
ORC 77-6 
JANUARY 1977 

RIA-77-U1071 

T METHODS OF 

OheitKiiuNj rtESEARCH 

by 

WILLIAMS. JEWELL 

mmmmKM «SATEKEMTT 

Dtotribeäem Oairaltied 

TECHNICAL 
LIBRARY 

£ 
% 

OPERATIONS 
RESEARCH 

CENTER 
rmo<*>*uxTwa3cm>si 

UNIVERSITY   OF   CALIFORNIA   •   BERKELEY 



THE ANALYTIC METHODS OF OPERATIONS RESEARCH1 

Operations Research Center Research Report No. 77-6 

William S. Jewell 

January 1977 

U. S. Army Research Office - Research Triangle Park 

DAAG29-77-G-0040 

Department of Industrial Engineering 
and Operations Research 

University of California, Berkeley 

APPROVED FOR PUBLIC RELEASE; 
DISTRIBUTION UNLIMITED. 

t 
Partially supported by the Office of Naval Research under Contract 

N00014-76-C-0134 with the University of California.  Reproduction in 
whole or in part is permitted for any purpose of the United States 
Government. 

Prepared for presentation at the meeting, "The Use of Operational 
Research and Systems Analysis in Decision Making," The Royal Society, 
London, October 28-29, 1976. 



THE FINDINGS IN THIS REPORT ARE NOT TO BE 
CONSTRUED AS AN OFFICIAL DEPARTMENT OF 
THE ARMY POSITION, UNLESS SO DESIGNATED 
BY OTHER AUTHORIZED DOCUMENTS. 



Unclassified 
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

1.    REPORT  NUMBER 

ORC  77-6 
2. GOVT ACCESSION NO. 3.    RECIPIENT'S CATALOG NUMBER 

4.    TITLE (end Subtitle) 

THE ANALYTIC METHODS OF OPERATIONS RESEARCH 

5.    TYPE OF REPORT & PERIOD COVERED 

Research Report 

6.    PERFORMING ORG.  REPORT NUMBER 

7.    AUTHORfsJ 

William S. Jewell 

8. CONTRACT OR GRANT NUMBERfsj 

DAAG29-77-G-0040 

9.    PERFORMING ORGANIZATION  NAME AND ADDRESS 

Operations Research Center 
University of California 
Berkeley, California 94720 

10.   PROGRAM ELEMENT, PROJECT, TASK 
AREA & WORK UNIT NUMBERS 

P-14240-M 

11.    CONTROLLING OFFICE NAME  AND  ADDRESS 

U. S. Army Research Office 
P.O. Box 12211 
Research Triangle Park, North Carolina 27709 

12.    REPORT DATE 

January 1977 
13.    NUMBER OF PAGES 

82 
14.    MONITORING AGENCY NAME &  ADDRESSf« different from Controlling Office) 15.   SECURITY CLASS, (of this report) 

Unclassified 

15«.    DECLASSIFI CATION/DOWN GRADING 
SCHEDULE 

16.    DISTRIBUTION STATEMENT (of this Report) 

Approved for public release; distribution unlimited. 

17.    DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report) 

18.    SUPPLEMENTARY NOTES 

Also supported by the Office of Naval Research under Contract 
N00014-76-C-0134. 

19.    KEY WORDS (Continue on reverse aide if necessary and identify by block number) 

Survey 
Operations Research Methods 
History 

20.    ABSTRACT (Continue on reverse side If necessary and Identity by block number) 

(SEE ABSTRACT) 

DD ,!) 
FORM       liT) 

AN 73   1473 EDITION OF  1 NOV 65 IS OBSOLETE 

S/N  0102- LF-014-6601 
Unclassified 

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntarmd) 



ABSTRACT 

Originally, the techniques used by operational research teams were borrowed 
from other scientific fields.  However, the scope of problems addressed by 
this new discipline soon led to the development of special analytic methods, 
including such now familiar terms as linear programming, game theory, 
dynamic programming, queueing theory, and so forth. 

This growth was accelerated by the parallel development of the high-speed 
digital computer and the modern concepts of solution algorithms and simulation 
models. When computational storage and speed were limited, emphasis was on 
the exploitation of a problem's special structure; as capabilities have 
expanded and costs have diminished, emphasis has shifted to the problems of 
data management for larger-scale problems.  Efficient data-structure methods 
have led to new methods for "unsolvable" combinatorial problems. 

Concurrently, there has been an explosion in the theoretical literature. 
Specialty journals flourish in the various methodological specialties, and 
conference offerings have grown to an unwieldy size. Most major universities 
now offer course degree programmes in O.R., based on topics which were 
unknown twenty years ago, and using a wide variety of available textbooks. 

Furthermore, it is increasingly difficult to draw a firm line between O.R. 
and other disciplines, as successful techniques are routinely taught and 
used in their fields of application, including a variety of new disciplines 
such as transportation and urban planning, waste management, energy analysis 
environmental engineering, health care systems, etc.  O.R. methods have 
also had a large influence on theoretical fields, such as mathematics, 
statistics, and economics. 

Recent developments in selected methodological areas are surveyed to 
indicate the variety and sophistication of O.R. techniques, and current 
research trends.  Selected bibliographic references provide an introduction 
to the techniques, or to important new developments. 

In conclusion, the current crises which have appeared within the profession 
are discussed, and the prospects of this now-mature field are analyzed. 



THE ANALYTIC METHODS OF OPERATIONS RESEARCH 

by 

William S. Jewell 

1.  INTRODUCTION 

When I received the invitation to survey the analytical tools of 

operational research for this Meeting, I was extremely pleased - first 

of all, for the kind thought that I was qualified to do so; and, secondly, 

for the opportunity to visit again the country where operational research 

began over thirty years ago.  However, as I considered the explosive 

growth of the field since that time, I became apprehensive at the thought 

of trying to covering so diverse a topic in a few words. 

Perhaps some of you remember the actual situation in the middle of 

the 50's - the time at which most methodology began to be developed.  Your 

Operational Research Society was about ten years old, the Operations 

Research Society of America was about five, and the Institute of Management 

Science had just been organized.  The RAND Corporation had just published 

a book entitled, "A Million Random Digits with 100,000 Normal Deviates" 

for use in Monte Carlo simulation; an electro-mechanical device called 

Queuiac was promoted in the ORSA Journal for emulating queueing problems. 

The transportation and travelling-salesman problems had just been described, 

and neologisms like "sub-optimization" and "cost-effectiveness analysis" 

were appearing.  At M.I.T., where I was pursuing graduate studies in 

engineering, there was no formal curriculum in operations research; our 

only texts were brief notes by P. M. Morse, G. Kimball, B. 0. Koopman, 

G. P. Wadsworth and others, RAND reports, "The Theory of Games and 

Economic Behavior," by J. von Neumann and 0. Morgenstern, and an esoteric 



paperback by Charnes, Cooper, and Henderson on the optimal mixing of 

peanuts and cashews.  Our computer used vacuum tubes, and one walked 

inside it for repairs; we solved what were considered very large trans- 

portation problems (60 plants, 300 customers) in about thirty minutes. 

Capabilities improved with the arrival of the first commercial computer, 

but another student's simulation of vehicular tunnel traffic took longer 

than real time!  In 1955, I attended my first meeting of ORSA at Columbia 

University.  There were two theoretical papers by R. E. Bellman and 

J. M. Danskin, eight application papers on production scheduling and urban 

services, plus 24 contributed papers - I believe it was the first time 

that two parallel sessions were required to cover all the papers in one 

day.  Even by 1958, a comprehensive bibliography on operations research 

only contained 3,000 entries (Case, 1958). 

In contrast, the next ORSA/TIMS meeting in Miami in November, 1976, 

will, over three days, have 160 sessions with about 980 papers!  There 

are probably over 400 texts in the methodologies of 0. R. now in print, 

and a continually increasing number of specialty journals.  A good bib- 

liography on any of the subfields of 0. R. can easily include several 

thousand entries.  Over 40 colleges and universities in the United States 

now offer some form of 0. R. education; over 20 of these have named 

departments.  The technical capabilities of computers seem boundless, 

but our propensity to enlarge the boundaries and the scale of the models 

keeps pace, as we tackle national, international, and even global problems. 

In every dimension, the field seems limitless. 

My plan of attack to reduce the survey to manageable size is as follows: 

First of all, I will describe briefly the major methodological areas, 

and present what I consider to be important recent trends, including 



references which seem representative and interesting, provide convenient 

summaries, or which might serve as gateways for further reading.  I am 

grateful to my many colleagues who have helped to organize this biblio- 

graphy, however, the final selection is mine, and no claim to completeness 

or showing historical priority is made. 

Some methodological areas, such as control theory, are already too 

large to survey; other areas were excluded because they seem to have reached 

deadends (game theory, information theory) or because their scientific 

basis is still being developed (simulation, management information systems, 

urban and public systems).  Except for a brief section on business models, 

applications of methodologies could, unfortunately, not be included in 

this limited space. 

Finally, I would like to conclude by describing the influence of 0. R. 

methodologies on other disciplines, considering some, of the crises facing 

the profession, and giving my perspective on the prospects for this now- 

mature field. 

Operational research is, above all, an optimizing science, and we begin 

with a discussion of optimization methods. 



2.  UNCONSTRAINED OPTIMIZATION 

Unconstrained maximization (minimization) is the problem of finding a 

l'V ••" Xn] value x  of a vector  x = [x ,x , . .., x ]  such that  f(x ) > f(x) 

* 
(or  f (x ) <_ f(x))  for all x , where  f  is a given function, usually 

analytic.  Most optimization methods require that  f have certain smooth- 

ness and shape properties, such as continuity and concavity (convexity), 

so that if an x  satisfies the necessary conditions for a local optimum, 

Vf = [3f(x )/8x. (i = 1,2, ..., n)] = 0  plus 2nd-order conditions, then 

x  is also globally optimal.  This enables one to use local exploration 

to lead to the global optimum. 

Assuming that the gradient  Vf  is easy to calculate, the most popular 

algorithms are based on the idea of steep ascent (descent) - that is, from 

the current solution,  x  , find a new solution by moving with (against) 

the gradient,  x = x + SVf , where  S  is a positive definite matrix, 

varying from step to step, which may have only diagonal terms (representing 

current step size), or may be more general, attempting to avoid the slow 

* 
convergence often encountered near  x  .  These methods are by now quite 

efficient for problems with several hundred variables.  If derivatives cannot 

be easily computed, then a variety of direct search methods are available. 

Theoretical details are in (Luenberger, 1973) and (Avriel, 1976); numerical 

comparisons may be found in (Himmelblau, 1972); (Powell, 1970, 1971) 

has convenient surveys; (Wilde, 1964) details one-dimensional search 

procedures. 

If equality constraints are present, then one can, in principle, 

use Lagrange multipliers to convert the problem to an unconstrained optimum, 

and apply gradient methods (Kwakernaak and Strijbos, 1972), (Avriel, 1976). 

Alternatively, one can use nonlinear programming methods, described below. 



Unconstrained optimization methods are useful primarily in the 

simple pedagogical models, or in engineering design problems.  Their 

main value is as a foundation for more complicated methods where equality 

or inequality constraints are present. 



3.  LINEAR PROGRAMMING 

Constrained linear optimization is, by any measure, one of the most 

successful "new" methodologies of operational research.  The problem is to 

optimize a linear function subject to linear inequality and equality 

constraints; in the usual canonical form: 

T 
Max (Min  ex) 
x 

Ax = b 

x >_ 0 , 

where x and  c are n-vectors,  b  is an m-vector, and A is an m x n 

matrix  (m < n) .  In this form, linear inequality constraints have been 

converted to equalities through the addition and subtraction of non- 

negative "slack" variables, and incorporated into Ax = b .  Individual 

variable constraints, such as I.   <_ x. <_ u. , can also be so incorporated, 

but most computer codes have special features to handle them separately, 

so as to keep down the dimension of A . 

The success of linear programming is due first of all to its usefulness 

as a model.  The accounting world is full of linearity assumptions as to 

the costs of resources consumed and the value of goods and services produced, 

T 
so that  ex is a good approximation to most management objectives. 

Many production technologies are also linear, at least to a first approxima- 

tion, so that portions of A which represent conversion from activity j 

to resource  i need only an estimate of the conversion coefficient  a   : 
ij 

other portions of A usually have large numbers of zero and unity coeffi- 

cients because of the large number of conservation or "bookkeeping" 

relations between different activities - these are intrinsically linear. 



Finally, upper and lower bounds (especially I  = 0) on the activity 

levels,  x , are characteristics of our finite world. 

The optimal solution to (3.1) is determined almost completely by 

the constraints.  If there are no ties for the optimal solution,  x  , 

one can show that the optimum is determined by specifying a basic set B 

of m variables,  x = {x. | j e B} .  The values of these variables 

are determined by solving the square system 

(3.2) BxB = b 

where  B  is the set of m columns of A corresponding to  B ; these must 

represent m linear independent vectors in m-space (a basis) so that 

det B ^ 0 .  These values will, of course, be feasible only if  x >^ 0  (and 

B * usually x > 0) .  The remainder of x  is determined by setting the n - m 

"D .       . 
nonbasic variables,  x = {x. | j £ 8} , to zero.  In geometric terms, 

selecting the n - m nonbasic variables determines a corner, or extreme 

point of the convex polyhedron of feasible solutions,  {Ax = b , x >_ 0} . 

Since there are  |     ) = I  J ways to select a basis (although not all 
(n - m) \m) 

B * result in feasible x ), this characterization of x  suggests there are a 

combinatorial number of basic feasible solutions to explore. 

i However, Dantzig (1963) and his coworkers were able to show that an 

ascent (descent) method, which proceeds from one extreme point of the 

constraint space to a better extreme point, is a computationally efficient 

procedure, taking on the order of  2m - 3m steps, rather than some 

combinatorial number related to the number of variables, n .  This fortuitous 

property of the "simplex method," established through computational experience, 

is the second reason for its popularity.  Even today, there is no satisfactory 

theory for the rapid convergence of this method; theoretical bounds on the 



number of iterations required are extremely large, except for a few 

special problems. 

The details of the simplex algorithm are quite straightforward of 

interpretation, although the actual procedures seem strange at first glance. 

To avoid continued re-inversion of different m x m matrices,  B ,B , ... , 

to solve (3.2) successive bases are chosen which differ only in one 

member; by using the Gauss-Jordan reduction method on the full matrix A 

(with b adjoined), one can easily check that the current and forthcoming 

extremal solutions are feasible.  To be assured that this move increase 

T 
(decreases)  c x , the current solution is effectively substituted back 

into the functional, and local gradients can be read off directly from 

the new coefficients in front of the nonbasic variables.  A "pivot step" 

(application of Gauss-Jordan reduction to one column of data) then displays 

the next basic feasible solution. 

In economic terms, the choice of a "good" direction is made by imputing 

the unit profits  c  of each current by basic activity back to m unit 

prices  y = [yl5y2 y ]  associated with each constraint by solving the 

T     B 
dual system B y = c  ; the local vector of gradients leading away from the 

current extreme point is then gotten from c - ATy .  This leads to the 

conceptually elegant theory of duality, in which it is shown that (3.1) is 

equivalent to another linear program: 

T 
Min (Max) b y 

(3.3) ATy >_  (<) c 

y unrestricted, 

in the sense that, if one program has a finite optimum, then so does the 



T ft     T ft 
other, and by = c x  .  The dual variables,  y , are essentially extended 

Lagrange multipliers.  Optimality is recognized by the "complementary 

ft <Y    x * 
slackness" condition,  (x ) (A y - c) = 0 . 

There are many different elaborations upon the basic simplex method 

that purport to solve problems with special data in more efficient ways, 

or to fully exploit special structure or computational capabilities, or 

which carry out post-optimal sensitivity analyses.  Full details on this 

by now classical topic may be found in almost any of the approximately 200 

texts (Gerber, 1974) on linear programming, such as (Dantzig, 1963), 

(Gass, 1958), (Simonnard, 1966).  FORTRAN and ALGOL programs are given in 

(Künzi, Tzschack, Zehnder, 1971).  See also the comments in (Woolsey, 

1973). 

There is a great deal of difference between the classroom representa- 

tions of linear programs and the actual computer codes (a term to avoid 

confusion with "programs") which solve them.  An l.p. code must not only 

accept and convert a variety of input constraints, it must "get started" 

(by itself, or from a prior solution), reject unfeasible problems, and 

carry out a variety of post-optimal sensitivity analyses.  Furthermore, as 

the size of successful l.p. solutions is increased, there has been increasing 

pressure to further increase the capabilities of advanced programming systems. 

This means that a great deal of attention must be paid to what we might 

call the computer science aspects of the program:  allocating data between 

different storage media, and moving it about rapidly; efficient methods 

of storing inverses of sparse matrices, updating them during the pivot to 

a new extreme point, and cleansing them of accumulated round-off errors; 

and finding the best compromise between moving in the direction with steepest 

T 
gradient or the one with greatest change in ex. Details may be found 
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in (Orchard-Hays, 1968), (Beale, 1967 and 1970), (Bonner, 1969); (Tomlin, 

1972) and (White, 1973) have more recent surveys. 

For small-scale linear optimization, we are clearly reaching a point 

of diminishing returns on solution efficiency.  A problem with m = 200 

which cost $1,000 to solve in 1956 can now be turned out for under $20; 

most of this improvement is due simply to the generally decreasing cost of 

digital computation, which trend will no doubt continue.  However, the 

demand for increased computational capabilities continues unsatisfied, 

as programmers extend the size and boundaries of problem formulation. 

Currently, problems with m = 2,000 are routinely solved, and there are 

large-scale systems which can handle m > 10,000 ; since there is no theory 

to predict simplex method efficiency, evaluation of new algorithms must 

follow computational trials.  Occasionally there are surprises; for 

example, Harris (1973) reports a reduction by factors of 2 to 6 in the 

number of iterations needed to solve problems with m = 2-5000 , by 

using the concept of a fixed datum basis in which to compute and compare 

gradients. 

One way of handling larger size problems to take advantage of any 

special structure in the constraints.  As mentioned above, it is trivial 

to include individual constraints of the forms I.   <  x. < u. .  In many 

scheduling and distribution problems, one encounters constraints of the 

form 

J£JK 

where the {J } are nonoverlapping subsets of the variables.  Problems with 

a large percentage of constraints of this type have important savings in 

computer time by using the generalized upper bounding technique of Dantzig 

and Van Slyke (1967), and recent l.p. codes include this capability. 
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Large-scale multi-time or multi-sector planning models have highly 

structured matrices A , with "block-angular" and "staircase" nonzero sub- 

matrices (often with repetitive internal structure), and zero elements 

elsewhere.  For many years it was thought that there might be efficiencies 

by using the simplex method separately on each subproblem, periodically 

reconciling the linking constraints in an overall simplex approach; how- 

ever, in spite of the large literature on these methods (see, e.g. (Lasdon, 

1970)), the coding techniques are quite difficult and specialized to the 

problem structure, and this approach is not now an important contender for 

these problems. 

Another conceptually appealing approach to large-scale l.p. problems 

which have many separable subproblems linked together by a few "master" 

constraints has been the decomposition method of Dantzig and Wolfe (1960). 

In this method, different values of artificial objective coefficients are 

"sent down" to the subproblems, which are solved individually (and hence 

efficiently), producing a variety of extreme point solutions for each subset 

of variables; the "master program" is then solved to satisfy the linking 

constraints by mixing these extreme-point "plans" in an optimal way.  The 

dual solution to the master program then produces another set of surrogate 

goals for the subprograms, which in tern provides other plans for the master 

optimization.  Perhaps the most important feature of this approach is that it 

quantifies the conditions under which partial or completely decentralized 

economic planning can take place (Baumöl and Fabian, 1964).  However, as a 

computational strategy for purely linear programs, decomposition has proven 

disappointing.  It is still a useful approach when the subproblems are not 

linear programs (see the cutting-stock problem below) or are soluble by 

special procedures (such as transportation problems), or are linearization 
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approaches to nonlinear programming; Lasdon (1970) has several applications 

of the decomposition approach. 

In a recent ORSA/TIMS Panel (entitled "Is Mathematical Programming 

Moribund?"), D. Smith described the four eras of mathematical programming. 

In the '50s, when the simplex method was new and incompletely understood, 

the basic problem was to write l.p. codes for the different computers; 

because of size and speed limitations, emphasis was also placed on develop- 

ment of special-purpose algorithms for special model structures.  By the 

'60s, fast commercial computer codes were available for production use, and 

the bottleneck was in the translation of output into the management process; 

feastures such as post-optimal sensitivity analysis were added, and more 

attention paid to simplified data entry, and to summary report generators. 

As computational capabilities and management sophistication have increased 

in the '70s, we find model boundaries expanding, and nonlinear, integer, and 

decentralized optimization capabilities are being added to the computing 

systems.  Finally, as we head into the '80s, the routine solution of ex- 

tremely large problems raises enormous questions of data-base management: 

how will data be gathered, stored?  How will it be checked, cleansed, 

and updated?  Who will certify the results of the optimization and what 

methods will be used? 
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4.  NONLINEAR PROGRAMMING 

Optimization problems with nonlinear objective functions and/or 

nonlinear inequality constraints are of increasing importance in 

operations research. 

The earliest models were of chemical, metallurgical, and hydraulic/gas 

transmission processes, where the basic transformations are nonlinear, 

and in engineering design problems (Duffin, Peterson and Zener, 1967), 
a. 

(Zener, 1971), where empirical "posynomial" forms,  II x_^  , are 

encountered.  Quadratic objectives arise naturally in least-squares 

approximations (Golub and Saunders, 1970), in electrical networks 

(Dennis, 1959) and control applications (Luenberger, 1972) where energy 

dissipation is minimized, and in location and space assignment problems 

where Euclidean distance is the measure of optimality.  Even with linear 

economic assumptions, the system objective may be profit-per-unit- 

(item, time, trip, etc.), giving a linear fraction, the ratio of two 

linear forms, to be optimized.  In so-called stochastic programming, 

the objective form includes the expected cost of compensating for the 

random effect of a decision (Sengupta, 1972), (Vajda, 1972).  Nonlinear 

constraints arise from similar considerations. 

In order to retain the desirable property that a local optimum is 

also a global optimum, one usually restricts investigation to the so- 

called convex programs, those that can be put in the form: 

Max (Min) f(x) 

g.(x) >_ 0  (j - 1,2, ..., p) 

t4-1* Ax = b 

x > 0 
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(see Lasdon, (1970)).  The more direct "approximation programming" 

approach replaces nonlinear functions by their first-order Taylor 

series approximation expanded at the current solution,  x   ; under 

certain conditions, the optimal solution to the current l.p. leads 

to a new estimate x     , where another approximation is made, and 

so on.  The (generalized) "reduced-gradient" algorithm partitions the 

variables into basic and nonbasic sets, as in the simplex algorithm, 

and consider the optimization only in terms of the latter, thus 

"projecting the gradient." The "cutting-plane" algorithms turn a 

problem into a linear objective with nonlinear constraints, and then 

successively bound or support the desired region by a sequence of 

hyperplanes.  Details and further references on these and other simplex- 

like methods may be found in (Beale, 1967), (Himmelblau, 1972) and 

(Avriel, 1976).  Most of these algorithms have rather slow convergence 

since local movement must be restricted to guarantee feasibility or 

convergence.  The exception is the generalized reduced gradient method 

which seems to remain among the best nonlinear codes (Colville, 1970). 

Turning now to the methods which are more closely related to 

unconstrained optimization, we note that, if we have a current solution 

x    which is in the interior of the solution space, we can use a steep 

ascent method, moving in a sequence of straight-line steps until the 

optimum or a constraint is reached.  If the current solution lies on 

the boundary of a constraint (or if the original formulation has linear 

equality constraints), then a (locally or globally) feasible direction 

must be chosen.  In the "gradient projection" approach, due to J. B. 

Rosen, the gradient is projected onto the active constraint hyperplanes, 
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and a step is taken in the (reduced) steepest descent direction, until 

the optimal point along this line is reached, possibly with another 

constraint becoming active; nonlinear constraints can be handled by 

approximation, but then extra steps to re-enter the feasible region 

may be needed.  On the other hand, the "feasible directions" method, 

due to G. Zoutendyk, determines only directions that are totally 

feasible, but has difficulty accommodating linear equality constraints. 

Both of these methods have been considerably elaborated and improved 

by coupling them with modern methods of steep ascent.  A recent survey 

of the many possible algorithms is in (Avriel, 1976). 

Penalty function methods operate differently, by incorporating 

the constraints into the functional in various ways, and using unconstrained 

optimization techniques.  Exterior penalty functions add nonlinear costs 

whenever the solution trajectory leaves the feasible region.  In the 

more popular interior penalty methods, nonlinear "barriers" are placed 

in the interior of the feasible region to keep the optimal solution 

away from the boundaries; these barriers are slowly relaxed so that 

the sequence of unconstrained optima converges to x  .  For example, 

if all the constraints are of the form g.(x) >^ 0 , one would maximize 

f(x) - X £ g. (x)  for a decreasing sequence of X .  This approach 

has been extensively studied by Fiacco and McCormick (1968), and seem 

to be the most successful way to tackle problems with strongly non- 

linear constraints (McCormick, 1971).  See also (Avriel, 1976) and the 

numerical example in (Himmelblau, 1972). 

An important special class of nonlinear programs are engineering 

design problems in which the objectives and constraints are composed 
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where f(x)  is a concave (convex) function, and each nonlinear 

constraint is an inequality, formed only from concave functions. 

This guarantees that the total constraint space is a convex region, 

and that local search methods will converge, if properly set up, to 

the overall optimum.  Occasionally, nonconvex objectives of special 

form can be handled; otherwise, one must be content with an x 

which may only be locally best. 

A glance at recent texts in nonlinear programming (Himmelblau, 

1972), (Luenberger, 1973), (Avriel, 1976) reveals that there is no 

single preferred method, but rather a variety of different approaches 

suited to the many different special forms that (4.1) can take.  The 

methods divide themselves naturally into those based strongly on l.p. 

techniques, those based upon unconstrained optimization algorithms, 

and specially-developed algorithms. 

In the first category, we usually have no (or few) nonlinear 

constraints, and only mildly nonlinear objectives.  The first remark 

T    IT is that quadratic programs, where f(x) = c x + — x Qx and Q is 

a negative (positive) semidefinite matrix, can be solved using variants 

of the simplex method (Dantzig, 1963), (Boot, 1964).  Linear fractional 

T  T 
programs, where f(x) = c x/d x is neither convex nor concave, can 

be handled by treating the denominator as a parametric variable (see, 

e.g. (Lasdon, 1970)). More generally, we can use linear approximations 

to the nonlinear functions in several different ways.  The first approach 

is to use "grid linearization," with each nonlinear function recursively 

defined in terms of local piece-wise linear forms; the complete method 

is related to the decomposition algorithm, and is especially simple if 

the nonlinear function are of separable type,  f(x) = V f.(x.) 
3     3 
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of posynomials.  These problems, referred to as geometric programs, 

have been extensively analyzed, and special-purpose algorithms developed 

(Duffin, Peterson, and Zener, 1967), (Zener, 1971), (Beightler and 

Phillips, 1976).  It is also possible to find approximate solutions 

using the simplex method (Ecker and Zoracki, 1976). 

Optimality in nonlinear programs is recognized by constructing 

extended Lagrangean multipliers and checking that the so-called "Kuhn- 

Tucker conditions" (similar to complementary slackness in linear programs) 

are satisfied.  These multipliers are essentially dual variables and 

have similar economic interpretations; yet, duality theory does not 

seem to play a large role in nonlinear computations.  Part of the 

difficulty is that there are many different possible dual formulations 

to nonlinear programs, and, in contrast to l.p. , the primal variables, 

x , also appear in the dual programs, thus preventing their independent 

solution.  The other difficulty is that dual formulations may require 

delicate analysis; Geoffrion (1972) illustrates some of the difficulties. 

Convergence properties are also difficult to establish (Wolfe, 1970), 

(Zangwill, 1969). 

Nonlinear programming methods are finally beginning to sort themselves 

out after a period of diverse theoretical development.  What is needed now 

is extensive computational comparison on large-scale practical problems 

to further match method to problem; it is probably too much to hope that 

a universally efficient method will ever be found. 
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5.  NETWORK FLOW MODELS 

If one had to identify the most popular application of linear 

programming, it would certainly be the network flow models, first in- 

vestigated systematically by Ford and Fulkerson (1962).  In the 

prototypical problem, we imagine a connected network made up of nodes 

i = 1,2, ..., N , and A directed arcs, each labelled by an ordered 

pair representing the start and terminal nodes for that arc.  Thus, 

arc  (i,j)  starts at node i , ends at node j , and we suppose it 

has flow x.. , limited by upper and lower capacities,  1   and u 
!J IJ       ij 

and contributes a profit (cost)  ex..  to the total operation.  The 
13 13 

optimization problem is then to find a maximal profit routing of flow: 

Max (Min) Y Y c..x.. 
i j  13 13 

t5'1) I (Xy " xj±) = q.    (i = 1,2 N) 

1.. < x.. < u.. . 
13 - 13 - 13 

Here  q± > 0 [q±  <  0]     represents external flow into [out of] the 

network at node i ; the equality constraints represent "Kirchoff law" 

conservation at each node - summations are understood to be only for 

arcs actually connected there. 

(5.1) is clearly a linear program, but of very special structure, 

since the constraint matrix only contains O's, + l's, and - l's, and 

exactly one of each of the latter for each variable.  One can show 

that this implies: 
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(1) There is exactly one redundant conservation equation, and for 

solvability I  q. =0 ; 

(2) The optimal solution is got by adding and subtracting the 

boundary flows  {q.} , and is thus integral if they and the 

capacities  {l..,u..}  are integral; 

(3) The l.p. basic solution is related to a network configuration 

called a tree - a subset of N - 1 arcs which connects all the 

nodes, and has no loops; 

(4) "Pivoting" from one extreme point solution to another is related to 

passing flow around a loop in the network, so the only computation labor 

is to find a "good" loop and stay feasible. 

Because of this simplicity in the optimal solution, it has been possible 

to develop fast, special-purpose computer codes which can handle much 

larger network formulations than could be handled by a general l.p. 

code - 10 nodes and 10 arcs being handled routinely (Glover and 

Klingman, 1975). 

(5.1) includes a variety of very useful simpler models.  For 

example, if the network consists only of all possible links between 

one set of nodes with q. > 0  (the plants) and another set of nodes 

with q  < 0  (the customer), we have the classical "transportation 
i 

problem"; making the two sets equal in size and all q. = + 1  further 

reduces (5.1) to the "assignment problem." For a general network, if 

in (5.1)  c. = 1 for a certain arc  (i,j) , zero for all others, 

then we have the "maximum (minimum)-flow problem," which can be solved 

by a simple "labelling method."  (Ford and Fulkerson, 1962); conversely, 

if all q. H 0 , but 1.. = u.. =1 for a certain arc  (i,j) , then 
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we have the "longest (shortest)-route problem," for which a variety 

of special-purpose algorithms are available (Dreyfus, 1969).  In fact, 

most algorithms for the general network problems are alternate 

applications of max-flow and shortest-route procedures to different 

arcs in the network.  Easy modelling extensions include dynamic flows, 

capacities on nodes, parametric studies (etc.) (Fulkerson, 1966), 

(Price, 1971). 

The literature is full of a number of confusing references to 

"primal-dual" ["Ford-Fulkerson"], "dual," "simplex," and "out-of-kilter" 

methods.  These are, in fact, historical variants of the same extreme 

point method which different only in starting procedures, selection of 

new variables to enter the basis, treatment of initial infeasibilities, 

etc.  Nevertheless, there seems to be considerable difference in computa- 

tional efficiency of the different approaches, and upon the manner in 

which labelling information is stored; see the many studies of Glover 

and Klingman and coworkers (1974a), (1974b), (1975).  This is important 

because of the many general optimization models which have network-flow 

substructures. 

Incidentally, linear network models differ from general linear 

programs in that reasonable bounds on the number of iterations can be 

obtained (Edmonds and Karp, 1972), (Dreyfus, 1969).  Zadeh (1973a), 

(1973b) gives some worst-case examples. 

The linear program dual to (5.1) has constraints of the form 

y. - y^ > (<) c   , where the dual variables  {y.}  have an interesting 

physical interpretation as node potentials, obeying Kirchoff's potential 

law,  y_^ - y = c. . , for arcs in the optimal basic solutic Lon. 
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This dual program also arises directly in the critical-path scheduling 

models (see below). 

Because of the success of the initial special-purpose algorithms, 

several extensions of flow models have been proposed, with as much 

of the "on the network" simplicity retained as possible.  For example, 

in "networks with gains," we imagine that each arc  (i,j) has a 

multiplier k.. which converts the incoming flow x..  to an output 

flow k..x.. : this formulation includes a variety of interesting new 

applications (Jewell, 1962), but requires complicated labelling schemes, 

since the solutions are not integral, and conservation in-the-large 

is not satified.  Maurras (1972) reports on recent computational ex- 

perience; Glover and Klingman (1973) show that some networks with 

multipliers can, in fact, be reduced by scaling to ordinary networks, 

and Truemper (1976) discusses scaling in general. 

Another extension studied in great detail is the multicommodity 

flow problem, in which several types of flow pass without mixing over 

the network to satisfy their own boundary requirements, but are 

mutually constrained by each arc's total flow capacity.  (Ford and 

Fulkerson, 1958), (Jewell, 1966).  Even with integral constraints, the 

optimal answer may require fractional allocations of capacity.  Models 

of this type are important in communication networks (Frank and Frisch, 

1971) and road traffic problems (Potts and Oliver, 1972).  Recent 

algorithms are given by Hartman and Lasdon (1972) and, with computational 

experience, by Grigoriadis and White (1972). 

It should be mentioned that quadratic profit (or loss) on arcs 

can easily be handled; the procedures are a mixture of linear flow 

procedures and the methods of electrical circuit theory (Dennis, 1959). 



22 

A variety of other extensions to network flows have been proposed, 

but, generally, the days of developing special-purpose algorithms are 

over, due to the rapidly increasing capabilities of all-purpose 

mathematical programming codes.  Networks remain, however, a fruitful 

area of research for other types of models, such as stochastic flows 

(Frank and Frisch, 1971), (Kleinrock, 1976) and various combinatorial 

routing and covering problems (see below).  (Bellman, Cooke, and 

Lockett, 1970) give some other clever network problems. 

Also in the network flow class of l.p.s are the critical-path 

scheduling problems (Moder and Phillips, 1970).  In this model, the 

network represents the precedence relationships between the different 

jobs of a project.  The decision variables are dates {y.} on each 
l 

node, such that for  (i,j) , there is sufficient time to complete job 

(i,j)  requiring time  t   ; i.e.  y. - y. >_ t. . .  The objective is 

to minimize total elapsed time on the project.  Since this is exactly 

the dual program to a longest-route problem, the solution procedures 

are trivial; however, the model has found wide-spread utility in the 

construction industry. 
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6.  INTEGER LINEAR PROGRAMMING 

In many optimization problems the assumption of a continuous 

decision variable is untenable and one would like an integral answer 

for some or all of the variables; for instance, only an integer number 

of round trips can be made by vehicles, and integral numbers of 

spare parts stocked for space voyages.  Variables which can only take on 

values 0 or 1 are particularly useful in modelling selection processes 

with an attendant fixed cost; for example, if activity j  costs nothing 

if not selected, and costs d. + c.x. when operated at level x. , 
3 3  3 3 

0 < x. < u. , then we can formulate it as part of a ("mixed") integer 
3  ~    3 

program with a cost d.z. + c.x. , and constraints  0 < x. < u.z. , V     b 3  3 3  3 -3~33 

z. e {0,1} .  The  {z.}  might themselves be jointly constrained, see 

(Balinski, 1965), (Garfinkel and Nemhauser, 1972a); other surveys of the 

field are (Balinski and Spielberg, 1969), (Greenberg, 1971), (Garfinkel 

and Nemhauser, 1972b). 

The earliest attempts to solve integer linear programs were based 

on the idea of rounding-off the variables in the corresponding continuous 

linear program; however, these failed because it is easy to construct 

examples where the optimal integer answer is not the feasible integer 

point nearest to the best l.p. solution - in fact, can be arbitrarily 

far away.  Only after the initial paper of Gomory (1958) were exact 

solutions possible.  His idea was that of adding additional constraints 

to sequentially generate the convex hull of feasible integer points; 

these "cuts" remove part of the original solution space but do not 

remove any integer solutions.  After again optimizing using the simplex 

method, the new non-integral x  suggests other cuts, and so forth. 

Many different methods of generating these cutting planes are now available, 
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but, generally these methods have slow convergence, and have been tested 

mostly on problems of less than a hundred integer variables. 

The most efficient methods for general integer programs are 

currently based upon implicit enumeration techniques - the so-called 

"branch-and-bound" method (Agin, 1966), (Lawler and Wood, 1966), 

(Mitten, 1970) or "progressive-separation-and evaluation" procedure 

(Bertier and Roy, 1964), (Roy, Benayoun and Tergny, 1970).  The basic 

idea can be illustrated by considering the integer program: 

T 
Max P = c x 

(6.1) Ax <= b 

Xj e {0,1,2, ..., u }    (j = 1,2, ..., n) . 

A     T   A 
An upper bound on P = c x  can obviously be obtained by solving 

the corresponding l.p. with the integer constraints replaced by 

0 1 xj £ uj  (j = 1>2, ..., n) .  Now, pick a certain variable to "arbitrate" 

or "branch upon" - say x±   .  Problem (6.1) is "separated" into u.. + 1 

distinct integer programs in which x1 is fixed  at its possible values 

0,1,2, ..., u1   ; the objective function for each of these subproblems 

can then be bounded from above by a linear program in which  0 < x < u 
- j ~ j 

(j = 2,3, ..., n) - and these solutions are usually within a few simplex 

steps of each other, as x±    is varied parametrically through its integer 

values.  To proceed, the "best" choice of x±   ,  in terms of the various 

bounds on P , is taken, and a different variable is chosen for further 

exploration, generating a new sequence of subproblems in which two variables 

are now fixed at integer values.  At successive steps, one takes the 

"best" overall candidate solution, irrespective of the number of arbitrated 
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variables.  Under very general conditions, one can show that this procedure 

terminates when the first solution with all  variables fixed is obtained. 

This enumerative approach could, in principle, require exploration of 

all possible II (u. +1)  solutions, but in practice behaves rather well 

if good rules for the selection of successive variables are used.  A 

convenient framework for explaining the various approaches is in 

(Geoffrion and Marsten, 1972).  Commercial mixed-integer codes are now 

undergoing extensive computational testing, with encouraging results 

for problems with several hundred integer variables and several thousand 

constraints (Roy, Benayoun and Tergny, 1970), (Benichon, Gauthier, 

Girodet, Hentges, Ribiere and Vincent, 1971), (Mitra, 1973), (Forrest, 

Hirst and Tomlin, 1974).  It is interesting that the most successful 

solutions use a number of heuristic procedures, and depend strongly on 

the way in which the problem is formulated (Geoffrion, 1976). 

Naturally there are speedier special-purpose algorithms available 

for specific models, for instance, if the l.p.s used to determine 

the bounds are of the network flow type.  (Balinski and Spielberg, 1969). 

Geoffrion and Graves (1974) report a successful application of an older 

method due to Benders (1962) to a very large warehouse-location and 

multicommodity distribution problem.  Other special-purpose methods 

and models are described below. 

Finally, Kalvaitis and Posgay (1974) describe a very successful 

commercial application of integer programming, while Woolsey (1972) 

injects a cautionary note. 
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7.  COMBINATORIAL OPTIMIZATION 

The boundary between integer programming and combinatorics is 

not a precise one, since many of the problems we consider here have 

formulations like (6.1), with 0 or + 1 constraint coefficients. 

However, combinatoric problems are generally more "puzzle-like," 

are either very simple or very difficult, and usually require special 

algorithmic development.  The most important ones are related to 

network applications. 

To give some examples, imagine a network (or, if you prefer, a 

connected graph) with A undirected arcs and N nodes.  Each arc 

has a positive unit cost; the total cost of "using" a certain subset 

of arcs is the sum of the unit costs associated with those arcs. 

Now consider the following different problems: 

(1) Given two specific nodes, find the least-cost (shortest) path 

(sequence of arcs with nodes in common) from one node to the 

other; 

(2) Repeat (1), but find the 2nd,3rd, ..., kth shortest paths; 

(3) Find the least cost subset of arcs which will connect all nodes 

to each other; 

(4) Find the minimal-cost tour which passes through all nodes at 

least once, returning to the starting node; 

(5) Find the minimal-cost tour which traverses each arc at least once; 

The shortest-path problem (trivially extended to undirected arcs) 

has already been discussed as a special linear program of the network 

2 
flow type; it can be solved in the order of N  steps using a special 
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dynamic-programming-type algorithm; problem (2) also has an efficient 

dynamic-programming formulation.  (Dreyfus, 1969). 

In problem (3), one can easily show that the desired configuration 

is a (spanning) tree, N - 1 arcs which connect all nodes, and has no 

loops.  This problem cannot be posed as an l.p., and yet is susceptible to 

almost any kind of "greedy" heuristic:  for example, pick the least-cost 

arc, then add to it the next-lowest-cost arc not forming a loop, then 

add to those the next-lowest-cost-arc not forming a loop, ... and so on, 

until a tree is obtained in at most A steps.  This model is useful 

in a variety of communication problems (Frank and Frisch, 1971), (Pierce, 

1974). 

Problem number (4) is the well-known "travelling salesman" problem, 

and is fundamentally more difficult than (3).  Certain general theorems 

are known (Bellmore and Nemhauser, 1968); for example, if the unit costs 

obey a "triangle inequality" (it is always cheaper to go from one city 

to another in one step than in two), then the optimal tour is a "Hamiltonian 

cycle" - a circuit of N arcs visiting each city once and only once. 

A variety of different approaches have been proposed for this problem: 

dynamic programming, where storage bottlenecks limit the size of the problem; 

integer linear programming formulations, which required the addition of 

N-l 
2   - 1 constraints - later improved by cutting-plane algorithms; and 

branch-and-bound algorithms which have variable performance depending on 

the heuristics chosen.  Bellmore and Nemhauser (1968) provide a summary; 

branch-and-bounding appears already as the best method, but only 

problems with N < 100 were solved exactly.  Held and Karp (1970), 
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(1971) have found that sharper bounds, derived from solving a related 

spanning tree problem, can produce important efficiencies.  Their 

approach has been further improved by Hansen and Krarup, (1974), and, 

for directed arc networks, by Smith, Srinivasan and Thompson (1975); 

3 5 computation times seem to vary about as N '   for small problems, 

but N = 200  is about the limit for exact solutions.  (Webb, 1971) 

and (Lim and Kernighan, 1973) show how to obtain good approximate 

solutions for larger problems. 

Problem number (5) is called the "Chinese postman" problem.  In 

the undirected arc network where every node has an even number of arcs, 

there exists an "Euler tour," a tour which passes through each arc 

only once; this is then optimal.  In the contrary case, extra trips 

are necessary to pass through nodes of odd degree; this is done 

through an associated integer "matching" problem for which good 

computational experience is available (Edmonds and Johnson, 1973). 

Both the travelling-salesman and Chinese-postman problems are 

important as building blocks in realistic routing applications. 

Orloff (1974a) has synthesized these methods to solve a general 

routing problem (in which the minimum-cost tour is to visit a subset 

of the nodes and cover a subset of the arcs); this has important 

application to the problem of routing a fleet of vehicles out of a 

central facility, as in school-but-routing, and refuse scavenging 

(Orloff, 1974b).  See also (Bennett and Gazis, 1972), (Beltrami and 

Bodin, 1974) and the survey in (Bodin, 1975). 

The concept of choosing an optimal tour to pass through certain 

nodes or arcs of a network can be generalized to the combinatorial 
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problems of "set covering," in which costly subsets are to be chosen 

(from a given family of subsets) so as to span the original set of 

elements at minimal total cost; if the selected subsets are also to 

be disjoint, it becomes a problem of "set partitioning." See 

(Garfinkel and Nemhauser, 1972b, 1972c) and (Balas and Padberg, 1976) 

for surveys of methods and references; (Marsten, 1974) reports recent 

computational experience. 

These set covering/partitioning models can be applied to a variety 

of discrete selection problems.  Perhaps their most useful application 

to date has been to the problem of scheduling airline crews to "cover" 

a flight schedule at minimal salary, living-expense, and "deadheading" 

costs, subject to various restrictions on work-and-rest times, company 

and union requirements, etc.  The total problem is quite complex, and 

a variety of approaches have been proposed at intra-industry meeetings; 

a convenient summary is in (Arabeyre, Fearnley, Sterger and Teather, 1969). 

Another highly visible use of integer programming is in the problem 

of determining political districts so as to achieve equity in terms of 

absolute deviations of district population from an overall mean.  Minimiz- 

ing the sum of such deviations over all districts is a set partitioning 

problem; if the objective is to minimize the largest of such deviations, 

we have a "bottleneck problem" for which a branch-and-bound procedure 

has been tested on a state distincting problem with 40 indivisible popula- 

tion units.  (Garfinkel and Nemhauser, 1970).  A related political 

topic is the problem of determining a fair apportionment of representa- 

tives between political units; Balinski and Young has developed 

a new "quota method" using integer programming ideas, and have applied 

it to the U.S. Congress (1975) and the European Parliment (1976). 
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Finally, no discussion of combinatorics would be complete without 

a discussion of new results on computational complexity.  There are 

certain problems, such as maximal-flow, shortest-route, assignment, and 

minimal spanning-tree problems, where one can guarantee that the number 

of solution steps is less than some polynomial function of the problem 

parameters; i.e., a "polynomial-time-bounded algorithm" exists 

(Edmonds, 1965).  Using modern concepts of algorithmic analysis (see, 

e.g. (Aho, Hopcraft and Ullman, 1975)), Karp has shown that a variety 

of other combinatorial problems are equivalent in the sense that if 

any one of them can be solved, then there is a polynomial-time-bounded 

transformation which will solve any of the others; it follows then that 

all or none of the members of this "NP complete class" are solvable 

in polynomial time (Karp, 1972), (Karp, 1975).  This class is quite 

wide and contains the travelling-salesman, integer-linear programming, 

knapsack problems, and set covering and partitioning problems; since 

all of these are computationally difficult, we suspect that none of 

this is polynomial-time-bounded.  Of course, this does not mean that 

there cannot be efficient algorithms for moderate-size problems, or 

even that an "average" problem cannot be solved during a time which is 

a polynomial function of its size, as we have seen.  In fact, many heuristic 

algorithms have already been surprisingly successful in solving actual 

combinatorial problems.  An exciting new line of research is now trying 

to quantify this success by looking at the proximate success of heuristics 

on distributions  of problem parameters; in many cases one can guarantee 

that all but small percentage of such problems will be optimally solved 

by a fast algorithm (Karp, 1976). 
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8.  DYNAMIC PROGRAMMING 

Dynamic programming is not so much a method of optimization as it is 

a framework in which to efficiently analyze loosely-coupled, repetitive 

decision problems.  Typically, these problems arise in dynamic models (or 

serial processes) where the decisions made at one instant (or stage) give 

rise to a similar problem at a later time (the next stage), in which a 

parameter or the state of the system has changed. 

A typical model is the resource allocation problem, in which activity 

j , operating at level x.  restricted to some set of values  S. , uses up 

an amount a. > 0 of resource, and generates revenue r.(x.) , 

(j = 1,2, ..., N) .  Assuming there are B  total units of resource, the 

global optimization problem is: 

N 
Max  I r.(x.) 

(8.1) 
N 
I     a.x. <_ B 

j-1 J 3 

x. e S.    (j = 1,2, ..., N) 

If the return functions are linear, and  S.  is an interval on the real 

line, this is a simple l.p.; more general problems require special handling, 

even with just one constraint.  In the dynamic programming approach, we 

solve the problem in stages, usually beginning with the last.  Let f
N(b) 

be the optimal return from the Nth activity, assuming b  units of resource 

are made available to it; this is got from the simple optimization: 
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fN(b) = Max rn(xN) 

(8.2) aNXN-b 

XN E SN 

which is solved parametrically, for all values of  0 _<_ b _< B .  Knowing 

f (b)  (and having recorded the optimal decision x (b)) , we now proceed 

to the determination of f„ .(b) —the optimal return from the last two 
N-l 

activities, assuming b units of resource are available for both.     Since 

activity N-l uses up aw_-i  of this resource, we have again a one- 

dimensional optimization: 

f^Cb) = Max r^Cx^) + ^(b - a^x^) 

(8.3) VlVl^ 

XN-1 E SN-1 

which is solved parametrically for 0 <_ b _< B .  This process is carried 

out successively for all preceding stages until solving  f1(b)  for b = B 

gives the optimal total return.  Note that the optimization difficulty is 

reduced to that of a one-dimensional problem, but that, in exchange, a 

sequence of optimal returns (and policies) must be stored for all values of 

b .  Thus, large dynamic programs are typically storage-limited, and it is 

difficult to adequately handle problems with more than 2 or 3 linking 

constraints.  In other formulations, the result of one stage's optimization 

is to leave the system in a different abstract state (such as location and 

position in space), rather than with a diminished scalar variable; here the 

"curse of dimensionality" requires one to quantize the state space rather 

grossly to get an initial approximation in reasonable computation storage, 
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and then to successively refine the space (Larson, 1968).  Bertele and 

Brioschi (1972) have analyzed nonserial models which require a different 

kind of successive approximation.  Dirickx and Jennergren (1975) examine 

myopic policies. 

The observation that many dynamic models could be reduced to a series 

of one-stage parametric problems is due to R. Bellman, who called it an 

optimality principle:  "An optimal policy has the property that, whatever 

the initial state and initial decision are, the remaining decision must 

constitute an optimal policy with regard to the state resulting from the 

first decision."  (Bellman, 1957).  A variety of different formulations 

which use this principle can be found in the still-useful texts (Bellman, 

1957) and (Bellman and Dreyfus, 1962). 

Despite their inherent limitations, dynamic programs are extremely 

useful for problems of moderate size, or as subroutines in larger problems. 

The premier example of this is the cutting stock or trim problem, thoroughly 

investigated by Gilmore and Gomory (1961), (1963), (1965), (1966).  Imagine 

that an order for different numbers of different lengths is to be filled by 

cutting from a number of larger, standard lengths; the problem is to mini- 

mize wastage of stock.  If the size of the order is large, an approximate 

solution can be found by using a linear program in which the variables are 

all the different possible patterns of cutting the standard lengths.  Instead 

of enumerating (the combinatorial number of) all such patterns, Gilmore and 

Gomory generate new candidate patterns by solving a related "knapsack 

problem," which is the name given to (8.1) when the returns are linear, 

r (x ) = r. • x. , and the variables are integer,  S = {0,1,2, ..., u.} . 
3     3    3 3 3 3 

In this way, they alternate between linear and dynamic programs to solve a 

complex problem with many industrial applications. 
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The knapsack problem is an important model in its own right, both 

because of its usefulness as a building-block in realistic packing situa- 

tions, and because of its deceptive simplicity.  For example, if the 

activities (items to be selected for the knapsack) are arranged in de- 

creasing order r-i/a-| > r„/a„ > ...  (decreasing value per unit resource 

(space or weight) consumed), and if x.  can be fractional,  0 <^ x. <^ u. , 

then the solution is trivial:  take x = Min (u1,B/a1) ; x„ = 

Min (u„,(B - a x )/a„) ; etc.  It might be thought that is "greedy" 

algorithm might also extend to the integer case by making the obvious 

modification in the 2nd term; unfortunately, this is only true for very 

special data sets (Magazine, Nemhauser and Trotter, 1973), and we know that 

the general knapsack problem belongs to the potentially difficult NP- 

complete class of problems.  Many other integer programming methods, such 

as cutting-plane and branch-and-bound algorithms, have been proposed 

(Garfinkel and Nemhauser, 1972a). 

Dynamic programming is also useful as a theoretical tool, in proving 

the optimality of certain forms  of decision, rather than assuming the form, 

and merely setting the control parameters optimally.  Perhaps, the most 

important result of this kind was the proof that two-bin inventory control 

policy was optimal under certain cost and demand assumptions (Arrow, Karlin 

and Scarf, 1958).  Also, one can often show that dynamic optimization 

problems in operations research have a limiting behavior, in the sense that, 

as the planning horizon increases without limit, the optimal total return 

may be bounded in value (if returns discounted over time) or be bounded by 

a linear function of time (if undiscounted), and the optimal decision may 

be stationary; the optimality principle then becomes a recursion relation- 

ship which can be solved iteratively.  A well-studied example of this is 
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the model of Markov programming, in which a decision z  take a process in 

state i at time t into state j  at time t + 1 with probability 

p..(z ) , earning a reward r..(z ) , (i,j =1,2, ..., N)  (t = 0,1,2, ...) ; 
IJ  t ij  t 

thus, if the policy is fixed for all t , the process follows a Markov chain, 

and the mean total reward is asymptotically proportional to t . Many 

interesting decision problems can be formulated in this framework (Howard, 

1960) and there are numerous extensions (Jewell, 1963), (White, 1969), 

(Mine and Osaki, 1970).  If z  is a discrete control action and N is 

finite, this problem can be solved a number of different ways, including 

linear programming.  Problems with continuous decision and state spaces 

requires a certain amount of delicate analysis, and here we must say that 

the theory has far outstripped the applications (Porteus, 1975). 

Interesting applications of dynamic programming are appearing regularly 

in the literature, particularly in various investment and consumption 

(Hakansson, 1970), allocation (Derman, Lieberman and Ross, 1975), and 

"stopping" (Leonardz, 1973) models. 
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9.  CONTROL THEORY 

There is an intimate relation between the theory of dynamic programming 

and recent developments in control theory, which may loosely be described as 

optimization of a system of differential (or difference) equations.  A sur- 

vey of this area would take many more pages, and we content ourselves with 

references to (Bellman, 1967, 1971) for a dynamic programming presentation, 

and to (Canon, Cullum, and Polak, 1970) and (Luenberger, 1972) for discussion 

of the interaction with mathematical programming. 
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10.  MULTIPLE OBJECTIVES AND DECISION-MAKING UNDER UNCERTAINTY 

Analysts have long realized that optimization of a single fixed objec- 

tive is not responsive to the needs of decision-making in the real world, 

where many different conditions influence choice.  It is of course possible 

to explore several different objectives simultaneously to evaluate trade-offs; 

this is especially easy in linear programming with only a few conflicting ob- 

jectives (Zeleny, 1974).  However, the general problem is quite difficult, 

since the decision-maker may not be able to define his preference space pre- 

cisely until faced with actual comparisons.  A variety of different models 

may be found in (Cochrane and Zeleny, 1973); (Roy, 1971) is a synthesis of the 

different methodologies. 

Somewhat the same problem arises in decision-making under uncertainty 

(Hertz, 1973).  In some instances, one can justify a single objective, such 

as maximizing a mean value or the probability of gaining a fixed sum.  Usually, 

however, several aspects of the distribution of outcome seem important; for 

example, in the E-V approach of Markowitz (1959), one examines the trade-off 

between mean and variance.  More generally, the problem is one of comparing 

two distributions.  Some results can be obtained through ideas of stochastic 

dominance, but the preferred approach seems to be through utility theory, as 

developed by Von Neumann and Morgenstern.  Given a choice between several 

distributions of random outcomes  {p.(x)} , their result states that, given 

three reasonable hypotheses which a Rational Economic Man might follow when 

constructing preferences among these gambles, the preferences can always be 

represented in terms of a nondecreasing utility function,  u(x) , idiosyn- 

chratic to the decision-maker, by ranking the distributions according to the 

expected utility of the i  gamble,  U. = fu(x)p.(x)dx .  This approach is 

well-explained in (Borch,1968) (White, 1969) (Raiffa, 1970).  Although there 

have been numerous objections to utility theory (for example, an E-V decision- 
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maker does not satisfy the hypotheses of the theory), it seems very difficult 

to modify.  And, it does satisfactorily explain certain observed behavior, 

such as paying a premium over the mean loss (profit) for insurance (a lot- 

tery ticket) if one is risk-averse (risk-seeking).  There has been a great 

deal of attention to the problem of defining multi-attribute preferences, 

and the construction of an overall utility function; (Keeney and Raiffa, 1976) 

is the definitive text. 

Utility theory finds usage in the models of "decision analysis", a new 

guise for statistical decision theory which emphasizes the formal process of 

laying out a decision tree, the estimation of the probabilities associated 

with nature's plays, the estimation of the utility of the terminal outcomes, 

and the use of Bayes1 law and dynamic programming to calculate optimal stra- 

tegies.  (Raiffa, 1970) Decision analysis is particularly useful as a pedagog- 

ical framework, and as means of structuring communication between the analyst 

and the decision-maker.  Suggestive applications appear in (Grayson, 1960) 

(drilling decisions), (de Neufville and Kenney, 1972) (airport development), 

and (Hax and Wiig, 1976) (capital investment). 



39 

11.  STOCHASTIC PROCESSES AND MODELS 

Much of the early literature in OR was devoted to the study of random 

processes, both because of rapid developments in the 50's, in communications 

theory, but also because it was not usual to be trained in this area.  Now 

the situation is reversed; we take for granted that the OR specialist has had 

at least two courses in stochastic processes, and there seem to be few useful 

new theoretical developments.  (Cinlar, 1975b) is an example of a modern theo- 

retical text. 

The most ubiquitous model is, of course, the Markov process, especially 

in its discrete-time, discrete state-space version, the Markov chain.  In 

about every field of application, one can find a Markov chain, possibly im- 

bedded in a more complicated process (Kendall, 1953), used to describe suc- 

cessive transitions between states.  In a certain sense, it represents the 

first order of dependence up from a purely independent-transition process, 

and its modelling success is due to the fact that higher order dependencies 

are rarely needed.  The properties of Markov chains have been well-understood 

for twenty years, thanks to the still excellent book by Feller (1967). 

The other useful model is the renewal process, which describes point 

processes as generated by independent, identically distributed random in- 

tervals; this is an obvious model in reliability, where failed items are 

immediately replaced by new, similar items, but is also useful as a model 

for other processes, such as arrival of customers at a queue. (Cox, 1962) 

is a good introduction to the field; the full generality of renewal argu- 

ments and the various limit theorems are covered in (Feller, 1971). 

By combining Markov chains and renewal theory, (so that a transition 

between two states i and j  takes a random duration sampled from a dis- 

tribution depending on i and j) , we obtain the very useful Markov-re- 

newal (or semi-Markov) processes.  The theory is only mildly more complicated, 
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and subsumes many early elaborations on the basic processes.  (Cinlar, 

1975a) surveys the field; (Teugels, 1976) is a bibliography. 

The other important extension to these basic theories is the addition 

of economic functions, called rewards or potentials, for use in optimization. 

For example, if a transition between states i and j  took t units of 

time, we might generate a profit r..(t)  at the end of the interval, and 

add it to other rewards earned from previous transitions.  The mathematical 

details are easy, and are already being included in introductory texts (Ross, 

1970). 

Other stochastic topics, such as random walks, branching processes and 

diffusion processes find special uses, particularly in queueing theory 

(Gaver, 1968) (Newell, 1971), and in attempts to model stock market behavior 

(Fama, 1970), but few other applications. 
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12. QUEUEING THEORY 

The study of congestion in service systems was very popular in 

the '50s and '60s.  Although the basic modelling had been carried out 

many years previously by A. K. Erlang, and others, for problems of 

telephone traffic, the subsequent development of queueing theory 

showed the essential similarity between congestion and waiting-time 

phenomena in such diverse applications as road traffic control, inventory 

management, delays at toll booths, health care appointment systems, 

machine servicing, water resevoir control, airport scheduling, etc. 

In an extensive bibliography, Saaty (1966) claims that there are by 1966 

over 2000 references in queueing theory, and comments that real improve- 

ments in managing congestion phenomena do not match the congestion 

caused by the number of theoretical papers on the subject; Lee (1966) 

is also pessimistic.  Bhat (1969) refutes these arguments in a con- 

venient summary of the field, and gives a more selective bibliography. 

In the prototypical queueing problem we imagine that customers 

1,2,3, ..., n, ...  arrive at a service system at points in time 

t1,t1 + t2,t1 + t2 + t3, ..., (tL + t2 + ••• tn), ... , and queue up in 

front of a single server, who will process them individually, taking 

s1,s?,s-, ..., s , ...  units of time.  We additionally specify FIFO 

(first-in, first-out) service priority and assume the server begins 

work as soon as a customer arrives.  If we let w  be the waiting 
n 

time in the queue of the n  customer and assume that the first customer 

arrives when the server is idle, we find: 
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w = 0 

w„ = max (s - t„,0) 

(12.1) 
Wo = max (w_ + s~ - tojO) 

w = max (w   + s   - t ,0) 
n       n-1   n-1   n 

One can also describe, e.g., the number in the system found by the 

n  arrival.  Equations similar to these could, in principle, be found 

for other variations in service priority, if the number of servers 

were increased to m  (in parallel), if there were serial stages of 

queues (with or without intermediate queues), if service was in batches, 

etc., etc. 

The typical analytic assumptions about the input and service 

processes are that the arrival spacings {t ,t ,t-, ..., t , ...} 

are independent and identically distributed random variables (thus 

arrivals constitute a renewal process), and service times 

{s ,S2,SQ, ..., s , ...} are also i.i.d.r.v.s , with a different 

distribution.  In spite of the simplicity of formulation of this 

so-called "G/G/l" queue, only a few general results are known: 

(1) Statistical equilibrium is achieved if and only if the utilization 

factor, p = s/t  (s,t - mean service and inter-arrival times), 

is strictly less than unity; 

(2) The fraction of time the server is idle is 1 - p ; 

(3) The customer-average mean waiting time in queue, w , and the time- 

average mean number of customers in the queue,  q , are related by: 

q = w/t . 
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Equivalents of these results hold under more general conditions, for example, 

if there are m parallel servers, or if a different priority scheme is used. 

(3) is a very general result which essentially defines what we mean by cus- 

tomer-average wait and time-average queue (Little, 1961), (Jewell, 1967), 

(Eilon, 1969), (Maxwell, 1970).  Extensions are (Stidham, 1972), (Brumelle, 

1972). 

Further general results seem very difficult.  The basic problem is that 

n  delay content,  u = s - t ,- , is a two-sided random variable; as long J n   n   n+1 

as the partial sums u.. , u + u„, ...  are positive, they are identically 

w„,w   However (with probability one, if p < 1) , for some k , 

u-, + u„ + . .. + u,  will be negative, w   = 0 , and the process starts 

over.  The analytic determination of the distribution of k  (the number 

served during a busy period) and i = |u. + u„ + ... + u, |  (the length of 

the next idle period) seems very difficult in the general case; but, if 

they could be determined, we could obtain G/G/I results, such as: 

9   2-2      2  — 
at +  of + (t)Z(l - p)Z   2 

(12.2) w = — — , 
2t(l - p) 2i 

2       2 where a      and a  are variance of the inter-arrival and service r.v.s, 
t       s 

_   ö~ 
and i , i  the first two moments of idle time (Marshall, 1968a).  Alter- 

natively, we must find the distribution of w from a Wiener-Hopf integral 

equation. 

The most popular historical way around these difficulties has been to 

use exponential inter-arrival (Poisson arrival) and exponential service 

distribution assumptions.  Because of the "memoryless" properties of the 

exponential,  Pr {x > x + h | x > x } = Pr {x > h} , every interval of 

time is a regeneration point, and queueing systems can be described in terms 

of continuous-time Markov processes, and solved by linear systems of first- 
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order "birth-and-death" differential equations.  This approach enables us 

to model unlimited variations, such as different queue disciplines and 

priorities, balking and reneging, interrupted, blocked, and controlled ser- 

vice, serial and parallel stages, etc.  Arbitrary distributions can be ap- 

proximated through sums or mixtures of random variables.  Morse (1958) has 

many useful models of this type. 

Kendall (1951), (1953) was the first to show that only one of the 

inter-arrival or service distributions need be exponential to complete the 

analysis.  For example, in the case of Poisson arrivals,  i is distributed 

2   - 2 
as t , a    = (t)  , and (12.2) reduces to the Pollaczek-Khintchine formula: 

a    +  (s) 
(12.3) w - —  . 

2t(l - p) 

If service times are exponential, one can analyze an imbedded Markov chain, 

even with m servers; see, e.g., Kleinrock (1967).  Unfortunately, the as- 

sumptions of exponentiality led naturally to the use of transform methods, 

and the papers of the '60s are overburdened with the machinery of LaPlace 

and Fourier. 

Some of the most interesting recent research in queueing theory has 

been in the area of approximate and bounding results, especially to the 

moments of the waiting-time distribution.  Kingman (1962b) showed that 

(12.2) has the strict upper bound 

2^2 a    + o 
(12. 3) w < -^ — = W 

2t(l - p)   U 

for all Gl/G/1 queues, and that this bound is a good approximation for w 

in heavy traffic  (p -»- 1) , when w is then approximately exponentially 

distributed (1962a) (1962b). 
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Finding a strict lower bound in terms of moments is more difficult. 

Marshall (1968a) makes some additional shape assumptions on the distribu- 

tion of t and gets sharp lower bounds.  For example, if E{x - x  | x > x } 

is decreasing in x  (decreasing mean wait for the next customer as a func- 

tion of clock time since the last arrival), he obtains 

(12.4) W - t(19
+ P) < w , 

u     2. — 

which bounds q to within one customer!  Other single-server variations are 

in (Marshall, 1968b). 

Bounds for the G/G/m queue are given by Kingman (1970) and Brumelle 

(1971), and have been improved for certain special cases; a convenient sum- 

mary is in (Kleinrock, 1976).  Finally, we should mention the large amount 

of unpublished work on approximations for single- and multi-server Poisson 

queues (Marchal, Gross, Harris, 1974), (Nozaki and Ross, 1976), (Takahashi, 

1976), and the growing interest in estimators (Law, 1975). 

A valid criticism of all the above models is that they are only useful 

in stable regimes; time-varying parameters and transient response are diffi- 

cult to analyze, except in the simplest systems.  However, a growing litera- 

ture in queueing theory begins by approximating the arrival and departure 

processes themselves, making first a deterministic "fluid" approximation to 

the average values of these processes, and then adding a second-order "dif- 

fusion" approximation.  Gaver (1968) has investigated diffusion approxima- 

tions to the M/G/l queue, and Newell (1968), (1971) has written extensively 

on "rush hour" traffic, when the system is overloaded for a period of time, 

and then recovers.  Although the concepts are simple, the analysis leads to 

Fokker-Planck diffusion equations, and requires care in arguing the limiting 

approximations.  Kleinrock (1976) contains a clear survey of diffusion models; 

Whitt (1974) covers recent contributions to limit theorems. 
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Perhaps the most interesting new application of queueing theory has 

been in the field of computer time-sharing systems. Kleinrock (1976) con- 

tains an excellent description of the analytic and heuristic models developed 

to analyze multi-user priority schemes and design computer communication net- 

works.  The challenge of working with a complicated real network (ARPANET) 

has clearly provided a fruitful interaction between queueing theory and prac- 

tice. 
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13.  RELIABILITY THEORY 

The early models of reliability theory was primarily of series-parallel 

connections of elements with exponential lifetimes.  However, since the early 

60's there has been a rapid expansion around two new and important concepts. 

The first is the theory of coherent structures, which provides a general 

framework for analyzing systems of unreliable elements.  The second idea 

is to assume certain monotone shape properties of the lifetime distributions 

(increasing failure rate and rate average, increasing mean residual life, 

"new better than used," etc.) to bound complex system performance measures, 

and determine optimal replacement policies (Barlow and Proschan, 1965, 1975), 

(Proschan, 1976). 

Current research topics are surveyed in (Barlow and Proschan, 1976). 

Of particular interest are a successful multivariate generalization of the 

failure rate (Marshall, 1975), increased interest in Bayesian models (Tsokos, 

1977), and the use of fault trees to systematically develop failure modes in 

complex systems, such as nuclear reactors (Barlow, Fussell, and Singpurwalla, 

1975). 
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14.  FORECASTING AND BAYESIAN STATISTICS 

There are two developments in statistics which are influencing the 

methodology of operations research.  In the empirical forecasting of time 

series, the ARIMA (auto-regressive integrated moving-average) models of Box 

and Jenkins (1970) provide an economical framework in which to identify rea- 

sonable underlying mechanisms and carry out the necessary computations.  The 

theory also puts older exponential-smoothing heuristics on a firm basis. 

The other development has been the so-called Bayesian revolution.  Sup- 

pose we have some prior information about a random parameter 8  (the inputs 

or control settings in a certain process, or the physical or economic condi- 

tions surrounding a certain experiment, or the skill of a human operator, 

etc.) which we can summarize in a prior density,  p(8) ; and suppose, for 

every possible value of 8 , we know the "likelihood",  p(x | 8) , the con- 

ditional density of observing a different random value,  x , during some well- 

defined experiment.  By the use of conditional expectation (Bayes' Law), we 

find that, posterior-to-observing the sample value x = x  , we can redefine 

our knowledge about 8 to obtain the posterior-to-data density 

(14-D P(6 | xo) = kp(xQ | 8) -p(8) , 

where k is a constant to normalize p(8 | x ) .  The current controversy in 

the statistical community seems to stem not from (14.1), but from whether a 

consulting statistician is permitted to have any personal beliefs about  8 

to include in the prior,  p(8) , or whether he must devise methods to let 

the data somehow "speak for itself" (Savage, 1962) (Barnett, 1973). 

This is hardly a crisis in operation research systems analysis where 

the ability to draw on prior experience and analogous situations is permitted, 

nay, encouraged in estimation procedures.  More importantly, the Bayesian ap- 

proach reveals paradoxes in the classical sampling-theory school of statistics 
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(Lindley 1972, 1975), (Basu, 1975), and in spite of various attempts to re- 

concile the two approaches, such as the use of diffuse priors and "empirical 

Bayes" techniques, it seems as if the basic sampling-theory ideas, such as 

point estimation, significance testing, and confidence intervals, must be 

reformulated.  (Houle, 1973) gives about 2000 references in Bayesian sta- 

tistics; many new references regularly appear in O.R. journals. 

Motivated by estimation problems in insurance, the author has been in- 

terested in Bayesian prediction schemes, particularly the estimation of the 

mean value of a future observation posterior-to-data, viz: 

>>-//■' 

(14.2) E{x | xj = //xp(x | e)p(e I xo)dxde , 

which represents the "experience-rated fair premium" in insurance terms. 

Actuaries noticed that, for many priors p(8)  and likelyhoods p(x | 6) , 

(14.2) was linear in the data x ; this is true even for nonnormal families, 
o 

and the general conditions under which this is true are now known, and have 

been extended to the multi-dimensional case (Jewell, 1974). 

In more general forecasting and regression schemes, the Bayesian mean 

may not be linear in the data; however, one can easily find the best linear 

approximation through the use of least-squares theory. This field is re- 

ferred to as "credibility theory" in the actuarial literature (a survey is 

in (Jewell, 1976)), and is closely allied with "linear filter theory" in 

the communications field (Sage and Melsa, 1971). (Aitchison and Dunsmore, 

1975) analyzes other Bayesian prediction schemes. 
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15.  INDUSTRIAL AND MANAGEMENT MODELS 

This section will briefly survey some of the recent trends in business 

models.  The growth and influence of systems ideas over the last twenty 

years has been tremendous, and scientific management is now a fact of life 

in all kinds and sizes of industries. 

Inventory control was already a mature field by the 60's, following the 

development of the basic statistical models (Arrow, Karlin, Scarf, 1958) 

(Scarf, Gilford, Shelly, 1963).  Since that time, the emphasis has been on 

making the models more realistic and extensive.  (Gross and Schrady, 1976) 

is a recent summary; see also the forthcoming book by Silver and Peterson 

(1977).  (Muckstadt, 1973) describes a large-scale application. 

Turning to the production side, an important new trend has been the de- 

velopment of integrated systems for production planning, scheduling and in- 

ventory control (Hax and Golovin, 1974) (Hax and Mead, 1975) (Hax,1976b). 

(Bitran and Hax, 1976) The problems of logistics, including plant location 

and distribution, have also been the subject of recent intensive investiga- 

tions (Eilon, Watson-Gandy, Christofides, 1971).  (Francis and White, 1974) 

(Geisler,1975) (Geoffrion, 1975) (Marlow, 1976)  See especially the survey 

by Hax (1976a).  Multilevel analysis is described in (Jennergren, 1976). 

Marketing, on the other hand, is an area which only recently has been 

quantified, apparently with success.  Kotier (1971) provides a comprehensive 

survey; recent articles of interest are (Little,1975) and (Häuser and Urban, 

1976). 

In the area of project management, the most important development of the 

60's was in scheduling, using the critical-path methods developed for the 

Polaris missile program and the construction of the S.S. France.  The basic 

models belong to the network class of linear programs, have very simple 

algorithms, and are now routinely used in all major construction projects 
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(Thornley, 1968) (Moder and Phillips, 1970) (Lombaers, 1969).  Since that time, 

attention has been directed towards the resource-loading problem - an inher- 

ently difficult problem which is of the NP-complte class (Herroelen,1972) 

is a convenient survey.  (Shephard, Al-Ayat, and Leachman, 1976) is a differ- 

ent modelling approach, using dynamic production function theory.  Another 

active area has been in the selection and budgeting of research and develop- 

ment projects (Gear, Lockett and Pearson, 1971) (Gear and Lockett, 1973) 

(Näslund and Sellstedt, 1974) (Baker and Freeland, 1975).  The problems of de- 

tailed manpower scheduling are also of continued interest (Bennett and Potts, 

1968) (Arabeyre et al, 1969); Bodin (1972) gives a general model.  (Baker, 1974) 

(Coffman, 1975) use recent works on job/shop scheduling and sequencing. 

Finally, the most explosive management science area in the past decade 

has been the field of investment and finance.  Following the pioneering idea 

of Markowitz (1959) to select a portfolio of investments as a trade off be- 

tween mean return and variance, many different extensions have been made in 

an attempt to improve investment performance; see (Francis and Archer, 1971) 

(Sharpe,1971) (Lorie and Brealey, 1972).  Part of the problem may be that the 

stock market is too efficient a process for a computer to make money, at least 

in the long run (Fama, 1970) (Granger and Morgenstern,1970).  The optimal de- 

sign of bond maturity schedules is, however, a more tractable problem (Bradley 

and Crane, 1975).  Money managers are also using linear programming and other 

methods to reduce or increase "float" (Caiman, 1968) (Orgler, 1970) (Orr, 1971). 

A bibliography of 3,600 works in the finance and investment area is in 

(Brealey and Pyle, 1973). 
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16.  THE INFLUENCE OF O.R. METHODOLOGIES 

Since other speakers at this meeting will be describing various appli- 

cations of operational research/systems analysis, I would like to describe 

another process which has not been widely noted—the influence of O.R. metho- 

dologies upon other disciplines, particularly in research and teaching. 

For example, we are so used to talking of the uses of mathematics, it 

is easy to overlook the stimulus that linear programming has given to the 

study of convex polytopes, solutions of inequalities, discrete mathematics, 

and graph theory.  Linear algebra, including a brief introduction to linear 

programming, is now taught to all engineering freshmen and math majors at my 

university; simple graphical-solution linear programs even appear in high 

school "new math" courses.  New algorithms, based upon the complementary pivot 

theory of mathematical programming, give promise of providing practical calcu- 

lation of fixed points—an achievement which will find wide application in 

both pure and applied mathematics (Karamardian, 1976) (Saigal,1976). 

Scarf (1973) has already applied these fixed-point algorithms to the 

computation of economic equilibria—a difficult problem which has heretofore 

eluded economists for even modest-sized problems.  Duality theory, with its 

concepts of imputed values of resources and of "pricing out" inefficient ac- 

tivities, has proved a fertile field for quantifying basic economic notions 

such as marginal costs.  Large-scale economic planning and optimization is 

now possible on a scale undreamed of twenty years ago, thanks to modern 

linear programming codes.  Production function theory has changed dramatic- 

ally (Shephard, 1976).  New terms, like trade-off, cost-benefit analysis, sub- 

optimization, efficient frontier, and decentralized control are universally 

used and understood. 

In statistics, the various interesting problems posed by dynamic pro- 

gramming, decision analysis, Markov programming, etc., models have certainly 
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stimulated research in statistical decision theory, gambling systems, mar- 

tingales, potential theory, limit theorems in renewal theory, and so forth. 

The concept of monotone shape characteristics for distributions, introduced 

in reliability applications, has provided a new approach to bounding mo- 

ments in random walks,  And, the many possible variations in queueing models 

has provided a torrent of marginal contributions to the statistical journals, 

much to the concern of the editors (Pyke,1975). 

I have already described the changes in almost every field of business 

administration; the same can be said about industrial engineering.  The 

methodologies have also been adopted by electrical engineering, especially 

in control theory and in communications network design, as described earlier. 

Transportation engineering relies heavily upon queueing theory, network flows, 

dynamic programming, etc. (Gazis, 1976).  Critical path scheduling is taught 

routinely in construction engineering.  Statistical models of wear are useful 

in metal behavior studies.  Dynamic programming is used for nuclear fuel 

management, and fault tree analysis to isolate nuclear reactor shutdown se- 

quences.  And so on. 

A variety of new sister disciplines have sprung up which also use 

O.R. methodologies, as a glance at the new journals will reveal:  urban plan- 

ning, environmental engineering, energy analysis, health care systems, etc. 

And especially in computer science it is possible to trace the influence 

of O.R. methodologies:  from queueing theory for the design of computer sys- 

tems, through graph theory and combinatorics for the design of efficient data 

structures and manipulation procedures, to the common concerns for develop- 

ing, testing, and implementing efficient algorithms (Aho, Hopcraft, and 

Ullman,1975).  It seems to me that there is a certain amount of tension just 

now between O.R. and this newest engineering science discipline, caused in 

part by the shift in popularity and research support, but also by the reali- 

zation that problems of algorithmic efficiency have become too esoteric for 

the O.R. analyst, and require the attention of a different kind of specialist. 
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17.  CRISES WITHIN THE PROFESSION 

This tremendous activity and expansion in the field of operational 

research/systems analysis has, however, been achieved at the cost of 

considerable disorder within the profession, as the discussion sections 

of the journals and the conference roundtable discussions reveal; see the 

references in Klein and Butkovitch (1976). 

The first crisis is over the incredible proliferation in papers and 

specialty journals.  ORSA/TIMS conference dimensions are staggering, as 

are the numbers of regular meetings of numerous special-interest groups 

and new specialty societies. Kendall (1960) estimates that, in 1958, one 

would have to scan five journals to cover 1/3 of the English-language 

contributions and about 18 journals to cover 1/2 of the literature; my 

estimate of the current situation, based upon scanning our university 

libraries, is that about 15 and 50 journals, respectively, would be needed 

in 1976.  Even traditional journals have fissioned into several parts. 

One wonders what libraries can afford to stock them all, or how many people 

have "xerox subscriptions." Some will say that this proliferation is the 

direct result of the "publish or perish" promotion criteria of American 

universities; others point to regulations requiring one to present a paper 

to secure travel support to a technical meeting.  But it is clear that this 

communication explosion is affecting other sciences as well and there is 

no easy solution in sight. 

With this proliferation has come increasingly narrow specialization, 

which we see in academia when students insist they want to major in mathe- 

matical programming or queueing theory, and the faculty advisors permit them 

to do so.  Klein and Butkovitch (1976) suggests darkly that this is a natural 

phenomenon, since the OR/MS academic discipline is an institutionalized 
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system of exchange which sets up modular specializations in order to insure 

its own survival; they see little hope for institutional change. 

Another crisis, perhaps more pertinent to the U.S.A. than to the U.K., 

has been the apprent separation between theory and application.  Practi- 

tioners regularly rage at the mathematical "overkill" in the pages of the 

journals, and yearn for the good old days when a simple model could 

explicate an observed phenomenon; in rebuttal, researchers point to the 

trivial level of many of the applications papers ("How I ..."), and the 

universal lack of sponsorship by industry of meaningful research programs. 

There are continuing criticisms of the academic programs (Schrady, 

1976) which imply that OR/MS training is not responsive to the needs of 

industry - being too technique-oriented, over-specialized, having little 

understanding of the total systems approach, unable to collect and organize 

data or write management reports, and so forth. 

Putting these tensions all together, adding the success of new fields, 

such as computer science, and contemplating the rapid rate of adoption of 

0. R. methodologies by the applications fields (business; economics; trans- 

portation, environmental, and communications engineering, etc.), has led 

to a larger malady, which might be called a crisis of confidence.  We see 

this in the searching self-examination of many of the roundtable dis- 

cussions ("Is Mathematical Programming Moribund?", "Are We Gambling on 

OR/MS Education?"), and in statements to the effect that operational 

research has promised too much, delivered too little, and should now be 

given a decent burial. 
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18.  FUTURE PROSPECTS 

I prefer to take a somewhat more balanced view of these crises.  For 

example, there is evidence that, in the U.S., the societies are moving to 

correct some of the earlier excesses.  ORSA and TIMS have been growing more 

closely together, running simultaneous conferences, and sharing membership 

administration facilities.  Their publication policies have also been 

coordinated and rationalized: A new journal, called Mathematics of 

Operations Research, has been established to attract important theoretical 

articles.  Interfaces has been designated as the new joint medium for 

describing operational problems of implementing or using OR/MS; the quality 

of articles is improving under the new editor, who insists that all 

articles be readable and that equations be relegated to the appendices. 

The parent journals, Operations Research and Management Science, are now 

free to concentrate on major articles of interest to all members of the 

profession. 

Another interesting development has been the sponsorship of a prize 

competition for papers on successful applications of MS by the 

TIMS College on Practice (Interfaces, Vol. 6, No. 1).  The rules are strict: 

the entries must report a completed, practical application and must present 

results that have had a significant impact on the performance of the 

organization under study, as certified by management.  Because practitioners 

do not normally publish such studies, the prize is set at a significant level 

($6,000 for the 1977 competition).  The actual presentations and the written 

papers are extremely interesting, in my opinion, and provide a standard of 

professional practice previously unavailable. 
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There are no easy solutions to the publication explosion problem, 

although de-emphasis of published works as a university promotion criterion 

would certainly help, as would resolution of some of the legal and institu- 

tional problems surrounding the inexpensive duplication and distribution of 

papers.  I believe in market mechanisms and the freedom to fail; journals 

which do not serve some useful purpose will soon vanish from the scene. 

Who is to question the utility of those which survive? 

Academic programs are easily criticized, but one must remember that 

there were few texts or courses before 1960, and new programs had to be 

grafted onto a variety of different educational formats.  It is true there 

has been a great deal of theoretical activity relative to the actual appli- 

cations, but this is the characteristic of "normal science" (Kuhn, 1970), 

whose first priority is to structure the appropriate and potentially useful 

knowledge and explore its theoretical facets.  "Few people who are not 

actually practitioners of a mature science realize how much mop-up work of 

this sort a paradigm leaves to be done or quite how fascinating such work 

can prove in the execution" (op. cit., p. 24). 

It is also true that our recent graduates, now staffing industry, 

government and other teaching faculties, have over-emphasized technique in 

place of application, and did not participate in the same school of hard 

knocks and simple models that reared our founders.  But the same can be 

said of any profession.  These young people are extremely bright, and, I 

believe, more adaptable to new demands by society than many of the tired 

pioneers.  As far as teaching the systems approach is concerned, philosophy 

is fine (Churchman, 1968), but what is needed are more excellent texts like 

(White, 1975), and good professional articles, developing ideas like those 
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in (Bishop, 1972) and (Liebman, 1976).  More consistent signals from research 

funding agencies would help useful academic development, as would more 

interest by industry in providing research problems and support, and helping 

educational programs to make closer ties with reality. 

OR academicians, on the other hand, must learn to let go of any 

proprietary feelings they have about the methodologies they helped to 

develop, and pay closer attention to the substantial issues facing their 

field of primary interest, be it business, government, or industrial 

engineering.  The great strength of the profession has come from the 

ability to construct interesting models of real-world phenomenon, and to 

use the solutions to resolve actual problems.  The outlines of the applied 

methods are now clear for all to see, and, at some point, methodology 

becomes pure mathematics or statistics or computer science, the concern 

of other specialists.  It is a mark of maturity that our methods are now 

influencing other fields, and that the availability of these new support 

skills frees us to return to the central issues of modelling and problem- 

solving. 
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