paper [29] explores p-type 
adaptive schemes for high-frequency analysis, using hierarchal, curvilinear, triangular elements. 

As we have seen, the generation of three-dimensional meshes for finite element analysis can be 
accomplished in various ways. Since the application should not be restricted to a few geometries, 
a method is proposed in [30] which is based on a surface model of the problem's geometry. The 
geometry is uniquely defined by the set of the subregion surfaces. Many electromagnetic problems, 
especially those concerned with electrical machines, can be described using a few surface shapes. 
Therefore the program, which does the surface triangulation, is small and can easily be expanded, 
if a special shape is needed [30]. 

The three-dimensional decomposition proposed in [30] is accomplished by a mesh generator 
which triangulates three-dimensional subregions into tetrahedra, using only a given surface trian- 
gulation produced in a prior step. The decomposition scheme does not need to be changed if the 
class of usable geometries is expanded by additional surface shapes, yielding easy program mainte- 
nance and high reliability.  The method can be applied to every three-dimensional problem, while 
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methods using two-dimensional triangulation with expansion to layers in the third dimension or 
with three-dimensional meshes generated using a composition of basic volumes (cubes, spheres, 
etc.) are restricted in their application. 

The mesh generated by the method proposed in [30] is coarse, and some of the tetrahedral 
elements can be of bad shape, but these properties can be accepted, because the decomposition is 
intended to be a starting mesh for an adaptive mesh refinement process [30]. 

Self-adaptive methods free the user from the requirement of attaining a significant level of ex- 
pertise in the application of the finite-element technique. They allow solutions of problems to be 
automatically generated to a pre-specified level of tolerance. The key to the method is the ability 
to estimate the distribution of the error associated with a particular solution, and then to use this 
distribution to target those areas of the problem so as to reduce the local error [32]. Complemen- 
tary functionals have been used in a variational principle to provide error bounded solutions to 
two-dimensional and axisymmetric three-dimensional static field, and eddy-current problems, and 
to provide a basis for a fully self-adaptive meshing procdeure for such cases [32]. The extension to 
three-dimensions is not trivial, there being a great increase in complexity associated with the gener- 
ation of the appropriate error-bounding functionals and the applicable boundary conditions. Also, 
the geometric problems associated with the management of a three-dimensional mesh refinement 
procedure for multi-material problems are many. Paper [32] addresses these matters. 

The idea behind the complementary functionals is to define a "primal standard form" varia- 
tional problem with the vector potential as the unknown, and its associated boundary conditions. 
The "primal complementary form" uses two scalar potentials, which generate the magnetic field 
intensity, as the unknowns, together with their boundary conditions [32]. Expressing the difference 
between the complementary field solutions, over each element, as a percentage of their mean pro- 
vides an estimate of local error which can be used as a basis for mesh refinement. To begin with, 
however, it is necessary to generate the initial mesh. For general expediency, and with the needs 
of automatic refinement in mind, this is done in [32] using tetrahedral elements. 

The three options considered in [32] for the mesh generation phase were, Delauney Tessella- 
tion, the finite octree technique, and the emerging approach of specifying a desired element size 
throughout the mesh (see [13] for an example of this approach). A Delauney Tessellation was 
considered to have a number of advantages, and adopted as the basis for mesh generation. The 
principal advantage is a capacity for automation, and this is especially important in the context 
of a self-adaptive environment [32]. A full, valid, finite-element mesh can be constructed from a 
Delauney Tessilation, working solely from a geometric model [32]. 

In [33], the authors merge their novel mesh control idea with a constrained Delauney triangula- 
tion algorithm, and an algorithm for the initial triangulation, to develop an efficient, flexible, and 
reliable triangulation of complicated solids [33]. A new strategy for adaptive mesh refinement is 
also included. 

The Delauney triangulation is desirable for finite-element analysis because of its optimal prop- 
erties. The approach to automatic mesh generation using Delauney triangulation proceeds by first 
generating points within and on the boundary of a solid model, followed by forming a triangulation 
considering the points one-by-one. Even though a number of algorithms have been published, the 
following problems have not been adequately solved [33]: 

1. Constrained Delauney Triangulation. In finite-element applications, the problems are 
usually multi-material ones, which means that triangulations must be constrained by the 
boundary and interfaces of the problem. We call the Delauney triangulation an optimal 
constrained triangulation. Those two-dimensional algorithms that are based on it do not work 
in three-dimensional cases, and, in fact, some 2D algorithms have troubles with constraints. 
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2. Degenerate Problem. Careful attention must be paid to the so-called degenerate and near 
degenerate problems, even in those algorithms that are currently used. 

3. Efficiency. Since a lot of search and calculations are needed to determine that element to 
which a new point is to be added, as well as the location of that point, the amount of time 
required in a Delauney-based algorithm can be large. In fact, the asymptotic time growth 

rate is greater than linear. 

4. Node Spacing. The usual triangulators consist of two independent procedures: node spac- 
ing, and triangulation. The triangulation process is automatic, so that the degree of automa- 
tion and mesh quality fully depends on the node placmement method, i.e., on controlling the 
mesh. One of the most important open issues is how to space nodes as desired most efficiently, 
particularly for three-dimensional cases. 

5. Smooth Refinement. The usual methods cannot refine a mesh smoothly. For example, a 
mesh of NE elements cannot be adequately subdivided into, say, 2ANE elements. Therefore, 
during a self-adaptive finite-element analysis, an existing mesh cannot be well refined, as may 
be required by the error estimation algorithm, and more adaptive steps will be needed. 

The mesh control idea proposed in [33] is another one based upon the size of the elements, which 
the user is allowed to edit interactively. The scheme differs from other Delauney-based methods, 
in allowing the node-spacing and triangulation steps to process simultaneously and adaptively. 
Because of this, the mesh generation asymptotic time growth rate is linear [33]. 

One of the main obstacles to the general use of finite elements is the difficulty of obtaining a 
mesh of suitable quality for a magnetic device, such that an "accurate" solution is obtained [34]. 
Currently, most finite element analysis packages require that the level of discretization be specified 
manually. This means that the user of the package must have a certain level of expertise in finite 
elements and in magnetic field analysis. One method of overcoming this limitation involves the 
use of some type of adaptive meshing scheme to guarantee sufficient accuracy in the finite element 
solution. While this approach is attractive, it can be slow to converge since it starts with zero 
knowledge of the solution. In effect, the adaptive system "learns" about the solution as it proceeds 

[34]. 
Using a few rules a human expert can determine a good distribution of elements from a de- 

scription of the magnetic device alone. For example, sharp corners in iron require a relatively high 
mesh density in order to accurately model the solution near the singularity. It appears that the 
expert is capable of applying "prior," or already learned, knowledgeto the meshing process; the 
result is an improvement in the convergence of the adaptive solution to a "good" mesh. However, 
the rules used by the expert are difficult to formulate in the frqmework of conventional expert sys- 
tems, because they involve metric features and material properties, concepts which are not easily 
included in "if-then" type rules. Paper [34] introduces a new approach to this problem using neural 

networks. 
The neural network concept is a computing model that is characterized by the ability to gen- 

eralize from examples, to extract features present in a set of inputs, to degrade smoothly, and to 
tolerate uncertainty [34]. The back-propagation neural network was selected for the application 
described in [34]. This type of network computes a mapping from its inputs to its outputs. This 
mapping is learned from examples of the required mapping, thus avoiding the difficult process of 
knowledge acquisition from human experts [34]. 

The steps needed in the application of neural networks to the meshing problem are [34]: 
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1. Representing the Magnetic Device. The input to the neural network must represent the 
magnetic device, and the output the element size distribution. The input and output must be 
in the form of fixed-length vectors of bounded real values. The main property of the meshing 
problem is that the mesh at a given location is largely dependent on only the local device 
features. 

2. Representing the Element Size. The output must represent the element size required at 
a specified point. Good performance is achieved using proportional coarse coding, in which 
a number of outputs are used, with each output representing a discrete element size. The 
example sizes are encoded by assigning to each output the probability that the element size 
would fall in its range, using a Gaussian probability distribution centered at the size and with 
a standard deviation of half the range of each output. 

3. Generating the Training Examples. The neural network learns the input-output mapping 
from examples. In this case, the examples are taken from "ideal" meshes of representative 
magnetic devices. (An ideal mesh is one in which all triangles have the same error in the 
vector potential.) Since the neural network computes the element size at a point, a single 
device can be sampled at may points to give many training examples. If the device is designed 
to include the main features of magnetic devices in general, than all examples can be taken 
from one device. 

4. Training the Neural Network. This application [34] uses a four layer, fully connected 
neural network topology with 8 nodes in the input layer, 24 nodes in the first hidden layer, 18 
nodes in the second hidden layer, and 10 output nodes. This topology contains a total of 856 
weights, and gives the best performance among various other networks with between one and 
three hidden layers, and with both larger and smaller hidden layer sizes. Also, because very 
different rules are used to mesh air and iron, two separate networks are used, one trained to 
compute the element size at a point in air, the other at a point in iron. Both networks have 
the same topology, but different weights. 

The increase in computational power of current programs allows the user to handle problems 
of growing complexity. However, this improvement in modeling capabilities leads to increasing 
difficulties when specifying problem characteristics and it becomes necessary to develop user-friendly 
CAD tools along with computer programs. The authors of [35] present three software tools that 
were developed, together with an electromagnetic field analysis program, within the scope of finite- 
elements and boundary-elements (and a combination of the two). The first tool consists of a two- 
dimensional or three-dimensional structure generator whose results are transmitted to a second 
tool, which is an interactive meshing program or an automatic surface generator. 

The graphical language interpretor that was developed in [35] offers the possiblility of defining 
local and global variables and arrays, to call recursive subroutines, to use 'do' and 'if then else' loops, 
to introduce comments, to access classical arithmetic functions. The programmer can also create 
elements, operate combined translations, rotations and symmetries on parts of the structure, and 
to work in major coordinate systems. Those instructions were specialized to the geometry at hand, 
i.e., whether two-dimensional or three-dimensional problems were being solved. There are some 
difficult tasks faced in three-dimensional meshing; it is sometimes more difficult to generate surfaces 
that will support finite elements, than to create the mesh in the first place. This is particularly 
true when finite-elements are coupled to boundary-elements, because an internal mesh of nonlinear 
materials, only, is required. 

The tool described in [36] utilizes the object oriented language, SMALLTALK, to allow descrip- 
tions of device classes, parameterizations and graphical-aided creations and modifications, use of 
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part-whole hierarchy and multiple inheritance, in a highly uniform environment. It also serves as 
an interface to finite-element packages. 

Although field computation in two-dimensional axially symmetric problems has a long-standing 
history, and commercial software for such problems has been available for many years, and despict 
the big increase in the computer power in the last decade, its practical application for iterative design 
is limited by the amount of user interaction required. Most designers would welcome a practical 
design tool for their devices (very often limited to one device) in place of the general purpose finite 
element packages currently available. Most of them want programs which are specific to their needs. 
An outer shell can give designers all they want and hide all complexities of the general purpose 
FEM package, leaving all of its power in hand for when it is really needed [37]. 

In [37] a special shell for a general purpose FEM package to assist in the CAD of axisymmetric 
devices, such as loudspeakers, is presented. The basic idea of the shell is that a special script 
file may be quickly and easily created for every design. In this file everything needed to solve a 
particular problem is stored, for example, the geometry of the problem, basic information about 
the mesh, problems definition, etc. Then the whole solution procedure is conducted automatically, 
i.e., the mesh process, problems definition, solving and post-processing. Then if the designer wants 
to change anything in the design (say one dimension) only one piece of data has to be changed 
using an interactive graphics editor to run the whole FEM package again. Moreover, the designer 
can prepare a sequence of such tasks and run them automatically without any user intervention. 
For any specific area of interest some general geometries can be built into the shell. For example, 
a loudspeaker designer can simply choose one of the standard loudspeaker geometries, and there is 
still the possibility of drawing a completely new one [37]. 

Practical three-dimensional electromagnetic modeling has traditionally been hampered by in- 
sufficient computing power. Recent advances in computer hardware are beginning to remove this 
difficulty, and one can expect that this trend will continue for the foreseeable future. To exploit this 
increased computer power and to solve more realistic problems, researchers have developed numer- 
ous algorithms appropriate for 3D calculations, and have built large general-purpose computer codes 
around them. In spite of this technical and theoretical progress, two practical difficulties remain: 
providing the computer code with an accurate description of a particular problem (pre-processing) 
and viewing the end results of the calculation (post-processing). These become duanting tasks for 
all but the simplest of problems in 3D due to the large amount of data involved [38]. 

Researchers at the Lawrence Livermore national Laboratory have been developing and using 
a new finite-difference, time-domain (FDTD) code over the last few years. This code TSAR, is 
currently being used on a wide range of electromagnetic scattering, coupling, and propagation 
problems. Some of the geometries of interest are large and quite detailed, requiring meshes with 
more than a million cells. In addition, an FDTD code is often run for thousands of time steps, 
producing an enormous quantity of output data [38]. 

To efficiently deal with these large problems, the authors of [38] have developed a set of pre- and 
post-processing tools to be used in conjunction with the TSAR FDTD code. This set of utilities 
consists of a solid-model based mesh generator, a mesh verifier, and a color/surface plotter. These 
tools all run on graphics workstations, and, due to their highly interactive nature, are quite easy to 
use. For added convenience, some of the workstations are connected to a videotape system. Whith 
this arrangement, users can record complex time-varying results in a convenient and portable format 

[38]. 
The automatic mesh generator being developed at LLNL is based on a solid modeling approach, 

in which the user builds a mathematically precise representation of the undiscretized object using a 
solid modeling program. A special-purpose mesh generator code then operates on the solid-model 
database to automatically produce an FDTD grid.   The code attempts to take into account the 
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spatially-staggered nature of the FDTD mesh and the vector nature of the unknowns. This yields 
a faster and more reliable process than before, and users need build their models once, independent 
of cell size. If a finer mesh is required, only the mesh generator needs to be rerun. This provides a 
means of true mesh generation as opposed to mesh construction [38]. 

An interactive visualization code, that runs on a high-end color workstation, allows the user to 
rotate, slice through, and zoom in on various portions of the mesh, in near real-time. In addition, 
various materials and/or field components can be displayed in different colors or erased to aid in 
the inspection of a complex mesh [38]. 

A variety of post-processing utilities, that are highly interactive and based on workstations, 
have been developed for TSAR. With these facilities, the user can display a 2D slice of data, either 
as a surface plot or as a color fringe plot. Two dependent variables can be displayed simultaneously 
using both color and height. The pre- and post-processors use a mouse/button user interface [38]. 

In finite element analysis, discretization error plays a major role in determining the accuracy of 
the final solution. Solution accuracies in the range of 5% to 15% are acceptable for most engineering 
applications, but for some applications very high accuracy in the range of 2% to 3% is required. In 
order to improve the accuracy of the solution adaptively, an error estimate should be defined, that 
is reliable enough to identify the critical regions of the domain that have the larger errors. This 
requires an efficient and quantitative error estimate to accurately gauge the error in the solution. 
Thus, the efficiency of an adaptive finite emelment computation depends upon the availability of 
a computationally robust and reliably stable error estimate. The reliability of an error estimate 
provides a measure of accuracy of the computed solution. Reliability analysis for electromagnetic 
field problems using two different a posteriori3 error estimates is proposed in [39]. A mathematical 
model is used to define reliability analysis in the first part of the paper, while in the second part 
the theory of reliability assessment of an error estimate through asymptotic exactness is outlined. 
Numerical test results for a sequence of nearly optimal adaptive meshes4 for a 2D problem are 
presented in the third part. 

Frequently, one must terminate a mesh that is to be used in the finite element solution of an 
electromagnetics problem, with the result that a boundary-integral equation is introduced. The 
derivation of a posteriori error estimates for a coupled finite-element boundary-element problem is 
the subject of [40]. A brief summary of the variational boundary-value problem formulation of the 
2D finite element-boundary element (FE/BE) method is presented. From this a posteriori error 
estimates and error indicators for the FE/BE method are developed and applied to electromagnetic 
scattering and radiation problems. The results obtained indicate that these error estimates and 
indicators can be obtained within negligible computational times and can be successfully to obtain 
valuable a posteriori accuracy and convergence information regarding the reliability of the FE/BE 
method solutions. 

A reliable a posteriori error estimate for a FE/BE method solution would enable one to obtain 
valuable convergence information without having to solve the same problem using a larger number of 
unknowns. The error estimate can thus be used as a convergence check for practical electromagnetic 
problems for which no analytical solution exists.   This would be especially advantageous when 

3The expressions 'a priori' and 'a posteriori' often appear in error analysis. An a priori error estimate is one 
that is theoretically known before a computation is made. The coefficients in the expansion for the error estimate, 
however, may not be known. Such error estimates may not be precise enough to be used in practice without making 
some computations, i.e., performing a numerical experiment. The resulting error estimate then becomes a posteriori, 
that is, after the experiment is performed. 

4A mesh is said to be optimal when the measure of error in the solution is equal for each element in the mesh. 
Those measures of error that are commonly used are the energy norm, relative percentage energy norm error, and 
local and global effectivity indices. The effectivity index, 0 = ||e||/||e||el, where ||e|| and ||e||ei are computed and 
exact errors, respectively, in the energy norm. 
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5 

electromagnetically large problems, that reach the practical solution time and memory limits of 
the computer at hand, are considered. This is true regardless of the computational power available 

[40]. 
Meyer and Davidson [40] use the Element Residual error estimate Method (ERM), which pro- 

vides a posteriori error estimates after two solutions have been obtained. The first solution, E , 
utilizes lower-order polynomial basis functions, whereas E2 is based on higher-order polynomials'" 
In applying the ERM, one first forms the relative electric field error 

£12 = E
2
-E\ 

from which the global electromagnetic energy norm (EM-norm) is formed: 

„        M 9 

k=\ 

ti is the domain of the problem, tik is the region occupied by the fcth finite element, M is the 

number of finite elements, and 

(l|£12||£f )2 = /    (B* (-) |V£12|2 + Re(a0)|£
12|2) dük 

is the EM-norm of the actual error associated with finite element ük. An estimate of this error can 
be obtained by solving a finite element problem on ttk, from which one can obtain an estimate of 

the global error [40]: 

fQk (Re (-1) V*? • V*» + Re (e%) *»«») dük = 

^nr* (* - ff) ^k    for all vf . 

In this equation v\2 is the weighting functions on tt present in the FEM solution E2, but not in 
the solution E1. Tfc(() is the side of the triangular finite element ttk connecting ttk with its /th 
neighboring element ük^, r\ is the local element residual of the governing equation associated 
with E1, and dE\ldnk^ is the jump in normal derivative between element ttk and its neighboring 

element, ftfe((). 
Some typical results that indicate the convergence of the solution, as well as computational 

times are included in Tables 7 to 9. It is important to understand that E2 needs to be computed 
only if one wishes to calculate the actual error ||.E12||. This is an expensive calculation, as Tables 8 
and 9 indicate. The computation of the estimate, ||$12||, however, is quite inexpensive, as indicated 
in the fourth column of Tables 8 and 9. 

These authors conclude that adaptive finite element methods are closely linked to a posteri- 
ori error estimates, and could be used to improve the efficiency of general FEM solutions. The 
a posteriori error estimate methods can be used to identify the regions where the fields need to 
be approximated more accurately (for example where the fields vary more rapidly), and the finite 

5Clearly, this is an example of an /ip-formulation; h is the maximum mesh size, and p is the order of the polynomial 
basis. 
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Estimated Actual 

M :Mb 

||$ia||ü-JM 

\\El\\EM 

\\gV2\\UM 

\\El\\EM 

J5^first-order basis;E2:second-order basis 

170:24 79.99 > 100 

501:43 74.38 79.30 

977:73 51.42 51.17 

1502:90 44.09 35.61 

JE
1:second-order basis; £'2:third-order basis 

170:24 47.99 74.48 

501:43 11.34 13.38 
977:73 7.04 7.35 
1502:90 5.52 4.24 

Table 7: Percentage error estimates compared to actual errors. M is the number of finite elements, 
and Mb is the number of boundary elements. Taken from [40]. 

M 
Computational time (hours:min:sec) 

FE/BE method solution Error estimates 
E1 E2 

170 
501 
977 
1502 

00:00:02 
00:00:06 
00:00:23 
00:00:42 

00:00:10 
00:01:33 
00:08:59 
00:18:28 

00:00:05 
00:00:10 
00:00:21 
00:00:29 

Table 8: Computational times on an HP-720 workstation. E1 are first-order basis functions, and 
E2 are second-order. Taken from [40]. 

M 
Computational time (hours:min:sec) 

FE/BE method solution Error estimates 
E1 E2 

170 
501 
977 
1502 

00:00:10 
00:01:33 
00:08:59 
00:18:28 

00:01:25 
00:12:27 
01:28:58 
02:27:31 

00:00:07 
00:00:14 
00:00:29 
00:00:40 

Table 9: Computational times on an HP-720 workstation. E1 are second-order basis functions, and 
E2 are third-order. Taken from [40]. 
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element mesh can thus be adapted to ensure superior basis function distributions in these regions. 
The 2D methods described in [40] can be extended to 3D formulations that use edge-based ele- 
ments, though hierachical edge-based elements may prove more formidable than the nodal-based 
equivalents if the error estimator is used to drive an adaptive meshing algorithm. 

An hp adaptive analysis is described in [41], in which a Delaunay-based automatic quadrilat- 
eral mesh generator is used. Together with the Zienkiewicz-Zhu a posteriori error estimator [42], 
this mesh generator meets a prescribed accuracy within one, or at most two, /i-refinement stages 
with optimal convergence rate. Furthermore, one achieves a simple and rapid improvement in the 
solution by uniformly increasing the element interpolation order, p. In [41], the /i-refmed mesh was 
taken as the base for p=refmement, and the p-refmement is uniform throughout the entire mesh. 

The advantage of the hp-refinement strategy is based upon the observation that the asymptotic 
convergence of the finite element approximation is given by 

\\eh\\ = 0(hmbl^) , 

where p is the order of the polynomials used in the shape functions, A is a constant (< 1) typical 
of the singularity in the solution, if there is one, and h is a characteristic size of the element. From 
this observation, one can show [41] that 

i \ min(p,A) /1 \ min(p,A) 

2)        *e<i+(j) • 

We can conclude, therefore, that in uniform h-refinement, the effectivity index of the error 
estimator deteriorates when the solution is dominated by a singularity (as, for example, in the 
third canonical problem of Chapter 3). Under this condition, the effectivity index is independent 
of the order of the polynomial, p [41]. When the sequence of /j-refined meshes is optimal, however, 
i.e., when the error is approximately equally distributed over each element of the mesh, then it can 
be shown that [41] 

and the dependence upon the singularity is avoided. Under this condition the effectivity index will 
tend to unity as p —> 00. 

In uniform p-refinement, the convergence is given by 

0{N -^ 

where N is the number of degrees of freedom, and ß depends upon the smoothness of the solution. 
The convergence reate is at least twice that of the uniform /^-refinement, when the solution is 
smooth. When the mesh refinement is a proper combination of both h- and p-type, then an 
exponential convergence rate is possible, and we obtain an estimate of the form 

||e|| = O(exp(-7iV0)) , 

where 9 > 1/3. Clearly, the hp-version of the finite element method is most effective in terms of 
the number of solution variables for general elliptic boundary value problems. 

hp-refinement procedures are attractive, because /i-refinement alone will generally require an 
excessive number of degrees of freedom to achieve high accuracy. The implementation of a local 
p-refinement scheme, however, is often computationally difficult. In [41] a uniform p-refinement is 
applied to the optimal /i-refined mesh. For h-refinement, the Zinekiewicz-Zhu [42] error estimation 
method is used. 
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Usually, the user's accuracy requirement is stated in terms of an overall percentage error in 
energy norm, i.e., 

V = IMI/IIAII < rjep . 

In order to achieve the optimal solution, each element should have the same permissible error, 
||e||ep. Let \\eh\\i be the energy norm of the estimated error associated with the ith element (1 = 
1,..., NE), and note that 

NE 
ii       n2        V^ ii       n2 
\\&h\\ = 2JleMl» ; 

then the maximum permissible element error is 

lA/l||
2 + IKI 
NE 

1/2 

which can be calculated after each solution.  With this information, we can predict how to refine 
an element. Suppose 

& = IKIIi/llellep ; 

then the predicted size of element i should be 

1  r 
max 

"new ~~ "old Sj 

The preceding paper dealt with two-dimensional problems. Golias and Tsiboukis [43] point out 
that only recently have several significant contributions appeared in the area of adaptive refinement 
in three-dimensional problems. The delay has been probably due to the difficulty in developing 
geometrical algorithms for refining 3D meshes, but with the proposal of several techniques [44] [45] 
[25], indications are that the problem is being successfully attacked. 

Edge element are used in [43], which means that the unknowns are the circulations of the vector 
field around the edges of the tetrahedron. In this way, unknowns are related to the edges of the 
mesh, and edge elements impose tangentical continuity of the electric field, E, but not normal 
continuity. Thus, edge elements do not impose over-continuity, as is the case with vector nodal 
elements. 

Two new error estimators for eddy current problems are presented in [43]: (a) the tangential 
discontinuity in the magnetic field, H, and (b) the normal discontinuity in the eddy current density 
Je. Consider two tetrahedra (e) and (/), and their common face (ABC). Let H^e' and HV' denote 
the magnetic field in tegrahedra (e) and (/), respectively. The error estimator of the magnetic field 
H of face (ABC) is defined by: 

Elfao = / Ino X (H<«> - H<'>) \2dS 
>(ABC) 

Let Je    and Je    denote the eddy current density in tetrahedra (e) and (/), respectively. The 
error estimator of the eddy current density Je of face (ABC) is defined by: 

EI{ABO= f |(jW-j£'>)-no|adS. 
JS(ABC) 

The flow chart of the adaptive refinement algorithm is shown in Figure 24. An initial mesh is 
generated, and boundary conditions are set on this mesh. Then the eddy current problem is solved, 
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Figure 24: Algorithm for the self-adaptive procedure in [43]. 

followed by the calculation of the error by means of the above error estimator. The mesh is then 
refined in those regions that have high error. A threshold value is set, and all elements with error 
greater than this threshold are refined. The problem is re-solved, and this cycle of solution and 
refinement continues. 

The error estimator of the magnetic field H is applied throughout the whole domain, whereas 
that for the eddy currents is applied within conducting bodies, only. The technique that was 
actually implemented in [43] for the combined application of the two error estimators is as follows: 
First, the magnetic field error estimator is applied, and refinement takes place in the whole domain. 
Then, extra refinement within the conducting regions is accomplished with the application of the 
eddy current density error estimator. In this way an even higher density of tetrahedra is obtained 
in conducting regions, thereby enabling a more accurate calculation of the distribution of eddy 
currents, and the approximation of the skin effect. 

Our interest in this approach [43] lies in the fact that the authors are simultaneously solving for 
two different fields, H and Je, simultaneously, treating them as having distinct needs on the same 
mesh. This may be an approach that one could take in solving coupled TM and CEM problems 
on a single mesh, if the analysis codes for each field can accomodate a single mesh. Otherwise, one 
will have to interpolate between two different meshes, and this could complicate the simultaneous 
adaptation of two grids. 

4.2    Extrapolation of Solutions 

The error-estimating schemes described above, though useful when used in conjunction with adap- 
tive mesh-generators, still do not give us an estimate of the final answer. They only inform us as 
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to whether we are converging, or not, and give us an estimate of the rate of convergence. If we 
have a priori information about the rate of convergence of a solution, we can use an extrapolation 
technique (Richardson extrapolation) to reduce the truncation errors due to the mesh-fineness, and 
give us an estimate of the 'exact' solution that would be achieved if the mesh-fineness were zero. We 
will demonstrate this procedure by referring to some one-dimensional examples of T0PAZ2D prob- 
lems that are defined on a regular mesh. Though these examples are taken from [46], we point out 
that we have used the same extrapolation process to get improved accuracies in the calculation of 
impedances in eddy-current nondestructive evaluation with our proprietary volume-integral code, 
VIC-3D. Both Drayton's examples and VIC-3D use regular grids; this allows a straightforward 
application of Richardson extrapolation. 

In Drayton's example, a slab of thickness L is excited by a temperature-dependent internal 
energy source qgen — K(A + BT), where K is the coefficient of thermal conductivity, T is the 
temperature, and A and B are arbitrary constants. The surface x = L is maintained at temperature 
T = 0, and the surface at x — 0 is adiabatic. The solution to this problem is 

T(x) 
A 

B 
cos {xB1'2) 

{LB1/2) 
1 

cos 

Now assume that the truncation error in the finite element solution is 0(h2)6, and that A(h) is 
the computed solution at XQ. Then, if J{XQ) is the true solution at XQ, we have 

f(x0) = A(h) + C1h
2 + O{h4), 

where C\ is indedpendent of the mesh size, h7. Now let h = 2h, and get 

f(x0) = A(2h) + ACxh
2 + 0(h4) . 

Upon subtracting these two equations, and then rearranging, we find that, for sufficiently small 
h, the dominant error term is 

Ci/i2 = A(h) - A(2h) ^ 
o 

from which we conclude that an expression valid to 0(h4) is given by 

f(xo) = 
4A(h) - A(2h) 

+ 0(h4). 

Now, using TOPAZ2D we get approximations of accuracy 0(h2) based on the step size hi = 0.1: 

X Coordinate Temperature Distributions Percent 
Position Analytic TOPAZ2D Error 

0.000000 0.850816 0.846050 -0.560167 
0.200000 0.813923 0.809373 -0.559018 
0.400000 0.704714 0.700801 -0.555259 
0.600000 0.527544 0.524647 -0.549153 
0.800000 0.289476 0.287911 -0.540635 

0(h2) approximations based on a step size of hi — 0.05 yield 

This can be theoretically justified. 
7This is an example of an a priori theoretical error estimate.   In order to determine the constant, C\, we must 

compute the solution on two different grids. Then we get an a posteriori error estimate. 
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X Coordinate Temperature Distributions Percent 
Position Analytic TOPAZ2D Error 

0.000000 0.850816 0.849618 -0.140805 
0.200000 0.813923 0.812779 -0.140553 
0.400000 0.704714 0.703731 -0.139489 
0.600000 0.527544 0.526816 -0.138000 
0.800000 0.289476 0.289083 -0.135764 

Note that the error when h2 = hi/2 is the mesh size is one-fourth the error with when hi is the mesh 
size, which justifies our assertion that the finite-element approximations are accurate to 0(h ). 

A single application of Richardson's Extrapolation Formula 

D2(hi) 
4A(h2) - A(h 

yields an approximation of accuracy 0(h4) as shown in the next table under the heading 'TOPAZ2D:' 

X Coordinate Temperature Distributions Percent 
Position Analytic TOPAZ2D Error 

0.000000 0.850816 0.850807 -0.105781E-02 
0.200000 0.813923 0.813914 -0.110576E-02 
0.400000 0.704714 0.704708 -0.085141E-02 
0.600000 0.527544 0.527539 -0.094779E-02 
0.800000 0.289476 0.289474 -0.069090E-02 

Note the significant improvement in applying Richardson's extrapolation: The error is reduced by 
more than two orders-of-magnitude from the solution with h2 = 0.05. 

Richard's extrapolation can, in principle, be applied to three-dimensional problems with com- 
plex meshes, but the computation of the solution when the number of degrees of freedom doubles 
can be a significant burden. That is the justification for using the a posteriori error estimators 
and adaptive meshing algorithms to improve the solution. With these techniques one selectively 
refines only parts of the mesh, rather than the entire mesh, in order to improve the solution. Still, 
as sophisticated as these numerical algorithms are, they do not allow one to extrapolate to get a 
solution that has an improved a priori error estimate. 
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5    IMPLICATIONS, RECOMMENDATIONS, AND CONCLU- 
SIONS 

'Grid-reusability,' that is the use or reuse of grid-related data depends upon problem conditions 
that are as diverse as geometry, the physical model, and materials properties. Nonlinearities that 
arise when a physical parameter depends upon the value of the field variable being sought can 
thoroughly complicate gridding requirements to such an extent that a priori guidelines are not 
available. The grid and its associated data will vary as the solution is computed iteratively. 

The question of grid-reusability has surfaced only rather recently, as designers begin to address 
the question of concurrent engineering in a rigorous, self-consistent manner. We have shown a few 
examples in which researchers are addressing this aspect of CAE software development, but we are 
unaware of this problem being dealt with in commercial software. 

The results of this study suggest that the conditions under which a grid and its related data 
can be used or reused are mandated by the physical model, as well as the geometry. As Canonical 
Problems No. 2 and 3 of Chapter 3 showed, the gridding requirments for a TM problem can differ 
considerably from those for a CEM problem, even if the geometry for each is a simple rectangle. 
The distinction between the two problems and their meshes lies in the nature of the boundary 
conditions and the nonlinear behavior of the material parameters; i.e., it is the physical model that 
distinguishes the needs of each problem. Indeed, the problem may be sufficiently complicated, that 
it is impossible to specify a priori guidelines for establishing a grid. The grid and its related data 
will vary as the solution is computed iteratively. 

The major implementation problem in handling coupled analyses will be in supervising the 
transfer of data between the two meshes, and in adapting each mesh so that it becomes optimal for 
its respective problem domain. Little, apparently, has been done in the area of adaptive gridding 
for coupled problems, and we propose that Canonical Problem No. 3 could be the basis for a future 
research effort in this area. Even though the geometry for this problem is a simple rectangle, the 
physical models would present several areas where a grid would have to adapt in order to become 
optimal. The nonlinearity in the electrical conductivity might drive the grid adaptation, as well as 
the electrical singularity at the edge of the upper electrode. The thermal grid might have to adapt 
in response to the value of the convection coefficient. Canonical Problem No. 3 could also be the 
basis for further studies in /ip-adaptive analysis of coupled problems, along the lines of [41] for EM 
problems. 

The grand challenge of the immediate future is to extend the research reported herein to the 
problem of doing adaptive meshing on two or more grids for the purpose of optimally solving 
coupled problems with nonlinearities. What role will /ip-adaptive analysis play in meeting this 
challenge? 
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