
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
23 August 1997 

3. REPORT TYPE AND DATES COVERED 

Conference Proceedings 

4. TITLE AND SUBTITLE 

Symposium on Quantitative Feedback Theory and Other Frequency Domain Methods and 
Applications 

5. FUNDING NUMBERS 

F6170896W0147 

6. AUTHOR(S) 

Conference Committee 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

University of Strathclyde 
Graham Hills Building 
50 George Street 
Glasgow G1 1QE 
United Kingdom 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

N/A 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

EOARD 
PSC802BOX14 
FPO 09499-0200 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

CSP 96-1031 

11.   SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

A 

13. ABSTRACT (Maximum 200 words) 

The Final Proceedings for International Symposium on Quantitative Feedback Theory, 20 August 1997 - 22 August 1997 

The Topics covered include: QFT, frequency domain design techniques, methods for dealing with parametric uncertainty, parameter space 
methods, industrial applications. 

TMTtY INSPECTED A, 
„HO <&***** 

14. SUBJECT TERMS 15.    NUMBER OF PAGES 

251 
16. PRICE CODE 

N/A 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18.   SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19, SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 
298-102 



SYMPOSIUM ON QUANTITATIVE FEEDBACK 
THEORY   \\    ■ 

AND OTHER FREQUENCY DOMAIN 
METHODS ANI* APPLICATIONS 

ist       -r>nd 21sl - 22na  Augusf 1997 

University of Strathclyde 

JAA^AAJ/J     Ai<7 I    DISTRgOTKaj STATEMENT A  \ 

| \J\J I Uw  I U     U|f Approved for public release;      I 
Ptatribution Unlimited ,| 



SYMPOSIUM ON QUANTITATIVE FEEDBACK 
THEORY 

AND OTHER FREQUENCY DOMAIN 
METHODS AND APPLICATIONS 

21st - 22nd  August 1997 

Supported by 
The European Office of Aerospace Research and 

Development 

The organisers wish to thank the United States Air Force European 
Office of Aerospace Research and Development for its contribution to 
the success of the conference. 

Department of Electronic and Electrical Engineering 
University of Strathclyde 

50 George Street 
Glasgow Gl 1QE 

Scotland 



Proceedings of the Quantitative Feedback Theory and Other Frequency-Based 
Methods and Applications Symposium 
University of Strathclyde, August 1997 

Editors: Dr. L. Petropoulakis and Dr. W. E. Leithead 

Additional copies may be ordered from: 

Dr. L. Petropoulakis 
Department of Electronic and Electrical Engineering 
University of Strathclyde 
50 George Street 
Glasgow Gl 1QE 
Scotland 

Responsibility for the contents rests entirely with the authors. The editors accept no 
liability for errors or omissions. 

No part of this publication may be reproduced, stored in a retrieval system or 
transmitted in any form or by any means without the prior permission of the editors. 
However, permission is not required to copy abstracts of papers on condition that a 
full reference to the source is given. 



CONTENTS 

Conference Programme 7 

Session 1 

QFT Loop Shaping and Minimization of the High-Frequency Gain via 13 
Convex Optimization 
Chait Y. 

An Algorithm for Computing QFT Multiple-Valued Performance Bounds 29 
Moreno J.C., Banos A. and Montoya F.J. 

Robust SISO Control: a mixed H„/QFT design 35 

Bergeon B. 

A Full Envelope Flight Control System Design, Including Aerodynamic 45 
Control Effector Failures Accommodation, Using QFT 
Pachter M. and Houpis C. H. 

The Relationship of QFT to ICAD 55 
Leithead W. E., Robertson S. S. and O' Reilly J. 

Piloted Simulation of An F-16 Flight Control System Designed Using 63 
Quantitative Feedback Theory 
Sheldon S. N. and Osmon C. 

Session 2 

CRONE control of multivariable plants with a multi-scalar approach 73 
Lanuse P., Oustaloup A. and Sutter D. 

Applying  Structured   Singular  Values   to   a   Class   of Decentralised 81 
Stabilising Controller   Design 
Yang T. C. and Yu H. 

The Parametric Systems Toolbox: A Robust Analysis and Design Tool for 87 
Systems with Parameter Uncertainty 
Kontogiannis E. and Munro N. 

Discrete-time optimal regulator and eigenvalue placement in a prescribed 93 
region: Frequency domain solution 
Arcasoy C. C. 



On Optimization of Non-linear Systems with High Loop Gain and its 99 
Applications to Design of Ship Trajectory Tracking Systems 
Lozowicki A. 

Session 3 

Frequency Based Controller Design for a Nonlinear System 109 
Shah M. A and Franchek M. A. 

Set Membership Approach for Reducing Value Sets in the Frequency 117 
Domain 
Rotstein H., Galperin N. and Gutman P-0 

The CRONE Suspension: a transposition of fractal robustness to 129 
mechatronics 
Moreau X., Oustaloup A. and Nouillant M. 

Redesign of a QFT Flight Control System to Account for Bending Modes 137 
of the LAMBDA Unmanned Research Vehicle 
Sheldon S. N. and Rasmussen S. J 

Robust Controller Design for a Heating System 143 
Wang W., Trierweiler J. O. and Engell S. 

Session 4 

Synthesis of LTV Feedback around non-linear MEMO Systems 153 
Yaniv O. 

Control of an Activated Sludge Wastewater Treatment Plant with 163 
Nitrification- Denitrification Configuration Using QFT Technique 
Ostolaza J. X. and Garcia-Sanz M. 

Stability of Nonlinear QFT Control System Designs 171 
Banos A. and Barreiro A. 

Longitudinal Control of an Advanced Combat Aircraft using Quantitative 179 
Feedback Theory 
Breslin S.G. and Grimble M.J. 

Quantitative Feedback Theory Design Using Forward Path Decoupling/ 185 
Quantitative Multivariable Feedback Design for a Turbofan Engine with 192 
Forward Path Decoupling 
Boje E. and Nwokah D. I. 



Robust   Operational   Amplifier   Performance   Design   Achieved   with 209 
Quantitative Feedback Theory 
Ewing R L, Houpis C H and Rasmussen S. 

Design of Controllers Within The Framework of ICAD 219 
Leithead W. E., Robertson S. S. and O' Reilly J. 

QFT Design of Non-linear Controllers by Using Finite Sets of Acceptable 227 
Outputs Banos A., Bailey F. N. and Montoya F. J. 

Quantitative Feedback Theory for Lateral Robust Flight Control Systems 235 
Design Wu S-F., Grimble M.J. and Breslin S. G. 





CONFERENCE PROGRAMME 

THURSDAY  21 AUGUST 

8:30-15:00 Registration 

9:00-9:10 Welcome 

9:10-10:00   1st PLENARY TALK 

SPEAKER : Professor Grayham Bryant, Imperial College London 
TITLE:   "Direct Methods in Multivariable Control" 

10:00-12:20   Ist Paper Session 

Chairman: Professor M. J. Grimble 

10:00-10:20  "QFT Loop Shaping and Minimization of the High-Frequency Gain via 
Convex Optimization", by Y. Chait. 

10:20-10:40  "An Algorithm for Computing QFT Multiple-Valued Performance 
Bounds", by J.C. Moreno, A. Banos, and FJ. Montoya 

10:40-11:00   "Robust SISO Control: a mixed H.. /QFT design", by Benoit Bergeon 

11:00-11:20   Coffee Break 

11:20-11.40   "A Full Envelope Flight Control System Design, Including 
Aerodynamic Control Effector Failures Accommodation, Using QFT", 
by M. Pachter and C. H. Houpis 

11:40-12:00   "The   Relationship   of   QFT   to   ICAD",   by   W.   E.   Leithead, 
S.S. Robertson and J. O' Reilly 

12:00-12:20   "Piloted Simulation of An F-16 Flight Control System Designed Using 
Quantitative Feedback Theory", by S. N. Sheldon and C. Osmon 

12:20-13:30   LUNCH 

13.30-16.10   2nd Paper Session 

Chairman: Dr. W. Leithead 

13.30-13.50    "CRONE control of multivariable plants with a multi-scalar approach ", 
by P. Lanuse,   A. Oustaloup and D. Sutter 



13.50-14.10 "Applying Structured Singular Values to a Class of Decentralised 
Stabilising Controller   Design" , by T. C. Yang and H. Yu 

14.10-14.30 "The Parametric Systems Toolbox: A Robust Analysis and Design Tool 
for Systems with Parameter Uncertainty", by E. Kontogiannis and 
N. Munro. 

14:30-14:50   "Discrete-time optimal regulator and eigenvalue placement in a 
prescribed region: Frequency domain solution", by C. C. Arcasoy 

14.50-15.10   "On Optimization of Non-linear Systems with High Loop Gain and its 
Applications to Design of Ship Trajectory Tracking Systems" by 
A. Lozowicki. 

15:10- 15:20   Coffee Break 

TUTORIAL SESSION 

15.20-18.20   "QFT Tutorial/Workshop" ,   Organised by the Industrial Control 
Centre in co-operation with the US Air-Force. 

DEMONSTRATION 

10:00-16:30    Demonstration of QFT Software developed for inclusion in MATLAB 
package. Organised by Y. Chait and O. Yaniv. 

19:30 CONFERENCE DINNER 

FRIDAY   22 AUGUST 

9:00 -12:00 Registration 

9:00-9:50 
,nd 2nd   PLENARY TALK 

SPEAKER : Dr. Chris Fielding, British Aerospace 
TITLE:   "Practical Aspects of Flight Control System Design'^ 



9:50 -12:30   3rd Paper Session 

Chairman: Dr. J. O' Reilly 

9:50-10:10    "Frequency Based Controller Design for a Nonlinear System",   by 
M. A. Shah and M. A. Franchek 

10:10-10:30   "Set Membership Approach for Reducing Value Sets in the Frequency 
Domain", by H. Rotstein, N. Galperin and P-0 Gutman 

10:30-10:50 "Multivariable control tuning using relay feedback", by 
K. H. Johansson, B. James, G. F. Bryant and K. J. Aström 

10:50-11:10   Coffee Break 

11:10-11:30 "The CRONE Suspension: a transposition of fractal robustness to 
mechatronics", by X. Moreau, A. Oustaloup and  M. Nouillant 

11:30-11:50 "The Use of Frequency Domain for Aircraft Structural Mode Filter 
Design", by R. D. Felton 

11:50-12:10 "Redesign of a QFT Flight Control System to Account for Bending 
Modes of the LAMBDA Unmanned Research Vehicle", by 
S. N. Sheldon and S. J. Rasmussen 

12:10-12:30 "Robust Controller Design for a Heating System", by W. Wang, 
J. O. Trierweiler and S. Engell 

12:30-13:30    LUNCH 

13:30-17:00   4th   Paper Session 

Chairman: Dr. L. Petropoulakis 

13:30-13:50 "Synthesis of LTV Feedback around non-linear MMO Systems" by 
O. Yaniv. 

13:50-14:10 "Control of an Activated Sludge Wastewater Treatment Plant with 
Nitrification- Denitrification Configuration Using QFT Technique", by 
J. X. Ostolaza and M. Garcia-Sanz 

14:10-14:30 "Stability of Nonlinear QFT Control System Designs " , by A. Bafios 
and A. Barreiro. 



14:30-14:50 "Longitudinal Control of an Advanced Combat Aircraft using 
Quantitative Feedback Theory", by S.G. Breslin and M.J. Grimble 

14:50-15:10   Coffee Break 

15:10-15:30 "Quantitative Feedback Theory Design Using Forward Path 
Decoupling" / "Quantitative Multivariable Feedback Design for a 
Turbofan Engine with Forward Path Decoupling" by E. Boje and 
D. I. Nwokah 

15:30-15:50 "Robust Operational Amplifier Performance Design Achieved with 
Quantitative Feedback Theory", by R. L. Ewing, C. H. Houpis and 
S. Rasmussen 

15:50-16:10  "Design  of Controllers  Within  The  Framework  of     ICAD",  by 
W. E. Leithead, S. S. Robertson and J. O' Reilly 

16:10-16:30  "QFT  Design  of Non-linear Controllers by Using Finite  Sets  of 
Acceptable Outputs", by A. Banos, F. N. Bailey and F. J. Montoya 

16:30-16:50   "Quantitative Feedback Theory for Lateral Robust Flight Control 
Systems Design", by   S-F. Wu, M. J. Grimble and S. G. Breslin. 

16:50-17:30    Discussion and Close 

DEMONSTRATION 

9:00-16:00     MATRKx - Software demonstration, organised by Integrated Systems 
Inc. Ltd. 

10:00-16:00   Demonstration of QFT software developed for inclusion in MATLAB 
package. Organised by Y. Chait and O. Yaniv. 

13:30-16.00    "Aircraft flight simulation of QFT control". 

19:30 - late    Scottish Evening (Scottish Music and Dance). 

10 



11 



12 



OPTIMAL AUTOMATIC LOOP-SHAPING OF QFT CONTROLLERS 
VIA CONVEX OPTIMIZATION 

Yossi Chait 
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ABSTRACT 

An open problem in QFT is that of shaping the nominal-loop function. The common 
approach involves classical frequency-response design via manipulation of the gain, poles 
and zeros of a the transfer function. This design process is executed most efficiently using 
computer-aided design software such as the QFT Control Design MATLAB Toolbox. It is 
generally agreed that such a design process is efficient for "simple" problems which do not 
require complex, high-order controllers. Novice QFT designers, however, often face 
difficulties even with "simple" problems for lack of loop-shaping experience. In this paper 
we focus on an optimal automatic loop-shaping problem: given a nominal plant, a finite set of 
QFT bounds and a fixed controller order, design a controller that achieves internally stability, 
satisfies its bounds and has a minimum high-frequency gain. We show how the QFT 
automatic loop-shaping problem can be solved using convex optimization formulation by 
making certain modifications to the bounds (which in most cases have negligible 
consequences in terms of design conservatism). 
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INTRODUCTION 

The Quantitative Feedback Theory (QFT) method offers a direct frequency-domain design 

approach for satisfying robust performance objectives in uncertain plants. The plant 

dynamics may be described by its frequency response, a fixed model, or a model with 

parametric, non-parametric or mixed uncertainty descriptions. QFT can be distinguished 

from other frequency-domain methods such as Hoo optimal control and LQG/LTR for at least 

its ability to deal non-conservatively with different types of uncertainty models and 

simultaneous specifications. This is done by translating closed-loop performance 

specifications into QFT bounds at a set of frequencies. These bounds, typically displayed on 

a Nichols chart, serve as a guide for shaping the nominal-loop response. The final step in a 

QFT design involves shaping of the nominal loop to satisfy closed-loop stability and its 

bounds. 

An open problem in QFT is shaping the nominal-loop function. The common approach 

involves classical frequency-response design via manipulation of the gain, poles and zeros of 

a the transfer function. This design process is executed most efficiently using computer- 

aided design software such as the QFT Control Design MATLAB Toolbox. It is generally 

agreed that such a design process is efficient for "simple" problems which do not require 

complex, high-order controllers. Novice QFT designers, however, often face difficulties 

even with "simple" problems for lack of loop-shaping experience. Roughly speaking, by 

non-"simple" problems we mean those having some of the following characteristics: 

bandwidth constraints on the open-loop response, nonminimum-phase zeros and pure delays, 

unstable plants, and plants with a large number of resonances (e.g., in acoustics). 

Nevertheless, novice QFT designers often face difficulties even with "simple" problems due 

to lack of loop-shaping experience. 

In this paper we focus on the automatic loop-shaping problem: given a nominal plant, a finite 

of QFT bounds and a fixed controller order, design a controller that achieves internally 

stability, satisfies its bounds and has a minimum high-frequency gain. This problem setup is 

not associated with a particular uncertain plant family structure or type of specifications, only 

the underlying QFT bounds are considered. Note that the standard optimality criterion in 

QFT — minimization of the high-frequency gain — is explicit in the problem statement. 

A complete solution to the optimal automatic loop-shaping in QFT is yet to be found. 

However, several techniques with varying degree of effectiveness have been proposed. Gera 

and Horowitz (1980) presented an iterative method using Bode's mag/phase relation of an 

analytic function. This method produces an approximated frequency response of the optimal 

controller and hence requires rational function approximation. A similar use of Bode 

integrals has been made by Ballance and Gawthrop (1991). It is fair to conclude that, as it 

stands, such approaches are of very limited use. Thompson and Nwokah (1990) applied 

nonlinear programming to a large class of design problems. Success of their approach is 

restricted by convergence, initial conditions and internal stability aspects.   Nevertheless, in 
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engineering designs, we say that if it can be made to work it can be considered viable, and 

such nonlinear techniques were indeed used in industry. 

It is well known that the M and N circles (i.e., phase and gain margin specifications) are 

closed-loop convex when there is no plant uncertainty. Barratt and Boyd (1993) showed that 

many control design specifications can be formulated as a closed-loop convex problem. This 

approach of transforming the control design problem into a convex optimization problem is 

the one we believe has the most merit for QFT. Convex optimization problems can be solved 

numerically with great efficiency and provide a definite answer to existence aspects. In a 

QFT framework and a somewhat similar spirit, Zhao and Jayasuriya (1993) introduced a 

Youla parameter to transform a QFT robust performance problem into a one-dimensional 

optimal search procedure. 

This paper is organized as follows. We first formally define QFT bounds, discuss their 

convexity property and state related open research problems. The problem of automatic 

loop-shaping via convex optimization is then defined. Presentation of our new formulation 

follows which includes: convex QFT bounds, problem setup, relative degree of the controller, 

internal stability, QFT's criterion of optimality and the resulting degree of the synthesized 

controller. We conclude with a numerical example illustrating efficacy the new formulation. 

QFT BOUNDS 

For convex optimization formulation, the QFT bounds must be convex sets. Specifically, let 

us consider the situation at a single frequency, hence we can ignore stability aspects and 

focus on (sets of) complex numbers. Let (P be the set (i.e., template) where the open-loop 

plant is allows to vary in: Ps (P. Let J denote the set that describes the specification on the 

complementary: Te J. The design problem amounts to finding a (stabilizing controller) C 

that leads, at this frequency, to 

PC 
&3    for all    Pe(P (1) 

1 + PC 

Let us introduce the mapping 

f(z) =     with inverse    g(w) =  
1 + z 1-w 

We infer 

f(PC)e^    «    PCeg(^) 

Hence, the constraint (1) is 
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PC € g(T)    for all    Pei 

If 0 E IP, we require for P = 0 that 0 e g(J) and for all other Pe (P\{0} we ask 

C6^) 

The latter is nothing but 

Ce n >) (2) 
P€(P\{0} 

Hence, if 0 e IP, there is no feedback and (1) cannot be considered. In practice, OelP occurs 

only when »-»«> where (1) is not applicable. Therefore, we assume that 0 € IP. 

Then, (2) can be expressed as 

Cef|^) 
PeC 

Let us now specify the nominal plant P0.   Then (1) is rewritten as 

P0C E   f|   ^g(^) 
Pet 

The set on the right is precisely what we call a QFT bound. 

At this point we introduce the Youla parameter Q in order to accommodate internal stability 

issues 

Q = 
1 + PnC 

<=>     C Q 

1-PoQ 

we observe 

PoQ = -3£L = f(P0C) 
1 + P0C        u 

Hence (1) written in terms of P0Q amount to 

P0Qef n V> 
Pel; 

(3) 

16 



and in terms of Q 

Qs±t 
F0 

n v> (4) 

Since f is a bijection we infer 

f \ 

JEJ 

In our case f is bijective. Hence the (4) is 

p0Q^nffyg(^ 

or 

**t\k 
Veil 

10) (5) 

The formulae on the right are general and capture all delicacies. If there is no plant 
uncertainty, the formulae simplify and there is no need for the transformations. 

The performance specification J is typically a disk of finite radius centered at the origin 
(disks are closed). Then g(3) is, again, a disk. Since g has its pole in 1, g(J) is a convex disk 
if 1 is not in the interior of c7 and it is nonconvex otherwise. Since 'S contains 0, g(J) contains 

zero as well. 

For any P e P (recall P, P0 * 0, °°) we infer that 

£&) (6) 

is a disk containing 0 and having the same convexity property as g(<7). Finally, 

fl'fgtf) (7) 
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is a disk containing 0 as well. Since f has its pole in -1, the convexity properties depend on 

whether -1 is in the interior of (6) or not. If yes, the convexity properties are reversed, if no, 

they are preserved. 

We now claim that (6) is a convex disk if and only if 

p 
- 1 is not in the inerior of — g(<7) 

We distinguish the two cases. Suppose 1 is in the interior of If (as in most cases). Then g(<?) 

and hence also (P(/P)g(<?) are nonconvex disks. The latter is mapped by f into a convex disk 

if -1 is not in its interior (switch convexity). In the other case 1 is in the interior of 3. Then 

g(<7) and (P(/P)g(J) are convex disks and they remain convex after mapping with f if -1 does 

not belong to the convex interior (preserve convexity). 

Some Open Questions. The following questions remain unsolved in our context: 

• Which structure does the set on the right of (5) have? 

• Under which conditions is this set convex? 

• Can we approximate this set by a convex polygon in the plane with minimal 

conservatism? 
• Can and when does P0 result in a convex set on the right of (5)? 

While our automatic loop-shaping procedure presented below appears to be applicable to a 

large class of problems, it skirts around the above open questions. We strongly believe that a 

stronger result can be developed even with only partial solutions to these open questions. 

OPTIMAL AUTOMATIC LOOP-SHAPING 

In this section we formulate automatic loop-shaping of QFT controllers as a convex 

optimization problem. We first review a generic convex optimization problem and then 

follow with its relation to our problem. 

Convex Optimization. Given f and C convex, the problem is to find x which 

minimize    f(x) 

subject to     x e C 

Convex optimization problems can be solved numerically with great efficiency (e.g., Boyd 

and Vandenberghe, 1995) and there exists a library of software for this purpose. In a related 

development recently, Linear Matrix Inequalities (LMIs) gained interest in the control 

community since many control problems can be formulated as LMIs, and LMIs can be solved 

exactly by efficient convex optimization algorithms, (e.g., Gahinet et al., 1995). 
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Convex QFT Bounds. Given the nominal plant P0, the QFT bounds 

PeO 

are not necessarily a convex set. For example, QFT margin bounds are never convex since 

the nominal loop P0C must avoid a domain about the critical point -1. However, such a 

limitation can be avoided as follows. Let 

T0=-3£- (8) 
1 + P0C 

and define 

P0C 
ffi(To)s TJbr:    PoCe$(PoQ (9) 1 + P0C 

That is 

P0Ce$(P0C)    «*    T0€$(T0) 

Again, while $(TQ) is typically a closed, simply-connected set, it is not guaranteed to be a 

convex set as required for convex optimization. For performance specifications that require 

high loop gains, (E(PQC) is, for all intensive purposes, a complex plane with a deleted disk. 

By definition, the bilinear map (9) maps disks into disks. Hence, when the boundary of 

(E(PQC) is "almost" a disk (and -1 £ #(PrjQ), so is the boundary of $(TQ) . In such cases, 

replacing $(TQ) by its convex hull amounts to a negligible weakening of the original 

performance specification. However, in certain margin type bounds, we cannot use this 

approach which can strongly weaken the specification. One remedy for this problem is to 

replace the boundary of $(PQC) with its minimal volume outer bounding ellipsoid resulting 

in a modified bound E[S(PQC)]. The rational for this step is that in margin type bounds, 

while both $(PQC) and E[(E(PQC)] are the complex plane with deleted domains, only the 

deleted domain in £[#(P0C)] is convex. That, together with - 1 i. E[$(PQC)] was implies 

that E[(S(PQC)] is mapped by (8) into a simply-connected set 

^(To) = {-^-:    P0Ce«P0C)]} (9) 
[1 + P0C J 

This, in effect, tightens the original performance specification following from 

$£(T0)c$(T0) (10) 
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Of course, convexity of (BE(T0) is not guaranteed. If ßE(T0) is nonconvex, we can either 

weaken the specification by taking its convex hull, or strengthen the specification by taking 

the maximum volume ellipsoid contained in $(T0) (the approach we use). 

The interplay between the shapes of the original and ellipsoid-based is nicely illustrated in 

the following figures. Figure 1 depicts two conventional QFT bounds on CP0: ^(PQC) 

reflects a typical sensitivity reduction specification requiring high-gain, while (E2(VQC) is a 

typical margin bound requiring the open-loop to stay away from a region about the critical 

point. 

■ 

2C- 

J^g „rw-7 
1C- 

. 

dB B'2(PoC) 
-1C- 

\ _ _ _ ■   / 
-2C- 

V 
^__            j/ 

-4C- 
: 

-350 -300 -250 -200 -150 -100 -50 0 

deg 

Figure 1: Typical QFT bounds on a Nichols chart 

For discussion purposes, it is convenient to use the complex plane. In Figure 2, the non- 

convex $i(PoQ requires the response to lie outside the set formed by connecting all the 'x' 

points. 
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Figure 2: Complex plane representation of $I(PQC) 

The corresponding $I(TQ) (the set formed by connecting all the 'x' points in Figure 3) is 

convex if we assume straight line connection between adjacent points (its convex hull is 

shown with the solid line). 

0.3 
^*-*"" * "■* 

0.2 

0.1 
: 
: 

: 
Im : 

n i-i 
« 

-O.i 
0.6 0.7 0.8 0.9   _       1 

Re 
1.1 1.2 

Figure 3: Complex plane representation of $i(T0) ('x') and its convex hull (solid) 

The point we are trying to make here is that in high-gain type performance specifications, the 

corresponding $(T0) is either convex or "near" convex (that is, $(T0) is essentially equal to 

its convex hull). This is because when PQC»1, negligible variations in TQ are produced only 

by negligible variations in P0C. Hence, negligible enlargement of $(T0) amount to 

negligible enlargement of $(PQC) . 
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In margin type bounds where the required loop gain is highly dependent on its phase, a 
nonconvex $(T0) (as most are with any plant uncertainty) cannot simply be replaced by its 
convex hull. This is because P0C is neither large nor small, and large variations in T0 can be 
produced by small variations in P0C. Figures 4-5 show such a margin bound in terms of the 

open-loop and closed-loop sets, $2(P0Q md $2(To)» respectively (denoted by 'x'). 

Therefore, rather than significantly weakening the margin specification by taking the convex 
hull of $2(T0), 

we replace $2(P()C) by a minimal volume outer bounding ellipsoid 
E[ß(P0C)] (solid line in Figure 4). Often, mapping £[$(P0C)] via (9) into ßE(T0) results a 
convex set (though this not guaranteed theoretically). Computationally, this step can be 
executed using a wide range of recently developed convex optimization software. In our 
procedure we use the function sei from Veres (1996). At this stage, obtaining a convex 
ß(T0) using this approach appears to be the most reasonable one, unless the earlier stated 

open questions can be resolved. 
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Problem setup.   To include (10) in a convex optimization problem, expand the transfer 

function T(s) to be synthesized as 

T(s)=y——+Y 
^(s+P;) M 

ßkS + Yk 

£^S + Pp   SCs^+CkS + dk) 

Note that while T(s) is linear in its residues (oc,ß,y), it is not linear in its denominator 

coefficients (or poles). Hence, when (10) is solved using linear programming tools, the 

denominator in (10) must be defined a priori. And even though the set of feasible 

denominators may be large, its selection for linear programming is almost random. This 

appears to be the single most overriding limitation of our automatic loop-shaping procedure. 

An expert system for selecting this denominator which is based on the author's past 

experience with manual loop-shaping has been incorporated into the algorithms and shown 

modest success. 

Relative Degree. In QFT, it is customary to design only strictly proper controllers (it 

follows from the QFT's optimality criterion where the high-frequency gain is to minimized). 

In this context, and without loss of generality, we focus on the class of controllers whose 

relative degree d(C) is at least one (the difference between highest polynomial orders of its 

denominator and numerator). To insure d(C) > 1, d(T) must be constrained. Given that d(P0) 

= r, the requirement on d(T) is (e.g., Section 8.1.3., Helton and Merino, 1994) forces a 

modification of the above T(s) to 

T(s)=n 
i=f(S + ai) 

CC; 
m 

- + ßkS + Yk 

VJ: ̂ i(s + Pp    k^O +cks + dk) 
(11) 
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where the positive ^ are defined a priori. 

Internal Stability. To insure internal stability, we must guarantee not only stability of T0 

but also that the underlying controller C does not share any RHP poles or zeros with the plant 

family (P. One way to achieve this is to add interpolation constraints on T(s) at the RHP 

poles and zeros of the P0. These constraints are given in the following result (Theorem 11, 

Chap 8, Helton and Merino, 1994). 

Theorem. Let T{ (1 = 1,.. .,s) denote the poles and zl (1 = 1,.. .,t) denote the zeros of the plant P 

in the closed RHP, so that these poles and zeros have multiplicity nj (1 = l,...,s) and nij (1 = 

l,...,t) respectively. If T is internally stable and d(T) > d(P), then T must satisfy the 

following interpolation conditions 

JT(Pl) = 1, T(1)(Pl) = 0,..., T^-^Cp,) = 0 (1 = l,...,s) 
[T(z1) = 0,T(1)(z1) = 0,...,T(mi-1)(z1) = 0   (l = l,...,t) 

QFT's Optimality Criterion. In Horowitz (1973), it is said that a stabilizing controller 

which satisfy its bounds and has minimum high-frequency gain kc where 

C(s) >-^-,   d(C) = q 

is an optimal QFT controller. Define 

T(s) >^-,   d(T) = v 
kT 

while from (8) 

T0(s)    _     '4-T-   d(P0) = e 
s-»~      sq    se 

The controller C is recovered from T(s) in (11) via 

C = — — (12) 
P01-T 

then, since kPo is fixed 

min kT —> min kc 

And since kT is linear in (a,ß,y), the QFT's criterion of optimality can be elegantly 

incorporated in a linear programming formulation. 
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Controller Order. The order of C obtained using (12) is equal to the sum of the order of P0 

and the degrees of freedom in the linear programming formulation n+m in (11). Naturally, 
stable pole/zero cancellations may occur in (12) reducing that order. Here order denotes inter 
power of the highest-order coefficient in the denominator polynomial. 

AN EXAMPLE 

Consider Example 2 from the QFT Control Design MATLAB Toolbox with a unity feedback 
control system and a parametric uncertain plant model described by 

=  P(s) = 
ka 

s(s + a) 
:    k e [1,10], a e [1,10] 

The problem involves design of a controller C and a pre-filter F to achieve robust stability, a 
margin specification 

P(jco)C(jco) 
l + P(jco)C(jco) 

<1.2,   forallPe^P,   co>0 

and a tracking specification 

TL(co)< F(jco) P(jco)C(jco) 
l + P(jco)QjCO) 

<Tu((D),   forallPe^,   COS [0,10] 

where 

TL(C0) = 
0.6854(j(ö + 30) 

(jcor+4(jco) +19.752 
Tu(co) 

120 

(joo)3 + 17(jco)2 + 828(jco) +120 

Here, we consider only the design of C. The QFT bounds at co = [.1,.5,1,2,100] are shown in 
Figure 6. Also shown are the nominal loop L0(j<o) with unity controller (L0(jco) = PoCJ05)) 
and the automatically synthesized controller in solid and dashed lines, respectively (the 
circles 'o' denote the response at the above frequencies). 
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Figure 6: Uncompensated and "optimally" compensated nominal loops with QFT bounds 

The "optimality" of the design is demonstrated in that the loop lies right on the three low 

frequency (high-gain type) bounds. It is conceivable that with a different choice of poles of 

T(s) in (11), an even lower high-frequency gain can be achieved. All computation were 

carried using in the QFT Control Design MATLAB Toolbox (Borghesani et al., 1995). A 

special GUI was developed for automatic loop-shaping within the Toolbox's loop-shaping 

function Ipshape. This GUI allows for quick iteration over the values of the poles of T(s) and 

the desired order of C(s). The design in Figure 6 employed three degrees of freedom (i.e., 

n+m = 3). Using more degrees of freedom, a lower high-frequency gain in C may be 

realized. For example, Figure 7 compares the above design (n+m = 3) and a more complex 

design (n+m = 7), shown in a solid line and dashed line, respectively. 

Figure 7: Two "optimally" compensated nominal loops of varying degrees 
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It is interesting to note that while the second design has a lower high-frequency gain, the loop 
response violates the margin bounds at a frequency range where bounds are not defined. The 
optimization scheme cannot guarantee any level of performance at frequencies not included 
in the formulation. In practice, this does not appear to be a problem since one can add 
constrains (i.e., bounds) at any number of frequencies. 
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CONCLUSIONS 

Convex optimization was shown to be an effective approach for automatic loop-shaping in 
QFT. QFT's optimality criterion can elegantly be included in this formulation. A key 
advantage of this approach is that its provides a definite answer whether a solution exists 
once the poles and order of T(s) are fixed, and such a solution can be found using efficient 
numerical algorithms. Open research problems involve the relation between nominal plant 
choice and convexity of (E(TQ) and the optimal selection of the poles of T(s). 
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Abstract: This paper present an algorithm for the 
efficient computation of (tracking) performance 
boundaries, based on the construction of a 3D surface. 
This surface generalizes Bailey's concept of crossection, 
where boundaries are simply contour lines. An important 
property of the algorithm is that it reveals the multivalued 
character of boundaries. The paper also shows a 
comparison of the algorithm with previous work and 
some application examples 

1 Introduction 
A key step in the QFT technique is the translation of 

frequency domain specifications into domains in the 
Nichols chart where the nominal open loop gain should 
lie within This step is critical since it determines to a 
great extent the cost of feedback in terms of controller 
gain and bandwidth. Typically, QFT uses a two degree of 
freedom SISO control system, where the plant P belongs 
to a family of transfer functions p - Vp(s$\% e©}-1° 

its simplest form (scalar, linear, and time-invariant 
systems), the computation of stability and performance 
boundaries follows the next steps: i) Templates 
estimation: the template for frequency © is the value set 
for P(jco,Q), and shows graphically the uncertainty of the 
problem. There are several algorithms ([Bailey,88], 
[Brown,91], etc.) to compute templates, ii) Stability 
bounds estimation: the stability specifications generate a 
set of bounds, including the high frequency bound. 
Algorithms for stability bounds computation are given in 
[Bailey,88] and [Chait, 93], the last one being refined in 
[Rodrigues, 95], and iii) Performance bounds estimation: 
The performance specifications in the frequency domain 
represent variations over the closed transfer function gain 
for each frequency. The controller G should get the 
closed transfer function to lie within the limits. The 
performance boundaries are bounds over the nominal 

open-loop transfer function Lo(s)=G(syPo{s) that warrant 
the performance specifications (P0 is the nominal plant). 
Again algorithms for performance computation are given 
by [Bailey,88] and [Chait, 93] and others. Other types of 
boundaries such as input/output disturbance, etc. can also 
been developed ([Chait, 93]) 

This paper analyzes the problem of computation of 
multiple-valued tracking bounds. As a result, an 
algorithm based on the contour lines of a surface is 
developed. 

2 Performance boundaries computation 
Performance (tracking) boundaries can be defined as the 
values of L0(jco) = G(ja)- P0(ja>) that satisfy 

W>) 
P,(jm)IP(j<a)+L0(j<a) 

Z,(;o)  
- mm  
^ p0(» //><»+4(» 

= 87Xe>) 

(1) 
where ST(a) denotes the performance specification given 
as the allowed variations in closed loop transfer function 
magnitude, for frequency CD. 

In the literature, there exist several algorithms that solve 
Eq. 1. [Bailey, 88] shows a numeric algorithm that looks 
for approximate solutions, while [Chait, 93] proposes an 
algorithm that solves (1) analytically. [Fadali, 96] uses a 
numeric algorithm applicable to plant with parametric 
uncertainty only in the denominator. Finally, [Brown, 91] 
proposes a numeric algorithm that operates over plant 
models with parametric uncertainty in both numerator 
and denominator. All these algorithms leads to good 
solutions of the problem when the boundaries are single- 
valued. 

Bailey analyzed the existence of multiple-valued 
boundaries in [Bailey,88], but he used a numerical 
algorithm for its computation that can become 
problematical in practice. More recently, the multiple- 
valued boundaries computation problem seems to have 
been overlooked and to the knowledge of the authors have 
not been treated elsewhere. Except in [Bailey,88], the 
references above mentioned only aware of the single- 

* This work has been supported by CICYT under project TAP-0691 
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else 

S(<|>,/)=-K» 

end 
end 

3. Boundary = contour line of S for the height 8T(e>) 

Comparison with [Chait, 93] algorithm: [Chait,93] 
proposes an algorithm for computation of tracking 
boundaries based on the resolution of quadratic 
inequalities. This algorithm suffers from some limitations 
with respect to the above one: 

i) The problem around the point (-180°,0db) is ignored, 
thus it provides incorrect solutions, overall when 87X©) is 

relatively big (middle/high frequencies). Fig. 2-3 shows a 
typical crossection at a phase around -180°. The 
important point is that it exhibits a asymptotical behavior 
for the values q^ and q51* . Note that for any value of 
8r(ca) there is crossing with the crossection, namely q" and 

q+(or simply q+,for the case of one only crossing, see Fig 
3) representing solutions of Eq. (1) or boundary points. 

If the problem around (-180°,0 dB) is not properly 
solved, the situation depicted in Fig. 4-5 can arisen, 
resulting in an incorrect computation of the boundary. 
The algorithm of [Chait,93] will produce a result similar 
to the one given in Fig. 3-4, being incidentally a good 
approximation if 87X«>) is small. In general, the result 

deteriorates as S^®) increases. 

ii) It only computes bivalued boundaries, while our 
algorithm computes multivalued ones. Multivalued 
boundaries appeared naturally for templates having 
special characteristics, e. g. lateral concavity, and also for 
not connected templates. The algorithm in [Chait,93] 
does not easily extend and it may arrive to incorrect 
solutions as the x-marks in Fig. 7, where the correct 
solution is depicted in Fig. 6. 

Algorithm efficiency 
The algorithm proposed in this paper has a complexity 

0(H), while the proposed in [Chait,93] has a worse 
behavior, having a complexity 0(«2), being n the number 
of template points. Table 1 shows a comparison of 
computation times for a boundary, using a template 
described by an increasing number of its border points. 

Computation time (s) 

N. of points rChait, 931 Proposed Algorithm 

30 32.08 8.02 

170 934.61 16.69 

307 3113.70 24.17 

504 8028.60 33.83 
Table 1: Comparison of computational efficiency 

It is important to note that the correctness of the boundary 
strongly depends of points number represen-ting the 
template. This fact clearly limits possible extensions of 
the algorithm given in [Chait,93], by incorporating 
possible solutions to the multivalued problem and also 
checking the (-180°,0 dB) point problem. All these 
extensions requires a more refined description of the 
template, meaning more points and thus higher 
computation times. 

4 Examples 
Consider the two mass system given in [Nordin, 93], 

given by 

J,s2 +ds + k  
P{s)=j.jy+u+jj^HJ.+jjte 

where Jm = 0.4, Jl e [5.6,8], k e [5880,5900], and d e 
[30,300]. 

Fig. 8 shows the 100 rad/s template of the plant. Two 
tracking boundaries are computed (Fig. 9) using our 
algorithm (solid line), and [Chait,93] algorithm (dashed 
line), as implemented in the QFT toolbox 
([Borghesani,95]). Note that the boundary is multivalued: 
it has three values in the interval [-122°,-105°]. However, 
the [Chait,93] algorithm only computes a bivalued 
approximation, meaning more conservative results. 

Another example is used to show how our algorithm 
behaves when the template has arbitrary forms. A 
template with a strong lateral concavity is deliberately 
chosen, as it is expected to give a very multivalued 
boundary. Fig. 11 shows again the results given by the 
two algorithms. Note that the boundary given by the QFT 
Toolbox is open, that again can translate in overdesign. 

Conclusions 
In this work an algorithm for the computation of 

tracking QFT boundaries has been proposed. It has been 
specially design to cope with the problems around (- 
180°,0 dB), and with the problem of computing 
multivalued boundaries. The basic idea has been to 
extend the previous crossection concept to a 3D surface, 
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valued case an in feet their algorithms are inadequate 
when applied in multiple-valued cases. Note that a 
conservative approximation of a multiple-valued 
boundary as a single-valued one usually leads to 
compensators with higher gain/bandwidth, that is 
stronger control effort. 

A Graphical solution to Eq. (1) 
There exists a classical graphical interpretation of Eq. 1 
resolution [Horowitz,72]. For each phase of the template 
nominal point, one places the template over the Nichols 
chart in such a way that it lies on two M-contours that 
differs in 87]» dB. Then the template nominal point 
defines a point of the boundary. Iterating for different 
phases, the boundary is finally obtained. The algorithm 
developed in this paper makes use of this interpretation. 

First it is necessary to introduce the cross section concept 
given in [Bailey,88]. The cross section is a function that 
represents, for a fixed phase of L0(jco), the difference D 
between two M-contours where the template is lying in 
the Nichols Chart, versus \L0(jco)\. For each phase, the 
solutions of Eq. 1 will be those points of the cross section 
having a constant value in the Y axis, corresponding to 
the specification 8J(CD). In Fig. 1, it is shown, for an 
example, the cross section for -150.1 degrees. There 
exists two solutions for D = 23.5254 dB. This means 
that the performance boundary is bi-valued at that phase. 
Note that cross sections show in a rather simple form the 
multivaluation of boundaries. 

The algorithm that we propose for computation of 
performance bounds, extends the cross section concept to 
a three-dimensional space, considering as third axis 
argiLgQco)). Then, cross sections are sections of a surface 
corresponding to constant values of arg(L0(j(o)), while 
boundaries are sections of that surface corresponding to 
constant values of D. The use of this surface, referred to 
as S3, implies some immediate advantages: 

1. It solves the problem of computing multiple valued 
performance bounds. The computation of boundaries is 
straightforward using standard software for computation 
of contour lines, e. g. the MATLAB command contour. 

2. Apparently, the surface computation seems to be very 
computational demanding. However, experience has 
proved that the algorithm obtains the performance bounds 
at least as fast as the rest of algorithms mentioned in this 
paper. 

3. The computation of the whole surface S3 allows a 
quickly computation of boundaries for different values of 
the specification, that is different values of D, that makes 

very transparent the relationship between specifications 
an control effort requirements. 

A detailed exposition of the algorithm will be given in 
next Section. 

Problems around (-180°,0dB) 
In the computation of boundaries, generally it is only 

needed to consider points belonging to the template 
border, when solving Eq. 1. This greatly simplifies the 
computational burden. However, this approach becomes 
problematical in those cases in which exist internal points 
of the templates that violate Eq. 1 even though all border 
points satisfy it. This is the case corresponding to the 
point (-180°, 0 dB) being included in the template. In this 
situation, the difference between any two M-circles 
passing through the templates is +=», meaning that no a 
finite closed loop magnitude can be achieved (see 
crossections having asymptotes, Fig. 2-3 ). Note that even 
considering some interior points the situation can not be 
alleviated. A clever treatment is needed. 

The algorithm proposed in this paper makes a graphical 
treatment of templates. It is assumed that templates 
points, defining its border, are given in some fixed order 
(clockwise). Thus, it is possible to use standard 
procedures [Glessner,89] to check whether the point (- 
180°,0 dB) is inside the template. The search is limited to 
those cases in which exists a point of the template with 
phase equal to-180°. 

3 An Algorithm for computation of tracking 
boundaries 

In this Section we use the above discussion to 
developed a single and efficient algorithm . First, an 
outline of the algorithm is presented. Afterwards, a 
comparison with the work [Chait,93] is made, as well as 
an analysis of the computational complexity. 

In the following we use the notation: 

dP is the set of plants corresponding to the border 
of the template 

Algorithm: 

1. Choose a phase vector and a magnitude vector 

2. For each phase (j) and each magnitude / 
If (-180°,0dB) g Template, then 

S(<f>,/) = max 
Ps3P 

PUä>)'P0Ua>)+L0(.j^) 
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whose contour lines are tracking boundaries. Comparison 
with previous algorithms is also shown. 
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Fig. 8: Two-mass system template 
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I. Introduction 
The general problem of system control design consists in the synthesis of a 2-degree of 
freedom controller : the feedforward part and the feedback part. The usual way of 
design is a two step procedure : first design the feedback for stability and robustness, 
second adjust the feedforward to achieve the tracking performance. 
The H°° Mixed Sensitivity Minimisation is an efficient method for optimising the 
sensitivity function of the closed loop under the constraint of robust stability of the 
closed loop against unstructured uncertainty. The robustness of disturbance rejection and 
tracking performance to parameter errors is not taken into account 
The Quantitative Feedback Theory provides a useful framework for designing both 
feedforward and feedback parts : the boundaries in the Nichols chart reflect the 
robustness constraints for stability, disturbance rejection and tracking, so that the design 
of the feedback controller can be achieved, and the feedforward is deduced from the 
achieved nominal closed loop and the nominal tracking objective described by some 
reference model. The main residual difficulties come from the relative complexity of the 
feedforward part: the design procedure does not guarantee the minimal order of the 
controller, and on another hand, the structure and first design of the feedback controller 
is not trivial. 

The structure of controller using multiple reference model [Bergeon, 90] is in fact the 
most generic structure of controller. It allows to design separately the feedback and 
feedforward : feedback for stability and robustness, feedforward for nominal tracking 
performance, and guarantees that the controller is minimal order [Prempain, 95]. The 
stability and robustness objectives are represented on the usual way on the sensitivity 
and complementary sensitivity functions : H=° MSM gives the structure and the first 
values of the parameters of the feedback controller, and QFT design allows to optimise 
the parameters to achieve robustness boundaries. 

II. A generic and minimal order structure of controller. 
Let us consider the classical two-degree of freedom controller of the figure 1. 

—•*€>-— -*%T** 

Fig. 1: Standard structure of 2 DOF controller. 

The tracking behaviour is represented by the transfer function 

H = F CG 
1 + CÜ 
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so that the feedforward F achieving the nominal tracking performance represented by 
some reference model Ffo is : 

F = H 
1+CGC 

°~CTJT 

where GQ is the nominal model of the plant. 
The feedforward controller contains the dynamics of the feedback controller, so that it is 
not minimal order. In fact, the resulting control input of the plant is : 

u = CH0(l+u^)r-Cy 

which can be realised by : 

u = (7i-+QH0r-Cy 

and implemented as shown on the figure 2. It can be seen on this scheme that no 
dynamical part of the closed loop is duplicated so that it can exist a realisation of minimal 
order. 

Fig. 2: Generic structure of 2 DOF controller 

In most cases, it is not expected that the feedforward controller cancel the zeros of the 
nominal model (mainly in case of right half plane zeros), so that a more realistic 
implementation should be as depicted on the figure 3, in which the transfer function G0 

of the nominal model is replaced by its numerator B0 and denominator AQ. 

Fig. 3: Alternate generic structure of 2 DOF controller. 

These structure are equivalent as soon as the nominal reference model HQ contains the 
zeros of the nominal model GQ, i.e.: 

H0=H0B0- 
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It is worth noting that this structure enlightens the well-known result [Safonov, 81] that 
closed loop controller is only needed for stability and robustness of control : the 
controller output does not depend on the measured output if the plant is perfectly known 
(G. = GQ) and stable, and if the output disturbance is equal to zero. 
The error signal ey is a measure of model error and disturbance, so that it is clear that the 
design of the feedback controller C must only take account of the sensitivity 
minimisation objectives. 

III. The mixed Sensitivity minimisation. 
The feedback controller aims at stability and robustness of the closed loop. The 
robustness constraint on stability is given by the small gain theorem. 
Let lm(co) be a description of multiplicative unstructured uncertainty, then every plant G 
verifying: 

G(j(o) = G0(jco)[l+Kjö))] 

where |l( jco)| <lm(co), Vto 

is robustly stabilised by C(jü)) if and only if: 

CG0    , 
l + CGolm <1 

The output error ey is given by : 

.        H0(j(o)l(co)r(jco)-d( jco) 
e^JW)= l+C(j<o)G(jco) 

so that performance robustness is enhanced in minimising the output sensitivity function 

S0(jw)- l 

l+Qjco)G0( jw) 

An alternate solution to the classical y-iteration can be called co-iteration [Bourles, 92] 
and leads to minimise the sensitivity function under the hard constraint on stability 
robustness. Let us consider the weighting function Wj: 

1+ i-S- JCOn W1(jco)=K—      °, 

in which K is fixed (as great as possible) and a is chosen so that the high frequency gain 
of Wi is lower than unity (for instance -6 dB); then the mixed sensitivity minimisation 

problem can be posed as : find the higher value of (OQ such that there exists a controller C 
verifying the relation 

T0(jco)lm(w) 

S0(jo>)W1(j(o) 

where: 
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CG0 
To-1 + CG0 * 

The standard DGKF algorithm ([Doyle, 89]) gives a controller C which can be 
considered as the initial structure for a QFT optimisation procedure, which can take into 
account the uncertainty on the parameters of the plant. 

IV. The OFT optimisation. 
The QFT design can be made in the standard way ([Horowitz, 63]): from the numerical 
values of the parameters uncertainties and the specifications on the performance 
robustness it is possible to compute the boundaries in the Nichols chart. Each boundary 
is related to one value of frequency for which a tolerance \i on tracking error and a 

specification X on output disturbance rejection are given. 

Let ö(JG>i) be the description of structured uncertainty at a given frequency CüJ (the 
template of the plant in the Nichols chart), then : 

G(jq)=G0(jq)[l+6(j(Di)] 

where ö( jq) = ö(q) exp (ja (q)) 

0<ö(q)<öm(o)i), 

0<a(coi)<am((Oi) 

then the specifications on the performance robustness are : 

|l+L(jq)|>M(q), 
L(jq)=Qjcoi)G(j(oi) 

The boundary is then expressed as a function of the argument cp in the Nichols chart and 
the constraint on the nominal open loop gain is : 

Max  J[-cos(cp)+ocos(cp+a)]±[Af2 

|L°( Jq)'> Ö, a ^ [i + ö2
+2öcos(a)] 

A' = [cos (cp + ö cos (cp + a))l  - [l - M2
(CüJ)] |[l + ö2 + 2 ö cos (a) 

Using CAD software (as the MISO-QFT CAD software by O. Yaniv, 1992) makes it 
easy to compute the boundaries and modify the parameters of the initial controller given 
by H<=° mixed sensitivity minimisation to reach the performance objectives. 

V. Experimental design. 
The plant is modelled by its nominal transfer function: 
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Gtfs) = 
K 

,    2 t,       s 
1 + ^S + ^ 

T' 
Jn 

the parameter uncertainties: 
10 z K < 20 
4 rad/s < (% < 6 rad/s 

0,15 <£ ^0,25 

and the unstructured uncertainty 

Lm = 0,01 
(l + s/10)(l+s/30) 

(l+s/2000)2 

The desired performances are : 
- the nominal reference model for tracking: 

H0(s) = 
1 

(l+s/20)' 

- the modulus of the sensitivity function must be lower than -40 dB in the low frequency 
range, which must be as wide as possible, and lower than 10 dB at high frequencies. 
The mixed sensitivity minimisation gives the following H°° controller: 

gain 28 dB and 

real zeros complex zeros real poles complex poles 

-2000 
-2000 
-14,7 

4                       0,15 -219 
-104,2 
-1,3 
-1,3 

2005,7               0,99 
86 

The QFT design specification is : 

'max' (s) = 0,0038 
(l + s/1,3)2 

(1 + s/44)2 

which gives the following values : 

Frequencies [rad/sj 
1 Smax(w)' ™ 

1 -44,3715 
3 -32,4228 
5 -24,5465 
10 -13,2539 
20 -2,5156 
40 5,8974 
80 10,4828 

The new parameters are 
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gain : 33,57 dB and 

real zeros complex zeros real poles complex poles 
con                   £ 

-139 
-24 

4                       0,5 -219 
-84 
-1,3 
-1,3 
-2000 

The figure 4 shows the Nichols chart of the modified open loop, the figure 5 gives the 
time domain simulation for the tracking of a unit step command and the rejection of an 
output disturbance step of 0.1. The figures 6 and 7 give the sensitivity and 
complementary sensitivity functions of all possible plant, due to parametric uncertainty. 

VI. Conclusion 
The model of a plant is generally subject to different sources of error, but uncertainty is 
given through two kinds of description: the parametric uncertainty and the unstructured 
(high frequency range) uncertainty. For unmodelled dynamics (unstructured 
uncertainty), the H°° mixed sensitivity minimisation gives the structure and the 
parameters of a controller ensuring robust stability, and the parameter uncertainty can be 
taken into account through QFT design by modifying the initial values of the controller. 
Such results can be achieved due to the use of the generic reference model structure, 
from which the different objectives of control are separated and the specification of 
performance on the closed loop is given by a constraint on the sensitivity function. 
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Fig. 5: Time domain simulations 
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AERODYNAMIC CONTROL EFFECTOR FAILURES ACCOMMODATION, USING QFT 

M. Pachter* and C. H. Houpis" 
Department of Electrical and Computer Engineering 

Air Force Institute of Technology 
Wright-Patterson AFB, OH 45433-7765 

ABSTRACT 

With twenty percent of aircraft (A/Q losses in 
combat and a significant percentage of losses in 
peacetime attributed to Flight Control System (PCS) 
failures, the justification for designing fault tolerant 
control systems becomes apparent. Initially, redun- 
dancy was the only design technique employed to 
manage failures. This brute force dependence on 
redundancy increased the weight, complexity and 
expense of combat aircraft while consequently 
reducing their payload, range, and operational 
effectiveness. Advanced Self-Repairing Flight Control 
(SRFC) concepts, rely on sophisticated adaptive 
control algorithms. In this paper the simpler Fault 
Tolerant Control System (FTCS) solution is investi- 
gated. It does not require excessive redundancy and 
control effector over design, while affording enhanced 
stability margins. The FTCS in this paper depends on 
robust control concepts. Specifically, the QFT robust 
control methodology is employed to design a full 
envelope robust FCS which can also accomodate 
control surface failure and/or battle damage. The 
benefits of a FTCS law are a reduction in weight and 
maintenance, while providing increased performance, 
survivability, and affordability. 

I. Introduction 

Some of the factors that make Quantitative Feedback 
Theory (QFT) the chosen method of designing Fault 
Tolerant Control Systems (FTCS) are: 1) it is a robust 
control technique that, unlike other design approaches, 
accounts for wide variations in structured plant 
parameter uncertainty; 2) from the templates' graphics 
generated in QFT, an engineer is able to discern 
whether the design can be accomplished by a single 
compensator whether gain scheduling will be 
necessary; 3) one of QFT's most salient features is 
that it enables the designer to embed performance 
specifications at the beginning of the design process; 
4) by inserting these specifications early in the 
process, intelligent decisions can be made to reduce 
the number of design iterations necessary to achieve 
an acceptable design; and 5) though more sophisti- 
cated Self Repairing Flight Control (SRFQ fault 
detection and isolation schemes can be found to suc- 
cessfully manage failure cases, these approaches also 
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require a significantly robust system to provide stabi- 
lization at all time. The compensators generated via 
the QFT technique insure this robustness. Thus, the 
main objective is to achieve a robust Flight Control 
System (FCS) using QFT which is tolerant to flight 
control effector damage from the onset Specifically, 
this FCS is designed to be robust enough to provide 
Level 1 flying qualities for the healthy A/C, while 
providing stabilization for the A/C with damaged 
control effectors. Another objective is to systemati- 
cally determine the maximum control effector damage 
that the proposed QFT design can accommodate and 
still provide reduced Level 2 flying qualities. 

The first MTMO QFT CAD package using 
Mathematica was developed by R. Sating1 and future 
generations of QFT designers were empowered to 
tackle more involved flight control problems. With 
this increased capability a successfull design of a FCS 
for the VISTA F-16 A/C, covering the entire subsonic 
flight envelope was accomplished in 19932. Major S. 
Phillips3 further demonstrated the capabilities of QFT 
by considering an expanded operational flight 
envelope through increased plant parameter variation, 
e.g., including different external fuel tank configu- 
rations. Adding these variations enlarged the total 
number of plants by a factor of 4, resulting in a QFT 
design that would have been impossible before 1992. 
He not only showed that QFT could handle such a 
wide range of parametric uncertainty, but as an 
experienced F-16 pilot, he was able to combine pilot 
preference and engineering expertise in the flying 
qualities area, i.e., the selection and blending of 
feedback variables. The selection of feedback 
variables and the inclusion of proper actuator rate and 
deflection saturation nonlinearities, allowed the design 
of a FCS that was capable of uniformly meeting 
Level 1 flying qualities as dictated by the MILSTD 
1797A*, while simultaneously satisfying realistic 
actuator constraints. Finally, Phillips' analog design 
was transformed into the discrete time domain and 
loaded into the Simulation Rapid Prototyping Facility 
(SRF) for piloted simulations. In the first phase of 
this simulation the stability of the FCS was evaluated, 
and the initial results are very encouraging. 

As a general rule, control engineers are not 
supplied with all the data necessary to model control 
surface failures exactly5. Due primarily to this 
limitation, and the inability of computer programs to 
employ failure data in their simulation algorithms, 
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previous FTCS designs have exclusively modeled 
aerodynamic control surface failures as mere actuator 
failures. In other words, battle damage was modelled 
as a reduction in the value of the control derivatives 
only, disregarding the warranted changes in the 
aircraft's stability derivatives. From a state-space 
viewpoint, this approach results in either "zeroing out" 
or scaling some columns of the B matrix. For a 
realistic evaluation of the effects of battle damage on 
an aircraft's control system, this type of modelling is 
inadequate and in this paper a more sophisticated 
approach is taken and the aerodynamic control 
effector failures impact on the A/C stability 
derivatives, and thus, the dynamics of the A/C, as 
reflected in the A matrix, are properly modelled. In 
addition to modeling the change in dynamics caused 
by control effector failures, an external disturbance 
that models the failure-caused cross-coupling of the 
lateral/directional (LAT/D) and longitudinal (LO) A/C 
channels needs to be rejected by the FCS. By 
modeling the failure-caused coupling as an equivalent 
disturbance input into the system, the separation of 
the lateral/directional and longitudinal channels is 
maintained during the FCS design process. In 
addition, in the pitch channel the failure causes a 
change in trim, which is modelled as a step 
disturbance. This approach is a dramatic improve- 
ment on past attempts of failure tolerant FCS designs 
because it realistically models battle damage and 
enables the designer to reduce the complexity of the 
design. This more realistic approach is utilized in the 
generation of realistic LTI A/C models. 

n. Design Problem and Guidelines 

The robust design problem involves compensator and 
prefilter designs for both the LO and LAT/D A/C 
channels. The LO design is strictly a MISO structure 
with single control surface failures, while the LAT/D 
FCS is a 2x2 MIMO control system allowing for 
single, double, and triple control surface failures. In 
addition to the failure conditions imposed on the 
flight control design, and in order to enhance the 
design's realism, rate and actuator saturation non- 
linearities are also accounted for. The successful LO 
design, described in Ref. 7, met the desired perfor- 
mance specifications. Thus, this paper deals with the 
LAT/D FCS only. The design guidelines are: 

1. The bandwidth of concern is 0.5 to 3.5 rps in 
agreement with previous flight control research and 
the MLSTD 1797A that has established this 
frequency range as the pilot's bandwidth. 

2. The bending modes for the A/C are isolated to 
frequencies above 30 rps. Therefore, it is essential 
that the phase margin frequency co^ be below 30 rps. 
In a QFT robust control design this can be 
accomplished by locating the nominal plant at the 

highest (largest relative magnitude) point on the 30 
rps templates to ensure a 30° phase margin angle y for 
the rest of the design plants. 

3. With foresight, and to facilitate the transition of 
this analog design to an actual digital Flight Control 
Computer (FCC), the poles and zeros of the 
controllers are not to exceed 60 rps. This figure is 
based on a 50 Hz sampling rate which is typical of 
modern digital FCS. 

4. The benefits of feedback are limited by actuator 
saturation constraints. Thus, the compensators' gains 
are limited by real world constraints23 such as rate 
and deflection saturation limits. The actual control 
surface saturation and rate limits for the F-16 A/C are 
found in Table 1. 

Control Surface Deflection 
Limit 

Rate 
Limit 

Horizontal Tail 20° 607s 
Differential Tail 7° 607s 
FlaDDerons 20° 607s 
Rudder 30° 607s 

Table 1 Control surface rate and deflection 
limits for the VISTA F-16 

5. To achieve the primary goal of this design, 
compensators are designed that provide nominal 
(Level 1) flying qualities for the healthy A/C and 
stabilization and reduced performance for the failed 
cases. Satisfying these demands may require that the 
performance of the healthy A/C be sacrificed to 
provide robustness for the more severe failures. 
Ultimately the A/C must be able to meet Level 1, 
2, or 3 flying quality specifications for the failed 
A/C and Level 1 or 2 for the healthy A/C. 

m. Lateral/Directional FCS Design 

The MIMO QFT control structure shown in Fig. 1 
includes the prefilters Fp and FB, the compensators Gp 

and GB, and actuator dynamics. It is important to note 
that only the aileron and differential tail actuator 
dynamics are represented in this figure. The rudder's 
dynamics and a Dutch Roll (DR) damper circuit are 
not shown in Fig. 1, and are actually incorporated into 
the plant model. Furthermore, there are three inputs to 
the LAT/D A/C plant, yet there are only two feedback 
variables, roll rate/? and sideslip ß. Therefore, a 3x2 
weighting matrix W is used to square the plant 
Following the feedback structure formulation, a QFT 
design of the compensators and prefilters is 
accomplished. 

Dutch Roll Damper In FCS design the preliminary 
step of including a DR damper circuit6 in the LAT/D 
channel is a traditional method of enhancing the 

46 



damping. This entails feeding the rate r through a 
washout filter to command a counter rudder deflec- 
tion. Yaw rate is selected as the controlled variable 
since it reflects an aircraft's DR response, while the 
rudder is commanded because it primarily excites an 
aircraft's DR mode. The purpose of the high-pass 
(washout) filter is to allow the pilot to command a 
steady-state yaw rate without causing an uncoordi- 
nated maneuver. The washout filter is a high-pass 
filter which, due to its position in the feedback path, 
enables the DR damping circuit to remove a high 
frequency yaw rate response. The washout filter 
transfer function used in this design is KzslQ + %s). 
Selection of the feedback gain K and the washout 
filter time constant T is highly dependent on the A/C, 
its flight condition, and other plant parameters. For 
the VISTA F-16 it is found23 that a time constant x = 
333 sec maximizes DR damping for the low q flight 
condition, hence this value is selected for this design. 
A root locus analysis is conducted on a range of plant 
cases to determine a fixed gain K that can be applied 
for the entire design set 9 [the set of plants P;(s), i = 
1,2, ... , J, which span the operational envelope]. 
Based upon the root locus analysis a subset of 9, 
which includes the failure cases, is selected that 
accurately defines the boundary of the structured 
parametric uncertainty. Both a low and high q flight 
condition (FC)2 is selected. Thus, rudder to yaw rate 
(r/8r) transfer functions are developed for a low and 
high q FC and for each failure case in the design set. 
Given these transfer functions, a root locus is 
generated for each plant case. From the analysis of 
the root locus plots, which are representative of the 
entire range of healthy and failed plants, it is evident 
that only the rudder failures effect the DR mode, and 
the natural frequency of the DR mode poles is 
reduced with rudder failure. A gain K = 1 is selected 
to provide the maximum damping ratio for both the 
high and low q plants. 

Weighting Matrix The weighting matrix W, which 
represents the currently used distribution of roll 
command authority between the ailerons and the 
differential tail, is: 

*V'u 
i- 1 _ 

Part 0.294 0 Part 

6^ = w = 1 0 

. 8^. 
[ßj 0 1 LP-. 

(1) 
In this paper the aileron/rudder interconnect is not 
explicitly included in W for the following reason: 
there is an effective aileron/rudder interconnect 
already built into the MIMO QFT structure chosen for 
this design. By rejecting the cross-coupling effects 
(disturbances), each equivalent MISO case in the 
MIMO structure is effectively decoupled. Since the 

feedback variables are roll rate p and sideslip ß, QFT 
decoupling translates into turn coordination and 
obviates the need for a separate aileron/rudder 
interconnect 

Specifications The majority of roll tracking specifi- 
cations dictated by the MTLSTD 1797A are in terms 
of time domain requirement such as minimum time to 
roll and maximum time to settle. The only specifica- 
tion that lends itself to frequency model generation is 
the roll mode time constants x. Assuming the system 
settles within 4 time constants, the Level 1 specifica- 
tion can be interpreted as a 4 sec. settling time. Since 
the MTLSTD does not directly specify a damping ratio 
C for the upper tracking bound T„,, 0.5 is chosen. 

r 
With this value of C, and the Level 1 settling time 
specification, the 2% settling time formula Tt = 4llfan 

is used to identify a>„ = 2 rps as the undamped 
natural frequency for the upper tracking bound2. 
Given this value of natural frequency and a 0.5 
damping ratio, a zero is chosen for the upper tracking 
model to establish a 5 rps system bandwidth3, i.e., 

TRU(s) =4(s + l)l[s2 + 2s +4] (2) 

The underdamped lower tracking bound, which 
includes a pole to insure that the settling time does 
not exceed the 4 s limit for Level 1 roll tracking, is: 

TRU   =25U(s + 1.25)(s +2)] (3) 

Only the Level 2 and 3 lower tracking models 
require development in this design, since, similar to 
the LO, the failed A/C does not respond as quickly as 
the healthy A/C2. The degraded roll mode time con- 
stants are transformed into time specifications and 
then the 2% settling time formula for a second-order 
model is applied. Additional poles are added to adjust 
the settling time of the system until it satisfies the 
MTLSTD Level 2 and 3 time domain specifications. 
The models are: 

TRU(s) =1.05/[(s + 0.75)(s +1.4)] 
(4) 

I    W = 0375/[(s + 05)(s + 0.75)] 

Finally, the frequency and step responses of the sys- 
tem are generated (Fig. 2) and the settling time data 
(Table 2) is gathered to validate the tracking models. 

Settling Times2 

Level Spec Model 
1 4 3.89 
2 6.4 6.23 
3 40 9.91 

Table 2 Model settling times (seconds) 
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In this paper, two specific QFT cross-coupling 
specifications have been implemented. First, the 
coupling of fi^i into p is not a major design 
consideration. The second cross-coupling specifi- 
cation places limitations on the ß cross-coupling due 
to a p^ input Unlike p/ß^ cross-coupling, ß/p,^ 
coupling is of primary importance to a successful 
LAT/D FCS. To satisfy the ß cross-coupling specifi- 
cations, the A/C must exhibit less then 0.067° of 
sideslip for a unit step roll command at lower energy 
states (low q) or 0.022° of sideslip for unit step roll 
command at higher energy states (high q). Finally, 
there is also a 6° absolute maximum allowable side- 
slip limit levied on the maximum roll command input. 
The tracking and cross-coupling specifications are 
found in Fig. 3. 

Stability and External Disturbance Rejection 
Specifications The stability gain and phase margin 
angle y are: y at least 30° and the gain margin must 
be greater then 6 dB. A -11 dB limit is placed on the 
systems external disturbance rejection response for 
both the roll [loop (1,1)] and sideslip [loop (2,2)] 
channels. 

Performance Benchmarks The performance specifi- 
cations are dominated by the MILSTD roll angle 
requirements. These specifications, similar to the 
cross-coupling requirements are not applicable to the 
entire subsonic envelope, instead they are dependent 
on the aircraft's forward velocity U. This depen- 
dency is expressed in Table 3, where the speed range 
(SR) symbols are given in Table 4. 

Level SR 90° 360° 
1 L 1.4 4.1 

M 1.0 2.8 
2 L 

M 1.3 3.4 

Table 3 Roll performance specifications for 
MILSTD 1797A Class IV aircraft 

SR 
Symbol 

Equivalent Airspeed 
Range 

L VA + 20KTS <V< 1.4V,*, 

M 1.4Vmk<V<0.7V_ 

Table 4 MILSTD 1797A Class IV aircraft SR 

Loaded and Effective Plants The 199 healthy plants2 

are in the form of state space (A,B) matrices, and 
subjected to the failure modeling process are detailed 
in Ref. 7. This failure modeling process in the LAT/D 
channel is complicated by yet another factor, multiple 
control effectors failures. Now in addition to the plant 

parameter variation inherent in the healthy plants each 
plant can also experience single, double, or triple 
control failures. For each damage level selected, 
including the healthy case, there are eight possible 
failure combinations translating into 1592 failure 
plants. Considering the actuator saturation limitations, 
a 45% damage level of the aileron and rudder control 
effectors is selected, with the 25% damage level as 
the backup plant set 

8* 8. 8r Disturbance 

ß ß/8* ß/8. ß/8r ß/dist 

p p/s*    p/s. p/8r p/dist 

Table 5 MIMO plant transfer function description 

With the feedback structure defined in previous 
sections, and more then 3000 plants (1592 45% failed 
plants + 1592 25% failed plants) generated via the 
failure modeling process, a Matlab macro is employ- 
ed to develop the associated QFT tracking and 
external disturbance transfer functions denoted in 
Table 5. The loaded plant matrix augmented with the 
DR damper is 2x3 and the loaded disturbance plant 
matrix is 2x1. These plant matrices are formated for 
input into Mathematica and consequently loaded into 
the QFT CAD1. The frequency responses for all the 
loaded plants are shown in Fig. 4. 

Ultimately, the weighting matrix described in Eq. 
(2) and the actuator dynamics 

control^  * (20.2)C71.4)2(144.8) 
{(s + 20.2)(s 

[s2 
144.8) x 

+ 2(0.736)(71.4)s + (71-4)2 

(5) 

are placed in series with each loaded plant and the 
2x2 effective plant matrix is generated via QFT CAD. 
The frequency response of these effective plant 
models are shown in Fig. 5, where the MISO loops 
correspond to the following variables: 

• Loop (1,1) - ß/ß^       • Loop (U) - ß/p^ 
• Loop (2,1) - p/ß^       • Loop (2,2) - plPmd 

The co = 1 rps template, for a 45% triple failure, is 
shown in Fig. 6. The internal solid line represents the 
lower bound of the template without the failure cases. 

Diagonal Dominance The Q matrices are generated 
and the verification of the diagonal dominance condi- 
tion (as co ^ oo), lqn(j<ü)q22(JG>)\ ^q12(j®)q2l(j<i>$ 
is readily determined by the QFT CAD. Though the 
responses are negative over a large portion of the 
bandwidth, the condition is satisfied as co -> °°. Thus, 
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MIMO QFT Method 1 design8 is applied. 

Frequency Templates The templates for the roll 
channel are presented in this paper. The complete set 
of templates for the ß channel can be found in Ref. 7. 
After the plant cases and external disturbance plants 
are loaded, and manipulated to form the P, P„ PD, 
and Q matrices the QFTCAD 'Temp' option auto- 
matically generates the frequency templates for each 
of the two LAT/D channels. These templates are de- 
veloped over the same range of frequencies utilized in 
the LO design3. The healthy plant frequency tem- 
plates for the p channel are shown in Fig. 7. This 
figure provides a basis of comparison to the failed 
plant templates. To aid in the comparison of healthy 
versus failed plant cases, the healthy plant templates 
are superimposed on the failure templates. These fig- 
ures convey considerable information about the effects 
of failures on the A/C. For example, a 45% aileron 
failure has little effect on the ß templates, while 
resulting in a 5 dB expansion of the p templates as 
shown in Fig. 8. The isolation of failure effects agrees 
with the analytic relationships for failure modelling 
and the physical laws governing the aircraft's failure 
response. In addition to failure isolation, the failed 
templates exhibit another curious relationship. Like 
the LO failure templates, the LAT/D templates in- 
crease primarily in magnitude. It appears that the 
control derivatives, which have the greatest impact on 
the system gain, are most effected by the control ef- 
fector failures. Though this finding seems to justify 
modifying only the state-space B matrix in control 
effector failure analysis, the compensator design 
proves otherwise. Finally, since C( is the only stabili- 
ty derivative involving multiple control effector fail- 
ures in its formulation, the multiple failure cases are 
simply composite of the worst case single failure tem- 
plates (largest magnitude and phase template cases) 
identified in the single failure analysis. These com- 
posite failure plant sets justify the use of only the 199 
triple failure cases to adequately represent the entire 
failed parameter space. If a clear relationship between 
multiple control effector failures and template growth 
could not be established, then a list of plants lying on 
the perimeter of each failure case, for each frequency, 
would have to be assembled. Fortunately, the 45% 
triple failure case is applied as the basic plant set for 
the remainder of the LAT/D design. 

QFT Generated Bounds The nominal plants for both 
the roll and beta channels are located on top of the 30 
rps frequency templates. The nominal plant for the 
roll channel is SRF plant #4, corresponding to the 
50,000 ft Mach 0.9 trim FC, and the nominal plant 
for the beta channel is SRF plant #89, corresponding 
to the 10,000 ft Mach 0.85 FC. 

Tracking and Stability Bounds With these nominal 

plants, as well as the Q matrices and all the QFT 
tracking and disturbance models previously identified, 
the QFT bounds for tracking, cross-coupling, stability, 
and external disturbance are formed. The low 
frequency roll command tracking bounds in the range 
of 0.05 to 0.1 rps are extremely restrictive requiring 
a gain increase in excess of 45 dB, however the 
boundaries within the bandwidth of the pilot are 
achievable with significanüy less gain. Therefore, the 
lower frequency bounds are selectively disregarded 
and the emphasis is on satisfying the bounds within 
the pilots bandwidth. Fortunately, the LAT/D models 
of Ref. 2 and 3 match identically to the healthy 
models developed in this paper. These healthy models 
provide yet another opportunity to evaluate failure 
effects on the system's tracking response. As 
expected, the failed tracking bounds are 
approximately 5 dB higher than the healthy bounds at 
0.75 rps. These more restrictive tracking bounds are 
the result of the taller (increased gain) failure 
templates. Finally, though the failed stability bounds 
demonstrate an increase in gain commensurate with 
the damage level, there is not an appreciable 
difference in phase between the healthy and failed 
cases. The sideslip (ß) channel tracking and stability 
bounds show similar effects to the roll channel 
bounds. The failed A/C bounds are approximately 7 
db greater then the healthy bounds at 0.75 rps. These 
enlarged boundaries are once again the result of the 
failed aircraft's higher stability bounds. The roll 
channel failures have the greatest impact on the 
control derivatives of the system, while the ß channel 
failures have an appreciable effect on both the 
stability and control derivatives. 

Roll Channel Compensator Design The objective of 
this fault tolerant control law is to generate a FCS 
that can maintain nominal performance without con- 
trol effector failures and maintain stability with 
failures2. Since the compensator of Ref. 2 already 
guarantees that the former condition is satisfied, then 
if the design can be manipulated only enough to pro- 
vide stability and Level 3 tracking response for the 
failed plants, the specified design criteria will be 
satisfied. Thus, as a starting point, this compensator 
is loaded and evaluated. Since the major contribution 
of the control effector failures is to increase the gain 
required to achieve a particular level of tracking 
response, it is assumed that this compensator would 
require some additional gain. Fortunately, nearly all 
tracking and stability bounds are satisfied due to the 
QFT design method's inherent conservatism. Only the 
lower -q plants of the failed plant set violated the 
associated stability bounds. To accommodate these 
exceptional plants, the roll compensator zero is 
adjusted from 3.5 to 4 rps. Figure 9 shows the results 
that are obtained using the final roll compensator 
Gp(s) = [0.10(s + 4)]/s. 
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Prefilter Design The final component necessary to 
complete the QFT design process is the prefilter F. 
In the roll channel a pole is introduced to limit the 
system response within the pilot's bandwidth, how- 
ever it is apparent that a zero is necessary to position 
the tracking response within the Level 3 tracking 
bounds. The DR damper has a deleterious effect on 
the low frequency tracking response of the low^ 
plants. It appears that the DR damper slows the roll 
responses within this frequency range creating a droop 
in the tracking response. The introduction of a second 
pole is then warranted to mitigate the effects of this 
zero on the higher frequency tracking response. The 
prefilter that guarantees that the Level 1,2, and 3 roll 
tracking specifications are satisfied is F(s) = [758(s 
+ 2)]/[(s + 1.1 )(s + 15)]. 

Tracking and Time Domain Responses Dynamic 
pressure q has the most significant impact among all 
other plant parameter including control effector 
failures. The low -q time responses in Figs. 10-12 
clearly represent the worst case scenarios. The low^ 
responses exhibit the greatest roll p settling times, the 
worst ß cross-coupling, and a noticeable increase in 
control surface deflection. Yet despite their inherent 
shortcomings these responses satisfy the primary 
lateral design criteria. The simulations demonstrate 
that all healthy A/C responses meet Level 1 tracking 
specifications, the failed A/C responses are within 
Level 1 or Level 2 tracking specifications, and the ß 
cross-coupling response (Fig. 11) does not exceed the 
0.067 limit for low q. The low q time responses also 
demonstrate the domination of the available control 
authority by the failed plants. The consequences of 
this domination become a factor later in the design 
when the rate and deflection saturation nonlinearities 
are examined. The high q time responses in Figs. 
13-15 show a dramatic improvement in overall 
performance when compared to the low q plants. All 
the plants, healthy as well as those experiencing 45% 
triple failure, meet or exceed Level 1 roll tracking 
specifications. The high q plants exhibit significant 
robustness especially evident in the roll angle <j> and 
sideslip angle ß responses. The gain scheduling 
introduced to satisfy the 0.067 sideslip angle limit for 
the low q plants enabled the design to achieve the 
more restrictive 0.022 sideslip limit for the high^ 
cases as well. 

Maximum Command Gradients The maximum 
allowable command input without causing rate and 
deflection saturations, were determined based upon 
the minimum command input necessary to satisfy the 
roll angle performance criteria6. The unit step 
responses shown in Fig. 10 provide the data necessary 
to generate the command gradients for the roll and 
sideslip channels. These gradients are given in Fig. 

16. The maximum roll command gradient boundaries 
(See Fig. 6) are conspicuously more restrictive then 
the gradient proposed in Ref. 2. The rudder and 
differential tail, rate and deflection saturation 
restrictions are not limiting factors in the overall roll 
gradient design. The aileron saturation restrictions, 
however, prove to be dominant and consequently are 
the only saturation boundaries identified on the figure. 
The aileron experiences rate and deflection saturation 
before achieving the 90° roll performance require- 
ment. The maximum roll command gradient noted by 
the solid line on Fig. 16 violates the rate saturation 
limits over most of the dynamic pressure range and 
violates the deflection saturation limits for dynamic 
pressures in excess of 150 Ibslff. These boundaries 
are selectively ignored in an attempt to improve the 
roll performance of the A/C. However, it is vital for 
the sanctity of feedback to limit the duration of 
control effector saturation. If the system remains in 
saturation long enough, the feedback path is eliminat- 
ed causing the system to go "open-loop", and possibly 
unstable. Simulations of the lateral design with the 
maximum command gradients in place are employed 
to settle these performance and stability issues. 

Design Validation The final step in the LAT/D 
design process is to verify that the compensated 
system satisfies the frequency and time domain 
stability, tracking, and external disturbance 
specifications. 

Stability and Tracking Validation The roll compen- 
sator satisfies the 6 dB stability contour in Fig. 17. 
Though the gain can be increased approximately 10 
dB without violating the contour, the rate and deflec- 
tion saturation limits impose more restrictive require- 
ments on the compensator's gain. The tracking vali- 
dation plots found in Figs. 18 and 19 (for the difficult 
q < 150 Ibslft2 flight condition) represent the 
culmination of MILSTD 1797A specifications and the 
utilization of engineering judgement into achieving a 
viable full envelop robust control design for the 
VISTA F-16 experiencing control effector failures. 

Roll Tracking Time Domain Validation The time 
domain validation verifies that the FCS can meet time 
domain specifications when realistically high 
amplitude inputs, and rate and deflection saturation 
limitations are applied. Figure 19 demonstrates that 
the system does indeed maintain stability, even though 
the extreme low q failed plants saturate the aileron 
deflection. The system maintains stability despite 
aileron and differential tail saturation. Also, at high^ 
the high dynamic pressure plants also demonstrate 
enhanced roll performance and beta decoupling. The 
majority of the plants including the failure plants 
satisfy the 360° roll angle requirement, and all of the 
plants meet the 6° maximum sideslip specification. 
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The roll command gradient plot shows that the 90° 
roll angle requirement is the most difficult restriction 
to satisfy. However, a majority of the healthy plants 
met or exceeded this criterion. 

IV. Conclusions 

GJs) = 
Kffs + 1.35)(s +2) 

s(s + 60) 
(8) 

F4S> = 
35 

s +35 

This paper is concerned with the design of a lateral 
directional MIMO QFT flight control system. Also, 
the primary roll control channel is emphasized. A 
realistic robust FCS for the full subsonic envelope of 
the VISTA F-16 has been developed which is tolerant 
to flight control effector failures from the onset. 
Also, the maximum control effector failure level that 
a successful QFT design can accommodate has been 
determined. The compensated system clearly met the 
MILSTD 1792 Level 1 flying qualities specifications 
for the unimpaired A/C at high dynamic pressure 
flight conditions. Furthermore, for triple effector 
failure cases in the LAT/D channel, at least Level 3 
flying qualities specifications were achieved. The 
majority of the impaired A/C for the high dynamic 
pressure flight conditions exhibit Level 1 or 2 flying 
qualities, while only the worst case, low dynamic 
pressure and failed plants exhibit Level 3 flying 
qualities. The only constraint limiting the accommo- 
dation of higher failure levels in the LAT/D channel 
is sideslip angle tracking and disturbance rejection. If 
stability is the only applicable requirement, a 
successful QFT FCS design for a damage level in 
access of 45% triple failure may be accommodated. 

The compensators and prefilters for both channels, 
Eqs. (6)-(8), adhere to the established guidelines. The 
LAT/D and LO compens?tors are both second-order 
transfer functions, with bandwidths less then 60 rps, 
and physically realizable steady-state gains. In 
addition, gain scheduling was applied discriminately. 
Scheduling was only necessary to the required turn 
coordination specifications in the directional channel. 
Overall, the three compensators and prefilters are 
remarkably elegant considering the extent of the 
uncertainty inherent in this design problem. 

Gc/s) 

Fcj(s) 

= 4.45(s + 2.3)(s + 125) 
s(s + 43) 

= 0.25(s + 6) 
s +15 

(6) 

GM.OJOfsjJl 

(7) 

Fp(s) 
758(s +2) 

(s + 1.1 )(s + 15) 

It should be noted that this design has undergone 
extensive testing and evaluation in both the frequency 
and time domains. Despite actuator saturation limita- 
tions and compensator restrictions, the design 
achieves the roll and tracking performance require- 
ments for nearly all plant cases in the LAT/D channel 
and although meeting the QFT disturbance (failure) 
bounds was not enforced during the design process, 
the time domain simulations show that proper distur- 
bance rejection is achieved due to the inherent QFT 
technique overdesign characteristic. Also, the compen- 
sated system was able to maintain "feet-on- the-floor" 
turn coordination over the entire flight envelope. 
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Flg. 9 QFTCAD Tracking Bounds and Nominal Loop for Roll Channel 
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Abstract 

Individual Channel Analysis and Design (ICAD) and 
Quantitative Feedback Theory (QFT) are two methods 
used to systematically apply concepts from classical 
control engineering to multivariable systems. With the 
aid of a simple example, the relationship of QFT to 
ICAD is explored. 

1 Introduction 

The Individual Channel Analysis and Design (ICAD) 
methodology [10] [7] provides a framework within 
which concepts and methods from classical control en- 
gineering, such as Nyquist/Bode plots and phase and 
gain robustness margins, may be rigorously applied to 
multi-input, multi-output (MIMO) systems. Another 
systematic method of generalising classical methods 
to MIMO systems is QFT[4][5]. It is the purpose of 
this paper to explore the relationship of QFT to ICAD. 

2 Structure and SISO Decomposition 

One core distinguishing aspect of ICAD is the con- 
cept of structure. Certain salient dynamic features 
of a system dominate its dynamic behaviour. These 
salient features are referred to as the system structure. 
For SISO systems, the plant structure is defined by 
its Right Half-Plane Poles (RHPPs) and Right Half- 
Plane Zeros (RHPZs). Provided it is stable and mini- 
mum phase, the only constraints on the dynamic per- 
formance of the closed-loop system are those arising 
from such practical considerations as the extent of the 
plant uncertainty and the actuator capability. When 
the plant has RHPPs and RHPZs, the dynamic per- 
formance of the closed-loop system is strongly con- 
strained. The gain of the open-loop system must be 
greater than one in the region of the frequencies of 
the RHPPs but less than one in the region of the fre- 
quencies of the RHPZs. In this manner the nature 
of the controller and so the dynamic performance of 
the closed-loop system is unavoidably influenced by 
the structure of the plant. For MIMO systems, the 
plant structure includes not only various RHPPs and 

RHPZs but also various measures of asymptotic be- 
haviour, see [10, 7] for a more complete description of 
what is meant by structure. Those structural features 
of the plant associated with its multivariable nature are 
indicated in a very direct manner by the scalar multi- 
variable structure functions, r», ji etc. (for all defi- 
nitions see the appendix of the companion paper[9]), 
particularly their Nyquist plots. The structural features 
are represented by the topology of the Nyquist plots; 
that is, their encirclements of the point (1,0). 

In both QFT and ICAD, the controller is assumed 
to be diagonal with the individual controller gains de- 
signed/evaluated on the basis of a decomposition of 
the n x n MIMO system into n SISO systems or chan- 
nels. It should be noted that a SISO decomposition, 
exactly equivalent to the MIMO system with no loss 
of information, is possible; that is, the decomposition 
into the channels 

Ci — KignyL      "fij (1) 

2.1   QFT 

In QFT, several decompositions have been employed 
of which the main ones are QFT(l) and QFT(2) 
[2][3][11]. The difference between the nominal SISO 
systems, used in design, and the exact SISO systems 
are considered to be disturbances on the open-loop 
systems. Over the frequency range required to ful- 
fill the performance specification, these disturbances 
are rejected by choosing the magnitude of the control 
gains to be sufficiently high. Note, in both QFT(l) 
and QFT(2), controller design difficulties, due to the 
fcj(s) depending on each other, are avoided through 
the choice of decomposition. 

Unfortunately, basing the design of the individual 
controller gains on nominal open-loop transfer func- 
tions, which are inexact, can be misleading as the fol- 
lowing example illustrates. 

Example 1 [6] The plant is defined by the transfer 
junction matrix 

G(s) = 
1 

s + 1 

Within the context of QFT(l), the SISO decomposition 
has the open-loop transfer functions 

fciSn(l-7) 
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and 
£2322(1-7) 

Suitable control gains, h, designed on the basis of 
3ü(l — 7), would appear to be 

ki(s) =- — {s + 1) ;    a,i>0 

for which the apparent open and closed loop transmit- 
tances are 

ki9iiO- -7) = — 

and 

ki9u{\ - 7)/(l + &i3«(l - 7)) = —f— 

However, the exact open and closed-loop transmit- 
tances are 

üi S + Qj 
ki9ii{l - ihj) = 

and 

ki9ii(l-ifhj) 

s s — a,- 

—aAs + at 

1 + h9u{l ~ ihj)      s2 - (oi + üJ)S - aiüj 

The controllers designed on the basis of the assumed 
channel transmittances ga(l — 7) do not stabilise the 
closed-loop system for any choice ofai. 

To avoid difficulties of the type encountered in Ex- 
ample 1, restrictions might be placed on the nature of 
the plant. Two such restrictions have been suggested 
in the context of QFT. First, according to folklore, to 
achieve arbitrarily high closed-loop bandwidth and ar- 
bitrarily small sensitivity with diagonal control, it is a 
law of nature that the limit as s tends to plus infinity of 
7(s) must be less than one. It might be argued that this 
restriction excludes the application of diagonal control 
and so QFT to Example 1, in which 7 = 2. However, 
no attempt is made in Example 1 to achieve arbitrarily 
high closed-loop bandwidth and arbitrarily small sen- 
sitivity. Instead, the stronger restriction of diagonal 
dominance is imposed in QFT(1)[5]. Second, QFT(2) 
requires [4] that the disturbances, equivalent to the dif- 
ference between the nominal SISO systems and the 
exact SISO systems, do not have any RHPPs which 
do not automatically cancel with zeros of the sensitiv- 
ity functions of the appropriate SISO system. In other 
words, the exact open-loop SISO systems do not have 
any RHPPs which the nominal open-loop SISO sys- 
tems do not have. Whether this restriction is satisfied, 
depends not only on the plant but also on the other con- 
trol gains through the hj(s), unfortunately, implying 
that the design difficulties, due to the ki(s) depending 
on each other, are not entirely avoided after all. 

2.2   ICAD 

In Individual Channel Analysis (ICA), the exact de- 
composition, for which the SISO decomposition has 
the open-loop transfer function kigu(l — jt), is used. 

In Individual Channel Design (ICD), the nominal de- 
composition, for which the SISO decomposition has 
the open-loop transfer function kigu(l — ji), is used. 

In general, ICAD provides a framework in which 
the controller may be synthesised using any method, 
including, as assumed here, classical Nyquist/Bode 
loop-shaping. When the exact SISO systems can be 
represented by nominal systems with the hi(s) re- 
placed by 0, 1 or some specific transfer function such 
that the design difficulties, due the ki (s) depending on 
each other, can be avoided, the MIMO system is said to 
be benign. The MIMO system may be benign because 
of bandwidth separation or because of decoupling for 
design purposes. (The latter is not the same as plant 
decoupling as it may decouple for design purposes 
when not diagonally dominant). Having designed the 
controller on the basis of the nominal SISO systems, 
the design is confirmed for the exact SISO systems. 
(Note, this does not constitute an iterative design pro- 
cedure). Obviously, any system, for which a controller 
can be designed by QFT(l) or QFT(2), is by defini- 
tion benign. When the MIMO system is not benign, 
it is modified, by multiplicative pre-compensation or, 
preferably, by controller feedforward compensation, to 
become benign. 

A necessary requirement on each nominal SISO 
system is that its structure must be the same as the 
structure of the corresponding exact SISO system. 
(The reason, for the irredeemable failure to design sta- 
bilising controllers for the plant in Example 1, is that 
the structure of the SISO system gu(l- 7) is different 
from that of the SISO system gu(l - 7»); that is, the 
k{(s) are designed on the basis of a SISO decompo- 
sition for which structure is incorrect). Both the RH- 
PPs and the RHPZs must be similar. The structure of 
the exact SISO system is related to the structure of the 
original MIMO plant by the existence result, Result 1, 
of the companion paper[9]. 

Result 1 of the companion paper does not agree with 
the QFT high frequency restriction on 7. The latter is 
incorrect as shown by the following example. 

Example 2 [6] The plant is the same as in Exam- 
ple 1. It violates the high frequency condition since 
7 = 2. Nevertheless, stabilising control gains exist 
which achieve arbitrarily high closed-loop bandwidth 
and arbitrarily small sensitivity. They are 

fc1(s) = -(s+l),    k2(s) =--(s+1);    a>b>0 
s s 

for which 

hi(s) = —— ,    h2(s) = 
s + a s-b 

. a{s + b) -b(s - a) 
£1311(1-7^2) = -7—rv ;    £2322(l-7"i) = s(s - b) 

The closed-loop transmittances are 

s(s + a) 

tu = 
a(s + b) 

s2 + (a — b)s + ab 
*22 = 

—b($ — a) 

s2 + (a- b)s + ab 
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It may be observed that the structure of the system 
is in accord with Result 1 in the companion paper. 
Channel C\ is minimum phase and h\ is stable whilst 
channel C2 possesses one RHPZ with frequency a 
rad/sec whilst h2 possesses one RHPP with frequency 
b rad/sec. The bandwidth of hi is greater than the 
bandwidth of hi, a rad/sec and b rad/sec respectively. 
Arbitrarily high bandwidth and arbitrarily small sen- 
sitivity are achieved by letting a and b tend to plus in- 
finity. 

From the foregoing discussion, QFT is appropriate 
only when the structures of the nominal SISO systems 
are the same as the structure of the exact SISO system. 
Clearly ICAD can be applied to any plant to which 
QFT can be applied but the converse does not hold. 

3    MIMO Systems With Parametric Un- 
certainty 

In Nyquist/Bode classical control, the requirement for 
robustness is addressed through the gain and phase 
margins. Although the gain and phase margins can be 
interpreted quantitatively in terms of the amount of ab- 
solute uncertainty and relative uncertainty which can 
be accommodated without inducing instability, an ex- 
plicit quantitative evaluation of the plant uncertainty 
is not usually undertaken. It may not be possible or 
it may require inappropriate effort. Nevertheless, ex- 
perienced engineers, in a specific application, usually 
have sufficient insight to ensure that, for a particular 
crossover frequency, adequate gain and phase margins 
are chosen. For example, in wind turbine control, be- 
cause of the complexity of the interaction of the rotor 
with the wind, it is not possible to quantify the uncer- 
tainty in the aerodynamic models but practical expe- 
rience indicates that, for a crossover frequency of ap- 
proximately 2 rad/sec, lOdB and 60° are appropriate 
gain and phase margins respectively. (Even though the 
structural dynamics of the rotor are subject to aero- 
dynamic forces, which vary spatially and temporally 
in both a deterministic manner and a non-stationary 
stochastic manner, the models used, while neglecting 
the structured dynamics, assume that steady state aero- 
dynamics, with the wind uniform over the rotor, ap- 

ply)- 
However, on occasion, particularly when the plant 

uncertainty is specified in terms of permissible pa- 
rameter ranges, an explicit quantitative evaluation of 
the plant uncertainty may be deemed worthwhile, e.g. 
in aerospace applications. By varying the parame- 
ters over their permissible ranges, a representative set 
of possible plants can be defined.When the number 
of members of the set is large, a systematic treat- 
ment is required. One such treatment is QFT [4] [5], 
in which templates, representing the range of possi- 
ble plants at a specific frequency, are manipulated on 
a Nichols chart. An alternative treatment is to aug- 
ment Nyquist/Bode methods with uncertainty bounds, 
see Appendix A [8]. It is clear that, as far as robust- 

ness is concerned, the QFT treatment and the quantita- 
tive Nyquist/Bode treatment are essentially equivalent. 
The only significant difference between them is that 
the open-loop is shaped in the former on the Nichols 
chart but in the latter on the Bode plot, which is pre- 
ferred since the frequency parameterisation is explicit. 
The lesser role of the sensitivity bound in the quanti- 
tative Nyquist/Bode plot should be noted. Given rea- 
sonable low frequency shaping, it is equivalent to a 
lower bound on the open-loop crossover frequency. Of 
course, meeting the requirement for stability robust- 
ness must take priority, with the crossover frequency 
reduced when necessary. 

3.1 QFT 

The family of plants, {G(s)}, is the set of plants which 
are generated by varying the parameters over their per- 
missible ranges. For a fixed stabilising controller to 
exist for the family of plants, some restriction must be 
placed on its members. In QFT(l), it is required [4] 
that the limit, as s tends to plus infinity, of det G(s) 
has no change of sign over {G(s)}. In QFT(2), it is 
required [4] that the limit, as s tends to infinity, of 
<?n(l — 7). has no change of sign over {G(s)}. The 
family of plants is used to construct templates and each 
controller gain is designed by applying the SISO QFT 
method to each SISO system. 

3.2 ICAD 

The appropriate existence result for the set of plants in 
ICAD is the following[7]. 

Result 1 There exist fixed stabilising controllers 
kj(s),j = 1,..., mfor a family ofm-input m-output 
plants {G(S)} provided: 

1. each plant G(s) = [gij(s)] possesses no RHP or 
purely imaginary transmission zeros and the in- 
dividual transfer functions gjj (s),j = 1,..., m, 
possess no zeros in some open neighbourhood of 
the imaginary axis; 

2. the (1 — Tj(s)),j = 1,... ,m, possess no zeros in 
some open neighbourhood of the imaginary axis; 

3. lims-++0OTj(s),j = l,...,m is not in some 
open neighbourhood of one for each plant in 
G(s); 

4. lims^oo|G(s)| -» qis~ni for qi of fixed sign 
and some integer n\ (q\ and ni may be different 
for each plant); 

lirris-yoo |Gfl(s)| -»■ q2s~n2 for q2 of fixed sign 
and some integer n2 (q2 and n2 may be different 
for each plant); 

lims_>oo|G12(s)| -> q3s~n3 for q3 of fixed sign 
and some integer n3 (q3 and n3 may be different 
for each plant); 
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lim^oo IG12-"-1^)! -»• ?tn«_nm /or 9m o/ 
,/ix«/ «gn an<f some integer nm (qm and nm may 
be different for each plant). 

If lims_>oo Tj(s) > 1 for any plant in the fam- 
ily, significant bandwidth separation of the subsys- 
tem transfer functions hi(s),i = l,...,j, from the 
remaining subsystem transfer functions hi(s),i = 
j + 1,..., m, is required with the bandwidth of the 
hi(s),i = l,...,j, all less than the bandwidth of the 
other hi(s),i = j + 1,..., m. For any particular 
plant, the hj (s) for which lim,-*.,» Tj (s) > 1 possess 
one more RHPP than the gjj possess RHPZs. Other- 
wise the hj (s) possess the same number ofRHPPs as 
the gjj(s) possess RHPZs. Moreover, the controllers, 
kj(s),j = 1,..., m, are stable and minimum phase; 
arbitrarily high bandwidth and arbitrarily small sen- 
sitivity are possible for each hj (s) and the closed-loop 
of each individual channel. 

The existence of a fixed controller, which stabilises 
a family of MIMO plants, can be established using Re- 
sult 1. An example is the.following. 

Example 3 [6] The plant in Examples 1 and 2 
presents difficulties for QFT, essentially, because the 
value of 7 is greater than one, namely 2. Modifying 
the plant by the pre-compensator 

0 1 
1 0 

which swaps the assignment of inputs to outputs, in- 
verts 7 and so circumvents these difficulties. However, 
suppose the plant is uncertain with two possible rep- 
resentations 

G±(s) = l/(a + l) 
1     ±2 

±1     1 

By Result 1, a fixed controller exists which stabilises 
both the plants. Indeed, the controller of Example 2 is 
sufficient; that is, 

Ai(s) = -(s+1),    fc(s) = —(s+1);    a>&>0 
s s 

Modifying the plant by the pre-compensator P, 

1 
G'± = G±P = 

s + 1 
±2     1 

1     ±1 

and neither gn(s) nor g-n (s) has fixed sign as s tends 
to infinity. Hence, by Result 1, the existence of a 
non-trivial stabilising controller for the pair of plants 
G±($), can not be established and the difficulties for 
QFT can not be resolved by swapping the assignment 
of inputs to outputs. 

A controller for the family of plants, {G{s)}, can 
be synthesised by applying the Nyquist/Bode quanti- 
tatively, as described in Appendix A, to the nominal 
SISO plants. It is necessary to simultaneously ensure 
that the structures of the SISO plants are preserved 
by the controller. This procedure is illustrated in Sec- 
tion 4 by applying it to a more realistic example, than 
Example 3, but with similar structure. 

4    The Turbo-alternator 

The turbo-alternator constitutes a realistic example, 
which provides a natural illustration of many of the is- 
sues discussed previously, of multivariable controller 
design within the constraints of parametric uncer- 
tainty. The dynamics of the 2-input, 2-output sys- 
tem are represented by a parametric transfer function 
model[l]. The parameters, which have a wide range of 
variation, depend on the loading of the machine; that 
is, the real power, P, and the reactive power, Q. The 
transfer function model of the turbo-alternator and the 
performance specification is given in the companion 
paper[9]. 

A representative set of plants is obtained by varying 
the loading conditions of the machine, i.e. real power, 
P, and reactive power, Q. The ranges of variation of 
these parameters, together with the nominal values are 
shown in Table 1. These ranges are maximal in the 
sense that any increase would include parameter val- 
ues for which the plant structure changes. Accord- 
ingly, the uncertainty is nearly the maximum that can 
be accommodated by a fixed controller. In addition, 
other parameters are varied by a small amount, in com- 
parison to the variations in the loading conditions, to 
represent possible errors in defining the machine con- 
stants. 

Table 1. Nominal parameter values and 
range of variation 

parameter    nominal    min,    max. 
P 

Q 

0.8 
0.2 

0.65 
0.05 

0.9 
0.4 

The Bode plots of 322. for a small number of rep- 
resentative choices of the parameters, are shown in 
Fig. 1. It can be seen, from Fig. 1, that the frequency 
of the "switchback" characteristic is not fixed, so that 
direct counteraction of this feature by the controller is 
not feasible. A traditional solution to this problem is 
to use the Power System Stabiliser (PSS)[1], which al- 
leviates the problem by adding a signal from the speed 
output to the voltage output near 7 rad/sec. The speed 
signal dominates the voltage signal at exactly the right 
frequency to remove the "switchback" characteristic 
and thus facilitates the controller design. Of course, 
the voltage disturbance rejection is compromised at 
frequencies near 7 rad/sec. The solution adopted here 
is to swap the assignment of inputs to outputs, which 
results in the modified plant G'. 

The diagonal controller is designed as follows to 
meet not only the specification for the nominal plant, 
but, also, to be robust to the relative errors. The 
first controller, fci, is designed to meet two objectives. 
First, it is designed on the basis of kig'lx(l — jh'2) to 
achieve the performance requirements on shaft speed 
regulation. Second, it is designed to ensure that 
&2#22 (1—V^'1) has fixe(* structure; that is, both h[ and 
(1 — 7'ft'i) must have fixed structure. For the former, 
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k1g11(1-gamma'h). k1g11 &k1gl1(1-gamma) 

10" 
FREQUENCY 

Figure 1: Sample of plots of #22(5) with varying pa- 
rameters 

Figure 2: Bode plot of hg'n (1 - 7'/^) together with 
modified axes and robustness bounds for kig'n and 

*i3n(l-7')- 

the controller, k±, must ensure that kig'n encircles the 
(—1,0) point on the complex plane exactly once, thus 
ensuring that h[ has one RHPP. If the nominal struc- 
ture of h[ is correct, the robustness of this structure to 
the relative errors is ensured if none of the uncertainty 
neighbourhoods on the inverse Nyquist plot of kig'u 

enclose the point (-1,0). For the latter, the controller, 
ki must ensure that the structure of (1 — 7'fti) does 
not change with uncertainty. Assuming the structure 
of h[ to be robust, the robustness of (1 - Vfti) may 
be determined from the robustness of kig'n(l — 7'). 
The zeros, due to (1 + kig'n (1 - 7')), are determined 
by the number of encirclements of (—1,0) by the plot 
of kig'n(l - 7')- If the neighbourhoods of relative 
uncertainty the Nyquist plot do not enclose the point 
(-1,0), then the structure of (1 + kig'^ (1 - 7')), and 
thus (1 - 7'/ii), is robust. 

The second controller, ki, is also designed to meet 
two objectives. First, it is designed on the basis of 
^2^22(1 ~ l'h'i) to achieve the performance require- 
ments on terminal voltage regulation. Second, to 
achieve closed-loop stability, it is sufficient to design 
fc2 solely on the basis of fep^l _ T'^'i)» sulce ^ 
structure of £2522(1 ~ 7'^i) *s nxec* *>y *e design 
of fci. Stability robustness of terminal voltage regu- 
lation also ensures, automatically, stability robustness 
of shaft speed regulation. 

4.1   Design of Controller kx 

A set of plants, covering the full range possible, is gen- 
erated by randomly perturbing the parameters. The 
relative error for each individual element is calculated 
by 

Ag tjk _ yvk 9ijn 

9ij„ 9ij„ 
(2) 

for each plant, Gk, and the relative errors for func- 
tions of the individual elements (for example, 7(s)) are 
derived from these when required. Neighbourhoods 
of uncertainty, enclosing all relative errors, are con- 
structed from the relative errors for a specific function 

at each relevant frequency. These neighbourhoods are 
subsequently plotted on the inverse Nyquist plot and 
used to generate gain and phase robustness bounds for 
the corresponding Bode plot. It is important, when 
designing the controller, to ensure that the neighbour- 
hoods of uncertainty do not enclose the (—1,0) point 
on the inverse Nyquist plot, thereby inducing a struc- 
tural change of the function. 

It is possible to design ki to satisfy all the require- 
ments on one Bode plot, namely the Bode plot for 
kig'n(l — j'fi2). Modified gain and phase axes are 
introduced on the Bode plot for kig'n(l — 7^2) to 
represent the functions kig'n and kig'n(l — 7'). By 
similarly transferring the gain and phase robustness 
bounds to the modified axes, see Fig. 2, the robustness 
of hg'n and kig'n (1 - 7'), within the context of para- 
metric uncertainty, can also be determined. The nomi- 
nal gain and phase margins for kig'n and kig'u (1—7') 
can be determined with respect to the modified axes 
transferred to the Bode plot of fci5u(l - 7^2) and 
the residual gain and phase margins can be determined 
with respect to the robustness bounds transferred to the 
Bode plot of kig'u(l — -f'h2) 

The controller, fci, can now be designed to meet the 
requirements on kig'u(l-^'h,2), &i5u ^adkig'n(\ — 
7') simultaneously. A suitable controller, designed by 
standard SISO loop-shaping, is 

k1 = 
30 

s(s + 10) 
(3) 

The Bode plot of the open-loop transfer function 
kig'n(l - j'h.2) is depicted in Fig. 2, from which 
it can be seen that the requirements on kig'u(l - 

7^2), fcisii and kig'u(l — 7') are easily met. In- 
verse Nyquist plots of kxg'u(l - 7'^2), kig'lx and 
kig'n(l - 7'), together with neighbourhoods of rel- 
ative uncertainty, are shown in Fig. 3, 4 and 5, respec- 
tively. 
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Figure 3: Inverse Nyquist plot of k\g'xl{\ — 7^2) with 
relative uncertainty neighbourhoods. 

InvNyq k1g11 

Figure 4: Inverse Nyquist plot of kig'n with relative 
uncertainty neighbourhoods. 

lnv Nyqk1g11(1-gajnma) 

Figure 5: Inverse Nyquist plot of k\g'u(l — 7') with 
relative uncertainty neighbourhoods. 

5    Design of Controller k2 

Having designed hi, the design of &2 can proceed on 
the basis of £2022(1 ~ 7^i) smce ^1 's known- F°l~ 
lowing the procedure of Section 4, the gain and phase 
robustness curves are transferred to the Bode plot, see 
Fig. 6. A suitable controller, fo, designed by standard 
SISO Nyquist/Bode loop-shaping to meet the require- 
ments, is 

fo = 
-96(178s2 + 20505 + 10200) 

s(s2 + 653s + 10200) 

(10s + 60.9) (s2 + 2.97s + 1.65) 
(4) 

(s + 60.9)(s2 + s + 1.65) 

The Bode plot of the open-loop transfer function 
^2^22(1 - 7'^i) is depicted in Fig 6. From the Bode 
plot, the phase margin is 50° nominal and 45° residual 
at a gain crossover frequency of 20 rad/sec. 

However, the gain and phase plots must be smooth 
in the vicinity of the crossover frequency for the gain 
and phase margins to be valid measures of robustness. 
Because of the resonance at 7 rad/sec, that is not the 
case here and the robustness must be assessed directly 
from the inverse Nyquist plot itself. A second in- 
dication that Fig. 6 must be interpreted with caution 
is the peak in the phase robustness bound between 5 
rad/sec and 7 rad/sec. It indicates that the relative un- 
certainty at these frequencies is sufficiently large, cer- 
tainly greater than 1, for the inverse Nyquist plot to 
possibly enclose (—1,0). 

The inverse Nyquist plot of £2^22 (1 — 7'^i)> t0~ 
gether with the neighbourhoods of relative uncertainty, 
is shown in Fig. 7. The suspected large uncertainty 
neighbourhoods at low frequency are evident but, even 
though the neighbourhoods approach the (-1,0) point 
very closely, the performance requirement is met. The 
large size of the uncertainty and the small margin, 
by which the performance requirement is met, are 
a consequence of the near maximal choice of varia- 
tion of the turbo-alternator loading. The design of fc2 

thus demonstrates the importance of using the inverse 
Nyquist plot in conjunction with the gain and phase ro- 
bustness curves on the Bode plot to assess robustness. 

The direct Nyquist plot of channel 2 is shown in 
Fig. 8. This plot shows the proximity of the absolute 
uncertainty neighbourhoods to (—1,0). 

With the controller, fe, in place, it is now possible 
to confirm the design of &x for channel 1. Comparison 
of Fig. 9 with Fig. 3 indicates that, as expected, near 
the channel 1 crossover frequency, the actual open- 
loop channel 1 differs little from the nominal channel, 
kig'u(l -7'^), used as the basis for controller de- 
sign. 

6    Conclusions 

Two quantitative approaches to the design of con- 
trol systems with parametric uncertainty are com- 
pared, namely, QFT and the quantitative interpreta- 
tion of Nyquist/Bode methods within the framework 
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Figure 6: Bode plot of k2g22(l 
_ 7,/li) with S^n md 

phase robustness bounds. 

Inv Nyq k2g22(1-gamma"h1) 

Figure 7: Inverse Nyquist plot of fo^C^T'/1!) witn 

relative uncertainty neighbourhoods. 

k2g22(1-gamma"h1) 

Figure 8: Direct Nyquist plot of k2g'22 (1 — V^i) with 

absolute uncertainty neighbourhoods. 

Figure 9: Inverse Nyquist plot of kig'u(l—^'h2) with 
relative uncertainty neighbourhoods. 

of ICAD. For SISO systems, the two approaches are 
essentially equivalent. For MIMO systems, the lat- 
ter methodology is generally applicable to all systems, 
with no restriction on the plant structure but the for- 
mer methodology can only be applied with confidence 
to systems with restricted plant structure. However, 
when QFT can be applied, then so can ICAD and the 
two approaches are essentially equivalent, but the con- 
verse does not hold. 
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A Quantitative Design in Classical Con- 
trol 

The Nyquist plot is a measure of robustness to abso- 
lute uncertainty and the inverse Nyquist plot is a mea- 
sure of robustness to relative uncertainty. Although 
the Nyquist plot and inverse Nyquist plot are appropri- 
ate for analysis, they are not particularly appropriate 
for controller design which requires local loop shap- 
ing. The Bode plot is preferred for this task. When 
detailed quantitative information on the uncertainty is 
available, it can be adopted to cater for the uncertainty 
as described below. 

Provided the frequency domain plots are smooth 
and are sensibly shaped, the critical frequencies for 
stability robustness are those close to the crossover fre- 
quency. The impact of uncertainty in this region is 
transferred from the inverse Nyquist plot to the Bode 
plot as follows. At a specific frequency, the neigh- 
bourhood of relative uncertainty, rotated by 180°, is 
plotted with its centre at the point (-1,0), see Figure 
1. The extent to which the phase margin could be 
reduced by the uncertainty, should the crossover fre- 
quency coincide with the chosen frequency, is the an- 
gle 4> in Figure 1 and the extent to which the gain mar- 
gin could be reduced by the uncertainty, should the 
phase crossover frequency coincide with the chosen 
frequency, is the gain M in Figure 1. On the Bode 
plot, the phase curve, representing (—180° + 4>), and 
the gain curve, representing -201og10 M, are plotted 
as functions of frequency, see Figure 2. The residual 

M - Distance from imaginary axis of furthest point on template within a small 

range of the real axis 

0 - Maximum angle between real axis and point on template wifiin a smaJ range 

of the unit circle 

N - Distance of closest approach of template to the origin. 

Figure 10:   Relative uncertainty, at a specific fre- 
quency, rotated by 180° 

phase and gain margins, in the presence of uncertainty, 
are then measured as shown in Figure 2. Of course, 
these residual stability margins must be sufficient to 
meet the transient response requirements. In addition, 
a lower bound, say | W (u>) |, to be attained by the sensi- 
tivity in the presence of uncertainty, can be transferred 
to the Bode plot. Close to the crossover frequency, 
the sensitivity is determined by the residual phase and 
gain margins. At a lower frequency, the lower bound is 
scaled by the gain N in Figure 1. On the Bode plot, the 
gain curve, representing -201og10(|PT|.iV) is plotted 
as a function of frequency, see Figure 11. The sensitiv- 
ity requirements are met provided the gain of the open- 
loop transfer function is greater than this gain curve. 

Medüiad sensitivity bound 
-201og10(|W|.JV) 

Nominal 

sensitivity bound 

-201og10|(| 

nominal phas« margin 

Figure 11: Bode plot with gain and phase robust- 
ness curves and with nominal and residual sensitivity 
bounds. 
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Abstract 

This paper is a summary of an effort to evalu- 
ate a high performance flight control system in a 
piloted simulation. A flight control system was 
designed for the VISTA F-16 using the techniques of 
Quantitative Feedback Theory. This design, accom- 
plished as a Master's thesis, performed well in simu- 
lation. The resulting system would require a few 
refinements to meet handling quality specifications. 

Introduction 

The Control Systems Development & 
Applications Branch of the Flight Control Divi- 
sion of the United States Air Force Wright Lab- 
oratory (WL/FIGS) has undertaken a program 
of research to determine the applicability of the 
Quantitative Feedback Theory (QFT) approach 
to designing the control laws for a modern mili- 
tary flight control system. The primary objec- 
tive of this research effort was to implement a 
robust flight control system using QFT, and take 
the design through piloted simulation and ulti- 
mately flight test. The goals of this program 
were to examine and reveal the benefits of QFT 
as a robust control technique. Some of the 
reported benefits of QFT are: 

1. 

3. 

6. 

The result is a robust design which is insen- 
sitive to structured plant variation. 
There is one design for the full envelope (no 
need to verify plants inside the templates). 
Any design limitations are apparent up 
front. 
There is less development time for a full 
envelope design than standard point-by- 
point techniques. 
One can determine what specifications are 
achievable early in the design process. 
One can redesign for changes in the specifi- 
cations quickly. 
The structure of the controller is determined 
up front (i.e. low order fixed compensators). 

This paper documents a portion of the 
QFT research program, specifically, the imple- 
mentation of a QFT design on a piloted simula- 
tion of the NF-16D Variable Stability In-Flight 
Simulator Test Aircraft (VISTA F-16). The 
VISTA F-16 was chosen because WL has accu- 
rate models of this aircraft and the program is 
proceeding with an eye towards eventually flight 
testing a control system designed using QFT. 

QFT has many benefits as stated above, 
but QFT is particularly attractive to WL/FIGS 
because in designing a flight control system, it is 
desirable to: 

1. Address all known plant variation up front. 
2. Incorporate information on the desired out- 

put tolerances. 
3. Maintain reasonably low loop gain (reduce 

the "cost of feedback"). 

This last item is important to avoid the 
problems associated with high loop gains, such 
as sensor noise amplification, saturation, and 
high frequency uncertainties. It is assumed that 
the reader has a working knowledge of QFT. 
For information on QFT see [1-5]. 

Background 

The control law design was accomplished 
as a Master's thesis at the Air Force Institute of 
Technology by Maj Scott Phillips, an F-16 pilot 
and control system engineer [7]. The objectives 
for simulating this control law design on a 
piloted simulator are as follows: 

1. To test Phillips' design against a non-linear, 
6DOF, simulation truth model emphasizing 
stability across entire design envelope. 

2. To obtain initial handling/flying quality 
assessment for the QFT design which 
includes handling/flying quality require- 
ments specified a-priori in the design. 
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3. To validate the achievement of the stated 
performance specifications. 

4. To simulate flight scenarios not included in 
the design by Major Phillips, in order to 
investigate the degree of robustness inherent 
in a MIMO QFT design. 

The control law design addressed the sub- 
sonic flight envelope of the VISTA F-16 includ- 
ing some changes in aircraft configuration. 
These configuration changes affect control 
response through varied center of gravity and 
moments of inertia. The design was accom- 
plished as a SISO longitudinal loop and a 
MIMO lateral loop using MIMO QFT CAD 
software developed at AFIT [8]. The design 
incorporated pilot handling qualities within the 
specifications [6]. 

Controller Structures 

Based upon the models provided and the 
specifications developed, Phillips designed con- 
trol laws covering the subsonic flight envelope 
of the VISTA/F-16. The longitudinal control 
variable, called C*, is a hyperbolic blend of 
pitch rate, q, and normal acceleration at the 
pilot's station, gpih as shown in Figure 1. This 
definition varies from the linear combination 
found in most references. Imbedding handling 
qualities in the system through this prudent 
choice of control variable ensured that the per- 
formance specifications were met. The prefilter 
design flexibility subsequently allowed the 
response to be shaped for proper feel. 

100    200   300   400   500 600   700   800   900 1000 1100 

S. Dynamic Pressure (bs/sq ft) 

Figure 1. C* Command Blending 

The longitudinal control input to the plant 
was elevator (symmetric tail deflection). Lead- 
ing edge flaps are scheduled with angle of 
attack, a, in the baseline flight control system. 
This is considered a configuration variable and 
left unchanged in the QFT based control system. 

Using QFT, Maj Phillips found a suitable inner 
loop compensator, Gc*. to be: 

G>* - 
_ 3.3(5+ 1.7)(s + 3.5) 

5(5+12) 

This compensator provides sufficient gain 
across the frequency band of interest to ensure 
that the closed loop transfer function does not 
vary more than the specifications allow. The 
closed loop transfer function is brought within 
the specification boundaries by designing a pre- 
filter to shape the response. 

In this case a simple lag function, Fc*, 
brings the frequency response within specifica- 
tions over the desired bandwidth. 

FC* ~ 
3.5 

5 + 3.5 

This compensator and pre-filter work 
very well for small signals across the envelope. 
However, they do not address the physical limits 
embodied in the handling quality specifica- 
tions. It was necessary to develop a schedule for 
the pitch stick to limit the amount of C* com- 
mand allowed as a function of dynamic pressure 
in order to prevent control surface saturatioa 
Additional schedules were developed to limit 
the maximum angle of attack and load factor. 
The resulting longitudinal control system struc- 
ture is shown in Figure 2. 

scaungof 

C*max(GB»d) ► Scallop by Limiten 
2J 

»■3.5 V B&+12) 

Computation 

adot    ßdot 

Figure 2. QFT Based Control System 

In contrast to this control system designed 
with QFT, it is interesting to look at the baseline 
F-16 flight control system. A diagrammatic 
description of the baseline longitudinal flight 
control system, not including the alpha limiting 
described above, is shown in Figure 3. 
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Figure 3. Baseline Control System 

Though the baseline FCS operates from 
taxi through supersonic flight, it is still consider- 
ably more complex than the QFT FCS for the 
subsonic portion of the envelope. Most of the 
schedules shown are based on dynamic pressure 
and are piece-wise linear. 

A QFT based control system was also 
designed for the lateral-directional channels of 
the VISTA/F-16. Roll rate, p, and sideslip 
angle, ß, are the controlled variables in this 2x2 
multiple input multiple output (MEMO) sys- 
tem. Before proceeding with the standard QFT 
design procedure, Phillips added a yaw damper 
to dampen the dutch roll mode. This was 
accomplished by feeding yaw rate, r, to the rud- 
der command through a washout filter. 

The F-16 has three control surfaces used 
for the lateral-directional channel; rudder, aile- 
ron and differential horizontal tail. Since only 
two variables are controlled, it is necessary to 
apportion the control surfaces to each channel. 
Rudder is used for the sideslip channel, control- 
ling sideslip angle ß. Aileron plus .294 differen- 
tial tail is used for the roll channel, controlling 
roll rate, p. The resulting aircraft model is as 
shown in Figure 4, where the 3 x 2 MEMO plant 
includes the rudder actuator and yaw damper. 
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Figure 4. Lateral Directional Structure 

The final lateral directional design is 
shown in Figure 5. The roll channel incorpo- 
rates a constant, first order compensator and pre- 
filter. The sideslip (yaw) channel has a second 
order compensator, first order prefilter and 
washout filter. The sideslip channel gain had to 

be scheduled because a fixed compensator 
would not provide adequate performance. This 
was evident early in the design from the size of 
templates. 

Figure 5. QFT Based Lateral FCS 

The baseline lateral-directional flight con- 
trol system structure is shown in Figure 6. As in 
the longitudinal FCS, this structure is heavily 
dependent on gain scheduling. 

Shape 
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Gain 
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Latent acceleration 

Figure 6. Baseline lateral FCS 

Simulation Environment 

Handling qualities were evaluated in a 
high fidelity, piloted simulation of the system. 
The simulation resides within the Large Ampli- 
tude, Multimode Aerospace Research Simulator 
(LAMARS) operated by The Control Integra- 
tion and Assessment Branch of Wright Labora- 
tory (WL/FIGD). LAMARS was designed for 
flying/handling qualities simulations. A cockpit 
similar to the F-16 cockpit is used with side- 
stick and throttle controls. Displays include 
standard aircraft mstramentation, a heads-up 
display (HUD) and out-the-window visual dis- 
plays with a 160° horizontal field of view. 
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The aircraft model used in the simulation 
is a nonlinear, full-envelope aerodynamic model 
of the VISTA F-16. This model has been veri- 
fied in previous programs through extensive 
comparison to flight test data. Logic emulating 
the basic F-16 digital flight control system 
(DFCS) in the standard simulation was replaced 
by equivalent logic implementing the QFT 
based control laws in digital form at 50Hz. It 
takes force inputs from the stick and pedals and 
provides commanded deflection outputs (in 
degrees) to the actuators. It also includes angle 
of attack (AOA) and g limiting, as well as AOA 
and g rate limiting, all consistent with the limit- 
ing which occurs in the baseline FCS. 

Results 

The QFT based control laws were evalu- 
ated in two phases. During Phase I, stability 
tasks were performed to check out the simula- 
tion and gather basic response data. Phase n 
involved positioning, gross acquisition and fine 
tracking tasks which were used to gather pilot 
rating data on the FCS. These tasks were 
intended to be representative of tasks that a pilot 
would be required to perform in combat. 

Flight conditions varied from 0.3 Mach at 
12,000 ft (dynamic pressure, qbar or ? , of 83 
psf.) to 0.9 Mach at 10,000 ft. (? of 825 psf.) 
Configuration variations included variations in 
the number of external fuel tanks (0, 1, or 2 
tanks). It was apparent from Phase I maneuvers 
that the configuration variations did not have 
any dramatic effect on performance, hence, the 
remainder of the simulations were flown with a 
clean aircraft. 

Phase I, Stability Tasks 

Phase I, stability tasks, included stick 
doublets and loaded rolls. Maximum stick dou- 
blet maneuvers were performed with an objec- 
tive of achieving second order transient 
response with no overshoot, and minimal nega- 
tive effect of secondary parameters (Mach, etc.) 
as compared to the baseline DFCS. Dynamic 
stability throughout each maneuver was a basic 
requirement for these tasks. Figures 7-10 show 
the pitch doublet response at low q and high ? 
respectively. 

The pilot did not notice any difference 
between the baseline FCS and the QFT FCS 
pitch response. This could be attributed to the 
lack of motion in the simulation as pitch angle 
traces were similar for both systems. 

Pitch rate, however, varied dramatically. 
The baseline FCS exhibits a large overshoot in 
pitch rate while the QFT FCS exhibits a well 
damped second order response. Preliminary 
analysis shows the QFT FCS meets level 1 han- 
dling qualities for the pitch doublet maneuvers. 
The requirement is damping ratio greater than 
0.36 and sufficiently fast rise time. 
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Figure 7. Baseline Pitch Response - Low ? 

Figure 8. QFT Pitch Response - Low q 

At high q , the commanded variable is 
primarily load factor (normal acceleration). 
Figures 9 and 10 show the pitch doublet 
responses at high ? . Responses are very similar 
for both systems. 
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Figure 9. Baseline Pitch Response - High q 

19 
Time (sec) 

Figure 10. QFT Pitch Response - High q 

One obvious deficiency with the QFT 
FCS is that the aircraft achieves a large negative 
load factor when commanded to pitch down. 
This was a known beforehand as Maj Phillips 
made no attempt to limit negative load factor. 
This would have to be addressed in future work 
and would likely be handled with a limiting 
scheme similar to positive g limiter. 

These plots do not show how well the sys- 
tem met the design specifications as the QFT 
FCS was based upon C* as the control variable. 
The C* response is shown in Figure 11 includ- 
ing dotted lines representing the tracking speci- 
fications. Even though this is a nonlinear 
simulation, the specifications were met 

19 20 
Time (sec) 

Figure 11. QFT C* Response - Low q 

The pilot noted that roll response was 
slower with the QFT control system but more 
controllable (stable). A standard measure of roll 
performance is time to roll through 90°. As 
shown in Figure 12, the QFT FCS is slow in 
comparison to the baseline and does not meet 
level 1 flying quality criteria. 
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Figure 12. Time to Roll Through 90° 

One interesting and positive result of this 
test series was the aircraft response to pedal 
input. The baseline FCS induced a fast yaw rate 
followed by a large roll angle, actually inverting 
the aircraft at low dynamic pressures, in 
response to a full pedal command. The QFT 
system induced a smooth sideslip with very lit- 
tle roll. The pilot commented that this would be 
beneficial for strafing maneuvers. The yaw 
doublet response for the QFT FCS is shown in 
Figure 13. 
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Figure 13. QFT FCS Yaw Response 

Velocity vector rolls Goaded rolls) were 
performed with an objective of achieving angle- 
of-attack/sideslip angle response similar to the 
baseline DFCS. Responses were generally 
similar and neither system showed any tendency 
towards departure. The systems could achieve 
similar load factors during high ? maneuvers, 
but the baseline control system was able to 
achieve higher values of a at low q . 

Phase n, Positioning, Gross Acquisition 
and Fine Tracking 

Phase II incorporated positioning, gross 
acquisition and fine tracking tasks. These tasks 
were used to provide an initial assessment of the 
handling qualities of the QFT based FCS com- 
pared to the baseline FCS. The intent was to 
note successes and identify deficiencies to be 
corrected in follow on research. The results 
were surprisingly positive. The QFT FCS per- 
formed nearly as well in most tasks and better 
than the baseline FCS in a few. 

Pitch, bank, and heading angle capture 
maneuvers were performed with the objectives 
of evaluating handling qualities and identifying 
maneuverability limitations and pilot-induced 
oscillation (PIO) tendencies. From straight and 
level flight, the pilot was told to pitch up to 
achieve and hold a 5° pitch angle above trim 
before gaining 100 feet in altitude. The pilot 
used his attitude direction indicator to judge the 
angles. The QFT FCS seemed to respond 
smoother and be easier to handle at low q con- 
ditions as shown by Figure 14. 
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Figure 14. Pitch Angle Capture at Mach .3 

Bank angle capture consisted of rolling to 
-45°, rolling to 45° and rolling back to level. 
The data showed responses that were similar as 
seen in Figure 15. The pilot noticed that the 
QFT FCS allowed the nose to pitch down more 
and suggested that there was a tendency of the 
QFT FCS to overshoot the bank angle, requiring 
a larger restoring input. 
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Figure 15. Bank Angle Capture at Mach .6 

Heading angle capture involved turning at 
maximum turn rate and rolling out at a 90° head- 
ing change. This maneuver tested the predict- 
ability of the lateral directional channel. With 
the baseline FCS it was necessary to overshoot 
the target heading in order to be near it after the 
roll out at some flight conditions making it 
unpredictable. The QFT FCS does not require 
this large overshoot and was predictable as 
shown in Figure 16. 
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Figure 16. Heading Angle Capture, Mach .9 

Multichannel gross acquisition maneu- 
vers were performed to check handling qualities 
during elevated load factors and short-term 
response characteristics for aggressive point- 
ing. Performed with a target aircraft, this 
maneuver tested the pilot's ability to turn onto 
and acquire a turning target 

The test and target aircraft began co-alti- 
tude at 10,000 feet, test aircraft in trail, with a 
3,000 ft separation. At the start of the maneu- 
ver, the target aircraft rolled to a specified load 
factor and maintained altitude. The test aircraft 
delayed for 6 seconds then rolled toward the tar- 
get to acquire the target for at least two seconds 
while maintaining the load factor. The target 
was considered acquired when the pilot tracked 
him within a 50 mil reticule. 

Pilot ratings were recorded as Cooper- 
Harper ratings [6] shown in Table 1. This sys- 
tem uses a 10 point scale, 1 being highest, to 
rate aircraft controllability. Any rating from 1 
to 3 is considered satisfactory without improve- 
ment. These ratings are very good for a flight 
control system in this first stage of development 
The only deficiency noted was the tendency to 
oscillate like a dutch roll which was slightly 
worse for the QFT FCS than the baseline FCS. 

Runl Run 2 Run 3 Run 4 Rim 5 

5(lb/sqft) 92 367 367 825 825 

QFT 2 2 2 2 1 

Baseline 2 1 1 2 1 

Longitudinal and lateral Heads-Up Dis- 
play (HUD) tracking was used to check feel and 
control sensitivity characteristics in a tight, 
closed-loop tracking task. This task was 
intended to expose pitch bobble or PIO tenden- 
cies. A sum of sine waves signal was subtracted 
from the current pitch angle or bank angle of the 
aircraft and projected on the HUD. The pilot 
was tasked with nulling out this signal by 
maneuvering the aircraft. 

Preliminary analysis of this series of tests 
did not expose any problems with the QFT FCS. 
RMS measurements of the tracking error signal 
were within 5% of each other, suggesting no sta- 
tistical difference between the systems for this 
task. The only notable pilot comment was that 
the QFT FCS seemed to respond quicker to lon- 
gitudinal stick input than the baseline FCS. 

Table 1: Cooper-Harper Ratings for 
Gross Acquisition Task 

Figure 17. Pitch Attitude Disturbance 

An air-to-air fine tracking task was per- 
formed to check the pilot's ability to gun track a 
target aircraft and expose short term longitudi- 
nal and lateral handling qualities deficiencies. 
After acquiring the target aircraft, the pilot was 
tasked to move his aim point to four different 
locations on the target aircraft, specifically, the 
nose, tail pipe, right wing tip, and left wing tip. 
These moves occurred at four second intervals 
and were designed to appear random, but were 
kept consistent for both systems. 

The pilot rated the QFT FCS a 3, and the 
baseline FCS a 2 for this task. The pilot could 
track the target to within 10-15 mils with the 
baseline FCS and experienced only slight pitch 
oscillations. The pilot estimated tracking error 
over 20 mils with the QFT FCS and experienced 
a noticeable roll-yaw (lateral) oscillation similar 
to a dutch roll. 
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Conclusions 

These simulations were intended to quan- 
tify the performance of a flight control system 
designed using the techniques of QFT. The pri- 
mary intent was to demonstrate the viability of 
using QFT for flight control system design. 
Additionally, it was expected that piloted simu- 
lation would expose any deficiencies with the 
design so that the design procedure could be 
revised. 

The QFT control laws provided level 1 
handling qualities per the specifications in the 
pitch channel. It did not provide level 1 han- 
dling qualities in the lateral channel, but the 
response was better than one would expect for a 
first cut design. 

For flight control system design, QFT 
compares very favorably with current design 
methods. The excellent performance in these 
initial simulations demonstrated the viability of 
a QFT design approach in producing flight wor- 
thy aircraft control systems. It illustrated the 
benefits of designing flight control systems with 
a robust control design technique in contrast to 
the brute force approach of optimizing a flight 
control system for performance in expected con- 
figurations and then scheduling the gains. 

Future work will take the results of these 
simulations and feed them back into a rede- 
sign. Since the entire subsonic flight envelope is 
addressed at once, redesign should be a very 
quick and simple process. 
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ABSTRACT : This paper deals with a multi-scalar approach of the robust control of multivariable uncertain plants. 
Through the Gershgorin theorem and the small gains theorem, it is shown how the coupling effects on stability in closed 
loop can be taken into account in scalar approaches. New multivariable uncertainty domains are defined so as to be taken 
into account by the scalar CRONE control. These domains are based both on the structured scalar uncertainty domains 
related to the diagonal elements of the plant, and on the Gershgorin circles related to the corresponding column elements. 
An application of multiscalar CRONE control is described. 

1 - Introduction 

Multivariable or MIMO (Multi Input Multi Output) 
uncertain plants are often controlled, for the sake of 
simplicity, using diagonal MIMO controllers. Each 
element of the controllers is usually synthesized taking 
into account only scalar or SISO (Single Input Single 
Output) uncertain behaviours of the MIMO plants. This is 
the case in robotics when the articulations of robots are 
dynamically coupled. It is also the case in the control of 
robots whose highly coupled articulations have been 
subjected to linear or non linear dynamic decoupling. 
When these multi SISO controls are synthesized to 
acheive rapid dynamics, a decrease of the stability degree 
of each of the regulation loops can be noted. This decrease 
is due to the coupling effects of the uncertain 
multivariable plant not being taken into account in the 
synthesis of the controllers. 

It is proposed in this paper to interpret the coupling 
elements of uncertain MIMO plants as further 
uncertainties on the elements of corresponding multi 
SISO plants. This proposition is based on a comparison 
of the sufficient stability conditions given by the small 
gains theorem [ZAM 66] for an uncertain SISO plant, and 
the Gershgorin theorem [ROS 70] for a certain MIMO 
plant. Because these conditions are similar, it is possible 
to define a closed loop stability condition which takes into 
account both the uncertain non diagonal elements and the 
uncertainty on the diagonal elements of the transfer matrix 
in open loop of an uncertain MIMO system. 

The Gershgorin theorem has already been extended to 
deal with uncertain multivariable systems [ARK 84]. As 
shown by Arkun, this extension results in overestimation 
which can lead to excessive conservatism. This paper, on 
the contrary, proposes to define multivariable uncertainty 
domains based both on the structured parametric 
uncertainties of SISO systems [LAN 94] as taken into 
account by the CRONE robust control approach [OUS 
91a], and on the conclusions of the basic Gershgorin 
theorem. This definition permits an analysis of the robust 
stability which is as little conservative as possible. It is 
then shown how the results can be used in the synthesis 
of robust controls in uncertain MIMO plants based on the 
CRONE approach, and on any approach using structured 
frequency uncertainty domains. 

2 - Scalar CRONE control 

In the non integer approach used by the CRONE 
control (abbreviation of "Commande Robuste d'Ordre Non 
Entier" which means "non integer order robust control"), 
the robustness is that of the stability degree measured by 
the resonance ratio in tracking, or by the damping ratio of 
the control. 

Three strategies, which guarantee excellent robust 
performance, are already the subject of major theoretical 
and technological developments [OUS 91a, 95b, 95d] 
[BER 96]. 

The first two strategies are based on real non integer 
integration. Whereas the first generation CRONE control 
is based on a constant phase of the controller (always in 
series with the plant) around open loop unit gain 
frequency a>u, the second is based on a constant phase in 
open loop (around coa for the nominal parametric state of 
the plant) defined in the Nichols plane by a vertical 
template . This vertical template is described by the 
transmittance of a real non integer integrator, namely 

$s) = (ök)n' with n'e R. (1) 

where n', the real order of integration, determines the 
phase placement of the generalized template, namely : 
-n'K/2. 

The vertical sliding of this template is a requirement 
which is only verified in particular cases. In these cases, 
the shape and the vertical sliding of the template ensures 
the constancy of the phase margin <2>m but also : 
- the constancy of the first normalized overshoot of the 

step response in tracking or in regulation, through the 
tangency of the template to a given iso-overshoot 
contour (graduated by Ox) or to an M. circle of the 
Nichols chart; 

- the constancy of the damping ratio in tracking and in 
regulation, through the tangency of the template to a 
given isodamping contour (graduated by 0 [OUS 95a]. 

Except for these cases, the template does not slide on 
itself at the time of a reparametration of the plant. There 
is no reason for the template thus defined to ensure the 
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best robustness of the control. It is more convenient to 
consider a template, which remains defined as a straight 
line segment (around frequency fl)u) for the nominal 
parametric state of the plant, but of any direction, and 
called a generalized template. The template thus defined is 
described by a transmitlance based on the restriction in the 
operational plane 0j of the transmittance of a complex 
non integer integrator (in the case of a negative imaginary 
integration order), namely: 

^) = [cosh/&^)l'1[(^n     wiihn' = a + ibe ft 

(2) 

where s always belongs to plane i-} (s = o + ](o). a, the 
real order, determines the phase placement of the 
generalized template, and b, the imaginary order, 
determines its angle to the vertical. 

Among the infinity of generalized templates thus 
defined, it is convenient to select an optimal template in 
conformity with the minimization of a quadratic criterion 
when reparametering the plant. The optimal template can 
therefore be defined as the generalized template which: 
- tangents the iso-overshoot 0\ or isodamping £ desired 

contour for the nominal parametric state of the plant, 
- and minimizes a quadratic criterion calculated from the 

extremal variations of Oi or £ stemming from the 
uncertainty domains which in tum stemm from the 
various parametric states of the plant. 

By minimizing such a criterion, the optimal template 
positions the uncertainty domains [LAN 94] correctly, so 
that they overlap as little as possible on the low stability 
degree areas (Fig. 1). 

Figure 1. (a) any given generalized template ; 
(b) optimal template 

Such an objective [OUS 95a] leads to minimizing the 
term 

(ßmax-ßd)2, (3) 

where ßa is the desired value of the resonance ratio and 
ßmax its maximal value. Synthesizing the optimal 
template is the initial approach of the third generation 
CRONE control [OUS 91a]. 

It is easy to show that the multiplicative uncertainties, 
which define the uncertainty domains in the Nichols plane 
and are related to the open loop frequency response, are 
invariant and equal to those related to the plant. Let a 
SISO uncertain plant be : 

G(s) = Gis^Gis) (4) 

The uncertainty domains related to the Nichols locus 
G(ßa>) are defined by all the possible values of the pair 
(argAnG(j(ö),UmGOfl>)U). ß(s), the open loop 
transmittance, being defined by: 

fl» = G(s)C{s) = Gis^Gis^s) = ßis)AmG(s), (5) 

the uncertainty domains related to the Nichols locus of 
ßoQco) are also defined by the possible values of the pair 
(arg AnG^co), \ AmG^co) U) • 

In the third generation CRONE control version used, 
the behaviour in open loop for the nominal plant takes 
into account : the accuracy specifications at low 
frequencies ; the generalized template around unit gain 
frequency (Oa ; the specifications on the plant input 
sensitivity at high frequencies.lt turns out that the 
behaviour thus defined can be described by a transmittance 
based on frequency limited complex non integer 
integration [OUS 95b], namely : 

1+S-) 
(Oh 

\        Ob' 

Co      ^ 

x- (Ob> 0j/ 
(i+^.r 

where 

Co = l + fl£|/[l + ®£ 
(Ob (Ob2!! 

1/2 

(6) 

(7) 

The optimization algorithm based on the non linear 
simplex [SUB 14] proceeds to the search for a vector of 
independent parameters which minimizes the criterion (3) 
which is based only on the quadratic variations of the 
resonance ratio in tracking when reparametering the plant 
This minimization is carried out under the set of shaping 
constraints on the four usual sensitivity functions. The 
open loop defined by the optimal vector, if it exists, 
satisfies all the specifications and ensures the robustness 
of the stability degree that the criterion considered 
measures. 

When the optimal open loop transfer is determined, the 
regulator is defined by non integer transmittance C„i(s), 
deduced from: 

C4s) 
G4s) 

(8) 

in which ß(s) is given by relation (6) and where G0(s) 
designates the nominal transmittance of the plant 

The synthesis of the low integer order transmittance of 
regulator Cais), consists in identifying frequency response 
CniQ(0) by a rational integer model. Two synthesising 
techniques are used. The first is based on the elementary 
symetrical functions of the Viete roots [OUS 91b] [LAN 
94], and the second on the resolution of a linear 
programming problem [MAT 95]. 

The interest of the CRONE control lies in the fact that 
its most elaborate version takes into account not only the 
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genuine uncertainty domains of the plant (owing to the 
absence of norms), but also all types of uncertainties, 
whether structured or not. 

In addition, complex non integer integration is 
introduced, which makes it possible to parameter the open 
loop transmittance with few parameters, and therefore to 
reduce optimization to the search for the optimal values of 
these parameters. The variable phase CRONE controller is 
then only synthesized for the optimal open loop 
transmittance, thus avoiding the iterative synthesis of a 
regulator with many parameters. 

CRONE control has already been extended to unstable 
[BER 96] or non-minimum phase plants, to lightly 
damped plants and to sampled time control [OUS 95c]. 
The interest of the CRONE control lies in the fact that 
its most elaborate version takes into account not only the 
genuine uncertainty domains of the plant (owing to the 
absence of norms), but also all types of uncertainties, 
whether structured or not. Our goal is to construct 
multivariable uncertainty domains which allow the use of 
a multi-scalar robust synthesis of the control law. 

3 - Multi-scalar CRONE control 

Multi-scalar CRONE control is defined as the scalar 
CRONE control of each diagonal element of an uncertain 
multivariable plant, precorrected if nessecary. On 
synthesis of the control laws, the magnitude of the non 
diagonal elements are taken into account. 

3.1 • Modeling       the 
multivariable   systems 

uncertainty       of 

The aim of this section is to show that this result is 
obvious when one establishes a parallel between the 
application of the small gains theorem to a SISO 
uncertain linear time invariant plant, and the application 
of the Gershgorin theorem to a MEMO certain linear time 
invariant plant 

3.1.1 - MIMO certain plants and Gershgorin's theorem 
[Ros 70,74] [Mac 89] 

The Gershgorin theorem can be used when the complex 
matrices are rational functions and, in particular, transfer 
functions. Then, the stability of closed loop multivariable 
systems can be studied using Gershgorin circles. 

Let [Q(s)] be an n*n open loop transfer matrix, linear 
time invariant and certain. For all i betwen 1 and n and for 
all co of [0, +oo[, the Gershgorin's circles are defined by 
the circles of center Qu (jco) and of radius r,- (co), with : 

n(co) = min 1 
lsys« 

Qij{}co)\, I  \Qji(}co)\ 
IS/S» 
J*' 

(9) 

The n hulls drawn from the union of these circles are 
called Gershgorin bands, and they contain the caracteristic 
loci of the n eigenvalue frequency responses of [Q(s)]. The 
system is stable in closed loop if: 

- the number of encirclement of the point (-1,0) by the n 
Gershgorin bands satisfies the Nyquist stability 
condition generaly used for SISO systems; 

- all the n Gershgorin bands exclude the point (-1,0). 

So, the system with an open loop transmittance [Q(s)] 
can be stable in closed loop if: 

n(co)< 11 + ö«(jö>)l V 1 <i<n and V coe [0, -H»[ . 
(10) 

3.1.2 - SISO uncertain plants and small gains theorem 
[ZAM - 66, VID - 82] 

Let Q(s) be an open loop transfer, linear time invariant 
and uncertain with: 

Ö(j) = ßo(s) + 4.ß(s), (11) 

where Q0(s) is its nominal transfer and, AtQ(s) the additive 
form of its uncertainties. 

The small gains theorem states that the system with 
an open loop transmittance Q(s) can be stable in closed 
loop if: 

r{co) < | 1 + ßo(jü>) | V co € [0, +~[ , (12) 

where r (co), is defined by: 

r{co) = max\Q(jco)-Qo(]co)\, (13) 

At each frequency, the left term of (13) can be 
interpreted as the radius r(co) of a circle that localises the 
uncertainty. Its center is given by the nominal open loop 
frequency response. The closed loop system is stable if it 
is stable for die nominal parametric state, and if all the 
circles exclude the point (-1,0) of the Nyquist plane. 

3.1.3 - Comparison and illustration of stability conditions 

It is interesting to compare the stability condition (12) 
obtained through the small gains theorem for uncertain 
SISO systems, to (10) given by the Gershgorin approach 
for nominal MIMO systems. These two conditions are 
illustrated by Fig. 2 which shows that the two theorems 
lead to similar graphical stability conditions. Indeed, the 
two formalisms use the distance between the edge of the 
circles, related to the uncertain or multivariable nature of 
the plant, and the point (-1,0) of the Nyquist plane. So, in 
the nominal multivariable case, the coupling elements can 
be considered as uncertainties on a scalar plant 

i 
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Figure 2. Graphical illustration of: (a) small gains 
theorem ; (b) Gershgorin's theorem 

This last remark is very important if a multi-scalar 
synthesis approach is considered. Thus, the certain or 
uncertain coupling elements can be considered as further 
uncertainties on the uncertain diagonal elements of the 
transfer matrix of the plant So, these diagonal elements 
are now a little more uncertain. 

3.1.4 - Consideration of the non diagonal plant elements 

This section of this paper provides a methodology that 
tries not to bound the elements resulting from the 
uncertainty on the diagonal and non diagonal elements of 
the open loop transfer matrix. 

Given an n*n uncertain MIMO plant G and C a n*n 
multi-scalar (diagonal) controller in series. As the 
previous section shows, the row and column non diagonal 
elements of G can be considered as uncertainties on the 
diagonal elements. For a given parametric state, the 
additive uncertainty on Gu Qco) is given by: 

min[   X   |G*-0fl))l.    I   \Gji(jco)\).        (14) 
\<.j<.n IS/Sä 

\    j*i j*< I 

This uncertainty can be written in a multiplicative 
form: 

Gij{}0))\ G,«(jü>)P 

isys«|G«0fl»)|        is;s«|GaG<ö)| 
;*■ ;*« 

(15) 

The multiplicative uncertainty on ßuQco), a diagonal 
element of [ß(s)] the open loop, with 

' Ci{s)Gn(s)— C4syGi4s) 

[ß(s)]=[G(s)][C(s)] = 

is given by 

/ 
mm 

.CI(J)G.I(J)---QJ)G«(J) 

Cy(jfl>)G»Q<P 

(16) 

Gfi(}(o)\\ 1 +   y   IWII^^U^I^ i +   y 
isys»| Ci(jö»)G«ü®)r        isys«|GsOfl>)l 
j*i i*' 

(17) 

On synthesis of the elements of the multi-scalar 
controllers, (15) and (17) show that only uncertainties 
related to the non diagonal column elements remain the 

same and are independant of the controller. To facilitate 
independant synthesis of each of the elements of the 
multi-scalar controller, it is this column uncertainty 
which is chosen to synthesize the robust control law. So, 
the circles chosen to represent the multivariable 
uncertainties on G„ (s) have their radius in the Nyquist 
plane: 

\Gjj(}o)\ 
Gu{jco)\' 

n(fl))=   X 
l£j£n\ 

(18) 

;*' 

It is true that if the row elements are smaller than the 
column elements, such a determination of uncertainties 
can be a little conservative. 

It is also very easy to show that only the column 
diagonal dominance remains true in the case of a control 
with a multi-scalar controller in series. 

3.1.5 - Construction of multivariable uncertainty domains 
of the diagonal elements 

For the CRONE methodology, the uncertainty 
domains are constructed in the Nichols plane. 
Nevertheless, in order to facilitate their presentation, the 
uncertainty domains are here constructed in the Nyquist 
plane. The multivariable uncertainty domains related to 
the diagonal elements are constructed both through the 
frequency responses of the diagonal elements for all the 
parametric states of the plant and through the unstructured 
uncertainties related to the non diagonal elements of the 
plant. For example, Fig. 3 shows the frequency response 
of a diagonal element for its nominal parametric state, and 
for the three other parametric states considered. At each 
frequency response, a Gershgorin circle related to the 
further non diagonal column element uncertainties is 
associated. 

r^Ok) 

^ÖkLcfs 

Figure 3. Reparametrized diagonal element and 
multivariable uncertainty circles 

The construction of the multivariable uncertainty 
domains consists in the determination of the hull that 
takes into account both the uncertainty related to the 
diagonal element (scalar uncertainty domain) and the 
further multivariable uncertainty. Depending on the 
structured or unstructured nature of the representation of 
the diagonal uncertainy (related to the diagonal element), 
the multivariable uncertainty domain can be constructed in 
three ways (Fig. 4). In Fig. 4(a), the representation of the 
diagonal uncertainty is unstructured. The scalar uncertainty 
domain is defined as the circle that includes all the 
frequency responses of the diagonal plant. The non 
diagonal elements are taken into account through the 
Gershgorin circle of Fig. 3 with the greatest radius. In 
Fig. 4(b), the representation of the diagonal uncertainty is 
now structured. The vertices of the convex scalar 
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uncertainty domain are defined by the extreme parametric 
states of the plant. Even if this representation of the scalar 
uncertainty is less conservative than the previous one, 
because only the greatest circle is used, this construction 
is still too conservative. Finally (Fig.4(b)), the 
multivariable uncertainty domain is defined by the convex 
hull that includes all four Gershgorin circles. This 
construction is the least conservative because it is the 
most realistic. 

Figure 4. Construction of multivariable 
uncertainty domains 

In the Nichols plane, the construction is unchanged, 
except the circles are replaced by ellipsoids if the plant is 
column diagonal dominant 

The construction of the multivariable uncertainty 
domains for each diagonal element of a multivariable plant 
and the synthesis of a robust control for each new 
uncertain scalar plant defines the multi-scalar CRONE 
control approach. 

3.2 - Illustration example 

The example used to illustrate the strategy of multi- 
scalar CRONE control is that of I. Horowitz [HOR - 79]. 
The study plant considered is a first order 2*2 

multivariable uncertain plant with a transfer matrix as 
follows: 

to] = 
Gn(s) 

L (his) 

Giis) 

(his) . 

h\ hi 
S+ (Oil  S + Ü)12 

fal &22 
S + 0)21  S + (022. 

(19) 

The correlated parametric uncertainties on the gain and 
transitional frequency of each element of the transfer 
matrix (19) are defined by a set of ten possible parametric 
states given in Table 1. 

To compare our results with those obtained using a 
multivariable (and thus more complex) approach [KID - 
84] on the problem given by I. Horowitz, the frequency at 
open loop unit gain (which is usually around the cut-off 
frequency in closed loop) is set at 10 rd/s. As we shall see, 
this value is the same for the the two tracking loops, as 
the dynamics of the elements of the nominal diagonal 
plant are almost the same. 

*n *12 *21 *22 (on ©12 ©21 ©22 
1 1 0.25 0.333 1 1 0.5 0.333 0.5 
2 2 0.5 0.5 2 2 1 0,5 1 
3 5 1 1 5 5 2 1 2.5 
4 4 0.5 0.666 2.5 1 0.5 0.333 0.5 
5 8 1 1 5 2 1 0,5 1 
6 20 2 2 12.5 5 2 1 2.5 
7 10 1 1.333 4 1 0.5 0.333 0.5 
8 20 2 2 8 2 1 0.5 1 
9 50 4 4 20 5 2 1 2.5 
0 8 0 0 5 2 0 0 1 
Table 1. Definition of the parametric states considered 

The various values taken by the static gains (foij _ 
kij/cOij) and the transitional frequencies are defined from 
Table 1 by the following inequalities : 

(foil 
^SL<KSU < 2.5 ton» 

©li 

[fo^jjo. 

sss.< (on < 2.5 6)11 

22-<fo22< 1.6fo22»o, 
; 2.5 
|©22s2sl<ü)22<2.5tt)22nOT 

for the diagonal elements, and 

(0.5 < foi2 < 2 

0.5 < 6)12 < 2 
1 < fo2i < 4 

10.333 < 6)21 < 1 
for the non diagonal elements. 

(20) 

(21) 

The multi-scalar robust control law is synthesised 
using uncertain diagonal elements of the transfer matrix of 
the plant taking the coupling effects into account. The 
algorithm used to construct these multivariable domains is 
the same as that used for the construction of the scalar 
uncertainty domains [LAN 94]. Fig. 5 permits the 
comparison of the scalar and the multivariable uncertainty 
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domains. It is clear that the uncertainty domains to be 
taken into account are greater than the scalar ones. 

"^300 -200 -100 -200 -100 
phase i<i^J 

(bi) (b2) 
Figure 5. Nominal Nichols locus of the diagonal 

elements G„ and associated uncertainty domains : 
(a;) scalar; (b;) multivariable 

For the nominal parametric state of the plant (plant 
number 0) the two controllers are synthesized to ensure 
0.3 dB resonance ratios which lead to a normalized first 
overshoot of step responses of less than 10%. 

Figure 6. Multivariable 2x2 diagram of a 
multivariable plant with a diagonal 

multivariable controller 

Also, for the set of possible plants, the minimum 
admissible damping factor in closed loop is set at 0.6 and 
the maximal value of the modulus of the sensitivity 

function S(ja>) is limited to 6 dB, guaranteeing a 
minimum modulus margin of -6 dB. 

The orders nb and nh of (6) are respectively set at 1 and 
2. Two optimal controllers are then synthetised for the 
two uncertains "scalar" plants. 

Figure 7 gives the Nichols loci of the open loop 
frequency responses. By taking into account the 
multivariable uncertainties of the plant, which are greater 
but also more realistic than the scalar uncertainties, 
variations of the resonance ratio are generated. 
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Figure 7. Nichols loci of open loops ßi(s) and fc(s) 
and associated multivariable uncertainty domains 

Input refereneeEi is a normalized step signal (Fig. 6) 
whereas input reference£2 is null. 
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Figure 8. Time responses : 
 nominal; — reparametered 

Figure 8 gives the time responses of the inputs and 
outputs of the plant for its various parametric states. The 
responses show a settling time of I^ around that obtained 
by P. Kidd (who uses precorrection loops) but with an 
input control signal Ux which is 1.6 times weaker, and an 
effect on output Y2 which is 1.4 times weaker. The 
overshoot on Yx varies between 0 and 12% which is in 
agreement with the variations of the resonnance ratio 
observed when the scalar control was synthesized using 
the multivariable uncertainties. 
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4 - Conclusion 

The Gershgorin results related to stability of the 
nominal multivariable plants in closed loop have been 
reviewed. A comparison is made between the Gershgorin 
methodology, and that using the small gains theorem for 
analysis of the stability of uncertain scalar plants in closed 
loop. It has been shown that the coupling effects on 
closed loop stability can be studied, if die non diagonal 
elements of the plant are taken into account as further 
uncertainties on the diagonal uncertain elements of the 
plant 

A brief review of the CRONE control has been given 
to show how these uncertainties must be defined for 
simplicity of use in the CRONE methology. Thus new 
multivariable uncertainty domains have been constructed 
through both the structured representation of the scalar 
uncertainty, and the Gersgorin circles related to all the 
parametric states of the plant. This new type of 
uncertainty representation permits the design of the less 
conservative robust multi-scalar controls of uncertain 
multivariable plants. 

If the multivariable uncertainty domains are 
nevertheless too big, a precorrection of the plant can 
decrease the effects of the non diagonal elements on the 
size of the multivariable uncertainty domains. An 
application of the multi-scalar approach of CRONE 
control is presented using a Horowitz problem. 
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ABSTRACT 

It is known that decentralised stabilising controller de- 
sign for large scale systems can be translated into an 
equivalent problem of decentralised controller design 
for an MIMO control system. In this paper it is shown 
that, subject to a condition based on the structured 
singular values, each local controller can be designed 
independently. The robust stability condition for the 
overall system can be easily stated as to achieve a suf- 
ficient interaction margine introduced in this paper, 
and a sufficient gain and phase margine defined in the 
classical feedback theory during each independent de- 
sign. The suggested design approach is illustrated by 
a numerical example and its application to stabiliser 
design for power systems is also presented. It is also 
shown that, for the given numerical example, the de- 
sign process and the resulting controller are much sim- 
pler than a state-space based design [1]. 

1 Introduction 

The problems associated with decentralised stabilisa- 
tion control have been the subject of a large number of 
publications over the past two decades. Most of them 
may be grouped into three main categories (Refer to 
[1] and references 1-10 therein). The first category is 
concerned with obtaining the necessary and sufficient 
conditions for the existence of a decentralised stabil- 
ising controller. Although these methods provide a 
means of establishing whether or not a given decen- 
tralised controller stabilises the global system, they 
stop short of addressing the problem of developing 
decentralised controller design methods which would 
result in the stabilisation of the overall global system 
and, at the same time, meet some global system per- 
formance criteria. The second category attempts to 
develop methods for the design of a decentralised sta- 
bilising controller. To date, these attempts have been 
based on either trial and error or the design of state 
observers.    In the former case, local state feedback 

controllers are first chosen and a criterion is then ap- 
plied to test the overall stability. If the criterion holds, 
the design is finished, otherwise a new choice is found. 
There is no guarantee, however, that this iterative pro- 
cess will converge to a solution. In the latter case, 
state observers are designed at the local level for the 
construction of the entire or the most important part 
of the entire state vector [2], which is then used to gen- 
erate local control signals. This approach, however, is 
probably only suitable for small size systems. Under 
the third category, a centralised controller is first de- 
signed, then its dynamics is approximated by different 
decentralised implementation schemes [1]. There is, 
however, no automatic guarantee of global stability 
achieved by the original centralised controller. This 
approach may also be suitable for small size systems 
only. 

To add more difficulties to the problem, the ro- 
bustness of closed-loop systems has to be consid- 
ered. Large scale systems, like all practical con- 
trol systems, subject to external unmeasurable dis- 
turbances, measurement noises and modelling errors. 
Linearised model representations are approximations 
of true plants which inevitably have some nonlineari- 
ties, and systems are normally required to work under 
different operating conditions. In large scale systems, 
these are even more difficult to tackle due to their sizes 
and structural restrictions. 

Apart from the main stream work based on the 
state space approach as outlined above, it may be 
noted that a number of large scale system decen- 
tralised controller design problems can be translated 
into a problem of diagonal (block diagonal) feedback 
controller design for MIMO systems. Since MIMO 
system design methods, particularly frequency re- 
sponse based robust design methods, are relatively 
mature, it is beneficial to investigate how these meth- 
ods could be applied to the translated problem in 
order to develop alternative design methods, and to 
address the robustness issues linked with the origi- 
nal large scale system. This second approach has re- 
cently been applied to power system stabiliser design 
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for multi-machine power systems [3,4]. However, it 
is felt that although large scale system decentralised 
controller design has attracted a large amount of re- 
search based on the state space approach, not enough 
attention has been paid to the second approach. It 
is shown in this paper that, based on the second ap- 
proach, structured singular values can be used for the 
design of decentralised controllers for a class of large- 
scale systems; and the suggested design method can 
be applied to the stabiliser design for a model of a 
practical 10 machine power system [4]. In Section 2, a 
numerical example is used to illustrate the suggested 
design method because this is more concise and conve- 
nient and does not require specialised knowledge and 
technical details related to the application concerned. 
A brief description of the application mentioned and 
the main results are presented in Section 3. 

The numerical example used in this paper was orig- 
inally given in [1] where a global controller is first de- 
signed and then the controller dynamics is approxi- 
mated by decentralised local controllers. In this pa- 
per, the same design problem is first translated into a 
problem of diagonal controller design for an equivalent 
MIMO system, and a condition based on the struc- 
tured singular values is then used for the controller 
design. The design process and the resulted controller 
are much simpler than those reported in [1]. 

2 The Suggested Design Method 

2.1 Example System 

Consider a linear large scale system consisting of 
four subsystems: 
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this system is used in [1] as an example where an op- 
timal global state feedback controller is designed and 
implemented approximately by four local controllers 
with a structure of Figure 1. The details of these con- 
trollers can be found in [1]. In Figure 1, a gain p; is 
also added to the i-th controller so that (a) there is 
no steady-state error for a step input at r1; r2 or r4; 
and (b) due to the controller structure given in [1], the 
steady-sate output 2/3 is zero and the gain g3 is chosen 
to make the maximum value of y3 in the step response 
equal to one. The values of these gains are: 

pi = 3.828 p2 = 18.69 p3 = 2.749 p4 = 9.990 
Some step-response simulation results for the sys- 

tem with the decentralised controllers designed in [1] 
are plotted in Figure 2 and Figure 3 as solid lines. 

2.2 Transform Into An Equivalent Design 
Problem 

The dynamics of the large scale system can be rep- 
resented by: 

x    =    Ax +  Bu 

y   =   Cx (1) 

where x = [ xi x2 x3 x4 ]T , y = [ j/i j/2 2/3 2/4 ]T and 
u=[«i «2 «3 «4 ]T■ A 4x4 transfer function matrix 
G(s) linking U(s) = [ ui(s) u2(s) u3(s) u4(s) ]T and 
Y(s) = [yi(s)y2(s)y3(s)y4(s)]T: 

Y(s) = G(s)U(s)        G(S) = [gij(s)]iJ=li2t3)4     (2) 

can be calculated as: 

G(s)   =   C(sI-A)-1B (3) 

The design of four decentralised local controllers 
now becomes the design of a 4 x 4 diagonal matrix 
F(s) = diag[/i(s)]i=i)2l3,4 as shown in Figure 4 where 
a gain matrix P = diag[pe];=1}2,3,4 is also added to 
the reference input R = d\ag[ri]i=ii2)3}4 . 

If all gij(s) (i ^ j) in G(s) were equal to zero, 
then each controller could be designed independently 
just as if it were in a SISO system as shown in Fig- 
ure 5. However, since gtj(s) (i ^ j) are not zeros, 
the following question must be resolved, i.e., if each 
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/e(s) (i = 1, 2,3,4) is designed to form a stable closed- 
loop system as shown in Figure 5, what are the addi- 
tional conditions which can guarantee that the global 
system of Figure 4 is stable? The answer to this ques- 
tion is discussed in the next subsection based on the 
theorem given by Grosdidier and Morar (Theorem 3 

in their paper [5]). 

2.3 Decentralised Controller Design for MIMO 
systems 

In Grosdidier and Morar's paper, a transfer func- 

tion G(s) = [ff.j(s)]i,i=i,2>...m for a 77i by m MIMO 
plant is decomposed into: 

G(s)  =  G(s)  + G(s) (4) 

where G(s) = diag^s)],-^^.,«   is a diagonal ma- 
trix; all diagonal elements in G(s) are zeros and off- 
diagonal elements in G(s) are equal to those in G(s). 

Using the notations: 

E(s)   =   G(s) G"1(s) (5) 

H(s) = G(s)F(s)(I + G(s)F(s))"1 = diag[/>;(S)]   (6) 

H(s)   =   G(s)F(s)(I+G(s)F(s))-1 (7) 

where F(s) = diag[/;(s)]j=ii2)...m is a diagonal trans- 
fer function for a decentralised controller in Figure 4; 
H(s) or H(s) is a closed-loop transfer function matrix 
for a feedback system consisting of F(s) and G(s), or 
F(s) and G(s) respectively. Since P in Figure 4 will 
not affect the system stability, it can be neglected in 
this subsection. Grosdidier and Morar have proved 
the following theorem: 

The closed-loop system H(s) is stable if: 
(c-1) G(s) and G(s) have the same number of 

Right Half Plane (RHP) poles; 
(c-2)  H(s) is stable; and 
(c-3)* amax(H(ju))<fi-l(E(jw)) Vw 

where crmax denotes the maximum singular value; 
and fi denotes Doyle's structured singular value 
with respect to the decentralised controller structure 
of F(s). Since H is a diagonal matrix in this paper, 
condition (c-3)* can be replaced by: 

(c-3) \fn(Ju)\ < li-l(E(ju>))    Vw (t = 1,2, ...m) 
where   |       |   denotes the magnitude. 

This theorem gives sufficient conditions for the sys- 
tem H(s) to be stable if the controller design is based 
on the fully non-interactive model G(s), i.e. each /,-(s) 
is designed, independently, based on an SISO model 
gu(s). In particular, condition (c-3) states that the 
magnitude of the frequency response of SISO closed- 

loop transfer function hits) = -—'       "—— must be 
1 + fi\S)9ii{s) 

less than the value of a scalar frequency dependent 

function ^-1(E(jw)). Grosdidier and Morar have also 
proved that [5], although (c-3) is a sufficient condi- 
tion and, therefore, may have some conservativeness, 
compared with the other conditions developed for the 
independent decoupled design, for example the diag- 
onal dominant condition and the generalised diagonal 
dominant condition, (c-3) gives the tightest restrictive 
band and is the least conservative. However, since the 
same restriction fi~1(E(juj)) is applied to all /i;(s) in 
condition (c-3), a modification on this condition can 
be made to provide more flexibility and to reduce fur- 
ther the possible conservativeness caused by the in- 
flexibility in condition (c-3) [5]: 

(c-4)* 
<7max(W-1(iw)H(jW)) < ^(E(ju)W(ju))    Vw 

where W(s) = diag[u;;(s)];=1)2,...m is a properly cho- 
sen diagonal weighting function matrix, (c-4)* can 
also be replaced by: 

(c-4) Mj^w-'ijoj)] < fi-l(E(ju)W(ju))  Vw 

(i = l,2,...m) 

Due to w~l{ju>) in (c-4), although 
H~l (E(JLü)(W(jüj)) is still the same for all SISO loops, 
the restrictions on |/it-(jw)| are different. In fact, (c-3) 
is a special case of (c-4) with W = I. 

Before applying the above results developed in [5] 
to our example, it is useful to make the following com- 
ments. 

(1) As pointed by Skogestad and Morar [5], for or- 
dinary MIMO systems, if G(s) is unstable, condition 
(c-1) is generally not satisfied. However, if the model 
G(s) is obtained by the translation from a large scale 
system, condition (c-1) is generally satisfied even if 
G(s) is unstable. The poles of G(s) are given by the 
roots of detfsl — A]; and the elements of G(s), the 
diagonal elements in   G(s), is calculated by: 

gu(s)  = 
c; adj[sl — A] bi 

det[sl - A] 
(8) 

If there is not the same pole-zero cancellation in all 
gu(s), the poles of G(s) are also given by the roots 
of det[sl—A], condition (c-1) is naturally satisfied. 
Even when there are some cancellations, so long as 
they are not in the RHP, (c-1) is still satisfied. 

(2) The stability condition (c-4) is given for the 
nominal plant G(s). If the state space model of 
equation (1) changes, the plant model G(s) will also 
change. It is generally not possible to establish a clear 
relationship between the change of values in (1) and 
the change of values involved in condition (c-4). How- 
ever, generally speaking, the robust stability can be 
achieved if: 
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(r-1) Condition (c-4) is satisfied with a sufficient 
margin. This can be checked by plotting \hi(juj)\ and 
p_1(E(jw)W(jw))|u;;(jw)| on the same graph and 
an interaction margin for loop i can be defined as the 
shortest vertical distance between the two curves. 

(r-2) There are sufficient gain and phase margins 
in each SISO loop for the stability. This can also be 
checked by a Bode or Nyquist plot of fi(ju)gu(ju). 

(3) Since E(s)   =   G(s) G"1^) , if #,•(*) (i ^ j) 
is "small" in relative to gij(s) (i = j),  E(s) will also 
be "small".   /x(E(s))   can therefore be considered as 
a measure of the interactions for the plant   G(s) . 

2.4 Controller Design for Each SISO Loop 

The G(s) for the given large-scale system of (1) 
is stable and is neither row dominant nor column 
dominant. A plot of /i-1(E(;'w)) is given in Figure 
6 as a solid line. Inspection of the Bode plots of 

gu(s) (i = 1,2,3,4) (Bode plots of g22(s) and g33(s) 

are given in Figure 7 and 8; Bode plots of gn(s) and 

ff44(s) are similar to that of g22(s)) indicates that (1) 
an integrator is to be introduced in loop 3 (The dashed 
line in Figure 8 gives the Bode plot when a pure in- 
tegrator is added); (2) since the shapes of all Bode 
plots are similar, there is no need of introducing a 
weighting matrix W(s) in (c-4); and (3) there is no 
difficulty in obtaining the stability margins stated in 
conditions (r-1) and (r-2). The design of a local con- 
troller for each loop is therefore simply to introduce an 
additional gain to make a unit steady-state output for 
a unit step input and to check the stability margins. 
Four decentralised output-feedback controllers can be 
designed as: 

/i(s) = 1.361 h(s) = 1.058 

/,(,) = °^8 = im 
s 

From Fig. 7 and 8, it can be seen that there are suf- 
ficient phase and gain margins for loop 2 and 3. This is 
also true for loop 1 and 4 from the plots of gu(s) and 
#44(s) not given here. To check the interaction mar- 
gins, \h3(ju)\ and \h2(ju)\ are also plotted in Figure 6 
as dashed line and dashdot line respectively. \hi(ju>)\ 
and |/i4(jw)| are not plotted since they are below the 
plot of \h3(jw)\ in Figure 6. The minimum interaction 
margin is about 16.5dB at u> ss 0.25rad/sec with loop 
3. The closed-loop global system time responses are 
given in Figure 2 and Figure 3 as dashed lines. 

3. Application to PSS Design 

Power System Stabilisers (PSSs) have been exten- 
sively used in power systems to improve stability [6]. 

The suggested design method for large-scale systems 
illustrated in Section 2 can also be applied to PSS de- 
sign. A 10 machine 39 bus and 46 line power system 
(Figure 9) is used in this paper as an example. This 
system was developed as a representative of the power 
system in the Northeastern United States and is also 
called the NEW ENGLAND system. The system has 
been used for the study of power system stabilities in a 
number of publications, for example [7-9]. An eigen- 
structure analysis of the system model reveals that 
system is stable but there are four poorly damped os- 
cillation modes. Four SISO decentralised PSSs are to 
be designed and installed on machine 2, 3, 4, and 6 
to improve the damping of these modes [7]. These 
stabilisers and the associated SISO feedback loops are 
numbered 1, 2, 3, and 4 respectively. The similarity 
in the shape of Bode plots for gu(ju) (t = 1,2,3,4) 
indicates that similar PSS parameters may be used 
for all stabilisers and there is no need to introduce a 
weighting function W(s) to give different restrictions 
on hi(s) with regard to condition (c-4) for the global 

stability. The transfer function PSSi(s) for each sta- 
biliser (equivalent to the /;(s) in Figure 5) is in a form 

of: 
Tws    l + TlSl + T3s 

Xsl + Twsl + T2sl + T4s 

Applying the suggested  design method (The de- 
tailed modelling, design, and results are given in [4]), 
PSS parameters are chosen as: 

Tw = 10,   TX=T3 = 0.534,   T2 = T4 = 0.0534 and 
Ks = 40 for stabiliser 1; 
Tw = 10,   Ti = T3 = 0.573,   T2 = T4 = 0.0573 and 
Ks = 30 for stabiliser 2; 
Tw = 10,   Ti = T3 = 0.447,   T2 = T4 = 0.0447 and 

Ks = 40 for stabiliser 3; 
Tw = 10,   T1=T3 = 0.504,   T2 = T4 = 0.0504 and 

Ks = 40 for stabiliser 4. 

The margins achieved for each loop are given as 

follows: 

interaction margin: 7.98dB,   gain margin: 9.81dB, 
phase margin: 61.2°     for loop 1; 
interaction margin: 6.81dB,   gain margin: 11.7dB, 
phase margin: 66.4°     for loop 2; 
interaction margin: 9.04dB,   gain margin: 10.2dB, 
phase margin: 64.2°     for loop 3; 
interaction margin: 8.75dB,   gain margin: 9.84dB, 
phase margin: 63.7"     for loop 4; 

The Bode plots for /i_1(E(jw)) and |Ai(jw)| are 
given in Figure 10. An enlarged version of the Nyquist 
plot for PSSi(ju>)gn(ju) near to the critical point 
— 1 is given in Figure 11 to show the gain and phase 
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margins in loop 1. 
The shapes of Bode plots for h{(ju) (i = 2,3,4) 

and Nyquist plots for PSSi(ju>)gu(ju) (i — 2,3,4) 
are similar to those in Figure 10 and 11. These plots 
are therefore not given here. 

The simulation results for the m-th (m=2, 3, 4, 6) 
machine speed-deviation Aw time-responses, when a 
small step disturbance of 0.05pu (per unit) is applied 
to the m-th machine voltage regulator terminal, for 
the system without PSS and with the four PSS on are 
given in Figure 12 as full-line curves and dotted-line 
curves respectively. 

4. Conclusion 

A new decentralised stabilising controller design 
method for a class of large-scale systems is suggested 
in this paper. The classical concept of stability mar- 
gins is also extended to the definition of the interaction 
margine for large-scale systems. 
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ABSTRACT 

The Parametric Systems Toolbox (PST), a collection of files written in the MATLAB environment 
as a part of a research project in the Control Systems Centre (CSC) at UMIST, investigating the 
analysis and design of systems with parameter uncertainty, will be presented. The toolbox handles 
both Single-Input / Single-Output, and Multi-Input / Multi-Output uncertain systems analysis, and 
uses the symbolic toolbox of MATLAB to represent the uncertainty in the system description. The 
uncertainty structures currently covered in the PST are the interval, and the affine linear 
perturbation structures. Illustrative examples of the use of the PST to assess the stability of 
uncertain SISO and MIMO uncertain systems will be given. 

1. THE    STABILITY    OF    POLYNOMIAL 
FAMILIES 

Consider a polynomial p(s) in the complex variable 
s, whose coefficients are varying between known 
values, i.e.   p(s) = ansn +aa_1s"~1+...+a0I where 

a4 e|a",a*l;i = 0,...,n. Such a polynomial family 

(p.f.) is called interval, and will be denoted by 
P(s). If the coefficients of the p.f. are linear 
functions with respect to a perturbation vector 
q = [q,,q2.....q/]eQc«R'Ii.e.> 

a;(q) = a[ ' + £a[ }qk , then P(s) is called affine 
k=l 

linear. In a similar way, an uncertain p.f. is called 
multilinear if all but one components of the vector q 
is fixed, then ai(q) is affine linear in the remaining 
components of q, or polynomic, if at least one of 
the its coefficients, the i'th say ai(q), is a 
polynomial function with respect to the uncertainty 
vector q. 

It has long been identified that the solution of the 
generic problem of calculating the roots of an 
uncertain   polynomial   P(s)    for   all   possible 

perturbation vectors, would be a break through in 
the analysis and design of uncertain systems. The 
motivation for the vast research on this field was a 
seminal theorem by the Russian mathematician 
Kharitonov, who proved that if P(s) is an interval 
p.f., then the stability of four distinguished 
polynomials gives exact stability information for 
the whole family [1]. A few years later, the Edge 
Theorem [2] and the Zero Exclusion Condition [1] 
provided further tools for the solution to this 
problem, when P(s) has an affine linear 
perturbation structure. Finally, the Mapping 
Theorem [1] in conjunction with the Zero Exclusion 
Condition gave the tightest possible approximation 
for the case where P(s) has a multilinear 
uncertainty structure. An example of the 
application of Kharitonov's Theorem to an interval 
p.f. using the PST is given below. 

Consider the 2nd order interval p.f. Pi(s), where 

P7(s) = cc2s2 -i-ajS + ao and 

a2 € [25,4],a! e [0.1,0.25], a0 e [0.2,0.8]. 

Using the PST, the four Kharitonov polynomials of 
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the p.f. P7(s) can be found to be the following : 

^1(s) = 4s2+0.1s + 0.2 

K2(s) = 25s2 + 0.25s + 0.8 

#3 (s) = 2.5s2 + 0.1s+ 0.8 

KA (s) = 4s2 + 0.25s + 0.2 

(1) 

Consequently the stability test for the uncertain p.f. 
Pi(s) for all possible perturbations has been 
simplified to the stability test of the four certain 
polynomials given in (1), which can be easily found 
to be stable. An alternative way of testing the 
stability of P2(s) is using the Zero Exclusion 
Condition [1]; that is, if there is a member of the 
p.f. which is stable, and the value set of the p.f. for 
all points on the boundary of the stable region (i.e., 
the imaginary axis) excludes the origin, then, due to 
the continuity of the roots of the p.f., the whole 
family will be stable. The latter test is illustrated in 
Fig.lforthep.f.P;(s). 
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Figure 1: Motion of the Kharitonov Rectangle 

2. ROBUST ANALYSIS  AND DESIGN  OF 
UNCERTAIN SISO SYSTEMS 

Define an interval Single-Input / Single-Output 
(SISO) uncertain system described by the transfer 
function g(s), as: 

r(s) = 
a„sra+a m-l s

m_1+...+an AT(S) 

Z>(s)     bnsn+ba_Is
n-1+...+b0 

(2) 

where N(s), D(s) are interval polynomials, and all 
a;'s and b;'s are independent intervals. In a similar 
fashion, affine linear, multilinear and polynomic 
SISO uncertain systems can be defined, based on 
the  definitions   of the  corresponding uncertain 

polynomial families in the numerator and the 
denominator of the rational function. 

Classical control analysis and design tools, such as 
Nyquist plots, Nichols charts, the Root Locus, the 
Step Response, etc., have been developed for the 
case where the family of systems g(s) has interval, 
or affine linear uncertainty structure. These tools 
have been implemented in the PST, and a few 
illustrative examples of their application are given 
below. 

Consider the interval system family g(s), where 

as + b 
g(s) = 

cs  +ds+e 
(3) 

and 

a e [2,3], b e [1,2], c e [2,3], d e [2,3], e e [1,2] [3]. 

It has been proven that the frequency response 
templates of both interval and affine linear systems 
can be accurately determined. More precisely, the 
frequency response template, 3(.), of an interval 
system is defined as [3]: 

a(g(s))c{ Kl(s) 
XKi(s) + (l-X)Kd

t(s)' 

XKj(s) + (l-*.)K;(sh 
Kl(s) J 

(4) 

where Xe[0,l], i = 1, ...A, (j£>e{(l,2), (1,3), 
(2,3), (3,4)], and K;(s),K^(s) correspond to the 
i'th numerator and denominator Kharitonov 
polynomials of g(s), respectively. As far as affine 
linear systems are concerned, the frequency 
response template is a subset of the frequency 
response of the systems corresponding to the edges 
of the parameter space (Q say) [4]. 

The robust Nyquist plot for a single frequency (co = 
1 rad/sec), and for 20 frequencies logarithmically 
spaced between 0.01 and 100 rad/sec are shown in 
Fig.2 and Fig.3, respectively. The robust Nichols 
chart for the same frequencies is shown in Fig.4. 

Various graphics facilities such as "zoom", 
"Frequency templates on/off', "frequency 
markers", etc., in the form of pull-down menus 
have been implemented in the PST to assist the user 
in viewing and interpreting the graphically intensive 
plots generated. 
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Figure 2: Robust Frequency Response of g(s) for co = 
lrad/sec. 
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Figure 3: Robust Nyquist plot of g(s) for 20 frequencies 
between 0.01 and 100 rad/sec. 
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Figure 6: Robust Step Response of g(s). 

3. ROBUST DIAGONAL DOMINANCE AND 
STABILITY ANALYSIS OF UNCERTAIN 
MIMO SYSTEMS 

The algorithms covered in this section were 
developed in the CSC at UMIST under the same 
EPSRC research project. They are based on the 
diagonal dominance concept of MIMO systems, 
and more specifically the row/column, the 
generalised, and the fundamental dominance 
conditions, as well as Rosenbrock's Direct Nyquist 
Array (DNA) stability theorem [5], and provide 
solutions for both the interval and affine linear 
MIMO uncertain systems. 

Figure 4 : Robust Nichols Chart of g(s) for 20 
frequencies between 0.01 and 100 rad/sec. 

The Bode envelope and the robust step responses of 
the system are shown in Fig.5, and 6, respectively. 

3.1 ROBUST DIAGONAL DOMINANCE 

The DNA stability theorem applied to a transfer 
function matrix (tfm) G(s), provides a sufficient 
condition for the stability of the closed-loop system, 
provided that the modified return difference matrix, 
defined as 
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R(s) = F"I+G(s) (5) 

is diagonal dominant, where F is a diagonal matrix 
of feedback gains. Based on the well known Row, 
Column, Generalised and Fundamental diagonal 
dominance measures of certain systems, denoted in 
the sequel as RD, CD, GD and FD, respectively, 
the robust versions were developed for uncertain 
systems of the interval, or affine linear type and 
implemented in the PST. 

For the interval case, the solutions provided for the 
CD (RD) and GD are exact, extreme point 
solutions of the respective problems, meaning that 
not only they are accurate, but also these robust 
(worst-case) solutions, at each frequency, have 
been proven to lie on either vertices, or edge points 
of the parameter space [6]. Hence, the search for 
the robust solution is restricted to these points only, 
which results in great computational savings. 

As far as the affine linear case is concerned, two 
kinds of solutions are provided for the RD, CD and 
GD problems. The first [6], is an extreme point 
solution (which means computationally 
inexpensive), but conservative in general, whereas 
the second [7], which is based on global 
optimisation methods, is accurate, but, generally 
speaking, more computationally expensive (a global 
minimisation problem has to be solved at each 
frequency). Genetic Algorithms and the Branch and 
Bound optimisation methods were found to be the 
most successful approaches, and the latter proved 
to be extremely fast as well. The optimisation 
algorithms are not incorporated yet within the PST 
framework, but will be in the future. 

The FD is based on a regular splitting of the 
modified return difference matrix, which can be 
defined as: 

R = B + D (6) 

where D is non-singular. In the PST, the matrix B 
could be either the off-diagonal part of R, and D the 
diagonal one (according to the standard definition 
of diagonal dominance, ie the approximation of the 
full matrix by its diagonal part), or B could be 
considered as the nominal system and D as an 
additive perturbation matrix defined analytically 
from the uncertain elements of the tfm R. 
Consequently, R is said to be FD iff 

p[BD'']<l (7) 

where p[.] denotes the spectral radius of [.]. The 
robust version of this dominance measure 
essentially examines whether the root space of a 

polynomial family is included in the unit disc using 
the Zero Exclusion Condition. 

Since the dominance measures, briefly described 
above, are direct extensions of the equivalent 
measures for certain systems, their conservatism in 
terms of the diagonal approximation of the full 
matrix is equivalent to those of certain systems; 
that is, 

FD(jco) £ GD(jco) £ maxi {RDi(ja>), RQCJco) } 

where i is the number of the row, or column. 

However, exceptions can occur in the robust 
versions, due to the approximate solutions of their 
respective problems. For example, in 2x2 certain 
systems, it is known that the FD and the GD of 
certain systems are equal. However, the robust 
version of the FD is an approximate solution 
whereas the GD robust version is not. Thus, for this 
specific case, the above ordering is invalid. A 
comparison of the dominance measures will be 
given in the example below. 

3.2 THE     ROBUST     DIRECT     NYQUIST 
ARRAY (RDNA) 

Having defined the robust diagonal dominance of 
the modified return difference matrix, the Robust 
DNA stability theorem can be extended to uncertain 
systems with interval or affine linear perturbation 
structure as follows [6]: 

Suppose that G(s,q) is either an interval or affine 
linear MEMO uncertain system, and that the 
modified  return   difference  matrix,   defined  as 

R(s,q)=F" +G(s,q), is robustly diagonal dominant 
according to one of the definitions previously 
stated. Then, provided that the number of open-loop 
unstable poles is invariant, the closed-loop system 
is robustly stable if 

lNi+P0 = 0 
i-l 

(8) 

where N is the number of encirclements of the 

critical point  (-f^.O)  in the i     loop by  the 

corresponding Gershgorin bands, and P0 is the 
number of open-loop unstable poles. 

The invariance of the open-loop poles is guaranteed 
if the modified return difference matrix is diagonal 
dominant and there are no pole-zero cancellations in 
the elements of the transfer function matrix. The 
first is   already  a  requirement of the RDNA, 
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whereas the second can be checked using the 
resultant matrix in each of the elements of the tfm. 

3.3 EXAMPLE 

Consider the 2x2 interval system G(s,q), where 

El...nt   (1.1! £l«n«nt   (1,2) 

G(s,q) = 

and 

s+4+q, 1 
s +(6+q?)s+5         i 5s+l+q5 

 s+i 1 2+q6"' 
s2+(10+q3)s+100+10q4 ; 2s2-s-l 

|qi|<l,|q2|<l,|q3|<3,|q4|<l, |qs| < 0.5, |q6| < 03 

Suppose both loops are closed with unity feedback. 
The RDNA of G(s,q) with the generalised 
dominance discs of the modified return difference 
matrix, R(s,q), superimposed are shown in Fig.7. 

El«.nt   (1.1) Cloxnc   (1.2) 

-0.02 
-0.04 
-0.06 
-0.08 

■•^:teg| n 

Figure 7 : The Generalised Dominance of I+G(s,q) 

It is clear from the plot that R(s,q) is generalised 
dominant, but the closed-loop system will be 
unstable, since the sum of the anti-clockwise 
encirclements of the point (-1,0) is zero, and the 
number of open-loop unstable poles is one. 

Applying the pre-compensator K(s), defined as 

K(s) = 
1        0 
n     15(S + 1) 

s+10 . 

and re-calculating the GD of the resulting return 
difference matrix R(s,q) = I + G(s,q) K(s), the 
closed-loop system is stable, as shown in Fig. 8. 

-O.l 

|-0.2 

J-0.3 • 
E 
" -0.4  • 

-0.5 • 

1 
?*K*^L",r 

S'r\ "Ccr*^*^^ -"' 
..i.ff.L V*^"^;;* "NN*/ • ;■ • ■ 

..L....\ .\y.\\h.^v;y.v/....;... 
...X^|Wrrrf. |... 

El«i.nt   (2.1) 

Figure 8 : The RDNA G(s,q)*K(s) and the Generalised 
dominance discs of I+G(s,q)K(s). 

However, R(s,q) is not column dominant, which 
proves the superiority of the GD as a dominance 
test. 

An example of the fundamental dominance measure 
at the frequency of 0.1 rad/sec is shown in Fig.9. 
Since the origin is not included, R(s,q) is 
fundamentally dominant. This means that the 
eigenvalues of R(s,q) can be restricted in a disc 
with radius smaller than unity. Fig. 10 shows that 
the eigenvalues of R(s,q) are all inside a disc of 
radius 0.1216, which is the actual fundamental 
dominance measure at this frequency. 

Convex Hall V*1M S«C» of th« FD Polynomial  for w-0.1r»d/s*c 

Figure 9 : The fundamental dominance test of R(s,q) 
for co = 0.1 rad/sec. 
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Conv«x Hull  Valu« s*£s  of ch»  FD  Polynoal«!  fcr  w-0.1r«d/»«c 

Figure 10 : The actual fundamental dominance test of 
R(s,q) for co = 0.1 rad/sec. 

A comparison of the different dominance measures 
of the matrix I+G(s,q) at the frequencies of 0.1, 1, 
10, and 100 rad/sec is given in the table below. 

0.1 
rad/sec 

1 
rad/sec 

10 
rad/sec 

100 
rad/sec 

RD 
2.3740 
0.0067 

0.5074 
0.0295 

0.2260 
16.9891 

0.2003 
118.6721 

CD 
0.0187 
0.8526 

0.0404 
0.3702 

1.6221 
2.3675 

1.0102 
23.5309 

GD 0.1216 0.0787 0.0537 0.0045 

FT> 0.1216 0.0787 0.0539 0.0045 

This table justifies the comments made in the 
previous section on the ordering of the robust 
dominance measures. However, in general the 
fundamental dominance measure outperforms the 
other dominance measures. 

CONCLUSIONS 

In this paper the PST, a MATLAB toolbox, which 
can be used for the robust analysis and design of 
interval and affine linear uncertain-parametric 
systems has been presented. A few examples on the 
application of the PST to the analysis and design of 
SISO, or MIMO parametric systems have been 
given. A graphical user interface has been built, so 
that the user can get the most out of its very 
intensive graphical outputs. The combined 
symbolic/numeric framework of the algorithms 
used in PST, make it more user friendly, without 
loosing in computational speed. 
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Abstract 

This paper is concerned with the 
problem of multi-input, infinite-time, linear 
time invariant quadratic cost optimal 
regulator in discrete-time at frequency 
domain. A simple, straight new algorithm is 
given for the determination of feedback gain 
matrix of the optimal system by using the 
spectral factorization of the performance 
spectrum matrix. 

The new algortihm is also given for 
the placement of closed-loop eigenvalues of 
the optimal system in specified disc in z-plane 
using frequency domain approach. 

1. Introduction 

This work oncerned with the problem 
of multi-input, infinite-time, linear time- 
invariant quadratic cost discrete-time optimal 
regulator in frequency domain. Mee[9] and 
Arcasoy [1] extended Kaiman's criterion of a 
single input optimal control system to the 
multivariable case and derived the following 
well known result: 

A 
xF(z) = FT(z"1)(R + BTPB)F(z) 

= R + GT(z')QG(z) 

In this work, a simple, straight new 
algorithm is given for the determination of 
feedback gain matrix K for multi-input, 
infinite-time quadratic cost discrete optimal 
regulator problem using frequency response 
approach. The method is based on the 
spectral factorization of the performance 
spectrum. 

Using the proposed method the new 
algorithm is also given for the placement of 
closed-loop eigenvalues in a specified disc 
entirely in frequency domain.. 

The continuous-time solution for the 
same problem is given in Ref. [4]. 

2. Statement of the problem 

Consider the linear time-invariant 
controllable system described by vector- 
difference equation : 

xk+i =Axk+B«k (1) 
yk = Cxk (2) 

and the control law, 

uk =-Kkxk (3) 
Let the quadratic cost function for the system 
(2) be 

in the case the matrix S in cost index is zero, 
relating the optimal return-difference matrix 
F(z), the system transfer function matrix G(z) 
and the weighting matrices Q and R. This 
result was obtained from the steady-state 
discrete matrix Riccati equation by simple but 
tedious algebraic manipulations. 

T -—V" J - 2 ^k=0 x?CTQCx k+2xk Suk+uk Ruk (4) 

where the weighting matrices Q, R and S are 
satisfying the relation: 

-1CT Q-SR'S1 >0,       R>0 (5) 
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Also the feedback control law which 
minimizes the performance index in (4) be 
expressed as: 

uk=-Kxk (6) 
where the feedback gain matrix K is: 

K = (R + B
T
PB)-

]
(B

T
PA+S

T
) (7) 

and can be obtained by solving the following 
steady-state discrete matrix Riccati equation : 

P-A
T
PA+(A

T
PB+S)K = CTQC    (8) 

3. Frequency response form of Riccati 
equation and spectral factorization result 

By    doing    series    of    algebraic 
manipulations on Riccati equation [10], we 
have, 

FT (z"1 )(R + B'PB)F(z) = R + Gl (z_))QG(z) 

+ST(zI-A)"1B + BT(z-1I-AT)~'s 

= ,P(z) = AT(z"1)A(z) 

(9) 

which is the frequency response form of the 
discrete-time Riccati equation. The matrix 
v|/(z) is defined as performance spectrum 
matrix and A(z) is stable spectral factor. In 
the case, S = 0, then the eq. (9) will reduce 
to frequency response form of algebraic 
Riccati equation as: 

FL (z-1 )(R +B 1PB)F(z) = R + Gl (z_I )QG(z) 

<F(z) = AT(z_1)A(z) 
(10) 

F(Z) = (R + B
T
PB)      A(Z) (11) 

In above equation F(z) is the discrete return 
-difference matrix and G(z) is the system 
transfer function matrix where, 

F(z) = In+K(zI-A)-1B 

G(z) = C(zI-A)_1B 

K = (R + B
T
PB)

_1
B

T
PA 

(12) 

(13) 
(14) 

The return-difference matrix F(z) is a 
monic proper rational matrix, in which 
F(z) -> I as z -> oo.     Substituting z = oo   in 

eq. (11) we have, 

F(OO) = (R + BTPB)     A(OO)  or 

I = (R+B
T
PB)

_1/2
A(OO) 

(15a) 
which can be written as: 

A(OO) = (R + B
T
PB)

1/2 (15b) 

It has been proved [2] that the normalized 
return-difference matrix is given by Fn(z), 

as: 
Fn(z) = A-1(oo)A(z) (16) 

On the otherhand, the return- ratio matrix 
can be written as, 

F (z) = I +Z(z) (17a) 

or, 
Z(z) = F (z)-I   =K(zI-A)-'B    (17b) 

where, Z(z) has the following properties: 
i)     Z(z)   is strictly proper rational 

polynomial matrix, 
ii)  d(z)Z(z)   is a polynomial matrix 

with degree (n-1) where, 
d(z) = det(zI-A)   and n is the order 

matrix A. 

4. Design procedure and algorithm for 
finding the optimal gain matrix 

Given the system matrices {A,B,C} 

and the weighting matrices Q.RandS, the 
algorithm can be developed as follows [3]: 

Step 1 Calculate the transfer function matrix 
G(z): 

G(z) = C(zI-A)_1B (18) 
then calculate the spectral density matrix 
\(/(z): 

y(z) = R+GT(z-1)QG(z)+ST(zI-A)"1B + 

B^z-'I-A1)^ 

Step 2 Use any spectral factorization 
methods [7,8] to determine the stable spectral 
factor A(z) as: 

(20) 

(19) 

v|/(z) = AT(z_1)A(z) 

Step 3 Calculate the return-difference matrix 
F(z): 

F(z) = A'1 (oo)A(z) (21) 
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Step 4    Calculate the return-ratio matrix 
Z(z): 

Z(z) = F(z)-I (22) 

and calculate the polynomial matrix d(z)Z(z): 

d(z)Z(z) = ZQZ"-
1
 +Z1z

n-2+...+Z„_1 (23) 

where d(z) is the determinant of (zl- A); 

d(z) = det(zI-A) = zn+d1z
n-1+...+dn . (24) 

Step 5   Calculate the controllability   matrix 
Mc: 

MC=[B:AB;A2B;---;A,,-1B]        (25) 

Step 6 Construct the matrix [V]: 

v = [v0;v1;v2;-;vn_1] (26) 
where, 

Vp=Zp+IJ=1cJ_1Zp_j>       p = l,2,...,n-l 

and (27) 

c0 = -dj 

cp=-dp+I-SP=1djVj)       p = l,2,...,n-l 

Step 7 Obtain the optimal gain matrix K: 

"l r 
2 0 

1 -i 

B = 

and the weighting matrices are: 

Q = diag{l,l,l} 

R = diag{l,l} 

then the spectral factor matrix is: 

(30) 

(31) 

A(z) = 
1 

d(z) 

511       512 

521   622^ 
(32) 

where, 
8n = 5.2311z3 -23.0439z2 + 9.7000z-1.4003 

512 = 1.8884z3 -6.7887z2 -1.1481z+0.4897 

821 = 2.1452z3 -2.9699z2 -4.6840z+0.4311 

522 = 6.1335z3 -15.7127z2 + 6.7055z-1.1942 

and 

d(z) = z3-6.8z2+12.8z-6.4 

and the return-difference matrix is: 

(33) 

F(z) = 
d(z) 

f      f 

f f l21       l22 

(34) 

Kmxn=[v]xMc_n (28a) 

where 

Mc
+     =\M

T
A      fMcxMjr'     (28b) c™<"       L JnmxnL Jnxn 

Note that the spectral density matrix 
is scalar rational polynomial for single input 

system and Mc is square matrix of order n, 

with rank(Mc) = n for controllable system. 

Example : 

The algorithm is programmed along 
with MATLAB software package [10]. 

Let the system matrices be given as [5]: 

where 

f„ =z3-4.8417z2+2.4378z-0.3354 (35a) 

f!2 = -0.4269z2 -0.7029Z+ 0.1876 (35b) 

f2] = 1.2092z2 -1.6163Z+ 0.1876 (35c) 

f22 =z3 -2.4125z2+1.3391z -0.2603 (35d) 

and the matrix V is: 

V= 
1.9583 -0.4269 29541   120920 4.3875 6.6061O 

-3.6358 1.086* -18.8673 18.3742 29.6329 74.9241 
(36) 

The optimal gain is found as: 

K 
0.1374 0.6283 0.5643 

1.8145 0.9839 -2.5731 
(37) 

A = 

3.6800 2.7200 -3.0400 

-1.4400 0.2400 2.3200 

-0.9600 0.1600 2.8800 

The  time   domain   solution  of the   same 
(29) example is identical by using 'dlqr' command 

in MATLAB. 
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5. Closed-loop eigenvalue placement in 
specified disc 

For the discrete case, the closed loop 
poles will be placed in a disc inside the unit 
disk contacts the point 1 + jO of the complex 
plane, with a radius equal to a centered at 
(l - a) shown in the Fig. 1 [6]. 

z-plane 

Fig. 1 The specific disc in z-plane 

6. Problem Formulation 

In this section, we shall give an 
algorithm using frequency response approach 
of determining Q,R, andS of the 
performance index 

J= S fxk
TQ: 

k=0 \ 
xk +2xk

TSuk +uk
TRuk) (38) 

such that the optimal closed-loop poles are 
allocated inside the specific disc shown in 
Fig.l. 

Fujinaka et.al [6] has shown that the 
discrete-time system is transformed to 
continuos-time system with the following 
matrices: 

Z = (A-l)-I(A + l) 

B = (A-I)_!B 

where A and B are the equivalent 
continuos-time system matrices and it 
assumed that (A-I) matrix is nonsingular. 
We shall use the following result: 

Theorem: (Fujinaka and Katayama, [6]): 

(39) 

Suppose that the eigenvalues of the 
continuos-time optimal closed loop system 
for a given set of weighting matrices satisfy 

the relation (40) , where a is determined 
from the design parameter a by (41) . Then 
the eigenvalues of the discrete-time optimal 
closed-loop system for the weighting 
matrices defined by (42) are allocated 
inside the disc with its center at the point 
(l-a)+j0 and radius a. 

X is the eigenvalue of equivalent 
closed-loop continuos-time matrix and 

Re(X)<-a (40) 
where 

_    1-a 
a =  

a 
(41) 

The matrices Q, R and S are given as[6]: 

(42) 

Q = ^(A-I)TQ(A-I) 

R = 2R+-BTQB 
2 

S = |(A-I)TQB 

Then    we    have    the    following    design 
procedure. 

7. Design procedure and Algorithm 

For a given AandB discrete-time 
system matrices, the equivalent continuos- 
time A and B matrices can easily be obtained. 
Specifying any positive definite matrix R and 
positive definite/semi-definite matrix Q,   a, 

where 0 < a < 1 and A where, 

A = A+ÖI (43) 

the matrix Q can be determined by using 
frequency response approach[4].. This matrix 
Q allocates the closed-loop poles of 
equivalent continuous system beyond vertical 

line at s = -a. The matrices Q, R, and S 
can be found by using eq.(42) which allocates 
closed-loop poles of the discrete-time system 
inside the specified disc. The algorithm is 
programmed in MATLAB software package 
and the steps can be summarized as 
follows[ 10]: 
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Step 1 Given A, B, and a ,find A and B and a 
by using eqns. (39) and (41). 

Step 2 Calculate Ä from eq. (43). 

Step 3 Specify the matrices, Q and R . 

Step 4 Determine gain matrix K for 
A, B, Q, and R which insures the continuous- 
time closed- loop poles to be allocated 
beyond the vertical line at s=-a by using 
frequency-response approach given in [4]. 

Step 5 Determine the matrix Q for 
Ä, B, K, andR by the method given in [4]. 

Step 6   Find Q, R, andS by using eq.(42). 

Step 7 Calculate the gain matrix K by using 
the algorithm given in section 4, for the 
matrices A, B, Q, RandS . 

Example: 

This example has been taken from 
Fujinaka, [6] where the system matrices are : 

A = 

0.9000 0.2000 0.0000 0.0000 

-0.2000 0.9000 1.0000 0.0000 

0.0000 0.0000 -0.2000 0.4000 

0.0000 0.0000 -0.4000 -0.200 

(44) 

"1 0" 

0 0 

0 1 

0 0_ 

(45) 

The open-loop poles are: 

eig(A) = 

0.9000 + 0.2000i 

0.9000 - 0.2000i 

-0.2000 + 0.4000i 

-0.2000 - 0.4000i 

(46) 

Taking   a = 0.1 then we have the following 
steps of the algorithm : 

Stepl 
T-3.0000 -8.0000 

8.0000 -3.0000 

0.0000 0.0000 

-6.0000 -2.0000 

-3.0000 -1.0000 

-0.5000   -0.5000 

0.0000    0.0000   0.5000   -0.5000 

B 

Using eq.(41), we have a = 1 

■2.0000 -3.0000" 

4.0000 -1.5000 

0.0000 -0.7500 

0.0000 0.2500 

Step 2 

A = 

-2.0000 -8.0000 -6.0000   -2.0000 

8.0000 -2.0000 -3.0000   -1.0000 

0.0000 0.0000 0.5000   -0.5000 

0.0000 0.0000 0.5000     0.5000 

Step 3 The weighting matrices are: 

Q = diag{ 1,1,1,1} 

R = diag{l,l} 

Step 4 

K = 
-0.3709 0.6209 1.4410 0.600200 

-0.2681 -0.3214 -4.9238 -2.8983 

Step 5 

Q = 

1.4811 -0.6181 -1.6360 -0.4918 

-0.6181 0.6648 4.1821 2.79460 

-1.6360 4.1821 31.9061 22.8147 

-0.4918 2.7946 22.8147 16.6428 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

Step 6   The desired weighting matrices are 
found to be: 

0.0000 0.0000   -0.0009 -0.0009 

0.0000 0.0000   0.0003 -0.0002 

-0.0009 0.0003   2.2191 2.6943 

-0.0009 -0.0002   2.6943 3.2954 

0.0032   -0.0203" 

-0.0203    4.4201 
R = 104x 

(54) 

(55) 
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S = 105 x 

0.0000 0.0004 

0.0001 -0.0003 

0.0030 -0.9885 

0.0009 -1.1937 

(56) 

Step 7 The poles of the optimal closed-loop 
system are lying inside the specified disc and 
shown in Fig.2. 

eig(Ac): 

0.9047 + 0.0445i 

0.9047 - 0.0445i 

0.8937 

0.8907 

z-plane 

(57) 

Fig.2.. Closed-loop poles of example 

8. Conclusion 

A simple algorithm has been given for 
the determination of gain matrix of discrete 
optimal controller entirely in frequency 
domain. The method is more direct than the 
algebraic Riccati equation solution since the 
gain matrix can be found directly. 

Using the result of the above method, 
an algorithm has also been given for the 
assignment of closed-loop eigenvalues of 
discrete optimal controller in a given 
specified disc. The solution has been 
obtained directly by using frequency domain 
approach without any iteration. 
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ON OPTIMISATION OF NON-LINEAR SYSTEMS WITH HIGH 
LOOP GAIN AND ITS APPLICATIONS TO DESIGN OF SHD? 

TRAJECTORY TRACKING SYSTEMS 
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Abstract. In the paper the non-linear model of ship motion given by De Wit C. and Oppe J 
in 1980 is taken under consideration. The main problem is to design a high precision 
controller for tracking a ship trajectory. According to proposed theory the high precision 
controller can be defined only for the some class of signals R(W,m) from space L2. The 
definition of a plant control with e-exactness for the class of signals R(W,m) is also 
introduced. The presented theorems enable to design a controller for ship trajectory 
tracking with s-exactness for this class. Futhermore the filters of effective elimination of 
disturbances influence (the drift and the waving) are included into the considered tracking 
system. The results were verified by a number MATLAB simulations. 

Key Words: high precision controller, non-linear systems, high loop gain, describing 
function, ship trajectory tracking 

1. INTRODUCTION 

The problem of ship trajectory tracking consists of 
two basic parts. The first one is the reference 
trajectory deterniining problem while the second 
refers to the construction of proper optimal control 
tracking algorithm synthesis. The determination of 
reference trajectory is usually a trivial task or can be 
found in relatively simple way. In our case however, 
the determination of a trajectory to be tracked is 
often a problem by itself. As an example we can 
consider a collision avoidance problem where our 
ship is obliged to avoid several target. This task can 
be formulated as an optimal control problem with 
state space constraints where the moving circles 
represent the regions which can not be penetrated by 
our ship trajectory. As an optimality criterion the 
minimum energy (iriinimum norm in L2 Banach 
space) or me minimum mean power (minimum norm 
in Marcinkiewicz space M) can be e.g. taken. This 
problem can be solved by means of limitational 
Pontryagin's maximum principle, it constitute 
however a complicated task. The other approach 
that offers a numerical routine and makes use of 
penalty function method is also effective. In both 
cases however the determined trajectory is 
kinematical i.e. its determination is based on 
kinematical ship model P. Let R be the 
two-dimensional Banach space V or the 
two-dimensional Banach space M. We will assume 
that ship trajectory belongs to the set R(P). 

The second problem, of preset ship trajectory 
optimal tracking, has been considered by several 
authors. For solving this problem the method of H„ 
optimal control has been used, for example. The 
methods of H^ control do not guarantee high 
precision ship trajectory tracking (see [7]). In H„ 
control theory the cost function: 

WA^Qir-vw^+wpuiy a) 
is taken under consideration. It has been proved [1] 
that optimal controller iCeKH^ do not exist, in the 
case of ship trajectory tracking, i.e. for p = 0. So, the 
cost function in the form 

l|e|k = ! r-v (2) 

is considered in the paper. For this reason the 
definition of a plant P control with s-exaactness for a 
class R(P) is introduced. The presented below 
theorems enable to design a controller for ship 
trajectory tracking with E-exactness for this class. 
Futhermore the filters of effective elimination of 
disturbances influence (the drift and the waving) are 
included into the considered tracking system. 

2. THE SYSTEMS CONTROLLING THE 
PLANT WITH E-EXACTNESS 

Let R is a Banach space L2 or M. We consider the 
feedback system given by equations 

u(t) = k(e(ty) 
e(.t) = r(t)-P(u(t)) 
r(t)=W(w(.t)) 

(3) 

i.e. system as in Fig. l.The operation P: R —> R 
represents a non-linear plant, W: R —> R is the 
generator of reference signals, k(e) denotes a 

w W=P '^      *     - 
- 

P 

Fig. 1. Feedback control system. 
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non-linear (in general) controller. The static 
characteristic of the non-linear controller k(e) is 
depicted in Fig. 2. The form of this characteristic is 
determined by the characteristic of rudder deflection. 

;u = ke 

u=Gi.(r) generated by (5) the following condition is 

Fig. 2. The static characteristic of controller 

Because in the considered feedback systems (3) the 
inequality ||e|| < si is fulfilled ( see below )we put: 
k(e) = ke. 

It is assumed that r(t) is an unknown fixed signal, 
which may be modelled as belonging to the class 

R(W,m) = (4) 
= {r : r = W(w) for some weR, \\w\\R<m < oo} . 

If the constant m is not determined exactly then the 
notation R(W) is used. 

The first two equations from (3) we rewrite in the 

form    r-P{u) = \u. For optional but fixed point 
k 

r0 ER(W) we have 

r0-P(uo)= -7U0 (5) 

If for r0eR{W) and ke[k,,k2) the assumptions of the 
Gravesa theorem are fulfilled then equation (5) 
generates the implicit function u=Gk{r). The equation 
realising exactly the inverting operation to P has the 
form 

ro-P(u0 = 0. (6) 

In the notation of the class R(W) the operations P 
and W are given operations and the form of W 
depends on P. If the operation P is one-to-one, then 
the "ideal" control system would be a system 
generating, for any signal r0e R(W), the plant 
controlling signal u=F'(rJ. The "ideal" control 
system should realise an inverse operation to P. In 
this case we can assume that W=P. Then R(P,m) 
denotes the following set of signals 

R(P,m) = 
= {r:r = P(w), F'(r) eR and \\F'(r)\\R <m< oo). 

Definition 1. The system (3) is controlling a plant P 
with s-exactness for a class of signals R(P,m) if there 
exists such constants k, and k2 depending on s that for 
every ke[k,,k2) and for every implicit operations 

satisfied 

\\Gk{r)-P'lir)\\<z^ (7) 

Theorem h (compare [4], [5]) Let R be the Banach 
space and operation P: R —> R satisfies the 
conditions: 

1° for every r0 eR(P,m) there exists point 
u0 eR(P, m)   such, that  ro-P(tt0) = ju0 

2° operation P is continuously differentiable 
3° there exists a linear operation 

1 + P'(uo))     G L(R,R)forake[kuoo) 

4° there exist a constant m < oo such, that for every 
r0eR(P,m) the relation is fulfilled Hw0|| < m\\r0\\ 

then  the  system  described  by  equations  (3)  is 
controlling   the   plant   P   witch   s-exactness   for 
ke[k,,k2). 

Let temporarily operation P is linear and W=P. 
The following theorem can be proved (compare [4], 
[5])- 

Lemma 1. If in Banach space R the solution of 
equations (3) exists for a r eR(P) then the estimation 

|s;||(7'-1+*) lip'"1 (r)|| (8) 

is true. 

We denote by u(s), v(s), h(s), r(s) the Laplace's 
transforms of the signals u, v, h, r respectively. For 
the complex-value functions x(s) we can use another, 
Hardy space H2, besides V. Functional analysis 
theorems say that H2 is in particular just the set of 
Laplace transforms of signals ini2 and norms of x(t) 
and x(s) are equal. 

Let Hw is a set of linear operations F for which 
there exist bounded in re s > 0 transfer functions 
F(s). The set H„ form a Banach space (H„ Hardy 
space) if the norm 

||F|l„=sup{|/WI-"'>0} (9) 

is introduced. We can formulate the following 
statement: if FeF„ and x e H2, then F(x) e H2; 
moreover 

OT^supd^Wll^x^JMi^i} .   (10) 

In the case when P: R -> R is linear, causal, 
stationary operation and 

t 

P(u)= ju(t-i)dp(x), 
0 

where p(z) is a bounded variation function, then the 
Theorem 1 takes the form 
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Theorem 2. (compare [4], [5]) If the number 
k e[k„k2), where kp k2 are sufficiently large and the 
operation P fulfils the inequality 

inf 
reszO 

Up® 
k 

>0 (11) 

is satisfied, then for every function r(t) e R(P) exist 
exactly one solution of the equations (3) and the 
system described by this equations controls the plant 
P with s-exaactness for a class R(P). 

The formula (11) in Theorem 2 has the following 
geometrical interpretation: The system described by 
the equations (1) controls the plant P with 
s-exaactness for a class R(P) if spectrum of operation 
P(s) and interval [-1/k,, -l/k2] are disjoint sets. 

The Theorem 2 can be generalised in a simply 
way on systems with n-input and n-output (MIMO 
systems). Let the linear, causal and stationary 
operation P transforming the n-dimensional Banach 
space R into itself is given by the system of equations 

n    ' 
v(t) = E I uk(t-T)dpik(i) ,   i = l, 2,... ,n ,   (12) 

where pjk(r) are bounded variation functions. The 
operation P can be given by the transfer matrix P(s). 
We denote by \(s), ^(s), ... \(s) eigenvalues of the 
transfer matrix P(s). For the n-dimensional plant 
given by (12) the equations (3) takes the form 

1 "  V -«,(?) = rt{i) - D J uk(t-x)dpik(x), i = 1, 2, ... n . 
kt k=\ 

Because the ship motion dynamical model is 
non-linear, we use the describing function method to 
verify whether the assumptions of the Theorem 1 are 
fulfilled. In connection with the operation P (mapping 
the spaces L2 or M into itself ) the notion of the 
describing function can be precise as follows: let 
v(0 be a response of a system described by the 
operation P to the signal x(t) = N sin(at). The 
quotient of the symbolic value of the first harmonic of 
the output signal v(r) to the amplitude of the input is 
called the describing function and is denoted by 

T T 
\ J v(r)sin (foi)dt +j\ J v(f)cos (at)dt 

£0MO = - JT1    05) 

Let us consider now a system which consists of two 
non-linear elements given by describing 
X 

fytiuM —* K(j*») —► Ftf*,N) 

(13) 

Fig. 3. Example of non-linear system 

functions P,(jaJtN) and P2(ja>,N) and linear element 
with transfer function K{s). 

Corollary   1.   The   resulting   describing   function 
P(jco,N) of the system in Fig. 3 can be expressed 

P(jco,X) = P2ö»^|P,Ücö,X)||K0©)l)P,ö(ö,X)KÖ03) 

More precise definition of the describing function can 
be find in [2], [3]. 

We can transform formally, the equations (3) to the 
form 

Lemma 2.(compare [3]) Closure of the set   [JCli, 
;=1 

where 

Q, {X:X = Xi(s)   for   res > 0} 

is equal to the spectrum of operation P in n-di- 
mensional space R (n-dimensional space L2 or M). 

Theorem 3. (compare [5]) If the number Ä; £•[*,,*,), 
where k„k2 are sufficiently large and the operation P 
fulfils the inequality 

min inf 
'    re säO 

■J-H-Ms) 
kt 

>0 (14) 

is satisfied, then for every function r(t) e R(P) exist 
exactly one solution of the equations (13) and the 
system described by these equations controls the 
plant P with s-exaactness for a class R(P). 

r-v-m+p) W (16) 

Computing the norms of both sides of (16) we get 

r-v '«4 i*F 

The system shown in Fig. 1 is equivalent to the 
tracking system as in Fig. 4 

w k -*® —9 r ~[ 3=3 
Fig. 4. System equivalent to the system in Fig. 1 

The   linear   equations   which      approximate   the 
equations (3) or (16) take the form 
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u(t) = *(«(/)) 
e{i) = r(f)-P(u(t)) 

r(t) = W(w(f)) 

(17) 

or form 

+ P      (r) (18) 

Theorem 4. (compare [7]) Let the operation P map 
the Banach space V into itself and has a uniformly 
continuous, bounded derivative. If for a controller 
C2*eRHx the expression 

I,-- - sup 
coefi,/V 

1 
+ P 

det 
re 

c2(/'a>) 
l 

C2(/o) 

_     dreP(/m,N) 

dreu(ja>) 

dimPijw,N) 

(19) 

-ZOT 
dreP(j(z,N) 1 

C2C/0))        dreu(ja>) 
re 1 dimP(j<ü,N) 

Ci{ja)  '    dimu(ja>) 

attains a finite minimum and if for co from the 
expression  (19)  the  number     x=sup \C2(j®)\   is 

sufficiently small, then the tracking system with the 
controller C2* is optimal in the sense of the criterion 
(1) (for the class of signals R{W,m)). If the 
assumptions of this theorem are satisfied then the 
controller C2 is also optimal for the approximate 
system. 

The proof of Theorem 4 implies the following 
corollary: 

Corollary 2. Let assumptions of Theorem 4 be 
fulfilled. If the controller C2' is optimal in the sense 
of criterion (1) for the approximate system then it is 
also optimal in the sense of criterion (1) for the 
non-linear system. 

From the Corollary 2 and above consideration we 
can conclude the following theorem 

Theorem 5. Let operation P map the Banach space R 
into itself and has a uniformly continuous, bounded 
derivative. Let P be the describing function of the 
operation P. If for k e[k„k2), where number k, is 
sufficiently large, the inequality 

inf 
res>0 

+ P(s) >0 

is satisfied, then the system described by the 
equations (3) controls the non-linear plant P with 
E-exaactness for a class R(P). 

The class of the plants, whose are controlled with 
E-exaactness, can be extended by inclusion of 
correctors into system (3). Let operation P: R —> R 

does not satisfy the condition 1° in Theorem 1. Let 
there exists such operations Gi(wi) :R-*R and 
G2(u, v): R x R -» R that composition 

G2(G1(«1),-P(G,(«,))) (20) 

satisfy the assumptions of Theorem 1 . We rewrite 
the operation G2(u,P{u)) as superposition 
G2(U,P(U)) = G

0
2(P(M))- Equations (5) and (6) for 

operation G2(G\(u\),P(G\(u\))) take the form 

r0 - G2(.Gi(.uu>),P(Gi(uu>))) = ^uio 

ro-G2(Gi(Mii),/>(C?i(«n))) = 0 

or form 

r0-G°2(P(Gl(ul0))) = ±u,0 

ro-G°2(jPiuu)) = 0 . 

The following inequality 

pmGiiutoM-GlWGiiuuMK < e.   (21) 

is truth (for operation (20) and k sufficiently large 

apply Theorem 1). From (21) arise the relation 

llP(Ko)-.P(«i)ll<ei (22) 

The inequality (22) implies that the system depicted 

&-» k J\ G, 

r 1—1 1    Gi 

t 
V 

P <— 

Fig. 5. Feedback system with correctors 

in Fig. 5 controls plant P with E-exaactness for a 
class R(G2). 

We denote by: 

S:={s:res > 0},   S+
P := {s e S: reP(s) > 0}, 

S~p := {s e S: reP(s) < 0}. 

In the case of linear, stationary and causal plant P the 
following theorems (compare [5]) can be used for 
finding correctors G, and G2. 

Theorem 6. Let functions P(s) and G(s) are 
analytical for se S. If SQ = 0 and |P(s)| < |G(s)| for 
s € S} then the spectrum of the operation K(s)+G(s) 

and the  interval    —:—,—7- 
L    *1       *2. 

disjoint sets. 

,    k\,k2 e (0,oo)   are 
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Theorem 7. Let functions P(s) and G(s) are 
analytical for s e S. If 

1° 5c = 0 
2° for every s e S} exists /co e 5^   and   X e [0,1 ] 
that P(s) = XPQti) 
3° |P(jco)| < |G(jco)| is satisfied for every /'co e Sp 

then   the   spectrum   of  operation   K(s)+G(s)   and 

,    k\,k2 6 (0,oo)   are   disjoint interval 

sets. 
.  *i'   #2 

Let the linear operation P is given by the transfer 
function 

Pis)- bo 
s" + a„-\s" ' + ... + a„ 

bo 
(s+TxXs"-x + c„-2s

n'1 + ... + Co) 

where -T, is the real root of the denominator of P(s), 
do not satisfy the condition 1° of Theorem 1 for n > 2. 
For the function P{s) exist such a constant a and 
function G2(s) in the form 

G20) 

that for se5p the inequality 

bo 

s + T] 
(23) 

(S + T^Xs"-1 + Cn-2Sn~X + ... + Co) s + Ti 

is satisfied. It should be noticed that the operation 

b0 + a(s"~l + c„-2s"'1 + ... + c0) 

(S + Ti)(s"~l + Cn-2Sn-X + ... + C0) 

fulfil all assumptions of Theorem 6. By virtue 
Theorem 6 the correctors G2(u,P(u)) and G°2if) take 
the form 

 ; + -V   (24a) 
is + T]){sn~x + cn-2s"-1 + ... +c0)    5 + Tx 

bo + a(s"~] + cn-2s"-1 + ... + c0) (24b) 

and system shown in Fig. 5 controls the plant P with 
s-exaactness for the class R(G2(P)). 

3. SHIP MOTION MATHEMATICAL MODEL 

Now let us consider a ship motion dynamical 
model [9], [10] given by the following set of 
equations 

x,' = v2cos\|/ - v3sin\|/ 
Xj' = v3sin\y + v3cos\|/ 
y' = v, 
v,' = - av, -bv,3 + cu 
v2' = - fv2 - Wv,2 + S 
v3 = - g,v, - g2v,3 

(25a) 
(25b) 
(25c) 
(25d) 
(25e) 
(25f) 

where: x, , x2 - ship Cartesian co-ordinates ,y- ship 
course, v- angular velocity, v2,v3 - longitudinal and 
transversal velocities respectively, u- rudder 
deflection (control variable), S- propelling force. If 
we put 

z(t)=A/t)-S (26) 

then the equations (25) can be rewrite in the form 

,-Z + S 

'       f 
2       f 

cosy/- VjSin y/ 

siny/+ vfosy/ 

v/ = - avj -bv,3 + cu 

(27a) 

(27b) 

(27c) 
(27d) 
(27e) 
(27f) 

We put as an input signal u(t) into the plant the 
rudder deflection in time while as an output signal the 
ship angular and longitudinal velocities i.e. 
v(t)=[^(t)Xt)]r. The above is justified by the facts 
that the equations (27a), (27b) and (26) constitute one 
to one transformation between ship position x, , x2 

and the output signal v and that the measurement of 
the vector v co-ordinates y/, z is relatively simpler. 
Consequently, from now onward the equations (27d), 
(27e) and (27c) only will be relevant. We assume 
additionally, that the outputs y/ and z are disturbed 
(influence of drift signal and wave action) by signals 
\|/, and z, (compare [2]). For reduce the influence of 
disturbances the following filters are used 

F2(s) = 

0.04 (28a) 
s2 + 0,4s + 0.04     ^ 

^-°^ = Zi     .   (28b) 
s2 + 0,45 + 0.04     z 

With reference to the previously posed general 
tracking problem we put as r(t) = [^„(t), z0(t)]

T. As a 
consequence of above we can define the plant 
controlling signal w(t) = «;(t) + u2(t). Next we denote 
by P, the operation (27d), by P2 the operation (27c) 
and by P" the operation (27e). So, the general 
mathematical model of the considered plant P is the 
following 

z 

Fx(P'2(Px)  F,{P'2(Px) 

F2(P'2'(P]) F2{P'2'iPx) u2 
(29) 

4.   DESIGN   OF   THE   SHD?   TRAJECTORY 
CONTROLLERS 

Applying the describing function method to 
operations F,(P2'(P,)) and F2(P2"(P,)) we can verify if 
the assumptions of Theorem 1 are satisfied. It is 

possible by Corollary 2 and Theorem 3. 
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operation given 
by formula (20) 
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Fig. 6 System controlling the non-linear plant P with g-exactness for a class R{G°(P)) 
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Fig.7. In MATLAB SIMULINK simulation results 
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As the ship model (25) parameters we adopt here 
the dynamic manoeuvring parameters of the m.s. 
Compass Island [10]. The units of time, length and 
angle are respectively one minute, one nautical mile 
and one radian. The numerical values of these 
parameters are the following: a=1.084/min, 
b=0.62min, c=3.553rad/min, g,= -0.0375 nm/rad, 
g2=0, f=0.86/min, W=0.067nm/rad2, 
S=0.215nm/min2, um=35°=0.61rad - maximum rudder 
deflection. The describing functions of operations 
P,'(P,) and P2"(P,) was find in [7]. We have 

FxP'2Px 
0.14212 

FiP'ii 

(s + 1 .776)(53 + 0.452 + 0.0045) 

 0.0848  
(5 + 1.776)(53 + 1.2652 +0.3 845+ 0.034) 

The eigenvalues of the transfer matrix 

" FXP'2P\   FXP'2PX 

&)] ■ 

are equal 

^(s) 

FiP'jPx  F2P
/

2'Pl 

(5.6745 + 3.056)0.04 

(53 + 2.637s2 + 1.528s)(s2 + 0.45 + 0.04) 

The   spectrum   of operation   [£(s)]   and   interval 

——,——   have the common part and assumptions 
.  h    k2] 
of the Theorem 1 are not performed. 

The correctors G2(s) and G° (s) on the shapes (23) 
and (24) should be introduced into system (3). If we 
put 

Fig. 7. The assumed trajectory and the ship trajectory 
are shown in Fig. 7a and Fig. 7b. The error signals 
X/oW-x/t) and **,(t>*/t) are displayed in Fig. 7c and 
Fig. 7d. In Fig. 7e is shown disturbations introduced 
into feedback control system. 

The cumulated errors the surge velocity v,(t) along 
assumed trajectory substantially influence on the 
control quality. 

If we do not know exactly the surge velocity of the 
assumed trajectory then we can use the following 
procedure: 

As a reference signal r(t) we will take now a 
course y/0 designed by the ship positions {x,, x2) and 
point of intersection of assumed trajectory and circle 
with radius 

d = ^(Xoi - *i (0)2 + (Xo2 - x2(0)2 =cons. 

and centred in {x,, x2) ( compare Fig. 8 ). 

Fig. 8. Track of ship trajectory 

In the presented above method we denote by s2 the 
track error. The error E2 depends on assumed radius 
d and on ship model parameters. The formula for the 
value s2 can be obtained in the following way: 

In the worst case when the rudder deflection is 
maximal the ship trajectory C, is a circle of radius R,. 
As reference signal r(t) we take a circle C0 of radius 
R0 as in Fig. 9. 

G2](s) 
5+1.7763 

, G22(s) 
5+1.7763 

no < x    353 + 1.252 +1.125 + 0.1421        ,,m G2l (s) =        (30) 

n0 ,.    353 + 3.7852 + 1.1525 + 0.1880 
G22(s) =  

then assumptions of Theorem 1 will be satisfy and 
system shown in Fig. 6 will control the non-linear 
plant P with s-exactness for a class R(G2"(P)). By 
Theorem 1 exists such k, that for every Id , k2 > k, the 
inequality (22) is satisfied. It should be noticed that 
the inequality (22) is true for signals r(t) e R{G2\P)). 

The performed MATLAB simulations confirmed 
that for kp k2 > 1000 the assumed trajectory 
corresponding to signal from set R(G2°(P)) practically 
covered the ship model trajectory. The results of 
simulations for k,=200,   k2 =100 are presented in 

Fig. 9. The worst case of ship trajectory tracking 

The minimal radius R, of the ship trajectory can be 
obtained from equations (25d) and (25c). From this 
equations we have 

»■ 

¥ = co = const. for t -> », 

where cog is a solution of a algebraic equation 

oT3 + aT-cu = 0, (31) 
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i.e. 

where 

ag = z1/3- 
3bz 1/3 

(32) 

13(4a3+27(Cü)2ö) 

cu V          b 
Z~2b + 186 

(33) 

Next, we assume that  S = S0 = cons.. Passing to the 
limit (t --> oo) in the equation (25e) we get 

v2 

S-Wcof 

By (25f) we have 

Vz = g^g + 92(0g. 

The immovable ship in co-ordinate system   fulfils 
equations 

xi = i^cos^-i^sin^ 

x2 = V2sin *P + 1/3COS *F . 

In steady state we have 

Xi = V2COS((Ogt+(f>o)-V3S'm((Ogt+(po) 

X2 = V2S\n(G)gt+<Po)+ l/3COS(fi)gf+Cpo). 

So, we can write 

CögRl = Vx!+x2 = Vvl + ^ 

i.e. 

Ri = 
J^ + ^i 

COg 
(34) 

where og is given by formulae (32) and (33). 

In this case (for minimal circle and d < R,) the 
error tracking can be find from expression 
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Abstract 

Presented in this paper is a frequency based con- 
troller design methodology for a nonlinear system 
that can be characterized by a Hammerstein type 
model. The controller design methodology consists 
of three main ideas. First, the system nonlineari- 
ties are quasilinearized through the use of describing 
functions thereby incorporating the amplitude distor- 
tion of the fundamental harmonic into the design pro- 
cess. Second, the methodology incorporates a hard 
time domain performance tolerance such as \y(t)\ < a 
into the design process. Finally, the design methodol- 
ogy addresses the enforcement of asymmetric perfor- 
mance constraints. The controller design methodol- 
ogy is demonstrated on the idle speed control problem 
of a Ford 4.6L-2 valve V-8 fuel injected engine. 

I. Introduction 

In general, feedback control is necessitated by two 
factors, the presence of a nonmeasurable external dis- 
turbance and the presence of system uncertainty ow- 
ing to inaccurate plant models. Of these two sources, 
the inadequate characterization of the system dynam- 
ics can lead not only to performance degradation but 
also to closed loop instability. To mitigate the ef- 
fects of inaccurate plant models on closed loop sys- 
tem performance as well as closed loop stability, ro- 
bust controller design methodologies can be utilized. 
In this instance, the system dynamics are described 
by a linear model that may include additive uncer- 
tainty, multiplicative uncertainty and/or parametric 
uncertainty to characterize the variation in the sys- 
tem dynamics. Furthermore, for a nonlinear system, 
the uncertainty associated with a linear model may 
be artificially inflated such that the response of the 
uncertain system bounds the actual nonlinear system 
response.  Since the degree of system uncertainty di- 

rectly influences the amount of feedback required to 
achieve a prespecified performance objective, robust 
control can lead to an overdesigned system. 

In the case of a nonlinear system, an alternative ap- 
proach to robust control can be utilized. If an im- 
proved system model with a reduced amount of uncer- 
tainty can be constructed, the burden of requiring ex- 
cessive amounts of feedback control can be removed. 
In other words, the reduction in system uncertainty 
directly translates to a less conservative feedback con- 
troller design thereby resulting in a lower bandwidth 
controller. Since most processes are nonlinear in na- 
ture, a more accurate characterization of the system 
dynamics requires a nonlinear model. 

One technique for nonlinear model development is the 
application of first principles. A model based on first 
principles, however, is difficult to use in controller de- 
sign. Specifically, first principles based models are 
often too complex and supplemented with empiri- 
cal information thereby reducing their utility in con- 
troller design. Thus, a trade-off exists between model 
complexity and design utility. One approach that at- 
tempts to balance the trade-offs between model com- 
plexity and design utility is nonlinear input-output 
modeling. This method constructs simple input- 
output relations through measured system response 
data such that the essential nonlinear system dynam- 
ics required for controller design are captured. 

A structure that has been proposed for nonlinear sys- 
tem modeling through input-output data is Volterra 
series expansion (Schetzen (1980), Weiner & Spina 
(1980)). In general, the output of a Volterra series 
model, y(t), due to an input u{t) is given by 

y{t) = yi{t) + V2(t) + y3{t) + (i) 

109 



where 

/OO /-CO 

•••  /        hn(n,T2,...,T„)ui(t-T1) 
■OO J — OO 

u2(* -T2) ...un(t- Tn)d,TidT2 ...drn.   (2) 

The terms hn(T\ , r2,..., rn) are known as the n'A or- 
der Volterra kernels. The physical significance of the 
nth order Volterra kernel is that it represents a n- 
dimensional impulse response for the nonlinear sys- 
tem. For example, the second order kernel, ä2(TI, 

T2), 
represents a two dimensional impulse response given 
that an impulse is applied at times TI and r2. In 
practice, the response of a nonlinear system can be 
adequately described by the first few terms of the 
Volterra series (Weiner k Spina, 1980). The output 
can then be expressed as 

y(<) = £>»(') > (3) 
71 = 1 

This representation is depicted in Figure 1. It is ev- 
ident that the model consists of TV parallel blocks 
having a common input u(t). The total response is 
obtained by summing the output of the individual 
Volterra kernels hn(ri, r2,..., rn). 

While a Volterra series model can adequately describe 
the dynamics of a nonlinear system, it is difficult to 
use in practice. One criticism of the Volterra series 
model is that the computation of the Volterra kernels 
can be difficult. In addition, the interpretation of the 
higher order Volterra kernels in terms of the physics of 
the system is difficult. To address the drawbacks of 
Volterra series models, Bendat (1990) considers the 
following simplification. The second order kernel is 
replaced by a zero-memory square law that proceeds 
a linear system. Likewise, the third order kernel is 
replaced by a zero-memory cubic law that proceeds a 
linear system. Bendat argues that these three terms, 
the linear path, the quadratic path, and the cubic 
path, are sufficient to characterize the response of a 
nonlinear system that contains static nonlinearities. 
Hence, the system output y(t) to an input u(t) for 
the simplified Volterra series model is given by 

y(t) = Gi(p)«(<) + G2(p)u2(t) + G3(p)u3(t)      (4) 

where p = d/dt. 

The system model given by (4) is a special parameter- 
ization of a Hammerstein model. Typically, a Ham- 
merstein model consists only of a zero-memory non- 
linearity followed by a single linear system. In (4), 
however, each zero-memory nonlinearity is followed 
by a different linear system. In this paper, we ex- 
tend the nonlinear model given by (4) to include a 

finite number of zero-memory nonlinearities. Thus, 
the system output is given by 

y(t)    =   G1(p)g1[u(t)] + G2(p)g2[u(t)] + --- 

+Gn(p)gn[u(t)] (5) 

where gi[u(t)} is a zero-memory nonlinearity operat- 
ing on the input u(t) and Gi(p) is the corresponding 
linear system (Figure 2). 

While the nonlinear model given by (5) is capable 
of modeling a nonlinear system whose response con- 
tains the characteristics associated with static non- 
linearities, it is difficult to use in controller design. 
First, the model may not be affine with respect to 
the system input u(t). Thus, many nonlinear con- 
trol techniques such as feedback linearization are dif- 
ficult to apply. Second, the above model may con- 
tain even type static nonlinearities. As a result, tech- 
niques that rely on sector bounding the nonlinearity 
are not applicable. To address these issues, in this 
paper we present a frequency based controller design 
methodology for a Hammerstein type model given by 
(5). The design methodology accounts for the sys- 
tem nonlinearities and incorporates asymmetric per- 
formance constraints on the system output. The de- 
sign objective is to develop a control law that guar- 
antees a prespecified hard time domain performance 
tolerance that bounds the system output variation 
in the presence of a nonmeasurable external distur- 
bance. The proposed controller design methodology 
is demonstrated on the idle speed control problem of 
a Ford 4.6L-2 valve V-8 engine. 

II. Problem Statement 

Consider a single-input-single-output regulating sys- 
tem whose dynamics are described by a Hammerstein 
type model. About some nominal operating point, 
the perturbation in the system output y(t) due to 
the presence of a nonmeasurable external step distur- 
bance w(t) is given by 

n 

!>(*)=£ Gi (p) 9i [u (t)] + iGw (p) w (<)     (6) 
»=i 

where u (t) denotes the controlled input about some 
nominal control effort, and 7 denotes the magnitude 
of the external step disturbance. The output perfor- 
mance specification appears as an allowable output 
tolerance about the nominal value, 

|y(*)l< 
Ql 

C*2 

if y (*) > 0 
if y {t) < 0. 

(7) 

The objective is to design a controller such that the 
output performance specification is satisfied despite 
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the nonlinear nature of the system dynamics and the 
nonmeasurable external disturbance. 

III. Controller Design Methodology 

The design of a feedback controller for a nonlinear 
system that is characterized by a Hammerstein type 
model is presented in this section. The frequency do- 
main controller design methodology utilizes describ- 
ing functions to quasilinearize the system nonlinear- 
ities. Thus, the amplitude distortions of the funda- 
mental harmonic due to the static nonlinearities in 
the Hammerstein type model are explicitly taken into 
account. Since the design methodology is predicated 
on the use of describing functions, the overall per- 
formance and stability of the nonlinear closed loop 
system can only be conclusively verified through nu- 
merical simulation. 

Consider a system described by a Hammerstein 
model that is subject to an external disturbance. 
The static nonlinearities in the Hammerstein model, 
gi[u(t)], may include both even and odd nonlineari- 
ties. Rewriting (6) such that the first k terms reflect 
the even nonlinearities and the last / terms reflect the 
odd nonlinearities gives 

* / 

y(t)     =      £ Ge (p) Se [«(*)] +£ G„ (p) £,[«(<)] 
e=l 0=1 

+jGw (p) W (t) (8) 

where e denotes even and o denotes odd. For the sole 
purpose of feedback controller design, the even non- 
linearities ge [u (t)] will be rewritten in terms of odd 
nonlinearities, ge[u(t)j. For example, a quadratic 
nonlinearity, x (t) = g[u(t)] = u2 (t), may be writ- 
ten as 

x(t) 
g [u (t)] = u (t) \u (t) |    if u (t) > 0 

-g [u (t)] = -u (t) \u (t) | if u (t) < 0. 

As a result, (8) can be rewritten as 
(9) 

y(<) = < 

Ee=lGe(p)5e 
ELlGo(p)<7c 
~fGw (P) W (t) 

-Ee = lGe{p)g< 
E1=1G»(P)S0 
jGw (p) W (t) 

[u(t)} + 
[u(t)} + 

[«(*)] + 
[«(*)] + 

if u(t)>0 

if u(t) < 0. 
(10) 

In the development to follow, the nonlinearities 
ge [u (t)] and g0 [u (t)] will be approximated by their 
corresponding describing function Ne [\U (jw) \] and 
N0[\U(ju) |], respectively. The describing function 
for the static  nonlinearities ge [u (t)}  and g0 [u (t)] 

characterizes the amplitude distortion of the funda- 
mental harmonic due to the nonlinearity. The ap- 
proximation of a nonlinearity through the describing 
function is referred to as a quasilinearization because 
the fundamental harmonic is only considered. Since 
the describing function is often a function of the in- 
put magnitude, and in some instances, a nonlinear 
function of the input magnitude, the term quasilin- 
earization is used. 

To design a nonlinear controller that satisfies the 
asymmetric output performance specifications of (7), 
consider the feedback structure shown in Figure 3. 
Without loss in generality, let c*i < 02 in the follow- 
ing development. Initially, consider the design of a 
linear controller, denoted as Gc(s), for the tighter 
performance specification a\ and let the nonlinear 
gain be unity. For the feedback structure shown in 
Figure 3, the hard time domain tolerance \y (t) | < ai 
can be enforced for the quasilinearized system by sat- 
isfying the inequalities 

jAGw (jw) 
1 + L?(ju>)\> 

\1 + L?(jw)\> 

where 

jAGw (jw) 
ax 

J-\Gw(jw)\   (11) 
ai 

Ql 
\Gw(jw)\   (12) 

L?(jw) = ( E G' 0'w) N< HGe CM Y(jw)\] + 
e=l 

23 G0 (jw) N0 [\Ge (jw) Y(jw)\] ) Gc (jw) (13) 
0=1 

k 

L21 (J'w) = ( " E G' Üw) N< [IGc 0"w) Y(jw)\] + 
e = l 

E G0 (jw) No [\GC (jw) Y(jw) |] ) Gc (jw). (14) 
0=1 

Inequalities (11) and (12) lower bound the amplitude 
of I/"1 (jw) and £3' Üw) as a function of its corre- 
sponding phase angle. Thus, if Gc (jw) can be de- 
signed such that (11) and (12) are simultaneously 
satisfied, the time domain tolerance \y(t) | < ai can 
be enforced for the quasilinearized system (Shah & 
Franchek (1997)). 

The design parameter 7 in (11) and (12) is the prod- 
uct of the disturbance step size 7, which is to be max- 
imized, and the scaling constant A (Franchek (1996)). 
Since the scaling constant A is dependent upon the 
characteristics of the closed loop system, the param- 
eter 7 is treated as an unknown which is maximized 
subject to the design of a linear controller. 

The describing functions Ne[\Gc(jw)Y(jw)\] and 
No[\Gc(jw)Y(jw)\] in (13) and (14) are a function of 
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the controller magnitude and the output magnitude 
of the quasilinearized closed loop system. To deter- 
mine the input to these describing functions, namely 
\U(ju>)\ = \Gc(jw)Y(ju)\, consider the relationship 
between the input to the nonlinearity u(t) and the 
disturbance input w(t) for the quasilinearized closed 
loop system when u(t) > 0, 

U(ju) jGc{jio)Gw(jüj) 

W{ju>) l + If^jw) 
(15) 

Taking the magnitude of both sides and squaring the 
result yields 

it/(juoi2ii+Lr(jW)i2 

-f\Gc(ju)Gw(jcu)\2\W(JLo)\2 = 0. (16) 

where L^{juj) is defined by (13). Note that (16) is a 
function of \U(jto)\ only. Also note that the magni- 
tude of W(ju) is unity since the design parameter 7 
reflects the magnitude of the disturbance input. The 
positive real roots of (16) define the magnitude of 
the input to the nonlinearity based on the character- 
istics of the quasilinearized closed loop system, the 
frequency w, the design parameter 7, and the magni- 
tude of the controller being designed. Thus, as poles 
and zeros are augmented to Gc(jw) during the design 
process, the magnitude of the input to the describing 
function must be recalculated. A similar development 
can be carried out for u(t) < 0. The above develop- 
ment parallels that of Gibson (1963). 

To enforce the asymmetric performance constraint, 
assume that a controller Gc (s) has been successfully 
designed for the tighter performance specification a\. 
The objective is to determine the necessary gain re- 
duction so that the second performance constraint, 
I2/M I < a2, is satisfied for the quasilinearized sys- 
tem. It is shown in Shah & Franchek (1997) that 
if C = ai/a2, the amplitude inequalities associated 
with the second performance constraint can auto- 
matically be satisfied provided abs(ZL"1(jw)) < 90° 
and abs(ZZ-21(jw)) < 90°. This phase constraint is 
realizable for the low and middle frequency ranges 
where controller design takes place. The nonlinear 
gain is a realization of the two different gains associ- 
ated with the asymmetric output performance spec- 
ifications (namely this gain is unity when y(t) > 0 
and C when y(t)   <  0). 

IV. Idle Speed Control 

In this section we present an application demonstrat- 
ing the aforementioned controller design methodol- 
ogy. The system under consideration is the idle speed 
control of a Ford 4.6L-2 valve V-8 fuel injected engine. 
During engine idle, the by-pass air valve (BPAV) is 

used to regulate the amount of air flow entering the 
engine thereby regulating the system output, namely 
engine speed. The control objective is to regulate the 
engine speed at the desired setpoint, in this case 800 
rpm, within a prespecified output tolerance despite 
the presence of a nonmeasurable external torque dis- 
turbance. The torque disturbance is initiated through 
the saturation of the power steering pump which de- 
livers a 20 Nm torque load to the engine. 

The by-pass air valve to engine speed response ex- 
hibits nonlinear characteristics. One example of a 
nonlinear characteristic is the asymmetric response 
in engine speed due to a sinusoidal excitation of the 
BPAV (Hamilton k Franchek, (1997)). In addition to 
the system nonlinearities, the idle speed control prob- 
lem includes other challenges such as the induction- 
to-power time delay. In Shah & Franchek (1997), 
a Hammerstein type model is developed to describe 
the dynamics associated with the BPAV to engine 
speed loop at the operating point of 800 rpm. The 
static nonlinearities of the Hammerstein model are 
9i[u{t)] = u{t), 92[u(t)] = u2(t), and g3[u(t)] = 
u3 (t). The linear dynamics associated with the static 
nonlinearities as well as the disturbance dynamics are 
given by 

-0.2p 1.43  (p/1.44r + (0.14)p + l   e 

Gi(p)    =    [(p/4.5)2 +(0.384) p+l] 

x [(p/1.414)2 + (0.141) p+l] (17) 

0 14e-0-2p 
U (18) 

(19) 

(20) 

G2(P) = 

G3(p) = 

Gw(p)   = 

(p/6.0+1) 

0.17[(p/13.6)+lle-°-2P 

(p/4.84)2 + (0.41)p+l 

1.35[(p/3.1)+l] 
(p/2.8)2 + 0.34p+l 

The time domain performance specifications for the 
BPAV to engine speed response are 

|y(<)l< 
c*i = 150 rpm    if y > 0 
c*2 = 100 rpm    if y < 0. 

(21) 

about the desired idle speed of 800 rpm. The tighter 
tolerance on the engine speed occurs when the engine 
experiences a torque load through an external distur- 
bance such as the power steering pump. The tighter 
tolerance prevents a large drop in engine speed which 
induces excessive engine vibration. 

IV. 1 Controller Design 

The design of the idle speed controller begins by 
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y(t) = < (22) 

rewriting the quadratic nonlinearity, 

Gi (p) u (t) + G2 (p) u (t) \u (t) |+ 
G3 (p) u3 (t) if u (t) > 0 
Gi (p) «(*) - G2 (p) u (*) |u (t) |+ 
G3 (p) u3 (t) if u (t) < 0. 

Utilizing (11) and (12), the amplitude inequalities as- 
sociated with the tighter performance constraint are 
given by 

7 |l + I?3(iw)l> 

li + LHi«) 

100 rpm 

7 

|Gpv (jw) | if u (t) > 0 (23) 

\Gw (ju) I if « (t) < 0 (24) 
~ 100 rpm' 

where L"2 (jw) and L^2 (ju) are given by 

Lf (ju) = ( G1 (ju) + G2 (ju) W2 [|Ge(jw)y(i«)|] 

+G3 (jw) JV3 [\Gc(ju)Y(ju)\] ) Gc (i«) (25) 

L%2 (ju) = ( Gi (ju) " G2 (jw) W2 [|Gc(j«)y(ja;)|] 

+G3 (jw) JV3 [|Gc(iw)y(iw)|] ) Gc (ju) . (26) 

^2[|C?e(jw)y(iw)|] and 7V3[|Gc(jW)y(iW)|] corre- 
spond to the describing function for the u (t) \u (t) | 
and the u3 (t) nonlinearity, respectively, 

N2 [\Ge(jU)Y(ju)\] = £-\GcUu)YUu)\       (27) on 

N3 [|Ge(jW)y(jw)|] = \\Gc{ju;)Y{ju)\\       (28) 

To calculate the input magnitude to the de- 
scribing function, (16) is used where \U(jw)\ = 
\Gc(ju)Y(jw)\. Thus, the objective is to loop shape 
a linear controller, Gc (s), such that (23) and (24) are 
satisfied simultaneously. 

Initially, the design parameter j is set to 0.5, and 
a linear controller is designed such that L"- (ju) and 
L^2 (jw) satisfy the output performance bounds. The 
design parameter, 7, is then increased until a lin- 
ear controller cannot be designed such that L"2 (ju) 
and Z/j2 Uu) satisfy the output performance bounds. 
This iterative process results in 7 = 0.75. In Figure 
4, the output performance bounds for 7 = 0.75 at se- 
lected frequencies are shown. The design of Gc (ju) 
begins by introducing a free integrator so that com- 
plete disturbance rejection is possible at steady state. 
Next, poles and zeros are augmented to L"- (jto) and 
Lj2 (ju) to simultaneously satisfy the output perfor- 
mance bounds at the selected frequencies. During the 
design process, it is observed that the performance 
bound corresponding to u = 7.0 rad/sec is the bind- 
ing constraint for L"2 (ju). For L%2 (ju) the bind- 
ing constraints are at u = 3.0 rad/sec and u = 7.0 
rad/sec. To meet the performance bounds, the fol- 
lowing compensator is designed 

0.0039 (S/0.6+l)(S/4.0+l) 
W s(s/50+l)3 

Figure 4 and Figure 5 depict the performance bounds 
and the compensated L"2 (ju) and L"2 (ju), respec- 
tively. 

Note that the actual disturbance step size is not used 
in the design of Gc (s), rather the design parame- 
ter 7 is used. To determine the maximum allowable 
disturbance step size, closed-loop simulations of the 
nonlinear model are performed where the disturbance 
magnitude 7 is scaled so that the output performance 
specification \y(t)\ < 100 rpm for y (t) < 0 is met for 
the nonlinear system model. The maximum allow- 
able disturbance step size is determined to be 19.0 
Nm. The simulated closed loop response for this dis- 
turbance size utilizing the nonlinear model is shown 
in Figure 6(a). To meet the asymmetric performance 
constraint for \y(t)\ < 150 rpm for y(t) > 0, the 
gain of the controller is multiplied by 0.66 (a2/ai)- 
The simulated closed loop response for the nonlinear 
model subject to a 19.0 Nm torque unload is shown in 
Figure 6(b). The output performance specifications 
are met. 

IV.3 Experimental Verification 

The proposed controller for the BPAV to engine 
speed response is experimentally verified utilizing 
SIMULINK and the Real-Time Workshop by Math 
Works, Inc. For controller implementation, the sam- 
ple rate is set to 250 Hz and a fifth-order Runge- 
Kutta integration algorithm is used. Even though the 
controller design process predicts a maximum distur- 
bance step size of 19.0 Nm, the proposed control law is 
tested with a full 20 Nm torque load supplied through 
the power steering pump. The experimentally mea- 
sured engine speed response for a 20 Nm torque load 
is shown in Figure 7. In Figure 8, the results for a 
20 Nm torque unload are shown. It is clear that the 
asymmetric performance tolerance is satisfied. 

V. Conclusions 

Presented in this paper is a controller design method- 
ology for a SISO nonlinear system whose dynamics 
can be characterized by a Hammerstein type model. 
The controller design methodology is based on the 
application of describing functions. As a result, con- 
troller design issues such as a model that is not affine 
in the controlled input and the presence of even type 
nonlinearities in the system mode are addressed di- 
rectly. Furthermore, the controller design method- 
ology incorporates asymmetric output performance 
specifications into the design process. Finally, the 
design methodology is successfully demonstrated on 
the idle speed control problem of a Ford 4.6L-2 valve 
V-8 engine. 
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Figure 1:  Block diagram of truncated Volterra series 
model (Weiner k. Spina (1980)). 
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Figure 4: Output performance bounds and L°2 (ju) 

Figure 5: Output performance bounds and L"2 (jw). 

Figure 3: Unity feedback control structure. 
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Abstract 

In recent years, several non-parametric robust identification algorithms have been pro- 
posed that generate a collection of frequency dependent value sets where the "true" model of 
an LTI system is assumed to lie. If the system is also assumed to have restricted complexity, 
then the identified value sets may be conservative. The purpose of this note is to investigate 
this problem of conservativeness from a set membership viewpoint, and propose an algorithm 
for computing the largest value sets contained in the original ones, that can be generated by 
a model of fixed structure but unknown parameters. 

1    Introduction 

When designing a robust controller in the frequency domain, it is usually assumed that the 
frequency response of the "true" system lies on regions of the complex plane for each, frequency. 
These regions, called "value sets" in the literature, quantify the amount of uncertainty about the 
system model at a given frequency. Value sets may originate from computing the frequency re- 
sponse of a transfer function with parametric uncertainty or may be obtained from input-output 
experiments. In the latter case, which is the one of interest in this note, the identification is 
done either frequency-by-frequency, e.g., by means of sinusoidal experiments, or by using broad- 
band excitations in order to reduce the measurement time [10, 11]. The problem of obtaining 
hard bounds on the frequency response of a system from experimental data has been considered 
before, e.g., in [4, 9], and several techniques for obtaining such bounds are now available (for 
instance, the authors' acompanying work [2]). Since the computation of such bounds is not the 
topic of the current work, it is assumed in the sequel that the value sets constitute the problem 
data. 

If the complexity of the plant is arbitrary then the resulting value sets may give an adequate 
description of uncertainty, but if the plant has some a priori known model structure, then it may 
be possible to reduce the value sets (and hence uncertainty) by exploiting the model structure. 

The problem considered in this note is the following. Suppose that a collection of value sets 
T (u>k) € C for a finite number of frequencies fin = {u>i, w2, • • •, u>n} is given. Note that only 
SISO plants are considered here. If one selects from each value set Tfok), an arbitrary point 
tk, it is possible to compute a transfer function G(s) that interpolates these points exactly, i.e. 
such that G(ju>k) = tk, Vife. Interpolation may no longer be possible if the true system is known 
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to have a linear-in-the-parameters model G(s,p), p £.Em, since there might not exist a p such 
that G(ju>k,p) = tk,Vk. Hence one would like to compute reduced value sets Tf (u}k) C T{wk), 
by removing from T (wj.) all those points which cannot be generated by the parametric model. 
Note that the desired result is the set of reduced value sets, and neither the parameter set that 
generates the reduced value sets, nor any particular frequency function. 

Two main assumptions are made in this paper. First, it is assumed that each T (u>/.) is a convex 
polytope. Since most robust identification techniques generate value sets which are convex [6], 
and any convex set can be approximated arbitrarily well by a convex polytope, this assumption 
is rather mild. Second, the parametric model is assumed to depend linearly on the parameters. 
This assumption is made for simplicity, and is justified in the light of recent advances of linear 
system approximation by means of linear combination of elementary functions; the reader is 
referred to [5] for a report of recent work and a fairly complete list of references. As an example, 
G(-,p) can be chosen as a linear combination of Laguerre filters if the plant is known to have a 
dominant low or high frequency pole, or of Kautz filters if it has a dominant resonance. 

2    Problem Statement 

Assume that the "real" plant Gtrue can be described by the linear-in-the-parameters model 
m 

G(s,p)   =    J2piGi(s) (2-1) 

=    <f>T(s)p, (2-2) 

where 

*(*) = 

Gi(s) 
G2(s) 

P = 

Pi 
P2 

This description is valid at least for the frequencies in fin. The selection of the filters Gi(s) 
depends on the a priori knowledge of the system, and can be one of those considered in [5]. By 
factorizing (f>(jw) into its real and imaginary parts ^>r(jw) and <j>i(jw), it is possible to write 
G(ju,p) as 

G(ju>,p) = 4>r(ju)p + j<f>J(jw)p- 

Consider now a characterization of each measured value sets in terms of inequalities: 

■{ T {u>k) = { ak + jßk :   Ak 
ßk 

>bk},    AkeRThX2,   bk£RTk 

for k = 1, • • •, n. From eqns. 2-3 and 2-4, 

4>r (M) 
<f>J (jWfe) 

•P = ßk 
,    Ak 

ak 
ßk 

>bk 

or 

Ak 
4>r  U^k) ■p > h- 

(2-3) 

(2-4) 

(2-5) 

(2-6) 
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Associated with the measured value sets T (u^), k - 1, • • •, n there is a set V C Em defined by 

V = {p:   G(juk,p)eT{L>k),k = l,---,n}, (2-7) 

which is a membership set for the parameter p corresponding to the model structure G(s,p) and 
the measured value sets T (oJk)- It is worth stressing that for p to be in V, the transfer function 
G(s,p) must belong simultaneously to all T(vk) for wk 6 fin- Therefore, V takes into account 
the interdependence between different frequencies produced by the assumed model structure. 

Consider the matrices 4 6 lrx2n, $ e E2nXm and 6 G Kr given by 

A = 

Ax 0 0 

0 A2 

0 
0 0 An 

,  $ = 6 = 
6i 

(2-8) 

and let 

Then, by definition, each p € V must satisfy the r = £jj=1 rfc linear inequalities: 

A$ • p> b, 

and so: 

(2-9) 

Lemma 1 
If each measured value set T (wk) is a convex polytope, and the parametric model G(s,p) is 

linear-in-the-parameters, then the set V is a convex polytope. 

Proof. The proof follows from Eq. 2-9 by standard lmeai-programming arguments [l].   D 

Given the set V, the reduced value sets Tf (uk), for each frequency wk, may be defined as follows: 

Definition 1 Tf (uk) = {s£C such that s = G(juk,p) for some p e V). 

It follows by construction that 

r/WCTK)  Vfc = l,--.,n. (2-10) 

Moreover, the parametric model takes into account the interaction between different frequencies, 
and hence strict inequality may hold, as illustrated by the following example. 

Example 1 
In this example, two value sets are given at frequencies wi = 1, w2 = 2.  Both value sets are 
polygons, with vertices: 

Vi.    =    {0.4500 - 0.2500z, 0.6750 - 0.0250i, 0.8250 - 0.1750i, 0.6000 - 0.4000i} 

V2    =    {0.2480 - 0.3360z, 0.4240 - 0.3680i, 0.5040 - 0.5280i, 0.3280 - 0.4960i}. 
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A 2nd order Laguerre model structure is assumed for the system: 

G(s,p) = Pl ■ 1/(5 + 1) +p2 ■ (s - l)/(s + l)2. 

Using the algorithm described in the next section, the value sets can be reduced as illustrated in 
Fig. 1; also 

V = \    Pl      s.t. .8<Pl < 1, .2<p2 < .6} 
U P2 J i 

-0.2 

- 

A 

- 

^^ 

/         "-.^          w ■ 1 

T(D    ,/'     /'\\ 

\/   Tf(1)        / 

- 

- Vug) 
\    """ 

- 

- w - 2 v_  A T<2) - 

Figure 1: Reduction of 2 value sets using 2nd order Laguerre model 

3     Computation of the Reduced Value Sets 

By Lemma 1 the set V is a convex polytope, which can therefore be characterized by the set 
of its extreme vertices Vv. Since Tf (w;.) = ^{ju^yp, the reduced value sets are also convex 
poly topes, characterized by the vertices 4>(ju>k)'Pv In principle, one can compute these vertices 
by first finding the vertices in Vv using one of the existing algorithms for obtaining all vertices of 
convex polyhedral sets [8], or the recursive algorithm proposed in [12]. There exists good reasons 
that make this approach undesirable. First, using the notation [zj to denote the greatest integer 
function, the Upper Bound Conjecture [8] gives the bound 

N   = / r- L(m + 1)/2J \      / r- L(m + 2)/2j 
?      \ r — m }      \ r — m 

for the number of vertices in Tv, where denotes the binomial coefficient. For example, 

if r = 100 and m = 5, this gives less than 9312 vertices, and if m is increased to m = 15, the 
bound increases to about 2 • 10"! • The second reason is that finding all vertices of a polytope is a 
computational expensive task, even if the number of vertices is much smaller than the mentioned 
upper bound [8]. 
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In contrast, computing the vertices of a 2-dimensionalpolytope is a'much simpler computational 
task. On one hand, the upper bound for the number of vertices collapses to N-p = r. On the 
other, it is possible to begin on one vertex of the polytope and traverse its perimeter by moving 
along the border segments. Motivated by these facts, this section presents a direct method for 
reducing the value sets, which is potentially more efficient, especially for a large number of 
model parameters or frequency points. The number of operations for a method working in the 
parameter space increases exponentially with the number of parameters. The new direct method 
requires the solution of a linear programming problem for each vertex, implying that the number 
of operations increases at most polynomially. A formal proof will however not be persued here. 

The algorithm does not require the computation of V as an intermediate step but rather works 
separately on each value set T{uk). It starts by computing a vertex of Tf(uk), and then 
finding iteratively the following vertex of the reduced value set in an anti-clockwise order; this 
computations can be done efficiently by using linear programming. In detail, for each frequency 
Uk the algorithm is as follows: 

Algorithm 1 

Data: E(uJk) = 
4>i{J^k)T , A$, b. 

Step 1. Find the leftmost vertex x\ ofTf (o>fc), and set j = 1. 

Step 2.  Given the vertex Xj, find the direction dj'w from Xj to the next (in the counter-clockwise 

direction) vertex Zj+i ofTf(uJk)- 

Step 3. Find the next vertex Xj+1 of Tf (wk). Ifxj+i = x\ stop; otherwise set j = j + 1 and go 
to Step 2. 

The implementation of this algorithm is the topic of the remainder of the section. For ease of 
notation, T (wj.) and Tf (wfc) are considered as subsets of E2 instead of C. The leftmost vertex of 
Tf (ujk) required in Step 1, is given by xx = E (u>k)-Pi, where px solves the linear programming 
problem: 

px = argmin|^(j'a;fc) -p, s.t. A$ -p > bj (3-1) 

Given the vertex Xj and the direction d^ew, Xj+i in Step 3 of Algorithm 1 is found by setting 
XJ+I = Xj + \cPew and maximizing with respect to A, under the constraints A$ • p > b. More 
explicitly, Xj+i = E(uk) • Pj+i, where pj+1 is computed by solving the linear programming 
problem: 

max   A 
s.t. 

[EM   -d£~] 

[A*   0] P 
A 

> 6 

P 
A 

= Xi (3-2) 

The computation of djew from Xj is discussed next. 
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Direction to Next Vertex 

From elementary linear programming, if there exists a solution to Problem 3-2, then there is 
also a vertex solution which can be found by using the simplex algorithm [l]. Let pj denote such 
a solution; given that the problem has m + 1 variables and 2 equality constraints, the system 
A$ -pj > b will have at least m — 1 active constraints. As discussed in the previous section, each 
vertex of Tf (w^) is the image of a vertex of V, and hence pj can be chosen so that m constraints 
are active. If the solution pj has m — 1 active constraints, then it can be modified to have m 
constraints by changing it along the null space of the active constraints. If i'i, • • •, im denote the 
active constraints, pack the corresponding rows of A$ in a matrix Af, and the corresonding 
entries of b in a vector bf *, so that p, verifies Afpj = bf, where Af G KmXm and bf G W71. 

In order to compute the direction djew, consider the cone C&p C Km defined by 

'Ap = {Ap:   Af-Ap>o}. (3-3) 

A vector dj G M2 is said to be an admissible direction for XJ, if Xj + edj G Tf (wj.) for some e > 0 
(and hence, by convexity for all € > 0 smaller than some number). The relationship between 
admissible directions and the cone CAp is established next. 

Lemma 2 
A vector dj is an admissible direction for xj = E {wk)Pj if o-nd only if 

dj £ E (wfc) • CAp. 

Proof. If dj is an admissible direction, then £j = Xj + edj 6 Tf (wj.) for some e > 0 sufficiently 
small. Let q € V be such that Xj = E (u>k) q. 

bf < Afq = Afpj + Af(q - Pj) = bf + Af(q - Pj), (3-4) 

which implies Af{q - pj) > 0, and hence (q - pj) G CAp. Moreover E (uk) (q - Pj) = edj. For 
the "if" part, if v e C&p, then A$(pj + ev) > b for e > 0 sufficiently small, since this is true for 
the active constraints but also for the inactive ones, which remain strict inequalities for small 
enough e.   D 

By standard linear programming, the cone C&p has a finite number of extreme rays {u%}l=1, 
and each vector dj e C&p can be written as dj = X)i=i a*u\ a% > °- The vectors ux may 
be computed by removing a row of Af, computing a normalized non-trivial solution of the 
remaining equalities, and multiplying by ±1 so that the resulting vector verifies the inequality 
constraint Afu{ > 0. Repeating this for each row gives the set U = {«i, ..,«„} C Km, with 
s < m, since Af G RmXm. The direction djew from XJ to XJ+I can be obtained by mapping 
one of the extreme rays of CAp. 

Lemma 3 
The direction d?ew from the vertex Xj to the next vertex XJ+I in counter-clockwise direction, is 

given by: 

d]ew = E(ojk) u, for some u G U. (3-5) 
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Proof. If E(uk)uix = E(uk)ui2 for ix ± i2, one can eliminate either uH or if2 from U and 
hence, without loss of generality, assume that E (wfc) maps each ux into different vectors. Let 

dfw = E (wfc) (Ei=i fli^) = Ei=i airfi. a* > 0 be such that 

Since Zj+i - Xj must belong to the border of the polytope Tf (wjt), and each vector d1 is an 
admissible direction, then a1 = 0 for all but one, say, i0. Otherwise, if a1 > 0 for i = iu i2, then 
at least one of Sl should lie outside Tf (wt) since d^ew lies on the border. The proof follows by 
contradiction.   D 

Let dfd be the normalized direction from the vertex XJ-\ to the vertex Xj. From Lemma 3 and 
the convexity of Tf (u)k), the vector ul which yields the new direction may be computed as 

unew = arg max < 
' (dfd)T -Efa)* 

^(Wfcjtfl 
(3-6) 

and then setting 

^'    ii£(wfc)u~»ir v ; 

The procedure is illustrated in Fig. 2. 

In the case j = 1, the point Xj is the leftmost vertex of Tf (w;t), and the vector [0 - l]r points 
to the outside or the border of Tf (uk); hence dfd = [0 - 1]T. 

Remark 1 
In general, a vertex Xj of a reduced value set, may correspond to more than one vertex p*- of the 
membership set V. Depending on which p1- results from the computation, the active constraints 
yielding Aa-ct, 6"ct may be different. One is then tempted to suppose that different constraints 
may result in different cones. Equation 3-4 shows that this is not the case: Assume that vertices 
Px andp2 in the parameter space give rise to the same vertex x of the value set. Assume further 
that the computation of the new direction dnew, is based onp2 (3-3), and that y is a feasible point 
along dnew, corresponding to the parameter value q. Then, the line segment [x,y] in the value 
set corresponds to the line segment [p2,?] but also to the line segment [pi,§] in the parameter 
space which, due to convexity, belongs to V. Hence y belongs to the cone generated from p\, and 
it follows that the direction d2ew is independent of the particular selection of active constraints. 

Remark 2 
By construction, a point of the form Pj(\) = Pj + \<Fjew is feasible if A > 0 is small enough. 
However, all points of this form lie on the border of the feasibility region, so that small numer- 
ical errors on the direction d?ew can render all these points non-feasible. Consequently, when 
implementing the algorithm the search directions d7}*™ have to be perturbed, to guarantee that 
they point inside the feasibility region. For instance, this can be done by introducing the modified 
direction &ew = d?ew — edj^, where e is some small positive constant. 

Remark 3 
Algorithm 1 can be used to reduce the value sets sequentially. It is important to stress that the 
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(a) 

kj-i 

(b) 

kj+l 

(c) 

Figure 2: Three steps for computing d?ew: (a) The cone of permissible directions; (b) The subset 
{dj}; (c) The new direction d*-ew. Note that the old direction is Xj — Xj_i. 
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Figure 3: Reduction of 4 value sets using 3rd order Laguerre model 

T(l) T(2) T(3) T(5) 
0.64+J0.7 0.59 -jO.01 0.42 -jO.22 0.13 -jO.28 
0.7+J0.55 0.71 +J0.1 0.52 -jO.19 0.17 -jO.24 
0.9+J0.38 0.94 +J0.0 0.64 -jO.23 0.27 -jO.25 

1+j 0.48 0.94 -jO.14 0.68 -jO.31 0.36 -jO.33 
0.91+j 0.73 0.73 -jO.22 0.53 -jO.38 0.28 -jO.39 

0.75+j 0.88 0.62 -jO.12 0.43 -jO.35 0.16 -jO.38 

Table 1: Vertices of the Value Sets 

computational load does not increase as one progresses from value set to value set, in spite of the 
fact that, in general, each reduced set Tf (UJJ.) is defined by a larger set of inequalities than the 
corresponding T (uk), i-e-, the number of sides ofTf(uk) is larger than the number of sides of 
T (wjb).  The new constraints, however, should not be added when computing a different Tf (wk)- 

4    Example 

The purpose of this section is to illustrate the usage of the algorithm discussed above on an exam- 
ple with a more realistic flavor. Consider the four value sets illustrated in Fig. 3, corresponding 
to the set of frequencies 

n4 = {1, 2, 3, 5}. 

We may e.g. assume that each displayed value set is the convex hull of the union of value sets 
measured in different ways with respect to measurement noises, excitation signals, etc. The 
vertices of the value sets are shown in Table 1. Let us further assume that the "true" system 
can be represented by a 3rd order Laguerre model, with pole at s = —1: 

G<*-rt=|>i7Tir 
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Using the algorithm, we are able to compute the reduced value sets that are compatible both 
with the original value sets and the model assumption. The reduced value sets are clearly subsets 
of the original value sets, as illustrated in Fig. 3. 

Even without knowing the Laguerre parameter set that gives rise to the reduced value sets, we 
may use the reduced value sets as the "true" plant value sets for robust control system design 
using e.g. 5"oo-methods or QFT, [7]. 

Together with the original and the reduced value sets in Fig. 3, one arbitrary "nominal" frequency 
function is displayed. It was computed with the following values of the Laguerre parameters, 

Po = [.21, 1.44, .23]r, 

obtained by averaging the largest and smallest value of each parameter, which corresponds to 
the center of the ortho-top that outerbounds V. Notice that V is not computed explicitly by 
the algorithm; neither is the knowledge of V nor any particular frequency function needed for 
the use of the reduced value sets for robust design purposes. 

5     Conclusions 

In this paper, an algorithm was presented for computing reduced value sets by eliminating from 
given value sets all those points that cannot be interpolated by using a parametric model. The 
parametric model is assumed to represent the true system for an adequate choice of the vector 
of parameters, while the original value sets are assumed to come from experimental data. 

The algorithm offers potential advantages over existing computations, since it does not require 
finding the membership set for the vector of parameters of the model as an intermediate step. 
Notice that the brute force approach mentioned above requires solving all possible m X m sub- 
systems from the system of inequalities defining the value sets. Even for a moderate number 
of value sets these computations may become prohibitively expensive. In principle, it is pos- 
sible to analyze the performance of the new algorithm by making some assumptions on the 
linear programming problems that need to be solved at each stage. The analysis becomes quite 
cumbersome and was not pursued in the paper. 

The approach in this paper is based on the assumptions that the model depends linearly on the 
parameters and the value sets are described by linear inequalities. As argued in the introduction, 
the latter is essentially equivalent to assuming that these value sets are convex, a condition that 
does not appear to be conservative for current identification algorithms. The former appears to 
be more restrictive, since in many cases one may be interested on considering a larger class of 
models. Current research effort is directed towards formulating an algorithm valid for the real 
factored form discussed, e.g., in [12, 3], which allows for larger flexibility. 

References 

[1] J. N. Franklin. Methods of Mathematical Economics. Springer-Verlag, 1980. 

[2] N. Galperin, P. O. Gutman, and H. P. Rotstein.   Value set identification using Lissajou 
figure sets. In Proceeding of the 13th World Congress of IF AC, pages 85-90, 1996. 

126 



[3] P. Gutman, C. Basil, and L. Neumann. An algorithm for computing values sets of uncer- 
tain transfer functions in factored real form. IEEE Transactions on Automatic Control, 

39(6):1268-1273,1994. 

[4] A. J. Helmicki, C. A. Jacobson, and C. N. Nett. Control oriented system identification: 
A worst-case/deterministic approach in W«,. IEEE Transactions on Automatic Control, 

36(10):1163-1176, 1991. 

[5] P. S. C. Heuberger, P. M. J. V. den Hof, and 0. H. Bosgra. A generalized orthonormal 
basis for linear dynamical systems. IEEE Transactions on Automatic Control, 40(3):451- 
465,1996. 

[6] R. L. Kosut, G. C. Goodwin, and M. P. Polis, Eds. Special issue on system identification for 
robust control systems design. IEEE Transactions on Automatic Control, 37(7):899-1008, 
1992. 

[7] J. M. Maciejowski. Multivariable Feedback Design. Addis on-Wesley, Wokingham, U.K., 
1989. 

[8] T. H. Matheiss and D. S. Rubin. A survey and comparison of methods for finding all vertices 
of convex polyhedral sets. Mathematics of Operations Research, 5(2):167-185, 1980. 

[9] M. Milanese, J. Norton, H. Piet-Lahanier, and E. Walter, Eds. Bounding approaches to 
System Identification. Plenum Press, 1996. 

[10] R. Pintelton, P. Guillaume, Y. Rolain, and H. V. J. Schoukens. Parametric identification 
of transfer functions in the frequency domain - a survey. IEEE Transactions on Automatic 
Control, 39(ll):2245-2260, 1994. 

[11] J. Schoukens and R. Pintelton. Identification of Linear Systems: A Practical Guideline to 
Accurate Modelling. Pergamon Press, Oxford, 1991. 

[12] M. D. Sidman, F. E. DeAngelis, and G. C. Verghese. Parametric system identification on 
logarithmic frequency responce data. IEEE Transactions on Automatic Control, 36(9):1065- 
1070,1991. 

[13] E. Walter and H. Piet-Lahanier. Estimation of parameter bounds from bounded-error data: 
a survey. Mathematics and Computers in Simulation, 32:449-468,1990. 

127 



128 



The CRONE Suspension : 
a transposition of fractal robustness to mechatronics 

X. Moreau, A. Oustaloup and M. Nouillant 
Equipe CRONE - LAP - ENSERB - Universitd Bordeaux I 

351, cours de la Liberation - 33405 - Talence Codex - FRANCE 
Tel. (33) 56.84.61.40 - Fax. (33) 56.84.66.44 

E-mail: moreau@lap.u-bordeaux.fr 

Keywords : Fractal robustness, CRONE control, CRONE suspension, Vibration insulation, automotive domain 

This paper deals with the transposition of 
fractal robustness to mechatronics through the 
CRONE control and the CRONE suspension. A two 
degree of freedom quarter car model is developed 
to evaluate performance. For the CRONE suspen- 
sion, the frequency and time responses, for va- 
rious values of the vehicle load, reveal a great 
robustness of the degree of stability through the 
constancy of the resonance ratio in the frequency 
domain and of the damping ratio in the time do- 
main. Three technological solutions are 
proposed: the active CRONE suspension, the 
passive piloted CRONE suspension and the 
passive   CRONE   suspension. 

INTRODUCTION 

The main objective of the vehicle suspensions is to 
provide good vibration insulation of the passengers and to 
maintain adequate adherence of the wheel for braking, ac- 
celerating and handling. Different suspensions satisfy the 
above requirements to differing degrees [1], [2]. Traditional 
suspensions (encountered in the majority of today's vehi- 
cles) are characterised by the absence of any energy 
sources. For this reason they are relatively inexpensive and 
reliable. Active suspensions require energy sources (such 
as compressors or pumps) in order to achieve superior vi- 
bration insulation. However, the improved performance of 
the active suspension is coupled with increased hardware 
complexity, higher costs and diminished reliability. Semi- 
active suspensions fill the gap between purely passive and 
active suspensions. They represent a compromise between 
performance improvement and simplicity of implementa- 
tion. 

In this paper, a new system called CRONE suspension 
based on non integer derivation is presented. After an in- 
troduction about suspension systems, Part 2 gives the 
principle of the CRONE suspension and its model. Part 3 
develops the synthesis method of the suspension and des- 
cribes the constrained optimisation to determine suspen- 
sion parameters. Part 4 examines the frequency and time 
responses which show the robustness of both the reso- 
nance and damping ratios versus load variations. Parts 5 
and 6 present the active CRONE suspension, the passive 
piloted CRONE suspension and the passive CRONE 
suspension. Finally, in part 7 conclusions are given. 

VEHICLE MODEL 

The basic mathematical model used for the study is 
composed of two mass dynamic systems consisting of the 
body mass m2 (sprung mass) and the wheel mass mj 
(unsprung mass) "fig. 1". ki is the stiffness and bt the 
damping coefficient of the tyre. z0(t) is the deflexion of the 

road, zj(t) and z2(t) are the vertical displacements of the 
wheel and body respectively. The suspension system, lo- 
cated between die sprung and unsprung masses, develops a 
force f2(t) which can be generated by an active, semi-active 
or passive device [3], [4]. For example, a traditional 
suspension develops a force f2(t) which is a function of the 
relative displacement z12(t) and given by: 

in which 

f2(t) = k2 zi2(t) + b2 zi2(t) , 

Z12(0 = zi(t) - z2(t) 

(1) 

(2) 

and k2 the stiffness of the spring and bj the damping coef- 
ficient. 

The CRONE suspension [5], [6] develops a force f2(t) 
which is a function of the relative displacement z12(t) and 
which obeys symbolically to the general relation: 

F2(s)=C(s)Zi2(s), (3) 

in which C(s) is the suspension transmittance defined by a 
non integer expression. 

sprung mass 

suspension 

unsprung mass 

tyre 

m2 

5 
z2(t) 

m, 

'(£ i* 
(t) 

z0(0 

"fig. 1". Quarter car model 

If it is assumed that the tyre does not leave the ground 
and that Zj(t) and z2(t) are measured from the static equili- 
brium position, then the application of the fundamental 
law of dynamics leads to the linearised equations of 
motion: 

mizi(t) = fi(t)-f2(t) (4) 
and 

m2z2(t) = f2(t), (5) 
in which 

fi(t) = ki (zo(t) - zi(t)) + bi (zo(t) - zi(t)) (6) 

The Laplace transform of equations (4), (5) and (6), assu- 
ming zero initial conditions, are 

and 
mi s2 Zi(s) = ki Zoi(s) + bi s Zoi(s) - F2(s) (7) 
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in which 
ma s2 Z2(s) = F2(s) , 

Zoi(s) = Zo(s) - Zi(s). 

(8) 

(9) 

To analyse the vibration insulation of the sprung 
mass, two transmittances are defined: 

T2(s) = ^I    and  S2(s) = ^?^ . (10) 
Zi(s) Zi(s) 

From equations (7) and (8), the expressions of T2(s) and 
S2(s) are given by: 
- for the traditional suspension 

T2(S) = —k2 + b2S   .,s2(s) = nizV— .(11) 
k2 + \n s + m2 s k2 + \n s + m2 s* 

- for the CRONE suspension 

T2(s) =  ^L—  and  S2(s)=      mzs2   , . (12) 
C(s) + m2 s

2 C(s) + m2 s
l 

To study ride comfort and road holding ability, three 
additional transmittances are defined: 

H.(s) = 42&, Hi2(s)=Ms). andHoi(s)=?2^ , (13) 
Vo(s) Vo(s) Vo(s) 

in which A2(s) is acceleration of the sprung mass, Z12(s) 
suspension deflection, Z01(s) tyre deflection and V0(s) road 
input velocity. A commonly used road input model is that 
v0(t) is white noise whose intensity is proportional to the 
product of the vehicle's forward speed and a road roughness 
parameter [7]. 

SYNTHESIS OF THE CRONE SUSPENSION 

The synthesis method of the CRONE suspension is 
based on the interpretation of transmittances T2(s) and 
S2(s) which can be written as: 

T2(S) = ß(s) 

in which 
1 + ß(s) 

and   S2(s) =  1 
l + ß(s) 

ß(s) = _ C(s) 

(14) 

(15) 
m2s

i 

The transmittances T2(s) and S2(s) can here be considered 
to be of an elementary control loop whose ß(s) is the open 
loop transmittance. 

Given that relation (15) expresses that a variation of 
sprung mass is accompanied by a variation of open loop 
gain, the principle of the second generation CRONE 
control [8] can be used by synthesising the open loop 
Nichols locus which traces a vertical template for the 
nominal sprung mass. 

First version  of the  CRONE  suspension 

A first way of synthesising the open loop Nichols 
locus consists in determining a transmittance ß(s) which 
successively presents "fig.2": 
- an order 2 asymptotic behaviour at low frequencies to eli- 
minate tracking error, 
- an order n asymptotic behaviour where n is between 1 
and 2, exclusively around frequency cou to limit the syn- 

thesis of the non integer derivation at a truncated frequency 
interval; 
- an order 2 asymptotic behaviour at high frequencies, to 
ensure satisfactory filtering of vibrations at high frequen- 
cies. 

Ißüco)! dB   " 

7t/2 

OdB 

0 
argß(j<ü) 

"fig. 2". Open loop Nichols locus of the first-version 
CRONE suspension 

Such localised behaviour [9] can be obtained with a trans- 
mittance of die form: 

/1+-S- 
ß(s)= Co1       ^ 

1+-S- 
COh 

m (16) 

in which: 

cob « COA ,   COB « 0)h   and m = 2 - n e   ]0,1[. (17) 

Identification of equations (15) and (16) gives: 

l//nüT=©J) (18) 

1+S-Y 
and 

O». Co -Ä 

V        COh/ 

(19) 

The equation obtained defines the ideal version of the sus- 
pension. The corresponding real version [8] is defined by a 
transmittance of integer order N: 

N fi+-M 
cN(s)=c0ni—SL 

\        COi/ 

(20) 

in which : 
«l±L = «i±L=ar|>l ; m=a 

COi Wi COi 

coi+i l/N coi±1=        OTIÄ    ; 
COi VCOb/ 

(21) 

a = (ari)m ; coi = cobTiIW   and   coN = cohT| -1/2 

Second version of the CRONE suspension 

A second way of synthesising the open-loop Nichols 
locus consists in determining a transfer ß(s) which 
successively presents "fig,3": 
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- an order-2 asymptotic behaviour at low frequencies to 
eliminate tracking error; 
- an order-n asymptotic behaviour, where n is between 1 
and 2, exclusively around frequency ©„, to limit the syn- 
thesis of the non-integer derivation over a truncated fre- 
quency interval; 
- an order-1 asymptotic behaviour at high frequencies, to 
ensure satisfactory filtering of vibrations at high frequen- 
cies. 

\ I ß(jü))| dB J i 

i %!°b 

AWA 

I   rnn/2 
®u OdB 

1 
i 

-nn/2 -K/2 0 
argf 

"fig. 3". Open-loop Nichols locus of the second-version 
CRONE suspension 

Such localised behaviour can be obtained with a 
transmittance of the form: 

(i+ir (22) ß(s)= Co-^ Sb*- M 
j1+_^jm-l   \s> 

in which: 

Cob « COA, COB « coh and m = 2 - n e ] 0,1 [.   (23) 

Identification of equations (15) and (22) gives: 

1/VmT = coo (24) 
and 

C(s)= Co (25) 

The equation thus obtained defines the ideal version of the 
suspension. The corresponding real version [8] is defined 
by a transfer of integer order 

N , n i+jL 
CN(S) = Co 

in which: 

N"1 / n I+JL- 
(26) 

fOi±l = ®i±I=an>l; % = a; 
COi Wi CDi 

«i±L = T1; anÄ)1/N; 
COi VCOb' 

(27) 

a = (aii)m; co'i = c0bT|1/2   and   C0N = C0hT| 

with N number of cells. 

1/2 

By defining the transmittances (13) with respect to 
v0(t), all frequencies contribute equally to their mean 
square values. That is why the determination of CRONE 
suspension parameters is based on the minimisation of a 
criterion J composed of the H2-norm of the transmittances 
Ha(jco), H12(jco) and Hoi(jco), namely 

r<°b 
= £1 

x3 
«b 

iH.(jco)|2dco + £i 

HoiOco)|2dco + £i 
X,4 

r°h 
H12(jco)|2dcü 

/•»h 
(28) 

H(jco)|2dco, 

in which p{ are the weighting factors, A* the H2-norm com- 
puted for the traditional suspension used for comparison, 
and H(jco) the transmittance between force F2(jco) 
developed by the suspension and the road input velocity 
VoCJco), namely: 

H(jco) = M»l=m2HaÖco). (29) 
Vo(jco) 

To obtain a significant comparison between traditional 
and CRONE suspension performances, a constraint is fixed 
for the minimal sprung mass: equal unit gain frequency of 
open loop ß(jco). 

PERFORMANCE 

The traditional suspension is rear suspension whose 
parameters are given by: 

- sprung mass : 150 kg < m2 ^ 300 kg ; 
- unsprung mass : ml = 28.5 kg ; 
- stiffness of tyre: kj = 155 900 N/m ; 
- damping coefficient of tyre:   bj = 50 Ns/m ; 
- stiffness : k2 = 19 960 N/m ; 
- damping coefficient: b2 =   1 861 Ns/m ; 

From this data, the constrained optimisation of the cri- 
terion J, computed with the optimisation toolbox of Mat- 
lab, provides the optimal parameters of the CRONE sus- 
pension, namely: 
- for the ideal version: 

m = 0.75 ; 

cob = 0.628 rd/s ; 

- for the real version: 
N = 5; 

a = coi/coi = 3.2067 

coi = 0.763 rd/s; 

co2 = 3.608 rd/s; 

cos = 17.061 rd/s : 

C04 = 80.677 rd/s : 

cos = 317.92 rd/s : 

Co = 3 174 ; 

C0h = 314 rd/s; 

Co = 3 174 ; 

•q = coj+i/coi = 1.4746 ; 

coi = 2.9 rd/s ; 

a>2 = 11.6 rd/s; 

©3 = 54.7 rd/s ; 

(04 = 258.7 rd/s ; 

cos = 1223.3 rd/s . 

(30) 

(31) 

Frequency  responses 

"figs. 4" and 5 show frequency performances in open 
loop and in closed loop. 
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Fig. 4. Nichols loci in open loop for (a) traditional and (b) CRONE suspensions: 
( ) m2 = 150 kg; ( ) m2 = 225 kg; ( )m2 = 300 kg 
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Fig. 5. Gain diagrams of T2(jco) for traditional (a) and CRONE (b) suspensions: 

( ) m2 = 150 kg; ( ) m2 = 225 kg; ( ) m2 = 300 kg 
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Fig. 6. Step responses of sprung mass for traditional (a) and CRONE (b) suspensions: 
( ) m2 = 150 kg; ( ) m2 = 225 kg; (-•-•-) m2 = 300 kg 
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"fig. 4" gives the Nichols loci ß(jo>) for the traditional 
and CRONE suspensions. The phase margin varies with 
mass m2 for the traditional suspension. On the other hand, 
phase margin is independent for the CRONE suspension, 
where the Nichols loci in open loop trace the template 
which characterizes the second generation CRONE control. 

"fig. 5" gives the gain diagrams of T2(jco) for the 
traditional and CRONE suspensions. For the CRONE 
suspension, the resonance ratio can be seen to be both 
weak and insensitive to variations of mass m2. This shows 
a better robustness of the CRONE suspension in the 
frequency domain. 

Step   responses 

"figs. 6" shows the step responses of the car body and 
the wheel for both suspensions. For the CRONE suspen- 
sion it can be seen that the first overshoot remains cons- 
tant, showing a better robustness for the CRONE suspen- 
sion in the time domain "fig. 6.b". 

TECHNOLOGICAL SOLUTIONS OF THE FIRST- 
VERSION CRONE SUSPENSION 

The active CRONE suspension 

The first technological solution consists in developing 
an active suspension "fig.7", i.e. with a spring and a hy- 
draulic actuator under pressure control where the reference 
input is a result of the recursive equation calculations of an 
on board micro controller. Usually a hydraulic pump is 
used not only for the actuator but also for power steering, 
ABS etc. 

For the traditional damper, the force-velocity plot is 
independent of frequency because in this case 

"fig. 7". Active CRONE suspension 

Instantaneous power 

Instantaneous power is defined as the product, at each 
time, of the relative velocity vi2(t)and the force fa(t) 
provided by the actuator or the traditional damper, namely: 

with 

and 

P(0 = vi2(t)fa(t), 

v12(t)=d-zi2(t) 
dt 

fa(t) = f2(t)-k2z12(t). 

(32) 

(33) 

(34) 

"fig. 8" gives the force-velocity diagrams of the tradi- 
tional damper and the actuator for a harmonic solicitation 
of the wheel at a frequency of 4 Hz and an amplitude of 1 
cm. 

fa(t) = b2Vi2(t). (35) 

For the actuator, the force-velocity plot describes an el- 
lipse which, for this frequency, shows that force and velo- 
city are not in phase; in this case, two phases of func- 
tioning can be distinguished: 
- a first phase where relative velocity and force are of the 
same sign and where instantaneous power is positive; 
- a second phase where relative velocity and force are of op- 
posite signs and where instantaneous power is negative. 

,600 
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0 

-200 
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-03       -0.2      -0.1          0         0.1        0.2     0.3 
(a)   v12(m/s) 
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sA'^s' P>ö 

-0.3        -0.2       -0.1 0        0.1        0.2     0.3 
(b)   v12(m/s) 

"fig. 8". Force-velocity diagrams of the traditional 
damper (a) and the actuator (b) 

Provided energy 

The total energy E provided by the actuator is defined 
as the time integration of instantaneous power: 

,27t. 

E = p(t)dL (36) 

This energy is composed of an energy E+ calculated during 
the phases where the power is positive, and an energy E~ 
calculated during the phases when the power is negative. 
Energies E+ and E" have been calculated for harmonic so- 
licitations of the wheel and for various masses used during 
performance tests. The results are given in Table I. They 
show that energy E+ ranges from 320 to 280 000 times 
that of E\ These results are used to define the active 
CRONE suspension and the passive piloted CRONE sus- 
pension. 
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freq. Hz energy J 150 kg 300 kg 

1 
E+ 0.599 2.0561 

E- 8 10"4 0.0033 

E+/E- 742 627 

2 
E+ 4.9135 12.383 

E- 2.45 10"4 4.377 10"4 

E+/E- 2 104 2.8 105 

4 
E+ 26.137 26.36 

E- 0.0355 0.0268 

E+/E- 737 982 

6 
E+ 38.835 32.713 

E- 0.1207 0.0997 

E+/E- 321.62 328 

TABLE I: Energy values E+ and E" for harmonic solicita- 
tions of the wheel at amplitude 1 cm and for a range of 

values of sprung mass 

The passive piloted CRONE suspension 

The second technological solution is to develop a pi- 
loted suspension whose action depends on the activation or 
dissipation phases "fig. 9". We have seen that positive ins- 
tantaneous power can be interpreted as the power dissipated 
by a damper: the actuator behaves as a non stationary dam- 
per. The variability of the damping ratio is obtained by 
varying the cross-section of the servo-valve. This would 
work without the activation phases. Each time an activa- 
tion phase is detected, i.e. when fa(t) vi2(t) is negative, 
the damper provides no force. This phase is obtained 
through maximum aperture of the servo-valve and thus no 
resistance for the hydraulic fluid. To summarise: 

-ifv12(t)fa(t)>0    then   fa(t) * 0; 

- if v12(t) fa < 0   then  fa(t) = 0. 
(37) 

piloted valve sensor 

"fig. 9". Passive piloted CRONE suspension 

The passive piloted CRONE suspension is the most 
economic solution because it is not necessary to supply 
energy. So, the behaviour of the non stationary damper is 
studied from its damping coefficient. 

Instantaneous damping coefficient 

The instantaneous damping coefficient b(t) is defined 
as the ratio of the force fa(t) provided by the non stationary 
damper and the relative velocity vi2(t), namely: 

b(t)= «o_ 
vi2(t) 

(38) 

"fig. 10" shows the force-velocity diagram of the non 
stationary clamper for the harmonic solicitation ± 1 cm at 

4 Hz. The activation phases are absent. b(t) defines the ins- 
tantaneous slope of the force-velocity diagram. 

"fig. 11" shows the variation of b(t) for this harmonic 
solicitation. 

-0.3        -0.2       -0.1 0 0.1        0.2     0.3 
v12(m/s) 

"fig. 10". Force-velocity diagram of non stationary damper 
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"fig. 11". Variation of b(t) for a harmonic response 

Equivalent damping coefficient 

In stationary harmonic solicitation ("fig. 12"), it is 
possible to compute an equivalent damping coefficient bo 
from dissipated energy Ed, namely: 

bo = —^- 
Jt (0 Zj2 

with 

E<T 

2JL 

fa(t)vi2(t)dt. 

(39) 

(40) 

0 10 20 30 40 
frequency (Hz) 

"fig. 12". Variation of bo versus frequency 
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TECHNOLOGICAL SOLUTION OF THE SECOND- 
VERSION CRONE SUSPENSION: 

THE PASSIVE CRONE SUSPENSION 

The passive CRONE suspension is developed from the 
link between recursivity and non-integer derivation [8]. In 
fact, on a frequency interval, it is possible to synthesise the 
non-integer derivation by using N elementary spring- 
damper cells whose time constants are distributed 
recursively ("fig. 13"). Each cell develops a force fj(t) 
defined by: 

fi(t) = käZrÖ)+bi -d-zrö), (41) 
dt 

in which 

N-l 

ki = Tii-1ki     and  bi = ^Lbi , (42) 

a and r\ being the recursive factors and zrj(t) the relative 
displacement of cell i. 

From a symbolic expression of relation (41), namely 

Fi(s) = [ki + bis]Zri(s), 

the transmittance of cell i is obtained, namely: 

m. = [ki+hiS\. 
Zrß) 

The arrangement being parallel, since 

fi(t)=...= fi(t)=...= fN(t) 
and 

-ä-[Zl(t)-z£)] = jr-izri{t), 
dt £i dt 

(43) 

(44) 

(45) 

(46) 

the global suspension transmittance CN(S) is of the form 

_i_=y_i_ 
CN(S)     wl+i.' 

ffli 
.k in which COi =^- 

bi 

(47) 

(48) 

l z, (f) 

T: r z.W 

"fig. 13". Recursive arrangement of N elementary cells 
spring-damper 

The reduction of expression (47) to the same denominator 
leads to the relation: 

i«i \     coi; 

where, in the median frequency interval [8]: 

®i±l =B±l =aTi>l. 

(49) 

(50) 
COi 

Finally, the expression of transmittance CJM(S) is in fact the 
same as relation (26), namely: 

in which 

CN(S) =CO 

Co = 

i=l V        COj/ 

N-l  , 

n(1+t) 
1 ki. 

(51) 

(52) 
N-l 

WTl1 

So, the non-integer-order suspension transmittance 
results from a recursive distribution of zeros and poles in 
the frequency interval [co'i; CO'N]- 

In the automotive domain, and to limit suspension 
dimensions, gas springs are used ("fig. 14a"), each being 
mounted with a damper ("fig. 14b"). The passive CRONE 
suspension ("fig. 15") is thus composed of N gas spring- 
damper cells in accordance with "fig. 13". 

© 

© © © 
® 

®       © 

"fig. 14". Diagram of a gas spring-damper cell (a) and 
diagram of a damper (b): (1) body of damper; (2) 
valves; (3) washer; (4) hole; (5) rivet; (6) hole 
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suspension jacl 

gas springs 

ftftfi   wheel 
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"fig. 15". Passive CRONE suspension 
in the automotive domain 

The passive CRONE suspension is now mounted on 
an experimental Citroen BX ("figl6"). The modification to 
the traditional suspension is minor. This consists of a 
brace with three drilled and tapped holes which permit a 
mechanical and hydraulic bond between the suspension 
jack and three gas springs. Each of these is inflated to a 
pressure providing a stiffness in accordance with synthesis. 
Each damper is mounted on a gaz spring. The number of 
valves in each damper is determined to obtain a mean 
viscous friction coefficient in accordance with synthesis. 

si« 

 ~ 

^^Htl 

3s*=r 

prototype have validated theoretical expectations. The 
third, called passive CRONE suspension which is 
now mounted on an experimental Citroen BX, has received 
the "TROPHEE AFCET 95" as a national award. 
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"fig. 16". Passive CRONE suspension mounted on an 
experimental Citroen BX 

CONCLUSION 

In this paper it has been shown that the CRONE sus- 
pension provides remarkable performances: better robust- 
ness of stability degree versus load variations of the vehi- 
cle. Robustness is illustrated by the frequency and time 
responses obtained for different values of the load. 

From the concept of the CRONE suspension three 
technological solutions have been developed. The first, 
called active CRONE suspension, uses a spring and a 
hydraulic actuator. The second solution, called passive 
piloted CRONE suspension, uses a continuously 
controlled damper. Its design permits manufacture at the 
traditional automobile damper cost. Bench tests on a 

136 



Redesign of a QFT Flight Control System to Account for 
Bending Modes of the Lambda Uninhabited Research Vehicle 

Stuart N. Sheldon 
Senior Systems Engineer 

Veda Incorporated 
Dayton, Ohio 45431 

USA 

Steven J. Rasmussen 
Research Associate 

Air Force Institute of Technology 
Wright-Patterson AFB, Ohio, 45433 

USA 

Abstract 
This paper is a discussion of the discov- 

ery of unmodeled behavior encountered during 
the flight test of a flight control system (FCS), 
designed using techniques of Quantitative 
Feedback Theory (QFT), and how the FCS was 
redesigned to take this behavior into account. 
It is a follow on to a paper presented at the first 
QFT Symposium. 

During the flight test of a revision of the 
QFT FCS, the pilot and flight test team noticed 
what can be best described as a porpoising 
behavior. Nonlinear simulation was used to 
identify this phenomena as an aircraft bending 
mode. 

Since QFT was used to design the system, 
this problem was easily addressed. MIMO 
QFT CAD software allowed the designers to 
quickly compensate for the change in aircraft 
models. The compensation was accomplished 
by adjusting the inner loop filter instead of 
using notch filters, as is the usual method. The 
resulting design provided desirable perform- 
ance. 

Introduction 
Lambda is a remotely piloted aircraft op- 

erated by Wright Laboratory (WL) for research 
in flight control technology. 

Lambda is a twin boom aircraft with a 
pusher propeller as shown in Figure 1. Some 
size and performance statistics for Lambda are 
shown in Table 1. It is interesting to note that 
this aircraft is very maneuverable and has ten 
fully independent control surfaces. 

Lambda was designed to carry a small 
payload for flight control and URV avionics 
research. It is used as a test bed by WL to de- 
velop and flight test flight control hardware 
and algorithms. It can be flown like a basic 
radio controlled airplane with the pilot com- 
manding surface deflections, or flown with a 
FCS switched in to the loop. [5] 

A 

^ 

_s~ 

i   /> 

?MD 

Figure 1. Lambda 

Dimensions 
Wing Span 14 ft. 
Wing Area 19 sq. ft. 
Length 9.6 ft. 
Height with Landing Gear 3 ft. 
Propeller Diameter 2.3 ft. 
Weights 
Maximum Fuel 141b. 
Maximum Payload 15 1b. 
Maximum Flight Weight 2001b. 
Performance 
Maximum Level Speed at 
Sea Level 

100 knots 

Stall Speed 55 knots 
Stall Speed With Flaps 45 Knots 
Engine 
Power 18 hp. 
Type 2 stroke 

2 cylinder 
Control Limits 
Elevator Deflection Limits ±15 
Rudder deflection Limits ±25 
Flap Deflection Limits 0 - 20 down 
Aileron Deflection Limits ±15 

Table 1. Lambda Statistics 
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In order to test the Modular Integrated 
Avionics Group (MIAG), an integrated flight 
control computer and navigation system, inner 
loop flight control laws were required. Com- 
mands from MIAG to Lambda were to be atti- 
tude, turn rate, and throttle position. There is 
no wind tunnel data for Lambda, so there is a 
high degree of uncertainty in the mathematical 
model. The most accurate model available was 
derived from DATCOM calculations and fur- 
ther refined with preliminary flight test data. [6] 
Because of the uncertainty contained in the 
mathematical model of Lambda and the bene- 
fits of robust control, QFT was chosen for the 
FCSdesign.fi,2,3,4] 

Matrix* was used to develop linearized 
plant models about flight conditions in the 
flight envelope. An attempt was made to 
choose flight conditions in such a way as to 
fully describe the flight envelope with the tem- 
plates. To do this, a nominal flight condition 
was chosen to be 90 kts forward velocity, 
1,000 feet altitude, 205 pounds, and center of 
gravity at 29.9% of the mean aerodynamic 
cord. From this nominal trim flight condition, 
each parameter was varied, in steps, through 
maximum and minimum values, while holding 
the other parameters at their nominal trim val- 
ues. These variations produced an initial set of 
models. On these templates variation corre- 
sponding to each parameter was identified and 
the templates expanded. 

Plant Speed 
(kts) 

Altitude 

(ft) 

Wgt. 
(lb) 

CG. 
(%MAQ 

1 50 1,000 205 29.9 

2 70 1,000 205 29.9 

3 90 1,000 205 29.9 

4 110 1,000 205 29.9 

5 130 1,000 205 29.9 

6 90 5,000 205 29.9 

7 90 10,000 205 29.9 
8 90 1,000 160 29.9 
9 90 1,000 225 29.9 
10 90 1,000 205 19.0 
11 90 1,000 205 41.0 

Table 2. Lambda Flight Conditions 

A QFT designed FCS was implemented 
and successfully flown on Lambda. After this 
first flight test, improvements were made to 
flight sensors and the mathematical model of 
Lambda.[7,8] An anti-aliasing filter was ad- 
justed on the sensor analog to digital converter 
board that reduced the sensor noise by an order 
of magnitude.  System identification on  the 

flight test data showed that some of the aircraft 
model parameters had been scaled incorrectly. 

These errors were corrected and the air- 
craft model was refined. Bode plots of this 
initial set of models is shown in Figure 2. 

225. 
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-45. 
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-270. 

-315. 
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Figure 2. Initial Lambda Models 

With these models and the use of the 
MIMO QFT CAD design software, a FCS was 
designed and tested in batch simulations, both 
linear and nonlinear, using Matrix* and Easy5. 
An interactive simulation was developed using 
what is now Aviator Visual Design Simulation 
(AVDS). This simulation was used as an engi- 
neer in the loop simulation as well as a Lambda 
flight simulator to orient to pilot to the new 
control system. At the same time, a hardware in 
the loop simulation was used to check out the 
flight software in Lambda to ensure flight 
safety. 

FCS Design 
Following the initial flights, the aircraft 

operators decided that they would prefer a dif- 
ferent feedback structure in the FCS. To im- 
plement a FCS that includes turn compensa- 
tion, a sideslip angle command was incorpo- 
rated as part of the inner loop controller. The 
goal of turn coordination is to reduce the 
amount of sideslip angle during a turn by using 
the proper amount of rudder deflection dur- 
ing the turn. Since Lambda has a sideslip sen- 
sor, a sideslip command was used to cause the 
aircraft to intrinsically fly coordinated turns. 
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Changing to sideslip command also al- 
lowed the use of the yaw rate sensor to imple- 
ment a yaw damper to reduced the dutch roll 
mode oscillations. This yaw damper was im- 
plemented by adding a washout filter, designed 
through the use of a root locus plot. The yaw 
damper was designed and then incorporated in 
the aircraft model for a FCS design. 

When this design was finally flight tested, 
the porpoising behavior was observed. To en- 
sure flight safety Lambda was flown to a safe 
altitude by the pilot before the QFT FCS was 
engaged. The pilot had Lambda flying in level 
flight when the longitudinal portion of the QFT 
FCS was engaged. At this point Lambda began 
rhythmic oscillations in the pitch axis and the 
QFT FCS was disengaged immediately. In 
order to collect sensor data on this behavior, 
Lambda was flown back to level flight, the 
longitudinal portion of the QFT FCS was en- 
gaged and the sensor data was recorded for 
further analysis. 

Pitch attitude data from this flight is 
shown in Figure 3. This is high resolution data 
at 60Hz sample rate. 

Figure 3. Pitch Resonance During Flight 

Unmodeled Behavior 
A model of the porpoising behavior was 

identified by assuming that the behavior was 
caused by an unmodeled effect. Various pro- 
posed models were incorporated into a nonlin- 
ear model of Lambda and simulated. This 
simulation used the flight test inputs as simula- 
tion inputs and compared the simulated outputs 
to the flight test data. Using this procedure, a 
violation of the gain margin was ruled out by 
increasing the inner loop gain in the model and 
observing the response. Instability caused by 
actuator rate limiting was ruled out by inserting 
severe rate limited actuator models in the non- 
linear simulation. 

Upon reviewing the video record of the 
flight, it was suggested that the aircraft ap- 
peared to have a first order bending mode in 
the longitudinal axis. It was possible to excite, 
and observe, such a mode by tapping rhythmi- 
cally on the tail of the aircraft. 

A bending mode, modeled as a lightly 
damped pair of poles at 13 radians per second, 
just within the bandwidth of the FCS, was in- 
serted in the nonlinear simulation as shown in 
Figure 4. This model generated a pitch accel- 
eration signal from elevator deflection passed 
through a second order filter of: 

q = 
-20 

s2+5.28s+ 174.2 
• elev 

O- 
** 21.«*« ♦ 1H.H 

■ '♦ 3.21« * 174.2 

Figure 4. Lambda Bending Model Structure 

The simulated response was very similar 
to the flight test results. Matrixx was used sub- 
sequently to develop new linearized plant 
models containing the bending mode about the 
given flight conditions. The bode plots of 
these models are shown in Figure 5. 

. The new plant models were entered in to 
the MIMO QFT CAD software. The FCS was 
redesigned based on the new models using the 
FCS from the previous design cycle as a base- 
line. The previous filter was: 

G„(s) = 
1093(s+8.5)(s+ll)(s+3.9±2Q 

s(s+2)(s+80)(s+36±48/) 

The MIMO QFT CAD software showed 
that, with the old filters, there were violations 
of stability criteria on the Nichols chart as 
shown in Figure 6. 
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A standard notch filter would not take 
advantage of any beneficial dynamics in the 
spectral region of the bending mode. It would 
also increase the order of the compensator. As 
an alternative, the inner loop filter was revised 
to compensate for the new information. It was 
also possible to design a fourth order compen- 
sator to replace the earlier fifth order design, 
lowering the complexity of the controller in- 
stead of increasing it. 

The new filter was determined to be . 

G„(s) = 
125(s + l)(s +2.5 ±9.4») 
s(s+10)(s+35 ±35.7/) 

Figure 5. Lambda Bending Models 

With the MIMOQCAD program it was 
possible to shape the loop so that at 5 rad/sec 
the loop intersected a point on the Nichols 
chart where the stability boundary and the per- 
formance boundary met as shown in Figure 6. 
This was an optimal point for the loop to pass 
through given Lambda's performance band- 
width. 

Open Loop Transmission gt(s)*qi'i(s) for, Channel 1 

Open Loop Transmission gi(s)"qii(s) for Channel 1 

'^20.   -200.   -180.   -160.   -140.   -120.   -100.    -80.     -SO.      -40.      -20. 

Figure 6. Baseline Design Stability 

The standard method of design would be 
to add a notch filter to keep the mode from 
becoming excited. The bending mode is close 
enough in frequency to the performance band- 
width of Lambda that care needs to be taken to 
design a controller that will be able to take 
advantage of the available bandwidth to deliver 
performance, stability, and disturbance rejec- 
tion without exciting the bending mode. 

"3?20.   -200.   -180.   -160.   -140.   -120.   -100.    :KX     :60      tt      30. 

Figure 6. Refined Pitch Loop Design 

The new aircraft model was implemented 
in the nonlinear simulations and tested with 
both filters. As expected, the resonance oc- 
curred with the FCS from the previous design 
cycle. The FCS resulting from this design cycle 
responded within specifications. The new FCS 
passed a hardware-in-the-loop simulation and 
was scheduled for flight test. [5] 
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During the next flight test, the field con- 
ditions were gusty, but within acceptable limits 
for the experiment. The QFT FCS was engaged 
and there was no noticeable oscillation. The 
pilot was very pleased with the handling quali- 
ties and felt comfortable flying with the FCS 
engaged for the entire series of tests. The only 
problems encountered were some roll perform- 
ance problems which could be attributed to the 
windy conditions. 

Pitch response during this flight is shown 
in Figures 7a and 7b. Figure 7b is at the same 
scale as Figure 3. Unfortunately, the test data 
recording function failed during the flight so 
that the only data available is low resolution 
data (±0.5°) recorded at 10Hz. 

Figure 7a. Pitch Attitude During Flight 

Figure 7b. Pitch Attitude During Flight 

Summary 
This effort demonstrated that using QFT 

as part of a unified design procedure allows for 
quick redesign as a program progresses. This 
is possible due to the engineering insight pro- 
vided by QFT and the ability to address the 
entire flight envelope at once. Had this been a 
classical flight control design scenario, when 
the bending mode was identified, the controller 

designed at each flight condition might have to 
be reviewed and adjusted. QFT allowed the 
insertion of a model of the bending mode into 
the design process ensuring performance and 
stability over the entire envelope. 

Moreover, the QFT design procedure 
made it attractive to place the compensation in 
the inner loop filter as opposed to adding an 
additional notch filter. This reduces the com- 
plexity of the FCS and allows the designer to 
control the sensitivity of the system to varia- 
tions in the frequency of the bending mode. 
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Abstract 

A new robust linear controller design procedure is applied to the heating system of a multi-purpose packed 
distillation column (MPPDC) which is a process with a recycle stream. The heating system exhibits nonlinear 
dynamics. For design purposes, it is represented by seven linear time-invariant models at different operating 
points. A scaling procedure by which the condition number of the weighted plant models is minimized is 
applied first to facilitate the design. For the scaled system, a one-degree-of-freedom controller is computed 
using the new robust control design procedure which combines the Loop Shaping Design Procedure and 
Frequency Response Approximation (Wang, Engell and Müller 1996). The controller for the scaled system is 
then rescaled to control the original system. The results of the simulation show that the design was successful. 

Keywords: Robust control, process control, scaling, H-infinity control, loop shaping, frequency response 
approximation. 

1. Introduction 

The rigorous modeling of chemical processes based 
on balance equations for energy, mass, and the 
various substances involved usually leads to 
nonlinear state-space descriptions of the process 
with uncertain chemical and physical parameters. 
For complex nonlinear process models, few 
controller design methods are available and these 
may lead to very complex controllers which are 
difficult to implement and to keep in operation. 
Therefore, linear time-invariant controllers are 
sought which ensure stability and performance (set 
point tracking, disturbance rejection) of the real 
controlled plant. One approach to achieve this is to 
use a set of representative linear time-invariant 
plant models which are valid around certain 
operation points in the design. If the process is 
operated near one of these operating points and if 
the transition from one operation point to another 
is sufficiently slow, one can expect that the 
performance at the real plant is similar to the 
performance of the controller for the set of linear 
models. 

In (Wang, Engell and Müller, 1996), a new robust 
control design procedure was proposed. It is a 
combination of the Loop Shaping Design 
Procedure (LSDP) (McFarlane and Glover, 1990) 
and Multi-Model Frequency Response 
Approximation (cf. Müller, Wang and Engell, 
1995). The basic idea of this procedure is to 
compute the weighting function or desired loop 

shape by frequency response approximation 
considering a set of models which represent a 
process with uncertainty. Robust stability of the 
closed loop is guaranteed by an additional KL- 
optimal controller. The weighting function ensures 
the existence of a solution to the robust stability 
design problem and at the same time provides 
satisfactory performance. Depending on how 
difficult the design problem is, one can decide 
whether an additional prefilter is necessary . 

In some cases, the difficulty of the control design 
problem for multivariable systems can be 
significantly reduced if the condition number of the 
plant is minimized by proper scaling of the inputs 
and the outputs of the system. Therefore in the 
design the plant is first analyzed and it is 
investigated whether the scaling is necessary for 
the design. If the plant has a large condition 
number, the scaling will be carried out in order to 
reduce the difficulty of the control design. For the 
scaled models of the plant the robust design 
procedure is then applied. 

This paper is organized as follows. In section 2, the 
new robust control design procedure is reviewed in 
detail. In section 3, the scaling procedure is 
introduced. In section 4, the heating system of a 
multi-purpose packed distillation column and its 
nonlinear model is introduced. In section 5, the 
design procedure of the robust controller for the 
heating system is demonstrated. 
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2. The Robust Control Design Procedure 

K,(s) y üB shaped plat 

prefilter 

K„(s) —1>[^—W 

Fig 1. Control structure for the robust control 
design 

The control structure used in our robust control 
design procedure in this paper is shown in fig. 1. 
W(s) is the weighting function in the LSDP which 
shapes the singular values of the plant to achieve 
the desired open-loop shape and ensures the 
existence of a solution to the robust stabilization 
problem. The parameters of W(s) are optimized by 
Frequency Response Approximation (FRA). IC(s) 
is an HL-optimal controller which robustly 
stabilizes the feedback loop. K2(s) is a prefilter that 
improves the dynamical response if the design 
specifications can not be satisfied by a one-degree- 
of-freedom controller alone (cf. Wang, Engell and 
Müller 1996). The design process in this paper is 
carried out for a nominal plant. The design steps 
are as follows: 

1. Choose a nominal plant Gn(s).   For the 
design of Ki(s), select a desired closed-loop 
reference-to-output transfer matrix Mi(s). 

2. For the nominal plant model Gn(s) the 
weighting function W(s) is optimized by the 
FRA procedure. It consists of two steps: 

a. Column-by-column optimization to obtain 
a good starting point for the subsequent 
non-linear optimization. 

b. Non-linear optimization of the weighting 
function to minimize 
J = e|[I + L(s)r1L(s)-M1(s)|2+7min[G1,(s).W(s)] 

where L(s) = G„(s)W(s). In the cost 
function, the first term achieves model- 
matching and the second term reflects 
robust stability. The constant Q controls 
the compromise between performance 
and robust stability. 

3. The controller K»(s) is computed for some 
7 > Tmin- This controller ensures the robust 
stability of the closed-loop system. The final 
feedback controller is Ki(s)=W(s)IC(s). If 
robust stability of the closed-loop system is not 
achieved by Kj(s), adjust Q and return to step 
2.b. 

4. If necesssary, compute K2(s) to improve the 
dynamical response of the closed- loop system 
compensated by Ki(s). In this paper only a one- 
degree-of-freedom control structure is used. 

The structure and the orders of the elements of the 
weighting matrix W(s) and eventually of the 
prefilter K2(s) which are optimized in step 2 and 
step 4 respectively, can be chosen freely by the 
designer. K~(s) is computed by standard 
algorithms (MacFarlane and Glover, 1990). 

3. Scaling of Multivariable Systems 

Two well-known measures which are used to 
quantify the degree of directionality and the level 
of interactions in MIMO systems, are the condition 
number and the relative gain array (RGA). The 
condition number usually depends strongly on the 
scaling of the inputs and of the outputs. Let L and 
R be diagonal, nonsingular, constant scaling 
matrices, then the condition numbers of the 
matrices G and LGR may differ arbitrarily. 
Therefore the condition number can be minimized 
numerically over all possible scalings. A large 
minimized condition number implies large RGA- 
elements. 

By and large, the condition number and the RGA 
of a model is an indicator of whether the control 
design problem is difficult (cf. Skogestad and 
Postlethwaite, 1996). For an inverse-based 
controller, a large minimized condition number 
implies that the system is sensitive to 
„unstructured" (full-block) input uncertainty. 
Plants with large RGA-elements (large minimized 
condition number) around the crossover frequency 
are fundamentally difficult to control because of 
sensitivity to diagonal input uncertainty. For the 
above reason, a model with a small condition 
number is preferable. In our design procedure, the 
weighting function W(s) is computed from the 
inverse of the plant, therefore the minimization of 
the condition number of the plant makes it easier to 
optimize a weighting function which leads to a 
robust controller. Such minimization can be 
realized by scaling of the inputs and the outputs of 
the plant G(s). 

Although we can calculate the scaling matrices L 
and R that make the condition number <j>(LG(jco)R) 
minimal for each frequency co, in the design and in 
the analysis, L and R are constant for all 
frequencies. R and L must be thus chosen to 
minimize the condition number at a critical 
frequency. For the dertermination of this critical 
frequency we use the new indicator, Robust 
Performance Number (RPN), which was 
introduced in Trierweiler 1996 (Trierweiler and 
Engell, 1997). 
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Based on the relation between the structured 
singular value of a system compensated by an 
inverse-based controller and the condition number, 
Trierweiler (1996) introduced a new indicator for 
the control difficulty — the Robust Performance 
Number (RPN) which is defined as 

r(G,T,co )=, a([I-T(jco)]T(jc»)) f(G(jco)) + 
<t>*(G(j(o)) 

(2) 

Here T(jco) denotes the desired closed-loop 
reference-to-output transfer matrix which can be 
chosen according to the design requirements. The 
limits of the attainable performance must be also 
considered if the system is non-minimum phase 
(Engell, 1988). <j>*(jco) denotes the minimized 
condition number of the plant. The term 
r. i    i   in the equation is propotional to 

the structured singular value of the system 
compensated by an inverse-based controller, the 

term ä([I-T(jco)]T(jco)) provides a frequency- 

dependent weighting which has its peak value in 
the crossover frequency range. RPN is a measure of 
how potentially easy it is for a given system to 
achieve robust performance. An inversed-based 
controller will achieve good performance 
robustness only when the RP-number is small. 

For the scaling of the plant G(jco) we have the 
following consideration. It is well known that 
the system uncertainties at the crossover 
frequency range are more important for robust 
stability and robust performance than 
uncertainties at low and high frequencies, while 
the frequency-dependent RPN has its maximal 
value in the crossover frequency range, therefore 
we choose the critical frequency for the scaling 
to be the frequency where the RPN assumes its 
maximal value. Thus we arrive at the following 
scaling procedure: 

1. Determine the frequency cosup where 
r(G,T,co) assumes its maximal value. 

2. Calculate the scaling matrices L and R such 
that (j»(LG(jCQsup)R) achieves its minimal 
value <j)*(G(jcosup)). 

3. Scale the system with the scaling matrices L 
and R, i.e., Gs(s) = LG(s) R 

For the computation of L and R in the above 
procedure one can solve the corresponding 
generalized eigenvalue minimization problem 
under LMI constraints (see Trierweiler 1996). The 
relation between the controller for the original 
plant and the controller for the scaled plant is as 
follows. 

Let Ts be the scaled closed loop transfer function 
and T be the original closed loop transfer function, 
L is a diagonal, nonsingular and constant matrix. 
If T is diagonal, we have: 

TS=LTL !=T 

Considering: 

T=(I + GK)-IGK 
we have: 

Ts = LTIT1 = L(I + GK)_1 GKL-1 

= (I + LGKL""1 )-1 LGKL-1 

= (I + LGRR_1KL_1 )-1 LGRR_1KL_1 

(3) 

(4) 

(5) 

In the above equation the matrix R is a diagonal, 
nonsingular and constant matrix. Let Gs = LGR 
be the scaled system and Ks = R"1 K L"1 be the 
controller for the scaled system Gs, then we have: 

T
S=<I + W    GsKs (6) 

The controller for the original plant G thus can be 
computed as 

K = RKSL- (7) 

The above deduction shows: under the premise that 
T and Ts are diagonal, the problem of designing a 
controller K for the original plant G is equivalent 
to the problem of designing a controller Ks for the 
scaled plant Gs. By scaling the model G, a difficult 
control design problem may be recast into easier 
one. 

4. The Heating System Control Problem 

W] 0P3      V64     ^ 

EHT 
v RV3   F,[lfc> 

EL3 

Fig. 2 : Heating system of the MPPDC 
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The multi-purpose packed distillation column 
considered in this paper is a plant with recycle 
streams (Trierweiler, Rossmann and Engell, 1996). 
The task of the heating system (HS) is to provide 
the heat flux into the column which is an important 
manipulated variable for the composition control of 
the distillation column. Fig. 2 shows the heating 
system in detail. The centrifugal pump P3 causes 
warm water to circulate in closed loop. To avoid 
that the water evaporates, the pressure in the 
heating system can be adjusted manually up to 
10 bar. The tank in fig. 2 has two functions. It 
prevents that the pump P3 runs dry and it increases 
the energy holdup in the HS what reduces the 
coupling between the heat inflow to and the 
outflow from the system. Energy is introduced into 
the HS by adjustable electrical heating elements 
(EL3) in the electrical heating tank (EHT). The 
water leaves the EHT following two parallel paths: 
one is via the tube side of the vertical 
thermosiphon reboiler, thereby giving part of its 
heat to the column and the other is via the manual 
bypass valve V6. Both streams come back to the 
tank through the plate heat exchanger. The 
manipulated variables are the adjustable electrical 
heating elements EL3 and the volumetric flow 
FI305 which can be adjusted by the position of the 
control valve RV3. The control variables are the 
reboiler inlet temperature TI301 and the heat duty 
Q which is calculated as 

Q = Q c   FI_305(TI_301 -TI_302). (8) 

Based on the energy balance, a nonlinear model 
was derived (cf. Trierweiler 1996): 

dTT 

dTH 

-=K,-F- 1-f TH+-|-TR-TT   --^(TT-TJ 

(9) 
= K,-FTT-T, T'HI-^ÖJVU Tu-T„ 

+
 
K

3(
T
E-

T
H)

K14
^Ä

+K
--

F
' 

(10) 

dTc - = -K„ Tc-TV, 

+ KC-EL3 

Kl4fe + ^ + ..F0.67YjnK19 
20 1,9. 

(ID 

CTTr, 
^K6F2lTH-TR)- 

K7/(4,3-K17-Tr)-(TR-TB) 

1        1  
K11+1K12-F2°'8-100K3) 

(12) 

From the above nonlinear model, one can see that 
the main nonlinearity of the system is the 
volumetric flow, therefore it is logical to linearize 
the system for different values of F2. We used seven 

linearized models corresponding to the following 
values of F2: GX(F2=1.2 1/s), G2(F2=1.1 1/s), 
G3(F2=1.0 1/s), G4(F2=0.9 1/s), G5(F2=0.8 1/s), 
G6(F2=0.7 1/s) and G7(F2=0.6 1/s). 

The corresponding transfer matrices are of the 
following form: 

AQ 
ATI301 

Gni(S) 
G21i(s) 

G12i(s)' 
G22i(s). 

AFT305' 
AEL3 

i=l,2, ... 7 (13) 

From the demands of composition control, the 
control specifications for the heating system at the 
working points are as follows: For the unit step 

U(t)   at t=0, the plant output AQ demand 

should satisfy AQ(t) > 0.5 for t > 20 seconds, AQ(t) 
< 1.05 for all t . ATI301(t) should be small. For a 

"01 
U(t) at t=0, the plant outputs unit step demand 

ATI301 should satisfy: ATI301(t) > 0.5 for t > 200 
seconds, ATI301(t) < 1.05 for all t. AQ(t) should be 
small. 

5. Controller Design for the Heating System 

For the design of the controller, the system will be 
analysized first. The condition number curves of 
the 7 models are shown in fig. 3. 

Fig. 3 The condition numbers of the 7 unsealed 
models 

From fig. 3, it can be seen that the condition 
numbers of the models are quite large. Scaling of 
the plant is necessary. For the scaling, the RPN 
curves will be first drawn for which a desired 
closed loop system T(jco) is needed. Because the 
plant is minimum phase, the desired reference-to- 
output transfer matrix T(jco) can be chosen freely 
according to the design requirements. Thus T(jco) 
= diag(mii(jü)), m22(jco)) where mn(jco) and 
m22(jco) have 20 sec. and 200 sec. risetime 
repectively, both chanals have 5% overshoot. The 
RPN curves of the 7 models for this desired closed 
loop response is shown in fig. 4. In fig. 4, one can 
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see that the curves have their peaks at the 
frequency 0.1874 for which the scaling procedure 
will be carried out. The scaling matrices R and L 
at this frequency are : 

response of the step on reference 1 

L = 
394 0 

.   R = 
0 1870.7J 

0.0015    0' 
0       1.0 

(14) 

1 —r 1 

■      //            '      \        ■■ 

:    ff                  \ 

the HPN curves ot the 7 models 

Fig. 4 The RPN curves of the the 7 models 

For the robust control design we chose G3 as the 
nominal    model,    because    the uncertainty 
max||AN AM|M} is minimized, if G3 is chosen as 

the nominal plant. The desired closed loop transfer 
matrix Mi(s) is diagonal: 

M(s) = 
mn(s)       0 

0       m22 (s) 
(15) 

where mn(s) and m22<s) have the rise times and 
overshoots stated above. The parameters for the 
robust control design are: Q = 3000, 7mm = 1-40. 
The weighting function obtained from the 
optimization procedure is: 

W(s) =- 
0.0169s+ 0.1009   -0.1334s+ 0.0074' 
0.1831s+ 0.0001 0.0208s 

(16) 

The H-infinite controller K* for this weighting 
function is given in Appendix. The final controller 
for the scaled system is: 

Ks(s)=K0O(s)W(s), (17) 

while the controller for the original system is: 

K=RKSL. (18) 

The simulations for the 7 linearized models are 
shown in fig. 5 and fig 6. 

0 20 40 60 80 100        120        140        160        180        200 
gama-gamamin/0.95-1.4/0.95 

Fig. 5. Simulation of the controller with the 7 
linear models 

response of the step on reference 2 

^^^^ 
\^*! ä*»«i«i"TS 

°r 

100        200300400S00600        700 800900        1000 
gama-gamamin/0.95-1.4/0.95 

Fig. 6 Simulation of the controller with the 7 linear 
models 

From the simulations, one can see that the 
controller works well for all seven models which 
locally represent the nonlinear model. The 
controller shows robust stability and good robust 
performance. The simulation of the nonlinear 
model is shown in fig 7. In the figure, one can see 
that the controller works well for the original 
nonlinear system. Compared to the result here, a 
controller designed by EL design alone exhibited 
stability problems (cf. Trierweiler 1996), whereas a 
decentralized controller obtained by sequential loop 
closure gave unsatisfactory performance and large 
couplings (cf. Schulte 1995). 

6. Conclusions 

A robust linear frequency domain design procedure 
was successfully applied to a nonlinear system 
which was approximated by a family of linear 
models. In the design procedure, the nonlinearity 
of the system is considered as model uncertainty. A 
scaling step reduced the condition number of the 
plant and facilitated the design. The results of the 
simulation show that the design was successful. 
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Fig. 7 Simulation for the original nonlinear system 

Appendix 

The K« controller for the weighting function (16) is: 

Ak= 1.0e+004* 
-0.00008500674374 
-0.00013410654769 
-0.00000000038674 
-0.00000000123179 
-0.00000005561924 
-0.00000000229713 

•0.00000624610593 
■0.00000990518066 
■0.00000000002843 
■0.00000000009056 
■0.00000000408892 
■0.00000000016888 

-0.11408996910122 
-0.27818962580675 
-0.00000152573813 
0.00000070532445 
-0.00008118210439 
-0.00000304504121 

-0.80262108731434 
-3.47909715785083 
-0.00000777416011 
-0.00002286375290 
-0.00065080516769 
-0.00002832698495 

-0.04744402366597 
-0.11602974204282 
-0.00000021385707 
0.00000024727214 
-0.00003469104825 
-0.00000127025869 

0.75550828616005 
1.39857461580963 
0.00000408794034 
0.00000759659560 
0.00051037723670 
0.00001455478708 

Bk = 4.78029545678373 
10.19326141340082 
0.00002527510269 
0.00005622049894 
0.00330160184961 
0.00019609023009 

-0.26178352695083 
9.66577916611309 
0.00002237465944 
0.00005550705812 
0.00037896567077 
0.00004831136302 

Ck= 1.0e+002* 
0.00120600396346  0.00008832791924   1.73929722136274  8.37813822206065    0.71062443381963 -8.30812081063363 

-0.00160219465978 -0.00011318238685 7.91816689243673 9.07095861269562     3.30122822707947 -1.46811830961044 

Dk= 0.03560328145101 
-0.28186603095006 
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SYNTHESIS OF LTV CONTROLLERS AROUND 
NON-LINEAR MIMO SYSTEMS 

Oded Yaniv * 

Keywords:   Robustness, feedback,  nonlinear 
control, nonlinear systems, uncertainty. 

Abstract 

An n x n non-linear plant that is known to be a 
member of a given set is given. The plant is 
embedded in a feedback structure in order to 
achieve desired closed-loop performances. It is 
shown how to design a LTV controller for that 
purpose. The main result is a controller with 
less control effort compared to a linear time in- 
variant controller. Necessary conditions for the 
success of the design technique, which are simple 
to check, are given. A detailed design example 
is included. 

1    Introduction 

Local linearization is a very attractive technique 
to design feedback around non-linear (NL) plants 
because it replaces the NL uncertain plant by 
a set of uncertain LTI plants, for which feed- 
back design is much simpler. This technique 
can be applied to plants that can be locally lin- 
earized and/or change their operating region s- 
lowly. Another important method is the NL in- 
verse dynamic technique (Lane and Stengel 1988, 
Adams and Banda 1993). A wide overview of an- 
alytic tools and design techniques, classical and 
new, can be found in Slotine and Weiping (1991). 
Within the QFT framework are the techniques 
which are based on the replacement of a given 
NL plant by an uncertain LTI plant (see the sur- 
vey in Horowitz 1991 and Yaniv 1991, 1991a). 
Another technique consists of NL plant cancela- 

* Address for correspondence: Oded Yaniv, Faculty of 
Engineering, Department of Electrical Engineering Sys- 
tems, Tel Aviv University, Tel Aviv 69 978, Israel. E-mail: 
yaniv@eng.tau.ac.il 

tion (Horowitz 1981), which has much in com- 
mon with the inverse dynamic method. It is 
based on pre-multiplying the plant by the inverse 
of a nominal model (which may be a member of 
the possible plant models). A suitable choice for 
this pre-multiplication will give an overall plan- 
t which suffers from less uncertainty and is to 
some extent closer to being LTI. 

Here we present a synthesis technique to de- 
sign a MIMO piecewise LTI controller and com- 
mand, around an uncertain NL plant, to achieve 
closed-loop specifications in a finite or infinite 
time interval. The design technique described in 
the present study improves existing QFT tech- 
niques in the following ways: 

1. The possible acceptable specifications for 
the plant output, which are in the form of 
sets in a given Banach space, are enlarged; 

2. The calculation efforts are enormously re- 
duced, as they need be performed only on 
the surface of the plant output specification 
set rather than on all its members; 

3. Designs for a piecewise LTI controller and 
LTV controllers are introduced; and, most 
importantly, 

4. A controller with a lower bandwidth com- 
pared to the existing techniques is expected 
because of (2) and (3), that is, a less con- 
servative solution is designed. 

The.basic idea is to integrate the following 
three techniques: (i) The MIMO design tech- 
nique for NL plants suggested by Horowitz and 
Breiner (1981) and by Yaniv (1991, 1991a); (i- 
i) The MIMO design technique for LTI plants 
(Yaniv and Chait 1992, Yaniv 1992); and (ii- 
i) the SISO design technique for NL plants based 
on Homotopic invariance (Barnard 1993, Yaniv 
and Boneh 1996). 

153 



2 Statement of the Problem 

The feedback system we deal with, is described 
schematically in Fig. 1 and expressed mathemat- 
ically by the equations 

y    =   Nu,   u = G(r-y), 

where r, u. y are in RnxiH2, denoting the com- 
mand, plant input and plant output respectively; 
G is a controller; and 

N = N(u,y(0),..,yn(0),i) 

is an NL operator that maps RnXiH2 x Rnxi x 

... x Rnxi x R+ into Änxi#2, where y'(0) are 
the initial conditions on y. The problem studied 
here is how to design the controller G and the 
tracking command r such that the plant output 
y will satisfy given specifications, that is, will 
be a member of a specified set y. For example, 
the ith. element of any member of y is a set of 
all continuous functions, bounded above and be- 
low, in a given time interval, by given time func- 
tions. Here is an example for a two output sys- 
tem with zero initial conditions: The first output 
should be all time functions between the dashed 
curves in Fig. 2a, that is, close to a step response 
of a first order system; and the second output 
any time function between the dashed curves in 
Fig. 2b, that is, bounded by a small value. An 
example for non-zero initial conditions is given 
in Fig. 2c,d, where the output should be between 
the dashed curves. Systematically the problem 
for two degrees of freedom is: 

Problem 2.1 Consider the system shown in 
Fig. 1, where N is an NL n x n MIMO plant 
known to be any member of a known set N'. The 
set y of permitted output responses is given. De- 
sign a tracking command r and-a piecewise LTI 
or LTV controller G such that the plant output 
y&y for all N G A/". 

3 Development  of the Design 
Technique 

We first present a design process for problem 2.1 
to find an LTI controller G. It is based on replac- 
ing the set M by an LTI set of plants and distur- 
bances {P,d} with regard to which a feedback 

problem is defined which can be designed within 
the framework of QFT. Its solution is also a so- 
lution of the original NL problem. The proposed 
extension to design piecewise LTI controllers is 
as follows: First, split the time interval with re- 
gard to which the problem is defined, say [0 —T], 
into several intervals [T,-_i - Tj], then design for 
each time interval an appropriate pair G;,rj of 
controller and command where the initial condi- 
tions for the i + 1 time interval (at t = Tj) are the 
system response at the final time of the ith time 
interval. A solution to the original problem will 
be the pair Gj,r; during the ith time interval, 
where the initial states of Gj are such that its 
output is the same as the output of Gj_i at the 
final time of the i — 1 time interval. This idea 
(originated by Horowitz 1991) for a single time 
interval is based on the following lemma. 

Lemma 3.1 Consider the following mapping on 
the set y.- 

*(y)    =    (I + PA-yG)-1(Piv2/Gr + yt
JVy + divj/)! 

y   =   Nu = PNvu + yi
Ny + dNy. (3.1) 

That is: for a given y G y, calculate u by 
y = Nu, then choose a pair Pjvj^djvj, of an 
LTI plant and signal that obey equation (3.1) 
(for which yz

Ny is the unique output of the plant 
PNy for the initial conditions of y), then calcu- 
late #(y). If the mapping 3? has a fixed-point 
in y for each N G M, then the pair G, r is a 
solution of problem 2.1. 

Assumption 3.1 In Lemma 3.1: u, r and y 
are in RnxiH2; G and (I + PNyG)~l are in 
RnxnHoo! and for all y G y there exists a u- 
nique.u such that y(t) = N(u,y(0), ..,t). 

Proof: Denote the fixed-point by yf. 

yf   =   (I + PA-yG)-1(P^Gr + yI
iVs/ + divs,), 

y/   =   Nu = PA-yu + yiVy + djv„. (3.2) 

Equation (3.2) yields 

y/   =   P^((G(r-y/))+yVy + d7Vj/(3.3) 

whose solution, G(r -yf), is by equation (3.2) 
u and by assumption 3.1 unique. Thus 

y/ Nu,   u = G(r-y/).        (3.4) 
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Hence, y/ is the output of the system defined 
in Fig. 1. By the lemma assumption y/ € y, 
and the pair G, r is therefore a solution to prob- 
lem 2.1.D 

Based on lemma 3.1, a design process for prob- 
lem 2.1 is: 

1. Choose the time intervals [T,-_i — Tj]; guide- 
lines for how to choose these intervals are 
given in section 3.2. Then choose a dense 
enough finite subset from y and from M 
on which the calculations will be performed. 
Now repeat the following steps for each 
time interval (for k intervals repeat for i = 
l,..,k). 

2. Design a pair Gj,r,- such that the mapping 
defined in lemma 3.1 on the set y, truncated 
to the interval [Tj_i - Tj], has a fixed-point 
on that set (the initial conditions are those 
given for t = 0 if i = 1, or for t = Tj_i, 
found by step 4, if i > 1). 

3. Simulate the closed-loop NL system in the 
time interval [Tj_i -Tj] to find the final con- 
ditions on the plant's output as well as the 
controller's output (to be the initial condi- 
tions for the i + 1 interval). 

If the design of the pairs Gj, r* has been suc- 
cessfully carried out at each of the k time inter- 
vals, then the piecewise LTI controller, which is 
built from the pair G;,r; in the iih time inter- 
val, where the controller states are such that the 
initial values are the final values of the previous 
step, is a solution to problem 2.1. The extension 
to design an LTV controller is now straightfor- 
ward: Design all the GjS with the same structure 
(same number of poles and zeros in each entry), 
then change the coefficient of GjS continuously 
(for example linearly) such that at time Tj the 
coefficients will be that of Gj. Clearly, this pro- 
cess is justified if the time intervals are small 
enough. Evaluation of the LTV design will then 
have to be executed by simulations. 

The main difficulty in the 2nd design step is 
how to guarantee that $(y), as defined in lem- 
ma 3.1, has a fixed-point in y where it is truncat- 
ed to any of the time intervals. Barnard (1993) 
suggested a technique based on a Homotopic in- 
variance fixed-point theorem. This technique is 

now developed for MIMO plants for the design 
of LTV controllers. 

3.1    The  Homotopic invariance tech- 
nique 

The basic idea is that when a mapping #o with 
a fixed-point in an open set y deforms continu- 
ously into $>i, then the fixed point is also con- 
tinuous; and if it never crosses the boundary of 
y, $i has a fixed-point in y. Hence, it will be 
enough to replace the mapping $ defined by e- 
quation (3.1) by 

* = $o + A($ - $o), 

where 3>o is a simple mapping for which we know 
that there exists a fixed-point in y, and we must 
check that SI> does not have a fixed-point on the 
boundary of y for A G (0—1]. Under appropriate 
conditions \P will have a fixed-point caged in y 
for all A, especially for A = 1. for which *$? = 3». 
The following lemma supports this idea. 

Lemma 3.2 Suppose that 

1. y is an open, bounded subset of a Banach 
space B with closure y and boundary dy; 

2. The mapping $o + A*: y x [0,1] -> B is 
compact (continuous and maps bounded sets 
into sets whose closure is compact), and it 
has no fixed-points on dy, i.e., 

*(y,A) = $0(y) + A$(y)^y; 

3. $o nas a fixed-point index i($o>!V) ^ 0; 

then the mapping \&(y, 1) has a fixed-point in y. 

Proof: By the Leray-Schauder fixed-point theo- 
rem (see Definition 12.3(A4) and theorem 12B, 
Zeidler 1986, p. 542), »(So,?) = Wy,!)»?). 
where i is the fixed-point index. By our as- 
sumptions i(*(y, 1), y) T^ 0. hence by definition 
12.3(A2) *(y, 1) has a fixed-point in y.n 

The condition that the closure of y should be 
compact in a Banach space is not too restrictive 
because it includes sets which are convenient for 
plant output specifications. These are sets in 
RnxiH2 which are "sleeves" around a nominal 
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element (y[,.., y°), truncated in the time domain 
to an interval [T\ - T2]. Explicitly 

y = {(v\,»,Vn) I \yi(Jo>)-y?{ju)\ < ei{u), 

t G pi - T2]},(3.5) 

where e* (u) limits the maximum deviation of the 
elements of any member of y £ y from the aver- 
age member yf and has some limitations in order 
to guarantee compactness. 

A natural consequence from lemma 3.2 is the 
following design process to find a pair of LTI con- 
troller and command G, r that solve problem 2.1 
(also to solve the 2nd step of the proposed design 
technique): 

1. Check that y is an open bounded set whose 
closure is compact, and for each y on its 
surface, dy, and each N G JV, select a pair 
I>Ny,dNy that satisfy equation (3.1) such 
that they are continuous as a function of y. 

2. Design a pair G, r such that 

*(y,A)    =   y0 + A((I + P^G)-1 

(PtfyGr + yj^ + djv^-yo) (3.6) 

defined with regard to y has no fixed-point 
on dy for all pairs of P^y,dNy selected in 
step 1 and all A £ [0-1], where yo is an 
arbitrarily chosen member in y. 

The design of the pair G, r for specifications of 
the form of inequality (3.5) is an LTI disturbance 
rejection process based on the following lemma, 
its proof is trivial (the notations used are P in- 
stead of T?Ny and d instead of d^y + y^y)- 

Lemma 3.3 The mapping <£ defined by equa- 
tion (3.1) has a fixed-point in a compact set of 
the form defined by inequality (3.5) if: (i) 

r   =    (P0G)-1(I + PoG)yo-d0 

=   yo + (PoG)-1(yo^d0),        (3.7) 

where Po,do is an arbitrarily chosen case from 
the set of pairs of P,d and yo = (y?, ••, J/°) *s ^e" 
fined in inequality (3.5); (ii) for all N G H, the 
mapping defined by equation (3.6) is continuous 
on y-, and 

| (I + PC)"1 (PPQ"
1
 (yo - d0) + d - yo) | 

<   e(w);   V N G M, y G d>, (3.8) 

where by vector inequality we mean element by 
element inequality. 

Based on lemma 3.3, a proposed design process 
in each time interval is: Choose a nominal pair, 
say Po,do, then design G such that inequali- 
ty (3.8) is satisfied for all y G dy and N G A/", 
and the Nyquist stability criterion is satisfied. 
The command r will then be computed, for each 
time interval, by equation (3.7). If the output 
set y is of the form defined by equation (3.5) it 
reduces to a feedback synthesis problem around 
an LTI MIMO uncertain plant to achieve closed- 
loop specifications. A recommended design tech- 
nique for this problem is a combination of the 
techniques given in Yaniv (1992) and Yaniv and 
Chait (1992), which are an extension of Yaniv 
and Horowitz (1986), but with two modification- 
s. The first is due to the fact that the problem is 
defined with regard to a finite time interval (how 
to extend the above technique to finite time in- 
tervals is discussed in Appendix A, and an algo- 
rithm is provided.) The second is because the 
closed-loop specifications must be satisfied at all 
frequencies, not up to a finite frequency. This 
is a major difference between the design of feed- 
back around LTI plants and around the uncer- 
tain plant which replaces the NL plant, as pro- 
posed here. 

3.2    Guidelines for choosing Pjvy, djvj, 
and time intervals 

The reason for using an LTV controller instead 
of an LTI one is of course to reduce the control 
efforts needed to achieve desired specifications. 
A quantity which is related to the control efforts 
is the bandwidth of the system, which depends 
on the following quantities: (i) The set y-, (ii) the 
uncertainty of the chosen set of PNy', (in) the 
amplitude of the disturbances d/v^ attached to it; 
(iv) the output disturbances; and (v) the initial 
conditions. In general, the uncertainty of Prvy 

with regard to a subset of y is lower than for the 
original set y, and the amplitude of d^y cannot 
be larger than that of the original set. This leads 
to a lower bandwidth controller. On the other 
hand, in order to satisfy closed-loop performance 
on a subset of y, a higher bandwidth controller 
is most likely needed. This competition suggests 
that preferred subsets exist on which the design 
should be executed. 

Another guideline is for NL plants that can 
be well approximated near t = 0 by LTI plants. 
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Since the response of an LTI system close to t — 
0 dictates its transfer function near s = oo, it 
is suggested that P^y should be chosen whose 
first Taylor expansion around oo is the same as 
that of the LTI approximation near t = 0. This 
guideline was used by Horowitz (1981a) and by 
Yaniv (1991), and it is described in detail in the 
example given in section 4. 

4    An Example 

Solve problem 2.1 for the 2x2 plant described 
by the following equations, where the input and 
output are [ui,u2]T and [yi,y2]T, respectively: 

yi + Ay\yi - Byi + C{y2 + Ay2y2 

y2 + Ay\y2 - By2 + D(yi + Ayxyx 

By2)=u\ 

Byi)=u2, 

(4.9) 

where the initial conditions are zero, i.e. yi(0) = 
0, and y2(0) = 0. 
Plant uncertainty: This lies in the parameters 
A, B, C, D, whose values are uncorrelated; it can 
be any value in the following intervals: 

A €[0,1],   Be [0.5,1],   Ce [0,0.5],   De [0,0.5] 

Closed-loop specifications: The plant output 
[yi i J/2]T for all its uncertainty should satisfy 

\vi{jw) -yHju)\ < ei{w),   t = 1,2; 

V?W = 7 
9 

ss2 + 3s + 9' 
y°2(s) = 0,(4.10) 

where ei(u) and e2(u) are given in Fig. 3. These 
specifications mean that the output of the first 
channel, yi, will be (approximately) a step re- 
sponse of a second order transfer function that 
may deviate from y1{s) by no more than e\{uS); 
and that the second channel, y2l will be bounded 
by e2(ui) = -20dB. The actual choice of ei(w) 
and e2(u>) was calculated by taking the maxi- 
mum of the left side of equation (4.10) for the 
yi{s) given by equation (4.10). These specifi- 
cations converted to the time domain, are also 
shown in Fig. 3 where the translation is based on 
the envelope of the responses of the same func- 
tions, a steady state error of 0.05 in y\ and 0.1 
in y2 being allowed. 

Choice of PJVJ,: As mentioned above, one of the 

main concerns when the pair P^, d^y is chosen 
is to guarantee that the uncertainty of the set 
of Pjvy will not be too large (especially at high 
frequencies), while keeping d^y small. Other- 
wise it will not be possible to design feedback 
around the uncertain plant set of PA^, and/or 
the bandwidth of the loop transmissions would 
be too high. Thus a Pjyy which depends little or 
not at all on y e y, while d^y being kept small, 
is preferred. For LTI plants this is the case, i.e, 
the plant is not a function of its input and/or 
output. It is important to imitate this proper- 
ty when Pjvy is chosen, especially at high fre- 
quencies, because high frequency uncertainty is 
strongly linked to the solution bandwidth. Thus 
near t = 0, Pjvy should be the LTI approxima- 
tion of the NL plant. For example 

y(«)  = 

■"10 +Uiii + tii2^   + -• 
UnO + Un\t + Un2t

2 + ... 

yio + ynt + y\2t2 + - 
yno + yn\t + yn2t2 + - 

,(4.11) 

(4.12) 

are the Taylor expansions around zero of the 
plant input and output, respectively. Substi- 
tuting these expansions in the NL plant, equa- 
tion (4.9) yields 

yn   + 2yi2t - Byni + C(y2i + 2y22i 

+ Ay2\y2\t - Byzit) = uXQ + u\\t 

3/21   + 2y22t-By2it + D(yn+2yi2i 

+ Aynynt - Byut) = u2o + u2{A.13) 

where UIQ = yn -I- Cy2i and U2Q = y2i + Dy\\. 
Thus, PJVJ,(S) should satisfy 

'JVJ, u = p Ny 

y\i+Cy-2i 

1     C 
D    1 

yn 
2/21 

1 
 > 
s 

yn 
2/21 

The following choice of PJVJ/ is therefore suitable 
(also does not depend on the input y): 

PNV = - 
s 

Ny 
1    c 
D    1 

A better choice can be achieved by incorporat- 
ing more terms (-CBy2it and -DByut), which 
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gives 

Ny 
s-B C{s-B) 
D{s-B) s-B 

-l 
(4.14) 

If the initial conditions are [yio,y2o]T we can get 
similarly 

s Ny 
1 + Ay2

w 

D{l + Ayw) 
C{l+Ay20) 

l + Ay '20 

-l 
(4.15) 

Note that uncertainty in the initial conditions 
yio and j/20 contributes to the uncertainty of the 
set of PJVJ,. 

For simplicity a piecewise LTI controller for 
only two time intervals will be designed. The 
design process therefore has two major design 
steps: Design in the first and second intervals. 
Design in the first time interval: First, a transla- 
tion of the NL plant into a linear plant with dis- 
turbance in the plant output is executed. The 
chosen plant is given by equation (4.14). The 
disturbance d^y was calculated for a large set of 
plant outputs of the following second order form: 

1 
yi(s)  =  - 

UJ 

s s2 + 2£ws + u>2' 
we [7.5,11.5], £ e [0.45,0.55] 

yi(s)  = 
±0.1 u 

s    s2 + 2£ws + w2' 
we [7.5,11.5], (£ [0.45,0.55], 

whose time responses are well known. The actual 
calculation process is as follows: 

1. Choose parameters A,B,C,D and output 
[yi,y2]T that obey equation (4.10), and 
translate the latter into the time domain. 

2. Calculate [ui,U2]T by equation (4.9), then 
calculate their Laplace transform. For the 
example used here this is a simple procedure 
because u\ and u2 are sums of exponents of 
time, and as such their Laplace transforms 
are known. 

4. Repeat the above steps for many cases of 
permitted A,B,C,D and many choices of 
[yi,y2\T in y to get the set of pairs of 

PjVjn dyvj/- 

Equation (3.7) defines the command input where 
the nominal case is the same [y^y®]7 defined in 
equation (4.10) and A, B, C, D are the arithmeti- 
cal average between their maximum and mini- 
mum values. The problem then reduces to the 
following disturbance rejection problem: Find G 
such that inequality (3.8) is true and the LTI 
MIMO system is stable. Using standard QFT, 
both controllers are designed to satisfy inequali- 
ty (3.8) with gain and phase margins of 40° and 
9dB (|1 + I| > Z.ldB). At frequencies w > 9, the 
specifications ei(w) and e2(w) are also relaxed by 
a factor of sjl + w2/92 (see the 4th guideline at 
the end of section 3.1). The bounds and nominal 
loop are shown in Fig. 4. The controller is 

G = diag(gi,g2);  ffi 
310 

s + 24: 92 = 
1600 

5 + 62' 

On performing time domain simulations, we 
found that near t = 0.75 the control efforts were 
close to their steady state values. The second 
time interval, for simplicity, will be chosen to s- 
tart at that time. The simulations are shown 
in Fig. 6 but they are true only for t < 0.75, 
because for t > 0.75 the above controller is no 
longer valid. 
Design in the second time interval t > 0.75: The 
translation of the NL plant into a linear plant 
with disturbance in the plant output is execut- 
ed. The chosen plant is given by equation (4.15). 
The disturbance djvj, is calculated for a large set 
of plant outputs of the following second order 
form (they also obey the specifications as trans- 
lated into the time domain): 

V?(«) 

y2°(s) 

1     0.05       s + uj2 

s        s   s2 + 2£ws + w2' 

w£ [3.5,7.5], £<E [0.45,0.55] 

S + ÜJ2 

±0.1 ———; 
s2 + 2£LJS + ul 

u£ [3.5,7.5], £e [0.45,0.55] 

3. Calculate d Ny     y  equa ion   { .),   w 1 r     ^^ actuai calculation process is as follows: 
y'     = 0 because all initial conditions are 
zero: 

d-Ny = y — PiVj/U. 

1. Choose parameters A, B, C, D and output 
[y1,y2]r that obey equation (4.10), and 
translate the latter into the time domain. 

158 



2. Calculate [ux,U2]T by equation (4.9), then 
calculate their Laplace transform. This is a 
simple procedure for the example used here 
because u\ and u<i are sums of exponents of 
time, and as such their Laplace transforms 
are known. 

3. Using equation (3.1) with the appropriate 
initial conditions achieved by simulation of 
the first time interval, calculate d^y: 

dNy=y- PNyu - yl
Ny. 

4. Repeat the above steps for many cases of 
permitted A, B, C, D and many choices of 
[yii ViY that satisfy the output specification 
to get the set of pairs PJVJ,, d.Ny 

Using standard QFT, both controllers were de- 
signed to satisfy inequality (3.8) with gain and 
phase margins of 40° and MB (|1 + L| > 3.7dB). 
At frequencies u> > 9, moreover, the specifica- 
tion ei(oj) was relaxed by a factor of -\/l + w2/92 

(see the 4th guideline at the end of section 3.1), 
while e2 (u;) was not relaxed because there was no 
need. The bounds and nominal loop are shown 
in Fig. 5, where the controller is 

G = diag{gi,g2);  gi = 
86 

5+12' 
gi = 

39 
5 + 8.5 

Time domain simulations: These are given in 
Fig. 6. The time domain specifications are barely 
satisfied, which means that the design is high- 
ly efficient from the bandwidth point of view 
(this conclusion is based on the "rule of thumb" 
that better plant output sensitivity in relation 
to plant uncertainty is a result of a higher band- 
width, provide that the gain and phase margins 
are conserved). 

5     Conclusions 

A method for designing linear time varying feed- 
back around MIMO non-linear plants to achieve 
desired closed-loop specifications is presented. 
The technique is based on the existing QFT tech- 
nique for that purpose, to design a linear time in- 
variant feedback which is based on a fixed-point 
theorem. A Homotopic invafiance fixed-point 
theorem was used in order to save computation 
and control efforts (bandwidth). The technique 

is most suitable for plants that can be linearized 
near t = 0. 

The main difference between design around an 
LTI and a non-linear plant is that for the latter, 
special precautions have to be taken near high 
frequencies. For non-linear plants that can be 
locally linearized near t = 0 it is recommended 
to remove these precautions and check through 
simulations if the results are satisfactory, since in 
that case a saving of bandwidth is guaranteed. 
This is also the critical design consideration, i.e., 
at what frequency to remove these precaution- 
s, and how much bandwidth can be saved. For 
the example presented here, three iterations were 
used to achieve excellent results. 
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Figure 2: Example of closed loop specifications 
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Figure 4: Bound and open loops of first interval 
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Control of an Activated Sludge Wastewater Treatment Plant with 
Nitrification-Denitrification configuration using QFT technique 

J.X. Ostolaza* and M. Garcia-Sanz** 

Keywords: Quantitative Feedback Theory, Frequency-based Control, Wastewater Treatment Plant, Process Control. 

1. Introduction 
Contemporary society is getting concerned 

about the importance of conserving the environment. 
In this context, growing urban sprawls generate 
wastewater, among other residues. 

The authorities are conscious of this problem 
and are establishing regulations about wastewater 
quality (EU Council Directive 91/271/EEC). These 
regulations limit the maximum concentration of 
dangerous substances, especially organic matter, 
nitrogen and phosphorus in the effluent 

Wastewater Treatment Plants (WWTP) are 
systems whose aim is to protect the water environment 
from the negative effects of wastewater. 

The presence of nitrogen compounds in the 
plant effluent pollutes the receiving water (river, sea, 
etc.). Therefore, one of the most important objectives 
of the Wastewater Treatment Plant (WWTP) is to 
eliminate those compounds. 

Biological wastewater treatment is an example 
of a successful large-scale process of biotechnology 
resulting from the coordinated application of 
engineering and microbiology. 

The high costs of wastewater treatment together 
with its increasing importance justify the efforts to 
obtain optimum systems of design and operation for 
wastewater treatment plants, identifying those with 
maximum efficiency and minimum cost. 

The introduction of advanced control strategies 
to wastewater treatment plants will allow management 
of the multiple processes involved, guaranteeing the 
effluent requirements and decreasing the running costs. 

(*) J.X. Ostolaza is with the Department of Electronics and 
Control Engineering. CEIT. P.O. Box 1555, 20009 San 
Sebastian, Spain. E-mail: xostolaza@ceit.es 

(**) Dr. M. Garcia-Sanz is with the Computing and Control 
Department, Public University of Navarra, UPNA. Campus 
Arrosadfa. 31006 Pamplona, Spain. Email: mgsanz@upna.es 

The great variety of mechanisms and processes 
that manage plant behaviour, the wide range of time 
response, and the uncertainty associated with the 
process are driving the control strategies toward 
hierarchical policies to apply multivariable-robust 
controllers. 

The type of controller used in this paper has 
been developed using a Quantitative Feedback Theory 
(QFT) design technique [3], [6], [8]. 

2. The Process 
The process considered here is a municipal 

Wastewater Treatment Plant (WWTP) with 
Nitrification and Denitrification (D-N configuration) 
whose diagram is represented in Figure 1. 

Internal Recycle 

Influent 

Purse 

Sludge Recycle 

Figure 1. Wastewater plant diagram (D-N configuration) 

Nitrification is the bacterial oxidation from 
ammonia to nitrates and nitrites by nitrificant bacteria. 
On the other hand, Denitrification is the process that 
reduces nitrates and nitrites to gas compounds of 
nitrogen by microorganisms which use these 
components instead of oxygen in the respiration 
process when oxygen falls short. 

The first zone of the biological reactor (D 
zone), in Figure 1, has no aeration system. It must 
eliminate the organic material in the influent water 
using the nitrates as an oxidizing agent 
(Denitrification), the second one (N zone) is aerated 
and eliminates the rest of the organic material and the 
ammonia (Nitrification). 

This plant configuration needs an internal 
recycle to support of the Denitrification process. This 
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recycle supplies nitrates from the nitrification stage to 
the denitrification zone. 

2.1 Control Variables 
The controller should be implemented in order 

to optimize the plant operation against the load profile. 
It must satisfy the quality requirements of the water 
and respond to perturbations such as seasonal 
variations, load disturbances, etc. 

From a theoretical analysis of controllability, 
the control variables which are to be used in the 
present process are the Dissolved Oxygen level in the 
oxic reactor (N zone) and the Internal Recycle flow 
rate, which provides nitrates to the anoxic zone of the 
plant (D zone). 

The DO level, is the most studied operable 
variable in the operation of wastewater treatment 
plants. The lower limit are the process requirements 
and the maintenance of the suspension of solids. On 
the other hand, an excess of ventilation is very 
expensive and does not raise substantially the level of 
dissolved oxygen because of the effect of the dissolved 
oxygen saturation in water. 

Under typical operation, the desired DO level in 
the oxic reactor is fixed at a specific value. This level 
is the reference of a PI controller that evaluates the 
required air flow. 

Proper operation of the Internal Recycle is 
based on the following points. On the one hand, its 
flow rate must be high enough to get the nitrate 
nitrogen concentration in the anoxic zone not to limit 
the denitrification. On the other hand, an excessive 
pumping can also inhibit the denitrification because of 
the contribution of oxygen from the oxic zone. 

Under classical operation, Internal Recycle in 
D-N plants is set at a fixed value too. 

In this manner, the controller considers the 
plant as a 2x2 system, where the output variables are 
the nitrate nitrogen (SNO) and ammonia nitrogen 
(SNH) concentrations at the outflow. The controller 
evaluates as input variables the desired Dissolved 
Oxygen (DO) level and the suitable Internal Recycle. 

However, the Relative Gain Analysis (RGA) 
shows that it is possible to decouple the two loops, 
using the DO level as the input variable to control the 
ammonia nitrogen (SNH) concentrations at the outflow 
(first loop) and the Internal Recycle flow rate as the 
input variable to control the nitrate nitrogen (SNO) 
concentration at the outflow (second loop). This paper 
deals with the control of the DO-SNH loop (first loop). 

The main disturbance of that first loop is the 
ammonia influent load. The standard requirements of 
ammonia concentrations (SNH) of the plant effluent 

deal with daily averages SNH. Their structure is 
showed in Figure 2. 

I Dint 

Pd(s) 

U(s) 

D(s) 

Figure 2. Block-Diagram of the open-loop system 

where U(s) represents the DO level (the control input), 
Y(s) the instantaneous effluent ammonia concentration 
(the output), and DJs) the instantaneous ammonia 
load inflow to the plant. D(s) shows the effect of DJs) 
at the output of the plant Y(s). 

2.2 The Model of the Plant 
There are two models of the water treatment 

plant used in this paper for the proposed application. 
The first one (A-model), used in the simulations, is 
based on the general model of activated single-sludge 
[4] and the model of the dynamic response of the 
Settler [9] (Appendix 1). This modelling results in a 
nonlinear system with 34 states, and has been 
calibrated with real data of the WWTP of Crispijana 
(Vitoria, Spain). 

The second model (B-model), used to design the 
controller, presents a very simple structure with one 
zero and two poles. This linear model describes the 
dynamics of the non-linear process considering the 
complexity as parameter uncertainty. 

P(s)=   f(S + a) 

s~ + b s + c 
(1) 

The models and the controller have been 
implemented in Simulink 1.3c under Matlab 4.2c, and 
Watcom C/C++ 10.0. 

2.3 Parameter identification 
The four parameters (K, a, b, c) of the B-model 

have been estimated [1] from computer simulations of 
the complex model (A-model) with seasonal 
temperature variations and changes in the load inflow 
of the plant. The estimated parameters obtained after 
the simulation of a year period present the following 
intervals of uncertainty, 

Ke  [8,26]     ;   a e  [-10,-50] (2) 

be  [ 34 , 54 ]   ;   c e  [ 250 , 650 ] 

which show non-minimum phase behaviour. 

3. The Control Algorithm 
This section is a summary of the algorithm. It is 

divided into three different parts: first, the controller 
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structure ; afterwards the controller design, and in the 
last, the controller analysis. 

3.1 Controller Structure 

The standard requirements of nitrates and 
ammonia concentrations of the plant effluent are daily 
averages and not instantaneous data. Moreover, the 
influent concentrations during the day have very 
different values. 

The aim of the controller is to reject the effect 
of those load inflow variations in the daily average of 
the effluent ammonia concentration. So, the real 
objective is to control, 

Y(s): 
\-e 

■Y(s) (3) 

with a feasible and economically acceptable control 
input U(s). 

In this manner, the proposed control structure is 
shown in Figure 3. 

R(s) >Q E(s) ( G(s) U(s)   , P(s) 

|D(s) 

1-exp(-s) 
s 

Y(S)  . 

Figure 3. Proposed control system structure 

The analysis of the frequency response of the 
closed loop system shows that the term 1 - e~s 

introduces a hard nonlinearity in module and phase. 

This property has leaded the election of U(s) in 
the following manner, 

(l-e-s)U(s) = (R(s)-Y(s))G(s) (4) 

that is to say, 

M(f) = «(f-l) + 3_1[p(5)-F(5))G(5)] (5) 

where    3~ [ ]    represents   the   inverse   Laplace 

transform. So the control input works in a incremental 
manner. 

This mode of operation leads to say that 

Y(S): 

PC    
 R(s) + D(s) 

s 

1 + - 
PG 

(6) 

3.2 Controller Design 

3.2.1 Specifications 

The most important aims of the control policy 
are, in this order: to maintain the plant operative, to 
comply with the requirements of effluent quality, and 
operate the process with maximum efficiency and 
minimum running costs. 

Following European laws, the main control 
objective of the controller is to keep the daily average 
of the effluent ammonia concentration, SNH, around 
1.5 mg/1 (± 15%), rejecting the plant disturbances and 
insuring simultaneously robust stability. 

Looking at the typical behaviour of the process, 
one of the most important disturbances of the plant is 
the continuous variation of the daily average of the 
influent ammonia load. That phenomenon affects the 
process as a plant output disturbance, D(s), (Figure 3) 
and has a natural frequency of about 0.1 rad/day. 

One of the first steps in the QFT design process 
[7] is to quantify the transfer function time/frequency 
domain boundaries between the plant output 
disturbances D(s) and the system output Y(s). 

Since Horowitz [5] suggests that the loop 
transmission function L(s) = G(s) P0(s) be bandlimited 
to reduce the costs of feedback, we have selected a 
crossover frequency to design the controller for 
disturbance rejection of about co = 1 rad/day. Since the 
maximum process bandwidth is of about 25 rad/day, 
we could have selected a greater crossover frequency. 
However, in the real process it is not possible to move 
the setpoint of the turbines with that speed. So, we will 
have to limit the variation of the turbines to 
frequencies around 1 rad/day for energy saving 
purposes. 

On the other hand, the capability of the 
ammonia concentration sensor is limited to a 30 
minutes sampling period (1/48 day), thus gives a 
Nyquist frequency of about f = 24 day ' (co = 150 
rad/day) for digital filter reconstruction. That is enough 
for the control objectives of the process. 

3.2.2 Template Generation 

QFT templates are 'geometric' representations 
of the magnitude and phase uncertainty of the loop 
transmission function as reference to the 'area' of a 
Nichols Chart. Since the compensator has no 
uncertainty, all the L(s) uncertainty is produced by the 
process. Figure 4 shows the templates for the plant, 
which have been generated from the LTI model, B- 
model (1) and the estimated parameters (2) at various 
representative frequencies. 

where D(s) represents the daily average of the signal 
D(s). 
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Figure 4. Plant templates 

3.2.3  Robust Stability: and Performance Bounds 

The feedback problem is to design a controller, 
G(s), such that the closed loop system presents a robust 
disturbance rejection specification for the plant output 
disturbances. Remembering that the variation of the 
daily average of the influent ammonia load has a 
natural frequency of about 0.1 rad/day, the 
performance specification will be according to, 

D(s) s + 0.1 
for all P e P , co e [0 , l] (7) 

In addition, the closed loop system must be 
robust stable. In order to simplify the controller design, 
the stability specification will not be very hard. In 
practice it will be, 

P(;'co) GO'co) 

1 + P(yto) G(;co) 
<4    for all PeP, co e[0,°°)    (8) 

program [2]. Figure 6 shows L(s) and the boundary 
constraints at various frequencies. An attempt was 
made to keep L(s) over the disturbance rejection 
bounds at low frequency, co = [0.05 0.1 0.5 1] 
rad/day, and under the U-contours at high frequency, co 
= [5 20 100 500] rad/day. 

-250 -200 
Phase (degrees) 

Figure 6. Loop transmission function L(s) plotted on a Nichols Chart 

The compensator G(s) is obtained by dividing 
the nominal Plant P0(s) into the nominal loop 
transmission function, 

G(s) = 
L(s) 

(9) 

and the typical resulting compensator has the form, 

G(5): 

-1.5    +1 
,2.62 

f    i 
s~ 

622 

2  0.65 
-I- 5 + 1 

6.2 

■ + 1 
30 

-+1 

(10) 

which implies at least 15° lower phase margin and at 
least 1.25 lower gain margin (not simultaneously). 

20 
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Figure 5. Robust stability and disturbance rejection bounds 

3.2.4   Compensator Design 

After we determined the loop transmission 
boundaries on the Nichols chart according to the QFT 
procedure, we shaped L(s) = G(s) P0(s) using a CAD 

3.3 Controller Analysis 

First we evaluated the control system loop by 
loop with its linear equivalent plant set, B-model. This 
verified the design over the uncertainty range. Figures 
7 and 8 show the worst (over all uncertainty cases) 
closed loop response magnitude versus the 
specifications: robust margin stability and robust 
disturbance rejection problems respectively. 

20 
- ''.''.'.         .     : . ! :   ::         :     :   : . ; . .; 

10 :——. —..—. TTr.rrr.— —.—. .— —.. — 777. —. .-77..—. — rrr ~. 
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J-20 

-;■■■:• •-■!■;■:! I-4" ■ ■■- -■■  : ■■ -X ;•:-•-:- 
J.JO 

-40 

..;...-.. 
■•■':■-':■ ■--■■;■■   . :X^- 

■50 

-60 

Freduercy ::ai'C3y; 

Figure 7. Analysis of robust margins stability problem 
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Figure 8. Analysis of robust output disturbance rejection problem 

4. Case Study 
To show the performance behaviour of the 

controller some experiments have been carried out. 
The proposed control strategy has been implemented to 
the non-linear model of the municipal Wastewater 
Treatment Plant at Crispijana (Vitoria, Spain), A- 
model. 

The most relevant characteristics and 
operational variables of the plant are: 

Influent flow rate (Qin): 120,000 m3/day 

Oxic reactor volume: 25,270 nr 

Anoxic reactor volume: 10,830 m 

Settler volume: 24,200 m3 

Sludge age (SRT): 12 days 

Nominal Sludge recycle flow rate: 1.0Qin 

Nominal Internal recycle flow rate: 1.0-Qin 

Nominal  Dissolved  Oxygen  concentration  (DO):  2 
mg/1 

Design temperature: 13 degreeC 

Some of the parameters of the model are shown 
in Appendix 2. 

The main control objective is to guarantee the 
standard requirements of ammonia concentrations in 

the plant effluent, fixed on a daily average (SNH) 
lower than 2 mg/1, around 1.5 mg/1 (+ 15%), when 
water temperature is greater than 15 Celsius degrees. 

Figure 9 shows the daily average of the effluent 

ammonia concentration SNH (t) and the control input 
U(t) of two trials : the first one with the QFT controller 
and the second without controller, both under the same 
variable influent ammonia load. 

10 15 20 25 30 35 

Control Input- DO Level [mg/1] 

- - ."V^..:.^-V*^. -;-^v. 

5 10 15 20 25 30 35 40 

Influent Ammonia load [KgVday] 

Figure 9. Plant with the QFT controller (solid). Plant without 
control (dashed) 

5. Conclusions 
One of the most important objectives of a 

Wastewater Treatment Plant (WWTP) is to protect the 
water environment from negative effects produced by 
residual water, controlling the maximum concentration 
of pernicious substances. This paper presents the 
design of a QFT control scheme and their 
implementation on the Activated Sludge Wastewater 
Treatment Plant of Crispijana (Vitoria, Spain), with a 
Nitrification-Denitrification (D-N) configuration. 

The biological process, described by using the 
mathematical model developed by the IAWQ in 1983 
(A-model), resulted in a nonlinear system with 34 
states, and was calibrated with real data of the WWTP 
of Crispijana (Vitoria, Spain). 

The second model is a very simple structure 
with one zero and two poles with non-minimum phase 
behaviour (B-model). This linear model describes the 
dynamics of the process considering the complexity as 
parameter uncertainty. The development of such a 
model allowed to make the templates, the robust 
stability bounds, the disturbance rejection bounds and 
the loop-shape of the QFT controller. The design was 
made keeping in mind the energy saving in the plant 
operation. 

The behaviour of the final algorithms was 
investigated implementing them in a computer 
simulation with the A-model. The results obtained 
using the proposed controller applied to a WWTP are 
satisfactory. It causes a better performance of the plant 
because the levels obtained are nearer to those required 
by environmental law and a notable reduction in the 
running costs is produced. Thus, the operation of the 
plant is notably more efficient. The controller 
developed is also suitable for low-cost microcomputer 
implementation. 

At present, the application of those robust QFT 
controllers to these type of plants is in implementation 
phase. The results obtained here establish a step 
towards this objective. 
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8. Appendices 

8.1 Appendix 1. Mathematical Model N. 1 
ofthelAWQ 

This is the most widely used model to describe 
wastewater treatment systems. It was presented as a 
consequence of the "Task Group on Mathematical 
Modelling", established by the IAWQ in 1983, [4], [9]. 

The development of such a mathematical model 
allows the study of different configurations of 
Activated Sludge processes. The computer simulation 
of the model gives information about the suitability of 
different control strategies. 

The kinetics of the model are shown in Figure 10. 

SOLUBLE 
BIODEGRADABLE 

ORGANIC 
MTROG£N 

SND 

PARTICIPATE 
BIODEGRADABLE 

ORGANIC 
NITROGEN 

XN'D 
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ss 
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PARTICLLATE 
tNKRT 

PRODUCTS 

XP 

7F 
SLOWLY 

BIODEGRADABLE 
SUBSTRATE 

R4 

Figure 10. Reactions of the model N. 1 

8.1.1   Equations of the Dynamic Model of 
Biodegradation by Activated Sludge 

The concentrations of all the organic 
compounds are expressed in terms of Chemical 
Oxygen Demand (COD). 

Growth of Heterotrophic Biomass 

Corresponds to Rl and R3 reactions of aerobic 
and anoxic growth respectively. 

Pl=\ßH Ks +SS KOH 
+$o J 

>NH 

V KNHC + $MH 
X 

P3 = MA 
JNH 

&NH +$NHJ V K0A +S0 j 
LM 

Where jiH 
Ks +SS 

and  JXA 

}NH 

KNH+S 

BH 

(A.l) 

(A.2) 

are 
NH 

their specific growth-rate, and Ks and KNH are their 
saturation constants. 

The heterotrophic biomass can grow under 
anoxic conditions. It uses the oxygen from the nitrate 
nitrogen as a source of energy, in the process known as 
denitrification. The kinetics of this reaction (R2) is, 

Pi ßH- 
KS+$S J 

K, OH 

V KQH +$o J 

2'NO 

KNn + S, NO J 

■*/« 

JNH 

\ KNHG 
+ $NH J 

^BH (A.3) 

Decay of Heterotrophic and Autotrophic Biomass 

These are the reactions R4 and R5 where bH and 
bA are the specific decay-rate of heterotrophic and 
autotrophic biomass respectively. 

(A.4) Pi—bn-XsH 

p5=-bA-XAH (A.5) 
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Ammonification of the Soluble Organic Nitrogen 

This reaction occurs because of the presence of 
heterotrophic bacteria and corresponds to R6, where 
KA is the ammonification constant. 

P6-~KA'SND 'XBH (A.6) 

Hydrolysis of the Slowly Biodegradable Substrate 
(XS) and the Particulate Biodegradable Organic 
Nitrogen (XND) 

These are R7 and R8 reactions respectively. KH 

is the hydrolysis constant and Kx is its saturation 
constant. 

p7 = KH- 
X BH J 

Ky + 

\XBH ■ 

V KoH + $0 J 

VBH J 

+ 77, 
K, OH 

KOH + $0 

}NO 

KNO 
+ $NO J 

X 

Ps=Pl 
X ND 

BH 

(A.7) 

(A.8) 

The stoichiometric coefficients that regulate the 
mass transference in the reactions are: 

• Heterotrophic yield YH. Reaction Rl efficiency 
• Autotrophic yield YA. Reaction R3 efficiency 
• Inert fraction of biomass/p 
• Nitrogen/COD relation in heterotrophic biomass, IXB 

• Nitrogen/COD relation in inert mass, iXp 

hc: sludge blanket depth 
h: depth from the bottom of the settler 

Kj, K2 and n: constants of the model 

To calculate the variation of the sludge blanket 
depth, the equation (A.9) must be resolved, and 
afterwards must be differentiated with respect to time. 
Then the next equation, 

Qs ' XAT ~ Qr' XRT 

#=■ 

XAT + 

(A. 12) 

(* RT X AT; 

is obtained, where ac is the settler area. 

Equations (A. 11) and (A. 12) represent the 
model of the settler. 

8.2 Appendix 2. Coefficients of the Model 

8.2.1 Units 

The units used for the state variables and for the 
coefficients of the model are shown in table A.l. 

8.2.2 Values of Coefficients 

The values of the coefficients at T°C are 
obtained from their value at 20°C and from their 
parameter of variation with respect to temperature 
(table A.2). These coefficients obey the equation of 
Arrhenius (A. 13). 

CoefCT) = Coef(20°C)-Coef_var<T-20> (A. 13) 

8.1.2  Equations of the Model of the Dynamic 
Response of the Settler 

This model allows the prediction of some 
variables in the process, the mass of solids, the 
concentration at the bottom and the sludge blanket 
level. 

The mass per unit of stored area in the settler is 
calculated with the next equation, 

M ■■ Vc c(h)-dh 
Jo 

(A.9) 

where c(h) is the concentration of the blanket at depth 
h. 

Now, the law of variation of the concentration 
depending on h and the integration limits are, 

(c-X AT) KXRT - xAT/ 

(K-h^ 

v  K   j 

x 

where 

K->hr RT=KI+(K1-XAT)-eK> 

0<h<hc  (A.10) 

(A.11) 

XAT: concentration of particulate mass in the effluent 
to the settler 

XRT'. concentration in the bottom of the settler 

Table A.l. Units of coefficients and state variables 

^H day-1 

MA day-1 

KS 
mg COD/litre 

KNH mg N/litre 

KH mg COD/(mg COD day_1) 

KX mg COD/mg COD 
KA l/(mgC0Dday-1) 

»H day"1 

YH 
mg COD/mg COD 

YA mg COD/mg N 

"A day 
fP mg COD/mg COD 

'XB mg N/mg COD 

'XP mg N/mg COD 
KNHG mg N/mg N 

Si mg COD/litre 

sS mg COD/litre 

*I mg COD/litre 
xs mg COD/litre 

XBH mg COD/litre 
XBA mg COD/litre 
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Xp mg COD/litre 

s0 mg Oxygen/litre 
sNO mg N/litre 
SNH mg N/litre 
SND mg N/litre 
XND mg N/litre 

Table A.2. Values of coefficients and their variation 
Coefficient Value at 20s C Parameter of variation 

MH 3,00 1,070 

^A 0,55 1,103 

KS 5,00 1,000 
KNH 0,80 1,123 
KH 2.00 1,070 
KX 0.02 1,000 

KA 
0,08 1,070 

bH 0,62 1,070 
YH 0,67 1,000 

YA 0,24 1,000 

bA 
0,13 1,103 

fP 0,08 1,000 

'XB 0,08 1,000 

'XP 0,06 1,000 
KNHG 0.27 1,000 
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Abstract: This paper deals with the robust stability of QFT 
designs. The approach is based on ideas from the Circle 
Criterion and Conic analysis. The proposed techniques are 
given in usual language, expressed as frequency conditions 
in the Nichols Chart. The main advantage claimed is that a 
global and robust stability of the QFT design is guaranteed, 
for a quite general class of uncertain nonlinear blocks. 

1  Introduction 
This work is devoted to the stability problem of nonlinear 

QFT designs. There exists in the literature several nonlinear 
QFT techniques ([Horowitz,91], [Oldak et al.,93]), all based 
on some type of linearization. In the first nonlinear QFT 
technique ((Horowitz,75;76; Banos and Bailey,95], specifica- 
tions are made for closed loop acceptable outputs in response 
to reference and/or perturbation inputs in a set, and it is 
shown that some small perturbation is allowed respect to 
input signals in that set. However it is not clear what is the 
behavior of the control system when a bounded reference or 
perturbation does not belong to that set (the same is true for 
any other input entering additively in the loop): there is no 
guarantee that closed loop signals be bounded is some sense. 
For the other techniques the situation is similar. 

The paper is centered in the resolution of the following 
stability problem: what conditions must satisfy a linear 
stabilizing controller for an uncertain nonlinear plant?. Here 
the sense of stability is BIBO stability from the inputs to the 
feedback system to the rest of signals. We use as starting 
point the Circle Criterion for SISO systems, due to its fitting 
within the QFT framework: it is a graphical criterion in the 
frequency domain, and one have a direct parameterization of 
stabilizing controllers given as restrictions or bounds in the 
frequency domain, an usual "language" in QFT design. 

In its simplest version, the Circle Criterion can be very 
limited in practice. The work in [Barreiro,97] extends the 
stability criterion to MEMO nonlinearities by using 
generalized loop transformations and the concept of 
maximal conic sectors, mimmizing the conservativeness of 
the approach. This type of conicity analysis is used here, in 
conjunction with QFT ideas, to develop a twofold result: a 
procedure for computing robust stability boundaries for 
nonlinear QFT design, and a robustification of Circle 
Criterion using QFT. 

Section 2 presents a robust version of the Circle Criterion, 
in its more simple case: the linear block is a serial 
connection of the controller and the uncertain linear part of 
the plant. Some extensions of this result are given in Section 
3, where the Circle Criterion is generalized to consider 
MISO conic nonlinearities and general blocks 
interconnections. Some examples will be given in both 
Sections. 

2 Robustification of the Circle Criterion 
In [Cohen et al, 92] a stability test is developed for linear 

QFT based on the notion of crossings in the Nichols Chart 
(NC). Here we extends the idea for characterizing the 
Criterion Circle in NC. In this Section we analyze the 
stability of the feedback system in Fig. 1. 

Previously we define some regions in NC (D[a,b] is the 
disk in the complex plane which is centered on the real axis 
and whose circumference passes through the two points -\la 
and -lib; see left column of Fig. 2): 

C,(fl,6) = {(x,y) eNC\x = arg(z),y = \z\m,z eD(a,bj\ 

C2(b) = {(x,y) eNC\x = mg{z),y = |z|Ä,Re(2)> -1/b} 

C3(a,b) = {(x, v) eNC\x = arg(z\y = \^,z iD(a,b)} 

Circle Criterion: Consider the system of Fig. 1 with the 
nonlinear system N c Cone [a,b], and the linear one with a 
strictly proper rational transfer function. The feedback 
system is stable (L2 stable with finite gain) if some of the 
following conditions are satisfied: 

Case (l)ab>0: The Nichols diagram of K(s) -with possible 
indentations in its y'©-axis poles- does not intersect C,(a,b) 
(Fig. 2.a), and also its net number of crossings with the ray 
-180°x[(l/a)dB, oo) in the case 0 < a < b, or with 0°x[(l/b)dB, 
oo) in the case a < b < 0, is equal to the number of its 
unstable poles. 

Case (2) 0 = a < b: K(s) is stable, and in addition its Nichols 
diagram is out of C2(b) (Fig. 2.b). 

Case (3) a < 0 <b: K(s) is stable, an in addition its Nichols 
diagram is out of C3(a,b) (Fig. 2.c). 

We are interested in the problem of robust stability, that is 
in the problem of finding tractable conditions that 
guarantees the closed loop stability when the plant is 

+ This work has been supported by CICYT under projects TAP96-0671 and TAP96-1184(3) 
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uncertain. In QFT the two degrees of freedom structure is 
typically used (Fig. 3). However, as far as stability is 
concerned, the nontrivial part of the problem is to find 
conditions on G(s). Thus, we can eliminate F(s) in the rest of 
the discussion, since it is supposed to be stable. 

Consider the case in which the nonlinear plant T consists 
of a serial connection of a linear part P and a nonlinear part 
JV, that is V= PJVo 7= JVP . These types of nonlinear 
systems have its practical importance and have been deeply 
studied in the literature. In particular, some systems 
belonging to these type have special names such as 
Hammerstein or Wiener models. After block manipulation 
we can transform the system of Fig. 3 in the one of Fig. 4, 
where F have been already eliminated. The treatment of the 
uncertainty will be different for the linear and the nonlinear 
parts. The nonlinear part will be supposed to be contained in 
some cone, that is N £ [a,b], while the uncertainty of the 
linear part P will be transformed in a set templates, as it is 
standard in QFT. 

Before stating the robust Circle Criterion it is necessary to 
make some definitions. Given a linear plant P(s,Q), 9 60, we 
define a template T(a>) in the usual form, but we need to 
define a boundary with respect to a region C. Formally (see 
Fig. 5; Tis a template, where '*' is a nominal value T0) 

T(w) = {(x,y)eNC\x = eIg{PUco,9)\y = \P{JG>f}m£z®} 

SRc(a>) = {z eNC\{z + zT -Te(m),zT eT(.a)}nC= 0} 

Here SRC defines, for each frequency, a stability region in 
NC that it is given as a function of C. If the Nichols diagram 
of L0(s) is in the region SRC for every frequency, then the 
Nichols diagram of L(s) = G(s)P(s,Q) does not intersect C. A 
boundary Bc is the frontier of SRC. 

Robust Circle Criterion: Consider the system of Fig. 4, 
where JVh Cone [a,b], and P belong to the set {P(s,Q), 9e 
0}. Define the open loop gain as L0(s) = G(s)P(s,Q^), and let 
u, the number of unstable poles of L(s) = G(s)P(s,d), an 
invariant for 9e0. Then the feedback system is stable (L2 

stable with finite gain), if some of the following conditions 
are satisfied: 

Case (1) ab > 0: The Nichols diagram of LQ(s) -with possible 
indentations in its ./co-axis poles- does not intersect any 
boundary Ba (co) for any frequency co, and in addition the net 
number of crossing with the ray -180°x[(l/a)dB,oo) in the case 
0 < a < b, or with 0°x[(l/b)dB,oo) in the case a < b < 0, is 
equal to u. 

Case (2) 0 = a < b: L(s) is stable for each 960, and, in 
addition, the Nichols diagram of L0(s) is out of Ba (co) for 
any frequency co. 

Case (3) a < 0 <b: L(s) is stable for each 9e0, and, in 
addition, the Nichols diagram of L0(s) is out of 50(co) for 
any frequency co. 

Note that there exist different types of boundaries, that is 
BCi (co), Ba (co), and Ba (co) (with respect to C,, C2, and C3 

respectively-see Fig 2), depending on the different cases in 
which the criterion applies. Next example show the 
computation of boundaries for the case 1. For the rest of 
cases the situation is a bit different but all of then can 
computed using quadratic inequalities similar to the ones 
develop in [Chait and Yaniv,93]. 

Example 
This example uses the same nonlinearity of Example 1 in 

[Horowitz,76], to illustrate the application of the robust 
circle criterion in nonlinear QFT designs. Consider the 
system of Fig. 6, where 

/>(*) = —,*ep,10], a e[l,10] 
s + a 

and the nonlinear block is memoryless and given by a,e 
[0.1,0.4], a2e[0.3,0.5], m1 = m3 = 0.1 y m2 e[6,10]. 

It is not difficult to see that the nonlinear part is always 
contained in the cone [a,b] = [0.1,6.04]. On the other hand 
the linear plant has the templates shown in Fig. 7.a (a = 1 
and K = 1 are the nominal values). This is the case (1) of the 
robust circle criterion. Thus the stability boundaries of L0 = 
GP0 can be obtained using the templates and building the 
boundaries Bcl (co) with respect to the region C,(see Fig. 2.a 
for a plot of this region). Fig. 7.b shows boundaries for 
frequencies co = 0.1, 1, 10, 100 rad/s. where the shaded 
region is exactly C,, that is the region to avoid in the case of 
no uncertainty in the linear block. 

In this example, the direct application of the robust version 
of the Circle Criterion results in two conditions on L0(s): i) it 
must be above the boundaries for the corresponding 
frequency, and ii) the net number of crossings, suppose G 
without poles in the right-half plane, must be zero. Both 
conditions are relatively easy to satisfy. For example G(s) = 
K(s+l)/s, that results in 

Lo(s) = 
K(s + l)   1 

5        S + l 

K_ 

s 
will be a solution. 

3 Extension to general blocks interconnections 
and MISO conic nonlinearities 

The application of the robust Circle criterion as stated in 
the last Section is limited by three important aspects: 

i) Although, in general, dynamic nonlinear blocks can be 
considered, the computation of conic sector for dynamic 
nonlinear system can become problematical. Then, the use of 
the criterion is somehow practically restricted to feedback 
systems with a nonlinear static or memoryless block. 
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ii) The Criterion can only be applied to nonlinear systems 
with serial interconnections between linear and nonlinear 
parts. A more general result is desirable as in many practical 
situations the type of interconnection is a feedback or 
parallel one. 

iii) As it is well-known, the Circle Criterion is only a 
sufficient condition for stability, and then it can be quite 
conservative. 

The first limitation can be eliminated by using a MISO 
memoryless nonlinear blocks, which will be treated as conic 
nonlinearities lxn. This can extend the technique to 
dynamic nonlinearities. The introduction of MISO conic 
nonlinearities also allows to the designer to minimize the 
possible conservatiness of the Circle Criterion by using loop 
transformations, and then alleviate the third limitation. With 
respect to the second limitation, it is possible to use a general 
block interconnection as it will be developed afterwards. 

Loop transformations 
The system (H(s),M) (in Fig. 4 H(s) = P(s)G(s)) is small- 

gain stable when \\H\\ \\N\\ < 1. Here, || . || denotes the 
induced I2 norm. By introducing a scalar parameter it can be 
assumed that ||JV|| = 1, then the stability condition, directly 
adaptable to QFT frequency tests, is \\H(s)\\ < 1. This 
condition is usually too restrictive. A way to generate 
alternative solutions is applying loop transformations that 
are stability-preserving. In its classical form, the loop shift is 
based on adding and subtracting a constant block 
[Vidyasagar,93], resulting in the usual form of the Circle 
Criterion as given in Section 2. A more general set of loop 
changes is studied in [Barreiro,97], by considering 2x2 
block-constant transformations. 

From a formal point of view, let S(H) and T(N) be the 
new transformed systems, so that S(-) and T(-) preserve 
stability. The system (H,N) is said conic-stable when these 
stability-preserving transformations can be found such that 
small gain is satisfied, not for the original loop (H,SN~), but 
for the transformed loop (S(H),T(N)). This small gain 
condition, scaled such that ||r(:7\0ll = 1, results in || S(H)\\ < 
1. If the controller G(s) forming part ofH(s) = P(s)G(s) can 
be tuned such that solves the small gain, then, the whole 
system is BIBO stable. 

Different choices of loop changes S(-), T(-) induce different 
stability conditions, more or less conservative. The reduction 
of conservativeness is related to the idea of maximal cones in 
a set of stabilizing cones, analyzed in [Barreiro, 97]. The 
restrictions on the controller derived from maximal conic 
sectors cannot be improved by alternative loop changes. In 
this way, maximal cones minimize the effect of 
conservativeness in QFT stability. 

General blocks interconnection 
Apart from the generalization to maximal general cones, 

another problem that may appear is that the way in which 
the controller G(s) is inserted into the grouped linear 

dynamics. In the case in which ^N~is lxn and H(s) is wxl, 
the more general interconnection (an LFT) could include 
serial, parallel and feedback links: 

H{s)=p3(s)+P2(S)G(S)(\ - pfrwswpjis) 

There, the plant linear subsystems P2(s) and P3(s) are 
column («xl) vectors, while P^s) and PA(s) are scalars. Let 
us assume that a satisfactory small-gain cone has been 
obtained, and the corresponding loop transformation has 
been applied. In this way, the plant subsystems Pt(s) are not 
the true subsystems but the transformed ones. For the shifted 
loop, the stability condition to be fulfilled is, directly, small- 
gain: 

wvmh <i 
This is the /f-infinity norm, thus affecting pointwise over 

all frequencies co. Implicitly, it forces H to be stable. The 
controller G(s), affecting H(s), has to be tuned so that small- 
gain holds. This can be easily treated using QFT techniques, 
using templates to take into account possible uncertainty in 
P.(s). It can be shown that the small-gain condition can be 
reduced to quadratic inequalities on the magnitude of G(/co), 
and similarly to the technique developed in [Chait and 
Yaniv,93], the computation of admissible regions in NC is 
easily tractable. 
Another advantage of this approach is that plant uncertainty 

and alternative conic sectors can be easily included in the 
design. To do this, put Pt- Ps(p,q), where the p parameters 
represents the plant uncertainty and the q parameters 
represent different cone choices with loop shifts affecting the 
Pr The difference is that conditions have to be fulfilled for 
some of the q values (alternative cones) and for all the p 
values (robustness again uncertainty). Apart from this, the 
structure of the quadratic inequalities for plant magnitude is 
exactly the same, above mentioned. 

The techniques above mentioned are fully general for 
systems formed by a static MSO nonlinear block and 
arbitrary interconnection of LTI blocks. But, instead of a 
detailed exposition of a step-by-step algorithm, for the sake 
of brevity, are shown to be applied to a representative 
example. 

Example 
Consider the control system in Fig.8, where PfayPJis) is 

the LTI plant model, and there are two nested loops. The 
controller N of the inner loop is nonlinear and static, and the 
outer loop is regulated by the LTI block G(s). Let us 
assume that P,(s)Pj(s) and N are given, then the objective is 
to find frequency conditions on GQ'CO) ensuring closed loop 
stability. 

In many practical cases simple cheap actuators are 
implemented in the inner loops, so consider the relay-type 
controller j=^V"(x)=^V"(x„x2) given by: 
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= 0, 0<x,<d 
= 0,d<x.<d+h,x,>0 
= 1, d<xl<d+h,x1<0 
-1, d+h<x^ 

M(-x)=-M{x) 

Notice that, as x2=dx/dt, the nonlinear block can be 
regarded as certain type of a SISO relay having dead-zone d 
and hysteresis width h. After block manipulation, the 
diagram can be reduced to the feedback connection between 
the 1x2 system y=N(x) and the 2x1 LTI system 
U(s)=X(s)/Y(s) given by: 

V ;    1 + G(5)/>,(5)P2(JAJ 

To ensure that the induced LTI systems are always proper 
fractions, a degree excess 8 (/\)>0 (denominator-numerator) 
is assumed. 

Conicity analysis. The stability of the loop in Fig.8 will be 
addressed by conicity arguments, i.e. using small gain and 
loop transformation techniques. To do this, introduce a 
fictitious multiplier MXM applied to the graphs of the 
systems H(s) and N, as shown in Fig. 9, in the chain 
formalism. The chain formalism [Kimura and Okunishi, 95] 
is based on changing the signal flow and interchanging some 
inputs and outputs, so that LFT block transformation is 
reduced to a linear map on the product space. This simplifies 
highly the treatment. 

It can be shown that any conicity condition affecting the 
loop formed by H(s) and N can be reduced to a small gain 
condition affecting the transfomed loop in Fig.9. Then, M 
has to be found such that a normalized small gain condition 
is satisfied: 

\-l < 1, for all (u, v) e graph(M ■ N) 

fl<l, for all (v,«)egraph(A/.#(.s)) 
v 

The first inequality will be used to look for adequate M's, 
that will subsequently be applied to the second inequality. 
The problem of finding an M, solution to the first inequality, 
can be shown to be equivalent, by elementary geometrical 
arguments, to that of finding second-order curves C (see 
Fig. 10) bounding the normalized graph of N, given by 

N = —U x, > 0, JC, >(d+h)} U {*2 ^0,x}> d] 

These curves C will be the sections, at y=l, of the 3D 
small-gain cones. As shown in Fig. 10, many solutions C 
may exist.   The nonconservative solutions will be those C 

maximally bounding the normalized graph N. This is 
related to the concept of maximal conic sectors [Barreiro, 

97]. Although other maximal solutions exist, consider for 
brevity the family of parabolas having a tangency point with 
the vertical line from (d+h,0) to (d+h,°o), and a contact 
point at (d, 0), given by: 

h 
x. = —j-(x2 -af +(d+h), 

a 
where a>0 is the free parameter. To simplify the treatment, 
put rf=l, ä=1. Also, denormalize again (xi^c2,l) to (x\jc2,y) 
so that the 3D bounding cones for A^ can be written in the 
form: 

0 = (xT,yß 

and diagonalized to 

o=NM*f=(«V 

where J=diag(l,l,-1). The diagonalization is achieved by 

V 
W 

suchthatA/jM=A. 
The solutions for M have the form 

M = 
111    -e 

0       e    0 

-1/2    e    1 

°) 

Different choices for the free parabola parameter e=l/a, 
produce different M and different maximal cones. 

Frequency conditions on G(ja>). At this point, a family of 
matrices M is obtained such that the right-side of Fig.9 
satisfies maximally |v[|<|w||. Now, in view of the 
dependence of H(s) on G(s), the controllers G(s) have to be 
found such that the left-side of Fig.9 satisfies the 
complementary small-gain condition |M[|<||V|. The LTI 
transfer function of the left-side of Fig. 9 is: 

U(s) (a(s) 

V(s) 
Pu& 

where: 

Ksyi+PuWisyCXs) 

P2(s) 
2d    l+d(s)P2(s)' 

a(s) =(es-\IT) 

b(s) = -es 

d(s) = (1/2-es). 

The small-gain condition is |//M(^| <, , which is equivalent 

to: 
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- The negative feedback loop formed around 
P2d(s)Pi(s)G(s) is stable. 

-[//„(/^l, for alia. 

The last frequency condition can be written in the form 

\Px{J0ya{ja>)-c{cof >r\(o) 

for all co. In other words, the controller G(Jeo) has to be 
chosen so that /}(y'ß))G(/6>) avoids the disks D(a>) 
in the complex plane having center c(a>) and radii r(<a): 

c(co)=-\IP2d{ja>) 

Numerical results. Consider the particular case of a plant 
with P,(s)=l and 

Then 

,   k,ae[\,   10], P"^   s(l-ke)+(a + k/2) 
c((o) = (e-l/k)jco-(l/2 + a/k), 

r\co) = ^+2eW 

The forbidden disks D((D) have to be avoided, for all k,a 
(robust stability), and for some e>0 (alternative conic 
sectors). The causality of the controller implies that G(ja>) 
has to be bounded when CO —> oo. For causality, the disks 
cannot increase unbounded covering all the complex plane. 
A necessary condition is: 

\dc((o) I dco\ > \dr(a>) I da\ 

achieved when 0<e<l/(k(l+j2)\ for all ke[\, 10]. The 
forbidden regions can be plotted in the Nichols chart, for 
different optional values of the parabola parameter e=\la. A 
value of e = 0.01 was chosen. See the Fig. 11, where two sets 
of boundaries are given. The first set (Fig. 11.a) assures that 
the negative feedback loop formed around P2d(s)Pi(s)G(s) is 
stable, while the set in Fig. ll.b assures that |//M(;ü);|<I, 

In summary, this example shows how the conicity criterion 
can be applied to ensure stability of nonlinear MIMO 
systems. The stability conditions are in a natural way 
expressed as allowed or forbidden frequency regions in the 
Nichols chart, and so it is easily combined with other QFT 
design objectives. 

Conclusions 
In this work we have considered the problem of the 

stability of a nonlinear uncertain plant, within the QFT 
framework, determining boundaries for a stabilizing linear 
controller. This has been addressed using tools of the Circle 
Criterion and related conicity techniques. 

In Section 2, a robustification of the Circle Criterion was 
presented, that extends previous stability test. The proposed 
result is based on crossings in the Nichols Chart, giving 
boundaries obtained from plant templates. In Section 3, this 
technique was extended to MISO nonlinear blocks and 
general connections. A procedure is presented to derive 
stabilizing controllers. The examples given in both Sections 
illustrate the ideas and show the viability of the proposed 
techniques. 
The advantages claimed are that using this new nonlinear 

stability boundaries, QFT designs can achieve global 
stability, even for inputs not in the acceptable input set. It is 
worthwhile to mention the very good fitting between QFT 
and conicity, due to the common frequency-based treatment. 
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Fig. 2: Restrictions given by the Circle Criterion in Nyquist and Nichols planes. 
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Fig. 6: A nonlinear plant. 
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Longitudinal Control of an Advanced Combat Aircraft using 
Quantitative Feedback Theory 

S. G. Breslin     M. J. Grimble* 
Industrial Control Centre 
University of Strathclyde 

Abstract 
A robust controller is designed for the pitch rate con- 

trol system of an Advanced Combat Aircraft for a section 
of the flight envelope over which there is a significant vari- 
ation in the aircraft dynamics. The QFT methodology is 
reviewed and the links between Tioo control theory ex- 
plored. The design results are compared with previous 
studies using "Hoo synthesis and it is shown how improved 
results can be obtained using the results of the quantita- 
tive analysis. 

1.    Introduction 
In his classic work of 1963, Issac Horowitz [3] intro- 

duced a frequency-domain design methodology which he 
later refined into a technique which is now know as Quan- 
titative Feedback Theory ( QFT ) [5, 4]. The philosophy 
of Issac Horowitz and hence QFT, was simple : the rea- 
son for introducing feedback into a system is to reduce 
the effects of uncertainty and other nonlinearities which 
cannot be measured. The amount of feedback required is 
a function of this uncertainty and the required tolerances 
on the closed-loop system. The cost of this feedback is 
measured in bandwidth which must be minimised to avoid 
problems with noise amplification, resonances and unmod- 
elled high-frequency dynamics. The plant uncertainty and 
the closed-loop tolerances should therefore be formulated 
quantitatively so that at each stage of the design process 
the cost of feedback can be assessed. 

This paper is organised as follows. The QFT tech- 
nique for linear time-invariant MISO and MIMO plants 
will be reviewed in Section 2. The relationship between 
QFT and HQO control theory will then be explored in Sec- 
tion 3. drawing on the work of Nordgren [6]. In Section 
4. a pitch rate controller is designed for a large section 
of the flight envelope for an Advanced Combat Aircraft ( 
AC A ). The results of this section are then compared to 
previous work on the same problem using Koo synthesis. 
Finally, in Section 5., the results of the previous Sections 
are summarised and some general conclusions are made. 

'Industrial Control Centre, Department of Electrical and Elec- 
tronic Engineering, University of Strathclyde, Glasgow, United 
Kingdom, e-mail: mgrimble@icu.strath.ac.uk 

2.     Quantitative Feedback Theory 
Plant uncertainty in a QFT design is represented by 

templates on the Nichols chart which contain informa- 
tion on the variation in open-loop gain and phase at a 
particular frequency. The templates are then used with 
the closed-loop specifications to generate bounds on the 
Nichols chart at particular frequencies. Satisfaction of 
these bounds by the open-loop transfer function ensures 
that the performance and stability requirements will be 
met by the closed-loop transfer function for all plants 
which are contained in the uncertainty description. 

A two degree of freedom control system structure is 
typically assumed for the QFT technique ( Figure 1) with 
reference input r(s), input and output disturbance di(s) 
and d0(s). 

di(s) d0(s) 

s)-i-   R(s) 

!Ci?ntröirej: 

K(s) W 
ZEürir"; 
G(s) -^O v+ -*-2/(s) 

Figure 1: Two degree of freedom control system. 

The closed-loop transfer function from the reference 
input r(s) to the output y(s) is given by, 

Tr(s) = 
L(s) 

(1) 
I + L(s) 

where L(s) is the open-loop transfer function given by, 

L(s) = G(s)K(s) (2) 

The closed-loop transfer between the input and the output 
disturbance inputs are given by, 

TaM = 
G(s) 

I + L{s) Td.{s) = I + L{s) 
(3) 

The following specifications on the closed-loop system are 
typically given for a QFT design : 

• Tracking response The variation in the closed-loop 
tracking response due to the plant uncertainty and 
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disturbance inputs is required to be within the fol- 
lowing limits : 

and a maximum allowable variation from the mean as, 

yu(t) ~yi(t) 

TrM <\TT{ju)\<Tru{u) (4) 

where Tr,(w) and TTU(LO) are the given upper and 
lower tracking bounds respectively. 

Stability The stability margins are expressed in terms 
of the closed-loop transfer function [2], 

v(t) = 

so that the specification is now, 

(y(t)-m(t))2<(v(t)f 

(11) 

(12) 

L(jn) 
1 + L(ju) 

< ß (5) 

• Disturbance attenuation The requirements for distur- 
bance attenuation are expressed as : 

\Tdi (jn) 1 < J5di (n)        \Tdo (jn) | < Bdo («)      (6) 

where Bd{{n) and Bdo(n) are frequency dependent 
functions. 

The design objective is therefore to satisfy the above spec- 
ifications for all plants described by the uncertainty set. 

3.    QFT and its relationship to HQQ 

control theory- 
There are several fundamental differences between HQO 

control theory and QFT. Most obviously is the way in 
which uncertainty is represented. In HQO control the- 
ory the uncertainty is represented by magnitude bounded 
sets, thus the lack of phase information introduces some 
conservatism into the solution. Also the QFT methodol- 
ogy addresses the robust stability and the robust perfor- 
mance problems simultaneously. In this Section the proof 
of Nordgren [6] is presented in a simplified form which 
shows how the QFT problem can be formulated as an Hoo 
problem. 

Consider the plant set described by, 

g(s) = {G(a, s)[l+ An}: An e A} (7) 

A = {A„ € Tin00 : |A„0'w)| < m(w)} (8) 

where a represents the structured plant uncertainty and 
m{uj) is a given function. 

In Equation 4 the tracking response requirements were 
presented as upper and lower acceptable bounds on the 
closed-loop transfer function. In the time domain, these 
specifications are 

To facilitate translation into the frequency domain using 
Parseval's theorem, the condition of Equation 12 is relaxed 
to, 

/■OO rOO 

/     (y(t) - mit))2 dt <        (v(t))2dt (13) 
Jo Jo 

By PlancherePs theorem, the condition of Equation 13 is 
therefore satisfied if, 

\T(a,JLü)-M(JLo)\<\V(ju)\    V   W€[0,oo)      (14) 

where the plant transfer function T(a,ju) is given as, 

yi(.t)<y(t)<yu{t) 

A mean response can be defined as, 

M     yu(t)+yi(t) 
™{t) =  

(9) 

(10) 

and the open-loop transfer function by, 

L{a.,jw) = K(jn)G(a,joj) 

(15) 

(16) 

Now assume that the mean tracking response has been 
obtained for some nominal plant, that is, 

M(juj) = Rtiu): 
Lo(ju) 

1 + L0{JLü) 

then Equation 14 can be written as, 

1 L{a,ju) - Latin) 
< 

1 + L(a,juj) L0{jn) 

If the sensitivity function is defined as, 

1 

V(jn) 
M(jn) 

S(a,jn) = 
1 + L(a,ju) 

then Equation 18 can be defined as, 

S(a,jn) 
G(a,jn) -Go(jn) 

Go(jn) 
Vtin) 
M{jn) 

since, 

L(a,jn) -L0{jn) _ G(a,ju) - G0{jn) 

L0{jn) Ga(jn) 

(17) 

(18) 

(19) 

(20) 

(21) 

if it is assumed that there is negligible uncertainty associ- 
ated with the controller, K(s). 

If the relative uncertainty in the plant is defined as, 

Satin) = 
G(a,jn) -G0(jn) 

Ga(jn) 
(22) 
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and a weighting function W(ju), as 

W(jcu) > 
\M(ju) 

V(juj) 

then Equation 20 can be written as, 

ma,x\W(ju))S(a,ju))6G(ju)\ < 1 

(23) 

(24) 

which is now recognisable as the usual sensitivity minimi- 
sation problem. The only difference between this formu- 
lation and the Hoo formulation is that in this case the 
uncertainty is considered to be structured as opposed to 
the norm-bounded descriptions used in Hoo- 

The tracking constraint is now specified as, 

ISCMI ^ 
l 

W(JLü)6G(JLO) 
\MT(ju)\ (25) 

a similar specification can be included for disturbance re- 
jection as, 

|S(ju,)| < \MD(ju)\ (26) 

The tracking and disturbance specifications are now sat- 
isfied if, 

\S(JLO)\ < \M{ju>)\ (27) 

where, 

\M{juj)\ = mm{\MT(ju)\, \MD(JLü)\} (28) 

Equation 27 can be rewritten to include the unstructured 
uncertainty as, 

< \M(juj)\        (29) 
l+L{a,jüj)[l + A(JLü) 

which is equivalent to, 

1 
< \M(jio)\     (30) 

(l + L(a,JLo))[l + T(a,joj)A(juj)] 

which can be manipulated into the equivalent inequality, 

\M-l{juj)S{a,juj)\ + \T{a,ju)m(ju))\ < 1 (31) 

which is the exact Hoo robust performance problem if 
S{a,jiü) = S(jui), T(a,ju) = T(JOJ), etc. 

4.    Design of a pitch rate controller for 
an Advanced Combat Aircraft 

In [1] the design of a pitch rate controller for an Ad- 
vanced Combat Aircraft ( ACA ) is discussed. The results 
show that the design of a controller at a single operating 
condition is straightforward if the guidelines for weighting 
function selection are followed. Wide envelope control was 
considered and it was shown how a single controller could 
be scheduled for a range of dynamic pressures.   Coping 

Figure 2: Pole-zero plot : Mach 0.7, sea-level -» 30,000ft, 
a = 0° -»• 16° 

with the variation in angle of attack did however present 
some difficulties and no satisfactory solution was found. 
In this Section, the problem will be tackled from a QFT 
perspective. Consideration will then be given as to how 
the additional insight that the QFT method offers could 
be used to improve the Hoc designs. 

The area of the flight envelope for which controllers 
will be designed extends from Mach 0.7, sea-level to Mach 
0.7, 30,000ft which corresponds to a variation in dynamic 
pressure, q, of 34.79kN/m2 to 10.33kN/m2. The angle of 
attack varies from 0° to 16° at each dynamic pressure. 
The variation in the open-loop poles and zeros over this 
operating range is shown in Figure 2. This variation can 
also be illustrtated by considering the open-loop frequency 
responses for all flight conditions, as shown in Figure 3. 

The tracking specifications, shown in Figure 4, are 
given by the following bounds : 

TRu =0-06584 ,/Sti?)(*+JL (32) 

TR,= 

'((s + 2)2+3.9692)) 
120 

(s + 3)(s + 4)(s+10) 
(33) 

The stability margins are chosen as a phase margin of 
45°. This corresponds to a maximum closed-loop gain of 
3dB. The controller gain at high frequencies is restricted 
to lOdB to avoid exciting high frequency dynamics. 

Templates were generated for the frequency spectrum, 

üj = {0.1,0.75,1,5,7,10,15,20,25} rad/sec        (34) 

These templates, shown in Figure 5, capture the varia- 
tion in gain and phase at that particular frequency and 
are used to generate bounds on the Nichols plot which 
the open-loop frequency response must lie above at that 
frequency, to satisfy the specifications given above. 
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Figure 3: Open-loop frequency response : Mach 0.7, sea- 
level -> 30,000ft, a = 0° -)• 16° 

A controller which satisfies the above specifications for 
the range of the plant uncertainty is given by, 

R(s) = 
s + 2 

(s + 0.25)2(s + 3.75)(s + 28)(s -I-105) 
K(s) - KP     s2(s + o.Ol)((s + 48.75)2 + 432) 

with the following gain schedule : 

(35) 

(36) 

Kp q(kN/mz) 
1.2 

1.93 
3.1 

34.79 
19.64 
10.33 

The stability conditions are validated in Figures 6 
which show that in each case the requirements have 
been met. The high frequency gain of the controller is 
log10(3.1) sa lOdB which satisfies the specification. Time 
simulations are shown in Figure 7. 

4.1.    Comparison with the H^ design 
The QFT controller design has been shown to be ro- 

bust to a large variation in the angle of attack of the air- 
craft. This was achieved by following the QFT method- 
ology where the requirements of the controller are deter- 
mined by formulating the required closed-loop specifica- 
tions in terms of the expected plant variation. It was 
therefore a result of a more detailed analysis of the system 
requirements rather than the merits of a particular syn- 
thesis technique. The additional insight that this analysis 
offers is now used to improve the H^ designs of ( Breslin 

Figure 4: Tracking Specifications 

and Grimble, 1993; 1994 ). First, the n^ designs will be 
briefly reviewed. 

The Hoo controller designed for the operating position, 
Mach 0.7, sea-level, is simulated with the linear plants 
which represent the variation of angle of attack from 0° 
to 16° in Figure 8. The results clearly indicate that while 
robust stability has been achieved, robust performance in 
terms of the specifications for maximum allowable closed- 
loop variation have not. The reasons for this can be 
very clearly appreciated when the controller gain is ex- 
amined against the QFT bounds generated for the previ- 
ous example. This reveals that the open-loop gain of the 
%oo controller falls well below that required to satisfy the 
design specifications for the plant set under consideration. 
In order to use this information, the open-loop specifica- 
tions generated by the QFT analysis must be interpreted 
as specifications on the closed-loop transfer functions used 
in the Hoc cost function, namely the sensitivity function 
and the control sensitivity function. This results in a new 
controller with the required low-frequency gain which is 
simulated in Figure 9. 

5.    Discussion of results 
The results of Section 4. are now discussed and con- 

clusions drawn on the relative strengths and weaknesses of 
the QFT design methodology and the optimal Hoc meth- 
ods. The results are first summarised. 

The major characteristics of the pitch rate control sys- 
tem for the ACA aircraft were unstable and non-minimum 
phase dynamics which showed a large variation for changes 
in flight condition. The approach taken for the Hoo de- 
sign was to design a controller for each operating condition 
and then to construct gain schedules to move smoothly be- 
tween them. This approach was largely unsuccessful be- 
cause of the lack of control over the structure of the final 
controller.  In the QFT methodology the available infor- 
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Figure 7:   Time simulations  :   Mach 0.7,  sea-level 
30,000ft 
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Figure 8: Closed-loop step responses, Hoo controller with 
prefilter 

mation on the variation in the aircraft dynamics was used 
with the design specifications to construct a bound on the 
Nichols chart. The open-loop frequency response of the 
nominal plant model had to satisfy this bound in order to 
meet the specifications for all plants within the range of 
the flight envelope. Across a limited flight envelope, this 
approach was very successful and a single controller could 
be designed which provided satisfactory performance over 
the range. Similar performance could be achieved across 
a wider flight envelope by scheduling a single controller 
with dynamic pressure. 

The most significant benefit of the QFT methodology 
over the optimal methods was the additional insight into 
the problem it provided which was a result of the quanti- 
tative analysis of the system uncertainty and design speci- 
fications. Using the information from this analysis, it was 
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Figure 9: Closed-loop step responses, redesigned H^ con- 
troller with prefilter 

very clear what was required from a controller in terms 
of gain and phase to meet the specifications. Indeed, this 
information was used to improve the Hoo designs. 

As with the /^-synthesis methods, the QFT method- 
ology addresses the robust stability and robust perfor- 
mance problems simultaneously. The QFT methodology 
does however provide the designer with an extra degree 
of design freedom by delegating the responsibilities of ro- 
bustness and desired tracking response to the feedback 
controller and prefilter respectively. 

6.    Conclusions 
This paper has examined the H^ methodology in the 

context of Quantitative Feedback Theory ( QFT ). It has 
been shown how, for the scalar design problem, the Hoc 
designs can be improved by a quantitative analysis of 
the plant uncertainty and closed-loop specifications. This 
analysis reveals the minimum amount of gain required to 
achieve the desired specifications and this information can 
incorporated into the sensitivity weighting function of Hoo 
cost function. 
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Abstract 

The Perron root of the so called interaction matrix is used as a measure of the level of 
triangularisation of uncertain multivariable plants. This leads to the development of a constructive 
design approach to reduce the level of interaction between loops before quantitative design of a 
diagonal feedback controller matrix is attempted. If the interaction index can be made less than 
unity by the design, stability of the diagonal loop designs guarantees stability of the closed loop 
multivariable system. The decoupling pre-compensator is designed to be in the forward path, 
between the diagonal controller and the plant. 

1. Introduction 
Consider the two degree of freedom m-input, m-output 
feedback control system shown in Figure la. The 
transfer function for tracking is given by, 

lY/R 
-li = (I + PKG)~'PKGF 

= (P + KG)_1KGF 
(1) 

(All matrices are mxm.) We will consider the 
quantitative feedback design problem (Horowitz, 1979) 
of specifying a fully populated plant pre-compensating 
matrix, K, with diagonal elements normalised to 
kü= 1, a diagonal feedback controller, G, and a pre- 
filter, F, to achieve certain tracking specifications, 

Ajj(cö) < |TY/R(jco)|.. < By(co), ij = 1,2, ..., m 

Ay(cü) and B;J((O) are the client's desired specifications, 
for all plants, Pe?, where due to uncertainty, 7> is a 

set of all possible plants. 
1 

In eq(l), P = P "' and has 

elements p-- = 
qi ij 

Our primary interest in this paper is to investigate the 
design of the off-diagonal elements of the pre- 
compensator, K, to ease the subsequent task of 
designing the diagonal feedback controller, G. 
Approximately decoupled designs are axiomatic 
imperatives in general engineering design theory (Suh, 
1990). 

Obviously, the performance that can be obtained using 
the structure of Figure la is not different to that 
obtained using the QNA structure (Nwokah et al, 
1995) shown in Figure lb (choose KG = G + K, 

K G F = G F) but the focus of this paper will be on 
the former. There are certain reasons for preferring the 
single loop structure presented here. In the single loop 

structure, fixing the diag(K) = I reduces by m the 
number of controller elements to be designed. More 
importantly, with a two-loop design, one must ensure 
that the level of interaction in the inner loop is small 
enough to guarantee not only decoupling when that 
(inner) loop is closed, but also that it is sufficiently 
decoupled that the outer loop will also have desirable 
properties when it is closed. From the design 
perspective, a single loop structure possibly also 
requires less effort in checking stability as this is only 
done once but we should use design perspective from 
either approach if necessary. Furthermore, the QNA 
implementation may give large internal signal levels 
because of overdesign to achieve the lower interaction 
required. 

The remainder of this paper is divided into the 
following sections: 
Section 2 discusses the required Perron root theory 
including a result on the sensitivity of the Perron root 
to the individual elements of a matrix. 
Section 3 details the proposed design method, and 
includes sub-sections on design insights, initial design 
and fine tuning. The stability of the closed loop 
multivariable system is shown in Section 3.4 to be 
guaranteed by the stability of individual diagonal loops 
under some conditions. After the diagonal controller 
has been designed to meet uncertainty reduction , 
disturbance rejection and sensitivity reduction 
requirements (Section 3.5) and the feedback loop has 
been closed, one can design a generalised triangular 
pre-filter (Section 3.6) to shape the tracking behaviour 
of the diagonal elements and further reduce the off 
diagonal response, provided that the uncertainty in 
diagonal and off-diagonal allows this. 
Section 4 concludes the paper. 
A companion paper (Boje and Nwokah, 1997) provides 
a detailed design example for the three-input, three- 
output GE16 "paper" variable cycle aircraft engine 
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which can be compared to previous work (Nordgren et 
al, 1994). 

2. Preliminary mathematics 
Our investigation into the design will make use of the 
theory of non-negative matrices. 

Definition 1: A matrix, M eRnxn is an M-matrix if 
the diagonal elements of M are positive, the off 
diagonal elements of M are non positive, and the 
principal minors of M are non-negative. 

Definition 2: Given a matrix ZeC"x" the 
comparison matrix of Z, M(Z), has elements, 

f \zii\    (diagonal elements) 

"J    -1*1/1 '*J 

Definition   8:   Given   that   Z eCnxn    admits   the 
diagonal regular splitting, 

Z = D + C = (I + CD_1)D = (I + M)_1D. 

M is the interaction matrix and the interaction index of 
Z is the Perron root of the interaction matrix, 

y(Z) = AP(M) 
The utility of the interaction index for feedback design 

is seen by considering the inverse of Z, Z = Z. If 
Z is an H-matrix, M has spectral radius less than unity 
(p(M)<Ap(M)<\,   with   r(Z)mXp{M))   and, 

oo 

(I + M)-1 = ^M* converges. 
k=0 

Also, 

Definition 3: A matrix, Z eCnxn  is irreducible if r(Z) = YJD 
J(I + M) !j 

there does not exist a permutation, PeC      such that 

PZP"1 = 
Zll ...... 

Z12 
Z22. 

with square 

submatrices, Z\\ and Z22 ■ 

Definition 4: An irreducible matrix, ZeC" " is an 
H-matrix (Hadamard matrix) if M(Z) is an M-matrix. 

Definition 5: An H-matrix, ZeC"x" is a BH-matrix 
if Z'1 is also an H-matrix. 

Definition 6: A matrix, Z admits a diagonal regular 
splitting if it can be written as Z = D + C, with 
D = diag{Z} non-singular. 

Definition 7: The Perron root of a matrix M,   is the 
largest eigenvalue of the matrix formed    from the 
absolute values of the elements of M. 

Ap(M) = max{A(M+)} = p(M+) 

p(M+)is the spectral radius of M+. The absolute 
values are taken element-wise, (M+),y = |M,y| 

The Perron root is analytic and monotonic with respect 
to the elements of M+. The Perron root is an upper 
bound on the eigenvalues, /l(M),and therefore the 
spectral radius, p(M), of a matrix: 

\A(M)\<p(M)<Ap(M) 

The spectral radius is a lower bound on all induced 
norms. 

Corresponding to the Perron root are the right and left 
Perron eigenvectors, x and yT respectively. They can 
be scaled so that their elements are all real and 
positive, with y x = 1 

Vkto    )    kä n   ])      1-Y(Z) 
(2) 

Notice that if Z is row dominant, U.. I >     V     \z... 
k=\, k*i 

for  all   i,   y(Z) < 1,   so  that  row   (and  column) 
dominance is a special case of requiring Z to be an H- 
matrix. 

Definition 9:    An irreducible matrix  Z eCnxn   is 
almost decoupled if 

max{^(Z), r(Z)} < 0.5.   (Z almost decoupled => Z 
is a BH matrix - see below.) 

Theorem 1: An irreducible matrix, ZeCwxn is a BH- 

matrix if min{^(Z), y(Z)} < 0.5 
Notice  that the  concept  of almost  decoupling  is 
stronger that the requirements for Z to be a BH matrix. 
Proof. See Nwokah et al, 1995, or follows from eq(2) 
above. 

Theorem  2:   An  H  matrix   ZeCMXW   is   almost 
r(Z) 

decoupled,       if y(Z) < —L^—L— < 0.5,       requiring 

HZ) < 1/3. 
Proof. See Nwokah et al, 1995, or follows from eq(2) 
above. 

Theorem 3: Given a matrix, M, with simple (non- 
repeated) eigenvalue X and right and left eigenvectors, 
x and yT , scaled so that with yTx = 1, a perturbation of 
the (ij) element of M, my(^) = my+ £, will perturb the 
eigenvalue with first order approximation, 
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M£)*>. + 4yi XJ (3) 

Proof. (Lancaster and Tismenetsky, 1985) The simple 
eigenvalue is an analytic function of the elements of 
M© in a sufficiently small neighbourhood about 
M(0). Thus, 

The right and left eigenvectors are respectively, 

x(£)«x + £x(1)+£2x(2)+---, 

y(£)*y+£y(1)+<r2y(2)+-- 

For the perturbed matrix, the right eigenvalue/vector 
problem is, 

M + ^ij)(X + ^K:) = (A + ^K..)(x + ^lh..) 

Here, Ey = e* ej. Isolating terms in £°, E,[ etc. gives, 

£°: Mx = Ax 

£\   EyX + Mx^ =2(1)x + x(1U 

Multiplying the term in Z,1 by yT, we obtain, 

yTEij x - A(1)yrx = yT(A I - M)X(1) 

stability results (Section 3.4 below), it is sufficient to 
require Ap(M) < 1 i.e. an interaction index less than 
unity so that I+M is an H-matrix. To ensure that 
(I+M)'1 has low interaction index, we will apply the 
tougher constraint of requiring that I+M be an H- 
matrix.     To ensure that the closed loop transfer 

function has ^((i + PKG)""1) < 1, it is sufficient (by 

Theorem 1) to require Ap (M) < 0.5. Because there is 
only one loop we do not require Ap (M) < 1 / 3 as in 
Nwokahe?a/(1995). 

The Perron root is found by solving the (maximum) 
eigenvalue-eigenvector problem, 

|P0 + (K - I)G| x = |Pfl + G| x Ap 

Define the diagonal sensitivity, 
-1 1 1 

I = (I+P5
1
G)" 

i+a?«   1+^ 

(5) 

(6) 

and diagonal complementary sensitivity, 

T = G{PD+G)-\tii=^ gilii I, 

Now, choosing,   x = |Pr; + G| X ,     the Perron root 
problem is, 

IP^P^
1
 S + (K -1) T| x =|N|x = xAp, 

(7) 

Since yT^A I - M) = 0, and yTx = 1, it follows that, 

X*' =yiXj ■ This completes the proof. 

3. Investigation into the interaction in 
MIMO feedback design 

3.1. Design insights 

From Section 2 above, it is evident that the Perron root 
can be a useful measure of the degree of interaction in 
a feedback design. It is important to note from the 
outset that the interaction index is a measure of the 
generalised triangular rather than diagonal dominance 
of a matrix. "Triangular dominance" is sufficient for 
the stability result presented below. Consider eq(l) and 
separate diagonal (subscript D) and off-diagonal 
components (subscript O). With KD (= I by the choice 

made above), G and Pj) are all diagonal, we can write, 

TY/R = (P + KG)
-1

KGF 

= (PD + P0 + (KD + K0)G)-1KGF 

-l V1 

(PD+G)   (P0+(K-I)G) + IJ   (Po+Gr'KGF 

= (M + l)-1(Pfc> + G)-lKGF 

Now we investigate how (for a given plant set) we can 
design K to make the interaction index, 
Y - Ap(M) small.   In  order  to  apply   single  loop 

(4) 

with the elements of N given by, 

qJL-L-+k..  
1+*,      0 1+*, 

■j 

lij 
f. 

■ J 

■k- 
T+77+^ (8) 

If only the specification for the magnitude of the 
sensitivity   of   individual    loops   is   known,    i.e. 

1/(1 + * /)\<Sj(a>), we  may  apply the  Schwartz 

inequality to obtain, 

l"yl* V Sj + Ky ■kij + *,-, 

(9) 

Comments 

From eq(8) we obtain the following insight into the 
design of ky. 

1) When |^j| « 1, (at frequencies outside the loop 

bandwidth), |«;y|«U ,y/#J so that the interaction 

index is the same as that of the open loop plant. The 
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feedback loop is essentially open at these frequencies 
so this result is not surprising. 

2) When |^| » 1, (at frequencies where feedback 

benefits are required in the j   loop), |nj--|» yfc« . This 

motivates choosing small off-diagonal elements in K if 
possible. Notice that interaction when the loop gain is 
large is often not a real problem as the high gain 
reduces the effect of uncertainty. The pre-filter, F, can 
be used to reduce the interaction at frequencies where 
non-minimum phase lag plant behaviour does not 
preclude this. 

3) When |^| « 1, and especially around the gain and 
phase cross-over frequencies of ^ where typically a 

1 
margin such as 

i+e 
<ß,   ß>0dB is specified, 

'JJ k-a-^-ox   will keep individual elements of |N| 
U    qy 

small.   Eq(9) further motivates this choice if ei is not 
yet    designed.        Alternatively,    one    may    use 

U        tj qV 

4) Because of the scaling of the eigenvector elements, 

1 \     tj 
x,=q ,;■ -——X: = —T^TXi (tyP^Uy a band" 

passing   function)   the   interaction   index   becomes 

relatively more sensitive to element «zy at frequencies 

where qjj 
l-H 

is larger than other qu 
l + £, 

, i*j. Of 

course, if the ij* element (y xT) is small, the sensitivity 
of the interaction index to |«v| is also expected to be 

small. 

5) To guarantee reduction in the interaction index 
using off-diagonal elements in the pre-compensator, it 
is necessary to reduce the magnitude of all off-diagonal 
elements simultaneously. This is often not practical or 
even necessary. At the gain cross-over frequencies, it 
makes sense to reduce the magnitude of each element 
as much as possible if this can be achieved with 
reasonable gain. Inside the system bandwidth, 
interaction reduction is guaranteed by making all the 
diagonal loop sensitivities as small as possible. Again, 
this may be more than necessary. 

3.2. A possible initial selection ofK 
As a first attempt in a particular design, one may 

adjust   ky   to  reduce  every  element  of  |?L|   by 

designing, 
«v    lJ 

< qjj 

9ij 

min 

FeP 
< i. This can be 

or 

number of frequencies using a low order, stable, 
minimum phase rational approximation to the complex 
kjj(jco), or by using QFT type design on the inverse 
Nichols chart. As indicated above, reducing the 
interaction by off-diagonal elements is only really 
necessary over a restricted frequency range where the 
diagonal controller cannot have high gain and it may 
be possible to find real matrix to approximate K 
(Maciejowski, 1989, p. 146). As Horowitz has pointed 
out, drawing qulqü on me complex plane may be 

helpful in choosing an appropriate value of gain. 

3.3. Tuning values of K 
As discussed in Nwokah et al (1995), in a slightly 
different context, one may cast the kjj(jco) design 
problem in the context of a design on the inverse 
Nichols chart. This would be especially useful for 
tuning a design as sensible specifications could be 
obtained from engineering insight obtained during an 
initial design. One could specify an upper bound for 
each element of |«}| compared to the value for ky = 0, 

say, \nij{j(o)\< \qJJ/q^ßj(co) and the design, 

\'Hj\- 

(10) 
or, 

l + t 

qy   l + tj 

*A- 

- + *, 
'J\ + £ *4t 

qjj   i 

Qij l + £ 

ijqijZj 
(11) 

In the above, we require an existing design for G 
(tuning) or must design kygj and ensure that it has 
sufficient roll-off to be able to find ky = kygj /gj after 
the diagonal controller has been designed. 

The minimum achievable interaction index depends on 
the elements of M in a highly ordered way over the 
plant set. As a result, we should not expect to be able 
to construct a pre-compensator to minimise the 
interaction index using the approach above. It is 
entirely feasible to use a non-linear search to reduce 
the interaction index, especially as we have a 
reasonable starting point. The task is simple for 
reasonable scale problems if a constant gain pre- 
compensator is used (even if minimisation over a range 
of frequencies is required). The sensitivity of the non- 
linear search results to component tolerances in the 
controller design can easily be visualised on the inverse 
Nichols chart. 
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3.4. Stability results 
Assuming that a pre-compensator has been designed to 
achieve required levels of decoupling, the remaining 
task is to design a diagonal G to satisfy reference- 
output (tracking) specifications for all plants in the 
plant set. The resulting closed loop system must be 
internally stable, which means that the feedback 
controller must either stabilise an unstable plant or 
must not destabilise a stable one. We assume that the 
plant has no unstable hidden modes. 

Theorem: Given P e f>, square and invertible with no 
hidden unstable modes, the system, 

-IT TY/R=(I + PKG)~TKGF 

= [(pD + G)" (P0 + (K-I)G)+il   (PD + GJ-'KGF 

-1,-n = (M + l)-1(Pb+G)-1KGF (12) 

is internally stable if 
i)    G, F, K are designed to be stable, 
ii)  X.p(M)<l. 
iii) Each 1+gi qj; is designed to have no zeros in the 

right hand plane. 

Proof. As K, G, F are stable, Ty/R is unstable if and 

only if det((l + M)(PD+G)) = det(Z) has zeros in 

the right hand plane. 

det(Z) = det(l + M) det(pD + G) and 

det(l + M)has no zeros in the right hand plane if 

1 

9ii 
has  no y(M)<l.  But   det(p£+G) = X 

right plane zeros if each (1+gi qj) has no zeros in the 
right hand plane. This completes the proof. 

Comments 
1) It is impractical and unnecessary to require X?(M) < 
1 for all frequencies. At frequencies where the spectral 
radius, /?(PKG)<1, (I + PKG) cannot have right 
hand plane zeros, which means that the only unstable 
poles are high frequency unstable poles in P that have 
not been canceled by feedback action (and cannot be 
unless the gain is increased). The results of the 
theorem above could be modified for a Nyquist path 
that covers the relevant portion of the right hand plane. 

2) The design and stability result make use of an 
argument that may appear "dangerously circular" as 
achievement of XP(M) specifications assume that the 

specifications on outer loop 1/(1 +1 ■) 's are achieved 

and the XP(M) specifications are required for this latter 
design to be valid. This has not caused any problems 
in practice. 

3) Notice that the stability result only requires that 
X?(M) < 1 for (I + PKG) e#. We may specify the 
stronger      condition      Ap (M)<0.5      to      obtain 

2p((l + PKG)    ) < 1, i.e. higher level of decoupling 

to get (I + PKG)-1 e H or even, XP(M)<\I3 
(almost       decoupling       condition)       to       get 

^((I + PKG)_1)<0.5. 

4) For stability alone it is sufficient to ensure that a 
single plant in a connected plant set is stable and 
deduce stability for the remaining elements of the plant 
set from the continuity of poles. 

5) Requiring the y < 1 at some frequency for a 2x2 
system is equivalent to requiring the compensated 
system, P* = KP to have 
P*\\ P*22 >P*12 P*2l- Similar results may be 
derived for larger systems. 

3.5. Diagonal controller design 
Once a pre-compensator is chosen, it is probably most 
convenient to re-calculate eq(4), 

1, TY/R =(P + KG)~'KGF 

= (KP + G)_1GF 

= (P*+G)_1GF 
Call the individual elements 

(13) 

of 

(KP)   - (P*)   = , and one then has a standard 
'■J     q*y 

QFT design problem. Reducing the individual off 

diagonal elements in KP will ease the diagonal 
controller design significantly in many practical 
applications. The design problems are solved implicitly 
by writing, 

(P*+G)TY/R=GF (14) 

and    denoting    individual     diagonal     loops     as, 
t ■ = g..q *.., the i* controller is designed via, 

fijli        1 
'«=■ 

for j = l..m. 

1 + , 
\k=\,k*i <i*ik 

{ki 
(15) 

At this stage, one may set up specifications on the 
individual loop sensitivities to reduce the interaction 
index to required levels. These specifications would 
typically be in addition to uncertainty reduction and 
disturbance rejection specifications treated in standard 
QFT designs. As, 
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TY/R=(P*+G)" GF |(Tr/Ä)i3i = ki i/o + '13/331£ I'nl' 

\-l/~ 
= [(P*D+G)~(P*0) + I|   (P*D+G)

_1
GF 

-1 

-1/A = (M*+I)   (P*D+G)_1GF 

the Perron root of M* is reduced by r\ if 

(16) 

1 + *J 
<T) 

for each loop. Notice that this is only a sufficient 
requirement. 

3.6. Pre-filter design 
Once the feedback loop design has been fixed, the 
tracking response can be enhanced by means of a pre- 
filter matrix, F. Generally in QFT design for basically 
non-interacting specifications, the feedback controller 
would be designed (with sufficiently high gain at the 
relevant frequencies) to achieve specified reduction in 
uncertainty of the diagonal closed loop elements and 
sufficiently small off-diagonal elements. The pre-filter 
would then have only diagonal elements, (F = 
diag{fji}) designed to match the compensated diagonal 
elements to the client's specifications. In our 
approach, if it is possible to obtain a low open loop 
interaction index, we are only assured of generalised 
triangular behaviour. If there are no non-minimum 
phase or plant input constraints (Boje, 1989), it is then 
possible to design the diagonal controller matrix, G, 
with high enough gain at all frequencies to achieve 
arbitrary tracking performance. Often this will not be 
the   case   in   practical   designs.       Suppose   that 

T = (1 + L) L is almost lower triangular or can be 
made almost lower triangular by row and column 
swapping. By "almost lower triangular", we mean that 
the elements above the diagonal are significantly 
smaller than the other elements.   If the uncertainty in 

off-diagonal elements of (I + L) L is not too large, 
it may be possible to reduce interaction in the off 
diagonal tracking behaviour (Ty/^=TF) by 
designing off-diagonal elements in F in a straight 
forward manner. This is most easily illustrated by an 
example: 

Example:    Suppose     T=   £91    ho    &>i   '    w^ 
'11 'l2 '13 

«21 hi £13 

U31 hi hi) 

/ll hi fa) 
0 fn 0 

, 0 hi /33J 

|Sy«l.      Choose      F-     0     f22      0 ^d 

^ 0     f32    /: 

design Ty/R = T F in the following order: 

1) fih   i = 1,2,3     to    achieve    the    tracking 

specifications on (Ty/^ ),-,-,   i = 1, 2, 3 . 
2) For a reduction in interaction, 

or 

or 

/13 
'11 

'n/33 
+ 1 

/33 

|(T7//?)32| = |'33/32 +'32/22! ^ \hl\> 

hi 
'33 

'32/22 
+ 1 

/22 
In the above equations, at worst, equality can be 
obtained by choosing fy = 0. The design can be 
performed on the inverse Nichols chart in a manner 
analogous to the design of the off-diagonal elements of 
K above. As fn is usually strictly proper, at high 
frequencies, no reduction in interaction should be 
attempted. 
3) |(TV/Ä)l2| = kll/l2 +'l2/22 +'13/32N I'l21' 
or, 

|(TY/R)l2| = 

[12 
til ■ + 1 12 

t12f22+t13f32 t12f22+t13f32 

Because of the addition of the term, £13/32 hi the 
denominator, it may be that the interaction is increased 
in this element with f12 = 0. It may therefore not be 
possible to reduce the interaction at this point. 

4. Conclusions 
This paper has further developed the use of the Perron 
root of the interaction matrix as a measure of the level 
of triangularisation of uncertain multivariable plants. 
A decoupling pre-compensator in the forward path, 
between the diagonal controller and the plant, is used 
to reduce the level of interaction between loops before 
quantitative design of a diagonal feedback controller 
matrix is attempted. If the interaction index can be 
made less than unity by the design, stability of the 
diagonal loop designs guarantees stability of the closed 
loop multivariable system. 
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Abstract 
A detailed quantitatitative feedback design example of robust control of a multivariable turbofan engine 
is presented. The Perron root of the so called interaction matrix is used as a measure of the level of 
triangularisation of uncertain multivariable plants. This has lead to the development of a constructive 
design approach to reduce the level of interaction between loops before quantitative design of a diagonal 
feedback controller matrix is attempted. If the interaction index can be made less than unity by the 
design, stability of the diagonal loop designs guarantees stability of the closed loop multivariable 
system. The decoupling pre-compensator is designed to be in the forward path, between the diagonal 
controller and the plant.. For the design example presented, by designing a simple, static pre- 
compensator to reduce interaction in the critical gain cross-over frequency range, and more careful 
subsequent design, better results are obtained than a more complicated design, using the quantitative 
Nyquist array approach. 

1. Introduction 
In this paper, we will present a detailed controller 
design of a multivariable controller for the three-input, 
three-output GE16 "paper" variable cycle aircraft 
turbofan engine given 84 linearised plant models from 
the flight envelope Nordgren, et al (1994). This paper 
serves as a detailed tutorial for a companion paper 
(Boje and Nwokah, 1997) in which theory and design 
insights are developed for the design of plant 
decoupling in the forward path. 

The engine model, illustrated in Figure 1, includes 
sensor and actuator dynamics and delays. As there are 
local feedback loops around the actuators, the transfer 
function matrix is transcendental. The inputs and 
outputs are ordered as shown in Table 1 and previous 
work indicates that this is the only reasonable ordering. 
Channel 1 has the most significant delay because of 
combustion delay. Some of the model details are 
proprietary. There is an uncertain right hand plane 
zero in some of the elements of the plant set. 

Input Output 
Uj = Fuel flow y! = Core speed 
u2 = Exhaust nozzle area y2 = Fan speed 
u3 =   Rear variable area 

by-pass ratio 
y3= Fan tip discharge Mach # 

Table 1 - Input and output channel allocation 

The  flight envelope  of interest  is  summarised  in 
Table 2. Figure 3 shows open loop Bode magnitude 
responses. 

Power Code Altitude Mach# 
min 35 (-50% unaug. thrust) 0 (feet) 0 
max 50 (-100% unaug. thrust) 80 000 2.5 
Table 2 - Flight envelope parameters 

The remainder of this paper is divided into the 
following sections: Section 2 presents the working 
specifications for the design problem. Section 3 
provides a detailed design for the GE16 engine, 
including pre-compensator, feedback and feedforward 
designs and design analysis. Section 4 concludes the 
paper 

2 Specifications 
Boje and Nwokah, (1997), have investigated the 
following two degree of freedom m-input, m-output 
feedback control system shown in Figure 2. The 
transfer function for tracking is given by, 

-li TY/R = (I + PKG)_1PKGF 

-li 
(1) 

= (P + KG)_1KGF 
(All matrices are mxm.) The quantitative feedback 
design problem (Horowitz, 1979) will be solved by 
specifying a fully populated plant pre-compensating 
matrix, K, with diagonal elements normalised to 
kH= 1, a diagonal feedback controller, G, and a pre- 
filter, F, to achieve certain tracking specifications, 

Aij(co) < ITY/RO^IJJ < Bij(co), ij = 1, 2,..., m 

Ajj(co) and B^oo) are the client's desired specifications, 
for all plants, V e P, where due to uncertainty, P is a 
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set of all possible plants.   In eq(l), P = P" and has 

elements f>- - —. 
J   q« 

Target client specifications on   \Ty/R(ja>)\   are to 
achieve tracking and decoupling: 

•    Tracking:      \A(JCO)\ < TY/R ü(ja) < \B(Jü))\ , 

1 
A(s) = 

B(s) 

(s/6y +2x0.9 x(j/6) + l 
1 

O/8r+2x0.6x(s/8) + l 

Decoupling: 

(2) 

*Y/R ij 

l*J 

(s) 
is=jco 

«ijS 

(s + l)(s/10 + l) S=J0) 

tfC(jco) 

(3) 

This latter specification is added to the specifications 
used previously in order to improve rather strong high 
frequency coupling in the original design. Because of 
severe constraints imposed by non-minimum phase lag 
behaviour in the plant, only modest improvement in 
the existing design can be achieved. Realistic values 
for ay are chosen as shown in Table 3. 

»    J 1 3 

+ 3.7dB -20dB -3l.5dB 

-1MB +4.9dB -22.2dB 

+ \95dB   +24.2dB      03dB 
Achieved response - previous design 

' ; l 

+ OAdB - 20dB - 30dB 

-3dB +0AdB -30dB 

+ 6dB      +6dB    +0AdB 

is considered. M is defined as the interaction matrix 
and the interaction index is the Perron root of the 
interaction matrix, 

r(Z) = ÄP(M) (4) 
The sensitivity of the interaction index to individual 
elements of interaction matrix, M, is found by 
considering the right and left eigenvectors, x and yT, 
scaled so that with y x = 1. A perturbation of the (i j) 
element of M, m^) = m;j+ %, will perturb the 
eigenvalue with first order approximation, 

M^aa + ijyiXj (5) 

Figure 4 shows the interaction index of P (i.e. 
assuming that K = I) from eq(4), and Figure 5 shows 
the Perron root sensitivities as in eq(5). 

2.1 Nominal Model 
The nominal linearised engine model (excluding sensor 
and actuator dynamics) is chosen at (power code, 
altitude, Mach #) = (40, 80 000 feet, 1.8) as in 
previous work and is denoted with a superscript, "0". 
(The choice of the nominal is arbitrary and does not 
affect the design outcome.) This gives a state space 
model (note the typographical error in element b31 of 
Nordgren et al, 1994), 

(6a) 

( 
dx_ 

-0.8567 0.5029 0.1527^1 

0.0919 -0.5042 0.1683 
QX     1-0.3347 -0.1571 -0.67327 

f 0.0053 0.1658 -0.0291\ 
+ 0.0024 -0.0062 -0.0036 

U.2635 0.0522 0.03047 

(    ° 1 0    ^ 

y = 1 0 0 
V-0.6274 1.9882 -0.27487 

f     ° 0 0   ^ 
+ 0 0 0 

1-0.0163 0.5607 0.3267; 

(6b) 

Specifications - current design 3. Controller design 

Table 3 - Maximum gain specifications for elements 
of|Ty/R| 

The design presented below relies on and seeks to 
improve on previous design attempts. It is part of a 
normal engineering design process to seek insight from 
any available source. From this point of view, the 
active reader is advised to consult the design in 
Nordgren et al 1994. 

In Boje and Nwokah (1997), the complex matrix 

Z € Cnxn that admits the diagonal regular splitting, 

Z = D + C = (I + CD~1)D = (I + M)1D. 

3.1. Design of a static pre-compensator, K 
Initial investigations indicate that due to time delays in 
the sensors and actuator the maximum achievable loop 
gain cross-over frequencies, over all loops and over the 
uncertainty range of the plant, and at which we expect 
the interaction will be critical, will be in the range from 
0.8 rad/s to 3 rad/s. At lower frequencies, high gain 
from the diagonal controller will nearly decouple the87X 

physical constraints of the plant hardware. 

To keep the design complexity as low as possible, we 
will firstly attempt to design a static pre-compensator 
to reduce the plant interaction index. To achieve this, 
single templates of qj/q^ are drawn as the frequency 

plant 
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ranges over [0.8, 3] rad/s and the plant ranges over its 
uncertainty   set.       We   evaluate   (graphically   or 
numerically) the required complex off-diagonal ky to 

min 

maximise Pep 

coe[0.8,3] 

1 

1-kijqij/qjj 
as in Section 3.2 

of the companion paper (Boje and Nwokah, 1997). 
This result is shown in Figure 6 for the design of k13 

and k32. What is evident in the design of k13 is that the 
template of q13/q33 is nearly 180° wide so that the worst 

case value of 1/(1+ ^13), where 

£]■$ = -£i3?i3/<?33 is about OdB. Notice that the 
inclusion of a range of frequencies does not 
significantly enlarge the templates and that the over- 
design incurred by this is therefore not severe. We 
have no way of telling if the outside points of the 
template will correspond to the worst case interaction 
index however, so the design to reduce the gain in 
other channels is beneficial. 

dB(kij) argOcy) min l/O + ljj) 

kl2 -00 dB 0° 0.00 (dB) 
kl3 -48.6dB 97.7° 0.06 
k21 -27.3dB 137.2° 0.50 
k23 -27.2dB -8.8° 2.81 
k31 -13.6dB -43.6° 0.16 
k32 +8.3dB 177.0° 1.01 
Table 4 - Design of kti 

The resulting complex K is, 

K = 

1 
0.0317+0.0294i 

V 0.1521-0.1449i 

0 
1 

-2.6020+0.1361i 

-0.0005+00037i 
0.043 l-0.0067i 

1 J 

(7) 

On application of Kouvaritakis' ALIGN algorithm 
(Maciejowski, 1989) a pre-compensator with real 
elements is obtained, 

K<R = ALIGN (K) 

1 0.0080    -0.0004 

-0.0237        1 0.0433 

V 0.1359    -2.6021        1    J 

(8) 

With K = I, (no pre-compensation) the maximum 

interaction index of Pin <OE[0.8,3] is ymiK=1.21. 

With K = K3, above, the interaction index of K<RP is 

Ymax = 0.79. We have found that one can often reduce 
the interaction index of the pre-compensated loop by 
means of an iteration: 

•     Design K^ to reduce the interaction index of P 
using the method detailed above. 

•     Calculate  P* = K^jPand design K2 to reduce 

the interaction index of P *, etc. 
It is not yet clear under what conditions this iteration 
will uniformly reduce the interaction index of the pre- 
compensated plant. In the current design, after one 
further iteration, most of the templates become too 
wide to expect a systematic further reduction of the 
interaction index. 

Finally, employing a non-linear search algorithm, we 
obtain, 

Kopt ~ 

f     1        -0.2095   -0.0126 
0.1521        1 0.0307 

V 0.5902    -3.3445        1    J 

(9) 

and the interaction index of KoptP in coe[0.8,3] rad/s 

is ymax = 0.60. The interaction index of KoptP   is 

illustrated in Figure 7. To appreciate the quality of the 
fixed pre-compensator with real elements, a non-linear 
search for a complex valued pre-compensator at a 
single frequency (co = 3 rad/s) gave a best interaction 
index of ymax = 0.55, only a 0.8dB improvement. 

3.2. Diagonal Feedback Controller Design 
Having fixed the pre-compensator, the diagonal 
controller is designed as follows. 

(P*+G)TY/R=GF 
with individual elements, 

^      Q*-V   kj tij     \ + £i l + £t 

(10) 

(11) 

and^j =giiq*ii 

The closed loop system's stability can be ascertained 
from the stability of individual diagonal loops if 
/(M*)<1 (Boje and Nwokah, 1997). Over 
coe[0.8,3]   rad/s,   this   requires   (from   Figure   7), 

1 1 
• = 4dB •   In   the   frequency   range, 

1 + £{     0.6025 

coe[0,3]   rad/s,   y(P*) < 0.625   and   to   guarantee 

y(M*) < 0.5  (ensuring that M *   is a BH-matrix) 

1 
requires 

1 + *, 
< -l.9dB ■ 

3.2.1. Design of g3 

Initial investigations and the experience of the 
previously published design suggest that loop 3 can 
have the highest bandwidth and smallest uncertainty. 
As a result, this design will be tackled first. The three 
specifications of interest are, t31, t32 and t33 and the 
design depends implicitly on all other t^. Although 
there may be some benefit in designing non-zero off- 
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diagonal elements in the pre-filter, F, at this stage in 
the design no obvious way to include this possibility. 
Assuming that f31 = 0 and f32 = 0 for the time being, the 
design equations are, 

'31 
1 

\ + £3 

1 

4*33 

4*31 
'11 + 

9*33 

2*32 
'21 

\ + t: 
9*33 

9*31 
l'lll + 

9*33 

9*32 
'21 

1 1 9*33 . .9*33. 

< 

1 + ^3 

1 

*     ' 
9*31 

9*33 

12 "r 

q 

'121 + 

*     »22 
32 

9*33 
'22 

) 1 + ^3 I 9*31 9*32 

(12a) 

(12b) 

l + t: 

mm 

PeP 
spec 

'31 
9*33 

9*31 

spec 
'll 

9*33 

9*32 

spec 
'21 

and it can be seen that the specifications on 

11/(1 + ^3)| required to guarantee the performance are 

unachievable. Firstly, because of the sensor and 
actuator time delays, it is not possible to design 
sufficient loop gain to satisfy the design requirements 
at low frequency. Furthermore, notice that at high 
frequency the achieved plant responses will roll-off 
faster than the -20dB/decade in the specification, the 
(apparent     but     unachievable)     requirement     for 

1/(1 + ^3) <0dB for all co is artificial. As with many 

practical problems, the design specifications must be 
made more modest and we will design to achieve the 
largest possible bandwidth subject to: 

l'33l 
/33^: 1 

S/33 

1 + ^3      1+^3 
^9*33,     , 9*33 

~~*    'l3 + —* 
V9*31 9*32 

'23 

l + £: l + t: 
9*33 

9*31 
R3 + 

9*33 

9*32 

i. 1/(1+ ^3) \<A.\dB @ co = 10 rad/s 

ii. 1/(1+ ^3) \<\.9dB @ co < 3 rad/s 

> iii. &\£3/(l + £3)\<7dB @ co = 10 rad/s 

l'23 
) 

iv. &\l3/(\ + £3)\<3dB @ co = 3 rad/s 

(12cJ 

As the (implicit) closed loop responses, tjj on the right 
hand side of eq(12) are not known, they are replaced 
by the corresponding upper bound specification from 
eq(2) and eq(3). This bounding and the use of the 
Schwartz inequality may be conservative because of 
the ordering in the plant uncertainty set and one may 
try to use ordering and phase information to make the 
design less conservative. In case of the off-diagonal, t31 

and t32 the design problem is to obtain sufficiently 
small sensitivity. For the on-diagonal design, t33, small 
sensitivity is required to reduce the effect of terms 
from the off-diagonal as well as a complementary 
sensitivity design to achieve the required performance. 

Figure 8 shows 9*33 

9*33 

9*31 

9*33 

9*31 

spec 
'l2 

spec 
'13 

9*31 

9*33 

spec 
'll 

9*33 

9*32 

9*33 

9*32 

spec 
'l2 

spec 
'23 

9*32 

and 

spec 
'21 

from eq(12). 

In figure 8, we observe that there is no significant 
problem from the terms from the off-diagonal in 
eq(12c) as they are small within the expected plant 
bandwidth. The design of the t33 element can be 
treated as a SISO uncertainty reduction design. 

For the off diagonal elements, t31 and t32, for example, 
the design of the (3,1) element would now require, 

These bounds obtained using the Matlab QFT toolbox 
(Borgesani et al 1995) and two possible solutions to 
this problem are illustrated in Figure 9. Notice that the 
templates of q *33 have a similar shape at all 

frequencies of interest and that a reasonably accurate 
design is obtained with bounds at only a few 
frequencies. The two controllers are, 
For discussion only: 

83A 
47((s/15)2 +I.265/I5 + 1) 

s((s/75)2 + 1.55/75 + l) 

Used in subsequent design: 

1800?/3 + l)((5/20)2+1.65/20 + l)Oj/35 + l) 

s2((5/100)2+0.8s/100 + l)(5/200 + l) 
£3 =■ 

(13) 

The second controller is 5 order and slightly increases 
the loop bandwidth at the expense of very much higher 
gain at high frequency. It will be used in further 
design but illustrates two design considerations: (i.) 
The high cost of increasing the loop bandwidth beyond 
the plant's natural bandwidth, especially if the plant is 
non-minimum phase, (ii.) The possibilities for 
increased low frequency gain by using larger roll-off at 
low frequency, in this case by means of a double 
integrator in the controller. It is often undesirable to 
have such large phase lag at low frequencies because 
of the danger of conditional stability problems if there 
should be a gain reduction for example caused by 
(soft) saturation. 
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Although the accurate pre-filter design is left until after 
the feedback controller design is completed, we will 
require a first attempt at the pre-filter design in the 
design of g2.  As the off-diagonal elements are small, 

this design will be reasonable.   Simple shaping of the 
Bode magnitude plot gives, 

f« =  (14) 33     (s/ 3.5 + 1) 

3.2.2. Design of g2 

Once the design of the first controller (g3 in this case) is completed, we may (following Horowitz, 1982) eliminate one 
row (row 3) of eq(10). This yields, 

( 1 
gl + 

1 1      ?*33 1 1 1      9*33 

9*11     9*13 l + h 9*31  i      9*12     9*13 1 + ^3 9*32 
1 1 1" 9*33      i 111     ?*33 

; gl +  
V    9*21     9*23 1 + ^3 9*31 

h\   hi   hi 

gl/ll_9*,3l^3   ifl/l2Vi3l + <3 

9*22     9*23 1 + ^3 9*32^ 

£l/l3 ~ 

, 1     h\h  I       , 1     /32^3  :       , 
glhl~l^^h \glhl "^27^777;glfri 

With self evident definitions of qy and fjj = 0,    i * j , this gives. 

v'21    hi    (13 

1     /33V 
9*13 1 + ^3 
"1" /33^3 

9*23 1 + V 

(15) 

(      1 

q*ll 

i    ^ 

3*12 
1 1 

q 22^ I q*2i 

cll    l12    l13 

^21    *22    *23J 

Slfll 0 
1     f33^ 

q*13 1 + ^3 

0 §2f22 
1     f33^3 

q*23 l + hJ 

(16) 

Engineering understanding of the problem indicates that it is most appropriate to design loop 2 at this stage. With 

(_2 = g2 q *22'tne design equations are, 

(t2i ; t22 ; t23): 

q   22 t spec 

q 2i 

i   q*22 

l + ^2  q*21 
til 

^2f22 1      q *22 

1 + ^2     1 + ^2 q*2i 
42 

1      (q*22  f33^3   ,  3*22 

1 + ^2 vq*23 1 + ^3      q*21 
[13 

q   22 + spec 
H^T"   12 

q 2i 
and, q*22 fj3^3 

*-- 1 + ^3 q*23 

q_22 fspec 
^T~l13 
q   21 

are illustrated in Figure 10. 
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Once again, the plant characteristics do not allow the 
specifications to be met. The design will seek to 
maximise the loop bandwidth within the constraints of 
the non-minimum phase constraints imposed by the 
plant. As the plant uncertainty is large, the Nichols 
chart loses its meaning for plant cases that are far away 
from the nominal and to have some understanding of 
the design trade-off which must now be made, the 

following bounds are drawn for nominal £ 2 • 
Uncertainty reduction: 

f3.5dB   co = 1.5 

1-H 
<< 

3dB 

6dB 

7dB 
Sensitivity reduction 

f- 1.9dB 

1 

1-H 
<< 

4.2dB 

4.2dB 

CO 

co = 3 

co = 3 

co = 10 

co = 3 

co = 3 

co = 10 

BH - matrix 

H - matrix 

H - matrix 

These bounds are shown in Figure 11 along with a 
nominal loop transfer function obtained for, 

10(s /1.5 + l)(s/ 50 + 1) 
g2 - 

s((s/120)2 +s/120 + l) 
(17) 

This design of g2 represents a compromise between 
low frequency gain and adequate phase behaviour 
around the gain cross-over point. As with any 
constrained engineering design, it is important to note 
that the client specifications can be re-negotiated with 
the insight obtained during the design available to 
arrive at more realistic final specifications. 

The initial pre-filter obtained for the second loop is 

f22= ^   (18) 
(s/8)2 +S/8 + 1 

6dB      co = 25   Stability margin 

3.2.3. Design of g. 

The procedure above is repeated for the design of g,. Eliminating row 2 of eq(16) and defining   qjj  and 

t\ = §1 qngives, 

Sifu 

or, 

g\ + 
1  1 1     9*22 

9*11     9*12 1 + ^2 9*21 
Vi 1 : hi \ hi)- 

1    hih 
9*12 1 + ^2 

/33*- 
l + £: 

1 1 1 1 

q*l2 l + £2 q*i3     9*13 

Vi 1 ; hi i ^13) = 
/n*i j    9*ii fnh 
l + £l  \     q*l2 l + £2 

/33^3 9*11 1 1 1 1 

\ + £3      Vq*n \ + £2 q*23     q*13 

(17) 

In loop 1, the large plant uncertainty, combined with the 
combustion delay and non-minimum phase behaviour 
from fuel flow to core speed means that only modest 
loop bandwidth can be obtained. As before, to have 
some understanding of the design trade-off which must 
be made, the following bounds are drawn for nominal 

tl 
Uncertainty reduction: 

f 8dB        co = 1 1 
1 + j 

: [20dB       co = 3 (!) 

Limitation on sensitivity increase 

1 

1 + * 

4.2dB   co = 1,3,10 

6dB co = 25 

These bounds are shown in Figure 12 along with a 
nominal loop transfer function obtained for, 

gl 
4(s/0.7 + l)(s/3.5 + l) 

s((s/65)2+1.4s/65+l) 
(18) 

As t\ = gj q] j is a SISO design, the pre-filter design 

will be exact. At the price of further input excitation 
and larger off-diagonal terms, it is possible to increase 
the bandwidth of tn by means of the pre-filter, 

(s/0..8 + l)(s/4 + l) 
11     ((s/2)2 +1.4s/2 + l)((s/6)2 +s/6 + l) 

(19) 

3.3. Design of off-diagonal elements in the pre- 
filter 
Because the closed loop system is nearly triangular, it is 
reasonable to investigate the possibility of reducing the 
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large off-diagonal responses by means of open loop 
compensation via the pre-filter, F. 

In this example, this will be illustrated for the tI3 and t23 

elements as they both have the largest off-diagonal 
responses (above OdB). As one cannot necessarily 
decrease all elements of the off-diagonal terms, only 
the ones with the highest gain are selected. Figure 13 
illustrates the design approach for f32 at ©=6.8 rad/s, 
showing elements with |t32|>10dB. (Other elements of 
t32 not shown.) 

The off-diagonal pre-filter elements chosen are: 

hi 

hl = 

3.4 s 

(5/0.29+ 1)0?/30 + 1) 
-0.335 

(s/8)2 +0.95/8 + l) 

(20) 

(21) 

3.4. Design analysis 
The Bode plot of the completed design is shown in 
Figure 14 and step responses for unit steps in each 
channel in Figure 15. These responses may be 
compared to the response obtained by Nordgren et dl 
(1994), shown in Figure 16. Notice in the latter that 
some (2,2) element step responses that were not 
previously simulated have very large overshoot. Notice 
also the reward of the design effort on the off-diagonal, 
(3,1) and (3,2) elements where the reduction in the peak 
gain by more than 8dB (of bandpass transfer functions) 
results in the reduction of the peak of the step response 
by a factor of around 2.5 as would be expected. 

In the previous design, the total order of the control 
effort (pre-filter, full compensator, and diagonal 
controller) assuming that each element is implemented 
independently is 43. In the current design, the total 
order is 22. With digital implementation, controller 
order is not a problem in itself but it gives an 
impression of the complexity of the design problem. 

In practical engineering, the plant input is often 
constrained because of power considerations and rate- 
and amplitude saturation of the actuators (Boje, 1989). 
As the data supplied for the current study is normalised 
and no input specifications were given, the design 
constraint was the non-minimum phase behaviour of the 
plant and no explicit design for input constraints was 
attempted in this design or the previous one. Very high 
gains (more than 60 dB on one channel) were required 
at high frequency (around 100 rad/s) in the QNA 
approach of Nordgren et cd in order to achieve an 
interaction index of less than 1/3 for a reasonable 
frequency range. This was essentially an artificial 
requirement imposed by the design method and results 
in a design which is very much more sensitive to sensor 
noise than the current one. The effect is illustrated in 
Figure 17 for 0.1% band-limited noise added to output 1 

of the nominal model (using a Matlab      Simulink 
block, an = 0.001, sampled with T=0.01). 

Finally,  the  interaction  index  of the  final  design, 

nKP + G) is shown as Figure 18. 

4. Conclusions 
This paper has further developed the use of the Perron 
root of the interaction matrix as a measure of the level 
of triangularisation of uncertain multivariable plants. A 
detailed design example of robust control of a turbofan 
engine has been presented and compared to a previous 
design, using the quantitative Nyquist array (QNA) 
approach. A decoupling pre-compensator is placed in 
the forward path, between the diagonal controller and 
the plant, to reduce the level of interaction between 
loops before quantitative design of a diagonal feedback 
controller matrix is attempted. If the interaction index 
can be made less than unity by the design, stability of 
the diagonal loop designs guarantees stability of the 
closed loop multivariable system. 
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Open loop interaction sensitivities Input 2 - Output 1 
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Figure 15 Unit step responses - current design 
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Figure 16 Unit step responses - previous design (Nordgren et at) 
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Abstract 

The Quantitative Feedback Theory (QFT) robust design methodology was 
examined, applied and incorporated into the operational amplifier (Op-Amp) 
paradigm, in order to develop an automated design approach for the analog 
domain. To examine this paradigm, the structured parametric uncertainty 
involving the 741 (BJT) Op-Amp was successfully compensated by the QFT 
compensator design technique. The QFT robust design methodology provided 
the insight for the design of a compensated Op-Amp, that meets parametric 
uncertainty and tolerable closed loop system uncertainty specifications. This 
was the first known application of QFT, used in the design of a robust com- 
pensator (controller) for an Op-Amp circuit. 
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1    Introduction 

In order to facilitate the evolution of au- 
tomated integrated circuit synthesis, a 
methodology needs to be developed ad- 
dressing robust design and performance 
specifications of mixed-signal (digital & 
analog) circuits. Mixed-Signal integrated 
circuit design methodology is currently 
a combination of both automated and 
manual approaches. Digital designs' u^ 
are automated thru the use of hardware 
description languages (VHDL), whereas, 
the analog portion must be manually de- 
signed. The reason for the manual de- 
sign of the analog portion, hinges on the 
structured component parametric uncer- 
tainty, which complicates the robust de- 
sign needed to achieve the required time 
and frequency performance specifications. 
In order to develop an automated design 
approach for the analog domain, a robust 
design methodology needs to be exam- 
ined, applied and incorporated. The en- 
visioned robust design methodology in- 
volves the decomposition of the analog 
performance specifications into the basic 
analog building blocks, such as an inte- 
grator, summer, adder, multiplier, and 
subtractor. The inherent basic element 
used for analog building blocks, is the 
operational amplifier (Op-Amp). Even 
an inverting unity feedback Op-Amp is 
not independent of the parametric un- 
certainty of its internal components. So, 
achieving a robust performance for fre- 
quency and time domain specifications, 
which is essential, must be done by a 
compensator. That is, it is desired to 
design a compensator that maintains the 
desired system performance (robustness) 
whenever an operational amplifier (Op- 
Amp) is replaced by either a customized, 
synthesized, or smaller fabrication pro- 
cess (scaling). The robust performance 
is needed for several reasons. Consider, 
where the Op-Amp component is part 
of a navigation flight controller circuit, 
it becomes defective and needs to be re- 
placed, is obsolete, and is replaced by a 
newer component. In the course of re- 
placing the Op-Amp, the performance 
specifications parameters of the overall 
circuit need to be remeasured, and are 

manually adjusted to compensate changes 
that were incured due to the Op-Amp 
replacement. In another case, the Op- 
Amp component is part of a mixed-signal 
BiCMOS integrated circuit. The overall 
fabrication technology process of the in- 
tegrated chip is reduced from 2u micron 
to .8u micron design rules. Performance 
of the Op-Amp is affected by the design 
rules used in the fabrication process. If 
fabrication technology processes are dif- 
ferent, the design of the analog portion 
of the mixed-signal integrated chip may 
severely change. 

Robust performance may be achieved 
by internal or external compensation tech- 
niques within the subcircuit. Internal 
compensation involves either the redesign 
of the subcircuit or modification of de- 
vice parameters and components. Ex- 
ternal compensation, can be performed, 
without subcircuit modification by a com- 
pensator. That is, the defective Op-Amp 
can be replaced by an off-the-shelf Op- 
Amp without affecting the robust perfor- 
mance of the analog-digital subcircuits. 
A strong advantage of the external com- 
pensation technique is that existing sub- 
circuit designs can be reused in synthesis, 
providing a methodology for designing 
complex, large scale analog-digital sys- 
tems. Therefore, the external compen- 
sation of analog-digital subsystems will 
be examined by the use of Quantitative 
Feedback Theory (QFT). 

The QFT design technique, developed 
by I. M. Horowitz in 1972'5]-'6]''4) , and 
extended by C. H. Houpis for continuous' ' 
and discrete'8! systems, provides the nec- 
essary methodology in the design of a ro- 
bust compensator for the analog-digital 
subcircuit. QFT provides a robust de- 
sign methodology for synthesizing a com- 
pensator controller for a control system 
containing a plant V having structured 
parametric uncertainty. The robustness 
is achieved by satisfying a desired set 
of performance specifications and mini- 
mizing the effect of device noise (distur- 
bance). Shown in Fig. 1(a) is the QFT 
feedback structure composed of the com- 
pensator G(s), the prefilter F(s), and the 
uncertain plant V(s). The transfer func- 
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Figure 1: (a) QFT Feedback Structure, 
(b) Op Amp (Plant) Uncertainty Bounds 
for Dominant Pole 

tion of a linear time-invariant (LTI) Op- 
Amp is of the form: 

_ K(s - zi)...(s - zw) 
F{S)-   (s-Pl)...(s-Pn)       W 

where n> w and assuming the nondomi- 
nant poles and zeros of the transfer func- 
tion are at a high frequency and outside 
the desired bandwidth. The region of un- 
certainty in parameter space can be de- 
scribed by: 

V(s) = Pj(s)  where  j = l,2,...,J 
(2) 

where J represents the number of LTI 
plants that describe the boundary of the 
region of plant parameter uncertainty. 

Referring to Fig. 1(a), a multiple-input 
single-output (MISO) control system, the 
output y(t): 

unit step input, where d(t) = u-\(t), is 
denoted as To = aP- Finally the prefilter 
must be designed to provide the desired 
tracking of the command input r(t) by 
the output yr(t). 

To facilitate the QFT design, two types 
of control ratios are developed from Fig. 1: 
a tracking transfer function Tr(s) and a 
disturbance transfer function Td(s). There- 
fore, the object is to guarantee that the 

tracking control ratio Tj!(s)  = {%^} 
always lies between TRU and TRL and 
Tj < QP for all Pj in V. There are avail- 
able QFT CAD packages that expedite 
the QFT design process!7'. 

2    Performance Specifica- 
tions 

For the underdamped response of Fig. 
2(a) it is specified that Mp = 1.2, the 
peak overshoot, and ts = 1.17^s, the 
settling time. The overdamped response 
of Fig. 2(a) is specified to have a set- 
ting time ts = 1.17/xs. The upper(TR[/) 
and lower(TRi) control ratios that sat- 
isfy these specifications are, respectively, 
as follows: 

TRU(S) = 

4.165 • 106(5 + 1 • 107) 

y(t)=yr(t)+yd(t) (3) 

is required to track the command input 
r(t) and to reject the disturbance input 
d(t). A MISO control system requires 
the design of a cascade compensator G(s) 
and of an input prefilter F(s). The com- 
pensator and prefilter are designed so that 
the Op-Amp output response yr(t) « y(t) 
always lies between the upper TRU and 
the lower TRL desired time responses and 
their corresponding frequency domain, re- 
spectively, bounds of Fig. 2 irrespective 
of the parametric uncertainty and where 
the effects of the disturbance on the out- 
put is negligible, i.e., yt{t) < ap, where 
ap is the peak value of the disturbance 
response.   The disturbance bound for a 

(4) 
(s + 3.3333 • 106 ± J5.5261 • 106) 

TRL(S) = 

 6.768 ■ 1027  

(s + 4.7 • 106)(s + 1 • 107)(s + 12 • 106)2 

(5) 
Fig. 2 represents the time and frequency 

response for the upper and lower control 
specifications as defined by Eqn. 4 &  5. 

The corresponding time- and frequency- 
domain unit step response characteris- 
tics are, respectively, 

Time Response 

\Md(t)\ = ||||| < ap 

Frequency Response 

\Ujw)\ = 

\Md(jw)\ = \Td{jw)\ 

ld(jw)lS   m~   p 

(6) 

(7) 

(8) 
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Figure 2: Upper and Lower Tracking 
Bounds (a)Time & (b)Frequency Re- 
sponse 

The disturbance bound specification 
for TD(S) is a Mp of 0.01, as defined be- 
low in Eqn. 9. 

ap = \y(tp)max\ = 0.01 (9) 

3    Structured Parametric 
Uncertainty 

The basic objective in the design of pre- 
cision analog circuits is the minimiza- 
tion of performance specification varia- 
tions. The actual performance specifi- 
cation variations are caused by; input 
offset voltage, mismatches between two 
supposedly identical resistors, which is 
primarily the result of the following four 
factors and effects the device parameters 
as shown in Table 1^: 

• Variations in the limited resolution 
of the photolithographic process. The 
result of which causes emitter area mis- 
matches in transistors, length/width ra- 

Parameter NPN Transistor PNP Transistor 
17fA epi XOfi «pi 17f* epi 10ft epi 

Pr l°rl 200 200 50 50 
PR lonj 2 2 4 2 
VA [VAF] 130 V 90V 50V 50V 

is 1<S1 lOfA lOfA lOfA 500fA 
TF (TFI 0.35ns 0.25ns 30ns 20 ns 
<•» IBB] 20on 200n soon 1500 
>-c [acj soon 7511 loon 75n 

-e [It*] 2n 2(1 ion ion 
Cjc [CJEJ l.OpF 1.3pF 0.3pF 0.6j>F 

*y„  IV]Bl 0.7V 0.7V 0.55V 0.6V 

»j, IMBJ 0.33 0.33 0.5 0.5 
C„„ [CJC] 0.3pF 0.6pF l.OpF 2.0pF 
*;,. IVJCJ 
njc [MCI 

0.55V 0.6V 0.55V 0.6 V 
0.5 0.5 0.5 0.5 

Cb.o tW 3.0pF 3.0PF 3.0pF 3.5pF 

*>, [VJS1 0.52V 0.58V 0.52V 0.58V 

»,', IMJS] .5 .5 .5 .5 

Table 1: NPN/PNP Device Parameters 
for Different Technologies 

Mi it I 
Pints 
PI nta 

(GWr-E 
;; lopFi - 
X lopF) - 
*   3p«n, ■ 

lp .I PI. M S Gt r». 1 . *   >P»fi  4— 
owar Tr tffera B HJ 4 ((: r   &**) >^H 

--" \ 
f 

| 
N\ ;ü ^ 

* 
- 

FR60U6NCY (fl«4S«c) 

Figure 3: Comparison Between Actual 
741 Operational Amplifier Frequency 
Response and the Required Upper and 
Lower Tracking Bounds (TRUL) 

tio mismatches in resistors, and varia- 
tions in capacitance values. 

• Variations in the sheet resistance 
and junction depth of the emitter and 
base diffusions across the wafer. These 
variations result from the nonuniform con- 
ditions during the predeposition and/or 
diffusion of the impurities. This causes 
the resistor sheet resistance and the net 
base doping, QB, in the transistors to 
vary with distance across the die. 

• Systematic mismatches, such as er- 
rors in drawing the original mask and 
thermal gradients on the die. 

• The matching of Is (Transport Sat- 
uration Current) observed in transistors 
degrades markedly as the emitter size is 
made smaller, which is a serious prob- 
lem for the current submicron fabrica- 
tion processes. 

Fig. 4, shows the structure of a typi- 
cal off-the-shelf741'11' Op-Amp consist- 
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Figure 4: 741 Op-Amp Circuit 

ing of bipolar npn/pnp transistors. The 
741 Op-Amp can be subdivided into three 
stages: input differential stage, interme- 
diate single-ended high-gain stage, and 
an output-buffering stage. Various com- 
binations of npn/pnp device parameters 
from Table 1, along with variations in 
the frequency compensator capacitor el- 
ement Ci (Fig. 4), were simulated us- 
ing an inverting 741 Op-Amp configura- 
tion with SPICE. The capacitor element 
C\ is connected in the feedback path of 
the high-gain second stage to provide fre- 
quency compensation. The chip area that 
C\ occupies is about thirteen times that 
of a standard npn transistor'11'. Shown 
in Fig. 3, are five simulations, indicated 
as Plants (Pj), with variations in gain 
and C\ as listed below in Table 3. 

The following five LTI models for Pj, 
Table 3, are generated by inspection of 
Fig. 3. Note that reduced order mod- 
els, that are obtained from Fig. 3 sat- 
isfy the requirements that the order of 
the denominator is at one order higher 
than the numerator, and that the non- 
dominant poles and zeros of each trans- 
fer function which are at high frequency 
and outside the desired bandwidth are 

Inverting Op-Amp Configuration within OFT Compensator (a) 

OP 741 Plant 1 
.ornoN GNUPLT 
VCC2S4DC +15V 
VEE24tDC-15V 
VD 1 • DC -314.1iiV AC IV 
* 1 ft Suuje 
Ql 4 112 QNL 
Q24 213QNL 
Q37312QPL 
Q4 13 13 QPL 
Q57914QNL 
Q4 • » 11 QNL 
Q7 2S7»QNL 
QI4425QPL 
Q93425QPL 
Rl It 2* IK 
R2 1124 IK 
R3 9 24 54K  

«2nd State 
Q13B 14 4 25 QFL «.75 
Ql« 25114 QNL 
Q17 1< 14 15 QNL 
BJ15 24 1M 
R9 14 24 54K 
C1IHMF 
a Output State 
QUA 17 4 25 QPL t.25 
Q14 25 17 23 QNL 3 
Q1S 17 IS 19 QNL 
QU 17 17 1» QNL 
Q24 24U21QPL3 
Q23 24 14 1* QPL 
R4 22 23 27 
R7 2122 27 
Riait 19 44K 

TBSSuT"™ 
Q15 17 23 22 QNL 
Q21 2» 2122 QPL 
Q2212124 QNL 
Q24 24 24 24 QNL 
R1124 24 54K 
Q1I3524QNL 
Q115524QNL 
Q12442SQPL 
R4 24 24SK 
RF2221K 
RI241K 

MODEL QNL NPN (BF-2M BR-2* VAF-134V X5-14FA TF-« J5NS RB-2M 
♦ RC.2H RJ>2 CJE.L4PF VJErt.7tV MJE-t J3 CJC.4 JPF VJO« J5V 
♦ MJC-4JCJS«3.4PFVJS-fc52VMJS-a5) 
MODEL QPL PNP (BF«54 BR-4.4 VAF-S4V IS*1*FA TF-34NS RB«3a» 
♦ RC-144 RE*lt CJE-« JPF VJE-4J5V MJE-4 S CJC-1.4FF VJC-a -55V 
+  MJC«4.5CJS*3.«PFV.JS«fc52VMJS-4J) 

.AC DEC 1« t.lHZ 144MEGHZ 
JT.OT AC VDB(22) VP(22) 
.END 

SPICE Code Used to Simulate 741 Op-Amp (Plant 1) (b) 

Figure 5: SPICE Code Used for the 
Simulation(& Subcircuit) of the 741 Op- 
Amp 

Plant (Pj) Gain Ci 

Pi 2 30pF 

P2 2 lOpF 

P3 2 Open 

PA 11 lOpF 

P5 11 Open 

Table 2: Plant Variations for 741 Op- 
Amp Gain and Frequency Compensator 
Capacitance C\ 

neglected. Fig. 3 indicates the desired 
upper and lower tracking bounds error 
bars, that are used for the QFT com- 
pensator and prefilter design. 

4    QFT Analog Design 

For the given plant V(s), the template is 
shown in Fig. 6, which is used to design 
the Cascade Compensator G(s). The tem- 
plates are formed with various frequency 
values for the parameter uncertainty of 
plants 1 thru 5. 
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Plants (Op-Amp Models:Spice) 
Pi(s) 

100-104(s+2Q00-104) 
(s+50-104)(5+200-104) 

*M«) 
56-104(s+1000-104) 

(s+50-104)(s+140-104) 
P3(s) 

428-104(s+110-104)(s+3700-104) 
(s-H80-104)(s+220-104)(s+220-104) 

P*(s)  
26.16-104(s+3700-104) 
(s+8-104)(s+110-104) 

Ps(s)' 
149.8-104(5+3700-104) 
(s+28-104)(s+180-104) 

* indicates Nominal Plant 
Upper(TRC7) fc Lower(rRL) Tracking 
 TRU(S)  

4.165-10B(s+M0Y) 
(5+3.3333-106±.75.5261-106) 

TRL(S) 

6.768-10+2Y' 
(s+4.7'106)(s+10-106)(s+12-106)2 

Disturbance Function 
Tp(s) 
3" 

(s+50) 

Table 3: QFT Transfer Functions Used 
for the Design of the Compensator & Fil- 
ter 

ANALOG OFT TEt*LATES 

Figure  6:     Template  Design   (Nichols 

Chart) from TOTAL package^ 

Figure 7: Nichols chart showing the 
shaping of the Loop Transmission (Lj) 
for all Plants 

4.1    Compensator &c Filter De- 
sign 

The QFT design process^ resulted in an 
appropriate design for the MISO Feed- 
back Structure (Fig. 1(a)) for the Cas- 
cade Compensator G(s) and the Prefilter 
F(s), shown in Table 4. During the QFT 
design process, it was found that the com- 
pensator could be optimized for meeting 
the tracking requirements, while the dis- 
turbance requirements were well within 
limits. The shaping of the Loop Trans- 
mission Lj, is shown in Fig. 7, and de- 
scribed in detail, in reference [1] (Chap- 
ter 21). 

The closed-loop control ratios Tj(s) 
and Tj(s) are defined by Eqns. 10 & 11. 
Table 6 lists the complete functions that 
are plotted for time and frequency re- 
sponse in Figs. 8 & 9. From Fig. 8, 
the tracking control ratio Tj(s) is within 
the upper and lower tracking bounds for 
both the time and frequency response. 
Fig. 9 indicates that disturbance rejec- 
tion Tj(s) is far below the required .01 
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Compensator [G(s)] 
4-10^(5+500000) 

s(5+9.0108±,7l-2-109) 
Prefilter [F(s)] 

3.61013 

g+3.6-106±?4.8-106 

Table 4:   QFT Compensator & Filter 
Transfer Functions Used for the Design 

Time Specs for Upper & Lower Tracking Bounds 
Time {(**)                                        Value 

T, Rise Peak Settling Peak Final 
TRU 0.1965 

0.6282 
0.4433 1.1640 

1.17T0 
1.198 
1.000 

1.000 
1.000 

Time Spe cs for Plai 
Time (us 

its with G(s 
) 

) & F(s) 
Value 

Ti Rise Peak Settling Peak Final 

£ 0.3055 
0.3003 
0.3086 
0.2993 
0.30T6 

0.6532 
0.6503 
0.6544 
0.6506 
0.6539 

0.9903 
0.9921 
0.9899 
0.9894 
0.9904 

1.096 
1.098 
1.095 
1.097 
1.095 

1.000 
1.000 
1.000 
1.000 
1.000 

Table 5: Performance Specifications 

Mp.  The results are tabularized in Ta- 
ble 5. 

Pj(s) 
T*(s)~i + G(s)P.,(, 

THs) = F(8) 
G(s)Pj(s) 

l + G(s)Pj(s) 

(10) 

(11) 

4.2    Hardware Design Simu- 
lation 

Implementation of the QFT compensator 
and prefilter can be achieved with ac- 
tive RC configurations. If the QFT com- 
pensator and prefilter, did not involve 
repeated poles and poles on the origin, 
Cauer's first or second canonical form 
may be used' L An advantage of Cauer's 
canonical form for implementation resides 
in the fact that the transfer function is 
synthesized with only a cascade of RC 
elements. But for this QFT design, the 
implementation of the prefilter and com- 
pensator transfer functions involves the 
cascade of Op-Amp active elements and 
RC elements, such as the Sallen and Key 
second-order filtert9!, with the following 
Eqns 11-15. 

TUs) DISTURBANCE CLOSED-LOOP 

TJ(.) = 
r   100000.0a(»+2.0-10v)   i 
L (s+500000)(s+2.25-107) J? 

r (a+9.0-108:fc.;1.2-109) 
l(8+1.85-108)(,s+7.97-10tl±7l.l3-I09) 

2      _  [■    56000.0s(3+1.0-107)     I 
Td{-')-  l(j+500143)(H-l.ll-107)J 

r (j+9-0-108 + 7l-2-109) I 
l(3+9.76-107)(3+8.46-108±7l.l6-I09).l 

T»= 
,        42gl00.Qj(3+2.20-10° ±70-088)        . 
I (s+499887)(s+1.10-109 )(s+3.87-107) J 
(3+3.7-10')(3+9.0-10" ±71-2-10") 

(S+2.20-1Q6 ±7.0971fj+3.24-10« dkn.l6-9i 

rj(«)= 
. 26160.0s(j+3.70-10Y) , 
Ks+500074)(s+2.37-107±j3.49-107)J 

(>+9.0-108±jl.2-109 

Ua+8.76-108j:7l.l8-109)J 
5           r               149800.0s(»+3.70-10')               i 

Td(a>_  1 (s+500015)(s+4.36-107 )(s+2.9-10*<) J 
r (s+9.0-108±.7l.2-109) -i 
 l(3+7.34-10i)±fl.l-109~J  

Tjjs) TRACKING CLOSED-LOOP 
3B- 

r'(j) - [(s+2.25-107)(s+3.6-10e±i4.8-10«i)JX 

r        s+2.0-107 _i 
l(s+1.85-108)(s+7.97-108](s+1.13-109)J 

r « nfi. 1(1^9 -2,     _ T 8.06-10-"' |„ 
*••<■'' - L(s+500143.0)(s+l.ll-107)(s+9.75-107)J 

r s+1.0-107      1 
l(8+3.6-10e±74.8.10°K»+8.46-10s±7l.l6-109)J 

T^(.) = 
 6.16-10^(3+500000)      -j 
(a+499887.0)(s+3.86-107)(s+l.ll-109)J 

3.7-107 

(.1+3.6.10"±74.8-106)(g+3.24-10» )±7l-16-109)-i 
4 r 3.76-10a9 (3+500000) 1 

V<- (*) _ Ks+500074.0)(s+3.6-10ti±j4.8-10li)J 
r 3-7-I07      I 
l-(8+2.38-107±73.49-107l(s+8.77-10ii±7l.l8-lÖ5li 
"^ r 2.15-104" (3+500000) I 

T<- (•> - l.(s+500015.0)(3+3.6-10O±74.8-10o)J X 

r 3.7-107      I 
l(3+4.36-I07)(3+2.9-10>')(3+7.34.108±7l.l-10tl)i 

Table 6: Disturbance & Tracking Closed- 
Loop Control Ratio Transfer Function 
for all Plants 

Aowl 
s2 + aw0s + w1 (12) 
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Figure 8: Tracking T-i(s) Control Ra- 
tio for Plants with Upper and Lower 
Tracking Bounds (a) Time Response 
(b)Frequency Response 

1 
W„ 

RVC1C2 

A0 = 1.0 

(13) 

(14) 

(15) 

During implementation of the initial 
design, see Fig. 10a, it was found that the 
sensitivity and stability of the 741 Op- 
Amps used to implement the prefilter, 
were not sufficient. The limitation on 
the gain-bandwidth product of the 741 
Op-Amp caused by its internal frequency 
compensation C\ (Fig. 4) at frequencies 
greater than 500kHZ for large gains, re- 
sulted in the elimination of the prefilter 
from the final design, since the Op-Amp's 
internal compensation provided the fil- 
tering necessary for the design. Fig. 10b. 
shows the actual hardware design imple- 
mented, without the prefilter, where the 
Op-Amps used to implement the com- 
pensator, had C\ = lpF (Fig. 4), but the 
other components of the Op-Amp were 

Figure 9: Disturbance T%(s) Control 
Ratio for Plants (a)Time Response 
(b) Frequency Response 

identical to the 741 Op-Amp. Simula- 
tion of the complete hardware QFT de- 
sign (Fig. 10b) was done using SPICE, 
with the results shown in Fig. 11. 

5    Summary 

QFT design specifications for the Op- 
Amp (Plant) are met in both the fre- 
quency and time domain, but are slightly 
under damped for the Tracking response. 
The reasons for the underdamped Track- 
ing response are categorized: 

(a) Magnitude of the nominal loop 

control ratio (x+^flw) over the de~ 
sired frequency bandwidth is essentially 
equal to unity, since the magnitude of 
the nominal loop control ratio is much 
greater than unity for this range of fre- 
quency. 

(b) As a consequence of (a) The time 
responses for the Tracking response con- 
trol ratio (VJR), for all j = 1,2, ... ,5, are 
dictated by the prefilter F(s). 
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Prefilter F(«) MACNrruoe FREQUENCY RESPONSE 

Plant P(s) 

Original Impiemonmtion of Op-Amp QFT Compensator  (a) 

PUat P(.) 

ActualImpUmtntanon of Op-Amp QFT Comptntator      (b) 

Figure 10:   Hardware Implementation: 
(a)Initial Design & (b)Actual Design 

(c) As a consequence of (a) and (b), if 
F(s) = TRU the result will be an under- 
damped response essentially the same as 
for TRU. 

With respect to the Disturbance re- 
sponse results: All Mp values were below 
0.0005 much much less than the specified 
value of 0.01. In general, the QFT design 
technique is over conservative, especially 
with the disturbance results. 

For actual implementation, the Op- 
Amp elements used on the QFT compen- 
sator were modified (Ci) to have inter- 
nal frequency compensation at frequen- 
cies much higher then the plant V(s). It 
is highly desired to keep the gain values 

2     H, 

TUTF 
TLTF 3iE 

i\ 
\\ 
\   k 

Figure 11: QFT Hardware Design Sim- 
ulation (SPICE) showing Upper and 
Lower Frequency Tracking Bounds Ver- 
sus Actual Results 

for the G(s) compensator and F(s) pre- 
filter as low as possible, which was done 
in this design example, due to the imple- 
mentation problems caused by sensitiv- 
ity and stability of the active RC compo- 
nents. Stability problems resulted in the 
first implementation of the QFT design, 
and was traced to the prefilter design. 
The F(s) prefilter was eliminated from 
the final design, with no degradation of 
performance. 

The significance of the QFT design 
approach for Op-Amp compensation will 
prove to be an invaluable tool for the 
temperature compensation of high tem- 
perature Op-Amps (such as SiC) of the 
future. In high temperature applications, 
the Op-Amp may be exposed to temper- 
atures of over 400°C to 500°C. By using 
the QFT approach, QFT compensators 
can be designed for these high temper- 
ature Op-Amps. The additional over- 
head of Op-Amp compensator G(s) com- 
ponents is then justified by the preci- 
sion control and performance that can be 
achieved within the harsh environmental 
conditions imposed on these high tem- 
perature devices (V(s)). 
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Abstract 

A systematic design procedure, within the context 
of Individual Channel Analysis and Design (ICAD) 
framework, is described in detail. The design proce- 
dure, which encapsulates the existing ICAD analysis, 
is illustrated with a simple example 

1 Introduction 

The Individual Channel Analysis and Design (ICAD) 
methodology provides a framework within which con- 
cepts and methods from classical control engineering, 
such as Nyquist/Bode plots and phase and gain ro- 
bustness margins, may be rigorously applied to multi- 
input multi-output (MIMO) systems. In previous work 
[10] [6], the emphasis has been on Individual Chan- 
nel Analysis (ICA) rather than on Individual Chan- 
nel Design (ICD) except for some design case studies 
[l]gvam. Rather than basing the design of controllers 
on a mechanistic procedure when any analysis must, 
by necessity, be by design, the philosophy adopted in 
ICAD is to develop, independently of any design pro- 
cedure, an analytic framework for MDVIO systems; the 
insight provided by the framework would then support 
the design task. It was thought that the analytic results 
provided sufficient guidance for design and that appro- 
priate procedures would be self-evident. However, this 
is clearly not the case. It is the purpose of this paper 
to describe ICD in more detail; that is, to describe the 
design procedure. 

2 Analytic Background 

There are two core distinguishing aspects to ICAD. 
The first is the concept of structure and the second is a 
diagonal controller existence result. 

Certain salient dynamic features of a system dom- 
inate its dynamic behaviour.   These salient features 

are referred to as the system structure. For SISO sys- 
tems, the plant structure is defined by its right half- 
plane poles (RHPPs) and right half-plane zeros (RH- 
PZs). Provided it is stable and minimum phase, the 
only constraints on the dynamic performance of the 
closed-loop system are those arising from such prac- 
tical considerations as the extent of the plant uncer- 
tainty and the actuator capability. When the plant has 
RHPPs and RHPZs, the dynamic performance of the 
closed-loop system is strongly constrained. The gain 
of the open-loop system must be greater than one in 
the region of the frequencies of the RHPPs but less 
than one in the region of the frequencies of the RH- 
PZs. In this manner the nature of the controller and 
so the dynamic performance of the closed-loop sys- 
tem is unavoidably influenced by the structure of the 
plant. For MIMO systems, the plant structure includes 
not only various RHPPs and RHPZs but also various 
measures of asymptotic behaviour, see [10] [6] [4] for a 
more complete description of what is meant by struc- 
ture. Those structural features of the plant associated 
with its multivariable nature are indicated in a very di- 
rect manner by the scalar multivariable structure func- 
tions, Ti, 7i etc. (for all definitions see the appendix), 
particularly their Nyquist plots. The structural features 
are represented by the topology of the Nyquist plots; 
that is, their encirclements of the point (1,0). 

The existence of a stabilising diagonal controller is 
established by the following result [6] 

Result 1 There exists a stabilising diagonal controller 
with diagonal elements kj(s),j = 1,..., mfor a fixed 
m-input m-output plant G(S) provided: 

1. G(s) = [5y(s)] has no RHP or purely imagi- 
nary transmission zeros and the individual trans- 
fer functions gjj{s),j = 1,... , m, possess no 
purely imaginary zeros; 

2. the(l-rj(s)),j = l,. 
on the imaginary axis; 

, m, possess no zeros 

3. lim s—»+oo i- j Tj(s) ^ l,j = l,...,m; 
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4. lim^oo \G(s)\ -► qis~ni for some integerni; 

lim,-»«, |G?1(s)| -+ q2S~n2 for some integer n2; 

lims-^oo |G12(s)|   ->■  q3s~ns for some integer 
n3; 

linij-^oo |G12-"m~1(s)l ->• qms~nm for some in- 
teger nm. 

Iflims^ooTjis) > 1, significant bandwidth sepa- 
ration of the subsystem transfer functions hi(s),i = 
l,...,j, from the remaining subsystem transfer func- 
tions hi(s),i = j + 1,. ..,77i, w required with 
the bandwidth of the hi(s),i = l,...,j, all less 
than the bandwidth of the other /i»(s),i = j + 
1,..., m. For any particular plant, the hj (s) for 
which lims_>oo Tj(s) > 1 possess one more RHPP 
than the gjj possess RHPZs. Otherwise the hj(s) pos- 
sess the same number of RHPPs as the gjj (s) pos- 
sess RHPZs. Moreover, the controllers, kj(s),j = 
1,..., m, are stable and minimum phase; arbitrarily 
high bandwidth and arbitrarily small sensitivity are 
possible for each hj(s) and the closed-loop of each 
individual channel. 

The importance of this result and the manner in 
which it is derived does not reside in establishing the 
existence of a stabilising diagonal controller per se but 
rather in the information it provides concerning the 
structure of the closed-loop system and its relationship 
to the structure of the plant. The exploitation of this 
information is at the heart of the analysis and design 
procedure. 

3    Diagonal Control 

Result 1 indicates that a nominal plant can (almost) 
always be stabilised by diagonal control. However, 
meeting the performance specification, transient re- 
sponse requirement, actuator constraints, robustness 
requirements etc, is much more demanding and may 
not always be possible by diagonal control. When di- 
agonal control suffices, the system is said to be benign 
and when diagonal control does not suffice, the sys- 
tem is said to be non-benign. The system may be be- 
nign due to plant characteristics, e.g. the plant may 
be decoupled for design purposes [1], or due to the 
performance specification, e.g. a significant bandwidth 
separation [10]. 

The first step in the control design task is to deter- 
mine whether the system is benign. Inherent to Re- 
sult 1 and its derivation are restrictions on the con- 
troller bandwidths. These must be compatible with 
the performance specification. In addition, the na- 
ture of the plant cross-coupling may hinder the per- 
formance specification being met by diagonal control. 
The plants, for which this is the case, can be identi- 
fied from the appropriate multivariable structure func- 
tions. When the system is non-benign the plant must 
be amended to make it benign. The inputs and outputs 

can be re-allocated to resolve incompatible restric- 
tions on the controller bandwidths [11]. The plant can 
be modified to resolve cross-coupling difficulties by 
multiplicative pre-compensation [7] or additive con- 
trol feedforward compensation [8]. It is assumed in 
this paper that the system is benign and only the pro- 
cedure for synthesis of the controller elements is in- 
vestigated. 

As in all classically-based methodologies for 
MIMO systems, the MIMO system has to be decom- 
posed into a set of SISO systems. In ICA the de- 
composition is exact with no loss of information. The 
SISO systems are the channels 

Ci = kigu{l -7i) (1) 

The relationship of the structure of the C{ to the struc- 
ture of the MIMO plant is indicated by Result 1 and its 
derivation. In ICD the decomposition cannot be exact 
since not all the control gains, kit are available during 
design. However, the pseudo-channels 

Ci - kigu(l -7i) (2) 

used during the design process are defined in such a 
manner that they have the same structure as the d. 

The importance of ensuring that the SISO decompo- 
sition pseudo-channels have the same structure as the 
exact channels is illustrated by the following example. 

Example 1 [4]The plant is defined by the transfer 
function matrix 

G(s) 
s + 1 

Suitable control gains, ki, designed on the basis of 
ga(l — 7), would appear to be 

h(s) --(s + 1); 
s 

a.i>0 

for which the apparent open and closed-loop transmit- 
tances are 

ki9a(l -7) = 

and 

*iff«(l-7)/(l +*tf«(l-7)) = s + ai 

However, the exact open and closed-loop transmit- 
tances are 

kigu(l-yhj) = 

and 

ki9n{l-lhj) 

di S + CLj 

s s — a, 

-Oj(s + üj) 

1 + kigu(l - jhj)      s2 - (oj + üj)s- aiüj 

The controllers designed on the basis of the assumed 
channel transmittances gu(l — 7) do not stabilise the 
closed-loop system for any choice ofa,i. 

The reason, for the irredeemable failure to design 
stabilising controllers for the plant in Example 1, is 
that the structure of the SISO system gu{l- 7)is dif- 
ferent from that of the SISO system g«(l - fhj); that 
is, the ki(s) are designed on the basis of a SISO de- 
composition for which structure is incorrect. 
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4    Control Gain Synthesis 

A particular synthesis procedure, which encapsulates 
the information provided by Result 1 and its deriva- 
tion, for the control gains, fcj(s), for a benign system 
is described below. (Other procedures can be based on 
Result 1 but for brevity are not discussed here). 

• The bandwidths of the closed-loop subsystems, 
hi, increase with i and they are related to the 
bandwidths of the closed-loop channels [6], par- 
ticularly for benign systems. 

• The plant by assumption is minimum-phase, ki 
must cause the system with the first feedback 
loop closed to be minimum-phase, k2 must subse- 
quently cause the system with the first two feed- 
back loops closed to be minimum-phase etc.; that 
is, both (1 - f t) and (1 - hit,), i = 1... n - 1, 
must be minimum-phase. 

• When the limit as s tends to infinity of ti(s) is 
less than 1, the fc^ must be designed such that the 
closed-loop system for kigu has the same num- 
ber of RHPPs as the open-loop system has RH- 
PZs. When the limit as s tends to infinity of 
ti(s) is greater than 1, the ki must be designed 
such that the closed-loop system for kigu has one 
more RHPP than the open-loop system has RH- 
PZs. Note that the limit as s tends to infinity of 
f j(s) is the same as the limit of I\(s). Hence this 
requirement on hi(s) is consistent with Result 1. 

• Since (1 - /i;(s)f;(s)) = (1 + kigu{l - 
ti(s)))/{l + kigu) the ki must be designed such 
that the closed-loop system for kigu{\ — ti(s)) is 
stable. Because (1 —f\(s)) is minimum-phase by 
construction, the number of RHPPs of ti(s) and 
so of (1 — ti(s)) is simply the number of times 
the Nyquist plot of ti (s) encircles the point (1,0) 
in an anti-clockwise direction. Clearly, kigu and 
hi(s) must preserve these encirclements. An ad- 
ditional encirclement is associated with the roll- 
off of hi(s) when f $(s) has limit greater than 1. 

• In addition, the ki(s) must be designed to obtain 
the appropriate open-loop shaping of the pseudo- 
channels, Ci, including that required for closed- 
loop stability. 

• The final gain, kn, must be designed to obtain the 
appropriate open-loop shaping of channel C„, in- 
cluding that required for closed-loop stability. It 
then follows that the system with all loops closed 
is stable in all channels. 

To summarise, the gains ki, i = 1,..., n— 1, are de- 
signed to meet two objectives. First, they are designed 
on the basis of kigu{\ —ji) to achieve the performance 
requirement. Second, they are designed on the basis 
of kigu(l — ti) and kigu to ensure that (1 — tihi) is 
minimum-phase; that is, the closed-loop systems for 
kigu and kigu(l — ti) must have the correct structure. 

-180-° 

Figure 1: Multiple frequency responses on a single 
Bode plot. 

The gain kn is also designed to achieve two objectives. 
First, it is designed on the basis of £„£„„(1 - jn) 
to achieve the performance specification. Second, to 
achieve closed-loop stability, it is sufficient to design 
solely on the basis of kngnn(l — -y„) since the appro- 
priate pre-requisites on ki, i — 1,..., n — 1, are met 
previously by design. 

5    Design of Control Gains 

The control gains, h,i — 1,...,n — 1, must be de- 
signed to simultaneously meet the requirements, dis- 
cussed in Section 4, on the closed-loop systems cor- 
responding to kigu, kigu(l - ti) and fct<?„(l - ji). 
A straightforward approach to the task of designing 
ki to meet the varied requirements for the three open- 
loop systems is to use multiple plots depicting all the 
plants simultaneously, see Figure 1. Alternatively, [9] 
one particular plant, say Gi, can be taken to be nomi- 
nal with the other plants represented on a Bode plot by 
modifying the OdB axis and the -180° axis to account 
for the differences; that is, for any other plant, say G2, 
the OdB axis is modified to 201og10(Gi/G2)dB and 
the -180° axis to (-180 + axg(G1/G2))°, see Fig- 
ure 2. Whether a controller meets the performance 
specification for G2, as well as Gi, can be determined 
with reference to these modified axes, e.g. stability for 
G2 can be assessed from the modified phase and gain 
margins indicated in Figure 2. This technique is gen- 
erally applicable to the task of designing a fixed con- 
troller for a set containing a sufficiently small number 
of members. 

In addition to meeting the structural requirements, 
the design for ki must also meet the performance re- 
quirements on the pseudo-channel, Ci, with a suffi- 
cient robustness margin. Hence, the design for the sys- 
tem gu{\ — 7i) is the most demanding. Accordingly, 
gu and <?ü(1 —ti) are represented by the modified axes 
as in Figure 2. Designing ki to meet the requirements 
on gu in addition to gu(l - ti) and gu(l — 7») is not 
strictly necessary. However, its inclusion is useful as it 

221 



Od& 

:01og10(Gi/G2) 
GM for G2 

-180°-- 

Figure 2: Modified axes for measuring performance of 
a set of plants. 

provides additional design information. Furthermore, 
it enables those occasions, on which the bandwidths 
of hi and the closed-loop channel diverge, to be iden- 
tified and the consequences assessed; that is, ki is de- 
signed partly to ensure that the exact channels, Cj, and 
the pseudo-channels, Cu tally. Designing ki to meet 
the requirements on gu(l - Ti) can also be dispensed 
with when the plant has no structure; that is, when the 
Nyquist plots have no significant topological features 
such as encirclements of the (1,0) point. In these cir- 
cumstances, design of the ki can proceed on the basis 
of the pseudo-channel alone [11]. 

6    Turbo-Alternator Example 

The transfer function model of a turbo-alternator is 

with 

9n(s) = 

9i2(s) = 

921(s) = 

322(s) 

G(s) = [gij(s)] 

1165s + 377.0 

21.63s3 + 16.27s2 + 942.2s + 66.37 
 -151.5  
21.63s3 + 16.27s2 + 942.2s + 66.37 
 -112.0s-144.6  

21.63s3 + 16.27s2 + 942.2s + 66.37 
1.281s2 + 0.5490s+ 70.20 

21.63s3 + 16.27s2 + 942.2s + 66.37' 

(3) 

(4) 

(5) 

(6) 

(7) 

Input 1 and input 2 are mechanical torque and genera- 
tor field voltage, respectively, and output 1 and output 
2 are shaft speed and terminal voltage, respectively. 
The "switchback" characteristic of the 322 element, 
which causes a rapid variation in gain and phase at 
frequencies near 7 rad/sec, should be noted, see Fig- 
ure 3. Set point regulation of both the shaft speed and 
the terminal voltage are required. Speed regulation 
is typically required to be effective over a frequency 
range 0 to 1 rad/sec and voltage regulation, to provide 
adequate voltage disturbance rejection, over 0 to 10 
rad/sec. It is clear that the "switchback" characteristic 

Ui   -90 
tn 
1-135 
Q. 

-180 

-225 

10' 

: Sample of plots of 522(5) with varying pa- Figure 3 
rameters 

poses difficulties for voltage regulation controller de- 
sign, since it occurs at a frequency close to the required 
crossover frequency. 

The Bode plots of 322, for a small number of rep- 
resentative choices of the parameters, are shown in 
Fig. 3. It can be seen, from Fig. 3, that the frequency 
of the "switchback" characteristic is not fixed, so that 
direct counteraction of this feature by the controller is 
not feasible. A traditional solution to this problem is 
to use the Power System Stabiliser (PSS)[2], which al- 
leviates the problem by adding a signal from the speed 
output to the voltage output near 7 rad/sec. The speed 
signal dominates the voltage signal at exactly the right 
frequency to remove the "switchback" characteristic 
and thus facilitates the controller design. Of course, 
the voltage disturbance rejection is compromised at 
frequencies near 7 rad/sec. The solution adopted here 
is to swap the assignment of inputs to outputs. 

In order to swap the input assignment of the plant, 
a pre-compensator is employed, resulting in the modi- 
fied plant, G', such that 

G' \g'll 9'l2 9i2    9u 

.921 922. 922     921 _ 
(8) 

A consequence of the performance specification, in 
particular the bandwidth separation, is that the sys- 
tem is benign, i.e. there are no problems caused by 
the system's multivariable nature. The Nyquist plot 
of the multivariable structure function, j(s), of G'(s) 
(Fig. 4) indicates that the limit, as s tends to plus in- 
finity, of 7 is greater than one. (It should be noted 
that, consequently, the high frequency condition re- 
quired for applying QFT[3][12] is violated.) The rele- 
vant part of the Nyquist plot is the encirclement due to 
the infinite section of the Nyquist contour. Given this 
information, and the existence result of ICAD[5][6], 
the controllers must ensure that channel 2 is mini- 
mum phase and /12 (s) is stable (i.e. possesses no RH- 
PPs) whilst channel 1 has one high frequency RHPZ 
(near the crossover frequency of channel 2) and h\ is 
unstable, with one RHPP close to the crossover fre- 
quency of channel 1; the bandwidth of h2 is greater 
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Figure 4: Nyquist plot of j(s), showing behaviour as 
s -> 00. 

than the bandwidth of hi. The bandwidth requirement 
is clearly compatible with the performance specifica- 
tion. 

A diagonal controller K(s) is designed to meet the 
specification as follows. 

6.1   Design of Controller ki 

For the turbo-alternator, the appropriate choice of the 
pseudo-channel, C\, is 

kig'uil-i'hi) 

where h2 (s) is defined by 

h2(s) = 
15 

s + 15 

(9) 

(10) 

Since the structure of g'u(l - 7') differs from the ex- 
act channel, g'n{l ~ 7'^2)' wi* a RHPZ induced in 
the latter by h2 rolling off, it is necessary to repre- 
sent h'2(s), which is expected to have a bandwidth of 
roughly 15 rad/sec, by the nominal transfer function 
h2(s). At frequencies near to 1 rad/sec, irrespective 
of plant variation, h'2{s) is essentially 1, as is h2{s), 
but the inclusion of h2 (s) ensures that the phase loss 
due to the RHPZ in g'u(l - j'h'2(s)), which limits 
the crossover frequency of kig'n(l — 7'/i2(

s))> is not 
neglected. 

The first controller, hi, is designed to meet two 
objectives. First, it is designed on the basis of 
kig'n(l - j'h2) to achieve the performance require- 
ments on shaft speed regulation. Second, it is designed 
to ensure that k2g'22(l — 7'fr'i) has the correct struc- 
ture. The controller, hi, must ensure that kig'n en- 
circles the (—1,0) point on the complex plane exactly 
once, thus ensuring that h[ has one RHPP. The con- 
troller, fci, must also ensure that kig'u(l — 7') does 

not encircle the (—1,0) point on the complex plane, 
thus ensuring (1 — j'h^) is minimum phase since 

1 + «1Ö11 
1 

(l + *iSii) 
(1 + ^(1-7')) (11) 

It is possible to design fcj to satisfy all the require- 
ments on one Bode plot, namely the Bode plot for 
kig'n (1 _ 7^2)- Modified gain and phase axes are in- 
troduced on the Bode plot for kig'llL(l - 7^2) to rep- 
resent the functions kig'u and kig'n(l — j'). These 
modified gain and phase axes are 

20 log 10 
Pii(l-7%) 

and 

-180° + arg 

Sii 

gii(l-7%) 

9'n 

for the modified axes representing g'n and 

20 log 10 
0ii(l-7'Ä2) 

and 

-180° + arg 

Sn(l-7') 

gii(l-7'fc2) 

5ii(l-y) 

(12) 

(13) 

(14) 

(15) 

for the modified axes representing g'u{l - 7')- The 
gain and phase margins for kig'xl and kig'u(l — 7') 
can be determined with respect to the modified axes 
transferred to the Bode plot of kig'n (1 - 7/1'). 

The controller, kx, can now be designed to meet the 
requirements on ki g[ x (1 — 7' h2), ki g[ l and fci g[ 1 (1 — 
7') simultaneously. A suitable controller, designed by 
standard SISO loop-shaping, is 

h 
30 

s{s + 10) 
(16) 

The Bode plot of the open-loop transfer function 
kig'u(l — j'h2) is depicted in Fig. 5, from which it 
can be seen that the requirements on kig'u (1 — j'h2), 
kxg'n and kig'u(l — 7') are easily met. Nyquist plots 
of kig'u and 7'/^ are shown in Figures 6 and 7. 

6.2   Design of Controller k2 

The second controller, k2, is also designed to meet two 
objectives. First, it is designed on the basis of the exact 
channel k2g'22(l 

_ 7'^i) t0 achieve the performance 
requirements on terminal voltage regulation. Second, 
to achieve closed-loop stability, it is sufficient to de- 
sign k2 also on the basis of k2g'22(l — ■y'h[). 

Having designed ki, the design of k2 can proceed 
since hi is known. A suitable controller, k2, designed 
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k1g11(1-gamma*h), k1g11 & k1g11{1-gaiTwna) 
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Figure 7: Nyquistplot of 7'hi 

k2g22(1-gamma*h1) 

Figure 8: Bode plot ofk2g'22(l - 7^i)- 

Figure 6: Nyquist plot of kig'n 

by standard SISO Nyquist/Bode loop-shaping to meet 
the requirements, is 

ko = 
-96(178s2 + 2050s + 10200) 

s(s2 + 653s + 10200) 

(10s+ 60.9)(s2 +2.97s+ 1.65) 
(s + 60.9)(s2 + s + 1.65) 

(17) 

The Bode plot of the open-loop transfer function 
k-2g'220- ~ 7'h'i) is depicted in Figure 8. From the 
Bode plot, the phase margin is 50° at a gain crossover 
frequency of 20 rad/sec. 

With the controller, k2, in place, it is now possible 
to confirm the design of ki for channel 1. Compar- 
ison of Figure 9 with Figure 5 indicates that, as ex- 
pected, near the channel 1 crossover frequency, the ac- 
tual open-loop channel 1 differs little from the nom- 
inal channel, kig'lx{l - 7%), use<^ as the basis for 

controller design. 

7 Conclusions 

A systematic design procedure within the context of 
ICAD, which encapsulates Result 1 and its deriva- 
tion, is described. As illustrated by the example, it 
is straightforward to apply to any benign plant. 
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A    Notation 

For an n x n system G(s) = [gij(s)] with a diagonal 
controller with diagonal elements ki(s), the following 
functions are defined 

G 

,922 

h2 
521 

9ni     9n2 

gin 

92n 

h„     J 

;hi = 
ki9i- 

1 + hgi; 

H    = 
\Gi 

(18) 

(19) 

(20) 

9u\G I 
f.    —    ~. I 

^*       ~       ^   lh1=/l2 = - = fti-l=0,ft,- + l = - = /»„ = l ^       ' 

where G is the matrix obtained from G by eliminating 
the ith row and column, and d is the matrix obtained 
by setting the diagonal element gu/hi of G to zero, 
and 

^ = T* \hi=hj,j=i+l,dots,n ^     ' 

where hj is chosen to be 0, 1 or any suitable transfer 
function appropriate to preserve structure. The exact 
channel and pseudo-channel are, respectively, defined 

Ci = hguil - 7J); c; = kigu(l - 7») 

For a 2 x 2 system, the functions are defined 

7i    =    72 = (912921/911922) = 7 

ri    =    7,r2 = 0;7i = 7^ 

Ti    =    7,r2 = 7^i 

(23) 

(24) 

(25) 

(26) 
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Abstract: The practical application of QFT in 
nonlinear control system designs suffers from a 
number of difficulties, including the discretization of 
the set of acceptable outputs. This paper introduces a 
method for discretizing this set using an e-net 
approach, being formal in the sense that a validation 
theorem for this finite election is verified. A example 
that illustrates the application of this approach is also 
shown. 

1 Introduction 
Nonlinear QFT ([5-7]) is a technique for designing 

robust controls for uncertain nonlinear plants by 
replacing the uncertain nonlinear plant with an 
"equivalent family" of linear plants and then finding a 
single linear controller for this family of linear plants. 
While this approach is clearly limited, it follows a long 
tradition of linearization approaches to nonlinear 
control (describing functions, extended linearization, 
etc.) which have been found to be quite effective in a 
wide range of applications. In recent work the authors 
have developed an alternative function space method 
for the derivation and validation of NLQFT (nonlinear 
QFT) that has clarified and simplified several 
important features of this approach ([2,3]). 

In this paper we review this earlier work and report 
on new techniques for the circumvention of some of the 
problems encountered in the application of this 
approach. The following material introduces the 
problem considered and the notation to be followed in 
the remainder of the paper. 

The Robust Control Problem 
The problem considered is the control of an 

uncertain, invertible, NLTV (nonlinear and/or time- 

varying), SISO plant. To handle plant uncertainty we 
consider the problem of linear control of a set T of 
invertible NLTV plants V. Let R be a set of reference 
signals of interest and, for each reR, let Ar be the set 
of (specification determined) acceptable outputs of the 
feedback system when excited by the input r. The 
complete set of acceptable outputs is then defined as 
AR = {AJreR}. The robust control problem RCP 
(Fig. 1) is formally stated as follows: 

(RCP) Given T, a set of plants, an input set R and 
an acceptable output set AR, find a linear controller 
K(F,G) such that veAr for each reR, and for each T<= 
T (well-posedness and stability of the resulting 
feedback system are assumed to be implicit in the 
formulation.). 

Let f(T,R,AR) be the set of all controllers K that 
solves RCP. Such controllers will be said to be 
feasible controllers for RCP. 

Representation of Nonlinear Plants 
The selection of appropriate input/output signal 

spaces is motivated by the technique to be used in the 
computation of the ELF (equivalent linear family). 
Since we will be interested in frequency domain 
representations of LTI equivalent plants, the selection 
for the input and output signals spaces is U = Y = 
RHie. For any signal in U or Y the inverse Laplace 
transform is well defined. The associated time domain 
signal spaces are defined as U' = Y* =£"1{RH2 J. 
Using these signal spaces a NLTV plant can be 
represented in the time domain by a mapping Tx: U*— 
Y'% and also in the frequency domain by a mapping T: 
U — Y. We denote the sets of bounded frequency 
domain functions as Us = Ys = RHj C RH^e. Note that 
both stable and unstable NLTV plants are represented 
in this framework: a stable NLTV plant T would map 
RtL^ onto itself. 

* This work has been supported by CICYT under project TAP96-0671 
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2 NLQFT Validation 
The results presented here are clarifications and 

simplifications of earlier results presented by Horowitz 
[5,6] and the authors [2,3]. The basic approach 
followed by Horowitz in NLQFT is to choose a 
particular ELF and then apply his QFT approach to 
robust linear control to this linear equivalent family. In 
this section we use the validation results developed by 
the authors [2,3] to demonstrate the validity of the 
Horowitz NLQFT approach (with some necessary 
modifications). 

Allowable Nonlinear Plants 
An uncertain NLTV plant T is a parametrized set of 

NLTV plants TQ, where 9e0. The individual NLTV 
plants considered must satisfy the following assump- 
tions: 

PI) Each NLTV plant Te must be representable as a 
mapping from R3~(Xc

t0 R~^2,e- 

P2) Each NLTV plant TeeT must be invertible with 
inverse T$ continuous on AR. 

P3) Each NLTV plant Te must be such that Te
l AR C 

Us = R?f2 

P4) Each NLTV plant Te can be represented by an 
ordinary differential equation of the form 

+f2(u{m-1)(t),...,u(t),f,0) with n>m 
(2.1) 

with 

for all y(t)eAR 

\m[K(0)u(^t) + f2(u^(t),...,u(tlt-,0)] = K{ßW\t) 

for all u(t)e?l*AR 

The Set of Acceptable Outputs 
For each reR, the set of acceptable outputs Ar 

satisfies the following conditions: 

01) For each reR, the set Ar is compact, convex 
subset of the Banach space Ys = RJ-f2. 

02) For each reR, any function yr in Ar has relative 
order e (i.e., number of finite poles minus number of 

finite zeros) such that e ;=n-m<e<e » wnere 

eyr is an constant upper bound depending on r. 

The Equivalent Linear Family in NLQFT 
In NLQFT the equivalent linear plant family is 

generated by using transfer functions representing 
input-output pairs obtained from the given NLTV 
plant. Thus P\AR), the family of equivalent linear 
plants with respect to AR, is defined as 

V(*>= u(s) 

P(AKy.= {Pr/(s)\u = ?t)
1y,VyeAr,VreR,VeeG} 

(2.2) 

Validation of NLQFT 
Under the above and some extra mild conditions, we 

can state the following validation result (see [2,3]). 

Theorem 3.1: Assume that the following conditions are 
satisfied: 

i) An uncertain NLTV plant T satisfying assumptions 
P1-P4. 

ii) For each input r to the feedback system (Fig. 1) we 
define sets of acceptable outputs Ar satisfying 
assumptions 01 and 02. 

iii) For each reR, G(s)F(s)r(s) has relative order 
greater than or equal to e^ = e>r - ep . 

iv) P(AR), the ELF of T with respect to AR, is chosen 
as indicated in (2.2). 

Then, 

K(F,G)e J(P(AR),R,AR) => K(F,G)e J(P,R,AR). 

3 Sets of Acceptable Outputs in NLQFT 
Following Horowitz [5,6] we now introduce 

frequency domain restrictions on the set of acceptable 
outputs. That is, we define Ar(a,bJC,e) as the set of 
functions yr in Ys (real-rational stable strictly proper 
functions) such that: 

i) vr are minimum phase 

ii) /«.(©) = |yr (/'co)| satisfies: 

a(a) < mr((ä)< b((£>), for each © e [0,co) 

2iw 
do 

(co) 

(2.3a) 
(2.3b) 

< K(co), for all co e[0,oo) 
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iii) the poles/zeros excess of yr is less than or equal to e 
as required by (02). 

It clear from the definition that Ar{a,bJCve) c 
Ar(a,bJC2,e) if AT, <Kr An important feature of the 
above set that will be exploited later is that for any s > 
0 there exists a frequency co, such that | yr(jco)\ - w.(co) 
< s for every signal vr in the set. It can be also shown 
that this A. is a convex compact subset of the Banach 
space Ys and thus conditions 01-02 are satisfied. 
Thus for these sets of acceptable outputs the NLQFT 
design will be valid (assuming the nonlinear plant set P 
satisfies conditions P1-P4) 

Potential difficulties in NLQFT 
The above suggest that NLQFT is potentially an 

attractive approach to the design of robust controllers 
for uncertain nonlinear plants. However, there remains 
a number of practical questions that must be answered 
before this approach is truly useful for applications. 
Here we briefly outline these questions. In the 
following sections we will address some of them in 
detail. 

1) Existence of solutions. The NLQFT approach 
translates a nonlinear robust design problem to a linear 
robust design problem. It is well known that not all of 
the later can be solved. Thus one important question 
involves the identification of conditions on the plant 
model and problem specifications that will guarantee 
the existence of solutions to the resulting linear robust 
control problem. A related question involves the choice 
of techniques for the solution of the resulting linear 
design problem. 

2) Identification of Acceptable Plants. As we have 
seen above, the validity of NLQFT requires the 
verification of specific characteristics of the nonlinear 
plant set. Thus we need to examine our ability to 
identify these characteristics in plant models. 

3) Identification of Acceptable Outputs. Again the 
validity of NLQFT requires the verification of specific 
characteristics of the output sets. Thus we need to 
develop techniques for relating these characteristics to 
the specifications commonly encountered in control 
system design. 

4) Finite Set Limits. The NLQFT design procedure 
outlined above requires that one develop an ELF based 
on given sets of acceptable outputs, plant parameters 

and control system inputs. Since these sets will 
generally be infinite in cardinality, we cannot expect to 
apply the procedures outlined above directly. A 
reasonable practical approach is to chose some finite 
approximations to these sets. Intuitively we would 
expect that the choices made here would affect the 
quality of the end results. This suggests that we need to 
develop some specific techniques for choosing 
appropriate finite approximations to these infinite sets. 

4 Design using NLQFT 
As noted in 4) above, the NLQFT design procedure 

outlined above requires that one develop an ELF based 
on given sets will generally be infinite in cardinality. In 
the current literature, ad hoc choices or rules of thumb 
have been used to select finite subsets of AR and 0 for 
use in generating Pe(AR). However, questions about the 
impact of these choices on the validity of the resulting 
controller have seldom been addressed. In this section 
we consider the problem of the selection of a finite 
subset of the ELF for use in design, by sampling the 
set of acceptable outputs. A partial solution to this 
problem is given below. Here we consider only the case 
of finite R and no plant uncertainty. This can be 
generalized to the parametric uncertainty case, by 
substituting Pe and Te for P and T, respectively. 

Validation with finite acceptable outputs sets 
A natural choice of a finite subset of Ar is an s-net 

ArE/ An 8-net of Ar is a set such that for any element 
in A,, there exist an element in the net Ars> at a distance 
less than s. Since Ar is assumed compact, it always has 
a finite e-net, for any arbitrary s [9]. (The complete set 
of acceptable outputs ARe := { ArA | r e R} is a set of 
s-nets and, when the set R is finite, A^ E is also finite.) 
The approach taken here is to analyze die effect of the 
choice of the s-nets of Ar on the validation problem. 

Assume that P(Ar) is an ELF of the NLTV plant T 
with respect to Ar. We then define Pe(Ar) as the (finite) 
8-ELF of T with respect to A^ computed using a finite 
E-net of the set of acceptable outputs Ar. Note that in 
general ^(Ap is not included in P(Ar). This depends on 
whether or not the s-net of A,, is included in Ar. Here 
we assume that the s-net is included in the set of 
acceptable outputs and thus Pc (Ar) c P(Ar). The set 

p£(AKy.= U PZ{A) 
reR 
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is then defined as the s-ELF of T with respect to AR. 

The augmented set of acceptable outputs 
We also define an augmented set of acceptable 

outputs A*corresponding to the input r e R as the set 
of minimum phase functions y{s) in Ys with roll-off er 

and which are at a distance less than a from some 
output in the set of acceptable outputs Ar. 

More formally, A/(a^*) = Ar(aa,ba,K+K*,e), briefly 
A*, is the augmented set of acceptable outputs, where 
a(co) is positive that for any co e [0,oo), 0 <oa(co) = a ( 
co) - a(co), and 60(co) = b(a) + a(co) < oo. 

Note that the set of acceptable outputs Ar can be 
augmented by allowing more conservative bounds on 
the magnitude, or by allowing signals with higher 
slope. It is clear from the definition that 

A>/2)cA>/,) 

for a2(co)< a, (co) and K2 (©)< £,(co), for any co. In the 
rest of the paper a2< a, means a2(co)<a, (co) for any co. 

The complete a-augmented set of outputs is then 

AR»:={A/|reR} 

It can be shown that A* is a convex compact subset of 
Ys. 

The validation result 
Now it is possible to formulate a validation theorem 

using finite sets of acceptable outputs (a detailed proof 
will be given elsewhere). 

Theorem 4.1: Assume same conditions as the 
validation theorem in Section 3, and consider an 
acceptable outputs set Ar. Then for any c^, K^ > 0 
there exist s > 0, a, > 04, and Kj>K2 such that 

^eJ(Pg(AR
#(a1^1)),R,AR)^A:eJ(y,R,AR

#(a2,^)). 

An iterative design procedure 
From a practical point of view the above theorem can 
be viewed as part of an iterative design procedure: 

1. Choose the sets of acceptable outputs consistent 
with the given performance specifications. 

2. Augment the set of acceptable outputs by a, and AT, 
to compute the equivalent linear family, that is to 
compute templates. 

3. Design a controller for the discretized augmented 
linear equivalent family (using an s-net) that produces 
acceptable outputs in the original acceptable outputs 
sets. When validating this design the feedback system 
outputs will belong to acceptable outputs sets 
augmented by a2 and Kr It is always possible to 
achieve a controller such that Kx> Kr 

4. (If a, > a2) Substituting the (a^-augmented 
linear equivalent family by the nonlinear plant, in the 
feedback system, will produce outputs in the (a2,K2)- 
augmented acceptable outputs sets. 

5. (If a, < a2) In this case there exist no guaranty that 
the controller will be feasible for the original nonlinear 
plant. Return to 1, electing a bigger a, or a lesser s. 

5 Computation of templates 
In this Section we present an example illustrating a 

procedure for computing templates based on the s-net 
concepts outlined above. Consider a nonlinear RC 
circuit given by the equation 

y + (l + ay2)y = u, as[0.1,2] 

and a set of acceptable step response given by 

4 = [y(tp.9(\ - e-%t)ü(t) < y{t) < 1.1(1 - e-ut)ü(tj\ 

where w(?) represents a unit step signal. 
Firstly, we need to elect a set of acceptable outputs. 

As it must be convex and compact this is problematic. 
However, it is an easy matter to translate the 
specifications using a set impulse responses with the 
plant taken as [s]P[l/s] (see [3]), (in general this is not 
equal to T due to its nonlinearity.) Thus for defining 
the set of acceptable outputs, we use as bounds the 
impulse responses shown in Fig. 2.a. (note that the 
frequency axis is depicted in a semilogarithmic scale, 
while the magnitude axis is linear). In fact, the set of 
acceptable outputs is given by the frequency domain 
rational signals (minimum phase and stable) that are 
bounded in magnitude by the impulse response bounds, 
and whose magnitude derivative with respect to the 
frequency is also bounded. 

The bounds of Fig 2.a are the starting points for 
computing the e-net (s = 0.1 in the example) for this 
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acceptable outputs set. However, instead of setting a 
fixed K for all linear frequency, which would lead to a 
huge number of elements, we choose an adaptive and 
variable K for sets of frequency intervals. 

Thus, the problem is to choose the frequency 
intervals, and the values of if in these intervals. The 
solution that we propose is based on an iterative 
algorithm that can be summarized as follows: 

1. From frequency zero to a frequency, denoted ©start, 
all signals are considered flat (i. e., K = 0). For our 
example, we chose ©start = 1 rad/s. 

2. For frequencies larger than ©end, where both bounds 
fall below 8 (= 0.1, in the example), all signals are 
assumed to lie on either one of the bounds. For the 
example, ©end is set at 100 rad/s, and for higher 
frequencies all signals are set equal to the lower bound. 

3. Starting at ©start. we find the maximum © interval 
where the relation K > s/8 holds, with K the maximum 
absolute value of the slopes of the two bounds in the 
considered frequencies interval. 

4. This defines the length of the frequency interval, and 
the value of K for this interval. A new ©start (the 
previous one plus 5) will then be chosen at this point 
and the previous step repeated. The process stops when 
a ©starr £ ©end is obtained. 

Fig. 2.c shows the progression of K values along the 
different frequencies intervals, in semilogarithmic 
frequency scale, while Fig. 2.b shows it in linear axes. 
At this point, the value of s and the sizes of frequencies 
intervals define a grid of points that will be the possible 
vertices for all signals in the net. This grid is then 
pruned to consider only those points that belong to (or 
lie close) the band defined by the bounds. Fig. 2.a 
shows these points as x-marks. 

Using this procedure, the signals in the £-net will be 
the ones that can be obtained starting at any of the 
valid points of the first column (at © = 1 rad/s) and 
arriving to any of the valid points of the last column (at 
about © = 100 rad/s). Those signals whose final value 
at ©end is rather far away from the value of the lower 
bound at this frequency, may be smoothed to avoid the 
undesirable effects of any discontinuity. 

Using this finite set of acceptable outputs, we have 
computed the templates for the nonlinear RC system in 
two different ways: one taking just one value for the 
uncertain parameter a (to be exact a = 1), and the other 
taking three values (a = 0.1, 1, and 2). Fig. 2.d shows 
some examples of these templates. Fig. 2.d.a shows the 
templates obtained for co = 5, and Fig. 2.d.b the ones 
obtained for 0) = 10. In both cases, the nominal point is 
marked as a star, and one can easily see how the 
templates obtained with only a = 1 lie inside the one 
obtained with a = 0.1, 1, and 2, at their respective 
frequencies. From this we can conclude that, for this 
problem, the uncertainty given by the set of acceptable 
output is considerably smaller that the uncertainty 
given by the plant parameters. 

6 A design example 
Here we develop a design example for the nonlinear 

circuit given in the above Section, using the iterative 
method of Section 4. 

The set of acceptable outputs must be augmented for 
computing templates. The bounds given in Fig. 2.a are 
slightly augmented by allowing more conservative 
outputs (Table 1). 

CO 0.1 0.3 1.0 3.0 10 30 100 
8T(dB) 2 2 2 3 4 5 6 

Table 1 Performance data at selected frequencies 

The question now is which bound on the slope to 
choose. This is a very important issue from the 
computational point of view, since it determines to a 
great extent the number of resulting ELF's. For the 
definition of the slope we use an variable slope bound 
associated to the slope of the impulse response bounds 
and define a factor aK than when equal to 1, for each 
frequency, acceptable outputs slopes are less than or 
equal to impulse response bounds slopes, when equal 
to 2 acceptable outputs slopes are less than or equal to 
the double of impulse response bounds slopes, etc. 
Fig. 3 shows templates for ELF's computed using a 
0.1-net of the acceptable outputs for different values of 
o^. They are similar to the ones of Fig. 4.1, although 
they exhibits some differences, overall at higher 
frequencies. 

Two important comments: 1) Note the exponential 
growth of the number of ELF's. For aK=1.5 it was 
needed about 26 hours of computation in a PC ( 
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Pentium Pro 180, 128 Mb RAM) Fortunately, for a 
K=l we have almost the same template with a very 
shorter and affordable computational effort. 

2) For this example the shape of the templates is quite 
similar independently of the otK. 

This has an extraordinary importance for simplifying 
the design process outlined above. Since it can be 
expected that the shape of the templates is similar 
independently of how big is the slope bound, we can 
suppose an arbitrarily big AT, in step 2. Then the 
bound K2 in step can be supposed always to verify AT,> 
Kr In other words, if there is some type of convergence 
of the templates for increasing values of K, and this 
limit template can be (approximately) computed as it is 
in this example, we do not need to care about slopes. 

The next step in NLQFT involves the computation of 
boundaries. These are shown in Fig. 4. Finally one 
obtains a shaping of L0 that produces closed loop 
outputs having magnitude variations as given in Fig. 
4. Note that they are lower than the bounds given by 
the initial augmented set defined by the specifications 
(Table 1). The precompensator F is computed in such 
a way the closed loop outputs are included in the initial 
augmented set completing the design. The resulting 
controller is 

1+- 
G(5) = 12 

<1+>4> 
, F(s) = L18 

(1+—)(1+—) v     6.25        65 

v     3.5 A     50 A    6(T 

simplifications and improvements of the 
technique. 
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Finally, Fig. 5.3 shows a final validation of the 
controller by showing a time simulation of closed loop 
outputs using the NLRC plants for a = 0.1, 1, and 2. 

Conclusions 
For nonlinear systems, QFT is formally well- 
founded. However, its applicability is seriously 
limited by the fault of results about how to sample 
the set of acceptable outputs, being typically done 
by ad hoc rules. This paper proposed a 
theoretically founded method for the discretization 
of the above sets. The computational complexity 
of the method can vary depending of the type of 
nonlinear plant considered. Although some 
examples have been analyzed, a more extensive 
testing     is     needed     to     provided     further 
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ABSTRACT 
A robust roll attitude control system is 

designed to cover a certain operating range 
using the QFT methodology and also 
employing previous eigenstructure assignment 
results. Both stability margins and dynamic 
tracking performance requirements are 
incorporated into the robust design over the 
operating range. The trade-offs between robust 
performance and the controller complexity are 
also considered. 

By integrating QFT with eigenstructure 
assignment results a controller is obtained with 
the stability and performance robustness 
provided by the QFT design and the decoupled 
dynamic responses (between roll and yaw 
dynamic manoeuvres) provided by an 
eigenstructure assignment approach. The 
results indicate QFT has significant potential in 
robust flight control systems design. The 
combination of techniques is original and the 
method should be applicable to other industrial 
sectors. 

1. INTRODUCTION 
Robust control techniques are 

particularly useful for the design of aircraft 
flight control systems, partly because aircraft 
dynamics vary substantially throughout the 
flight envelope. Variables such as airspeed, 
flight altitude, fuel consumption, and the 
amount and location of payload can have a 
dramatic effect on the aircraft's plant 
parameters and on the plant model structure. 

The paper is organized as follows. The 
lateral flight control system and its plant 
uncertainties are summarized in Section 2. 
Detailed QFT analysis and design for the roll 
attitude control system, for given performance 
specifications, are described in Section 3. 
Section 4 incorporates the QFT design results 
within the eigenstructure assignment solution to 

obtain the desired controller, 
then drawn in Section 5. 

Conclusions are 

2.     LATERAL     FLIGHT     CONTROL 
SYSTEMS DESIGN 

A lateral flight control system design is 
now considered for a specific flight condition. 
The design problem is considered in paper1185. 

2.1 Lateral Aircraft Model Dynamics 
For lateral stability and control, the 

linearized perturbed dynamic equations of the 
aircraft model are required. The aileron and 
rudder actuator dynamics must also be 
considered. A washout (high-pass) filter on the 
yaw rate signal is generally adopted, so as to 
acquire the high frequency components of the 
yaw rate. These can be used as feedbacks to 
enhance the damping and stability. The aileron 
and rudder actuators for large transport aircraft 
can be described by the following first-order 
transfer-functions: 

Sa(s)        25 
Aileron 

Rudder : 

5ac(s) 
5r(s) 

s + 25 
20 

(1) 

(2) 
6rc(s) s + 20 

The washout filter on the yaw rate is aimed at 
acquiring the high-frequency yaw manoeuvring 
components. Its transfer function is normally 
given as: 

xw(s) TS 
(3) 

y/(s)     TS + 1 

where x¥ is the output signal of the washout 

filter.    The time-constant % is chosen as 2 
seconds for this example. 

Integrate the dynamics of above 
actuators and filter into the linearized perturbed 
lateral dynamic equations. Then the extended 
aircraft lateral dynamics at the cruising flight 
condition can be modelled as the canonical 
linear time-invariant state space equation: 
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(4) 
[i = Ax + Bu 

1    y = Cx 
The state vector is given by: 

x = \ß  <f>   if/ <f> xv 5a Sr\ (5) 

where the state denotes : sideslip angle, roll 
rate, yaw rate, bank angle, washout filter 
output, aileron deflection, and rudder 
deflection, respectively. The system inputs are 
given by: 

u = [Sac Src]
T (6) 

where &c denotes perturbed aileron deflection 
command, and 8rc perturbed rudder deflection 
command. The outputs (measurements) are 
given by: 

y = [ß   <f>   <t> xwf (7) 
The system matrices, with linearized perturbed 
dynamic coefficient elements, are available for 
a Boeing 707 transport model, for several flight 
conditions [20] 

2.2       SAS   and   Roll   Attitude   Control 
System 

In [18] a lateral stability augmentation 
system (SAS) and flight path control system is 
designed for the aircraft model at one specific 
operating point (0.8 Mach speed and 8000 
metres altitude). With an eigenstructure 
assignment approach and output feedback 
strategy, the desired damped transient 
performance is achieved through assigning the 
closed-loop system eigenvalues to appropriate 
positions. The decoupling responses between 
the roll and yaw manoeuvres (so-called 
coordinated turn manoeuvres) are realized by 
assigning some related elements of the closed- 
loop system eigenvectors to specific values 
which is one of the most appealing features of 
the eigenstructure assignment philosophy. The 
full output and constrained-output feedback 
strategies, are adopted in the design to explore 
the relationships between the system 
complexity/reliability and dynamic 
performance. 

3.    QFTROLL   ATTITUDE    CONTROL 
SYSTEM DESIGN 
3.1  Simplified Roll Attitude Control System 
Model 

The lateral aircraft dynamics were 
modelled originally as a MEMO LTI system, as 

in equation (4). Although the QFT robust 
control design of a MEMO system can be 
achieved using mathematical transformations, it 
is more complicated than the analysis for a 
SISO system. For lateral flight control systems 
analysis, the MEMO model is generally 
simplified into a set of SISO LTI systems 
based on a practical assessment of aircraft 
dynamic characteristics. 

For the lateral flight control system 
discussed below, the decoupling manoeuvre, 
between roll and yaw dynamics, has been 
achieved through eigenvector assignment. For 
the coordinated aircraft dynamics, there has 
been an excellent approximation for its roll 
mode, the so-called one degree-of-freedom 
rolling mode model™, in which sideslip and 
yaw angle dynamics are neglected. This 
simplified rolling mode approximate model is 
expressed as, 

tfs) _   -n2Sa 

Sa(s)    s+n2c0x 

Thus the roll control system can be simplified, 
as shown in Fig. 2, using the following control 
law: 

6ac=K^-d>c)-K^) (9) 

where  K±   and   K-,   represent  the   feedback 

control gains for the roll angle and the roll rate 
signals, respectively, corresponding to the 
elements f13 and f12 in the output feedback 

control gain matrices. 
Time domain testing showed a 

simplified SISO roll model is an excellent 
approximation to aircraft rolling dynamics and 
can be used in QFT design process. 

Formulation and 3.2       Problem 
Uncertainties 

The first step in QFT design is to 
formulate the control problem in the form of a 
single loop feedback configuration with a two 
degrees-of-freedom structure. For this purpose, 
the roll control system in Fig.l is transformed 
into the single-loop feedback configuration 
shown in Fig.2, where T+ = K- IK^ represents 

the time-constant of the roll rate feedback 
which enhances the damping of the roll 
dynamics. 

The plant uncertainty is represented as 
structured (parametric) uncertainties in the roll 
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model, with varying parameters a and b. These 
variations correspond with Mach number 
changing from 0.6 to 0.9. An additional flight 
state (at speed of 0.5 Mach and altitude of 
8000 metres) is obtained through linear 
extrapolation based on the parameters at Mach 
speed 0.6 and 0.7. This provides a larger 
operating range for the QFT design. The design 
results for the feedback control gains, K-, and 

Kf,    were    obtained    from    the    previous 

eigenstructure assignment design. 
The time-domain performance of the 

previous eigenstructure design with plant 
uncertainties is summarized in Table 1. 

Table   1   Roll   Control 
Eigenstructure Assignment 

System 
Design 

Performance with 

Index 1 2 3 4 5 

FuU 
Output 
Feedback 

Mp 

(%) 
21.1 12.5 7.0 4.59 3.49 

4 (s) 4.07 2.47 2.31 2.20 1.76 

tr(s) 0.71 0.70 0.70 0.81 0.78 

Constr- 
ained 

Output 

Feedback 

Mp 

(%) 

29.4 14.9 6.63 2.21 8.33 

ts(s) >10 9.25 6.32 5.95 5.30 

tr(s) 1.86 1.89 2.15 2.64 1.73 

There is a large amount of overshoot 
and large amounts of variation in the settling 
times, which are not appropriate for 
commercial aircraft. Thus, a robust design is 
desirable to improve the control performance. 
With the QFT design philosophy, the above roll 
attitude control system is represented by a plant 
model with parametric uncertainties, 
comprising of both the roll mode and the 
aileron dynamics, 

m=    ^    =-——2— do) 
s(s+25)(s+b)   s3+(25+b)s2+25bs 

The H(s) in the feedback loop can be viewed as 
sensor dynamics and is represented by, 

H(S) = T^S + 1 = 0.409S + 1 (11) 

where r^ is set to 0.409 (the average value of 

the previous eigenstructure assignment results). 

The design task is to determine the 
compensator G(s) to improve the closed-loop 
dynamic performance and to construct the pre- 
filter F(s) to shape the closed-loop tracking 
performance. This becomes a typical QFT 
design problem which will be discussed in the 
following section. 

3.3 QFT Robust Control Design 
3.3.1 Performance Specification 
Tracking Specification: The tracking 
specification defines the acceptable range of 
variation of the closed-loop tracking response 
of the system due to uncertainty and 
disturbance inputs. 

For the roll attitude control system the 
time-domain roll angle tracking performance is 
defined as follows: 

Overshoot:       Mp<2% (12) 

Settling Time : ts < 3(sec.) (13) 
In the frequency-domain, the resulting upper 
tracking bound is represented by the following 
transfer-function, 

6.25(0.2s + l) 
TRU(S) = - , RU        s2+ 3.9s + 6.25 

The lower tracking bound is 
48 

TRL(sh 

(14) 

(15) 
(s + 1.5)(s + 4)(s + 8) 

The acceptable tracking bounds range, defined 
by these two bound transfer-functions, is 
depicted in Fig.6, in both the time-domain (due 
to a step input) and in the frequency-domain. 

Robust Stability Specification   The stability 
specification is defined as follows: 

P(s)G(s)H(s) 
<fi = 1.2        (16) 

l + P(s)G(s)H(s) 

which corresponds to a lower gain margin, 

K M=l+—= 1.833 = 5.26(dB) (17) 

and a phase margin, 
OM - 180"-cos~'(0.5/fs2 -1) = 60° (18) 

Disturbance  Attenuation      No   disturbance 

rejection specifications are given for this 
system, since the disturbance rejection will be 
obtained as a by-product of satisfying the 
tracking specifications. 

4.3.2    Templates and Bounds Computation 
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The trial frequency array is chosen as following 
separate points in the frequency spectrum: 

oa= {0.01, 0.1,   05,   2,   8,   20, 60}        (19) 
The plant templates at these frequency points 
can be computed and illustrated in Fig.4. The 
nominal   plant,   selected   as   Mach   0.8,   is 
indicated in the templates by a star (*). 

The performance bounds can be 
computed based on the performance 
specifications and the computed plant 
templates. The tracking response bounds and 
the robust stability margin bounds are 
integrated together in the Nichols plane, to 
determine the composite bounds. These form 
the design bounds that must be met. 

3.3.3 Controller   Design   Through   Loop 
Shaping 

The open-loop frequency response has 
no intersections with the stability bounds. Thus, 
a dynamic compensator is not required to 
change the shape of the open-loop frequency 
response path. An appropriate control gain 
should therefore be introduced to push the 
open-loop frequency response upwards, so as 
to satisfy the design requirements. Thus, a 
simple gain controller is defined as, 

G(s) = 31.25 (20) 
The resultant  open-loop frequency  response 
with this controller is illustrated in Fig. 5. 

3.3.4 Prefilter Design 
The controller design has reduced the 

variation in the closed-loop frequency response 
to the desired range. A prefilter is now required 
to achieve the required shape of the closed-loop 
frequency response. Obviously a dynamic 
prefilter is required to shape the frequency 
response to the desired slot. The prefilter is 
designed as, 

„. .     0.35^ + 3.5 
F(s) = - 

s + 35 
(21) 

The resulting closed-loop frequency response 
with this prefilter is illustrated in Fig. 6. 

4.3.5    Design Validation and Simulation 
The control law for the roll attitude 

control system, designed with QFT is obtained, 
by integrating together equations (20) and (21), 

5a = G(s)(F(sy$>c - H(sW) = 3L25(035^35 <j>c -(j>)-1278<j> 

The final step in the QFT design process is to 
validate the closed-loop system performance 
with the designed control law, i.e., to check if 
the closed-loop system satisfies all the 
performance specifications defined in Section 
3.3.1. 

The robust stability margin 
requirement should be checked first, and the 
results are illustrated in Fig.7. The worst 
closed-loop response magnitude (covering all 
uncertainty cases) is plotted in the solid line, 
together with the design specification plotted in 
the dashed line. Fig.8 illustrates the tracking 
performance results, where the maximum 
variation of the closed-loop system frequency 
response is plotted (the solid line), together with 
the design specifications (the dashed line). The 
resultant closed-loop control system has met all 
the design specifications in the operating 
range. 

Time-domain simulations of the closed- 
loop system with the controller G(s) and 
prefilter F(s), under all the five operation 
conditions, are illustrated in Fig.9, together 
with the tracking requirement plotted in the 
dashed line. As shown, satisfactory tracking 
performance has been obtained in the time- 
domain, with the indexes being summarized in 
Table 2. 

Table 2 Closed-Loop System Tracking Performance with 
QFT Design 

Index 1 2 3 4 5 

O/s (%) 1.15 — — — -- 

1.1 (s) 1.45 1.7 1.8 1.85 1.9 

ir (s) 1.02 0.9 1.0 1.04 1.1 

s+35 

(22) 

3.4        QFT Design Case II -- Changing the 
Tracking Performance 

Although the design results in the last 
section have satisfied all the performance 
specifications, but they are realized through 
high control gain and with very high aileron 
deflections, which are not expected practically. 
As can be seen in Fig. 9, the deflection angle of 
the aileron has reached to a maximum value of 
about 13 degrees for 1 degree roll angle. The 
aileron deflection is generally limited to about 
23  degrees at the maximum1201.   Thus,  this 
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control action is not very practical, because it 
often leads to aileron saturation, which will 
deteriorate performance. 

One of the most appealing features of 
QFT is its transparency of the trade-offs 
between performance specifications and 
controller complexity. Now consider the 
redesign of the controller under different 
performance specifications. For commercial 
transport aircraft, smoothness and steadiness 
are the most important requirements, instead of 
fast responses. A slower tracking performance 
specification is considered as follows, 

„ 0.35J + 0.7 
Tor, (s) = —  (23) 

RUl s2+1.306*+ 0.7 

TR,{s) = —         (24) 

where the overshoot M is unchanged at 2%, 

but the settling time is extended to about 8 sec. 
The corresponding tracking bounds in the time 
and frequency domains are illustrated in Fig. 10. 

With this new tracking performance 
specification, together with the stability margin 
requirements represented by equation (16), the 
roll control system is redesigned. The plant 
templates and robust stability bounds on the 
Nichols chart are unchanged as in Section 3.3, 
but the tracking performance bounds have been 
decreased. The loop shaping results around 
these bounds are shown in Fig. 11. Analyses 
show a high control gain (with the same value 
as in Section 3.3) is still required to meet the 
composite performance bounds, as shown in 
Fig. 13. Thus the controller is unchanged as 
follows 

G2(s) = 31.25 (25) 

However, the prefilter should be chosen as in 
the following, which is very different from the 
results in Section 3.3 (with the loop shaping 
results in the frequency-domain being 
illustrated in Fig. 12). In this case, the prefilter 
has more effect on the shape of the closed-loop 
system frequency response: 

0.0625*+05 
Fo(s) = - (26) 

s+05 
With the new controller, represented by 
equations (25) and (26), the closed-loop system 
performance is illustrated in Fig. 13 by a time- 
domain step-response simulation. The 
maximum aileron deflection value has been 
decreased to about 3 deg, which is a more 
realistic amount. 

3.5       QFT Design  Case III --  Without 
Stability Margins 

Although the aileron deflection has 
been decreased to a practical amount in design 
case II, the high control gain in equation (25) is 
still a difficulty in a real time implementation. 
A high gain is required by the stability margin 
specification in equation (16). To further aid 
the trade-offs between controller complexity 
and system performance, the stability margin 
requirement is removed, i.e. only the tracking 
specification is considered in the QFT design. 

First consider the tracking 
specifications represented by equations (23) 
and (24). The controller design relationship is 
depicted in Fig. 14, where only the tracking 
performance bounds appear as the composite 
performance bounds. Thus, the controller gain 
can be decreased as, 

G3](s) = 4.5 (27) 

The prefilter is designed as follows, 

with the shaping results illustrated in Fig. 15. 
The resultant time-domain closed-loop tracking 
response is illustrated in Fig. 16. 

„  . .    0.175s+ 0.5 
F3j(s) = TTTT— <28) s + 0.5 

The robust stability margins of this 
design are verified in Fig. 17. 

5.    ANALYSIS    OF    THE    OVERALL 
SYSTEM PERFORMANCE 
5.1 Combined Control Law and Simulations 

The QFT design and analysis in 
Section 4 is conducted based on the simplified 
aircraft rolling mode model, equation (8). To 
consider the overall system performance 
described by the multivariable MIMO model of 
equation (4), the QFT design results, equation 
(22), can be incorporated with the previous 
eigenstructure assignment results as follows, 

&c=3L25(a35s^5^c -<t>)-fuß-U78<l>-f14xv 
s+3.5 

8rc = f23 (~ rr— & -$)- f2iß -f22<t>~ f24xv s + 3.5 
(29) 

where the coefficient f~ corresponds to the 

appropriate element in the output feedback 
control gain matrix.     The lateral control law 
can be expressed in the following general form, 
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8ac 

5r 

'G(s) 
F{s)§c-Fky (30) 

where G(s) and F(s) are the controller and the 
prefilter designed by QFT analysis, and FK is 

the output feedback gain matrix obtained from 
the eigenstructure results. The element f12 and 

fJ3 are determined by the QFT design results as 

f]3 = G(s) and f12 = 0.409G(s) and the other 

elements being equal to the appropriate 
eigenstructure assignment results. Thus, for the 
full   output   feedback   control   scheme,   the 

Fr = (3D 
feedback gain matrix: 

7.0673        -0.4090»  -Ö» L7018 

-21122       -0.0184      0.0991        -13756 

and for the constrained feedback scheme, the 
feedback gain matrix: 

Fr = (32) 5.9547 -0.4090s)  -G» 1^870 

0.1156 0.0 0.0 -0.9443 

Now consider the time-domain simulation of 
the overall lateral flight control system with the 
combined control law of equation (30). With 
the QFT design results for Case I, expressed by 
equations (20) and (21), the time responses to a 
step roll angle input, under four different 
operating points, are illustrated in Figs. 18, 19 , 
20 and 21. Figs 18 and 19 correspond to the 
full output feedback scheme and figs 20 and 21 
to the constrained output feedback scheme. By 
comparison of the previous results with only 
eigenstructure assignment for the full output 
feedback scheme, it can be seen that the 
decoupling performance between roll and yaw 
manoeuvres is about the same as the 
eigenstructure assignment design. The roll 
control performance has been improved greatly 
by the QFT design. Thus, the overall control 
system has taken advantage of both the 
eigenstructure assignment and the QFT design 
results. The constrained output feedback 
scheme, gives similar results, but the 
decoupling performance becomes a little worse 
after incorporating the QFT design results. 
This is mainly caused by the high control gain 
and hence rapid rolling manoeuvre, and the lack 
of feedback information from the rolling mode 
to the rudder deflection. It should be attenuated 
when the control gain is decreased. 

With the QFT design results for case 
III, expressed by equations (27) and (28), the 
appropriate time-domain simulation results of 
the overall flight control system are illustrated 

in Figs. 22 and 23 and Figs. 24 and 25 
respectively. As can be seen, the decoupling 
performance becomes better than for the QFT 
Case I. For the full output feedback scheme, 
the decoupling performance becomes even 
better than the eigenstructure assignment 
results (the sideslip coupling angle response is 
smaller). For the constrained output feedback 
scheme, the decoupling performance is about 
the same as the eigenstructure assignment 
design. From an engineering point of view, the 
QFT design case III is a more successful and 
more practical lateral control system design for 
the combined control law (expressed by 
equation (30) together with equations(27) and 
(28) using the feedback scheme of equation 
(31) or (32)). 

5.2       Concluding Remarks 
Some general conclusions regarding the 

QFT approach can be drawn from this case 
study: 
• QFT is a robust control design 

approach based on very intuitive 
classical frequency-domain loop 
shaping concepts. It does not require 
complicated mathematical or 
theoretical analysis. The basic ideas 
can be learned and applied quickly . It 
has great potential for application by 
practising engineers in many 
engineering fields. 

• QFT provides a systematic and 
straightforward approach to handle 
simultaneous performance 
specifications and plant uncertainties. 
The design and redesign processes can 
be completed very rapidly. It would 
have been difficult to achieve the 
designs as quickly without the insights 
QFT provides. 

• The design case studies illustrate the 
insights QFT provides into the trade- 
offs between system performance and 
controller complexity. 

• QFT can also be used to improve 
existing control systems developed 
using other control approaches. In this 
report, it has been applied to enhance 
the robust stability and tracking 
performance of a flight control system 
which   was   designed   previously   by 
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eigenstructure assignment at specific 
operating points. These design 
approaches were integrated together to 
get an improved control performance. 
There is great potential for QFT in 
solving control problems which involve 
large plant uncertainties and high 
performance requirements. 
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Figure 1 : Simplified Roll Attitude Control System 
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Figure 2 : Transformed Roll Control System Model 
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Figure 3: Tracking Specifications Figure 4: Plant Frequency Templates 

Frequency (rad/aec) 

Figure 5: Open-Loop Response with Controller Figure 6: Closed-Loop with Prefilter 
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Figure 7: Analysis of Roust Stability Margins 
Figure 8:   Analysis of Tracking Frequency Re- 
sponses 
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Figure 9: Closed-Loop System Responses 
Figure 10: Tracking Response Specification-Case 
II 
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Figure 11: Loop Shaping Results-Case II Figure 12: Prefilter Design Results-Case II 

Figure   13:      Closed-Loop   System   Tracking 
Response-Case II 

Figure 14: Loop Shaping Results-Case III 
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Figure 15: Prefilter Design Results-Case III Figure   16:      Closed-Loop   System   Tracking 
Response-Case III 
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Figure 17: Analysis of Robust Stability Margins- 
Case III 
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Figure 18: System Performance-Case I and Full 
Output Feedback 
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Figure 19: System Performance-Case I and Full 
Output Feedback 
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Figure 20:   System Performance-Case I Con- 
strained Output Feedback 
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Figure 21:    System Performance-Case I Con- 
strained Output Feedback 

Figure 22:   System Performance-Case III Full 
Output Feedback 
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Figure 23:   System Performance-Case III Full 
Output Feedback 

g   o(- 
1 

• ■■_• i _. mi ji _ _r" 

Figure 24:   System Performance-Case III Con- 
strained Output Feedback 

Figure 25:   System Performance-Case III Con- 
strained Output Feedback 
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