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Chapter 1: Introduction 

1.1 Current methods of antenna design 
In 1887, Hertz demonstrated the existence of electromagnetic waves experimentally and confirmed Maxwell's 
predictions. Hertz used copper wires end-loaded with large spheres which were excited by a spark discharge, which 
launched an electromagnetic wave. In 1898, Braun designed a circuit consisting of a spark gap in its primary circuit 
which was inductively coupled to a linear antenna in the secondary circuit, creating the first wire antenna. 

Since wire antennas first appeared, a variety of useful configurations have emerged, like the dipole and its counter- 
part monopole over a ground screen, the rhombic, Beverage, Yagi, log periodic, loop, helix, and spiral antenna. 
Though there are many different designs, they have all been designed and optimized using a similar approach. 

This approach used by antenna engineers generally limits antennas to relatively simple structures. If the engineer 
wishes to create a new antenna, either to find a better solution to a particular problem or simply for the sake of 
creating a new antenna, he or she will often use an elegant or intuitive geometrical arrangement that exploits some 
electromagnetic property. There are two major ways to arrive at this new design: start from basic theoretical 
equations that lead from the desired qualities to the form of the antenna that produces those qualities, or take existing 
designs and combine parts of them into a single design. However, if one takes the mathematical approach, one is 
limited to simple structures because electromagnetic analytical expressions quickly become very involved for even 
moderately complicated structures. If one combines existing designs or takes a more intuitive approach, one is left 
without much guidance in the proper optimization of the design. In addition, it is difficult to know if such a design is 
going to work well when optimized. 

In most cases, an engineer will not wish to create a new design, but rather optimize an existing one for a particular 
situation. In this case, an engineer finds an existing configuration that may have the desired electromagnetic 
characteristics once optimized. He or she works with appropriate equations to determine initial guesses at its proper 
dimensions and parameters, and uses an electromagnetic simulator or an analytical expression to predict its 
performance. If the performance is not acceptable, the antenna is redesigned, using guides such as intuition, 
experience, approximate equations, or empirical studies to determine which parameters to change to improve 
performance. While this design technique has produced many different antennas that perform adequately, it is unlikely 
to produce truly optimum results if there are more than a couple unknowns. It also requires a familiarity with many 
different designs, and enough experience so an acceptable solution can be reached in a reasonable amount of time. 

When the high speed digital computer became available in recent years, it became possible to analyze more complex 
wire structures in shorter time spans. While the simulator is faster than using pen and paper or a calculator, there are 
too many variables in even simple designs for a person to keep track of effectively. 

The speed of the simulator and the relative ease of modifying and resimulating a design leads to an interesting 
problem. Since one need not understand all the underlying physical equations of the structure any longer, and can 
simply tinker with the design on the computer, "folklore" can result: certain factors are seen to affect certain antenna 
characteristics in certain ways, yet they may or may not. This problem is not unique to computer simulators, 
though—folklore can develop in actual electromagnetic testing situations as well. For some of the more complicated 
aspects of electromagnetics, even years of experience may not result in useful intuition regarding them. 

The art of antenna design, while being a fairly slow process, is also mature—people have been designing antennas 
since the turn of the century, and there are hundreds available. Engineers have been tweaking these designs for some 
time, occasionally finding new ones, and using the current body of knowledge as a basis for further work. This limited 
search method—which can be likened to using a few thousand well-tuned neural nets and expert systems in search of 
better antennas after many years of prior searching—provides relatively slow progress. 

There are a few antenna optimization programs that are appearing on the market. In most, if not all, cases, the general 
shape of the wire antenna is still predetermined and the individual wires and parameters that constitute that particular 
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design are optimized. However, these programs are limited in effectiveness because they use gradient-based 
optimization approaches. These types of approaches require a well-behaved solution space and/or a good initial guess 
to arrive at good optimized designs, because they are sensitive to local minima and are trapped very easily. This 
means the engineer must still use intuition and initial guesses to optimize an antenna. 

In addition, the standard design cycle limits the types of designs that are tried to those that have an intuitive or 
mathematical logic about them. Symmetry is often present, and structures are kept relatively simple to allow for easier 
understanding, analysis and modification. Nearly all of the designs produced by engineers have the characteristic of 
"making sense" when one looks at them or their equivalent circuit schematics. Most all of them look like they should 
work. However, non-intuitive configurations can sometimes work as well as or better than intuitive ones. As an 
example, note that people use bent coat hangers, aluminum foil, and antennas in strange-looking configurations to get 
good radio or TV reception, unhindered by knowledge of theory and guided only by monitoring reception quality—a 
very simple form of random-walk optimization. It is therefore of interest to find a way to search for such counter- 
intuitive solutions using a well-validated, standardized optimization methodology. One technique in particular, the 
Genetic Algorithm (GA), is sufficiently powerful to search this kind of counter-intuitive solution space, as will be 
shown in this thesis. 

1.2 Motivation for automated design procedures 
Government and commercial systems employ thousands of different types of wire antennas for communications and 
remote control, radar, and surveillance. All of these systems employ antennas that are limited by the above method of 
design optimization, but even so most of these systems perform adequately with these antennas. However, as 
communications and electronic sensors rise in importance in an increasingly technological and interconnected world, 
there will grow an expanding need for high-performance, customized antennas that are optimized for performing 
specialized functions. However, as mentioned above, the current method of antenna design is experience-intensive, 
and there is no very fast or automated way to design the special antennas they need. There is a growing demand, 
therefore, to find a faster, less labor-intensive way to design antennas. 

For instance, indoor communications have grown in importance through the use of radio and cordless phones. 
Though most hand-held transceivers currently use linearly polarized antennas, it would be advantageous for an 
antenna to have dual polarization so that incoming signals that have become depolarized due to multiple reflections 
from walls and fixtures can still be detected. Experiments with monopole antennas loaded with modified folded 
dipoles [1,2] or loops [3] have shown that it is possible to achieve near-hemispherical coverage with these 
configurations. The monopole radiates a vertically polarized wave that provides coverage at the lower elevation 
angles while the folded elements or loop radiate a horizontally polarized wave that provide coverage at the higher 
elevation angles. Thus, the antenna provides dual polarization coverage at medium elevations, though it is still linearly 
polarized at high and low elevations. However, this antenna with six unknowns needs to be optimized before it will 
serve this purpose effectively. 

As another example, earth-to-satellite communication and navigation systems are becoming more and more 
commonly used and low-cost. These systems will soon require ground-based antennas that are circularly polarized 
and have near-hemispherical coverage. Circular polarization is necessary for systems operating at frequencies below 
3 GHz since the Faraday rotation produced by the ionosphere can cause a linearly polarized wave to rotate out of 
alignment with the receiving antenna. In a worst case scenario, the incoming wave becomes cross polarized so that no 
signal is received. A circularly polarized signal eliminates this problem. Near hemispherical coverage is also desirable 
since the earth-based antenna is often required to receive a signal from a satellite anywhere above the horizon, except 
at low elevation angles. (At low angles, signals have multipath components that can disrupt system performance.) 
Currently, helical or patch antennas are used for this application, but these antennas are generally narrow-band and 
require a phasing network, which increases their complexity and cost. In addition, these antennas are usually 
somewhat directional, meaning they need to be pointed more precisely toward the satellite to be used effectively—an 
inconvenience for mobile systems. 

In order to study primeval hydrogen at the edge of the known universe using the Arecibo radio telescope, there is a 
need for a special feed antenna, with a 60° beamwidth, 14% bandwidth, linear polarization, and -25dB sidelobe level. 
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Helix antennas have been used, but with unsatisfactory results, and there does not appear to be any conventional 
antenna that meets their requirements. 

Each of the above problems will be explored and solved in this thesis. However, there are many more of these 
antenna problems waiting to be solved. The tracking of hospital patients, biomedical research, applications requiring 
ultra-broadband antennas, remote sensing, electronic warfare applications, and many others, are all demanding 
antennas that meet their needs. Meeting them rapidly and effectively will require a new approach to antenna design, 
because the current methods are too limited to keep pace with the rising demand. What is needed is an automated 
design system that can search areas of antenna design heretofore unsearchable, and solve antenna design problems 
unhindered by the limits of human intuition and experience. This need is the motivation behind this thesis. 

1.3 Previous work 
Both a literature search and an excellent review article of GAs as applied to electromagnetics [4], with papers listed 
up to February of 1997, have shown that there is relatively little previous work on automated antenna design. Out of 
roughly 70 papers on the optimization of electromagnetic designs since 1990, only 29 involve antennas. Of the 29, 18 
involve antenna arrays. 

Haupt [5] describes how to use GAs to design thinned antenna arrays. An antenna array is a pattern of small, simple 
antenna elements that are operated with various phase differences between them to allow electronic steering of the 
radiation pattern. Most such antennas have regularly spaced antenna elements, however, it is often desired to remove 
some elements to achieve even better radiation patterns and allow for a cheaper antenna array (fewer elements means 
lower cost). However, it is difficult, without an exhaustive search, for a person to know which elements to remove. A 
technique like a GA is ideal for such a search. Haupt uses a specific type of antenna-a planar, regular geometric 
array—where elements are kept or removed to determine the characteristics of the antenna. He has also done similar 
work in backscattering from a grid and various absorption problems [6]. The designs are well-defined (strips of wire 
or absorbent material that are either present or absent) and specific to one application. The problem of designing 
robust antenna-array processors (not an antenna itself, but what controls the elements in an array) using quadratic 
programming techniques is described in [7], There is automated design here, but only for this specific problem of 
processor design. The other array papers follow similar paths with GA optimization of array thinning, amplitude or 
phase tapering, specified nulls and designing arrays with specific radiation patterns. Thus, the majority of the antenna 
work available in the literature is focused on arrays of antennas that are easily "plugged in" to a GA. 

The remaining 10 papers that involve antennas focus on single-element designs. 5 of them involve the design of ultra- 
broadband antennas using GAs [8-12]. A number of RLC loads are placed along monopoles or two-element arrays of 
monopoles, with the RLC values and the load locations to be determined by the GA. The results of such GA 
optimization are very good in these papers. 

References [13] and [14] regard using optimization techniques and special simulation techniques for the design of 
reflector antennas, which are widely used and not necessarily easy to design. They have focused on general design 
rather than specific situations, still allowing the designer to determine and place the parts of the antenna. 

The remaining three papers have resulted from the research for this thesis [15-17], 

Regarding other optimization techniques applied to wire antennas, Landstorfer and Sacher [31] optimized dipoles and 
monopoles for effectiveness as stand-alone antennas and as elements in Yagi antennas using gradient and simplex 
searches. Their curvilinear antennas, though not quite as radical as those shown in Chapter 6, are very unusual and 
effective. However, since they were working prior to 1985, the complexity and application of their designs was 
limited by the computer power available at the time. Therefore, their optimization of monopole (and equivalent 
symmetric dipole) elements focused strictly on maximizing effective height (and hence directivity), given a wire 
length. Their Yagi antennas with curvilinear elements, optimized for directivity and/or sidelobe attenuation, were 
based on the optimization of one element for a particular purpose, the rest of the antenna being determined by rules 
based on the shape ofthat element. The single-wire antennas and Yagi elements were constrained to be two- 
dimensional. The variables were angles of bends at points equispaced along the wire. In addition, the initial guess was 
simple since the starting antenna was a straight-wire monopole. In each of their optimizations, the authors were 
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forced to simplify their approaches using electromagnetic theory and minimize the variables involved to reduce their 
search spaces to a manageable size. 

1.4 The Purpose of the research 
The reason for this research to be done is to explore an area not much considered since [31]: automating the 
optimization of antenna shapes and configurations themselves. For reasons listed in Chapter 2, the research has been 
limited to wire antennas. This research not only looks at more conventional design problems, but expands the horizon 
of antenna design to very loosely constrained search spaces that have no set theory of operation before the 
optimization takes place. As will be shown, the GA is sufficiently powerful to search much more complicated and 
difficult spaces than those of [31]. 

The purpose of the thesis itself is to inform the reader of as much of what I have learned over the course of this 
research as possible, especially regarding how to apply GAs to the complicated, time-consuming problems that 
constitute antenna design. It is intended to be practical in nature, and hopefully will impart much of the experience I 
have gained to those who will further this work. If, after reading this thesis, the reader can begin his or her own work 
where I left off, I will have succeeded. 
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Chapter 2: Basic Antenna Concepts 

As the reader may not have a background in electromagnetics, this chapter describes some of the concepts and terms 
that will be used in the analysis of antenna designs and their characteristics. Some of the key qualities of antennas, 
especially wire antennas, will be described in practical, application-oriented terms. 

An antenna is a device which provides a means for radiating or receiving radio waves. It is a transducer, transforming 
a signal from a transmission line, e.g., a waveguide, a coaxial cable or even a pair of wires, into an electromagnetic 
wave propagating (i.e., traveling) in free space with the desired properties [33]. (It should be noted that, though only 
a vacuum is truly "free space," normal air is very close to free space in its electromagnetic properties, with the notable 
exception of the ionosphere.) Antennas also perform the reverse function: transforming an electromagnetic wave in 
free space into a signal on a transmission line. 

This transformation is necessary, because electronic signal generators, receivers and processors almost never use 
signals internally that are ready for free-space propagation. Electromagnetic signals inside these devices are 
constrained and directed using transmission lines that have significantly different impedance properties from free 
space. As will be discussed in Section 2.2.2, this mismatch at the junction between the transmission line and free 
space means that simply opening these transmission lines to free space would result in a very small propagating wave. 

Not only does an antenna provide the proper impedance transformation for power transfer, but it also provides 
control over the directional properties of the propagating wave, allowing signal power to be aimed in the desired 
directions and with the desired polarization. Both of these qualities are important for ensuring a transmitted signal is 
able to reach its destination with sufficient power and be received with maximum efficiency by the intended receiver 
or receivers. 

This chapter will discuss the wire antenna class, electromagnetic wave basics, radiation patterns, antenna impedance, 
frequency dependence, antenna measurements, and will introduce the Numerical Electromagnetics Code, Version 2 
(NEC2) [18]. 

2.1 Antenna classes 
There are many kinds of antenna classes, such as reflector antennas (e.g., dish antennas), phased array antennas 
consisting of regularly spaced multiple elements, wire antennas, horn antennas, and microstrip and patch antennas 
which are printed on metal-clad dielectrics (e.g., circuit boards). Each of these classes use different structures and 
exploit different properties of electromagnetic waves. 

This thesis is limited to the class of wire antennas. There are a few reasons for choosing wire antennas over other 
classes: first, the simulator of choice, the Numerical Electromagnetics Code, Version 2 (NEC2), as discussed at the 
end of this chapter, is a fast, accurate, widely-used, public-domain wire antenna simulator. Second, wire antennas are 
easy and inexpensive to build and test, and thus there is a cost-effective way to validate the results of an optimization. 
Third, wire antennas are a particularly flexible class—they can be used to solve many different types of design 
problems, high or low gain, broad or narrow band. Other classes, like horns and reflectors, are much more restricted 
in the types of problems which they can solve. 

A wire is defined as a conductor (e.g., a piece of metal) whose length is much greater than its diameter. Thus, an 
antenna is a wire antenna if it is composed primarily of one or more wires. The wires do not have to be connected. 
Unconnected elements are called parasitics, and act as passive antennas that receive radiation from the surrounding 
connected elements and re-radiate them in different directions. Such parasitics can produce excellent results, as the 
Yagi antenna to be covered in Chapter 5 will show. 

A wire antenna can include objects that are not wires as well. Resistive and reactive (inductive and/or capacitive) 
circuits can be added to the structure, which cause changes in the operation of the antenna, and can change its 
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impedance, make it more or less sensitive to frequency, etc. The use of such loads was not explored in this thesis, 
however. 

Another non-wire object used in wire antennas is a ground plane—at its simplest a large, flat piece of metal 
underneath the antenna. It is often used in conjunction with a wire antenna, and acts as an electromagnetic "mirror" 
for the antenna, changing the antenna impedance and directional properties. A ground plane can decrease an 
antenna's required height, simplify its the construction, and help direct signal power. In addition, the roof of a car or 
fuselage of an airplane is a type of ground plane, and antennas that will be affixed to such places need to be designed 
for use with one. Single-wire antennas fed at their base, like a monopole (e.g., a car antenna), generally use a ground 
plane, since transmission lines that feed wire antennas have at least two conductors, one of which connects to the 
antenna while the other connects to the ground plane. Otherwise, the connection would only include one wire of the 
transmission line, a situation which generally hampers performance. As will be seen, the loaded monopole and 
crooked wire antennas use ground planes, and the Yagi antenna can use one, though it is not common for this type of 
antenna. 

Wire antennas can be excited, i.e., fed the desired signal, in many different ways. As mentioned above, a single-wire 
antenna over a ground plane can be fed most simply at its base, for example, with the center of a coaxial line 
connected to the monopole, and the outer coaxial shielding connected to the ground plane. It is also common and 
relatively easy to feed a wire antenna using a balanced, two-wire line, like the two-wire cable that runs between a 
television set and a pair of "rabbit ears." In this thesis, all the antennas are fed using one of these methods. Though 
there are more complex ways to excite antennas with multiple sources with differences in amplitude and phase 
between them, doing so adds significantly to the cost and complexity of the antenna. Therefore, it was chosen to 
simplify the feed structure and concentrate on the antenna design beyond the feed point to improve performance. 

The next section discusses electromagnetic waves and general antenna properties common to all antennas. Because 
the research was limited to wire antennas, however, when specific examples or instances arise they will be discussed 
in the context of wire antennas. 

2.2 Electromagnetic waves and antennas 
Maxwell's equations govern the electromagnetic waves generated and received by all antennas, wire or not. These 
equations are listed below. 

VxE = —— a 
VxH = J + —- a 

V-B = 0 

Because there are only four of them, with only two or three terms each, Maxwell's equations appear deceptively 
simple. Even problems with only a small number of elements can be very difficult to solve analytically, and simple- 
looking antennas can exhibit very complicated behavior. 

Though they are all governed by these four equations, different types of antennas transform a signal into propagating 
waves in unique ways, and each has distinct characteristics. Some are very directional, sending and receiving a signal 
primarily in one direction, while others send and receive in nearly all directions at once. The impedances at the 
antenna feed points and the polarization of the waves they transmit can be very different. Some only operate over a 
small band of frequencies, while others can operate over a wide frequency range. Each of these qualities: radiation 
pattern, polarization, impedance, and frequency dependence will now be discussed in turn. 
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2.2.1 Radiation pattern and Gain 
Before discussing radiation patterns, it should be noted that whether an antenna is used to transmit or receive, all its 
characteristics are the same. This is the property of reciprocity. If an antenna transmits, it has the same directivity, 
polarization, and impedance as when receiving a signal. Thus, though one may simulate an antenna's performance 
while transmitting, one can measure it while it is receiving and the performance will be the same.' Though the 
discussions below will focus on the radiation patterns of antennas while transmitting or receiving only, keep in mind 
the antenna characteristics for the other action are the same. 

In three-dimensional space, there are two angles required to specify a direction: the elevation 6 and the azimuth §. 
Figure 2.1 shows these angles on a set of axes. 

Figure 2.1. G and <(> on a 3-D axis system. Arrows begin where NEC2 defines 0 degrees for 8 and <j). 

An important characteristic of antennas is their directional nature. There is no electromagnetic antenna that is a 
completely isotropic (i.e., omnidirectional) radiator, though some can approach this limit [34]. Gain is a quantity used 
to relate an antenna's directional properties to this theoretical isotropic radiator. 

In the case of a lossless antenna, gain is the ratio of power density being transmitted by an antenna in a particular 
direction to the average power density being transmitted in all directions. The average power density of any lossless 
radiator is P^ur2, where P0 is the total power input into the antenna, and r is the distance between the point of 
observation and the location of the radiator. This is so because if one encircles the radiator with a sphere of radius r, 
the total amount of power that can radiate through that sphere is P0. Since the surface area of the sphere is 47er2, the 
average power is given by VJ4KT1. So: 

Gain = Sr(9,(t))/(P„/47tr2), 

where Sr(0,4>) is the radiated power density as a function of angle, averaged over time and in the direction of r [20]. 

The average power density VJAnr1 is exactly the amount that an isotropic radiator would send in all directions, so 
gain can be thought of as a comparison between an antenna and an isotropic radiator. An isotropically radiating 
antenna, then, would have a gain of 1 in all directions [20]. 

When loss is introduced into an antenna the gain decreases, because P0 is not the power radiated, but the power input 
into the antenna. Resistive loss turns some ofthat power into heat, reducing the radiated power and decreasing the 
radiated power density. However, the isotropic radiator's power density remains VJAizf1. It is still of interest to 
compare the radiated power density to an isotropic radiator with the same radiated power. Hence, directivity is a 
quantity that is often used, and it is: 

1 For this property to hold, however, the materials in the antenna must themselves be reciprocal. This is almost always the case as the metals and 
dielectrics typically used in antennas are reciprocal. However, some nonreciprocal materials like magnetized ferrites can be used to make 
specialized antennas that have transmitting and receiving-properties that differ. These antennas are uncommon and were not considered in this 
research. 
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D(9,(j)) = Sr(G,<t>)/ (PradiatedM^r2). 

It is related to gain by: 

D(9,<|)) = G{e)<t))/(Pradiato/Po). 

However, in the lossless case, gain and directivity are the same [20]. 

Gain versus angle can be placed in a chart called a radiation pattern. An example pattern is shown below. 

432.00 MHz 

Figure 2.2. Example radiation pattern. 

The gain in antenna patterns are usually in units known as decibels (dB), which relates to a ratio of power or power 
densities by the following expression: dB = 101ogi0(Pi/P2). Decibels are used in many different applications, like to 
quantify the power of a signal in a transmission line, or the strength of acoustic waves, as well as gain. In these 
applications, P2 is usually a standard amount, like a milliwatt in the case of the transmission line signal. To indicate 
the value of P2 in a particular case, an extra letter is added to dB, for instance dBm to indicate that P2 is 1 mW. In the 
case of gain, P2 is the power density of the isotropic radiator. The abbreviation dBi thus refers to gain compared with 
an isotropic radiator. However, the "i" is sometimes left off, and is understood from context. 

Using decibels smoothes the variations in the pattern, and the logarithmic scale provides more relevant insight to 
antenna performance than a graph of linear power variation. A loss of 3 dB reduces the power by half, while a loss of 
20dB means a 100-fold loss in power. 

Note that the figure above shows a very directional pattern. One small range of angles shows the greatest amount of 
gain. This lobe on the pattern is called the main lobe. This lobe generally has the highest gain in the pattern, and the 
maximum gain of this lobe and its width are often factors to be optimized. In a more uniform radiation pattern, there 
is usually only one lobe, but in a directive pattern as above where the main beam is desired to cover only a small 
portion of the pattern, there can exist other lobes. These other lobes are called sidelobes, and usually the designer 
seeks to minimize them. At the angles between the lobes are nulls, or directions where the antenna does not transmit 
any power. 

Beamwidth is a term used to describe the angular span of the main lobe. It is most often measured from the 
maximum part of the lobe to points on either side that are 3dB lower in gain, i.e., where the signal has lost half its 
power. It should be noted that signals are often still receivable with even less gain, depending on the situation. Thus, 
the half power beamwidth may not be as relevant as the term seems to imply, as a signal variation of even 4dB can be 
very usable and operate as if the pattern were essentially flat for some engineering purposes. 

However, a dip of more than 5-10dB is usually considered a serious decrease in power. An amplifier can only handle 
a certain amount of dynamic range before it can no longer amplify the weak signals enough and still remain linear 
when a strong signal comes through, and areas where signal cannot be received will start to develop in the pattern if 
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the dips are too large. In some cases this is desired, as when an antenna is to have only a narrow field of view, as in 
the case above. In other cases, as when a broad, even beam is required, this variation can be a problem. Such a beam 
is shown below. 

Gain 
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Figure 2.3. Another example radiation pattern. 

The pattern above is rather uniform, in contrast to the first example. Notice that it is a rectangular plot instead of a 
polar plot like the first example pattern. The rectangular plot emphasizes the size of the peaks and valleys, which 
would be difficult to see on a polar plot, and is more revealing for less-directive antennas. For directive antennas, the 
polar plot gives one a better feel for the behavior of the antenna. The X axis is elevation, and curves are shown for 
four azimuthal angles. These types of curves are often called "cuts," as they are analogous to "cutting" a 
hemispherical pattern along a given azimuth angle and looking at the gain variation along the edge of the cut. 

Before closing the discussion on radiation patterns and gain, it should be noted that, for many applications, the 
antenna engineer may wish to make an antenna small yet very directive. However, there is an upper limit on how 
directive a real antenna can be compared to its size—a limit that may not be evident in simulation. 

A radiation pattern that is to be uniform, or nearly so, requires only a small antenna. But if an antenna is desired to be 
very directive, that is, have over a few dB of gain, it will need to be several wavelengths in size. However, it is 
possible for a simulation of a small antenna to show high gain, and if it does, that antenna is probably in a mode 
known as supergain. 

In supergain, large electric and/or magnetic fields that do not generate propagating waves but store large amounts of 
energy are created near the antenna, and if the wires are simulated as perfect conductors, these fields exist without 
causing energy loss. Such fields allow the antenna to have a high gain, even though it occupies a small volume. 
Unfortunately, real materials do not conduct perfectly, and, beyond a certain point, these high fields are not possible 
due to resistive loss. 

A theoretical limit for supergain is described in [19] as follows: if the antenna's largest dimension is denoted by 2a, 
then the gain must be less than 4a / K. If the gain is higher, the antenna is in supergain. 

It should be noted that it is possible for real antennas to have a modest amount of supergain. For instance, arrays of 
resonant elements like a Yagi antenna can be in supergain, and still realizable. The 5.16X (k being the standard 
symbol for wavelength) Yagi antenna that was built and tested in Chapter 5 shows 17dB of gain, but according to the 
expression above, its dimensions limit it to a maximum gain of 10.37, or 10.16dB. Thus, it is clearly in supergain. 
However, beyond a certain amount of supergain, even these structures cannot achieve the high fields required. Thus, 
when optimizing an antenna for maximum gain, the possibility that a promising antenna is in supergain should be 
considered by the designer before fabrication and testing. 
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2.2.2 Impedance 
In addition to the radiation pattern, the impedance of an antenna is a very important design consideration. In order for 
power to flow most effectively, with the smallest amount of reflection, the impedances of two structures that are 
connected to one another should be identical. If they are not, it will be more difficult for power to flow from one of 
the objects to the other. 

Take for instance the interface between water and air—two materials with different electromagnetic impedances. 
Though they are not conductors, electromagnetic waves (like visible light) travel through them, and they each have a 
different impedance. Regardless of how clean and clear the water is, a reflection can be seen in it when one looks at it 
from air. Similarly, when one is underwater, one will see a reflection at the interface of water and air. 

Metal electromagnetic components get their characteristic impedance from their configuration and from any 
dielectrics used in their construction. They can have both real impedance (resistance) and imaginary impedance 
(reactance). This impedance is most important at the points where connections are made to other devices, like the 
wire that feeds the signal to the antenna, and thus simulators like NEC2 give the impedance of the antenna at such 
points. 

When two electromagnetic devices with different impedances are connected, reflections occur at the interface, and a 
standing wave will result. A standing wave is a combination of the original wave and the reflected wave, each of 
which is moving along the transmission line in opposite directions. The interference of these two waves affects the 
wave envelope. The envelope is the line that traces out the maximum voltages that appear at any time at each point 
along the line. Thus, the envelope is position dependent only. If there is no mismatch, and therefore no reflected 
wave, this envelope is a flat line. As the signal wave travels along the transmission line, each point will at some time 
contain a wave peak, and thus all points on the line will have a maximum voltage equal to the signal wave's maximum 
voltage. The presence of a reflected wave causes the envelope to develop peaks and valleys, as some points on the 
line will always be affected by constructive interference and others by destructive interference, augmenting and 
decreasing the envelope at each point [20], 

Voltage Standing Wave Ratio, or VSWR, is a way to quantify this reflected-wave interference, and thus the amount 
of mismatch at the junction. VSWR is the ratio between the highest voltage and the lowest voltage in the signal 
envelope along a transmission line [20]. If the VSWR is high, there is a great deal of interference and a significant 
mismatch. If it is low, the interference is low and the match is good. A VSWR of 3.0 or less is considered adequate 
for many low-power applications, while a VSWR less than 1.5 or 2.0 is desired if power considerations are 
important. A VSWR of 1.0 is a perfect match, as the envelope is a flat line, implying the maximum and minimum 
voltages are equal. Of course, VSWR can never be less than 1. VSWR is easy to measure, and as it is a common 
parameter specified by antenna designers, it is often an important quantity to optimize. 

As described above, the mismatch, and thus VSWR are dependent on the impedance of the transmission line feeding 
the antenna as well as the antenna itself. One must know the impedance of both parts of the junction, then, in order to 
calculate VSWR. The most common transmission line impedance is 50 ohms—the impedance of standard coaxial 
cables—though other impedances can be used, and often are. For example, an impedance of 300 ohms is used for 
two-wire television antenna cables. 

Besides making sure that power is transmitted efficiently, there is another related reason to be concerned with 
VSWR. If there is a driving circuit, say an amplifier, that will have only a fraction of its power actually used in the 
transmission of radio waves, the rest will be carried by the reflected wave back into the system, to eventually be 
absorbed by its resistive components, producing heat. This can damage electronic components. To prevent this 
damage, some high powered microwave amplifiers, like traveling-wave tubes, wili not transmit if a high VSWR is 
detected. 

2.2.3 Polarization 
Electromagnetic waves are composed of two components: an E-field (electric field) component and an H-field 
(magnetic field) component that exists at right-angles to the E-field following the right-hand rule (E x H = k—a 
vector in the direction of propagation), and whose magnitude is proportional to the magnitude of the E field. Thus, 
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the wave is asymmetric, and has a definite orientation. The figure below shows a sinusoidal, linearly polarized wave. 
Since the magnitude of the H field is constrained by the E-field in a propagating wave, the rest of the discussion in 
this section will focus just on the E-field. 

X 

>v H 

direction of propagation 

Figure 2.4. A portion of linearly-polarized electromagnetic wave. 

The above figure may be misleading, however, because it only shows a very simple case of propagation, where the E- 
field is moving up and down in a straight, vertical line. In its general form, E can have both X and Y components: 

E(z) = (Exx + Eyy)e -j(kz-at) 

for E(z) shown in time-harmonic form (i.e., for a single frequency f = 2mo.) The two components Ex and Ey do not 
have to have the same magnitude, nor be in phase either. If the components are in phase, and both are non-zero, the 
wave will be linearly polarized, but will tilt with regard to the X and Y axes, as shown in Figure 2.5(a). If the 
components are not in phase, this implies that the E-field components do not have to equal zero at the same time, 
though they do have to be sinusoidal, thus allowing elliptical polarization. The direction E-field rotates as time 
increases. It is called right-hand (RH) elliptical polarization if the fingers of one's right hand curl in the direction of 
the E-field rotation when the thumb is pointed in the direction of propagation, and left-hand (LH) if it goes the other 
way. Circular polarization, a special case of elliptical polarization, occurs when the Exand Ey components are 90° out 
of phase, and are of equal magnitude. Actually, linear polarization is also a special case of elliptical polarization [20]. 

E(t=0) 

E(t=3/(4f)) 

Linear Elliptical Circular 
(a) (b) (c) 

Figure 2.5. Three different polarizations, front view. If the wave is propagating straight up from the page, (b) shows 
left-hand elliptical polarization, and (c) shows right-hand circular polarization. The arrows in all three illustrations 
show the E-field at two different times: t=0, and t=3/(4f), where f= frequency (i.e., V* of a wave cycle after t=0). 
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Antennas are polarization-sensitive. An antenna that picks up only linearly polarized signals that are pointed straight 
up will be most efficient when receiving this vertically-polarized wave. On the other hand, a horizontally-polarized 
wave will not be received at all—this is what is known as cross-polarization. A linearly polarized wave that is tilted 
will be partially received at this antenna, in proportion to the amount of tilt in the wave's polarization. This linearly- 
polarized antenna will also receive only half of the energy of a wave that is circularly polarized, regardless of whether 
it is RH or LH circularly polarized. Similarly, a RH circularly-polarized antenna will receive half the power of a 
linearly polarized signal (regardless of tilt) and all the power of a wave that is RH circular, while missing a LH 
circular wave completely. 

The expression relating the power received by an RHCP antenna versus a wave of arbitrary polarization follows: 
(Power received)/(Power of incoming wave) = 0.5 + (axial ratio)/((axial ratio)2 + 1). Axial ratio refers to the ratio of 
the semiminor axis over the semimajor axis of elliptical polarization. It is always less than one, and is positive for RH 
polarization and negative for LH polarization. If a wave is linearly polarized, the axial ratio is zero and the power 
received is half that of the incoming signal. If the polarization is LHCP, giving an axial ratio of-1, no power is 
received. Full power is received only when the incoming wave is RHCP and has an axial ratio of 1. Similarly, if the 
antenna is LHCP, the axial ratio is negative for RHCP and positive for LHCP. 

For antennas with wires in only two dimensions, polarization is constrained to be linear in the plane of the antenna. 
The electric field can only run in directions parallel to the wire elements. Thus, it is easy to obtain linear 
polarization—just keep all antenna wires in a plane. To give linear polarization in all planes, all elements must be 
aligned. For instance, all wires might be vertical or horizontal, as in the Yagi antenna. 

Circular polarization is more difficult to achieve, since it requires a phase lag in the E-field components. Many types 
of circularly polarized antennas rely on phasing networks (requiring precise fabrication) to achieve this lag, 
significantly increasing antenna costs and sensitivity to frequency. This difficulty in designing antennas with circular 
polarization makes the results found with the crooked-wire genetic antenna of Chapter 6 that much more amazing. 

2.2.4 Frequency dependence 
The behavior of a wire antenna comprised of good conductors is dependent only on its configuration and dimensions. 
But it is not the absolute dimensions that determine antenna behavior, rather the antenna dimensions compared to the 
wavelength of the signal. Thus, large antennas that operate at low frequency can be tested with scale models using 
shorter-wavelength signals with accuracy, as was done for the Yagi antennas in Chapter 5. In other words, a large 
antenna at low frequency is electromagnetically identical to a proportionally smaller one at a proportionally higher 
frequency. (Recall that wavelength is inversely proportional to frequency.) There are limits to this scaling, as the 
resistive loss in metal is dependent on frequency, but this dependence does not make a significant difference until one 
is working in the tens of gigahertz. 

Because antenna size, and hence performance, effectively changes with wavelength, antennas are generally at their 
best at a single frequency. As one deviates from this frequency, the effective size of the antenna changes, as do its 
electromagnetic characteristics. Bandwidth is thus defined as the frequency range over which the antenna 
characteristics do not change beyond acceptable limits. These limits are usually VSWR and/or gain related, e.g., a 
VSWR no greater than 2, or a change in gain of no more than 3dB in the main lobe. 

Except for certain antennas that are designed to have the same relative dimensions at all frequencies (a situation that 
requires infinite size to be fully realized), all desired antenna characteristics deteriorate as the operating frequency 
moves further and further in either direction from the frequencies in the bandwidth. Some antennas are much more 
broadband than others, but all real antenna bandwidths are finite. 

For many applications, bandwidth is desired to be as large as possible. It is usually given in percent, which is the ratio 
of the bandwidth span over the band's center frequency. For an antenna operating at 2GHz, a bandwidth of 3% 
would mean it would operate over a 60MHz range, from 1.97GHz to 2.03GHz. A bandwidth that is very small, less 
than 1%, for instance, means the antenna is very sensitive to frequency and can be used in only specialized 
applications. Realize also that such a narrowband antenna will be sensitive to its exact dimensions and requires 
exacting fabrication. A slight change in dimensions will change any antenna's optimal wavelength. Because it is so 
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narrowband, a slight change in this antenna's optimal wavelength may keep it from receiving or transmitting at all in 
the desired frequency range. 

For many applications, 10% bandwidth is considered good, and 20% is considered to be very good. There are some 
antennas that are very broadband, though, as large as 15:1, meaning the bandwidth is 15 times the center frequency, 
and some are even broader still. The antennas presented in this thesis have more typical bandwidths, from just a few 
percent up to about 30%. 

2.3 Measuring antennas 
Though much can be done with computer simulation, it is of course necessary to build and test antenna designs. It is 
not completely straightforward to do so, however, because there are many factors that must be controlled on an 
antenna range to ensure data is as accurate and unbiased as possible. 

One of the most important factors is the control of echoes and reflections. For this reason, antenna ranges are often 
built inside anechoic chambers—rooms lined with radiation-absorbing material that traps signals and keeps them from 
returning once they have struck a wall. Being indoors, these chambers allow complete environmental control, giving 
maximal repeatability and reliability. 

Another important consideration for measurement is ensuring the antenna under test is in the far-field. Antennas not 
only generate propagating waves but also non-propagating waves that store energy and die away within a few 
wavelengths. These waves are large if the antenna is in supergain, but they are present even when the antenna 
operates normally. If one measures an antenna within a few wavelengths, these non-propagating waves will be 
measured along with the propagating waves. This region is known as the near-field. However, antennas are almost 
always used at distances well outside this near-field region, where the non-propagating waves have died out and the 
only signal that is received is from propagating waves. This is the far-field region. Near-field and far-field antenna 
performance are usually very different, therefore, when testing antennas that are intended for far-field use, one must 
have enough distance between the transmitting antenna and the receiving antenna to put them into the far-field from 
one another. One can convert near-field antenna results into a prediction of far-field performance, but the calculations 
are quite complicated and the measurements are sensitive to error. It is usually much simpler to just allow the few 
wavelengths required to put each into the far-field, though doing so can be problematic if the antennas are large 
and/or their operating frequencies are low. 

Since the distance separating the measuring antenna from the antenna under test is important, and may need to be 
large, anechoic chambers are not always able to be used because they are limited in size. Outdoor ranges can be used 
in these cases, as they can be quite large, are generally clear of interfering obstructions, and have well-characterized 
environments that cause minimal disruption of the measurements. If there are covered test bays on these outdoor 
ranges, they are also lined with anechoic material. But even with careful calibration, outdoor antenna ranges are 
subject to interference from weather and returns from the ground and the environment, and thus they are generally 
reserved for antennas that require the large space. Besides ensuring that measurements are taken in the far-field, some 
antennas require tests in realistic surroundings or while mounted on full-scale aircraft that necessitate the use of an 
outdoor range. 

The loaded monopole and the crooked-wire genetic antenna were measured in indoor anechoic chambers. The Yagi 
antennas were measured on a 2600-foot outdoor range. The Yagi antenna was housed in a bay 20 ft. x 20 ft. x 20 ft. 
lined with absorbing material good to about 800 MHz. As the Yagi antenna is difficult to measure accurately, further 
details of the Yagi antenna measurement equipment and procedures are contained in Chapter 5. 

VSWR measurements are much simpler than antenna pattern measurements. The antenna is connected to a 
transmission line of known impedance and the reflections of a known signal are measured. The environment in which 
these measurements are taken makes little difference, so long as there is little or no interaction between the antenna 
and metal structures in the test area. These VSWR measurements for all antennas were made with an HP8510 
Network Analyzer. 
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2.4 Introduction to the Numerical Electromagnetics Code, Version 2 
Because the complexity in solving Maxwell's equations is tremendous for most problems of interest, numerical 
simulators that can solve these equations in an approximate fashion for almost arbitrary structures have been 
developed. If used properly, they can be quite accurate. Because affordable computers are powerful enough to solve 
even large problems in a reasonable amount of time, these simulators are used extensively by many antenna designers. 

The numerical simulator chosen for this research was NEC2, and it was used exclusively. The NEC2 program is a 
very general Method-of-Moments antenna simulator. It is relatively fast, accurate and reliable for arbitrary wire 
structures, and uses simple, consistent text input and output files: important considerations for GA optimization 
where a few thousand simulations will be necessary to optimize a design, and an automated means of generating input 
and reading output must be used. 

NEC has been around since 1981, and is in the public domain. It is easily obtained from many sources, including the 
World-Wide Web. Obtaining and modifying the source code is therefore simple and free of legal complications, as is 
copying and recompiling the simulator for different computers. It also has been used as a standard in the antenna 
community, and has a number of papers supporting its accuracy and describing its limitations. It has shown itself to be 
in very good agreement with many actual measurements, and thus there is reason to have confidence that answers 
received from simulation have validity. The limitations and assumptions of NEC2, along with a list of papers that 
have shown excellent agreement between NEC2 and measurements, is in Appendix A. 

NEC2 input and output 
NEC2 has a straightforward file interface for input and output. The program allows antennas to be constructed from a 
number of wires, which are defined by startpoints and endpoints in a 3-D coordinate system. A means of excitation— 
i.e., a way to input the desired electromagnetic signal—needs to be specified, as well as the desired outputs from 
NEC2 and any other parameters (like a ground plane) that need to be included. The basic unit in NEC2 is the wire 
segment. A wire segment is a portion of wire, typically between 0.1 and 0.01 wavelengths long. Each wire in the 
configuration can be made up of 1 or more segments, the number of which is specified in the input file. NEC2 will 
calculate the currents on each wire segment due to the signal source(s) using the method-of-moments. NEC2 can 
then determine characteristics like the far-field radiation pattern of the antenna from these currents. It is therefore 
possible to determine how a number of wires in an almost arbitrary configuration will behave so long as they do not 
violate the limitations of the simulator. A typical simulation of less than 100 segments takes less than 20 seconds to 
run on either a Pentium or a workstation, but scales as N2, where N is the number of wire segments in the 
configuration. The compiled code used for most of the thesis limits the total number of segments to about 350. This 
number is more than large enough to generate antennas with characteristics of interest. 

NEC2 uses ASCII text input and output files for data. The input file consists of lines called "cards" (from its early 
implementation when a series of punch cards was used to denote input). The figure below shows what each card does 
in the input file. 
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"create wire" |"tag" number! |X,Y,Z start point (m) 
X,Y,Z end point (m) 

[GWlliftg!"0-0000» 00000. 0.0000,yä0166, 0.0045, 0.0714j|0.001 

|Wire radius (m) | 

GW 2, 5, -0.0166, 0.0045, 0.0714, -0.0318, -0.0166, 0.0170,0.001 
GW 3, 5, -0.0318, -0.0166, 0.0170, -0.0318, -0.0287, 0.0775,0.001 
GW4, 8,-0.0318,-0.0287, 0.0775,-0.0318, 0.0439, 0.0140,0.001 
GW 5, 5, -0.0318, 0.0439, 0.0140, -0.0318, 0.0045, 0.0624,0.001 
GW6, 4,-0.0318, 0.0045, 0.0624,-0.0106, 0.0378, 0.0866,0.001 
GW 7, 6, -0.0106, 0.0378, 0.0866, -0.0106, 0.0257, 0.0230,0.001 

GE 1 |End of Geometry information—the 1 indicates the presence of a ground plane | 

EX 0,1,1,0,1,0,0,0] _-—[Means of excitation 

FR 0,l,0,OJ1600.0000,fcO Frequency (MHz) 

lEKOi jlype of thin wire approximation (the simplest is specified here) 

IGN1.0 -[Ground Plane (perfect, infinite) 

RP]0,33,36,1011,-|81.0,0.0,5.0,5.0 |^JMb,e step,<MeP 

EN adiation Pattern 

Figure 2.6. A Typical NEC2 Input File 

NEC2 generates a long output file that contains all relevant simulation results, including the antenna impedance at the 
point of excitation and a table for the antenna radiation pattern which includes gain and polarization data for every 
requested angle. In order to use NEC2 as part of an objective function for optimization, then, the optimizing program 
must generate an input file, execute NEC2, read the relevant information from the output file and compute the 
objective function value based on that information. 

2.10 Conclusion 
This chapter has introduced the reader to various antenna concepts and characteristics that will be used in later 
chapters, along with a brief discussion of NEC2. Though this chapter was brief, it is hoped that the reader now has 
enough background to understand the concepts and terms of later chapters. For a more thorough introduction to 
antennas, the reader is referred to [33] and [34]. The next chapter will introduce the reader to Genetic Algorithms 
(GAs), the key to automating antenna design in this thesis. 
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Chapter 3: An Introduction to The Genetic Algorithm 

3.1 Overview to the GA: an imitation of biology 
The instructions for the design for each living organism are contained within the chromosomes ofthat organism. 
These instructions are coded into a base-pair sequence on long strands of DNA. A number of these strands make up 
the entire instruction set from which an organism is designed and maintained throughout its lifetime.. 

Similarly, designs in just about any engineering discipline can be reduced to a number of instructions or specifications: 
lengths, diameters, materials, etc. Naturally, these specifications can be arranged into a series that will completely 
specify a particular design. For example, take the design of a sheet of paper. Assuming that one is only going to use 
one basic material and process to make the paper, there are four obvious specifications: color, length, width, and 
weight (which, along with length and width, will determine thickness). 

Width 

Weight (thickness) 

Figure 3.1. The design variables for a piece of paper 

One can arrange these specifications into a string of numbers if desired, so long as a uniform coding system is 
established. For instance, if color 1 is designated to be white, color 2 purple, and color 3 black, that the length and 
width are given in inches, that the weight of the paper is given in pounds/5000 sheets, and that all these specifications 
will be arranged in the above order, one can completely specify a sheet of paper by the following ordered set of 
numbers: [1 11 8.5 20]. This particular series of instructions specify a piece of paper that is white, 11 inches long and 
8.5 inches wide, and 201bs/5000 sheets (i.e., standard thickness). Similar strings of numbers can be constructed for 
just about any design. 

In reducing a design to a series of numbers, something remarkable has been accomplished. This series of numbers acts 
in a manner identical to a chromosome in an organism: it gives the information necessary to build a particular design, 
so long as the coding procedure is understood by the builder. But this similarity goes beyond simple cosmetics: one 
can mate and mutate sets of these chromosomes, and set up a procedure similar to a life cycle for organic life to 
optimize this chromosome and obtain an optimal design. 

In the biological world, chromosomes and their resulting organisms go through a number of important processes: 
birth, survival-of-the-fittest, mating and the production of children, and death. In going through these processes, a 
species of organism adapts and optimizes itself to its environment. It is possible to simulate such processes for the 
chromosomes constructed for an engineering design to optimize it. Doing so is the essence of the Genetic Algorithm 
(GA). 

The reason one might want to do such a thing is that the biological, original form of the GA has shown itself to be 
very powerful and robust. The environment is probabilistic and sometimes goes through radical changes, unfit 
individuals sometimes survive to mate, fit individuals sometimes die prematurely, competition with other species for 
resources is fierce and fluid, predators and diseases abound, and yet the various species survive and thrive. The 
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systems and processes of life are very complex and filled with an incredible number of variables, yet the GA is able to 
take them all into account and optimize a species for survival. It would be hoped, then, that a simulated version of the 
biological GA will have the same robustness and ability to optimize. As Professor John Holland discovered when he 
first created the GA in its current form, the computerized version of the GA does indeed have some of these 
properties [21]. Though the problems most engineers wish to optimize are usually static and much simpler than those 
for biological life, the GA can be adapted to solve a wide range of these problems effectively. In addition, there is an 
inherent robustness in the process that makes the process insensitive even to its own parameters. While it is important 
to choose reasonable values for these GA parameters such as population size, the process works very well even with 
parameters that are less than optimal. In fact, non-fatal bugs in GA programs are often hard to find, for though the 
GA may not be making the progress it could if it were bug-free, it often appears to be optimizing normally even when 
bugs exist. 

A GA then, is an iterative optimization process that imitates the adaptation and evolution of a single species of 
organism. Using a chromosomal mapping system like the one for the paper example above, the GA starts with a large 
number of potential design configurations. The range of possible configurations are determined by the constraints of 
the problem and the method of encoding all configuration information into the chromosome. 

The GA process is shown in the figure below. 

Initialize new population)  ^  

f Simulate and evaluate 1       T     -> 
Rank-order all members 

T 
Is convergence criteria met? 

tYfts 

Mutate children 

Choose mates and 
create children 

=3  
No 

Output results 

Figure 3.2. GA process flowchart 

To begin the optimization, the GA selects a small set of configurations, nearly always at random. This set of 
configurations is called the population, just as in biology. The GA evaluates the performance of each member of the 
population with a cost function that compares individual performance to the desired or ideal performance and returns 
a single number to the GA that is a measure of its fitness. In antenna design with a GA evaluating the cost function 
involves simulating each member with an electromagnetics code and comparing the results with what is desired. As in 
the evolutionary process of "survival of the fittest," high quality strings mate and produce offspring, while poor 
quality strings are removed from the population. Offspring can be created through many different procedures, each of 
which is essentially a method of combining information from two or more parent chromosomes to form a child with 
the potential of outperforming its parents. With succeeding "generations," the quality of the strings continually 
improves and an optimized solution is ultimately obtained. The GA method of antenna design is analogous to a 
method of breeding race horses, only the "horses" are antenna designs and the "race track" is a simulation to 
determine antenna performance. "Champions" will have many offspring, while those who do not perform well will 
perish without offspring. In this manner, after a few thousand simulations, a good solution is usually obtained, even 
when the problem to be solved has many interrelated unknowns, and a large, complex, and spiky search space. In 
fact, the larger the problem, the better the GA will perform over other methods of search. The GA is highly resistant 
to becoming trapped in local extrema, which allows it to work well for search spaces like those of the antenna design 
problems described in this thesis. 

This feature of the GA is of great benefit to the engineer. In most engineering problems, one knows how to specify a 
design, but not what the best parameters are, or even an initial guess at them. Most problems of interest have many 
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variables, and it is very difficult if not impossible to find the optimal solution to a problem though intuition, 
experience, or classical optimization strategies (e.g., Newton, Quasi-Newton, and conjugate-gradient methods). 
These problems usually have many local extrema that can trap classical search strategies, as well as non-differentiable 
search spaces. 

However, a GA is not only difficult to trap in local extrema, it is able to find optima when there are many variables, 
complex interactions, and no gradient information available. It is not even important what area of engineering the 
problem falls under. The GA can be and has been used to solve mechanical engineering, software engineering, 
artificial intelligence/artificial life, robotics, aeronautical engineering, electrostatics, as well as electromagnetics 
problems. 

Setting up a GA then, requires five major steps: setting up a simulator, defining the problem, determining the 
objective function, determining chromosome mapping and processing, and setting the GA parameters. In the next part 
of this chapter, the process and elements of the GA will be described in detail. This chapter will then conclude with a 
detailed example going through the steps to set up a GA and what occurs during the running of a GA. 

Before delving into the setup of a GA it will be helpful to cover a few terms that will be used. Beside "population" 
and "chromosome," several other terms are borrowed from biology. The words "genotype" and "phenotype" refer to 
a specific set of instructions in a particular genetic code and the resulting physical organism respectively. For instance, 
the specific set of numbers that designate a normal sheet of white paper given above is a genotype. The piece of paper 
built using those instructions is the phenotype. 

While the term "gene" refers to a single element in a chromosome, "allele" refers to a specific value a gene can take. 
For example, in the paper example, there is a single gene that indicates the paper color. The allele set for that gene is 
a finite list: 1, 2, and 3. On the other hand, since the gene for length is a real number, a very large list of alleles are 
possible for that gene. The number of alleles possible for a gene is an important consideration that will be discussed 
regarding chromosome mapping and processing. 

"Locus" is a term referring to the location of a particular gene in a chromosome. The paper color gene, for instance, 
occupies the first locus in the chromosome. The distance between loci and their position in the chromosome play a 
role in the effectiveness of the GA and will be discussed. 

3.1.1 Step 1: Set up the simulator 
The first step in constructing a GA is setting up the simulator that will be used to evaluate all the designs generated by 
the GA. However, this step can be interchanged with the next step, defining the problem, depending on the situation. 
As described in Chapter 2, the NEC2 code was used for all antennas in this thesis. NEC2 is a very general wire 
antenna simulator. A simulator like NEC2 that is able to solve many different problems is very useful to explore 
before trying more specialized simulators. In choosing a simulator, there are many things to consider: simulation time, 
validity and limitations, input and output methods, and the availability of simulator and source code. 

First, the time to simulate should preferably be at most in the tens of seconds. As will be shown in later chapters, a 
typical GA run will require a few thousand simulator runs to converge to a desirable answer. If the simulator takes 
longer than 1 minute to run there are several alternatives: find a faster simulator even if it is less accurate, decrease 
problem size, decrease number of variables so that the number of runs can be reduced, refine the simulator code or 
use faster computational hardware. There are also techniques that will allow the GA to use a smaller number of runs 
that will be discussed here and throughout the remainder of the thesis, particularly in Chapter 7. 

Using a less accurate simulator is often a good solution. Recall that the GA is very robust and can operate even under 
noisy conditions. In most cases, a GA needs only an accurate relative ranking of individuals rather than perfect 
knowledge of absolute performance. Thus, a simulator that has relatively poor absolute accuracy but is able to 
properly distinguish between poor performers and good performers will often suffice for a GA optimization. 
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Problem size can also be decreased. In finite element simulations, segment size can usually be increased beyond what 
one would normally use, because, as stated above, the GA only needs a relative ranking of individuals to be effective. 

If there are fewer variables in the problem, obviously the search space will be smaller. This will give the algorithm an 
increased likelihood of finding the correct solution, and decreasing in many cases the number of simulations that will 
be required. 

If all the above fails, one may wish to refine the simulator code to streamline it for the specific problem at hand. This 
is usually a difficult undertaking. Alternatively, one may wish to use a faster computer or allow the simulator to solve 
problems across a network of machines running in parallel. 

Other ways to streamline the GA itself will be discussed later. Regardless of the technique used, however, the GA will 
usually need at the very least a few hundred runs to converge, and this will limit the types of problems it can solve. 

The next item to consider when setting up a simulator is its validity and limitations. Naturally, one must check the 
literature and ensure that a simulator's results correlate well with reality, otherwise one will most likely be 
disappointed with the results. A literature search regarding the validity of NEC2 is contained in Appendix A. 

It is important to understand the limitations and underlying assumptions of a simulator. A GA with a less-than-ideal 
coding can easily violate the basic assumptions of the simulator and arrive at designs that simulate well but are not 
physically feasible. Such limitations for NEC2 are also contained in Appendix A. How to implement limitations into 
the GA chromosome will be discussed in Step 4. 

Next, it is important to have an easy method to interface the simulator and the GA. In most high-level languages, like 
C++ and Pascal, it is possible to call and run programs from within a program. In this way, for instance, a GA can 
create an input file for a simulator like NEC2, call NEC2 to run, and then process the output file. The key is for the 
simulator/GA interface to require no user interaction. The simulator must be able to take input from a file or 
command-line parameters and output the results into a file that the GA can read and process. For this reason, 
graphical CAD-type simulators may be a challenge to interface to a GA. 

Finally, when choosing a simulator, consider source code availability and modification difficulty. Many times one will 
not need to modify a simulator, but if one is having trouble with the GA/simulator interface it may become necessary. 
One may wish to even incorporate the simulator into the GA code itself. However, it is recommended to use an 
external simulator that does not need much if any modification to keep the results valid and the interface simple. 
Many codes like NEC2 are long (over 10,000 lines of code) and use global variables, data structures and variable 
names that make it difficult to include directly into the GA code. Another factor is that many simulators are in a 
different language from what one may use for the GA code. For instance, NEC2 is in FORTRAN, while the GA code 
used for this thesis is in Pascal. This fact made using an interface much more attractive. 

Once a simulator is chosen, it must be configured to work with a GA. Specifically, it may need slight modification to 
allow automated operation. NEC2, for instance, needed very slight modification to remove prompts for the input and 
output filenames and instead "hardwire" certain filenames into the simulator. Memory limitations may also need to be 
imposed so that the GA and the simulator can run simultaneously. 

3.1.2 Step 2: Define the problem 
While the process of setting up the simulator will naturally limit the problems a GA can solve to a certain class, it is 
necessary, obviously, to define the specific problem which one wishes to solve. One must define all constraints, all 
unknowns and variables, and all goals of optimization. 

First, one must define the constraints of the problem. It is important to include simulator limitations in the list. 
Determine whether they are physical, simulator or intuitive limits, and be suspicious of intuitive limits—as will be seen 
later in this thesis, the GA is a strategy which can explore non-intuitive search spaces. Ensure that the constraints are 
not mutually exclusive and are as uncorrelated as possible. Find ways to relax constraints when possible—often a GA 
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will find answers where one does not expect them. Incorporating constraints can be accomplished in chromosome 
mapping or in the objective function, as will be discussed later. 

Alongside the constraints, define unknowns and variables. One must determine how many unknowns will be variables, 
and which will be constants. Consider memory/problem size limitations, time limitations, ability to control/modify in 
fabrication or use, and the sensitivity of objective to the unknown in question. Naturally, there will be constraints on 
unknowns and their feasible ranges which must be included in the constraint list. One must also determine whether a 
variable is discrete or continuous. If discrete, determine the number of different values the unknown will have, and if 
continuous, determine the range(s) and, if it is to be made discrete for binary encoding (discussed later), determine 
the number of levels it will have. 

Next, one must determine the goal(s) of the optimization. List all the characteristics the GA is to optimize. Because 
the GA will only optimize characteristics specifically included in the objective function, one must make sure the list is 
exhaustive, or take chances on unlisted but desired items. List the information that is required from each simulation. 
Make this list as short as possible but still include all that is needed. Use experience and theoretical knowledge here. 
For example, in antenna patterns that cover a band of frequencies, many angles need to be simulated for a given 
frequency. Conveniently, increasing the number of simulated angles is inexpensive timewise. However, simulating the 
structure at different frequencies is expensive—each frequency point requires a whole new simulation for NEC2. 
Fortunately, these frequency points can be sparse, so only a small number of frequency points are simulated, yet that 
data is very useful. 

3.1.3 Step 3: Determine the objective function 
The objective function consists of a series of steps that converts the data from a simulation to a quantitative measure 
of performance. It can include one criterion of performance or many. 

An objective function, as implemented in this research, consists of two major steps: conversion of simulation results 
into measures of quality, and conversion of measures of quality and constraint penalties into a single number—the 
fitness of the individual. This function must include all characteristics that are to be optimized. 

It should be noted that it is possible to have an objective function that does not return a single number, but two or 
more to give a multi-criteria measure of performance. These objective functions require special ranking techniques 
that are significantly more complicated than single-fitness-number objective functions used in this thesis. 

First, a simulator will often give output that is amenable to visualization. For example, NEC2 gives a table of angles 
and their associated gains and polarizations at a particular frequency. It also gives the simulated impedance of the 
antenna at that frequency. However, these data are not immediately useful to the GA. The GA requires a single 
number that gives a measure of the fitness of an individual. Therefore, for one to use NEC2 as a simulator for the 
GA, one must devise a way to read the numbers from NEC2 and turn them into relevant measures of quality, before 
the objective function can combine these measures into the fitness score. 

For instance, a relevant measure of quality in antenna design is VSWR. NEC2 gives the complex impedance of an 
antenna, i.e., the resistance and reactance. One must therefore implement the series of mathematical expressions that 
convert the NEC2 data into the desired VSWR. 

However, the NEC2 output of gain at various angles may be useful in its raw form, so long as one knows which 
angles are of interest. Often, I wanted the gain in a particular direction as a measure of quality, and then the maximum 
gain across a range of angles as another. Therefore a processor had to be set up that would extract the needed values 
from all of those returned by NEC2. Sometimes polarization loss is taken into account also, requiring the objective 
function to read polarization data from NEC2 and modify the gains through a series of expressions. 

Measures of quality can be maximized or minimized. If a measure of quality has no identifiable ideal, then 
maximization is a good choice. If an ideal is easy to determine, then one may wish to simply minimize the difference 
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between the ideal and the individual. However, if one has more than one measure of quality, and some are to be 
maximized and others minimized, one must take care how they are combined into a single fitness. 

Another feature that can make these measures tricky to combine is that they can behave very differently depending on 
how they are processed. They can be linear, exponential, or logarithmic in nature. If a particular characteristic is 
desired to have more importance the further from optimal it is, one may want to make it change exponentially. If an 
engineer does not care about the quality measure in a certain range, one can make the measure flat in that range [35]. 
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Figure 3.3. Various possible profiles for terms in a fitness function. Horizontal axes indicate the value of the measure 
of quality, vertical axes indicate the value of the term in the fitness function. 

Once all measures of quality are determined and can be culled from the simulator data, one must create the equation 
to combine them all into a single measure of fitness. There are two basic methods to create such functions. 

One can add the measures together modified with constants, such as in the example below. 

Fitness = X + ( c,(Y) • Y) - (c2(Z) • Z) - (c3(T) • T) 

When one is looking to maximize the absolute value of this expression, it is resistant to annihilation, but prone to 
dominance. In other words, it is less sensitive to characteristics that are poor if all else is good. Under minimization to 
zero, it is resistant to dominance, but is slightly prone to annihilation—one bad parameter can send the score higher 
thanks competitors. Rules of thumb for constants are: a factor of 10 between variables will produce a very great 
difference in emphasis. Factors of 2-3 are often good for emphasizing the most important items. Constants like d and 
C2 do not have to be constant, linear or even continuous. They can change with the level of the quality measure. 

One can also use multiplication: 

Fitness = (X) • (c,(Y) Y) • (cj(Z) • Z) • (c3(T) T) 
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When maximizing absolute value this method is resistant to dominance, but prone to annihilation—one bad parameter 
reduces score tremendously. Under minimization to zero, the expression is resistant to annihilation, but prone to 
dominance—one good parameter near zero will cover all others. 

In later chapters, the reader will note that in almost all cases of multi-goal optimization, addition was used in the 
fitness function. This method of combining measures of quality seems to work over a number of different situations 
and is relatively insensitive to the precise values of the constants used. 

Though one usually wants to create a chromosome that can never violate constraints of the problem, as will be 
discussed in the next section, it is sometimes much simpler and nearly as effective to allow individuals to violate 
certain constraints and be penalized for doing so by the cost function. In these cases, it often more useful to let the 
objective function evaluate an individual for satisfaction of constraints before optimization objectives. It is then 
possible to use a pre-processing step before a simulation is performed to determine whether an individual meets all 
constraints. If not, a score can be assigned to the individual indicating the severity of the violation without wasting a 
simulation on an invalid individual. 

For instance, let there be 10 resistors in series being optimized. Each can take on values from 1 to 100 ohms, but the 
total series resistance can be no more than 500 ohms. It would be somewhat tricky to code a chromosome that allows 
the full range for each resistor and ensure the total is within the constraint of 500 ohms. It may make sense to use a 
preprocessing step where the resistances are summed and the fitness penalized for violation, skipping any further 
simulation if the 500 ohm constraint is violated. 

Whether or not a preprocessor of this type is used, one must devise a non-deceptive combination of objectives and 
constraints. In other words, an invalid individual can easily be confused with a valid poor performer if care is not 
taken to show a difference between them. Usually constraint violations should be penalized in such a way that clearly 
identifies it as a violation, not just a poor individual. Also, constraint violators should not all be given a single bad 
score—larger violations should be penalized more than small ones. In this way, the GA will have an indicated 
direction toward satisfying the constraints. 

Though it is possible to handle constraints in the objective function, it is best to allow chromosome mapping to handle 
most, if not all, constraints automatically. It is of great benefit to have as many of the individuals that can exist 
through the chromosome mapping fit all constraints. This handling of constraints was done for the antennas that were 
optimized in this research—all possible individuals met the constraints. How to do so will be described in the next 
section. 

3.1.4 Step 4: Determine chromosome mapping and processing 
Crucial to the operation of a GA is the mapping of the design into a chromosome. There are several choices to be 
made while determining this mapping, and rules of thumb for making these choices will be given here. 

Each chromosome in the population is a complete, independent design that specifies all variables. There are several 
different types of chromosomes that one can choose. 

The most obvious chromosome is the 1-D chromosome like that given for the paper design example. There are many 
other types of chromosome mappings as well: 2-D and 3-D chromosomes, list chromosomes, and tree chromosomes, 
to name a few. (While this thesis will describe 1-D and tree chromosomes in detail, the reader is referred to Appendix 
B for a brief treatment of the other types.) Each type has its own crossover and mutation operators. Though the most 
common type is the 1-D chromosome, the other types bear consideration when making the decision to use one over 
another. It is important to choose the type of chromosome that is most native for the problem defined in Step 2, not 
only because it will be easier and more intuitive to code and work with, but because the GA search will be more 
effective with a coding that reflects the problem to be solved. 

With many of these chromosome types, particularly 1-D, 2-D, 3-D chromosomes, there is still a decision to be made. 
Does one wish to use a chromosome with discrete alleles for its genes, or does one wish to use a chromosome with 
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continuous genes, i.e., real numbers? The type of chromosome that is chosen will affect the GA and its results 
profoundly. There are many factors that should be considered. Most important is whether the problem at hand 
involves continuous or discrete variables. The chromosome mapping that is able to span the search space and 
determine variables most naturally is probably the best choice, both for ease of setup and use, and for ease in finding a 

solution. 

Another consideration is whether one wishes to keep to the intuitive and biological nature of the GA. Chromosomes 
made entirely with binary numbers are the most commonly used. There is a large body of research and theory on 
these kinds of chromosomes and the ways to process them. There is a close similarity between these chromosomes 
and their biological counterparts, in that biological chromosomes, genes usually have only two or three possible 
alleles. The low cardinality of the allele sets allows for mathematical treatment of the functioning of the GA as will be 
shown. It also allows for an intuitive grasp of the principles involved in constructing and running a GA. 

On the other hand, chromosomes that use real numbers generally need different operators to be used effectively. The 
allele sets for such chromosomes are, of course, virtually infinite, and thus to efficiently optimize such chromosomes 
requires different techniques. These techniques make use of the fact that, though there are an infinite number of 
alleles, they are related to one another mathematically. Because the ways to set up and process these two types of 
chromosomes are so different, the next two sections discuss in detail the ways to implement and process discrete and 
continuous-valued chromosomes respectively. 

Regardless of the type of chromosome chosen, however, all variables determined in Step 2 should be formulated in 
such a way so that as many constraints as possible are factored into the mapping process. It is best to have all of the 
individuals made possible by a given chromosome mapping be feasible. The reason is that the search space for a GA 
consists of all possible combinations of genes. A search space with many infeasible individuals will needlessly 
complicate the search process, as the GA will have to sift through that many more worthless individuals to optimize 
the design. 

There are ways to factor in such constraints into variable definitions without a lot of computational overhead. 
Naturally, nearly all variables have upper and lower limits, and these are easily incorporated into the mapping 
procedure. However, constraints that include more than one variable are more difficult to accommodate. 

Constraints of this nature fall into two categories: equality constraints and inequality constraints. For example, a 
constraint that X + Y = 35 is obviously an equality constraint, whereas X + Y < 35 is an inequality constraint. While a 
chromosome mapping could simply be [X Y], where each is allowed to vary over the range 0-35, such a mapping 
would allow these constraints to be violated for many of the possible individuals. In the first case, a better 
chromosome mapping would only include one variable, say X for simplicity, which would determine Y automatically 
through the expression Y = 35 - X. In the case of the inequality constraint, the first gene would designate X, which 
would be allowed to vary from its lowest limit to 35, while the second gene might designate the percentage of the 
difference between 35 and X that comprises Y. For example, a chromosome [15 0.4] would mean that X = 15 and 
that Y = 0.4 x (35-X) = 8. In this way, X and Y are forced to meet the inequality constraint without resorting to 
objective function penalties. 

3.1.4.1 Discrete/Binary 1-D chromosomes 
Chromosomes of this type have been used since Professor Holland's creation of the GA. [22] As in nature, these 
chromosomes have very small allele sets, almost universally limited to Is and 0s, i.e., a binary coding. Binary coding 
has advantages in that the cardinality allele set is as small as possible, it is a relatively intuitive coding, it is easy to 
adapt to different situation, and it is easily analyzed mathematically and theoretically. 

Because these chromosomes are so often binary, this section will be limited to this binary case. It should, however, be 
noted that it is possible to have a different discrete allele set if one desires, though the user would be encouraged to 
keep the cardinality small in any case. If the cardinality of the allele set becomes large, the GA will need a very large 
population to have enough combinations of alleles to effective process the search space, or the mating and mutation 
operators will need to use relationships between the alleles, as in the case of real-numbered chromosomes. 
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Chromosome mapping 
The mapping of a given design into a binary chromosome would proceed much like the paper example above, but 
instead of real numbers representing the various values, different binary sequences would represent variables. For 
instance, the standard sheet of paper design [1118.5 20] could become [01 10110 10000 10011] under the following 
rules: the first two bits indicate the paper color, allowing a total of four different colors to be specified, three if 00 is 
undefined or redefined as another of the already-designated colors—the latter is recommended so that the coding 
does not contain undefined individuals. The next five bits are used to designate the length of the paper, in increments 
of 0.5 inches from 0.5 at 00000 to 16 inches at 11111. Thus, 10101, when converted to base-10, is 21, which 
indicates a length of 11 inches. Similarly, the next five bits indicate the width of 16 half-inches plus the minimum 0.5 
inches, or 8.5 inches. The last five digits indicate the weight of the paper, given in pounds from 1 to 32 pounds. 20 
pounds is indicated by 10011 (19 pounds plus the minimum 1). Note that though a different resolution or range for 
the variables could have been determined, the number of levels for the last three variables was limited to 32 by the use 
of five bits. If more levels were desired, the number of bits used would have to increase. But the use of more bits 
increases the length of the chromosome and likewise the size of the search space. An increase in search space size 
increases the difficulty of searching it, so the tradeoff between having necessary resolution versus size of search space 
must be considered. A rule of thumb is to have the minimum amount of resolution possible that will be sufficient to 
include an optimal answer, or at least an indication of an optimal answer that can be explored after the GA finishes. If 
the resolution is too low, the optimal solution will be likely to be left out of the search space. The number of bits used 
for a single real number should reflect whether a variable is sensitive or robust, and constraints on fabrication. 

As can be seen from the paper example, using a number of bits to quantize continuous variables, both continuous and 
discrete variables can be accommodated by binary chromosomes. 

Mating operators 
The mating operators involve the processing of parent chromosomes to form children. Each different operator has 
different advantages and disadvantages, and the right choice depends on the problem and its search space. These 
mating operators are all varieties of crossover—a process of swapping genetic material modeled after crossover in 
cellular biology. Because this process in the GA is an imitation of biology, and some of the resulting effects of 
crossover are similar to those in biology, it is useful at this point to discuss the biological process of crossover. 

In organisms, crossover occurs during the meiosis process which forms the gametes (the sex cells from which 
children are created). The vast majority of all organisms have two complete sets of chromosomes, one from each 
parent. During a process called meiosis, all the chromosomes in the organism are replicated. Then the chromosomes 
from one parent are paired up with their homologs. (A homolog is a chromosome from the other parent that matches 
a given chromosome.) It contains the same genes (genes that determine eye color, blood type, etc.), though perhaps 
with different alleles from its matching chromosome. As each chromosome is already duplicated, this matching up of 
homologs produces sets of four chromosomes. These foursomes are lined up across the cell and then pulled apart, 
and through the course of two cell divisions, each strand will eventually be in its own gamete cell separate from the 
other three from its foursome [23], 

However, something one might not expect occurs during the separation process. As the chromosomes are separated, 
strands will often touch at least at one point. Where the strands touch, they split and rejoin with the other, so that two 
new strands are formed: one that is part strand A and the other part strand B, and a second strand that is the exact 
opposite. When the separation occurs, these new strands become new chromosomes that behave and are treated just 
like the original, uncut strands. However, the new strands have unique sets of alleles that are unlike the combinations 
the parents contributed [23]. 

The most basic operator for the GA is single-point crossover. This is very similar to the crossover that occurs in 
organisms. A single crossover point is chosen at random between any two bits in a chromosome. The front of the first 
parent's chromosome is combined with the second part of the second parent's chromosome to form a new 
chromosome. This process is shown in the following figure. 
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Parent chromosomes: [00011 110] 
{1100^100} 

With a crossover point between the 5th and 6th bits, as shown above 
Offspring: [00011]{ 100} 

Figure 3.4. Single point crossover 

There has been some controversy about whether a chromosome should be allowed to have crossover points in the 
middle of a series of bits that forms a single functional gene, like a single real number that is distributed over a number 
of bits. It appears that the best choice is to allow such crossover points for a few reasons. First, if one does not allow 
crossover between such genes, one has increased the cardinality of the allele set. If no crossover can occur, the gene 
is a single indivisible unit in the chromosome, and that implies that its cardinality has to be the same as the number of 
possible values for that gene—if a 5-bit gene, it will be a cardinality of 32. As mentioned above, there is a significant 
disadvantage to high cardinality without special operators. In addition, in biological organisms, crossover can occur 
between functional genes as well. Crossover does not occur simply on gene boundaries but between any two sets of 
base-pairs on the DNA strands. Hence, there is also biological precedent for the allowance of crossover points 
between any two bits in the chromosome. 

Another biological concept, linkage, needs to be discussed. In organisms, most characteristics independently assort. 
To explain this concept, let an organism have two alleles for each of two different genes, a and A for the first gene, 
and b and B for the second gene. The four possible combinations of these alleles in the gametes are: (a, b), (A b), (a, 
B), and (A B). If these genes are on separate chromosomes, they independently assort, and each of these 
combinations will occur with equal frequency [23]. 

It has been found that there is often a link between two characteristics—the number of gametes with two of the 
combinations, for instance (A, B) and (a, b), is much greater than the other two. This implies that the genes are on 
the same chromosome, and that one of the parents of the organism must have had (A B) in its gamete cell, while the 
other had (a, b). The smaller the distance between the loci of the two genes, the greater the linkage between them. 
This effect is due to the crossover operation that occurs during the creation of gametes from which offspring are 
created. If the distance is small, the genes will rarely have a crossover point occur between them, so the allele pair 
will pass uncut to the gametes, and then to the offspring of the organism. [23] 

With single-point crossover, this linkage is seen in the GA as well. Since there is only one chromosome in this design, 
the only way for the genes to independently assort is if each gene were allowed to cross over one by one. Under any 
type of crossover with fewer crossover points than genes, then, it is important to place more highly correlated 
variables next to one another. There is greater linkage between variables that are close together, because, as in 
biology, there is a smaller likelihood that a crossover point will occur between genes that are close together than 
between genes separated by a larger distance. In many problems, unknowns are correlated, that is, the setting of one 
unknown affects the effect of another unknown. If genes of correlated unknowns are close together, it is more likely 
that successful gene combinations will appear in the children intact from its parents rather than split and mixed with 
the genes of the other parent. 

The easiest modification one can make to single-point crossover is to increase the number of crossover points, to 
create two-point crossover. The two crossover points are chosen, as before, with the exception that the points must 
be different, and that they can be placed just beyond the end or before the front of the chromosome (these two 
positions are, in effect, the same regarding the effect of crossover). The child is formed from the front of the first 
parent's chromosome, up to the first crossover point. The middle part of the child is created from the second parent's 
chromosome between the two crossover points, and the remainder of the child comes from the last part of the first 
parent's chromosome, as shown in the figure below. 

36 



[lllll|lllllljn7]x{0000C|000O00C|000}=[lllll]{000000O}[lll] 

l-      'i 

.0        l     ■    -° 
M r l' *o±o- x ] jzO" 

Figure 3.5. Two-point crossover, with equivalent ring-chromosome representation. 

There is an advantage to having the extra crossover point: it removes the head-to-tail bias. For instance, a gene near 
the front of the chromosome will always be weakly linked to a gene near the other end under single point crossover. 
In fact, the genes actually at the ends will always be divided on every crossover by necessity. However, with two- 
point crossover, the chromosome can be thought of as a ring, joined at the ends. The crossover operation selects 
some material from one parent and the remainder from the other, but there is no longer a bias about which genes will 
be linked based on where the gene lies along the length of the chromosome. 

One can select more than two crossover points, but studies have shown there is little value in doing so. [22] 
Therefore, the two crossover methods above are the major ones for the binary 1-D chromosome. 

Mutation operators 
Mutation is a randomization of the child's chromosome. Tt is important to have in limited amounts, because it ensures 
that alleles that are eliminated from the population are not necessarily gone forever. It allows the GA to explore 
combinations that do not currently exist in the genepool of the population. However, because it is random 
exploration, it must be performed with a small probability or the information processed with the GA will be 
destroyed. The amount of mutation that is useful will be discussed in Step 5. 

Essentially there is only one mutation operator possible for the binary chromosome. Once the bit to be mutated is 
selected, the operator performs a bit-flip: changing a 1 to a 0 or vice versa depending on the current value of the bit. 

3.1.4.2 Real-numbered chromosomes 
As the name implies, real-numbered or real-valued chromosomes consist of a string of real numbers. There are several 
advantages to using real-numbered chromosomes. First, each variable can usually be encoded in one gene. The real 
number can be accurate to several decimal places, and the number of levels such a gene can take on is infinite for 
practical purposes. It even makes the design easy to read from the chromosome, in that each variable is naturally in 
base-10. However, the major disadvantage is that special mating and mutation operators need to be employed to 
handle the infinite cardinality of the allele set. But even this disadvantage has an advantage: it allows problems that 
are naturally real-number problems to be exploited both by mathematical techniques that use interpolation or 
extrapolation and the GA search technique at the same time. This is a powerful combination that can solve very 
difficult problems effectively. For this reason, it is suggested that one use the real chromosome for problems involving 
mostly real, continuous variables. 

Chromosome mapping 
The mapping for this chromosome is very simple. Generally, each variable requires only one gene. The paper example 
[1 11 8.5 20] is a real-numbered chromosome. Note, however, that the first number specifies a discrete variable. The 
handling such a variable with a real chromosome will be explained later in this section. However, the design of a sheet 
of paper is mostly comprised of numbers that are continuous. If one were to have some reason to optimize this 
design, it would be most natural to put it into a real-numbered chromosome. On the other hand, if the numbers were 
not actually continuous—for instance, if paper sizes were only available in half-inch increments—it would be more 
appropriate to use a binary chromosome. 
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If there are a few variables that are discrete, one can still use a real chromosome representation for them, and simply 
discretize the decoding process. For instance, a real gene can be rounded to the nearest whole number to indicate the 
value of a discrete variable. This processing has been done, and will be discussed in later chapters. However, the 
mating and mutation operators use the relationship between alleles in the real numbering system, and thus this may be 
less effective for discrete variables that have no such relationship. But the GA optimization process is so powerful and 
robust that even such inefficient methods will still result in effective optimizations, so long as there are not too many 
such variables and they are relatively minor in effect. If not, one may wish to have a real chromosome and a binary 
chromosome in each individual, mapping each variable into the chromosome that is most natural. Note that each will 
need a different set of operators. 

Mating operators 
Unlike the operators for the binary chromosome, the most effective operators for the real chromosome operate gene- 
by-gene. In this way, one can think of each variable occupying a separate chromosome, and each independently 
assorts with the others. It is possible to use single or multi-point crossover operators, as with the binary 
chromosome, but as has been stated the infinite cardinality of the allele sets become a problem. 

The best mating operator I have found is actually a process involving the combination of three separate mating 
operations on a chromosome. It has been described and examined in [24], and will be referred to as Adewuya's 
method. The steps for this method follow: 

1. Choose the three parents 
The following steps are performed for each gene separately: 
2. Perform Quadratic crossover 
3. If 2 fails, due to lack of the desired extremum in the feasible gene range, perform heuristic crossover with the best 
and the worst parents of the three 
4. If 3 fails to produce a child gene in the feasible range, randomly choose one of the three parents to have its gene 
copied into the child's gene. 

The next two sections define what is meant by Quadratic and Heuristic crossover. 

Quadratic crossover 
Quadratic crossover is a method of predicting the best gene value for a child based on a second-order fit to the gene 
vs. fitness value for three selected parents. Though this method will sometimes misleading the GA in the creation of a 
child, more often than not it should be able to generate better children. The figure below shows where a child would 
be chosen should fitness be desired to be minimized and the three parents shown are chosen to mate. 

fitness 

gene value 

Figure 3.6. Quadratic crossover example. 

Following is the mathematical procedure for quadratic crossover. 

Let there be three parents: 
PI = {pn,p12,...,pln} with fitness fj 

P2 = {p21.P22' • • ' P2n* ^ fitness f2 

P3 = {p31,p32> ••■> P3n) with fitness f3 
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The quadratic curve for each gene in the chromosome is given by: 
2 

h-(x) = a- x   + b- x + c- 

so one must determine a-, b-, and c-. 

The analytic expressions for the three constants are: 
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The critical point (extremum) of h(x) is found by taking the first derivative, 
dh-(x)/dx = b. + 2a.x = 0-»x = -b./(2a.). 

If d2 h(x) / dx2 = 2a- < 0 (if maximum is sought) or > 0 (if minimum is sought) , then x = - b- / (2a-). 

Let the child D = {d],d2, ..., dfl}. Then the child's genes are given by d- = - b- / (2a-), 

if the second derivative is properly negative or positive, and d- is within the limits of feasible genes. 

Heuristic crossover 

Heuristic crossover is a method of extrapolating the value of a child's gene that is likely to be more fit than its parents 
based on a line drawn between the two parents. An example is shown in the figure below. The distance of the child's 
gene from the parents' is random but limited by the distance separating the two parents. 

1 

fitness 

Child 
gene value 

Figure 3.7. Heuristic Crossover example. 

The mathematical procedure for heuristic crossover follows. 

Let there be two parents: 
Pl = {Pll,p12,...,Pln} 

P2 = {P2l>P22'-'P2n> 
Let P2 have a better fitness level than PI, and let the child C = {Cj,c2, ..., cn). Then the child's genes are given by: 

Ci = rnd(p2i-Pli) + p2i 

where 0 < rnd < 1. 

There are other methods contained in [25] which were not used in the course of this thesis, and which have been 
shown to work less effectively by [24] than the above method on many problems, but may still be of interest to the 
reader. They are listed in Appendix C. 
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Mutation operators 
There are many more mutation operators possible with a real chromosome than with a binary one. A few are 
presented here, though the most commonly applied in this thesis is the Gaussian mutation method. Most involve 
manipulating the probability distribution of the mutation. 

The first mutation method draws a mutated gene from a uniform probability distribution between the upper and lower 
limits, regardless of the original value of the gene. This is a simple method, but will usually place the mutated gene far 
from the original. Since an entire variable is usually contained in a single gene, this can wreak havoc on a 
chromosome's fitness, as one of the variables has just been randomized. This kind of randomization infrequently 
happens with a binary chromosome, where a bit flip can affect a multi-bit variable by moving it only halfway across its 
range at most. 

lower 
limit 

Figure 3.8. Uniform probability mutation. 

upper 
limit 

Gaussian mutation is similar to uniform probability mutation, except that the mutated gene is drawn from a Gaussian 
distribution centered around the original gene's value. This allows mutated genes far from the original to be rare, 
allowing exploration to be concentrated around already-successful values. A standard deviation for the distribution 
must be set as a parameter. This deviation can be decreased as the run progresses. This mutation operator pulls the 
mutated gene from a Gaussian distribution centered around the original gene. I generally gave this distribution a 
standard deviation of 10% of the gene range (thus restricting the mutated gene to be within +/- 30% of the gene 
range of the original gene 99% of the time). 

lower 
limit 

.upper 
limit 

Figure 3.9. Gaussian mutation 

Boundary mutation pegs the gene to one or other of its range limits. This is a simple mutation that can be used in 
situations where the edges of the range have special significance, or where it is desired to shake up the population 
more than usual. It can also help with interpolation methods like quadratic crossover. 

lower 
limit 

Figure 3.10. Boundary mutation 

upper 
limit 
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Non-Uniform mutation is a procedure where the amount of mutation grows smaller as the GA run progresses. As will 
be discussed later, the GA generally converges to a small range of solutions as it reaches its conclusion, and it makes 
sense to limit the amount of mutation as the amount of variation in the population decreases. 

The mathematical form of non-uniform mutation follows: 

C. = {C. + A(gen #, upper limit - C.)} or {C. - A(gen #, C.- lower limit)} 

where A(gen #, y) = y • rnd • ( 1- gen#/(maximum gens)) , 0< rnd < 1, b is a parameter, C. is the ith gene of the child 

chromosome. Whether the gene is mutated upwards or downwards is determined by a virtual coin-flip. This 
expression allows less and less dramatic mutation as the run progresses. 

3.1.4.3 Tree chromosomes 
Tree chromosomes are so named because they resemble trees in their structure. They have nodes containing 
information and branches connecting them. The nodes can contain either data or instructions. The branches show 
connections or paths. Tree chromosomes are essentially fractal structures. 

n ~ ^^ Child node 

^v        \ \   Parent node 

Root node- Child node 

Figure 3.11. Tree chromosome 

For example, tree chromosomes are often used to generate programs using a GA. The nodes contain logical 
expressions like "not," "and" and "or," or data to be manipulated. The programs are evaluated and evolve like other 
types of solutions. 

In the field of antenna design, however, the tree chromosome has a different use. The nodes contain spatial data—the 
coordinates of an absolute location in space or a distance and direction that can be used to determine a point relative 
to another point. The branches are used to show connections between points. In this way, an antenna can be 
constructed from the tree chart and the data in the nodes. 

It is important to note that there are two terms used when discussing tree chromosomes that are also used in GA 
terminology that mean different things: parent and child. In tree chromosomes, as shown in the above figure, a node is 
designated a parent when it is connected to at least one node further from the root of the tree. The node or nodes it is 
connected to are called the children ofthat node. This is not to be confused with parent and child chromosomes, 
which refer to entire individuals. 

Chromosome mapping 
As mentioned above, for antennas these chromosomes are used to determine connections and placement of wires. 
The information in the nodes contain placement data, and the branches indicate connections. 

The data in the nodes can be expressed in two different ways: in absolute coordinates, or in relative coordinates. With 
absolute coordinates, the data in each node consists of three coordinates—either X,Y and Z or R, 8, and <j) 
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depending on the desired coordinate system. These coordinates are used as points in space between which the 
different branches are connected. 

When using relative coordinates, it is possible to use either two or three coordinates in the nodes. The absolute 
location of the endpoints of a wire are determined by the absolute location of the node's parent. One end is located at 
the parent's coordinates, and the other is located at the parent's location plus the coordinates contained in the node in 
question. If one wishes to limit the length of the wire to a constant, then one only needs two coordinates such as 6 
and <J) to determine a wire. In this way, an antenna can be comprised of many identically-sized wire segments. 

Mating operators 
Due to the fractal nature of the tree chromosome, the mating operators are different from 1-D cases and have 
different effects though the same basic function of mixing data from parents to produce children. There are two 
common operators: subtree swapping and node swapping. 

Node swapping can occur between any two nodes in the two parent trees. A child would be essentially identical to 
the first parent with a node from the other parent. This is a relatively minor change, and so is usually an auxiliary 
method to the major method of subtree swapping. 

Subtree swapping involves swapping parts of two trees to create a child. These two parts do not have to be at all 
similar. See the figure below for an example. 

Figure 3.12. Subtree swapping crossover 

Note that the tree can actually grow larger using this system. It is possible for an entire tree to be added to a node in 
another tree. This is a radical change from the other chromosomes presented thus far. They are all restricted to a 
number of genes set from the beginning. The tree chromosome can become very large with a large number of 
generations. It is usually wise to place an upper limit on the trees or a penalty for rising above a particular size to 
keep simulations reasonable. 

Mutation operators 
There are four mutation operators in common use for tree chromosomes. Two of the mutation operators—subtree 
swapping and node swapping—are identical to the mating operations, though there is only one tree involved. The 
other two operations are destruction of subtree and node replacement. 

Subtree swapping and node swapping forms of mutation occur between any two nodes/subtrees in a single individual 
just as it does in the mating operation. Subtree destruction, as shown in the figure below, simply involves removing a 
subtree from any node in the tree. A restriction should be placed on this mutator so that if only one branch comes 
from the root, it cannot be chosen, as this would make a null tree. Node replacement uses one of the mutation 
methods described in the real chromosome section to replace the original contents of the node with new data. 

Two example antennas designed using tree chromosomes are briefly described in Chapter 7. 
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3.1.4.4 The mating and selection process 

Regardless of the chromosome mapping used, a means of selecting which chromosomes are carried over from the 
previous population and which chromosome mates with which must be established. 

There are two major GA types, and their difference lies in the way they execute the mating process and the process by 
which the fittest are chosen for survival (the two processes are related). These types are the simple GA and the 
steady-state GA. They each affect the "choose mates and create children" and "mutate children" blocks in the GA 
flow chart (repeated below). All other functions are the same. 

Initialize new population 

Simulate and evaluate Mutate children 

Rank-order all members 

I 
Is convergence criteria met? 

t Yes 

Choose mates and 
create children 

ZZJ  
No 

Output results 
Figure 3.13. GA process flowchart 

The simple GA is discussed at length in [22]. It is a fairly close approximation of nature in the way chromosomes are 
chosen to survive and reproduce. In essence, the simple GA replaces the whole population each generation with new 
children, though some are copies of parents. 

There is a variation of the simple GA called the elitist simple GA. In the elitist GA, the best member from a 
generation is kept to the next generation under all conditions. Though this breaks with nature, one does not usually 
want the GA to lose its best solution. It may take a very long time to rediscover such an excellent solution, if it finds 
one at all. Therefore, it is usually advised to use the elitist variation of the simple GA. 

The simple GA is composed of three major operations: reproduction, crossover and mutation. In the first stage, 
reproduction, chromosomes from one generation are selected to carry over to the next. No new chromosomes are 
created yet, but some individuals from the old population will be left out, while others will have multiple copies in the 
new population. Whether a chromosome has a good chance of being reproduced depends on its fitness level: the 
higher the fitness in relation to its peers, the higher the chances it will survive. 

The next step is crossover. With some designated probability, members of the reproduced population are crossed with 
their neighbors in the manners described above and which the user has determined. Usually the probability of 
crossover is high, perhaps around 80-90%. More will be said about this parameter in Step 5. 

Mutation then occurs in this new population with some small probability, usually less than 1%. More will be said 
about values of this probability later. 

The advantage of the simple GA is that it is simpler to analyze, simpler to understand, and closer to natural genetics. 
However, because the population is renewed each time, it takes much longer to converge. For problems involving 
time-consuming simulations, this can be a serious problem. 

On the other hand, the steady-state GA automatically keeps a fraction of the population from generation to 
generation. This fraction, made up of the top performers from a particular generation, can range from 10% to over 
90%. The children can either be generated from the entire population before removing poor performers, or they can 
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be generated from only the top percentage. In the latter case, poor performers are simply replaced by children, and 
have no offspring themselves. 

Because this process keeps the top performers, it is more focused on exploitation over exploration. Even if the entire 
population is used to create children, it converges much faster than the simple GA. If only the top fraction are used as 
parents, it will converge significantly faster still. However, it is less like nature (individuals from prior generations are 
kept as potential mates), and it may converge too quickly, that is, there may be so much exploitation there is too little 
exploration to solve the problem most effectively. 

In this thesis, I used the steady-state GA where only the kept percentage were allowed to be the parents for the next 
generation—the method with the fastest convergence. This was important, in that the simulations were costly in terms 
of time, as is the case with most electromagnetics problems. 

Regardless of whether the GA is simple or steady-state, it must have a method of selecting chromosomes in 
proportion to a figure of merit. There are a couple of methods used, namely the tournament method and the weighted 
roulette wheel method. Either one can be used with either style of GA. 

The tournament method randomly selects a small group of chromosomes from a population. The most fit member is 
chosen from this group to be a parent. Another set is chosen and the most fit member ofthat set is taken as the 
second parent. Alternatively, both parents can be chosen as the two (or three) most fit members of the first random 
group. 

The most common method, however, and the one used exclusively in this thesis, is the weighted roulette wheel. 

9 10 

Figure 3.14. The weighted roulette wheel. 

In this method, the roulette wheel is split between the various candidate chromosomes. It is split unevenly, though, 
giving a larger share to those chromosomes that are more deserving according to certain criteria. By far the most 
common weighting is done according to fitness, but the wheel can be weighted by other characteristics like similarity 
to a particular chromosome. 

In order to set up a wheel in the computer, a few steps can be taken. The first step is optional but should be 
considered. One may wish to convert fitness scores for a more equitable weighting. Let an illustration show why one 
might want to do so. As a population converges, the scores of the individuals will become similar. They may all be 
clustered around an average, say 100. The best individual may be 100.1, while the worst may be 99.9. With scores so 
close, the roulette wheel will be evenly split between individuals. However, it may be that the 0.2 difference between 
the top and the bottom score is significant to the engineer. In that case, one may wish to rescale the scores by 
subtracting the lowest score so that they range from 0 to 0.2, which will show a large difference in the wheel 
weighting. 

As was discussed earlier, one can either minimize or maximize the fitness function, however, if one has chosen to 
minimize, one will need to transform the scores by subtracting all scores from the worst parent, so that the best one 
ends up with the largest score, and the worst has the smallest. In this way, the wheel can be apportioned properly. 
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This also automatically scales the scores as was described above. Since all optimizations in this thesis were 
minimizations, this rescaling was done routinely in all GA optimizations. 

Once scores have been transformed, all scores need to be added to get the total fitness. In symbolic form, I f is 
desired, where the summation is over all potential parents. 

From I f, the proportion of the wheel to give the ith chromosome is given by the expression: f / I f. One then 

apportions slots to the parents. 

A common way to approximate the wheel is with a large 1-D matrix, where chromosomes are assigned the number of 
slots that corresponds with their designated fraction. For example, say there are seven parents in a population, each 
with decreasing fitness. The 1-D matrix could look like the one below. 

11 1 1 122222333445567 

Figure 3.15. 1-D matrix that approximates the weighted roulette wheel. The arrow corresponds to the result of a 
sample "spin." 

The problem with this method is that it has inexact probabilities. The number of slots a chromosome fills rarely 
corresponds exactly to what it should be given. There are different methods for apportioning remainders, but none 
will make the matrix proportions exactly right. 

Another, more accurate method is to apportion a continuous range to each parent, and to make each parent's range 
adjacent to the others'. A random number is generated, and the range in which its value falls indicates which parent 
was selected by that "spin." An example of such a wheel is shown below. 

0.0 Q.32 0.54 0.71 80   0.88  0.951.0 

6      7 

Figure 3.16. Continuous range method for determining roulette wheel ranges. The arrow corresponds to the result of 
a sample "spin." 

3.1.5 Step 5: Determine genetic algorithm parameters 

There are two parameters common to both the simple GA and the steady-state GA: population size and probability of 
mutation, In addition, the simple GA has probability of crossover, while the steady-state GA has percentage overlap 
as a parameter. While the GA is very robust to these parameters, it is still important to set them in the ballpark of 
their optimal setting. Certain of these parameters are more sensitive than others. 

As will be shown in the example later in this chapter, and in other chapters, the most important parameter is 
population size. Population size determines the size of the genepool, which will determine the amount of the search 
space that is searched during the run. It may seem intuitive to use the largest population possible, but that is not 
always the optimal case. 
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Populations that are too large can cause problems. They move slowly in response to good points found, and they 
have many children in each generation, thus requiring many simulations. They will often be more consistent in the 
solutions they arrive at, but they are not always the best answers. The reason is that a large population can overpower 
the genetic material from an above-average individual that resides on a narrow spike in the search space. The large 
population and its genepool diversity overpowers these individuals by sheer numbers, and generally it is the larger 
hills that will be exploited. If larger hills do not contain the best answers, the answer will be often be suboptimal. In 
addition, it takes many more simulations to arrive at good answers with a large populations, as will be shown. It may 
make sense, then, to attack a problem with several runs of a small-population GA rather than with just one run of a 
large-population GA as both will often cost the same in terms of simulation time. 

On the other hand, populations that are too small generally do not have enough diversity for the GA to search much 
of the space. They converge quickly to suboptimal points. It is important, then, that one choose a good population 
size for the problem. 

Those who work with GAs on other problems have used anywhere from 10,000 members to only 30—thus the 
correct number is often a result of the specific problem to be solved, the GA style (simple or steady-state) and the 
chromosome mapping and processing. 

In the process of doing the research in real chromosomes, it seemed that a population between 100 and 200 
individuals worked well for the antenna problems solved. It does not seem to be affected by the number of genes that 
are used—chromosomes have ranged from 6 genes to 44 genes, and they all have been optimized effectively by a 
population of 175. This robustness of population size to chromosome length is not a complete surprise, given the 
infinite cardinality and the methods of crossover for real chromosomes. Unlike binary chromosomes, the genes of the 
real chromosomes are all mated separately, so each one must have sufficient diversity in the genepool, but it is not as 
critical to have many different combinations of allele values. 

The next most important parameter is probability of crossover for the simple GA and the fraction of the population 
saved from generation to generation (i.e., the overlap) for the steady-state GA. Though a simple GA was not used in 
this thesis, others have found that probability of crossover should be 80% or higher. [22] 

For the steady-state GA 30% overlap from generation to generation seems to work well in many different cases. 
(30% overlap implies that 70% of the population is replaced in each generation.) The GA is somewhat more robust to 
this parameter than to population size, but the GA runs faster and better with 30% overlap from run to run than with 
higher values. Lower values seem to restrict the amount of exploration too greatly. 

For either style of GA the probability of mutation should be around 5% or less. 0.6% was commonly found to 
produce good results. This probability is the chance that a particular gene in a chromosome will be mutated. Though 
this percentage of mutation could be implemented by going gene by gene in each child, and doing the equivalent of 
rolling a die to see if it would be mutated or not, in most of the optimizations here, it was ensured that a certain 
number of mutations occurred each generation by mutating the number of genes given by the probability of mutation 
multiplied by the number of genes in the new children. 

Another set of parameters involves determining the point at which the GA is halted. There are many possible 
convergence criteria that can be used to stop the GA. A very simple one is to stop the GA after a given number of 
generations. Other criteria are: stopping the GA after a given number of simulations, after a certain period of non- 
improvement (e.g., after 5 generations where the top score does not improve), after the diversity of the genepool 
drops below a certain threshold, or when the user inputs a stop signal. All of these have been used in the antenna 
problems discussed in future chapters. 

Stopping the GA after a number of generations is a very arbitrary method. The GA may or may not be truly done 
optimizing a design at 70 or 90 generations depending on the GA parameters. It is important to not stop the GA too 
soon. In addition, it could be that the GA has been done for some time and has been wasting time getting to the set 
number of generations. Usually there are other criteria that show doneness better than a number of generations. 
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However, sometimes the GA cannot be allowed to run beyond a certain length of time, because an answer is required 
or because the resources are not available. Thus, one may wish to designate a certain number of simulations after 
which the GA quits. This may seem identical to stopping the GA after a given number of generations, but it is not. 
Particularly with a binary GA, some individuals are cloned in the genepool as the run converges. One can set up a 
routine that searches for such clones, and simply copy the score from the original chromosome. There is no need to 
resimulate them. The computational overhead of a GA is generally so much smaller than that of the simulations that 
the time the GA takes to optimize is a function primarily of the number of simulations that are performed. Thus it is 
often useful to designate a number of simulations as the stopping criteria. 

The GA usually starts off improving rapidly, and then the amount of improvement generation to generation decreases 
until it virtually stops. A way to tell when the GA is finished, then, is to monitor the amount of improvement over the 
course of several generations. If very little or none is seen then one can fairly safely assume the GA is finished. 
However, depending on the problem being solved, there may be movement in the average of the genepool score while 
the top individual is not making progress. For example, a GA may discover an excellent individual that is far superior 
to the next best individual. In this case, this top individual is likely to be too dissimilar from the rest of the population 
for a mating to produce a child better than itself. Thus, there may be no improvement in this top individual for some 
time while the rest of the population more slowly catches up to the top individual. Once the population has closed the 
gap and enough similarity exists between the top individual and the rest, improvement in this top individual can be 
made. A variation of this criteria, then, is to watch the average of the population or some upper fraction of the 
population. When it stops moving, chances are the whole GA has finished its optimization. Usually one will want to 
give the GA several generations to show improvement, especially if the problem is tricky to optimize. It may take a 
few generations in some cases to show improvement. Again, one does not want to stop the GA too soon. 

-+- 
11   21    31   41   51 .61   71   81   91 

Figure 3.17. Best fitness, Average fitness vs. generation. The optimization was working towards minimization: The 
lower line is the best score, the upper line is the average of the parent scores. 

When the diversity in the genepool of a GA becomes very small, the power of the GA is diminished and it becomes a 
type of stochastic hillclimber, and it should be stopped. Usually, the GA has stopped making useful progress long 
before the genepool converges that much. 
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Figure 3.18. Diversity in the population in a sample run with real chromosomes. Notice how it has a downward trend, 
but is very noisy. 

Often, the user has various reasons for wishing to stop a GA run: time allotted has expired, no progress is being 
made, or the GA seems to be converging to an undesirable answer, so it is useful to allow the user to stop the run 
when desired. It is then necessary to have the GA output data to the screen so the user can track its performance. 
This leads to the next section: analyzing GA performance, during and after a GA run. 

3.2 Analyzing GA performance 
As a GA runs and after it has completed, it is possible to determine how well it is doing. This can be important, 
because the GA procedure is so robust that it may still run even when there are bugs in the code, but it will not 
perform well. It is good to be able to monitor the progress of the GA rather than set it running and see how it did 
days later, especially if the code has not been well validated. Cost functions may not be quite what one needs to get 
the desired results, constants and variable constraints may need tweaking, arid bugs may need to be removed. 

It is also important to have data saved at the end of the run that can be used to analyze performance, in case one did 
not watch the run in real-time, or if one wants to see the progress of the GA over time all at once. Monitoring the GA 
and saving useful data will be discussed in the next two sections. 

3.2.1 Monitoring a GA during a run 
Several parameters are useful to have posted periodically as a run progresses. These characteristics can be split into 
two groups: individual qualities, and population-wide qualities. 

Certain qualities are desirable to be visible at all times. They are: generation number, member number currently under 
simulation, size of member in terms of simulation time required, and whether a member is identical to another member 
already simulated and hence is not going to be simulated. After the simulation is completed or the score is copied 
from another member, it is useful for the GA to show certain critical measures of quality and the score of member 
under test. 

At the end of each generation, it is good to compile certain statistics and print them at the end of the generation or 
after every simulation to ensure the numbers are always on the screen alongside the member data listed above. These 
are: the best fitness and worst fitness in the parent population, the number of generations the average parent score has 
remained constant, the number of generations the best chromosome score has remained constant, and the diversity in 
the parent population. This diversity is shown to help the user determine if the GA is close to convergence. If the 
chromosomes are binary, one measure of diversity is the total number of bits of all the parents that are different from 
the best chromosome. If the chromosomes are real, the range of each gene in the parent population can be used to 
indicate diversity. Note that the real chromosome diversity data in this case is not a single number, but a series of 
numbers, one for each gene in the chromosome. 

A couple numbers are good to print after each generation only: the genotype of the best chromosome, and the 
number of simulations run so far. During the debugging process, though, it is necessary to monitor much more when 
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running and checking for bugs. Particularly prone to invisible bugs are the mating and mutation processes, which will 
still allow the GA to run, but will hinder its optimizations. 

3.2.2 Evaluating GA performance after a run 
After a GA run has completed, it is useful to have certain records that show the progression of the run. It is important 
to output all GA parameters: population size, percent saved, mutation rate, number of crossover points, etc. One 
must also, of course, output the best chromosome and it is good to produce its phenotype in the form of its input file 
to the simulator. It is also useful to record the total number of simulations needed to get to this answer. 

One should set up a brief "fossil" record that records during each run. Items to be included are: best chromosome and 
score of each generation, average score of each generation, diversity at each generation, and cumulative number of 
simulations at the end of each generation. 

Sometimes one will want to halt a run, then pick it up again later. If one uses a steady-state GA using only the top 
fraction of the population for parents, one can save the entire run by recording the above parameters and the parent 
population's chromosomes and scores at the end of each generation. To restore the run, then, one need only load the 
genepool with the last generation's parents' chromosomes and scores and begin the generation process. Keeping this 
kind of detailed fossil record is very useful, especially as insurance against power outages or computer glitches during 
particularly long runs. 

Following is a table that may aid the user in troubleshooting a GA that is not working well 
If... Try... 

It converges before getting to a good 
solution 

Increasing exploration: increase the population, steady-state 
GA—increase percentage overlap (simple GA—lower 
crossover percentage), increase mutation. 

It takes too long to converge Decreasing exploration: do the opposite of above. 
It goes to very different answers each time Using speciation and niching to increase exploration of 

different hills, (discussed in next section) 
The answer is somewhat poorer than you 
anticipated, especially from previous related 
GAruns 

Looking for bugs! Check that you have changed over all 
constants and parameters if optimizing a new problem with a 
previously-functioning GA. 

The following rows further breakdown the one above... 
If the fossil record shows abnormal 
improvement curves—e.g., improvement is 
constant and slow, even at first 

Looking for bugs in the mating and mutation procedure. 
Insure the constants used are reasonable. Try using different 
population sizes, overlaps, and even crossover/mutation 
operators. 

If the best individual shows some good 
characteristics and some poor ones 

Checking the objective function—ensure proper scoring. 
Adjust constants, or adjust linearity of the measure of 
quality (e.g., change a linear function to an exponential). 

The fossil record shows many individuals 
that are violating constraints 

Remapping the chromosome to allow most, if not all, 
possible individuals to meet constraints. 

If all the above has been tried and the answer 
is still not optimal 

Reorder the genes in the chromosome. Try using different 
variables or expressions for variables, e.g., instead of using 
X, use log X or 1/X. Combine variables in natural ways, 
e.g., if a problem is sensitive to a ratio X/Y, use X/Y and Y 
as a variables instead of X and Y. Try to make variables as 
robust as possible, with large valid ranges for the GA to 
work with. 

Table 3.1. Troubleshooting table for common GA problems. 

The GA is a powerful optimization strategy, but it will work better in easier search spaces than in difficult ones. Since 
one's goal is to find the best answer, one should think through the best way to set up the GA to ensure the best 
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results are obtained. It is not so powerful that one does not need to take any care in specifying a problem. One should 
use their knowledge of the problem to encode the chromosome, cost function and GA operators in the most easily 
solved, most native manner. 

However, there are still more tricks that can be employed to enhance a GA's ability to optimize a problem efficiently. 
The next section will discuss these enhancements. 

3.3 GA modifications to increase efficiency 
It is usually important to ensure one is getting the most from simulations run. The GA in its raw form can be 
inefficient when it comes to function evaluations, especially the simple GA. Designs are often large and take a long 
time to simulate, so inefficiency may make the problem intractable, and one may want to get to the answer quickly, 
especially if it converges to a wrong answer so one can run it again. There are two ways to enhance a GA's 
efficiency: use techniques that increase its efficiency directly, or use techniques that enhance the exploitation aspect of 
a GA thus allowing it to converge to an answer faster. Both methods will be discussed in detail. 

3.3.1 Direct efficiency enhancements 
There are several ways to enhance efficiency in a GA. Those that will be discussed are: eliminate redundant 
simulations, minimize problem size for the simulator, employ curve fitting techniques, begin with coarse searches that 
lead to refined searches. 

As alluded to previously, with binary and other discrete chromosomes, individuals will begin to clone themselves as 
the GA converges, especially near the end of the run. It is therefore useful to institute a large file or array that stores 
all simulated chromosomes and their scores. At the least, an array that contains the parent chromosomes.and their 
scores should be maintained. This array is then searched before a new chromosome is simulated, ensuring that 
redundant simulations are eliminated. Unfortunately, this technique is limited when using real chromosomes, for little 
or no exact repetition occurs then. 

One can increase efficiency by minimizing the problem size for the simulator. One can use coarse simulations that take 
a fraction of the time a real one does. So long as there is a strong correlation between the coarse simulation and a 
more accurate simulation, i.e., an individual that scores high relative to others with a coarse simulation would also 
score high relative to others with a fine simulation, then the coarse simulation can be used by the GA. Then the 
accurate simulation can be carried out on the best individual to determine its true characteristics. For instance, one 
may use only two frequency points in a band to determine an individual's frequency characteristics, thus saving 
valuable simulator time, and then evaluate more carefully once the GA has completed. This can be done if the antenna 
has a relatively predictable frequency response based on the answer at these points. 

The coarseness can be incorporated into the amount of data received, as in the above case for frequency dependence, 
or it can be incorporated into the number of elements simulated in a finite element simulator like NEC2. During this 
research, it was advantageous to use a number of segments that was low—low to the point of being close to violating 
NEC2 model assumptions, without actually doing so. A few percent of accuracy was sacrificed, while decreasing the 
simulation time considerably. The careful validation of GA results after a run showed this approach to be valid- 
performance was rarely significantly worse under careful scrutiny. 

Another method is to use proper convergence criteria, stopping the GA before it begins to make only minimal 
progress. One can experiment with different criteria that indicate that the GA has completed most of its forward 
progress. This method can be effectively coupled with another technique that will be discussed in the next section: 
adding a hillclimber at the end of the GA run. 

One can also increase efficiency by re-using simulations as much as possible—though NEC2 did not have this 
capability, some simulators do not require a complete resimulation if only certain changes are made to an individual. 
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One may wish to minimize the number of complete simulations performed by grouping individuals to take advantage 
of this capability, or one may wish to limit the resolution of the variables that cause completely new simulations to be 
performed. One can also place a penalty in the cost function for variables that are modified that require complete 
simulations, to discourage the GA from trying those variables before trying the easier ones. 

A relatively uncommon technique is to fit a curve to the data from the population's simulations. A GA can use 
multilinear regression to get a surface that can be used to predict children's scores. The GA can base simulations on 
predictions, using them as pre-processors so the GA only simulates high-payoff candidates. Alternatively, the GA can 
use the predictions to determine the parents for the next generation, though it is recommended that the GA simulate 
the new parents before mating, if possible. This technique is investigated in more detail in Chapter 7. 

Finally, one can increase efficiency by doing multiple GA searches, starting with a very coarse search space and 
ending with a refined one. This is not to be confused with a coarse simulation—in this approach, one limits the 
resolution on the chromosome, limiting severely the number of possible individuals in a population. For instance, one 
can take a 105-bit, 21 unknown problem, and, using only 2 bits per variable instead of 5, convert it to a 42-bit 
problem. This is much easier for the GA to search. Once an answer is obtained, the GA can search only a small part 
of the original space, using the same number of bits or less, but with a tighter restriction on the variables. Besides 
allowing the GA to search a smaller space, the user will be able to quit GAs that are running up the wrong hill. Since 
searches will proceed faster, the user will be able to stop GAs that are showing signs that it is focusing on the wrong 
part of the search space, and can try again before many simulator runs are wasted on a failed approach. This 
technique is explored in detail in Chapter 7. 

3.3.2 Indirect efficiency enhancements by increasing exploitation 
A way to indirectly increase efficiency is to increase exploitation in a GA. By increasing exploitation, one pushes the 
GA to explore the hills in the search space it has already found, rather than to look for new, perhaps better, ones. 
There is an obvious risk in that by limiting exploration: one may miss an important answer. However, if simulations 
are costly, one must increase exploitation to allow convergence in a reasonable span of time. Even with these tricks, a 
reasonable problem will still require a few thousand simulations. However, almost any other optimization technique 
will require the same number or more, unless the problem is quite simple! 

One can increase exploitation by setting the GA parameters properly, minimizing the problem size for the GA adding 
a hillclimber to the GA for use after convergence, institute sharing and speciation, or allow a variable population size 
coupled with speciation. 

To increase exploitation, there are several GA parameters that can be changed. The most sensitive is population 
size—if the population is decreased, the amount of diversity will be lessened in proportion, and the number of parents 
will be decreased, and thus a good individual will be more important in the mating process and have less competition. 
This will ensure a good individual will have a larger proportion of the mating roulette wheel, and thus allow it to mate 
more frequently. As this individual will produce more children, its genetic material will spread more rapidly through 
the population. This will increase exploitation. 

A similar method that can be used with the steady-state GA is to decrease the number of chromosomes that are used 
as parents while keeping the population constant. As with decreasing population size, this method allows good 
individuals to have less competition and mate more frequently, increasing exploitation. However, as the population is 
not similarly decreased, there will be an increase in the exploration of the parents' genetic combinations. More 
children will be produced to refill the population each generation. This extra exploration may be helpful, particularly 
in difficult problems where it is unlikely that a child will be better than its parents. 

Another way to increase exploitation is to decrease mutation, since mutation is a means of random exploration, and is 
not beneficial for exploitation. One can also decrease the chromosome length—i.e., decrease number and/or 
resolution of variables. Remapping the chromosome to place related variables as close together as possible can be 
effective too, as well as using two-point crossover to eliminate head-to-tail bias. Finally, one can use binary instead of 
real numbers to decrease the number of simulations necessary before convergence. 
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Once convergence criteria are met, the GA run can be completed with a hillclimber. This has been found to be most 
effective with a binary GA, as a real-valued GA that has been run to completion will already have zeroed in on the 
parameters that produce the best results, due to its arbitrary accuracy. However, binary GAs, while good hill-finders, 
are inefficient hillclimbers when compared with deterministic, classical methods like quasi-Newton methods or the 
like. Many of these methods do not require gradient information, and though they are easily trapped in local minima, 
the GA has hopefully given a good enough starting point that the optimum will lie close to this initial input into the 
hillclimber. This technique is also described in Chapter 7 in more detail. 

If speciation techniques are used, one can allow population size to grow as species develop, and/or decrease the 
sharing penalty. Various criteria for larger populations can be used, like an increase of modality of fitness scores, or 
the appearance of loci on the search space that seems to attract population members. However, this technique 
requires an explanation of sharing, niching and speciation, which follows in the next section. 

3.3.3 Sharing, niching and speciation 
In organic life, there are many, many species. A species is differentiated from others by the characteristic that it 
cannot mate with other species without producing defective or unviable children. Besides obvious mating difficulties, 
most often this is caused by chromosomal incompatibility between different species: a frog's chromosomes are very 
different in number and length than a cat's or a bird's. 

In the animal kingdom, of course, there is advantage to speciation: different species can live using different resources, 
and they each comprise a separate evolving population. If a disease wipes out one species, chances are it will not 
harm others because of the incompatibilities. If a species cannot adapt to a changing environment, other species will 
take its place. This diversity allows life to survive even under times of radical change. 

Species occupy specific niches in the food chain. Niches are resource-related, in that a niche is a stable place in the 
food web. A species must find a niche to be successful in the long term. Each species uses resources that are limited, 
so overpopulation is self-correcting. 

However, most problems in the engineering world are static, and so the questions arise: why speciate such a static 
environment, and how is it done for a GA operating in such an environment? The main reason to speciate in the GA 
environment is to provide a way for the population to explore more than one hill at once. In a spiky search space, 
there are many comparable hills to climb, and each may seem equally promising at the outset of the GA search. 
However, the GA converges onto one of these hills during its run. Which hill is eventually climbed is determined by 
how easy it is to find in the search space (i.e., how much of the search space it occupies), how high it goes compared 
to other hills, and random chance from the population initialization and the production of children. Speciation 
increases exploration without requiring a larger population or an increase in random search. 

Speciation, in the GA environment, is the development of different species that exploit different niches in a search 
space, established in a GA by fitness incentives and mating and replacement strategies. Speciation is a method of 
ensuring the population does not get prematurely trapped into exploiting a single hill that may be less than the 
optimal, before exploring other hills first. 
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Figure 3.19. Multi-modal search space. 

In a GA environment, however, there is usually no chromosomal incompatibility to preventing mating. Therefore, 
incentives must be given in the mating selection process and the fitness function to encourage speciation. There are 
several ways to give such incentives: sharing, mating restriction, and selective replacement. 

Sharing, or crowding, means scaling fitness to reflect' the surrounding density of population members, reducing fitness 
proportionally. In a sharing situation, niches are formed by peaks in the search space. As the members of the 
population converge on one of these peaks, the fitness of each is scaled to reflect the crowding of the population 
around this peak, simulating the depletion of resources that would occur if all animals required the same food source. 
In this manner, individuals that find other, less populated peaks will gain in fitness relative to the main cluster of the 
population, and their genetic material will have a chance to spread, even if it has not achieved a high position on the 
other hill. In this way, niches form in the population, and multiple hills are exploited without requiring a great deal 
more exploration. 

The problem with this method is that distances between individuals must be determined. For binary chromosomes, it 
is possible to count the number of bits that are the same as the member in question to determine this distance. For real 
chromosomes, one can calculate the distance that other individuals are from the member in question using a sum of 
squares. The difference between the ith gene of the first chromosome and the ith gene of the second chromosome is 
squared and these squared distances are then summed. The square root of this sum gives the Euclidean distance 
between the chromosomes. In equation form, 

Distance(Chromosome D from Chromosome C) = V (Ej(Gene j of D- Gene j of C)2) 

Mating restriction is another method of introducing species into a GA. If one is using the weighted roulette wheel, for 
instance, the selection is still done with the roulette wheel, but once one parent is chosen based on fitness, the other 
parent(s) are chosen based on similarity rather than fitness. For instance, let parent 1 be chosen using fitness-weighted 
roulette wheel. The roulette wheel would then be re-weighted, giving those chromosomes most similar to parent 1 the 
largest share of the wheel. Distance is calculated as in the sharing method, with chromosome C being the first parent 
chosen by the fitness-weighted roulette wheel. However, recall that the closer one chromosome is to the first parent 
chosen by fitness, the larger the share of the roulette wheel, implying that distance will need to be converted so that 
those with the smallest distance have the largest similarity measure. 

In this manner, species arise without modification required to the fitness function. Either this method or the sharing 
method will produce sub-populations that will evolve more-or-less independent of one another. This mating 
restriction method is preferred, however, because it takes into account something that occurs in nature but is ignored 
by the sharing method: the problem of unviable children that result from interspecies mating. 

As sub-populations drift apart, they become specialized to exploiting the niche or hill they are on. When 
chromosomes from different hills attempt to produce children, however, their offspring will likely fall in the middle 
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region between the two hills. This usually results in fatalities: children with scores so low, they are not able to survive. 
[22] In addition, "birds of a feather flock together." Usually animals do not attempt to mate with species other than 
their own. The qualities that attract mates: calls, colors, etc. do not appear to a large extent in other species. If they 
did, the species members would expend considerable effort making offspring that could not hope to survive, and the 
waste of resources would probably lead to death to the species, or to the survival of more discriminating members. 

In a GA that uses sharing, however, this mating restriction is not present. Only resources are rationed. While the GA 
is so powerful a technique that this oversight still allows good results, a mating restriction is helpful in conserving 
simulator runs, applying them to children more likely to survive. 

The final method of speciation is selective replacement. Children replace the most similar members of the population 
if they are better. Often the most similar members will be one of the child's parents, especially if the chromosome is 

binary. 

►  

Figure 3.20. Selective replacement. Note that the child may replace one of its parents. 

This also will produce speciation, in that genetic diversity tends to be preserved, yet only the better chromosome is 
kept. Thus, the population evolves and explores hills, yet it does not lose its genetic diversity as quickly. However, 
this method still faces the same problem of unrestricted mating that can cause a high proportion of fatalities in the 
children. 

3.4 The GA Process: an example 
Now that the setup and running of a GA has been described in great detail, it is useful to put all the steps together in 
an example. To facilitate better understanding of the GA as applied to electromagnetics problems, a simple antenna 
problem will be used for this example. This example is being discussed for two reasons: first, it is important for the 
reader to have an intuitive grasp of what happens in a GA both in the setup and in the running. Second, problems 
solved with the GA in later chapters are more complex and their search spaces are difficult to visualize, so a very 
simple example will helpful. This problem is a simple two-element antenna. 

Driven element 0.5 X 

Drive point --^*^ 
(in center of element' 

Separation distance 
0.04 - 2 X 

Reflector element 0 - 4 X 

Figure 3.21. Two-element antenna search space 

The front element is driven by a single two-wire source. The back element is a parasitic that is used as a reflector to 
increase directionality in the forward direction (straight up on the figure). In this example, it is desired to produce the 
maximum gain in the forward broadside direction. There are several possible variables: length of the driven element, 
length of the reflector element, separation distance between the two elements, offset and tilt between elements, 
placement of the drive point along the driven element, and wire radii. So that one can visualize the search space, the 
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search space will consist of only two variables: the size of the reflector and the separation distance. Therefore, the 
driven element will be constrained to be 0.5A,, both elements will be symmetric and aligned, the wire radii will be 
0.00U, and the drive point will be in the center of the driven element. 

The response surface can be graphed easily. The response surface shows the relationship between the gain of the 
antenna versus the two variables in the optimization. 

Gain  « 

1.68 

1.88 

Separation 

Length 

Figure 3.22. Response surface for gain vs. separation and reflector length. 

The optimal settings for this antenna as shown in the graph above are 0.14X separation and 0.48X reflector element 
length. Following is a polar plot of the pattern of the best individual from the above plot. Its maximum gain is 6.9 
dBi. 

RADIATION PATTERN 
o 

Figure 3.23. Radiation pattern of best antenna. 

Now that the example problem, its search space, and its response surface have been explained, the steps to set up a 
GA to solve the problem will be followed. The steps are repeated here: 
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Step 1: Set up the simulator 
Step 2: Define the problem 
Step 3: Determine the objective Junction 
Step 4: Determine chromosome mapping and processing 
Step 5: Determine genetic algorithm parameters 

Step 1 is simple to finish in this case—NEC2 has been chosen as capable and fast. A file transfer system is in place to 
move data between the GA and NEC2. NEC2 simulations take only a few seconds for this antenna, and NEC2 can 
handle all of the valid individuals in the search space. 

Step 2 has been done in large part above. It has been determined that it is most desired to increase the gain, and 
ignore all other data. The variables and their constraints have been determined. A fair amount of accuracy is needed, 
though, in the length and spacing of the elements, from prior experience with these types of structures, so if the GA 
uses discrete chromosomes, it will need increments no larger than 0.02X to have the necessary resolution (0.02Ä, 
incidentally, is the resolution of the above chart of the search space). 

Step 3 follows easily from Step 2 in this case. Since there is only one measure of quality, the GA has only to score 
each individual based on its gain. Hence, the fitness function will be the following: 
fitness = gain at broadside (0° <(>, 0° G). This fitness will be maximized. 

Step 4 is a bit more tricky. It will be done two ways so the reader has a chance to see both a binary and a real-valued 
GA at work. In the binary case, the GA will use 7 bits per variable (giving 0.015A, increments in spacing and length). 
Though there is an option of scrambling the genes of the binary chromosome, which will have to be 14 genes long, it 
will be constructed in the most typical way. The binary chromosome will be [LI L2 L3 L4 L5 L6 L7 SI S2 S3 S4 S5 
S6 S7], where the Ls indicate the locations of each bit in the binary representation of the first variable, length, while 
the Ss indicate the locations of the seven bits that make up the second variable, separation. 

In the real-valued chromosome, there are only two genes. Its representation is [LI SI], where LI is the length gene, 
and SI is the separation gene. 

Step 5 is dependent on Step 4, but since the problem is easy, the populations will not need to be particularly large for 
the GA to show normal progress. For the first example, a binary GA will be run with only 20 members, with a 2.5% 
mutation rate and 50% overlap from generation to generation. The GA will be stopped when the top 50% have the 
same bits, meaning that there is no diversity in the parent population. 

3.4.1 The binary GA 
An actual GA has been run with the above parameters, and will be discussed in detail. While this does not generally 
occur with these parameters, the GA found the global optimum. After going through this run in detail, along with the 
real GA optimization of this example, an experiment designed to uncover the best parameters for this optimization 
will be discussed. 

This first generation was generated at random. Recall that scores are just the broadside gain of the structure 
designated by the genotype. 

Generation # 1 
#1 10010010000011 sc: 5.400000 
#2 01101110001001 sc: 5.390000 
#3 10000100101001 sc: 4.790000 
#4 10011111110000 sc: 4.510000 
#5 10011111110001 sc: 4.380000 
#6 00011011010110 sc: 4.230000 
#7 10001111100110 sc: 4.050000 
#8 00001100010110 sc: 3.890000 
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#9 00000001101101 sc: 3.850000 
#10 00000000010000 sc: 3.850000 
#11 00111011100010 sc: 3.540000 
#12 00110001000001 sc: 3.430000 
#13 00101111011111 sc: 3.370000 
#14 10001100010100 sc: 3.340000 
#15 11001100110110 sc: 3.320000 
#16  .     11110001111101 sc: 3.320000 
#17 01011000111011 sc: 3.310000 
#18 01001100111100 sc: 3.220000 
#19 10100110111001 sc: 3.020000 
#20 01101010011000 sc: 2.590000 
top 50% avg score:    4.43400 

To provide a pictorial way to understand the diversity and makeup of the population, histograms will be shown that 
depict the number of Is for each gene in every generation. (Naturally, all genes that are not Is are by necessity Os.) 
For the first generation, the histogram is the following: 

10     11      12     13     14 

Figure 3.24. Histogram for Is in the first generation. 

Notice that the number of Is is fairly evenly distributed. The second generation was generated, and is listed next: 

Generation* 2 
#1 10010010000011 sc: 5.400000 
#2 01101110001001 sc: 5.390000 
#3 10000100101001 sc: 4.790000 
#4 10011111110000 sc: 4.510000 
#5 10011111110001 sc: 4.380000 
#6 00011011010110 sc: 4.230000 
#7 10001111100110 sc: 4.050000 
#8 00001100010110 sc: 3.890000 
#9 00000001101101 sc: 3.850000 
#10 00000000010000 sc: 3.850000 
#11 00011111010000 sc: 4.920000 
#12 00010010000011 sc: 3.530000 
#13 10010110000000 sc: 5.390000 
#14 00011011001001 sc: 3.240000 
#15 00011011000011 sc: 3.680000 
#16 00011011100101 sc: 3.650000 
#17 01101100001000 sc: 5.470000 
#18 00011010001001 sc: 2.090000 
#19 01101110001001 sc: 5.390000 
#20 10011111110001 sc: 4.380000 

from 6 & 4, xo: 2 
from 8 & 1, xo: 2 
from 1 & 10, xo: 12 
from 6 & 2, xo: 9 
from 6 & 1, xo: 9 
from 6 & 9, xo: 9 
from 2 & 10, xo: 11 
from 6 & 2, xo: 6 
from 2 & 1, xo: 14 
from 4 & 5, xo: 11 
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mutations: [16,11] [16,9] [16,2] [16,2] [13,6] [11,9] [17,7] 
top 50% avg score:     5.00200 

Notice that the first half of the population of Generation 2 is simply the best 10 chromosomes from Generation 1. The 
second half are new children, and their parents and crossover points are listed after their genotypes and scores. The 
mutations that occurred in the children are then listed in ordered pair form: the first number is the child mutated, the 
second is the number of the gene that was flipped, with the number 1 gene being the gene farthest to the left. Though 
highly unlikely, the 16 chromosome was mutated 4 times in a row! Notice the top 50% average has jumped up to 
5.00 from 4.43, and the top score (Chromosome #17 in this case) is 5.47, as opposed to 5.40 in Generation 1. The 
histogram for this generation is: 

Figure 3.25. Histogram for Generation 2. 

While there is still a great deal of diversity in the population, there is already a marked difference between this 
histogram and the one previous that came from a uniform distribution. Genes two and three seem to be converging to 
0, but Is were underrepresented in these genes in the initial population. Gene ten showed the most dramatic change, 
moving from having 13 Is initially to 7 in generation 2, a net change of 6. It will be seen if the trend continues in 
Generation 3's histogram: 
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Figure 3.26. Histogram of Generation 3. High: 5.47 Avg.: 5.34 

Notice how the fate of some genes seem to have reversed. Genes 2 and 3 are growing again, but Gene 12's diversity 
has been completely wiped out—only 0s remain in this gene in the population! Gene 13 as well moves toward 0, 
having only two Is in the population. Gene 10 continues its move toward 0, dropping to 4. On the other hand, gene 
six has almost converged to all Is—only two 0s remain in the population. No new top score was found, but the 
parent's average score for the next generation moved up to 5.34. Following is the histograms and important scores 
for the rest of the run. 
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Generation 4: high: 5.47 avg:5.40 
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Generation 16: high: 7.16 avg:7.15 
Figure 3.27. Histograms from remainder of GA run 

Here is the last generation's genepool: 
Generation # 17 

Generation 17: high: 7.16 avg:7.16 

#1 
#2 
#3 
#4 
#5 
#6 
#7 
#8 
#9 
#10 
#11 
#12 
#13 
#14 
#15 
#16 
#17 
#18 
#19 
#20 

00100000000110 sc: 
00100000000110 sc: 
00100000000110 sc: 
00100000000110 sc: 
00100000000110 sc: 
00100000000111 sc: 
00100000000111 sc: 
00100000000111 sc: 
00100000000111 sc: 
00100000000111 sc: 
00100000000110 sc: 

7.160000 
7.160000 
7.160000 
7.160000 
7.160000 
7.130000 
7.130000 
7.130000 
7.130000 
7.130000 
7.160000 from 7 & 3, xo: 8 

00000010000111 sc: 3.850000 from 2 & 10, xo: 6 
00100000000110 sc: 7.160000 from 5 & 2, xo: 11 
00110000000111 sc: 5.320000 from 3 & 6, xo: 4 
00100000000110 sc: 7.160000 from 9 & 5, xo: 11 
00100000000110 sc: 7.160000 from 5 & 9, xo: 3 
00110000000111 sc: 5.320000 from 1 & 9, xo: 1 
00100000000110 sc: 7.160000 from 3 & 1, xo: 4 
00100010000110 sc: 6.570000 from 6 & 5, xo: 5 
00100000010110 sc: 4.230000 from 4 & 3, xo: 1 

mutations: [12,7] [12,3] [14,4] [20,10] [16,14] [17,4] [19,7] 
avg score:     7.16000 

Notice that the diversity eventually drops to near zero for the whole population, and is zero in the parent population. 
The GA has been programmed to end once this convergence is reached. Note, however, that the GA found the best 
answer before convergence—in Generation 12. It required 146 NEC2 simulations to find the best answer, and 161 
total NEC2 simulations for the entire run to go to convergence. Converting the top binary genotype, the decimal 
answer the GA found was: length 0.504X, separation: 0.141A,. 
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As stated above, though, this is not the most typical run for this parameter set. Two other runs with the same 
parameters yielded top scores of 5.95 and 6.78. The first of these runs had a genotype of 01011110000110, which 
means the separation was the same as the "right" answer, but the length was 1.47k, meaning that it was trapped into a 
local maximum. 

The second run was also trapped into a local maximum, as shown by its genotype: 00100010000001. Its separation 
was small (0.0654X), though the length was close to correct (0.535X). The fact that the GA was stuck two out of 
three times into local maxima leads one to believe that the GA parameters are probably not optimized. 

It is worthwhile to explore why a GA works now that one has been shown in detail, before moving on to the real- 
valued GA. 

3.4.2 Why a GA works 
This topic is covered in detail and excellently by Goldberg [22], so only a summary of his explanation will be stated 
here. But the analysis that has been presented thus far may imply that it is the individual gene values alone that are 
significant in a binary GA run. This is not the case. The theory behind the GA is as follows: in a binary GA there are 
generally certain patterns within the genotype that are important for design performance. Consider the following very 
simple example: 

Chrom.     Score 
Olli 16 
1110 2 
1010 5 
1101 30 

Table 3.2. Example scores for a simple problem. 

In this example, the pattern ###1 seems to give a higher score, where "#" is a wildcard—it can match either a 1 or a 
0. This pattern is an example of what has been termed a "schema." Other examples of schemata (the plural of schema) 
are 1##0, 110#, and even 1100. Note that a schema can have any assortment of the three characters {1,0,#}. In this 
way, there are 3N possible schemata for a chromosome N bits long. Each chromosome is a member of 2N schemata, 
as each gene can take on its specified value or the "#." Thus, each population with M chromosomes contains between 
2N and M 2N schemata at once, depending on the overlap between chromosomes. 

In most well-constructed problems, it is the short, simple schemata with a small number of specified genes that have 
the most impact on a chromosome's performance. The presence of certain schemata in a chromosome can often 
ensure an above-average individual regardless of the other, less-important schemata it contains. 

The operations of mating selections and crossover essentially exponentially promotes successful schemata, and 
exponentially demotes unsuccessful schemata, and this property is called the Fundamental Theorem of Genetic 
Algorithms by [22]. Because there are so many schemata present in the population, there are roughly M schemata 
are usefully processed in each generation (for M or less cost function evaluations). In this way, many possible partial 
solutions are being processed at once. This parallel processing is called implicit parallelism. 

One of the important consequences of this theorem is that in order for schemata to be most effectively processed, 
they need to be as small as possible. If they are spread out over the length of the chromosome, they are much more 
likely to be split as a result of crossover. Genes right next to one another have little chance of being split apart by a 
crossover point chosen to be between them. Genes at opposite ends of the chromosome will have to be split as a 
result of crossover, and processing is much more difficult. Thus, it is important to encode a chromosome to have the 
most highly related bits next to one another. This is why one will want to keep genes together that jointly describe a 
single number, like the first seven bits in this two-wire antenna problem that describe reflector length. 
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Now that the inner workings of the binary GA has been explored, the effect of changing the binary chromosome to a 
real one will be discussed. 

3.4.3 The real-valued GA 
The real-valued chromosome for this problem is only two genes long. It is convenient to have each gene only span the 
range from 0.0 to 1.0, to allow for consistent mating and child-creation, converting the real gene to its design value in 
a separate function. In this case, the conversion from LI of the chromosome [LI SI] to Length is: 

Length = (L 1)4. 

This allows Length to go from OX to 41. Similarly, 

Separation = 0.05 + (S1>1.95, 

which allows Distance to span 0.05A, to 2X. 

Following is a GA run with the real chromosome, using Adewuya's mating and child-generation method. Mutation 
was Gaussian with a standard deviation of 0.1. There were 20 members in the population, 50% overlap from 
generation to generation, and 2.5% of the genes were mutated in each generation. (These are the same parameters as 
in the binary example.) Following is a run that converged to the right answer. The real GA was able to achieve a 
slightly higher score due to its ability to go to arbitrary accuracy. 

Generation* 1 
#1 0.8524 0.9442 sc: 3.230000 
#2 0.2101 0.1615 sc: 3.560000 
#3 0.4680 0.5392 sc: 4.050000 
#4 0.2296 0.7861 sc: 3.680000 
#5 0.6149 0.5960 sc: 4.880000 
#6 0.2208 0.4255 sc: 3.650000 
#7 0.8957 0.5301 sc: 3.900000 
#8 0.9008 0.0562 sc: 5.460000 
#9 0.4409 0.0798 sc: 5.270000 
#10 0.0626 0.5251 sc: 3.860000 
#11 0.5693 0.3800 sc: 4.330000 
#12 0.1430 0.0845 sc:5.680000 
#13 0.1716 0.7558 sc: 3.370000 
#14 0.8760 0.3488 sc: 4.600000 
#15 0.3802 0.3601 sc: 4.940000 
#16 0.7372 0.7502 sc: 3.370000 
#17 0.6845 0.4069 sc: 3.650000 
#18 0.2077 0.8795 sc: 4.240000 
#19 0.6991 0.2025 sc: 2.720000 
#20 0.2372 0.6458 sc: 4.160000 
Top 50% avg score:    4.76100 

Following is a scatter plot showing the positions of these first 20 individuals in the search space. Notice that this is 
fundamentally different from the binary histogram, which showed the amount of each gene in the population, and that 
the scattering is random throughout the space. 
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Figure 3.28. Scatter plot for Generation 1. The "Length" gene is plotted on the horizontal axis, "Separation" gene is 
on the vertical axis. Best chromosome has score 5.68, top 50% avg: 4.76 

In the mating process to create Generation #2, 30% of the children's genes were created through quadratic crossover, 
and 70% through heuristic. 

Generation # 2 
#1 0.1430 0.0845 sc: -5.680000 
#2 0.9008 0.0562 sc: -5.460000 
#3 0.4409 0.0798 sc: -5.270000 
#4 0.3802 0.3601 sc: -4.940000 
#5 0.6149 0.5960 sc: -4.880000 
#6 0.8760 0.3488 sc: -4.600000 
#7 0.5693 0.3800 sc: -4.330000 
#8 0.2077 0.8795 sc: -4.240000 
#9 0.2372 0.6458 sc: -4.160000 
#10 0.4680 0.5392 sc: -4.050000 
#11 0.6468 0.1724 sc: -3.070000 from 2 & 7 & 1 
#12 0.1728 0.9958 sc: -3.450000 from 7 & 8 & 6 
#13 0.2038 0.0053 sc: -5.030000 from 3 & 9 & 4 
#14 0.6923 0.4087 sc: -3.620000 from 4 & 3 & 2 
#15 0.4079 0.2181 sc: -2.570000 from 4 & 3 & 1 
#16 0.6630 0.4286 sc: -3.240000 from 7 & 5 & 3 
#17 0.9948 0.3697 sc: -4.420000 from 3 & 6 & 5 
#18 0.6037 0.5568 sc: -4.490000 from 3 & 6 & 4 
#19 0.4790 0.8592 sc: -4.490000 from 3 & 7 & 10 
#20 0.0207 0.3024 sc: -3.850000 from 2 & 9 & 5 
Mutations: [16,1] 
Top 50% avg score:    -4.92600 
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Figure 3.29. Scatter plot for Generation 2. The "Length" gene is plotted on the horizontal axis, "Separation" gene is 
on the vertical axis. Best: 5.68, top 50% avg: 4.93 
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Following are the plots for every third generation up to generation 23, after which the individuals are tightly clustered 
around the same point shown in Generation 23. Notice that the separation variable converged onto the correct value 
by only Generation 6. This is not surprising since the optimal separation is roughly the same even if a chromosome 
specifies a different length. Also, the hill is larger for the separation variable than for the length variable. 
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Gen 11—best: 7.00, top 50% avg: 5.85 
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Gen 17—best: 7.00, top 50% avg: 6.19 
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Gen 14—best: 7.00, top 50% avg: 5.98 
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Gen 23—best: 7.19, top 50% avg: 7.13. 

Figure 3.30. Scatter plots for remainder of GA run. The "Length" gene is plotted on the horizontal axis, "Separation" 
gene is on the vertical axis. 
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Plots for Gen. 26 and 29 are essentially the same as for Gen. 23. Gen. 26 had a best score of 7.19, and a top 50% 
average of 7.14. Gen. 29, the last generation, hadabest score of 7.19, andatop 50% average of 7.19. 

In the final generation, quadratic crossover did not occur, only heuristic, because only one individual was mated. This 
single-chromosome selection occurred because of fitness scaling. 7.14 was the score of every other chromosome, so 
the fitness of every other chromosome but #1 was 0.0, while the fitness of #1 was 0.05. This gave the entire wheel to 
chromosome #1, and shows a slight weakness in this scaling scheme. When the GA converges almost completely, 
save one better chromosome, that chromosome will dominate the mating of the next generation. However, this only 
occurs when the GA is almost completely converged anyway, and so is not worrisome. In addition, there was no 
successful quadratic crossover in the last 4 generations, showing the GA was fairly converged even before the final 
generation. 

Generation # 29 
#1 0.1236 0.0623 sc: 7.190000 
#2 0.1223 0.0792 sc: 7.140000 
#3 0.1220 0.0799 sc: 7.140000 
#4 0.1223 0.0786 sc: 7.140000 
#5 0.1222 0.0795 sc: 7.140000 
#6 0.1220 0.0799 sc: 7.140000 
#7 0.1221 0.0797 sc: 7.140000 
#8 0.1223 0.0792 sc: 7.140000 
#9 0.1222 0.0795 sc: 7.140000 
#10 0.1222 0.0795 sc: 7.140000 
#11 0.1236 0.0058 sc: -9.280000 from 1 & 1 & 1 
#12 0.1236 0.0623 sc: 7.190000 from 1 & 1 & 1 
#13 0.1236 0.0623 sc: 7.190000 from 1 & 1 & 1 
#14 0.1236 0.0623 sc: 7.190000 from 1 & 1 & 1 
#15 0.1236 0.0623 sc: 7.190000 from 1 & 1 & 1 
#16 0.1236 0.0623 sc: 7.190000 from 1 & 1 & 1 
#17 0.1236 0.0623 sc: 7.190000 from 1 & 1 & 1 
#18 0.1236 0.0623 sc: 7.190000 from 1 & 1 & 1 
#19 0.1236 0.0623 sc: 7.190000 from 1 & 1 & 1 
#20 0.1236 0.0623 sc: 7.190000 from 1 & 1 & 1 
mutations: [11,2] 
avg score:    -7.19000 

The "correct" answer took 209 NEC2 simulations to achieve, and convergence occurred in 284 simulations. Notice 
this is almost twice as many computations as the binary GA required. However, as will be seen in Chapter 5, some 
problems are only effectively solved with a real GA. 

Also, other real-chromosome GA runs with these parameters did not produce these results. These other runs achieved 
5.96, 5.96, 5.37, 5.50 and 5.53 dB of gain—much worse than the one described here. In addition, they were all 
trapped into local maxima. The first two had approximately 1.6*. length and 0.15*. separation. The next converged to 
3.66*, length and 0.08*. separation. The last two converged to 1.92*, length, 0.14*. separation and 2.33*. length, 
0.13*. separation respectively. Looking at the response surface, it is easy to see that each time the GA was trapped in 
the local maxima at those locations. Obviously, then, the GA had very inappropriate parameters. 

3.5 Optimizing the example GA 
As was mentioned above, each example GA shown above was not optimal in its parameters. The parameters were 
chosen so that the analysis would be simple and a listing of the whole population would not be too lengthy. However, 
a natural question to ask is what parameter set is optimal for this GA. To answer that question, an experiment was 
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conducted to optimize this GA in both its binary and its real-valued forms. Three variables were studied: population 
size, percent of population overlap, and mutation rate. 

Population size had 6 values: 10, 20, 40, 80, 160, and 320. Percent overlap had three values: 0.3, 0.5, and 0.7. 
Mutation rate had 5 values: 5%, 2.5%, 1.25%, 0.625%, and 0.3125%. 

Because this was a full-factorial experiment, statistical methods could be applied to find the optimal parameters. 
However, it is of use just to do some basic analysis of the performance of the GA. More involved analyses occur in 
later chapters, where precise optimization is more important. 

First, the binary case was explored. The 90-run experiment (6 population sizes -3 percentage overlap levels -5 
mutation rates) was repeated 3 times to give a better representation of the behavior of the GA. 

The most important variable by far was population size. The effect of the other two variables paled in comparison. 
Averaged over all mutation rates and percentages, the following table shows the effect of population size: 

Population size Average score Standard Deviation % that find the "right" answer 
10 5.68 0.48 6.7 
20 6.14 0.40 13.3 
40 6.77 0.24 55.6 
80 6.97 0.25 75.6 
160 7.12 0.081 86.7 
320 7.16 0.000 100 

Table 3.3. Binary GA performance vs. Population size 

So it would appear that a large population is best. The problem is that the number of runs to convergence increases 
dramatically with population size, as shown below. 

Population size Average NEC2 
sims to top score 

St Dev of NEC2 
sims to top score 

Average NEC2 sims 
to converge 

St Dev NEC2 sims 
to converge 

10 20.44 8.25 26.1 10.8 
20 55.4 19.9 69.5 27.2 
40 121.47 27.4 149.1 47.1 
80 235.5 59.0 308.6 104.6 
160 506.62 178 645.5 250.1 
320 748.6 117.0 1096.9 275.4 
Table 3.4. NEC2 simulations vs. Population size for a binary GA 

As is shown, then, one pays a price for the security of knowing one has the right answer. What is the best situation 
for a given problem depends on the time allowed and the importance of being certain a given answer is the absolute 
best available. 

A similar situation arose in the real-valued GA. 

Population size Average score Standard deviation % that find the "right" answer 
10 5.54 0.24 3.8 
20 5.96 0.25 11.1 
40 6.37 0.21 30.5 
80 6.77 0.17 61.0 
160 7.05 0.16 86.5 
320 7.16 0.061 97.1 
Table 3.5. Real GAp erformance vs. Popu ation size 
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Population size Average NEC2 
sims to top score 

St Dev of NEC2 
sims to top score 

Average NEC2 sims 
to converge 

St Dev NEC2 sims 
to converge 

10 133.7 98.2 253.8 101.4 

20 185.6 85.1 264.6 91.9 

40 349.6 83.6 432.6 83.2 

80 609.5 120 756.6 120.5 

160 1043 237 1311 290.8 

320 1797 231 2420 353.1 

Table 3.6. NEC2 simulations vs. Population size for a real GA 

As can be easily seen, one not only pays for the security of the best answer with more NEG2 runs, but the real GA 
requires a much larger number of runs for all population sizes. This has been found to be the case for all the antennas 
optimized in this thesis. However, some problems have much more difficult and sensitive optima, and the real- 
numbered GA seems to be able to find them in less time, given all the repeated runs necessary for the binary GA to 
find similar optima. The real GA also found better answers than the binary GA because of its arbitrary accuracy. The 
real GA does not necessarily supersede the binary GA for all cases, however, as the improvement in score and 
reliability may not always justify the higher cost of the simulation time. More differences will be discussed in later 
chapters as different antennas are optimized with both real and binary GAs. 

As the effect of the other two variables—mutation rate and overlap—were more subtle, their effect will be explored 
in later chapters where more complete experiments are described. However, their effect is almost negligible compared 
to the overriding effect of population size. De Jong performed a similar investigation in his 1975 thesis for the simple 
GA [30]. 

Note that, though all the parameters were varied greatly in both the real and binary GAs, they did not require that one 
use the best possible parameters in order to obtain the correct answer at least occasionally. This shows clearly the 
robustness of the GA to its parameters. 

3.6 Conclusion 
This chapter contains a great deal of GA information, primarily practical in nature, and an example of a normal binary 
and real GA run. In succeeding chapters, GA optimizations of various antenna designs will be explored, and the 
process of finding the optimal parameters for the GA optimizing those designs. 
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Chapter 4: The Loaded Monopole 

4.1 Introduction 
A monopole loaded with a modified folded dipole, as is seen in Figure 1, has been previously investigated. It was 
shown that when the inserted folded element is approximately 0. IX. above the ground plane and the height of the 
monopole is about 0.35k, then the Ee-pattern in the plane of the folded element (i.e., the cut at <|> = 0°) approaches 
hemispherical coverage [1]. In this chapter, a GA is utilized to optimize the above configuration for uniform power 
throughout the upper hemisphere (i.e., for all <j> and where -90° < 0. < 90°). This was the first wire antenna to be 
optimized for this research, and, to the best of my knowledge, was the first antenna composed only of wire to be 
optimized with a GA. 

The GA is applied in the procedure described in Chapter 3. Each of the wires that make up the antenna is designated 
to have a range of possible lengths. The GA randomly selects the initial population. As with the example antenna of 
Chapter 3, the GA program converts each configuration from its internal representation (explained in the next 
section) to a file that can be read by NEC2. The GA then calls NEC2, which computes the sample's radiation pattern 
and places the results in an output file. The GA program reads the output file, and the radiation pattern is compared 
with the desired pattern and scored. As will be discussed, the optimization for this antenna has a single goal: a sum- 
of-squares match to a uniform, broad-beam pattern. 

This antenna was optimized using a binary GA. An experiment was performed to optimize the binary GA parameters. 
Since this antenna has only six unknowns, an exhaustive search was conducted of the search space to explore its 
characteristics. After these were performed, the antenna was optimized with a real chromosome to compare the 
results. One of the earliest high-quality outputs of the binary GA optimization was fabricated and tested to verify that 
the simulation matched reality. Such verification was useful to ensure that the GA results were valid and not 
exploiting some weakness in the simulator. 

4.2 The search space 
In order to implement a GA it is necessary to select a set of possible lengths for each wire of the loaded monopole. It 
is important that each range of lengths be large enough that the optimal length is likely to be included, yet not so large 
that the search space becomes unmanageable. Also, the binary-string GA requires the range of lengths for each wire 
to be broken into an integral number of different possible lengths from which the GA can choose. 

The figure below shows the search space for the loaded monopole antenna. Note that it only has six unknowns, two 
X-coordinates and four Z-coordinates. The ranges for each variable are shown in the figure. These ranges were 
chosen using the prior results and experience obtained in [1], though they were relaxed somewhat beyond what 
would have normally have been considered. In addition, separating the two X-coordinates to allow asymmetry had 
not be.en explored before, but turned out to be crucial to the performance of the antenna. 

68 



Z4 
(0.05 - 0.50)*. 

(0.01-0.10)* 

Z31CZ 
(0.05 - 0.50)* 

XI 

X2 
(0.05 - 0.50)* 

]lZ2 
(0.01-0.10)* 

Zl 
(0.03 - 0.35)* 

Figure 4.1. Monopole antenna loaded with a modified folded dipole. Numbers in parentheses indicate initial range of 
lengths. 

Each wire is represented by a 5-bit string and thus has 32 possible lengths. Five bits per variable were chosen because 
it gave a resolution (i.e., a lower bound on the smallest change) of 0.014X. to 0.003A. (depending on the wire), which 
was on the order of the fabrication tolerance. This resolution gave very good results. If adequate results had not been 
obtained, resolution would have been increased or decreased. Increasing the resolution would have been valuable if 
the bandwidth was inherently narrow and it was needed to fine-tune the wire lengths, but would have increased the 
size of the search space and made the GA's job more difficult. Decreasing the resolution would have enabled the 
algorithm to search the space more quickly and/or more exhaustively (since there would be fewer solutions to choose 
from), but there would be a risk that good solutions would no longer exist in the coarser search space. 

4.3 The objective function: optimization for wide beamwidth 
The radiation pattern of each individual was computed using NEC2, compared with the desired pattern (uniform 
power over the hemisphere for this antenna) using a cost function containing a least mean square criterion, and 
ranked according to performance. 

The specific cost function for this antenna is: 

Score = lover aii e,4>(Gain(e,<|>) - Avg. Gain)2 

Unlike the example in Chapter 3, the objective of the optimization was to minimize this score. A perfect antenna 
would have a score of zero. 

4.4 Initial GA results 
The GA was repeated a number of times for the loaded monopole, and, while it never produced identical designs, 
they were usually similar in their dimensions. It is not surprising that the antennas it produced were never identical, 
since there are over one billion possible designs with the 30-bit binary chromosome, and the GA is a probabilistic 
strategy, including a random initial population, and random selection of crossover points for mating chromosomes. 

For the initial GA run of this antenna, a population of 150 binary chromosomes was used, with an overlap of 50%. 
The exact mutation rate that varied from generation to generation, as the GA was allowed to flip a random number of 
bits totaling between 1 and 20 in the children in each generation. One <|> angle of 0°, and 181 9-angles (-90° to 90°, in 
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1° increments) to get the sum-of-squares variation over the hemisphere was used. As will be described, though, this 
antenna optimization was run with many different GA parameters, though always with the same cost function. 

A fitness-weighted roulette wheel was used for mating selection, with a fitness transformation. The transformation 
was the same one used in all optimizations in this thesis, and was necessitated by the fact that this was a minimization 
instead of a maximization. The fitness transformation, in which the scores are all scaled relative to the score of the 
worst individual, is described in Chapter 3. Single-point crossover was used as well. 

The score for the antenna resulting from this initial GA was 30.9 for <j> = 0°, 45°, and 90°, and 13.7 for just the $ = 0° 
cut. This is among the best that was found by all GA optimizations of this antenna. It had an excellent simulated 
pattern, and an unusual, asymmetric shape—not at all what was expected. It was built and tested, and thus its 
measurements and characteristics are discussed in the section in this chapter entitled "Antenna validation and testing." 
Suffice to say here that it was a very encouraging result. 

4.5 Optimizing the GA 
Though the initial results were quite promising, it was desired to know whether the GA was itself optimized. A full- 
factorial designed experiment was performed to optimize the GA for the loaded monopole. The variables included 
were: number of <|>-angles (designated "# Ang" in the following table), population size (M), and percent overlap (%). 
Mutation rate was not included in this experiment, and was allowed to randomly vary between 1 and 20 bit-flip 
mutations per generation. The number of 0-angles used in each simulation was held constant at 181 (from -90° to 
plus 90°, including 0°), so changing the number of ((»-angles would change the number of total angles in multiples of 
91. 

Following is the runsheet for this experiment. The runsheet is included here for illustration; future experiment 
runsheets are similar and will not be shown. As one can see, each variable had two levels. The number of <j>-angles 
varied between 1 to 3 (0° only, versus 0°, 45° and 90°), population between 50 and 500, and overlap between 30% 
and 70%. The full experiment was replicated eleven times, so eleven data points are shown for each combination of 
parameters. Listed are the number of generations required to converge, the number of NEC2 simulations needed to 
achieve convergence, the best, raw scores found by the GA after convergence, and the performance of each 
optimized design based on three (j)-angles (the more accurate measure of hemispherical coverage). 
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M     % 
50    0.7 
50    0.3 
500 0.7 
500 0.3 
50   0.7 
50    0.3 
500 0.7 
500 0.3 

Generations required to converge avg      s 

32.09    13.80 
8.36      2.77 
22.18    5.90 
9.91      2.77 
23.82    6.48 
9.91      4.30 
24.45    14.67 
11.09    2.26 

#Anq 1          2        3       4        5        6 7 8 9 10 11 

1 29       26      19      37      18       39 64 28 46 19 28 

1 7          14      8        5        9         12 7 10 7 5 8 

1 23        20      22      20      36       26 18 16 15 27 21 

1 7          10      8        11      9         11 12 8 11 16 6 

3 35       22      22      16      18       29 17 20 33 28 22 

3 15        8        14      14      12       15 5 5 4 10 7 

3 22       65      17      23      15      22 19 18 17 36 15 

3 9          15      14      9        10       9 9 14 11 11 11 

Number of NEC calls 
  

avg s 

#Ang M % 12         3         4         5 6 7 8 9 10        11 

1 50 0.7 498    450      338     626      322 658 1058 482 770 338     482 547.45 220.83 

1 50 0.3 266    518      302      194      338 446 266 374 266 194      302 315.09 99.60 

1 500 0.7 3822 3369    3671    3369    5785 4275 3067 3765 2614 4426    3520 3789.36 834.78 

1 500 0.3 2606 3659    2957    4010    3308 4010 4361 2957 4010 5765   2255 3627.09 973.41 

3 50 0.7 594    386      386     290      322 498 306 354 562 482      386 415.09 103.65 

3 50 0.3 554    302      510      518      446 554 194 194 158 374      266 370.00 154.06 

3 500 0.7 3671  10164 2916    3822    2614 3671 3218 3067 2916 5785    2614 4041.64 2215.50 

3 500 0.3 3308 5414    5063    3308    3659 3308 3308 5063 4010 4010    4010 4041.91 791.96 

Best Scores after convergence, as optimized, using 91 or 273 angles avg s 

#Anq M % 12         3         4          5 6 7 8 9 10        1 1 

1 50 0.7 6.99   12.7     31.9     0.739   42.2 11.9 5.8 306 15.6 76.9     21.7 48.40 88.13 

1 50 0.3 50.7   16.7     135.7   50.1     49.35 9.18 98.2 17.4 95.8 85.5     50.4 59.91 39.73 

1 500 0.7 5.12   10.2     5.11     1.68    4.33 2.99 25.6 5.1 10.83 10.46   3.79 7.75 6.70 

1 500 0.3 8.9     0.884   7.79     6.81      1.09 6.31 1.99 11.2 4.8 1.2 3.73 5.88 4.36 

3 50 0.7 52.4   124      62.7     283      340 64.5 133 139 21.5 66.4     ! 520 164.23 154.11 

3 50 0.3 115    147      116      529      64.5 437.6 741 130 439 50.1     ! 58.7 260.72 233.89 

3 500 0.7 10.6   64        18.9     24.2     53.7 32.2 32.9 14.2 37.9 36        41.2 33.25 16.19 

3 500 0.3 23.7   29.5     48.3     30.6     29.3 23.3 23.4 27.5 33.1 21.8     26.3 28.80 7.38 

Hemispherical performance, using 273 angles in all cases avg       s 
1          2        3       4        5         6 7 8 9 10 11 

1 50 0.7 33.4     122    1293 317    100     196 1944 1377 773 267.E !   249.3 606.59 647.76 

1 50 0.3 91.9     232    263    126    250     43.6 224 94.1 424 182 1652 325.69 452.32 

1 500 0.7 49.8     78      273    494    48.5    479 60.9 29.2 1703 27.2 9.18 295.62 500.32 

1 500 0.3 854.5   473    744    231    367     35.7 432 24.6 99.7 766 30.9 368.95 313.74 

3 50 0.7 52.4     124    62.7   283    340     64.5 133 139 21.5 66.4 520 164.23 154.11 

3 50 0.3 115      147    116    529    64.5    437.6   741 130 439 50.1 98.7 260.72 233.89 

3 500 0.7 10.6     64      18.9   24.2   53.7    32.2 32.9 14.2 37.9 36 41.2 33.25    16.19 

3 500 0.3 23.7     29.5   48.3   30.6   29.3    23.3 23.4 27.5 33.1 21.8 26.3 28.80 7.38 

Legend: #Ang = # of Phi angles included in the optimization 
M = Population size 
% = Percent of population saved betw. generations 
avg = average 
s = est. std. Dev. 

Table 4.1. Run sheet for GA parameter experiment 

Notice that, as in the example GA in Chapter 3, the population size varied dramatically during the experiment. Even 
so, the GA was occasionally able to find a good answer occasionally with a small population. Of course, the GA was 
much more reliable with a large population. Notice that, as in Chapter 3, a price is paid to ensure the GA converges 
to a good answer: the number of runs required for large population sizes is an order of magnitude larger than with 
small ones. One would probably want to consider running small populations repetitively instead of putting all hope 
into a single GA run given these results. To find just one answer below 50, one would have to run the GA with a 
small population approximately 15 times, with an expected cost of 6200 NEC2 simulations. One would have a 91% 
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chance of getting a similar answer out of only one large-population GA run, with about 4000 NEC2 simulations. But 
if one did not get the right answer, one would have to run the GA again, with another 4000 NEC2 simulations! 

Overlap did not seem to make a large difference. Sometimes the average optimal score with an overlap of 0.3 would 
be smaller, sometimes larger than the 0.7 overlap. Thus, it turned out to be a weak predictor of GA performance. 
This variable is explored more deeply with the crooked-wire antenna, to be discussed in Chapter 6. 

While it may be obvious why population size and overlap were varied, it may not be as clear why the number of <|> 
angles were changed. Several preliminary runs were conducted using only one <|> angle, including the one that was 
eventually built and tested, thinking that if one <j>-cut were optimal, that might translate into all <j)-cuts being optimal. 
If this had been true, it would make the GA more sensitive to small variations in individual datapoints. Having a large 
number of angles to sum over could mean that a small amount of variation over a large pattern could have the same 
score as a very even pattern with a single unacceptable, narrow null. 

It turned out, however, that the performance of the GA changed dramatically with the number of <j> angles, and that a 
larger number of angles was important to have. Though the raw GA scores were not very different, the individuals 
produced by only one <|>-cut had much poorer patterns over the hemisphere. This was important to learn: angles were 
important to sample frequently in an antenna pattern. Fortunately, not all quantities, especially frequency dependence, 
are so sensitive, as will be shown in the next chapter. 

4.6 Exhaustive search results 
The loaded monopole search space was further investigated to determine the suitability of a GA as opposed to 
classical methods (e.g., gradient methods) of optimization. This exhaustive study, involving over 65,000 NEC2 runs, 
spanned the whole search space (though at lower resolution than the GA optimization). 

The four larger variables XI, X2, Zl, and Z4 all received 8 levels. The other two, Z2 and Z3, since they have much 
smaller ranges, had only 4 levels each. All told, there were 65,536 different combinations which were simulated. 

The results of this search are difficult to visualize, because, unlike the example of Chapter 3, there are six unknowns, 
and only a few levels for each, meaning that surfaces showing the relationship between only two variables are 
incomplete and low-resolution. However, it is of interest to see the relationship of each variable alone on the antenna 
score. Hence, the following series of histograms only show just one variable at a time, with all scores in a row above 
the valid values of the variable. Zl will be examined first. 
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Figure 4.2. Zl Histogram and close-up histogram of the low-score end. 

Note that the distributions of all the histograms for all values of Zl cover almost the whole range of scores, from 
poor to reasonably good. Thus, Zl is not a particularly good predictor of performance by itself: given any value of 
Zl, a good individual could result if the other parameters were properly chosen. When the score is plotted on a 
logarithmic scale, they resemble normal distributions, and the means are very similar. The standard deviations differ 
slightly, though, and seem to increase as Zl decreases. In the close-up view, one can see that having a lower Zl value 
makes it possible for a better result, however, good results are obtainable even with Zl values as high as 0.304. 
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Figure 4.3. Z2 Histogram and Close-up of low score 

Z2 has only four levels, and is apparently not a sensitive factor by itself. All values of Z2 have good antennas in their 
distributions. Note that, again, the distributions are normal-like and have similar means and standard deviations. 
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Figure 4.4. Z3 Histogram and Close-up of low-score end. 

Again, Z3 shows a similar pattern to Z2, however, the best values seem obtainable only with the higher three values 
of Z3. Even so, a value of 0.013 for Z3 can produce good results. 
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Figure 4.5. Z4 Histogram and close-up of low-score end. 

Z4's histograms seem similar to Zl 's. In Z4's case, the best scores seem to be at 0.114, and higher values of Z4 limit 
the score to some extent. 
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Figure 4.6. XI Histograms and Close-up of low-score end. 

XI has distributions with about the same mean, but they have different standard deviations. Though there is a larger 
standard deviation when XI is 0.243, the best score is achieved with X1=0.114. Note that there is a gap in good 
scores at Xl=0.179. This seems to imply that the good scores obtained at Xl=0.243 are not on the same hill as those 
obtained with XI < 0.114, because if they were, there should be scores for X1=0.179 that are between those at 0.243 
and 0.114. 
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Figure 4.7. X2 Histogram and Close-up of low-score end. 

X2 is a fairly sensitive parameter by itself, more so than the others. If X2 is larger than 0.243, the scores are limited to 
a significant degree. In addition, the scores are limited if X2 is too small. It seems that X2=0.179 is significantly better 
at producing low scores than any other value. 

It appears that a larger standard deviation corresponds slightly to a possibility of better individuals, given that the 
other parameters are chosen correctly. There are more good individuals in the low-end tail of many of the 
distributions with the larger spread of scores, though they may not contain the best individuals. Interestingly, there are 
also more poor individuals in their distributions. 
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It is not too surprising that the distributions should be roughly normal about the reasonably bad score of about 1500. 
It requires careful design, or great deal of luck, to have something work well. It also requires a great deal of luck or 
skill to make something work extremely poorly. It requires very little luck, on the other hand, to have something that 
works fairly poorly. This is indeed the case with the loaded monopole. 

Now that each variable has been discussed individually, it is of interest to see if the best scoring individuals found 
during the search are on the same hills, or on different ones. There is already some evidence of the latter, in the lack 
of good scores for X1=0.179. However, following is a list of all the antennas with scores less than 50 (corresponding 
to an average variation of 0.42dB from the mean). 

Rank Z1 12 Z3 Z4 X1 X2 Score 

1 0.03 0.0433 0.0866 0.2009 0.1143 0.1786 13.0651 

2 0.03 0.0733 0.1166 0.2309 0.05 0.1786 17.2837 

3 0.0757 0.089 0.1923 0.2423 0.2429 0.1786 19.2299 

4 0.2129 0.2262 0.3295 0.4437 0.2429 0.1786 23.5034 

5 0.1214 0.1347 0.238 0.4166 0.3071 0.1143 26.4176 

6 0.2586 0.2719 0.3452 0.588 0.3071 0.1143 26.4363 

7 0.0757 0.089 0.1923 0.3066 0.5 0.1143 26.9067 

8 0.1671 0.1804 0.2837 0.4623 0.3071 0.1143 27.0461 

9 0.03 0.0433 0.0866 0.2009 0.2429 0.1786 28.6568 

10 0.2586 0.3619 0.4052 0.4552 0.1143 0.1786 28.9299 

11 0.0757 0.089 0.1923 0.3709 0.3071 0.1143 28.9446 

12 0.2586 0.2719 0.3452 0.5237 0.3714 0.1143 29.6085 

13 0.2586 0.2719 0.3152 0.4937 0.2429 0.1786 29.6956 

14 0.1214 0.1347 0.238 0.3523 0.4357 0.1143 30.097 

15 0.0757 0.089 0.1623 0.3409 0.3714 0.1143 31.2832 

16 0.1671 0.1804 0.2837 0.398 0.4357 0.1143 32.3474 

17 0.2129 0.2262 0.2995 0.478 0.3714 0.1143 33.5343 

18 0.2586 0.3019 0.3152 0.6223 0.3071 0.1143 33.5724 

19 0.0757 0.089 0.1623 0.3409 0.4357 0.1143 33.6865 

20 0.1671 0.1804 0.2537 0.368 0.2429 0.1786 34.0604 

21 0.2129 0.2262 0.3295 0.4437 0.4357 0.1143 35.8283 

22 0.1214 0.1347 0.208 0.3866 0.3714 0.1143 36.6234 

23 0.2586 0.2719 0.3452 0.5237 0.2429 0.1786 36.8269 

24 0.3043 0.3176 0.3309 0.5737 0.2429 0.1786 36.8417 

25 0.0757 0.089 0.1323 0.2466 0.05 0.1786 37.1446 

26 0.03 0.0733 0.0866 0.2652 0.3714 0.1786 37.1656 

27 0.2129 0.3162 0.3595 0.4095 0.1143 0.1786 37.5638 

28 0.0757 0.089 0.1323 0.2466 0.2429 0.1786 37.9332 

29 0.0757 0.089 0.1923 0.3066 0.4357 0.1143 38.4585 

30 0.3043 0.3176 0.3309 0.638 0.3071 0.1143 38.8382 

31 0.0757 0.089 0.1023 0.2809 0.3071 0.1786 38.8439 

32 0.2129 0.2862 0.3295 0.3795 0.1143 0.1786 39.4351 

33 0.1671 0.1804 0.2537 0.368 0.5 0.1143 41.8654 

^ 0.1671 0.1804 0.2537 0.4323 0.3714 0.1143 42.4109 

35 0.1671 0.2104 0.2237 0.2737 0.05 0.2429 42.4896 

36 0.2129 0.2562 0.3295 0.5723 0.3071 0.1143 42.6575 

37 0.0757 0.089 0.1023 0.2809 0.3714 0.1786 42.7421 
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38 0.2586 0.3319 0.3752 0.4252 0.1143 0.1786 42.8912 

39 0.3043 0.4076 0.4509 0.5009 0.1143 0.1786 43.0162 

40 0.1671 0.2104 0.2237 0.4023 0.3071 0.1786 43.4411 

41 0.2129 0.2262 0.2695 0.5123 0.3071 0.1143 44.8904 

42 0.2586 0.3319 0.3452 0.588 0.2429 0.1786 46.5585 

43 0.1214 0.1647 0.268 0.4466 0.3071 0.1143 48.4363 

44 0.1214 0.1347 0.208 0.3223 0.5 0.1143 49.4246 

45 0.2129 0.2262 0.2695 0.448 0.4357 0.1143 49.6259 

46 0.1214 0.1347 0.178 0.2923 0.2429 0.1786 49.6631 

47 0.03 0.0733 0.1466 0.3252 0.4357 0.1143 49.8516 

Table 4.2. T ie top indivic luals with scores less than 50 from the exhaustive search 

Looking at the table, it seems that there are similarities between 1, 2, 3, and 7. They could conceivably be on the 
same hill in the search space. However, 4, 5 and 6 are quite different from those four. They seem to have a 
completely different set of parameters. Thus, there are at least two hills of roughly equal magnitude in this search 
space. As one looks further down the table, it appears there are quite a few combinations that produce good results, 
though it should be noted that these are the top 47 individuals out of 65,536. Thus, it is not at all easy to achieve 
these results at random! And, with the complex interactions between variables that seem to exist, there are 
undoubtedly many more local minima than the two explored above, and it is very likely that they are not good. Note 
that, though the spacing of the data collected across the search space was completely even, the histograms are not at 
all even or smooth. Note also that, in the previous section regarding the optimization of the binary GA the untuned 
GA converged to many sub-optimal results. This indicates the presence of local minima as well. 

The likely presence of these poor local minima heightens the importance of the initial guess in a classical optimization. 
In addition, as mentioned above, the variables have a set of complex interrelationships with one another. Given any 
parameter value, the right combination of other parameters will make up a good antenna. Thus, the GA is a good 
choice of optimizer for this problem, not only because of its robustness and lack of need for an initial guess, but also 
because it accounts for the complex interdependencies of the variables and evolves all parameters at once. 

A note before exploring the loaded monopole using a real-valued GA: it was not anticipated that the best answers 
would be asymmetric. All 47 of the good answers found in the exhaustive search, as well as those found by the binary 
GA are asymmetric, though they were by no means constrained to be. This is quite a counter-intuitive result—it 
would seem that a symmetric, hemispherical pattern would be more likely to come from a symmetric antenna. Thus, if 
an engineer were to have to provide a classical optimization with a good initial guess, it seems very likely that the 
guess would have been symmetric, and the optimization would likely become stuck in a local minimum before 
converging to the better asymmetric solutions. 

4.7 Results with real chromosome 
Though the tuned binary GA is quite capable of solving this problem, it is of interest to compare its performance with 
that of a GA using real chromosomes. A run was performed with such a GA. 

Mating occurred according to Adewuya's method [24], and a Gaussian mutation operator was used. There were 175 
individuals, with 30% overlap, and 0.6% mutation rate. These parameters were discovered to be adequate while 
optimizing the Yagi antenna (described in Chapter 5), and so were used without modification to see if performance 
would be adequate. 

The antenna that resulted, compared to the best binary individual, are listed in the table below: 
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Real chromosome Binary chromosome 

ZI 0.0300 X 0.0299 X 
Z2 0.0100 X 0.0133 a. 
Z3 0.0413 X 0.0453 X 
Z4 0.110X 0.113 A. 
XI 0.481 X 0.413 X 
X2 0.142 X 0.152 A. 

Score 17.14 10.6 
Table 4.3. Designs optimized by real and binary chromosomes 

Note that the score achieved with one run of the real GA was better than all but one in the exhaustive search. Also, 
though the best binary GA score was better, the performance improvement was minimal: average variation was only 
0.05dB better. In addition, to achieve this score required an experiment to determine the right parameters, and then it 
required 11 runs. The 11 runs themselves used 44,458 NEC2 simulations. The next closest score from these runs was 
14.2. 

The number of NEC2 runs needed for the real GA was 10,261. It achieved 99.9% of this score in 9769 NEC2 runs, 
and 99% in 7432 NEC2 runs. Of course, it also only required one GA run. 

This seems to be a typical situation: the real GA takes more simulations than its binary counterpart, but is more 
certain of getting a good answer. It also seems more robust to its runtime parameters. The binary GA will often 
require tuning or re-running to be assured of adequate optimization. As will be seen in Chapter 5, the long-term 
savings in simulations can be significant. 

4.8 Antenna validation and testing 
As has been shown, the GA has produced many designs that have a nearly uniform power pattern over the entire 
hemisphere. One generated early in this research was chosen to be built and tested to validate the results. The 
dimensions for this loaded monopole are shown in Table 1, and a sketch of the antenna is shown in Figure 4.8. 

Figure 4.8. The loaded monopole 

Name Value (m) Value (X) 
Zl 0.0056 0.0299 
Z2 0.0024 0.0128 
Z3 0.0079 0.0421 
Z4 0.0236 0.1259 
XI 0.0856 0.4565 
X2 -0.0284 0.1515 

Table 4.4. Dimensions of the loaded monopole 
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The score for this antenna was 30.9 for <j>: 

available. 

0°, 45°, and 90°, and 13.7 for just the <|> = 0° cut. This is among the best 

The asymmetry of the resulting antenna would probably not have been produced analytically. It is hard to believe that 
this asymmetric structure produces near uniform coverage. 

In the optimization processes described above, only limited information regarding the desired properties of the 
antenna were included in the cost functions for the GAs. Although hemispherical coverage was the goal, the cost 
function used by the GA was limited to three G-plane cuts corresponding to <t> angles of 0° (in the plane of the folded 
element), 45° and 90°, and a single frequency of 1600 MHz. Limiting the measures of quality in this way allowed the 
computations to proceed much more rapidly. However, after an optimal design is obtained, it is then necessary to 
conduct a more thorough analysis of the design. For the above designs, such an analysis was also completed using 
NEC2 and, as the results were satisfactory, the antennas were then fabricated and tested. If these results had not been 
satisfactory, it would have been necessary to either rerun the GA without modification, or include more properties in 
the fitness function and then rerun the GA. 

The final computations were performed for intermediate angles and for frequencies from 1400 to 1800 MHz. The 
NEC2 output provided input impedance, current distribution and Ee, E«, and ETotal fields over the hemisphere. 

Radiation patterns were computed for a set of Ee, E+ and ETotai (also denoted ET) cuts in the 9-plane for 10° intervals 
in <|>. The maximum difference between the maximum and minimum total fields for the whole hemisphere was less 
than 1.25 dB. An example of these results is shown in Figure 4.9 where the Ee, Et and ET fields are plotted for cuts in 
the G-plane corresponding to azimuth angles of 0°, 45° and 90°, (j> = 0° being a cut in the plane of the folded element 
while ((> = 90° is a cut in the plane orthogonal to the folded element. Note that the <|> = 0° cut has only an E9 

component whereas the <|> = 45° and 90° cuts have both the Ee and E+ components. It has been found also that the 
total field is nearly uniform in all directions, as was the case for three $ angles shown. The computed input impedance 
was 133 + j229 ohms. (It was not attempted to optimize the impedance in this case—interest was primarily in the far- 
field directivity.) 
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Figure 4.9. Computed Ee, E+ and ET fields in 9-plane for <j>=0°, 45° and 90° at 1.6 GHz 
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The frequency dependence of the loaded monopole was examined. The Ee, E+ and ET patterns were computed for 9- 
plane cuts corresponding to <J> = 0°, 45°, and 90° in increments of 50 MHz over the range from 1400 to 1800 MHz. 
In Figure 4.10 the computed results are plotted for <|> = 45° for increments of 100 MHz, and are representative of 
results at other $ angles. It is seen that the maximum variation in power gain over the hemisphere over a 25% 
frequency range is only about 6 dB. 
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Figure 4.10. Computed ET field in 9-plane for <|)=45° at frequencies from 1.4 to 1.8 GHz. 

The optimal antenna design was fabricated and tested. The antenna was made from 1.8 mm diameter wire, and the 
dimensions of the test antenna approximated those of the computed antenna to about +/-1 mm. The loaded 
monopole was mounted over a 1.2m x 1.2m ground plane and fed from a coaxial line. Ee and E$ radiation patterns 
were measured in an anechoic chamber. The total E-field 

ET = ^(E6
2+E*2) 

was then calculated. Since primary interest was in the directional properties of the antenna, instead of efficiency, only 
relative gain (i.e., directivity) was measured, and a measurement of its absolute gain was not attempted. (Measuring 
absolute gain, which includes a measure of antenna efficiency, requires one to calibrate the measuring system, 
including the sending antenna, and requires one to factor in impedance mismatch between the antenna under test and 
the measurement equipment. Since this kind of accuracy was not needed to validate the NEC2 simulation, these 
calibrations were not performed.) 

The Ee, E4, and ET components are shown in Figure 4.11 for the <|> = 45° 9-plane cut. The computed and measured 
patterns are similar except for the ripples and loss of signal near the horizon; these effects are due to the finite ground 
plane. This ripple will be discussed in more detail in Chapter 6, Section 6.4.1. Computed and measured patterns for $ 
= 0° and 90° cuts were also in good agreement. The measured total field patterns are shown in Figure 4.12 for cuts in 
the 9-plane corresponding to angles of 4>=0o, 45° and 90°. Note that the total field varies by less than 4 dB over 
nearly the entire hemisphere. 
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Figure 4.11. Measured Ee, E<, and ET fields in 9-plane for (j>=45° at 1.6 GHz. 
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Figure 4.12. Measured ET field in 6-plane for <|>=0°, 45° and 90° at 1.6 GHz. 

The Ee and Et fields were also measured over the range from 1400 to 1800 MHz and the corresponding ET field was 
calculated for comparison with the computational results of Figure 4.9. In Figure 4.13, ET is plotted for <j> = 45° for 
increments of 100 MHz over this range. The maximum variation in power over the hemisphere (except for very low 
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elevation angles) was about 6 dB, as it was in the computed results. The ripples in the pattern are due in large part to 
the finite ground plane, as will be discussed in greater detail in Chapter 6. 
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Figure 4.13. Measured ET field in 6-plane for <|>=450 at frequencies from 1.4 tol.8GHz. 

4.9 Conclusion 
This chapter dealt with a very interesting antenna: the loaded monopole. It was optimized with a GA, an experiment 
was run to determine the best parameters for the GA, and a design was built and tested. It shows both the power of 
the GA to search counter-intuitive search spaces and find excellent, though unusual, results, and the robustness of the 
GA to initial parameters. Even an untuned binary GA worked well on occasion. 

The next chapter discusses another classical design: the Yagi antenna, and its optimization for a traditional purpose— 
high gain—and a non-traditional purpose: an Arecibo feed antenna. It will explore further the marriage of antenna 
design and GA optimization methods, expanding into multi-goal optimization, and a more extensive comparison 
between the real and binary GA. 
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Chapter 5: The Yagi antenna 

5.1 Introduction 
This chapter will look at the application of the GA to the optimization of the Yagi antenna. Unlike the loaded 
monopole, the Yagi antenna has been optimized by the GA for several different applications, all of which have more 
than one characteristic to be optimized. Thus, in this chapter, not only will a new antenna configuration be explored, 
but the application of the GA to designs with more than one goal will be investigated as well. 

The Yagi antenna evolved as a special configuration of an endfire array. It is a traveling wave antenna with a surface 
wave that propagates along the array with a phase velocity slightly less than that of free space. It was first proposed 
by Prof. Yagi and his student, S. Uda, in the late 1920s. It consists of a single driven element and a number of 
parasitic elements made up of a reflector and a set of directors. The Yagi has been exhaustively investigated, both 
theoretically and experimentally, for many years. The Yagi configuration has not been amenable to theoretical 
analysis since it is an array of elements of different lengths with non-uniform spacing and thus cannot be treated using 
conventional array theory. Most mathematical analyses have been restricted to relatively short arrays; progress 
throughout the years for longer arrays has been achieved mostly experimentally and computationally. 

Over the years the performance of Yagi antennas has been slow to improve. It is believed that maximum gain is 
achieved by controlling the phase velocity of the surface wave—the Yagi structure must be designed so that the 
surface wave is properly retarded. This has been accomplished with some success by logarithmically tapering the 
elements; the director spacings are gradually increased while the lengths are gradually decreased until they approach 
constant values at a distance of about 3 or 4 wavelengths from the driven element. Minor changes in the antenna 
configuration have produced only a small improvement in performance. 

The Yagi is light weight and inexpensive and it has been widely used for many high gain and narrow frequency band 
applications, particularly by the amateur radio community. It does not appear to have been previously used for low 
sidelobe and wide bandwidth applications, but it will be optimized for such an application in this chapter. 

5.2 The search space 
As shown in the figure below, the Yagi antenna is a series of parallel wires. One element is driven, one element is 
behind the driven element and is called the reflector, and all other elements are called directors. The highest gain can 
be achieved along the axis and on the side with the directors, as would be expected. The reflector acts like a small 
ground plane, allowing power that would otherwise be sent backward to be reflected forward. 

Driven element 

Zi>0.05A. 

Reflector Directors-» 

X; <0.25A. 

{)*■ 

For N wires: 
(2N - 1) genes for geometry (or 3N-1 if <f> included) 

+ 1 gene for wire diameter = 2N real genes 

Figure 5.1. Yagi Antenna 
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The conventional Yagi design includes geometry variables of length for each element, spacing between elements, and 
the diameter of the wire. Thus, with N elements, there are N length variables, N-l spacing variables, and one wire 
diameter variable, giving 2N variables total. The driven element is driven from its center. 

There are a couple of different ways to encode the spacings into the chromosome. The simplest way is to allow the 
maximum gene value to have the greatest allowable spacing, and the minimum gene allele to have the minimum 
spacing. This is only good if the required boomlength is unknown, however, for it will constantly be changing using 
this encoding. It is known that the boomlength affects the maximum gain possible with the Yagi antenna, thus a 
second method should be used if a boomlength is to be specified by the engineer. 

This second method takes all spacing gene alleles and sums them to give a total allele value. This value is then divided 
into the boomlength, to give a unit spacing. The alleles of each spacing gene is then multiplied by this unit spacing to 
give the actual spacing for each element. In this way, the whole boomlength is used, and the spacings tend to be more 
even. A certain minimum spacing is maintained between all elements, however, to keep them from overlapping. 

One other variable beyond that of the conventional Yagi that produced good results is shown in the above figure. It is 
designated as <f>i. This is a degree of freedom relating to the rotation of the element out of the plane of the antenna. 
The reason to allow this extra variable is discussed in the last section of this chapter. Other variables were tried with 
no successful results, but will also be mentioned in that section. 

5.3 Optimization for VSWR and gain only 
To begin, it was decided to optimize the gain of four Yagi antennas having boom lengths ranging from 3.6 to 6.1 X at 
432 MHz; VSWR was of secondary importance and back and sidelobes were not included in the optimization yet. 
The reason VSWR was included from the beginning was because the optimization would produce antennas with 
extraordinarily low impedances, and these structures were believed to be in supergain, and thus not actually 
achievable. 

The gains, radiation patterns and VSWRs of these antennas were computed using NEC2 and then compared with the 
gains achievable using currently available design techniques [26, 27]. A conventional Yagi and a GA-optimized, or 
genetic, Yagi, each having the same boom length, were then fabricated and tested. 

For this optimization, both real and binary chromosomes were used. For both chromosome types, a steady-state GA 
was used, with a fitness-weighted virtual roulette wheel, and Gaussian mutation for real chromosomes, with a 
standard deviation of 10% of the gene range. 
The antennas were optimized for gain and VSWR at a frequency of 432 MHz. The cost function was 
F = -G + C, x (VSWR) 
where G is the endfire gain and Q is 1 when the VSWR is greater than 3.0 and 0.1 when the VSWR is less than 3.0. 
The objective was to minimize F. 
Each element has a range of lengths up to 0.75A, with minimum spacings of 0.05 X. The antenna was constrained to 
use the entire boom length. The possible wire diameters range from 2 to 6 mm with 1 mm increments. Real 
chromosomes were used to optimize the Yagi with a boom length of 5.16 X and binary chromosomes were used for 
the other Yagis. The binary GA had the following parameters: population 50, overlap 30%, mutation rate 2%, mated 
with two-point crossover. This was an unusual set of parameters, but because during preliminary GA runs with these 
antennas good solutions were so elusive, it seemed best to use small populations that would converge to a useful 
solution that could be hillclimbed in less than 1600 NEC2 simulations. In limiting these simulations per GA run, many 
such runs could be performed in search of the elusive design that showed superior performance. For the real GA a 
population of 175 Yagi configurations was used, with a 30% overlap and a 0.6% mutation rate. Adewuya's method 
[24] was used for mating, and Gaussian mutation was employed. The GA using the real-valued chromosomes 
appeared to converge more quickly. 

5.3.1 Results 
Configurations with excellent properties were found for the 14, 17, 17 and 22 element Yagis having corresponding 
boom lengths of 3.60 X, 4.88 X, 5.16 X and 6.10 X. After optimal configurations were produced by the algorithm, 
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conventional Yagis having corresponding boom lengths were selected for comparison, with the exception of the Yagi 
having a boom length of 4.88 X. This particular Yagi was optimized to have 18 elements and a boom length of 5.16 
X, however, the end element of this genetic Yagi was very small and had a very low current; it was found that 
removing it from the antenna did not change any of the characteristics. 
The GA produced configurations that were quite different from a typical Yagi. The director lengths and spacings for 
the conventional and genetic Yagis are shown in Table 1. Note that the conventional Yagis have directors with 
lengths that gradually decrease and spacings that gradually increase along the array. For the genetic Yagis, neither 
the lengths nor the spacings showed any systematic change along the antenna; they appeared for all practical purposes 
to vary at random. 

BL 
EL 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Table 5.1. Dimensions of high-gain Yagi antennas 

CONVENTIONAL YAGI 
3.60X                   5.16X                6.10X 3.60X 

GENETIC YAGI 
4.88X                  5.16X 6.10X 

L S L S L S L S L S L S L S 

cm cm cm cm cm cm cm cm cm cm cm cm cm cm 

34.5 33.7 34.6 33.1 33.1 33.8 33.6 

32.8 13.0 32.5 12.7 34.0 10.4 34.6 17.5 30.4 13.4 31.5 13.2 28.8 9.3 

30.8 5.5 30.0 5.7 32.1 4.2 31.5 10.1 30.9 9.7 30.3 17.3 31.5 2.1 

30.4 12.5 29.8 11.1 31.1 7.8 30.4 20.5 29.8 18.2 29.5 24.2 30.4 15.5 

30.0 15.0 29.5 14.9 30.5 10.8 17.9 10.1 11.4 14.4 27.9 21.6 29.3 25.6 

29.6 17.5 29.1 17.5 30.1 13.4 22.2 12.6 29.3 7.8 27.6 12.6 11.9 3.0 

29.3 19.5 28.9 19.4 29.7 15.6 29.3 4.6 14.1 24.8 27.2 18.3 20.6 5.9 

29.3 21.0 28.7 20.8 29.5 17.6 28.8 32.0 28.2 4.9 27.2 13.7 28.8 19.8 

28.9 22.0 28.6 21.9 29.3 19.2 28.8 29.0 20.6 3.2 28.0 23.3 28.2 31.3 

28.9 23.0 28.4 22.7 29.1 20.6 26.0 26.0 27.7 26.5 25.8 21.2 28.8 31.3 

28.9 24.0 28.3 24.0 28.9 21.8 27.1 6.1 27.7 34.3 27.3 15.0 28.8 22.2 

28.5 25.0 28.1 24.9 28.8   J 22.8 28.8 28.0 28.2 24.8 27.7 27.4 12.5 15.0 

28.5 26.0 27.9 25.7 28.6 23.7 28.8 J 29.5 25.5 38.1 27.6 29.7 27.1 25.5 

28.1 26.0 27.8 26.4 28.5 24.3 29.3 28.0 27.7 37.1 27.4 33.2 27.7 29.9 

27.5 26.7 28.4 25.1 27.7 25.8 27.7 29.4 27.7 28.0 

27.3 27.4 28.3 25.6 28.2 32.4 27.9 32.4 22.2 26.5 

27.1 27.6 28.1 26.1 29.3 22.9 28.6 25.9 26.0 16.5 

27.0 27.8 28.0 26.4 27.1 27.0 

27.9 26.8 19.5 11.2 

27.8 27.1 27.7 20.3 

27.7 27.4 28.2 30.9 

27.6 27.5 28.8 24.0 

The gains and VSWRs were computed for both designs using NEC2. Although bandwidth was not included in the 
optimization of the genetic Yagi, the frequency dependence of the antennas was computed for completeness. Table 2 
shows the computed gains and VSWRs for both types of antennas near the design frequency of 432 MHz. The 
conventional Yagis have nearly uniform gain and relatively low VSWRs over most of the band. The genetic Yagis 
have a higher gain at 432 MHz, but the gain drops off sharply near 440 MHz, particularly for the 3.6 and 5.16 k 
antennas. Also, the VSWRs are low at 432 MHz but tend to increase sharply at frequencies other than 432 MHz. 
The computed E- and H- plane radiation patterns are shown in Figure 5.2 for both types of antennas with a boom 
length of 5.16 A. at the design frequency of 432 MHz. The sidelobes and backlobe for the conventional Yagi are 
about 15 and 22 dB down, but those for the genetic Yagi are down 16 and 13 dB respectively. The E-plane patterns 
for the other Yagis are shown in Figures 5.3, 5.4 and 5.5. Once again the sidelobes for the conventional and genetic 
Yagis are about the same, however the backlobes for the conventional Yagis are lower. 
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CONVENTIONAL YACI-18       BL-5.1& GENETIC YACI-I7       BL-5.16X 

Figure 5.2. Computed E- and H- plane patterns of 5.16 X boom length conventional and genetic Yagis at 432 MHz. 
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Figure 5.3. Computed E- plane patterns of 3.60 X boom length conventional and genetic Yagis at 432 MHz. 

89 



«2 00 MHi 
«M.OOWWz 

180 
O0NVENI1ONAL YACMI 

Scote: 
10dH/div 
Mox-18<Bi 

MWmCYAQ-n 

*L-*JtX 

Figure 5.4. Computed E- plane patterns of 5.16 X boom length conventional and 4.88 X genetic Yagi at 432 MHz. 
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Figure 5.5. Computed E-plane patterns of 6.10 X boom length conventional and genetic Yagis at 432 MHz. 
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CONVENTIONAL YAGI |                           GENETIC YAGI 

N BL FREQ 
MHz 

GAIN 
dBi 

VSWR N BL FREQ 
MHz 

GAIN 
dBi 

VSWR 

14 3.60 424 15.5 1.41 14 3.60 424 15.4 1.88 

428 15.8 1.11 428 16.0 1.80 

432 15.9 1.23 432 16.3 1.09 

436 15.7 1.60 436 16.1 9.5 

440 15.5 1.85 440 9.4 39 
17 4.88 420 15.8 5.10 

424 16.4 4.50 
428 17.0 3.70 
432 17.4 1.55 
436 17.0 13.0 

18 5.16 424 16.5 1.37 17 5.16 420 16.4 2.55 

428 16.8 1.13 424 16.9 2.60 

432 17.0 1.03 428 17.3 2.35 

436 17.1 1.27 432 17.6 2.80 

440 17.1 1.43 436 16.5 16.0 
440 6.4 18.0 

22 6.10 424 17.8 1.34 22 6.10 416 16.4 23 

428 17.8 2.28 420 17.1 19 

432 17.8 2.92 424 17.9 12 

436 17.5 2.81 428 18.5 9.3 

440 17.5 5.20 432 18.9 1.51 

Table 5.2   Summary of Yagi computations 

The conventional and genetic Yagis having a boom length of 5.16 X were fabricated, and their gains, E- and H-plane 
patterns and VSWRs were measured. Since the antenna pattern range did not operate satisfactorily at frequencies 
below about 800 MHz and since the full scale antennas would have been quite large it was decided to work with a V* 
scale model having a center frequency of 1728 MHz. The conventional Yagi elements were made of 1.2 mm ( 3/64 
in.) copper rod while the genetic Yagi used 1.6 mm (1/16 in.) rod. These elements were inserted into V4 in. PVC 
pipe. It is estimated that the Yagis were built to an accuracy of about +/- 0.5 mm. The measurements were made 
over the frequency range from 1650 to 1750 MHz which corresponded to the full scale range of about 412 to 438 
MHz. 

Since this antenna's quality is particularly sensitive to measurement technique, the measurement equipment and 
method used will now be described in detail. The VSWRs of the conventional and genetic Vi-scale Yagis, each having 
a boom length of 5.16 X, were measured with a Hewlett-Packard 8510 Network Analyzer over the frequency range 
from 1650 to 1750 MHz. The gain and radiation pattern were measured on a 2600 ft far field range using a Flam & 
Russell Model 959 Automated Measurement Workstation with a Hewlett Packard 8530A receiver. The transmitter 
was a Hewlett Packard 8340B synthesized source used in conjunction with a 4- foot parabolic dish which provided an 
ample signal level and dynamic range. A Scientific Atlanta model 12-1.1 standard gain horn was used as a reference 
antenna. There are two main sources of error in the measurement of absolute gain: the first is the uncertainty of the 
true gain of the standard gain horn; this has a 1 a value of+/- 0.17 dB. The second source of error arises from 
reflections and multipath from the terrain. Fluctuations of approximately +/- 0.3 dB were observed as the antenna was 
moved back and forth along a track. Thus, there is an uncertainty of about +/- 0.5 dB in the measurement of the 
absolute gain and about +/- 0.3 dB in the relative gain. In addition, it is necessary to correct for the mismatches that 
may arise from the transmission line to both the standard gain horn and the Yagi antennas. There are two options 
that can be used for this correction: a matching device (e.g. stub tuner) can be inserted to reduce the mismatch losses, 
or the input VSWR can be measured and the corresponding loss in gain can then be calculated as follows, 

Gain loss ( dB ) = 10 log 10 {1 - [(VSWR -1)/(VSWR + 1)]2} 

A combination of both methods was used. Since the Flam & Russell system automatically swept over the frequency 
range, it was not practical to match the antennas at all frequencies. The standard gain horn had VSWRs below 1.2 so 
the corresponding losses were less than .04 dB. The conventional Yagi had a maximum VSWR of 2.1, so corrections 
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of up to about 0.6 dB were needed. For the genetic Yagi, the VSWRs were between 2.5 and 3.0 over most of the 
band, but increased sharply above 1730 MHz. At three frequencies in the vicinity where the Yagis exhibited 
maximum gain a double stub tuner was used to minimize the mismatch loss. In Figure 5.6 is a plot of the corrected 
gains for the conventional and genetic Yagis as a function of frequency. Note that the conventional Yagi has a 
maximum gain of 16.2 dB at 1700 MHz—it was slightly lower at 1728 MHz, the scale frequency that corresponds to 
the full scale frequency of 432 MHz. The genetic Yagi had a maximum gain of 17.0 dB at 1730 MHz. As expected, 
the gain of the conventional Yagi was reasonably flat over most of the band, whereas the gain of the genetic Yagi 
decreased sharply at the higher frequencies. The measured gains were somewhat lower than the computed gains. As 
mentioned previously, this can be attributed to the uncertainty in the gain of the Standard Gain Horn. However the 
relative gains of the Yagi antennas are in good agreement with the computations. 
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Figure 5.6. Measured gains of 5.16 X boom length conventional and genetic Yagis from 1.65-1.75 GHz. Solid line is 
genetic Yagi, dotted line is conventional Yagi. 

5.3.2 Conclusion 
It has been shown computationally and verified experimentally that by using a GA in conjunction with NEC2 it is 
possible to synthesize, at a single frequency, a Yagi antenna design that has a significantly higher gain than that of a 
state-of-the-art Yagi. This case focused on maximum gain and did not weight the VSWR very heavily. Other 
parameters like bandwidth and sidelobe and backlobe levels could have been included in the cost function, but it 
would be expected that at the price of some loss of gain, as will be seen to occur in the next section. 

5.4 Optimization for gain, backlobe level and sidelobe level 
While success was achieved with gain and VSWR only, the Yagi antenna has another important performance 
characteristic that has been ignored: sidelobes. One particularly important sidelobe occurs directly opposite the main 
beam, called, for obvious reasons, the backlobe. By limiting the sidelobes, one will increase the signal to noise ratio 
for the antenna, for it will gather less energy from surrounding sources. Limiting the backlobe is particularly 
important, for often the antenna is pointed skyward, and the backlobe is therefore looking at the ground. The earth 
itself, as a warm body, is a source of noise, and thus a large backlobe can increase the noise floor considerably. 
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Two terms are added to the cost function to include both sidelobes and backlobes. The cost function is now: 

F = -C0- G + Ci • (VSWR) + SLL term + BLL term. 

SLL term 

BLL term  = 

C2 • (SLL-DSLL)2 while SLL < DSLL 

C2-(DSLL-SLL) while SLL > DSLL 

C3 • (BLL-DBLL)2 while BLL < DBLL 

C3-(DBLL-BLL) while BLL > DBLL 

where G is the endfire gain and Ci is 1 when the VSWR is greater than 3.0 and 0.1 when the VSWR is less than 3.0, 
as before. C0 is a constant that allows control over the relative importance of the gain compared to the other 
variables. It is generally set to 1. SLL is the largest sidelobe level (SLL) in the pattern compared to the maximum gain 
of the main beam, and the details of its measurement will be discussed shortly. DSLL is the Desired SLL. C2 is similar 
to Ci in that it allows us to designate the relative importance of the sidelobe level in the equation. It is usually set 
between 1 and 0.3 if sidelobe level is included. The term for the Backlobe Level (BLL) is similar to the SLL term. C3 
can vary from 1 to 0.3 as well. The objective, as before, is to minimize F. Note that both the SLL and the BLL terms 
are quadratic while they are sub-standard, but they become linear once the design objective has been reached, so that 
they have the most impact on the cost function while they require the most attention. As the engineer will be 
somewhat indifferent once design objectives have been reached, the impact of these factors is reduced, but not 
eliminated, as a better SLL or BLL is always desired, at least somewhat. 

Since BLL is measured 180° from the center of the main lobe, i.e., where 9=180°, it is easy to determine. However, 
SLL is not so straightforward. It is necessary to use the highest lobe in the pattern other than the main beam for the 
SLL, so all gains outside the main beam nulls are checked. The greatest of these is considered to be the SLL, and can 
be the same as the BLL should the backlobe also be the worst sidelobe. Hence it is important for the user to specify 
the beamwidth for the GA as being from null-to-null as opposed to the 3dB points, as is more common. Otherwise, 
the SLL can be erroneously given by part of the main lobe outside the 3dB points. 

Computed results with binary and real chromosomes 
Using a boom length of 5.16X, and 18 elements, a binary GA and a real GA were used to optimize a design for gain, 
SLL and BLL, and their performance was compared. 

The best design for the binary GA resulted from the following parameters: population 150, 30% overlap, 0.6% 
mutation rate, two-point crossover, and 6 bits/variable. CI was 1, C2 was 0.15, and C3 was 0.25. The GA was also 
modified to include a parameter to keep the GA from running too long. A maximum number of 4,000 NEC2 
simulations was specified. After these 4,000 NEC2 runs, a stochastic hillclimber finished the optimization. It was 
determined that after 4,000 simulations, the GA frequently had arrived on the hill it would spend the rest of its time 
exploiting. However, as discussed in Chapter 3, once a GA has converged to a single hill, it is often of use to change 
strategies and exploit the hill with another optimization method. Though a more classical optimization approach could 
have been used, a stochastic hillclimber was found to be adequate for exploiting these hills. 

This hillclimber randomly searched an area, changing one variable at a time by one step up or down, to see if the 
individual improved. If it did, the hillclimber kept this new individual and modified another variable. It stopped when 
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it had stepped each variable up and down and found no better scores—i.e., it had become stuck. It was found that 
using this hillclimber saved NEC2 simulations by exploiting a hill more rapidly than could the nearly-converged GA. 

In this case, the GA converged to an individual with a score of -0.936. The hillclimber took this individual as its 
starting point and optimized it until it had a score of-16.54! While the GA took 4,078 MEC2 simulations (the GA is 
permitted to finish a generation once it reaches the 4,000 mark), the hillclimber took 2,046 simulations—a typical 
number of runs to use. 

This optimized design has a gain of 16.63dB, with a backlobe 25.0dB down from the maximum gain, and a sidelobe 
level of 18.2dB down from the maximum gain. This antenna's parameters are shown in the following table, and its 
gain pattern along with the conventional 18-element Yagi are shown in the following figure. It had a score of-16.54. 
The cost of finding this antenna in NEC2 simulations and GA runs is shown in Table 5.3. 

Length {X) Separation {%) 
0.4608 0.0000 

0.4844 0.4650 

0.4608 0.5346 

0.4297 0.8018 

0.4142 1.0690 

0.4064 1.2334 

0.3906 1.4692 

0.4064 1.7363 

0.3983 1.9721 

0.1719 2.0573 

0.3906 2.1190 

0.3906 2.4811 

0.3750 2.9937 

0.3983 3.4664 

0.3983 3.8524 

0.3983 4.2778 

0.3750 4.7745 

0.3828 5.1603 

Wire dia: 0.00720X 
Table 5.3. Binary GA Antenna dimensions 
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Figure 5.7. Binary GA Antenna gain pattern vs. conventional Yagi 

The GA parameters for the real chromosome were: population 175, 30% overlap, 1.0% mutation rate, Adewuya's 
method [24] for mating, and Gaussian mutation. Cl was 1, C2 was 0.1 and C3 was 0.15. There was no limit placed 
on the number of simulations. Listed in the following table and figure are the specifications for the antenna that 
resulted, as well at its gain pattern compared to the conventional Yagi. It had a score of-17.26. 
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Length (K) Separation^) 
0.4794 0.0000 
0.4704 0.3268 
0.4422 0.4866 
0.4039 0.8173 
0.3917 0.8790 
0.4175 1.2359 
0.4077 1.5694 
0.3702 1.7536 
0.4037 2.0358 
0.3726 2.3307 

0.3903 2.5751 
0.3684 2.8566 

0.3781 3.1037 

0.3909 3.5093 
0.3972 3.9214 
0.3854 4.3363 
0.3936 4.8036 
0.4033 5.1603 

Wire dia. 0.00864X 
Table 5.4. Real GA Antenna dimensions 
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5.16Ä,, 18 elements Binary Chromosome Real Chromosome 

#ofGAruns 58 15 

NEC2 Sims, for the Best Run 6,124 68,412 
(99% in 18,994) 
(99.9% in 45,439) 

Best Gain 16.7 dBi 17.4 dBi 

Sidelobe Level -18.2 dB from main beam -18.0 dB from main beam 

Backlobe Level -25.0 dB from main beam -25.0 dB from main beam 

Total NEC2 Sims for all GA runs 287,561 264,391 (5 at 7,077; 6 at about 
9050; the rest with no limit) 

Average score for all GA runs -9.47 -16.4 

Average Gain for all GA runs 13.9 16.4 

Average SLL for all GA runs 16.0 17.7 

Average BLL for all GA runs 23.3 22.9 

Average VSWR for all GA runs 2.46 2.80 

Table 5.5. Comparison of Real to Binary GA Optimization 

The real GA required many fewer GA runs to achieve a better result than the binary GA. Following is a table 
comparing the antenna performance and the simulations required to achieve them. Unlike the binary chromosome, no 
hillclimber was needed to finish the optimization after the GA converged. 

It should be noted that the majority of the progress for the 15 GA runs included in the above table came within the 
first 10,000 runs. However, the runs that had over 65,000 NEC2 simulations (two of them), one at 24,000 and one at 
14,000 accounted for a disproportionately high percentage of the simulations used. Also, the average score of these 
large users of simulations were slightly below average, at -16.2, so a huge number of simulations did not guarantee 
results to match. 

There is a large disparity in average scores shown in the table. Since the constants are not precisely equal, scores 
cannot be directly compared. Thus, actual performance criteria are included in the table, and show that the real GA is 
better able to optimize this antenna reliably. VSWR and BLL are slightly better for the binary GA, but SLL and Gain 
are significantly better for the real GA. Because of this disparity, the real GA is used exclusively for the next antenna: 
the Arecibo Feed Yagi. 

5.5 Optimization for Arecibo feed 
This optimization was an unusual one for a Yagi antenna. The problem was to design a special feed for the Arecibo 
305 meter spherical reflector [28]. The antenna is to be used to search for primeval hydrogen having a redshift of 
approximately 5. Neutral hydrogen line emission is at a frequency of 1420 MHz; thus the frequency region of interest 
was about 235 MHz. Preliminary studies indicated that the band from 219 to 251 MHz had relatively little 
interference, particularly from 223 to 243 MHz, though the interference was still quite significant. Since it was 
intended that the feed illuminate only about 160 meters of the reflector and since the frequency was low, it was not 
necessary to correct for spherical aberration. The most important design goal was for the feed to have sidelobes and 
backlobes at least 25 dB down in the region from 70° < 4> < 290°, due to the interference which came from 
surrounding radio and TV towers. Of lesser importance was that the E- and H- plane beamwidths be about 50°. The 
VSWR was desired to be under 3.0 and the gain was to be as high as possible, but was limited by the wide 
beamwidth. The feed would be mounted over a 1.17 meter square ground plane—that is, a ground plane only 0.92 X 
in size. 

Since there did not seem to be any other antenna that would meet the desired specifications, it was decided to 
investigate the possibility of using a GA to optimize a Yagi type structure for this unconventional application. 

The GA using a real chromosome and Adewuya's method [24] of crossover and Gaussian mutation, produced a 
Yagi type antenna that met most of the design goals. It was quite different from a conventional Yagi in that the 
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director elements were very closely spaced, and it was only about a third the length of a typical Yagi having the same 
number of elements. This process produced the antenna that seems to best approach the above specifications, though 
they are quite unconventional for a Yagi antenna. 

For this optimization, the GA was allowed to proceed until it was clear that it had converged. Unlike the binary GA, 
which eventually converges to a single chromosome and essentially stops improving, a real-valued GA will generally 
continue to improve the longer it is run and it rarely truly converges to a single individual. However, once the genes 
in the population are centered tightly around single values, this improvement becomes very slow and it becomes less 
and less useful to continue the GA run. Once this point was reached, the GA was stopped manually. . 

Following are the details specific to the Arecibo Yagi optimization. First, the number of wires was specified to be 14. 
The variables were: the length of each element (14 were required), each constrained to be symmetric and between 0 
and 1.5A., the spacing between each set of two elements (13 were required), constrained to be between 0.05 and 
0.75X, (the total boomlength was allowed to vary in this case, unlike the high-gain optimization), and the diameter of 
the wire, constrained to be 2,3,4,5 or 6mm. Note that of the total 28 variables, 27 of them were continuous, real- 
numbered parameters, making this a natural problem for a real-valued chromosome. The discrete variable—wire 
diameter—used a real-valued gene, but it was discretized using truncation so the GA would only use one of the 
allowed values. This is usually not recommended for the type of crossover techniques used, but the problem was 
insensitive to this parameter and it did not affect results adversely. 175 individuals were in the population, with a 30% 
overlap, and 0.6% mutation rate. 

The cost function used to optimize the design was: 
f=-GL + C,*SLL2 + I(C2*Vi) 

where 
GL = lowest broadside gain of all frequencies 
SLL = highest sidelobe level within 70° < <t> < 290° for all frequencies 
V = VSWR at the ith frequency. The sum is over all frequencies. 

C, = 

C2 = 

SLL >25dB 

SLL < 25 dB 

V <3.0 

V >3.0 

The optimization involved minimizing this function. Since beamwidth was of secondary importance, it was not 
included specifically in the cost function. Instead, beamwidth was implicitly defined by where the objective function 
began to search for sidelobes (at plus/minus 70°), and by the maximization of the gain. The antenna was simulated at 
243 and 223 MHz, near the edges of the desired frequency band. It was assumed that if the antenna performed 
satisfactorily at these frequencies it would probably be acceptable over the rest of the band. A sample population of 
175 chromosomes, with 30% overlap was chosen, and parent selection was based on the fitness-weighted roulette- 
wheel. The mutation rate was about 0.6%. These values were shown to be optimal by experimentation in other 
optimizations. 

Although the feed was over a finite ground plane, it was decided to initially use a conventional reflector element in 
the design since modeling a finite ground plane using NEC adds a prohibitive amount of computer time. After an 
optimal configuration was obtained a thorough computational analysis was conducted for the whole frequency band 
from 219 to 251 MHz at increments of 2 MHz. This was done to ensure that the antenna was truly broadband. It 
was performed initially for the Yagi with only a reflector element and then repeated with a 1.17 meter ground plane. 
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5.5.1 Computational results 
As expected, the GA produced a configuration that was quite different from one that would have been obtained 
using conventional methods. Typical Yagi designs have directors that are about 0.4 X in length and 0.35 X in spacing; 
the lengths become slightly shorter and the spacings become slightly larger the further the distance from the driven 
element. The genetic Yagi had 13 elements (plus the ground plane) with a boom length of only 1.11 X. The directors 
varied in length from about 0.25 X to 0.4 X  with an average spacing of less than 0.1 X, as is shown in Figure 5.9. A 
conventional 14 element Yagi has a boom length about 3 times as long. 

The performance of this Yagi was computed at 2 MHz increments over the band from 219 to 251 MHz, a bandwidth 
of 13.6%. The initial results were for a Yagi having a reflector element and no ground plane and are shown in Figure 
5.10 for frequencies of 219, 235 and 251 MHz. Note that the sidelobes are typically higher than 20 dB down and the 
backlobes are even poorer, particularly at the high frequency. It seemed likely that replacing the reflector element 
with a 1.17 meter ground plane would reduce the backlobes and might also lower the sidelobes. Figure 5.11 shows 
the E- and H-plane patterns for the genetic Yagi over a finite ground plane at the same frequencies. It is seen that the 
side and backlobe levels for both planes are greater than 25 dB down from 223 to 243 MHz, the most important part 
of the band, and are over 20 dB down over the rest of the band. The E- and H-plane half-power beamwidths range 
from 51 to 55° and 64 to 69° respectively, slightly larger than desired but certainly acceptable. The VSWRs are less 
than 3.0 from 227 to 245 MHz, though they are higher at the ends of the band. The antenna gain ranged from 10.4 to 
11.0 dB over the frequency band. This gain is approximately 1 dB lower than that for a Yagi that is optimized for 
maximum gain. 

ElCtMtll Ltitjth Diiianc« teotn 
No. (round plan« 

(mcicrj) (rnetcti) 

1. ,S»57 .1707 
2. .SMS .2924 
3. .5402 .4006 
4. .4364 .4*67 
5. 5026 .S7SS * 47»! .0013 
7 .5044 .7679 
I 3765 .«sst ° 3131 .952J 

to .3902 1.0433 
II .4693 1.1486 
12 1731 I.2JI* 
13 3186 M272 

Figure 5.9. Genetic Yagi feed for the Arecibo Radio Telescope 
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Figure 5.10. Computed antenna patterns of Yagi with reflector element at 219, 235 and 251 MHz 
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Figure 5.11. Computed antenna patterns of Yagi over a ground plane at 219, 235 and 251 MHz 
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5.5.2 Arecibo feed antenna validation and test 
The antenna was fabricated and the E-plane patterns were measured. Since the antenna pattern range did not operate 
satisfactorily at frequencies below about 800 MHz and since the full scale antenna would have been quite large, it was 
decided to work with a l/6th scale model having a center frequency of 1410 MHz. The Yagi elements were made of 
0.8mm ( 1/32 in.) copper rod. These elements were inserted into 1.27 cm (1/2 in.) PVC pipe. It is estimated that the 
Yagi was built to an accuracy of about +/- .5 mm. The Yagi with a reflector element was first measured over the 
frequency range from 1310 to 1510 MHz at 10 MHz increments and then the measurements were repeated using a 
19.5 cm square ground plane in place of the reflector element. 

E- plane patterns and VSWR were measured for the genetic Yagi over a finite ground plane for the frequency range 
of 1310 to 1510 MHz at 10 MHz increments. Figure 5.12 shows the l/6th scale model patterns for frequencies of 
1310, 1410 and 1510 MHz which correspond to the full scale frequencies of 218, 235 and 252 MHz. Also shown are 
the previously computed patterns and it is seen that they are comparable. The measured VSWRs are less than 3.0 
over most of the band and have a maximum value of 3.7 near the ends. The measured gains are slightly less than 10 
dB, however, if the reflection losses are taken into account, the corrected values for a matched antenna approach the 
computed gains. The computational and measured gains, side and backlobe levels, beamwidths and VSWRs are 
summarized in Table 5.6. 

SltoMHZ 

Sl410/235MHz>: 

MEASURED 

Figure 5.12. Computed and measured E- plane patterns of Yagi over a ground plane 
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Computed Measured (1/6 scale model) 
Freq. 
(MHz) 

BW E-plane 
(«teg) 

BW H-plane 
(deg) 

SLL E-plane 
(dB) 

SLL H-plane 
(dB) 

VSWR Freq. 
(MHz) 1/6 / 

Full 

BW E-plane 
(deg) 

SLL E-plane 
(dB) 

VSWR 

219 55 68 24.1 24.1 5.1 1310/219 56 18 3.6 

221 54 67 24.6 24.6 4.4 1320/220 58 19 3.3 

223 54 66 25.2 25.2 3.9 1330/222 58 22 3.1 

225 54 66 25.9 25.9 3.3 1340/223 51 23 2.8 

227 54 66 26.5 26.8 2.9 1350/225 51 25 2.4 

229 53 65 26.9 26.9 2.5 1360/227 48 24 2.2 

231 52 64 26.2 27.3 2.3 1370/228 53 25 2.1 

233 52 64 27.4 27.9 2 1380/230 46 26 2 

235 52 64 27.5 28.4 1.9 1390/232 48 25 2 

237 51 63 27.5 28.3 1.9 1400/233 47 26 2 

239 51 63 27.6 27.5 2 1410/235 48 28 2 

241 51 63 27.7 26.6 2.1 1420/237 48 27 2.1 

243 51 63 27.8 25.6 2.4 1430/238 52 24 2.3 

245 51 34 27.2 24.2 2.9 1440/240 48 23 2.6 

247 51 35 24.7 22.9 4.1 1450/242 42 23 2.7 

249 52 66 22.6 21.6 6 1460/243 45 25 2.9 

251 53 69 20.8 20.2 8.5 1470/245 48 25 3.1 

1480/247 51 24 3.4 

1490/248 50 25 3.7 

1500/250 53 22 3.7 

1510/252 53 23 3.5 

Table 5.6. Summary of computed and measured parameters for the genetic Yagi over a ground plane. 

5.6 Modifications of the conventional yagi antenna search space 
The conventional Yagi antenna search space was modified in several ways, only one of which yielded interesting 
results. The elements were allowed to tilt in the plane of the antenna, but this degree of freedom did not help with 
gain or any other desired property. Also, elements were allowed to be asymmetric with regard to the center line of the 
antenna, and the drive point was allowed to be asymmetric, with similar results. If an asymmetric, unusual pattern was 
desired, however, these might be interesting avenues to try. 

One modification did produce interesting results. As the Yagi antenna is in a single plane, it is constrained to be 
linearly polarized. However, if one is desiring to communicate with satellites, circular polarization is required. The 
elements were allowed to rotate out of the plane of the antenna to make other polarizations possible. 

An optimization with a real chromosome gave a result that was circularly polarized. 
The figures below show its design and its gain pattern. 
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Figure 5.13. Rotated yagi—side and top views. 

Gain for RH Circ polarized wave 

Gain= 16.5dBi 

Figure 5.14. Normalized circular polarization gain pattern for rotated yagi, in the plane of the antenna (<t>=0°). Each 
circle is lOdB lower than the one that encircles it. Circular polarization losses have been taken into account. 
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5.7 Conclusion 
This chapter has discussed three different applications for the Yagi antenna: high gain, high gain with low side and 
backlobes, and broadband with low sidelobes. Antennas for these three cases were all atypical for Yagi antenna 
design, yet worked extremely well for the qualities they were optimized for. However, it should be noted that 
qualities that were not a part of the optimization, particularly in the high-gain case, were not as good as might be 
hoped. This is a lesson that is useful for many problems: if a cost function does not have all desired qualities specified, 
frequently those that are left out will be worse than what is wished by the engineer, though sometimes, as is the case 
with the next antenna, one is pleasantly surprised by these "accidental" qualities. Thus, it is important to have all 
desired qualities be a part of the cost function up front. 

The Arecibo feed showed that a GA is capable of synthesizing a broadband Yagi antenna that has a radiation pattern 
that is quite different from that of a typical Yagi. This approach appears to have produced an antenna that best meets 
these somewhat unconventional antenna specifications. It is questionable whether an antenna having comparable 
specifications could have been designed using a conventional approach. Thus, the GA allows one to synthesize 
antenna configurations with properties that have heretofore been unattainable with existing antenna design tools. 

The next chapter involves the crooked-wire genetic antenna, and the extensive research and testing of this new type 
of antenna. Unlike previous designs, where the basic configuration is given to the GA, the GA is allowed to configure 
the crooked-wire design with few constraints. This antenna shows the power of the GA to accomplish a task beyond 
that of mere optimization—in a way, the GA becomes the antenna engineer, forming a new antenna with a theory of 
operation like no other. 
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Chapter 6: The Crooked-wire Genetic Antenna 

6.1 Introduction 
This antenna is probably the most important one in this research. The reason is that it is a highly unconstrained 
design, very open in its shape and function, and very little information external to that discovered by the GA is 
available for the optimization. It is not only an interesting design, it is an excellent test of the power and limitations of 
GA optimization. 

All other designs previously discussed have constraints that limit the possible designs to those that fall inside a 
particular type of antenna. In addition, the Yagi and loaded monopole antennas all have a particular method of 
operation in electromagnetic physics. Thus, there is a certain amount of information the GA receives a priori—that is, 
there is information about electromagnetics inside the basic antenna designs themselves that the GA does not have to 
discover itself. The basic antenna designs limit the applications as well, as antennas like the Yagi are basically 
directional, while antennas like the loaded monopole are basically broad-beamed. Of course, it has been shown with 
the Yagi that a design's capability can be at least in some cases be expanded beyond typical applications using a GA. 
Even so, its basic characteristics are still relatively unchanged. 

Naturally, there is a continuum of information, from almost complete specification to a complete lack of 
specifications. Previous chapters have explored the former end of the spectrum. This chapter and the next will explore 
the latter end of this spectrum. 

This antenna's interesting characteristics are primarily in its search space. To aid in exploring the characteristics of 
this type of optimization, where little electromagnetic information is present, its cost function has been kept simple— 
hemispherical coverage like the loaded monopole, but this time requiring right-hand circular polarization (RHCP) 
over the hemisphere. This polarization requirement makes the goal much more difficult to obtain, and more 
interesting. 

The outcome of the GA design process working relatively unconstrained in the manner described above has been 
named a genetic antenna. A genetic antenna is an antenna that comes directly from a GA optimization, and is not 
constrained by a pre-existing design. While the GA has been used previously to help determine unknowns in existing 
designs, it has not been used before to create a completely new design with its own unique theory of operation. The 
resulting antennas described in this chapter are unique and distinct from all existing antenna designs, and were not 
designed using any standard techniques. As the antennas designed in this way seem to take on shapes that are 
different from one another but are equally unusual and non-intuitive, it seems more appropriate to give them a name 
that describes their origin rather than their particular shape. 

After running the GA an early resulting design was built and tested, as was done with the loaded monopole, and its 
radiation properties were measured, to ensure that the results, as unusual as they were, were indeed valid. 

6.2 The search space 
As has been implied, then, the GA does not start with a basic design like the loaded monopole for this antenna. The 
GA is allowed to find an antenna with the desired properties, subject to only very basic constraints, like antenna size, 
excitation source, and number of wires. Regarding antenna size, since near-hemispherical coverage was desired for 
this antenna, it should obviously be relatively small. It was decided to start by confining the antenna to a cube 0.5A, on 
a side. This design space is shown in Figure 6.1. 
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Figure 6.1. Genetic Antenna search space 

Both real and binary GAs were used to design this antenna. For the binary GA, 5 bits were allowed for each 
component of the (X,Y,Z) coordinate for the beginning and end of each wire. In other words, each axis of the design 
space had 32 levels, and there were, therefore, 323 possible vertices at which the wires could be connected. Five bits 
were chosen because that allowed the GA to work in units of 1/64* of a wavelength, which was close to the limit of 
fabrication tolerances at the chosen frequency of 1600 MHz. For the real GA, each parameter was made a separate 
real gene. 

Next, the number of wires and the connection scheme that a design could use had to be specified. Initially, antennas 
consisting of 5, 6, 7 and 8 connected wire segments were investigated. (Preliminary results showed the 7-wire genetic 
antenna to perform slightly better than the 5-, 6- and 8-wire antennas, so the 7-wire genetic antenna was chosen to 
investigate in detail. However, both a 6- and a 7-wire genetic antenna were chosen to test initially.) In addition, it was 
decided to make all wires connect in series for simplicity. 

With 5 bits for each axis coordinate, 3 axis coordinates per point, and 7 points to be designated (1 point per wire, 
since each wire starts at the previous wire's endpoint, and the first wire begins at the origin), each 7-wire genetic 
antenna required a binary chromosome with 5x3x7 = 105 bits. Each antenna with a real chromosome required 21 real 
genes. A six-wire antenna, of course, requires 90 bits. The bits for each coordinate were placed next to each other in 
the chromosome, as follows: 

[XI, Yl, Zl, X2, Y2, Z2, X3,Y3, Z3,... X7, Y7, Z7] 

6.3 The cost function: hemispherical coverage with right-hand circular 
polarization 
The goal was to obtain right hand circular polarization 10° above the horizon over the hemisphere at a frequency of 
1600 MHz, so the cost function for this system was relatively simple. (Again, at elevations of less than 10°, the 
multipath components would disrupt performance, so the performance of the antenna at these elevations was not 
included.) The GA program used NEC2 to compute the hemispherical radiation pattern at increments of 5° in 
elevation (0 = -80° to +80°) and 5° in azimuth (<|> = 0° to <|> = 175°). The GA then reads the output of NEC2, and the 
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cost function calculates the average gain for a RHCP wave for elevation angles above 10°, and then calculates the 
sum of the squares of the deviation of all measured points from the mean. In equation form, then, the cost function is: 

Score = I«,«* ail e,,|,(Gain(e,<t>) - Avg. Gain)2     (1) 

The GA's goal was to minimize this score. A perfectly uniform gain pattern would receive a score of zero. If the 
average gain was less than -10 dB, the average gain was set to be -10 dB, helping the GA to eliminate antennas that 
were very poor radiators in general. 

6.4 The binary GA 
Extensive research was performed on the genetic antenna and its optimization by a binary GA. The results of this 
work are discussed below. 

6.4.1 Initial results 
In the first preliminary runs, the GA had a population of 500 chromosomes, an overlap of 50%, and a variable 
mutation rate. For each generation, between 0 and 20 bit-flip—0 to 1 or 1 to 0—mutations occur in the new children. 
Much less than 1% of the bits, and no more than about 8% of the children were affected, depending on the size of the 
chromosomes and the population size. The GA was halted after 90 generations. 

Though the best results were obtained using the 7-wire genetic antenna in the initial runs, the 6-wire antenna was 
almost as good. As mentioned previously, the 5- and 8-wire antennas were somewhat poorer. The 6- and 7- wire 
antennas were also measured and the agreement with the computational results was excellent considering that the 
shape of the fabricated antenna was not identical to the model that was computed. Also the computations were done 
for an antenna over an infinite ground screen and the measurements were made over a finite ground screen, the effect 
of which will be explored. The results for the 6-wire antenna will be presented first. A 3-dimensional view of this 
antenna is shown in Figure 6.2. The computed results and measured results are combined onto one graph in Figure 
6.3. It is seen that this antenna, like the others in this chapter, has a very weird shape in that each consists of a 
crooked wire going in haphazard directions. As shown by the computations, the variation is about 5dB across the 
hemisphere—somewhat poorer than what is desired, though much better than what most antennas can provide. The 
score for this antenna was approximately 450. 

Figure 6.2. The 6-wire genetic antenna. Height of antenna is 8.66 cm. 

108 



Gain 

-5 

-10 

f = 1600MHz 

I'll I I L J I I L 

-90     -70      -50      -30     -10       10       30 
9 

Figure 6.3. 6-element wire antenna computational results: <|) dependence. 
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The radiation patterns for this first genetic antenna were measured in an anechoic chamber. The test antenna was 
illuminated by a right-hand circularly polarized horn antenna. 0-plane cuts were measured for azimuth angles of 0°, 
45°, 90° and 135°. Because the antenna was not made exactly to specifications, it had a slightly shifted center 
frequency of 1550 MHz instead of the nominal 1600 MHz. The results matched very well with the computations, and 
are shown below. 
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Figure 6.4. 6-element wire antenna measured results: <|> dependence. Dotted lines: NEC output, Solid lines: 
Measurements. 

While this antenna is good, the 7-wire design is clearly better. Like the 6-wire antenna, the 7-wire design has an 
unusual shape, as shown in Figure 6.5. A picture of this antenna accompanies the sketch. The coordinates for its 
vertices are shown in Table 6.1. The computed radiation patterns of the antenna over an infinite ground plane are 
shown in Figure 6.6 for elevation cuts corresponding to azimuth angles of 0°, 45°, 90° and 135° at a frequency of 
1600 MHz. Note that the response to a circularly polarized wave varies by less than 4 dB for angles above 10° over 
the horizon. The computed frequency dependence of the radiation pattern is shown in Figure 6.7 for the range of 
1200 to 1900 MHz for an elevation cut with an azimuth angle of 0°. It is seen that these patterns are relatively flat 
from 1300 to 1900 MHz. This corresponds to a bandwidth of over 30%, which is excellent for a circularly polarized 
antenna having near hemispherical coverage. Patterns for other elevation cuts were comparable to these. The score 
for this antenna was approximately 330, over 100 points better than the 6-wire antenna. 

Figure 6.5. The 7-wire genetic antenna, with photograph of the actual antenna. Note that the two illustrations are at 
slightly different angles. Height of antenna is 8.66 cm. 
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7 -wire genetic antenna with ground plane                 | 
Startooint (coordinates in meters)                                Endpoint (coordinates in meters) 

X Y Z X Y Z 
0.0000 0.0000 0.0000 -0.0166 0.0045 0.0714 

-0:0166 0.0045 0.0714 -0.0318 -0.0166 0.0170 

-0.0318 -0.0166 0.0170 -0.0318 -0.0287 0.0775 

-0.0318 -0.0287 0.0775 -0.0318 0.0439 0.0140 

-0.0318 0.0439 0.0140 -0.0318 0.0045 0.0624 

-0.0318 0.0045 0.0624 -0.0106 0.0378 0.0866 

-0.0106 0.0378 0.0866 -0.0106 0.0257 0.0230 
Table 6.1. 7-wire genetic antenna coordinates 
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Figure 6.6. Computed (j) dependence of 7-wire genetic antenna with ground plane. 
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Figure 6.7. Computed frequency dependence of 7-wire genetic antenna with ground plane. 

This antenna was measured in a manner identical to the 6-wire antenna. 9-plane cuts were measured for azimuth 
angles of 0°, 45°, 90° and 135° and for frequencies from 1200 to 2000 MHz. 

The measured normalized radiation patterns for the crooked-wire genetic antenna over a ground plane are shown in 
Figure 6.8 for the same elevation cuts that were previously computed at a frequency of 1600 MHz. There is 
approximately a 6 dB variation in the field above an elevation angle of 10° as compared to the computed variation of 
about 4 dB. This discrepancy can for the most part be attributed to the fact that the measurements were made over a 
1.2 m x 1.2 m ground plane, whereas the computations for the GA were done for an infinite ground plane. The 
ripples in the pattern arise from reflections from the edges of the ground plane. The roll-off at the edges is also due to 
the finite size of the ground. 
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Figure 6.8. Measured (|> dependence of 7-wire genetic antenna with ground plane. 

Again, the ripples in the pattern are due to the finite ground screen as discussed in Chapter 4, section 4.?. A 
simulation has been performed with a finite, perfectly conducting ground screen and has produced very good 
agreement with measurement results, as shown in Figure 6.9. Notice that the peaks and valleys in both the measured 
data and the finite ground plane simulation agree well in location, though the simulation shows greater variation in 
amplitude. This discrepancy is minor, however, and is a result of the approximation of the real test conditions in the 
simulator. 
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Figure 6.9. Effect of the finite ground plane on an antenna pattern. 

However, NEC2 could simulate antennas over an infinite ground screen in a few seconds, while it took over 24 hours 
to simulate an accurate version of the 1.2m finite ground screen at 1600 MHz. Hence the infinite ground screen was 
used in the optimization, even though simulated performance was not identical to real measurements. 

The patterns were also measured over the frequency range from 1250 to 1900 MHz for an elevation cut 
corresponding to an azimuth angle of 0° and are shown in Figure 6.10. It should be noted that these are relative gain 
patterns so only the directional properties are valid—no attempt was made to calibrate the transmitting antenna at all 
frequencies. As was the case for the computed patterns, these patterns show good coverage for 1300 to 1900 MHz. 
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Figure 6.10. Measured frequency dependence of 7-wire genetic antenna with ground plane. 

It should be mentioned that true circular polarization is not achievable over large angles. From a practical standpoint 
this antenna has elliptical polarization for which the magnitudes of the orthogonal signals approach unity and their 
respective phases approach quadrature. Note that as long as the receiving antenna has the same sense polarization as 
the transmitter, the maximum polarization loss of 3 dB occurs when the receiver is linearly polarized. If, however, the 
receiving antenna has the opposite sense polarization, the polarization loss can become very large. 

6.4.3 The solution space: random results 
It was of interest to determine how important the GA search method is to the discovery/design of such antennas, and 
how the search space behaved with respect to the variables. If the search space has a high density of good solutions, 
it may be possible to use a simpler technique, such as a simple stochastic search where designs are randomly 
generated and evaluated, or a simple stochastic hillclimber to find acceptable solutions. To explore this possibility, 
over 360,000 randomly generated 7-wire designs were evaluated using NEC2. The distribution of the log of the 
scores was found to be close to normal, with a mean of 4.337 and a standard deviation of 0.208. Thus, the average 
score is about 22,000. About 95% of the scores—all scores within +/- 2 standard deviations from the mean—lie 
between 8,300 and 57,000. The chances of randomly finding an acceptable solution is 1.6' 10"15, implying that the 
expected number of runs to achieve an acceptable solution is 6.3 ' 1014. An acceptable score is considered to be on 
the order of 800 or less in this case (meaning a 0.8 dB average variation over the hemisphere.) For comparison, the 
score of the 7-wire genetic antenna design found in the initial results was about 330, implying a 0.5dB variation over 
the hemisphere. 
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Figure 6.11. Distribution of randomly selected individuals. 

It is not surprising to see this distribution, for, as with the loaded monopole, it requires special design or luck to 
create an antenna that is particularly bad or particularly good. However it is rather surprising to see the tightness of 
the distribution about 22,000, and to see that it is very close to a normal distribution with only a slight skew. 

Plotting histograms for each of the individual variables as was done for the loaded monopole is not particularly 
enlightening. These histograms are similar to those of the loaded monopole. Though it appears that perhaps some 
values of some variables lower the likelihood of good results, it also seems that given any one value of any one 
variable, both good, bad and mediocre designs can result, and only a very small fraction of all combinations that are 
possible have been tried in this case, unlike the loaded monopole. To try all combinations of just two levels for each 
of the 21 variables would require 221 NEC2 simulations (over 2 million), a prohibitively high number for even this 
extremely rough exhaustive search. 

53 random designs out of the 360,270 were discovered to have scores less than 4000. These designs were explored 
with a stochastic hillclimber, requiring a few hundred runs each on average, and approximately one fourth of these 
explorations resulted in scores less than 800. Combining these averages implies that over 27,000 NEC2 runs would 
be needed to find one acceptable solution using this stochastic search plus stochastic hillclimber method. The GA 
technique, however, requires approximately 9,000 NEC2 runs to do the same. Though it is possible that other search 
techniques such as gradient methods would fare better than the stochastic hillclimber method above, the above 
exercise shows the relative power of the GA over a random search. It also shows the problem at hand has a very 
sparse solution space with many local minima, a situation tolerable for the GA but not conducive for a classical 
optimization technique. 

6.4.4 Experiments 
There were several experiments performed with the 7-wire genetic antenna with a ground plane and the binary GA 
that optimized it. Because of its unconstrained nature, and the resulting lack ofa priori information in the design, the 
search space for this antenna is particularly spiky and difficult to optimize. It was therefore of great interest to learn 
about the way a GA can best optimize this type of structure. 
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6.4.4.1 Experiment 1: population size, overlap, crossover 
The first experiment was a coarse one, similar to that of the loaded monopole in Chapter 4. Population size was 
varied between two values: 50 and 500, Overlap was either 30% or 70%, and crossover was either single- or two- 
point. After running the full-factorial experiment with 8 replications, the following facts were discovered. 

First, population size was an unquestionably important factor. A larger population led to better scores in this 
experiment. It also led to much higher numbers of NEC2 simulations. For the factor of 10 increase in size, from 50 
to 500, scores improved from an average of 5186 to an average of 2590, and the NEC2 simulations required to 
converge grew from an average of293to3133. 

The second variable, overlap, did not make a statistically significant difference in the score of the best individual. 
When tested against a student's t-distribution, this variable had a t-value of only 0.46 with respect to the score, 
meaning it had only a 70% chance of being a significant factor given the data. To be considered significant, factors 
usually must have at least a 95% probability that the data supporting that conclusion is not leading to a false 
indication of significance. This variable could be significant, but the low t-factor indicated a strong possibility that the 
data could be falsely supporting that conclusion. However, if the data were to be believed to be giving a true 
representation of the trend, there was an indication that a larger overlap percentage led to a slightly better score, by 
an average of about 110 (a very minor improvement). 

Though it did not make a significant difference to the score achieved, overlap did make a very significant difference in 
the number of NEC2 simulations required to make convergence. The effect of overlap on this response variable had a 
t-score of-7.1, meaning it had a significance of more than 99.95%. It indicated that a lower overlap percentage led to 
convergence about 900 simulations faster. Thus, a value of 30% overlap was commonly used in future GA runs. 

6.4.4.2 Experiment 2: population size, mutation rate, convergence criteria, with 
hillclimber 
A stochastic hillclimber was added to the GA to attempt to increase the exploitation of the hill found by the GA. 
Whether this increased efficiency, however, depended on the convergence criteria employed that would end the GA 
and start the hillclimber. In addition, mutation rate had not been a part of the last experiment. Thus, population size 
was varied among values of 100, 300, and 500, and mutation rate varied among 0.1%, 0.01%, and 0.005%. The 
convergence criteria variable consisted of a parameter that denoted a threshold for the amount of diversity remaining 
in the parent population. If the diversity dropped below this minimum amount, the GA ended and the hillclimb began. 
The diversity was measured by adding up the number of bits in all parents that were different from the best 
chromosome's bits, and then dividing by the number of bits present in the parent population to get a fraction that was 
constrained to be less than or equal to one. This convergence parameter varied among 0.1, 0.05 and 0.01. Overlap 
was held constant at 30%, and two-point crossover was used exclusively. The measured responses were: score after 
GA and hillclimb, and total number of NEC2 simulations required. 

Once the full-factorial experiment was run with 2 replications, the results were analyzed. A quadratic model for each 
response was built using a statistical analysis program (RS/1 Explore), that indicated that all the varied parameters 
and many interactions were significant in the prediction of the number of NEC2 simulations, but that only mutation 
rate and population size were useful in predicting the score achieved by the optimization; score was indifferent to the 
convergence parameter. 

The optimal settings for the GA were: population 498, mutation rate 0.1%, convergence parameter 0.0677. Running 
the GA 24 times with these settings gave a score averaging 1,076 with 3,436 NEC2 simulations for each, with a good 
answer of 800 or less appearing 11 out of 24 runs, or 46% of the time, implying an expected value of 7,496 NEC2 
simulations per good antenna achieved. These results confirmed the experimental models. 
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6.4.4.3 Experiment 3: population size, overlap, mutation rate, NEC2 simulation 
limit, score limit 
In this experiment, a different set of convergence criteria were used. Instead of a measure of diversity, which does not 
correspond well with the actual cost and goal of performing an optimization, two other parameters were used: a 
NEC2 simulation limit, and a score limit. 

The NEC2 simulation limit can be thought of as a budget for the GA: an amount of computer resources and/or time 
that can be used to get the answer. As this limit is usually a major consideration in electromagnetic problems, it made 
sense to make this budget a direct parameter. Once the NEC2 simulation limit has been reached, the GA is allowed to 
finish simulating its current generation, and then the hillclimber is started. The hillclimber is allowed to get stuck as 
normal, since it usually only takes 10-20% of the runs used by the GA to do so. 

The other parameter determining convergence is the score limit. If the GA achieves a score better than this limit, it is 
allowed to terminate immediately and move to the hillclimber. This allows the GA to finish significantly under budget 
if it is lucky in finding an acceptable individual more quickly than expected. 

This experiment was more involved than those previous. It had population sizes of 800, 567, 333, and 100; overlaps 
of 30, 43, 57 and 70%; mutation rates of 2%, 0.43%, 0.094%, and 0.02%; NEC2 simulation limits of 400, 1600, 
2800, and 4000; and score limits of 1000, 2000, 3000, and 4000. Four levels per variable allowed a 3rd order fit to be 
possible for each parameter. Two point crossover was still used exclusively. 

A full-factorial experiment with five variables at four levels each would have been prohibitively expensive, requiring 
1,024 separate GA runs, so a D-optimal design was used. This design was generated by computer, as it is a 
complicated, statistical way to limit the number of runs needed to formulate models as was done here. The designed 
experiment required only 174 runs to complete three replications. 

The experiment produced two 3rd order models for the score and NEC2 simulations required. The optimal settings 
were population 600, overlap 40%, mutation rate 0.61%, 4000 NEC2 simulation limit, and score limit of 1000. With 
these settings, the GA was run 12 times, producing an average score of 909.5, using an average of 4,430 NEC2 
simulations. 5 good scores were produced, giving an expectation value of 10,632 NEC2 simulations per good score. 
Thus, while the average score dropped, the number of NEC2 simulations increased compared to the results of 
Experiment 2. It should be noted that the best score yet achieved by the binary GA in any run from any experiment 
thus far was achieved during these 12 confirmation runs. The score was 222.75. 

Various other experiments were tried with mutation operators, sharing functions, restricting crossover points to be on 
functional gene.boundaries, and the like, but since none showed improvement over the standard GA their results are 
not presented here. A quick study of simulated annealing as applied to this design showed that approximately 13,000 
NEC2 simulations were required to achieve a decent antenna. As this was significantly poorer than the GA results, 
simulated annealing was not pursued further. 

6.5 The real GA 
As with the loaded monopole, the real chromosome was applied to this antenna after the binary GA case was well 
known. The crooked-wire antenna was encoded into 21 real genes, each denoting a coordinate of a point in the 
search space. The chromosomes were mated according to Adewuya's method. The population was 175 
chromosomes, 30% overlap, mutation of 0.6%, and no limit on NEC2 runs, or score, and no hillclimb. The first run 
with these settings produced an antenna with a score of 185. As noted above, the best binary GA score was 222.75. 
This one run required 24,879 simulations to achieve this score, however, it had achieved 99.9% of the score in 
24,826 simulations, and 99% at 24,667 simulations. Though this is a large number of simulations for one run, 
consider that it only required one GA run to beat every score produced by every binary run, which constituted 
hundreds of thousands of simulations. 
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In order to achieve these results, a modification to the normal GA mating selection process had to be made. 
Adewuya's method mates genes one by one. However, the unconstrained nature of the crooked-wire antenna implies 
high correlation between variables, higher than the other designs previously discussed. The best value for one 
variable, say the X coordinate for the 4th wire endpoint, is largely determined by the Y and Z coordinates for that wire 
and the endpoints of at least some of the other wires in the structure. Thus, it was necessary to institute a mating 
restriction in order to achieve good results. This restriction ensures that similar parents mate more frequently, 
meaning that fewer fatal children will be produced by good, but dissimilar, parents. In this way, designs are disrupted 
less by the gene-by-gene mating process. It was found that nothing more than this mating restriction as discussed in 
Chapter 3, Section 3.3.3 was necessary to ensure enough design stability in the generation of new children. 

A diagram of the best binary result and the real chromosome result shows that there is only marginal similarity 
between the designs. This is typical of the crooked-wire antenna: its design is so open-ended that no two designs have 
ever been found to look alike. 

Binary Chromosome Result Real Chromosome Result 

Figure 6.12. The best binary vs. best real results. Scores are nearly identical: 223 for the binary result, 185 for the 
real, yet they are quite dissimilar in shape. 

6.6 Conclusion 
This chapter has explored the crooked-wire genetic antenna with computed and measured results, search space 
exploration, and results of significant experimentation with GA parameters. This antenna has only been used for one 
cost function thus far, but it, and others like it, hold promise to solve many different kinds of antenna problems. Their 
unusual shape and characteristics lead one to believe they could not ever have been designed by the traditional 
method of antenna design. It was interesting that the antennas were quite broadband even though they were designed 
at a single frequency. This quality implies that the antennas are non-resonant, and that dimensions are not critical—a 
useful feature since the antennas were difficult to fabricate exactly. 

The next chapter discusses future work with these and other types of antennas. Many possibilities exist for the 
engineer who wishes to explore this new type of antenna and antenna optimization, and some of the possible paths 
that could be followed are described. 
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Chapter 7: Future Work 

Naturally, much work remains to be done in exploring the GA optimization of antenna designs. Though many 
researchers are working on optimizing existing designs using GAs, there is little, if any, work being done on 
unconventional designs like the crooked wire genetic antenna. In this chapter, then, are several suggestions for 
avenues of potentially fruitful research, focused on making the GA more efficient and effective, and on ways to 
explore these unconventional designs. 

7.1 Future work in increasing GA efficiency and effectiveness 
There are several possible avenues of future research in making the GA more effective. Techniques that have been 
discussed already include Adewuya's method for real chromosome mating, mating restriction, cost function 
construction, and optimizing GA parameters using designed experiments. However, there are several major ideas that 
have not yet been adequately explored: using a virtual GA for optimization of parameters, partitioning the search 
space in successive GA optimizations that have increasing resolution, using response-surface modeling and predictors 
to estimate child performance before simulation, using classical optimization methods in conjunction with a GA, and 
using predator/prey relationships to heighten performance. The first three of these methods have been tried in a 
preliminary fashion. 

7.1.1 Using a Virtual GA 
Greffenstette [29] has put forth an interesting idea that the GA operators like mating and mutation produce children 
drawn from a normal distribution, the mean and standard deviation of which are determined by the nature of the 
problem, but which can be predicted by the average of the parent's scores. This distribution produces children, some 
of which are better and some of which are worse, but all of which are drawn from the same distribution, given the 
same average score of the parents. Furthermore, Greffenstette found the average of the distribution for the children 
drops roughly proportionally to the average score of the parents. 

Using this idea, a simulation can be constructed for the GA. First, the distributions for the children are found by 
randomly drawing parents from the search space, scoring them and mating them, and then scoring their children to 
build the model for the distribution. The average scores of the parents are then compared with the average of the 
distribution to determine the relationship between them. Information about the mutation distributions are gathered in 
a similar fashion, with the score of the initial individual compared with the score of the mutated one. 

Once these empirical data are drawn from the search space, the first generation of a so-called Virtual GA (VGA) is 
drawn at random. These individuals are scored "for real" to provide a starting point for parent's scores. Then parents 
are mated in the usual way, and the children are created. However, instead of simulating the children, their scores are 
produced by a random number drawn from the distribution that corresponds with their parent's average scores. These 
scores are completely unassociated with the actual merits of the children's genotypes, but over the course of many 
children generated and many generations, they should produce an average amount of progress for the VGA. These 
new children then take their place in the parent population (if they were lucky enough to get high scores) and the 
generation process begins again, only now there are bogus results in the parent population that do not correspond to 
the genotype. The advantage of the VGA of course, is that the VGA can proceed at a rate many times faster than the 
actual GA because, beyond the first generation, no actual scoring is taking place, only random-number generation. If 
the distributions for the children in the VGA are close enough to the actual distributions for the GA then the 
expected optimal score of the VGA with its GA parameters of population size, etc. will be the same as the actual GA 
with the same, though the genotype of the "best" individual one gets at the end will have no correspondence to its 
actual merits. 

In an attempt to find out if this approach would allow one to optimize a GA for the problems to be solved, this VGA 
technique was applied to the crooked-wire GA. Some limitations of Greffenstette's approach were found and some 
additional procedures to correct them were added to the VGA process. 
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First, it was found that random mating produced child distributions that had little correspondence to actual GA runs. 
As shown in Chapter 6, the random distribution of scores is concentrated around a mean of 22,000—a score not even 
close to acceptable. However, one could not simply extrapolate from the random data to get reasonable distributions 
as the GA progressed. As the run converged to better than random scores, the distribution of the children changed 
from a nearly-normal one to a bi-modal distribution, with a cluster around the low end. 

In addition, it was found that the distributions were affected not only by the average scores of the parents, but by the 
separation between their scores. Parents with scores widely separated had more widely varying scores, while those 
that were closer had smaller standard deviations, in general. 

Eventually, due to the complexity of these distributions, a set of distributions had to be derived from a series of 15 
actual GA runs, some of which were able to achieve good scores. A look-up table was then produced for the VGA to 
use when determining the value of children that was able to account for the average of the parents' scores, the 
separation between them, and the arbitrary nature of the distributions. 

In addition, the problem of clones was taken into account. As a binary GA progresses, more and more individuals are 
produced that are identical to their parents. The standard VGA does not account for this convergence, rather, it 
allows the VGA to choose new scores for the clone children. This allows for some of these clone children to have 
scores that are actually better than their parents', even though they are clones. This will lead to false results on 
average. In this implementation of the VGA then, clones have scores that are copied from their parents. 

Even with all these corrections, the VGA was not quite able to discern the best parameters, though it did come close. 
The VGA with scores averaged over many runs, determined that the optimal settings were: population 400, overlap 
50%, mutation rate of 0.2%, and a NEC2 simulation limit of 5000 (the only parameter that was at its limit). When 
these settings were used, however, these scores did not in fact produce better results than the optimal settings 
determined by the designed experiment in Chapter 6. Thus, it did not appear to work very well for this case. 

However, this is not to say a VGA would not work well in a more well-behaved search space, and it may behoove 
the engineer to attempt a VGA if optimal GA settings are not easily obtained. 

7.1.2 Using a series of GAs with increasing resolution 
It is possible to use a succession of GA runs to optimize a single antenna, each with a limited search space that zero in 
on a portion of the previous GA's search space. A design is first coded into a binary chromosome using only one or 
two bits per variable, giving a very coarse, relatively small, search space. The first GA is run, and the best design is 
used to re-code a new chromosome, using the location of the best design from the first run to determine the portion 
of the search space that will be explored further. The result of this second run determines the search space of the third 
run, which is still more restrictive, and so forth, until sufficient resolution is obtained and the series of GAs is halted. 

For example, if a design has two variables X and Y, with feasible limits from 0-100 for each, an initial GA 
chromosome could be 4 bits long, with 2 bits per variable. The levels possible with this encoding might be chosen to 
be 12.5, 37.5, 62.5, and 87.5, drawing each level from the center of each quarter of the range. See the figure below 
for a visual representation. 
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Figure 7.1. A coarse search space with levels chosen from the center of each quarter. A four-bit chromosome spans 
the space, and can take the values shown by the points. This representation is for the first GA run. 

It should be noted that points can be taken from somewhere other than the center of each of the boxes above—they 
could be taken from the edges, for instance. They could even have been taken at random from anywhere in each sub- 
range, which would allow the GA to have a chance of finding features missed by fixed points. (Using such 
randomized values create a problem with efficiency and repeatability, so it was not used in actual testing of this 
method.) 

Once the coding is in place, the first GA is then run. For the X and Y example above, let the first answer obtained be 
the chromosome 0110. The limits on the variables would then be changed based on this result. Since the second 
quarter of X was chosen, the limits on X could range from 25 to 50, giving the four levels 28.125, 34.375, 40.625, 
and 46.875. The chromosome could also be similarly limited to the third quarter of Y's feasible range, as shown. 
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Figure 7.2. Second GA search space example. A four-bit chromosome now spans the region where Y is between 50 
and 75, and X is between 25 and 50. The points indicate the possible chromosomes. This is the region containing the 
best result from the previous example run. Note that it is 1/16 the original area. 

The number of levels could also be changed, perhaps decreasing the resolution to one bit per variable. If this were 
done, X levels would then be 31.25 and 43.75, and there would be four possible chromosomes. In this way, the 
chromosome is made still shorter, and the search space even easier to search. 

Note that the number of bits per variable may be required to be more than one bit at first. There may be physical 
reasons to maintain a certain resolution the first one or two GA runs. However, as the search space grows smaller 
and more resolved, the space may need no more than two levels per variable. In electromagnetics, if the search space 
resolution is a significant part of a wavelength, such V* k or more, there will be no way to tell if a feasible solution 
exists at all in the region of the search space the GA chooses—the design space will simply be too coarse for the hills 
to be evident. On the other hand, once the search space has come down to a resolution of hundredths of a 
wavelength, it is possible to have only one bit per variable, as the hills may be clearly resolved at that point, as was 
the case for the simple example of Chapter 3. 

The range for each variable in the example above showed a drastic change from the first to second run. It need not be 
so dramatic. Instead of searching only the quarter in which the best chromosome was found, the best three-quarters 
(from 0 to 75 for X in the example) could be included in the range for the second GA. In this way, should the "true" 
best answer be in a neighboring quadrant to the answer found by the initial GA one has not immediately eliminated it 
from consideration. This more gentle increase in resolution is shown below, for the same initial result of 0110. 
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Figure 7.3. Second GA search space example, where the search space is not so dramatically limited. A four-bit 
chromosome now spans the region where Y is between 25 and 100, and X is between 0 and 75. The points indicate 
the possible chromosomes. This is the region containing the best result from the previous example run. Note that it is 
3/4 the original area. 

In a preliminary trial of this method, only marginal improvement was discovered. The crooked-wire genetic antenna 
with 7 wires was the design used. It had 21 unknowns, and was optimized for RH circular polarization and near- 
hemispherical coverage, as in Chapter 6. Constants were: population size 50, overlap 50%, 2-point crossover, 0.6% 
mutation, 250 NEC2 simulation limit. (The population size and NEC2 simulation limits were determined to be 
adequate in a prior experiment.) Each optimization used a series of 5 GA runs. The unknowns for each successive run 
was limited to the quarter or half in which the previous GA's best individual was located, similar to what was shown 
in Figure 7.2. A stochastic hillclimb was performed at the end of each GA run, generally improving the score between 
0-30%, often with less than 100 simulations. The trial was to determine how many of the series of 5 GA runs required 
a resolution of two bits per variable in order to have the best performance. The remainder of the GA runs used one bit 
per variable. 

Number of GA runs with two 
bits per variable 

Avg 
score 

StDev Lowest score number of good 
answers 

(scores < 800) 

number of total 
optimizations 

fraction that have 
good answers 
(scores < 800) 

0 2223 1262 1244 0 6 0.000 

1 3148 1663 534 3 16 0.188 

2 2944 1393 404 2 16 0.125 

3 2741 1568 354 2 10 0.200 

4 2789 1110 1355 0 6 0.000 

Number of GA runs with two bits per variable Avg number of simulations StDev Smallest number of NEC2 simulations 

0 1136 111 1025 

1 1239 92 1109 

2 1327 95 1168 

3 1519 145 1242 

4 1620 56 1528 

Table 7.1. Results with series of GAs with increasing resolution 
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The average number of NEC2 runs necessary for each 5-GA series was 1361, which is much smaller than the average 
number of runs for a normal optimization—about 4,500. However, using only those cases (1,2, and 3 GAs with two 
bits per variable) that had good answers, the fraction of runs that had good answers was 17.1%. This implies that 5.9 
full optimizations were required per good answer, which gives an expected value of 7970 NEC2 simulations per good 
point, compared with about 7500-10,000 for the normal binary GA method, depending on GA parameters. Thus, no 
improvement was achieved. 

Further experimentation revealed that having three GA runs in the series of 5 with two bits per variable, with the 
other two having only one bit per variable, was actually the optimal combination. Using this combination alone 
improved the average number of NEC2 runs per good point to about 6,200, which is an improvement of 17% over 
the minimum 7500 simulations for the normal binary GA. 

One way to significantly improve this method's performance is to monitor the first GAs results and start it over if it 
converges to a score that is too high. Unlike the normal GA it is easy to see whether it is of benefit to continue a 
particular series, or if it is best to halt the series and start over from the full search space. A result above a threshold 
score in the beginning or middle of the series indicates that the GA is limited to a poor part of the entire search space, 
and that the series should be re-run. This saves one from having to run the series to completion, using many 
simulations, only to find out the final result is not acceptable. 

The threshold score for the first GA of the series seemed to be 3000 for the 7-wire genetic antenna. If the first GA 
could converge to a score less than 3000, then later runs were likely to find good hills to exploit, and the whole series 
was likely to converge to a good result. Eight series were run using this threshold score (if the score was above the 
threshold, the first GA was run again) and, out of the eight series that used a total of 20,650 NEC2 simulations, six 
good antennas resulted. This gives an average of only 3441 runs per good antenna—an improvement of 54% over the 
normal GA! 

Once this threshold score was discovered and verified, it was desired to decrease the number of repeat first GA runs 
that would be required to discover the first score less than 3000. With the parameters listed above (pop 50, overlap 
50%, mutation 0.6%, 250 NEC2 simulation limit, hillclimb used), it required an average of 6 GA runs and a total of 
1,754 simulations to find the first good individual from which to restrict the search space. 

An experiment was then conducted, which varied the population size between 50 (with a 250 NEC2 simulation limit) 
and 100 (with a 500 NEC2 simulation limit), and the number of bits per variable between 2 and 3. Using about 500 
separate GA runs, it was determined that a population of 50 with 2 bits/variable was optimal, and required an average 
of 1515 NEC2 simulations to find an individual with a score less than 3000. The next best parameter settings were a 
population of 100 with the 3 bits/variable, requiring an average of 1728 NEC2 simulations per individual with a score 
of less than 3000. 

This method of gradually restricting the search space, then, shows promise as a way to limit the number of 
simulations needed in an optimization. It can be likened to a coarse digitization of a television picture—at first one 
can only see large features, like the outline of a person or a building, which may be enough to indicate where one 
should increase the resolution to find the desired feature like an eye or a window. The search space is able to become 
much more manageable with this method, making the 7-wire design chromosome only 21 to 42 bits long, with 1 or 2 
bits per variable, respectively, as opposed to the original 105 bits. 

How well this method works on other problems is unknown. Some problems will require more resolution than others 
to resolve the major features of the search space. In addition, it is not known why it was best to have only two bits 
per variable for the first three runs, instead of the first two or even just one. At first glance, it would seem the most 
likely GA run of the series to need high resolution is the first one. After this first one, the search space is much, much 
smaller—with two bits, the 7-wire space became l/(4.4-1012) of its former size, and had a resolution of 1/16 X. Why 
it would still require a resolution of 2 bits per variable (giving a resolution of 1/256 K) in the next level is not 
understood, let alone the 1/4096 X resolution of the third level. Thus, this is an area that would benefit from further 
research. The reader is referred to [32] for another work that investigates this concept. 
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7.1.3 Using response-surface modeling for child pre-processing 
Another possible way to increase GA performance is to allow children's performance to be predicted before they are 
simulated, thereby eliminating likely poor performers before a costly simulation is wasted on them. To keep the 
problem simple, the loaded monopole served as the example on which to test this method. 

To implement this method, the GA process proceeds as normal, randomly generating and simulating the first 
generation, until just prior to producing the first children. At this point, a number of chromosomes are used to create 
a multilinear regression. This regression is based on the gene values and the scores of the parents, and creates a model 
for the search space. The children are then produced in the normal way, but instead of simulating them, the regression 
model is used to predict their performance, based on their gene values. The children and parents are then rank- 
ordered using the predicted scores of the children and the real scores of the parents. If children end up in the parent 
population, it has been found crucial to simulate them in order to find out their actual scores. If they do not perform 
as predicted, the population is rank-ordered again, and any other children that have moved into the parent population 
are simulated. This rank-ordering and simulating process repeats until there are no more unsimulated chromosomes in 
the parent population. Then children are generated and the process is begun anew. In this way, it is hoped that poor 
performers will never be simulated, which will cut down on the number of simulations needed to achieve good results. 

A designed experiment was performed to find the optimal parameters for this process. The variables were: population 
size (75, 150 and 300), overlap (30%, 70%), mutation rate (2%, 0.2%), number of chromosomes used in regression 
(the most recent 75, 150, or 250 chromosomes), basis function type (sines and cosines, polynomial), and order (2 , 
4th). After performing the full-factorial experiment, the optimal settings were found to be: population 210, overlap 
30%, mutation rate 0.63%, the 75 most-recent chromosomes used for the regression, and 2n order polynomial basis 
functions. Scores obtained with these settings averaged 40.8, with 3,034 NEC2 simulations to acquire them. As 
discussed in Chapter 4, scores such as these required about 4,040 NEC2 simulations to achieve using a normal binary 
GA so there is about a 25% savings in runs. 

Ways to improve this method include limiting or eliminating extrapolation. It was found that often those that were 
predicted to have phenomenal scores failed miserably. This was due to extrapolation: the data that the regression was 
built upon often did not include a large enough span of the search space to include all children that resulted. Hence, 
some were predicted outside the span of the regression, and were frequently predicted to be much better than they 
were. If this could be corrected, either by disregarding scores that appear to be too far above the norm, or by 
measuring the distance of a child from the regressed region of the search space, one might be able to limit the waste 
of simulating poor children. 

Additionally, if one can confidently predict children's scores with accuracy, one may be able to never simulate some 
of them at all, even if they are predicted to be good. In order to do this, the validity of the model must be known, as 
well as the likelihood that the child falls within the limits of the regression and is not residing on a feature of the 
search space missed by the regression. This method shows promise in providing a way to drastically reduce the 
number of simulations required to find a good design, but much work remains to be done to realize these savings. 

7.1.4 Using classical optimization methods with the GA 
Another method of improving the efficiency of the GA is to couple it with a classical optimization strategy. As was 
discovered with the crooked-wire and Yagi antennas, the GA is much more capable at bill finding than hill climbing 
once it has converged to a large extent. A stochastic hillclimber was used to finish the hill climbing, but as it is a 
random technique, it is inherently inefficient. A classical method like a simplex or conjugate gradient hillclimber is 
probably a much better option for this final stage in the optimization, since the GA has provided the equivalent of a 
very good guess at a final solution, and the problem is assumed to be unimodal at that point. 

Unfortunately, it is not possible to take any sort of gradient analytically with these types of structures. It will be 
necessary, then, to approximate such gradients, but doing so will decrease the efficiency of classical methods that 
require them. 
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7.1.5 Using predator/prey 
In biological life, species must contend, not only with the physical environment, but also with other species. 
Particularly powerful in the evolution process is the "biological arms race" between predators and their prey. 
Predators attack their prey and generally kill the least-fit individuals, leaving those with better defenses to survive and 
mate. The improved prey can now avoid the attack of the predators more effectively, making the least-fit of the 
predators unable to kill enough prey for food and eliminating them from the predators' gene pool. Consequently, the 
best predators mate and produce offspring that are better adapted to counter the prey's defenses. Thus, both species 
evolve more rapidly than those that must adapt for their environment alone. This is so because the environment 
generally changes very slowly, and once a species has adapted sufficiently to overcome its obstacles, its progress will 
stagnate. 

This same approach can be taken with GAs. Predator GAs can co-evolve with prey-type GAs. Scores for the prey are 
generally taken from their effectiveness at solving a problem, predator scores are generally taken from their ability to 
exploit weaknesses in the prey's solutions, making their prey's scores lower. 

How this situation can be applied to an antenna situation is tricky, however. One does not want to put the constants 
of a cost function completely into the hands of the predator GAs, for example, for the predator will soon discover 
that the best way to destroy an antenna's score is to put each constant of the cost function at its maximum value. 
Perhaps a better way is to limit the total of all constants the predator can use in the cost function. In doing so, the 
predator must find the worst characteristic of the prey and put a larger constant on that term in the cost function. The 
prey will improve this characteristic, and the predator will have to readjust the constants. This is but one possibility; 
there are countless others. 

7.2 Future work in unconventional genetic antennas 
There are limitless ways to configure antennas. If one allows for optimizations without pre-existing designs like the 
crooked-wire, one can use almost any configuration of wires connected in series and parallel, perhaps with some not 
even connected at all. However, it is possible to have the avenues to explore delineated by a nomenclature that 
suggests them to the designer. Hence, a possible taxonomy for genetic antennas without existing designs has been 
constructed. By naming and classifying these complicated structures, it is hoped that future researchers will be able to 
explore the various possible structures with some measure of thoroughness and organization. The surface of the vast 
realm of genetic antennas has just barely been scratched, having only one major type of genetic antenna search space 
explored thus far, as they are delineated in the table below. After the table and a brief description, a few different 
ideas are discussed: multi-chromosomal antennas, tree antennas, and using developmental rules. The first two of these 
ideas have been explored briefly. 

7.2.1 Taxonomy for genetic wire antennas 

Name Category    > Name ■T-z:-:^----'r:---'::- Search Space (SS)deftv                                 -'■•:■■• | ResuWnn Antenna (RA)Defn.      J 

Number of Points point a point in space that is used as a location for one or more joints or a wire termination. 
n-point maximum number of points that can be used number of points used in the RA 

as locations for joints 
strictly n-point SS constrained to include n points for every antenna n/a 
omni-point no constraint on the number of points used in SS n/a 

Number of Wires n-wire maximum number of wires possible for RA number of wires between points 
present in RA 

strictly n-wire SS constrained to include only antennas with n wires n/a 
omni-wire no constraint on number of wires n/a 

Wire straight-wire wires in SS are all straight wires in RA are straight 
nth order wire wires are curved using at most nth order polynomial 

equation 
wires are curved using at most nth 
order polynomial equation 

strictly nth order wire only nth order polynomials are used to determine 
wires 

only nth order polynomials are 
used to determine wires 

nth order spline wire wires are curved using at most nth order spline wires are curved using at most nth 
order spline 

thin/thick-wire wires are thick or thin compared to their length (thin is 
chosen if NEC is used) 

wires are thick or thin compared to 
their length (thin is chosen if NEC 
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| is used) 

Jointedness joint a connection between a designated wire and another wire. 

n-jointed up to n joints can occur at a single point, which is to 
say that up to n+1 wires can be connected at a single 
point. If three wires are joined at a point, it is double 
jointed. If five wires are connected, it is quadruple- 
jointed. 

n is the maximum number of joints 
that occurs at any one point in the 
RA 

strictly n-jointed n-joints are constrained to occur at all points except 
wire terminations 

all joints connect only n+1 wires. 
An antenna composed of a single 
series of wires would be strictly 
sinqle-jointed. 

O-joint occurs when a wire (or group of wires) cannot trace a connected path to a signal source. 
These wires are parasitics. Strictly speaking, 0-joints occur at wire terminations (one wire 
goes into a point, and none go out) but are not counted as 0-joints as wire terminations 
are not special features. 

non-0 jointed 0 joints (i.e. parasitics) are not allowed in the SS RA has no parasitics 

multi-jointed points can contain more than one size of joint points in the RA do not all have the 
same size of joint (excluding wire 
terminations) 

omni-jointed no constraints are placed on jointedness at points n/a 

non-terminated (i.e. 
non-0 jointed to 
include wire 
terminations) 

no wire terminations allowed, only connected-wire 
loops 

no wire terminations exist in RA, 
only connected-wire loops 

RLC Loading Unloaded No RLC loads used No RLC loads used 

n-(RLC)-loaded up to n loads are available, with R,L and/or C 
impedances 

n loads are used in RA 

strictly n-(RLC)-loaded n loads used in each antenna n/a 
omni-(RLC)-loaded no restrictions placed on number of RL and/or C loads n/a 

in series R,L,C elements in a load are in series with each other R,L,C elements in a load are in 
series with each other 

in parallel R,L,C elements in a load are in parallel with each other R,L,C elements in a load are in 
parallel with each other 

at joints loads are placed at joints loads are placed at joints 

on wires loads are placed on wires loads are placed on wires 

n-dimensional n dimensions exist in the search space (1, 2 or 3) the RA has 1, 2 or 3 dimensions 

Geometry cubic/spherical/etc. SS is located inside a cube/sphere/etc. (3-D) n/a 
square/circle/etc. SS is located inside a square/circle/etc. (2-D) n/a 
arbitrary Geometry is unspecified n/a 

Size n-X SS is limited by n wavelengths Size of RA in X 

n-meter SS is limited by n meters Size of RA in meters 

Resolution n-X chromosome can resolve point coordinates to n 
wavelengths 

n/a 

n-meter chromosome can resolve point coordinates to n 
meters 

n/a 

Ground perfect/ imperfect 
ground 

SS is over a perfect/imperfect ground RA is over a perfect/imperfect 
jround 

finite/infinite ground SS is over a finite/infinite ground RA is over a finite/infinite ground 

no ground no ground is used in SS no ground used for RA 

unspecified ground ground to be determined by GA n/a 

Chromosome n-chromosome Individuals have n chromosomes n/a 
binary string Chrom, is binary string n/a 
real number string Chrom. Is string of real numbers n/a 

tree ( in nodes) Chrom is tree (with objects (such as point 
coordinates) in its nodes) 

n/a 

Optimized for... bandwidth cost function includes terms measuring bandwidth 
nulls same as above for null pattern 
sidelobes same as above for sidelobes 
beamwidth same as above for beamwidth 
impedance match same as above for impedance matching 

Table 7.2. Taxonomy for genetic wire antennas. 

The crooked wire antenna, then, would be classified as having a strictly 7-point, strictly single-jointed, straight/thin- 
wire, single-chromosome, cubic 0.5X search space with a perfect ground plane, optimized for beamwidth. In the 
binary case, the classification would also include a 0.0156X resolution binary string (from which one could deduce the 
number of bits used per variable), while in the real case, the classification would include a real-number string. The 
resulting antenna would be a 7-point, 7-straight-wire, strictly single-jointed, 3-D genetic antenna over an infinite, 
perfect ground plane. 
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As another example for using this taxonomy, consider an antenna produced with a tree chromosome. For instance, 
one such antenna search space could be classified as 10-point, straight/thin-wire, 4-jointed (implying multi-jointed, 
but not omni-jointed), 3-dimensional, arbitrary, and having a single tree chromosome (3-D points in nodes) and an 
infinite, perfect ground plane. An example antenna resulting from this search space could be a 10-point, double- 
jointed, straight-wire, 3-dimensional, 10cm genetic antenna over a perfect, infinite ground plane. 

Though there are a number of terms that describe a single antenna, using all these terms will allow the researcher to 
clearly state what type of search space the antenna was designed from, and hopefully will allow him or her to make 
correlations between configurations and performance. It provides a way to frame the large number of qualitative and 
quantitative variables present in these optimizations, so that if a particular search space is not working, another can be 
chosen in a logical fashion. It is expected that the taxonomy, as extensive as it is, is most likely still inadequate to 
completely describe the realm of genetic antennas and will require expansion, as very little has been done to explore 
the effect of different search space sizes, shapes, and connection schemes. The rest of this section is therefore 
devoted to describing ways to explore these search spaces that seem promising. 

7.2.2 Multi-chromosomal antennas 
One major exploration would be into multi-chromosomal GAs. In biological life, all creatures have more than one 
chromosome in their genetic makeup. It would be of use, then, to explore adding multiple chromosomes, as is 
suggested in the taxonomy above. In so doing, genes would be allowed to independently assort (though this already 
happens with real chromosomes that crossover gene-by-gene). It would also be possible to mix real and binary 
chromosomes together in a single antenna. 

This multi-chromosomal configuration has been explored briefly. A multi-chromosomal individual was set up in the 
normal GA. Each chromosome has a set of information: one denotes a set of 7 points in 3-D space, generated in the 
same manner as with the crooked-wire. The second chromosome contains connection information for eight wires. 
This information takes the form of 6 bits for each wire—three bits to denote which of the eight points in space (7 
points in the chromosome plus the origin) will be the starting point for the wire, and three to denote the end point. 
The only exception is the first wire, whose starting point is constrained to be the origin (since at least one wire must 
be connected to the signal feed.) Also, wires that duplicate other wires are removed from the input file. This setup 
allows the antenna phenotype to take a large number of configurations, with wires in series and parallel. Points can 
have all the wires attached to them, or no wires connected at all. Wires can be connected to the active structure, or 
float in space as parasitic elements. 
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0.5*. 

Figure 7.4. Multi-chromosomal 3-D Design Space. 

As with the crooked-wire antenna, a 3-D cube of space is available with 32 levels possible in each of three dimensions 
for a designated number of points. Wires are connected between any two points, with the following constraints: 1. the 
first wire must start at the origin, and 2. a wire is not drawn if it duplicates another wire or if the two endpoints are 
the same. In this way, wires can be somewhat easily eliminated from the design without leaving trash in the 
chromosome. Again, the ground plane can be removed if desired, and the limits on size changed. When applied to the 
RH Circular Polarization, hemispherical coverage problem, results were similar to the crooked-wire antenna, though 
the shapes were naturally quite different. 

A 2-D genetic antenna version of the above space has been investigated minimally. 

Figure 7.5. 2-D Multi-chromosomal Design Space. 

A 2-D plane with 32 levels possible in each of two dimensions for a designated number of points was searched. 
Again, wires are connected between any two points, with the following constraints: 1. the first wire must start at the 
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origin, 2. a wire is not drawn if it duplicates another wire or if the two endpoints are the same, and 3. a wire is not 
drawn if it intersects any of the previously drawn wires. NEC2 does not know how to handle wires that intersect at 
points other than the ends of segments, so wires intersecting at arbitrary locations can cause simulations showing no 
gain at all, or falsely high gains (though the directivity shown is often still correct). The number of completely 
infeasible solutions NEC2 simulated was limited using rule 3. Again, the ground plane can be removed if desired, and 
the limits on size changed. 

The results of optimizing this structure for the Arecibo Feed problem as posited in Chapter 5 were somewhat 
disappointing, however. It appears that the optimization of this structure is rather difficult, though it is acknowledged 
that the Arecibo Feed problem is a very demanding one. These are just two examples of the myriad of possible search 
spaces. 

7.2.3 Tree antennas 

Another major variation involves using a completely different kind of chromosome to generate an antenna: a tree 
chromosome. Tree antennas are thus very different from all previous antenna structures. The tree chromosome can 
have 3-D coordinates in its nodes. Wires for the NEC2 input file are drawn between parents and children in the tree. 
The chromosome is actually a fractal structure, able to branch, and very large trees with very complex connections 
can result. This freedom has led to some surprising preliminary results, but some disappointing ones as well. 

Figure 7.6. Tree Antenna Design Space. The tree has 3-D point coordinates in its nodes. Wires are connected 
between parent and child nodes. The root node is at the origin. Each wire can be a designated size, allowing for only 
angular data to reside in the nodes, or wires can be of different distances. 

For the preliminary runs, each wire in the tree was limited to one segment in length (0.075X), and each node 
contained relative coordinate information from its parent—i.e., its direction relative to its parent node. The program 
that writes the NEC2 input file takes this relative information and converts it to absolute coordinates, as NEC2 
requires. 

The initializer routine for the tree constructed a tree with a certain maximum number of children per node, and a 
certain maximum depth. It places random 3-D vector information in each node, where the vector is 0.075A. long and 
points in a random direction. The mating process included both node and subtree swapping, and mutation included 
subtree destruction, node replacement and swapping, and subtree swapping. 
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Following are two resulting antennas. They were applied to the Arecibo Feed problem, so they were optimized for a 
60° beamwidth centered at 0° 0, low sidelobes, and linear polarization. To facilitate the linear polarization, they were 
limited in movement in the Y plane, producing almost flat antennas. They were allowed some movement in this third 
dimension to allow fewer wire crossings. They were both generated over a ground plane. 

Max =20.7 dBi 

Elevation 

<|> = 0 

6 = 51 
 Azimuth 

Max =17.6 dBi 

Figure 7.7. Preliminary Result 1. 

Max = 20.7 dBi 

Elevation 

<|> = 0 

6 = 51 
Azimuth 

Max= 17.6 dBi 

Figure 7.8. Preliminary Result 2. 

Notice that they seem to have very regular-looking patterns for such unusual shapes. It should be stated that it is 
almost certain that these two antennas violate the assumption in NEC2 that wires are not touching except at segment 
boundaries. This leads to the high absolute gains that are shown, which are in all likelihood false. However, the 
antenna directivity pattern is generally robust to such violations, and shows a well-behaved pattern is possible with 
these chaotic-looking structures. It was also easy to see that these structures were too cumbersome to put into the 
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rigorous environment of the Arecibo antenna. However, these results did indicate that much could be done with this 
antenna type. 

Since the preliminary results looked so promising, an experiment was run with the tree antenna GA, as applied to the 
RH circular polarization, hemispherical problem of the crooked wire antenna. 

The 72-run experiment varied maximum number of wires (10, 18, 25), absolute or relative references in the nodes 
(i.e., whether nodes contained points that specified absolute coordinates, or relative distances from the parent node), 
overlap (35%, 65%), mutation rate (0.6%, 0.06%), number of levels/layers allowed in the trees of the first generation 
(2, 3, 4). This last parameter determines the depth of the tree. For instance, tree of preliminary result 2 above has six 
layers. This parameter only affects the first generation; future generations can acquire more levels from subtree 
swapping. Held constant was the number of children allowed for each parent node, set at 4. The mating process 
included both node and subtree swapping, and mutation included subtree destruction, node replacement and 
swapping, and subtree swapping. Wires were allowed to vary in length, as opposed to the preliminary runs. 

The results of the experiment showed the best individuals should be obtained from the following combination: 10 
nodes maximum, absolute referencing, 35% overlap, 0.2% mutation, 4 levels in the initial generation. The predicted 
number of NEC2 simulations was 3489 and the score was 1173. Confirmation runs averaged 3425 NEC2 simulations 
each, as predicted, but had scores of only 2040 on average—much poorer than predicted. Thus, more work remains 
to be done on this type of antenna. 

The preliminary results, then, seem to hold more promise than was realized thus far. The tree antenna needs more 
work to make it useful and possible to fabricate. Notice the jumbled appearance of the two preliminary results— 
actually constructing that antenna would be very difficult. Restrictions probably should be placed on the structures to 
ensure they do not violate the assumptions of the simulator (as they almost certainly have done) and they are able to 
be easily assembled. More work also needs to be done to discover the types of problems best solved with these 
structures, and the best parameters for the GA that optimizes them. 

7.2.4 Using developmental rules 
Another particularly intriguing idea comes from the fact that biological life is not specified by the genetic code in the 
way that antenna designs have thus far been specified. The shape and color of a leaf or a flower is determined, not by 
some external builder that sees a gene for a certain shape and builds that shape, but by hundreds of thousands of cells, 
each working from a complete set of the genetic code and specializing in different ways to form the different 
structures that make up the anatomy of a plant or animal. Each cell works from a set of rules for specialization and 
function, that collectively make the structure grow and live and have its characteristic shapes or colors. 

It would be interesting to make antennas using rules rather than specifications, and use a GA to evolve, not the 
antenna itself, but the rules that tell one when to use, for instance, a single metal segment, or a jointed metal segment. 
A set of rules could be evolved that specify when a metal trail should turn, branch or stop, given its surroundings. As 
another example, a group of "cells" with certain internal metal structures could be used to spawn others in a 
"growing" antenna, and rules could tell these cells when to branch or what direction to spawn in and when to stop 
growing. Again, the possibilities are endless. 

7.3 Conclusion 
There are almost no limits on the search spaces that are possible to optimize with a GA. Wires can be configured in 
almost any conceivable configuration, and NEC2 can simulate almost any arbitrary wire structure that does not 
violate its basic assumptions. This incredible freedom indicates almost limitless potential for antennas in the future. 
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There are also other metal shapes besides thin wires, of course. A fast simulator that can simulate the antenna patterns 
of arbitrary shapes could be used to construct genetic antennas made of plates or other solid objects instead of, or in 
addition to, wires, expanding the universe of possible search spaces dramatically. 

This chapter was provided in the hopes that those who read it will be encouraged to try new and creative methods of 
enhancing the GA process and search spaces for different cost functions. The genetic antenna is a new area of 
research that promises to be a fascinating and useful addition to the field of electromagnetic structures. 
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Chapter 8: Conclusion 
It is hoped that the reader now has an understanding of the GA and how it can be applied to electromagnetic 
problems. After introducing the reader to antenna design problems and methods in Chapters 1 and the properties of 
antennas in Chapter 2, Chapter 3 covered the setup and running of a GA with a simple two-variable antenna example 
that shows how a GA operates and what can be expected during typical runs. The example also shows that even 
simple electromagnetic problems can have complicated search spaces, and that the GA is capable of finding excellent 
answers in them. 

Three different antennas were then discussed in detail: the loaded monopole, the Yagi antenna, and the crooked-wire 
genetic antenna. The GA found an asymmetric loaded monopole with an average variation in gain over the 
hemisphere of only 0.4dB, and this antenna was built and measurement confirmed this result. But not only was the 
loaded monopole optimized by the GA but the loaded monopole search space was explored and the GA itself was 
optimized for this problem. Because there were only six unknowns, the search space was exhaustively explored and 
was found to be complicated and multi-modal. Both real and binary versions of the GA were used to optimize this 
antenna, and the real GA was found to require no parameter-tuning specific to this antenna while producing results 
nearly identical to a tuned binary GA in about 25% of the NEC2 simulations. 

The Yagi antenna was studied in Chapter 5, and GA-optimized Yagi antennas surpassed the gain of conventional 
Yagis by about ldB, improvement also confirmed by measurement. The GA designed a Yagi with a beamwidth of 
50°-60°, sidelobes nearly 25dB down, and a 14% bandwidth—specifications difficult to achieve using conventional 
techniques. The real GA was found to produce better results with this antenna over the binary GA given a 
comparable number of NEC2 simulations. 

The crooked-wire genetic antenna, the most unusual antenna of the three, was discussed in Chapter 6. Optimization 
for hemispherical coverage with right-hand circular polarization (RHCP) produced highly unusual shapes unrealizable 
using a conventional approach. RHCP hemispherical coverage was achieved with less than 4dB variation. 
Measurements verified the results for two such antennas. In addition, the search space was studied, and it was found 
that a random chromosome would produce a design with a fitness that fell within a slightly skewed normal 
distribution and the average random antenna was poor, but not exceedingly so. This distribution showed that it 
requires good luck or skill to produce an antenna that is able to perform well or perform extremely poorly. In 
addition, the binary GA was tuned with experiments for the optimization of this antenna, allowing good designs to be 
produced from about 50% of the GA runs, which required about 3750 NEC2 simulations each. However, the real 
GA with no tuning, was able to find a better design than had ever been found in all binary GA runs, tuned or not, in 
only one run and about 25,000 NEC2 simulations. 

As shown in Chapter 7, there are many avenues of further research, in two main areas: improvement of the GA and 
the exploration of unusual antennas. Response-surface modeling and using series of GAs with increasing resolution 
show great promise in making the GA more efficient, while multi-chromosomal and tree antennas show promise at 
being able to solve difficult design problems. 

Using the GA it appears that few antenna problems are insurmountable, given enough time and computer power. 
Those that are still intractable are so because their simulations require too much time and/or memory. But as 
computers become more powerful, and simulators become more streamlined, even these problems should fall within 
the range of the GA optimization technique. 

While much progress remains to be made, the GA looks extremely promising as a technique that can open the door to 
many different optimizations. There may be faster optimization methods for certain problems, and there may be more 
powerful techniques discovered in the future, but right now the GA appears to be the most general and the most 
powerful optimization technique for the spiky, complicated search spaces that antennas have. It is hoped that the GA 
will further the boundary of what is possible with antenna structures, and relieve the engineer from tedious and 
difficult optimization by hand, allowing him or her to be faster, more creative, and more effective at solving the 
problems facing the world of communications and remote sensing. 
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Appendix A: NEC2 Limits and Validation 

NEC2 uses a method-of-moments calculation to achieve antenna patterns and characteristics. This method requires 
that the simulator break an antenna design into small, finite segments, which it then approximates as a single point in 
the simulation. This technique has been well-validated and used with great success over many years. 

Because there are finite elements approximating the actual design, care must be taken to follow certain rules to ensure 
the answers are valid. Among other assumptions, NEC2 uses a thin-wire approximation, which assumes that the 
radius of the wire is much smaller than the length of the segment. Thus, if one attempts to include too many segments 
in the hopes of creating a more accurate simulation, one will violate this rule and actually decrease the simulation 
accuracy. 

The rules that one must follow, then, are contained in the next section. 

A.1 Limitations and tests to ensure validity 

Following is a list of NEC2 limitations and litmus tests to ensure that results are valid, compiled from the literature 
listed in the next section: 

I. Wires and segmentation 
A.   Segments should be no longer than X/10 (Burke et al.). 7J5 is an upper limit for weak, smoothly varying 

regions of current found by Peng, et al. 
Segments must not be so small they violate thin wire assumption: length/radius > 2 for 1% accuracy, and > 0.5 
for reasonable results. (Burke et al.) 
Peng, et al. suggest that the lower limit due to degeneracy in the basis functions of NEC is AVIOOO, and 
problems with circulating currents may occur with segments shorter than XI250. 
Intersecting segments are not connected unless they do so at their ends-large errors can arise if the evaluation 
point for one segment lies within another. 
Wire radius must be small: 2% radius IX « 1 (Burke). 
Simulated wire radii should be close to physical ones (Peng). 
Close parallel wires should have identical segmentation (Peng). 

B. 

D. 

E. 
F. 
G. 

II. Impedances are difficult to calculate accurately—care must be taken near source for accurate impedance 
calculation, whereas radiation pattern is still accurate without such care (Austin and Fourie). 

III. Finite ground planes 
A. Surface area of wires should be equal to surface area of ground plane (Peng, et al). 
B. Wires should be no farther than X/10 apart (Peng, et al.). 

A.2 Literature review 

As mentioned previously, NEC2 has been a standard in the antenna community for years. As such, it has been used in 
many different types of wire antenna research. Table I describes published papers that show close agreement between 
NEC2 and measurements or theory. 
Paper Signifii cance 

Richie, JE. and Gangl, H.R. HI. "EFEE-MFIE Hybrid 
Simulation using NEC: VSWR for the WISP Experiment." 
IEEE Trans, on Electromag. Compat., Vol 37, No. 2, May 
1995. pp. 293-296. 

Shows agreement between VSWR calculations of 
space shuttle cargo bay with measurements. 

J. Moore and MA. West. "Simplified analysis of coated wire Shows excellent agreement between measurement 
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antennas and scatterers." IEE Proc.-Microw. Antennas 
Propag., Vol. 142, No. 1, February 1995. 

and simulation of coated wire dipole current 
distributions, taking coating into account through 
a radius change and impedance loading 

Mann, S.M. and Marvin, A.C. "Characteristics of the Skeletal 
Biconical Antenna as Used for EMC Applications." IEEE 
Trans, on Electromag. Compat. Vol 36, No. 4, November 
1994. 

Shows close agreement between measured and 
predicted impedance measurements (both real and 
imaginary) vs. frequency, with segment size ^20. 

James, J.R. and Andrasic, G. "Environmental coupling loss 
effects in superconducting HF loop antenna design." IEE 
Proc.-Microw. Antennas Propag., Vol 141, No. 2, April 1994. 

Shows close agreement between design formulas 
and NEC calculations of radiation resistance, 
reactance and efficiency for various square loop 
antennas. 

Upton, M.E.G. and Marvin, A.C. "The Fields Due to a Small 
Loaded Loop in Free Space." IEEE Trans on Electromag. 
Compat, Vol 36, No. 1, February 1994. 

Shows close agreement between theoretical 
analytical calculations and NEC calculations for 
the wave impedance of loaded and unloaded loops 
in free space. Also showed close agreement 
between measurements and NEC calculations. 

Altshuler, E.E. "A Monopole Antenna Loaded with a Modified 
Folded Dipole." IEEE Trans, on Antennas and Propagation, 
Vol. 41, No. 7, July 1993. pp. 871-876. 

Shows reasonable agreement in far-field antenna 
pattern, frequency dependence, and impedance for 
loaded monopole. 

Peng, J, Balanis, C.A Barber, G.C. "NEC and ESP codes: 
Guidelines, Limitations, and EMC Applications." IEEE Trans, 
on Electromag. Compat, Vol. 35, No. 2, May 1993. 

Shows close agreement between NEC and ESP 
simulations subject to certain constraints and 
explores the limitations of both codes. 

Cox, J.W.R. "Corroboration of a moment-method calculation 
of the maximum mutual coupling between two HF antennas 
mounted on a helicopter." IEE Proceedings-H, Vol. 140, No. 
2, April 1993. pp. 113-120. 

Shows agreement between NEC and circuit- 
equivalent model of mutual coupling between two 
loop antennas mounted on a helicopter. Problem 
required both near and far-field terms to be 
accurately calculated by NEC. 

Recrosio, N, Fine, G, and Helier, M. "Analysis of Radiation 
Characteristics of Distribution Line Carriers with the NEC 
Code." IEEE Trans, on Electromag. Compat, Vol 35, No. 1, 
February 1993. 

Shows good agreement between NEC calculations 
and measurements of fields from a medium- 
voltage distribution line under various 
configurations. 

Austin, B.A, and Fourie, A.P.C. "Characteristics of the Wire 
Biconical Antenna Used for EMC Measurements." IEEE 
Trans, on Electromag. Compat, Vol. 33, No. 3, August 1991. 

Shows good agreement between NEC and 
measurements of the far-field E field, impedance, 
antenna factor, gain and mismatch loss of the wire 
biconical antenna without a ground plane. 

Baldwin, P.J, Boswell, A.G.P, Brewster, D.C, Allwright, J.S. 
"Iterative calculation of ship-borne HF antenna performance." 
IEE Proceedings-H, Vol 138, No. 2, April 1991. 

Showed close agreement between NEC and 
measured far-field gain patterns (both magnitude 
and phase), input resistance and reactance, and 
radar cross sections for ship-bome antennas. 

Table I. Papers that have compared NEC2 calculations to measurements or other simulators. 

A3 Validation ofNEC2 

Many antennas in this thesis were built and measured. These tests showed reasonable agreement with the NEC2 
results, as is shown in Chapters 4, 5, and 6. As discussed in Chapter 4, when these tests included a ground plane, a 
significant amount of ripple was seen in the measured pattern that was not predicted in the simulation, due to the 
1.2m x 1.2m ground plane that was used in measurement, as opposed to the infinite ground plane that was used in 
simulation. The ripples in the pattern arise from reflections from the edges of the ground plane. NEC2 can simulate 
antennas over an infinite ground screen in a few seconds, while it takes over 24 hours to simulate an accurate version 
of the 1.2m finite ground screen at 1600 MHz. Hence the infinite ground screen was used in the optimizations, even 
though the performance was somewhat different in real measurement. 
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Figure A.l is a graph showing a comparison of NEC2 simulation of a crooked-wire genetic antenna with an infinite 
ground plane, a finite ground plane, and the actual measurement of the antenna, repeated from Chapter 6 for 
completeness. There is approximately a 5 dB variation in the field above an elevation angle of 10° as compared to the 
computed variation of about 1 dB over an infinite ground screen. On the other hand, the simulation with a finite, 
perfectly conducting ground screen shows very good agreement with measurement results. Notice that the peaks and 
valleys in both the measured data and the finite ground plane simulation agree well in location, though the simulation 
shows greater variation in amplitude. This discrepancy is minor, however, and is a result of the approximation of the 
real test conditions in the simulator. Though simulation with a finite ground screen is closer to reality, the antenna 
was not optimized using a finite ground screen because the GA requires several thousand such runs to produce a 
design, and, as mentioned above, the time to simulate the finite ground screen was prohibitive. 
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Figure A. 1. Effect of the finite ground plane on an antenna pattern. 
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Appendix B: 2-D, 3-D, and List Chromosomes 
Should the reader desire to explore these chromosomes, their structure and operators are listed here. 

2-D, 3-D Chromosomes 
Works best for 2-D or 3-D finite element problems 
Example: structure with structural material or space in each square of a grid 
Phenotype: 

X X X X 
X X X X 

X X 
X X X X X X X 
X X X X X 
X X X 
X X X X X 

X X X X X 
Genotype: 

10100101 
00001 1 1 1 
00101 000 
11111101 
11010110 
10 100100 
10110011 
01111100 

2-D, 3-D Mating and Mutation 
Parents: 
11111111 
11111111 
11111111 
11111111 
Crossover: 

00000000 
00000000 
00000000 
00000000 

11111 
11111 
11111 
Mill 

1 1 1 
1 1 1 

00000 
00000 

111 
111 

00000 
00000 

000 
000 
000 
000 

Children: 
1111 1000 
1 1 1 1 1 000 
00000 1 1 1 
00000 1 1 1 

00000 1 1 1 
000001 1 1 
11111 000 
1111 1000 

Mutation: still just a bit flip or one of the real number mutations 

List Chromosomes 
Best for lists with non-repeating elements 
Classic list problem: the traveling salesman 
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ABCDEF ACFBED 

List Chromosome Mating and Mutation 

ABCDEF     -> crossover, 3rd position -» ABCBED 
ACFBED ACFDEF 
♦unfeasible children* 

ABCDEF    -* crossover, 3rd position ->■      ABCFED 
ACFBED ACFBDE 

Mutation: Move a random gene to a random spot 
ABCFED ->•        AEBCFD 
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Appendix C: Other Mating Operators for Real 1-D Chromosomes 

(All of these techniques are from [25]) 

Whole Arithmetic 
Each of the child's genes is copied from one of its two parents at random. 

Simple 
Beyond the crossover point, each child gene is a linear combination of the parents' genes, taken gene by gene: 
Cj = a-Plj+ (l-a)-P2j,   0 < a < 1 

Linear 
Cl. = (0.5)Plj+ (0.5)P2j, C2j = (l^Plj - (0.5JP2j, 

C3i = -(0.5)Pli+(1.5)P2i 

Average 
C=[P1+P2.1 / 2 

l    L    l       iJ 

BLX-a 
Child is chosen uniformly from entire interval I + 2ocI 

PI P2 

■« ► « » 

al al 
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