
I* National Defence Defense nationale
Research and
Development Branch

Bureau de recherche
et developpement

TECHNICAL MEMORANDUM 97/225
April 1997

IMPLEMENTATION OF A
FINITE ELEMENT NAVIER-STOKES SOLVER

IN TRANSOM

David Hally

- KUffAfFrv

Defence
Research
Establishment
Atlantic

Canada

'&' !jWf!7;.T
:-L<) '->

Centre de
Recherches pour la
Defense
Atlantique

DIStftAUTIGH STÄTEr;:-':.;':£ji

Approved for public release;
Distribution Unlimited

19970916 038

DEFENCE RESEARCH ESTABLISHMENT ATLANTIC CENTRE DE RECHERCHES POUR LA DEFENSE ATLANTIQUE

9 GROVE STREET P.O. BOX1012 9 GROVE STREET C.P. BOX 1012
DARTMOUTH. N.S. TELEPHONE DARTMOUTH, N.E.
B2Y 3Z7 (902)426-3100 B2Y 3Z7

1*1 National Defence Defense nationale
Research and
Development Branch

Bureau de recherche
et developpement

IMPLEMENTATION OF A
FINITE ELEMENT NAVIER-STOKES SOLVER

IN TRANSOM

David Hally

April 1997

<17 9l Approved by R.W.Graham: l^&P/KJ1*-
Head/Hydronautics Section

Q—

TECHNICAL MEMORANDUM 97/225

Defence
Research
Establishment
Atlantic

Centre de
Recherches pour la
Defense
Atlantique

Canada

Abstract
TRANSOM is a multi-block, multi-method Reynolds-averaged Navier

Stokes solver being developed at DREA to address problems associated with
the flow around ships and submarines. It is multi-block because the flow is
.divided into several distinct regions. It is multi-method because a different
solution method may be used on each of the flow regions. At present two
different methods of solution can be chosen: a finite volume solver based on
the pseudo-compressibility method; and a finite element solver which uses
the penalty function method to determine the pressure.

TRANSOM is written in C++ following principles of Object Oriented
Programming. This document describes the design of the finite element flow
solver in TRANSOM with emphasis on the class hierarchies used to
represent elements, finite element grids, degrees of freedom, and the solver
itself. Two companion reports describe the overall design of TRANSOM and
the design of the pseudo-compressibility solver.

Resume
TRANSOM est un resolveur Navier-Stokes pondere Reynolds, multi-

blocs, multi-methodes, que le CRDA est en train de d£velopper pour r£soudre
des problemes concernant l'ecoulement autour des navires et des sous-
marins. II est multi-blocs parce que l'ecoulement se divise en plusieurs
regions distinctes. II est multi-methodes parce qu'il permet d'utiliser une
technique de solution differente pour chacune des regions de l'ecoulement.
A 1'heure actuelle on peut choisir entre deux methodes de solution: un
resolveur ä volumes finis bas^ sur la m£thode de pseudo-compressibilite et
un resolveur par elements finis qui utilise la methode de la fonction de
penalite pour determiner la pression.

TRANSOM est £crit en C++ en suivant les principes de la
programmation orientee objet. Ce document d£crit la conception du
resolveur d'ecoulement ä elements finis de TRANSOM, en mettant l'accent
sur les hierarchies de classes utilisees pour repr£senter les elements, les
maillages des elements finis, les degres de liberte, et le resolveur lui-meme.
Deux rapports complementaires decrivent la conception globale de
TRANSOM et la conception du resolveur de pseudo-compressibilite.

11

Table of Contents
Abstract ii

Resume ii

Table of Contents iii

List of Figures v

List of Tables v

Executive Summary vi

1 Introduction 1

2 An Overview of the Finite Element Method 3

3 Elements 4

3.1 Element Node Organizers 4

3.2 Quadrature Rules 5

3.2.1 Gaussian Quadrature 7

3.2.2 Quadrature over Equilateral Triangles 7

3.2.3 Adjustable Quadrature Rules 9

3.3 Reference Elements 9

3.3.1 Line Reference Elements 12

3.3.2 Triangular Reference Elements 13

3.3.3 Square Reference Elements 13

3.4 Geometric Elements 14

3.4.1 Volume Elements 17

3.4.2 Boundary Elements 18

3.5 The Element Class 19

4 Finite Element Grids 21

4.1 TheFENodeOrg Class 21

4.2 Finite Element Blocks 22

5 Finite Element Solvers 23

5.1 Degrees of Freedom 23

5.2 The Data Rep Class 25

5.3 The Linear System of Equations 26

5.4 The FESweep Class 28

6 A Solver for the Navier Stokes Equations 30

in

6.1 Elements to Solve the Navier-Stokes Equations 30

6.1.1 The NS2dVolElement Class 31

6.1.2 The NS2dBndElement Class 33

6.2 The FE2dNSSweep Class 34

6.3 The FE2dNSSolver Class 36

7 A Solver for Laplace's Equation 37

7.1 The LaplaceElement Class 37

7.2 The FELaplaceSweep Class 38

8 A Solver to Calculate Streamfunctions 38

8.1 The SfncElement Class 38

8.2 The FESfncSweep and FESfncSolver Classes 39

9 Recommendations for Improvements 40

10 Concluding Remarks 40

Appendices 42

A Vectors and Matrices 42

A.l The Vec Class 42

A.2 The Mtx Class 43

A.3 The SqMtx Class 44

B Arrays 45

References 47

IV

List of Figures
Figure 1: Class hierarchies for the element classes in TRANSOM 6

Figure 2: The reference triangle for triangular reference elements 7

Figure 3: Quadrature points for integration over triangles... 8

Figure 4: Reference points for line elements 13

Figure 5: Reference points for triangular elements 13

Figure 6: Reference points for square elements 14

Figure 7: Class hierarchy for finite element solvers and sweeps 24

Figure 8: Algorithm to assemble the local matrix of element e 28

List of Tables
Table 1: Accuracy of triangular quadrature schemes 8

v

DREA Technical Memorandum TM/97/225

Implementation of a Finite Element
Navier-Stokes Solver in TRANSOM

by

David Hally

Executive Summary

Background
The computer program TRANSOM is intended to solve a number of

ship-related flow problems of interest to DREA: for example, flows around
submarines, vortex generation from propellers and control surfaces, bilge
vortex generation, and prediction of roll damping coefficients. In particular it
will enhance our ability to predict the flow around a ship hull and into the
propellers. Knowledge of this flow is crucial for the design of efficient quiet
propellers.

TRANSOM is a multi-block, multi-method Reynolds-averaged Navier
Stokes solver; multi-block because the flow is divided into several distinct
regions called blocks; multi-method because a different solution method may
be used on each of the blocks. Unlike the methods currently in use at DREA,
TRANSOM solves the full Navier-Stokes equations in conjunction with a
turbulence model; hence, when completed, it will be able to solve the flow
around complex geometries such as a fully appended ship hull or submarine.
The overall design of TRANSOM is described in a companion document.

The current version of TRANSOM includes two different solution
methods which can be used on the blocks. The first is a pseudo-
compressibility method based on the work of Rogers and Kwak and
developed for DREA under contract by the University of Toronto; it is
suitable for use on structured blocks. Turbulence can be modelled using a

variant of the k-e model or using the Baldwin-Lomax model. Currently only
two-dimensional flow can be modelled. Details of the implementation of this
solver in TRANSOM will be documented separately.

Principal Results
The second solver is described in detail in this memorandum. It uses the

finite element method and is based on the program MEF developed at
Universite Laval; it is suitable for use on unstructured blocks. MEF was

modified at DREA to incorporate variants of the k-E turbulence model;
however, the version that is currently incorporated in TRANSOM is
restricted to two-dimensional laminar flow.

TRANSOM is written in C++ following principles of Object Oriented

vi

Programming. This document describes the implementation of the finite
element flow solver in TRANSOM and, in particular, the class hierarchies
used to represent unstructured blocks, elements, and finite element solvers.

Significance of Results
When TRANSOM is fully developed it will provide accurate numerical

predictions of the flow into the propeller plane. It will also be applicable to
many other flow problems related to ships: for example, flow around
submarines, vortex generation from propellers and control surfaces, bilge
vortex generation, prediction of roll damping coefficients, and prediction of
the lift and drag characteristics of lifting surfaces such as submarine control
planes, rudders, and fin stabilizers. The finite element solver described here
will considerably ease the burden of grid generation in regions of geometric
complexity.

Future Work
TRANSOM is still under development; the current version will only

solve two-dimensional flows and requires upgrading in many areas, in
particular the ways in which different solution methods interact at their
common block boundaries. Further development will be done at DREA and
under contract.

Vll

1 Introduction
At high speeds the noise radiated by a warship is primarily due to

cavitation on its propellers. Naval propellers are designed so that cavitation
inception is delayed to as high a speed as possible, but the design method
requires an accurate prediction of the flow into the propeller plane. Over the
past decade computer programs have been developed at DREA to predict the
flow into the propeller plane. Known collectively as HLLFLO[l], these
programs use a low-order panel method to predict the potential flow and
boundary layer methods to calculate the viscous flow.

The HLLFLO programs have the advantage that they are very fast. They
yield fairly good predictions for unappended destroyer hulls[2]; however,
there are several areas in which the predictions can be improved.

1. As is typical of boundary layer methods, the wake deficit is over-predicted
near the stern. This is especially noticeable at model-scale Reynolds
numbers.

2. HLLFLO is incapable of handling the flow past appendages. The wakes
shed from the propeller shafts and shaft brackets can cause significant spa-
tially concentrated wake defects which, in turn, affect higher harmonics of
the radiated propeller noise and the speed at which cavitation first occurs.

3. HLLFLO does not account for the influence of the boundary layer on the
potential flow.

These effects are especially important for smaller vessels with low length to
beam ratios. Moreover, HLLFLO is incapable of handling the complex
geometries of submarines or advanced marine vehicles such as SWATHs.

It was to address these deficiencies that work on the program TRANSOM
was begun. TRANSOM is a Reynolds-averaged Navier-Stokes (RANS)
solver: in conjunction with a turbulence model, it solves the Navier-Stokes
equations on a grid of points which cover the regions of flow.

When TRANSOM is fully developed it will be applicable to many ship-
related flow problems, not just the calculation of propeller inflow: for
example, flows around submarines, vortex generation from propellers and
control surfaces, bilge vortex generation, and prediction of roll damping
coefficients.

The chief practical problem in developing a Navier-Stokes solver for the
flow past a ship is that the Reynolds Number is so high: for a destroyer
moving at 20 knots the Reynolds number is about 109. The higher the
Reynolds number, the more grid points are necessary to resolve the severe
velocity gradients near solid surfaces. For this reason, issues of computer
storage are of extreme importance.

Because of the complex geometries of appended surface ships or

submarines, the type of grid used in the calculations is also important because
it affects the amount of computer storage required. Methods which allow the
use of unstructured grids (e.g. finite element solvers) typically require far
greater computer storage than methods which require structured grids. Thus,
there is a trade-off between the ease generating the grid, and the storage
requirements. To address this problem, TRANSOM has been designed as a
multi-block multi-method solver. The numerical grid may consist of several
blocks, some of which are structured, some unstructured. On each block a
solver appropriate to the block structure is used. Since the areas of complex
geometry are usually small in comparison with the whole ship, it should be
possible to reduce the computer storage requirements significantly.

The current version of TRANSOM includes two different solution meth-
ods which can be used on the blocks. The first is based on the program NSI2D
developed for DREA under contract to the University of Toronto[3,4,5]; it is
suitable for use on a single structured block. The algorithm is a variant of the
pseudo-compressibility method developed by Rogers and Kwak[6]. Currently
only two-dimensional flow can be modelled; it will be extended to three di-
mensions in 1996. Turbulence may be modelled either by the Baldwin-Lomax

model[7] or by the Chen-Patel variant of the k-e model[8]. Implementation of
the Baldwin-Barth model[9] is currently underway, details of the implemen-
tation of the pseudo-compressibility solver in TRANSOM are given in
Reference 10.

The second solution is based on the finite element program MEF
developed at Universite Laval[ll]; it is suitable for use on unstructured
blocks. MEF was modified at DREA to model turbulence using a variant of

the k-e model[12]. The implementation of the finite element solver in
TRANSOM is described in detail in this memorandum.

TRANSOM is written in C++ according to the principles of Object
Oriented Programming. The overall design is described in Reference 13. It is
recommended that Reference 13 be read before this memorandum since it
describes many of the basic classes used in the finite element solver.

Three main groups of classes are used to implement the finite element
solver: elements, classes to organize the degrees of freedom associated with
nodes of the unstructured grid, and finite element solvers. After a brief
overview of the finite element method in Section 2, class hierarchies for each
of these objects are described in Sections 3 to 8. Section 9 contains recom-
mendations for improvements to the program. A user's guide for the pro-
gram is also provided in Reference 14.

TRANSOM input and output files use the OFFSRF format described in
Reference 15. Reference 16 describes C++ classes which implement special-
ized input and output streams for OFFSRF files and a base class which is in-
herited by all classes which read from or write to OFFSRF files; it should be
read prior to this document for a proper understanding of TRANSOM input
and output.

2 An Overview of the Finite Element Method

In this section we give a brief overview of the finite element method as
used in TRANSOM. The main purpose is to establish the notation that will
be used. There are many textbooks which describe the method in much more
detail and generality.

A system of equations is to be solved on a grid of points which are
grouped into elements. At each node of the grid there are several degrees of
freedom. The values of most of the degrees of freedom are unknown and
must be determined by the solution method. For simplicity in the discussion
below, we will assume that a single equation must be solved over the whole
grid. This is the typical case for fluid flow, although it is not necessary in
general, nor in TRANSOM. The system of equations to be solved is written:

Fv = f (2.1)

where F is a differential operator and v is a vector-valued variable which
must be determined.

In TRANSOM the Galerkin method is used. On each element, the
unknown v is determined by its values at the nodes of the element:

N

vU,v) = Jv„/V„U,v) (2.2)
n=l

where Nn(x,y) are the nodal functions for the element. The values of v„ are
the degrees of freedom for the problem. Variations of the degrees of freedom
are defined by

N

öv(x,y)=^övnNn(x,y) (2.3)

The Galerkin method obtains an approximate solution to equation (2.1) by
requiring that

jöv{Fv-f)dV = 0 (24)
V

for any choice of variations <5vn. Substituting equations (2.2) and (2.3) one
obtains a linear system to be solved for the vector of unknowns {v}.

MM = {/} (2.5)
where

[*L -JX(*00 FNm(x,y) dV; {/}„ =}Nn(x,y)fdV (2.6)
V V

For a non-linear problem, [K] and {/} may be functions of the degrees of
freedom {v}.

The integrals in equation (2.6) are decomposed into integrals over each of

the Ne elements:

[KL-iKb {/}.-!{/*.}. (2.7)
~ k-l

WI th

K L = /^-^'^ ^^ ^; K L = SN^,y)fdV (2.8)

The matrix \KE 1 has only N2 non-zero elements, where N is the total

number of degrees of freedom for the element; hence, it can be stored in a
compact NxN matrix which will be called the local left hand side matrix, or

simply the local matrix. Similarly, |/£i} can be stored as a vector of length N

known as the local right hand side vector. The process of adding the local
matrix and local vector to the linear system, as in equation (2.7), is called
assembling the linear system.

Boundary conditions are often implemented by fixing the value of one of
the degrees of freedom at a node. When this is done, the variation of that
degree of freedom is zero and one equation is eliminated from the linear
system. Suppose that the «th degree of freedom is to be fixed. Then row n
must be eliminated from [K] and column n is eliminated by multiplying it by
the known value of the «th degree of freedom and incorporating the result in
the vector {/}. The size of [K] is therefore the number of degrees of freedom
whose values are not known.

3 Elements
The basis of the finite element method is the decomposition of a complex

problem into a large number of simple problems on single elements. The
inheritance characteristics of an Object Oriented programming language are
particularly useful for this problem.

Figure 1 shows the complete class hierarchy for the classes used by
TRANSOM to represent elements. The fat arrows denote an inheritance
relation (i.e. a RefElement is a specialization of an ElementNodeOrg and inherits
its public and protected member functions) and the thin arrows denote a
"part of" relationship.

3.1 Element Node Organizers

Since an element is made up of a sequence of nodes, we define a node
organizer to describe the nodes in an element (see Reference 13, Section 2.3
for a general description of node organizers and of the class NodeOrg); it is
called an ElementNodeOrg. The prototype of its constructor is:

ElementNodeOrg(unsigned n);
Creates an ElementNodeOrg for an element with n nodes.

Notice that when the ElementNodeOrg is constructed, the values of its nodes
are unspecified.

Like all node organizers, an ElementNodeOrg has the member function
num_nodes() to return the number of nodes in the element, and
get_all_node_iter() to return an iterator over the nodes in the element. The
syntax for the iterator is as described in Reference 13, Section 2.2. The follow-
ing member function is also defined:

int containsfNode n) const;
Returns true if n is one of the nodes governed by the
ElementNodeOrg.

3.2 Quadrature Rules

To facilitate interpolation and integration over an element, every ele-
ment may be transformed to a reference element which has a simple geome-
try. The coordinate system of the reference element will be denoted (§,77),
while that of the element itself is denoted (x,y). For simplicity we will as-
sume two dimensions in this discussion, although TRANSOM can represent
elements of one, two, or three dimensions.

Each reference element also provides a means of integrating a variable
over the element. The quadrature rule used is of the form

M

$f(M,rj)d%dr\ = JwB/(§* ,»7*) (3-1)
m = l

where wm, £*, and rfm, are all fixed values. Since for linear, square, and cubic
reference elements these values are chosen to yield standard Gaussian
quadrature rules, the wm are called Gaussian weights and the (§*,*?!) are
called Gaussian points. The order of a quadrature rule is the highest order for
which a polynomial is guaranteed to be integrated exactly (or more accurately,
to within round-off error). For example, a quadrature rule of order four will
integrate the polynomials £3 and ^rf exactly, while £4and %2rf will only be
approximate.

In TRANSOM, the class QuadratureRule is used to represent quadrature
rules. Each instance of a QuadratureRule stores a pointer to a Mtx, points, which

contains the points (£*,^), and a Vec, weights, containing the weights, wm

(the Vec and Mtx classes are described in Appendix A). Thus, (*points)[n] is
pointer to the components of the nth Gaussian point and (*weights)[n] is the
corresponding weight. The number of points can be obtained using the
function weights->len(). Both points and weights are public members.

(ElementNodeOrg J T
[RefElement] ►£"

-K Lin2LineElement

[Quad3LineElement] *~¥j BoundaryElement]

GeomElement I ►{

 I ^^

) -K VolumeElement]

c Lin3TriElement]

Element 1

[LaplaceElement J

•c NS2dVolElement J

NS2dBndElement

-K Quad6TriElement J

^ f Lin4SquareElement]

[Quad8SquareElement J

►|Quad9SquareElement]

Figure 1: Class hierarchies for the element classes in TRANSOM

The order of the quadrature rule may be obtained using the following
member function:

unsigned max_exact_order() const;

The QuadratureRule class also provides three member functions which
perform the integration of equation (3.1). They differ in the way in which the
function /(£,r]) is specified.

double integrate_fnc(double func(const double*, void *), void *p) const;
void integrate_fnc(void func(const double*, void*, Vec&), void *p, Vec &v) const;
void integrate_fnc(void func(unsigned, void*. Vec&), void *p, Vec &v) const;

In each of these functions, the argument p may be used to pass data to the
function func; it is passed directly to func using its void* argument. Commonly
p is the this pointer of the calling class cast to void*.

The first form of integrate_fnc() is suitable for integrating a single-valued
function. The const double* argument to func is a pointer to the coordinate
values (£,77).

The second form of integrate_fnc() is suitable for integrating a multiple-
valued function; the values of the function are returned in the Vec v. The
const double* argument to func is a pointer to the coordinate values (£,?7).

The third form of integrate_fnc() is also suitable for integrating a multiple-
valued function; the values of the function are returned in the Vec v. Rather
than passing the coordinate values (^,rj) to func, the number of the current
Gaussian point, ig, is passed instead. The coordinate values used in equation
(3.1) are obtained from (*points)[ig]. This form of integrate_fnc() can increase
efficiency when more than one integration is performed over a single
element. The values of variables at all the Gaussian points need only be
calculated once and stored in an array. Given the index ig, the function func
can retrieve the appropriate value when calculating f{^,t]).

3.2.1 Gaussian Quadrature

TRANSOM defines specializations of QuadratureRule which implement
one-dimensional Gaussian quadrature of order two, four, six, and eight. They
are GaussQuad Rule02, GaussQuad Rule04, GaussQuadRule06, and
GaussQuadRule08, respectively. The corresponding rules in two dimensions
are Gauss2DQuodRule02, Gauss2DQuadRule04, Gauss2DQuadRule06, and
Gauss2DQuadRule08. The points and weights for Gaussian integration are well
known. They are tabulated in Abramowitz and Stegun[17].

3.2.2 Quadrature over Equilateral Triangles

Quadrature rules are also defined for integration over an equilateral
triangle centred at the origin and with one vertex placed at (1,0), as shown in
Figure 2.

(-1/2/3/2)

(1,0)-

(-l/2,-V3/2)

Figure 2: The reference triangle for triangular reference elements

There are quadrature rules available for triangular reference elements.
The locations of the quadrature points for each option are shown in Figure 3.
The quadrature points and weights are given in Abramowitz and Stegun[17].
Table 1 gives the order of each of the quadrature rules.

a) One-point quadrature b) Three-point quadrature

c) Four-point quadrature d) Six point quadrature

Figure 3: Quadrature points for integration over triangles

Number of

points

Max. Exact

Order

Class Name

1 2 TriQuadRule02

3 3 TriQuadRule03

4 4 TriQuadRule04

6 6 TriQuadRule06

Table 1: Accuracy of triangular quadrature schemes

3.2.3 Adjustable Quadrature Rules

An adjustable quadrature rule is one whose order can be specified. They
are represented by the class AdjQuadRule and its specializations. The
AdjQuadRule class is a specialization of QuadratureRule. It is implemented as a
list of QuadratureRules of different order. Only one of the QuadratureRules is
active at any time. TRANSOM includes three specializations of AdjQuadRule:

1. AdjGaussQuadRule: implements an AdjQuadRule using the rules
GaussQuadRule02, GaussQuadRule04, GaussQuadRule06, and
GaussQuadRule08.

2. AdjGauss2DQuadRule: implements an AdjQuadRule using the quadrature
rules Gauss2DQuadRule02, Gauss2DQuadRule04/ Gauss2DQuadRule06, and
Gauss2DQuadRule08.

3. AdjTriQuadRule: implements an AdjQuadRule using the rules TriQuadRule02,
TriQuadRule03, TriQuadRule04, and TriQuadRule06.

In addition to the member functions which it inherits from
QuadratureRule, AdjQuadRule has the following constructors and member
functions.

AdjQuadRule(unsigned ord);
Creates an AdjQuadRule. The member function set_max_order() (see
below) is called to set the order of the quadrature rule to ord. Since
AdjQuadRule is a pure virtual class, this constructor is only available
to specializations of the class. The constructors for all the
specializations have similar arguments.

unsigned set_max_order(unsigned ord);
Requests that the order of the quadrature rule be set to ord.
Depending on the rules available, the actual order used may be
greater or smaller than ord. The order used is returned by the
function.

3.3 Reference Elements

For each reference element, the position of the nodes in (§,rj) coordinates
is fixed. For an N-noded element these reference nodes will be denoted
iMn,r\n). The reference element also defines N nodal functions N„(|,JJ) which
have the property that

Nn(Zn,rim)=öma (3.2)

where 6 is the Kronecker delta. If the values of a variable at each of the nm

nodes is vn, then its value anywhere in the element can be determined using
the interpolation rule

v(^) = 2vA(^) 0-3)
B=l

Each reference element also provides an adjustable quadrature rule for
performing integration over the element. Member functions are provided to
return a pointer to the quadrature rule and to change its order. Since the
Gaussian points and weights of the quadrature rule are public, they are
available to any class which might require them to perform efficient
evaluations of a function to be integrated.

In TRANSOM, reference elements are represented by the virtual class
RefElement which is derived from the class ElementNodeOrg. The member
functions num_nodes(), geLalLnode_iter(), and contains!) are all inherited. The
following public constructors and member functions are also defined.

RefElementfunsigned n);
Makes a reference element having n nodes.

Node& operator[](unsigned n);
const Node& operator!] (unsigned n) const;

Returns the nth node of the reference element. Thus, if re is a
RefElement, re[n] is the number of its nth node

virtual unsigned max_order() const = 0;
Returns the maximum order of any component (£ or r)) of the
polynomials used to define Nn(%,ri): e.g. the term |2rj2 is of order 3
not 5.

virtual unsigned dim_element() const = 0;
Returns the dimensions of the element, d: i.e. the dimensions of the
reference coordinate system. In the examples shown here d is two,
since there are two reference coordinates, § and r], but TRANSOM
will handle elements of one, two, or three dimensions.

virtual const Mtx& get_ref_coords() const = 0;
Returns a.n N x.d matrix which contains the reference coordinates of

the nodes, (§„,*?,,)• Trte Mtx class is described in Appendix A. If re is
the Mtx returned, then rc[n][0] is the value of §„ and rc[n][l] is the

value of r\n.

virtual AdjQuadRule* get_quadrature_rule() = 0;
Returns a pointer to the quadrature rule used by this reference
element.

virtual const Array<Vec*>& get_node_funcs_at_gp() const = 0;
Returns an array of pointers to vectors containing the values of

nodal functions at the Gaussian points: WB(|f*,0- The array is of

length M and each vector is of length N. If nf is the array returned,

then (*nf[m])[n] is the value of #„(§*, r£). This function could have
been written to return a Mtx, but the Array<Vec*> was chosen to

10

correspond more closely with the returned value of
get_grad_node_funcs_at_gp(). Note that the returned value cannot be
Array<Vec>& since an Array can only be constructed from classes which
have constructors without arguments; all the Vec constructors
require arguments (see Appendix A.l).

virtual const Array<Mtx*>& get_grad_node_funcs_at_gp() const = 0;
Returns an array of pointers to N x d matrices containing the
gradient with respect to the reference coordinates of the nodal

functions at the Gaussian points: i.e. returns ViVn(£*,?7*). The array
is of length M. If g is the array returned, then (*g[m])[n][0] is the

value of (<?#„/<?!■)(§*,O and (*g[m])[n][l] is the value of

virtual const Array<Mtx*>& get_grad_node_funcs_at_nodes() const = 0;
Returns an array of pointers to N x d matrices containing the
gradient with respect to the reference coordinates of the nodal
functions at the nodes: i.e. returns VNn(§m,?7m). The array is of length
N. If g is the array returned, then (*g[m])[n][0] is the value of

{dNnld%)(MM,r\m) and (*g[m])[n][l] is the value of {dNjdr))^m,r]m).

void values_at_gp(const lOVar &v, Mtx &vgp);
Using equation (3.3), evaluates the values of the variables in v at
each of the Gaussian points. Returns the values in the MxL matrix
vgp, where M is the number of Gaussian points and L is the number
of variables per node in v. If the dimensions of vgp are incorrect a
fatal error results.

void values_at_gp(double *d, Vec &vgp);
The argument d is a pointer to the values of a variable at each of the
nodes of the element. Determines the corresponding values at each
of the Gaussian points using equation (3.3). Returns the values in
the vector vgp of length M.

Vec node_funcs(const Vec &xi, int *kder = 0);
Evaluates the nodal functions or their derivatives at the point xi and
returns them in a Vec of length N. The length of xi must be d or a
fatal error will result. The d integers stored at kder are used to
specify the derivative which is required. When d is two, kder[] =
{0,0} signifies that the values of the nodal function are returned;
kder[] = {1,0} signifies that values of dNn/d% are returned; kder[] =
{0,1 } signifies that values of dNn/dr] are returned; and so on. If kder
is null, the values of the nodal functions are returned.

void integrate_fnc(void funcfunsigned, void*, Vec&), void *p, Vec &v);
Integrates the vector function tune over the reference element using
the quadrature formula of equation (3.1). The vector-valued integral
is returned in v. The function func(ig,pl,f) returns its value in f; The
argument ig is the number of the current Gaussian point; i.e. it is in

11

the range [0,M]. The pointer p may be used to pass data to func; the
value of the func argument pi is always set to p. Usually p is the this
pointer of the calling class cast to a void. The length of the vector f is
always the same as the length of v.

As an illustration of the member function integrate_fnc(), consider the
following code. It integrates the squares of the nodal functions over an
arbitrary reference element represented by the RefElement pointer re. The
result is returned in the Vec v of length N. First we define func.

void func(unsigned ig, void *p, Vec &f)
{

RefElement *re = (RefElement*)p;
Vec &nf = *(re->get_node_funcs_at_gp()[ig]); // nf contains the nodal functions

// at the Gaussian point ig
for (unsigned n = 0; n < f.len(); n++)

f[n] = nf[n]*nf[n];
}

A call to integrateJncO will now perform the integration. Notice that the
argument p is set to re (cast to a void*) which is then passed to func.

Vec v(re->num_nodes()); // Create a Vec of appropriate size
integrate_fnc(func, (void*)re, v);

3.3.1 Line Reference Elements
Line reference elements are one-dimensional. The reference coordinate

| extends from -1 to 1. An AdjGaussQuadRule is used for the quadrature rule.
For all line reference elements the nodes are numbered consecutively along
the line segment.

A Lin2LineElement is a line reference element whose nodal functions are
linear. The element contains only two nodes at £ = -1 and £ = 1. The default
quadrature order is four. The nodal functions are

N^) = ^-; W2(£) = —£ (3.4)

A Quad3LineElement is a line reference element whose nodal functions are
quadratic. The element contains three nodes at £ - -1, 0, and 1. The default
quadrature order is eight. The nodal functions are:

Nl(f)--!!ll)i; ;V2(£) = (l+ £)(!-£); N3(£) = ^^ (3.5)

12

a) Lin2LineElement b)Quad3LineElement

Figure 4: Reference points for line elements

3.3.2 Triangular Reference Elements

Triangular reference elements are two-dimensional elements whose

reference coordinates (%,rj) cover an equilateral triangle centred at the origin
and with one vertex placed at (1,0), as shown in Figure 2. An AdjTriQuadRule is
used for the quadrature rule.

A Lin3TriElement is a triangular reference element whose nodal functions
are linear. The element contains three nodes: one at each vertex of the
reference triangle. The default quadrature order is four.

A Quad6TriElement is a triangular reference element whose nodal
functions are quadratic. The element contains six nodes: one at each vertex of
the reference triangle and one at the centre of each of its sides. The default
quadrature order is six. The nodes are numbered consecutively around the
perimeter starting at one vertex of the triangle.

a) Lin3TriElement b) Quad6TriElement

Figure 5: Reference points for triangular elements

3.3.3 Square Reference Elements

Square reference elements are two-dimensional elements whose reference

coordinates (%,?]) cover a square centred at the origin with sides of length

two; thus its vertices are at (|,rj) = (±l,±l). An AdjGauss2DQuadRule is used for
the quadrature rule.

A Lin4SquareElement is a square reference element whose nodal functions
are bi-linear. The element contains four nodes: one at each vertex of the

13

reference square. The default quadrature order is four.

A Quad 8S qua re Element is a square reference element whose nodal
functions are linear combinations of the polynomial basis functions 1, £, r\,

|2, %r\, rf, %2r\, and |rj2. The element contains eight nodes: one at each
vertex of the reference square and one at the centre of each of its sides. The
default quadrature order is eight.

A Quad9SquareElement is a square reference element whose nodal
functions are bi-quadratic. They are linear combinations of the polynomial

basis functions 1, £, r\, f, lr\, rf, |2r?, W. and |V- The element contains
nine nodes distributed as a 3x3 grid. The default quadrature order is eight. □

0 1 0 12 0 1

a) Lin4SquareElement b) Quad8SquareElement c) Quad9SquareElement

Figure 6: Reference points for square elements

3.4 Geometric Elements

TRANSOM elements are iso-parametric; the nodal functions for interpo-
lation of the coordinates are the same as for any other variable.

The class GeomElement represents an iso-parametric element including
the location of its nodes in space. None of the physical properties (i.e. the
nodal degrees of freedom) are represented.

It is important to recognize the difference between the dimension of the
element, d, and the dimension of the element coordinates, dc. For a square
element d is two, but when it is used in a three dimensional problem, dc is
three. There are two main types of geometric elements: volume elements, for
which the d and dc are the same; and boundary elements, for which d is less
than dc. These are represented by the classes VolumeElement and
BoundaryElement, both of which are specializations of GeomElement.

Every instance of a GeomElement contains a RefElement which defines the
organization of its nodes. The GeomElement defines the transformation
between the Cartesian coordinates and the reference coordinates. Since the
element is iso-parametric, this transformation is defined, using equation (2.2),
by

14

jcd.rtf-^XCM) (3.6)

where x is the Cartesian coordinate vector and the xn are the coordinate
vectors at the nodes.

Like a RefElement, a GeomElement provides functions for integrating over
the element, but in this case the integration variables are the Cartesian
coordinates, not the reference coordinates. The integration is performed by
converting the integral to one over the reference coordinates by multiplying
by the determinant of the Jacobian. If d = dc = 2 we have

ff(x,y) dxdy -ff(£,ri) |det J(|,»7)| d&fy

where the Jacobian J is given by

dx dy
d{x,y)

(3.7)

m,v) =
<?(§,»?)

d% d%
dx dy
dr\ dr\

(3.8)

Using equation (3.6), one gets the following formula for det/:

'dN. dN_ dN, dN_ M M

det 7«.,)-2 Ju.^
Mil \d% dt)

n m

d% drj (3.9)

Now using equations (3.1) and (3.7), one obtains the following quadrature
formula:

M

jfix^dxdy^^WJiC^J
m-\

where

Wm = W\dct J(C,VJ\

(3.10)

(3.11)

If the value of a variable at the nth node is vn, then its gradient anywhere
in the element can be determined using the interpolation rule

Vv(^) = Jv^/V,^) = £ vn
n-l

\dNn]
dx

dNn

. dy.

N

n=l
dNn

(3.12)

For a boundary element with d = l, an integral over the element is
equivalent to a line integral. The quadrature formula is similar to equation
(3.10) but with

W. w_
dx_ .
d^m) = w_

«=1 rfl
(3.13)

15

A GeomEiement does not store the values of the coordinates at each of its
nodes; that would be far too costly in memory. Instead, the coordinates for all
nodes are stored as a PointColl (see Reference 13, Section 2.4); the GeomEiement
stores a static pointer to the coordinates along with a pointer to a RefElement
which defines its nodes. The pointer to the RefElement is defined when the
GeomEiement is constructed.

GeomElement(RefElement *re);
The pointer to the coordinates is set using a static member function.

static void set_coords(PointColl *pc);
This allows GeomElements on different blocks to be used (set_coords() is called
whenever the block is changed) without requiring the storage of an extra
pointer in every GeomEiement.

The following member functions all return the same values as the
corresponding member functions of the RefElement re used to construct the
GeomEiement.

unsigned dim_element() const;
unsigned num_nodes() const;
AliNodelter *get_all_node_iter() const;
AdjQuadRule* get_quadrature_rule();
const Array<Vec*>& get_node_funcs_at_gp() const;
const Array<Mtx*>& get_grad_node_funcs_at_gp() const;
const Array<Mtx*>& get_grad_node_funcs_at_nodes() const;
void values_at_gp(const lOVar &v, Mtx &vgp);
Node& operator[](unsigned i);
const Node& operator[](unsigned i) const;

In addition, the following member functions are defined.

unsigned dim_coords() const;
Returns the dimension of the coordinates used by the element.
Note, as discussed above, that this may be different from the
dimension of the element.

double* coord(unsigned n) const;
Returns a pointer to the coordinates of the nth node of the element.
Thus the x value of the second node of a GeomEiement ge is
ge.get_coords(2)[0].

RefElement* get_reference_element() const;
Returns a pointer to the reference element which defines the nodes
of the element.

operator RefElement ();
Converts the GeomEiement to the RefElement which defines its nodes.

void integrate_fnc(void funcfunsigned, void*, Vec&), void *p, Vec &v);
Integrates the vector function func over the element using the
quadrature formula of equation (3.10) in conjunction with either
equation (3.11) or equation (3.13). The RefElement quadrature rule is
used to perform the integration.

16

An extractor and an inserter are defined for reading from an istream and
writing to an ostream.

friend istream& operator»(istream &in, GeomElement &ge);
friend ostream& operator«(ostream &out, GeomElement &ge);

These functions simply read and write the reference element associated with
the geometric element. They are equivalent to

in » *ge.get_reference_element();

and

out « *ge.get_reference_element();

3.4.1 Volume Elements

A VolumeElement is a geometric element for which the dimensions of the
element are the same as the dimensions of the coordinates. This implies that
the reference coordinates and Cartesian coordinates are related by a square
Jacobian matrix.

A Volume2dElement is a specialization of a VolumeElement for which the
dimension of the element is two. Its member functions are all inherited from
VolumeElement. The prototypes for the VolumeElement and Volume2dElement
constructors are:

VolumeElementfRefElement *e);
Volume2dElement(RefElement *e);

The following member functions are inherited from GeomElement.

unsigned dim_element() const;
unsigned num_nodes() const;
AIINodelter *get_all_nodejter() const;
AdjQuadRule* get_quadrature_rule();
const Array<Vec*>& get_node_funcs_at_gp() const;
const Array<Mtx*>& get_grad_node_funcs_at_gp() const;
const Array<Mtx*>& get_grad_node_funcs_at_nodes() const;
void values_at_gp(const lOVar &v, Mtx &vgp);
Node& operator[](unsigned i);
const Node& operator!] (unsigned i) const;
unsigned dim_coords() const;
double *coord(unsigned n) const;
RefElement* get_reference_element() const;
operator RefElement ();
void integrate_fnc(void func(unsigned, void*, Vec&), void *p, Vec &v);
Mtx get_cart_grads_at_gp(unsigned ig);

The main function of the VolumeElement class is to provide a means for
calculating the Jacobian of the transformation between Cartesian coordinates
and the coordinates of the reference element. This is done by the following
two member functions.

virtual void jacobfconst Mtx &gnf, SqMtx &jmtx, SqMtx &jinv, double &detj) = 0;
Calculates the Jacobian of the transformation between Cartesian and
reference coordinates, returning it in jmtx. Its determinant and its

17

inverse are also calculated and are returned in detj and jinv
respectively. The input argument gnf is an Nxd matrix containing
the gradients (with respect to reference coordinates) of the node
functions at the point where the Jacobian is to be evaluated; thus
gnf[n][l] is the value of dNjdr/. Since this is a pure virtual function,
it must be defined by specializations of VolumeElement. The class
Volume2dElement provides a concrete version of this function.

void jacob_at_gp(unsigned ig, SqMtx &jmtx, SqMtx &jinv, double &detj);
Calculates the Jacobian, its inverse, and its determinant at the igth

Gaussian point.

3.4.2 Boundary Elements

A BoundaryElement is a GeomElement for which the dimension of the
element is one less than the dimension of the coordinates. This implies that
the reference coordinates and Cartesian coordinates are related by a Jacobian
matrix which is not square.

A Boundary2dElement is a specialization of a BoundaryElement for which the
coordinate dimension is two and the element dimension is one. Its member
functions are all inherited from BoundaryElement. The prototypes for the
BoundaryElement and Boundary2dElement constructors are:

BoundaryElementfRefElement *e);
Boundary2dElement(RefElement *e);

The following member functions are inherited from GeomElement.

unsigned dim_element() const;
unsigned dim_coords() const;
unsigned num_nodes() const;
AIINodelter *get_all_nodeJter() const;
AdjQuadRule* get_quadrature_rule();
const Array<Vec*>& get_node_funcs_at_gp() const;
const Array<Mtx*>& get_grad_node_funcs_at_gp() const;
const Array<Mtx*>& get_grad_node_funcs_at_nodes() const;
void values_at_gp(const lOVar &v, Mtx &vgp);
Node& operator!](unsigned i);
const Node& operatorf] (unsigned i) const;
double *coord(unsigned n) const;
RefElement* get_reference_element() const;
operator RefElement ();
void integrate_fnc(void func(unsigned, void*, Vec&), void *p, Vec &v);
Mtx get_cart_grads_at_gp(unsigned ig);

The BoundaryElement class has two main functions: it provides a means to

calculate the scaling factor \dx/d^\ used in equation (3.13) when integrating
over the element; and it provides a means to calculate the normals to the
element which are often required by surface integrals after an integration by
parts (see, for example, equation (6.4)) This is done by the following member
functions.

18

virtual void jacobs(const Mtx &gnf, double &detj, Vec &normal) = 0;

At a single point, calculates the scaling factor \dx/d%\ used in equation
(3.13) and the outward pointing normal to the element. The input
argument gnf is an Nxde matrix containing the gradients (with
respect to reference coordinates) of the node functions at the point
where the scaling factor and normals are to be evaluated; thus
gnf[n][0] is the value of dNn/d%. Since this is a pure virtual function,
it must be defined by specializations of BoundaryElement. The class
Boundary2dElement provides a concrete version of this function.

void jacobs_at_gp(unsigned ig, double &detj, Vec &normal);
Performs the calculations in Jacobs at the igth Gaussian point.

virtual Array<Vec*> &get_normals_at_gp() = 0;
Returns the normals at each Gaussian point in an array of length M
each of whose elements is a pointer to a Vec of length d. Thus, if
normals is the array returned, then (*normals[n])[l] is the y-component
of the nth Gaussian point of the element's quadrature rule. Since this
is a pure virtual function, it must be defined by specializations of
BoundaryElement. The class Boundary2dElerment provides a concrete
version of this function.

virtual Array<Vec*> &get_normals_at_nodes() = 0;
Calculates the normals at each node and returns them in an array of
length TV each of whose elements is a pointer to a Vec of length d.
Thus, if normals is the array returned, then (*normals[n])[l] is the y-
component of the nth node of the element. Since this is a pure
virtual function, it must be defined by specializations of
BoundaryElement. The class Boundary2dElement provides a concrete
version of this function.

3.5 The Element Class

An Element is a finite element which represents not only the geometry of
the element, but also the degrees of freedom used to describe the physical
model. The geometry of the element is obtained from a GeomElement.
Typically values for the degrees of freedom are obtained from global lOVars
(see Reference 13, Section 3.4), but this is left up to specializations of the class.
The prototype for the Element constructor is:

ElementfGeomElement *ge);
Makes an element with geometry given by ge.

The following two member functions allow access to the geometric
element and reference element from which the element was constructed.

GeomElement* get_geometric_element() const;
Returns the geometric element on which the element is based.

RetElemertt* get_reference_element() const;
Returns the reference element on which the element is based.

19

The following member functions all simply execute the corresponding
function for the GeomElement from which the Element was constructed.

unsigned num_nodes() const;
unsigned dim_coords() const;
unsigned dim_element() const;
AdjQuadRule* get_quadrature_rule();
double *coord(unsigned n) const;
Node& operator!](unsigned i);
const Node& operator!] (unsigned i) const;

The main function of the Element class is to calculate the local matrix and
right hand side vector for assembly into the global linear system. This is done
using the following member functions.

virtual unsigned deg_of_freedom(unsigned n) = 0;
Returns the number of degrees of freedom at the nth node.

virtual SqMtx* contribution_to_lhs();
Computes the local left hand side matrix for the element. If there is
no contribution to the global matrix from this element, a null
pointer is returned. The calling class is responsible for deleting the
returned matrix.

virtual Vec* contribution_to_rhs();
Computes the direct contribution of the element to the right hand
side of the linear system. If there is no contribution to the right hand
side from this element, a null pointer is returned. The calling class
is responsible for deleting the returned vector.

For unsteady problems, the local mass matrix is an important part of the
local left hand side matrix. The mass matrix is defined by

[M]nm=JNn(x,y)Nm(x,y)dV (3.14)
V

The Element class provides a member function to compute the mass matrix. It
is not used in the current version of TRANSOM.

virtual SqMtx* mass();
Computes the local mass matrix of the element.

An element may also have extra properties required for the evaluation of
the local matrix and local right hand side vector. In TRANSOM the element
properties are used to set the imposed pressure and shear stress on boundary
elements: see Section 6.1. The following member functions may be used to
determine the number of element properties and to set their values.

virtual int num_properties() const;
Returns the number of physical properties associated with the
element.

virtual void set_properties(const Vec &v);
Use the values in the v to set the properties of the element. If the
length of v is not equal to the number of element properties, a fatal

20

error results.

An inserter and extractor are also defined. They simply call the inserter
and extractor for the geometric element on which the element is based. Thus
the extractor and inserter read in and write out the numbers of the nodes for
the element.

4 Finite Element Grids
A finite element grid is a PointColl (see Reference 13, Section 2.4) in which

the nodes are organized as a collection of reference elements. Like all
PointColls, it has a node organizer which imparts the structure to the grid. The
class used to represent the node organizer is called FENodeOrg. The grid itself
is represented by the class FEBIock.

4.1 The FENodeOrg Class

The FENodeOrg class represents a node organizer for a finite element
block. It is derived from the class NodeOrg described in Reference 13,
Section 2.3. It has the following two constructors.

FENodeOrg(unsigned n);
Constructs a node organizer which governs n nodes. In the local
node numbering the first node will be node zero.

FENodeOrgfunsigned n, const Node &f);
Constructs a node organizer which governs n nodes. In the local
node numbering the first node will be node f.

An FENodeOrg stores an array of pointers to RefElements. The following
member functions allow access to this array.

void set_num_elems(unsigned n);
Sets the length of the array of reference elements.

int num_elems() const;
Returns the number of reference elements.

RefElement* get_element(unsigned n) const;
Returns a pointer to the nth reference element.

An extractor is also defined for the FENodeOrg and OFFSRF_ifstream classes.
It reads an ELEMENT record from an OFFSRF file (see References 15 and 16)
and uses the data there to define the reference elements in the grid. Thus, if
fe_norg is an FENodeOrg and in_stream is an OFFSRFjfstream, then the code

in_stream » fe_norg;

reads the next sequence of ELEMENT records in the OFFSRF file associated
with the stream in_stream.

The format of the ELEMENT record is as follows.

21

{ELEMENT: numb er-of-elements
{Element-Type-1

node numbers for first element of type Element-Type-1
node numbers for second element of type Element-Type-1

}Element-Type-l

[Element-Typ e-n
node numbers for first element of type Element-Type-n
node numbers for second element of type Element-Type-n

}Element-Type-n

}ELEMENT

The following element types are currently defined.

L2LE: The element is a Lin2LineElement.

Q3LE: The element is a Quad3LineElement.

L3TE: The element is a Lin3TriElement.

Q6TE: The element is a Quad6TriElement.

L4SE: The element is a Lin4SquareElement.

Q8SE: The element is a Quad8SquareElement.

Q9SE: The element is a Quad9SquareEiement.

For example, the following record defines three linear square elements and
two linear line elements.

{ELEMENT: 5
{L4SE

0 15 4
12 6 5
2 3 7 6

}L4SE
{L2LE

4 0
3 7

}L2LE
}ELEMENT

An Elementlter is an iterator over the elements governed by an FENodeOrg.
It obeys the syntax used by all TRANSOM iterators as described in
Reference 13, Section 2.2. The prototype of its constructor is:

Elementlter(FENodeOrg &no);

4.2 Finite Element Blocks

The class FEBIock represents a finite element block. It is a PointCol! whose
node organizer is an FENodeOrg. Its constructors have the following
prototypes.

22

FEBIock(unsigned nd, unsigned n);
Construct a finite element block having n nodes. The dimension of
the coordinates is nd.

FEBIock(unsigned nd, unsigned n, const Node &f, double *d);
Construct a finite element block with n nodes of dimension nd.
Numbering of the nodes begins at f and the coordinate values are
stored at memory location d.

The following member functions are defined for the FEBIock.

FENodeOrg* get_node_org() const;
Returns a pointer to the node organizer governing the block

int num_elems() const;
Returns the number of reference elements in the block.

An extractor is also defined for the FEBIock and OFFSRFjfstream classes. It
combines the extractors of the FENodeOrg class and the PointColl class; thus, it
reads both ELEMENT and COORDINATE records from an OFFSRF file and
uses them to define the reference elements and coordinates of the grid. Thus,
if feb is an FEBIock and in_stream is an OFFSRFjfstream, then the code

in_stream » feb;
reads the next sequence of ELEMENT and COORDINATE records in the
OFFSRF file associated with the stream in_stream. The format for the
ELEMENT record is described in Section 4.1 and the format of the
COORDINATE record is described in Reference 13, Section 2.4.

5 Finite Element Solvers

TRANSOM provides three finite element solvers. An FE2dNSSolver solves
the two-dimensional steady laminar Navier-Stokes equations. An FESfncSolver
uses a given incompressible velocity field to calculate a streamfunction for
the flow (the streamfunction is very useful when displaying a flow since its
iso-contours are streamlines). Finally, an FELaplaceSolver solves Laplace's
equation; it can be used to calculate potential flow.

The sweep for each of these solvers is derived from the class FESweep,
which handles the assembly of the linear system of equations and it solution.
The main function of the specialized solvers is to convert the reference
elements in the grid to elements appropriate for the problem to be solved.

The class hierarchy for the finite element solvers is shown in Figure 7.

5.1 Degrees of Freedom

As discussed in- Section 2, there are degrees of freedom (DOFs) associated
with every node. The set of all DOFs will be called the total DOFs. Some of
the DOFs are unknowns to be determined by the solver; they are called free
DOFs. Others have known values; they are called fixed DOFs. It is the job of

23

Sweep 1 ►(Solver

~T~
[FESweep

►[FENSSweep)- ►[FENSSolver]*

[FELaplaceSweep] ►[FELaplaceSolver

FESfncSweep -►(FESfncSolver

Figure 7: Class hierarchy for finite element solvers and sweeps.

the Data Rep class to keep track of which DOFs are fixed, which are free, and
which DOFs are associated with which node.

TRANSOM uses three different indices for DOFs.

1. A DOF is an index for the total DOFs. Its value will be in the range zero to
N,-\, where N, is the total number of DOFs.

2. A NodeDOF is an index for the DOFs associated with a single node. Its
value will be in the range zero to Nn-\, where Nn is the number of DOFs
associated with the node. Note that Nn may be different for different
nodes within the same element. The iterator class ElementDOFIter may be
used to iterate over the node DOFs.

3. A FreeDOF is an index for the free DOFs. Its value will be in the range
zero to Nf-\, where Nf is the total number of free DOFs. The FreeDOF
indices are not actually used by DataReps; instead, they are provided as a
service to the classes FESolnMtx and FESolnVec which are used to represent
the global linear system of equation (2.5).

The main task of the DataRep class is to provide mappings which convert
between these three types of indices. An index for the fixed DOFs would also
be possible but it is unnecessary.

The linear system of equation (2.5) is strongly dependent on the mappings
provided by the DataRep. The indices for the matrix [K] and the vector {/}
are FreeDOFs. The structure of the matrix can be altered by changing the

24

mapping between the DOF and FreeDOF indices. Use of well known methods
such as the reverse Cuthill-McKee algorithm[18] can improve efficiency
significantly by reducing the bandwidth of the global matrix. So far no such
methods have been incorporated in TRANSOM.

TRANSOM provides four iterator classes for iterating over DOFs:
TotalDOFIter, NodeDOFIter, ElementDOFIter, and ElementFreeDOFIter. Each uses
the standard TRANSOM syntax for iterators described in Reference 13,
Section 2.2.

A TotalDOFIter returns, in succession, each of the total DOFs. Casting a
TotalDOFIter to a DOF returns the current DOF in the iteration. It is constructed
from a DataRep.

TotalDOFIterfconst DataRep &dr);

A NodeDOFIter returns, in succession, each of the total DOFs associated
with a given node. Note that it returns DOF indices, not Node DOF indices.
Casting a NodeDOFIter to a DOF returns the current DOF in the iteration. A
NodeDOFIter is constructed from a DataRep and a Node.

NodeDOFIter(const DataRep &dr. Node n);
In addition to the standard reset() function to restart the iteration, the
following member function is also provided.

void reset(Node n);
Resets the iterator to return the DOFs for node n.

An ElementDOFIter returns, in succession, the total DOFs associated with
all the nodes of an element. Casting an ElementDOFIter to a DOF returns the
current DOF in the iteration. It is constructed from a DataRep and an Element.

ElementDOFIterfconst DataRep &dr, const Element &e);

An ElementFreeDOFIter returns, in succession the free DOFs associated with
all the nodes of an element. Casting an ElementFreeDOFIter to a FreeDOF
returns the current FreeDOF in the iteration. It is constructed from a DataRep
and an Element.

ElementFreeDOFIter(const DataRep &dr, const Element &e);

5.2 The DataRep Class

The main functions of the DataRep class were discussed in the previous
section. Here the specific member functions which it provides are presented.
A DataRep is constructed from an array of Elements.

DataRep(const Array<Element*> &elems);
The constructor uses the function Element::deg_of_freedom() to get the number
of degrees of freedom for every node in every element of the array. If
different elements report a different number of DOFs for the same node, a
warning message is generated.

By default all DOFs are free. To fix DOFs the following member functions

25

must be called.

void add_fixed(Node n, NodeDOF d, double v);
Fixes the dth DOF of node n, giving it the value v.

void set_DOF_map();
This member function must be called after all required DOFs have
been fixed. It sets up maps between the different types of DOF.
Calling addjixed after set_DOF_map will result in a fatal error.

The following member functions are used to get information about the
DOFs.

unsigned num_total() const;
Returns the total number of DOFs.

unsigned num_free() const;
Returns the number of free DOFs.

unsigned num_fixed() const;
Returns the number of fixed DOFs

int is_free(DOF d) const;
Returns true if DOF d is free.

int is_fixed(DOF d) const;
Returns true if DOF d is fixed.

FreeDOF free_DOF(DOF d) const-
Returns the FreeDOF corresponding to DOF d. A fatal error is
generated if d is not free.

double& operator[](DOF n);
const double& operator[](DOF n) const;

Returns the value of the nth total DOF.

5.3 The Linear System of Equations

The matrix [K] and the vector {/} in equation (2.5) are represented by the
classes FESolnMtx and FESolnVec, respectively. The class FESolnMtx is a special-
ization of the class SkylineMtx which implements storage and inversion of
square matrices using the skyline algorithm; for a description of this method
of storage see Reference 11. The skyline profile above the diagonal is the
same as the profile below the diagonal; this is always true for the matrices
used in finite element calculations. The constructors and member functions
of the SkylineMtx class are the following.

SkylineMtxf);
Creates a skyline matrix of unspecified size. This is a protected
constructor which is used by the class FESolnMtx.

SkylineMtx(const Array<unsigned> &prof):
Creates a skyline matrix with profile specified by prof. prof[n] is the
height of the profile at the nth row and column. The height does not
include the term on the diagonal; thus, prof[n] must be in the range
zero to n (row and column numbering begins at zero).

26

SkylineMtx(const SkylineMtx&);
A copy constructor.

int solve(Vec &rhs);
Solves the linear system whose right hand side is rhs. The solution is
returned in rhs. This function first converts the matrix to LU-
decomposed form. Subsequent calls to solve will work correctly (and
more efficiently since the LU-decomposition need not be performed
again), but other operations will yield incorrect results.

unsigned num_rows() const;
Return the number of rows in the matrix.

unsignbed num_cols() const;
Returns the number of columns in the matrix. Since the matrix is
square, this function returns the same result as num_rows(). They are
both included for compatibility with the Mtx class.

unsigned heightfunsigned n) const;
Returns the height of the profile for the nth row and column. The
height does not include the term on the diagonal.

double& elementfunsigned i, unsigned j);
Returns the matrix element (i,j) if it lies within the skyline profile;
otherwise generates a fatal error.

double operatorf) (unsigned i, unsigned j) const;
Returns the matrix element (i,j). Correct values are returned for all
elements of the matrix, whether within the skyline profile or not.

Vec operator*(const Vec &v);
Multiplies the vector v by the matrix.

void zero();
Sets all the elements of the matrix to zero. After this function is
called the matrix is not considered LU-decomposed.

An FESolnMtx is a SkylineMtx with a member function which assembles a
local element matrix into the skyline matrix. The nth row of the skyline
matrix is the approximation of the equation associated with the variation of
the nth free DOF, 8vn. The mth column of the matrix is the coefficient which

multiplies vm in this equation. An algorithm to assemble a local matrix, [Ke],
of an element e is given in Figure 8.

An attempt to assemble an LU-decomposed matrix will result in a fatal error.
The prototype for the member function is:

void assemblefconst SqMtx&, const Element&);

An FESolnMtx is constructed from a DataRep and an array of pointers to
elements. The skyline profile is determined by iterating over all the elements
and determining the assembled locations of each element in the local
matrices. The constructor prototype is:

FESolnMtxfconst DataRep&, const Array<Element*>&);

27

*-0
Use an ElementDOFIter to set p to successive DOFs for e

If p is free
Use DataRep::free_DOF to get FreeDOF n corresponding to p

Use an ElementDOFIter to set q to successive DOFs for e
If q is free

Use DataRep::free_DOF to get FreeDOF m corresponding to q

Add [Kt\, to [K]nm

End if
i <-i + '

End iteration over q
End if
l <- /' + 1

End iteration over p

Figure 8: Algorithm to assemble the local matrix of element e

An FESolnVec is a specialization of a Vec: an array of doubles with member
functions to implement arithmetic operators. An FESolnVec has two member
functions for assembling the global right hand side vector, {/}. One
assembles the fixed DOFs of the local element matrix into the vector. The
other assembles the local right hand side vector into the global vector. The
assembly algorithms are similar to that for an FESolnMtx. The prototypes for
these functions are:

void assemble(const SqMtx&, const Elements);
void assemble(const Vec&, const Elements*);

Like an FESolnMtx, an FESolnVec is constructed from the DataRep on which
it depends. A copy constructor is also provided. The prototype for the
constructors are:

FESolnVecfconst DataRep&);
FESolnVec(const FESolnVec&);

5.4 The FESweep Class
The FESweep class is the basis of the sweeps for all the finite element

solvers. It is quite simple, all the hard work being performed by the DataRep,
FESolnMtx, and Element classes.

An FESweep stores an array of pointers to the Elements used by the solver,
a DataRep, and an FESolnMtx and an FESolnVec to describe the linear system:

Array<Element*> elems;
DataRep *data;
FESolnMtx *mtx;
FESolnVec *rhs;

28

The sweep algorithm is:

Zero the linear system
For every element pointer e in elems

Get the local matrix using e->coniribuiion_to_lhs()
Assemble the local matrix into the linear system
Get the local right hand side vector using e->coniributionJo_rhs()
Assemble the local vector into the linear system

End iteration over elements
Using SkylineMtx::solve(), solve the linear system return the solution in rhs
Swap the solution from rhs to data

Notice that since the functions contribution_to_lhs() and contribution_to_rhs() are
virtual, the FESweep need not contain any information about the actual
problem being solved; that is localized within the elements themselves.
However, this also implies that the FESweep class cannot define the pointers
in elems; that must be done by specializations of the class which use specific
element types to solve specific problems.

An FESweep is constructed from an FEBIock:

FESweepfFEBIock *b);

Its other member functions are redefinitions of the standard Sweep virtual
functions (see Reference 13, Section 4.1).

void initialize!);
Creates an FESolnMtx and an FESolnVec in which to store the linear
system. Also sets GeomElement::coords to point to the coordinates in
the FEblock from which the sweep was constructed.

void sweepf);
Implements the sweep algorithm described above.

void finalizef);
Writes timing information to cout.

The sweep extractor is also overloaded. It is able to read the records FIXED
BOUNDARY and PROPERTIES from an OFFSRF file. The FIXED
BOUNDARY record allows degrees of freedom to be set to a fixed value at a
collection of nodes. The format of the record is:

{FIXED BOUNDARY: DOF value
node-numbers

}FIXED BOUNDARY

where DOF is the number of the Node DOF to be set at each node, value is the
value to give to the DOF, and node-numbers is a collection of node numbers
whose DOFs are to be set. For example, NSEIements associate two DOFs with
each node; the two components of the velocity. The following FIXED
BOUNDARY records will therefore set the velocity to zero at the nodes 0 to 10
(the FE2dNSSweep provides an easier way to do this: see Section 6.2).

29

{FIXED BOUNDARY: 0 0.0
01 23456789 10

JFIXED BOUNDARY
{FIXED BOUNDARY: 1 0.0

0123456789 10
}FIXED BOUNDARY

The PROPERTIES record allows values of element properties to be
defined. Its format is:

{PROPERTIES: number-of-properties property-values
element-numbers

}PROPERTIES

For example, the record

{PROPERTIES: 3 0.0 1.0 2.0
11 12 13 14 15 16 17 18 19 20

}PROPERTIES

sets the three properties of elements 11 through 20 to the values 0.0, 1.0, and
2.0; the virtual function Element::set_properties is used. If one of these
elements has more or fewer properties than three, a fatal error will be
generated.

Because the FESweep contains only generic information about its
elements, the extractor cannot perform rigorous checking of the input data,
since it cannot tell whether the values given are appropriate. For that reason
it is preferable that use of the FIXED BOUNDARY and PROPERTIES records
be avoided. Instead, specializations of FESweep provide extractors which read
and check input which is specific to the elements which they contain.

6 A Solver for the Navier Stokes Equations
The preceeding sections have described classes to implement a generic

finite element solver. This section and the two following describe solvers for
specific problems. In this section we describe a solver for the two-
dimensional laminar Navier-Stokes equations.

6.1 Elements to Solve the Navier-Stokes Equations

We now consider elements which can be used to solve the steady two-
dimensional laminar Navier-Stokes equations using a penalty function
method to determine the pressure. Following Pineau[12] we write the
variational form of the problem as follows.

(d2u <?V I _ J du du dp J_
[dx By dx Re

~ \ dv dv dp 1
Sv<u— + v— + -f-

\ dx dy By Re

f 22 d

dV = 0 (6il)

dV = 0 (6.2)

30

where A, is a very large number (A ~ 108) called the penalty coefficient.
Integrating equation (6.1) by parts yields

du döu du döu

(6.3)

\ 0 { du du) döu 1
.öu\ U—- + V-— \ + p——I
[{ dx dy) dx Re

■ + ■
dx dx dy dy

J <pnxöu +
Su

R

du du

* dx } dy

\dV-

\dS = 0

(6.4)

with a similar transformation of equation (6.2). The full integration is
approximated by the sum of integrals over each of the elements. Two types of
element are needed: a VolumeElement for the integral over V, and a
BoundaryElement for the integral over S. The former is represented by the
class NS2dVolElement/ the latter by the class NS2dBndElement.

6.1.1 The NS2dVolElement Class

An NS2dVolElement has two degrees of freedom at each node: the two
components of the velocity. Over the element the velocity is approximated
according to equation (3.3).

M(£,77) = |>,A(£.n); v(!,77) = XvX(^)
n=l n = \

(6.5)

The velocity variations are defined by

8u(Z,Ji) = ^SunNn(Z,ri); öv(^,ri) = JjövnNn(^ri) (6 6)
n-l n = \

The pressure is not represented by the nodal functions. Instead we write

P&rD^pA&V); ^Pi^V) = LsPnPn(^V). (6.7)
n = l n = l

For a consistent approximation of pressure and velocity, equation (6.3) re-
quires that the polynomial order of the pressure be of order one less than the
polynomial order of the velocity. Therefore, for linear reference elements,
the pressure is constant over the element: iV =1 and Px{E,,r\) = \. For

quadratic reference elements, the pressure is linear: N =3, P, (<^, 77) = 1,

P2(£,77) = £, and P3(<^, 77) = 77. The contribution to the integrals over V in
equations (6.3) and (6.4) may then be written

{Su,Sv,Sp} (6.8)

31

where [Kuu] is a 2Nx2N matrix, [Kup] is a 2NxNp matrix, -[*>] is the

transpose of [#H/)], and [^w] is a 2Npx2Np matrix. In equation (6.8) the row

vector {(S«,(5v,(5p} is short for \öux,övl,---,8uN,övN,öpl,---,8pNpy, similar notation

is used for the column vector. The elements of the sub-matrices are as
follows:

V ""hn-l.lm-l L «KJ2n,2m J 1 "
dN

■ + v-
<?AL

L K«J2«-l,2m _ L "»J2«

+ • 1 dN dN . <?iV ÄV

2m-l
= 0

■ + ■
dx dx dy dy

dN
M-,.H^U-.=Jp--&^

<?N„

•Jy(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

The elements of the sub-matrices [Kuu], [Kup], and [Kpp] are evaluated si-
multaneously using the function GeomElement::integrate_fnc(). The inte-
grands at each Gaussian point are evaluated by the function NS_lhs_at_gp().
The matrix elements are passed to NS_lhs_at_gp() as a single array of length

AN1 + 2 AW, + N2
}. The values of the velocity at each Gaussian point (needed to

evaluate [Kuu]) are determined using GeomElement::values_at_gp().

Equation (6.3) must hold for the integral over each element, so that

M^T1*=0

from which one obtains

w=-MUKÜ

(6.14)

(6.15)

The contribution to the left hand side of equation (6.4) can therefore be
rewritten as

{8un,8vn}[KE}\" (6.16)

with

M=M-4^KrKl (6.17)
The 2Nx2N matrix, [KE] is returned by the NS2dVolElement member function

32

contribution_to_lhs().

Since [KE] depends on the values of the velocity at the nodes of the
element, the problem is non-linear. The NS2dVolElement uses the currently

defined values of velocity when computing [KE]; hence, it implements a
simple substitution method. Faster convergence would likely be obtained, for
laminar problems at least, if a Newton-Raphson iteration scheme were used
instead. This has not yet been implemented in TRANSOM.

The NS2dVolElement class has a public static member pv which is a pointer
to a PVIOVar (see Reference 13, Section 3.5.2) which stores values for the

pressure and velocity at all nodes of the grid. During the calculation of [KE]
the velocity values are obtained from pv. The value of pv must be set before
assembling the linear system.

The value of the pressure is not continuous at the element boundaries.
Hence, at every node there are multiple values of the pressure: one associated
with every NS2dVolElement which contains the node. Therefore, it is not
possible simply to store the pressure in pv. Instead, every NS2dVolElement
contains an array which stores the values of the pressure at its nodes. The
pressure values are calculated by NS2dVolElement::contribution_to_lhs using
equation (6.15). The solver which uses the NS2dVolElements must provide
some averaging procedure to reduce the multiple pressure values at the
nodes to a single value: see Section 6.2. The vector of pressure values may be
obtained using the following member function.

double get_pressure(unsigned n) const;
Returns the pressure at the nth node of the element.

The NS2dVolElement class also has two public static members of type
double, reyno and lambda. They store the values of the Reynolds number and
the penalty parameter, respectively.

6.1.2 The NS2dBndEIement Class

An NS2dBndElement contributes to the right hand side of the linear system
through the surface integral of equation (6.4). The local right hand side vector
is

with

f'Wfö}*
fx=pnx + rx; /V = /WV + TT

1 (du du] 1 (dv dv)
n Yn — ; T — nx V ny —

1 ^ dx - dy j K ^ dx ■ dy)

(6.18)

(6,19)

(6.20)

and where nx and ny are the components of the outward pointing normal to

33

the element.

Like the NS2dVolElement class, NS2dBndElement contains a public static
pointer to a PVIOVar which is used to obtain the values of the pressure at each
of the nodes of the element. The pressure over the element is then
represented using equation (3.2).

The values of the shear stress (tx,ry) at each node are treated as properties
of the element. They are stored in an array of two-vectors whose values can
be set using the following member functions.

virtual void set_properties(const Vec &v);
Uses the values in v to set the values of pressure and shear
stress. The vector v must be of length 3N and is arranged as

void set_shear_stress(const Array<Mtx*> &gradv);
Uses the values in gradv to set the values of the shear stress at each
node. The array gradv is of length N. gradv[n] is a pointer to a 2x2
matrix containing the gradient of the velocity at node n; thus for
example, (*gradv[n])[0][l] is the value of du I By at node n.

6.2 The FE2dNSSweep Class

We now look at the classes FE2dNSSolver and FE2dNSSweep used to
implement a finite element solver for the steady laminar Navier-Stokes
equations in two dimensions. The class hierarchy for both classes is shown in
Figure 7.

An FE2dNSSweep is a specialization of an FESweep which uses
NS2dVolElements and NS2dBndElements. Its member reyno is used to store the
Reynolds number. The pressure and velocity values are stored in a PVIOVar to
which pv is a pointer.

FE2dNSSweep(FEBIock *b, PVIOVar *p);
Creates an FE2dNSSweep on the block b which uses the pressure and
velocity values in p: i.e. pv is set to p. The Element pointers in the
array FESweep::elems are assigned by using each of the RefElements in
b to create either a new NS2dBndElement or a new NS2dVolElement/ the
choice being made according to whether the dimension of the
RefElement is one or two.

virtual void initialize();
Initializes the sweep by calling FESweep::initialize(). It then initializes
all free velocity components to zero, and, finally, copies the velocity
values from PVIOVar pv into the DataRep FESweep::data.

virtual void sweep));
Sets the PVIOVars NS2dVolElement::pv and NS2dBndElement::pv to pv and
NS2dVolElement::reyno to reyno. FESweep::sweep is called to perform
the sweep. The pressure values are then calculated using the

34

algorithm described below, and the new pressure and velocity values
are copied to pv.

During each call to NS2dVolElement::contribution_to_lhs(), the pressure at
each node is updated using the current values for the velocity. On
the first call, since the initial velocity field may not be
incompressible, the pressure values are usually of order X: i.e. very
large. If the pressure values are shared with another solver in a
multi-block solution, such large values will often hinder
convergence. To avoid this problem, the first time the sweep is
performed after initialization, FESweep::sweep() is called twice. After
the second call the pressure will have more physically reasonable
values.

FEBIock* get_block() const;
Returns the FEblock used by the sweep.

void set_reynolds_number(double r);
Sets the Reynolds number to r.

The FE2dNSSweep extractor is overloaded to read the following records
from an OFFSRF file.

1. REYNOLDS NUMBER: sets the value of the Reynolds number. The
format for this record is:

{REYNOLDS NUMBER: Reynolds-number}

2. PENALTY PARAMETER: sets value of NS2dVolElement::lambda. The
format for this record is:

{PENALTY PARAMETER: penalty-parameter }

3. SOLID BOUNDARY: sets the velocity to zero at specified nodes. The
format for this record is:

{SOLID BOUNDARY
node-numbers

}SOUD BOUNDARY

where node-numbers is a list of the nodes on the solid boundary.

4. FIXED VELOCITY: sets the velocity to a fixed value at specified nodes.
The format for this record is:

{FIXED VELOCITY: vxvy

node-numbers
}FIXED VELOCITY
where vx and vy are the components of the velocity (if the dimension of
the coordinates is three, there will also be a vz value) and node-numbers
is a list of the nodes at which the velocity is to be set.

5. FIXED BOUNDARY: this record is described in Section 5.4.

6. PROPERTIES: this record is described in Section 5.4.

35

The FE2dNSSweep inserter is overloaded so that it calls the inserter for the
PVIOVar pv. This causes the pressure and velocity values to be written into an
OFFSRF file. The pressure values are written into a Pressure record and the
velocity values into a Velocity record. See Reference 13, Section 3.5.2 for
more details.

After each sweep, the velocity values are copied from FESweep::data to pv.
The pressure in pv must also be updated, but this is more complicated. Every
NS2dVolElement which contains node n stores a value for the pressure there;
however, this value will be different for every element. Moreover, if the
node also belongs to an NS2dBndElement, there is a fixed value for the pressure.
The pressure at each node is calculated as follows. If the node belongs to an
NS2dBndElement, use the fixed value associated with that element. Otherwise
use the average of the values in all NS2dVolElements which contain the node.

6.3 The FE2dNSSolver Class

The FE2dNSSolver class is a specialization of the Solver class which has an
FE2dNSSweep for its sweep and a combination of an NTimesStopTest and a
CompDataStopTest for its stop test (these classes are described in Reference 13,
Sections 4.2.2 and 4.2.3). Thus, it solves the two-dimensional steady laminar
Navier-Stokes equations by solving equation (2.5) repeatedly until successive
values of the pressure and velocity have changed by no more than small pre-
defined amount, e. It has the following member functions and constructors.

FE2dNSSolver(FEBIock *b);
Makes an FE2dNSSolver which uses the reference elements and
coordinates in the FEBIock b. A new PVIOVar is allocated to store the
pressure and velocity values.

FE2dNSSolver(FEBIock *b, const lOVar &vars, const Node &n);
Makes an FE2dNSSolver which uses the reference elements and
coordinates in the FEBIock b. If vars contains a Pressure and a Velocity
field, then the pressure and velocity values will be shared with those
in vars starting at node n. For example, suppose that vars contains
pressure and velocity values on a block with 1000 nodes numbered
from 0 to 999. If n is 500, and the block b contains 500 nodes, then pv
shares the last 500 pressure and velocity values in vars; changing the
pressure value at node zero in pv causes the pressure value at node
500 in vars to be changed as well. Similarly changes to vars will cause
corresponding changes to pv.

FEBIock* get_block() const;
Returns the block used by the solver.

Element* get_element(unsigned n) const;
Returns the nth element used by the solver.

void set_reynolds_number(double r);
Sets the Reynolds number to r.

36

The FE2dNSSolver extractor reads the following records from an OFFSRF
file; they allow control over the stop test.

1. MAXIMUM NUMBER ITERATIONS: sets the maximum number of
iterations for the sweep. The format of this record is:

{MAXIMUM NUMBER OF ITERATIONS: n }

where n is the maximum number of iterations.

2. ACCURACY: sets the value of eacc for the CompDataStopTest. The
iteration will end if successive values of pressure and velocity all differ by

less than £acc. The format for this record is:

{ACCURACY: eacc}

3. MAXIMUM ACCURACY: sets the value of ediv for the CompDataStopTest.
The iteration will end if successive values of pressure and velocity all

differ by more than than e^y The format for this record is:

{MAXIMUM ACCURACY: ediv}

7 A Solver for Laplace's Equation
In this section we describe a solver for Laplace's equation.

V> = 0 (71)

This equation is important in many branches of physics, but in fluid
mechanics is used chiefly in the calculation of potential flow.

7.1 The LaplaceElement Class

A LaplaceElement has a single degree of freedom at each node; the value of
(p. A finite element approximation to equation (7.1) is obtained by rewriting
it as

$S(pV2(pdV = 0 (7-2)
V

Integrating by parts one obtains

\8cp^- dS-jVÖ(pV(pdV = 0 (7_3)
s on v

where dcp I dn denotes the derivative normal to the surface S. If we restrict
the problem to either Neumann or Dirichlet boundary conditions, then the
surface integral vanishes. Using equations (2.2) and (2.3) to approximate cp
and ö(p, one gets the following expression for the local matrix:

[KE]nin=\VNn(x,y)-VNm(x,y) dV = 0 {7A)

37

The LaplaceElement class is a specialization of the Element class. Its
contribution_to_lhs member function calculates the local matrix according to
equation (7.4); the contribution_to_rhs function returns a null pointer,
indicating that the local vector is zero. A LaplaceElement can be constructed
from any VolumeElement.

7.2 The FELaplaceSweep Class

An FELaplaceSweep is a sweep for solving Laplace's equation using the
finite element method. It inherits all its member functions from FESweep.
An FELaplaceSweep is constructed from an FEBIock and an lOVar (see
Reference 13, Section 3.4):

FELaplaceSweep(FEBIock *b, lOVar *v);

The first active field in the lOVar is used to store the values of (p. The
constructor creates LaplaceElements from the RefElements in b.

An FELaplaceSolver is a Solver which has an FELaplaceSweep for its sweep.
Since Laplace's equation is linear, the sweep need only be executed once.
Therefore an NTimesStopTest is used for the stop test. It is set to execute only
once. The following constructors are available for the FELaplaceSolver class:

FELaplaceSolverfFEBIock *b);
Creates an FELaplaceSolver using the block b. A new lOVar is created
to store the values of (p. It has a single active field of length one
which is named "Potential".

FELaplaceSolverfFEBIock *b, const lOVar &v, const Node &n);
Creates an FELaplaceSolver using the block b. The values of (p will be
stored in the first active field of lOVar v starting at node n.

8 A Solver to Calculate Streamfunctions

In this section we describe a solver which calculates a streamfunction for an
incompressible two-dimensional velocity field.

8.1 The SfncElement Class

For a given two-dimensional flow field (vA,vv), the streamfunction y/

satisfies

dw dw

An approximation to w is found by minimizing the integral

J fiK_vY+füt
V dx

2 f -K„ \2

+ v.
dy

dV (8.2)

Using equation (2.2) to approximate y/ one gets

38

XI
*=1 £,.

V 3Nn + S^-T^ + V dV = minimum (8.3)

A minimum is obtained when

SI
k=\ EJ m,n

jfM^ML+dN.dN.
Vn"Z dx dx dy dy

so that the local matrix and local vector are

dx
- v.. — -

dy
dV = 0

IKEL = II
dN„,dNJL+dNmdN„

dx dx dy dy
dV; {/,} = J|

dNm dNm —— v. — v
dx } dy

dV

(8.4)

(8.5)

Notice that the local matrix is the same as the local matrix for the two-dimen-
sional LaplaceElement. Hence, the SfncElement is defined as a specialization of
the LaplaceElement, which inherits the contribution_to_lhs member function.

The contribution_to_rhs member function is overloaded to calculate {fE} ac-
cording to equation (8.5). An SfncElement can be constructed from any two-
dimensional VolumeElement.

8.2 The FESfncSweep and FESfncSolver Classes

An FESfncSweep is a sweep for calculating the streamfunction which
corresponds to a given incompressible velocity field. It inherits all its
member functions from FESweep. An FESfncSweep is constructed from an
FEBIock which contains the reference elements from which the SfncElements are
constructed, a VellOVar which contains the velocity field, and an SfnclOVar
which is used to contain the values of the streamfunction:

FESfncSweep(FEBIock *b, VellOVar *v, SfnclOVar *s);

An FESfncSolver is a Solver which has an FESfncSweep for its sweep. Since
the calculation of the streamfunction is linear, the sweep need only be
executed once. Therefore an NTimesStopTest is used for the stop test. It is set to
execute only once. The following constructors are available for the
FESfncSolver class:

FESfncSolver(FEBIock*b);
Makes an FESfncSolver using the block b to construct the sweep. A
new VellOVar is created to store the velocity field. The velocity
values must be defined by reading them from an input file. A new
SfnclOVar is created to store the values of the streamfunction.

FESfncSolverfFEBIock *b, const lOVar &v, const Node &n);
Makes an FESfncSolver using the block b to construct the sweep. If v
contains a field called "Velocity", then this field, starting at node n, is
used to obtain the values of the velocity; otherwise a new VellOVar is
created to store the velocity field. If v contains a field called
"Streamfunction", then this field, starting at node n, is used to store
the values of the streamfunction; otherwise a new SfnclOVar is

39

created to store the streamfunction.

9 Recommendations for Improvements
The finite element solvers in TRANSOM are newly written code. They

can be improved in several areas, mostly to improve the efficiency.

To ease the programming burden, the element classes NS2dVolElement and
NS2dBndElemeni have been written so that they can be constructed from
arbitrary reference elements. However, in some cases the use of specialized
elements would decrease the computation of the local matrix thus reducing
the time taken to assemble the global matrix.

No attempt has been made to reduce the matrix bandwidth by
implementing a node re-ordering scheme such as the reverse Cuthill-McKee
algorithm[18]. Reduction of solution time would also be gained by using a
more efficient matrix solver. The current skyline algorithm was used for
compatibility with MEF. For the initial code development it was thought that
this would reduce the likelihood of difficult-to-find bugs. To increase the
efficiency of the solution of the global linear system, the use of a subroutine
library such as FMSLIB should be investigated as should the use of parallel
processors.

A reduction in the number of iterations to convergence may be obtained
by using an improvement on the substitution method used to update the
velocity field. The Newton-Raphson method and the semi-implicit over-
relaxed time marching methods implemented in MEF should be included as
options in TRANSOM.

The error reporting in TRANSOM should also be improved. TRANSOM
was begun before a C++ compiler implementing exception handling was
available. Consequently almost all errors are treated as fatal and only terse
error messages are given. Use of the C++ exception handling should provide
much better identification of errors and, in some cases, allow recovery from
errors.

The k-e turbulence model already implemented in the DREA version of
MEF should be incorporated into TRANSOM. For compatibility with the
next version of the TRANSOM pseudo-compressibility solver, the Baldwin-
Barth turbulence model[9] should also be implemented. The solver should
also be extended to three-dimensional flow.

10 Concluding Remarks
TRANSOM is a complex program which is still in the early stage of

development. It is likely that some of the classes defined in this
memorandum will be changed as that development continues.

40

The two-dimensional laminar finite element flow solver works well for
Reynolds numbers up to about 1000. At higher Reynolds numbers
convergence is sometimes not attained. Implementation of the improved
iteration schemes described in the previous section may alleviate this
problem.

For most two-dimensional problems the TRANSOM finite element
solver is acceptably fast; however, before realistic three-dimensional flows are
attempted, it will be necessary to make it faster.

The other major shortcoming of this solver is that there is no grid
generator to ease the generation of input files. There are many commercial
grid generators available, including some used by the Structural Mechanics
Group at DREA. An interface between one of these codes and TRANSOM
should be written.

As described in the introduction, it is intended that TRANSOM should be
able to apply its pseudo-compressibility solver and its finite element solver
concurrently on different flow blocks. Some early experimentation with this
has been done, although convergence is at best slow and at worst not attained.
Work in this area will continue over the coming year.

41

Appendices

A Vectors and Matrices

Many of the C++ prototypes given in the body of this memorandum
make use of the classes Vec and Mtx. A brief description of these classes is
given here.

A.1 The Vec Class

The Vec class represents numerical vectors: i.e. an array of floating point
values. Vectors represented by the Vec class have fixed length which is
specified when the Vec is constructed. The constructors and member
functions of the Vec class are as follows.

Vecfunsigned n, double *d = 0);
Constructs a Vec with length n with elements stored at d. If d is null,
new memory will be allocated.

Vecfconst Vec&);
Copy constructor.

unsigned len() const;
Returns the length of the vector.

void zero();
Sets every element of the vector to zero.

void unit();
Converts the vector to a unit vector

void operator=(const Vec &v);
Copies the elements of the vector v. If the lengths of the vectors are
not the same a fatal error will be generated.

Vec& operator-!);
Negates every element of the vector and returns it.

void operator+=(const Vec &v);
Adds v to the vector.

void operator-=(const Vec &v);
Subtracts v from the vector.

void operator*=(double d);
Multiplies the vector by d;

void operator/=(double d);
Divides the vector by d;

Vec operator* (const Mtx &m) const;
Interprets the vector as a row vector and multiplies it on the right by
m. The Vec returned is interpreted as a column vector. If the

42

number of columns of m is not the same as the length of the vector
then a fatal error is generated.

double& operator[](unsigned n);
const double& operator[] (unsigned n) const;

Return the nth element of the vector. No subscript checking is done.

operator double *();
operator const double *() const;

Convert the vector to a pointer to a sequence of doubles. This can be
used to get gains in efficiency in computationally intensive inner
loops.

ostream& operator«(ostream &out, const Vec &vc);
Writes all the vector elements to the output stream.

istream& operator»(istream &in, Vec &vc);
Reads all the vector elements from the input stream.

int operator==(const Vec &vcl, const Vec &vc2);
Returns true if the lengths of vcl and vc2 are the same and their
elements have the same values.

int operator!=(const Vec &vcl, const Vec &vc2);
Returns !(vcl == vc2).

double absfconst Vec &vc);
Returns the magnitude of the vector.

double minfconst Vec &vc);
Returns the value of the element with smallest value.

double maxfconst Vec &vc);
Returns the value of the element with largest value.

double min_abs(const Vec &vc);
Returns the value of the element whose absolute value is smallest.

double max_abs(const Vec &vc);
Returns the value of the element whose absolute value is largest.

double dot(const Vec &vcl, const Vec &vc2);
Returns the dot product of vcl and vc2.

A.2 The Mtx Class

The Mtx class represents a numerical matrix. It is implemented as a
specialization of the Vec class so that many of the Vec member functions can
be inherited. Matrices represented by the Mtx class have fixed dimensions
which are specified when the Mtx is constructed. The constructors and
member functions of the Mtx class, not including those inherited from the
Vec class, are as follows.

Mtx(unsigned n, unsigned m, double *d = 0);
Constructs an n x m matrix with elements stored at d. If d is null,
new memory is allocated.

43

Mtx(const Mtx&);
Copy constructor

void operator= (const Mtx&);
Assignment operator

Vec row(unsigned n) const
Returns a Vec containing the nth row of the matrix.

unsigned num_rows() const;
Returns the number of rows in the matrix.

unsigned num_cols() const-
Returns the number of columns in the matrix.

Mtx& operator-));
Negates every element in the matrix and returns it.

Vec operator*(const Vec &v) const;
Returns the row vector result of multiplying the column vector v by
the matrix.

Mtx operator*(const Mtx&m) const;
Returns the result of multiplying m by the matrix.

double* operator[](unsigned n);
const double* operator!](unsigned n) const;

Returns a pointer to the values in the nth row of the matrix. Thus, if
m is a matrix, its (n,m)th element is m[n][m].

typedef double *dptr;
operator dptr *();
operator const dptr *() const;

Convert the matrix to a sequence of pointers to its rows.

ostream& operator«(ostream &out, const Mtx &m);
Writes the elements of m to the output stream.

int operator==(const Mtx &ml, const Mtx &m2);
Returns true if ml and m2 have the same dimensions and if their
elements are the same.

int operator!=(const Mtx &vcl, const Mtx &vc2);
Returns !(ml == m2).

A.3 The SqAAtx Class

The SqMtx class is a specialization of the Mtx class; it is used to represent
square matrices. Member functions are provided to invert the matrix and to
calculate its determinant. The constructors and member functions of the
SqMtx class, not including those inherited from the Mtx class, are as follows:

SqMtx(unsigned n, double *d = 0):
Constructs an n x n matrix with elements stored at d. If d is null, new
memory is allocated.

void identity!);
Initialize matrix to the identity.

44

void lu_decomp();
Calculate the LU decomposition of the matrix. It is an error to LU
decompose a matrix twice. After LU-decomposition the original
matrix is destroyed.

void invertf);
Invert the matrix using Gaussian elimination with partial pivoting.

double determinant!);
Calculate the determinant. The matrix will be LU-decomposed if it
has not already been; thus, calculating the determinant will destroy
the original matrix.

void solve(const Vec &b, Vec &x);
Solve A*x = b, where A = "this. The matrix will be LU-decomposed if it
has not already been; thus, using solved will destroy the original
matrix.

B Arrays

The Array class is a C++ template used to implement dynamic arrays of
arbitrary objects. Arrays can have length zero, allowing arrays of arrays to be
defined easily. To allow efficient copying of arrays and to reduce overhead in
allocating memory, the length of allocated memory is stored separately from
the length of the array. The constructors and member functions of the Array
class are as follows (in the descriptions it is assumed that the array stores
objects of type T):

Array();
Constructs an array of length zero. No memory is allocated.

Arrayfint s);
Constructs an array of length s. Enough memory is allocated to store
s objects of type T.

Arrayfint s, int m);
Constructs an array of length s. Enough memory is allocated to store
max(m,s) objects of type T.

Array (const Array&);
Copy constructor.

Array& operator=(const Array &v);
Makes the length of the array the same as the length of v, then copies
the elements of v.

int len() const;
Returns the length of the array.

int maxjenf) const;
Returns the number of objects of type T which will fit in the memory
currently allocated for the array. The array can be resized to length
max_len() without reallocation of memory.

45

void set_len(int n);
Changes the length of the array to n. If there is insufficient memory
available, new memory will be allocated and the existing elements of
the array will be copied to the new memory.

void set_mem(int n);
Increases the amount of allocated memory so that n objects of type T
will fit. If the current memory allocation exceeds n, nothing is done.
If new memory is allocated, the elements of the array are copied to
the new memory.

void shiftlfint shift, int lo, int hi);
Shifts elements lo to hi to the left by shift places.

void shiftrfint shift, int io, int hi);
Shifts elements lo to hi to the right by shift places.

void shiftcfint shift);
Shifts all the elements of the array cyclically by shift places. Elements
which are shifted off the end of the array reappear at the beginning,
and vice versa.

void insert(const T& t, int n);
Inserts t into the array at element n. The current elements from n to
the end of the array are shifted to the right by one place and the array
length is increased by one.

void insert(const Array&v, int v);
Inserts v into the array at element n. The current elements from n to
the end of the array are shifted to the right and the array length is
increased by the length of v.

void removefint n);
Removes element n reducing the size of the array by one.

void remove(int lo, int hi);
Removes all elements from lo to hi.

Array& appendfconst Array &v);
Appends v to the array.

T& operator[](int n);
const T& operator[](int n) const;

Return element n.

Array operator()(int lo, int hi) const;
Returns a new array equivalent to the sub-array from elements lo to
hi.

operator T *();
operator const T *() const;

Convert the vector to a pointer to a sequence of objects of type T.
This can be used to get gains in efficiency in computationally
intensive inner loops or for automatic type conversions in function
arguments.

46

References

1. D. Hally, "User's Guide for HLLFLO Version 2.0", DREA Technical
Memorandum 93/309, 1993.

2. D. Hally, "Implementation of a Free Surface in Calculations of the Flow
into the Propeller Plane of a Ship", in Proceedings of CADM092: Third
International Conference on Computer Aided Design Manufacture and
Operation in the Marine and Offshore Industries, Madrid, Spain, October
1992.

3. D. J. Hall and D. W. Zingg and C. R. Ethier, "A Laminar Incompressible
Navier-Stokes Flow Solver", DREA Contractor Report CR/93/462, 1993.

4. D. J. Hall and D. W. Zingg and C. R. Ethier, "A Two-Dimensional
Incompressible Navier-Stokes Turbulent Flow Solver", DREA Contractor
Report, CR/94/435,1994.

5. D. Hally, "Revisions to NSI2D", DREA Technical Memorandum 94/303,
1994.

6. S. E. Rogers and D. Kwak, "An Upwind Differencing Scheme for the
Incompressible Navier-Stokes Equations," NASA TN 101051, Nov. 1988.

7. B. S. Baldwin and H. Lomax, "Thin Layer Approximation and Algebraic
Model for Separated Turbulent Flows," AIAA Paper 78-257, 1978.

8. H. C. Chen and V. C. Patel, "Near-Wall Turbulence Models for Complex
Flows Including Separation," AIAA Journal Vol. 26, No. 6, pp. 641-648,
June 1988.

9. B. S. Baldwin and T. J. Barth, "A One-Equation Turbulence Transport
Model for High Reynolds Number Near Wall-Bounded Flows," NASA
TM 102847, August 1990.

10. D. Hally, "Implementation of a Pseudo-Compressibility Navier-Stokes
Solver in TRANSOM", DREA Technical communication, in preparation.

11. G. Dhatt and G. Touzot, Une Presentation de la Methode des Elements
Finis, S. A. Maloine, ed., Paris, 1981.

12. F. Pineau, "A Finite Element Based Reynolds Averaged Navier-Stokes
Solver for Modelling Three-Dimensional Turbulent Flows," DREA
Report 93/106,1993.

13. D. Hally, "TRANSOM: A Multi-Method Reynolds-Averaged Navier-
Stokes Solver: Overall Design," DREA Technical Memorandum, in
review.

14. D. Hally, "User's Guide for TRANSOM Version 1.0: A Two-Dimensional
Multi-Method Reynolds-Averaged Navier-Stokes Solver," DREA
Technical Memorandum, in preparation.

47

15. D. Hally, "OFFSRF: A System for Representing Ship Offset Data", DREA
Technical Memorandum 89/305, 1989.

16. D. Hally, "C++ Classes for Reading and Writing files in OFFSRF Format",
DREA Technical Memorandum 94/302, 1994.

17. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,
Applied Mathematics Series 55, National Bureau of Standards, 1965.

18. E. H. Cuthill, "Several Strategies for Reducing the Bandwidth of
Matrices," in Sparse Matrices and their Applications, D. J. Rose and R. A
Willoughby, eds., Plenum Press, New York, 1972, pp. 157-166.

48

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (The name and address of the organization preparing the
document. Organizations for whom the document was prepared, e.g.
Establishment sponsoring a contractor's report, or tasking agency, are entered
in section 8.)

Defence Research Establishment Atlantic
P.O. Box 1012, Dartmouth, N.S. B2Y 3Z7

2. SECURITY CLASSIFICATION
(Overall security of the document including
special warning terms if applicable.)

UNCLASSIFIED

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S.C.R or U) in parentheses after the title.)

Implementation of a Finite Element Navier-Stokes Solver in TRANSOM

4. AUTHORS (Last name, first name, middle initial. If military, show rank, e.g. Doe, Maj. John E.;

HALLY, David

5. DATE OF PUBLICATION (Month and year of publication of
document.)

April 1997

6a. NO. OF PAGES (Total
containing information,
include Annexes, Appendices,
etc.)

57

6b. NO. OF REFS. (Total
cited in document.)

18

DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter
the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is
covered.)

Technical Memorandum

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the reseach and development, include
the address.)

Defence Research Establishment Atlantic
P.O. Box 1012, Dartmouth, N.S. B2Y 3Z7

PROJECT OR GRANT NUMBER (If appropriate, the
applicable research and development project or grant number
under which the document was written. Please specify whether
project or grant.)

l.g.a

9b. CONTRACT NUMBER (If appropriate, the applicable number
under which the document was written.)

10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number mrst be unique to this document.)

DREA Technical Memorandum 97/225

10b. OTHER DOCUMENT NUMBERS (Any other numbers which
may be assigned this document either by the originator or by
the sponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security
classification)

X Unlimited distribution
Distribution limited to defence departments and defence contractors; further distribution only as approved
Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
Distribution limited to government departments and agencies; futher distribution only as approved
Distribution limited to defence departments; further distribution only as approved
Other (please specify):

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic annoucement of this document. This will normally correspond to
the Document Availability {11). However, where futher distribution (beyond the audience specified in 11) is possible, a wider
announcement audience may be selected,)

Unlimited

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM DCD03 2/06/87

49

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

T3 ABSTRACT (a brie! and factual summary of the document. It may also appear elsewhere in the body ol the document itself. It is highly desirable that the abstract of
classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the information in the paragraph
(unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in both official languages unless the text is

bilingual).

TRANSOM is a multi-block, multi-method Reynolds-Averaged Navier Stokes solver
being developed at DREA to address problems associated with the flow around ships and
submarines. It is multi-block because the flow is divided into several distinct regions. It is
multi-method because a different solution method may be used on each of the flow regions.
At present two different methods of solution can be chosen; a finite-volume solver based
on the pseudo-compressibility method; and a finite element solver which uses the penalty
function method to determine the pressure.

TRANSOM is written in C++ following principles of Object Oriented Programming.
This document describes the design of the finite element flow solver in TRANSOM with
emphasis on the class hierarchies used to represent elements finite element grids, degrees
of freedom, and the solver itself. Two companion reports describe the overall design of
TRANSOM and the design of the pseudo-compressibility solver.

14 KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be helpful in
cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military
project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus, e.g. Thesaurus of Engineering and
Scientific Terms (TEST) and that thesaurus-identified. If it not possible to select indexing terms which are Unclassified, the classification of each should be indicated

as with the title).

Fluid Flow
Turbulence
Reynolds-Averaged Navier-Stokes Equations
Hydrodynamics
Computer Programs
Object Oriented Design
TRANSOM

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

50

D
R
E
A

C
R
D
A

