RL-TR-97-44
Final Technical Report
July 1997

SUPPORTING MULTIUSER ACCESS TO
LARGE-SCALE PERSISTENT KNOWLEDGE

BASES

SRI International

Sponsored by
Advanced Research Projects Agency
ARPA Order No. 8964

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19970%2 063

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Advanced Research Projects Agency or the U.S. Government.

\DTIC QUALITY LNEPEUTED &
Rome Laboratory

Air Force Materiel Command
Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-44 has been reviewed and is approved for publication.

APPROVED: sz\wo WY/ |

LOUIS J. HOEBEL
Project Engineer

FOR THE COMMANDER: /
JOHN A. GRANIERO, Chief Scientist
Command, Control, & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3CA, 525 Brooks Road, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

SUPPORTING MULTIUSER ACCESS TO LARGE-SCALE
PERSISTENT KNOWLEDGE BASES

Contractor: SRI International

Contract Number: F30602-92-C-0115

Effective Date of Contract: 12 August 1992

Contract Expiration Date: 30 June 1996

Program Code Number: 2D30

Short Title of Work: Supporting Multiuser Access to Large-
Scale Persistent Knowledge Bases

Period of Work Covered: Aug 92 - Jun 96

Principal Investigator: Peter D. Karp
Phone: (415) 859-6323
RL Project Engineer: Louis J. Hoebel

Phone: (315) 330-3655
Approved for public release; distribution unlimited.
This research was supported by the Advanced Research Projects

Agency of the Department of Defense and was monitored by
Louis J. Hoebel, RL/C3CA, 525 Brooks Road, Rome, NY.

DTIC QUALITY INEPECTED 8

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

2. REPORT DATE
July 1997

1. AGENCY USE ONLY /Leave biank]
Final

Public reporting burden for this collaction of information is estimated to average 1 hour per response, including the time for raviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
h ion of inf i end regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budgst, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

3. REPORT TYPE AND DATES COVERED

Aug 92 - Jun 96

4. TITLE AND SUBTITLE

SUPPORTING MULTIUSER ACCESS TO LARGE-SCALE PERSISTENT
KNOWLEDGE BASES

6. AUTHOR(S)

Peter D. Karp

5. FUNDING NUMBERS

C -F30602-92-C-0115
PE - 61101E

PR - H767

TA -00

WU - 02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SRI International
333 Ravenswood Ave
Menlo Park CA 94025

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES)

Rome Laboratory/C3CA
525 Brooks Ave
Rome NY 13441-4505

Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington VA 22203-1714

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-44

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Louis J. Hoebel/C3CA/(315) 330-3655

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words]

This project has investigated methods for extending the capabilities of the loom frame representation system (FRS) to
support the development of large-scale knowledge bases by multiple, distributed users.

14, SUBJECT TERMS

Persistence, concurrant access

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT]
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

15. NUMBER OF PAGES

64
16. PRICE CODE

Standard Form 298 gRev. 2-89} {(EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Abstract

This project has investigated methods for extending the capabilities of the LOOM frame
representation system (FRS) to support the development of large-scale knowledge bases (KBs)
by multiple, distributed users. SRI has explored alternative methods for coupling LOOM with
a DBMS. Those methods were implemented at SRI, evaluated experimentally, and published
in the computer-science literature [KPG94, KP95]. SRI has also developed and implemented
a novel optimistic concurrency control technique for controlling KB updates by multiple
users. The implementations were tested in the context of two domains: the SOCAP military-
operations planning KB, and the EcoCyc biochemical-pathways KB.

The organization of this final report is as follows. Sections 2-4 discuss the motivations
and design requirements for this work, and briefly present the architecture we have designed
to satisfy those requirements.

- Section 5 describes the Generic Frame Protocol (GFP), which was an unanticipated result
of this work. GFP is a COMMON LISP interface that allows different FRSs to present a common
programmer interface to FRS applications. GFP is a substrate for software reuse that has
facilitated the reuse of the storage system with other FRSs. GFP also underlies both the
Generic Knowledge Base Editor (see Section 6) that SRI has developed under a separate
contract from Rome Laboratory, and the Ontology Editor developed at Stanford University.

Section 7 describes the LOOM storage system. SRI has implemented several alternative
architectures for the storage system (based on a relational database management system
(DBMS) and an object-oriented DBMS), and empirically evaluated the performance of those
architectures. The two DBMSs exhibited similar performance, but the relational DBMS
was easier to work with and therefore was chosen as the basis for future experiments. SRI
designed a generic relational schema that can encode information from several LOOM KBs
simultaneously, and that can accommodate any LOOM KB. SRI obtained a follow-on contract
from DARPA to polish the storage system and distribute it to the LOOM community; that
distribution will occur in the summer of 1996.

Section 8 describes our approach to coordinating KB updates from multiple simultaneous
users. Qur strategy is to allow users to freely update the KB in separate workspaces; when
user wish to commit their changes to the public KB, the collaboration system searches for
conflicts between changes made by the requesting user and other recent changes made by
other users.

The following publications were prepared under this project:

e (in preparation) “A Collaborative Environment for Authoring Large Knowledge-Bases
and Ontologies.”

e Karp, P.D. and Paley, S. (1995) “Knowledge Representation in the Large,” Proceedings
of the 1995 International Joint Conference on Artificial Intelligence, Montreal, Canada.
See WWW URL ftp://ftp.ai.sri.com/pub/papers/karp-perkobj95.ps.Z.

e Karp, P.D., Myers, K. and Gruber, T., (1995) “The Generic Frame Protocol,” Pro-
ceedings of the 1995 International Joint Conference on Artificial Intelligence, Montreal,

Canada. See WWW URL ftp://ftp.ai.sri.com/pub/papers/karp-gfp95.ps.Z.

¢ Karp, P.D., Paley, S., and Greenberg, 1., (1994) “A Storage System for Scalable Knowl-
edge Representation,” in Proceedings of the Third International Conference on Infor-
mation and Knowledge Management, Gaithersburg, MD.

ii

1 Introduction

Collaborative KB authoring environments allow multiple, geographically distributed users to
collaborate in the development of large KBs. The first generation of FRSs [Kar92] provided
only single-user KB authoring environments whose engineering limitations constrained the
size of the resulting KBs, and did not permit distributed KB access. This report describes
a next-generation, reusable environment for collaborative KB authoring that consists of the
following components: '

e The Generic Frame Protocol, which provides infrastructure for software and knowledge
reuse. It is a procedural interface to FRSs that provides a common means of accessing
and modifying frame KBs.

e The Storage Subsystem, which provides scalable storage of frame KBs in a commercial

DBMS.

e The Collaboration Subsystem, which provides optimistic concurrency control over the
KB updates made by multiple distributed KB authors.

e The GKB Editor, which provides KB browsing and editing services for large KBs.

This work makes a number of contributions to the field of knowledge representation. More
specifically, our results advance the state-of-the-art in the tools for engineering knowledge-
representation systems. We identify design requirements for collaborative KB authoring en-
vironments, present an architecture that satisfies those requirements and an implementation
of that architecture. The architecture includes both the Storage Subsystem, for expanding
the storage capabilities of FRSs, and novel “optimistic” concurrency control techniques for
coordinating KB updates made by multiple simultaneous users. We also present an empir-
ical evaluation of our chosen architecture against a number of alternative architectures to
illustrate their relative merits.

The GKB Editor completes this authoring environment by providing three different viewer
and editor utilities for browsing and modifying large KBs. All of these tools have been used
in the development of several real-world KBs including a planning ontology, and the EcoCyc
biochemical-pathway KB, which contains 10,000 frames.

These results are made more significant because the implementations have been reused
across several FRSs. The Storage Subsystem has been used with both LooM [Mac91] and
THEO [MACt89]; the GKB Editor has been used with LooM, THEO, SIPE-2, and partially
with ONTOLINGUA and CLASSIC. This reusability both supports the generality of our ap-
proach, and provides the most substantial example to date of the type of software reuse
envisioned by the Knowledge Sharing Initiative [PFPS*92]. We discuss various obstacles to
software reuse that we encountered, and the solutions that we devised.

2 Design Requirements

We derived the design requirements for KB authoring environments from our experiences
with KBs in several domains. We present two scenarios of the use of these environments to
illustrate the motivations behind these requirements.

Scenario 1 involves the distributed development of a planning ontology by multiple ARPA
contractors who are distributed throughout the United States, as part of the ARPA /Rome
Laboratory Planning Initiative. Contractors at roughly a dozen sites might wish to access the
LooM KB that implements a planning ontology, to browse the current state of the ontology,
to add new class definitions interactively, and to edit existing definitions. The LOOM classifier
runs during the editing process to infer relationships among new and existing classes. Users
might also execute ontology translators to convert the planning ontology to other forms, such
as a relational database.

Scenario 2 involves a biological KB that describes the biochemical reaction network within
the L. coli cell. The KB models biological objects such as enzymes and bio-reactions. Experts
Biologists from around the world will interact with the KB in several different ways. Some
biologists wish to update the KB by editing that region of the KB that falls within their
expertise. Other biologists require only read-only access to the KB: some will browse the
KB using a graphical interface. Others will execute qualitative and quantitative simulation
programs that model the metabolism of the cell. Other scientists will execute programs that
redesign the biochemical network of E. coli for commercial purposes in bio-technology. Still
other users will evaluate complex queries over the KB to answer scientific questions.

We have extracted the following design requirements from these scenarios.

o User sessions will involve several distinct patterns of KB operations:

— Interactive browsing and editing sessions that access a small portion of a KB.
Editing sessions may last hours or even days, and include changes to many different
frames. The patterns of most KB modifications differ from database modifications
that update a small number of isolated values.

— Complex computations such as simulation, design, and expert systems that repeat-
edly access significant subsets of the KB.

— Traditional database-like complex queries that access significant subsets of the KB,
but that return relatively small amounts of data to the application.

o The next generation of KB sizes will range {rom 10* to 107 frames. Users may be
geographically distributed, and may access the KB using long-distance Internet connec-
tions.

The schema-evolution capabilities of most FRSs should be retained. An attribute that
distinguishes KBs from DBs is the large size of the schemas (number of class and relation
definitions) that KBs tend to have. As KBs grow, we expect their schemas to grow also,
as well as the need to modify class and relation definitions dynamically.

®

user GKB-~Editor

Generic
Collaboration Frame - LOOM |[w—> g;osiii?

@ System <=>1 Protocol @
user -—>1 GKB-Editor §

\x
\ Other FRSs

Figure 1: Proposed System Architecture

3 Architecture

Our system architecture is shown in Figure 1. Users employ the GKB Editor for interactive
KB editing and browsing. It is reusable across multiple FRSs because all of its KB-access
operations are implemented using the Generic Frame Protocol (GFP). GFP is a wrapping layer
that allows multiple FRSs to present the same procedural interface to their applications. A
GFP implementation exists for the LOOM FRS. Our architecture includes a storage subsystem
that allows LOOM KBs to be stored within an ORACLE DB. Frames are incrementally retrieved
on demand from the RDBMS into LOOM as the application executes. The storage subsystem
also records what frames have been modified, and can incrementally save modified frames
to the DBMS. Updates from multiple users are synchronized using a concurrency control
method that detects conflicts at commit time between the updates made by a new user and
other recent updates performed by other users. Our technique not only detects conflicts but
also provides user assistance in resolving those conflicts. Thus, unlike traditional database
techniques that keep an item locked for the whole duration of a transaction, we use locks only
while the conflict-free updates are being deposited in the database.

The architecture of Figure 1 allows distributed operation because network links can be
inserted between components at several places. We can insert a network link at (C) by
transmitting Structured Query Language (SQL) calls to the ORACLE server over a network.
We can insert a network link at (B) by creating a remote-procedure call version of GFP, in
which every GFP call is sent over a network. We can insert a network link at (A) by allowing
the X-window graphics of the GKB Editor to flow between an X client and X server.

A commercial DBMS can easily accommodate a KB of 10° frames. We prefer to use a
commercial DBMS rather than implementing a new DBMS from scratch. We designed a
“generic” DBMS schema that can accommodate any frame-based KB without forcing the
user to design a new DBMS schema. The generic schema also facilitates evolution of the
KB schema. The frame faulting approach allows compute-intensive AI applications such as
planners, design programs, and simulators to operate in parallel on multiple client machines,
on regions of the KB that are cached in the local memory of those client machines. Al
applications tend to make a very large number of KB accesses, sometimes accessing the same
frames repeatedly. If every access were transmitted over a long-distance Internet connection,

performance would be unacceptable.

4 Generic Frame Protocol

We first describe the goals of the Generic Frame Protocol (GFP). Next, we discuss the de-
sign principles of the GFP, decisions we had to make in the design process and how they
were instrumental in achieving the general applicability of GFP. We then consider the imple-
mentation issues and empirical results evaluating the GFP and conclude the section with a
discussion of related work. '

4.1 Motivation/Objectives

The goal of GFP is to allow reuse of knowledge and software by mixing and matching knowl-
edge and software components in a large Al system. By reuse of knowledge, we mean reusing
a knowledge base or ontology developed in one formalism in another, for example importing
an ontology developed in LOOM into Ontolingua. By reuse of software, we mean an easy
porting of the software across other FRSs, for example, reusing a system such as GKB-Editor
across multiple FRSs. GFP accomplishes its goals by defining a set of Common LispP generic
functions that constitute a common application-program interface to FRSs. These functions
constitute a wrapping layer for FRSs; that wrapping layer is implemented by creating FRS-
specific methods that implement GFP operations.

4.2 Design Principles of GFP

Several design objectives were defined for GFP.

e Simplicity: The protocol should be simple and reasonably quick to implement for a
particular FRS, even if this means sacrificing theoretical considerations or support for
idiosyncrasies of that FRS.

¢ Generality: The protocol should apply to many FRSs, and support the most common
FRS features.

e No legislation: The protocol should not require substantial changes to an FRS for
which the protocol is implemented. That is, the protocol should not mandate the
method of operation of an underlying FRS.

¢ Performance: Inserting the protocol between an application and an FRS should not
introduce a significant performance cost.

e Consistency: The protocol should exhibit consistent behavior across implementations
for different FRSs, that is, a given sequence of operations within the protocol should
yield the same result over a range of FRSs.

e Precision: The specification of the protocol should be as precise and unambiguous as
possible.

o Language independence: Ideally, GFP should be independent of programming lan-
guage.

Satisfying these objectives simultaneously is impossible because many of them conflict.
Different FRSs behave differently, and unless we mandate a minutely detailed behavioral
model for KR systems (which no developers will subscribe to anyway), we cannot force these
systems to behave the same. The GFP uses a knowledge model that encompasses many
IFRSs and is detailed enough to be useful in practice, but is not so detailed as to exclude
every FRS from its model. Another example of conflicts among our objectives is that to
precisely specify the semantics of the GFP function that retrieves the values for a frame slot,
we must specify the inheritance semantics to be used. However, different FRSs use different
inheritance mechanisms [Kar92]. Conformance with a specific semantics for inheritance would
require either altering the inheritance mechanism of a given FRS (violating the no-legislation
goal), or emulating the desired inheritance mechanism within the implementation of the
protocol (violating performance and generality, since the inheritance method used by that
FRS is inaccessible through the protocol).

Currently GFP has many Lisp dependencies. Connecting GFP to an FRS implemented in
some other language should be straightforward using Lisp foreign-function calls, but imple-
menting a user-callable GFP implementation in a different language would require significant
effort. Also, precision and generality are conflicting goals. If we precisely model various
characteristics of the FRSs in the GFP, the protocol will not be general, because the detailed
features of one FRS may not be shared by another.

4.3 Proposed Design of the GFP

The most important decision in the design of the GFP was whether the GFP should be
the “least-common-denominator” or a “superset” of a class of FRSs. In the least-common-
denominator approach, the GFP would contain only those features that are supported by
most of the systems. In the superset approach, it would aim to support the union of the
features of all FRSs. Not surprisingly, our design is a hybrid of the two approaches described.
The core design of the GFP is based on the least-common-denominator approach. It can be
parameterized in various ways to capture the peculiarities of a FRS that are not covered in
the core model. We, however, did not design the GFP to be a superset of all FRSs, because
that would make the protocol cumbersome, complex, and more difficult to use.

Our design of the GFP is based on a comprehensive survey of FRSs. Our survey revealed
a large variety of system designs [Kar92]. Some of the differences among these systems were
significant while others were superficial. We identified those commonalities that are useful
for a broad range of applications. The knowledge model of GFP, as presented here, is based
on an axiomatic formalization of classes, relations, and functions for the frame ontology in
ONTOLINGUA [Gru93] but extends the ontology to include aspects relevant to operational
applications (e.g., kinds of inheritance, facets).

For the rest of this section, we present the knowledge model of the GFP along with possible
ways to parameterize it. We also consider how the model was designed to keep the protocol
generic.

4.3.1 Representational Primitives

A frame is an object with which facts are associated. Each frame has a unique name. Frames
are of two kinds: classes and instances. A class frame represents a semantically related
collection of entities in the world. Each individual entity is represented by an instance frame.
A frame can be an instance of many classes, which are called its types. A class can also be
an instance, that is, an instance of a class of classes (a meta-class).

Information is associated with a frame via slots. A slot is a mapping from a frame and
a slot name to a set of values. A slot value can be any Lisp object (e.g., symbol, list,
number, string). Slots can be viewed as binary relations; GFP does not support the explicit
representation of relations of higher arity.

Facets provide information about slots. Some facets pertain to the values of a slot; for
example, a facet can be used to specify a constraint on slot values or a method for computing
the value of a slot. Other facets may describe properties of the slot itself, such as documen-
tation. In GFP, facets are identified by a facet name, a slot name, and a frame. A facet has
as its values a set of data objects.

A knowledge base, or KB, is a collection of frames and their associated slots and values.
Multiple KBs may be in use simultaneously within an application, possibly serviced by dif-
ferent FRSs. Frames in a given KB can reference frames in another KB, provided that both
are serviced by the same FRS.

4.3.2 Inference Mechanisms

Our survey of FRSs revealed that three forms of inferences are most prevalent: subsumption
reasoning, limited forms of constraint checking. and slot value inheritance. Consequently,
GFP supports only three types of inference.

In GFP, it is possible to specify and query subsumption (or class-subclass) relationships.
Some FRSs require subsumption relationships to be specified when frames are created. In
contrast, FRSs that perform automatic classification infer the subsumption relationships by
comparing class definitions. The GFP operations allow the user to interrogate any class-
subclass and class—instance relationships. no matter how the relationships were derived.

GTP recognizes type and number restriction constraints on slot values that are specified
as facets. It does not, however, evaluate these constraints.

Inheritance in GFP is based on the use of template and own slots. A template slot is
associated with a class frame and may be inherited by all the instances of that class. An own
slot can be associated with a class or instance frame and cannot be inherited. Inheritance
in GFP can be characterized as follows. The values of a slot is computed by combining the
values of own slots and template values for that slot of all superclasses, provided those values

do not conflict. GFP allows the use of different semantics for “combining” and “conflict,” to
support a range of inheritance methods as described in the next section.

4.3.3 Parameterization Using Behaviors

GFP supports extensions to the core knowledge model described earlier to capture the features
of FRSs that are not covered by the core model. This diversity is supported through behaviors,
which provide explicit models of the FRS properties that may vary. An application program
can query the value of behaviors and use the result in executing the code specific to the value
of that behavior. _

For example, the behavior : inheritance can be used to specify the model of inheritance
used by an FRS. Two possibilities are currently supported:

override — The presence of any local value in a given slot of a frame blocks inheritance of
any values for that slot from superclasses of the frame.!

incoherence — A slot inherits from its superclasses all values that do not lead to any
incoherence in the slot values. We say that the slot values are coherent, if they do not
violate any constraint associated with the slot.

Imagine that slot color records all colors visible on the surface of an animal, and that the
default at class Elephant for color is gray. Suppose that the elephant Clyde has blue as a
local value if color, to reflect the color of Clyde’s eyes. For the override inheritance seman-
tics, the user-visible value of the color of Clyde would be blue, whereas for incoherence,
the color of Clyde would be {blue,gray}. In the first case, the local value blocks inheri-
tance of the default value, whereas in the second case, inheritance is not blocked because no
constraint specifies that gray and blue are inconsistent values.

Parameterizing an application based on the values of behaviors, is a better solution than
hard coding the peculiarities of an FRS in an application. In practice, we have found that
there are some behaviors that are common to some applications but not necessarily to all
applications making them impossible to include in the knowledge model. Having a library of
such behaviors makes it easier to apply the GFP to a new FRS.

4.3.4 Set of Operations

The GFP defines a programmatic interface of common operations that span the different ob-
ject types in the knowledge model, namely, knowledge bases, frames, classes, instances, slots,
and facets. Three categories of operations are supported for each object type: retrieval oper-
ations, manipulator operations, and iterators. Retrieval operations extract information about
objects and object values; functional operations retrieve a value; and relational operations
test whether a relation holds between an object and some value(s). Manipulator operations
create, destroy, and modify objects.

!This form of inheritance is sometimes referred to as specificity inheritance.

-1

As an example, consider operations on slots. The most commounly used retrieval operation
on slots is get-slot-values which retrieves the values of a slot given a frame name and a
slot name. The operation slot~value-p tests whether a given value is one of the values of
the slots of a given frame. An example of manipulator operation on slots is create-slot
which is used to define a new slot of a frame. To operate on all the values of a slot, one may
use the iterator function do-slot-values that can have an arbitrary body which is evaluated
by iterating over the slot values.

In addition, GFP supports operations on behaviors. Retrieval operations obtain infor-
mation about the behaviors supported by GFP in general, the behaviors that a given FRS
supports, and the behaviors that are enabled for a particular KB.

4.4 Implementation

Each GFP operations is implemented as a Common Lisp Object System (CLOS) method.
We identified a subset of GFP operations, called the kernel operations which can be used to
implement every other other operation not in the kernel. We have created a default method for
all the nonkernel operations that defines them in terms of kernel operations. For example, the
default method for slot-value-p calls the kernel operation get-slot-values. The kernel
consists of roughly 30 operations, whereas the total GFP operations are over 200. The default
methods can be overridden to improve efficiency or for better integration with development
environments. We can create GFP implementations for new FRSs quickly because only the
kernel methods need to be implemented.

GFP back-ends exist for LOOM[Mac91], SIPE-2[Wil90], THEO[MAC™89], and ONTOLINGUA
[Gru93]. The LOOM and ONTOLINGUA back-ends have been used in conjunction with the
GKB-Editor. A read-only back-end exists for CLASSIC. Additional back-ends are planned for
Algernon [Cra90] and object-oriented databases.

4.5 Logging Facilities

The GFP implementation also provides a facility to capture, in the form of a log, all KB
update operations executed in a user session. The log can be used in a variety of ways. For
example, in Section 7, we describe how we use the logging capabilities of GFP to support
multiuser access to knowledge bases. The log can also be used for propagating updates
between replicated copies of a knowledge base at multiple sites. It is also used by the GKB-
Editor to support “undo™ for user operations.

4.6 Evaluation of the Protocol

In this section, we discuss difficulties that have arisen while creating GFP back-ends for
different FRSs, and we present a quantitative evaluation of GFP.

4.6.1 Qualitative Evaluation

In this section, we discuss incompatibilities between the GFP knowledge model and the models
of LooMand CLASSIC.

The knowledge model of LOOM fits the GFP model fairly closely. For most GFP oper-
ations, we were able to identify equivalent LOOM functions. The key difficulties we faced
were in capturing the concept-definition language of LOOM and its contexts. Attributes of
LOOM classes are specified through complex definition expressions. As GFP does not support
concept definition languages per se, we developed a mapping between the LOOM language
and GFP facets. For example, the :at-most concept construct in the LOOM concept defini-
tion language maps to the :numeric-maximum facet in GFP. At present, we don’t have any
notion of contexts in GFP. Currently, each GFP KB maps to a single LOOM context. This
representation does not capture the feature that contexts in LOOM can be organized into a
hierarchy, and can inherit assertions from the parent contexts.

CLASSIC differs from GFP to a greater extent than LOOM is. First, in CLASSIC, one
cannot redefine concepts, whereas one can redefine concepts in the GFP. The ability redefine
concepts allows us to create concept definitions incrementally. For example, our LOOM/GFP
implementation exploits the ability to redefine concepts to add facets one at a time. A possible
way to mimic the behavior of CLASSIC in the GFP is to maintain a separate structure that
collects several updates corresponding to a concept definition sends them to the classifier only
when the concept definition is complete.

Second, in CLASSIC, a slot must be defined before the concept that utilizes it, whereas
the GFP assumes the opposite. This makes it difficult to implement the GFP operation
create-slot, which has two required arguments: slot name and the classes it is attached
to. We faced a similar problem while working with LOOM, but in LOOM, either slots can be
created before classes or vice versa. Therefore, our LOOM/GFP back-end assumed that a class
has been defined before its slots, and thus, provides a subset of the functionality supported
by LOOM. To address the problem for CLASSIC, we had to revise the create-slot operation
to accept only the slot name as the required argument.

Third, CLASSIC does not have strong typing. It knows if a slot is valid in a knowledge
base, but the slot itself does not know its domain. To capture this in the CLASSIC/GFP
back-end, we indicate the applicability of a slot to a class by giving a restriction on the slot.
A function such as get-frame-slots will then have to check the restriction to compute the
correct value for the slots of a class.

Finally, CLASSIC supports open world reasoning by offering an operation for “closing”
slots on an instance to indicate that there can be no more values of this slot. Such a behavior
can be represented in the GFP by introducing a new facet called :closed that can have
values T or nil.

In summary, GFP was able to cover a substantial part of the FRS features that we
considered. It was not complete in many cases, but we were able to deal with them by minor
extensions to our initial design. Therefore, we believe that GFP effectively meets the goal of
a generic API for knowledge bases.

4.6.2 Quantitative Evaluation

Our experimental evaluations indicate that the performance penalty for using GFP is accept-
able. The overhead incurred by the use of the GFP is largest for fast operations and smallest
for slow operations. Using a LOOM implementation of GFP, we compared the running times
of key GFP kernel operations with the corresponding LOOM operations. The results showed
the GFP operations to be 1% to 50% slower (depending on the operation). The high over-
head costs resulted for operations without direct counterparts in LOOM. For example, GFP
provides an operation for retrieving a frame when given an identifier but LOOM has no such
operation. Instead, it provides separate operations for instances and classes. The GFP op-
eration must consider whether the name corresponds to a class or an instance in order to
invoke the appropriate underlying LOOM operation. We note that on an absolute scale, the
overhead is very small in this case (approximately 0.02 milliseconds).

For directly comparable operations, the upperbound on overhead was 35%. Much of the
increased execution time results from activities common to all GFP operations. Thus, the
overhead is high on a percentage basis for fast operations such as slot value retrievals (35%
for a 0.3-millisecond operation), but low for more expensive operations such as retrieving all
instances of a class (1% for a 16-millisecond operation).

4.7 Related Work

Both GFP and Knowledge Interchange Format (KIF) [GF92] seek to provide a domain-
independent medium that supports the portability of knowledge across applications. KIF is
more expressive than the GFP as KIF is a comprehensive first-order representation formal-
ism whereas the GFP captures a subset of first-order logic that represents class hierarchies.
Ontolingua [Gru93] is a set of tools for writing and analyzing KIF knowledge bases along
with translators for mapping KIF KBs to specific FRSs. KIF and ONTOLINGUA are declar-
ative representation languages; GFP is a procedural interface for accessing representation
structures. KIF and Ontolingua are designed for use in sharing a large corpus of knowledge
at specification time, through the use of translators. GFP is designed for runtime access
and modification of existing KBs. GFP is similar to Knowledge and Query Manipulation
Language (KQML) [PFPST92] in that it provides a set of operations defining a functional
interface for use by application programs. The KQML operations provide a higher level of
interface that is oriented toward agent commuunication. For example, an agent may query an
FRS using a KQML “performative.” The KQML allows an agent to express the action of

querying, but provides no language to express the query itself. (The query could be expressed
using GFP.) Thus, GFP is complementary to KQML.

5 Generic Knowledge Base Editor

The knowledge representation community has long recognized the need for graphical knowledge-
base browsing and editing tools to facilitate the development of complex knowledge bases.
However, the past approach of developing KB editors that were tightly wedded to a single FRS

10

is impractical [KC84, LG90]. The substantial efforts required to create such tools become lost
if the associated FRS falls into disuse. Since most FRSs share a common core functionality, a
more cost-effective approach is to amortize the cost of developing a single FRS interface tool
across a number of FRSs. Another benefit of this approach is that it allows a user to access
KBs created using a variety of FRSs through a single graphical user interface (GUI), thus
simplifying the task of interacting with a new FRS. Finally, most past KB editors have had
essentially the same functionality, presumably because each new system must be built from
scratch rather than being built on a previous implementation.

The GKB Editor is a generic editor and browser of KBs and ontologies — generic in
the sense that it is portable across several FRSs.2 This generality is possible because the
GKB Editor performs all KB access operations through GFP. To adapt the GKB Editor
to a new FRS, we need only create a GFP implementation for that FRS — a task that is
considerably simpler than implementing a complete KB editor. The GKB Editor and the
Stanford Ontology Editor [FFPR95] have been the most significant applications driving the
development of the GFP. They have driven the addition of new operations to GFP, and they
have challenged the portability of GFP because the GKB Editor has been used in conjunction
with several FRSs.

The GKB Editor contains a number of relatively advanced features, such as incremental
browsing of large graphs, KB analysis tools, operation over multiple selections, cut-and-paste
operations, and both user and KB-specific profiles. The GKB Editor is in active use in the
development of military-application planning KBs and ontologies for LOOM [Mac91] at several
sites, for SIPE-2 KBs, and for THEO [MAC*89] KBs. It is used daily in the development of
EcoCyc, a biological KB containing more than 10,000 frames that is accessed daily via the
World-Wide Web by scientists from around the world [KRPPT96].

5.1 Viewing and Editing Knowledge Bases

The GKB Editor offers three different ways to view parts of a KB. The user can view the
KB as a class-instance hierarchy graph, as a set of interframe relationships (this.is roughly
analogous to a conceptual graph representation, a semantic network, or an entity-relationship
diagram), or by examining the slot values and facets of an individual frame. A set of editing
operations appropriate to each view has been defined so that the displayed objects can be
manipulated directly and pictorially.

5.1.1 Class-Instance Hierarchy Viewer

The standard means of viewing a KB is as a class-instance hierarchy graph. Each node in the
graph represents a single class or instance frame, and directed edges are drawn from a class
to its subclasses and from a class to its instances. Multiple parentage is handled properly.
The hierarchy is normally browsed incrementally. The roots of the hierarchy graph are
either computed or specified by the user, and the graph is expanded to a specified depth. If

2Development of the GKB Editor was not supported under this Rome Laboratory project; we summarize
the Editor in this report because it is a complementary outgrowth of the work supported by this project.

11

a particular node has more than a designated number of children, the remaining children are
condensed and represented by a single node. Unexpanded nodes are visually distinguished
from expanded nodes. The user can browse the hierarchy by clicking on nodes that are to be
expanded or compacted.

The hierarchy viewer can also be used to modify the class-instance hierarchy. Operations
such as creating, deleting, and renaming frames, and altering superclass-to-subclass links and
class-instance links can all be accomplished with a few mouse clicks.

5.1.2 InterFrame Relationships Viewer

It is often useful to visualize slot relationships in a KB rather than parent-child relationships.
For example, if frame B is a value of slot X in frame A, then an edge can be drawn from
node A to node B, labeled X . If we recognize that slot X represents a relationship between
frames A and B, then this kind of graph is analogous to the view of a KB as a conceptual
graph (although our displays do not use all the visual conventions of the conceptual graph
community) or to a semantic network. Like the hierarchy view, a relationships view is browsed
incrementally. The user specifies a set of frames to serve as roots, and optionally a set of
slots to follow (by default, all slots are followed), and the graph is expanded to the designated
depth and breadth. '

5.1.3 Frame Editing Viewer

The frame-editing viewer allows the user to view and edit the detailed contents of an individual
frame. The user may select a frame from the hierarchy viewer or the relationships viewer and
display it in a frame-editing viewer which presents the contents of a frame as a graph. Each
slot name forms the root of a small tree, with its children being the individual slot values
as well as slot facets and their values. Inherited items are distinguished visually from local
items, and cannot be edited (although they can be overridden where appropriate).

In addition to duplicating, renaming, or deleting the viewed frame, the editing operations
available in this viewer permit adding, deleting, replacing, and editing of slot values, facet
values, and annotations. Slots themselves may be added, removed, or renamed, when classes
are edited.

5.2 Related Work

Many graphical browsers and editors have been built for individual FRSs. We have built
on ideas from a number of these systems including KnEd [Eil94], CODE4 [SL95], and HITS
[LG90]. Protege-11 is a suite of knowledge-acquisition tools [EPG*94]. One of its components
supports ontology editing; a second component accepts an ontology as input, and produces
as output a specification of a forms-based editor for instance-frames within that ontology.
All the preceding tools are restricted to use with a single FRS. Stanford's Ontology Editor
[FEPRY5] is a browser and editor for ontologies [Gru93]. Currently the Ontology Editor
operates only on Ontolingua ontologies, but because it is implemented using GFP, it could

12

be used to browse and edit KBs for a variety of KR systems. The WWW implementation of
the Ontology Editor is both its biggest advantage and its biggest drawback. The advantage
is the easy accessibility of the server; its drawbacks result from the many limitations of the
HTTP protocol: most information is presented in textual form, rather than graphically; and
displays cannot be updated incrementally, as they can in the GKB Editor.

6 Storage System

This section discusses the goals of the storage system, and the architecture we have chosen
to satisfy those goals. We present an empirical evaluation of the storage system. We discuss
the rationale for our design in some detail, and then present related work.

6.1 Objectives/Motivation

All existing FRSs process their KBs in data structures that exist entirely in memory, forcing
users to read the whole KB into memory from disk before its use. To provide persistence,
KBs are written to disk files in their entirety. Saving or loading a KB can therefore be an
expensive operation, taking time proportional to the size of the KB. An effective cap is placed
on the size of a KB by the amount of time that users are willing to wait for save and load
operations, with an absolute cap based on the size of virtual memory. The goal of our storage
system is to provide a scalable arrangement in which we can selectively load and save frames
without having to load and save the whole knowledge base. Qur goal is that in a given session,
the time spent in loading the frames is proportional to the number of frames referenced; and
the time spent in saving the frames is proportional to the number of frames updated.

Our storage system design submerges a DBMS within an FRS. The FRS and associated
application code act as a client that accesses a DBMS server using a DBMS application-
program interface (API). The storage system retrieves frames incrementally, on demand,
from the DBMS. Because demand fetching of frames from the DBMS is analogous to page
faulting in operating systems, we call this process frame faulting. The storage system tracks
which frames have been modified and transmits those frames back to the DBMS during a
KB-save operation. This architecture allows multiple FRS clients to access a shared DBMS
server via a network API. Given this basic architecture, other choices must be made: How
should FRS information be organized in the DBMS? How many frames should be retrieved
from the DBMS in each access? How can we utilize idle periods to speed up the loading time?

Another important question is: Should the storage system be based on an existing DBMS,
or on a new DBMS developed specifically for this project? Developing a DBMS is a very
large undertaking, so we prefered to use an existing system (preferably commercial) rather
than develop our own, particularly given the small size of our research group. Should we
employ a relational or an object-oriented DBMS within the storage system? We considered
two candidates for the DBMS to be used in our storage system: the ORACLE commercial
relational DBMS (RDBMS), and the EXODUS extensible object-oriented DBMS developed
at University of Wisconsin, Madison [FZT+92]. We implemented separate prototype storage

13

systems based on EXODUS and on ORACLE, and evaluated them empirically [KPG94, KP95].
We found that the RDBMS is much easier to work with from a practical point of view, because
SQL provides a much higher level of interaction than does the extensive C++4 programming
necessary to interact with Exodus. Qur experiments also showed that the difference between
the systems in time to retrieve a frame was not substantial [KP95]. Therefore, we decided to
use Oracle for future refinements to the storage system.

6.1.1 Design of a DBMS Schema

To store a KB in a DBMS, we must define a mapping from FRS information (classes, instances,
slot values, etc.) to information in the DBMS. Question: Should the storage system employ a
domain schema or a generic schema? Using the domain-schema approach, we define a DBMS
schema that is specific to a given KB. For an object-oriented DBMS, for example, the object
classes we define would correspond to classes in the KB, which in turn correspond to classes
in the real-world domain that is being modeled. That is, we would define a mapping from
KB classes, instances, and slot values to classes, instances, and attributes in the OODBMS.
A similar sort of mapping would be devised to tables in a relational DBMS, although the
mapping would be more convoluted because the object-oriented data model is closer to the
frame data model than is the relational data model. Because the DBMS schema is designed
based on concepts in the domain being modeled, a different schema is required for every KB
that we wish to store.

Conversely, the generic-schema approach defines a single generic DBMS schema (that is,
one schema for an Object-Oriented Database (OODB) and a conceptually similar schema for
a relational DBMS) that can hold any frame-based KB. One way to construct such a versatile
schema is to hide all semantics of frames from the DBMS by treating the DBMS as a simple
storage server that treats frames as uninterpreted byte vectors. That is since DBMSs cannot
capture the expressiveness of the frame data model, we abandon any attempt to capture frame
semantics within the DBMS data model. Section 6.1.2 describes a different generic schema.

These two approaches have several advantages and disadvantages. The chief disadvantage
of the domain-schema approach is that neither the relational nor the Object-oriented (0O)
data models can capture the rich semantics of the frame data model. The relational model
does not allow inheritance of properties from one class to another, nor does it allow multi-
valued attributes. The OO data model solves those problems, but it does not allow run-time
inheritance of default values. nor facets, nor constraints, nor contexts. nor production rules
attached to slot values. In contrast, the generic-schema approach performs all processing of
frames within the FRS so that no frame semantics are lost.

Another disadvantage of domain schemas is that because a different DBMS schema is
required for every KB schema, either the user must derive that schema manually, which will
be error-prone and time consuming, or we must supply complex software for performing the
mapping automatically. In contrast, one generic mapping exists from any frame KB to the
generic schema.

We chose to design a generic relational schema. That schema consists of five core tables.
An example is shown in Figure 2.

14

Frames
KB ID | Frame Frame | Type Sequence | Number of
Name Body Number Parents
1 Army ... class 0 2
1 Armed-Forces | ... class 0 0
1 Ground-Unit | ... class 0 0
1 5th Brigade e instance 0 1
Relations
KB ID | Relation | Body KB Mapping
Name KB KB ID
1 Location | ... Name
Forces 1
Supplies 2
Supers Instance Classes
KB ID Class Super KB ID | Instance Class
Name Name Name
1 Armed-Forces | Army 1 Army | 5th Brigade
1 Ground-Unit | Army 1 Army | 7th Brigade

Figure 2: The relational schema used to store LooM KBs in an RDBMS, with sample data.

The Frames table contains frame bodies. A frame body is a sequence of bytes that provides
LOOM with all the information necessary to create the frame. We place concept and instance
bodies together in the same table. Because there are occasions when a frame is referenced
without its type being known, we defined a type field that identifies the frame as a concept
or instance. We record the number of parents of each frame to enable the storage system to
perform certain optimizations. A KB identifier is included in each table, to enable multiple
KBs to be stored in one ORACLE database. The KB Mapping table associates a KB name
with its unique identifier.

Frame bodies are encoded as a list of tuples, where each tuple consists of a slot name
and a list of slot values, or a slot name and facet name and list of values. Most bodies will
be relatively short, but some may be on the order of several thousand bytes. Originally we
employed the standard Lisp ASCII representation of this s-expression, but we found that
Lisp readers are much slower than a special-purpose package that we implemented to encode
and decode LisP s-expressions to and from a byte vector. A sequence number is included in
the frames table to allow a body that exceeds the DBMS maximum column size to be split
into multiple tuples.

15

The tables Supers and Instance Classes enable reconstruction of the concept and instance
hierarchy. The former lists the superclass-subclass relationships between concepts: the latter
stores the relationship between instances and their parent concepts. Separate DBMS indices
are built to retrieve the subconcepts of a concept, the superconcepts of a concept, the instances
of a concept, and the parent concepts of an instance. This information is necessary because for
a concept or instance to be defined in LOOM, all parent concepts must already be loaded, or
LooM will not be able to classify the new frame. Thus, we must be able to quickly determine
the parents of a given frame so that those parents can be retrieved if necessary.

6.1.2 The Slot-Granularity Generic Schema

The advantage of a domain schema over a generic schema is that the DBMS query-processing
engine can operate on KB data on the server side. The server can achieve high efficiency
because it can make use of precomputed indices, and because it can process the query locally,
without transmitting data across a network. Of course, if the DBMS cannot represent the
full semantics of frame data. then it will not be able to process queries with respect to all
frame information. For example, imagine that we wish to query all instances of class Aircraft
that have a value for the Payload slot that exceeds 5000, but that the values of this slot
are inferred using default inheritance, or using backward chaining. If neither defaults nor
production rules are implemented at the DBMS server, then it could not properly answer this
query.

A compromise is to design a DBMS schema that partially captures frame semantics, and to
restrict DBMS query processing to only those frame slots whose semantics can be captured by
the DBMS schema — such as slots whose values are not inferred using defaults or production
rules. Such a compromise could be implemented using either a domain schema or a generic
schema. We chose to extend the generic schema in Figure 2 in a manner that essentially
indexes specific KB slots within the DBMS. We defined three additional tables that store slot
values, and one table that stores the slot names that should be indexed for a given KB. Each
of the three tables contains two columns: one stores a slot name, the second stores a slot value
(the three tables are for slot values that are strings, numbers, and long strings, respectively).
We separate the types in different tables because retrieval from an index on numbers is much
faster than from the one on strings. The long values cannot be indexed but they should be
available so that we can perform a sequential search on them whenever there is a query on a
slot with character values.

Like all indexing schemes, this approach increases the space requirements of the storage
system because slot values are stored as part of the body as well as in the slot-value tables.
Our scheme, therefore, trades the generality and storage space for the speed of loading.
We chose to use this slot-granularity schema in addition to the frame-granularity schema in
Figure 2 because we performed experiments that showed that faulting a frame from the slot-
granularity schema is significantly slower than faulting a frame from the frame-granularity
schema. Therefore, the storage system queries the frame-granularity tables during demand
faulting, and it queries the slot-granularity tables for indexed queries.

What is the optimal distribution of work between the DBMS server and the FRS clients?

16

Different distributions can have a very significant impact on overall system performance.
However, we argue that the three different families of FRS usage identified in Section 2
would benefit from different distribution strategies, i.e., no approach will be optimal for every
family. General principles for designing a strategy are: minimize the transfer of data across
the network; and maximize utilization of computing resources rather than performing all
computations at a centralized server. It makes sense to evaluate database-like complex queries
at the server to take advantage of indices built at the server, and because it is more efficient
to transmit over the network only that subset of the data that was selected by the query.
But this argument breaks down when applied to computations such as expert systems and
simulations that are computing-intensive (and could therefore overload the server), and that
repeatedly reference large regions of a KB. In these cases the cost of repeatedly requesting,
via a network query, values of the same slot of a frame, or values of multiple slots from the
same frame, will most likely exceed the cost of retrieving the entire {rame once, and caching
it on the client side to allow future accesses without the need to access the DBMS server.

6.1.3 Prefetching

We can decrease the overall latency of the storage system by decreasing the number of demand-
faulting operations it performs. The number of demand faults will decrease if frames that
would have been demand faulted are already in memory at the time the demand fault would
have occurred. We can achieve that state of affairs by prefetching frames from the DBMS
before they are demanded by the application, assuming that the cost of prefetching is less
than the cost of demand fetching. Prefetching can be cheaper than demand fetching for
3 reasons: (a) prefetching can occur when the client is idle, (b) prefetching can use server
processing when the client is busy, and (c) prefetching multiple frames at once may result in
lower transfer cost per frame.

Our current strategy never discards frames that have been loaded into memory. under the
assumption that all KBs to be created in the near term will fit in virtual memory. Under this
assumption (which we plan to discard in future work), if prefetching occurs only during client
idle time, it is guaranteed to improve performance since it will eliminate some future demand-
fetch operations, at no cost. The assumption that client idle time exists is more reasonable for
interactive KB applications than for computing-intensive applications. Prefetching, however,
does place an additional load on the DBMS server; a large number of clients prefetching from
the same server will ultimately decrease overall system performance.

A prefetching system has to decide which frames should be prefetched. Even if we assume
that prefetching has no cost, and that large portions of the KB can be prefetch-ed, it is still
better to first prefetch those frames that are likely to be demand-faulted in the near future.
The principle of locality suggests that the frames most likely to be referenced in the future
will be related to those referenced most recently. (To save bookkeeping, we consider only
frames that have been recently fetched.) We consider three types of frame relationships: a
frame that fills a slot in a recently fetched frame X, a frame that is a subconcept of X, and a
frame that is an instance of X'. Since concepts are more likely to be accessed than instances,
the subconcepts of X are the first candidates for prefetching. Next, we prefetch the frames

17

that fill some slot of X. We do not prefetch instances of X, however, because the number of
instances of a class can be large and the probability of access to a prefetched instance is low.

6.2 Implementation Issues

We have implemented a single storage system that works in conjunction with both the LOOM
and the THEO FRSs, which are both implemented in Lisp. Most of the storage system code
is also written in Lisp. The storage system interacts with Oracle by calling the Intelligent
Database Interface (IDI), developed by Paramax, [MIFO90] to communicate with the RDBMS
server from Lisp using SQL queries that can be transported over a network. We are not
employing the full power of the IDI; we use only the module of the IDI that formulates
and unpacks SQL queries. The implementation has been thoroughly tested with both Lucid
Common Lisp and Allegro Common Lisp environments. Henceforth all of our comments
about LOOM also apply to THEO unless otherwise noted.

6.2.1 Frame Faulting

A frame fault occurs when an application (or LOOM itself) references a frame F' that has not
been fetched from the DBMS. When faulting a frame into LiSP memory, we retrieve its body
from the DBMS by issuing one or more SQL queries. We then call standard LOOM functions
to add the frame to the LOOM KB.

If F refers to some other frame G, LooM requires that G' must exist in the KB. F" might
refer to G because G is a parent or a child of F, or because G is referenced in aslot of F. If G
is a parent of F', and G is not currently in memory, the storage system generates a frame fault
for G to allow proper operation of LOOM. But if G is an instance of F, or if G is referenced in
a slot of F', we create a place holder (stub frame) for G. G itself will be faulted at a later time
if there is some reference to it by the application. More precisely, stub frames are required in
LOOM but not in THEO because LOOM uses LISP pointers to refer to frames, whereas THEO
uses LisPsymbols to refer to frames.

6.2.2 Prefetching Process Architecture

Our implementation of the prefetching employs multiple Lisp threads to allow asynchronous
operation of three tasks: application code, the client side of the prefetcher, and the DBMS
server. Fetching and loading a frame into LOOM requires a significant amount of computation
on the client machine, for example, for classification.® To allow the local processing to occur in
parallel with processing by the DBMS server, we divide frame fetching into two components:
retrieving data from the database, and inserting the frame into the LooM KB. Most of
the time involved in retrieving data from the database is spent on the DBMS server or in
communication. Thus, we can perform data retrieval (DR) in parallel with client processing

°In fact, calling the LOOM classifier when entering a faulted frame into LOOM is not strictly necessary
since the DBMS already stores the results (parent classes) of previous classifications of that frame. But in
practice we have not yet determined how to bypass the LOOM classifier.

18

trame reference

Main process LOOM data structured
)
il /_’
i
D SE ey ——
defining
process

!
{

Data-
retrieval
process

table

Tigure 3: The threads and data structures involved in prefetching. Dashed lines represent requests
only. Solid lines represent information flow.

without significantly hurting client performance. The frame-defining (FD) thread is invoked
only when a frame is demanded or when the user process is idle. The DR thread can obtain
multiple frames with a single query, which does result in an efficiency gain [KP95].

The DR thread runs with the same priority as the application thread (i.e., they time-
share). It chooses a frame or set of frames to retrieve (either a demanded frame or frames
from a prefetch queue), initiates the appropriate DBMS queries, organizes the resulting frame
bodies, and either returns them (if required as part of a demand fetch) or adds the body of
each frame to a hash table for storage until needed (if a prefetch operation). The FD thread
runs at a lower priority, so it runs only when the other threads block, as in the case of a
demand fetch, or are idle.

Figure 3 shows the interaction of the three threads and associated data structures. On
a frame fault, the application thread issues a request to the FD thread to create the frame.
The FD thread first looks for the body in the hash table, and if unsuccessful, asks the DR
thread to query the database. As the frame is being created, any unfetched frames that it
references are added to the DR prefetch queue. When the DR thread runs, it checks the DR
prefetch queue for frames to prefetch, fetches and adds them to the hash table, and moves
the frame references to the F'D prefetch queue. When both other threads are idle or blocked,
the FD thread checks the FD prefetch queue for frames to define, obtains their bodies from
the hash table, and creates the LOOM frames.

When KB size exceeds virtual memory size, it will be important to limit prefetching so that
prefetch-ed frames do not displace frames in active use. One approach is to limit the number
of related frames that are placed on the prefetch queue. This limitation could be implemented

19

by adding frames to the prefetch queue with some probability, or through a semantic filter on
the slots that are examined for related frames (e.g., to specify on a KB-specific basis those
slots from which values are added to the prefetching queue).

6.3 Empirical Results

The goal of the experiments discussed here is to test the scalability of the storage system,
that is, the loading time should be proportional to the number of frames referenced and the
saving time should be proportional to the number of frames updated. We begin by describing
our experimental setup and then discuss our results.

6.3.1 Experimental Setup

The experimental setup for evaluating the storage system consists of test knowledge bases,
and software used to conduct the experiments. The test KBs were generated such that their
characteristics approximated those of the transportation-planning KB that is driving our
work with LOoOM [WD94]. All of the test KBs had 100 concepts, all primitive, with just one
super each. The concept hierarchy in each knowledge base was the same, regardless of the
number of instances. Different test KBs were generated with 500, 1000. 2000, 4000 and 5000
instances. Instances averaged 5 slots apiece, with an average of 2 fillers per slot. Half the
slots were filled by integers, with the other half filled by symbols.

Experiments were run using LOOM 2.1, and the February 1993 version of THEO, running
on Lucid Common Lisp 4.1.1. Both the FRS and the ORACLE server were running on the same
workstation, a SPARCstation 10 model 41 with 64 MB of physical memory. Lisp was restarted
before every trial, to avoid caching effects, and a garbage collection was executed immediately
before timing. Overall elapsed times were measured using the Lisp time function. The time
spent in LOOM, THEO, IDI, and the storage subsystem was measured by monitoring key
procedures using the monitoring package from Carnegie Mellon University. The CPU time
spent in the RDBMS server process was measured using the UNIX ps utility to observe total
CPU time before and after each experiment. These experiments measured demand fetching
times only; the pre-fetcher was disabled.

6.3.2 Experiment 1: Loading Time

The first set of experiments measured the time required to reference some number of randomly
chosen instances from knowledge hases of different sizes. Each reference faults in at least one
frame from the RDBMS.

Selected results for LOOM and THEO are shown in Figure 4, which breaks the total time
spent processing frame faults into several components: the time spent in the RDBMS server,
the IDI, our storage system, and the FRS (LOOM and THEO). Figure 4 plots these component
times as a function of the number of instances referenced for a fixed KB of 5000 instances.
Figure 4(b) shows how the total time for referencing N instances breaks down into time spent
in LOOM, our storage system (SSS), IDI, the RDBMS, and other processing (presumably
I/0). Figure 4(a) shows an analogous breakdown for THEO.

20

I ! I

450 4507

Total Elapsed Time

—_— RDBMS + 151+ $5°+ Loom
400 Toul Elapsed Time__ 400 DI IoeM
RDBAS + 151~ $357Theo SO0 /
IDI + §85/Theo LObM /{
350 S$55/Theo 350~ -]
’ ’ -
4
4
;A ’
300 300 7

-7 T -
250 //’ = 250 4 /
= 4 ~
2 Q e
B 4
=

Time (s)

200 // 200 / a s - /

0 1000 2000 3000 4000 5000 2000 3000 4000 5000
Number of instances referenced Number of i fi d
(a) THEO (b) LOOM

Figure 4: (a) Frame faulting in THEO (top curve) is divided into component times. The
bottom curve is time spent unpacking frame bodies and defining them in THEO. The middle
curve adds time spent in the IDI (client-side SQL communication); the third curve adds all
DBMS server time. (b) Frame faulting in Loom is divided into similar component times.

Figure 5 lets us evaluate the relative merits of loading frames from the RDBMS versus
loading from flat files. The relative merits differ for LOOM and THEO because LOOM itself
takes significantly longer to load an entire KB of N frames than does THEO. The difference is
that LOOM is performing computations (classification) on the KB that THEO is not. Because
the same amount of data is transferred for each FRS during incremental loading of N concepts
from the same KB, the database costs are about the same. Therefore the ratio of database
costs to total costs is higher for THEO than for LOOM. For THEO, loading N instances from
the DBMS is eight times slower than loading an entire KB of N instances from a flat file. But
for LOOM, loading N instances from the DBMS is only three times slower than loading a KB
of that size from a flat file. Therefore the performance of the RDBMS storage system is on a
par with that of a flat file when a user references up to 12% of the frames in a KB in a given
session for THEO; for LOOM the user can reference up to 30% of the frames for equivalent
performance.

In later work, we spent significant efforts tuning the storage system performance. We have
decreased the time spent in the SSS, IDI, and RDBMS components in Figure 4. In Allegro

21

200

180

160

200
Loading whole KB i{rom file 180 p----TTTT
-F!-et:c;e;x;ing 2000 instances
Referencing 1000 instances - /
o s vy Loading whole KB from file
Re g 500 instances 160 1
Referencing 100 instances . eaeovnnasaes
E'[?""'.'"56'."‘1"""‘ Referencing 1000 instances
eferencin, instances =
e ’ 140 Referencing 500 instances 4
Referenciag 100 instances /
_________ 1201 Referencing 50 instances
et A E N A) SS—————————— R b anenmmenmaeane
o | Ao
2100 e +=
& /
------ 80 /
<<<<<< - - e
______________ s
___________ E __,7)/
== 60 54—
L
40
—
1 / | J)
P i L e P Tt
g i Pl o s =
R - -4:"':'_:,'_ B -+ .
- -=
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
KB size (# instances) KB size (# instances)
(a) THEO (b) LOOM

Figure 5: The solid line in each graph shows the time required to load entire knowledge
bases of varying sizes from flat files for THEO (a) and Loom (b). The dashed lines show
times required to fault in frames from the RDBMS due to references to instances by the
application. Each dashed line shows the same number of instance references as a function of
KB size. All times refer to total elapsed times. The vertical ordering of dashed lines in each
graph and in its legend are the same.

Common Lisp, with the latest version of the storage system, the LOOM user can reference up
to 69% of the frames in a KB in the same time required to load the flat-file version.the KB.

We take this result to mean that even for THEO the performance of the storage system is
acceptable in practice given our assumption that as KB size grows, users will reference only
a fraction of its frames in a given session. Note that RDBMS loading also has a different
response-time profile than does flat-file loading — flat-file loading requires a long wait at
startup time, whereas demand loading hides loading waits across many operations.

6.3.3 Experiment 2: Saving Times

We measured the time required to save updates to some number of randomly chosen instances
from KBs of various sizes. To be consistent with traditional LOOM behavior, updates are not
written as they occur. Rather, we wait until the user issues a command to save updates,

22

Time to save (s)

160.00

/ 180.00
140.00 /

160.0C
R
B B] etk bt -
67"

120.00 / 140.0
Saving whole KB to file
120600 —] 1560 instances updated
wooob—oouoot— VL LF o T g

/ = 500 tnstances updated
k] S
§ 100 instances updated

2 100.00— 55 Tnstances updated
]
&

$0.00]
/ 30.00
N /

60.00 :
/ 60.00!
40.00 /

/| A

20.00 / 20.00
R -4

200 400 600 800 1000 1000 2000 3000 4000 5000
Number of instances updatated KB size {# instances)
(a) {b)

Figure 6: (a) Each data point represents the time to save a given number of instances for a
fixed KB of 1000 instances. (b) The solid line shows the time required to save entire KBs of
various sizes to Loom flat files. The dashed lines show, for knowledge bases of various sizes,
the times required to store a given number of updated instances to the RDBMS. The time
required to save 500 updated instances to the RDBMS is about the same as the time required
to save an entire KB of 2300 frames to a flat file. All times are total elapsed times.

and then all are written at once in a single transaction. We varied the number of frames
updated between 10 and 1000. Selected results are shown in Figure 6. For comparison, we
have included the time to save KBs of varying sizes to LOOM flat files (the time is constant
for a given KB regardless of the number of frames updated in that KB). KB save times for
THEO are similar, and thus are not shown.

Figure 6(a) demonstrates that, as expected, our architecture achieves the goal of saving
KB changes in time linearly with the number of updates. Figure 6(b) shows that the time to
save frames is not dependent on the size of the KB. Saving N updated frames to the RDBMS
is roughly five times slower than saving an entire KB of N frames to a flat file. Therefore,
our storage system is faster than the flat file when less than 20% of the KB has been altered.

23

6.4 Related Work

The Knowledge Engineering Environment Connection couples the KEE FRS with a relational
DBMS [AWS6] and the IDI couples LOOM with a relational DBMS [MI'090]. In both systems
the DBMS and FRS are loosely coupled peers. The advantage of this architecture is that it
allows existing information from a database to be imported into an Al environment. Its
drawback is that the storage capabilities of LOOM are not enhanced transparently, as in our
approach. Users of KEEconnection (and of the IDI) must define mappings between class
frames and tables in the RDBMS; KEEconnection creates frame instances from analogously
structured tuples stored in the RDBMS, and can store instance frames out to the DBMS.
However, only slot values in instance frames can be transferred to the database — class frames
cannot be persistently stored using database techniques and cannot be accessed by multiple
users. Our approach allows all information in a LOOM KB to be permanently stored in the
DBMS.

Groups at IBM and at MCC have coupled FRSs to object-oriented DBMSs [MLDW91,
BCG*88]. The IBM effort differs from our approach in that a KB is read from the DBMS in
its entirety when it is opened by a K-REP user, which we believe will be unacceptably slow
for large KBs.

None of these researchers have published experimental investigations of alternative imple-
mentations, as we are doing. Without systematic experiments, it is impossible to evaluate
the relative merits of their architectures.

Markowitz and Chen have developed a system called, OPM that implements an object-
oriented data model on top of a relational DBMS [CM95]. They use the domain-schema
approach, and they have developed automated methods for mapping an OPM object-oriented
schema into a relational schema, and for mapping queries in the OPM query language into
queries to the underlying relational schema.

7 Collaboration Subsystem

7.1 Motivation/Objectives

The development of large knowledge bases and shared ontologies requires collaboration of
multiple people who must simultaneously make contributions. Most knowledge-base devel-
opment projects involve collaborative development by at most tens of developers. These
developers are sometimes geographically distributed, but they all have access to a common
high-speed network. The developers perform long sessions of KB-modification operations. A
single session sometimes lasts for a number of days (perhaps a week), involving work peri-
ods of several hours each day. Developers sometimes save their updates locally after each
period before committing any of the updates created over the session to modify the shared
KB. These long sessions involve the creation of tens or hundreds of instance frames that are
scattered throughout the KB. They may involve modifications to hundreds or thousands of
existing frames, and they may also involve schema changes (i.e., creation or modification of
class frames). There are also some much shorter work sessions that are similar to traditional

24

database transactions, although they are small in number.

Most existing FRSs, however, are single-user systems that allow only one person at a
time to access a KB, and therefore, are inadequate to support collaborative work. It is not
viable or desirable to maintain multiple copies of the knowledge base for each of its users,
nor feasible to restrict access to the knowledge base to one user at a time. Using an existing
commercial DBMS is an unacceptable alternative for the following reasons. The commercial
DBMSs control the operations of multiple users by isolating the database in a way that each
user gets the illusion that she/he is the sole user. Such a model works very well for short
online transactions, but in a collaborative work scenario described above, it prevents users
from working together. The problem becomes especially severe when the users lock large
portions of the knowledge base. Instead, what is required is a facility that makes users aware
of each other and helps them to work together instead of working in an isolated fashion.

7.2 Proposed Solution

To deal with the problem described above, we allow users to make independent changes to
the knowledge base, and when they are done, they merge their changes with the knowledge
base. Only those changes of the users are merged with the public copy of the knowledge base
that ensure that the overall execution is serializable [Pap86].

~ Serializability can be informally defined as follows. Let a transaction be the set of opera-
tions executed by a user. Then an interleaved execution of a set of transactions is serializable
if it is equivalent to some serial execution of the same set of transactions in the sense that it
leaves the database in the same state and returns the same answers to each one of its users.

Our solution is similar to an optimistic concurrency control technique in which the users
make independent changes to the database, but one (or more) of the users making a conflicting
change must abort the changes and restart [BHG87]. In our framework, instead of just issuing
an abort, we go a step further and assist the users in identifying and resolving their conflicting
updates. Furthermore, we use locking only while the conflict-free updates are being deposited
into the knowledge base.

Our work so far has considered only those operations that do not involve any schema
changes. We plan to consider schema changes in our future work.

For the rest of the section, we describe our solution in more detail. We first describe the
model of collaboration that we use. Then we discuss how we record the updates made by
a user and the flexible notions of conflict that we have developed. Finally. we describe our
strategy for merging the updates of different users.

7.2.1 Model of Collaboration

We maintain a public copy of the knowledge base that is readable by multiple KB developers,
but cannot be modified directly. All updates to a KB occur in private workspaces (or simply,
workspaces). A developer who wishes to modify an existing public KB creates a private
workspace as a child of that public KB; by default the workspace contains all of the information
present in its parent and is not necessarily obtained by copying the parent KB. The developer

25

Figure 7: A sample set of relationships among public KBs (K1-K4), private workspaces
(W1-W4).

then modifies the workspace by creating new frames, and updating or deleting existing class
and instance frames. Those updates do not affect the public KB, and a private workspace can
be accessed by only a single user at a time. When the developer has brought the workspace
to a satisfactory state, she then merges the workspace with the newest state of the public
KB. The merge operation detects and resolves conflicts (inconsistencies) between the updates
made in the private workspace and updates from which the newest state of the public KB
may be derived.

Figure 7 illustrates these concepts more clearly. The boxes labeled K1-K4 represent
successive states of a public KB. The boxes labeled W1-W4 represent private workspaces.
Each workspace has a single parent that is a public KB. Each state of a public KB either is
the initial state, or is derived from a merge of the previous state of that public KB with a
private workspace. For example, K2 is derived from a merge of K1 with W2.

Developers may choose not to merge certain private workspaces into public KBs; such
workspaces are canceled, in which case all the updates they contain are lost. A workspace
is active as long as it has not been canceled, and as long as it has not been merged with a
public KB. For example, once K3 has been created by the successive merging of W2 and W1,
and if W3 is canceled, then K1 no longer has active child workspaces and it can be canceled.

Because K1 is the parent of W2, and is also the public KB with which W2 is merged, no
conflicts can occur during that merge. However, when W1 is merged with K2 to create K3,
conflicts may occur between the modifications made in W2 and the modifications made in W1.
Developers were updating these two private workspaces simultaneously, and no attempt was
made by the KBMS to enforce any consistency with respect to those updates. Consistency is
enforced at merge time. Merging will require detections and resolution of conflicts (which we
term arbitration), and creation of a new state of the public KB.

The users always work with the state of the public knowledge base with which they started.

26

For example, in Figure 7, even after knowledge base is in state K2, the user of workspace W1
does not see any changes and continues to work with K1.

7.2.2 Recording User Updates

We assume a knowledge base that uses the knowledge model of GFP; that is, it consists of
classes, instances, slots, facets and values. The user interacts with the knowledge base by
means of GFP operations. A transaction is a set of changes made by a user in a workspace.
A transaction is specified as a series of GFP operations. We chose to specify the transactions
using GFP operations because then our software can be used with systems that provide GFP
back-ends, thus making our approach generic.

With the public copy of the knowledge base, we also record a log of all the changes that
have occurred since a given time in the past. Such a log is also called net-log. When the
updates of a transaction are merged with the public copy, conflicts are detected by comparing
the operations in the transaction with the operations in the net-log. For detecting conflicts,
only those net-log operations need to be considered that occurred since the user started the
session. The net-log is also used for reconstructing previous states of the knowledge base. For
example, in Figure 7, if the user of work space W1 requests a value that has been updated in
K2, we could reconstruct the old value by using the operations on that value that appear in
the net-log.

A log consists of a sequence of records. Each log record is a list with two elements. The
first element is the GFP operation itself. The second element is the list of any values that
are being overwritten by the current operation; it has a non-null value only when some value
is being overwritten and the old value is not available as part of the GFP operation itself.

7.2.3 Implementation of Knowledge Base States

One consequence of not physically copying the complete reference KB when a workspace is
created is that it must always be possible to access the reference KB as long as a workspace
is being used. Because users can be concurrently modifying the KB, new states of the public
KB may be created at any time. We reject the approach of making a complete copy of the
current KB when a new state of the KB is created. Thus, the KBMS will have to store the
information necessary to recreate the contents of previous KB states until they are no longer
needed. This topic will be discussed further in Section 7.2.6.

A state of the KB will have to be accessible as long as some workspace needs to refer to
it. Because we do not want to create complete copies of the KB, we will adopt an approach
that records only the differences between two KB states. One technique, called positive
deltas, records the changes necessary to transform an old KB state into a new state. Another
technique, called negative deltas, records the changes necessary to transform a KB state into a
previous state [KC87]. Because an old KB state can be purged when it is no longer needed, we
believe that the technique of negative deltas is the correct one to use — positive deltas would
require much more work when old KB slots are purged. To resolve a reference to a frame in
an old state of the KB, the KBMS starts at the current KB and follows a chain of negative

27

deltas for that frame (if any) until the state of the frame in that old KB is reconstructed. We
will consider whether an intermediate KB state should be removed to improve performance
when it is no longer needed by merging its deltas with neighboring deltas, or whether the old
KB states should be removed only when no older state is needed.

Let us first describe our model for maintaining previous values of entities. In our cur-
rent framework, when the user requests for a value from the knowledge base, a value that
corresponds to the state in which the user started his or her work is returned. For example,
consider a knowledge base state &' B that contains a frame person with a slot friend and an
instance John whose slot friend is initially empty. Suppose two users update the knowledge
base, the first one asserting that Peter is a friend of John, and the second one asserting
that Adam is a friend of John. Let the resulting knowledge base states be X' B, and K B
respectively. If there is another concurrent user who started when the knowledge base was in
state K B, and queries for the friends of John, she should get Peter as an answer even if the
query is executed when the public knowledge base is in state K’ B;. There are two approaches
to implement such behavior: delta and interval. Let us briefly consider these approaches and
analyze their relative merits.

In the delta approach, we keep one copy of the knowledge base and using the log entries
compute the desired state of the knowledge base for answering a query. The delta approach
can be implemented in two ways: positive and negative deltas. In the positive delta approach,
we maintain the oldest copy and apply the relevant log records to knowledge base to compute
a later state with respect to which the query is to be answered. In the negative delta approach,
we maintain the newest copy and negatively apply the updates to answer the queries with
respect to the older states of the knowledge base. If we apply the negative delta approach to
the example considered in the previous paragraph, we store K Bs, and compute the answer
(giving Peter and Adam as friends of John), and negatively apply the entries in the log that
are between the knowledge base states K By and K B (which in this case is an operation
adding Adam as a friend of John) to obtain the desired answer (Peter is a friend of John). In
general, more users are interested in the recent states of the knowledge base, and therefore,
the negative delta approach is likely to be more efficient than the positive delta approach.

In the interval approach, we associate an interval with each entity in the knowledge base
indicating the duration for which it exists in the knowledge base. For example, if the value
of a slot salary is 20K in 1993 and 25K in 1994, the knowledge base contains both of these
values. We associate the interval 1 January 1993 to 31 December 1993 with the first value
and the interval 1 January 1994 to 31 December 1994 with the second value of the salary.
To evaluate any queries on the slot salary, we can use a temporal join index [ST95]. While
evaluating the query, only the answers that are valid for the duration specified in the query
are returned. In the example considered in the previous paragraph, we would get only Peter
as an answer, because that is the only value valid for the knowledge base state K B,.

Over a period of time, the delta approach accumulates a log and the interval approach
accumulates past values of entities. Therefore, both approaches require a purging process
to remove the information that is no longer necessary. In the negative delta approach, one
needs to periodically purge the net-log, and in the interval approach, one needs to periodically

28

purge the old versions of entities. Clearly, the interval approach requires more storage space
than the delta approach, especially because even the entities that have been deleted need to
be stored. The delta approach has higher run-time cost because the desired answer must be
computed by evaluating the relevant log records. If we assume that the purging overhead
is comparable for the two approaches, we are faced with the classical computing vs storage
tradeoff. A more detailed evaluation of the two approaches is planned for future work.

7.2.4 Definitions of Conflict

We say that two operations o; and oo are conflict-free if, for any knowledge base state,
executing o; followed by oy leaves the knowledge base in the same final state and returns the
same values for each as executing o, followed by o;. For example, inserting two frames (or
nodes) with different names is conflict-free. But if a user wants to change a slot-value (or
replace a node) from 2 to 5 and another user wants to change that same value from 2 to 10
then their operations are not conflict-free.

It is useful to consider alternative (and perhaps weaker) notions of freedom from conflict.
We say that operations 0, and o, are partially conflict-free if, for any knowledge base state,
executing o0, followed by o; leaves the knowledge base in the same final state but may not
necessarily return the same values for each one of them as executing o, followed by 0;. For
example, if two users were trying to create a frame with the same name, then their operations
leave the knowledge base in the same state but the user who executes the operation first is
successful and the second user would not be able to write anything. We call such operations
partially conflict-free. Under many situations, it is acceptable to have partially conflict-free
operations.

We say that two operations o1 and oy are conflict-free after modification if, for any knowl-
edge base state, executing o; followed by o, leaves the knowledge base in the same final state
although it may not necessarily return the same values for each one of them as executing
modified o, followed by modified 0;. Modification of operations could be done by some pre-
defined functions. For example, suppose one user wants to change a slot name from “height”
to “length”, while a second user wants to change height from 1.5 to 1.6. If the value of the
slot is changed first, we end up with a knowledge base in which length has a value of 1.6. If
we change the name first, we cannot change the value of height as that name does not exist
any more. In such a situation, if we modify the second operation to mean that we should
change length from 1.5 to 1.6, the knowledge base will still be in the same state.

We plan to undertake a more formal analysis of conflict-free after modification in our future
work. Specifically, we need to characterize the class of modifications that are acceptable. Also,
we need to define the meaning of serializability when the set of operations in the concurrent
execution is not necessarily the same as the operations executed by the user.

Sometimes integrity constraint information can be useful in deciding whether operations
are conflict free. If the knowledge base contains a constraint that a person may have only
one father, two operations that add different value of father to the KB will conflict, but
operations adding the same value of father will not conflict (partially conflict-free by the
definition above). On the other hand, there'may not be such a constraint on the children slot,

29 .

and the operations of two users that insert names of two different children are conflict-free.

7.2.5 Conflict Detection

To check the conflicts between a user transaction and the net-log, we must check for each
operation in the transaction, if the net-log contains an operation that performs a conflicting
update. Each update GFP operation can, in general, involve multiple updates. For example,
the put-slot-values operation deletes the old slot value(s) and inserts several new slot
values. Furthermore, the number of possible GI'P operations is quite large (over 200), so that
analyzing conflicts between the GFP operations can be quite cumbersome. Therefore, before
analyzing the conflicts, we translate the operations into a canonical set of operations that
consists of just three operations: INSERT, DELETE and REPLACE on the the nodes and edges of
the underlying knowledge base graph. Since the number of operations in the canonical set is
considerably smaller than the number of GFP operations, the conflict analysis is substantially
simplified. Let us now explain our approach in more detail.

We view the knowledge base as a directed graph. The nodes can be classes, instances,
slots or values. The edges represent class-subclass (or isA), class-instance (or instanceOf),
class-slot, instance-slot and slot-value relationships. Thus, there are four types of nodes and
five types of edges. We use the generic term entity to denote either a node or an edge.

For example, in Figure 8, we show a knowledge base A'B; in a directed graph form.
Employee and Person are classes and represented as nodes. The subclass relationship between
them is represented by an edge. Ol is an instance of Employee. Person has one slot called
Name. It is inherited by Employee, which has two local slots — Manager and Salary. The
slot values for the instance O1 are shown as nodes with edges from the slot nodes for O1.
Since a slot can appear several times in the graph, to identify a slot node uniquely, we must
associate it with the frame node it is attached to. For example, the slot Salary of the frame
O1 could be identified as (O1, Salary).

There are three types of updates: insert, delete and replace. Replace means modifying a
value. A replace operation for edges is not defined. An insert operation on a node is always
accompanied by an edge insertion. For example, in the knowledge base I By, if for frame O1,
we add the value of 20000 for the slot Salary, we are inserting a value node 20000 and a slot-
value edge from the node (O1, Salary). Similarly, a node deletion is always accompanied by
an edge deletion. If we were to delete Adam’s Salary, we would delete the node associated
with the value and at the same time delete the edge between the (01, Salary) slot and
the value node. We are interested only in sensible operations. Under an assumption of no
duplicates, sensible operations can be defined to mean that one can delete (insert) an entity
only if it exists (does not exist) in the knowledge base. In addition, we assume that a node can
be deleted only if it has no incident edges and an edge operation makes sense only if the end
points of the edge exist in the knowledge base. The set of all operations is the cross product of
the set of entity types and the set of operations. With the above model, the conflict analysis
between GI'P operations reduces to conflict analysis between graph operations.

We assume that every update to the knowledge base is explicitly represented by an oper-
ation. For example, if the addition of a default value to a class leads to addition of that value

30

Person —————>- Name

/ "
Employee Manager

Salary

/ T e
[0} i Manager —— .John

Salary ———> 20,000

Figure 8: The knowledge base K B;

to each each of its instances, we represent the addition by a series of operations that add the
value to the class and each of its instances.

When the operations involve distinct nodes or edges, they are trivially conflict-free. There-
fore, we consider only the situations when the operations involve the same entity.

Table 1 shows the conflict matrix for operations such that both of them either operate on
a node or both operate on an edge. To explain the table, and to keep the discussion concrete,
consider the case of slot operations. For two slot operations to conflict, they must refer to
the same frame and involve the same slot; that is, if the operation is on a slot value X, its
frame name and the slot name have to be the same in the two operations under consideration.
Consequently. while showing the operations in Table 1, we omit the frame name and the slot
name of an operation.

When both operations attempt to insert the same value in a slot, they are partially
conflict-free, because only one of them would succeed. If one operation inserts a slot value
and another deletes it, the operations could not be both defined, because for a value to be
inserted it must not exist, and for it to be deleted it must exist which is a contradiction.
Therefore, we do not analyze conflicts for such situations.

The conflicts resulting from an operation renaming the entity X can lead to three kinds of
situations: two operations trying to replace X with another but same value, or two operations
renaming X to a different value, or an operation renaming another slot value to X. When two
operations try to replace a slot value from X to Y, only one of them will succeed, but they
will leave the knowledge base in the same state, and therefore, they are partially conflict-free.
When one of the operations wishes to replace X with Y and another X with Z, they conflict,
because they have different effects on the knowledge base. Finally, when one operation replaces
X with Y and another operation replaces Z with X cannot occur in practice, because for the
former operation to happen, X must exist in the knowledge base but for the latter operation
, X must not exist, which is a contradiction. However, the operation renaming Y to X would

31

Insert(X) | Delete(X) | Replace(X.Y) | Replace(X,Z) | Replace (Y,X)
Replace (Z,X)

Insert(X) P * * * N
Delete(X) * P N N *
Replace(X,Y) * N P N *

P - Partially conflict-free N - Not conflict-free
~ operations not defined

Table 1: Conflict Matrix for node operations or edge operations

conflict with the operation that inserts X, because executing them in a different order will have
different effects on the knowledge base. An operation that deletes X and another operation
that replaces X with Y conflict because one of them intends to retain the item in the KB and
the other intends to remove it.

Let us now see how Table 1 is applicable for class operations. Two operations inserting
a class into the knowledge base are partially conflict-free. Deleting a class could result in
the deletion of several instances, which could potentially conflict with other operations on
instances. In our analysis, we assume that every operation is explicitly represented in the log,
and therefore, if some instances were to be deleted as a result of class deletion, the log would
contain explicit delete operations for those instances and would lead to conflicts with other
delete operations. Renaming a class would have implications similar to modifying a slot value.
For example, two operations renaming a class with different names conflict, but renaming to
the same name are partially conflict-free. Table 1 also generalizes to edge operations. To
specify an edge operation, however, we do need to specify both the end points and two edge
operations would conflict only if they involve the same end points. Thus, two Insert(X,Y)
operations would be partially conflict-free. Since the replace operation is not defined for edges,
only the first two columns and first two rows of Table 1 are relevant to edge operations.

7.2.6 Merging User Logs

The merge process proceeds in the following steps: log translation, log simplification, log
modification, conflict detection, conflict resolution and log concatenation. Log translation
transforms the user log, which is originally represented as a sequence of GFP operations, into
a sequence of operations on the underlying knowledge base graph. Log simplification takes
a translated log, represented as a sequence of graph operations, and obtains the smallest
possible log that has the same effect on the knowledge base as the original log. The simplified
log captures the net effect of the changes made by a user in a session. Log simplification
Is necessary, because while detecting conflicts in a later stage of merging, we do not want
to consider any redundant operations. Log modification takes the simplified user log, and

32

modifies the names of the entities that have been renamed since the time the user started.
Thus, log modification ensures that only the current names of entities are used in the user log.
Conflict detection compares the user log with the net-log and identifies conflicting operations.
Conflict resolution resolves the conflicts identified in the conflict-detection phase. In some
cases, the conflict resolution step may include suggestions to the user on possible ways to
resolve conflicts. Once the user log and net-log are free from any conflicting operations, the
user log can be simply concatenated to the net-log to obtain the new net-log. Since the user
log and net-log are conflict-free, the resulting net-log is guaranteed to be serializable. Let us
now consider these steps in more detail.

Log Translation

Typically, each GFP operation would translate into a series of operations on the underlying
knowledge base graph. As an example of this translation, we consider a few GFP operations
here. For example, the put-slot-value operation would translate to the deletion of all the
old value nodes and insertion of a new value node. As a more involved example, consider
create-class operation. Usually, the parameters of this operation would also include the
names of superclasses and slots. If there was only one superclass and no slots specified, then
the operation would be equivalent to an insert-node operation, which also inserts a node and
an edge. In addition, the class would inherit all the slots (except for the local slots) from the
superclass, which would translate to inserting an edge corresponding to each slot. If some
of the inherited slots had default values, there would be node insertions corresponding to
the default values. If more than one superclass was specified, then each superclass would
correspond to an insert-edge operation between the superclass and the class being inserted.
In addition, each slot would translate to a node-insert operation.

Log Simplification

Log simplification uses a collection of simplification rules. For example, the insertion of an
entity followed by its deletion can be simplified to a null operation. Similarly, if an operation
inserts an entity A, and a following operation replaces A with B, the two operations can be
simplified to an operation that inserts B. In general, if there are two successive operations on
the same slot value can always be simplified to one operation. Therefore, in the simplified
log, there is only one operation on each entity.

The simplification algorithm proceeds by a linear scan of the log. For each operation in
the log, we check whether there was a previous operation on the entities appearing in the
operation. We maintain a table of previous operations that records the previous operation
executed on each entity. If there was no previous operation on the entities, we add the
operation to the simplified log and to the table of previous operations. If there was a previous
operation on the entities, we simplify the two operations and replace the previous operation by
the simplified operation — both in the simplified log and in the table of previous operations.
The complexity of the simplification process grows linearly with the size of log.

Log simplification is also necessary that we have only one operation on each entity and

33

detect conflicts between the net effects of operations. For example, if net-log contains two
operations, one renaming A to B and the other renaming B to C, the simplification ensures
that the net-log contains only the operation renaming A to C. If any conflicts are detected
between the simplified operation and an operation in the user-log, we inform the user of the
conflicting operations and the person(s) who executed them. Therefore, with each simplified
operation in the simplified net-log, we also record the operations that lead to the simplified
form. In addition, with each operation, we record the user ID of the person who executed it.

Log Modification

The first task of log modification is to modify the operations in the user-log so that they
use the most recent names of entities. Modification entails scanning the user-log, and for
each entity in the net-log, checking whether it has been replaced in the net-log. If yes, the
operation in the user-log is modified to use the new name of the entity. Suppose the net-log
contains an operation renaming a frame from A to B, and the user-log contains an operation
adding a slot value to A. In such a case, user operation must be modified to add the slot
value to frame B. It can be implemented efficiently if the net-log is indexed in a way that we
can retrieve the most recent name of any entity. With an index of most recent names, the
complexity of such modification is linear in the size of user-log. (In addition, there is the cost
of indexing the net-log which is proportional to nlogn where n is the size of net-log.)

The second task of log modification is to change the user-log to take into account that
the knowledge base is not in the same state as the state when the user started. For example,
suppose the initial value of a slot when the user starts is 20. Suppose the net-log contains an
operation that adds a second value 30 to this slot. Let the user-log contain a put-slot-value
operation asserting the value of the slot to be 40, which would remove the old value of 20 and
add the new value of 40. Since by the time the log is merged, the slot has another value of
30, which conflicts with the put-slot-value operation in the user-log; the value 30 must be
deleted, and the user should be informed of this additional effect of her operation. To achieve
this, we must encode in the log sufficient information that can be used during modification.
We solved this problem by introducing wild cards in the user log. In the above example, in
addition to representing in the log the deletion of slot value 20, we introduce an additional
delete operation in which the slot value is replaced by a wild card, meaning all the values of
that slot should be deleted. The operation containing the wild card serves as a pattern that
is matched against all the entities appearing in the INSERT operations in the net-log, and
we generate delete operations for matching entities. In our first attempt at implementing this
modification, for every pattern in the user-log, we scan the net-log for matching entities. The
worst case complexity of this process is proportional to the product of the sizes of the net-log
and user-log.

The modification described above required us to revisit the initial formulation of the
conflict matrix. (Recall that we represent conflicts between pairs of operations as a matrix.)
In the initial formulation, we had ruled out the possibility that the user-log may contain a
delete operation on an entity that is being inserted in the net-log (because the user cannot
delete an entity which does not exist). But due to the modification considered above, such a

34

situation can occur in the modified log and is not really a conflict. Taking this into account
‘n the conflict matrix is trivial because the operations which were previously considered
impossible are in fact conflict-free.

We perform conflict detection before log modification because the former is unaffected
by the latter, but the converse is not true. There are two kinds of operations that can be
involved in a conflict: an operation renaming a frame from A to B, which could conflict with
another operation renaming A to C; and an operation inserting A which could conflict with
an operation renaming B to A. The modification of the operation renaming A to B would
modify it to use the current names of A and B. If in the net-log, A has been replaced with
C, there is in fact a conflict with the user operation, which should be detected before any
modification is done. In the net-log, B could not be replaced by C, because for the user to be
able to replace A with B, B must not exist in the public copy when the user started. In the
meantime, the only operation on B in the net-log could be the one that inserts it. Thus, it is
unnecessary to modify the name of B. Next, consider an operation in the user-log that inserts
A. In the net-log, A could not be replaced by B, because for the user to be able to insert A,
A must not exist in the public copy when the user started, and in the meantime, the only
operation on A in the net-log could be the one that inserts it. Again, no modification of A
is necessary. In a similar way, we can argue that no modification of the net-log is necessary
before conflict detection.

Log Concatenation

Once conflicts have been detected and the user-log modified as above, it does not contain any
operation that conflicts with some operation in the net-log and is ready for concatenation.
Log concatenation involves simply appending the user-log to the net-log. If we are given
several logs of more than one user we merge them in the order of their ending time stamps.
For example, if the log of first user has timestamp ¢;, the log of the second user has time
stamp ¢, and 13 < t;, we merge the log of the second user before the log of the first user.

Log concatenation always produces serializable executions because the concatenated trans-
action does not contain any operations that conflict with the ones in the net-log.

Over a period of time, the net-log will grow in size. To keep its size manageable, we would
like to purge the sessions that are no longer necessary. The operations of a user T1 can be
purged from the net-log if all the users who started their session before T1 have committed
their changes.

Since the net-log can be large, we store it in the Oracle DBMS. The net-log is stored
in two tables: the transaction table and the log table. (A transaction is defined as the set
of GFP operations executed by a user in one session.) The fields in the transaction table
are knowledge base ID, transaction ID, user ID, number of operations in the transaction, the
time when transaction began and the time at which the updates made by the transaction were
merged with the public copy of the knowledge base. The transaction IDs are unique for a
given knowledge base and are system generated. We store in Oracle those logs whose updates
have been successfully applied to the knowledge base. The transaction table is indexed on
the knowledge base ID, transaction ID and merge timestamp.

35

Each entry in the log table stores a log record of some transaction. (A log record is a 2-tuple
consisting of a GFP operation and any values overwritten by that operation.) To distinguish
the log records of different transactions, each entry in the log table records knowledge base
ID, transaction D and the sequence number of the log record within the log records of that
transaction. BEach log table entry also contains the frame name that the operation refers to,
and the string representation of that log record. The log table is indexed on the knowledge
base ID, transaction ID and frame name.

7.3 Implementation

We have implemented the solution described above. We performed extensive testing of the
implementation for merging using some sample logs collected for a knowledge base that is
under development at SRI. All the logs were conflict-free, which suggests that most of the
times the users will work on disjoint portions of the knowledge base. Log simplification
resulted in simplified logs in many cases, confirming its utility in practice. A more detailed
evaluation is planned as future work.

7.4 Related Work

Many approaches have been proposed for supporting collaborative design [NZ90, Kai90, CK86,
KS590]. They tend to be inappropriate for our proposed KBMS for several reasons. First, they
often support an overly elaborate model of version maintenance. Some models allow all old
versions to be recovered and restored, as opposed to our model where public KBs with no
active child workspaces can be discarded. Second, the systems often support a check-in/check-
out paradigm with some variation of lock management and change notification. This approach
is overly complex, and is likely to reduce the potential concurrency of KB development,
particularly if the check-out operation checks out not only a user-specified frame, but the
transitive closure of all frames referenced by that frame — which could result in checking
out a large portion of a KB because of the high connectivity among frames in many KBs.
Our approach allows greater concurrency in development assuming that a large number of
modification conflicts are not likely, and the conflicts that do occur can be resolved by a merge
operation.

There has been little research in providing FRSs with the of multiple-user access. CYC-L
[LG90] provides the most sophisticated knowledge-sharing capabilities of any FRS (but which
are nonetheless insufficient for many needs): A user can copy the virtual memory image of
a KB that is stored on a master knowledge server to the user’s workstation (a process that
is extremely time consuming). When the user changes the KB on his workstation, CYC-
L transmits knowledge-base updates to the master server. The server maintains its KB in
virtual memory, not in persistent storage, and it has no mechanism for controlling concurrent
KB updates.

The work that is closest to what we propose is that by Mays et al. [MLDW91], and by
Hall [Hal91]. Mays and his colleagues are adding persistence and share-ability capabilities to
the K-REP FRS. They independently developed the notion of relaxing the strict consistency

36

requirements of traditional databases in favor of merging privately developed workspaces
(which they call versions) that may contain conflicts. Their merge operation is not described
in [MLDW91], but our private communications with Mays have convinced us that their models
of workspaces and of merging are significantly different from ours, and that a number of
approaches to this new paradigm of KB development should be explored.

Hall has developed a model for collaborative work on design databases that is broadly
quite similar to what we propose, but differs in a number of specifics. Hall’s model involves
a tree of workspaces, where the design database stored at the root of the tree is the most
public and least tentative conception of the design. Workspaces further from the root hold
tentative, exploratory designs that are private to individual users or small teams of users.
Multiple users can simultaneously check out the same object, B, in a single workspace, and
work concurrently on B. B is cached on each user’s workstation, but is not locked. Change
notification transmits updates made to B by one user to all other users who have checked out
B. In order for a user to check B back in to a workspace, all change notifications about B
must have been integrated into the state of B cached on that user’s workstation.

The central difference between Hall’s model and our model is that Hall’s model relies
on the process of change notification to maintain the consistency of each object, whereas
our model relies on the merge operation. In Hall’s model, inconsistencies can be detected
very quickly since change notifications can be sent as users perform updates. In our model,
inconsistencies are detected only when an individual user merges his changes into the public
KB.

Another difference is that in Hall’s model, change notifications are actually processed
by “design tools” — application programs that are external to the database system — and
therefore design tools are responsible for detecting and handling conflicting updates. In our
model, conflicts are detected and handled by the KBMS itself. The question of which model
is better will depend on the application.

Hall’s model will be better for supporting very close collaboration because change no-
tification proceeds during concurrent work — Hall’s model can provide earlier detection of
inconsistencies. But some collaborators may not wish to work so closely, and may not wish
to know about tentative updates made by other users (updates that may be undone later).
Furthermore, updates are often meaningful only in groups, and it is not clear how change
notification would provide coherent gronping of updates, whereas the merge operation does.
In Hall’s model, each application program must detect and handle inconsistencies. This
approach requires more work for the programmer than does our model, where the KBMS
detects inconsistencies, but Hall’s model allows more application semantics to be applied to
the detection of inconsistencies. A limitation of Hall’'s model is that two users cannot simul-
taneously check out the same object for update in different workspaces, which retains some
of the disadvantages of locking. Generally speaking, our approaches are complementary, and
further knowledge of their relative merits must be gained empirically.

Another proposal similar to ours uses “history merging” as a concurrency control mech-
anism for collaborative applications (WK96]. Their merging algorithm is called import algo-
rithm and computes the minimal subset of a history in the same way we do log simplification.

37

It then looks for conflict-free subsets of the history and tries to merge them. The authors
use the conventional notions of conflict and assume a relational model. In contrast, we have
proposed flexible notions of conflict and have used an object model of the database that is
more current. We have also proposed conflict resolution strategy that can modify the user
log to deal with some simple conflicts.

There is an extensive body of work studying concurrency control in partitioned networks
that has relevance in our context [DGMS85]. A partitioned network arises in a replicated
database scenario when a subset of the sites get disconnected from the rest due to commu-
nication failure. In the collaboration model discussed in this paper, the users work indepen-
dently and are therefore disconnected from each other. Concurrency control strategies for
replicated databases are classified along two dimensions. The first dimension concerns the
tradeoff between consistency and availability; the two extremes are syntactic and semantic.
The second dimension concerns the type of information used in determining correctness; the
two extremes are syntactic and semantic.

Interestingly, the solution proposed here assumes special relevance in the context of active
databases that provide several of the facilities required to implement it [DHDD95]. For
example, some of these systems maintain hypothetical updates, that is, the updates that
a user wishes to make but does not yet want to apply to the database. The user can make
queries with respect to different database states that might result by applying the hypothetical
updates. The user logs in our solution can be viewed as hypothetical updates. Thus, our
solution can be easily exploited by active databases.

8 Summary and Conclusions

The research results described in this report advance the state-of-the-art of knowledge base
management systems in several ways:

¢ The Generic Frame Protocol provides a generic API for KBs that constitutes a solid
foundation for knowledge sharing and software reuse.

e The storage system transparently supports efficient storage and retrieval of knowledge
bases in a DBMS and establishes a foundation for the scalability of knowledge bases.

¢ The collaboration subsystem permits multiple users to access a shared knowledge base
in a cooperative way. It supports flexible notions of conflicts between user operations
and support for resolving those conflicts.

¢ The GKB Editor completes the above environment by providing three different viewer/editor
utilities for browsing and modifying large KBs.

The work described in this report has opened several new opportunities for further work.
For example, we are planning to extend the knowledge model of the GFP to deal with contexts
and constraints. In our current design of the storage system, the storage system never removes
from its cache the frames that have been retrieved. Such an approach does not work when the

38

knowledge base cannot fit in the main memory. In our future work, we plan to explore schemes
for flushing frames that have been retrieved. We plan to extend our collaboration system to
deal with schema change operations that have not been covered so far. We plan to undertake
a more formal analysis of log modification. Specifically, we need to characterize the class of
modifications that are acceptable. We need to define the meaning of serializability when the
set of operations in the concurrent execution is not necessarily the same as the operations
executed by the user. Finally, we are interfacing the GKB Editor with the World-Wide Web
to make it more easily accessible on a variety of platforms.

In conclusion, we our results provide essential infrastructure for the development of very
large knowledge bases that are already beginning to appear. Furthermore, they provide a
significant starting point for the tools that will be required for composing, authoring and
reusing ontologies.

References

[AWS86] R. Abarbanel and M. Williams. A relational representation for knowledge bases.
Technical report, IntelliCorp, Mountain View, CA, 1986.

[BCG*88] N. Ballou, H.T. Chou, J.F. Garza, W. Kim, C. Petrie, D. Russinoff, D. Steiner,
and D. Woelk. Coupling an expert system shell with an object-oriented database
system. Journal of Object-Oriented Programming, pages 12-21, June-July 1988.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Welssley Publishing Com-
pany, 1987.

[CK86] H.T. Chou and W. Kim. A unifying framework for version control in a CAD
environment. In Proc. of the Twelfth International Conference on Very Large
Data Bases, pages 336-344, 1986.

[CM95] I. A. Chen and V. M. Markowitz. An Overview of the Object-Protocol Model
(OPM) and the OPM Data Management Tools. Information Systems, 20(5):393~
418, 1995.

[Cra90] J.M. Crawford. Access-Limited Logic — A language for knowledge-
representation. PhD thesis. University of Texas at Austin, 1990. Technical
report AI90-141.

[DGMS85] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. Consistency in
Partitioned Networks. Computing Surveys, 17(3):341-370, 1985.

[DHDDY95] M. Doherty, R. Hull, M. Derr, and J. Durand. On Detecting Conflict Between
Proposed Updates. In International Conference on Database Programming Lan-
guages, September 1995.

39

[Eil94]

[EPG*94]

[FFPRY5)]

[FZT+92]

[GF92]

[Gru93]

[Hal91]

[K2i90]

[Kar92]

[KC84]

[KC87]

[KPY5]

E.F. Eilerts. KnEd, an interface for a frame-based knowledge representation
system. Master’s thesis, University of Texas at Austin, 1994.

H. Eriksson, A. R. Puerta, J. H. Gennari, T. E. Rothenfluh, S. W. Tu, and
M. A. Musen. Custom-Tailored Development Tools for Knowledge-Based Sys-
tems. ‘Technical Report KSL-94-67, Stanford University Knowledge Systems
Laboratory, Stanford, CA, 1994.

A. Farquhar, R. Fikes, W. Pratt, and J. Rice. Collaborative ontology con-
struction for information integration. Technical Report KSL-95-63, Stanford
University, Knowledge Systems Laboratory, Stanford, CA, 1995.

M.J. Franklin, M.J. Zwilling, C. K. Tan, M.J. Carey, and David J. DeWitt. Crash
Recovery in Client-Server EXODUS. In Proceedings of the ACM SIGMOD 1992
Annual Conference, pages 165-174, San Diego, CA, June 1992.

Michael R. Genesereth and Richard E. Fikes. Knowledge Interchange Format,
Version 3.0 Reference Manual. Technical Report Logic-92-1, Computer Science
Department, Stanford University, Stanford, CA, 1992.

T.R. Gruber. A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5(2):199-220, 1993. URL for Ontolingua is http://www-
ksl.stanford.edu/knowledge-sharing/ontolingua/README .html.

K. Hall. A Framework for Change Management in a Design Database. PhD the-
sis, Stanford University Computer Science Department, Stanford, CA, August
1991.

Gail E. Kaiser. A flexible transaction model for software engineering. In Proceed-
ings of the Sizth International Conference on Data Engineering, pages 560-567,
February 1990.

P.D. Karp. The design space of frame knowledge representation sys-
tems. Technical Report 520, SRI International AI Center, 1992. URL
ftp://www.ai.sri.com/pub/papers/ karp-freview.ps.Z.

T.P. Kehler and G.D. Clemenson. KEE the knowledge engineering environment
for industry. Systems And Software, 3(1):212-224, January 1934.

R.H. Katz and E. Chang. Managing change in a computer-aided design database.
In Proceedings of the Thirteenth International Conference on Very Large Data
Bases, pages 455-462, Brighton, England, 1987.

P.D. Karp and S.M. Paley. Knowledge Representation in the Large. In Proceed-
ings of the 1995 International Joint Conference on Artificial Intelligence, pages
751-758, 1995.

40

[KPG94]

[KRPPT96]

[KS90]

[LGYO]

[MAC*89]

[Mac91]

[MF090]

[MLDWO1]

[NZ90]

[Pap86]

[PFPSt92]

P.D. Karp, S.M. Paley, and I. Greenberg. A storage system for scalable knowl-
edge representation. In N. Adam, editor, Proceedings of the Third International
Conference on Information and Knowledge Management, pages 97-104, New
York, NY, 1994. Association for Computing Machinery. Also available as SRI
International AI Center technical report 547.

P. Karp, M. Riley, S. Paley, and A. Pellegrini-Toole. EcoCyc: Electronic ency-
clopedia of E. coli genes and metabolism. Nuc. Acids Res., 24(1):32-40, 1996.

Henry F. Korth and Gregory D. Speegle. Long-duration transactions in software
design projects. In Proceedings of the Sizth International Conference on Data
Engineering, pages 568-574, Los Angeles, CA, February 1990.

D.B. Lenat and R.V. Guha. Building Large Knowledge-Based Systems: Rep-
resentation and Inference in the CYC Project. Addison-Wesley, Reading, MA,
1990.

T.M. Mitchell, J. Allen, P. Chalasani, J. Cheng, E. Etzioni, M. Ringuette, and
J.C. Schlimmer. Theo! A framework for self-improving systems. In Architectures
for Intelligence. Erlbaum, 1989.

R. MacGregor. The evolving technology of classification-based knowledge rep-
resentation systems. In J. Sowa, editor, Principles of semantic networks, pages
385-400. Morgan Kaufmann Publishers, Los Altos, CA, 1991.

D.P. McKay, T.W. Finin, and A. O’Hare. The intelligent database interface:
Integrating Al and database systems. In Proceedings of the 1990 National Con-
ference on Artificial Intelligence, pages 677-684. Morgan Kaufmann Publishers,
1990.

E. Mays, S. Lanka, B. Dionne, and R. Weida. A persistent store for large shared
knowledge bases. IEEE Trans. on Knowledge and Data Eng., 3(1):33-41, 1991.

Marian H. Nodine and Stanley B. Zdonik. Cooperative transaction hierarchies: A
transaction model to support design applications. In Proceedings of the Sizteenth
International Conference on Very Large Data Bases, pages 83-94, Brisbane,
Australia, 1990.

Christos Papadimitriou. The Theory of Database Concurrency Control. Com-
puter Science Press, Rockville, MD, 1986.

Ramesh Patil, Richard E. Fikes, Peter F. Patel-Schneider, Don Mackay, Tim
Finin, Thomas Gruber, and Robert Neches. The DARPA Knowledge Sharing
Effort: Progress Report. In The Third International Conference on Principles
of Knowledge Representation and Reasoning, pages 777-788, Boston, MA, 1992.

41

[SL95]

[ST95]

[WD94]

[Wil90]

[WK96]

D. Skuce and T.C. Lethbridge. CODE4: A unified system for managing concep-
tual knowledge. International Journal of Human-Computer Studies, 1995.

A. Shrufi and T. Topaloglou. Query Processing for Knowledge Bases Using Join
Indices. In In the Proceedings of jth International Conference on Information
and Knowledge Management, Baltimore, MD, November 1995.

D. E. Wilkins and R.V. Desimone. Applying an Al planner to military operations
planning. In M. Fox and M. Zweben, editors, Intelligent Scheduling, pages 685—
709. Morgan Kaufmann Publishers, 1994.

D.E. Wilkins. Can AI planners solve practical problems? Computational Intel-
ligence, 6(4):232-246, November 1990.

Jirgen Wasch and Wolfgang Klas. History Merging as a Mechanism for Con-
currency Control in Cooperative Environments. In Proceedings of RIDE’96: In-
teroperability of Non-Traditional Database Systems, Louisiana, Feb 26-27 1996.

42

[o]
[
[%s]
i
x
[
(831
s
e
i
3
pi4

LISY

advdrassas

L3UIS J. ADERZL

2L /C2LA

22% 3RAJXS RO

DIME NY 13441-4505
SRT INTERNATIONAL
333 RAVLENSWIND avz
MANLD 24RK CA 34902

POME LASTRATORY/ZSUL
TECHAMICAL LIBRARY
25 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTION: DTIC-0CC

DEFENSE TICHNICAL INFD (ENTER

8725 JOHN J. KINGMAN ROAD, STEL 0244
T, BELVDIR, VA 22050-562118

ADVANCED RSS5FARCH PROJECTS AGENLY
3791 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1716

RELIABILITY ANALYSIS CENTER
201 MILt S57.
ROME NY 13440-83200

ROME LASORATDRY/C3ASB
5235 BRDOKS RD
ROME NY 13441-3505

ATTN: RAYMDOND TADROGS
GIDEP

P.0. BOX 300¢C

CORPONA CA 91713-8000

L-1

ok

1

i

numnhar

0¥

TODLes

AFIT ACADEYIC LIRRARY/LGSE
2950 P STRE:LT

AREA B, ALDs 642
HRIGHT-PATTERSON 4F3 ¢ 45632377

h
(%34

3L AL HSL/HRG, sLIG. 190
2598 5 STREET
ARTGAT-PATTZOSON AFE 4d 454323-75046

U5 ARMY STRATEGIC DEFENST COMMAND
£330~1M-P4

P.0. 53X 1509

HUNTSVILLE AL 35807-3301

COMMANTDIER, TECHNICAL LISRARY
4747000700223
NAVAIRWARLFANWPNGIV ,

1 ADMIMISTRATION CIRCLE
CHINA LAKE CA& 33555-6001

SPACE L MAVAL WARFARE SYSTEMS
COMMAND (PMW 175-1)

2451 CRYSTAL DRIVE

ARLINGTON VA 22245-3200

COMMANDER, SPALE & MAVAL WARFARE
SYSTEMS COMMAND (C22% 32)

2451 LRYSTRAL DRIVE

ARLINGTON V4 222645-5200

CORy US ARMY MISSILE (OMMAND
R3IC, BALDG. 4484
AMSMI-RD-L3-2, DACS

REDSTOME ARSEHNAL AL 3589%-5241

ADVISSORY GROUP ON ELELTESN DEVIC
SUITE 500

1745 JTFFERSON DAVIS HIGHWAY
ARLINGTON VA 22202

5

il

i

re

[~

(%]

REPORT COLLECTION, CIC-14

M5 P36a

LDOS ALAMOS NATIONAL LABQRATORY
L3S ALAMOS NM B73545

AEDC LIZRARY

TECHNICAL PEPORTS FILE

107 XINDSL DRIVE, SUITE L211
ARNDLD AF3 TN 37389-3211

COMMANDER

J341S8C

ASHC-IMD~-L, BLDG 61801

FT HUACHULA AZ 85513-5000

Us DEPT OF TRANSPORTATION LIARARY
F3104, M=-657, R¥ 320

200 INDEPENDENCE AVE, SW

WASH DL 225721

AIR WEATHER SERVICE TECHMICAL
LI3RARY (FL 4414)
853 BUYCHANAN STREELY

SCOTT AFRB IL $2225-511i8

AFTWC/7M33
102 HALL 3LVD, 372 315
SAM AHTINID TX T8243-701%

SIETWARZ ENFINFERING INSTITUTE
CARNZEGTE MELLAON UNIVERSITY
%570 FIFTH AVEIMNUE

PITTSHEYRGH P& 15213

X1
=T MEIADE M2 20755-5060

DCMATS/ZHICHITA/ZGKED
SUITE 2~34

401 N MARKET STREELT
JITHITE K3 67202~-2042

TL-3

pn

PHILLIPS LABGORATORY

PL/TL (LIBRARY)D

5 WRIGHT STREET

HAMSCOM AF2 Ma (§1731-3004

THE MITRE CORPORATION
ATTN: E. LADURE

D450

202 3AYRLINGTON RD
BEDFORD MA 01732

DUSD(PI/DBTSA/BUTD

ATTNZ PATRICK G. SULLIVAN, JR.
400 ARMY NAVY ORIVE

SUITE 24D

ARLINGTON YA 22202

DR JAMES ALLEN

COMPUTER SCIENCE DEPT/3LDG RM 732
UNMIY OF RJICHESTER

WILSON 3LVYD

RICHESTER NY 144627

DR YIGAL ARENS

USC~-1I51

4576 ADMIRALTY HWAY
MARINA DEL RAY (A %0292

DR MARIE A. BIENKOUWSKI
SRT INTERMATIONAL

333 RAVENSHODD AVE/ZEK 337
MENLO PRK CA 9406253

OR MARK S. 303DY

HONEYWFLL SYSTEMS £ RSCH CENT
3660 TECHNTLOGY DRIVE
MIMNEARPOLIS MY 55414

o

im

DR MARK BYRSTEIN
A8N SYSTEMS £ TECHAMJLOGIERS
10 MOULTON STREEZET

CAMBRIZGE MA 02133

DR GRESGG COLLINS

INST #IR LEARNING SCIENCES
1890 MAPLE AVE

EVANSTIN IL 60201

MR. RANDALL J. CALISTRI-YEH
ORA CORPORATION

301 DATES DRIVE

ITHACA NY 14850-1313

DR STEPHEN E. LROSS
SCHODL OF COMPUTER SCIENCE
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213

M3. LAURA DAVIS

LCGDE 5510

NAVY CTR FOR APPLIED RES IN AL
NAVAL RESEARCH LABORATIORY

WAaSH 0OC 20375-5337

AR THOMAS L. DEAN

BROWN DNMIVERSITY

DEPT OF COMPUTER SCIENCE
b.0. 302X 19190

PRAVIDENLCE RI 02312

DR PAUL R. COHEN

UNIV UF MASSACHUSETTS
COINS BEPT

LEDERLE GRL

AMHERST M4 01003

DR JON JoYLE

LARORATORY FOR COMPUTER SCIENCE
MASS INSTITUTE OF TECHNOLOGRY
545 TECHMOLOGY S5QUARE

CAMBRIDSGE ®MA 52139

MR. 3TU DRAPER

MITRE

EAGLE CENTER 2, SUITE B
DYFALLON IL 522469

MR. GHARY EDWARDS

ISX CORPDRRATIOM

2300 W 1S5TH 5T, SUITE 1008
ARLINGTOM, VA 22201

MR RUSS FREWY

GENERAL ELECTRIC

MOJRESTOWN CORPORATE CENTER
BLDG ATK 1465-Z

MOORESTOWN NJ 03057

DR MICHAEL FEHLING
STANFGRD UNIVERSITY
ENGINERRING EL0 SYSTEHS
STANMFORU LA 34395

DR KRISTIAN J. HAMMOND

UNIV UF CHICAGD

COMPUTER SCIENCE DEPT/RYLSS
1108 £. S9TH STREEY

CHICAGD IL 50537

RICK HAYES-ROTH
CIMFLEX-TEUNTWLENGE
131C EMBARZADERO RD
PALO ALTO CA 94303

DR JIM HEWNDLER
UNIv 3oF Mﬁ”YLAND

DNEPT GF COMPUTER SCIEZNCE

COLLEGY PARK MO 20742

MR. MIRTON A. HIR SC iHokG, DIRZIITAOR
U35 ARMY RESFEARCH LAZ2RATIRY

ATTN? AMSRL-LI-~CH

ASERIETHN PROVIMNG GR0UND M5
2100553055

MRe MARK A, HOFFMAN

I5Y CORPRRLTION

11465 KORTHCAASE PLAIKWAY

MARPITTTA GA 34047

DR RIN LARSEN

MAVAL TAD, LONTRIL & SCFEAN SUR LTR
RESETARLH, DTEVILOP, TE5T7T & EVAL 31V
C3%2 444

SAN TI=50 LA 32152-5000

MRa RICAHAPZD LIOWZ (4aP-103

SRA CoRPORATION

2000 15TH STECET WIRTH

ARLIMOLTON V4 227281

ME, TzD L. KFAL

2aM SYSTAmMS & TolHANOLULIES

4315 HANCOCK STRZ:T, SUITZ 101

SAN QIS [A 92119

[

o

DRe ALAN MIYROWITL

NAVAL RESEARCH LAZORATORY/CODE 5510
4555 JVERLIDK AVE

WASH OC 20375

ALTCS MULVEHTLL

asN

10 MOULTON STRELT
CAMBRIDGE MA DZ23RB

DR DREW MLDERMAQTT

YALE COMPUTER SCIENCE DEPT
P.0. BAX 2158, YALE STATICH
51 PROPSPECT STREET

MEW HAVEN LT 06520

OR DOUGLAS SMITH
KESTREL INSTITUTE
3250 ATLLVIEW AVE
PALD ALTD CA 94304

OR. AUSTIN TATE

AI APPLICATIONS INSTITUTE
UNIV OF EDINBURGH

80 SCUTH BRIDGE

EDINBURGH FH1 1HN - SCOTLAND

DIRECTAR

DARPA/ITO

3701 N. FAIRFAX DR., 7TH FL
ARLINGTON VA 22209-1714

DR STEPHEN Fa SMITH
ROBOTICS INSTITUTE/ZCMU
SCHENLEY PRK
PITTSBURGH PA 15213

DR. ABRAHAM WAKSMAN
AFOSR/NM

110 DUNCAN AVE., SUITE B115
ROLLING AF3 DC 20331-0001

DR JONATHAN P. STILLMAN
GENERAL ELECTRIC LRD

1 RIVER RD, RM K1-5(314
P. D. 33X 8

SCHENECTADY NY 12345

DR ZDWARD C.T. WALKER

3BN SYSTEMI 4 TELHNILIGIES
10 MJULTON STREET
CaM3RIDGE MA 02134

DR 3ILL SWARTOUT
USCrsIST

4576 ADMIRALTY WAY
MARIMNA DFL RAY CA 92D292

DR KATIA SYCARA/THE ROBOTICS INST
SCHINL OF COMPUTER SCIENCE
CARNESGTE MELLOM UNIV

DOHERTY HALL RM 2325

PITTSSURSGH PA 15213

DR. PATRILX WINSTON

MASS INSTITUTE OF TECHNGLOGY
M NE43-817

545 TELHNOLOGY SQUARE
CAMBRIDGE MA 02139

DR JOAN P. SCHATLL
4RPAZISD

3721 N FAIRFAX DRIVE
ARLINGTON VA 22203-1714

MR« MIKE ROUSE

AFSC

7500 HAMPT3N RD
NCRFOLK VA 23511-6097

MKe DAVID F. SMITH
ROCKWELL INTERNATIONAL
444 HIGH STREET

PALD ALTO CA 94301

JEFF ROTHENBERS

SENIOR COMPUTER SCIENTIST
THE RAND CDRPORATION

1700 MIN STREETY

SANTA MONICA CA 90407-2138

DR MATTHEW L. GINSBERG
CIRL, 1269

UNIVERSITY OF DREGON
FUGENE 0OR 97403

DL~

ok

%41

MR IRA GOLDSYEIN

OPEN SW FOUNDATION RESEARLH INST

ONF CAMBRIDGE CENTER
CAMBRIDGE MA (2142

MR JEFF 5HRDOSSMAN. LD
NCCOSC RDYE DIV 45

5370 SILVERGATE AVE, RDOM 1405

SAN DIEGO CA 22152-51495

JAN GUNTHER

ASCENT TECHNDOLOGY, INC.
54 SIDNEY ST, SUITE 330
CAMBRIDGE MA 02139

DR LYNETTE HIRSCHMAN
MITRT CORPORATION
202 BURLINGTON RD
RENFORD MA 01730

DR ADELE E. HOWE
COMPUYTER SCIFNLE JEPY

COLORADEC STATEZ UNIVERSITY

FORT LOLLINS €0 80523

DR LESLIF PACK KAZLBLING
COMPUTFER SCLIFNLCE DEPT
BROWN UNIVERSITY
PROVIDENCE RI 02912

DR SUBRARA0 KAMBHAMPATI
DZPT OF COMPUTER SCICNCE
ARIZONA STATE UNIVERSITY
TeEMPE 47 B5237-5405

DR PRADELP K. KHISLA
ARPL/ZITC

37TD1 Ne FAIRFAX DR
ARLINGTON VA 222063

SR CARLA oDMES

ROMz LASORATORY/ZCSCA
525 BKTI3KS RD

POMEI ONY 13441-46505

DR MARKX T. MAYBURY
ASSCCIATE DIRECTOR OF AI CENTER
ADVANCED INFD SYSTEMS TECH 5041

MITRE COPP, BURLINGTON RD, MS K-3293

BEDFORD MA 01730

MR DIONALD P. MCKAY
PARAMAX/UNISYS

P 3 808X 517

PAOLT PA 19301

DR MARTHA E POLLACK
DEPT OF COMPUTER SCIENCE
UNIVERSITY OF PITTSBURGH
PITTSBURGH P4 15249

DR £DWINA RISSLAND

DEPT OF COMPUTER & INFO SCIENCE
URIVERSITY OF MASSACHUSETTS
AMHERST M4 019903

DR MANUEZLA VELO3D

CARNEGTE MELLON UNIVERSTITY
SCHOOL OF COMPUTER SCIENCE
PITTS3Y2GH PA 15213-2391

DR DAN WZILD

DEPT OF COMPUTER SCIENCT &
MATL 5T2P FR-35

UNIVERSITY OF WASHINGTON
SEATTLE WA 93195

a1}
<
G

DR TOM GARVEY

ARPA/ISS

3701 NORTH FAIRFAX SRIVE
ARLINGTCN VA 22203-1714

MR JOHN NL ENTZIMINGIER, JR.
ARPA/OIRD

3701 NIRTH FAIRFAX DRIVE
ARLINGTIN V4 22203-1714

-

LT COL ANTHONY WAISANZEN, PHD
COMFAND ANALYSIS 5RcuUP

HG ATIR MD3TLITY COMMAND

402 SCOTY DRIVE, UNIT 2L2
SCOTT &F3 IL 42225-5357

=)

[y

DIRELTIR
ARPA/ISD
3701 NIRTH FAIRFAX DRIVE
ARLINGTON VA 22203-171%

AEEILE OF THE CHIEZS NF NAVAL RSCH
ATTN: MR PAUL QUINN

£0dE 311

200 N. WUINCY STREET

ARLINMGTON VA 22217

DR GFEORGE FERGUSON

UNIVERSITY OF ROCHESTZR

COMPUTER STUDIES BLDG. RM 732
WILSON BLVD

ROCHESTEZR NY 14627

DR STEVE HANKS

DEPT OF COMPUTER SCIENCE & ENG'G
UNIVERSITY OF WASHINGTON

SEATTLE Wa 98195

OR WILLIAM 5. MARK

LOCKHESD PALND ALTO RSCH LAB
DEPT 9620, BLOG 254F

3251 HANOVER 57

PALO ALTD CA 94304-1187

DR ADNAN DARWICHE

INFORMATION & DECISION SCIENCES
ROCKWELL INT'L SCIENCE CENTER
1049 CAMIND DO3S RIOS

THOUSAND 3AKS CA 91360

DR JAMES CRAWFORD
CIRLy 12569
UNIVERSITY OF DREGON
FUGENE OR 97403

ROBERT Je KRUCHTEN

HQ AMLC/5SCA

202 W LOSEY ST, SUITE 10195
SCOTT AFR IL 62225-5223

#U.S. GOVERNMENT PRINTING OFFICE:

DL-11

1997-509-127-61015

MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

|
H

