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Abstract 
TRANSOM is a multi-block, multi-method Reynolds-averaged Navier 

Stokes solver being developed at DREA to address problems associated with 
the flow around ships and submarines. It is multi-block because the flow is 
.divided into several distinct regions. It is multi-method because a different 
solution method may be used on each of the flow regions. At present two 
different methods of solution can be chosen: a finite volume solver based on 
the pseudo-compressibility method; and a finite element solver which uses 
the penalty function method to determine the pressure. 

TRANSOM is written in C++ following principles of Object Oriented 
Programming. This document describes the design of the finite element flow 
solver in TRANSOM with emphasis on the class hierarchies used to 
represent elements, finite element grids, degrees of freedom, and the solver 
itself. Two companion reports describe the overall design of TRANSOM and 
the design of the pseudo-compressibility solver. 

Resume 
TRANSOM est un resolveur Navier-Stokes pondere Reynolds, multi- 

blocs, multi-methodes, que le CRDA est en train de d£velopper pour r£soudre 
des problemes concernant l'ecoulement autour des navires et des sous- 
marins. II est multi-blocs parce que l'ecoulement se divise en plusieurs 
regions distinctes. II est multi-methodes parce qu'il permet d'utiliser une 
technique de solution differente pour chacune des regions de l'ecoulement. 
A 1'heure actuelle on peut choisir entre deux methodes de solution: un 
resolveur ä volumes finis bas^ sur la m£thode de pseudo-compressibilite et 
un resolveur par elements finis qui utilise la methode de la fonction de 
penalite pour determiner la pression. 

TRANSOM est £crit en C++ en suivant les principes de la 
programmation orientee objet. Ce document d£crit la conception du 
resolveur d'ecoulement ä elements finis de TRANSOM, en mettant l'accent 
sur les hierarchies de classes utilisees pour repr£senter les elements, les 
maillages des elements finis, les degres de liberte, et le resolveur lui-meme. 
Deux rapports complementaires decrivent la conception globale de 
TRANSOM et la conception du resolveur de pseudo-compressibilite. 
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DREA Technical Memorandum TM/97/225 

Implementation of a Finite Element 
Navier-Stokes Solver in TRANSOM 

by 

David Hally 

Executive Summary 

Background 
The computer program TRANSOM is intended to solve a number of 

ship-related flow problems of interest to DREA: for example, flows around 
submarines, vortex generation from propellers and control surfaces, bilge 
vortex generation, and prediction of roll damping coefficients. In particular it 
will enhance our ability to predict the flow around a ship hull and into the 
propellers. Knowledge of this flow is crucial for the design of efficient quiet 
propellers. 

TRANSOM is a multi-block, multi-method Reynolds-averaged Navier 
Stokes solver; multi-block because the flow is divided into several distinct 
regions called blocks; multi-method because a different solution method may 
be used on each of the blocks. Unlike the methods currently in use at DREA, 
TRANSOM solves the full Navier-Stokes equations in conjunction with a 
turbulence model; hence, when completed, it will be able to solve the flow 
around complex geometries such as a fully appended ship hull or submarine. 
The overall design of TRANSOM is described in a companion document. 

The current version of TRANSOM includes two different solution 
methods which can be used on the blocks. The first is a pseudo- 
compressibility method based on the work of Rogers and Kwak and 
developed for DREA under contract by the University of Toronto; it is 
suitable for use on structured blocks. Turbulence can be modelled using a 

variant of the k-e model or using the Baldwin-Lomax model. Currently only 
two-dimensional flow can be modelled. Details of the implementation of this 
solver in TRANSOM will be documented separately. 

Principal Results 
The second solver is described in detail in this memorandum. It uses the 

finite element method and is based on the program MEF developed at 
Universite Laval; it is suitable for use on unstructured blocks. MEF was 

modified at DREA to incorporate variants of the k-E turbulence model; 
however, the version that is currently incorporated in TRANSOM is 
restricted to two-dimensional laminar flow. 

TRANSOM is written in C++ following principles of Object Oriented 
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Programming. This document describes the implementation of the finite 
element flow solver in TRANSOM and, in particular, the class hierarchies 
used to represent unstructured blocks, elements, and finite element solvers. 

Significance of Results 
When TRANSOM is fully developed it will provide accurate numerical 

predictions of the flow into the propeller plane. It will also be applicable to 
many other flow problems related to ships: for example, flow around 
submarines, vortex generation from propellers and control surfaces, bilge 
vortex generation, prediction of roll damping coefficients, and prediction of 
the lift and drag characteristics of lifting surfaces such as submarine control 
planes, rudders, and fin stabilizers. The finite element solver described here 
will considerably ease the burden of grid generation in regions of geometric 
complexity. 

Future Work 
TRANSOM is still under development; the current version will only 

solve two-dimensional flows and requires upgrading in many areas, in 
particular the ways in which different solution methods interact at their 
common block boundaries. Further development will be done at DREA and 
under contract. 

Vll 



1 Introduction 
At high speeds the noise radiated by a warship is primarily due to 

cavitation on its propellers. Naval propellers are designed so that cavitation 
inception is delayed to as high a speed as possible, but the design method 
requires an accurate prediction of the flow into the propeller plane. Over the 
past decade computer programs have been developed at DREA to predict the 
flow into the propeller plane. Known collectively as HLLFLO[l], these 
programs use a low-order panel method to predict the potential flow and 
boundary layer methods to calculate the viscous flow. 

The HLLFLO programs have the advantage that they are very fast. They 
yield fairly good predictions for unappended destroyer hulls[2]; however, 
there are several areas in which the predictions can be improved. 

1. As is typical of boundary layer methods, the wake deficit is over-predicted 
near the stern.  This is especially noticeable at model-scale Reynolds 
numbers. 

2. HLLFLO is incapable of handling the flow past appendages. The wakes 
shed from the propeller shafts and shaft brackets can cause significant spa- 
tially concentrated wake defects which, in turn, affect higher harmonics of 
the radiated propeller noise and the speed at which cavitation first occurs. 

3. HLLFLO does not account for the influence of the boundary layer on the 
potential flow. 

These effects are especially important for smaller vessels with low length to 
beam ratios. Moreover, HLLFLO is incapable of handling the complex 
geometries of submarines or advanced marine vehicles such as SWATHs. 

It was to address these deficiencies that work on the program TRANSOM 
was begun. TRANSOM is a Reynolds-averaged Navier-Stokes (RANS) 
solver: in conjunction with a turbulence model, it solves the Navier-Stokes 
equations on a grid of points which cover the regions of flow. 

When TRANSOM is fully developed it will be applicable to many ship- 
related flow problems, not just the calculation of propeller inflow: for 
example, flows around submarines, vortex generation from propellers and 
control surfaces, bilge vortex generation, and prediction of roll damping 
coefficients. 

The chief practical problem in developing a Navier-Stokes solver for the 
flow past a ship is that the Reynolds Number is so high: for a destroyer 
moving at 20 knots the Reynolds number is about 109. The higher the 
Reynolds number, the more grid points are necessary to resolve the severe 
velocity gradients near solid surfaces. For this reason, issues of computer 
storage are of extreme importance. 

Because  of the  complex  geometries  of  appended  surface ships  or 



submarines, the type of grid used in the calculations is also important because 
it affects the amount of computer storage required. Methods which allow the 
use of unstructured grids (e.g. finite element solvers) typically require far 
greater computer storage than methods which require structured grids. Thus, 
there is a trade-off between the ease generating the grid, and the storage 
requirements. To address this problem, TRANSOM has been designed as a 
multi-block multi-method solver. The numerical grid may consist of several 
blocks, some of which are structured, some unstructured. On each block a 
solver appropriate to the block structure is used. Since the areas of complex 
geometry are usually small in comparison with the whole ship, it should be 
possible to reduce the computer storage requirements significantly. 

The current version of TRANSOM includes two different solution meth- 
ods which can be used on the blocks. The first is based on the program NSI2D 
developed for DREA under contract to the University of Toronto[3,4,5]; it is 
suitable for use on a single structured block. The algorithm is a variant of the 
pseudo-compressibility method developed by Rogers and Kwak[6]. Currently 
only two-dimensional flow can be modelled; it will be extended to three di- 
mensions in 1996. Turbulence may be modelled either by the Baldwin-Lomax 

model[7] or by the Chen-Patel variant of the k-e model[8]. Implementation of 
the Baldwin-Barth model[9] is currently underway, details of the implemen- 
tation of the pseudo-compressibility solver in TRANSOM are given in 
Reference 10. 

The second solution is based on the finite element program MEF 
developed at Universite Laval[ll]; it is suitable for use on unstructured 
blocks. MEF was modified at DREA to model turbulence using a variant of 

the k-e model[12]. The implementation of the finite element solver in 
TRANSOM is described in detail in this memorandum. 

TRANSOM is written in C++ according to the principles of Object 
Oriented Programming. The overall design is described in Reference 13. It is 
recommended that Reference 13 be read before this memorandum since it 
describes many of the basic classes used in the finite element solver. 

Three main groups of classes are used to implement the finite element 
solver: elements, classes to organize the degrees of freedom associated with 
nodes of the unstructured grid, and finite element solvers. After a brief 
overview of the finite element method in Section 2, class hierarchies for each 
of these objects are described in Sections 3 to 8. Section 9 contains recom- 
mendations for improvements to the program. A user's guide for the pro- 
gram is also provided in Reference 14. 

TRANSOM input and output files use the OFFSRF format described in 
Reference 15. Reference 16 describes C++ classes which implement special- 
ized input and output streams for OFFSRF files and a base class which is in- 
herited by all classes which read from or write to OFFSRF files; it should be 
read prior to this document for a proper understanding of TRANSOM input 
and output. 



2 An Overview of the Finite Element Method 

In this section we give a brief overview of the finite element method as 
used in TRANSOM. The main purpose is to establish the notation that will 
be used. There are many textbooks which describe the method in much more 
detail and generality. 

A system of equations is to be solved on a grid of points which are 
grouped into elements. At each node of the grid there are several degrees of 
freedom. The values of most of the degrees of freedom are unknown and 
must be determined by the solution method. For simplicity in the discussion 
below, we will assume that a single equation must be solved over the whole 
grid. This is the typical case for fluid flow, although it is not necessary in 
general, nor in TRANSOM.  The system of equations to be solved is written: 

Fv = f (2.1) 

where F is a differential operator and v is a vector-valued variable which 
must be determined. 

In TRANSOM the Galerkin method is used. On each element, the 
unknown v is determined by its values at the nodes of the element: 

N 

vU,v) = Jv„/V„U,v) (2.2) 
n=l 

where Nn(x,y) are the nodal functions for the element. The values of v„ are 
the degrees of freedom for the problem. Variations of the degrees of freedom 
are defined by 

N 

öv(x,y)=^övnNn(x,y) (2.3) 

The Galerkin method obtains an approximate solution to equation (2.1) by 
requiring that 

jöv{Fv-f)dV = 0 (24) 
V 

for any choice of variations <5vn. Substituting equations (2.2) and (2.3) one 
obtains a linear system to be solved for the vector of unknowns {v}. 

MM = {/} (2.5) 
where 

[*L -JX(*00 FNm(x,y) dV;     {/}„ =}Nn(x,y)fdV (2.6) 
V V 

For a non-linear problem, [K] and {/} may be functions of the degrees of 
freedom {v}. 

The integrals in equation (2.6) are decomposed into integrals over each of 



the Ne elements: 

[KL-iKb   {/}.-!{/*.}. (2.7) 
~ k-l 

WI th 

K L = /^-^'^ ^^ ^;      K L = SN^,y)fdV (2.8) 

The matrix \KE 1 has only N2 non-zero elements, where N is the total 

number of degrees of freedom for the element; hence, it can be stored in a 
compact NxN matrix which will be called the local left hand side matrix, or 

simply the local matrix. Similarly, |/£i} can be stored as a vector of length N 

known as the local right hand side vector. The process of adding the local 
matrix and local vector to the linear system, as in equation (2.7), is called 
assembling the linear system. 

Boundary conditions are often implemented by fixing the value of one of 
the degrees of freedom at a node. When this is done, the variation of that 
degree of freedom is zero and one equation is eliminated from the linear 
system. Suppose that the «th degree of freedom is to be fixed. Then row n 
must be eliminated from [K] and column n is eliminated by multiplying it by 
the known value of the «th degree of freedom and incorporating the result in 
the vector {/}. The size of [K] is therefore the number of degrees of freedom 
whose values are not known. 

3 Elements 
The basis of the finite element method is the decomposition of a complex 

problem into a large number of simple problems on single elements. The 
inheritance characteristics of an Object Oriented programming language are 
particularly useful for this problem. 

Figure 1 shows the complete class hierarchy for the classes used by 
TRANSOM to represent elements. The fat arrows denote an inheritance 
relation (i.e. a RefElement is a specialization of an ElementNodeOrg and inherits 
its public and protected member functions) and the thin arrows denote a 
"part of" relationship. 

3.1 Element Node Organizers 

Since an element is made up of a sequence of nodes, we define a node 
organizer to describe the nodes in an element (see Reference 13, Section 2.3 
for a general description of node organizers and of the class NodeOrg); it is 
called an ElementNodeOrg. The prototype of its constructor is: 



ElementNodeOrg(unsigned n); 
Creates an ElementNodeOrg for an element with n nodes. 

Notice that when the ElementNodeOrg is constructed, the values of its nodes 
are unspecified. 

Like all node organizers, an ElementNodeOrg has the member function 
num_nodes() to return the number of nodes in the element, and 
get_all_node_iter() to return an iterator over the nodes in the element. The 
syntax for the iterator is as described in Reference 13, Section 2.2. The follow- 
ing member function is also defined: 

int containsfNode n) const; 
Returns   true   if   n   is   one   of   the   nodes   governed   by   the 
ElementNodeOrg. 

3.2 Quadrature Rules 

To facilitate interpolation and integration over an element, every ele- 
ment may be transformed to a reference element which has a simple geome- 
try. The coordinate system of the reference element will be denoted (§,77), 
while that of the element itself is denoted (x,y). For simplicity we will as- 
sume two dimensions in this discussion, although TRANSOM can represent 
elements of one, two, or three dimensions. 

Each reference element also provides a means of integrating a variable 
over the element.  The quadrature rule used is of the form 

M 

$f(M,rj)d%dr\ = JwB/(§* ,»7*) (3-1) 
m = l 

where wm, £*, and rfm, are all fixed values. Since for linear, square, and cubic 
reference elements these values are chosen to yield standard Gaussian 
quadrature rules, the wm are called Gaussian weights and the (§*,*?!) are 
called Gaussian points. The order of a quadrature rule is the highest order for 
which a polynomial is guaranteed to be integrated exactly (or more accurately, 
to within round-off error). For example, a quadrature rule of order four will 
integrate the polynomials £3 and ^rf exactly, while £4and %2rf will only be 
approximate. 

In TRANSOM, the class QuadratureRule is used to represent quadrature 
rules.  Each instance of a QuadratureRule stores a pointer to a Mtx, points, which 

contains the points (£*,^), and a Vec, weights, containing the weights, wm 

(the Vec and Mtx classes are described in Appendix A). Thus, (*points)[n] is 
pointer to the components of the nth Gaussian point and (*weights)[n] is the 
corresponding weight. The number of points can be obtained using the 
function weights->len(). Both points and weights are public members. 
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Figure 1: Class hierarchies for the element classes in TRANSOM 

The order of the quadrature rule may be obtained using the following 
member function: 

unsigned max_exact_order() const; 

The QuadratureRule class also provides three member functions which 
perform the integration of equation (3.1). They differ in the way in which the 
function /(£,r]) is specified. 

double integrate_fnc(double func(const double*, void *), void *p) const; 
void integrate_fnc(void func(const double*, void*, Vec&), void *p, Vec &v) const; 
void integrate_fnc(void func(unsigned, void*. Vec&), void *p, Vec &v) const; 

In each of these functions, the argument p may be used to pass data to the 
function func; it is passed directly to func using its void* argument. Commonly 
p is the this pointer of the calling class cast to void*. 



The first form of integrate_fnc() is suitable for integrating a single-valued 
function.   The const double* argument to func is a pointer to the coordinate 
values (£,77). 

The second form of integrate_fnc() is suitable for integrating a multiple- 
valued function; the values of the function are returned in the Vec v. The 
const double* argument to func is a pointer to the coordinate values (£,?7). 

The third form of integrate_fnc() is also suitable for integrating a multiple- 
valued function; the values of the function are returned in the Vec v. Rather 
than passing the coordinate values (^,rj) to func, the number of the current 
Gaussian point, ig, is passed instead. The coordinate values used in equation 
(3.1) are obtained from (*points)[ig]. This form of integrate_fnc() can increase 
efficiency when more than one integration is performed over a single 
element. The values of variables at all the Gaussian points need only be 
calculated once and stored in an array. Given the index ig, the function func 
can retrieve the appropriate value when calculating f{^,t]). 

3.2.1 Gaussian Quadrature 

TRANSOM defines specializations of QuadratureRule which implement 
one-dimensional Gaussian quadrature of order two, four, six, and eight. They 
are GaussQuad Rule02, GaussQuad Rule04, GaussQuadRule06, and 
GaussQuadRule08, respectively. The corresponding rules in two dimensions 
are Gauss2DQuodRule02, Gauss2DQuadRule04, Gauss2DQuadRule06, and 
Gauss2DQuadRule08. The points and weights for Gaussian integration are well 
known.  They are tabulated in Abramowitz and Stegun[17]. 

3.2.2 Quadrature over Equilateral Triangles 

Quadrature rules are also defined for integration over an equilateral 
triangle centred at the origin and with one vertex placed at (1,0), as shown in 
Figure 2. 

(-1/2/3/2) 

(1,0)- 

(-l/2,-V3/2) 

Figure 2: The reference triangle for triangular reference elements 



There are quadrature rules available for triangular reference elements. 
The locations of the quadrature points for each option are shown in Figure 3. 
The quadrature points and weights are given in Abramowitz and Stegun[17]. 
Table 1 gives the order of each of the quadrature rules. 

a) One-point quadrature b) Three-point quadrature 

c) Four-point quadrature d) Six point quadrature 

Figure 3: Quadrature points for integration over triangles 

Number of 

points 

Max. Exact 

Order 

Class Name 

1 2 TriQuadRule02 

3 3 TriQuadRule03 

4 4 TriQuadRule04 

6 6 TriQuadRule06 

Table 1: Accuracy of triangular quadrature schemes 



3.2.3 Adjustable Quadrature Rules 

An adjustable quadrature rule is one whose order can be specified. They 
are represented by the class AdjQuadRule and its specializations. The 
AdjQuadRule class is a specialization of QuadratureRule. It is implemented as a 
list of QuadratureRules of different order. Only one of the QuadratureRules is 
active at any time.  TRANSOM includes three specializations of AdjQuadRule: 

1. AdjGaussQuadRule: implements an AdjQuadRule using the rules 
GaussQuadRule02, GaussQuadRule04, GaussQuadRule06, and 
GaussQuadRule08. 

2. AdjGauss2DQuadRule: implements an AdjQuadRule using the quadrature 
rules Gauss2DQuadRule02, Gauss2DQuadRule04/ Gauss2DQuadRule06, and 
Gauss2DQuadRule08. 

3. AdjTriQuadRule: implements an AdjQuadRule using the rules TriQuadRule02, 
TriQuadRule03, TriQuadRule04, and TriQuadRule06. 

In addition to the member functions which it inherits from 
QuadratureRule, AdjQuadRule has the following constructors and member 
functions. 

AdjQuadRule(unsigned ord); 
Creates an AdjQuadRule.   The member function set_max_order() (see 
below) is called to set the order of the quadrature rule to ord.  Since 
AdjQuadRule is a pure virtual class, this constructor is only available 
to   specializations  of  the   class.     The   constructors   for  all   the 
specializations have similar arguments. 

unsigned set_max_order(unsigned ord); 
Requests that the order of the quadrature rule be set to ord. 
Depending on the rules available, the actual order used may be 
greater or smaller than ord. The order used is returned by the 
function. 

3.3 Reference Elements 

For each reference element, the position of the nodes in (§,rj) coordinates 
is fixed. For an N-noded element these reference nodes will be denoted 
iMn,r\n). The reference element also defines N nodal functions N„(|,JJ) which 
have the property that 

Nn(Zn,rim)=öma (3.2) 

where 6    is the Kronecker delta.   If the values of a variable at each of the nm 

nodes is vn, then its value anywhere in the element can be determined using 
the interpolation rule 



v(^) = 2vA(^) 0-3) 
B=l 

Each reference element also provides an adjustable quadrature rule for 
performing integration over the element. Member functions are provided to 
return a pointer to the quadrature rule and to change its order. Since the 
Gaussian points and weights of the quadrature rule are public, they are 
available to any class which might require them to perform efficient 
evaluations of a function to be integrated. 

In TRANSOM, reference elements are represented by the virtual class 
RefElement which is derived from the class ElementNodeOrg. The member 
functions num_nodes(), geLalLnode_iter(), and contains!) are all inherited. The 
following public constructors and member functions are also defined. 

RefElementfunsigned n); 
Makes a reference element having n nodes. 

Node& operator[](unsigned n); 
const Node& operator!] (unsigned n) const; 

Returns the nth node of the reference element.    Thus, if re is a 
RefElement, re[n] is the number of its nth node 

virtual unsigned max_order() const = 0; 
Returns the maximum order of any component (£ or   r)) of the 
polynomials used to define Nn(%,ri): e.g. the term |2rj2 is of order 3 
not 5. 

virtual unsigned dim_element() const = 0; 
Returns the dimensions of the element, d: i.e. the dimensions of the 
reference coordinate system. In the examples shown here d is two, 
since there are two reference coordinates, § and r], but TRANSOM 
will handle elements of one, two, or three dimensions. 

virtual const Mtx& get_ref_coords() const = 0; 
Returns a.n N x.d matrix which contains the reference coordinates of 

the nodes, (§„,*?,,)•  Trte Mtx class is described in Appendix A.   If re is 
the Mtx returned, then rc[n][0] is the value of §„ and rc[n][l] is the 

value of r\n. 

virtual AdjQuadRule* get_quadrature_rule() = 0; 
Returns a pointer to the quadrature rule used by this reference 
element. 

virtual const Array<Vec*>& get_node_funcs_at_gp() const = 0; 
Returns an array of pointers to vectors containing the values of 

nodal functions at the Gaussian points: WB(|f*,0- The array is of 

length M and each vector is of length N. If nf is the array returned, 

then (*nf[m])[n] is the value of #„(§*, r£). This function could have 
been written to return a Mtx, but the Array<Vec*> was chosen to 

10 



correspond more closely with the returned value of 
get_grad_node_funcs_at_gp(). Note that the returned value cannot be 
Array<Vec>& since an Array can only be constructed from classes which 
have constructors without arguments; all the Vec constructors 
require arguments (see Appendix A.l). 

virtual const Array<Mtx*>& get_grad_node_funcs_at_gp() const = 0; 
Returns an array of pointers to N x d matrices containing the 
gradient with respect to the reference coordinates of the nodal 

functions at the Gaussian points: i.e. returns ViVn(£*,?7*). The array 
is of length M. If g is the array returned, then (*g[m])[n][0] is the 

value   of    (<?#„/<?!■)(§*,O  and  (*g[m])[n][l]     is   the   value   of 

virtual const Array<Mtx*>& get_grad_node_funcs_at_nodes() const = 0; 
Returns an array of pointers to N x d matrices containing the 
gradient with respect to the reference coordinates of the nodal 
functions at the nodes: i.e. returns VNn(§m,?7m). The array is of length 
N. If g is the array returned, then (*g[m])[n][0] is the value of 

{dNnld%)(MM,r\m) and (*g[m])[n][l] is the value of {dNjdr))^m,r]m). 

void values_at_gp(const lOVar &v, Mtx &vgp); 
Using equation (3.3), evaluates the values of the variables in v at 
each of the Gaussian points. Returns the values in the MxL matrix 
vgp, where M is the number of Gaussian points and L is the number 
of variables per node in v. If the dimensions of vgp are incorrect a 
fatal error results. 

void values_at_gp(double *d, Vec &vgp); 
The argument d is a pointer to the values of a variable at each of the 
nodes of the element. Determines the corresponding values at each 
of the Gaussian points using equation (3.3). Returns the values in 
the vector vgp of length M. 

Vec node_funcs(const Vec &xi, int *kder = 0); 
Evaluates the nodal functions or their derivatives at the point xi and 
returns them in a Vec of length N. The length of xi must be d or a 
fatal error will result. The d integers stored at kder are used to 
specify the derivative which is required. When d is two, kder[] = 
{0,0} signifies that the values of the nodal function are returned; 
kder[] = {1,0} signifies that values of dNn/d% are returned; kder[] = 
{0,1 } signifies that values of dNn/dr] are returned; and so on. If kder 
is null, the values of the nodal functions are returned. 

void integrate_fnc(void funcfunsigned, void*, Vec&), void *p, Vec &v); 
Integrates the vector function tune over the reference element using 
the quadrature formula of equation (3.1). The vector-valued integral 
is returned in v. The function func(ig,pl,f) returns its value in f; The 
argument ig is the number of the current Gaussian point; i.e. it is in 
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the range [0,M].  The pointer p may be used to pass data to func; the 
value of the func argument pi is always set to p.  Usually p is the this 
pointer of the calling class cast to a void.  The length of the vector f is 
always the same as the length of v. 

As an illustration of the member function integrate_fnc(), consider the 
following code.    It integrates the squares of the nodal functions over an 
arbitrary reference element represented by the RefElement pointer re.   The 
result is returned in the Vec v of length N. First we define func. 

void func(unsigned ig, void *p, Vec &f) 
{ 

RefElement *re = (RefElement*)p; 
Vec &nf = *(re->get_node_funcs_at_gp()[ig]); // nf contains the nodal functions 

// at the Gaussian point ig 
for (unsigned n = 0; n < f.len(); n++) 

f[n] = nf[n]*nf[n]; 
} 

A call to integrateJncO will now perform the integration.    Notice that the 
argument p is set to re (cast to a void*) which is then passed to func. 

Vec v(re->num_nodes());     // Create a Vec of appropriate size 
integrate_fnc(func, (void*)re, v); 

3.3.1 Line Reference Elements 
Line reference elements are one-dimensional. The reference coordinate 

| extends from -1 to 1. An AdjGaussQuadRule is used for the quadrature rule. 
For all line reference elements the nodes are numbered consecutively along 
the line segment. 

A Lin2LineElement is a line reference element whose nodal functions are 
linear. The element contains only two nodes at £ = -1 and £ = 1. The default 
quadrature order is four.  The nodal functions are 

N^) = ^-;    W2(£) = —£ (3.4) 

A Quad3LineElement is a line reference element whose nodal functions are 
quadratic. The element contains three nodes at £ - -1, 0, and 1. The default 
quadrature order is eight.  The nodal functions are: 

Nl(f)--!!ll)i;     ;V2(£) = (l+ £)(!-£);     N3(£) = ^^ (3.5) 
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a) Lin2LineElement b)Quad3LineElement 

Figure 4: Reference points for line elements 

3.3.2 Triangular Reference Elements 

Triangular reference elements are two-dimensional elements whose 

reference coordinates (%,rj) cover an equilateral triangle centred at the origin 
and with one vertex placed at (1,0), as shown in Figure 2. An AdjTriQuadRule is 
used for the quadrature rule. 

A Lin3TriElement is a triangular reference element whose nodal functions 
are linear. The element contains three nodes: one at each vertex of the 
reference triangle.  The default quadrature order is four. 

A Quad6TriElement is a triangular reference element whose nodal 
functions are quadratic. The element contains six nodes: one at each vertex of 
the reference triangle and one at the centre of each of its sides. The default 
quadrature order is six. The nodes are numbered consecutively around the 
perimeter starting at one vertex of the triangle. 

a) Lin3TriElement b) Quad6TriElement 

Figure 5: Reference points for triangular elements 

3.3.3 Square Reference Elements 

Square reference elements are two-dimensional elements whose reference 

coordinates (%,?]) cover a square centred at the origin with sides of length 

two; thus its vertices are at (|,rj) = (±l,±l). An AdjGauss2DQuadRule is used for 
the quadrature rule. 

A Lin4SquareElement is a square reference element whose nodal functions 
are bi-linear.   The element contains four nodes: one at each vertex of the 
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reference square.   The default quadrature order is four. 

A Quad 8S qua re Element is a square reference element whose nodal 
functions are linear combinations of the polynomial basis functions 1, £, r\, 

|2, %r\, rf, %2r\, and |rj2. The element contains eight nodes: one at each 
vertex of the reference square and one at the centre of each of its sides. The 
default quadrature order is eight. 

A Quad9SquareElement is a square reference element whose nodal 
functions are bi-quadratic. They are linear combinations of the polynomial 

basis functions 1, £, r\, f, lr\, rf, |2r?, W. and |V- The element contains 
nine nodes distributed as a 3x3 grid. The default quadrature order is eight. □ 

0 1 0 12 0 1 

a) Lin4SquareElement b) Quad8SquareElement       c) Quad9SquareElement 

Figure 6: Reference points for square elements 

3.4 Geometric Elements 

TRANSOM elements are iso-parametric; the nodal functions for interpo- 
lation of the coordinates are the same as for any other variable. 

The class GeomElement represents an iso-parametric element including 
the location of its nodes in space. None of the physical properties (i.e. the 
nodal degrees of freedom) are represented. 

It is important to recognize the difference between the dimension of the 
element, d, and the dimension of the element coordinates, dc. For a square 
element d is two, but when it is used in a three dimensional problem, dc is 
three. There are two main types of geometric elements: volume elements, for 
which the d and dc are the same; and boundary elements, for which d is less 
than dc. These are represented by the classes VolumeElement and 
BoundaryElement, both of which are specializations of GeomElement. 

Every instance of a GeomElement contains a RefElement which defines the 
organization of its nodes. The GeomElement defines the transformation 
between the Cartesian coordinates and the reference coordinates. Since the 
element is iso-parametric, this transformation is defined, using equation (2.2), 
by 
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jcd.rtf-^XCM) (3.6) 

where x is the Cartesian coordinate vector and the xn are the coordinate 
vectors at the nodes. 

Like a RefElement, a GeomElement provides functions for integrating over 
the element, but in this case the integration variables are the Cartesian 
coordinates, not the reference coordinates. The integration is performed by 
converting the integral to one over the reference coordinates by multiplying 
by the determinant of the Jacobian. If d = dc = 2 we have 

ff(x,y) dxdy -ff(£,ri) |det J(|,»7)| d&fy 

where the Jacobian J is given by 

dx    dy 
d{x,y) 

(3.7) 

m,v) = 
<?(§,»?) 

d%    d% 
dx    dy 
dr\    dr\ 

(3.8) 

Using equation (3.6), one gets the following formula for det/: 

'dN. dN_    dN, dN_ M       M 

det 7«.,)-2  Ju.^ 
Mil      \d%  dt) 

n  m 

d%   drj (3.9) 

Now using equations (3.1) and (3.7), one obtains the following quadrature 
formula: 

M 

jfix^dxdy^^WJiC^J 
m-\ 

where 

Wm = W\dct J(C,VJ\ 

(3.10) 

(3.11) 

If the value of a variable at the nth node is vn, then its gradient anywhere 
in the element can be determined using the interpolation rule 

Vv(^) = Jv^/V,^) = £ vn 
n-l 

\dNn] 
dx 

dNn 

. dy. 

N 

n=l 
dNn 

(3.12) 

For a boundary element with d = l, an integral over the element is 
equivalent to a line integral. The quadrature formula is similar to equation 
(3.10) but with 

W. w_ 
dx_     . 
d^m) = w_ 

«=1 rfl 
(3.13) 
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A GeomEiement does not store the values of the coordinates at each of its 
nodes; that would be far too costly in memory. Instead, the coordinates for all 
nodes are stored as a PointColl (see Reference 13, Section 2.4); the GeomEiement 
stores a static pointer to the coordinates along with a pointer to a RefElement 
which defines its nodes. The pointer to the RefElement is defined when the 
GeomEiement is constructed. 

GeomElement(RefElement *re); 
The pointer to the coordinates is set using a static member function. 

static void set_coords(PointColl *pc); 
This allows GeomElements on different blocks to be used (set_coords() is called 
whenever the block is changed) without requiring the storage of an extra 
pointer in every GeomEiement. 

The following member functions all return the same values as the 
corresponding member functions of the RefElement re used to construct the 
GeomEiement. 

unsigned dim_element() const; 
unsigned num_nodes() const; 
AliNodelter *get_all_node_iter() const; 
AdjQuadRule* get_quadrature_rule(); 
const Array<Vec*>& get_node_funcs_at_gp() const; 
const Array<Mtx*>& get_grad_node_funcs_at_gp() const; 
const Array<Mtx*>& get_grad_node_funcs_at_nodes() const; 
void values_at_gp(const lOVar &v, Mtx &vgp); 
Node& operator[](unsigned i); 
const Node& operator[](unsigned i) const; 

In addition, the following member functions are defined. 

unsigned dim_coords() const; 
Returns the dimension of the coordinates used by the element. 
Note, as discussed above, that this may be different from the 
dimension of the element. 

double* coord(unsigned n) const; 
Returns a pointer to the coordinates of the nth node of the element. 
Thus the x value of the second node of a GeomEiement ge is 
ge.get_coords(2)[0]. 

RefElement* get_reference_element() const; 
Returns a pointer to the reference element which defines the nodes 
of the element. 

operator RefElement (); 
Converts the GeomEiement to the RefElement which defines its nodes. 

void integrate_fnc(void funcfunsigned, void*, Vec&), void *p, Vec &v); 
Integrates the vector function func over the element using the 
quadrature formula of equation (3.10) in conjunction with either 
equation (3.11) or equation (3.13). The RefElement quadrature rule is 
used to perform the integration. 
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An extractor and an inserter are defined for reading from an istream and 
writing to an ostream. 

friend istream& operator»(istream &in, GeomElement &ge); 
friend ostream& operator«(ostream &out, GeomElement &ge); 

These functions simply read and write the reference element associated with 
the geometric element.  They are equivalent to 

in » *ge.get_reference_element(); 

and 

out « *ge.get_reference_element(); 

3.4.1 Volume Elements 

A VolumeElement is a geometric element for which the dimensions of the 
element are the same as the dimensions of the coordinates. This implies that 
the reference coordinates and Cartesian coordinates are related by a square 
Jacobian matrix. 

A Volume2dElement is a specialization of a VolumeElement for which the 
dimension of the element is two. Its member functions are all inherited from 
VolumeElement. The prototypes for the VolumeElement and Volume2dElement 
constructors are: 

VolumeElementfRefElement *e); 
Volume2dElement(RefElement *e); 

The following member functions are inherited from GeomElement. 

unsigned dim_element() const; 
unsigned num_nodes() const; 
AIINodelter *get_all_nodejter() const; 
AdjQuadRule* get_quadrature_rule(); 
const Array<Vec*>& get_node_funcs_at_gp() const; 
const Array<Mtx*>& get_grad_node_funcs_at_gp() const; 
const Array<Mtx*>& get_grad_node_funcs_at_nodes() const; 
void values_at_gp(const lOVar &v, Mtx &vgp); 
Node& operator[](unsigned i); 
const Node& operator!] (unsigned i) const; 
unsigned dim_coords() const; 
double *coord(unsigned n) const; 
RefElement* get_reference_element() const; 
operator RefElement (); 
void integrate_fnc(void func(unsigned, void*, Vec&), void *p, Vec &v); 
Mtx get_cart_grads_at_gp(unsigned ig); 

The main function of the VolumeElement class is to provide a means for 
calculating the Jacobian of the transformation between Cartesian coordinates 
and the coordinates of the reference element. This is done by the following 
two member functions. 

virtual void jacobfconst Mtx &gnf, SqMtx &jmtx, SqMtx &jinv, double &detj) = 0; 
Calculates the Jacobian of the transformation between Cartesian and 
reference coordinates, returning it in jmtx.   Its determinant and its 
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inverse are also calculated and are returned in detj and jinv 
respectively. The input argument gnf is an Nxd matrix containing 
the gradients (with respect to reference coordinates) of the node 
functions at the point where the Jacobian is to be evaluated; thus 
gnf[n][l] is the value of dNjdr/. Since this is a pure virtual function, 
it must be defined by specializations of VolumeElement. The class 
Volume2dElement provides a concrete version of this function. 

void jacob_at_gp(unsigned ig, SqMtx &jmtx, SqMtx &jinv, double &detj); 
Calculates the Jacobian, its inverse, and its determinant at the igth 

Gaussian point. 

3.4.2 Boundary Elements 

A BoundaryElement is a GeomElement for which the dimension of the 
element is one less than the dimension of the coordinates. This implies that 
the reference coordinates and Cartesian coordinates are related by a Jacobian 
matrix which is not square. 

A Boundary2dElement is a specialization of a BoundaryElement for which the 
coordinate dimension is two and the element dimension is one. Its member 
functions are all inherited from BoundaryElement. The prototypes for the 
BoundaryElement and Boundary2dElement constructors are: 

BoundaryElementfRefElement *e); 
Boundary2dElement(RefElement *e); 

The following member functions are inherited from GeomElement. 

unsigned dim_element() const; 
unsigned dim_coords() const; 
unsigned num_nodes() const; 
AIINodelter *get_all_nodeJter() const; 
AdjQuadRule* get_quadrature_rule(); 
const Array<Vec*>& get_node_funcs_at_gp() const; 
const Array<Mtx*>& get_grad_node_funcs_at_gp() const; 
const Array<Mtx*>& get_grad_node_funcs_at_nodes() const; 
void values_at_gp(const lOVar &v, Mtx &vgp); 
Node& operator!](unsigned i); 
const Node& operatorf] (unsigned i) const; 
double *coord(unsigned n) const; 
RefElement* get_reference_element() const; 
operator RefElement (); 
void integrate_fnc(void func(unsigned, void*, Vec&), void *p, Vec &v); 
Mtx get_cart_grads_at_gp(unsigned ig); 

The BoundaryElement class has two main functions: it provides a means to 

calculate the scaling factor \dx/d^\ used in equation (3.13) when integrating 
over the element; and it provides a means to calculate the normals to the 
element which are often required by surface integrals after an integration by 
parts (see, for example, equation (6.4)) This is done by the following member 
functions. 
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virtual void jacobs(const Mtx &gnf, double &detj, Vec &normal) = 0; 

At a single point, calculates the scaling factor \dx/d%\ used in equation 
(3.13) and the outward pointing normal to the element. The input 
argument gnf is an Nxde matrix containing the gradients (with 
respect to reference coordinates) of the node functions at the point 
where the scaling factor and normals are to be evaluated; thus 
gnf[n][0] is the value of dNn/d%. Since this is a pure virtual function, 
it must be defined by specializations of BoundaryElement. The class 
Boundary2dElement provides a concrete version of this function. 

void jacobs_at_gp(unsigned ig, double &detj, Vec &normal); 
Performs the calculations in Jacobs at the igth Gaussian point. 

virtual Array<Vec*> &get_normals_at_gp() = 0; 
Returns the normals at each Gaussian point in an array of length M 
each of whose elements is a pointer to a Vec of length d. Thus, if 
normals is the array returned, then (*normals[n])[l] is the y-component 
of the nth Gaussian point of the element's quadrature rule. Since this 
is a pure virtual function, it must be defined by specializations of 
BoundaryElement. The class Boundary2dElerment provides a concrete 
version of this function. 

virtual Array<Vec*> &get_normals_at_nodes() = 0; 
Calculates the normals at each node and returns them in an array of 
length TV each of whose elements is a pointer to a Vec of length d. 
Thus, if normals is the array returned, then (*normals[n])[l] is the y- 
component of the nth node of the element. Since this is a pure 
virtual function, it must be defined by specializations of 
BoundaryElement. The class Boundary2dElement provides a concrete 
version of this function. 

3.5 The Element Class 

An Element is a finite element which represents not only the geometry of 
the element, but also the degrees of freedom used to describe the physical 
model. The geometry of the element is obtained from a GeomElement. 
Typically values for the degrees of freedom are obtained from global lOVars 
(see Reference 13, Section 3.4), but this is left up to specializations of the class. 
The prototype for the Element constructor is: 

ElementfGeomElement *ge); 
Makes an element with geometry given by ge. 

The following two member functions allow access to the geometric 
element and reference element from which the element was constructed. 

GeomElement* get_geometric_element() const; 
Returns the geometric element on which the element is based. 

RetElemertt* get_reference_element() const; 
Returns the reference element on which the element is based. 
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The following member functions all simply execute the corresponding 
function for the GeomElement from which the Element was constructed. 

unsigned num_nodes() const; 
unsigned dim_coords() const; 
unsigned dim_element() const; 
AdjQuadRule* get_quadrature_rule(); 
double *coord(unsigned n) const; 
Node& operator!](unsigned i); 
const Node& operator!] (unsigned i) const; 

The main function of the Element class is to calculate the local matrix and 
right hand side vector for assembly into the global linear system. This is done 
using the following member functions. 

virtual unsigned deg_of_freedom(unsigned n) = 0; 
Returns the number of degrees of freedom at the nth node. 

virtual SqMtx* contribution_to_lhs(); 
Computes the local left hand side matrix for the element. If there is 
no contribution to the global matrix from this element, a null 
pointer is returned. The calling class is responsible for deleting the 
returned matrix. 

virtual Vec* contribution_to_rhs(); 
Computes the direct contribution of the element to the right hand 
side of the linear system. If there is no contribution to the right hand 
side from this element, a null pointer is returned. The calling class 
is responsible for deleting the returned vector. 

For unsteady problems, the local mass matrix is an important part of the 
local left hand side matrix.  The mass matrix is defined by 

[M]nm=JNn(x,y)Nm(x,y)dV (3.14) 
V 

The Element class provides a member function to compute the mass matrix.  It 
is not used in the current version of TRANSOM. 

virtual SqMtx* mass(); 
Computes the local mass matrix of the element. 

An element may also have extra properties required for the evaluation of 
the local matrix and local right hand side vector. In TRANSOM the element 
properties are used to set the imposed pressure and shear stress on boundary 
elements: see Section 6.1. The following member functions may be used to 
determine the number of element properties and to set their values. 

virtual int num_properties() const; 
Returns the number of physical properties  associated with the 
element. 

virtual void set_properties(const Vec &v); 
Use the values in the v to set the properties of the element. If the 
length of v is not equal to the number of element properties, a fatal 
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error results. 

An inserter and extractor are also defined. They simply call the inserter 
and extractor for the geometric element on which the element is based. Thus 
the extractor and inserter read in and write out the numbers of the nodes for 
the element. 

4 Finite Element Grids 
A finite element grid is a PointColl (see Reference 13, Section 2.4) in which 

the nodes are organized as a collection of reference elements. Like all 
PointColls, it has a node organizer which imparts the structure to the grid. The 
class used to represent the node organizer is called FENodeOrg. The grid itself 
is represented by the class FEBIock. 

4.1 The FENodeOrg Class 

The FENodeOrg class represents a node organizer for a finite element 
block. It is derived from the class NodeOrg described in Reference 13, 
Section 2.3.  It has the following two constructors. 

FENodeOrg(unsigned n); 
Constructs a node organizer which governs n nodes.   In the local 
node numbering the first node will be node zero. 

FENodeOrgfunsigned n, const Node &f); 
Constructs a node organizer which governs n nodes.      In the local 
node numbering the first node will be node f. 

An FENodeOrg stores an array of pointers to RefElements. The following 
member functions allow access to this array. 

void set_num_elems(unsigned n); 
Sets the length of the array of reference elements. 

int num_elems() const; 
Returns the number of reference elements. 

RefElement* get_element(unsigned n) const; 
Returns a pointer to the nth reference element. 

An extractor is also defined for the FENodeOrg and OFFSRF_ifstream classes. 
It reads an ELEMENT record from an OFFSRF file (see References 15 and 16) 
and uses the data there to define the reference elements in the grid. Thus, if 
fe_norg is an FENodeOrg and in_stream is an OFFSRFjfstream, then the code 

in_stream » fe_norg; 

reads the next sequence of ELEMENT records in the OFFSRF file associated 
with the stream in_stream. 

The format of the ELEMENT record is as follows. 
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{ELEMENT: numb er-of-elements 
{Element-Type-1 

node numbers for first element of type Element-Type-1 
node numbers for second element of type Element-Type-1 

}Element-Type-l 

[Element-Typ e-n 
node numbers for first element of type Element-Type-n 
node numbers for second element of type Element-Type-n 

}Element-Type-n 

}ELEMENT 

The following element types are currently defined. 

L2LE:   The element is a Lin2LineElement. 

Q3LE:  The element is a Quad3LineElement. 

L3TE:   The element is a Lin3TriElement. 

Q6TE:  The element is a Quad6TriElement. 

L4SE:   The element is a Lin4SquareElement. 

Q8SE:   The element is a Quad8SquareElement. 

Q9SE:   The element is a Quad9SquareEiement. 

For example, the following record defines three linear square elements and 
two linear line elements. 

{ELEMENT: 5 
{L4SE 

0     15   4 
12     6   5 
2 3     7   6 

}L4SE 
{L2LE 

4    0 
3 7 

}L2LE 
}ELEMENT 

An Elementlter is an iterator over the elements governed by an FENodeOrg. 
It obeys the syntax used by all TRANSOM iterators as described in 
Reference 13, Section 2.2.  The prototype of its constructor is: 

Elementlter(FENodeOrg &no); 

4.2 Finite Element Blocks 

The class FEBIock represents a finite element block. It is a PointCol! whose 
node organizer is an FENodeOrg. Its constructors have the following 
prototypes. 
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FEBIock(unsigned nd, unsigned n); 
Construct a finite element block having n nodes.   The dimension of 
the coordinates is nd. 

FEBIock(unsigned nd, unsigned n, const Node &f, double *d); 
Construct a finite element block with n nodes of dimension nd. 
Numbering of the nodes begins at f and the coordinate values are 
stored at memory location d. 

The following member functions are defined for the FEBIock. 

FENodeOrg* get_node_org() const; 
Returns a pointer to the node organizer governing the block 

int num_elems() const; 
Returns the number of reference elements in the block. 

An extractor is also defined for the FEBIock and OFFSRFjfstream classes. It 
combines the extractors of the FENodeOrg class and the PointColl class; thus, it 
reads both ELEMENT and COORDINATE records from an OFFSRF file and 
uses them to define the reference elements and coordinates of the grid. Thus, 
if feb is an FEBIock and in_stream is an OFFSRFjfstream, then the code 

in_stream » feb; 
reads the next sequence of ELEMENT and COORDINATE records in the 
OFFSRF  file  associated  with the stream in_stream.    The format for the 
ELEMENT  record   is   described   in  Section 4.1   and   the  format  of  the 
COORDINATE record is described in Reference 13, Section 2.4. 

5 Finite Element Solvers 

TRANSOM provides three finite element solvers. An FE2dNSSolver solves 
the two-dimensional steady laminar Navier-Stokes equations. An FESfncSolver 
uses a given incompressible velocity field to calculate a streamfunction for 
the flow (the streamfunction is very useful when displaying a flow since its 
iso-contours are streamlines). Finally, an FELaplaceSolver solves Laplace's 
equation; it can be used to calculate potential flow. 

The sweep for each of these solvers is derived from the class FESweep, 
which handles the assembly of the linear system of equations and it solution. 
The main function of the specialized solvers is to convert the reference 
elements in the grid to elements appropriate for the problem to be solved. 

The class hierarchy for the finite element solvers is shown in Figure 7. 

5.1 Degrees of Freedom 

As discussed in- Section 2, there are degrees of freedom (DOFs) associated 
with every node. The set of all DOFs will be called the total DOFs. Some of 
the DOFs are unknowns to be determined by the solver; they are called free 
DOFs.  Others have known values; they are called fixed DOFs.   It is the job of 
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Sweep        1 ►(Solver 

~T~        
[    FESweep 

►[     FENSSweep    )- ►[      FENSSolver     ]* 

[FELaplaceSweep] ►[ FELaplaceSolver 

FESfncSweep -►(    FESfncSolver 

Figure 7: Class hierarchy for finite element solvers and sweeps. 

the Data Rep class to keep track of which DOFs are fixed, which are free, and 
which DOFs are associated with which node. 

TRANSOM uses three different indices for DOFs. 

1. A DOF is an index for the total DOFs. Its value will be in the range zero to 
N,-\, where N, is the total number of DOFs. 

2. A NodeDOF is an index for the DOFs associated with a single node. Its 
value will be in the range zero to Nn-\, where Nn is the number of DOFs 
associated with the node.  Note that Nn may be different for different 
nodes within the same element.  The iterator class ElementDOFIter may be 
used to iterate over the node DOFs. 

3. A FreeDOF is an index for the free DOFs.    Its value will be in the range 
zero to Nf-\, where Nf is the total number of free DOFs. The FreeDOF 
indices are not actually used by DataReps; instead, they are provided as a 
service to the classes FESolnMtx and FESolnVec which are used to represent 
the global linear system of equation (2.5). 

The main task of the DataRep class is to provide mappings which convert 
between these three types of indices. An index for the fixed DOFs would also 
be possible but it is unnecessary. 

The linear system of equation (2.5) is strongly dependent on the mappings 
provided by the DataRep. The indices for the matrix [K] and the vector {/} 
are FreeDOFs.   The structure of the matrix can be altered by changing the 

24 



mapping between the DOF and FreeDOF indices. Use of well known methods 
such as the reverse Cuthill-McKee algorithm[18] can improve efficiency 
significantly by reducing the bandwidth of the global matrix. So far no such 
methods have been incorporated in TRANSOM. 

TRANSOM provides four iterator classes for iterating over DOFs: 
TotalDOFIter, NodeDOFIter, ElementDOFIter, and ElementFreeDOFIter. Each uses 
the standard TRANSOM syntax for iterators described in Reference 13, 
Section 2.2. 

A TotalDOFIter returns, in succession, each of the total DOFs. Casting a 
TotalDOFIter to a DOF returns the current DOF in the iteration. It is constructed 
from a DataRep. 

TotalDOFIterfconst DataRep &dr); 

A NodeDOFIter returns, in succession, each of the total DOFs associated 
with a given node. Note that it returns DOF indices, not Node DOF indices. 
Casting a NodeDOFIter to a DOF returns the current DOF in the iteration. A 
NodeDOFIter is constructed from a DataRep and a Node. 

NodeDOFIter(const DataRep &dr. Node n); 
In addition to the standard reset()  function to restart the iteration, the 
following member function is also provided. 

void reset(Node n); 
Resets the iterator to return the DOFs for node n. 

An ElementDOFIter returns, in succession, the total DOFs associated with 
all the nodes of an element. Casting an ElementDOFIter to a DOF returns the 
current DOF in the iteration. It is constructed from a DataRep and an Element. 

ElementDOFIterfconst DataRep &dr, const Element &e); 

An ElementFreeDOFIter returns, in succession the free DOFs associated with 
all the nodes of an element. Casting an ElementFreeDOFIter to a FreeDOF 
returns the current FreeDOF in the iteration. It is constructed from a DataRep 
and an Element. 

ElementFreeDOFIter(const DataRep &dr, const Element &e); 

5.2 The DataRep Class 

The main functions of the DataRep class were discussed in the previous 
section. Here the specific member functions which it provides are presented. 
A DataRep is constructed from an array of Elements. 

DataRep(const Array<Element*> &elems); 
The constructor uses the function Element::deg_of_freedom() to get the number 
of degrees of freedom for every node in every element of the array.    If 
different elements report a different number of DOFs for the same node, a 
warning message is generated. 

By default all DOFs are free.  To fix DOFs the following member functions 
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must be called. 

void add_fixed(Node n, NodeDOF d, double v); 
Fixes the dth DOF of node n, giving it the value v. 

void set_DOF_map(); 
This member function must be called after all required DOFs have 
been fixed.   It sets up maps between the different types of DOF. 
Calling addjixed after set_DOF_map will result in a fatal error. 

The following member functions are used to get information about the 
DOFs. 

unsigned num_total() const; 
Returns the total number of DOFs. 

unsigned num_free()  const; 
Returns the number of free DOFs. 

unsigned num_fixed() const; 
Returns the number of fixed DOFs 

int is_free(DOF d) const; 
Returns true if DOF d is free. 

int is_fixed(DOF d) const; 
Returns true if DOF d is fixed. 

FreeDOF free_DOF(DOF d) const- 
Returns the FreeDOF  corresponding to DOF d.   A fatal error is 
generated if d is not free. 

double& operator[](DOF n); 
const double& operator[](DOF n) const; 

Returns the value of the nth total DOF. 

5.3 The Linear System of Equations 

The matrix [K] and the vector {/} in equation (2.5) are represented by the 
classes FESolnMtx and FESolnVec, respectively. The class FESolnMtx is a special- 
ization of the class SkylineMtx which implements storage and inversion of 
square matrices using the skyline algorithm; for a description of this method 
of storage see Reference 11. The skyline profile above the diagonal is the 
same as the profile below the diagonal; this is always true for the matrices 
used in finite element calculations. The constructors and member functions 
of the SkylineMtx class are the following. 

SkylineMtxf); 
Creates a skyline matrix of unspecified size. This is a protected 
constructor which is used by the class FESolnMtx. 

SkylineMtx(const Array<unsigned> &prof): 
Creates a skyline matrix with profile specified by prof. prof[n] is the 
height of the profile at the nth row and column. The height does not 
include the term on the diagonal; thus, prof[n] must be in the range 
zero to n (row and column numbering begins at zero). 
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SkylineMtx(const SkylineMtx&); 
A copy constructor. 

int solve(Vec &rhs); 
Solves the linear system whose right hand side is rhs. The solution is 
returned in rhs. This function first converts the matrix to LU- 
decomposed form. Subsequent calls to solve will work correctly (and 
more efficiently since the LU-decomposition need not be performed 
again), but other operations will yield incorrect results. 

unsigned num_rows() const; 
Return the number of rows in the matrix. 

unsignbed num_cols() const; 
Returns the number of columns in the matrix. Since the matrix is 
square, this function returns the same result as num_rows(). They are 
both included for compatibility with the Mtx class. 

unsigned heightfunsigned n) const; 
Returns the height of the profile for the nth row and column. The 
height does not include the term on the diagonal. 

double& elementfunsigned i, unsigned j); 
Returns the matrix element (i,j) if it lies within the skyline profile; 
otherwise generates a fatal error. 

double operatorf) (unsigned i, unsigned j) const; 
Returns the matrix element (i,j). Correct values are returned for all 
elements of the matrix, whether within the skyline profile or not. 

Vec operator*(const Vec &v); 
Multiplies the vector v by the matrix. 

void zero(); 
Sets all the elements of the matrix to zero. After this function is 
called the matrix is not considered LU-decomposed. 

An FESolnMtx is a SkylineMtx with a member function which assembles a 
local element matrix into the skyline matrix. The nth row of the skyline 
matrix is the approximation of the equation associated with the variation of 
the nth free DOF, 8vn.  The mth column of the matrix is the coefficient which 

multiplies vm in this equation.   An algorithm to assemble a local matrix, [Ke], 
of an element e is given in Figure 8. 

An attempt to assemble an LU-decomposed matrix will result in a fatal error. 
The prototype for the member function is: 

void assemblefconst SqMtx&, const Element&); 

An FESolnMtx is constructed from a DataRep and an array of pointers to 
elements. The skyline profile is determined by iterating over all the elements 
and determining the assembled locations of each element in the local 
matrices.  The constructor prototype is: 

FESolnMtxfconst DataRep&, const Array<Element*>&); 
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\*-0 
Use an ElementDOFIter to set p to successive DOFs for e 

If p is free 
Use DataRep::free_DOF to get FreeDOF n corresponding to p 

Use an ElementDOFIter to set q to successive DOFs for e 
If q is free 

Use DataRep::free_DOF to get FreeDOF m corresponding to q 

Add [Kt\, to [K]nm 

End if 
i <-i + ' 

End iteration over q 
End if 
l <- /' + 1 

End iteration over p 

Figure 8: Algorithm to assemble the local matrix of element e 

An FESolnVec is a specialization of a Vec: an array of doubles with member 
functions to implement arithmetic operators. An FESolnVec has two member 
functions for assembling the global right hand side vector, {/}. One 
assembles the fixed DOFs of the local element matrix into the vector. The 
other assembles the local right hand side vector into the global vector. The 
assembly algorithms are similar to that for an FESolnMtx. The prototypes for 
these functions are: 

void assemble(const SqMtx&, const Elements); 
void assemble(const Vec&, const Elements*); 

Like an FESolnMtx, an FESolnVec is constructed from the DataRep on which 
it depends. A copy constructor is also provided. The prototype for the 
constructors are: 

FESolnVecfconst DataRep&); 
FESolnVec(const FESolnVec&); 

5.4 The FESweep Class 
The FESweep class is the basis of the sweeps for all the finite element 

solvers. It is quite simple, all the hard work being performed by the DataRep, 
FESolnMtx, and Element classes. 

An FESweep stores an array of pointers to the Elements used by the solver, 
a DataRep, and an FESolnMtx and an FESolnVec to describe the linear system: 

Array<Element*> elems; 
DataRep *data; 
FESolnMtx *mtx; 
FESolnVec *rhs; 
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The  sweep algorithm is: 

Zero the linear system 
For every element pointer e in elems 

Get the local matrix using e->coniribuiion_to_lhs() 
Assemble the local matrix into the linear system 
Get the local right hand side vector using e->coniributionJo_rhs() 
Assemble the local vector into the linear system 

End iteration over elements 
Using SkylineMtx::solve(), solve the linear system return the solution in rhs 
Swap the solution from rhs to data 

Notice that since the functions contribution_to_lhs() and contribution_to_rhs() are 
virtual, the FESweep need not contain any information about the actual 
problem being solved; that is localized within the elements themselves. 
However, this also implies that the FESweep class cannot define the pointers 
in elems; that must be done by specializations of the class which use specific 
element types to solve specific problems. 

An FESweep is constructed from an FEBIock: 

FESweepfFEBIock *b); 

Its other member functions are redefinitions of the standard Sweep virtual 
functions (see Reference 13, Section 4.1). 

void initialize!); 
Creates an FESolnMtx and an FESolnVec in which to store the linear 
system. Also sets GeomElement::coords to point to the coordinates in 
the FEblock from which the sweep was constructed. 

void sweepf); 
Implements the sweep algorithm described above. 

void finalizef); 
Writes timing information to cout. 

The sweep extractor is also overloaded. It is able to read the records FIXED 
BOUNDARY and PROPERTIES from an OFFSRF file. The FIXED 
BOUNDARY record allows degrees of freedom to be set to a fixed value at a 
collection of nodes.  The format of the record is: 

{FIXED BOUNDARY: DOF value 
node-numbers 

}FIXED BOUNDARY 

where DOF is the number of the Node DOF to be set at each node, value is the 
value to give to the DOF, and node-numbers is a collection of node numbers 
whose DOFs are to be set. For example, NSEIements associate two DOFs with 
each node; the two components of the velocity. The following FIXED 
BOUNDARY records will therefore set the velocity to zero at the nodes 0 to 10 
(the FE2dNSSweep provides an easier way to do this: see Section 6.2). 
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{FIXED BOUNDARY: 0 0.0 
01 23456789 10 

JFIXED BOUNDARY 
{FIXED BOUNDARY: 1 0.0 

0123456789 10 
}FIXED BOUNDARY 

The PROPERTIES record allows values of element properties to be 
defined. Its format is: 

{PROPERTIES: number-of-properties   property-values 
element-numbers 

}PROPERTIES 

For example, the record 

{PROPERTIES: 3 0.0 1.0 2.0 
11  12 13 14 15 16 17 18 19 20 

}PROPERTIES 

sets the three properties of elements 11 through 20 to the values 0.0, 1.0, and 
2.0; the virtual function Element::set_properties is used. If one of these 
elements has more or fewer properties than three, a fatal error will be 
generated. 

Because the FESweep contains only generic information about its 
elements, the extractor cannot perform rigorous checking of the input data, 
since it cannot tell whether the values given are appropriate. For that reason 
it is preferable that use of the FIXED BOUNDARY and PROPERTIES records 
be avoided. Instead, specializations of FESweep provide extractors which read 
and check input which is specific to the elements which they contain. 

6 A Solver for the Navier Stokes Equations 
The preceeding sections have described classes to implement a generic 

finite element solver. This section and the two following describe solvers for 
specific problems. In this section we describe a solver for the two- 
dimensional laminar Navier-Stokes equations. 

6.1 Elements to Solve the Navier-Stokes Equations 

We now consider elements which can be used to solve the steady two- 
dimensional laminar Navier-Stokes equations using a penalty function 
method to determine the pressure. Following Pineau[12] we write the 
variational form of the problem as follows. 

(d2u    <?V I _  J   du       du    dp    J_ 
[   dx       By    dx    Re 

~   \   dv       dv    dp     1 
Sv<u— + v— + -f-  

\   dx       dy    By    Re 

f 22 d 

dV = 0 (6il) 

dV = 0 (6.2) 
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where A, is a very large number (A ~ 108) called the penalty coefficient. 
Integrating equation (6.1) by parts yields 

du döu     du döu 

(6.3) 

\ 0 {   du       du)       döu      1 
.öu\ U—- + V-— \ + p——I  
[    {   dx       dy)        dx     Re 

■ + ■ 
dx dx     dy dy 

J <pnxöu + 
Su 

R 

du du 

* dx      } dy 

\dV- 

\dS = 0 

(6.4) 

with a similar transformation of equation (6.2). The full integration is 
approximated by the sum of integrals over each of the elements. Two types of 
element are needed: a VolumeElement for the integral over V, and a 
BoundaryElement for the integral over S. The former is represented by the 
class NS2dVolElement/ the latter by the class NS2dBndElement. 

6.1.1 The NS2dVolElement Class 

An NS2dVolElement has two degrees of freedom at each node: the two 
components of the velocity. Over the element the velocity is approximated 
according to equation (3.3). 

M(£,77) = |>,A(£.n);     v(!,77) = XvX(^) 
n=l n = \ 

(6.5) 

The velocity variations are defined by 

8u(Z,Ji) = ^SunNn(Z,ri);       öv(^,ri) = JjövnNn(^ri) (6 6) 
n-l n = \ 

The pressure is not represented by the nodal functions.  Instead we write 

P&rD^pA&V);     ^Pi^V) = LsPnPn(^V). (6.7) 
n = l n = l 

For a consistent approximation of pressure and velocity, equation (6.3) re- 
quires that the polynomial order of the pressure be of order one less than the 
polynomial order of the velocity. Therefore, for linear reference elements, 
the pressure is constant over the element: iV =1 and Px{E,,r\) = \. For 

quadratic reference elements, the pressure is linear:   N =3,   P, (<^, 77) = 1, 

P2(£,77) = £, and P3(<^, 77) = 77.    The contribution to the integrals over  V  in 
equations (6.3) and (6.4) may then be written 

{Su,Sv,Sp} (6.8) 
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where [Kuu] is a 2Nx2N matrix, [Kup] is a 2NxNp matrix, -[*>] is the 

transpose of [#H/)], and [^w] is a 2Npx2Np matrix.   In equation (6.8) the row 

vector {(S«,(5v,(5p} is short for \öux,övl,---,8uN,övN,öpl,---,8pNpy, similar notation 

is used for the column vector. The elements of the sub-matrices are as 
follows: 

V     ""hn-l.lm-l       L     «KJ2n,2m        J 1      " 
dN 

■ + v- 
<?AL 

L     K«J2«-l,2m _ L     "»J2« 

+ • 1 dN dN   . <?iV ÄV 

2m-l 
= 0 

■ + ■ 
dx    dx       dy    dy 

dN 
M-,.H^U-.=Jp--&^ 

<?N„ 

•Jy(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

The elements of the sub-matrices [Kuu], [Kup], and [Kpp] are evaluated si- 
multaneously using the function GeomElement::integrate_fnc(). The inte- 
grands at each Gaussian point are evaluated by the function NS_lhs_at_gp(). 
The matrix elements are passed to NS_lhs_at_gp() as a single array of length 

AN1 + 2 AW, + N2
}. The values of the velocity at each Gaussian point (needed to 

evaluate [Kuu]) are determined using GeomElement::values_at_gp(). 

Equation (6.3) must hold for the integral over each element, so that 

M^T1*=0 

from which one obtains 

w=-MUKÜ 

(6.14) 

(6.15) 

The contribution to the left hand side of equation (6.4) can therefore be 
rewritten as 

{8un,8vn}[KE}\" (6.16) 

with 

M=M-4^KrKl (6.17) 
The 2Nx2N matrix, [KE] is returned by the NS2dVolElement member function 
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contribution_to_lhs(). 

Since [KE] depends on the values of the velocity at the nodes of the 
element, the problem is non-linear. The NS2dVolElement uses the currently 

defined values of velocity when computing [KE]; hence, it implements a 
simple substitution method. Faster convergence would likely be obtained, for 
laminar problems at least, if a Newton-Raphson iteration scheme were used 
instead.   This has not yet been implemented in TRANSOM. 

The NS2dVolElement class has a public static member pv which is a pointer 
to a PVIOVar (see Reference 13, Section 3.5.2) which stores values for the 

pressure and velocity at all nodes of the grid. During the calculation of [KE] 
the velocity values are obtained from pv. The value of pv must be set before 
assembling the linear system. 

The value of the pressure is not continuous at the element boundaries. 
Hence, at every node there are multiple values of the pressure: one associated 
with every NS2dVolElement which contains the node. Therefore, it is not 
possible simply to store the pressure in pv. Instead, every NS2dVolElement 
contains an array which stores the values of the pressure at its nodes. The 
pressure values are calculated by NS2dVolElement::contribution_to_lhs using 
equation (6.15). The solver which uses the NS2dVolElements must provide 
some averaging procedure to reduce the multiple pressure values at the 
nodes to a single value: see Section 6.2. The vector of pressure values may be 
obtained using the following member function. 

double get_pressure(unsigned n) const; 
Returns the pressure at the nth node of the element. 

The NS2dVolElement class also has two public static members of type 
double, reyno and lambda. They store the values of the Reynolds number and 
the penalty parameter, respectively. 

6.1.2 The NS2dBndEIement Class 

An NS2dBndElement contributes to the right hand side of the linear system 
through the surface integral of equation (6.4). The local right hand side vector 
is 

with 

f'Wfö}* 
fx=pnx + rx;    /V = /WV + TT 

1 (du         du] 1 (     dv         dv) 
n Yn — ;     T —   nx V ny — 

1 ^    dx      - dy j K ^    dx      ■ dy) 

(6.18) 

(6,19) 

(6.20) 

and where nx and ny are the components of the outward pointing normal to 
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the element. 

Like the NS2dVolElement class, NS2dBndElement contains a public static 
pointer to a PVIOVar which is used to obtain the values of the pressure at each 
of the nodes of the element. The pressure over the element is then 
represented using equation (3.2). 

The values of the shear stress (tx,ry) at each node are treated as properties 
of the element. They are stored in an array of two-vectors whose values can 
be set using the following member functions. 

virtual void set_properties(const Vec &v); 
Uses the values in v  to set the values of pressure and shear 
stress. The vector    v must be of length 3N and is arranged as 

void set_shear_stress(const Array<Mtx*> &gradv); 
Uses the values in gradv to set the values of the shear stress at each 
node. The array gradv is of length N. gradv[n] is a pointer to a 2x2 
matrix containing the gradient of the velocity at node n; thus for 
example,   (*gradv[n])[0][l] is the value of du I By at node n. 

6.2 The FE2dNSSweep Class 

We now look at the classes FE2dNSSolver and FE2dNSSweep used to 
implement a finite element solver for the steady laminar Navier-Stokes 
equations in two dimensions. The class hierarchy for both classes is shown in 
Figure 7. 

An FE2dNSSweep is a specialization of an FESweep which uses 
NS2dVolElements and NS2dBndElements. Its member reyno is used to store the 
Reynolds number. The pressure and velocity values are stored in a PVIOVar to 
which pv is a pointer. 

FE2dNSSweep(FEBIock *b, PVIOVar *p); 
Creates an FE2dNSSweep on the block b which uses the pressure and 
velocity values in p: i.e. pv is set to p. The Element pointers in the 
array FESweep::elems are assigned by using each of the RefElements in 
b to create either a new NS2dBndElement or a new NS2dVolElement/ the 
choice being made according to whether the dimension of the 
RefElement is one or two. 

virtual void initialize(); 
Initializes the sweep by calling FESweep::initialize().   It then initializes 
all free velocity components to zero, and, finally, copies the velocity 
values from PVIOVar pv into the DataRep FESweep::data. 

virtual void sweep)); 
Sets the PVIOVars NS2dVolElement::pv and NS2dBndElement::pv to pv and 
NS2dVolElement::reyno to reyno. FESweep::sweep is called to perform 
the sweep.    The pressure values are then calculated using the 
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algorithm described below, and the new pressure and velocity values 
are copied to pv. 

During each call to NS2dVolElement::contribution_to_lhs(), the pressure at 
each node is updated using the current values for the velocity. On 
the first call, since the initial velocity field may not be 
incompressible, the pressure values are usually of order X: i.e. very 
large. If the pressure values are shared with another solver in a 
multi-block solution, such large values will often hinder 
convergence. To avoid this problem, the first time the sweep is 
performed after initialization, FESweep::sweep() is called twice. After 
the second call the pressure will have more physically reasonable 
values. 

FEBIock* get_block() const; 
Returns the FEblock used by the sweep. 

void set_reynolds_number(double r); 
Sets the Reynolds number to r. 

The FE2dNSSweep extractor is overloaded to read the following records 
from an OFFSRF file. 

1. REYNOLDS NUMBER: sets the value of the Reynolds number.   The 
format for this record is: 

{REYNOLDS NUMBER: Reynolds-number} 

2. PENALTY PARAMETER: sets value of NS2dVolElement::lambda. The 
format for this record is: 

{PENALTY PARAMETER: penalty-parameter } 

3. SOLID BOUNDARY: sets the velocity to zero at specified nodes. The 
format for this record is: 

{SOLID BOUNDARY 
node-numbers 

}SOUD BOUNDARY 

where node-numbers is a list of the nodes on the solid boundary. 

4. FIXED VELOCITY: sets the velocity to a fixed value at specified nodes. 
The format for this record is: 

{FIXED VELOCITY: vxvy 

node-numbers 
}FIXED VELOCITY 
where vx and vy are the components of the velocity (if the dimension of 
the coordinates is three, there will also be a vz value) and node-numbers 
is a list of the nodes at which the velocity is to be set. 

5. FIXED BOUNDARY: this record is described in Section 5.4. 

6. PROPERTIES: this record is described in Section 5.4. 
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The FE2dNSSweep inserter is overloaded so that it calls the inserter for the 
PVIOVar pv. This causes the pressure and velocity values to be written into an 
OFFSRF file. The pressure values are written into a Pressure record and the 
velocity values into a Velocity record. See Reference 13, Section 3.5.2 for 
more details. 

After each sweep, the velocity values are copied from FESweep::data to pv. 
The pressure in pv must also be updated, but this is more complicated. Every 
NS2dVolElement which contains node n stores a value for the pressure there; 
however, this value will be different for every element. Moreover, if the 
node also belongs to an NS2dBndElement, there is a fixed value for the pressure. 
The pressure at each node is calculated as follows. If the node belongs to an 
NS2dBndElement, use the fixed value associated with that element. Otherwise 
use the average of the values in all NS2dVolElements which contain the node. 

6.3 The FE2dNSSolver Class 

The FE2dNSSolver class is a specialization of the Solver class which has an 
FE2dNSSweep for its sweep and a combination of an NTimesStopTest and a 
CompDataStopTest for its stop test (these classes are described in Reference 13, 
Sections 4.2.2 and 4.2.3). Thus, it solves the two-dimensional steady laminar 
Navier-Stokes equations by solving equation (2.5) repeatedly until successive 
values of the pressure and velocity have changed by no more than small pre- 
defined amount, e.  It has the following member functions and constructors. 

FE2dNSSolver(FEBIock *b); 
Makes an FE2dNSSolver which uses the reference elements and 
coordinates in the FEBIock b. A new PVIOVar is allocated to store the 
pressure and velocity values. 

FE2dNSSolver(FEBIock *b, const lOVar &vars, const Node &n); 
Makes an FE2dNSSolver which uses the reference elements and 
coordinates in the FEBIock b. If vars contains a Pressure and a Velocity 
field, then the pressure and velocity values will be shared with those 
in vars starting at node n. For example, suppose that vars contains 
pressure and velocity values on a block with 1000 nodes numbered 
from 0 to 999. If n is 500, and the block b contains 500 nodes, then pv 
shares the last 500 pressure and velocity values in vars; changing the 
pressure value at node zero in pv causes the pressure value at node 
500 in vars to be changed as well. Similarly changes to vars will cause 
corresponding changes to pv. 

FEBIock* get_block() const; 
Returns the block used by the solver. 

Element* get_element(unsigned n) const; 
Returns the nth element used by the solver. 

void set_reynolds_number(double r); 
Sets the Reynolds number to r. 
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The FE2dNSSolver extractor reads the following records from an OFFSRF 
file; they allow control over the stop test. 

1. MAXIMUM NUMBER ITERATIONS: sets the maximum number of 
iterations for the sweep.  The format of this record is: 

{MAXIMUM NUMBER OF ITERATIONS: n } 

where n is the maximum number of iterations. 

2. ACCURACY: sets the value of eacc for the CompDataStopTest. The 
iteration will end if successive values of pressure and velocity all differ by 

less than £acc.  The format for this record is: 

{ACCURACY: eacc} 

3. MAXIMUM ACCURACY: sets the value of ediv for the CompDataStopTest. 
The iteration will end if successive values of pressure and velocity all 

differ by more than than e^y The format for this record is: 

{MAXIMUM ACCURACY: ediv} 

7 A Solver for Laplace's Equation 
In this section we describe a solver for Laplace's equation. 

V> = 0 (71) 

This equation is important in many branches of physics, but in fluid 
mechanics is used chiefly in the calculation of potential flow. 

7.1 The LaplaceElement Class 

A LaplaceElement has a single degree of freedom at each node; the value of 
(p. A finite element approximation to equation (7.1) is obtained by rewriting 
it as 

$S(pV2(pdV = 0 (7-2) 
V 

Integrating by parts one obtains 

\8cp^- dS-jVÖ(pV(pdV = 0 (7_3) 
s        on v 

where dcp I dn denotes the derivative normal to the surface S. If we restrict 
the problem to either Neumann or Dirichlet boundary conditions, then the 
surface integral vanishes. Using equations (2.2) and (2.3) to approximate cp 
and ö(p, one gets the following expression for the local matrix: 

[KE]nin=\VNn(x,y)-VNm(x,y) dV = 0 {7A) 
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The LaplaceElement class is a specialization of the Element class. Its 
contribution_to_lhs member function calculates the local matrix according to 
equation (7.4); the contribution_to_rhs function returns a null pointer, 
indicating that the local vector is zero. A LaplaceElement can be constructed 
from any VolumeElement. 

7.2 The FELaplaceSweep Class 

An FELaplaceSweep is a sweep for solving Laplace's equation using the 
finite element method. It inherits all its member functions from FESweep. 
An FELaplaceSweep is constructed from an FEBIock and an lOVar (see 
Reference 13, Section 3.4): 

FELaplaceSweep(FEBIock *b, lOVar *v); 

The first active field in the lOVar is used to store the values of (p.    The 
constructor creates LaplaceElements from the RefElements in b. 

An FELaplaceSolver is a Solver which has an FELaplaceSweep for its sweep. 
Since Laplace's equation is linear, the sweep need only be executed once. 
Therefore an NTimesStopTest is used for the stop test. It is set to execute only 
once.  The following constructors are available for the FELaplaceSolver class: 

FELaplaceSolverfFEBIock *b); 
Creates an FELaplaceSolver using the block b. A new lOVar is created 
to store the values of (p. It has a single active field of length one 
which is named "Potential". 

FELaplaceSolverfFEBIock *b, const lOVar &v, const Node &n); 
Creates an FELaplaceSolver using the block b. The values of (p will be 
stored in the first active field of lOVar v starting at node n. 

8 A Solver to Calculate Streamfunctions 

In this section we describe a solver which calculates a streamfunction for an 
incompressible two-dimensional velocity field. 

8.1 The SfncElement Class 

For a given two-dimensional flow field (vA,vv), the streamfunction   y/ 

satisfies 

dw dw 

An approximation to w is found by minimizing the integral 

J fiK_vY+füt 
V dx 

2    f -K„        \2 

+ v. 
dy 

dV (8.2) 

Using equation (2.2) to approximate y/ one gets 
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XI 
*=1 £,. 

V 3Nn + S^-T^ + V dV = minimum (8.3) 

A minimum is obtained when 

SI 
k=\ EJ  m,n 

jfM^ML+dN.dN. 
Vn"Z dx    dx       dy    dy 

so that the local matrix and local vector are 

dx 
- v.. — - 

dy 
dV = 0 

IKEL = II 
dN„,dNJL+dNmdN„ 

dx    dx       dy    dy 
dV;    {/,} = J| 

dNm        dNm —— v. — v 
dx    }      dy 

dV 

(8.4) 

(8.5) 

Notice that the local matrix is the same as the local matrix for the two-dimen- 
sional LaplaceElement. Hence, the SfncElement is defined as a specialization of 
the LaplaceElement, which inherits the contribution_to_lhs member function. 

The contribution_to_rhs member function is overloaded to calculate {fE} ac- 
cording to equation (8.5). An SfncElement can be constructed from any two- 
dimensional VolumeElement. 

8.2 The FESfncSweep and FESfncSolver Classes 

An FESfncSweep is a sweep for calculating the streamfunction which 
corresponds to a given incompressible velocity field. It inherits all its 
member functions from FESweep. An FESfncSweep is constructed from an 
FEBIock which contains the reference elements from which the SfncElements are 
constructed, a VellOVar which contains the velocity field, and an SfnclOVar 
which is used to contain the values of the streamfunction: 

FESfncSweep(FEBIock *b, VellOVar *v, SfnclOVar *s); 

An FESfncSolver is a Solver which has an FESfncSweep for its sweep. Since 
the calculation of the streamfunction is linear, the sweep need only be 
executed once. Therefore an NTimesStopTest is used for the stop test. It is set to 
execute  only  once.     The  following  constructors  are  available  for  the 
FESfncSolver class: 

FESfncSolver(FEBIock*b); 
Makes an FESfncSolver using the block b to construct the sweep. A 
new VellOVar is created to store the velocity field. The velocity 
values must be defined by reading them from an input file. A new 
SfnclOVar is created to store the values of the streamfunction. 

FESfncSolverfFEBIock *b, const lOVar &v, const Node &n); 
Makes an FESfncSolver using the block b to construct the sweep. If v 
contains a field called "Velocity", then this field, starting at node n, is 
used to obtain the values of the velocity; otherwise a new VellOVar is 
created to store the velocity field. If v contains a field called 
"Streamfunction", then this field, starting at node n, is used to store 
the values of the streamfunction; otherwise a new SfnclOVar is 
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created to store the streamfunction. 

9 Recommendations for Improvements 
The finite element solvers in TRANSOM are newly written code. They 

can be improved in several areas, mostly to improve the efficiency. 

To ease the programming burden, the element classes NS2dVolElement and 
NS2dBndElemeni have been written so that they can be constructed from 
arbitrary reference elements. However, in some cases the use of specialized 
elements would decrease the computation of the local matrix thus reducing 
the time taken to assemble the global matrix. 

No attempt has been made to reduce the matrix bandwidth by 
implementing a node re-ordering scheme such as the reverse Cuthill-McKee 
algorithm[18]. Reduction of solution time would also be gained by using a 
more efficient matrix solver. The current skyline algorithm was used for 
compatibility with MEF. For the initial code development it was thought that 
this would reduce the likelihood of difficult-to-find bugs. To increase the 
efficiency of the solution of the global linear system, the use of a subroutine 
library such as FMSLIB should be investigated as should the use of parallel 
processors. 

A reduction in the number of iterations to convergence may be obtained 
by using an improvement on the substitution method used to update the 
velocity field. The Newton-Raphson method and the semi-implicit over- 
relaxed time marching methods implemented in MEF should be included as 
options in TRANSOM. 

The error reporting in TRANSOM should also be improved. TRANSOM 
was begun before a C++ compiler implementing exception handling was 
available. Consequently almost all errors are treated as fatal and only terse 
error messages are given. Use of the C++ exception handling should provide 
much better identification of errors and, in some cases, allow recovery from 
errors. 

The k-e turbulence model already implemented in the DREA version of 
MEF should be incorporated into TRANSOM. For compatibility with the 
next version of the TRANSOM pseudo-compressibility solver, the Baldwin- 
Barth turbulence model[9] should also be implemented. The solver should 
also be extended to three-dimensional flow. 

10 Concluding Remarks 
TRANSOM is a complex program which is still in the early stage of 

development. It is likely that some of the classes defined in this 
memorandum will be changed as that development continues. 
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The two-dimensional laminar finite element flow solver works well for 
Reynolds numbers up to about 1000. At higher Reynolds numbers 
convergence is sometimes not attained. Implementation of the improved 
iteration schemes described in the previous section may alleviate this 
problem. 

For most two-dimensional problems the TRANSOM finite element 
solver is acceptably fast; however, before realistic three-dimensional flows are 
attempted, it will be necessary to make it faster. 

The other major shortcoming of this solver is that there is no grid 
generator to ease the generation of input files. There are many commercial 
grid generators available, including some used by the Structural Mechanics 
Group at DREA. An interface between one of these codes and TRANSOM 
should be written. 

As described in the introduction, it is intended that TRANSOM should be 
able to apply its pseudo-compressibility solver and its finite element solver 
concurrently on different flow blocks. Some early experimentation with this 
has been done, although convergence is at best slow and at worst not attained. 
Work in this area will continue over the coming year. 

41 



Appendices 

A Vectors and Matrices 

Many of the C++ prototypes given in the body of this memorandum 
make use of the classes Vec and Mtx. A brief description of these classes is 
given here. 

A.1 The Vec Class 

The Vec class represents numerical vectors: i.e. an array of floating point 
values. Vectors represented by the Vec class have fixed length which is 
specified when the Vec is constructed. The constructors and member 
functions of the Vec class are as follows. 

Vecfunsigned n, double *d = 0); 
Constructs a Vec with length n with elements stored at d. If d is null, 
new memory will be allocated. 

Vecfconst Vec&); 
Copy constructor. 

unsigned len() const; 
Returns the length of the vector. 

void zero(); 
Sets every element of the vector to zero. 

void unit(); 
Converts the vector to a unit vector 

void operator=(const Vec &v); 
Copies the elements of the vector v.  If the lengths of the vectors are 
not the same a fatal error will be generated. 

Vec& operator-!); 
Negates every element of the vector and returns it. 

void operator+=(const Vec &v); 
Adds v to the vector. 

void operator-=(const Vec &v); 
Subtracts v from the vector. 

void operator*=(double d); 
Multiplies the vector by d; 

void operator/=(double d); 
Divides the vector by d; 

Vec operator* (const Mtx &m) const; 
Interprets the vector as a row vector and multiplies it on the right by 
m. The Vec  returned is interpreted as a column vector.    If the 
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number of columns of m is not the same as the length of the vector 
then a fatal error is generated. 

double& operator[](unsigned n); 
const double& operator[] (unsigned n) const; 

Return the nth element of the vector.  No subscript checking is done. 

operator double *(); 
operator const double *() const; 

Convert the vector to a pointer to a sequence of doubles. This can be 
used to get gains in efficiency in computationally intensive inner 
loops. 

ostream& operator«(ostream &out, const Vec &vc); 
Writes all the vector elements to the output stream. 

istream& operator»(istream &in, Vec &vc); 
Reads all the vector elements from the input stream. 

int operator==(const Vec &vcl, const Vec &vc2); 
Returns true if the lengths of vcl and vc2 are the same and their 
elements have the same values. 

int operator!=(const Vec &vcl, const Vec &vc2); 
Returns !(vcl == vc2). 

double absfconst Vec &vc); 
Returns the magnitude of the vector. 

double minfconst Vec &vc); 
Returns the value of the element with smallest value. 

double maxfconst Vec &vc); 
Returns the value of the element with largest value. 

double min_abs(const Vec &vc); 
Returns the value of the element whose absolute value is smallest. 

double max_abs(const Vec &vc); 
Returns the value of the element whose absolute value is largest. 

double dot(const Vec &vcl, const Vec &vc2); 
Returns the dot product of vcl and vc2. 

A.2 The Mtx Class 

The Mtx class represents a numerical matrix. It is implemented as a 
specialization of the Vec class so that many of the Vec member functions can 
be inherited. Matrices represented by the Mtx class have fixed dimensions 
which are specified when the Mtx is constructed. The constructors and 
member functions of the Mtx class, not including those inherited from the 
Vec class, are as follows. 

Mtx(unsigned n, unsigned m, double *d = 0); 
Constructs an n x m matrix with elements stored at d. If d is null, 
new memory is allocated. 

43 



Mtx(const  Mtx&); 
Copy constructor 

void operator= (const Mtx&); 
Assignment operator 

Vec row(unsigned n) const 
Returns a Vec containing the nth row of the matrix. 

unsigned num_rows() const; 
Returns the number of rows in the matrix. 

unsigned num_cols() const- 
Returns the number of columns in the matrix. 

Mtx& operator-)); 
Negates every element in the matrix and returns it. 

Vec operator*(const Vec &v) const; 
Returns the row vector result of multiplying the column vector v by 
the matrix. 

Mtx operator*(const Mtx&m) const; 
Returns the result of multiplying m by the matrix. 

double* operator[](unsigned n); 
const double* operator!](unsigned n) const; 

Returns a pointer to the values in the nth row of the matrix.   Thus, if 
m is a matrix, its (n,m)th element is m[n][m]. 

typedef double *dptr; 
operator dptr *(); 
operator const dptr *() const; 

Convert the matrix to a sequence of pointers to its rows. 

ostream& operator«(ostream &out, const Mtx &m); 
Writes the elements of m to the output stream. 

int operator==(const Mtx &ml, const Mtx &m2); 
Returns true if ml and m2 have the same dimensions and if their 
elements are the same. 

int operator!=(const Mtx &vcl, const Mtx &vc2); 
Returns !(ml == m2). 

A.3 The SqAAtx Class 

The SqMtx class is a specialization of the Mtx class; it is used to represent 
square matrices. Member functions are provided to invert the matrix and to 
calculate its determinant. The constructors and member functions of the 
SqMtx class, not including those inherited from the Mtx class,  are as follows: 

SqMtx(unsigned n, double *d = 0): 
Constructs an n x n matrix with elements stored at d. If d is null, new 
memory is allocated. 

void identity!); 
Initialize matrix to the identity. 
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void lu_decomp(); 
Calculate the LU decomposition of the matrix. It is an error to LU 
decompose a matrix twice. After LU-decomposition the original 
matrix is destroyed. 

void invertf); 
Invert the matrix using Gaussian elimination with partial pivoting. 

double determinant!); 
Calculate the determinant. The matrix will be LU-decomposed if it 
has not already been; thus, calculating the determinant will destroy 
the original matrix. 

void solve(const Vec &b, Vec &x); 
Solve A*x = b, where A = "this. The matrix will be LU-decomposed if it 
has not already been; thus, using solved will destroy the original 
matrix. 

B Arrays 

The Array class is a C++ template used to implement dynamic arrays of 
arbitrary objects. Arrays can have length zero, allowing arrays of arrays to be 
defined easily. To allow efficient copying of arrays and to reduce overhead in 
allocating memory, the length of allocated memory is stored separately from 
the length of the array. The constructors and member functions of the Array 
class are as follows (in the descriptions it is assumed that the array stores 
objects of type T): 

Array(); 
Constructs an array of length zero.  No memory is allocated. 

Arrayfint s); 
Constructs an array of length s. Enough memory is allocated to store 
s objects of type T. 

Arrayfint s, int m); 
Constructs an array of length s. Enough memory is allocated to store 
max(m,s) objects of type T. 

Array (const Array&); 
Copy constructor. 

Array& operator=(const Array &v); 
Makes the length of the array the same as the length of v, then copies 
the elements of v. 

int len() const; 
Returns the length of the array. 

int maxjenf) const; 
Returns the number of objects of type T which will fit in the memory 
currently allocated for the array. The array can be resized to length 
max_len() without reallocation of memory. 
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void set_len(int n); 
Changes the length of the array to n. If there is insufficient memory 
available, new memory will be allocated and the existing elements of 
the array will be copied to the new memory. 

void set_mem(int n); 
Increases the amount of allocated memory so that n objects of type T 
will fit. If the current memory allocation exceeds n, nothing is done. 
If new memory is allocated, the elements of the array are copied to 
the new memory. 

void shiftlfint shift, int lo, int hi); 
Shifts elements lo to hi to the left by shift places. 

void shiftrfint shift, int io, int hi); 
Shifts elements lo to hi to the right by shift places. 

void shiftcfint shift); 
Shifts all the elements of the array cyclically by shift places. Elements 
which are shifted off the end of the array reappear at the beginning, 
and vice versa. 

void insert(const T& t, int n); 
Inserts t into the array at element n. The current elements from n to 
the end of the array are shifted to the right by one place and the array 
length is increased by one. 

void insert(const Array&v, int v); 
Inserts v into the array at element n. The current elements from n to 
the end of the array are shifted to the right and the array length is 
increased by the length of v. 

void removefint n); 
Removes element n reducing the size of the array by one. 

void remove(int lo, int hi); 
Removes all elements from lo to hi. 

Array& appendfconst Array &v); 
Appends v to the array. 

T& operator[](int n); 
const T& operator[](int n) const; 

Return element n. 

Array operator()(int lo, int hi) const; 
Returns a new array equivalent to the sub-array from elements lo to 
hi. 

operator T *(); 
operator const T *() const; 

Convert the vector to a pointer to a sequence of objects of type T. 
This can be used to get gains in efficiency in computationally 
intensive inner loops or for automatic type conversions in function 
arguments. 
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