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!• Executive Summary 

This paper presents an overview of the research performed at the University of Rochester 
under Rome Lab contract F30602-91-C-0010. The project addressed problems in developing 
large-scale plans in complex worlds. The results can be divided into four general areas. 

First, we addressed some fundamental representational issues by developing new repre- 
sentations of actions and plans that increase the expressiveness of plan representations. More 

specifically: 

• 

• 

We developed an expressive logic of time and action for planning that supports rea- 
soning in domains with external events and interacting simultaneous actions. 

We developed a new approach to the frame problem called explanation closure, and 
showed its utility in two planning frameworks: one based on the situation calculus and 
the other, interval temporal logic. 

We developed a new representation for plans based on argument structures that pro- 
vides a firm foundation for future work in mixed-initiative planning where plans need 
to be negotiated between two or more agents. 

Second, we addressed efficiency issues by developing a set of temporal reasoning algo- 
rithms for the efficient handling of very large-scale temporal databases. More specifically: 

• We performed an evaluation of five different temporal reasoning systems and studied 
their behavior as the size of the temporal data increased (up to 60,000 time periods). 

• We explored the theoretical foundations of point-based temporal reasoning systems 
(with and without disjunction), and developed theoretically sound methods of reason- 
ing about large sets of temporal information. 

• Based on these theoretical developments, we built a new temporal reasoning system, 
TimeGraph II, that improved on the best systems in the evaluation by a factor of two 
or more on large databases. 

Third, we developed a new set of heuristic search methods that greatly improve the 
efficiency of well-founded planning systems such as UCPOP. Several of these techniques 



have been incorporated into the latest version of UCPOP distributed by the University of 
Washington. 

Fourth and finally, we addressed the problem of developing plans in the real world by 
constructing and testing a new model of mixed-initiative planning. More specifically: 

• We defined a dialogue-based framework for mixed-initiative planning, which is the first 
planning model that takes the human planner as an essential part of the planning 
process. 

• We implemented a first prototype system, TRAINS-95, that demonstrated the dialogue- 
based model in a simple route planning domain and could be used by people with 
virtually no training. 

• We performed the first usability-based evaluation of a planning system, testing how 
well the system actually helps people plan. While a preliminary first step, we view 
this type of evaluation playing a vital role in mixed-initiative planning research in the 
future. 

The model of mixed-initiative planning may be the result that has the most lasting 
impact on the field. By viewing the human as an essential part of the planning process, we 
dramatically change the problems that are important for the ultimate successful application 
of planning technology. 



2. Introduction 

In command and control situations and logistics planning, a human planner faces several 
difficult problems. First, there is a surplus of data, only a small amount of which is actually 
relevant to the current task. In fact, what data is relevant cannot be determined in advance 
and only becomes clear as the situation and the plan develop. Second, the plans being 
considered are large and complex, and it is beyond human capabilities to manage all the 
details effectively. Automated planning systems are better able in principle to handle the 
scale, but are hard to apply because of the under-specified initial situations, and the fact that 
many planning decisions are made on an intuitive basis that cannot be effectively quantified. 
As a result, neither the human nor the computer can effectively solve such planning problems 
in isolation. 

This problem miotivates the three research areas which have been the focus of the work 
at Rochester: 

1. Mixed-initiative planning systems, where the computer acts as a collaborating assistant 
to the human. By cooperating, the human-computer "team" is able to deal with 
problems that neither could handle easily alone. 

2. Plan representation formalisms that go beyond the assumptions underlying most plan- 
ning formalisms and handle such complexities as external events and interacting over- 
lapping actions. 

3. Efficient algorithms for handling large-scale problems, especially in dealing with large- 
scale temporal databases, and in developing heuristics for speeding up traditional "well- 
founded" planners. 

2.1    Mixed-Initiative Planning 

The TRAINS Project at the University of Rochester [Allen et al., 1995] is a long-term 
research effort to develop intelligent assistants that interact with their human managers using 
natural language. To explore mixed-initiative planning, we designed and built a prototype 
system, TRAINS-95, that helps a manager solve routing problems in a simple transportation 
domain. The manager is presented with a map displaying cities and rail connections between 



Figure 2.1: Sample screen from the TRAINS-95 System, showing map display, speech recog- 
nition panel, and system controller 



them. A sample screen display is shown in Figure 2.1. The system generates random 
pi'oblems that require planning routes for a set of engines to a set of destinations. Various 
environmental factors can arise during the interaction, which the manager and system must 
then plan to accommodate. 

Our goal was a robust, modular, multi-modal, mixed-initiative planning assistant. By 
'"robustness" we mean that no matter what occurs during the interaction, the system not only 
doesn't crash, but does something to indicate its understanding of the manager's intentions 
and its own attempts to further the plan. By "modular" we are taking seriously the idea 
that there are, or will be shortly, a variety of knowledge sources, reasoning agents, and 
display engines available as resources that the system can employ. Examples include weather 
information, news feeds, map servers, and so on, as well as "off-the-shelf" technology such as 
speech recognizers and generators. By "multi-modal" we mean that there are a multitude of 
ways of communicating between humans and computers, include speech input and output, 
written text, and graphical displays such as maps, charts, forms, and the like, for both input 
and output. By treating all modalities as linguistic, that is, as a form of language, we obtain 
a powerful unifying model of the interaction as a form of dialogue. 

Finally, by "mixed-initiative" we mean that both the system and the human are on 
roughly equal ground as participants in the dialogue. This is not to say that they are equals, 
since clearly they are good at different things. But in a truly mixed-initiative system, both 
participants can do what they do best. The human typically has knowledge of the high-level 
goals and means of achieving them, while of course, the computer is good at managing the 
multitude of low-level details that go into such plans. As well, in realistic situations, the 
human may be guided by principles that are difficult or impossible to quantify precisely, 
making it impossible to fully automate the task and replace them. Even if this were possible 
in principle, the resulting master-slave style of communication would hardly be natural and 
probably wouldn't be very efficient. 

2.2     Representing Time, Action and Plans 

Most traditional representations of action and plans use a state-based approach that builds 
in strong assumptions about the nature of action and the world (the so-called STRIPS 
assumptions). These require that action definitions completely describe how the action 
changes the world, and allows only a single action to be performed at a time. 

Our work focused on using an expressive temporal logic to generalize this model and 
develop models of actions, events and plans to support reasoning in complex worlds. There 
were five key points that we felt were essential for such a representation: 

1. Actions and events take time. While some events may be instantaneous, most occur 
over an interval of time during which other events and actions may also occur. 



2. The relationship between actions and their effects is complex. Some effects become 
true at the end of the action, but others become true at the beginning and still others 
may be true during the action and not true after. 

3. Actions and events may interact in complex ways when they overlap, including the 
production of additional effects (synergy) and partial or full interference. 

4. Externally-caused changes may occur no matter what the agent plans. The planner 
must be able to reason about possible external events so as to construct reliable plans. 

5. Knowledge of the world and the possible actions is incomplete in most applications. 
Virtually no plan is thus foolproof and can only be made on the basis of certain 
assumptions, which should be made explicit. 

We developed a representation [Allen and Ferguson, 1994] that is significantly more 
expressive and more natural than previous approaches along these criteria. 

We also developed a new approach to the frame problem called explanation closure [Schu- 
bert, 1994] that can be used both with more traditional representations and with the interval 
temporal logic. Explanation closure makes the assumptions underlying the frame problem 
explicit, leading to a much richer representation than possible using the STRIPS assumption 
or non-monotonic models that minimize change. 

2.3    Reasoning About Large-Scale Problems 

No matter what plan representation is used, it is clear that efficient temporal reasoning 
will be an essential part of any system dealing with complex planning problems. Early 
in the project, we performed an evaluation of six existing temporal reasoning systems on 
constructed databases reflecting movement in the TRAINS world [Yampratoom and Allen, 
1993]. These databases ranged from a few hundred temporal elements up to 60,000. We 
found that the expressive interval-based temporal reasoners could not handle databases of 
more than a few hundred times effectively, and completely collapsed around 500 temporal 
elements. The less expressive point-based reasoners fared better, but those that used data 
structures encoding a completely connected set of constraints eventually became unusable on 
the databases involving tens of thousand elements. The most promising approaches were the 
systems that did not construct a complete constraint graph, such as Schubert'sTimeGraph 
system, which is further discussed below. 

These results motivated further development both to improve the performance of rea- 
soners over the "time point algebra" (relations using <, <, =, ^) and to develop efficient 
methods for handling more expressive representations allowing disjunctions. 

Another problem in dealing with large-scale problems is the search efficiency of traditional 
planners. We concentrated on "well- founded" planning methods, such as UCPOP, that are 



sound and complete and have other desirable properties and developed a set of methods 
for improving the performance of such systems by an order of magnitude. The techniques 
range from modifying the search strategy to include necessary actions first, to preprocessing 
methods that restricts that set of values that a variable can take. 

The remainder of this paper describes these results in more detail. We discuss mixed- 
initiative planning and the TRAINS-95 system in Section 3, our work on the representation 
of actions, events, and plans in Section 4, our work on efficient large-scale temporal reasoning 
in Section 5, and our work on improving the efficiency of well-founded planning algorithms 
in Section 6. While problems remain, our results make a significant contribution to the goal 
of building mixed-initiative systems for constructing large-scale, realistically complicated, 
plans. 
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3. The TRAINS-95 System 

The TRAINS-95 system was built to demonstrate the feasibility and usefulness of dialogue- 
based models of mixed-initiative planning. The system, which runs in near real-time and 
supports speech, keyboard and a map display.^ The key insights motivating this work were: 

1. that the dialogue should provide the context required for successful interaction inde- 
pendent of input modality; and 

2. that the plan reasoning requirements of mixed-initiative systems differ markedly from 
the specifications of traditional planners. 

The domain reasoner in TRAINS-95 maintains a knowledge base describing the state of 
the world and provides planning and plan recognition services to the dialogue modules. For 
the simple route-planning domain, of course, it would be easy to build a perfect reasoner that 
solved the problems as soon as the manager had stated their goals. However, it is unlikely 
that we will ever be able to build such a reasoner for a realistic domain. We therefore 
deliberately weakened the TRAINS-95 domain reasoner so to force the manager to interact 
in order to overcome its shortcomings. The route planner can therefore only plan route 
segments less than four hops long, and for those it chooses a random path. The knowledge 
base maintains an accurate view of the map, and allows various "natural" events such as bad 
weather or track maintenance to arise during the interaction. These also force interaction in 
order to revise plans to take account of them. 

The domain reasoning in TRAINS-95 is incremental and incorporates aspects of both 
planning and plan recognition in a tightly-coupled way. For example, the domain reasoner 
may be asked to incorporate a new constraint on an existing plan, e.g.^ that it go via a 
particular city. The domain reasoner must first recognize how that constraint fits into the 
plan (a task shared with the dialogue modules, for example in determining which route is 
being modified). It then adds the constraint to the plan, possibly removing other softer 
constraints (such as to try an avoid cities known to be congested). It must then plan a 
new route satisfying the current constraints, preferably one that makes the smallest possible 
change to the plan already under consideration. 

^The main bottleneck in TRAINS-95 is the speech recognition component. On an UltraSP.A.RC with 192 
MB of memory, recognition is effectively real-time. 
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Evaluation/comparison of options 25% 
Suggesting courses of action 23% 
Establishing world state 13% 
Clarifying/confirming communication 13% 
Discussing problem solving strategy 10% 
Summarizing courses of action 10% 
Identifying problems/alternatives 7% 

Figure 3.1: Different forms of interaction in one hour of human-human problem-solving 
dialogues 

3.1    Plan Representation and Reasoning 

Although it's doing planning, a mixed-initiative planning system isn't doing what we might 
recognize as "traditional" planning, that is, constructing a sequence of operators from a 
fully-specified initial situation to a stated goal. In fact, in an informal analysis of one hour 
of human-human problem-solving dialogues (part of a larger eight hour study [Heeman and 
Allen, 1995], we found that a relatively small percentage of the utterances, 23%, dealt with 
explicitly adding or refining actions in the plan. A complete breakdown of the interactions is 
shown in Figure 3.1. Note the importance of being able to explicitly evaluate and compare 
options, even between humans of roughly equal abihty. In human-computer interactions, we 
would expect this number to increase, as the computer can perform more and larger analyses. 
Similar conclusions about the nature of interactive planning are presented in [Ferguson, 1995] 
and [Pollack, 1992]. 

In [Ferguson et al, 1996], we discuss why mixed-initiative planning seems to involve so 
little traditional planning. The main points focus on the fact that the initial situation, the 
goals, and the evaluation criteria for plans are all impractical to specify in complex domains, 
and this information is only acquired incrementally during the interaction. The upshot of 
this is that even if we had implemented a "perfect" route planner for the simple TRAINS-95 
domain, we would still need all the other components of the system. If the goal is a natural, 
interactive planning assistant, the solution will not be found in traditional planning. The 
question becomes how to incorporate traditional systems within the context of a robust, 
mixed-initiative system. 

We have developed a model of the mixed-initiative planning process from analysis of 
the TRAINS dialogues and implemented a simple version of it in TRAINS-95. This model 
consists of four steps: 

1. Focus: Identify the goal/subgoal under consideration. 

2. Gather Constraints: Collect constraints on the solution, selecting resources, gathering 
background information, and adding preferences. 
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3. Instantiate Solution: As soon as a solution can be generated efficiently, one is generated. 

4. Criticize, Correct or Accept: If the instantiation is criticized and modifications are 
suggested, the process continues at step (2). If the solution appears acceptable then 
we continue at step (1) by selecting a new focus. 

At first glance, this model seems quite similar to the expand-criticize cycle found in 
hierarchical planners since Sacerdoti [1977]. The significant difference is in step (3). Rather 
than pursuing a least commitment strategy and incremental top-down refinement, we "leap" 
to a solution as soon as possible. In TRAINS-95, solutions are generated by a domain- 
specific specialist program rather than by traditional search-based planning. We expect this 
will be typical in all practical appHcations of planning systems in the future. You might call 
this a "look then leap" strategy rather than the traditional "wait and see" strategy used in 

least-commitment planning. 

3.2     TRAINS-95 Architectural Model 

To support this model of mixed-initiative planning, we have developed a four layer archi- 
tecture that generalizes the TRAINS-95 system architecture. The discourse level maintains 
information important for reference identification and for speech act interpretation and gen- 
eration. While critical to the overall system, the other levels are more centrally concerned 

with the planning process. 

The problem solving level maintains meta-level information about the problem solving 
tasks, similar to the problem solving level actions described by Litman and Allen [1987] 
and Lambert and Carberry [1991]. Actions at this level are problem solving actions such as 
"solve goal directly," "decompose goal into subproblems," "resolve resource confiict," and 
so on. This level supports processes such as identifying the task desired {e.g., distinguishing 
between an elaboration of the plan for the current goal and shifting to another goal). It does 
this by maintaining an abstract tree of goals and information on which part of the problem is 
currently in focus. It also supports the process of determining the scope of problem solving 
actions such as cancellations and modifications. Finally, it supports discussion of the problem 
solving strategy to be used, and can maintain ordering constraints on when certain problem 

solving tasks should be performed. 

When more sophisticated domain-level reasoning is required, we rely on the services of a 
set of domain reasoners. An abstract plan representation level manages the interface between 
the mixed-initiative system and these various domain specialists, matching open issues with 
reasoners and coordinating the responses. These reasoners might be, for example, a scheduler 
or an Internet agent that can retrieve information. The key to integrating such components is 
the ability to specify and reason about their capabilities. That is, the abstract plan reasoner 
needs to be able to reason about which domain reasoners might be suitable for what tasks, 
and interpret their results.   This is complicated by the desire to use existing components 
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"ofF the shelf" as much as possible. The TRAINS system uses KQML [Finin et ai, 1993] to 
anticipate future integration efforts. 

We have been concerned from the outset with the evaluation of our work, that is, how 
to know if we are making progress. This has traditionally been a problem for interactive 
systems and planners. Our current system has built into it a simple set of task-related 
metrics that are recorded for each interaction. As we refine those metrics, we can explore 
whether particular strategies are better than others at getting the task done, or whether 
the presence of certain components helps or hinders performance. Our first evaluation of 
the system is reported in [Allen et a/., 1996], where we show that most people can use the 
TRAINS system to solve 3-route problems effectively with virtually no training. 

The TRAINS-95 system is a concrete first step towards a mixed-initiative planning as- 
sistant. We have demonstrated the feasibility of the dialogue-based approach to interactive 
planning, and have developed a substantial infrastructure for future research. More infor- 
mation on the TRAINS-95 system can be found in [Ferguson et a/., 1996] and [Allen et ai, 
1996], and from our web site at URL: 

http://www.cs.rochester.edu/research/trains/ 
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4. Representing Action and Plans 

A significant part of this project has focused on exploring common sense reasoning in the 
context of reasoning about actions and plans. The goal of the research is theories that 
account for human abilities to reason and communicate about their plans and actions, and 
systems based on those theories that can interact with people in a natural manner. 

We are interested in common sense theories. This means, in particular, that techniques 
we develop must represent the world in a manner that is "natural" for people, which we 
take to mean that they can be described and discussed in natural language. Taking lan- 
guage descriptions seriously imposes quite strict breadth requirements on the theories. Of 
course, any theory must idealize certain aspects of the problem, and any computer program 
necessarily has its limits. But oversimplification is a problem that has led AT research down 
several unpromising (and worse, misleading) paths. 

Reasoning about actions and plans has always been a core issue in artificial inteUigence 
research. Indeed, the underlying questions of causality, intention, and physical intuitions 
have a rich intellectual history in fields ranging from philosophy to physics, although this 
history has not always been appreciated by researchers in AI. Our research addressed two 
main thrusts that span this spectrum. 

4.1     Formal Foundations of Reasoning about Action 
and Time 

The first was an exploration of the representation of actions in order to support natural, com- 
mon sense reasoning. Traditional models of action in AI have been extremely weak, unable 
to represent such things as simultaneous actions or actions with durations. Of course, such 
phenomena are ubiquitous in realistic environments, and arise in any natural description 
of a scenario. Building on work by Allen [1984]), we re-examined the foundations of Inter- 
val Temporal Logic and its use in formalizing realistic domains naturally [Ferguson, 1992; 
Allen and Ferguson, 1994]. In this work we revisit the logical foundations of temporal logic, 
reexamining some of the very fundamental properties of the logic and discussing alternatives. 
Although quite technical, many of the points have clear natural analogs in terms of distinc- 
tions that people make in reasoning about action and time. We then move on to consider 
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actions and causality, and introduce events as an important part of the ontology. Events 
consist of something happening, as opposed to actions that are specific things that agents 
can do in the world, some of which result in events occurring. The connection between 
actions and events is context-dependent—an action doesn't always have the same effect. 

One classical difficulty that besets planning (and reasoning about action in general) in any 
reasonably complex world is the Frame Problem, i.e., the problem of succinctly characterizing 
and efficiently inferring what doesn't change when actions are performed. Schubert [1990] 
proposed a method of dealing simply with the Frame Problem (in non-probabilistic worlds) 
called Explanation Closure (EC). This method allows efficient, monotonic inference of non- 
change when considering a set of actions to be taken. During this project we explored this 
theory's potential and limitations for reasoning about actions and change. Using a fairly 
standard situation calculus representation, we tested it on the suite of problems collected 
by Sandewall [1992] for the purpose of examining the properties of various non monotonic 
approaches. We found that EC in combination with simple "action closure" (AC) axioms 
(stating that certain actions were the only ones taken within a certain setting) allowed simple 
and direct solution of all of Sandewall's problems, except for one probabilistic problem (a 
version of McCarthy's "potato in the tailpipe" problem). A probability-logic solution was 
proposed for this last problem, and it is expected that EC/AC methods can be generalized to 
probabilistic worlds. This work was reported as a contribution to a special issue on Actions 
and Processes of the Journal of Logic and Computation [Schubert, 1994]. 

We also explored the use of explanation closure with our Interval Temporal Logic repre- 
sentation. We again found that is well-suited to solving the Sandewall test suite problems, 
as well as being capable of handling a wide range of problems involving external events and 
simultaneous actions [Allen and Ferguson, 1994]. 

4.2    Reasoning about Plans 

Another aspect of our work in this area was concerned with formal models of planning, or 
more generally, reasoning about plans. This obviously builds on the work on representing 
and reasoning about action, since plans fundamentally involve action. However, when we 
consider the many cognitive tasks that people perform with plans, especially in mixed- 
initiative planning, it becomes clear that plans involve more than just sequences of actions, 
contrary to the more-or-less standard approaches seen in AI planning formalisms. 

Our early work on mixed-initiative planning [Ferguson and Allen, 1993b; Ferguson and 
Allen, 1993a], looked at approaches to plan reasoning that unified these tasks. Previous 
work on the various plan reasoning tasks had generally been disjoint, to the extent that the 
planning and plan recognition communities had little in common. When we started to take 
seriously the interactive nature of mixed-initiative planning, we saw that plan communication 
was the crucial task [Ferguson and Allen, 1994]. Informal statistics gathered from work on 
the TRAINS system (Figure 3.1 in Section 3) showed that many of the utterances were 
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concerned with keeping the conversation going: confirming, rejecting, clarifying, and so 
on. A relatively low proportion of the utterances were doing what might be recognizable 
as "AI planning," namely generating sequences of actions to satisfy a goal. We therefore 
proposed a formalism for representing plans which treats them as arguments in a formal 
system of defeasible reasoning (now called "computational dialectics"). This is an approach 
to nonmonotonic reasoning where arguments can be put forth to support some conclusion, 
drawing on the facts at hand as well as cases from previous experience. These arguments 
can be defeated by other arguments that attack their premises or methods, these attacks can 
themselves be defeated, and so on, until a conclusion is established that cannot be defeated 
(or all alternatives are exhausted). There are a variety of interesting technical details about 
argumentation as a form of inference (for example, it is clearly nonmonotonic, and in very 
interesting ways). But the main attraction of the model is its apparent similarity with the 
communicative "give-and-take" we see during mixed-initiative planning. 

Ferguson's dissertation [1995] goes into more detail regarding argument-based reasoning, 
and looks at formalizing plans more concretely as arguments. That is, it is clear that we can 
allow arguments to be built from a knowledge base that contains the definitions of actions 
and events, causal rules, and so on. But what does this buy us? To begin with, the fact 
that arguments make explicit the assumptions they depend on allows us to connect them 
to an underlying logic of action and time. We also describe how the explanation closure 
approach used effectively in the representation of action plays a role in the formalization of 
plans as arguments. Finally, we look at recasting some existing planning formalisms, despite 
their weak expressivity, within the argument system approach, and show how some of the 
techniques and heuristics used traditionally appear as properties of the argument system. 

4.3    Decision Theory, Simulation, and Planning 

Another part of the project explored some applications of decision theory to plan reasoning. 
Developing a planning system that directly uses decision theory to generate plans is not to 
be successful because we are unlikely to have sufficiently detailed knowledge of the requisite 
probabilities and, if we did, the computations necessary to generate the an optimal plan 
would be overwhelming. Thus we concentrated on providing services that would extend the 
range of situations that a traditional planner could handle. These are: 

• Determining the most likely (atomic) action to achieve a goal, 

• Determining effective methods of executing plans abstract plans, and 

• Monitoring the execution of plans and using this experience to improve the model. 

To do this, we developed an event-based language for applying statistical tests to the problem 
of choosing appropriate actions when planning. Statistics are kept on the number of event 
types the agent encounters, and these statistics guide the choice of actions.    Statistical 
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tests allow one discount probabilities for which one has only weak evidence. This work was 
presented at the International Conference on Statistics and Artificial Intelligence [Martin and 
Allen, 1993]. This knowledge representation language allows a planning system to reason 
about probability given its experience. By doing this, it links knowledge representation and 
machine learning. Programmers can encode their uncertain knowledge using the knowledge 
representation language described here, then, as the machine gathers experience, it can come 
to new conclusions about the uncertain knowledge the programmer encoded. Most current 
techniques are inadequate for this task because they do not distinguish carefully between 
the subjective probability the programmer encodes as the system's initial knowledge, and 
observations the system makes. Without such a distinction, connecting subjective probability 
and experience is difficult. The knowledge representation described here makes the necessary 
distinction and describes a technique for combining them. 

This knowledge representation language is also unusual, if not unique, in that it uses 
interval estimates of probability. Interval estimates of probability are possible because we 
assume a frequentist definition of probability, another unusual feature of this knowledge 
representation language. Interval estimates of probability give a planner using the language 
the ability to reason about the strength of evidence it has for a probability. 

In a related effort, we explored the use of simulation as a way of allowing a more-or-less 
traditional planner to handle mode complex situations, especially interacting simultaneous 
actions and external events. Rather than maintaining a STRIPS-style state-based represen- 
tation to represent the changing situation, we used a coarse grained simulator that would 
simulate the execution of the plan based on an extended definition of the plan operators 
(with probabilities) and a model of the likelihood of various external events occurring in 
different situations. We use a fairly traditional hierarchical planer to generate possible plans 
which are then evaluated by a component that uses the results of many simulation runs to 
estimate the probabilities of various effects. Based on these results, the hierarchical planner 
can then extend the plan or backtrack in order to improve the probability of the desired 
effects. A preliminary report on this ongoing work is in [Yampratoom, 1994]. 
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5. Temporal Reasoning Systems 

The overall direction of our work in temporal reasoning during this project has been develop 
theoretical foundations and practical tools for scalable temporal reasoning and planning, 
keeping in mind the eventual needs in a transportation planning domain like TRAINS. 

The results can be divided into theoretical development and practical implementation 
of extremely efficient methods for the "time point algebra" (relations using <, <, =, ^) 
and theoretical complexity analysis of disjunctive temporal relations, and development of 
efficient methods for handling such disjunctions. 

5.1     Scalable Temporal Reasoning 

The starting point for this work was the TimeGraph I system [Miller and Schubert, 1990]. 
In experiments conducted by Yampratoom and Allen [1993], this system showed promise 
of being able to outperform all other existing temporal reasoning systems on large-scale 
TRAINS-world problems, involving quahtative time ordering information as well as numer- 
ical time constraints. The system uses a DAG representation of time point relations, with 
a superimposed metagraph structure that partitions the DAG into "time chains." Inference 
of implicit time-point relations is often near constant-time. Some weaknesses of TimeGraph 
I were the dependence of efficiency on the order in which temporal information is supplied, 
and inability to handle inequations of form x ^ y iox time points x and y. Also its reasoning 
is incomplete in the presence of numeric constraints. 

Our first work was aimed initially at adding inequations to a qualitative time graph, 
i.e., one without numerical information. (This means extending the convex point algebra 
to the full point algebra.) Our theoretical analysis uncovered a serious flaw in the proof of 
a lemma by van Beek and Cohen [1990], which is crucial to designing complete inference 
methods for time-point-algebra networks. We were able to formulate a completely new 
(and conceptually simpler) proof of the lemma [Gerevini and Schubert, 1993a; Gerevini and 
Schubert, 1995b], thus providing a sound basis for system-building. We further formulated 
efficient new algorithms for the "bottleneck" problem of explicitly deriving relations of form 
X < y that are implicit in sets of relations of forms x = y,w ^ z. 

We then proceeded to implement a new system, TimeGraph II, which improved on Time- 
Graph I in several respects:  it builds a near-optimal TimeGraph structure for a given set 
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of temporal relations in linear time and space, also checking for consistency; it handles the 
full time-point algebra (but not numerical constraints); and it uses improved data structures 
and algorithms for graph construction and for inference, achieving a speed up of about a 
factor of 2 (for inference) over TimeGraph I. Furthermore, the implementation of the new 
algorithm for deriving implicit relations of form x < y was shown experimentally to be 
orders of magnitude more efficient than the "minimal labels" algorithm that had been em- 
ployed by van Beek [1992]. To our knowledge, TimeGraph II significantly outperforms all 
other comparable temporal reasoning systems. A theoretical description of TimeGraph II 
and experimental results are described in [Gerevini and Schubert, 1993b] (see also [Gerevini 
and Schubert, 1995a]). Descriptions of the use of TimeGraph I and II as temporal rea- 
soning tools are given in [Gerevini et ai, 1993], and more fully [Gerevini et ai, 1995]. The 
version of TimeGraph II described there also includes methods for handling disjunctions (de- 
scribed below), and is available via anonymous ftp to ftp.cs.rochester.edu, in directory 
pub/packages/knowledge-tools, files tg-ii-l.tar.gz and tg-ii.readme. 

5.2     Disjunctive temporal relations 

The greatest source of computational complexity in qualitative temporal reasoning comes 
from disjunctive constraints such as (x < y) V {w < z), since such constraints give rise to a 
combinatorial explosion in the pairwise orderings of time points that have to be considered 
in looking for a consistent solution. Yet such constraints are very important in planning and 
scheduling, since they are often necessary to ensure disjointness of intervals corresponding 
to events that must be scheduled in series {e.g., because they demand a common resource), 
or exclusion of a point event from the interval between two other events {e.g., where one 
of these events establishes a preconditions for the other, and insertion of the third event 
would "clobber" the precondition). These cases give rise to 3-point instances of disjunctive 
constraints, such as [x < ymin) V (a; > ymax). 

Surprisingly, the complexity of such "point-interval exclusion" relations, as well as interval- 
interval exclusion, was not well understood, despite some relevant results on disjunctive 
relations on pairs of intervals by Golumbic and Shamir [1992], among others. This moti- 
vated a systematic theoretical investigation of point-based temporal disjointness, building 
on Golumbic and Shamir's work. We investigated the complexity of consistency-testing and 
solution-finding for 56 possible 3-point and 4-point relations (allowing for strictness and non- 
strictness of various ordering relations involved), and found that in the majority of cases these 
problems are NP-complete. The few polynomial cases are not very useful. (For instance, 
sets of interval-interval exclusion relations are trivially consistent when all ordering relations 
are non strict, merely because all given points can be consistently collapsed into a single 
time point). The strongest NP-completeness result concerns sets of very weak point-interval 
exclusion relations, of form "a: is strictly before or strictly after the interval formed by y, z, 
where y j^ z (but it is unspecified whether y < z ov z < yy. Preliminary results are reported 
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in [Gerevini and Schubert, 1993a] and the complete analysis is in [Gerevini and Schubert, 
1994b]. 

These NP-completeness results led naturally to the next research issue: are there practi- 
cal ways to deal with large sets of temporal relations that include disjunctions, despite the 
worst-case intractability of consistency testing [etc.] for such problems? Our interest was in 
complete methods, as opposed to polynomial-time but incomplete methods such as path con- 
sistency. The methods we developed were again based on TimeGraph structures, augmented 
with arbitrary sets of binary disjunctions of form {x < y)\/ {w < z). The consistency-testing 
and solution-finding methods consist of a set of polynomial-time preprocessing techniques, 
followed by a form of intelligent backtrack search. As an example of a preprocessing step 
applied to (x < y) V (u; < z), the disjunct {x < y) can be tested very quickly in the Time- 
Graph for truth or falsity. If it is true, the disjunction can be dropped; if it is false, the 
disjunct can be dropped. Of course in general the relations comprising the TimeGraph need 
not decide the truth or falsity of a disjunct, and search may be needed to determine which 
disjunct (if any) can consistently be made true. 

Our very efficient preprocessing techniques turned out to have the interesting property 
that they are sufficient by themselves to determine consistency for Nebel and Buerckert's 
ORD-Horn algebra [Nebel and Buerckert, 1993], the maximal tractable subalgebra of Allen's 
interval algebra lA (among those subalgebras that include all the pointizable interval rela- 
tions). Furthermore, our intelligent backtracking technique also turned out to be practically 
efficient, running in approximately quadratic time on average (relative to the number of 
given temporal relations, including disjunctive ones). These theoretical and experimental 
results are reported in [Gerevini and Schubert, 1994a; Gerevini and Schubert, 1995a]. 

In summary, our temporal reasoning work has led to complete, theoretically sound meth- 
ods for qualitative reasoning about large sets of temporal relations that are extremely efficient 
in practice, allowing for fast inference of implicit relations, consistency testing, and solution- 
finding. Future work includes the design of methods that work well incrementally, i.e., when 
temporal relations may be added at any time; integration of qualitative relations with quan- 
titative bounds (as in TimeGraph I, but with completeness guarantees); and generalization 
of disjunctive reasoning to handle a greater variety of disjunctions. With certain additions 
(including some ternary and quartic disjunctions) our methods would properly subsume lA, 
whereas at present they neither subsume lA nor are subsumed by it. However, our tech- 
niques as they stand and TimeGraph II seem well-suited to many problems, including the 
sorts of planning problems that provided our motivation. 
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6. Improving the Effectiveness of 
"Well-Founded" Planning 

While there are some practically oriented planning systems such as SIPE [Wilkins, 1988] and 
0-Plan [Tate et ai, 1994] that could be applied to problems of modest size, these systems 
are quite complex, become ineffectual for large problems, and are logically incomplete and 
theoretically rather opaque. An ideal planner would be one that is simple and "well-founded" 
{i.e., theoretically transparent, sound and complete), and scales up well to large problems. 
At present, however, well-founded planners such as UCPOP [Penberthy and Weld, 1992] 
are unable to solve any but trivially small problems. Our goal has been to find ways of 
accelerating such planners so as to bring them closer to practical usefulness. 

Besides being applicable to the frame problem. Explanation Closure can also be used 
to infer actions that must be taken in any solution to a problem. Gerevini and Schubert 
explored the possibility of using such models to guide planners like UCPOP. It turned out 
that such planners are easily modified to emphasize addition of necessary actions, a strategy 
we term "zero commitment." As it happens, implementing zero-commitment in UCPOP 
does not require any technique as logically general as EC and AC, since UCPOP has a 
built-in STRIPS assumption, i.e., any properties that are not explicitly declared to change 
in the definition of an action in fact remain unchanged when that action is instantiated. 
Thus, it was possible to experiment with the zero commitment strategy with only minor 
modifications to UCPOP; all that is required is a change to UCPOP's strategy for selecting 
"open conditions" (goals still to be established) so as to favor goals that can only be achieved 
by a unique action instance. Other goals are scheduled on a LIFO basis, and we term the 
resulting strategy ZLIFO. 

ZLIFO turned out to be extremely effective, especially when combined with a modification 
of UCPOP's default A* strategy for selecting a plan to work on. The "mistake" in the default 
plan-selection strategy is to include a term reflecting the number of potential "clobbering" 
interactions between effects of actions and protected conditions (causal links). By eliminating 
or diminishing this term, we obtained large performance improvements in a wide spectrum 
of test problems from the UCPOP test suite, among others. Together, the new goal-selection 
and plan-selection strategies gave order of magnitude speedups, for all problems that were 
difficult for UCPOP to begin with. The hardest problems showed the greatest speedups 
{e.g., from several minutes of CPU time to a fraction of a second, with similar improvements 
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in number of plans generated/ explored).   The analysis and experiments are reported in 

[Schubert and Gerevini, 1995]. 

Finally, the most recent work on improving well-founded planning is concerned with the 
potential benefits of preprocessing operator and domain descriptions. The idea is to extract 
information that can be used to radically reduce the number of actions and states that need 
to be considered during planning. This holds great promise for making well-founded planning 

practical. 

Our first effort in this direction was based on the observation that UCPOP generates 
many impossible actions when it performs goal regression, i.e., actions with parameter values 
that cannot possibly be instantiated, starting in the given initial conditions. We developed a 
preprocessing technique to calculate parameter domains (sets of constants) for all operators, 
based on "forward" propagation of constants. The idea is to match the initial conditions 
to all operator preconditions and thus associate potential values with some parameters in 
some operator preconditions. For those operators that had all preconditions matched, the 
potential values of the same parameter occurring in different preconditions can be intersected, 
and the effects of the operator can again be matched to operator preconditions, passing on 
the intersected value sets of the parameters; etc.. At the end all operator parameters have 
associated domains. What makes the algorithm nontrivial is the allowance in UCPOP for 
conditional effects in operator definitions, which may or may not lead to actual effects in 

particular uses of the operator. 

A theoretical analysis of this technique showed that it runs in low-order polynomial 
time (in terms of the combined size of the operator specifications and the initial/goal state 
specifications). Our implementation gave negligible running times (relative to planning cost). 
We then modified UCPOP so that it eliminates actions with impossible parameter values (as 
determined by the precalculated domains), and also so that it eliminates apparent threats 
that would require impossible parameter values to be actualized. Our experimental tests 
concentrated on some of the harder problems from the UCPOP suite and on TRAINS world 
problems of the type actually used for some of the simplest TRAINS-91/93 dialogues. Typical 
speedups of a factor of 10 were obtained (beyond those obtained by our goal and plan selection 
strategies), bringing some simple problems within the realm of feasibiUty for UCPOP that 
previously could not be solved at all. A paper on this work has been accepted for conference 

presentation [Gerevini and Schubert, 1996]. 

In summary, our work on improving well-founded planning has led to order-of-magnitude 
speedups in state-of-the-art partial order planners, and further work should be able to make 
such planning practical. Current work on a preprocessing technique that infers state con- 
straints from operator structure and initial conditions promises to provide another powerful 
means for cutting down search during planning. Another important future task is to modify 
our efficient temporal reasoning methods for use in planning. It should be possible to elimi- 
nate much of the searching in planning by using a TimeGraph-like reasoner to quickly find 

temporally consistent scenarios. 
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Appendix B 

TRAINS-95: Towards a 
Mixed-Initiative Planning Assistant* 

Abstract 

We have been examining mixed-initiative planning systems in the context of command and 
control or logistical overview situations. In such environments, the human and the computer 
must work together in a very tightly coupled way to solve problems that neither alone 
could manage. In this paper, we describe our implementation of a prototype \ersion of 
such a system, TRAINS-95, which helps a manager solve routing problems in a simple 
transportation domain. Interestingly perhaps, traditional planning technology does not play 
a major role in the system, and in fact it is difficult to see how such components might fit 
into a mixed-initiative system. We describe some of these issues, and present our agenda for 
future research into mixed-initiative plan reasoning. At this writing, the TRAINS-9o system 
has been used by more than 100 people to solve simple problems at various conferences and 
workshops, and in our experiments. 

1     Introduction 

In command and control situations and logistics planning, a human planner faces several 
difficult problems. First, there is a surplus of data, only a small amount of which is actually 
information relevant to the current task. In fact, what data is relevant cannot be determined 
in advance and only becomes clear as the situation and the plan develop. Second, the plans 
being considered are large and complex, and it is beyond human capabilities to manage all 
the details effectively. Automated planning systems are better able in principle to handle the 

'This material is based on: George Ferguson, James Allen, and Brad Miller, "TRAINS-95: Towards a 
Mixed-Initiative Planning Assistant," Proceedings of the Third International Conference on Artificial Intel- 
ligence Planning Systems (AIPS-96), pp. 70-77, Edinburgh, Scotland, 29-31 May, 1996. 
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scale, but are hard to apply because of the under-specified initial situations, and the fact that 
many planning decisions are made on an intuitive basis that cannot be effectively quantified. 
As a result, neither the human or the computer can effectively solve such planning problems 
in isolation. This problem motivates an interest in mixed-initiative planning systems, where 
the computer acts as a collaborating assistant to the human, anticipating needs, performing 
the tasks it is well suited for, and leaving the remaining tasks to the human. By cooperating, 
the human-computer "team" may be able to effectively deal with problems that neither could 

handle alone. 

To explore these aspects of mixed-initiative planning, we have built a prototype system, 
TRAINS-95, that helps a manager solve routing problems in a simple transportation domain. 
The manager is presented with a map displaying cities and rail connections between them, as 
shown in Figure 1. The system generates random problems that require planning routes for 
a set of engines to a set of destinations. Various environmental factors can arise during the 
interaction, which the manager and system must then plan to accommodate. The system 
can interact using both spoken and typed English, as well as graphical displays and controls. 

Our goal was a robust, modular, multi-modal, mixed-initiative planning assistant. To be 
more specific, by "robustness" we mean that no matter what occurs during the interaction, 
the system not only doesn't crash, but does something to indicate its understanding of the 
manager's intentions and its own attempts to further the plan. By "modular" we are taking 
seriously the idea that there are, or will be shortly, a variety of knowledge sources, reasoning 
agents, and display engines available as resources that the system can employ. Examples 
include weather information, newsfeeds, map servers, and so on, as well as "off-the-shelf" 
technology such as speech recognizers and generators. As we will describe, many of the 
components of TRAINS-95 are themselves autonomous modules connected by a general- 

purpose message-passing process manager. 

By "multi-modal" we mean that there are a multitude of ways of communicating between 
humans and computers, include speech input and output, written text, and graphical displays 
such as maps, charts, forms, and the like, for both input and output. From the outset, we 
intended that TRAINS-95 should accommodate all of these, allowing the human to interact 
in whatever way seems most natural to them. In some situations existing procedures may 
impose constraints on what form communication can take {e.g., an operator may be trained 
on a particular type of display). In other cases determining the appropriate modality is an 
ongoing process, and the subject of current research. By treating all modalities as linguistic, 
that is, as a form of language, we obtain a powerful unifying model of the interaction as a 
form of dialogue. Of course, multi-modal communication raises a new set of issues for all 
aspects of the system, as we will discuss later. 

Finally, by "mixed-initiative" we mean that both the system and the human are on 
roughly equal ground as participants in the dialogue. This is not to say that they are equals, 
since clearly they are good at different things. But in a truly mixed-initiative system, both 
participants can do what they do best. The human typically has knowledge of the high-level 
goals and means of achieving them, while of course, the computer is good at managing the 
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Figure 1: TRAINS-95 System Map Display 

multitude of low-level details that go into such plans. As well, in realistic situations, the 
human may be guided by principles that are difficult or impossible to quantify precisely, 
making it impossible to fully automate the task and replace them. Even if this were possible 
in principle, the resulting master-slave style of communication would hardly be natural and 
probably wouldn't be very efficient. 

The next section describes our current implementation, TRAINS-95, including design 
goals, our approach to the aspects outlined above, and lessons learned. The key points 
are: (1) that dialogue provides the context required for successful interaction independent 
of input modality; and (2) that the plan reasoning requirements of mixed-initiative systems 
differ markedly from the specifications of traditional planners. We elaborate on these points 
in the following section. In the final section we present some of the many research issues 
raised by our work on TRAINS-95, and describe the directions we are pursuing in addressing 
them. 

2    The TRAINS-95 System 

The TRAINS-95 system is implemented as a set of independent modules, as shown in Fig- 
ure 2. The modules shown in the dashed box are implemented within a single Lisp program, 
otherwise each module is a separate Unix process, and modules communicate by exchang- 
ing messages. We have developed a general-purpose Unix process manager that manages 
the various processes and their communication. It performs the mapping between logical 
module names and physical processes, and provides services such as broadcast messages and 
complete logging and replay of message exchanges.   It is itself controlled by messages, for 
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Figure 2: TRAINS-95 System Architecture 

example to create a new process, restart or kill a module, register interest in another module, 

and so on. 

In building the current system, we have concentrated on the interface and infrastructure 
components, in order to get a system that naive users could interact with as soon as possible. 
In this section we will describe the various modules and their interactions, concentrating on 
those aspects central to the goal of a robust, multi-modal application. The next section pro- 
vides an example of the system in action and discusses the implications for mixed-initiative 

planning systems. 

2.1     Speech and Display Modules 

For speech input in TRAINS-95, we use the Sphinx-II recognizer from CMU [Huang et a/., 
1992], trained on the ATIS airhne reservation corpus, with a vocabulary of approximately 
3000 words. We dehberately did not build a special recognizer for our task or domain, since 
we wanted to investigate using off-the-shelf components directly as "black boxes" in our 
system. Of course, this adversely impacts the rest of the system, since many of the words in 
the ATIS corpus are meaningless in the simple transportation domain we are dealing with in 
TRAINS-95 {e.g., "DC3," "Riyadh," and "movie"). We considered this an appropriate test 
of robustness, and something which any system that intends to use such "plug-and-play" 
components must ultimately address. In this particular case, the output of the module is 
simple enough, namely a sequence of words (and control messages for when a hypothesis 
needs to be revised), that the semantics of its messages is obvious. 

To compensate for the under-constrained speech recognizer, its output is post-processed 
by a domain- and/or speaker-dependent module [Ringger, 1995].   This module uses tech- 
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niques from machine translation to "correct" the output of the recognizer, based on a sta- 
tistical model derived from a corpus of previous runs of the system. 

The speech generation component of TRAINS-95 is built on the TrueTalk generator from 
Entropies, Inc. This program provides high-quality speech generation and a wide range of 
intonational and inflectional controls. 

Although speech is the most exciting and challenging modality, other modalities are 
provided by an object-oriented display module. For input, it allows typed input, menu 
selections, and direct mousing on display elements, all of which are broadcast to other 
modules. Output to the display is performed using a fairly rich object-oriented language, 
allowing a variety of graphical elements to be defined and displayed. The current version of 
the display supports object types such as "engine," "track," and "region;" in the immediate 
future this will be generalized even further. Several types of dialog box can be popped up 
(under the control of the language components), allowing yet another input modality. 

2.2     Language and Dialogue Processing 

The core of the TRAINS-95 system is the set of modules that perform language understand- 
ing and dialogue processing tasks. The first of these is a robust parsing system based on a 
bottom-up chart parser [Allen, 1994]. The parser uses a fairly comprehensive lexicon of 1700 
words and grammar of 275 rules, both built from the TRAINS dialogue corpus [Heeman and 
Allen, 1995]. The parser accepts input from all the input modules—we treat spoken, typed, 
and moused input uniformly as linguistic communication. The parser's output is a set of 
speech acts expressing the content of the utterance. Since the majority of utterances in spo- 
ken dialogue are not complete syntactic sentences, the traditional chart parser is augmented 
with a set of monitors. If a complete parse is not found, these monitors scan the chart and 
attempt to piece together a partial representation of what was said. This approach to natu- 
ral language understanding is crucial to meeting the goal of a robust system. It also means 
that the system can often interact eff'ectively even at very low speech recognition rates. 

After the parser has determined a set of possible speech acts for the utterance, the 
reference module deals with grounding any terms to the objects in the domain {e.g., '"to 
Chicago, " "send it"), or turning indefinite references into a query to be resolved later (e.g., 
"an engine"). 

The verbal reasoner is then responsible for interpreting the speech acts in context, query- 
ing various knowledge sources in order to understand or address the speech act, formulating 
responses, and maintaining the system's idea of the state of the discourse. The verbal rea- 
soner architecture is based on a set of prioritized rules that match patterns in the input 
speech acts. These rules again allow robust processing the face of partial or ill-formed input. 
The presence of an element such as "from Avon" may allow it to determine that the user 
is requesting a plan incorporation. These rules rely heavily on the discourse context, that 
collection of knowledge and beliefs that describe the state of the interaction.   In fact, it 
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is precisely this context that makes dialogue-based interaction so much more flexible and 
powerful than one-shot transaction-based communication. 

Speech acts that appear to be requests to incorporate a constraint on a prior system 
action or to extend the current plan are passed on to the problem solver. This module is 
also based on a prioritized set of rules, this time for dealing with user responses to system 
questions or with plan corrections and extensions. These rules turn the information into 
queries and updates to a domain reasoner, e.g., for a path that fits the constraints "from 
Chicago to New York via Pittsburgh." If fragmentary information is supplied from the 
verbal reasoner (which will generally try to fill it out with information from the discourse 

context), then the problem solver attempts to incorporate the fragment into what it knows 
about the current state of the plan. For instance, if the prior action had been to propose 
a route, and the verbal reasoner did not indicate in its request to the problem solver that 
the current request is part of a rejection, then it will attempt to select another goal the user 
may have informed it of, and incorporate the fragment with respect to that goal (presuming 
the fragment does not contain information that indicates a goal shift). 

The output of the verbal reasoner is a set of speech acts that the system wants to commu- 
nicate to the user. The generation module decides how to actually achieve the communication 
using either the display or the speech generator, or both. This module also uses prioritized 
rules to match requested speech acts to appropriate means of expressing them. For instance, 
a request to the generator to warn the user of track repair along the route between Chicago 
and Toledo will result in telling the display to flash the track segment red, and simulta- 
neously speak the phrase "the track between Chicago and Toledo is currently undergoing 
repair." The generation module (along with reference) maintains a representation of what 
the system believes the user already knows, to prevent overly verbose or confusing output. 

The verbal reasoning components of TRAINS-95 attempt to provide a robust agent that 
keeps the dialogue going. The approach is generally to instantiate the current plan as soon 
as possible, communicate the results, and allow the user to correct or elaborate it. This 
"look then leap" strategy will be further described in the next section. 

2.3     Domain Reasoning 

The domain reasoner in TRAINS-95 maintains a knowledge base describing the state of the 
world and provides planning and plan recognition services to the language modules. For the 
simple route-planning domain, of course, it would be easy to build a perfect reasoner that 
solved the problems as soon as the manager had stated their goals. However, not only is 
it unlikely that we will ever be able to build such a reasoner for a realistic domain, in the 
next section we claim that such a system is not necessarily appropriate for mixed-initiative 
planning. We therefore deliberately weakened the TRAINS-95 domain reasoner in order to 
force the manager to interact in order to overcome its shortcomings. The route planner 
can therefore only plan route segments less than four hops long, and for those it chooses a 
random path. The knowledge base maintains an accurate view of the map, and allows various 
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"natural" events such as bad weather or track maintenance to arise during the interaction. 
These also force interaction in order to revise plans to take account of them. 

An important aspect of the type of domain reasoning that is performed in TRAINS-95 is 
that it is highly incremental and incorporates aspects of both planning and plan recognition 
in a tightly-coupled way. For example, the domain reasoner may be asked to incorporate 
a new constraint on an existing plan, e.g.^ that it go via a particular city. The domain 
reasoner must first recognize how that constraint fits into the plan (a task shared with the 
language modules, for example in determining which route is being modified). It then adds 
the constraint to the plan, possibly removing other softer constraints (such as to try an 
avoid cities known to be congested). It must then plan a new route satisfying the current 
constraints, preferably one that makes the smallest possible change to the plan already under 
consideration. 

This model, it seems to us, is quite unlike the traditional view of planning, where a goal 
is specified (completely) and the planner goes off and produces a plan to achieve it. This 
raises a question as to the role of traditional planning in mixed-initiative systems. The next 
section elaborates on this point. 

3    Where's the Planning in Mixed-Initiative Planning? 

Figure 3 presents a example of an actual dialogue between a user and the TRAINS-95 
system, starting from the situation shown in Figure 1. The task is admittedly very simple 
and, as we noted previously, the system's planning abilities were deliberately limited in order 
to encourage interaction. The point of the dialogue is to emphasize that this is indeed a 
mixed-initiative planning system. The user and the system are constructing, evaluating, and 
correcting plans, albeit simple ones. The environment is dynamic, with problems such as 
weather and traffic occurring independent of the planner. The human manager's goals and 
preferences need not be expHcit, as when they choose to ignore the problem at Toledo. The 
system has clear limitations, as it would in any realistic domain, and it understands how to 
deal with these by interacting with the manager. 

Although it's doing planning, however, a mixed-initiative planning system isn't do- 
ing what we might recognize as "traditional" planning, that is, constructing a sequence 
of operators from a fully-specified initial situation to a stated goal. In fact, in an in- 
formal analysis of one hour of human-human problem-solving dialogues (part of a larger 
eight hour study [Heeman and Allen, 1995]), we found that a relatively small percent- 
age of the utterances, 23%, dealt with explicitly adding or refining actions in the plan. 
Figure 4 summarizes this analysis. Note the importance of being able to explicitly eval- 
uate and compare options, even between humans of roughly equal ability. In human- 
computer interactions, we would expect this number to increase, as the computer can 
perform more and larger analyses. Similarly, even in the very simple TRAINS world, 
a significant portion of the communication was concerned with establishing the state of 
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1. M: 
2. S: 
3. M: 

4. S: 

5. M 
6. S 

7. M 
8. S 

9. M 
10. S 
11. M 
12. S 
13. M 
14. S 
15. M 

I need to get to Detroit, Syracuse, and Montreal. 
Ok. [highlights the three cities] 

Let's send the trains from Chicago to Detroit. 

Ok. [draws route from Chicago to Detroit via Toledo] 

But the terminal at Toledo is delaying traffic due to bad weather. 

Trains will take an additional five hours to move through there. 
[highlight Toledo red] 

That's ok. Now let's go from Atlanta up to Syracuse. 

Please tell me a route to use to get from Atlanta to Syracuse. 

[highlight engine at Atlanta and city Syracuse] 

Go via Charleston and Pittsburgh. 
Ok. [draws route via Cincinnati] 

But traffic through Cincinnati is being delayed due to construction. 

Ok, let's go via Charleston and Buffalo instead. 

No problem, [draws route] 

That's great. 

I hope it was helpful. 
Finally,  I want to go to Montreal from Philadelphia. 
Ok.   [draws route] 
That's great.   I'm done. 

Figure 3: Actual TRAINS-95 Dialogue 

Evaluation/comparison of options 25% 
Suggesting courses of action 23% 
Establishing world state 13% 
Clarifying/confirming communication 13% 
Discussing problem solving strategy 10% 
Summarizing courses of action 10% 
Identifying problems/alternatives 7% 

Figure 4: Analysis of one hour of human-human problem-solving dialogues 
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the world, and we would expect this to increase in a more realistic environment. Simi- 
lar conclusions about the nature of interactive planning are presented in [Ferguson, 1995; 
Pollack, 1992]. 

Why is it that mixed-initiative planning seems to involve so little traditional planning 
(finding courses of action from initial situation to goal)? In the first place, it is because the 
initial situation is usually incompletely specified, whether because of changing conditions as 
in our simple example or in a more realistic setting because it is simply too huge to represent. 
Rather, the determination of what aspects of the world are relevant to the plan is a dynamic 
process that is intimately connected with the exploration and elaboration of the plan. It 
would be impossible in practice to extract such criteria from the human manager offline. 

Similarly, the goals of the plan in the mixed-initiative setting are also poorly specified. 
Not only do they change over time as the manager's preferences and concerns change, but 
they typically cannot be extracted and that knowledge codified into the system's operation. 
Of course, in our simple example the only goal the manager can have is to get trains to 
their destinations, so the system can make simplifying assumptions. But even so, treating 
human-imposed constraints on the plan as part of the "goals," the reasons for rejecting a 
particular plan may not be made explicit to the system. 

The upshot of this is that even if we had implemented a "perfect" route planner for the 
simple TRAINS-95 domain, we would still need all the other components of the system. 
If the goal is a natural, interactive planning assistant, the solution will not be found in 
the language of traditional planning. The question becomes how to incorporate traditional 
systems that are good at what they do but relatively inflexible and brittle within the context 
of a robust, mixed-initiative system. 

We have developed a model of the mixed-initiative planning process from analysis of 
the TRAINS dialogues and implemented a simple version of it in TRAINS-95. This model 
consists of four steps: 

A. Focus: Identify the goal/subgoal under consideration. 

B. Gather Constraints: Collect constraints on the solution, selecting resources, gathering 
background information, and adding preferences. 

C. Instantiate Solution: As soon as a solution can be generated efficiently, one is generated. 

D. Criticize, Correct or Accept: If the instantiation is criticized and modifications are 
suggested, the process continues at step (B). If the solution appears acceptable (given 
the current focus), then we continue at step (A) by selecting a new focus. 

At first glance, this model seems quite similar to the expand-criticize cycle found in hier- 
archical planners since Sacerdoti [Sacerdoti, 1977]. The significant difference is in step (C). 
Rather than pursuing a least commitment strategy and incremental top-down refinement, 
we "leap" to a solution as soon as possible. You might call this a "look then leap" strategy 
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Figure 5: TRAINS-95 System Map Display after (4) 

rather than the traditional "wait and see" strategy used in least-commitment planning. As 
such, our strategy shares similarities with Sussman's original work with an emphasis on plan 
debugging and repair [Sussman, 1974]. When the plan must be a result of a collaboration, 
it seems that it is more efficient to throw out a solution and criticize it, rather than to work 
abstractly as long as possible. Notice that this is exactly why committees often start with 
a "straw man" when trying to develop new policies. This helps the committee focus its 
discussion, just as the the plans under discussion in mixed-initiative planning provide part 
of the context within which the manager is exploring the problem. 

To see how the "look then leap" model fits well with the discourse strategies used in our 
dialogues, consider the simple TRAINS-95 dialogue in Figure 3 again. In (1), the manager 
clearly sets out a set of goals, limiting but not fully specifying the focus (step A). Statement 
(3) implicitly focuses on the goal of getting to Detroit, and starts adding constraints (step 
B). With statement (4), the route planner generates a "straw plan" (step C), and then the 
system offers its own criticism (step D). The display at this point is shown in Figure 5. This 
self-criticism might seem strange at first glance, but consider that the system has not been 
informed of any evaluation criteria for the goals, so does not know whether the time for the 
trip is a critical factor. In (5), the manager indicates that the delay is not a problem by 
accepting the straw plan, and then moves on to a new focus (implicitly) by adding constraints 
relevant to the subgoal of getting to Syracuse (steps A and B). The system does not have 
enough constraints to create a straw plan solution, so (6) prompts for additional constraints. 
Statement (7) specifies these additional constraints (step B), and statement (8) proposes a 
straw plan route (step C) and potential criticisms (step D). In this case, the manager adds 
additional constraints in (9) that address the problems the system mentioned and a new 
solution is generated as part of interaction (10). The rest of the dialogue continues in much 
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Figure 6: Final TRAINS-95 System Map Display 

Discourse 

Problem Solving 

Abstract Plan Reasoning 

Domain Reasoners 

Figure 7: Mixed-initiative planning architecture 

the same way and doesn't raise any substantially new issues. The final display is shown in 

Figure 6. 

To support this model of mixed-initiative planning, we are developing a four layer archi- 
tecture that generalizes the TRAINS-95 system architecture. This is shown in Figure 7. The 
discourse level maintains information important for reference identification and for speech 
act interpretation and generation. It maintains what objects have been recently mentioned 
as well as the immediate discourse situation including what speech act was performed last 
and what discourse obligations each agent has. While critical to the overall system, the other 
three levels are more centrally concerned with the planning process. 

The problem solving level maintains meta-level information about the problem solving 
tasks, similar to the problem solving level actions described in [Litman and Allen, 1987] and 
[Lambert and Carberry, 1991].   Actions at this level are problem solving actions such as 
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"solve goal directly," "decompose goal into subproblems," "resolve resource conflict," and so 
on. Note that we need explicit representations of such actions because they can be discussed 
in the dialogue. Either agent might request the other to do one of these actions, or discuss 
how one might do the action, or assign general responsibility to an agent to perform this 
type of action throughout the interaction. This level supports processes such as identifying 
the task desired (e.g., distinguishing between an elaboration of the plan for the current goal 
and shifting to another goal). It does this by maintaining an abstract tree of goals and 
information on which part of the problem is currently in focus. It also supports the process 
of determining the scope of problem solving actions such as cancelations and modifications. 
By maintaining a history of previous problem solving states, it supports intelligent "undo" 
commands and the explicit discussion of the history of the problem solving interaction. 
Finally, it supports discussion of the problem solving strategy to be used, and can maintain 
ordering constraints on when certain problem solving tasks should be performed. 

The problem solving level reasons at the meta-level about the plans under consideration. 
These plans are themselves represented in terms of an abstract plan representation level. This 
representation captures aspects of plans independent of the details of reasoning about them. 
It can perform operations such as plan recognition in cases where deep domain reasoning is 
unnecessary, e.g., identifying which plan achieves a particular goal. It provides a uniform 
representation of plans suitable for use by other components of the system, such as the 
problem solving, discourse, and generation components. 

When more sophisticated domain-level reasoning is required, we rely on the services of 
a set of domain reasoners. The abstract plan representation level manages the interface be- 
tween the mixed-initiative system and these various domain specialists, matching open issues 
with reasoners and coordinating the responses. These reasoners might be, for example, a 
scheduler or an Internet agent that can retrieve information. They are likely to include tra- 
ditional planning technologies that are invoked in a context that is sufficiently well-specified 
for them to function effectively. We call these components "specialists" to emphasize that 
they need to be quick and effective in a well-defined domain, although they definitely need 
not always produce "perfect" answers. 

The key to the integration of such components is the ability to specify and reason about 
their capabilities. That is, the abstract plan reasoner needs to be able to reason about which 
specialists might be suitable for what tasks, and interpret their results. This is complicated 
by the desire to use existing components "off the shelf" as much as possible. We are currently 
looking at using KQML [Finin et al.., 1994] for part of this purpose, as well as other work on 
specifying agent capabilities [Tate, 1995]. 

4     Current and Future Directions 

Our experiences with TRAINS-95 have opened up many research directions that we are 
currently pursuing, and this paper has already discussed several of them. In this section we 
provide a brief survey of some additional issues for current and future work. 
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First, although we have argued strongly for an interactive, language-based approach to 
plan reasoning, this is not in itself enough. In fact, our strategy of attempting to instantiate 
the plan and then discuss and correct it will need to be generalized as the plans become 
larger and more detailed. This problem of plan presentation is pervasive, and requires work 
on many aspects of multi-modal interaction, since clearly drawing a huge graph with Lisp- 
like labels is not going to be sufficient. We beheve that the dialogue-based approach provides 
the context in which presentation decisions can be made effectively. The TRAINS-95 system 
provides the infrastructure for examining the multi-modal aspects of such communication. 

Second, and something of a corollary to this, is the problem of the semantics of external 
displays or data sources. That is, many systems are currently being proposed to make use of 
existing resources, such as weather servers or radar displays. However, while it's one thing 
to fetch the latest weather map via the Internet and display it, it's quite another to be able 
to discuss what is being displayed inteUigently. We have emphasized how context is the big 
benefit of dialogue-base systems—the other side of the coin is that to make use of something 
in a dialogue requires that it fit into the context. Part of the solution to this lies in the 
type of capabiHty descriptions that we discussed in the previous section. We are also moving 
towards use of a uniform display language, via a translator if necessary, in order to be able 
to understand exactly what is being displayed where. The impact of this on the ability to 

"plug and play" components has yet to be seen. 

Third, concentrating on the type of planning that goes on in mixed-initiative systems, 
it is clear that much of it can be seen as replanning, in the sense of debugging a plan ala 
Sussman [Sussman, 1974]. We are looking at the various approaches to replanning {e.g.., 
[Kambhampati, 1989; Kambhampati and Hendler, 1992]), but to some extent these seem to 
be burdened by the same constraints that make traditional planning systems unsuitable for 

direct use in the mixed-initiative situation. 

Fourth, we have been concerned from the outset with the evaluation of our work, that is, 
how to know if we are making progress. This has traditionally been a problem for interactive 
systems, and to some extent for planners. Our current system has built into it a simple set 
of task-related metrics that are recorded for each interaction. As we refine those metrics, we 
can explore whether particular strategies are better than others at getting the task done, or 
whether the presence of certain components helps or hinders performance. 

In recent work [Allen et ai, 1996], we have evaluated the effects of input mode (speech vs. 
keyboard) on task performance and explored user input-mode preferences. Task performance 
was evaluated in terms of the amount of time taken to arrive at a solution and the quality 
of the solution was determined by the amount of time needed to travel the planned routes. 
Sixteen subjects for the experiment were recruited from undergraduate computer science 
courses. None of them had previous experience with the system, and in fact only five 
reported that they had previously used a speech recognition system. A preliminary analysis 
of the experimental results shows that the plans generated when speech input was used were 
of similar quality to those generated when keyboard input was used. However, the time 
needed to develop the plan was significantly lower when speech input was used. Averaging 
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over five scenarios, problems were solved using speech in 68% of the time using keyboard, 
despite speech recognition rates averaging only about 75%! Although still rough, we take 
these results to support our approach to building robust interactive systems by treating the 
interaction as a dialogue. 

The point as far as mixed-initiative planning is concerned is that with only a two-minute 
training video, and despite low speech recognition rates and the prototypical status of the 
system, 73 of the 80 sessions resulted in successful completion of the route planning task. 
We suspect that this is probably a record for naive users of AI planning systems. Of course, 
the task was very simple, and it remains to be seen whether we can maintain this level of 
effectiveness as we move into a more complex planning domain. 

Finally, we are continually improving the TRAINS system. The next version will in- 
clude many of the ideas presented in these last sections of the paper, as well as a richer 
transportation domain involving cargoes and different vehicle types. This will increase the 
complexity of the planning task, as we noted above was necessary for further evaluation. 
Several parts of the TRAINS-96 system have already been re-implemented, including new 
infrastructure components, KQML message-passing, and the separation of many of the func- 
tions of the '"discourse manager" into separate modules. Work is currently proceeding on 
separating problem solver and domain reasoner functionality, and increasing the complexity 
of the domain. Our goal is to always have the most recent version of the system running and 
available for demos, and we hope to have a version of it running over the World-Wide Web. 

5     Conclusion 

The TRAINS-95 system is a concrete first step towards a mixed-initiative planning assistant. 
We have demonstrated the feasibility of the dialogue-based approach to interactive planning, 
and have developed a substantial infrastructure for future research. 

The TRAINS-95 system is being developed as part of the TRAINS Project [Allen et a/., 
1995], a long-term research effort to develop intelligent assistants that interact with their 
human managers using natural language. More information is available via the World-Wide 
Web at URL: http://www.cs.rochester.edu/research/trains/. 
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Appendix C 

Arguing About Plans: Plan 
Representation and Reasoning for 
Mixed-Initiative Planning* 

Abstract 

We consider the problem of representing plans for mixed-initiative planning, where several 
participants cooperate to develop plans. We claim that in such an environment, a crucial task 
is plan communication: the ability to suggest aspects of a plan, accept such suggestions from 
other agents, criticize plans, revise them, etc., in addition to building plans. The complexity 
of this interaction imposes significant new requirements on the representation of plans. We 
describe a formal model of plans based on defeasible argument systems that allows us to 
perform these types of reasoning. The arguments that are produced are explicit objects that 
can be used to provide a semantics for statements about plans. 

1    Introduction 

Mixed-initiative planning involves the cooperation of two or more agents coUaboratively 
constructing and possibly executing a plan. This includes situations ranging from automated 
planning assistants, where a machine aids a human in constructing a plan, to situations with 
multiple autonomous agents attempting to co-ordinate their activities towards a common 
goal. In all these situations, the agents need to talk about plans. This paper develops a 
representation that supports such plan communication. While we have used this to support 
a natural language mode of communication, it applies equally well to more formally defined 

•This material is based on: George Ferguson and James F. Allen, "Arguing About Plans: Plan Repre- 
sentation and Reasoning for Mixed-Initiative Planning," Proceedings of the Second International Conference 
on Artificial Intelligence Planning Systems (AIPS-94), PP- 43-48, Chicago, IL, 13-15 June, 1994. 
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communication languages such as two maciiines might use, or as might be used as the back- 
end for a graphical human-machine interface. 

The traditional representations of plans are inadequate for supporting communication 
about plans. Formal models of plans {e.g., [McCarthy and Hayes, 1969],[Chapman, 1987]) 
typically define a plan as a sequence of actions. If agents communicated plans by simply 
listing the sequence of actions to be performed, then this might be adequate. But this is 
not what happens. To see how agents communicate plans, we designed an experiment that 
involves two people collaborating on forming plans in a transportation planning domain in- 
volving train scheduling. The subjects could not see each other, and could only communicate 
by speaking into a microphone. Over thirteen hours of interaction have been collected and 
transcribed (see [Gross et a/., 1993]). In no case did one agent simply describe the plan by 
describing a sequence of actions. Rather, agents identified the overall goal, identified sub- 
goals to focus on, identified important actions in the plan, stated relevant facts that would 
help in the development of the plan, identified problems with what the other agent proposed, 
confirmed what the other agent suggested, and requested clarification when suggestions were 
not fully understood. Many of the details of the plan are never mentioned at all, and yet 
are implicitly agreed upon by the agents. 

Clearly, the representation of a plan as a sequence of actions accounts for very little of the 
actual interactions that occur in a mixed-initiative planning scenario. This is not to say that 
we must reject the notion of a plan as a sequence of actions. It only points out that a planning 
system that engages in mixed-initiative planning must use a much richer representation. 
Similar conclusions have been made by researchers interested in plan execution monitoring 
and plan modification and reuse [Hayes, 1975; Drummond, 1989; Kambhampati and Hendler, 
1992; Kambhampati, 1992]. For these apphcations, it is important to represent the reasons 
why an action is being performed, so that an appropriate response can be made if the 
action fails. It is also important to record which effects of an action are important for the 
plan in order to verify whether an action succeeded or failed in the first place. This same 
inforniation is crucial in plan communication. It allows one agent to understand the other 
agent's motivation behind a suggested course of action, which helps in identifying the specific 
role that the suggested action should play in the plan. 

Consider an example. Two agents, A and B, are cooperating to construct a plan to 
transport medical supplies to some location. To get the supplies there, the agents need to 
first move them overland to the port, and then carry them by ship. A cargo ships leaves 
every day at between 4:00 and 6:00. If the supplies are moved by train to the ship, they 
will arrive at 5:00. If they are moved by truck, they will arrive at 3:00. Moving them by 
truck, however, will be three times as expensive. Given this scenario, there are competing 
constraints on a solution. Ideally, one would like a plan that guarantees to get the supplies 
there as soon as possible, while spending the least amount of money. Such a solution is not 
possible here, however. Furthermore, there is no single, global evaluation measure on the 
worth of plans. Each of the agents may have different priorities in evaluating plans, possibly 
focusing on one factor and ignoring the others. 
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Given this setting, one possible interaction between the two agents is as follows: 

1. Agent A suggests shipping the supplies by train; 

2. Agent B points out that the ship might leave at 4:00, and thus the supplies would miss 
today's ship; 

3. Agent A points out that the ship might not leave until 6:00, and thus the supplies 
would make today's ship. 

At this point, the agents are at a standoff. They could continue to argue in many ways. A 
might argue that getting the supplies there today isn't important, or B might argue that 
the risk of missing the ship is unacceptable. Or one of them might propose another plan: 

4. Agent B suggests moving the supplies by truck instead. 

Assuming that agent A finds the cost of this option acceptable, there would appear to be no 
arguments against this plan, and thus it would be accepted b}^ both agents. 

There are many problems to address in order to support the type of interactions in the 
example. In this paper we are concerned with the formal representational underpinnings. 
The representation proposed involves applying techniques for representing arguments to a 
logic of time, events and action, which supports reasoning about attempting actions and 
their effects. We have explored the logic of time and action in depth elsewhere [Allen and 
Ferguson, 1994] and have applied it to plan reasoning [Allen, 1991]. Here we explore the use 
of explicit argument structures in a direct inference system, and show how, with a suitable 
logic of time and action, they provide a very rich representation both for talking about 
plans and for doing plan reasoning itself. This representation is being used to support plan 
reasoning in the TRAINS system at Rochester, where it supports plan construction and plan 
recognition algorithms that are used by a planning system that cooperatively builds plans 
with a person. 

The rest of this paper is organized as follows. First we define argument systems formally, 
then apply the model to representing planning knowledge. The preceding example is used 
to illustrate the approach. Finally we discuss some of the issues raised by this work. 

2    Argument Systems 

In this section we present a formal description of an argument system based on those of 
Loui [Loui, 1987] and of Pollock [Pollock, 1987; Pollock, 1992]. 

2.1    Basic Definitions 

We assume a logical language with an entailment relation [=, and allow a set KB of propo- 
sitions that specify domain constraints against which arguments can be evaluated. 
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Goals 

"~--,Q /'"'--^-^ Premises 

Figure 1: Graphical representation of an argument 

Definition 1 An ARGUMENT STEP is a pair ($,p), written "$ -> p," where ^ is a set of 
propositions (the PREMISES^ and p is a single proposition (the CONCLUSION^. 

An argument step is to be read something like "$ is reason to believe p," or "The truth of 
$ lends support to the truth of p." 

Am agent's knowledge base includes a set of argument steps A that the agent uses in its 
reasoning. Note that in the case where we have large numbers of potential arguments, A 
may be specified schematically. 

Definition 2 An ARGUMENT is a set of argument steps {($,-, p,)} drawn from A. 

Definition 3 The PREMISES of an argument A are those propositions in the conclusions of 
steps with empty premises, i.e., {p\{0,p) € A}. The CONCLUSIONS of an argument A are 
the union of the premises of steps with empty conclusions, i.e., \J{<^\{<^,t) € A}. 

We require that arguments be non-circular and that both Premises{A) and Goals{A) 
be non-empty for any argument A. In this case, arguments correspond to directed, acyclic 
graphs labeled with propositions, such as illustrated in Figure 1. An argument step ($,p) 
corresponds to a node labeled by p with children each labeled by an element of $. The 
sources of the graph correspond to Premises{A)^ the sinks to Goals{A). 

2.2     Conflict and Defeat 

What makes argument systems interesting is the way arguments can conflict over the status 
of some proposition. In this case, we need to define how certain arguments are to be preferred 
over others. 

Definition 4 Two argument steps ($,p) and ('i',?) CONFLICT if p and q are inconsistent. 

In Pollock's system, this form of conflict is called rebuttal, and a second form, called un- 
dercutting, is also permitted. The intuition is that in rebutting conflict the value of some 
proposition is at issue, while in undercutting conflict it is the applicability of a defeasible 
rule that is in doubt.   In our approach, following Loui, we will impose certain criteria of 
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defeat (below) which to some extent obviate the need for undercutting. We leave open the 
possibility, however, that it may be required in the future. 

Given two arguments that conflict, we are interested in preferring certain arguments over 
others. The following definition, adapted from Loui, makes this explicit: 

Definition 5 An argument A is AT LEAST AS SPECIFIC as an argument B if there is a step 
($,p) E A and a step (^,5) G B such that the steps conflict and $ |= ^. An argument is 
MORE SPECIFIC than another argument if it is at least as specific and the converse is not the 
case. 

Finally, we can put these pieces together and propose the following: 

Definition 6 An argument A DEFEATS an argument B if A conflicts with B and A is at 
least as specific as B. 

Definition 7 An argument A is UNDEFEATED if there is no argument B that conflicts with 
A that is not itself defeated. 

There are complications in applying this somewhat circular definition to determine which 
arguments are undefeated. Pollock [Pollock, 1992], for example, considers such phenomena 
as collective defeat and self-defeat. The details are not necessary to an appreciation of the 
formalism as regards planning. 

Also, there might be other grounds for preferring one argument over another besides 
specificity. Loui [Loui, 1987] considers evidence, directness, and preferred premise, for ex- 
ample. As well, there might be domain-specific criteria, such as resource use or time limits 
in a planning context. The specificity principle is generally accepted as appropriate and is 
sufficient for what follows. 

3    Plan Reasoning Using Arguments 

In this section we describe the application of argument systems to planning problems. We 
begin by describing the representation of causal knowledge using defeasible rules and consider 
the qualification problem in this light. We then present a formalization of the mixed-initiative 
planning example presented earlier. This is a short but interestingly complex example of a 
planning problem that highlights the incrementality of argumentation and the use of speci- 
ficity. The example includes reasoning about uncertainty and external events. 

The approach is to express our defeasible knowledge about actions and their preconditions 
and effects using rules in A. Arguments can then be constructed supporting the fact that 
executing certain actions will achieve certain goals. These arguments may be in conflict with 
or defeated by other arguments.  Undefeated arguments represent plans that will succeed, 
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given what we know and how long we searched for counter-arguments. Of course, plans can 
be compared or evaluated according to other factors besides defeat, such as resource usage 
or time constraints. Note that, among other things, this approach distinguishes goals from 
other effects and makes the assumptions underlying the plan explicit and thus available for 
reasoning. 

3.1 Knowledge Representation 

To keep the presentation as concise as possible, we will use a very simple representation of 
time, namely a discrete model where, given a time t, n{t) is the next time. The representation 
can easily be generalized to either a situation calculus representation or the more expressive 
interval temporal logic [Allen and Ferguson, 1994] that we actually use. An important point 
is that action attempts must be distinguished from their effects. 

In order to do this, we introduce events as cognitive objects that correspond to "something 
that happened." Event predicates are used to organize our causal knowledge about the 
domain and are organized in a type hierarchy. For example, a predicate like Load{et) is true 
if the event e* describes a loading event that occurred at time t. Rules describe the necessary 
conditions given that an event of a particular type occurred. 

In order to reason about the agent's abiUties, we have to introduce actions. Unfortunately, 
actions and events are often confused, since, intuitively, for any action there is an event 
corresponding to that action being executed. To avoid this confusion, we will think of 
actions as sensory-motor programs that can be run by the agent; this is basically the concept 
of action used in the planning literature. There is a predicate Try(7r, f, e*) which is true if 
program TT is executed at time t (or over interval tin a more expressive logic) causing event 
e< to occur. Rules specify sufficient conditions for a program's execution to result in an event 
of a certain type. 

3.2 Causal Knowledge and Qualifications 

The fundamental issue in representing knowledge for planning is how to capture the idea 
that execution of an action causes a certain effect, at least under certain conditions. The 
traditional planning view would be characterized something like the following: 

Holds{preconds{a),t) ATry{a,t,et) D 

Holds{effects{a), n{t)). 

That is, if the preconditions of an action a hold at time t and we attempt action a, then the 
effects will hold at the next time point.^ There are many problems with this definition, such 
as how to handle simultaneous actions, external events, and actions with duration.  These 

^Traditional models wouldn't have events, but we include the Ct term for comparison with the later 
development. 

56 



problems can be resolved, however, by using a richer temporal model, but for this paper 
such extensions are not important. The important idea is the intuition that actions do have 
preconditions, even if these are context-dependent and subject to revision. 

In the context of reasoning about actual situations, what is troubling is the strength of 
the implication. It does not make sense with this definition, for example, to reason about 
execution of the action when only some of the preconditions are known to be true. Indeed, in 
the STRIPS model of planning, an operator cannot even be applied {i.e., an action cannot be 
attempted) if all the preconditions do not hold. In a more philosophical sense, these axioms 
run into the qualification problem: the problem that no matter how many preconditions we 
write down, there will always be other things that might happen that would invalidate the 
axiom. If these axioms are based on the material conditional, the price of encountering an 
unconsidered qualification is inconsistency. 

The obvious move then is to weaken the definition to use the defeasible connective "->" 
rather than the material conditional. Then these definitions can be used in arguments that 
execution of an action heis some effect, without saying finally that it must. We obtain 
something like the following, using the notation introduced in the previous section: 

{Holds{preconds{a),t),Try(a,t,et)} —>■ Event{et) 

where Event is an event-type predicate. The definition of the event can continue to use the 
material conditional: 

Event{et) D Holds{effects{et),n(t)) 

This is not quite enough, however, because it doesn't capture the notion that somehow 
the precondition should be true before attempting the action if it is to succeed, even if we 
don't know for sure that it this is the case. Clearly we shouldn't state that falsity of a 
precondition implies that the action won't succeed, since there might be other conditions 
(known or unknown) under which it would. But we can say that defeasibly, as in 

{-'Holds{preconds{a),t),Try{a,t,et)} -^ -'Event{et) 

In fact, these two rules form the extremes of a continuum of rules relating knowledge 
of preconditions to successful execution of actions. Suppose we know that <^i and (j)2 are 
preconditions for action a. Then a plan that takes account of only <^i is at least reasonable, 
if not complete or even possible given other knowledge about the world. But it is important 
to be able to represent such partial or incorrect plans if we are interested in doing more than 
simply generating simple plans. In this case, we will need additional rules in A corresponding 
to these "partial" argument steps. In fact, for every action a with (conjunctive) preconditions 
4>i,4'2i ■ • ■ i^kn and effects ?/), there corresponds a set of defeasible rules organized in a lattice 
of specificity. The most specific rule is the one in which all preconditions are present. The 
least specific rule mentions no preconditions, i.e., Try(a, t, e) —> Event{e), indicating that an 
action can always be attempted, even if an argument that doesn't take note of preconditions 
may not be a very strong one. There is a similar lattice of rules regarding the falsity of 
preconditions and the non-occurrence of events. 

57 



Some comments are in order regarding this formulation of causal rules. First, it is inde- 
pendent of the underlying representation of time and action, so long as action attempts can 
be distinguished from their effects {i.e., the Try predicate, above). Second, the approach is 
different from using a modal logic to express the possibility and necessity intuitions involved 
in reasoning about preconditions. The most modal logic could do is allow us to write that if 
a precondition is true then an action is possible, and if it is false then the action necessarily 
fails, for example. But in the defeasible reasoning approach, degrees of support are afforded 
through the use of defeasible rules with more or less specific antecedents. This is much closer 
to our intuitions about just what a precondition is, and also closer to the way people talk 
about preconditions in collaborative discourse about plans. 

Finally, we believe that this approach to reasoning about preconditions and effects of 
actions is the best way to deal with the qualification problem. That is, the agent considers 
qualifications as long as it can or until it has considered all that it knows about, as reflected in 
its set of defeasible rules. If subsequent qualifications are encountered, they can be reasoned 
about given more time, without denying that the plan developed previously supported its 
conclusions, however tenuously. 

3.3     Planning Example 

Recall from the example presented in the Introduction that we have to get supplies X into 
ship S before it leaves port P, and that there are two ways of transporting the supplies. 
We will denote these by two actions (programs): sendByTrain and sendByTruck. Then 
assuming these actions have no preconditions, their definitions are given by the following 
rules: 

{Try{sendByTrain{x,l),t, et)} -)■ Transport(et,x, 1,5) 
{Try{sendByTruck{xJ),t,et)} -)• Transport{et,x,l,3). 

Time units are measured in hours. The event predicate Transport is defined as 

Transport{et,x,l,n) D At(x,l,t + n), 

The action of loading ship s with supplies x has as preconditions that both the ship and the 
supplies must be at the dock, yielding the following definition: 

{At{x, I, t), At{s,I,t),Try{load{x, s, I),t, et)} -)■ 
Load[et.,x,s,l). 

The definition of Load is 

Load{et, x,5, /) D In{x, s,t+l). 

Finally, we have the information that the ship S leaves port P between 4:00 and 6:00. Letting 
Td denote the time of departure, we have that 4 < T^ < 6 and defeasible rules: 
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In{X,S,6) 
\ 

Load(e5,X,S, P) 

At{X, P, 5) 
\      rr2/(/oarf(X;S,P),5,e5) 

Transport{eQ,X, P, 5) 

! 

^Load(e5,X,5,P) 

At{X,P,5) \ ~^At{S,P,b) 
I      Try{load{X,S,P),b,e5)\ 

Transport{eo,X, P, 5) Td = 4. 

t 
Try(sendByTrain{X, P), 0, eo) 

(a) 
Try{sendByTrain{X, P), 0, CQ) 

(b) 
/n(X, 5,3) 

t 
Load(e5,X,S,P) Load(e3,X,S,P) 

At{X,P,5)        ^\~^^^At{S,P,5) At{X,P,S) 
I      Try(/oad(X,5,P),5,e5) t f       Try(Zoad(X,5,P),3,e3) 

Transportleo, X, P, 5) Td = 6 Transportleo, X, P, 3) 

t t 
Try(sendByTrain{X, P), 0, eo) Try{sendByTruck{X, P), 0, eo) 

(c) (d) 

 Figure 2: Four arguments about shipping supplies  

Ti>t   ^   At{S,P,t) 

Td<t   ^   -Af(5,P,i). 

Agent A's initial plan, namely shipping the the supplies by truck, is shown in Figure 2(a). 
Obviously, this ignores the precondition that the ship be at the dock at the time of loading. 
Figure 2(b) shows agent B's a more specific argument that argues that the loading will fail 
if the ship leaves at 4:00. Figure 2(c) shows the equally specific argument supporting the 
successful loading of the supplies if the ship hasn't left yet. Since neither argument is more 
specific, neither emerges as undefeated and so, intuitively, neither plan is guaranteed. This 
is as it should be given the uncertainty in the scenario. Figure 2(d) shows the undefeated 
argument for using the truck rather than the train. 

The point of this example is to demonstrate the incremental development of a plan when 
several agents are involved. By representing the interaction as a process of argumentation, 
we can account for interactions that point out of difficulties with a current proposal, or that 
propose alternative courses of action, as well as many other interactions beyond the scope of 
a traditional planning system. Further, the arguments that are built up explicitly include the 
types of information typically added to planners to support, e.g., plan modification, while 
being formally well-motivated in terms of defeasible reasoning. Of course, the particular 
example used here is not particularly difficult for classical planning systems, although it 
does contain some complications involving uncertainty and external events that would cause 
problems for many frameworks. 
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4    Towards A Language for Plans 

The description of plans as arguments allows us to define a language in which plans are 
objects in the ontology. Terms denoting plans are then given a semantics in terms of plan 
graphs, where different predicates impose different constraints on the interpretation {i.e., on 
the graph). There are structural predicates, such a,s Actionin, Enables, Premise, Goal, 
etc., that are defined in terms of the structure of the plan graph. Then there are evaluation 
predicates. These include absolute predicates such as Plausible or Impossible and relative 
predicates that allow plans to be compared, for example, according to resource usage or time 
constraints. The view of mixed-initiative planning that emerges is one where agents post 
constraints on the shared plan using these predicates. 

This language is being developed as part of the TRAINS project [Allen and Schubert, 
1991; Ferguson, 1994], an effort to construct an intelligent planning assistant that is con- 
versationally proficient in natural language. The plan description predicates are used in the 
interface between the language and discourse modules and the domain plan reasoner. The 
manager's utterances are result in queries being made of or constraints being posted on the 
plan. The plan reasoner communicates the results in terms of plan description predicates 
that satisfy the query or that needed to be added in order to connect an utterance to the 
plan. These are then used to generate responses or helpful suggestions, since often infor- 
mation beyond the literal content of an utterance must be added in order to incorporate 
it. 

5     Discussion 

There are many questions raised by this work, but space permits discussion of only a few. 
First, this work has clear similarities to the work on plan modification and replanning men- 
tioned at the outset. The difference is that rather than developing data structures for 
traditional planners that retain information required for other tasks, we consider planning 
within the context of a general defeasible reasoning system. Thus, our work can be seen 
as a generalization and formalization of that work which can be applied to other problems 
involved in plan communication. Our approach also abstracts away from the underlying 
representation of action {i.e., STRIPS). 

Konolige [Konolige, 1988] applies defeasible reasoning to reasoning about events, in par- 
ticular to the Yale Shooting problem. The emphasis is on what types of defeasible argu- 
ments are important in reasoning about events as well as what information is necessary for 
adjudicating between these arguments. While the particular rules presented are largely an 
artifact of the simple representation of action, he argues convincingly for the relative merits 
of argumentation systems compared to indirect systems such as circumscription. He notes 
the ability to include knowledge about applicability of defeasible rules directly within the 
framework and the incremental nature of argumentation that we have also noted. 
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Konolige and Pollack [Konolige and Pollack, 1989] directly apply the defeasible reasoning 
paradigm to plan recognition in the context of plans-as-intentions. The aim is to produce 
plausible arguments regarding the intentions of other agents from observations of their ac- 
tions, and from the undefeated arguments to extract intentions that can be ascribed to those 
agents. The difference between our approaches is that we see the arguments as objects to 
be reasoned about rather than using argumentation to reason defeasibly about intentions. 
These are not irreconcilable viewpoints. 

6 Conclusions 

We have presented an explicit representation of plans as arguments that a certain course of 
action under certain explicit conditions will achieves certain explicit goals. We believe that in 
realistic mixed-initiative planning scenarios such a representation is necessary to capture the 
wide range of reasoning that agents do with plans. Basing the representation on argument 
systems provides a formal basis both for describing these forms of reasoning and for defining 
the semantics of plans. 
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Appendix D 

Actions and Events in Interval 
Temporal Logic* 

Abstract 

We present a representation of events and action based on interval temporal logic that is 
significantly more expressive and more natural than most previous AI approaches. The rep- 
resentation is motivated by work in natural language semantics and discourse, temporal logic, 
and AI planning and plan recognition. The formal basis of the representation is presented 
in detail, from the axiomatization of time periods to the relationship between actions and 
events and their effects. The power of the representation is illustrated by applying it to the 
axiomatization and solution of several standard problems from the AI literature on action 
and change. An approach to the frame problem based on explanation closure is shown to 
be both powerful and natural when combined with our representational framework. We also 
discuss features of the logic that are beyond the scope of many traditional representations, 
and describe our approach to difficult problems such as external events and simultaneous 

actions. 

1     Introduction 

Representing and reasoning about the dynamic aspects of the world—primarily about actions 
and events—is a problem of interest to many different disciplines. In AI, we are interested 
in such problems for a number of reasons, in particular to model the reasoning of intelligent 
agents as they plan to act in the world, and to reason about causal effects in the world. 
More specifically, a general representation of actions and events has to support the following 

somewhat overlapping tasks: 

*This is a shortened version of a paper that appeared in Journal of Logic and Computation, 4(5):531-579, 
1994. 
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1. Prediction: Given a description of a scenario, including actions and events, what will 
(or is most likely to) happen? 

2. Planning: Given an initial description of the world and a desired goal, find a course of 
action that will (or is most likely to) achieve that goal. 

3. Explanation: Given a set of observations about the world, find the best explanation 
of the data. When the observations are another agent's actions and the explanation 
desired is the agent's plan, and the problem is called plan recognition. 

Our claim in this paper is that in order to adequately represent actions and events, one 
needs an explicit temporal logic, and that approaches with weaker temporal models, such 
as state spaces {e.g., STRIPS-based approaches) and the situation calculus, either cannot 
handle the problems or require such dramatic extensions that one in effect has grafted an 
explicit temporal logic onto the earlier formalism. Furthermore, if one of these formalisms 
is extended in this way, the temporal logic part will dominate and the original formalism 
plays little role in the solution. We will primarily defend this position by proposing a specific 
temporal representation and showing that it can handle a wide range of situations that are 
often problematic for other formalisms. In particular, here are some of properties of actions 
and events that we feel are essential to any general representation: 

1. Actions and events take time. During this time, they may have a rich structure. For 
instance, the event of driving my car to work involves a wide range of different actions, 
states of the world and other complications, yet the activity over that stretch of time 
is appropriately described as a single event. 

2. The relationship between actions and events and their effects is complex. Some effects 
become true at the end of the event and remain true for some time after the event. For 
example, when I put a book on the table, this has the effect that the book is on the 
table for at least a short time after the action is completed. Other effects only hold 
while the event is in progress—for example holding an elevator open by pressing the 
"open door" button. Other effects might start after the beginning of the event and 
end before it does, such as my being on a bridge while driving to work. This is an 
effect of the action even though it is not true at the end of it. Finally, it may be the 
case that the effects of actions are wholly independent of the action once the action is 
performed, as in a rock rolling down a hill after I nudge it out of place. 

3. External changes in the world may occur no matter what actions an agent plans to 
do, and may interact with the planned actions. Possible external events should be an 
important factor when reasoning about what effects an action might have. Certain 
goals can only be accomplished by depending on external events, whether they are a 
result of natural forces (such as the wind blowing enabling sailing) or the actions of 
other agents (such as an engine arriving with some needed cargo). 
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4. Actions and events may interact in complex ways when they overlap or occur simulta- 
neously. In some cases, they will interfere with certain effects that would arise if the 
events were done in isolation. In other cases the effects may be additive. And in still 
other cases, the effect of performing the two actions may be completely different from 
the effects of each in isolation. 

5. Knowledge of the world is necessarily incomplete and unpredictable in detail, thus 
reasoning about actions and events can only be done on the basis of certain assump- 
tions. No plan is foolproof, and it is important that a formalism makes the necessary 
assumptions explicit so that they can be considered in evaluating plans. 

Our aim is to develop a general representation of actions and events that supports a wide 
range of reasoning tasks, including planning, explanation, and prediction, but also natural 
language understanding, and commonsense reasoning in general. Most previous work tends 
to address only a subset of these problems. The STRIPS-based planners {e.g., TWEAK 
[13], SIPE [63], SNLP [39]), for instance, only address the planning problem, while work 
in the situation calculus (e.^r., [41; 11]) has primarily focussed on the prediction problem 
or on using it as an abstract theory for planning {e.g., [26]). Natural language work, on 
the other hand, typically only deals with commonsense entailments from statements about 
actions and events, sometimes with a focus on plan recognition and explanation {e.g., [4; 
29; 53]). Our representation is intended to serve as a uniform representation to support all 
these tasks. As a result, we try to avoid introducing any specific syntactic constructs that 
support only one reasoning task. Knowledge should be encoded in a way so that it is usable 
no matter what reasoning task is currently being performed. 

Section 2 outlines our intuitions about actions and events, and briefly explores the two 
predominant models of action: the situation calculus and the state-based STRIPS-style rep- 
resentations. As typically formulated, neither is powerful enough for the issues described 
above. Section 3 then introduces Interval Temporal Logic, first defining the temporal struc- 
ture, then introducing properties, events, and actions. Section 4 demonstrates how the 
interval logic can be used to solve a set of simple problems from the literature in order to 
facilitate comparison with other approaches. The key place where other approaches have dif- 
ficulty is in representing external events and simultaneous actions. Section 5.1 explores the 
implications of external events in detail, and Section 5.3 explores interacting simultaneous 
actions. 

2     Representing Actions and Events 

Before starting the formal development, we will attempt to describe the intuitions motivating 
the representation. We will then consider why the most commonly accepted representations 
of action in AI will not meet our needs. 
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2.1     Intuitions about Actions and Events 

The first issue concerns what an event is. We take the position that events are primarily 
linguistic or cognitive in nature. That is, the world does not really contain events. Rather, 
events are the way by which agents classify certain useful and relevant patterns of change. 
As such, there are very few restrictions on what an event might consist of except that it 
must involve at least one object over some stretch of time, or involve at least one change of 
state. Thus the very same circumstances in the world might be described by any number 
of events. For instance, consider a circumstance in which a glass fell off a table and broke 
on the floor. This already is one description of what actually happened. The very same set 
of circumstances could also be described as the event in which a glass broke, or in which 
someone was woken by the noise of the breaking glass. Each of these descriptions is a different 
way of describing the circumstances, and each is packaged as a description of an event that 
occurred. No one description is more correct than the other, although some may be more 
informative for certain circumstances, in that they help predict some required information, 
or suggest a way of reacting to the circumstances. 

Of course, the "states" of the world referred to above are also ways of classifying the 
world, and are not inherent in the world itself either. Thus, the same set of circumstances 
described above might be partially described in terms of the ball being red. Given this, 
what can one say about the differences between events and states? Intuitively, one describes 
change and the other describes aspects that do not change. In language, we say that events 
occur, and that states hold. But it is easy to blur these distinctions. Thus, while the balling 
falling from the table to the floor clearly describes change and hence describes an event, what 
about the circumstance where an agent John holds the door shut for a couple of minutes. 
While the door remains shut during this time and thus doesn't change state, it seems that 
John holding the door shut is something that occured and thus is like an event. These 
issues have been studied extensively in work on the semantics of natural language sentences. 
While there are many proposals, everyone agrees on a few basic distinctions {e.g., [59; 45; 
16]). Of prime relevance to us here are sentences that describe states of the world, as in "The 
ball is red," or "John believes that the world is flat," and sentences that describe general 
ongoing activities such as "John ran for an hour," and events such as "John climbed the 
mountain." Each of these types of sentences has different properties, but the most important 
distinctions occur in their relation to time. All these sentences can be true over an interval of 
time. But when a state holds over an interval of time t, one can conclude that the state also 
held over subintervals of t. Thus, if the ball is red during the entire day, then it is also red 
during the morning. This property is termed homogeneity in the temporal logic literature. 
Events, on the other hand, generally have the opposite property and are anti-homogeneous: 
If an event occurs over an interval t, then it doesn't occur over a subinterval of t, as it would 
not yet be completed. Thus, if the ball dropped from the table to the floor over time t, 
then over a subinterval of t is would just be somewhere in the air between the table and 
floor. Activities, on the other hand, fall in between. They may be homogenous, as in the 
holding the door shut example above, but they describe some dynamic aspect of the world 
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like events.   This type of distinction must appreciated by any general purpose knowledge 
representation for action and change. 

Finally, a word on actions. The word "action" is used in many different senses by many 
different people. For us, an action refers to something that a person or robot might do. It 
is a way of classifying the different sorts of things than an agent can do to affect the world, 
thus it more resembles a sensory-motor program than an event. By performing an action, an 
agent causes an event to occur, which in turn may cause other desired events to also occur. 
For instance, I know how to perform an action of walking that I may perform in the hope of 
causing the event of walking to my car. Some theories refer to the event that was caused as 
the action, but this is not what we intend here. Rather, we will draw on an analogy with the 
robot situation, and view actions as programs. Thus, performing an action will be described 
in terms of running a program. 

2.2    The Situation Calculus 

The situation calculus means different things to different researchers. In its original for- 
mulation [41], which we will call the general theory of the situation calculus, situations are 
introduced into the ontology as a complete snapshot of the universe at some instant in time. 
In effect, the situation calculus is a point-based temporal logic with a branching time model. 
In its most common use, which we will call the constructive situation calculus, it is used 
in a highly restricted form first proposed by Green [26], in which the only way situations 
are introduced is by constructing them by action composition from an initial state. This 
practice has attracted the most attention precisely because the formalism is constructive— 
specifically, it can be used for planning. To construct a plan for a goal G, prove that there 
exists a situation s in which G holds. In proving this, the situation is constructed by action 
composition, and thus the desired sequence of actions (the plan) can be extracted from the 
proof. As others have pointed out {e.g., [52]), most of the criticisms about the expressibility 
of the situation calculus concern the constructive form of it rather than the general theory. 
Our position is that the constructive situation calculus is a limited representation, especially 
in dealing with temporally complex actions and external events. The general theory, on the 
other hand, is much richer and can be extended to a model much closer to what we are 
proposing, but at the loss of its constructive aspect. This will be explored further after the 
Interval Temporal Logic has been introduced. 

2.3    The STRIPS Representation 

The STRIPS representation [20] adds additional constraints to the situation calculus model 
and is used by most implemented planning systems built to date. In STRIPS, a state is 
represented as a finite set of formulas, and the effects of an action are specified by two sets of 
formulas: the delete list specifies what propositions to remove from the initial state, and the 
add list specifies the new propositions to add. Together, they completely define the transition 
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STACK(a,b) 
preconds: (Clear a) (Clear b) 
delete: (Clear b) 

add: (On a b) 

Figure 1: Actions as state change in STRIPS 

between the initial state and the resulting state. Figure 1 shows a simple Blocks World action 
that involves placing one block on top of another (the STACK action). The preconditions on 
an action indicate when the action is applicable—in this case it is applicable whenever both 
blocks are clear. The effects state that one block is now on top of the other (the add list) 
and that the bottom block is not clear (the delete list). The operation for constructing a 
resulting state applies the delete list first and then asserts the add list. 

Like the situation calculus, STRIPS-style actions are effectively instantaneous and there 
is no provision for asserting what is true while an action is in execution. Also, since the 
state descriptions do not include information about action occurrences, such systems cannot 
represent the situation where one action occurs while some other event or action is occurring. 
Such a case would violate the STRIPS assumptions, which assume that the world only 
changes as the result of a single action by the agent, and that the action definitions completely 
characterize all change when an action is done. Of course, these assumptions would not be 
valid if simultaneous actions or external events were allowed. 

The STRIPS assumptions appear to be fundamentally incompatible with interacting 
simultaneous actions and external events. They hold only in worlds with a single agent, 
who can only do one thing at a time, and where the world only changes as the result of 
the agent's actions. However, they are so ingrained in the planning literature that many 
researchers don't even acknowledge their limitations. In some sense, they have become part 
of the definition of the classical planning problem. 

3    Interval Temporal Logic 

Having described our motivations, we now start the development of the temporal logic. We 
start by describing the basic temporal structure to be used in the logic, namely the interval 
representation of time developed by Allen [1; 2] and discussed in detail in [6]. We then 
describe the temporal logic used to represent knowledge of properties, events, and actions. 
We conclude this section with a comparison of related formalisms. Subsequent sections will 
explore how the representation supports reasoning about events and actions, especially in 
complex situations with external events and simultaneous actions. 
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Figure 2: The axiomatization of time periods 

3.1     The Structure of Time 

The temporal structure we assume is a simple linear model of time. Notions of possibility 
that are introduced in branching time models or the situation calculus would be handled by 
introducing a separate modal operator to represent possibility explicitly. Since such a modal 
operator is needed in general anyway, there seems no need to build it into the temporal 
structure. The temporal theory starts with one primitive object, the time period, and one 
primitive relation: Meets. 

A time period intuitively is the time associated with some event occuring or some property 
holding in the world. Intuitively, two periods m and n meet if and only if m precedes n, 
yet there is no time between m and n, and m and n do not overlap. The axiomatization of 
the Meets relation is as follows, where i, j, fc, /, and m are logical variables restricted to 
time periods. The axioms are presented graphically in Figure 2. First, there is no beginning 
or ending of time and there are no semi-infinite or infinite periods. In other words, every 
period has a period that meets it and another that it meets: 

\/i. 3j, k . Meets{j, i) A Meets{i, k). (D.l) 

Second, periods can compose to produce a larger period.    In particular, for any two 
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periods that meet, there is another period that is the "concatenation" of them. This can be 
axiomatized as follows: 

Vi,i, k, I. Meets{iJ) A Meets{j, k) A Meets{k, I) D (D.2) 

3m . Meets{i, m) A Meets{m, I). 

As a convenient notation, we will often write j + k to denote the interval that is the con- 
catenation of intervals j and k. This functional notation is justified because we can prove 
that the result of j + A; is unique [6]. 

Next, periods uniquely define an equivalence class of periods that meet them. In partic- 
ular, if i meets j and i meets k, then any period / that meets j must also meet k: 

\/iJ, k, I. Meets{i,j) A Meets{i, k) A Meets{lJ) D Meets{l, k). (D.3) 

These equivalence classes also uniquely define the periods. In particular, if two periods both 
meet the same period, and another period meets both of them, then the periods are equal: 

yij,k,l. Meets{k,i) A Meets{k,j) A Meets{i,l) A Meets{j,l) D i = j. (D.4) 

Finally, we need an ordering axiom. Intuitively, this axiom asserts that for any two pairs of 
periods, such that i meets j and k meets /, then either they both meet at the same "place," 
or the place where i meets j precedes the place where k meets /, or vice versa. In terms 
of the meets relation, this can be axiomatized as follows, where the symbol "®" means 
"exclusive-or": 

yij,kj .{Meets{i,j) A Meets{k,l)) D (D.5) 

Meets{i, I) 0 (3m . Meets{k, m) A Meets{m, j)) ® 

(3m . Meets{i, m) V Meets{m, I)). 

Many of the properties that are intuitively desired but have not yet been mentioned are 
actually theorems of this axiomatization. In particular, it can be proven that no period can 
meet itself, and that if one period i meets another j then j cannot also meet i {i.e., finite 
circular models of time are not possible). 

With this system, one can define the complete range of the intuitive relationships that 
could hold between time periods. For example, one period is before another if there exists 
another period that spans the time between them, for instance: 

Before{i,j) = 3m . Meets{i, m) A Meets{m,j). 

Figure 3 shows each of these relationships graphically (equality is not shown). We will use 
the following symbols to stand for commonly-used relations and disjunctions of relations: 

Meets{i,j)      i : j 
Before{i,j)    i ■< j Before{i,j) V Meets{iJ)    i ^: j 
During{i,j)    i C j During{i,j) V i = j i E i 
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Relation 

Before{i,j) 

Meets{iJ) 

Overlaps{i,j) 

Starts{i,j) 

During{i^j)   - 

Finishes{i,j)- 

i'    ■      J ■* H    ^   ^   > 

Inverse 

After{j, i) 

MetBy{j,i) 

OverlappedBy{j, i) 

StartedBy{j, i) 

C ontains{j, i) 

FinishedBy{j, i) 

Figure 3: The possible relations between time periods (equality not shown) 

Finally, an important relationship between two periods is Disjoint: two intervals are disjoint 
if they do not overlap in any way. We write this as "i tx j" and define it by 

i \x j = i ■^■. j y j ^: i. 

The computational properties of the interval calculus and algorithms for maintaining net- 
works of temporal constraints are presented in [1; 61; 62]. 

A period can be classified by the relationships that it can have with other periods. 
For example, we call a period that has no subperiods (i.e., no period is contained in it 
or overlaps it) a moment and a period that has subperiods, an interval. In addition, we 
can define a notion of time point by a construction that defines the beginning and ending 
of periods. It is important to note that moments and points are distinct and cannot be 
collapsed. In particular, moments are true periods and may meet other periods, and if 
Meets{i, m) A Meets{m,j) for any moment m, then i is before j. Points, on the other hand, 
are not periods and cannot meet periods. Full details can be found in [6]. 

Any semantic model that allows these distinctions would be a possible model of time. In 
particular, a discrete time model can be given for this logic, where periods map to pairs of 
integers (/, J) where I < J. Moments correspond to pairs of the form (/, / + 1), and points 
correspond to the integers themselves. A similar model built out of pairs of real numbers 
does not allow moments. A more complex model can be specified out of the reals, however, 
that does allow continuous time, or models that are sometimes discrete and som.etimes 
continuous are possible. Ladkin and Maddux [33] have characterized the set of possible 
models as precisely the arbitrary unbounded linear orders. 

3.2    Interval Temporal Logic 

The most obvious way to add times into a logic is to add an extra argument to each predicate. 
For example, in a nontemporal logic, the predicate Green might denote the set of green 
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objects. Thus, a formula such as Green{frogl3) would be true only if the object named by 
the term, froglZ, is in the set of green objects. To make this a temporal predicate, a time 
argument is added and Green now denotes a set of tuples consisting of all green objects with 
the times at which they were green. Thus, the proposition Green{frogl3,tl) is true only if 
the object named by froglZ was green over the time named by tl. 

By allowing time intervals as arguments, we open the possibility that a proposition 
involving some predicate P might be neither true nor false over some interval t. In particular, 
consider a predicate P that is true during some subinterval of t and also false in some other 
subinterval of t. In this case, there are two ways we might interpret the negative proposition 

~P{t). In the weak interpretation, ~P{t) is true if and only if it is not the case that P is 
true throughout interval t, and thus ~P{t) is true if P changes truth-values during t. In the 
strong interpretation of negation, ~P{t) is true if and only if P is false throughout t, and so 
neither P{t) nor ~P(t) would be true in the above situation. Thus, a logic with only strong 
negation has truth gaps. 

We take the weak interpretation of negation as the basic construct, as do Shoham [55] 
and Bacchus et. al. [10], to preserve a simple two-valued logic. Weak negation also seems to 
be the appropriate interpretation for the standard definition of implication. In particular, 
the formula P{t) D Q{t') is typically defined as ~P{t) V Q{t'). Since we want the implication 
to mean "whenever P is true over i, then Q is true over ^','' this is best captured by the weak 
negation form of the equivalent formula. With weak negation, ~P{t) V Q{t') says that either 
P is not true throughout t (but might be true in some subintervals of t), or Q is true over 
t'. This seems the right interpretation. Of course, we can still make assertions equivalent to 
the strong negation. The fact that P is false throughout t can be expressed as 

W.t'QtD~P{t'). 

This is a common enough expression that we will introduce an abbreviation for the formula, 
namely -'P{t) (that is, the symbol "-■" means strong negation). This way we obtain the 
notational convenience of strong negation while retaining the simpler semantics of a logic 
with no truth gaps. 

There are several characteristics of propositions that allow them to be broadly classified 
based on their inferential properties. These distinctions were originally proposed by Vendler 
[59], and variants have been proposed under various names throughout linguistics, philoso- 
phy, and artificial inteUigence ever since {e.g., [45; 2; 16; 56]). For the most part we will not 
be concerned with all the distinctions considered by these authors. However one important 
property mentioned previously is homogeneity. Recall that a proposition is homogeneous if 
and only if when it holds over a time period t, it also holds over any period within t. In the 
current formulation, this property is defined by a family of axiom schemata, one for each 
arity of predicate. For all homogeneous predicates P of arity n + 1: 

Homogeneity Axiom Schema 
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All predicates will be homogeneous in what follows except when explicitly noted. The 
following useful theorem follows from the definition of strong negation and the homogeneity 
property, for any homogeneous predicate P: 

DISJ   Vt, t'. P{t) A -P(t') Dt^t'. 

That is, two intervals over which a predicate has different truth values (with respect to strong 
negation) must be disjoint. 

There is still one aspect of the relationship between time and properties that remains to 
be addressed. This issue is crucially important to our subsequent development of mechanisms 
for reasoning about change. Thus far, we have not been concerned with whether the temporal 
structure is modelled on the real line or on some more restricted domain. However, once we 
start considering properties changing value in time, we are immediately confronted with the 
possibility of various sorts of infinities if the underlying model is the reals. For example, the 
definition of weak negation allows intervals over which ~P holds but for no subinterval of 
which does ->P hold. In such a case, we would have an infinite intermingling of P and ~P 
intervals. 

While such strange situations are mathematically possible, they are clearly not what 
would expect from a commonsense theory. We therefore explicitly rule them out with a 
axiom schema of "discrete variation," adapted from Hamblin [28]: 

Discrete Variation Axiom Schema 

'^t.~P{t)D3t'.t'QtA^P{t'). 

This states that any interval over which a property P is weakly false has (at least) a strongly 
false "core." Hamblin states that this schema, together with homogeneity, defines the "phe- 
nomenal" predicates, i.e., those corresponding to natural phenomena. 

It turns out that this is not in fact strong enough to draw all the commonsense conclusions 
one would expect.^ For example, consider that we know of two intervals t and t' where t ^: t', 
such that P{t) and -'P(i'). A desirable (indeed fundamental) conclusion that we would like 
to draw from this premise is that there is a "transition point" between P and -'P, i.e., 

3T, r . P{T) A ^PiT') AT-.T'At'QT'. 

That is, there exist two intervals that meet where the property changes truth value, and 
these intervals are related to the original ones by inclusion on the left (there is a similar 
statement for the right). This conclusion, however, does not follow from discrete variation 
and homogeneity. The reason is that although the discrete variation schema rules out infinite 
intermingling, we can still have an infinite sequence of intervals of the same truth value 
telescoping towards a point, as in Zeno's Paradox. 

^We are indebted to Nort Fowler for making this clear. 
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This problem is of course familiar to mathematicians from the theory of continuous func- 
tions. It led Galton [21] to introduce additional axioms to explicitly eliminate such telescop- 
ing intervals. More generally in AI, Davis [15] has pointed out several related problems with 
the relationship between continuous functions and AI theories of knowledge representation. 
Van Bentham [58] is the definitive treatment of these questions as regards temporal logic. 
For our part, we believe that it would be possible to import and adapt appropriate pieces of 
the theory of functions such that, with appropriate assumptions about, e.g.^ continuity and 
density, we could derive the desired conclusions. The details are complicated, and in any 
event would mostly be a recapitulation of prior mathematical analysis. Not only are we not 
really qualified for the task, our purpose here is a commonsense theory, which the theory 
of functions certainly is not. We will therefore add the following "transition point" axiom 
schema to our temporal logic: 

TRPT   yt,t'.P{t)A^P{t')At^:t'D 
3r, r. p{T) A -p(r') AT-.T' At'nr 

What price have we paid for axiomatizing away this difficulty? Davis [15, p. 48] quotes 
Russell as stating that "the method of 'postulating' what we want has many advantages; 
they are the same as the advantages of theft over honest toil." In our own defense, we 
believe that our axiomatization is intended to produce a commonsense theory—one whose 
conclusions are those sanctioned by "common sense." The onus is therefore on the critics of 
the axioms to produce commonsense examples that violate the axioms. Davis argues that 
ruling out the use of some standard physical theories (as TRPT does) is too high a price to 
pay. Van Bentham, however, in his discussion of "linguistic" aspects of temporal logic {i.e.., 
using the logic in descriptions of the world), comments that "There is a lesson to be learnt 
here. Nature makes no jumps; but our linguistic descriptions can." [58, p. 229] 

3.3    The Logic of Events 

The logic developed thus far is still insufficient to conveniently capture many of the cir- 
cumstances that we need to reason about. In particular, we need to introduce events as 
objects into the logic. There are many reasons for this, and the most important of these are 
discussed in the remainder of this section. 

Davidson [14] argued that there are potentially unbounded qualifications that could be 
included in an event description. The issue of reifying events is not only an issue for rep- 
resenting natural language meaning, however. A sophisticated plan reasoning system also 
needs to represent and reason about events of similar complexity. In addition, in many forms 
of plan reasoning, the system must be able to distinguish events even though it does not 
have any information to distinguish them. 

We use a representation that makes event variables the central component for organizing 
knowledge about events. In particular, events are divided into types, and each type defines a 
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set of role functions that specify the arguments to any particular event instance. The event 
of Jack lifting the ball onto the table at time tl would be represented as 

3e . LlFT(e) A agent{e) = jackM A 

dest{e) = tableh A theme{e) = ball26 A time{e) = tl. 

Event predicates will always be written in SMALL CAPS to distinguish them from other 
functions and predicates.^ 

This representation is somewhat verbose for presenting examples. When needed to make a 
point, the representation using only functions on events will be used. At other times, however, 
we will use the more standard predicate-argument notation as a convenient abbreviation. 
Thus, we will usually abbreviate the above formula as: 

3e . LlFT(jacA;34,6a//26, tableb, tl, e). 

The arguments in this predicate-argument form will depend on the predicate, but the last two 
argument positions will always be the time of the event and the event instance, respectively. 
Finally note that event predicates are anti-homogeneous (that is, they hold over no sub- 
interval of the time over which they hold) as discussed in Section 2.1. 

Because of the representation based on role functions, an event instance uniquely defines 
all its arguments. This is important to remember when the predicate-argument abbreviation 
is used. In particular, if we asserted that both LlFT(ai,fei,Ci,ii,e) and LlFT(a2,62,02,^2,6) 
were true, then this would entail that Ci = 02, 61 = 62, Ci = C2, and ti = t2, a fact not 
obvious when using the predicate-argument form but clear from the functional form. 

We will represent knowledge about events in several ways. The first is by defining nec- 
essary conditions on the event occurring. For instance, consider the event of one block 
being stacked on another by a robot. This could be described by an event predicate of form 
STACK(a;, y, t, e). Axioms then define the consequences of this event occurring. For instance, 
one might assert that whenever a stack event occurs, the first block is on the second block 
at the end of the action. In the predicate-argument notation, this could be written as 

Vrc, y, i, e. STACK(a;, y, t, e) D 3t' .t : t' A On{x, y, t'). 

In the functional form, the same axiom would be 

Ve . STACK(e) D 3t'. time{e) : t' A On{blockl{e), block2{e),t'). 

^The logic containing reified events also allows one to discuss events that do not occur. In particu- 
lar, asserting that an event instance exists does not necessarily entail that it occurred. A new predicate 
Occurs can be introduced and the assertion that Jack lifted the ball (at time tl) would be represented as 
3e . LlFT(jacfc34,6a//26, <1, e) A Occurs{e). Using an explicit Occurs predicate allows events to exist even if 
they do not actually occur, or could never occur. We will not need this expressive power in this paper so will 
proceed under the interpretation that only events that occur exist. Not having to put the Occurs predicate 
in each formula will simplify the presentation. 
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STACK(x,t/,i,e) 
 »j 

\Clear{x, €ffl{e)) Clear(x^prel{e)]\Holding{x, conl(e)) 

Clear{y^pre8{e)y On{x,y,eff2{e)) 

Figure 4: Necessary conditions for stacking x on y 

Of course, there are many other necessary conditions in order for a stacking event to 
occur. For instance, we might say that the block moved (blockl{e)) must be clear when the 
event starts, that the agent must be holding that block some time during the event (actually 
up to the end of the event), and that the other block {block2{e)) is clear just before the end of 
the event, and has blockl on it immediately after the event completes. The event terminates 
at the time when blockl is on block2. This information can be expressed directly using the 
temporal logic by the following axiom, also shown graphically in Figure 4: 

Vx, y, i, e . STACK(X, y, t, e) D 

3j,k,l,m,n . Clear{x,j) A Overlaps{j,t) A 

Holding{x, k) A Finishes{k, t) A j : k A 

Clear(x, I) At: I A Clear{y, m) A SameEnd{t, m) A 

On(x,y,n) At : n. 

A more useful form of this axiom for planning uses temporal functions on each event that 
define the structure of the temporal intervals needed for its definition. For example, for the 
class of stacking events, we need functions to produce times corresponding to the existential 
variables in the axiom given above. Using new function names, we might define the temporal 
structure of the stacking event as follows: 

yt, e . STACK(t, e) D 

Overlaps(prel(e),t) A Finishes{conl(e),t) A prel{e) : conl{e) A 

t : effl{e) A SameEnd{t,pre2{e)) A t : eff2{e). 

The temporal functions are named to informally suggest the three classes of conditions that 
arise in an event definition. The "preconditions"—conditions that must hold prior to the 
event's occurrence—have the prefix pre, the "effects"—conditions that must hold following 
the event—have the prefix ejf^ and the other conditions that must hold during the event have 
the prefix con. The temporal functions can be viewed as Skolem functions justified by the 
original axiom. The only aspect that will seem puzzling is that we will use the same Skolem 
functions in several axioms. This should be viewed as a notational convenience that allows a 
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large conjunctive axiom (with a single universally quantified event variable) to be presented 
as several smaller axioms. With this temporal structure defined for every stacking event, the 
axiom defining the necessary conditions for the event's occurrence now can be expressed as 
follows: 

Vx, y, i, e . STACK(X, y, t, e) D 

Clear{x,prel{e)) A Holding{x, conl{e)) A Clear{x, ^ffl{^)) A 

Clear{y,pre2{e)) A On{x,y, eff2{e)). 

Again, the combination of this axiom and the temporal structure axiom is shown graphically 
in Figure 4. 

This axiom asserts what is true whenever a stacking event occurs, independent of the 
situation. Other knowledge about events is relevant only in certain situations {i.e., the event 
has conditional effects). For instance, if the block being moved in a stacking action was 
initially on another block, then this other block becomes clear. This is expressed in the logic 
by the following axiom, which states that if block x was initially on another block 3, then z 
becomes clear when x is moved: 

Vx, y, z, t, e, t'. STACK(a;, y, t, e) A On{x, z,t') A Overlaps{t\ t) D 

ar, f.t'nTA On{x, z,T)AT: conl{e) A Clear{z, t") A T : t". 

Of course, if the only events we needed to represent were simple events such as occur 
in the blocks world, then the temporal logic would be overkill. But we are interested in 
much more realistic events, where we may have significant knowledge about how the world 
changes as the event occurs. As a quick example, consider the event of a cup filling up with 
water. At the end the cup is full, but while the event is occurring, the level of the water is 
continually increasing. Commonsense knowledge about this event is easily captured in the 
interval logic. For instance, the fact that the level of the water continues to rise throughout 
the event is captured by the following axiom: 

Vc, e,i. FlLL(c,i,e) D 

\/t\t" .{t'{lt)A{t"nt)A{t' -<:t")D 

level{cj') < level{c,t"), 

where level(c, t) is now an interval-valued function that gives the range of level of the water in 
the cup over time t. This axiom captures the intuition that the water continually rises quite 
simply and directly without making a commitment to a continuous model of change. In order 
to draw conclusions from axioms such as this one, we would need to develop the mathematics 
of interval-valued functions in some detail. Van Bentham [58] presents several definitions 
of continuous functions in interval-based theories. Dealing with events that involve such 
"continuous change" is not the focus of this paper, however, and most of our examples will 
involve the very simple actions that are common in the literature on planning and reasoning 
about action. 
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Finally, some might wonder why the logic has no separate mechanism for describing pro- 
cesses, as was present in [2]. While this may ultimately be necessary, the existing formalism 
already supports a wide range of "process-like" predicates. In particular, you can define a 
property that is true only when an event is occurring. In the above example about the cup, 
we could define a predicate CupFilling as 

Vc, t. CupFilling{c, t) = 3t', e.tC,t' A FILL(C, t', e) 

Note that by this definition, CupFilling is a homogeneous predicate, as expected for prop- 
erties. The place where problems arise with this simple approach is in dealing with the 
imperfective paradox. For instance, you might want to say that a person was crossing the 
street at some time t, even if they changed their mind at the last minute and went back to 
the original side. This problem has been studied extensively in the philosophical literature, 
but has not been a focus for our work as it does not seem to arise naturally in the planning 
domains we have studied. 

3.4    The Logic of Actions 

The representation of events described in the previous section does not adequately capture 
knowledge of causality. In particular, the formulas above do not state what properties 
are caused by the stacking action or what properties simply must be true whenever the 
action succeeds. This is the distinction that STRIPS makes between preconditions and 
effects. Intuitively, it is evident that the stacking action causes block A to be on block B in 
situations where both blocks are clear at the start of the action. Furthermore, the stacking 
action causes block B to become not clear while it does not affect the condition that block 
A is clear. 

To encode such knowledge, we need to be able to reason about attempting to perform an 
action. To do this, we need to better define the distinction between events and actions. So 
far, we have only talked about events occurring. The assertion that Jack lifted the ball onto 
the table describes an event in which Jack performed some action that resulted in the ball 
being lifted onto the table. The action Jack performed, namely, the lifting, was realized by 
some set of motions that Jack performed in order to lift the ball. If Jack were a robot, the 
action would be the execution of a program that involved the correct control sequences given 
perceptual input. Thus, in a robot world the action corresponds to the program, whereeis 
the event corresponds to a situation in which the program was executed successfully. 

As noted in Section 2.1, for every action there is a corresponding event consisting of an 
agent performing that action. We will often exploit this by using the same names for events 
and actions. Thus the STACK{x,y,t,e) predicate presented in the previous section might 
correspond to the action term stack(x, y) that denotes a program where x and y correspond 
to the blocks being stacked. Of course, there are other events that do not involve actions. 
For example, natural forces (such as the wind blowing) result in events but do not involve 
action in the sense we are using it. Actions may be arbitrarily complex activities, and can 
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be decomposable into other less complex actions, which themselves may be decomposable, 
until a certain basic level of action is attained. The primitive actions are called the basic 
actions following [25]. 

The predicate Try is defined on programs, such that T'ry(7r, t) is true only if the program 
TT is executed over time t.^ As with event predicates. Try is anti-homogeneous. We can now 
assert an axiom defining the conditions sufficient to guarantee successful action attempts. In 
the case of stacking, whenever the agent tries to stack a; on y starting in a situation where 
X and y are clear, then a stacking event occurs that is temporally constrained by the initial 

conditions: 

Vx, y, t, j, k . Try{stack{x, y),t) A Clear{x,j) A Overlaps{j, t) A 

Clear{y, k) A SameEnd{k, t) D 3e . STACK(X, y, t, e) 

More realistic versions of this axiom might include duration constraints, and out theory can 
also have constraints on t such that Try{ir,t) is true {e.g., that it is tried for long enough). 

It is important to consider why the information about stacking is captured by two different 
sets of related axioms: one capturing the necessary conditions whenever a stacking event 
occurs (Section 3.3), and the other relating action attempts to event occurrences (above). 
This is because the two sets of axioms represent two very different sources of knowledge. 
The first defines knowledge about what the world is necessarily like whenever the event 
occurs successfully, while the second defines the abilities of the agent in causing events. In 
many situations, an agent may know the former but not the latter. For example, we all can 
recognize that the mechanic fixed our car, even if we have no idea what enabled the mechanic 
to do the job. Knowledge of this sort is also essential for much of natural language semantics, 
where many verbs are defined and used without the agent's knowing the necessary causal 
knowledge. Allen [2] discusses this at length. 

To summarize the development thus far, we can partition our axioms describing e\'ents 
and actions into three broad categories: 

EDEF Event definitions - These are axioms of the form 

Ve . £;(e) A (?!) D V, 

where E is an event-type predicate and (f) and ifp contain no event predicates.   The 
necessary conditions for stacking given in the previous section fall into this category. 

ETRY Action definitions - These are axioms of the form 

\/t,... . Try{-K, t)A(f)D3e. E{e) A t o time{e) A i/^, 

^In previous work {e.g., [3]), we included the event "caused" by attempting the action as an argument to 
the Try predicate. The problem with this is that we might want to categorize the "caused" event in several 
ways (i.e., using several event predicates). 
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where again E is an event predicate. In this case, ij) represents constraints on e, and 
can involve other quantified variables. The symbol "o" stands for the temporal relation 
between the action and the event, typically '■'Equar or ''^Meets'\ as discussed above. 

EGEN Event generation axioms - These are of the form 

Ve . E{e) A </. D 3e'. E'{e') A ^. 

Again, E and E' are event-type predicates and cf) and V' represent constraints on the 
events. The classic example of event generation is represented in English using the 
"by" locution, for example, signaling a turn by waving one's arm, under appropriate 
conditions. More concrete examples will be presented in later sections. 

Examples of all three classes of axioms will be presented in the next section when we describe 
application of the formalism to a set of problems from the literature on reasoning about 
action. 

3.5    Discussion 

Having introduced our representation of time, actions and events, we can now compare it to 
other formalisms. Note that this comparison is based on the expressiveness and simplicity of 
the logic for capturing commonsense knowledge. Dealing with prediction is a separate issue 
for most of these formalisms, and will be discussed at the end of the next section. 

As discussed previously, most formalisms have not included an explicit model of time, 
but base their model on states or situations. To handle explicit temporal relations in the 
situation calculus, a function can be defined that maps a state or situation to a timepoint. 
In this way, the situation calculus defines a point-based branching time model. A duration 
function on actions can be defined that allows one to compute the time of the resulting 
situation given the initial situation [22]. Within the constructive models, however, the range 
of temporal reasoning that can be performed is severely limited. First, note that there are no 
situations defined during the time an action is executing. This means that you cannot assert 
anything about the world during an action execution. Rather, all effects of an action must be 
packaged into the resulting situation. As a consequence, all effects start simultaneously. Since 
situations correspond to time points, the formalism also has no mechanism for representing 
knowledge about how long an effect might hold, as time only moves forward as a result of an 
action. The only way around this seems to be to allow null actions that move time forward 
but have no effect, which is neither convenient or intuitive. 

As a consequence, the only worlds easily represented by the constructive situation calculus 
are those that remain static except when the agent acts, and where nothing important 
happens while actions are being executed. Of course, if one abandons the requirement 
of a constructive theory, then more complicated scenarios can be represented. In fact, in 
some approaches (e.^., [54]) even continuous change has been represented.   The primary 
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mechanism that enables this, however, is the exploitation of the mapping from situations 
to times, and the introduction of situations that are not the result of any actions. Given 
these radical extensions, it is not clear to us what the advantage is in retaining the situation 
calculus as the underlying theory, rather than moving to the simpler, more direct, explicit 
temporal logic. Temporal logic gives properties, actions and events equal temporal status, 
allowing complex situations to be captured quite directly in a manner similar to how they 
are intuitively described. 

There is no explicit representation of events in the situation calculus, which makes it 
difficult to represent knowledge of the actual world. For instance, it is not possible to 
directly assert that an event E will occur tomorrow, or even that the agent will perform 
an action A tomorrow. In the constructive situation calculus, one would have to quantify 
over all action sequences and ensure that the event or action was present. This does not 
seem workable, and recent attempts to represent the actual events generall}^ abandon the 
constructive approach, and have to introduce an explicit new construct for events {e.g., [43]). 
The resulting formalism is again closer to what we propose, and we question the advantage 
of retaining the original situation calculus framework. 

The event calculus [32] has an explicit notion of event that corresponds more closely to 
our notion of events. This is not surprising as both this formalism and our own development 
of the temporal logic are based on intuitions about the close relationship between time and 
events. The event calculus does not seem to have a separate notion of actions, although 
formulas of the form act{E,give{a, x,y)) are used that suggest they might. As far as we can 
tell, however, this is only a syntactic mechanism for naming events. Reasoning in the event 
calculus is driven by the events that occur, as it is in our approach, but the relationship 
between the behaviors that an agent might perform and the events that the agent causes is 
not explored. 

Closest to our representation is that described by McDermott [42]. He does distinguish 
between actions (which he calls tasks) and events, and uses an explicit model of time. As 
a result, he can define notions such as a successful action attempt, and explicitly reason 
about an agent's actions and what events they will cause. His representation of time has 
many similarities to the work that extends the situation calculus with a time line [49], 
and he explores the consequences of adding explicit time to such a model in depth. A 
significant difference between our approaches is that we use an interval-based logic, while 
McDermott uses a continuous point-based model. These differences have been discussed in 
detail elsewhere [e.g., [58; 2; 56]). 

4    Reasoning about Action in Simple Domains 

As mentioned in the introduction, there are three major reasoning tasks we require the logic 
of events and actions to support: prediction, planning, and explanation. Of these, prediction 
is the most basic capability—given a description of the world and a set of actions and events 
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that will occur, what can we conclude about the past, present, and future? With a temporal 
logic, the initial world description might already contain some information about the past 
or the future, say some external events that will occur, or future actions that the agent 
knows it will perform. The prediction task reduces to predicting the effects of new actions 
and events that are posited to occur, and updating the world model accordingly. Neither 
planning nor explanation can be accomplished without a model of prediction. In planning, 
for instance, the task is to find a set of actions that will accomplish a given set of goals. 
This can be divided into two abstract tasks: generating a candidate set of actions, and 
evaluating whether the plan will succeed. This latter task is exactly the prediction task. 
Explanation can be similarly decomposed into generating a possible set of events that might 
explain the observations, and then verifying whether the events would actually cause the 
observed effects. Of course, any particular algorithm might not divide the reasoning into 
two explicit steps. In fact, most planning algorithms exploit a specific prediction model 
in order to suggest actions likely to produce a good plan, but all systems are based on 
some prediction model, which typically is based on the STRIPS assumptions {e.g., [46; 13; 
39]). 

4.1    Frame Axioms and Explanation Closure 

The problem is that the STRIPS assumptions do not hold in most realistic situations that 
one needs to reason about. The situation calculus and temporal logic-based approaches do 
not have to operate with such assumptions. As a result, these theories themselves make 
little commitment to how the state resulting from an action relates to the state before the 
action. Rather the properties of the resulting state must be specified axiomatically, and the 
frame problem involves how best to specify these properties. The original proposal for the 
situation calculus [41] was to use frame axioms, which explicitly stated which properties are 
not changed by the actions. Explicit frame axioms have come under criticism, primarily 
because there are too many of them, both to write down explicitly and to reason with 
efficiently. 

There are several ways to try to overcome this problem. Many researchers abandon 
frame axioms altogether, and have built models that use persistence or inertia assump- 
tions {e.g., [34; 56]). These approaches assume that all changes caused by an action are 
specified, and every property not asserted to change does not change. This technique has 
much to recommend it, as it eliminates the need to enumerate frame axioms, but in its 
simple form it tends to be too strong. In particular, if there is uncertainty as to whether 
a property might change or not, techniques based on this approach will often incorrectly 
assume that the change does not occur. Other approaches work instead by minimizing 
event or action occurrences. Properties are assumed to change only as a result of events 
defined in the representation, and logically unnecessary events do not occur {e.g., [24; 23; 
44]). These approaches show more promise at handling more complex situations and have 
many similarities to our work. 
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The approach we take, however, retains the flavor of explicit frame axioms. Rather than 
specifying for each action whether each property changes or not. however, one specifies for 
each property what events can change it. The problem of reasoning about changes then 
reduces to the problem of reasoning about what events may or may not have occurred. 
This technique is called the explanation closure approach and was proposed by Haas [27] 
and Schubert [52]. Schubert has shown that such a technique can dramiatically reduce the 
number of frame axioms required to produce a workable set of axioms for a problem. Of 
course, assumptions must still be made. As in other approaches, we assume that unnecessary 
events do not occur, but this is specified axiomatically rather than being built into the 
semantic model. This has several advantages. Most importantly, the resulting axioms can 
be interpreted with the standard semantics of the first-order predicate calculus, meaning that 
there are well-defined notions of entailment and proof. We can show that our representation 
handles a particular class of examples by showing a proof of the desired consequences, without 
needing to appeal to model-theoretic arguments in a non-standard semantics. In addition, 
various forms of uncertainty are handled using the standard methods in logic with disjunction 
and existential quantification. Finally, the assumptions that are made appear explicitly as 
axioms in the system. While not exploited in this paper, this allows for explicit reasoning 
about the assumptions underlying a line of reasoning (c/. [19; 18; 3; 17]). 

If you are willing to reinstate strong assumptions about the domain, roughly equivalent 
to the STRIPS assumptions, then Reiter [50] has shown that the explanation closure ax- 
ioms can be computed automatically using predicate completion techniques. But this close 
correspondence breaks down in more complex domains. Schubert [52] argues that expla- 
nation closure is distinct from predicate completion or biconditionalization, and thus that 
the axioms cannot be generated automatically. Specifically, he argues that any automatic 
procedure will produce axioms that are too strong in cases where knowledge of the world is 
incomplete and actions may have conditional efii'ects. In addition, he argues that explanation 
closure axioms have "epistemic content" and are independently motivated by other problems 
such as language understanding. As such, they form a crucial body of knowledge necessary 
for many commonsense reasoning tasks. 

The development to follow in the rest of this section does not demonstrate the full power 
of our approach, as it does not consider simultaneous actions and external events. This will 
facilitate the comparison of our work to other approaches. More complex cases are considered 
in detail in [5]. Because of the simple nature of the problems, the closure axioms can be 
classified into two classes, corresponding to two assumptions: no properties change unless 
explicitly changed by an event occurring, and no events occur except as the result of the 
actions. Although these are difficult to precisely describe schematically, they look something 
like the following following: 

EXCP (Strong Closure on Properties) Every property change results from the occurrence 
of an instance of one of the event types defined in the axioms. These axioms are of the 
form: 

Vi, t'. P{t) A -P(i') At:t' D3e. {Ei{e) V E2{e) V ...) A time{e) : i', 
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where the Ei are the event-type predicates that (possibly) affect the truth value of P. 
These axioms are derived from the event definition axioms (EDEF). 

EXCE (Strong Closure on Events) Every event that occurs does so as a result of some 
action being attempted, possibly indirectly via event generation. These axioms are of 
the form: "Ve . E(e) D (/>! V 02 V ...," where 0,- is either of the form 

3^ . Try{TT, t) At 0 tiTne{e) A I/JI 

for TT an action term and "o" a temporal relation (typically "="), or of the form 

3e'. E'{e') A time{e) o time{e') A ■0, 

for E' an event-type predicate.   These axioms can often be derived from the action 
definition (ETRY) and event generation (EGEN) axioms. 

4.2     Example 

By way of illustrating the application of the logic and the explanation closure technique, 
we now present the formalizations of one of the standard problems from the literature on 
reasoning about action, taken from the Sandewall Test Suite [51]. In [5], we consider a much 
wider range of problems from the test suite. 

Consider our formulation of the basic Yale Shooting Problem (YSP). The scenario in- 
volves a hapless victim, Fred, who apparently sits idly by while an adversary loads a gun, 
waits some period of time, and shoots (at Fred). The question is whether Fred is dead or 
not, or rather whether an axiomatization of the problem in some logical system allows the 
conclusion that Fred is dead to be derived. This simple problem has generated an extensive 
body of literature (c/. [12]). In most cases, the issue is that while the loadedness of the 
gun ought to persist through the waiting (and then the shooting succeeds in killing Fred), 
Fred's "aliveness" ought not to persist through the shooting (indeed, cannot, without risk 
of inconsistency) although it should persist through the loading and waiting. On the other 
hand, there might be "non-standard" models where the gun somehow becomes unloaded, in 
which case the shooting would fail to kill Fred. 

Figure 5 shows the axioms for the YSP in our logic; they are depicted graphically in Fig- 
ure 6. Recall that the EDEF axioms describe the necessary conditions for event occurrence 
and the ETRY axioms describe the sufiicient conditions relating program executions (ac- 
tions) and events. For loading, these are both almost trivial: any attempt to load will cause 
a LOAD event (ETRYl) and this will entail that the gun is loaded immediately thereafter 
(EDEFl). A successful SHOOT event, on the other hand, entails that the gun be loaded be- 
forehand, unloaded afterwards, and also that Fred be dead afterwards (EDEF2). Attempting 
the shooting action will be successful in causing such an event if the gun was loaded at the 
time of the shooting (ETRY2). Of course, the example axioms are very simple—there are 
only temporal roles and there are no generation axioms (yet). 
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EDEFl    Ve.LOAD(e)    D   Loaded{effl{e)) A time{e) : effl{e) 

EDEF2   ye.SHOOT(e) D 
Loaded{prel{e)) A SaTneEnd{prel{e), time{e)) A 
-^Loaded{effl{e)) A time{e) : effl{e) A 
--Alive{eff2{e)) A time{e) : eff2{e) 

ETRYl    yt. Try {load, t)    D   3e.LOAD(f,e) 

ETRY2    yt.Try{shoot,t)ALoaded{t)    D   3e. SHOOT(^,e) 

Figure 5: Basic axioms for the Yale Shooting Problem 

LoAD(e)    ; 

\ Loaded{effl{e)) 

__ SHOOT(e)    ■ 

Loaded(prel(e))       \-^Loaded{effl{e)) 

\^-^Alive{eff2{e)) 

Figure 6: The LOAD and SHOOT event definitions 
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EXCPl    Vt, t'. ^Loaded{t) A Loaded{t') At:t' D 
3e . LOAD(e) A time{e) : t' 

EXCP2a   Vf, t'. Loaded{t) A ^Loaded{t') At:t' D 
3e . SHOOT(e) A time{e) : t' 

EXCP2b    V^, t'. Alive{t) A ^Alive{t') Atit'D 
3e . SHOOT(e) A time{e) : t' 

EXCEl    Ve . LOAD(e)   D   3t. Try{load, t)At = time{e) 

EXCE2    Ve . SHOOT(e)   D   3t. Try{shoot, t)At = time{e) 

Figure 7: Explanation closure axioms for the YSP 

Figure 7 gives the explanation closure axioms corresponding to the event and action 
axioms in Figure 5. Given the simple actions and strong assumptions made in the problem 
formulation, an automatic procedure could probably devised to generate them. But notice 
that the closure axioms are not simply a strengthening of the implication to a biconditional. 
In particular, the EXCP2b axiom does not say that every SHOOT event causes a transition 
from alive to dead, just that every such transition is the result of a SHOOT. This would 
allow one to shoot things that are already dead, for example. 

We can now present the axiomatization of the YSP scenario. Initially a turkey (taking 
the role of Fred) is alive and the gun is not loaded. The agent loads the gun, waits, and 
shoots. We are to show that the turkey is dead sometime after the shooting. At issue is the 
persistence of loadedness through the waiting and the non-persistence of aliveness through 
the shooting. The following axioms describe the scenario: 

AXO iO ^ tl ^ t2 ^ tS 

AXl Alive{tO) 

AX2 ^Loaded{tO) 

AX3 Try{load,tl) 

AX4 Try{shoot,t3) 

AX5 Va, t. Try{a, t) = {a = load At = tl)y{a = shoot At = t3) 

The final axiom is the important assumption that we attempt only the given actions. With 
the EXCE axioms, this ensures that "nothing else happens," which drives the explanation 
closure method. Note that the formalism does not require such an assumption. Rather, we 
are making explicit an aspect of the scenario that is usually implicit and accomplished via 
some form of semantic minimization. 

To Prove:    3t. ^Alive{t) AtS^-.t 
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Since there are no preconditions for loading, AX3 and ETRYl give 

3ei . LOAD(U,ei), 

then EDEFl gives 

Loaded{effl{ei))An : effl{ei). 

That is, the loading succeeds, and the gun is loaded, at least immediately afterwards. Now, 
suppose that 

Loaded(t3) {*) 

that is, the gun remains loaded until the shooting is attempted.   In that case, AX4 and 
ETRY2 give Bes . SHOOT(^3,e3), and then EDEF2 gives 

-^Alive{eff2{es)) MS : effSies). 

That is, the shooting also succeeds and the turkey is dead afterwards, as required. 

To show the persistence (*), suppose otherwise that -iLoaded{t3). The interval temporal 
logic theorem DISJ (Section 3.2) gives effl{ei) tx t3, then AXO and the fact that tl : effl{ei) 
give effl{ei) -<: tZ. We apply interval temporal logic axiom TRPT to get 

3T, r . Loaded{T) A ^Loaded{T') AT:T' AtS^T'. 

Then, EXCP2a gives 
Be . SHOOT(e) A time{e) : T'. 

That is, if the gun became unloaded it must have been because of a shooting. Note that 
time{e) -<: t3 since i3 C T' and tiTne{e) : T'. Then from EXCE2 we get 

3t. Try{shoot, t) At = h'me(e), 

i.e., if there was a shooting then someone must have tried to shoot. Since t = time{e) -<: ^3, 
we have t ^t3, contradicting AX5. □ 

4.3     Discussion 

Work on the frame problem investigates methods of making assumptions about the world 
to predict the likely consequences of actions. There are therefore two separable issues to 
consider, which have been called the "epistemological" and "computational" aspects of the 
problem (c/. [31], but also [41] regarding epistemological and heuristic adequacy). The 
epistemological aspect concerns what assumptions one makes about the world, while the 
computational aspect concerns how to compute and use these assumptions in the formalism. 
For example, it is an epistemological issue whether to make assumptions about property 
changes as in the persistence-based approaches, or to make assumptions about event oc- 
currences.    On the other hand, it is a computational issue whether to use minimization 

87 



techniques in the model theory to implement assumptions, or to use explicit axioms, as in 
the original situation calculus or with the explanation closure technique. We will discuss 
each of these issues separately, although they are, of course, closely related. 

Our approach is based on making assumptions about event occurrence, both events caused 
by actions and external events. In this way, it is similar to work by Morgenstern and Stein 
[44], Haas [27], Schubert [52], and Kowlaski and Sergot [32]. In such approaches, properties 
do not change unless there is some event that causes them to change. Approaches based on 
STRIPS-style representations can be viewed in this way as well, except that the assumptions 
are not a separable part of the formalism. Rather, the representation only makes sense when 
these assumptions are made. The other major approach focuses on minimizing property 
change, with additional constraints based on the temporal ordering of properties {e.g., [56; 
30]) or minimizing causal relationships {e.g., [34]). Sandewall [51] examines the advantages 
and limitations of each of these approaches in detail. Most of the approaches that minimize 
property change cannot handle Sandewall's test suite of problems, let alone be extended to 
handle external events and simultaneous actions. We find that basing the assumptions on 
events leads to much more intuitive characterization of problems, where each statement in 
the logic is closely related to an intuitive fact about the world. In addition, in [5] we show 
how this approach naturally handles a wide range of more complex problems. 

The second issue is what mechanism is used to make the assumptions. There are two 
main approaches here: explicitly adding axioms that encode the assumptions {e.g., [26; 
52]) or using a nonmonotonic model theory that defines a new notion of entailment that 
includes the assumptions {e.g., [40; 56; 11; 51]). Of course, the work on circumscription 
shows that model-theoretic techniques always have an equivalent axiomatic formulation, 
although it may require going beyond standard first-order logic. This equivalence suggests 
that there is really a continuum of approaches here. Everyone must make assumptions. Some 
prefer to pack it all in the model theory, others use axioms to capture much of the complexity 
and use only simple minimization assumptions, while others prefer to encode everything in 
axioms. Many of the issues come down to ease of formalization, an issue that is bound 
to vary from researcher to researcher. The reason we prefer explanation closure axioms is 
that they give us a very flexible system that is easily extended to handle complex issues in 
representing actions. In addition, the resulting representation is a standard first-order logic, 
so it is relatively straightforward to tell if certain consequences follow from the axioms. The 
same cannot be said for approaches based on specialized reasoners or specialized semantic 
theories that solve one problem at the expense of the others. Schubert [52] provides an 
excellent discussion of the advantages of the explanation closure approach. 

5     External Events and Simultaneous Actions 

We now turn our attention to more interesting and complex cases of reasoning about action. 
This section gives a brief overview of how our formalism handles external events and simul- 
taneous actions—two problems that are beyond the scope of many representations. There 



is not the space for detailed examples and dicsussion. The interested reaxier should see [5] 
for more detail. 

5.1    External Events 

External events arise for different reasons. Some simply occur as a result of natural forces 
in the world, whereas others are set into motion by the action of the planning agent. Some 
external events are predictable—we know, for instance, that the sun will rise tomorrow, and 
that many of the central events of a normal workday will occur. But even when we are 
certain that a particular event will occur, we are often still uncertain as to when it will 
occur. Most of the time, for instance, I can only roughly estimate when the sun will rise, but 
this uncertainty doesn't generally affect my plans. Rather, I know that by a certain time, 
say 6AM at this time of year, the sun will be up. In most realistic applications, the planning 
agent will not have complete knowledge of the world and its causal structure, and thus there 
will be many external events for which it cannot reliably predict whether they will occur or 
not. Assuming that such events do not occur will lead to highly optimistic plans. Rather, 
an agent should be able to plan given the uncertainty of external events. 

The logic presented in Section 3 already provides the formalism for representing external 
events. In fact, the only way to distinguish external events from events caused by the agent's 
acting is by the presence of an axiom involving the predicate Try{'ir,t), that states that the 
event was caused by an action attempt. But there is no requirement that all events have 
axioms relating them to action attempts. 

The complications arise in characterizing the appropriate explanation closure axioms. In 
particular, if one makes the strong event closure assumptions (as in the previous section), 
that all events are ultimately caused by some action, then external events caused solely by 
natural forces or other agents cannot be represented. Of course, the explanation closure 
approach doesn't require such a strong assumption. If fact, we could simply not have closure 
axioms for some event classes that are caused by natural forces. But this would then allow 
such events to interfere with the prediction process at every possible opportunity, as you 
could never prove that the event didn't occur. While this might be the right result in some 
situations, usually external events are more constrained. 

There are two orthogonal aspects of external events that affect the representation. The 
first relates to uncertainty about whether the event will occur. A non-probabilistic logic can 
only easily represent the two extremes on this scale: either the event definitely will occur, 
or it may or may not occur. The second relates to the conditions for an event's occurrence. 
Again, there is a continuum here between a complete lack of constraints on when the event 
may occur, and cases where the event will only occur under specific conditions, such as being 
caused by the agent's actions. Somewhere in the middle of this scale would be events that 
may only occur within a certain time period, but that are independent of the agent's actions. 
There are three simple combinations that appear frequently in many domains. These are: 
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1. Triggered events: The external event will not occur unless it is specifically triggered 
by an agent's actions {e.g., the microwave will heat my coffee only if someone presses 

the "on" button). 

2. Definite events: The external event will definitely occur, independent of the agent's 
actions, although the exact time may be uncertain {e.g., the sun will rise between 5:30 

and 6:30AM). 

3. Spontaneous events: The external event may or may not occur during some time period 

{e.g., I might win the lottery tonight). 

Our representation can also handle more complex cases, such as triggered spontaneous events, 
which only become possible as a result of some action by the agent. We only have space 
here to consider a simple example of a triggered event. In [5], we present examples showing 
how definite and spontaneous events are handled. 

Triggered events are actually already handled by the development so far. In fact, all 
events in the last section can be viewed as triggered events that characterize the agent's 
actions. The same approach can be used to handle other triggered external events. 

Sandewall's Hiding Turkey Scenario is quite naturally handled as a simple case of reason- 
ing about triggered external events. In this setting, the turkey may or not be deaf. If it is 
not deaf, then it will go into hiding when the gun is loaded, and thus escape death from the 
shooting. That is, we are given information about how the turkey will respond to a certain 
situation, namely that it will hide if it hears the gun being loaded. We must conclude that 
after the shooting, either the turkey is alive and not deaf, or it is dead. 

Many formalizations of this problem treat the turkey hiding as an conditional effect of 
loading the gun rather than as an external event. If this approach worked for all triggered 
external events, then it might be justified. But unfortunately, it only works in the simplest 
of cases, namely when the event caused has no structure or temporal complexity, and so can 
be characterized as a static effect. For example, consider a situation where the only place 
the turkey might hide is in a box, and the box has a door that can be closed by the agent. 
A natural formalization of this would include the following facts: 

1. If the turkey is not deaf, it will try to hide when the gun is loaded. 

2. If the box door is open when the turkey tries to hide, it will be hidden in 30 seconds. 

You could capture some of this situation by adding a new effect rule about loading that if 
the box door is open, the turkey will hide. But it is not clear how you might encode the 
fact that the turkey is not hidden for 30 seconds, so if you shoot quickly you could still hit 
it. As the scenario becomes more complicated, more and more information would have to 
be packed into the load action rather than the hiding event. Even if this could be done, it 
would very unintuitive, as it would not allow you to reason about the turkey hiding except 
in this one case when the agent loads the gun. What if the turkey may hide for other reasons 
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as well, or might spontaneously decide to hide, or always hides between 6PM and 7PM? 
Clearly, hiding is just as valid an event as any other event (such as loading), and requires 
similar treatment. 

Given all this, let's return to the simple example as originally formulated. Taking Deaf to 
be an atemporal predicate, the triggering of hiding by loading is captured with a conditional 

generation axiom: 

EGEN3    Ve . LOAD(e) A -^Deaf D 3e'. HlDE(e') A time{e) = time{e') 

To capture the simplicity of the original problem and other solutions in the literature, we 
assume that the hiding is simultaneous with the loading. The more natural formulation 
would complicate the proof as we would need to reason about whether the agent could shoot 

while the turkey was trying to hide. 

Next, we need to add axioms for hiding events to the YSP axioms from Figure 5. These 

are: 

EDEF3   Ve . HlDE(e) D Hidden{effl{e)) A time{e) : effl{e) 

EXCP3   Vi, t'. ^mdden{t) A Hidden{t') At:t' D 
3e . HlDE(e) A time{e) : t' 

EXCE3    Ve . HlDE(e) D ^Deaf A 3e'. LOAD(e') A time{e') = time{e) 

The EDEF3 axiom simply states that a HiDE event results in the turkey being hidden. 
EXCP3 is a closure axiom that says that things become hidden only as a result of a HiDE 
event occurring. Closure axiom EXCE3 is justified by the important information implicit in 
the problem statement that the turkey does not hide unless it hears the gun being loaded. 

We then need to modify the definition of shooting (EDEF2) so that it only kills the 

turkey if it's not hidden: 

EDEF2a   Ve . SHOOT(e) D 
Loaded{prel{e)) A SameEnd{prel{e),time{e))A 
-'Loaded{effl{e)) A time{e) : effl{e) 

EDEF2b   Ve . SHOOT(e) A ^Hidden{time{e)) D 
^Alive{eff2{e)) Atime{e) : eff2{e) 

Note that this characterization of a SHOOT event means "the bullet leaving the gun," pre- 
sumably in the direction of the turkey. It does not mean "kill the turkey," which is rather 
a conditional effect of the shooting (EDEF2b). The action shoot is "pulling the trigger" on 

this account. 

The axioms describing the problem are then as follows (the YSP axioms plus new axioms 

AXHl and AXH2): 
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AXO   t0-<tl^t2-< t3 

AXl    Alive{tQ) 

AX2    -^Loaded{tO) 

AXHl    -^Hidden{tO) 

AXH2    yt, t'. Hidden{t) At^:t'D Hidden{t') 

AX3    Try{load,tl) 

AX4   Try{shoot,n) 

AX5   Va, t. Try(a, i) = (a = /oacf A t = U) V (a = s/ioo^ A i = i3) 

Note that axiom AXH2 simply states that once the turkey is hidden it remains hiding 
forever. A more realistic axiomatization might allow the possibly of an UNHIDE event, and 
then provide explanation closure axioms for when it might occur. The details are irrelevant 
for purposes of the example. 

To Prove:    3t.t3-<:tA {{Deaf A -^Alive{t)) V {--Deaf A Alive{t))) 

The following is a sketch of the proof, since many of the details are similar to the previous 
proof. 

(a) Suppose Deaf, so we need to show that the turkey is killed. The issue is whether 
the turkey is hiding at the time of the shooting, i.e., whether Hidden{t3). Suppose it is. 
Then, from AXO, AXHl, and TRPT we get 

3r, r . --Hidden{T) A Hidden{T') A T : T' A « C T'. 

Then EXCP3 gives: 

3e . HlDE(e) A time{e) : T'. 

But then EXCE3 gives -'Deaf, a contradiction, since the turkey only hides if it is not 
deaf. Thus ^Hidden{t3). Since the turkey is not hidden when the shooting occurs, axiom 
EDEF2b allows us to conclude that the turkey is killed afterwards, as required assuming 
that reincarnation is ruled out axiomaticallj'. 

(b) Suppose instead --Deaf, so we need to show that the turkey is not killed. AX3 and 
ETRYl give 

3e . LOAD(e) A time{e) = tl 

and then EGEN3 gives 

3e'. HlDE(e') A time{e') = tl. 

That is, the loading succeeds and the turkey hides, since it is not deaf. This is consistent with 
EXCE3, and then EDEF3 yields Hidden{effl{e')) A tl : effl{e'). This persists indefinitely 
(AXH2), in particular until pre^e^), so the shooting fails to kill the turkey (EDEF2b doesn't 
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apply). Thus Alive persists indefinitely starting at tO (EXCP2b, AX5), from which we can 
derive the desired result. □ 

Triggered events are very useful for characterizing many domains. For example, whenever 
you press a button to start a machine, you trigger an event. Our formalism allows you to 
define the behavior of the machine using the full power of the language to describe events. 
Thus, pressing one button could trigger a complex sequence of events that greatly affects 
the domain for extended periods of time. A simple example could involve making a simple 
meal of reheated pizza. The plan is to put the pizza in the microwave oven and then press 
the start button. While it is cooking, you take a beer out of the refrigerator and get out 
the dishes. When the microwave beeps, you take out the pizza and eat. The fact that the 
microwave is running could constrain other actions you can perform during that time. For 
instance, you couldn't also reheat some coffee using the microwave, as it is in use. Or if the 
electric service is limited, you might not be able to run the toaster oven at the same time 
without blowing a fuse. As simple as this scenario sounds, representing it is beyond the 
capabilities of most formalisms. 

5.2     Discussion 

Most formalisms prohibit external events. For example, action definitions in STRIPS-based 
systems must encode all changes in the world, so external events are fundamentally banned 
from analysis. Similarly, the constructive situation calculus has the same problem—since 
there is no way to express information about what the state of the world is while the ac- 
tion is happening, there is no mechanism for allowing an event to occur while an action is 
being performed. Lifschitz and Rabinov [35] present a limited mechanism to handle this by 
allowing "miracles" to occur while an action is performed to explain why its effects are not 
as expected. But this does not allow external events to occur independently of actions, nor 
does it give events the first-class status required to represent complex situations. In addition, 
by minimizing the number of miracles, the approach makes it difficult to handle uncertainty 
about whether some external event will occur or not. Another possibility would be to encode 
external events as pseudo-actions so that the}' can be used in the result function, although 
they are clearly different from normal actions {e.g., the agent couldn't plan to execute them). 

Work based on the situation calculus that addresses external events typically rejects 
the constraints of the constructive approach and uses the more general formalism. In these 
approaches situations are arbitrary states of the world, not necessarily related to a particular 
action sequence. In addition, situations can be associated with times from a time line and 
one can quantify over situations. With this, one can introduce an Occurs predicate that 
asserts that a particular action occurs at a specific time and that is defined by an axiom 
that quantifies over all situations at that time {e.g., [49; 43]). This development moves the 
formalism closer to what we are proposing. 

Ultimately, the main difference between our approach and these extended situation cal- 
culus representations with explicit time will probably be one of approach.   We start from 
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a representation of the actual world (or an agent's beliefs about the world), and must in- 
troduce mechanisms to allow reasoning about the effects of possible actions. The situation 
calculus starts from a representation based on possible futures based on the actions, and 
must introduce mechanisms for dealing with information about the actual world. 

5.3     Simultaneous Action 

There are several levels of difficulty in dealing with simultaneous actions. The model de- 
scribed so far already handles some cases of simultaneous actions, namely 

1. When two actions cannot occur simultaneously; 

2. When they occur simultaneously and are independent of each other; and 

3. When they together have additional effects that neither one would have individually. 

The more difficult case is when two actions partially or conditionally interfere. After first 
describing how the basic approach handles the three cases above, we will discuss some ap- 
proaches to reasoning about interference. 

We prefer to use a more complex domain than that of the YSP to illustrate these cases. 
The TRAINS domain is a transportation and manufacturing domain developed for use in the 
TRAINS project [8; 9]. The goal of the project is to build an inteUigent planning assistant 
that is conversationally proficient in natural language. The domain involves several cities 
connected by rail links, warehouses and factories at various cities, and engines, boxcars, 
etc., to transport goods between them. In this domain, interacting simultaneous actions 
and external events are unavoidable aspects of the domain. 

When actions are independent of each other, the existing formalism does exactly the right 
thing. The effect of the two actions is simply the sum of the effects of actions individually, a 
result you get directly from the axioms. When there are simple interactions, such as mutual 
exclusion of actions under certain circumstances, this behavior typically naturally falls out 
of a reasonable axiomatization of the domain. 

Consider the simple TRAINS domain scenario shown in Figure 8. Now consider simul- 
taneously sending engine Nl to Corning via Bath and sending N2 via Avon to Dansville. A 
reasonable axiomatization of the move actions will allow us to conclude that both get to their 
destinations. Now let's assume that, in this domain, only one train can be on a track at a 
time, and that this constraint is captured by an axiom. For instance, we might require that 
a track be clear for an engine to successfully move along it. With such an axiomatization, if 
we try to send Nl to Corning via Avon and N2 to Dansville via Avon simultaneously, then 
one of the move actions will not succeed since one of the tracks along the route will not be 
clear when needed. More details are given in [5]. 

Notice that the fact that the actions were attempted is still true. In general, we do 
not limit action attempts in any way, reflecting a belief that an agent may attempt most 
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Figure 8: Example TRAINS domain map 

actions at any time. If the conditions are not appropriate, the actions simply won't cause 
the desired events. Of course, we could axid additional axioms describing what happens 
when action attempts interact. For instance, we could add a dramatic axiom that asserts 
that if two move actions are attempted simultaneously on the same track, the engines crash. 
More realistically, we might predict a deadlock situation, or predict that one will wait while 
the other passes. The point here is that the temporal logic provides a fairly natural way to 
axiomatize the knowledge in this domain so as to capture the desired behavior. 

Another form of interaction between simultaneous action attempts are resource conflicts. 
For instance, in the TRAINS domain, an engine requires fuel to make trips. If two engines 
are planning trips but there is only enough fuel at the station for one, then only one engine 
can succeed. Many of these cases require reasoning about quantities, which would introduce 
many complications not necessary to make the points in this paper. But some resources 
can be modeled as unitary—either you have the resource or you don't. In these cases, the 
techniques used above can be adapted to resources. In fact, you can view the track in the 
previous example as a resource required by an engine to make a trip, and the problem where 
the engines try to use the same track as a resource conflict. 

Other constraints on simultaneous action arise because of limitations on the part of the 
agent. While often such restrictions can be cast in terms of resource conflicts, the temporal 
logic also allows specific axioms about action co-occurrence. For instance, say a engineer 
cannot try to couple one car and decouple another at the same time. This constraint can be 
simply captured by the axiom: 

Vn, c, c', t, t'. Try{couple{n, c),t) A Try{decouple{n, c'),t') D ttxt' 

This axiom would make a set of assertions where an agent simultaneously attempted to 
couple one car and decouple another inconsistent. Axioms like this can be very useful in 
defining simple planning systems similar to non-linear planners (e.^., [7]). 

It is also easy to define additional synergistic effects that occur when two actions occur 
simultaneously. For instance, you can define events that occur only when several actions are 
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performed simultaneously. Thus, if one agent lifts one end of a piano while another agent 
lifts the other end, then the entire piano is lifted off the floor. Such situations are easily 
described in our representation. For example, assuming axioms for a lift action that causes 
LIFT events, we could specify how the simultaneous lifting of both ends of the piano results 
in the piano being Hfted using a generation axiom such as: 

Vp, t, el, e2 . UFT{left{p),t, el) A LlFT{right{p),t, e2) D BeS . LlFT(p, i, e3). 

Complications in handling simultaneous actions arise when they partially interfere with 
each other, or interfere under certain conditions. Note that with our view of events as clas- 
sifications of patterns of change, it makes no sense to talk about events interfering with each 
other. The same world cannot be characterized by two events whose definitions are mutu- 
ally inconsistent. Interference makes sense only when talking about actions. For instance, 
if an agent is trying to open a door, then it is performing a push action hoping to cause an 
OPENDOOR event. If, simultaneously, another agent pushes on the door the other way, then 
the first agent will still have performed the push action, but the OPENDOOR event will not 
have occurred. Thus, we say that the two push actions interfered with each other. In this 
case, they cancelled each other out. Of course, action attempts might also be aff'ected by 
external events that are occurring simultaneously. 

When an action interacts with other events that are occurring, the interaction can be 
treated much the same as we handled conditional effects of action attempts when different 
properties hold. This technique formalizes the problem in terms of events, and the different 
effects result from synergistic interaction between events. For example, consider a situation 
where we want to load a boxcar from an automatic hopper. If we push the start button, the 
hopper tips and dumps its cargo into the boxcar. This, of course, requires that the boxcar 
be in the appropriate location under the hopper. If the boxcar was not under the hopper to 
start with, it is clear that the loading of the car would not occur although the hopper would 
still be emptied. The more interesting case occurs when the boxcar is initially under the 
hopper, but then moves away while being loaded. Intuitively, we say that the moving of the 
boxcar interferes with the loading of the car. Again, the hopper would still end up empty, 
but the boxcar would not contain all the cargo. An axiomatization of this example can be 
found in [5]. 

5.4     Discussion 

For the most part, treatments of simultaneous actions in the literature are limited. As 
mentioned earlier, STRIPS-based systems {e.g., [57; 60; 63]) only allow simultaneity when 
the actions are independent. A few others {e.g., [47]) allow for synergistic effects cast in 
terms of domain constraints on states {e.g., in any state s, if the left side of the piano is 
lifted, and the right side is lifted, then the piano is lifted). 

The situation calculus shows more promise with the introduction of action composition 
operators.  For instance, given two actions Ui and 02, then the action ai -|- 02 is the action 
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of performing the two simultaneously {e.g., [22; 52]). Explicit axioms can then be given 
for these complex actions, and mechanisms can be introduced to automatically derive such 
axioms from the individual actions if they are independent of each other {e.g., [36]). If 
the actions are not independent of each other, some reasonable solutions can be found and, 
as long as actions are instantaneous, it appears that the theory can remain constructive. 
But these approaches do not seem to be easily extended to handle the more complex cases 
in which actions have duration and may be temporally related in complex ways. Pelavin 
[48] contains an extensive analysis of the problems that arise in general with simultaneous 
interacting actions. 

Our approach provides a range of techniques for representing information about interact- 
ing actions. In cases where one has detailed knowledge of the causal structure of a domain, 
the problems can usually be reduced to a level of independent events, and knowledge about 
interactions are captured by event generation axioms. In other cases, it is more natural 
to have explicit knowledge about how certain actions interact with events. We believe this 
flexibility is important for building comprehensive knowledge bases that contain information 
about a wide range of situations and that are applicable for different reasoning tasks. In 
addition, we have shown that we can handle these complex cases without introducing any 
new mechanisms beyond the basic logic discussed in Section 3. 

6    Problems and Future Work 

One of the most significant open issues in this paper has to do with temporal durations. 
A realistic characterization of almost all the examples in this paper would require such a 
capability. For instance, it is not realistic to say that if an agent tries to turn the ignition 
on the car for any length of time, then the engine will start. If the action is tried for too 
short a time, the engine probably won't catch. And if the action is tried for too long a time, 
the starting motor will burn out. So durations play a critical role. At first glance, adding 
durations does not pose a problem. One simply defines a function that, given an interval, 
returns a value on some metric scale. A small number of axioms are required to define the 
appropriate properties of this function. We have not pursued this here as it would further 
complicate the examples and remove attention from our main points, and in any case, this 
simple metric model doesn't solve the problem. Consider the action of starting the engine 
again. There is no minimum time or maximum time within which the engine is guaranteed 
to start. The duration required depends on the condition of the car, the weather, and many 
other factors that the agent simply won't have access to. A better formalization of the 
durational constraints would be that the agent turns the ignition until the engine starts, or a 
certain time elapses and the agent gives up for fear of burning out the miotor, or the battery 
runs flat. The logic we propose offers no direct solution to this problem, and it remains an 
important challenge. 

Another important issue is the introduction of probabilistic knowledge. By staying within 
standard first order logic, for example, we are restricted to saying that an event will definitely 
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occur, or that it might possibly occur. We cannot say that an event is very likely to occur, or 
that it is very unlikely to occur. Such knowledge is crucial for predicting the likely effects of 
actions and thus for evaluating the likelihood of success for proposed plans. Further, since all 
formalisms must make assumptions, the ultimate evaluation should be based on how likely 
the assumptions are to hold. This is another motivation for favoring the explanation closure 
technique. It makes the assumptions that are made explicit, and thus potentially available 
for probabilistic analysis. Some initial work on this is described in [37; 38]. It is much more 
difficult to see how techniques that build the assumptions into the semantic model could be 
extended to support probabilistic reasoning. 

Finally, it needs to be acknowledged that formalizing knowledge using the more expressive 
temporal representation can be difficult. Subtle differences in meaning and interactions 
between axioms may be more common than in less powerful representations, and more 
experimentation is needed in building knowledge bases based on our representation. But it 
seems to us that this is the price to pay if we want to move beyond Yale Shooting and the 
Blocks World. Our representation is based on intuitions about the way people describe and 
reason about actions in language, which we believe makes it more natural, intuitive, and 
grounded in common sense. 

7     Conclusion 

Many of the techniques we have proposed have appeared in various forms previously in 
the literature. What makes this work novel is the combination of the techniques into a 
unified, and what we think is an intuitive and relatively simple framework. This logic has 
the following features: 

1. It can express complex temporal relationships because of its underlying temporal logic. 

2. It supports explicit reasoning about action attempts and the events they cause, which 
allows explicit reasoning about success and failure of attempted actions, and subsumes 
work on conditional effects. 

3. It handles external events in a natural way, making only minimal distinctions between 
external events and events caused by the acting agent. 

4. It handles simultaneous actions in a direct manner, including cases of simultaneously 
interacting actions. 

By using an explicit temporal logic with events, we have been able to handle all these 
problems within a standard first-order logic. We believe this formalism to be more powerful 
than competing approaches. We also believe that it is simpler than these other formalisms 
will be once they are extended to handle the temporal complexities of realistic domains, 
assuming they can be successfully extended. 
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The second contribution of this paper has been to add to the argument that exphcit frame 
axioms, based on the explanation closure approach, produce a viable theory of prediction 
with some attractive formal and practical properties. On the formal side, this approach 
does not require the introduction of specialized syntactic constructs into the language or the 
use of nonmonotonic semantic theories. On the practical side, the closure axioms capture 
knowledge that is required in any case as part of the specification of the domain. Note that 
the formulation of the temporal logic and the use of explanation closure are separable issues. 
We would not be surprised if the nonmonotonic techniques in the literature could be adapted 
to our temporal logic. Whether this could be done without extending the syntax with special 
operators specifically introduced to enable the right minimizations is more questionable, 
however. The risk is that such operators might subtly affect the range of situations that can 
be handled, and may require non-intuitive formulations of problems. 

While this paper has focussed on formal issues, it is important to remember that our 
goal is actually the development of practical planning and natural language understanding 
systems. As a result, another key requirement on this model is that it provides insight and 
guidance in developing effective knowledge representation systems. We are using this formal- 
ism in the TRAINS project [8; 19; 9] and have found that it allows us to express the content 
of natural language utterances quite directly, and supports plan reasoning algorithms similar 
to those in the planning literature. The use of exphcit assumptions and closure reasoning 
is essential in such an interactive system where plans are formed based on assumptions and 
where those assumptions are often the subject of the conversation. 
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Appendix E 

Performance of Temporal Reasoning 
Systems* 

Abstract 

This paper describes the performance evaluation of six temporal reasoning systems. We 
show that if you are working with large temporal datasets where information is added in- 
crementally throughout the execution of the program, systems using incompletely connected 
graphs {i.e., TMM, TimeGraph and TimeGraph-II) seem the best option. While they do 
not offer the constant query time of systems using fully connected graphs {i.e. the systems 
based on constraint satisfaction), the savings at assertion tim.e are so substantial that the 
relatively small performance penalty for queries is a reasonable tradeoff. Of course, these 
systems do not offer the expressivity of the interval-based systems as they only handle point- 
based relations. Of the three, TimeGraph-II offers a wider range of qualitative relations as 
it handles point inequality. It does not currently handle metric information, however, as do 
TMM and TimeGraph. Thus decisions between these three may be more determined by the 
reasoning capabilities required rather than raw performance. 

1    Introduction 

Research on temporal reasoning has produced many different temporal reasoning systems. 
These systems differ in expressive power and in computational complexity. While the theo- 
retical complexity of these techniques has been explored in depth {e.g., [11], [8]), there has 
been no systematic study of their actual performance. This is especially important since it 
is the behavior of these systems in practice that determine their usefulness in actual imple- 
mentations. In this paper, we evaluate six different temporal reasoning systems on a range of 

*This material is based on: Ed Yampratoom and James F. Allen, "Performance of Temporal Reasoning 
Systems," SIGART Bulletin, 4(3): 26-29, July 1993. 
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datasets of varying size (up to 9600 intervals). The results suggest that techniques based on 
full constraint satisfaction (i.e., varying assertion time but constant query time) are unlikely 
to be useful on large datasets, but systems that use data structures that reduce assertion 
time but increase query time appear to be effective. 

The six systems studied in this report are TimeLogic[6], TimeGraph[9], MATS[4; 5], 
Tachyon[l], TMM[2; 10], and TimeGraph-II[3]. These systems differ greatly in their under- 
lying mechanisms and expressive power. They can be roughly classified into systems that 
use constraint satisfaction techniques at assertion time and have a fixed query time (TimeL- 

ogic, MATS, and Tachyon), and systems that build graph structures that may require some 
search at query time to compute an answer (Timegraph, TimeGraph-II, TMM). The latter 
approach can optimize assertion time, but it is not clear how bad the performance penalty at 
query time will be. We will give some quantitative characterizations applicable to this ques- 
tion for a specific class of datasets that should commonly arise in planning and scheduling 
applications. 

The systems also vary considerably in their expressive power. TimeLogic and MATS, 
for instance, support some disjunctive information about time intervals {e.g., interval / is 
disjoint from interval J, / meets or is during J). TimeGraph and TMM, on the other 
hand, only support simple point relations (<, =, <), and TimeGraph-II supports the full 
set of point relations (<, =, <, 7^). Tachyon is essentially a point-based system, but can 
handle interval disjunctions by returning one possible answer and allow the user to backtrack 
through the set of possible answers. The systems also differ as to whether quantitative 
information is handled. TimeLogic and Timegraph-II only handle qualitative constrains, 
whereas Tachyon, TimeGraph and TMM can handle quantitative constraints. MATS has 
the most expressive representation and handles both qualitative interval constraints as well 
as quantitative constraints. All the systems except Tachyon are implemented in Common 

Lisp, and Tachyon is in C-f+. 

A reasonable performance comparison should be done by looking at how these systems 
scale up. An absolute comparison is not going to be as useful due to the difference in 
implementation languages and degree of optimization done on the systems. Since these 
systems do not have exactly the same expressivity, we should take these differences in power 
into account in the final judgment. 

This report will describe how we generate the dataset to measure these systems, the 
results of the measurement on assertion time and query time, and how well each system 
scales up to the growing amount of data. 

2    Temporal Reasoning Systems 

As mentioned above, different systems vary greatly in their expressive powers and reasoning 
mechanisms. In this section, we will look at the details of each system. 
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TimeLogic[6] is interval-bcised. It performs transitive closure computations on intervals 
for qualitative constraints between intervals, using automatically created reference intervals 
to limit constraint propagations. It cannot handle metric information. 

MATS[4; 5] is the most complete system integrating both metric (quantitative) and Allen 
(qualitative) constraints, including the disjoint constraint. Allen constraints are interval- 
based, while metric constraints are point-based. MATS performs transitive closure com- 
putations on intervals for Allen constraints and uses constraint satisfaction for point-based 

metric reasoning. 

Tachyon[l] can handle both metric information and qualitative information. For the 
disjoint constraint, it simplifies the problem by just presenting the first solution found. 
Since this facility is not comparable to getting the most general solution as provided by 
other systems, we will not be using this feature. A GUI version of Tachyon allows sequential 
seek of solutions, however. Tachyon performs constraint satisfaction for point-based metric 
reasoning. Qualitative constraints are translated into quantitative ones by introducing the 
concepts of epsilon and infinity. 

TimeGraph[9] can handle both metric and qualitative information but cannot handle 
disjoint relationship. It uses a partial order graph, called timegraph, whose nodes represent 
time points. Directed links between points indicate relations between the points (< or <). 
The timegraph is partitioned into chains, with possible links between chains. 

TimeGraph-II[3], the successor of TimeGraph, also uses a timegraph data structure. 
TimeGraph-II supports the full set of point relations (<, =, <, ^). Another improvement 
of TimeGraph-II over TimeGraph is that it automatically structures the timegraph for effi- 
ciency. Since it uses the timegraph data structure, it also cannot handle disjoint relationship. 
The current version of TimeGraph-II cannot handle metric information. 

TMM[2; 10] is a temporal database management system. It uses temporal constraint 
graph (TCG) data structure to construct a time map with simple point relations (<, =, <). 
It can handle both metric and qualitative information but cannot handle disjoint relationship. 

3    Dataset Generator 

To test the systems, we need to generate a large amount of data. We used a dataset generator 
which, given train schedules, will generate all temporal constraints needed to schedule these 
trains. We decided not to use randomly generated datasets because large random datasets 
are rarely consistent. More importantly, it is better to use datasets that are similar to the 
data that might be used in an actual planning and scheduling applications. 

The original datasets are written in KRSL (Knowledge Representation Specification Lan- 
guage) [7], which describes a superset of the statements representable in the six systems. Any 
temporal information expressible in any of the six systems is thus expressible in KRSL but 
not necessarily the other way round. Six translators, translating KRSL statements into each 
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system's input format, automate the task of converting the original datasets into usable for- 
mats. These translations are done off-line and the translation time is not taken into account 
in our evaluation. 

Some of the information may not be translatable into a particular system and will be 
discarded by the translator for that system. For example, all metric information will be 
ignored by the KRSL-to-Time Logic translator, and any disjoint relations will be ignored by 
the KRSL-to-Tachyon translator. But since we are currently interested mostly in how these 
systems scale up, these differences in what the systems can handle will not significantly affect 
our results. 

The dataset generator takes files containing train schedules as input, and writes an output 
file containing KRSL statements detailing all temporal constraints needed to schedule these 
trains. 

Since we are using a train scheduling domain, we define a language for specifying schedules 
to simplify the construction. A train schedule must state the timing window in which the 
train can run, the names of the stations and the tracks it has to go through, and the actions 
that have to be done at the stations. It also must specify the timing characteristics of the 
stations and tracks, for example, how long it takes to unload a car in Buffalo, or how fast a 
train can run on the eastern corridor section between Boston and Providence. 

The train schedule input file format is as follows: 

(earliest-steirt-time latest-end-time 
number-of-repeats number-of-cars-to-begin-with 

(stationl #-cars-to-load #-cars-to-unload) 

(stationN #-cars-to-load #-cars-to-unload)) 

...Timing data of the stations and tracks... 

The route is circular: the train will loop through the given stations, from stationl to stationN 
then to stationl for number-of-repeats times. 

The timing characteristics of stations and tracks specify the coefficients used in calculating 
the lower and upper bounds for the time trains spent at stations and travelling on tracks. 
The values of the bounds are functions of the number of cars and the amount of loading and 
unloading. 

To schedule multiple trains, we use multiple input files. Only one train is allowed to 
travel on a single track at any given time. So if some trains share the same track, their 
travelling intervals on that track will be disjoint. 

4    Dataset Generator Output 

From the information in each input file, the generator will write KRSL statements that will: 
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• Create intervals corresponding to times spent at stations, time spent travelling between 
stations, and starting and ending intervals to envelope all other intervals. Example: 

(create  (time-interval)   :name  'T5) 

• Assert a chain of temporal ordering constraints between these intervals, since the whole 
set is fully ordered for each train. Example: 

(assert  (interval-before TO Tl)) 
(assert  (interval-before-bounds TO Tl 

#?(create  (duration-bounds  :zero  :zero)))) 

Assert absolute time constraints on starting and ending intervals: the starting interval 
cannot begin before earliest-start-time and the ending interval cannot end after latest- 

end-time. Example: 

(assert  (pt>=  (interval-start TO)  20)) 
(assert  (pt<=  (interval-end T5)  500)) 

Assert absolute-time durational constraints on the other intervals, using stations' and 
tracks' timing characteristics to calculate the duration bounds of each interval. Exam- 

ple: 

(assert  (interval-bounds Tl 
#?(create  (duration-bounds 

(:minutes 23)   (:ininutes 27))))) 

Assert disjoint constraints when scheduling multiple trains.   We need to declare all 
intervals using the same track to be disjoint because only one train can use that track 

at one time. Example: 

(assert  (interval-disjoint T5 T7)) 

5    Measurements 

The performance test was done on a Sun SparcStation 10/30 with 64 megabytes of physical 
memory. The five Common Lisp systems were tested using their compiled code on Allegro 
CL 4.1, while the test on Tachyon used an executable image supplied by its authors. 

Since these temporal systems differ in the ways they make use of the given data, a 
straightforward running time comparison is not possible. To generalize, temporal reasoning 

systems spend time in three phases: 

• Load the data from files and convert them into appropriate data structures. 

• Perform intermediate calculation steps. 
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• Retrieve and/or compute the answers to queries. 

From the user's point of view, there are two distinct phases: assertion time and query 
time. The time spent in the last phase is querying time. Should we consider only the first 
phase as assertion time or must we include the second phase as well? 

MATS, TMM, and TimeGraph-II separate the first two phases, while TimeGraph and 
TimeLogic interleave them in such a way that it is not possible to measure them separately. 
Therefore, we consider assertion time of these systems to be the toal of the first two phases. 
Tachyon doesn't accept queries at all. Instead, after the input file is read, Tachyon outputs 
all intervals' ranges of start time, end time, and duration. Its time is thus measured from 
the beginning to the end of its execution, when it prints out information for all intervals. 

The query time of MATS and TimeLogic are constant since they only need to look up 
the answers from tables. The query time of TMM, TimeGraph, and TimeGraph-II are not 
constant. We will compare query time performance in section 7. 

In summary, the time measured is assertion time plus any additional computation time 
needed before a query could be performed. Moreover, the assertion is done on the subset 
of the original dataset that each system can handle. Since we are not going to focus on 
absolute performance, but rather on how well each system scale up, the slight differences 
between datasets should not matter. 

6     Assertion Time Measurement 

The performance comparison of the six systems is shown in Figure 1. We don't have data 
for MATS and TimeLogic after 2000 statements due to both systems requiring too much 
memory. Note how the performance plot divides the systems into two groups. 

On small datasets (less than 1000 KRSL statements), the six systems are about equal 
in scalability (except for MATS), as can be seen in Figure 2. The performances only differ 
by a constant while the slopes are roughly similar. But MATS and TimeLogic then explode 
around 1000 KRSL statements in Figure 1. 

On large datasets, the systems can be further divided into two classes as can be seen in 
Figure 3. Note that even though Tachyon is written in C++, the assumed speed advantage 
is lost when the datasets become large. 

7     Query Time Measurement 

Since TMM and TimeGraph-II do not have constant query time, it is important to test how 
these systems behave on large datasets. That way, we may be able to better quantify the 
tradeoff between the advantage these systems have at assertion time and the penalty they 
pay at query time. 
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size no. of TMM TG-II 
(KRSL stmts) trains av. query time av. query time 

1000 5 73.266 4.501 
2000 10 74.600 5.246 
3000 15 73.607 5.115 
4000 20 75.717 5.536 
5000 25 73.469 5.232 
10000 50 72.146 5.133 

Table 1: Query time doesn't grow with data size 

cross-chain TMM TG-II 
Unks av. query time av. query time 

0 67.537 5.385 
50 64.745 1.519 

100 67.779 1.396 
250 68.225 1.577 
500 68.050 1.500 

1000 68.735 1.519 
1500 66.993 1.365 

Table 2: Query time doesn't grow with cross-chain links 

To test query behavior, we create a set of train schedules with increasing number of 
trains, from 5 to 50 trains. To prevent the systems from taking an advantage of the regular 
nature of the datasets, the datasets are scrambled so that the chain nature is not obvious. 
Moreover, the metric information is discarded so that the comparison is more just. 

Table 1 shows the average TMM and TimeGraph-II query time for the dataset. Each 
average comes from performing 1000 random qualitative queries. The unit of time is mil- 
lisecond. 

As can be seen from the tables, the query time doesn't show an increasing trend when 
the dataset size grows. 

To test how an increasing number of cross-chain links affect query time, we create another 
dataset containing 51 chains with 10200 KRSL statements. We then measure random query 
time on this dataset, adding more cross-chain links for each round of measurement while 
keeping the dataset consistent. 

Table 2 shows the average TMM and TimeGraph-II query time when the number of 
cross-chain links increases. Each average comes from performing 1000 random qualitative 
queries. The unit of time is millisecond. The maximum query time for TimeGraph-II is 50 
msec, for TMM is 1800 msec. 

For the constant-query time systems, the average MATS random query time is 7.862 
msec, while that of TimeLogic is 0.649 msec. Both systems are measured on a much smaller 
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dataset (500 KRSL statements, with 138 intervals) since they cannot handle large dataset 
as mentioned in section 6. Tachyon query time cannot be measured since it just prints all 
information for all intervals at the end of its run. 

8     Conclusions 

It is clear from the results that if you are working with large temporal datasets where in- 
formation is added incrementally throughout the execution of the program, systems using 
incompletely connected graphs {i.e., TMM, TimeGraph and TimeGraph-II) seem the best 
option. While they do not offer the constant query time of systems using fully connected 
graphs (i.e. systems based on constraint satisfaction), the savings at assertion time are so 
substantial that the relatively small performance penalty for queries is a reasonable trade- 
off. Of course, these systems do not offer the expressivity of the interval-based systerris as 
they only handle point-based relations. Of the three, TimeGraph-II offers a wider range 
of qualitative relations as it handles point inequality. It does not currently handle metric 
information, however, as do TMM and TimeGraph. Thus decisions between these three may 
be more determined by the reasoning capabilities required rather than raw performance. 

If assertion time is not an issue, say in an application where the database could be con- 
structed once in advance and then only queried, then the constraint satisfaction approaches 
could be used. There will still be a significant memory requirement for the final database, 
however, as these systems all used fully connected graphs. In addition, the performance of 
TimeLogic and MATS is so bad on large datasets that it still might not be practical to even 
compute the database in advance! It may be, however, that these two systems are paying 
unnecessary penalty due to garbage collection, and that a new algorithm could be developed 
that does not create so many temporary objects. 

With small datasets, all of these systems may be used effectively and the choice may be 
more determined by the expressivity and other reaisoning facilities provided by each system. 
For instance, the interval-based relations have been useful in developing planning algorithms 
and in natural language applications. Thus, as long as the datasets remain small, a researcher 
can effectively use systems such as TimeLogic and MATS. As another example, TMM offers 
facilities for reasoning about persistence of facts that are not provided in the other systems. 
Since this type of reasoning is critical in many applications, TMM would be a good choice. 
If execution time is still critical, however, then the tradeoff must still be considered between 
assertion and query time. If query time is of paramount importance, then the constant 
query-time algorithms might be selected, although the measured average query time shows 
that the penalty incurred by non-constant query time algorithms is negligible in most cases. 
And if the applications require that we always keep one consistent scenario, then Tachyon's 
approach of providing a solution, instead of the most general solution, is more appropriate. 

There are some qualifications that must be attached to our conclusions, however. The 
datasets we have used have considerable structure. In particular, the data is predominantly 
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organized into chains of times. We believe that naturally occuring data in applications such 
as planning and scheduling, and natural language, will tend to have this structure. While the 
structure has no effect on the performance of the systems based on constraint satisfaction, 
it does have significant effect on TMM and the TimeGraph systems. In particular, it is the 
structure that allows these systems to have reasonable query times and thus be viable. As 
a result, we would expect TimeGraph and TimeGraph-II (and possibly TMM), to behave 
quite differently on randomly generated data. But since we are interested in evaluating 
these systems for use in applications, their performance on random data may have little or 
no practical significance. 
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Appendix F 

On Computing the Minimal Labels 
in Time Point Algebra Networks* 

Abstract 

We analyze the problem of computing the minimal labels for a network of temporal relations 
in the Point Algebra, van Beek proposes an algorithm for accomplishing this task which 
takes 0{max{n^,'n} ■ m)) time (for n points and m 7^-relations). We show that the proof of 
the correctness of this algorithm given by van Beek and Cohen is faulty, and we provide a 
new proof showing that the algorithm is indeed correct. 

1     Introduction 

The Interval Algebra (lA) (Allen 1983) and the Point Algebra (PA) (Vilain and Kautz 1986) 
are two fundamental approaches to representing temporal information in terms of qualitative 
relations between intervals and points respectively. The Interval algebra is based on thirteeen 
basic relations that can hold between intervals; from these, 2^^ possible disjunctive relations 
can be derived. The elements of the Point Algebra are the relations {0, <, <, =, >, >, ^, ?}, 
where ? is the disjunction of the three basic relations <,= and >. The "pointizable" interval 
algebra (written as SIA in (van Beek 1990)) is a restricted algebra of lA which consists of 
the set of the 188 relations in lA (including the empty relation) that can be translated into 
conjunctions of point relations between the endpoints of the intervals (Ladkin and Maddux 
1988; van Beek and Cohen 1990). 

A set of asserted relations in lA (PA) can be represented through a labeled graph which 
van Beek (1992) calls lA-network (PA-network), whose vertices represents interval variables 

*This material is based on: Alfonso Gerevini and Lenhart Schubert, "On Computing the Minimal Labels 
in Time Point Algebra Networks," Computational Intelligence, 11(3): 443-448, 1995. 
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(point variables) and whose labeled edges correspond to the asserted relations. Given a set 
of asserted temporal relations (a labeled graph), one of the main reasoning tasks concerns 
deducing new relations from those that are known and, in particular, computing the strongest 
entailed relations for each pair of intervals or points (called the "minimal labels" in (van 
Beek and Cohen 1990), the "feasible relations" in (van Beek 1992), and the "closure" of the 

assertions in (Vilain et al. 1990)). 

In (Vilain and Kautz 1986) an 0{n^) time algorithm for determining the closure of a set 
of assertions of relations in PA (for n points) is given. In (van Beek 1990; van Beek and 
Cohen 1990; Vilain et al. 1990) it is shown that this algorithm is not correct and in (van Beek 
1990; van Beek 1992) another algorithm for accomplishing the same task is provided. The 
new 'algorithm takes 0{max{n^,n'^ ■ m)) time and 0{n?) space (for m /-assertions). Given 
a PA-network the algorithm performs two main steps: first it computes the path-consistent 
network (Montanari 1974; Mackworth 1977) of the initial network in 0{n^) time; secondly it 
computes the minimal labels by finding and removing the forbidden subgraphs of the path- 
consistent network (see Figure l.a) which is accomplished in 0{n'^ ■ m) time. The correctness 
of this algorithm relies on a lemma given by van Beek and Cohen (1990) claiming that any 
path-consistent PA-network which does not have minimal labels contains a forbidden graph. 

In this note we show that the proof of this lemma is not correct, and we provide a new 

proof showing that the algorithm given by van Beek (1990) is indeed correct. 

2    Representing temporal relations through 
TL-graphs 

In this section we first introduce the necessary terminology and theoretical background 

(partly taken from (Gerevini and Schubert 1993a)). 
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Figure 2: An example of TL-graph 

Definition 1 A temporally labeled graph (TL-graph) is a graph with at least one vertex and 
a set of labeled edges, where each edge (u, /, to) connects a pair of distinct vertices u, w. The 
edges are either directed and labeled < or <, or undirected and labeled ^. 

Figure 2 shows an example of TL-graph. We assume that every vertex of a TL-graph 
has at least one name (time point variable) attached to it. If a vertex has more than one 
name, then they are alternative names for the same time point. The name sets of any two 
vertices are required to be disjoint. 

More formally, writing P for the set of time-point variables attached to a TT-graph, and 
V for its set of vertices, we assume that there exists a surjective function PV from P to V. 

A model of a TL-graph is an interpretation of the vertex names as elements of a totally 
ordered set T (with strict ordering <), such that all names attached to the same vertex denote 
the same element and the interpretations of names attached to distinct vertices satisfy the 
constraints expressed by the edge(s), if any, connecting those vertices. 

More formally, the notions of an interpretation and of a model for a TL-graph can be 
specified as follows: 

Definition 2 Given a TL-graph G, an interpretation of G is a triple (T, /, i2), where T is a 
totally ordered set (with ordering <); / is a function I : P -> T such that for all pi,P2 £ P 
if PV{pi)=PV{p2) then I{pi) = /(P2); -R is a function mapping each label / on the edges of 
G ("<","<" or 'V") into the corresponding binary relation R{1) on T (<, < or 7^).^ 

Definition 3 Given a TL-graph G, a model of G is an interpretation such that if {vi,l,V2) 
is an edge of G, then for all p,-,pj G P satisfying PV{pi) = vi and PV{pj) = V2 

< I{pi)J{pj)> G Ril). 

^For instance if I ="<" then R(<) is the <-relation, i.e., the set of pairs {ti,t2) such that ti < ^2 and 
^1,^2 E T. (Analogously for "<" and for "7^".) 
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Definition 4 A TL-graph is consistent if and only if it has at least one model. 

Definition 5 Two or more TL-graphs are logically equivalent if and only if they have the 

same models. 

A path of length n from VQ to v„ is a sequence of n triples {vo,li-,vi),..., (u„_i,/„,u„) 
where Vi {0 < i < n) are vertices and Ij {I < j < n) are labels (relations) on directed edges. 

Definition 6 In a TL-graph a path is a <-path if each label ij is < or <. A <-path is a 

<-path if at least one of these labels is <. 

Definition 7 A <-path (<-path) of length n from vo to u„, n > 1, is a <-cycle {<-cycle) if 
Vo = Vn- A TL-graph is acyclic if it does not contain any <-cycle. 

In (Gerevini and Schubert 1993a) we proved the following theorems about determining con- 

sistency of a TL-graph ^: 

Theorem 1 A TL-graph is consistent iff it does not contain any <-cycle, or any <-cycle 

that has two vertices connected by an edge with label /. 

Theorem 2 A TL-graph can be recognized as being inconsistent, or if it is consistent, col- 
lapsed into a logically equivalent acyclic TL-graph in (9(e) time, where e is the number of 

edges. 

Definition 8 A TL-graph contains an implicit < relation v < w if there is no <-path from 
V to w and either there is an edge between v and w with label 7^ and a <-path (but no 
<-path) from u to to (see Figure l.b)); or there exist two vertices u and t such that there is 
an edge between u and t with label ^ and <-paths (but no <-path) from v to u,u to w, v 
to t, and t to w (see Figure l.c)). The graphs isomorphic to the one given in Figure l.c) are 

called ^-diamonds. 

Definition 9 An explicit graph for a given TL-graph G is an acyclic TL-graph logically 

equivalent to G and with no implicit < relations. 

Theorem 3 (Gerevini and Schubert 1993a) An explicit TL-graph entails v <w iff there 
is a <-path from v to w; it entails v < w iff there is a <-path from v to w, and it entails 
V ^w iff there is a <-path from v to w or from w to v, or there is an edge {v,^,w). 

^Results similar to Theorems 1 and 2 are also given by van Beek (1990; 1992). 
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3     Computing the minimal labels 

In this section we first introduce the notions of a path-consistent TL-graph and of a min- 
imal TL-graph. We then provide a new proof of van Beek and Cohen's Lemma about 
forbidden graphs in path-consistent PA-neworks. Given a PA-network T, this lemma allows 
the computation of the minimal labels of T by identifying all the forbidden graphs in the 
path-consistent network of T and by making explicit all the implicit < relations. 

Definition 10 A TL-graph is path-consistent if there is exactly one edge joining each pair 
of vertices, and for every triple (u, u, w) of vertices, any of the possible relations {<, >, =} 
allowed by the label of the edge joining u and v (/') is consistent with the relations allowed 
by the labels of the edges joining u and w (/"), and v and w (/'"). That is, there exists an 
interpretation / such that for all Pi,Pj,Pk satisfying PV{pi) = u, PV{pj) = v and PV{pk) 

w 

< l{pi),i{Pj)> e R{l') 
< l{pi),i{Pk)> e R{l") 

< I{p^)Apk)> € R{1"'). 

Definition 11 The minimal graph oi a consistent TL-graph G is a TL-graph logically equiv- 
alent to G, containing exactly one labeled edge for each pair of distinct vertices and in which 
for each pair (^1,^2) of vertices the label / of the edge {vi,l, V2) corresponds to the strongest 
relation entailed by G ^. The minimal graph of an inconsistent TL-graph is the empty graph. 

The definitions of a path-consistent TL-graph and of a minimal TL-graph are a slight 
departure from the notions of a path-consistent network and of a minimal network originally 
given in the context of constraint satisfaction problems (Montanari 1974; Mackworth 1977). 
Note also that not every PA-network as defined by van Beek and Cohen (1990) is a TL-graph; 
only networks without =:-edges translate directly into TL-graphs. 

An explicit TL-graph can be transformed into a path-consistent graph by three opera- 
tions: unifying multiple edges between two vertices into a single edge labeled with the inter- 
section of the labels on the individual edges; introducing new edges in order to have exactly 
one edge joining each pair of vertices whose label is chosen according to path-consistency 
and reducing the labels on the original edges in order to satisfy path-consistency. 

van Beek and Cohen (1990) give a lemma stating that any path-consistent nonmininmal 
PA-network of relations taken from PA must include a four-vertex subgraph isomorphic to 
the graph in Figure l.a). The proof they provide is not correct but the Lemma is indeed 
valid. The incorrectness of their proof becomes evident if one observes that the PA-network 
of figure l.a) is not the only four-vertex path-consistent PA-network that, up to isomorphism, 
can be derived in the last step of the proof of van Beek and Cohen.  In fact, the network 

^Relation vRw is stronger than relation vR'w if and only if vRw entails vR'w, but not the converse; in 
other words, viewed as subsets of {<,=,>},/? is a proper subset of R'. 
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obtained by replacing (u, {<, =}, u) with (v, ?, u) and (u, {<, =}, w) with («, ?, to) is another 
possible network. This contradicts what van Beek and Cohen assert at the end of their proof. 

The next theorem provides a new proof of van Beek and Cohen's Lemma. In the first part 
of the proof, we deal with networks without =-edges, which therefore amount to TL-graphs. 
In the second part of the proof we relate networks with =-edges to TZ^graphs, by talking 
about the networks obtained by collapsing equal vertices. For these collapsed networks, the 
first part of the proof applies, and we can infer the existence of a forbidden subgraph. We 
then argue that the forbidden subgraph must also have been present in the network prior to 
collapsing it. 

Theorem 4 Any path-consistent PA-network G that contains no forbidden graphs is mini- 
mal. 

Proof. Consider the case where G contains no =-edges. In this case it suffices to show 
that such a network G is already explicit, and that an explicit, path-consistent network is 
minimal. To see that G is already explicit, note first that there are no implicit <-relations of 
the first kind in G, since the presence of an edge {v,y^,w) across a <-path from t» to K; would 
violate path consistency (the edge from v to w would have to be labeled < rather than 7^). 
Moreover, there are no implicit <-relations of the second kind in G, since these can exist only 
when there is a 7^-diamond, and in a path-consistent graph the presence of such a diamond 
entails the presence of a forbidden subgraph (i.e., each of the four <-paths making up the 
7^-diamond must join two vertices whose connecting edge is also labeled <; the label cannot 
be stronger (<) since otherwise the definition of a 7^-diamond is not satisfied). Also there 
are no <-cycles in a path-consistent network without =-edges, and so G is indeed explicit. 
But an explicit, path-consistent network is minimal, since by Theorem 3 the graph entails 
(a.) V < w ifftheie is a <-path from v to w, (h) v < w iff there is a <-path from v to w, and 
(c) V ^ w iff there is a <-path from t; to u; or from to to u or a 7^-edge connecting v and w, 
and by path consistency these three cases respectively entail that the label / in edge (u, /, w) 
is (a) < only if the graph does not entail v <w, (b) <, and (c) <, >, or 7^. 

This leaves us with the case where G contains =-edges (but is still path-consistent and 
contains no forbidden subgraphs). In this case G will clearly be minimal as long as for 
any v, w connected by a =-path (a path with label "=" on all edges) the label of the edge 
connecting v and w is =, and the graph G obtained by collapsing equated sets of vertices 
into a single vertex is minimal. The former is true by path consistency, and the latter is true 
by the first part of the proof (collapsing equated vertices does not destroy path consistency, 
does not create new forbidden graphs and preserves entailments). □ 

4     Conclusions 

In this note we have provided a new proof of van Beek and Cohen's lemma about some strict 
orderings that cannot be derived by computing path consistency in a network of temporal 
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relations in the Point Algebra. This lemma is fundamental in showing that the strongest 
entailed relations for each pair of points (the minimal labels) of a set of assertions in the 
Point Algebra can be computed in polynomial time {0{max{n^ ■ m^n^))^ where n is the 
number of time points and m is the number 7^ assertions (van Beek 1990). 

The larger goal which prompted this work was the design of a temporal reasoning system 
called TimeGraph-II (TG-II) (Gerevini and Schubert 1993a; Gerevini and Schubert 1993b; 
Gerevini and Schubert 1993c). TG-II is descended from TG-I, an earlier system to support 
natural language understanding (Schubert et al. 1983; Schubert et al. 1987; Miller and 
Schubert 1990). TG-II is aimed at a broader class of applications, including planning. 
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Appendix G 

The Temporal Reasoning Tools 
TimeGraph I-II* 

Abstract 

We describe two domain-independent temporal reasoning systems called TimeGraph I and 
II which can be used in AI applications as tools for efficiently managing large sets of rela- 
tions in the Point Algebra, in the Interval Algebra, and metric information such as absolute 
times and durations. Our representation of time is based on timegraphs, graphs partitioned 
into a set of chains on which the search is supported by a metagraph data structure. Time- 
Graph I was originally developed by Taugher, Schubert and Miller in the context of story 
comprehension. TimeGraph II provides useful extensions, including efficient algorithms for 
handing inequations, and relations expressing point-interval exclusion and interval disjoint- 
ness. These extensions malce the system much more expressive in the representation of 
qualitative information and suitable for a large class of applications. 

1     Introduction 

We are interested in developing temporal reasoning tools for efficiently managing large data 
sets of temporal information. Our approach was originally developed by Schubert, Taugher 
and Schaeffer (formerly Miller) in the context of natural language comprehension [28, 29, 22], 
and then extended with the aim of making it suitable for a larger class of Artificial Intelligence 
applications including, in particular, planning [10, 11]. 

In natural language applications such as story understanding, reasoning about the tem- 
poral structure of episodes is an important task which requires specialized temporal inference 

*This material is based on: Alfonso Gerevini, Lenhart Schubert, and Stephanie Schaeffer, "The Temporal 
Reasoning Tools TimeGraph I-II", International Journal of Artificial Intelligence Tools, 4(1-2): 281-299, 

1995. 
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methods [22]. For example, to answer a question like "Was the wolf alive at any time af- 
ter everyone (the human characters in the story of Little Red Riding Hood) talked or after 
everyone ate the goodies?" requires detection of an an inconsistency between a presumed 
"alive" episode and a semi-infinite "not alive" episode that starts with the death of wolf at 
the hands of the woodcutter, an event known to precede both the "talking" and "goodie 
eating" episodes [22]. 

In planning, constraint-based approaches like Allen and Koomen's [4, 3] and nonlinear 
planners like UCPOP rely on a temporal reasoning module for efficiency [25, 36]. In fact, 
the first requires an efficient method for managing relations in the Interval Algebra (lA) [2] 
formed from subsets of thirteen basic relation (see Figure 1); the second requires a specialized 
reasoning module to maintain the consistency of a temporal database of point relations 
expressing strict ordering and point-interval exclusion, i.e., relations of the form "pi < ^2", 
and "p3 < p4 or p^ < pa", where ^4 < ^5.^ 

In this paper we present two domain-independent temporal reasoning systems called 
TimeGraph I (TG-I) and TimeGraph II (TG-II). These systems can efficiently handle point 
relations in the Point Algebra (PA) [35, 32, 13], the interval relations in the subclass of 
lA called SIA [31], and metric information such as constraints involving absolute times and 
durations. Moreover, a recent extension of TG-II [11] allows the system to efficiently manage 
point-interval exclusion, as well as the interval disjointness relation "before or after", which 
is important in planning and scheduling applications.'^ 

Temporal relations are represented through graphs, called timegraphs, whose vertices 
represent time points and whose edges represent temporal relations. The main characteristics 
of timegraphs are their partitioning into a set of chains, which are sets of linearly ordered 
points, and their use of a metagraph structure to guide the search processes across the chains 
[12]. 

Given a set of temporal relations S, the main temporal reasoning tasks addressed concern 
determining the consistency of S and providing the strongest relation entailed by S between 
(any) two time points. Furthermore, our graphical representation is also suitable for the task 
of finding consistent scenarios (i.e. interpretations for all the temporal variables involved); 
as shown in [31], this can be efficiently accomplished by performing a topological sort on the 
timegraph. 

Space requirements are one of the major limitations of temporal reasoning systems based 
on constraint propagation such as Timelogic [18] and MATS [17]. One advantage of our 
method with respect to the constraint propagation approach (such as [35, 33, 8, 20]) is 
that the space complexity can be linear in the number of stipulated relations instead of 

^The "<" relation is used to partially order the actions of the plan; the point-interval exclusion relation 
is used to "protect" action preconditions during planning, where an earlier action may serve to achieve the 
preconditions of a later one, and no further action should be inserted between them which would subvert 
those preconditions [36]. 

^For example, planned actions often cannot be scheduled concurrently because they contend for the same 
resources (agents, vehicles, tools, pathways, etc.). 
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Relation Symbol    Meaning 

X before y 
y after x 

B 
A 

X 

y 

X meets y 

y met-by x 

M 
M- 

X 

y 

X overlaps y 

y overlapped-by a; 

0 
0- 

X 

y 

X during y 
y contains x 

D 
D- 

X 

y 

X starts y 
y started-by x 

S 
s- 

X 

y 

X finishes y 
y finished-by x 

F 
F- 

X 

y 

X equal y E X 

y 

Figure 1: The thirteen basic relations of the Interval Algebra 

quadratic in the number of time points. The other advantage is the efficiency in terms of 
computation time in domains such as planning [1] and story understanding in which the 
temporal data tend to fall naturally into chain-Hke aggregates [30, 22]. Building timegraphs 
in practice takes much less time than computing closure (the minimal network in constraint 
propagation terminology [23]), and the amount of time spent in querying relations is nearly 

constant. 

Section 2 provides the basic definitions and terminology for representing temporal rela- 
tions through timegraphs from [29, 22, 10, 12]. Section 3 briefly shows how a timegraph is 
constructed from a given set of relations. Sections 4 and 5 describe algorithms for querying 
a timeigraph and managing disjunctions. Section 6 presents the TG-I and TG-II systems. 
Section 7 reports some experimental results from TG-II. Section 8 gives conclusions and 

future work. 

2    Representing temporal relations through Timegraphs 

A temporally labeled graph (TL-graph) is a graph with at least one vertex and a set of labeled 
edges, where each edge (u, /, w) connects a pair of distinct vertices u, w. The edges are either 
directed and labeled < or <, or undirected and labeled ^. 
We assume that every vertex of a TL-graph has at least one name attached to it. If a vertex 
has more than one name, then they are alternative names for the same time point. The 
name sets of any two vertices are required to be disjoint.   Figure 3 shows an example of 
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<,= 
<,=... ■ <,= 

^ w 
^■■' ^ "■'A 

V t ■■■■... 

a) 

<,-■■ 

b) 

••■■' <,= 

Figure 2: The two kinds of implicit < relation. Dotted arrows indicate paths, solid lines ^ 
edges. In both graphs there is an implicit < relation between v and w. 

Figure 3: An example of TL-graph. 

TL-graph. A path in a TL-graph is called a <-path if each edge on the path has label < or 
<. A <-path is called a <-path if at least one of the edges has label <. 

We say that a TL-graph G contains an implicit < relation between two vertices fi,U2 
when the strongest relation entailed by the set of relations from which G has been built is 
vi < V2 and there is no <-path from Vi to V2 in G. Figure 2 shows the two possible TL-graphs 
which give rise to an imphcit < relation. All TL-graphs with an implicit < relation contain 
one of these graphs as subgraph. 

A TL-graph without implicit < relations is an explicit TL-graph. In order to make 
explicit a TL-graph containing implicit < relations we can add new edges with label < (for 
example in Figure 2 we add to the graph the edge (u, <, w)). 

An important property of an explicit TL-graph is that it entails u < to if and only if 
there is a <-path from v to w; it entails v < w li and only if there is a <-path from v to w, 
and it entails v ^ w li and only if there is a <-path from v to w or from w to v, or there is 
an edge (v,^,w). 

A timegraph is an acyclic TL-graph partitioned into a set of time chains, such that 
each vertex is on one and only one time chain. A time chain is a <-path, plus possibly 
transitive edges connecting pairs of vertices on the <-path. Distinct chains of a timegraph 
can be connected by cross-edges. Vertices connected by cross-edges are called metavertices. 
Cross-edges and certain auxiliary edges connecting metavertices on the same chain are called 
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^ 2000 chain 3 

3000 4000 

Figure 4: Timegraph of the TL-graph of Figure 2, with transitive edges and auxiliary edges 
omitted. 

metaedges. The metavertices and metaedges of a timegraph T form the metagraph of T. 

Figure 4 shows the timegraph built from the TL-graph of Figure 3. All vertices except 
d and e are metavertices. The edges connecting vertices a to i, i to c, b to g, h with f, are 
metaedges. Dotted edges are special links called nextgreaters that are computed during the 
construction of the timegraph and that indicate for each vertex v the nearest descendant v' 
of V on the same chain as v such that the graph entails v < v'. Each vertex (time point) in 
a timegraph has a pseudotime (or rank) associated with it, which is arbitrary except that it 
respects the ordering relationship between it and other vertices on the same chain. The main 
purpose of the pseudotimes is to allow the computation of the strongest relation entailed 
by the timegraph between two vertices on the same chain in constant time. In fact, given 
two vertices Vi and V2 on the same chain such that the pseudotime of V2 is greater than the 
pseudotime of ui, if the pseudotime of the nextgreater of Vi is lower that the the pseudotime 
of V2-, then the timegraph entails f i < V2, otherwise it entails vi < V2. 

Metric information such as absolute times (dates) can be represented by storing with 
each vertex two six-tuples of the form (year month day hour minute second), the first of 
which corresponds to the earliest possible occurrence time and the second corresponds to 
the latest possible occurrence time. Each element of the tuple may be numeric or symbolic 
(e.g. (1993 03 a 12 h c) represents some time after 12 a.m. and before 1 p.m. of some day 
in March 1993). 

Temporal distances (durations) between time points can be specified on each edge of the 
timegraph through a pair of numbers indicating the upper and lower bounds on the elapsed 
times (e.g., in seconds) between the time points represented by the vertices connected by 
the edge. 
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Task Complexity 
consistency 0{e) 

ranks 0(n + e) 
chains 0[n + e + h-e) 

implicit < 0[e^-e) 

Table 1: Time complexity of the algorithms for the construction of a timegraph. e is the 
number of edges; e is the number of metaedges; n is the number of vertices; n is the number 
of metavertices; e^^ is the number of cross-chain edges with label ^ 

3    Building a timegraph 

3.1     Qualitative information 

Given a set S of relations in the Point Algebra we first build a TjL-graph G whose vertices 
correspond to the variables (time points) in 5, and whose edges correspond to the relations 
(note that "=" relations are translated by creating only one vertex for each set of explicitly 
equated variables, and labelling that vertex with that set of variables). 

The construction of the timegraph from G consists of four main steps: consistency check- 
ing, ranking of the graph (assigning to each vertex a pseudotime), formation of the chains of 
the metagraph, and making explicit the impHcit < relations (see Figure 2). Table 1 reports 
the time complexity of the algorithms we have developed for achieving these tasks.^ 

Determining the consistency of G is accomplished by an 0(e) time algorithm based on 
two main steps: identifying all the strongly connected components (SCO) of the TL-graph 
derived from G ignoring the ^ relations; checking if any of the SCCs contains a pair of vertices 
connected by an edge with label <, or ^. When the graph is consistent, each SCO can be 
collapsed into any arbitrary vertex v within that component. All the cross-component edges 
entering or leaving the component are transferred to v. The edges within the component 
can be eliminated and a supplementary set of alternative names for v is generated. 

The second step, ranking the graph, is accomplished by using a slight adaptation of 
the DAG-longest-paths algorithm [6] which takes 0{n -\- e) time. Originally we assigned 
pseudotimes independently on each chain. More recently, following [15] we have been using 
ranks as pseudotimes, ensuring that rank{v) < rank{w) indicates the absence of paths from 
w to V even if v,w are on different chains. 

The third step, the formation of the chains, consists of partitioning the TL-graph into 
a set of <-paths (time chains), deriving from this partition the metagraph and and doing a 
first-pass computation of the nextgreater links. The first two subtasks take time linear in 
n + e, while the last may require an 0(e) metagraph search for each of the h metavertices. 

'A detailed description of the algorithms is available to the interested reader in [12]. 
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Figure 5: An example of timegraph with several ^ diamonds of which only the one consisting 
of the vertices {a,b,c,d} is the smallest. A dotted arrow represents a <-path on a single chain 

The fourth step, making explicit all the implicit < relations, can be the most expensive 
task in the construction of a timegraph (see Table 1). This is the same as in van Beek's 
approach whose algorithm [31] takes 0{n^ ■ e^ + n^) time, with n the number of time points, 
and 6:^ the number of 7^ relations. Fortunately, the data structures provided by a timegraph 
allow this task to be accomplished more efficiently. A final operation is the revision of 
nextgreater links, to take account of any implicit < relations made explicit in the fourth 
step. 

Figure 2 shows the two cases of implicit < relations. The time complexity of the algorithm 
we have developed for the first case is 0(e^ • (e + n)). 

In order to make implicit < relations of the second kind (Figure 2.b) explicit, and re- 
moving redundant 7«^-edges, a number of ^ diamonds of the order of e^^ • n^ may need to 
be identified in the worst ca^e. However, for timegraphs only a subset of these needs to be 
considered. In fact it is possible to limit the search to the smallest ^ diamonds, i.e., the set 
of diamonds obtained by considering for each edge (v, 7^, w) only the nearest common descen- 
dants of V and w (NCD(v,w)) and their nearest com,mon ancestors (NCA(v,w)). This is a 
consequence of the fact that, once we have inserted a < edge from each vertex in NCA(v,w) to 
each vertex in NCD(v,w), we will have explicit <-paths for all pairs of "diamond-connected" 
vertices. From the previous observation we derive a criterion for pruning the search that in 
practice gives significant time savings. 

Figure 5 shows an example of a timegraph with several ^ diamonds of which only one is 
the smallest and needs to be considered. 

3.2    Metric information 

Globally optimal bounds on the absolute times of time points associated with vertices and 
locally optimal bounds on durations associated with edges are computed by constraint prop- 
agation without introduction of new edges. In essence, upper bounds are propagated back- 
ward and lower bounds forward. This ensures that each point has the best absolute time 
information possible. 
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The constraints used are inequalities relating the bounds associated with pairs of vertices 
connected by an edge. For example, if (/i, Ui), {I2, U2) are the lower and upper bounds of the 
vertices 1 and 2 respectively, and (/, u) the lower and upper bounds on the duration of the 
edge from 1 to 2, then the inequality k ~ u < ti < U2 — l, where ti indicates the absolute 
time associated to the vertex 1, must be satisfied (among others) [30, 21]. 

4 Querying a timegraph 

Given an explicit TL-graph we can derive the strongest relation between two time points 
that is entailed by the graph, by looking for all the paths connecting the two corresponding 
vertices. Furthermore, in timegraphs there are four special cases in which those paths can 
be obtained in constant time. Given two vertex labels pi ,p2 the first case is the one where pi 
and p2 are alternative names of the same point (see Section 2). The second case is the one 
where the vertices vi and V2 corresponding to pi,p2 are on the same chain (see Section 2). 
The third case is the one where Vi and V2 are not on the same chain and have the same rank, 
and there is no 7^ edge between them (the entailed relation is {<,=,>}). The fourth case 
concerns 7^ relations for which the search is localized to the edges between the two input 
vertices. In fact, as a consequence of making implicit < relations explicit, a 7^ relation can 
be the strongest relation entailed by the graph if and only if there exists a cross-edge with 
label ^ connecting them. 

In the remaining cases an explicit search of the graph needs to be performed. If there 
exists at least one <-path from Vi to V2, then the answer is Vi < V2. If there are only <-paths 
(but no <-paths) from Vi to U2, then the answer is Vi < V2. Analogously for paths from 
V2 to Vi- An algorithm for accomplishing this task can be derived by an adaptation of the 
single-source-longest-paths algorithm reported in [6]. This algorithm has a time complexity 
of 0{h + e + h), where h is the constant corresponding to the time required by the four 
special cases. 

Querying metric information may require an 0(e) time search process. In fact, to deter- 
mine the duration between any two points an exhaustive search must be done between these 
points to get the best duration bounds (the greatest minimum and the smallest maximum). 
Duration information on edges and implicit in absolute times is used.  Details are given in 
[21]. 

5 Managing disjunctions 

As briefly discussed in the introduction, the ability to manage disjunctions of qualitative 
temporal information is an important requirement in planning. For this reason we have 
extended our approach to include such disjunctions. 

A disjunctive timegraph (X>-timegraph) is a pair (T, D) where T is a timegraph and D a set 
of PA-disjunctions involving only point-variables in T. A I>-timegraph (T, D) is consistent 
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if it is possible to select one of the disjuncts for each PA-disjunction in D in such a way 
that the resulting collection of selected PA-relations can be consistently added to T. We call 
this set of selected disjuncts an instantiation of D in T, and the task of finding such a set 
deciding D relative to T. 

Once we have an instantiation of D, we can easily solve the problem of finding a consistent 
scenario by adding the instantiation to T and using a topological sort algorithm [32, 6]. Also 
the task of checking whether a relation R between two time points x and y is entailed by 
a "D-timegraph (T, D) can be reduced to the problem of finding an instantiation of D in an 
augmented version of T. We add the relation xRy to T (where R negation of /?), obtaining 
a new timegraph T', and then check if (a) T' is consistent, and (b) D can be decided relative 
to T' (if not empty). The original X'-timegraph entails xRy just in case one of (a),(b) does 
not hold. 

Deciding a set of binary disjunctions is an NP-complete problem [14]. However, recently 
we have developed a method for accomplishing this task which in practice performs very 
efficiently [11]. Given a disjunctive timegraph (T, D), the general method we have developed 
for deciding D relative to T consists of a two phases: 

• a preprocessing phase which prunes the search space by reducing Z) to a subset D' of 
D and producing a timegraph T' such that D has an instantiation in T if and only if 
D' has an instantiation in T'; 

• a search phase which finds an instantiation of D' in T' (if it exists) by using backtrack- 
ing. 

Preprocessing uses a set of pruning rules exploiting the information provided by the 
timegraph to reduce the set of the disjunction^. This phase takes polynomial time, and in 
principle is strong enough to subsume consistency testing for Nebel and Biirckert's ORD- 
Horn subclass of interval relations [24].^ The search phase is based on a form of selective 
backtracking (for more details see [12]), and uses a "forward propagation" technique to greatly 
enhance efficiency. 

Using this method we have incorporated into TG-II a specialized algorithm for deciding a 
set of binary disjunction of inequalities (i.e., relations of the form [jptl < pt2) V {ptS < pt4)). 
Such disjunctions extend the set of interval relations which are translatable in terms of point 
relations to include, in particular, "before or after" (interval disjointness), and exclusion of 
a point pi form an interval with endpoints p2 and ps (indicated below as pi<J,^^), where 
P2 < P3- In fact, we have:^ 

I {B A} J <^ {Lend < J.start) V {J.end < I.start); 

''For example, the "T-derivability" rule says that if the timegraph entails one of the disjuncts of a certain 
disjunction, then such a disjunction can be removed without loss of information. 

^The Ord-Horn subclass of lA is a maximal tractable subalgebra of lA. 
^Ordering relations between starting point and endpoint of intervals are omitted. 
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Pl<ill  ^ ((pi < P2) V (p3 < Pl)) A P2 < P3. 

Moreover, some 3-interval and 4-interval relations not belonging to lA can be also stip- 
ulated, for example: 

(/ {B} J) or {H {B} K) ^ {Lend < J.start) V (H.end < K.start). 

Experimental results have shown that our algorithm is very efficient especially when the 
number of disjunctions is limited with respect to the number of the PA-relations in the 
timegraph, and that although consistency testing is NP-complete, in practice it tends to 
perform polynomially (see Section 7). 

Future work concerns the extension of the algorithm in order include disjunctions of 
arbitrary PA-relations. 

6     TimeGraph I and II 

TimeGraph I (TG-I) and TimeGraph II (TG-II) are two temporal reasoning systems based 
on the representation and algorithms described in the previous Section. TG-I was originally 
developed in the context of natural language comprehension and has been integrated into a 
series of knowledge representation and reasoning systems, the two most recent being ECO- 
LOGIC [27] and EPILOG [26, 16]. TG-II is an extension of TG-I which is still in progress 
and which aims at generalizing the timegraph approach to a wider class of applications in- 
cluding planning and scheduling. Currently the most important extensions of TG-I which 
are incorporated into TG-II concern: 

• the inclusion of algorithms for handling 7^ relations which are not handled by TG-I 
and which allow the representation of a larger class of interval relations; 

• the inclusion of algorithms for deciding a set of of binary disjunctions of inequalities 
relative to the timegraph; 

• an optimization of the chain partitioning of the TL-graph built from an initial set S of 
point relations. In principle, many logically equivalent timegraphs may be constructed 
from S since there can be many different ways to partition the TL-graph. TG-II 
attempts to minimize the number of chains and cross-edges; 

• new efficient algorithms for computing the nextgreaters and for querying the timegraph, 
which use the rank to prune the search in the metagraph. 

The most important features of TG-I which have not been integrated into TG-II yet are 
the management of metric information and the dynamic addition of new relations to the 
timegraph. 
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Both TG-I and TG-II are written in Common Lisp. TG-II is available to the interested 
reader via FTP from cs.rochester.edu:/pub/knowledge-tools files tg-ii*.^ 

6.1     The user interface of TG-I and TG-II 

Both TG-I and TG-II have a user interface which allows the assertion of relations between 
time points as well as between time intervals called episodes in TG-I.^ 

The current TG-II's interface allows the assertion of all the relations in PA and of all the 
188 interval relations of SIA [19, 33] (see Figure 6) extended with relations expressing point- 
interval exclusion and disjointness relations such as "before or after", which are representable 
through binary disjunctions of inequalities (see Section 5). 

TG-I accepts assertions of relations in a subalgebra of PA called Convex Point Algebra 
(CPA) in [34] (i.e. the set of relations of PA with the exception of ^)^ and of interval 
relations in a subclass of 83 relations of SIA (written as CSIA) which are listed in [33]. It 
also accepts assertions about absolute times and durations. On assertion, if an argument 
is an absolute time instead of a named time point or an interval, the appropriate absolute 
time of the other argument is updated. For example, (I before (date '1993 '04 '01 '00 '00 
'00)) would update the upper bound of /'s absolute time (the maximum). For evaluation, 
the appropriate bound is compared against the absolute time, or two absolute times may be 
compared. 

In addition, some predicates have been introduced to handle durations: at-most-before,at- 
■most-after,at-least-before,at-least-after, exactly-before, and exactly-after. 

These take three arguments, of which the first two may be intervals or time points (no 
absolute times) and the third denotes the duration between the two in seconds. At-most- 
implies maximum duration, at-least- implies minimum duration, and exactly- involves both 
(see Tables 2, 3 and 4). 

Listed below are some of the main of user-interface functions^ recognized by TG-I and 
TG-II (the strongest entailed relation between two points ptl and pt2 (intervals II and 12) 
is indicated with SER(ptl,pt2) (SER(I1,I2)); optional arguments are enclosed by ( ). 

• (make-event arg) [TG-I] 
This functions creates an interval named arg and asserts arg.start < arg.end, where 
arg.start is the starting point of arg and arg.end is the endpoint. Make-event is defined 
only in TG-I, since in TG-II time points and intervals are automatically created when 
relations are asserted. 

^The current version of TG-II available via FTP does not include the algorithms for managing 
disjunctions. 

* An Interval is represented as a pair of strictly ordered points corresponding to the starting and end time 
of the interval. 

^The actual implementation of most of them is in form of a Lisp "macro". 
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Figure 6: The interval relations of SIA 

• (asserta argl rein arg2) [TG-I/II] 
This function is present both in TG-I and TG-II. It asserts that the relation between 
argl and argS is rein. For a description of the relations accepted by TG-I see Table 2. 
In TG-II argl and arg2 must be intervals/" and rein one of the interval relations of 
SIA (see Figure 6) extended by interval relations which can be expressed in terms of 
binary disjunctions of inequalities (see Section 5.) 

• (assertpr ptl rein pt2) [TG-II] 
This function asserts that the relation between ptl and pt2 is rein, where rein is one 
of: =,<,>,<,>, 7^. 

• (make-tg) [TG-II] 
This function builds the timegraph from the set of the stipulated relations. Note that 
in TG-I the timegraph is always built incrementally.^^ 

• (decide-disjunctions D) [TG-II] 
This function decides a set D of disjunctions relative to the timegraph. In the current 
implementation D can be a set of binary disjunctions of inequalities only. 

^°Point relations can be expressed using the function "assertpr". 
^■"^In TG-I the timegraph is automatically updated after each assertion. 
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Argumentl Relation Argument2 Arguments 
Sort Sort Sort 
episode equal episode 
point same-time point 

episode CSIA-relation episode 
point CPA-relation point 

episode between episode episode 
point point point 

episode at-most-before episode number 
point at-least-before 

exactly-before 
exactly-Eifter 
at-most-after 
at-least-after 

point 

episode has-duration number 

Table 2: The relations accepted by TG-I. In all patterns except the second last group (with at- 
most...), a point argument may be either a named time point or an absolute time specification. 
For the second last group, a point argument must be a named time point 

• (rein argl arg2) [TG-I] 
This function returns SER{argl,arg2), where argl and arg2 may be episodes, time 
points, or absolute times. 

• (elapsed ptl pt2) [TG-I] 
This function returns the best duration bounds between two time points {ptl and pt2) 
as a quoted expression of the form (minimum maximum). 

• (duration-of el) [TG-I] 
This function returns the duration bounds between the start of an episode and its end 
as a quoted expression of the form (minimum maximum). 

• (prel (ptl (pt2))) [TG-II] 
When both the arguments are present this function returns the SER(ptl,pt2); when 
only ptl is given it returns SER(ptl,x) for all the time points x of the timegraph; when 
none of the arguments is present it returns SER(a;,y) for all the time points x and y 
of the timegraph. If the timegraph has not been built yet, the set of the stipulated 

relations is printed. 
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Relation Meaning (el relation e2 e3) 
between-0-0 el.end = e2.start and e2.end = eS.start 
between-1-0 el.end < e2.start and e2.end = eZ.start 
between—0 el.end < e2.start and e2.end = eS.start 
between-0-1 el.end = e2.start and €2.end < eZ.start 
between-0 el.end = e2.start and e2.end < eS.start 
between-1-1 el.end < e2.start and e2.end < eS.start 
between-1 el.end < e2.start and e2.end < eS.start 
between—1 el.end < e2.start and e2.end < eS.start 
between el.end < e2.start and e2.end < eZ.start 

Table 3: The between-relations of TG-I. e.start and e.end indicate respectively the starting 
point and the endpoint of the interval (episode) e; "1" indicates strict (<); "0" indicates 
equal (meets), and nothing indicates non-strict (<) 

Relation Meaning (el relation {e2} d) 
at-most-before 
at-least-before 
exactly-before 
at-most-after 
at-least-after 
exactly-after 

el {B M} e2 and maximum duration between tliem is d 
el {B} e2 and minimum duration between tiiem is d 
el {B} e2 and both maximum and minimum durations are d 
el {A M-} e2 and maximum duration between tliem is d 
el {A} e2 and minimum duration between them is d 
el {A} e2 and both maximum and minimum durations are d 

has-duration        el.start before el.end and duration of el is d 

Table 4: The metric relations of TG-I 

• (arel (II (12))) [TG-II] 
When both the arguments are present this function returns the SER(I1,I2); when only 
II is given it returns SER(Il,a;) for all the time intervals x in the timegraph; when 
none of the arguments is given it returns the SER(x,y) for all the time intervals x and 
y in the timegraph. If the timegraph has not been built yet, the set of the stipulated 
relations is printed. 

• (less-than ptl pt2) [TG-II] 
This function returns T when SER(ptl,pt2) is <; it returns NIL when SER(ptl,pt2) is 
>; it returns unknown in the other cases. 

• (less-or-equal ptl pt2) [TG-II] 
This function returns T when SER(ptl,pt2) is <; it return NIL when SER(ptl,pt2) is 
>; it returns unknown in the other cases. 
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• (greater-than ptl pt2) [TG-II] 
This function returns T when SER(ptl,pt2) is >; it return NIL when SER(ptl,pt2) is 
<; it returns unknown in the other cases. 

• (greater-or-equal ptl pt2) [TG-II] 
This function returns T when SER(ptl,pt2) is >; it returns NIL when SER(ptl,pt2) is 
<; it returns unknown in the other cases. 

• (equal-to ptl pt2) [TG-II] 
This function returns T when SER(ptl,pt2) is =; it returns NIL when SER(ptl,pt2) is 
<^> or 7^; it returns unknown in the other cases. 

• (not-equal-to ptl pt2) [TG-II] 
This function returns T when SER(ptl,pt2) is <,> or ^\ it returns NIL when SER(ptl,pt2) 
is =; it returns unknown in the other cases. 

• (pointizable rein) 
This functions returns T if rein is a pointizable interval relation, i.e. it is an interval 

relations of SIA. 

• (print-tg ) [TG-II] 
This function prints the following information about the timegraph and the metagraph: 
the length, the starting point and the endpoint of each chain; the nextgreater and the 
prevless links of each vertex; all the metavertices (cross-connected vertices) with the 
corresponding metaedges (cross-edges). 

7    TG-II's performance 

In this Section we report some results from large scale tests we have conducted with TG- 
II on a SUN SPARCstation 10. Table 5 provides statistics about building timegraphs for 
randomly generated consistent sets of relations. For each number n of time points considered, 
the test procedure generates n sets of relations, each containing a number of relations equal 
to n • INTilog-in). For example, with n = 500, the procedure generates 500 timegraphs from 
500 data sets each of which contains 4000 relations. The table provides the average CPU- 
time (milliseconds) for building the timegraph, the average number of chains, the average 
length of the chains and the average maximum length of the chains. 

Given a set 5 of n time points with indices l,...,n, the first m points (S'') - with m a 
random number between 1 and n - are chosen to represent distinct elements whose time 
order is the same as the order of their indices; the remaining n — m points (5") are randomly 
assigned to coincide with points in S'. Relations are generated randomly by choosing a pair 
i, j (i < j) of indices. Specifically, if both i and j are among the m distinct points, then the 
relation iRj is generated, where R is randomly taken from {<, <,7^}, with the percentage 
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points CPU-time chains length-chain max-chain 
100 74 20.3 6.10 48.9 
200 191 40.5 8.18 97.5 
300 308 54.6 12.21 154.1 
400 470 73.3 12.28 206.2 
500 592 96.5 11.47 244.7 
1000 1711 182.8 14.36 508.8 

Table 5: Statistics about the construction of a timegraph 

of 7^ relations kept low (2%). If i or j (or both) is one of the n - m points in 5", the 
corresponding point in S" is considered. For example, if ra = 100, m = 70, i = 50, j = 80 
and j was assigned to 50, then a relation between i and j is randomly taken from {<,>,=}• 
Since we were mostly interested in measuring TG-II's performance with data sets likely to 
allow chain formation, the pairs of points were generated using a geometric distribution with 
expected value 3. 

Other experiments show that querying a timegraph is on average a fast operation. For 
example, the average CPU-time over 100,000 queries on 100 randomly generated timegraphs 
with 500 points was 2.8 milliseconds. 

The curves in Figure 7 report the results of an experiment aimed at testing the scalability 
of TG-II for the task of deciding randomly generated consistent set of disjunctions (see [12] 
for more details). The two curves of the first graph show the average CPU-time (seconds) 
required for deciding sets of disjunctions of size n (for n the number of time points) with 
8n and 2nlogn simple PA-relations (with the logarithm truncated to its integer part). The 
numbers attached to the points on the curve indicate the percentage of the disjunctions 
eliminated by preprocessing. While in the case of 8n relations this percentage decreases 
when n increases, for 2nlogn relations it tends to be constant (wavering between 88.8 and 
91.3).i2 

The curve in the second graph shows the average CPU-time required by more sparse 
graphs {An PA-relations) for which forward propagation has been used during the search.^^ 

The third graph shows that for the 16,000 problems considered our algorithms tend to 
perform polynomially (quadratic time for the curves of the first graph and cubic time for the 
curve of the second) since the previous curves approximate straight lines on a log-log scale. 

Finally, we should mention some experiments conducted by Yampratoom and Allen [37] 
comparing the performance of TimeGraph I and II with several other temporal reasoning 
systems - TimeLogic [18], MATS [17], Tachyon [5] and TMM [7] - in which the timegraph 

^^In order to simplify the figure these numbers are not shown. 
^^These experiments were conducted on a SUN SPARCstation 2 and hence a comparison with the results 

in the previous graph is inappropriate. 
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Figure 7: Scalability of the algorithms for deciding a set of disjunctions 

approach proved by far the most efficient for large data sets generated for the TRAINS world 

[!]■ 

8    Conclusions and future work 

We have described two efficient domain-independent temporal reasoning systems. Our ap- 
proach is related to others recently proposed [9, 15] and whose main characteristic is that of 
providing better performance in practice compared to the more traditional constraint-based 
approaches. 

In particular, in our systems both space and time complexity are reduced significantly 
for many practical applications. In fact, the space complexity depends on the size of the set 
of the stipulated relations and on a limited number of implicit <-relations (those araising 
from ^ diamonds), and not on the number of time points (as in the constraint propagation 
approach). Instead of computing the closure of the set of relations in PA or SIA, we build 
timegraph providing a collection of data structures that allow efficient deduction of relations 
at query time. 

TG-I can handle the qualitative relations of CPA and CSIA, and metric information such 
as durations and absolute times. TG-II considerably extends the expressiveness of TG-I at 
the qualitative level by including efficient algorithms for managing 7^-relations and binary 
disjunctions of inequalities, allowing the representation of all the interval relations of SIA, as 
well as point-interval exclusion and interval disjointness. Experimental results have shown 
that TG-I and TG-II are much faster than other systems based on constraint propagation. 

Current and future work on TG-II concerns the design of efficient algorithms for adding 
new relations to the timegraph dynamically, the integration of metric relations,^^ and the 

^^These were handled in TG-I, but as noted 7^ was not handled and also < and < relations entailed via 
metric relations were not extracted in a deductively complete way. 
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design and implementation of an efficient algorithm for handling disjunctions of arbitrary 
PA-relations. 

Acknowledgements 

The work of the first author was carried out in part during a visit at the Computer Science 
Department of the University of Rochester supported by the Italian National Research Coun- 
cil (CNR). The second author was supported by Rome Lab Contract F30602-91-C-0010, and 
the third by Boeing Contract W 297884. 

9    References 

[1] J. Allen and L. Schubert. The trains project. Technical Report 91-1, Department of 
Computer Science, University of Rochester, Rochester, NY, 1991. 

[2] J. F. Allen. Maintaining knowledge about temporal intervals. Communication of the 
ACM, 26(l):832-843, 1983. 

[3] J. F. Allen, H. Kautz, R. Pelavin, and J. Tenenberg. Reasoning about Plans. Morgan- 
Kaufmann, San Mateo, CA, 1991. 

[4] J. F. Allen and J. A. Koomen. Planning using a temporal world model. In Proceedings 
of the Eighth International Joint Conference on Artificial Intelligence, pages 741-747, 
Karlsruhe, Germany, 1983. 

[5] R. Arthur and J. Stillman. Temporal reasoning for planning and scheduling, user's 
guide: Preliminary realise. Technical report, Artificial Intelligence Laboratory, General 
Electric Research and Development Center, 1992. 

[6] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press, 
1990. 

[7] T. Dean and D. V. McDermott. Temporal data base management. Artificial Intelli- 
gence, 32:1-55, 1987. 

[8] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence, 
49:61-95, 1991. 

[9] J. Dorn. Temporal reasoning in sequence graphs. In Proceedings of the Tenth National 
Conference of the American Association for Artificial Intelligence (AAAI-92), pages 
735,740, 1992. 

144 



[10] A. Gerevini and L. Schubert. Efficient temporal reasoning through timegraphs. In 
Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence 
(IJCAI-93), pages 648-654, Chambery, Savoie, France. 1993. Morgan-Kaufmann. 

[11] A. Gerevini and L. Schubert. An efficient method for managing disjunctions in quah- 
tative temporal reasoning. In Principles of Knowledge Representation and Reasoning: 
Proceedings of the Fourth International Conference (KR94), pages 215-225, San Fran- 
cisco, CA, 1994. Morgan-Kaufmann. 

[12] A. Gerevini and L. Schubert. Efficient algorithms for qualitative reasoning about time. 
Artificial Intelligence, 1995. To appear. Also available as: IRST Technical Report 9307- 
44, Istituto per la Ricerca Scientifica e Tecnologica, 38050 Povo, Trento Italy; Technical 
Report 496, Computer Science Dept., University of Rochester, Rochester, NY 14627. 

USA. 

[13] A. Gerevini and L. Schubert. On computing the minimal labels in time point alge- 
bra networks. Computational Intelligence, 1995. To appear. Also available ais: IRST 
Technical Report 9408-10, Istituto per la Ricerca Scientifica e Tecnologica, 38050, Povo 
Trento, Italy; Technical Report 495, Computer Science Dept., University of Rochester. 
Rochester, NY 14627, USA. 

[14] A. Gerevini and L. Schubert. On point-based temporal disjointness. Artificial Intelli- 

gence. 70:347-361. 1994. 

[15] M. Ghallab and A. Mounir Alaoui. Managing efficiently temporal relations through 
indexed spanning trees. In Proceedings of the Eleventh International Joint Conference 
on Artificial Intelligence (IJCAI-89), pages 1297-1303, 1989. 

[16] C. H. Hwang and L. H. Schubert. Meeting the interlocking needs of If-computation, dein- 
dexing, and inference: An organic approach to general nlu. In Proceedings of the Thir- 
teenth International Joint Conference on Artificial Intelligence (IJCAI-93), Chambery. 

Savoie, France, 1993. 

[17] H. Kautz and P. Ladkin. Integrating metric and qualitative temporal reasoning. In 
Proceedings of the Nineth National Conference of the American Association for Artificial 

Intelligence, Anheim, Los Angeles, CA, 1991. 

[18] Johannes A. G. M. Koomen. The timelogic temporal reasoning system. Technical 
Report 231, University of Rochester, Computer Science Dept. Rochester New York 

14627, 1988. 

[19] P. Ladkin and R. Maddux. On binary constraint networks. Technical Report 
KES.U.88.8, Kestrel Institute, Palo Alto, CA, 1988. 

[20] P. Ladkin and R. Maddux. On binary constraint problems. Journal of the Association 
for Computing Machinery (ACM), 41(3), 1994. 

145 



[21] S. A. Miller. Time revised. Technical Report M.Sc. thesis, Dept. of Computer Science, 
The University of Alberta, Edmonton, Alta, 1988. 

[22] S. A. Miller and L. K. Schubert. Time revisited. Computational Intelligence, 6:108-118, 
1990. 

[23] U. Montanari. Networks of constraints: Fundamental properties and applications to 
picture processing. Information Science, 7(3):95-132, 1974. 

[24] B. Nebel and H. J. Biirckert. Reasoning about temporal relations: A maximal tractable 
subclass of Allen's interval algebra. In Proceedings of the Eleventh National Conference 
of the American Association for Artificial Intelligence (AAAI-94), Seattle, WA, 1994. 
Mor gan-K aufmann. 

[25] J.S. Penberthy and D. Weld. UCPOP: A sound, complete, partial order planner for 
adl. In Proceedings of the Third International Conference on Principles of Knowledge 
Representation and Reasoning, pages 103-114, 1992. 

[26] S. A. Schaeffer, C. H. Hwang, J. de Haan, and L. K. Schubert. The user's guide to 
EPILOG. Technical report, Dept. of Computing Science, Univ. of Alberta, Edmonton, 
Alberta, Canada, 1991. 

[27] L. K. Schubert and C. H. Hwang. An episodic knowledge representation for narrative 
texts. In Proceedings of the First International Conference on Principles of Knowledge 
Representation and Reasoning, pages 444-458, Toronto, Ont., 1989. 

[28] L. K. Schubert, M. A. Papalaskaris, and J. Taugher. Determining type, part, colour, and 
time relationships. Computer (special issue on Knowledge Representation), 16:53-60, 
1983. 

[29] L. K. Schubert, M. A. Papalaskaris, and J. Taugher. Accelerating deductive inference: 
Special methods for taxonomies, colours, and times. In N. Cercone and G. McCalla, 
editors. The Knowledge Frontier: Essays in the Representation of Knowledge, pages 
187-220. Springer-Verlag, Berlin, Heidelberg, New York, 1987. 

[30] J. Taugher. An efficient representation for time information. In M.Sc. thesis. Depart- 
ment of Computer Science, University of Alberta, Edmont, Alta, 1983. 

[31] P. van Beek. Reasoning about qualitative temporal information. In Proceedings of 
the Eighth National Conference of the American Association for Artificial Intelligence 
(AAAI-90), pages 728-734, Boston, MA, 1990. 

[32] P. van Beek. Reasoning about qualitative temporal information. Artificial Intelligence, 
58(l-3):297-321, 1992. 

[33] P. van Beek and R. Cohen. Exact and approximate reasoning about temporal relations. 
Computational Intelligence, 6:132-144, 1990. 

146 



[34] M. Vilain and H. Kautz. Constraint propagation algorithms for temporal reasoning. In 
Proceedings of the Fifth National Conference of the American Association for Artificial 
Intelligence (AAAI-86), pages 377-382, Philadelphia, PA, 1986. 

[35] M. Vilain, H. Kautz, and P. van Beek. Constraint propagation algorithms for tempo- 
ral reasoning: a revised report. In Readings in Qualitative Reasoning about Physical 
Systems, pages 373-381. Morgan Kaufmann, San Mateo, CA, 1990. 

[36] D. S. Weld. An introduction to least commitment planning. AI Magazine, Fall, 1994. 

[37] E. Yampratoom and J. Allen. Performance of temporal reasoning systems. SIGART 
Bulletin, 4(3), 1993. 

147/148 



Appendix H 

A Decisien Theoretic Planning 
Assistant* 

Abstract 

We discuss three difficulties in applying decision theory directly to planning: the compu- 
tational complexity of reasoning about probability, the difficulty of gathering knowledge of 
probability and the difficulty of specifying behavior using utilities. We then describe a deci- 
sion theoretic planning assistant that avoids some of these problems by assisting a traditional 
planner instead of generating plans. It reasons about probability based on its experience, 
so does not require precise probabilities supplied in advance and its behavior is specified 

through goals. 

1     Introduction 

Traditional planners operate in restricted domains in which knowledge is certain and a 
single goal is specified. In realistic situations, planners must be able to balance achieving 
several goals of lower priority against achieving a single high priority goal. Without multiple 
prioritized goals, a planner will produce the best plan even if that plan is terrible. For 
example, if a planner knows only about trains, it will build a plan to ship oranges to Hawaii 
by rail. Also, unless it attends to circumstances unrelated to their goals, it may achieve its 
goals at an unacceptable cost. For example, a robot railroad engineer will speed unless it 
knows that losing an engine is worse than missing a schedule. Because traditional planners 
are driven only by their goals, they cannot decide to forego a goal that can be achieve only 

at unacceptable cost. 

*This material is based on: Nat Martin and James Allen, "A Decision Theoretic Planning Assistant," 
Proceedings of the International Conference on Statistics and Artificial Intelligence, Fort Lauderdale, FL, 
January, 1993. 
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Decision theory computes a preference order over competing goals of differing priorities 
and probabilities promising a significant increase in the expressiveness of planning languages. 
It allows for a unified treatment of multiple prioritized goals and uncertainty. Unfortunately, 
this increased expressiveness is costly. 

1.1     Constraints on Decision Theory in Planning 

Though decision theory allows one to encode information about uncertainty using probability 
and to encode information about multiple goals using utilities, its use in planning systems 
is complicated by three factors: 

1. reasoning about probability is computationally complex; 

2. necessary probabilities are often unknown; and 

3. the relationship between utility and behavior is not well understood. 

The computational complexity of reasoning about probability is high. Though Bayes 
nets have limited expressiveness (they can only encode propositional knowledge), the com- 
putational complexity of inferring probabilities using them is in NP [Cooper, 1987]. Because 
first-order logics of probability are more expressive, the complexity of inferring probabilities 
using them is worse than undecidable [Abadi and Halpern, 1989]. 

Decision theoretic planners can reduce the complexity of their task by encoding the 
STRIPS assumption in independence assumptions [Wellman, 1990]. Such planners can use 
Bayes nets [Pearl, 1988] to provide a graphical method of representing these assumptions, 
allowing one to encode reasonable independence assumptions for probabilistic systems. Un- 
fortunately, these techniques only minimize the increased cost of decision theory; they do 
not eliminate it. 

The precise knowledge of probability required for decision theory also constrains its 
use. Probability can be understood as a representation of hvmian uncertainty. In areas 
like medicine where articulate experts have access to statistical data, it can represent these 
experts' uncertainty. Unfortunately, such subjective probabilities are impractical in domains 
lacking articulate experts. As an alternative to asking experts, probabilities can be estimated 
from observations. For example, no one knows the probability that customers leave things 
under tables in fast food restaurants, though robots designed to clean such restaurants might 
benefit from this information. The robot cleaning the floor does have the opportunity to 
gather information about the likelihood of things being left on the floor. From these ob- 
servations, it could estimate the desired probability. It can also use information about the 
precision of the estimates it has computed. 

Though recent work [Haddawy and Hanks, 1990; Wellman and Doyle, 1992] explores 
the relationship between goals and utilities, specifying a utility function that will cause a 
planner to behave properly is still poorly understood. When we specify a goal to a traditional 
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planner, we know something about the resulting state of the world in which we execute a 
successful plan, namely that the goal will hold. We know nothing about the state of the 
world after the execution of a decision theoretic planner's plan. We may want our planner 
to achieve many things, but a successful decision theoretic plan may do nothing because 
the risk action is too great. This uncertainty about the state of the world after a decision 
theoretic planner executes its plan makes it hard to design the utilities so a planner will 
achieve something concrete. It also makes it hard to evaluate the plan produced. Indeed, 
the only reasonable evaluation is performing the same analysis the planner did. 

We have built a decision theoretic planning assistant that collects statistics and suggests 
the actions that are most likely to achieve effects given assumptions about the state of the 
world. In doing so, it avoids the computational complexity of generating and evaluating 
plans and it requires no prior knowledge of probability. It also treats each event mentioned 
in the plan it executes as single goals allowing a simple utility function. 

2     A Decision Theoretic Planning Assistant 

The Decision Theoretic Planning Assistant (DTPA) was constructed using an extension of 
Rhet [Martin, 1993]. This planning assistant provides three services to a traditional planner: 

1. it advises the planner about the likelihood of events; 

2. it executes plans by choosing the actions most likely to accomplish the planner's goals; 
and 

3. it monitors the actions to insure that they have the effects the traditional planning 
module hypothesized and notifies the planner when a low probability event causes the 
plan to go awry. 

The planning assistant's knowledge of probability is based on the number of instances 
of event types it has seen. The event types are arranged in a hierarchy such that all event 
instances of children are event instances of the parent. Therefore, the planning assistant 
has more accurate knowledge of the probability of event types higher in the hierarchy than 
about event types lower in the hierarchy. 

2.1     The Language 

Rhet [Allen and Miller, 1991] is a knowledge representation that provides, among other 
things, inference like Prolog's, a type system, and an equality reasoning system that allows 
function terms. To build the DTPA, Rhet was extended to represent probability, utility and 
the number of occurrences of events efficiently. The probability function is the confidence 
interval for the number of occurrences of a reference event type that are also occurrences of a 
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target event type. For example, if an engineer has been asked to load a car one hundred times, 
but has taken the appropriate action only fifty times, the probability at the .05 confidence 
level would be [.4 .6], (i.e., the probability is somewhere between .4 and .6.) 

Utilities are numbers and expected utilities are calculated by multiplying the lower bound 
of the confidence interval and the upper bound of the confidence interval by the utility. 
Therefore, like probabilities, expected utilities are intervals. 

The language provides a function best-event-type that takes a confidence level, a set 
of possible actions event types and a goal event type as parameters. It returns the set of the 

possible action event types among which it cannot choose. 

It also provides a function execute that takes a plan (i.e., a set of event types and 
constraints on these event types) as an argument. This function sends requests to the agents 
who are most likely to be able to cause the events specified in the plan. 

The DTPA represents causation by the predicate might-cause. This predicate focuses 
the DTPA attention on only those actions for which the programmer has explicitly stated 
might cause the goal. Because the goal is possible after any action, the DTPA considers too 
many actions if it relies only on probability. 

2.2    Example 

As a running example, consider a computerized planner trying to get some oranges from 
Avon to Bath. There is a rail line between Avon and Bath. In Avon, there is a warehouse 
with oranges, an engine. El, and a boxcar, Bl. The warehouse is managed by manager, 
Wl. One plan that achieves this goal is: ask Wl to load the oranges into Bl then ask El to 
couple to Bl, drive to Bath and unload the car. We will concentrate of the first step of the 
plan, loading Bl with oranges. 

This example comes from the TRAINS domain [Allen and Schubert, 1991], a transporta- 
tion domain containing engineers, managers of factories, warehouses and production centers. 
The DTPA was tested in this domain and this example was derived from one of those tests. 

In the TRAINS domain, the DTPA does not itself perform physical actions. Instead, 
all of its actions are requests to appropriate agents to perform actions. For example, when 
the planning assistant chooses Wl-Load to try to get oranges loaded into a railroad car, it 
will actually send a radio message (i.e., a Lisp expression through a TCP/IP connection) to 
the agent requesting that the agent load the car. Agents send reports when they receive a 
request, when they initiate a requested action and when they complete the requested action. 
Actions are programs the agents execute; they may or may not have their intended effects. 
Therefore, any one of these reports may fail to reach the DTPA. If the planning assistant 
does not receive a report either the action could have failed or the report could have been 
lost. 
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2.3    Advising a Planner 

All planners must make assumptions as they plan. Some early plarming systems build their 
assumptions into their knowledge representation language. For example, STRIPS [Fikes and 
Nilsson, 1971] cannot represent events it does not cause. First-order languages can represent 
more complex interactions between actions but this increased expressiveness is bought at the 
cost of making inference difficult. STRIPS can generate plans because it assumes that its 
knowledge is complete and accurate. Planners built with more expressive languages cannot 
make that assumption so it is difficult to prove that the result of the plan will be the goal. 
For example, suppose the planner asks Wl to load oranges into Bl, then asks El to take 
Bl to Avon. The oranges will get to Avon only if the oranges are in the car when El leaves 
and remain in the car until El arrives at Bath. Two possible problems arise. El might not 
wait until the oranges are loaded and El might not wait until it gets to Bath to unload the 
oranges. In the first case, the oranges remain in Avon; in the second, they end up on the 
tracks between Avon and Bath.^ 

Allen et. al. [1991] describe a planner that generates plans by proving that the planner's 
goals will hold if it executes its plan. The planner generates plans by searching through the 
space of plans, which is a space of assumptions about the future. The planner makes two 
types of assumptions about the future: 

1. that it will be able to execute any action at any time and 

2. that the effects of the actions it executes persist until they are needed. 

If the planner can prove a contradiction using an assumption, it abandons that assumption 
and tries another. When it finds a set of assumptions that is consistent with the current 
state of the world and that allows it to prove its goal will hold, it uses the assumed actions 
under the assumed constraints as its plan. 

The DTPA helps the planner choose appropriate assumptions. To do so, the planner 
supplies the planning assistant with a confidence level, a set of candidate event types, an 
event type that it wants to cause and a temporal interval. The planning assistant returns 
the set of event types most likely to cause the desired event type. The set of event types is 
those among which the planning assistant cannot choose. This indicates that any of these 
assumptions are equally valid as far as the planning assistant knows. 

Example: 

In constructing its simple plan, the planner can choose Wl and El to load the 
oranges into Bl. Unless the planner has exphcit knowledge that one agent is 
preferable to the other, it cannot choose. The planning assistant can use it 
knowledge of previous occurrences of requests to couple to make the choice. 

Suppose we have three event types named: 

^Robots are stupid. We forgot to tell one of our simulated engineers to wait until it got to the station to 
unload its oranges and the oranges ended up on the track. It took quite awhile to find them too. 
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1. El-Load 

2. Wl-Load 

3. Loaded 

The first is the set of event instances that include a request to El to load a car, 
the second the set of event instances that include a request to Wl to load a car 
and the third the set of event instances in which a car is loaded. The planner and 
the planning assistant know that either request might result in the cars being 

coupled. 

[might-cause El-Load Loaded] 
[might-cause Wl-Load Loaded] 

Which engine should the planner try to couple to the car? 

The planner asks the DTPA for its suggestion using best-event-type as follows 

(best-event-type  .95 Loaded 
El-Load Wl-Load) 

Depending on the statistics and asserted probabilities, this function call will 
return either El-Load, Wl-Load, or both. 

Given the statistics below, best-event-type returns Wl-Load. 

[occ so-far 100 El-Load] 
[occ so-far 35 El-Load Loaded] 
[occ so-far 100 Wl-Load] 
[occ so-far 65 Wl-Load Loaded] 

On the other hand, if the number of occurrences are different, calling best-event-type 
returns (Wl-Load El-Load). 

[occ so-far 100 El-Load] 
[occ so-far 50 El-Load Load] 
[occ so-far 100 Wl-Load] 
[occ so-far 60 Wl-Load Load] 

In the second case the DTPA has no useful information. 

The DTPA can answer questions about probability quickly because the planner constrains 
the question. It gives the DTPA the target event type and a set of reference event-types. It 
is easy for the DTPA to make decision under such constrained circumstances. 

154 



2.3.1    Persistence assumptions 

Persistence assumptions are assumptions that properties the planner knows to be true now 
will continue to be true. They are common in planning because, even if the planner knows it 
caused an event that made a property true, it does not know that the property remains true 
until that property is needed. For example, assuming that oranges remain in the railroad 
car until they get to their destination is a persistence assumption. 

One can describe event types in which the event instances of the event types are separated 
by another event instance. In the previous example, we describe an event type that consisted 
of event instances that were constructed from one event type following another, we could 
describe such an event type consisting of three event instances: the two we are interested in 
and a third that separates the other two. 

Example: 

Suppose the planning assistant's knowledge base is the same as in the previ- 
ous example. In addition, the planner has two additional event types called 
Load-Couple in which loading the oranges is followed by coupling the loaded 
car to the train and Load-Event-Couple in which some unspecified event occurs 
between the loading and the coupling 

The planner describes this event using the following Rhet axioms, which are 
Horn clauses where the head is separated from the rest of the clause by the 
symbol "<". The first states that an instance of the Load-Couple action event 
type occurs when an instance of the Load action event type occurs before an 
instance of a Couple event type. The second states that an instance of the 
Load-Event-Couple type occurs when an instance of the Load event type occurs, 
then any event instance occurs and finally an instance of the Couple event type 
occurs. 

[[element-of ?ei_3 Load-Couple]  < 
[element-of ?ei_l Load] 
[element-of ?ei_2 Couple] 
[Time-Before [time ?ei_l]   [time ?ei_2]]] 

[[element-of ?ei4 Load-Event-Couple]  < 
[element-of ?eil Load] 
[element-of ?ei2 ?et] 
[element-of ?ei3 Couple] 
[Time-Before  [time ?eil]   [time ?ei2]] 
[Time-Before [time ?ei2]   [time ?ei3]]] 

The planner also knows that either of these event types might move the oranges. 
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[might-cause Load-Couple Move] 
[might-cause Load-Event-Couple Move] 

The plan would then call best-event-type as follows. 

(best-event-type   .95 Move 
Load-Couple Load-Event-Couple) 

Depending on the statistics, this function call will return either 

Load-Couple, Load-Event-Couple, or both. Here, if the confidence intervals 
overlap, the planner knows that the planning assistant had no information that 
contradicts the persistence assumptions necessary. Because the confidence inter- 
vals are incomparable, the planning assistant has no information indication that 
an event occurring between the loading and the coupling changes the probability 
of getting the commodity moved. Therefore, as far as the planning assistant 
knows, the properties necessary to move the oranges persist through the occur- 

rence of anj' event. 

Suppose the number of occurrences is as below. 

[occ so-far  100 Load-Event-Couple] 
[occ so-fax 35 Load-Event-Couple Move] 
[occ so-fcir 100 Load-Couple] 
[occ so-f ax 65 Load-Couple Move] 

Here, calling best-event-type returns the event type Load-Couple. The plan- 
ner would know that it is important whether an event instance occurs between 
the load of the oranges and the coupling of the engine. 

Suppose, on the other hand, that the number of occurrences is different. 

[occ so-fax 100 Load-Event-Couple] 
[occ so-fax 50 Load-Event-Couple Move] 
[occ so-fax 100 Load-Couple] 
[occ so-fax 60 Load-Couple Move] 

Calling best-event-type, as above, returns the set (Load-Couple 
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Load-Event-Couple). The planner can reason that it has insufficient information 
at the .95 confidence level to assume that an event instance separating the loading 
of the oranges and the coupling of the engine make the action fail to achieve its 
goal. The planner may choose to assume that the necessary properties for the 
event to hold continue to hold through any event instance it can describe. 

2.4    Executing a Plan 

The DTPA executes a plan by assuming that there are no interactions between the event 
types specified in the plan. It can make this assumption because the planner and the 
planning assistant work in the same domain of discourse. The planner will have considered 
all known interactions between the events; if there are other interactions, the DTPA will also 
be unaware of them. The assumption allows the planning assistant to deal with each event 
in the plan as a separate goal. 

The DTPA treats the execution of a plan as a sequence of forced choices. It first tries 
to make the choice by comparing confidence intervals. It this fails, it abstracts the choice 
by removing constraints on the actions. If it cannot make a choice at an acceptable level of 
abstraction, it tries to make a choice using the maximum likelihood estimate. If this fails, it 
chooses at random. 

2.4.1    Abstraction Hierarchy 

The abstraction hierarchy has the set of all event instances at its root. Below the root are 
more specific sets of events. For example, all actions are event types that have an agent 
associated with them. 

The DTPA chooses events to execute from the set of actions it can cause. This is a 
specialization of action events. The actions the DTPA can cause are further specialized by 
adding constraints onto them. For example, loading a car in Avon is a specialization of 
loading a car anywhere. 

Defining event types is one of the most difficult tasks in writing programs for the DTPA. 
The task is difficult because describing even simple causal models requires many event types. 
The task is more difficult when one tries to arrange event types into a useful hierarchy. 

The tcLsk of generating event hierarchies is difficult because the programmer controls the 
DTPA's learning process by defining event types. The DTPA can only learn probabilities 
about the event types, so if its programmer has not added a particular event type, the 
DTPA will not waste time considering it. This attribute is vitally important because the 
effectiveness of the DTPA's choices is constrained by the number of event types it must 
consider. If it must consider many event types, it will need a great deal of experience before 
it can say with certainty that one is better than all the others. On the other hand, if it 
chooses from only a few choices, a few examples may allow it to make a clear choice. 
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The DTPA uses the event type hierarchy by looking for the most specific event type that 
might cause the event type requested by the planner. If the plan specifies an event type in 
the planning assistant's event hierarchy, it searches for the action event type most likely to 
cause event type directly. 

The situation is more complicated when the planning assistant's event hierarchy does not 
match the planner's. Here, the planning assistant chooses a random element of the planner's 
event type and searches for the most specific event type in its hierarchy that contains the 
random element. In doing this, the planning assistant assumes that the plan the planner has 
specified depends on any instance of the event type specified. The random element of the 
event type chosen will be such an instance, and any element of an event type containing the 
random element will also be such an instance. The properties that characterize the event 
type specified will also characterize the event type that the planner eventually chooses. 

Once the planner has found appropriate event types, it assigns a constant utility to each 
of the event types so selected. It then uses the DTPA's search capabilities to look for the 
event type that it can cause that is most likely to cause that event type. 

Example: 

The following shows a part of the abstraction hierarchy for loading cars. All 
actions are events and all loadings are actions. At the next level the hierarchy 
splits between a manager loading and an engineer loading. The event instances in 
which a manager loading are further split into loading by the different managers. 

Event 
Action 

Load 
Manager-Load 

Wl-Load 

Engineer-Load 

El-Load 

The abstraction hierarchy is further elaborated by selectively removing precon- 
ditions to execution of the program associated with the action. The hierarchy 
below shows that Wl can load a car when the car and stuff to load are available, 
or it can ignore one or both of the preconditions. Every execution in which the 
precondition holds is also an instance of an execution in which the precondition 
may or may not hold. 

Wl-Load 
Wl-Load(Here(Car)) 
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Wl-Load(Here(Stuff), Here(Car)) 
Wl-Load(Here(Stuff)) 

Wl-Load(Here(Stuff), Here(Car)) 

This type of abstraction is problematical. Because event types may appear more 
than once in the hierarchy {e.g., Wl-Load (Here (Stuff) , 

Here (Car))), there may be more event types at the more abstract level than at 
the more concrete levels. If this occurs, abstracting make choices harder rather 
than easier. 

2.4.2    Choosing an Event 

The planning assistant causes each event specified in the plan by searching for the action 
event most likely to cause the specified event and executing the action associated with that 
event. It first selects the set the event types that might-cause the event specified in the 
plan. This set can be further restricted by the programmer. From the restricted set, it selects 
those events that it can cause (i.e., requests for action), then chooses among this set based 
on the conditional probabiHty of the specified event given those event types by choosing the 
event type with the highest such conditional probability. 

The DTPA first chooses at the .95 a level, and if a choice can be made at that level, it is 
returned. If the choice function returns a set of candidates among which it cannot choose, 
the planning assistant abstracts the choice by removing some of the preconditions of the 
choice. This tack might be successful because the DTPA's set of observations may be spread 
among fewer event types making the confidence intervals narrower. 

If abstraction does not help it choose based on confidence intervals, it chooses from 
the most specific set using the maximum likelihood estimate^. If the maximum likelihood 
estimates for the necessary conditional probabilities are equal, choice is impossible, so the 
planning assistant chooses randomly^. 

Example: 

If the DTPA has the following statistics, it cannot decide at the most concrete 
level of abstraction. The probability intervals it generates are [0.37 0.63] for the 
concrete action involving El and [0.19 0.44] for the action involving Wl. 

^The planning assistant computes a maximum likelihood estimate using the formula ^^ where y is the 
number of times the event type under consideration has caused the desired event type and n is the number 
of times the event type under consideration has been observed. It uses this formula because it gives the 
lowest score to the event that has failed most often even if none has succeeded. 

^It would be interesting to try choosing using the maximum likelihood estimate at different levels of 
abstraction before choosing randomly. At present it does not. 
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[occ so-far 50 
El-Load(Here(Stuff), Here(Car))] 

[occ so-far 15 
El-Load(Here(Stuff), Here(Car)) Loaded] 

[occ so-far 50 
Wl-Load(Here(Stuff), Here(Car))] 

[occ so-far 25 
Wl-Load(Here(Stuff), Here(Car)) Loaded] 

At the next level of abstraction the situation becomes worse because the DTPA's 
experience is spread over more of event types. The planning assistant has the 
same experience with El-Load(Here(Car)) and Wl-Load(Here(Stuff)), so here 

even the maximum likelihood estimate fails to give a clear choice. 

[occ so-far 25 El-Load(Here(Car))] 
[occ so-far 10 El-Load(Here(Car)) Loaded] 
[occ so-far 25 El-Load(Here(Stuff))] 
[occ so-far 5 El-Load(Here(Stuff)) Loaded] 
[occ so-far 25 Wl-Load(Here(Car))] 
[occ so-far 15 Wl-Load(Here(Car)) Loaded] 
[occ so-far 25 Wl-Load(Here(Stuff))] 
[occ so-far 10 Wl-Load(Here(Stuff)) Loaded] 

At the third level of abstraction, we are back to the situation described previously, 
so we can make a choice. The planning assistant chooses to have the manager 

load the oranges. 

[occ so-far 100 El-Load] 
[occ so-far 35 El-Load Loaded] 
[occ so-far 100 Wl-Load] 
[occ so-far 65 Wl-Load Loaded] 

2.4.3    Causing an Event 

The DTPA always chooses an action event type that it can cause. Action event types are 
event types that occur because some agent runs a program. Action events that the planning 
assistant can execute include the program that makes them occur. Other action event 
instances represent other agents running programs. For example, the planning assistant 
itself cannot load oranges, so the planning assistant's representation of such action event 

instances has no program associated with it. 
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Once the planning assistant has chosen an appropriate action event type, it generates a 
hypothetical random instance of that event type and constrains this newly generated event 
instance so that all its parameters match the plan. For example, it may specify that this 
random instance should occur at the time the planner specified. The DTPA often adds 
further constraints to the event type it chose when its choice was made at an abstract level. 
Even when a concrete event type is chosen, the DTPA's event types rarely specify the time 
the program should start so it uses the planner's temporal specification. 

The DTPA generates a random instance of an action event type, which, because it is an 
action event instance the DTPA can cause, has a program is associated with it. Because it 
knows that executing the program .associated with the event type causes an instance of that 
event type, it immediately updates the statistics on that event type. It has observed its own 
creation of an event instance. 

The current DTPA can only execute requests in which it sends a message to an agent. 
As usual, the event instances generated by requests are collected into event types to gather 
statistics. 

The planning assistant hopes that the right agent will receive the request and act on it 
appropriately, but it does not know this. If the agent does act on the request appropriately, 
other event instances occur. The planning assistant hopes that one of the event instances 
that will occur is one of the events specified in the plan. It also hopes that some of the 
events that will occur are observable so that it can tell that the goal has been achieved. The 
planning assistant maximizes its expectation that its goals will be fulfilled by maximizing 
the probability that the request will result in the goal event types. It monitors observable 
event instance to see if the goal does occur. 

Once the planning assistant has performed all the tasks associated with one event in 
the plan, it performs the same process on the next event. It continues processing the event 
specified in the plan until none are left. 

2.5    Monitoring the Execution of a Plan 

The planning assistant does not make observations automatically. It can monitor events in 
one of two ways: it can cause an instance of an event type called an anticipation, or it can 
track an event type. When the planning assistant chooses an action, it reasons about events 
that are likely to result from this action. If the possible event is observable, it anticipates 
that event. It then assumes that when an anticipated event is observed, that event is the 
result of its actions. Alternatively, the planning assistant can track all occurrences of an 
event type by performing appropriate actions whenever sufficient evidence for the event type 
occurs. 

The planning assistant anticipates by generating a hypothetical event instance and wait- 
ing until it sees a set of conditions that would lead it to assume that such an event instance 
has occurred. Usually, It cannot directly observe the event instances that represent the suc- 
cess of its actions.   When it cannot observe success directly, it collects the set of possible 
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consequences of success and anticipates the subset of these events that are observable. When 
it makes an observation that matches the observations that would lead it to conclude that 
an anticipated event instance has occurred, it changes the hypothetical event instance it an- 
ticipated into an actual event instance of the same type. It then removes the event instance 
from the list of anticipations and updates the statistics for the event types of which the event 
instance is a member. By anticipating, the planning assistant can update the statistics on 
the event type in which it tries an action and the event type in which the action succeeds. 

Once the planning assistant has chosen an appropriate request and has executed the 
action associated with that request, it collects the set of events that the request might-cause. 
It then chooses from this set the subset that is observable. 

Example: 

The Load actions mentioned above are actually requests to the appropriate agent 
to load oranges into a railroad car. Therefore, the DTPA expects three reports 
from the agent. A subset of the DTPA's knowledge about these reports appears 
below. The planing assistant needs new event types to represent the reports 
being generated and being received. 

Load-Rec 
Load-Started 
Loaded 

Loaded-Rep 

Loaded-Rep-Rec 

[might-cause Wl-Load Load-Rec] 
[might-cause Load-Rec Load-Started] 
[might-cause Load-Started Loaded] 
[might-cause Loaded Loaded-Rep] 
[might-cause Loaded-Rep Loaded-Rep-Rec] 
[observable Loaded-Rep-Rec] 
[Loaded-Rep-Rec(ei)  > Loaded(ei)] 

Using this knowledge, the planning assistant selects all of the event types that 
might occur given an event instance of the type it just caused 

Wl-Load. These events are: Load-Rec, 

Load-Started, 

Loaded-Rep, 

Loaded-Rep-Rec. 
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It knows only Loaded-Rep-Rec is observable, so it only anticipates an instance of 
this event type. The planning assistant knows that if it receives a report stating 
that loading has been completed then an instance of a Loaded-Rep-Rec occurs. 
From this it can infer that the loading was successfully completed. 

Once the planning assistant has selected a set of observable events that the agent's 
action might cause, it then chooses the event type that makes such an observation most 
likely. Each observable event type has an anticipation action event type. The DTPA chooses 
the anticipation event type that is most likely to cause the observation the same way that it 
chooses the actions that cause the events specified directly in the plan. That is, the planning 
assistant chooses ah appropriate anticipation and executes the program associated with the 
chosen anticipation event type. 

2.5.1     Observations 

The planning assistant monitors the effects of its actions to update its statistics so that it 
will be able to make better predictions in the future. Because monitoring the execution of 
the plan is not specified in the plan itself, it must assign utihty to monitoring. It assumes 
that the planner will use its services for many subsequent similar activities and that the 
best possible answers are desired. Unfortunately, the planning assistant cannot compute 
this utility without knowledge of the future. Instead, it uses a fixed utility. 

The planning assistant also runs a process that monitors its sensory inputs. Each time a 
sensory input occurs the DTPA checks each of the event instances it is anticipation. If the 
sensory inputs matches the input expected from an anticipated event instance, it updates the 
statistics on all the event types that contain this event instance and all event type implied by 
the occurrence of this event instance. All observable event instances that were anticipated 
as a result of the planning assistant are then removed from the set of event instances that 
are anticipated. In this way the planning assistant avoids updating the statistics twice for 
an event instance that caused more than one observable event instance. 

Example: 

In the previous example, the planning assistant would have chosen the action 
event type Anticipate-Load-Rep-Rec. The program associated with all in- 
stances of this event type puts a pair consisting of the observation expected-a 
report from the agent performing the action-and an instance of the event type 
Load-Rep-Rec. Using the axiom from the previous example, the planning assis- 
tant infers that a Loaded-Rep-Rec occurred and therefore that an instance of the 
Loaded event type occurred. It updates the number of successes for the Wl-Load 
action event type because an instance of that event type lead to the loading. 
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2.5.2    Tracking Events 

The planning assistant tracks event types by noting that a certain set of conditions is suffi- 
cient cause to assume that an instance of an event type has occurred. When it sees such a 
set of conditions, it generates a random instance of the event type it is tracking and updates 
the statistics on the event type. By tracking event types, the planning assistant can collect 
information about event types when it does not expect a particular instance of that type. 

Tracking could also be used for other purposes. For example, it could reason that a likely 
observation resulting from requesting a particular inept engineer to traverse a segment of 
track is that the train will wreck. The planning assistant could anticipate an accident and 
notify the planner if it observes the accident. To be able to use this kind of information, the 
planner using the DTPA would have to be able to accept reports that its plan is in trouble. 

3     Conclusion 

The planning assistant described above avoids the three pitfalls of decision theoretic planners. 
It avoids the first by relying on the planner to ensure that its choices are independent. It 
also arranges the probabilities for which it has information into a hierarchy allowing it to 

find appropriate information quickly. 

The planning assistant does not require the person programming it to know the proba- 
bility of effects given actions. Instead, it infers these probabilities from observed effects of 
the actions. It gathers these observations by monitoring the plans it executes. 

Finally, because it assists a planner, it can assume that the choices it makes are also 
independent in terms of utility. This allows it to treat each event it tries to achieve as a 
simple goal. As Haddawy and Hanks [1990] show, such simple goals can be captured by 

constant utilities. 

These solutions are not a panacea. Each introduces new problems into using decision 

theory for planning. 

Because probabilities are inferred from statistics, the DTPA places an even higher pre- 
mium on knowledge of probability. Only when it has simple choices, few alternatives and 
much experience, can it choose correctly. It attempts to deal with the lack of information 
by arranging information in a hierarchy and using it as an abstraction hierarchy. A better 
use of the statistical information it has would improve its performance but it will still need 

to focus its attention before applying probability. 

Another Umitation on the planning assistant's behavior is its reliance on the simple 
utility structure. The ability to trade off likely success on a low probabihty goal against 
likely failure on a high probability goal would greatly improve its performance. The current 
DTPA cannot make such tradeoffs because it concentrates on one plan event at a time. It 
focuses its knowledge this way but it cannot switch tasks if one proves too difficult. It cannot 
shift to another part of the plan because presumably all of the steps in the plan are necessary 
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for completion. One solution to this problem would be to have the planning assistant give 
up if it cannot find a reasonable way to cause an event specified in the plan and have the 
planner generate a new one that does not contain this event. 
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