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PROPAGATION AND STABILITY OF INTENSE LASER 
PULSES IN PARTIALLY-STRIPPED PLASMAS 

I. Introduction 

The propagation of intense laser pulses in plasmas is relevant to a wide range of 

applications, such as x-ray lasers [1-5], laser fusion [6-8], laser-plasma accelerators [9-18], 

harmonic generation in plasmas and gases [19-23], and laser-plasma channeling [24-30]. In 

many intense laser-plasma experiments the ions are not fully stripped and hence the propagation 

medium consists of both free and bound electrons. We find that bound electrons can lead to an 

atomic modulation instability (AMI) which can dominate the conventional relativistic 

modulational instabihty (RMI) [31-33] and forward Raman scattering (FRS) instabihty [34-38]. 

The AMI requires both free and bound electrons, i.e., the free electrons provide anomalous group 

velocity dispersion whereas the bound electrons provide self-phase modulation. Bound elecfrons 

can also result in an atomic filamentation instability (AFI), which can dominate the conventional 

relativistic filamentation instability (RFI) [31-33]. These effects could play an important role in 

laser interaction experiments with high-Z material. 

Generally speaking, the refractive index associated with an intense laser pulse in a 

partially-stripped plasma is r| = 1 + Ar), with AT] = rio -1 + Ari^ +Arip + Arip,^ + Ar), + ATI^, where 

rio s 1 is the linear index associated with the bound (atomic) electrons, ATJ^ = - 2cV(cOoro)^ is the 

contribution from the finite spot size of the laser pulse, Ar|p = - cOp / 2cOo is the linear 

contribution from the free (plasma) electrons, ATI^^ = Arip(5np/np), is the nonlinear contribution 

from the excited plasma wave, Ar], = -Aripap / 4 is the relativistic contribution from plasma 

electrons and Ari, = rijl is the nonlinear contribution from the bound atomic electrons. In the 

above, COQ is the laser frequency , TQ is the laser spot size, cOp = (4nq\/my'^ is the plasma 

frequency, n^ is the ambient plasma density, 6np is the perturbed plasma density, a^ the 
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normalized (unitless) peak amplitude of the laser vector potential, ri, is the nonlinear refractive 

index associated with the bound electrons, I is the time averaged laser intensity, and it is assumed 

that I Ar| I « 1. For a linearly polarized laser beam a] = 7.32 x lO-'^X^o [)am]I[W/cm^], where 

^0 = 27T;C/(OO is the laser wavelength. Note that ao is equal to the peak electron oscillation 

momentum in the laser pulse, normalized to mc. 

Self-focusing of the laser beam requires that the radial gradient of the refractive index be 

negative, i.e., dAr] / 5r < 0. It can be shown that the condition for self-focusing is (nro/Xof 

Ar\^^ > 1, where r^ Ari^^ is proportional to the laser power. This implies that the refractive 

indices associated with the relativistic plasma Ar|, and bound electrons Ari^ can individually 

cause focusing of the laser pulse if certain critical power levels are exceeded. The critical powers 

for relativistic focusing in a plasma [31,39-41] and nonlinear focusing in a gas [42-44] are, 

respectively, 

Pp=2c(q/rJ^(©o/cOp)^ (la) 

and 

F,=X'Ji2n^,^,), (lb) 

where r^ = qVmc^ = 2.82 x 10''^ cm is the classical electron radius. In practical units, the 

relativistic focusing power in Eq. (la) can be written as Pp [GW] = 17.4(cOo/tOp)-. The ratio of the 

critical powers can be much greater than unity and scales with laser frequency to the fourth 

power. In practical units, 

p_Pp_1.22xlO^°Tioii,[cmVW] 
P, X:[^m]np[cm-^]        ' ^ 



where r|2 is proportional to the atomic gas density, n^. For example, taking ri2 = 10"'^ cm^/W for 

typical neutral gases at standard temperature and pressure (STP), n^ = Hp - 2.7 x 10" cm"^ and XQ 

= 0.5 |im, we find that R s 710. For these parameters, the critical powers for relativistic plasma 

and nonlinear gas focusing are Pp = 2.8 TW and P^ = Pp/710 = 3.9 GW, respectively. In a 

partially-stripped plasma, if R » 1, the bound electrons have a much greater effect on the 

focusing of the laser pulse than the free electrons. 

This paper is organized as follows. Section II discusses the wave equation for a laser 

pulse propagating in a partially-stripped plasma. The polarization field of the bound electrons 

and the plasma current are retained to third order in the laser field. The nonlinear dispersion 

relation for the pump laser field is discussed in Sec. III. The nonhnear dispersion relation for the 

Stokes and anti-Stokes sidebands is derived in Sec. IV. Growth rates are derived for (a) 

modulation, (b) Raman and (c) filamentation instabilities and are plotted as functions of 

wavenumber for several values of R. The physical mechanism of the AMI is also discussed and 

the roles of both the bound and free electrons is clearly delineated. A discussion and conclusion 

is given in Sec. V. This paper also includes two appendices discussing (A) the nonlinear 

susceptibility and group velocity dispersion parameter and (B) ionization rates due to both photo 

and collisional processes. 

II.        Nonlinear Wave Equation 

The wave equation for a laser pulse propagating in a partially-stripped plasma is 

(v- - c-'d^ / 5t')E = 47Tc-'[ a' p/ a'- + ajp/ aj, (3) 



where E is the laser electric field, P is the polarization field associated with the bound electrons 

and J   is the plasma current density. The polarization field consists of a linear and nonlinear 

part, P = |x^'^ + x'^^(E* E)|E, where x"^ (x'^^) is the linear (third order) susceptibility 

associated with the bound electrons. The time averaged refractive index of the bound electrons is 

ri = rio + rijl, where r|o = (1 + 4%x^^Y^ is the linear index, t), = Sn^^^V r\lc is the nonlinear 

refractive index and I == (c/47r)rio< E» E > is the time averaged laser intensity. In the present 

model, the origin of the third order susceptibility x*^' (or nonlinear index rij) is the anharmonic 

potential well in which the bound electrons oscillate. The response time for the development of 

X^^^ (or ri2) due to the anharmonic electron oscillations is fast, on the order of 10"'^ sec. 

Values of x^^' for partially-stripped atoms are not commonly known but can be readily 

calculated. For the purpose of estimating these values, we will assume the charge state is small 

compared to the atomic number, and therefore x^^^ for a partially-stripped atom is expected to be 

within an order of magnitude of the neutral atom value. Near atomic resonances, however, 

significant changes in x'^' and x^" can occur. It is important to note that the validity of the 

present analysis is not contingent on x^^' being accurately known. Our results are expressed in 

terms of the quantity R, which is the effective value for a partially-stripped atom and 

proportional to x^^', and examples are given for a wide range of R. Estimates for x^^^ associated 

with neutral and charged atoms at frequencies far below resonance are given in Appendix A. 

The assumption that the average charge state is small compared to the atomic number 

places limitations on the laser intensity and duration. Nonetheless, our model is expected to hold 

for a wide range of laser intensities and pulse durations. There are two limits on the laser 
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intensity: (i) the intensity must be lower than the threshold for ionization of the next charge state 

and (ii) the intensity must be sufficiently small so that the perturbation expansion of P remains 

valid. In addition, the laser pulse length must be sufficiently short so as to avoid further electron 

coUisional ionization. Appendix B discusses and estimates photo and coUisional ionization rates 

as a function of laser intensity and ionization energies. Intensities and pulse durations needed to 

avoid ionization, beyond certain levels, are estimated in Appendix B. 

For the expansion of the polarization field in powers of the field to be valid we require 

rijK r|o - 1, which in terms of a^ is 

a^ « 7.32 X 10-"(rio -l)^'o[|am]/ rijcm' / W], (4) 

where both rio - 1 and tjj are proportional to the atomic gas density n^. As an example, for Nj at 

STP with XQ = 1 |am, rjo - 1 = 3 x 10"", r\2 = 10''^ cmVW and the normalized laser amplitude is 

limited to ao « 0.05, which corresponds to an intensity I « 3.5 x 10'^ W/cm^ The quantity 

Ra^ is an important parameter in determining the stability properties of the laser pulse, which in 

practical units is given by 

R,,^8,53,,0.n,[cmlnV]I[WW]_ (3j 

where rjjl « rio -1 for the expansion to be vahd. 

The plasma current density, correct to third order in a, is [9,36,38] 

Jp=qi^pc(l + 5np/np-a*a/2Ja, (6) 

where the term proportional to a • a is due to relativistic changes in the electron mass. The 

perturbed plasma density [9,36,38] is given by 



[d' I ee + CO J)5np / iip = (c' / 2)V'(a* a). (7) 

It is convenient to write the wave equation in Eq. (3) in terms of the normalized vector 

potential a, and to use the Coulomb gauge, V • a = 0.  The radiation field is assumed to consist 

of plane waves polarized in the x-direction of the form a = (ap + a^ + a_)e^ where ap denotes the 

pump wave, a^^ are the anti-Stokes and Stokes sidebands, and I a^ | « I ap I. The pump wave is 

represented by ap = (ao/2)exp(i(koZ- ©ot)) + c.c, while the sidebands are given by 

a^ =(a^ /2)exp[i((ko+k)z + kj^y-(fflo +(o)t)] + c.c., and 

a_ = (a_ / 2) exp [i((ko - k)z - k^y - (co^ - co*)t)] + c. c., where k^ and ©Q are the wavenumber 

and frequency of the pump, k, k^, and © are the real axial wavenumber, real transverse 

wavenumber and complex frequency of the sidebands and * denotes the complex conjugate. The 

amplitude of the pump and sidebands are real and given by a,, and a+, respectively, and 

V^ = d^/dy^ +   ff-ldz^-. Substituting Eq. (6) together with the polarization field in terms of a, into 

Eq. (3) yields the following wave equation for a, 

V72 2    -2    L; 
\ 

di'     ^^ 
a = k 

5n, 2  ""p 

(a« a) a - R© A"^ — 

(r da    da 

,a'at^ 

da 
(8) 

where kp = ©p/c and R is the effective value in a partially-stripped plasma. In deriving Eq. (8), 

X^" and x'^^ are assumed to be constants and independent of laser frequency. This assumption is 

valid since group velocity dispersion is dominated by the free electrons and not the bound 



electrons, as discussed in Appendix A. The third order nonlinear source current, which is 

proportional to the right-hand side of Eq. (8), significantly alters the propagation and stability of 

the intense laser beam. Sidebands can be generated, resulting in various types of modulation, 

filamentation, and Raman instabilities. 

HI.       Nonlinear Pump Dispersion and Propagation 

The nonlinear dispersion relation for a linearly polarized pump wave is 

Ti>^/c^-k^-kJ+k^(a„a^+(3/8)Ra^) = 0, (9) 

where R is given by Eq. (2) and a^ = 3 / 8 - (1 / 8)(cko) V (OD ^ - co J / 4) is due to relativistic and 

nonlinear plasma wave effects. The term proportional to (3 / 8)Ra^ in Eq. (9) represents the 

nonlinear effects of the bound electrons and can be substantially greater than the plasma term 

^^0^0 s a^ / 4.  The resonant term in the expression for ao, i.e., the term proportional to 

1 / (CO 0 - CO p / 4), is due to the nonlinear plasma wave at frequency and wavenumber (IOOQ, 2ko). 

The cut-off frequency is given by 

®c=(®p/Ti„)(l-(3/16)(l + R)a^), (10) 

where Ra^ « 1. Note that a lower branch of the dispersion relation at COQ = &J2 exists. The 

model, however, is not valid when &, = ajl since from Eq. (7), the perturbed density Sn^/n, 

be large. For a circularly polarized pump wave a« a = a^ is a constant and the dispersion 

relation is 

p'"pcan 



Ti^co^/c^-k^-kJ[l-(l + R)a^/2] = 0. (11) 

A circularly polarized pump wave does not induce a plasma wave and therefore the resonant term 

in the expression for ao, is not present. For a circularly polarized pump the cut-off frequency is 

given by 

«c=(«p/^o)(l-(l + R)ao/4 (12) 

In the present model propagation slightly below the plasma frequency is achieved as a result of 

the partial cancellation of the hnear plasma current by the nonlinear polarization current due to 

the bound electrons. Propagation far below the plasma frequency, however, can result from a 

cancellation of the linear plasma current by a nonhnear plasma current induced from the beating 

of two electromagnetic fields. This is referred to as electromagnetically induced transparency in 

plasmas [45]. 

IV.       Sideband Dispersion and Stabihty 

To analyze the instabilities, Eqs. (7) and (8) are solved to order a^a^ giving 

D,a, =Q^[c'(k'+ki)/D-l-(3/2)R(2(cOo+«)'-c3'o)/©o]a. 

+ Q^[c-(k'+ki)/D-l-(3/2)R(co-o-co-)/Q)'o]a:, (13a) 

D_a:=fio[c'(k'+ki)/D-l-(3/2)R(2(©o-»)'-«o)/«^]a: 

+ [c'(k- + ki) / D -1 - (3 / 2)R(co^ - co') / co'o]a., (13b) 



where Di= ri^co'-c'(k' +k^)±2(rioCOo(o-c'kok), QJ =cOpao/4 andD= co^-cOp. 

Combining Eqs. (13a) and (13b) we obtain the dispersion relation 

D, -Q^{c'(k' +ki)/D-l-(3/2)R(2(cOo +©)' -co^)/o^}]. 

D_ -Q^{c'(k' +k^)/D-l-(3/2)R(2(a)o -co)' -co^)/©^}' 

= Q^(c'(k' + ki)/D-1 -(3/2)R(ro^ -©')/ro^)'. (14) 

In the limit R -» 0, Eq. (14) reduces to previous results [33]. If the sideband frequency is near 

the carrier frequency, I © | « ©o, the dispersion relation reduces to 

(©' - c'(k' + k^))' - 4©^(© - poCk)' 

+ 2Q^((3/2)R + l-c'(k' +ki)/(©' -<Op))(ro' -c'(k' +ki)) = 0, (15) 

where p„ = ck„ / ©^ and we have set TIQ = 1. The contribution from the bound electrons, i.e., the 

term proportional to R, can be significant and can dramatically modify the conventional RMI, 

RFI, and FRS instability. 

a. Modulational Instability 

The presence of bound electrons in a partially-stripped plasma can result in an AMI 

which can completely dominate both the conventional RMI and the FRS instability for R » 1. 

Since the AMI and RMI are not driven by the induced plasma wave, they can be analyzed by 

neglecting the resonant plasma wave term, i.e., the term proportional to c'(k' + k^) / (©' - Op) 

in the dispersion relation of Eq. (15). Setting © = p^ck + §© and k^ = 0 in Eq. (15), we find that 

for the AMI and RMI 



±(-(l + 3R/2)a^/2 + (ck/cOo)') 

5(0 = -((Dp /(Oo)'(ck / 2)[(ck /of -(3 / 8)a^ 

(16) 

where Pock » |5©|. The AMI growth rate is 

r = (l/2)(cOp/cOo)'ck((l + 3R/2)a^/2-(ck/cOo)')"', (17) 

and extends from k = 0 to k = k„,,^ = (a^u)^ I V2c)(l + 3R / 2)"' and peaks at k = k^„/V2. In 

the conventional RMI the range of unstable wave numbers is restricted to k < ©p/c while in the 

AMI the range in k can exceed cOp/c and can approach COQ/C. Since the range of wavenumbers 

over which the AMI exists is broad, it will be less sensitive to laser incoherence or plasma 

inhomogeneities than the RMI or FRS instability. The maximum growth rate for the AMI is 

given by 

r = (coJa^/8cOo)(l + 3R/2). (18) 

The maximum growth rate for the conventional RMI (R = 0) [31,33] is T = (l/8)(cOp / coo)ao 

and occurs at k = (ao/2)cOo/c « k„,,^. The ratio of the maximum growth rate for the AMI to the 

conventional RMI is 1 + 3R/2, which can be much greater than unity. In the limit np -^ 0, Eq. 

(17) implies that k„3^ -> co and, for finite k, the AMI growth rate scales as T ~ nj,'^ -^ 0, hence, 

the AMI is stable in the absence of a plasma. 
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b.        Raman Instability 

The growth rate for the FRS instability peaks at k = cOp/c and is distinct from the AMI 

instability for Ra^ < (4 / 3)© J / co ^.  For Rao «(4 / 3)co J / co ^ and k^ = 0, the FRS growth rate 

at k = CO /c is given by the conventional expression [33-37], 

2^/2 ©0 
(19) 

As Rao increases and approaches (4 / 3)©^ / ©^ the AMI merges with the FRS instability. For 

Rao »(4 / 3)©p / ©0 the FRS instability is dominated by the AMI. The ratio of the maximum 

growth rate for the AMI to the conventional FRS instabiUty is (3V2 / 8)Rao. The Raman 

backscatter instability, on the other hand, is virtually unaffected by the presence of bound 

electrons, i.e., the Stokes frequency is © = ©p, the wavenumber is k s 2ko - ©o©p/c^ko, and the 

growth rate is F = (fflo©p)"^ao/2, assuming ©p/©o « 1. 

c. Filamentation Instability 

As is the case with the modulation and forward Raman instability, the filamentation 

instability can be strongly affected by bound electrons. Taking k = 0 in Eq. (15) and neglecting 

the resonant plasma wave term, the dispersion relation becomes 

©^ =2©; lJ^(.J,J0.3R/2)/2-c^.i) 
1/2 

(20) 

where c k^ « ©g. The AFI growth rate is 

r = (ck^ /2©o)(©pa^(l + 3R/2)/2-c'k^)"'. (21) 
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and extends from k^ = 0 to k^ = k^,^^ =(cOpao / V2c)(l + 3R / 2)"^ and peaks at k^ = k^^^,^^ / -Jl. 

The maximum growth rate for the AFI is 

r = (coJa^/8cOo)(l + 3R/2), (22) 

which is identical to the maximum AMI growth rate in Eq. (18). For R = 0, the growth rate of 

the conventional RFI for a plasma is recovered [31,33]; whereas for R » 1, the growth rate of 

the conventional filamentation instability for a neutral gas is recovered [42]. The ratio of the 

peak AFI growth rate to the peak RFI growth rate is 3R/2 + 1, which can be much greater than 

unity. 

The effect of the AFI is to transversely break up the laser pulse into filaments, each 

having a transverse dimension r^^ = llk^^ and a power per filament roughly equal to the critical 

power. The power per filaihent is P = iTir^ s I(4TC / k^) S Pp / (1 + 3R / 2) S P^, where 

k^ = (<J\ao / 2c)(l + 3R / 2)"^ corresponds to the maximum growth rate. This model assumes 

that the transverse dimension of the laser pulse is greater than rj^. For the filamentation 

instability (k = 0), the sideband frequency is purely imaginary, i.e., co^ < 0. The instabihty, 

therefore, is purely growing in time and does not propagate transversely out of the laser pulse. 

d. Examples 

Numerical solutions of the full dispersion relation, Eq. (14), are shown in Figs. 1-8, 

where the normalized growth rate, F/cOp, is plotted versus the normalized wavenumber, ck/cOp or 

ck^cOp, for various values of the effective R, ao and cOo/cOp. Figure 1 shows the modulation and 

Raman growth rate for k^^ = 0, cOo/Wp = 10, ao = 0.01 (I = 1.4 x 10" W/cm' for X^ = 1 ^m) and (a) 

R = 0 (solid curve), (b) R = 200 (dotted curve) and (c) R = 400 (dashed curve). The soHd curve 
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(R = 0) shows only the conventional FRS instability at ck/cOp = 1 having a growth rate r/oOp = 0.7 

X 10"\ whereas the conventional RMI is not discernible on this plot. The conventional (R = 0) 

RMI for these parameters has a peak growth rate of F/cOp = 1.25 x 10'* at ck/oOp = 0.05. For R = 

400 (dashed curve) the peak AMI growth rate is T/cOp = 0.75 x 10■^ (3R/2 = 600 times larger than 

the R = 0 peak value) at ck/cOp s 1.3. The AMI is broadband, extending from ck/cOp = 0 to 1.7. 

The peak Raman growth rate for R = 200 is T/cOp = 0.8 x lO"' and for R = 400 is T/cOp =1.0x10"\ 

both at ck/cOp = 1. 

Figure 2 shows the modulation and Raman growth rate for kj^ = 0, ©o/Op = 20, ao = 0.01 

and (a) R = 0 (solid curve), (b) R = 200 (dotted curve) and (c) R - 400 (dashed curve). The solid 

curve (R = 0) shows only the conventional FRS instability at ck/cOp = 1 having a growth rate F/cOp 

= 0.3 X 10"^ whereas the conventional RMI is not discernible on this plot. The peak conventional 

RMI grovi^h rate is T/cOp = 0.6 x lO"** at ck/cOp s 0.1. The peak Raman growth rate for R = 200 is 

r/cop = 3x10" and for R = 400 is F/cOp s 3.2 x 10"', both at ck/cOp =1. For R = 400 the AMI 

extends from ck/cOp = 0 to 3.4 and has a peak growth rate F/cOp s 3.8 x 10''. 

Figure 3 shows the modulation and Raman growth rate for kj^ = 0, ©o/cOp = 10, ag = 0.005 

and (a) R = 0 (solid curve), (b) R = 200 (dotted curve) and (c) R = 400 (dashed curve). The solid 

curve (R = 0) shows only the conventional FRS instability at ck/©p = 1 having a growth rate F/©p 

= 4 X lO""*, whereas the conventional RMI is not discernible on this plot. The conventional RMI 

for these parameters has a peak growth rate of F/©p = 3.2 x 10"^ at ck/©p = 0.025. For R = 400 

(dashed curve) the AMI extends from ck/©p = 0 to 0.9 and the peak AMI growth rate is 

F/©p = 2 X 10"'' at ck/©p = 0.6. The peak Raman growth rate for R = 200 is F/©p = 4.2 x 10""* and 

for R = 400 is F/©p = 4.5 x 10"', both at ck/©p = 1. 
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Figure 4 shows the modulation and Raman growth rate for k^ = 0, cOo/co,, = 20, ao = 0.005 

and (a) R = 0 (soUd curve), (b) R = 200 (dotted curve) and (c) R - 400 (dashed curve). The solid 

curve (R = 0) shows only the conventional FRS instability at ck/cOp = 1 having a growth rate T/cOp 

= 1.9 X \0'\ whereas the conventional RMI is not discernible on this plot. The conventional 

RMI for these parameters has a peak growth rate of T/cOp = 1.5 x 10"'' at ck/cOp = 0.05. For R = 

400 (dashed curve) the AMI extends from ck/cOp = 0 to 1.7 and the peak AMI growth rate is F/cOp 

1 x \0-\ at ck/cOp = 1.2. The peak Raman growth rates for R = 200 and for R = 400 are 

approximately the same and equal to F/cOp = 2 x 10"^ with both peaks at ck/cOp = 1. 

Figure 5 shows the filamentation growth rate for k = 0, C0o/©p = 10, a^ = 0.01 and (a) R = 

200 (dotted curve) and (b) R = 400 (dashed curve). The conventional RFI is not discernible on 

this plot. The conventional RFI for these parameters with R = 0 has a peak growth rate of F/cOp = 

1.3 x lO-"^ at ck7c0p = 0.005. For R = 400 (dashed curve) the peak AFI growth rate is F/cOp = 8 x 

10-'atckVfflp = 0.13. 

Figure 6 shows the filamentation growth rate for k = 0, cOo/cOp = 20, ao = 0.01 and (a) R = 

200 (dotted curve) and (b) R = 400 (dashed curve). The conventional RFI, which is not 

discernible on this plot, has a peak growth rate of F/cOp = 6 x 10"^ at ck^cOp s 0.005. For R = 400 

(dashed curve) the peak AFI growth rate is F/cOp = 3.9 x lO"*, at ck^/cOp s 0.13. 

Figure 7 shows the filamentation growth rate for k = 0, aja^ = 10, a^ = 0.005 and (a) R = 

200 (dotted curve) and (b) R = 400 (dashed curve). The conventional RFI, which is not 

discernible on this plot, has a peak growth rate of F/cOp = 3 x 10"^ at ck^cOp = 0.0025. For R = 

400 (dashed curve) the peak AFI growth rate is F/cOp = 1.9 x 10"', at ck^cOp s 0.06. 
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Figure 8 shows the filamentation growth rate for k = 0, cOo/cOp = 20, ao == 0.005 and (a) R = 

200 (dotted curve) and (b) R = 400 (dashed curve). The conventional RFI, which is not 

discernible on this plot, has a peak growth rate of F/cOp = 1.5 x 10"'' at ck^/cOp s 0.0025. For R = 

400 (dashed curve) the peak AFI growth rate is F/cOp = 9.5 x 10"^ at ck^/cOp s 0.06. 

Figures 9-12 show surface plots of the normalized growth rate, F/cOp, as a function of 

ck/cOp and ck^^/cOp for various values of R, a^ and ©o/fflp. These surface plots are useful since they 

display simultaneously the growth rates corresponding to the modulational, Raman and 

filamentation instabilities. In Fig. 9, cOo/ojp = 10, ao = 0.01 and (a) R = 200 and (b) R = 400, as is 

the case in the one-dimensional plots of Figs. 1 and 5. The surface plot corresponding to the 

conventional R = 0 limit, which is not shown, is dominated by the very narrow peak of the 

Raman instability in the vicinity of ck/cOp = 1. Similarly, Figs. 10,11 and 12 are surface plots for 

cOo/cOp = 10, ao = 0.005, cOo/cOp = 20, ao = 0.01, and cOo/cOp = 20, a^ = 0.005, respectively, with (a) R 

= 200 and (b) R = 400. All the surface plots display the Raman peak near ck/cOp = 1, however, 

the peak of the Raman instability is not fully resolved due to the coarse grid used in these plots. 

Figures 

9-12 clearly indicated that as R is increased the AMI and AFI growth rates increase and, for 

sufficiently large R, dominate over the conventional RMI, FRS and RFI. 

e. Physical Mechanism of Modulational Instability 

The physical mechanism for the modulational instability is due to group velocity 

dispersion (GVD) and self-phase modulation (SPM). Dispersion is dominated by the plasma 

electrons, which provide "anomalous" GVD, and the nonlinearity is dominated by the bound 
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electrons, which provide SPM. These are the two necessary ingredients for a modulation 

instability [46]. The group velocity can be written as Vg = V^Q + 5Vg, where 

Vgo =c(l-(cOp+c^k]^o)/©o)    is the linear group velocity, 5Vg s c(((oJ +c-k^o)/cOo)5co/COQ 

is the perturbed nonlinear group velocity and 5co is the nonlinear frequency shift. Note that 

higher frequencies have higher group velocity, i.e., anomalous GVD. Here, the effects of a finite 

transverse wavenumber k^o = I/VQ associated with the pump wave have been included, which can 

also result in anomalous GVD. The SPM process is responsible for the nonlinear frequency 

shift, which is proportional to the nonlinear index times the gradient of the intensity, i.e., r|2V(a^). 

In a frame of reference moving with the linear group velocity v^o, consider a spatially localized 

perturbation in the field amplitude, a = ao + 5a, where §a > 0, as indicated in Fig. 13. The 

perturbed amplitude will produce a local frequency shift through the SPM and hence a perturbed 

nonlinear group velocity 5Vg. The rate of change of the nonlinear frequency shift is dda/dt = 

c (CO p / 4co 0) R5(aV5^ ;« c (co J / 2© ^ )Raoa5a / 5^, where ^ = z - v^ot is the axial position in the 

group velocity frame. If the perturbation 5a is peaked around ^ = 0, then the frequency just 

ahead of the perturbation (^ > 0) is decreased (red shifted) and is increased (blue shifted) just 

behind the perturbation (^ < 0). Since 5Vg is proportional to 5co, 5Vg < 0 just ahead of the 

perturbation and 5Vg > 0 just behind the perturbation. Hence, energy flows towards the positive 

perturbation at ^ = 0 and 6a grows. The rate of increase in the perturbed amplitude is d8a/dt = - 

(ao/2)a5vg/5^ = - (ao/2)((cOp + c^k^^) / ©o)(c/cOo)a5{i)/6^. Operating on this relationship with d/dt 

and using the above expression for 55co/^ we find that 
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5'5a/a' =-(c^ /4){ial+c\l,)/a)l) (a^ /m.f R&ld-ba/d^\  Replacing S'/a'with T' 

and dVd^^ with -k^ we find that 

rs((coJ+cMor/»o)(cOp/cOo)R"Vk/2, 

which agrees with the expression obtained in Eq. (17), to within a factor of order unity, when 

kj^o = 0 and k = (3/8)''\R"^cOo/c, which is the wavenumber corresponding to the maximum 

growth. The AMI requires free electrons and/or a sufficiently large k^Q. In the absence of free 

electrons a gas usually has normal GVD (9Vg / 9co < 0) for k^o = 0 and the AMI is stable. The 

GVD due to bound electrons can be neglected compared to that of the free electrons. Group 

velocity dispersion [46] is measured by the parameter p2 = c"'5^((0ori)/5^c0o. The plasma 

contribution to p2 is pjp = - (cOp/cOo)V(ccOo) s - 10"^^ secVcm (for cOo/cOp s 10 and XQ s 1 \xm) and is 

typically opposite in sign and 10^ times greater in magnitude than the contribution from usual 

gases at STP, as discussed in Appendix A. 

V.        Discussion and Conclusion 

The presence of bound electrons in a partially-stripped plasma can significantly alter the 

propagation and stability of laser pulses. A partially-stripped plasma will result when a plasma is 

formed from a relatively high-Z material, e.g., the photo-ionization of nitrogen, argon, or 

krypton; or by exploding a metallic foil or wire. This is the case in many experiments on x-ray 

lasers, high-order harmonic generation, and in laser-channeling experiments for laser accelerators 

and laser-fusion. In such a plasma, the optical nonlinearities can be completely dominated by 

bound electron effects. In particular, the ratio of the third-order nonlinearity for free electrons to 

that of bound electrons is given by the ratio of critical powers for self-focusing, R = Pp/Pg, which 
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is typically much greater than unity. Growth rates for various instabilities have been obtained in 

terms of the effective value of R for a partially-stripped atom. 

When R » 1, the combination of anomalous GVD from the free electrons and SPM from 

the bound electrons leads to a strong instability, i.e., the AMI. In a fully-stripped plasma, 

modulational-type instabilities are dominated by FRS, which occurs in a narrow band around co = 

cOp and k == cOp/c. In the presence of bound electrons, however, the growth rate of the AMI can be 

greater than that of FRS and occurs at a much higher and broader range of© and k. This implies 

that axial breakup of a laser will occur much more rapidly in a partially-stripped plasma and, due 

to the large range of unstable ro and k, the instability will be less sensitive to variations in the 

ambient density or to laser incoherence effects. When R » 1, the transverse breakup of the laser 

pulse is dominated by the API. Provided the laser power greatly exceeds P„ the laser pulse will 

form transverse filaments with a power per filament on the order of P^. 

The present analysis contains a number of assumptions. In particular, the laser pulse 

length must be sufficiently short and the intensity must be sufficiently low so that further 

ionization of the plasma is avoided. These requirements can be easily met, given the availability 

of ultrashort (< 1 ps) high power lasers and the high binding energies of inner shell electrons. 

Perhaps a more stringent constraint on the laser intensity is the validity of the polarization field 

expansion P = (x'" + x^^^ E» E)E, which assumes ri„ -1» ri^I. Inclusion of bound electron 

effects could alter the interpretation of laser interaction experiments with high-Z material. 
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Appendix A: Nonlinear Susceptibility and GVD Parameter 

a. Nonlinear Susceptibility 

A rough estimate for y}^^ and rjj far from any atomic resonances can be obtained by 

equating the linear and nonlinear polarization fields and setting the electric field equal to the 

characteristic atomic (hydrogenic) field E^ = q / r| = 5.2 x lO^V / cm, where rg = /z^ / q^m is 

the Bohr radius [42-44]. Note that the intensity of a linearly polarized laser pulse with a peak 

field equal to E Js I = (c / 87i)E^ s 3.6 x 10" W / cm'(a,, = 0.16 for X, = 1 \xm).  The magnitude 

of the third order susceptibility is, therefore, approximately x^^^ = X^'^ / E^ = x^'^r,, / q'.  Since 

47T x*-'^ is unitless, of order unity for condensed matter (density -2x10"' cm"^) and proportional 

to the density, we can write x^'^ s 4 x lO'^^'n^ [cm'^]. Hence, order of magnitude estimates for 

X^'^ and y\, are x''^[esu] = 10-''n,[cm-'] and ri, [cm-/W] s 5 x 10-'X[cm-'], where x^'^esu] is in 

units of (cm/statvolts)^ Table I lists the approximate measured values for the third order 

susceptibihty for various gases at STP and for linearly polarized 0.5 )am radiation [19,42]. Also 

listed in Table I are the nonhnear focusing power in a gas P^ and the ratio of the critical powers 

for relafivistic plasma focusing and nonlinear gas focusing R = Pp/P,. The value of rij, defined by 

^^a = Tlal; in units of cmVW can be obtained by multiplying the value of x'^' in esu by 

0.0395/ri^. 

The nonlinear susceptibility x*^' for an ionized atom can be simply estimated if the charge 

state is small compared to the atomic number and the optical frequency is far below any atomic 

resonance. The nonresonant nonlinear susceptibility is approximately given by 

X^^^ s Sn^fi" / h^Q.\, where |LI S qr^ is the typical dipole moment and Q^ is the typical value of 
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the atomic resonance frequency [44]. Since QR is roughly proportional to the ionization potential 

Ui, the ratio of the nonlinear susceptibilities of the ionized atom to the neutral atom is 

X«/X^^)«.(U,/Un\ (Al) 

where UJ^ is the ionization potential for the ionized atom. As an example, for Xe gas, U, = 12.1 

eV, U^ = 21.2 eV (for the singly-ionized state), and xf / x''^ = 0-18. 

b.        Dispersion Parameter for Free and Bound Electrons 

In Sees. II-IV, the frequency dependence of x^'' was neglected in the derivation of the 

dispersion relation. This is justified since dispersion is dominated by the free electrons and not 

the bound electrons. Dispersion is determined by the frequency dependence of the linear 

refractive index, TJL = T|O + riLp, where TJO is the bound electron contribution and rJLp is the plasma 

(free electron) contribution. An order of magnitude estimate of r|o far below any resonance is 

given by the simple model 

,..i.,^.u"- 1 + ^ (A2) 

where co^ = ^Tixi^o^ I m, n^ is the density of atoms, Qj, = 10'^ sec"' is a typical value of the 

atomic resonance frequency, and co^ « ©Q « QR is assumed [42-44]. For a plasma, 

Ti,p-l-©^p/2co^o> (A3) 

where 03^ / COQ « 1 is assumed [35]. Lowest order dispersion is characterized by the group 

velocity dispersion (GVD) parameter ^^ = c"'9^(c0griL) / SCOQ [46]. For a neutral gas 

Pia = c"((0(,rio) / 5^00 0 s 6co^c0o / CQR, whereas for a plasma 
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Pjp = c^(cOo'nLp)5'cOo s -co J / cco^. Note that p2, > 0 and p2p < 0, i.e., the GVD is "normal" for a 

neutral gas (below resonance) and "anomalous" for a plasma. The ratio of the dispersion 

parameter for a neutral gas to that of a plasma is, 

P2a/Pap=-6(n,/np)(cOo/nR)\ (A4) 

and, typically, I P2a/P2p I « 1> since COQ/QR « 1. For example, p2p = -10'^^ secVcm for A-o = 1 |am 

and C0o/©p = 10 (np s 10'^ cm"^); whereas P2, = 10"^' secVcm for air at STP and X^ = 1 iim. 
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Appendix B: lonization Rates 

The rate of change of plasma density (density of free electrons) is given by 

^  =Wpn,+W,np-v,np, (Bl) 

where Wp is the photoionization rate, W^ is the coUisional ionization rate, and v^ is the 

recombination rate. Typically, for parameters of interest here, the recombination rate is small , 

compared to the coUisional ionization rate, i.e., v^« W^, and will be neglected. The solution of 

Eq. (Bl) for constant ionization rates is 

Hp = (Wp / WJn,(exp(W,t) -1) + np^ exp(W,t), (B2) 

where ripo is the initial (seed) electron density and it is assumed that the plasma density remains 

small compared to the neutral density. However, both Wp and W,, are functions of time as will be 

discussed. 

a. Photoionization 

Photoionization can take place in either the tunneling or multiphoton regime [47-52]. 

These regimes are characterized by the Keldysh parameter y^ = (Uj / UQS)"', where U, is the 

ionization energy and U^^ - (l/2)m(qEo/mcOo)^ is the electron oscillation energy. The Keldysh 

parameter can also be written as YI. = COOTJ, where i^ is the tunneling time, i.e., the transit time of 

the electron through the atomic Coulomb barrier. The low field limit (YK > 1) corresponds to the 

multiphoton ionization regime, whereas the high field limit (YR < 1) corresponds to the tunneling 

ionization regime. 
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(i) Tunneling lonization (y^ < 1) 

In the high field limit, Yk < U the photoionization rate can be determined by a tunneling 

calculation for an atom in the presence of a static electric field of amplitude E. The tunneling 

ionization rate, i.e., the probability (per unit time) of ionization, is given by [47,48] 

W. =Aj-"^exp(P^/E), (B3) 

where A^ = 1.6 x 10"U/'', (3^ = 0.67Uf', U, = U, /UH is the normalized ionization energy, 

Ui is the ionization energy in eV, UH = 13.6 eV, E = EJE^ is the normalized electric field, and 

Wf is in units of sec"'. Figure 14 shows the tunneling ionization time, l/W^, as a function of laser 

intensity for various values of ionization energy. For a laser intensity of 10'^ W/cm^ and 

ionization energy of 50 eV, the tunneling ionization time is ~ 100 nsec. For laser pulse durations 

much less than 100 nsec, Httle tunneling ionization will occur for these parameters. 

(ii)       Multiphoton lonization (y^ > 1) 

In the low field limit, y^ > 1, the photoionization rate is given by the multiphoton 

ionization rate, which is proportional to T, where I is the laser intensity and m = integer 

(U, / /ZCOQ +1) is the number of absorbed photons necessary for ionization. The multiphoton 

ionization rate is given by [50-52] 

W,„ =(aI/^co^r(27rro„ /(m-1)!), (B4) 

where cr= 10""^ cm". 
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b.        Collisional lonization 

In an oscillating electric field an electron, on average, gains energy from the field 

provided there are collisions with other particles. In the classical description, this is referred to 

as Joule heating; in the quantum picture, this is called inverse bremsstrahlung. An electron that 

gains sufficient energy from the field can ionize an atom on collision, leading to additional free 

electrons, which can go through the same cycle. In the collisional ionization process, the 

presence of seed electrons is necessary. If the irradiated volume is small, or if the gas is 

sufficiently tenuous, the seed electrons must be provided by other means. For example, the 

initial electrons may come from tunneling ionization, or from cosmic ray ionization. 

The collisional ionization rate will be discussed in two limits: the low intensity limit Vg^ 

< U, and the high intensity limit U^^ » U,. In the low intensity limit U^^ < U„ an electron 

oscillating in the laser field with energy U^s does not have sufficient energy to ionize an atom in a 

single collision. Through multiple collisions, however, the electron energy can increase beyond 

Ui and collisional ionization can occur. In the limit U^s» U,, an electron has a sufficiently high 

energy to directly ionize the atom. Furthermore, in the limit U„,» Uj, the electron-neutral 

collision frequency becomes Coulomb-like. Before discussing the collisional ionization rate in 

the low and high intensity limits, the momentum transfer collision frequency, which is needed to 

obtain the collisional ionization rates, will be discussed. 

(i)        Momentum Transfer Collision Frequency 

As the electrons in the ionized gas oscillate under the influence of the laser field, they 

collide with the background electrons, ions, and neutral atoms. The electron collision frequency 

for momentum transfer is 
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v„, =v^i+v„„ (B5) 

where v^j (v^„) is the electron-ion (electron-neutral) collision frequency. The electron-electron 

coUision frequency does not contribute to v^, because the momentum of any pair of colliding 

electrons and associated current (masses and charges are identical) are conserved. Electron- 

electron collisions, however, lead to thermalization of the electrons. 

The electron-ion collision frequency is given by [53] 

vjsec-'] = 4 X 10-'^^nA,ini[cm-^]Z^U;f [eV], (B6) 

where ^nA^^ is the Coulomb logarithm (typically, ^nA^^ = 10 - 20), Z is the charge state and n^ 

is the ion density (n^ Z is the electron plasma density). 

The electron-neutral coUision frequency is given by [54-56] 

Ven=(ven„cr<^„(v)), (B7) 

where a,„ is the electron-neutral cross section, v, is the electron velocity, and the brackets 

< > denote an averaging over the electron velocity distribution. The electron-neutral cross 

section is generally a complicated function of the electron velocity. At low electron velocities 

the cross section is hard-sphere-like and independent of velocity, cj^„ = a^, where CTQ ~ 10"'^ cm^ is 

the hard-sphere cross section. As the electron velocity approaches the characteristic atomic 

electron velocity , polarization scattering is the dominant process and a^n = CTOVO/V^. The 

characteristic atomic electron velocity is VQ = a ^ c, where a f = 1/137 is the fme-structure 

constant and the characteristic electron energy is mv^ / 2 == 13.6 eV. At substantially higher 

electron velocities the scattering becomes Coulomb-like and a,„ ~ 1 / v^ The electron-neutral 
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collision frequency can therefore be estimated to be v^,, = n^aoV^s for Y^^ < VQ and v^„ = n„aoVo for 

Vo. > VQ. 

Typically, the electron-neutral collisions are the dominant coUisional process in weakly 

ionized gases; however, in highly ionized gases v^i can become important. As an example, 

consider the case where the neutral density is n„o = 3 x 10'^ cm"^ and the electron oscillation 

velocity is Vo^ = qEo/mcoo = 5 x 10"^c (Uo^ = mv^^ / 2 = 6.3 eV).  For a linearly polarized laser of 

wavelength X = 1 \xTn, these parameters correspond to a peak intensity of I = 3.5 x 10'^ W/cm^ 

and peak electric field amplitude of EQ = 1.6 x 10^ V/cm. Taking CTQ S 10"'^ cm^, Eq. (B7) yields 

an electron-neutral colhsion fi-equency of Vj„ s 7 x 10'^ sec"', i.e., an electron-neutral coUision 

time of T(,„ = v^^ ~ 140 fsec. 

If, for the same example, the gas is highly ionized with U; = n„o = 3 x 10'* cm'' and the 

electron oscillation energy is UQS = 6.3 eV, the electron-ion collision frequency from Eq. (B6) for 

singly ionized gas (Z = 1) is v^j s 8 x 10"' sec"', i.e., an electron-ion coUision time of x^i - 

vll = 13 fsec. For these parameters the electron-ion collision frequency is much greater than the 

electron-neutral collision frequency, v^j» v„,, 

As another example consider the case of a plasma in which all the atoms are singly 

ionized, i.e., Z = 1. For a laser intensity of I = 10'* W/cm^ and wavelength A,,, = 1 |j,m, the 

electron oscillation energy is U^^ = 2 keV. For an ion density of n| = 3 x 10'^ cm'\ the electron- 

ion collision frequency is v^j s 1.2 x 10'° sec"' and T^,, = v~J = 80 psec. 

(ii)       CoUisional lonization Rate for \J„^ < Uj 

The coUisional ionization rate is 
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W,(t) = n, a,(v)vf,(v,t)dv, (B8) 
j 

Vl 

where n, is the density of atoms (neutrals), a^(v) is the ionization cross section for electron 

CO 

impact, fXv,t) is the electron distribution function, with Jf^(v,t)dv = 1, and Vj = (2U, / m)"^ is 
0 

the velocity associated with ionization [52,54-56]. The coUisional ionization cross section, as a 

function of electron energy, is typically zero from U = 0 to U = Uj, increases from U, to U^,, 

where U,„ is several times U„ and then decreases as ~ 1/U for U » U„,. Order of magnitude 

estimates for the collisional ionization cross section for a neutral gas can be obtained from the 

following three parameter model 

.,,.X"-*"-"'\ (B9) 
"   ° U(U + Uo) ^    ^ 

for U > Uj and a^. = 0 for U < U„ where cj,„ is the maximum cross section occurring at U = U„, = 

aoUj, Uj is the ionization energy, UQ = ao(ao - 2)Ui and ao is a parameter. Approximate values 

[57,58] for U„ a^ and ao are given in Table II for H2, N, Nj and Ar. 

As a rough estimate we take the electron distribution to be a flat top of the form, 

'l/v^(t),     0<v<v^ 

fe(v,t) = (BIO) 
0, V > V. e' 

where v,(t) is the maximum electron velocity which evolves with time. Substituting (BIO) into 

(B8) gives 

W,(t) = n3 f^c(v)(v/v,(t))dv, (Bll) 

Vl 
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for Ve(t) > V, and W,(t) = 0 for v,(t) < v,. Substituting Eq. (B9) into (Bl 1) gives the collisional 

/Tj   \l/2 

W,(t) = n^a^a4 ^]   (U, / U,(t))"'F(U,(t), U„ a,), (B12) 

lonization rate, 

V2m 

for U,(t) > U, and W,(t) = 0 for Ue(t) < U„ where 

F(U,(t),U„ao) = (l + U,/UoKn ̂
U,(t) + Uo^    u, Ju,(t)^ 

V U,+Uo y Uo   ^ u, ; 
(B13) 

and Ue(t) = mv^ / 2 is the electron energy. 

The rate of change of energy of an electron undergoing collisions in the presence of a 

temporally periodic electric field is given by [54,55] 

dU„ q^E^v„ 

dt      2m(co^ + vJ 
V.,Ue, (B14) 

where E is the peak electric field amplitude, v„, is the momentum transfer frequency, and v„ is the 

energy exchange coUision frequency. The first term on the right-hand side of Eq. (B14) 

represents the rate of energy increase of an electron undergoing collisions while being 

accelerated in the laser field. The second term represents the energy damping due to collisions 

between electrons and neutral atoms. In light gases, such as helium, a rough estimate for the 

exchange collision frequency is v„ s (2m/M)Vn„ where M is the mass of the atom, however, 

actual values can be substantially higher than this estimate. As a specific example, for electron 

energies between U^ s 10'^ eV and 2 eV the momentum collision frequency for N2 is 

Vn,[sec''] s 10"\,(Ue[eV])°^'' and the energy exchange coUision frequency is, to within an order of 

magnitude, v^ = v„,/100. 
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Equation (B14) indicates that the electron energy increases monotonically and saturates 

because of electron collisions with neutral atoms. Solving Eq. (B14), assuming v„ and v,, are 

constant, gives 

Ue(t) = U3,.(l-exp(-v,t)), (B15) 

where U^^, = (v^ / v J(l + v^ / ©o)   UQ^ is the saturation (maximum) electron energy, 

UQS = mvQs / 2 IS the electron oscillation energy and VQ^ = qE/mcOo is the oscillation velocity. 

Figure 15 shows the collisional ionization time 1/W^ as a function of time for U, = 20 eV 

for (a) I = 10'' W/cm' (dashed), (b) I = 10'' W/cm' (dotted) and (c) I = 5 x 10'' W/cm' (solid). 

The collisional ionization time is relatively long for short times, decreases and eventually tends 

to a constant value as U<, -^ Us^,. If we regard the abscissa as the laser pulse duration, then, for I 

= 5 X 10'^ W/cm\ the plasma density e-folding time (1/WJ is long compared to the laser pulse 

duration provided that the laser pulse duration is < 10 ps. 

(iii)      Collisional Ionization Rate for UQS » Uj 

Next we consider the regime where Uo^ » U, and the electron-atom collision is 

Coulomb-like. To estimate the collisional ionization rate in this regime we set the rate of energy 

loss of a fast electron undergoing collisions with atomic electrons equal to the ionization rate W^ 

times the effective ionization energy. The rate of energy loss of a fast electron with velocity v, as 

it undergoes coUisions with background atomic electrons is [59,60] 

dU,/dt = -v,,U,, (B16) 

where 
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V,, =2V27rZn,q'^nA(mU^)-"^ (B17) 

is the electron-electron energy exchange frequency, Z is the atomic number, n^ is the atomic 

density, i.e., Zna is the bound electron density, and ^nA is the Coulomb logarithm (typically 

^nA ~ 10). In practical units v^^ is 

Vee[sec-'] = 7.8 X 10-'ZnJcm-']^nA(UJeV]r'". (B18) 

The collisional ionization rate is estimated by setting dVJdt in Eq. (B16) equal to -Wj,aU„ which 

gives Wj. - (Ue/aU,)Vgj, where aUj is the effective ionization energy, U, is the ionization energy 

and a = 2 to 5 is a numerical factor which accounts for the fact that not all of the fast electron 

energy loss goes into ionizing the atomic electrons. Solving for W^ and setting U^ - UQS and a = 

3 we find that the collisional ionization rate for Uos» U, is 

WJsec"'] s 2.6 X 10-'Zn3[cm-']^nA(u|,'3'[eV]U,[eV])"". (B19) 

The coUisional ionization time l/W^, in the high energy limit, Eq. (B19), is shown in Fig. 

16 for (a) Ui = 20 eV, (b) Ui = 50 eV and (c) U, = 100, as a function of laser intensity. Figure 16 

shows that l/W,, increases with both Uj and I, as expected from Eq. (B19). 
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Gas X^^^[esu] X 10'^ ri2[cmW] X 10'° Pa[GW] R=Pp/P, 

Helium 0.11 0.43 93 31 

Neon 0.21 0.80 50 58 

Argon 3.4 13 3.1 940 

Krypton 8.5 34 1.2 2500 

Xenon 27.0 110 0.36 7900 

H2 2.2 8.5 4.7 610 

CO2 4.2 17 2.3 1200 

N2 2.9 11 3.6 790 

Table I. Nonlinear index and focusing power for various neutral gases at STP (n, = 2.7 x 10" cm"^) 

and for linearly polarized X^ = 0.5 |.im light. The relativistic plasma focusing power Pp[GW] = 17.4 

(©o/cBp)' = 2.9 X 10' for np = n, = 2.7 x 10'' cm-\ 
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Atom, 

Molecule 

U,[eV] a^[cm'] X 
10"^ 

tto 

H, 15.4 1.1 4.5 

N 14.6 2.1 7 

N, 15.8 3.1 7 

AT 15.6 3.7 6 

Table II. Parameters for modeling the coUisional ionization cross section CT^, Eq. (B9). 
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Energy Flow 
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Fig. 13    Illustration of the physical mechanism for the modulation instability in the linear group 

velocity frame: (a) shows initial perturbation in amplitude, (b) shows frequency shift 

induced by self-phase modulation and (c) shows group velocity dispersion indicating 

that energy flows towards the initial perturbation resulting in growth. 

56 



r- 

O 

<s 

1^ 

O 
O) 

t 

O 
CO 

t 

o 
to 

O 

C/5 

o 

N 

_o 
CO 

3 
O 

> 

<2 

(D 

O 
c o 

> 
o o 

^    '^ 
CJ S 
C 
3 > 
■ (i> m c;' 
« wo 

e > 
■4—• o 
C o o r^ 
13 II 
N 

c :D 
o /""N 

K! 
bl) e tn '^ (1) o 

till 

<D 
,3 c H o 

'^ 
'—' 
CJ) 

MH 

[s] smix uop^zraoi Suipuunx 

57 



m 

o 

0 2 4 6 8 
Time [ps] 

Fig. 15 Collisional ionization time, 1/W„ as a function of time in the low energy limit 

(Uos« U,), Eq. (Bl 1), for various laser intensities, (a) 1=10^^ W/cm^ (dashed), (b) I 

10" W/cm^ (dotted) and (c) I = 5 x 10'^ W/cm^ (solid), where n^ = 2.7 x 10'' cm-\ v,„ ^ 

5xlO''sec-',v, = 5xlO"'sec , ^„ a  - 2 X 10"" cm', V, = 20 eV, and a^ = 5. 
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Fig. 16   CoUisional ionization time, 1/W„ in the high energy Umit (U03» U,), Eq. (B19), as a 

function of laser intensity for various ionization energies, (a) U, = 20 eV (solid), (b) U, 

= 50 eV (dotted) and (c) U, = 100 eV (dashed), where n, = 2.7 x 10'^ cm-^ Z = 1 and 

£nA = 10. 
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