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ABSTRACT 

A novel technique to determine the phase velocity of long-wavelength 

shoaling waves is investigated. Operationally, the technique consists of three 

steps. First, using the Hubert transform of a time series, the phase of the 

analytic signal is determined. Second, the correlations of the phases of analytic 

signals between two points in space are calculated and an average time of travel 

of the wave fronts is obtained. Third, if directional spectra are available or can 

be determined from time series of large array of buoys, the angular information 

can be used to determine the true time of travel. The phase velocity is obtained 

by dividing the distance between buoys by the correlation time. Using the Hubert 

transform approach, there is no explicit assumption of the relation between 

frequency and wavenumber of waves in the wave field, indicating that it may be 

applicable to arbitrary wave fields, both linear and nonlinear.   Limitations of the 

approach are discussed. 
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I. INTRODUCTION 

As ocean waves shoal, the wave field evolves substantially from its deep 

water state. While the geometry of the dynamic currents and of the bottom 

topography determine the direction and to some extent the energy of the spectral 

components, nonlinearities in the wave field lead to harmonic generation and to 

spectrum broadening. Furthermore, for a nonlinear wave field, there is an 

apparent negative refraction of the spectral peak (Abreu et al. 1992). Thus, for a 

known sloping bottom, the refraction away from the beach normal is a direct 

consequence of nonlinear energy transfer. On the other hand, linear theory 

does not predict most of these changes, and for a given shoaling spectrum, 

linear theory might lead to an incorrect determination of the beach normal. 

Directional spectrum has become commonly used to describe nonlinear 

random ocean waves because it provides ways to estimate the significant wave 

heights in a breaker and also to determine the predominant direction for net 

sediment transport. Considerable progress has been made over the last two 

decades to study the evolution of the wave spectrum due to refraction, 

diffraction, and nonlinear interaction under conditions of mild slope (Lui et al. 

1985, Freilich and Guza 1984, Abreu et al. 1992). However, field conditions 

often violate the basic assumption that the wavelength be smaller than the 

characteristic length scale of bottom variations. Nevertheless, it can be shown 

(Larraza, 1994) that using a ray optics approximation, the determination of the 

kinematic wave parameters (wavelength, direction of propagation) for a given 
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geometry is within 5% of its true value. On the other hand, the determination of 

the dynamic values (energy, momentum) exceeds at least 15% the true value. 

Thus by using ray theory, sediment transport and other relevant effects caused 

by the wave's momentum will be ill estimated. 

For an arbitrary bottom topography, wave energy and momentum can be 

calculated within the physical optics approximation. The passage from 

geometrical to physical optics can in principle be accomplished by use of a path 

integral formulation approach. Within this formulation, the basis states are 

characterized by the "rays", and the physical optics results from a sum over all 

the possible paths (and not only the path determined by Fermat's principle). The 

path integral formulation approach has not been considered previously either for 

gravity waves over a changing topography or for shoaling waves. This situation 

is particularly surprising because the problem can be stated from the onset by 

using the known results of ray optics, either linear or nonlinear, and performing a 

sum over all possible ray paths of the basis states.   Even though there are 

standard analytical techniques to deal with certain special cases, the most 

general ones can only be solved numerically. 

Because the sea floor is known to be a controlling factor in low-frequency 

shallow water wave propagation (Akal, 1980, Akal and Jensen 1983), phase 

velocity measurements can in principle be used to determine bottom topography, 

which can in turn be used for true ground determination in remote sensing 

applications. The inverse problem, that is, the determination of the topography 

given the evolution of the spectrum along a path requires an accurate technique 



to determine celerity and direction of the waves in a given wave field data. 

Common techniques of Fourier transform are usually inadequate. In the Fourier 

transform, a real space-time signal is converted to a complex frequency- 

wavevector signal. Thus, for applications to ocean wave field data a dispersion 

relation between frequency and wavenumber has to be assumed in order to 

determine the phase velocity of the spectral components. The problem can be 

complicated by nonlinearities in the wave field. 

On the other hand, the Hilbert transform of a real valued time-space signal 

is another real value time-space signal for which the phase of a signal can be 

calculated in terms of the signal itself and its Hilbert transform. Thus by using 

the time series of a signal measured at different points, one can determine a 

relative phase shift and extract phase velocity measurements without reference 

to a dispersion relation. 

In this thesis we present an analysis of ocean surface waves data 

obtained by The Naval Research Laboratory Stennis Center, in support of 

Hamlet's Cove I (Smith, 1994). An immediate goal is to extract phase velocity 

information from time series at three buoys. The data analysis technique used 

throughout this thesis is based on the Hilbert transform. This technique allow us 

to get local properties, local energy and local frequency, of the signal instead of 

the global properties that others techniques, like the Fourier transform, would 

give (Long, 1995). 

In Chapter II we give a brief introduction to linear water waves and point 

out their dispersive character.   We also present a description of the local 



topography for the wave data that we analyze and emphasize the need for an 

inverse problem in arbitrary topographies.   Chapter III gives a detailed account 

of the basic ideas involved in Hubert transforms. In Chapter IV we present the 

results and the procedures used for the analysis of the data. The data was 

analyzed using the Fast Fourier Transform (FFT), the Hubert transform, and the 

cross-correlation functions of MATLAB. In Chapter V we discuss the results and 

provide some recommendations for future work. 



II. SURFACE WAVES IN THE HAMLET'S COVE I EXPERIMENT 

In the first part of this chapter, we present a brief introduction to surface 

gravity waves over uniform depth and emphasize their dispersive behavior. In 

contrast, the data that we analyze throughout this thesis is over nonuniform 

terrain. The second part of this chapter gives a detailed description of the local 

topography for the Hamlet's Cove I experiment. 

A.   SURFACE WAVES IN WATER 

When a group of waves moves across the surface of water, each 

particular wavecrest travels faster than the group as a whole, and eventually 

passes through it. Thus new crest continually are being created at the back of 

the group while old crests are disappearing at the front. 

This behavior does occur because water waves are dispersive. We can 

say that this implies that the different Fourier components that make the general 

disturbance have phase velocities that depend on their wavelength. For surface 

waves, if the surface elevation of water with uniform depth h is described by the 

wavetrain 

T| = A cos (kx- cot) , (1.1) 

the wave speed is given by 



fg       ^1/2 
c = co / k =   |- tanh(kh) (1.2) 

so that waves of longer wavelength, I = 2% I k, travel faster. In Eq (1.1) k is the 

wavenumber and co is the frequency of the wave. 

While each individual wavecrest travels with speed c, the velocity of travel 

of the group as a whole is the group velocity 

cg = dco/dk . (1.3) 

The phase velocity in water with uniform depth h (Acheson, 1995) can not 

exceed Vgh . For kh large, i.e. h »X, tanh(k/?) = 1 , and 

c2 = g / k       , (1.4) 

corresponding to the case of infinite depth. A good approximation for deep water 

waves is for depths h greater than about -X. In shallow water, i.e. h«XI 2K, 

tanh(kh) s k/?, and equation (1.2) becomes 

c2 = gh . (1.5) 



This equation is important, because as we can see c is independent of k for 

shallow water.   As we will see, the data analyzed in this thesis is remarkably 

nondispersive. 

B. HAMLET'S COVE TOPOGRAPHY 

The data analyzed in this thesis is from three bottom-mounted pressure 

gauge/ current meters for the measurements correspond to directional wave 

spectra, currents, and tidal elevation. The gauges were deployed in depths of 

10', 15', and 25' installed in support of Hamlet Cove I experiment. 

The three bottom-mounted pressure gauges were placed on either side of 

the sand bar as shown in Figures 2.1 and 2.2 

>1/V> 30°23'10 

30°23'00' 

30°22'50" 

86° 48'10" 86°48'20" 

• #3 (Depth 10') 

•>  #2(Depth 15') 

#1 (Depth 25'T 

Figure 2.1. Coordinates for the Positions of the gauges and their depths in feet. 
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Figure 2.2. Distance from shore (m) of the three buoys and reference to the sand bar. The sand 
bar profile, measured relative to the surface, is a t a depth of 1.3 m 150 m off shore. 

The buoys used collected data from the wave as pressure, x-component 

of the velocity and the y-component as well. The sampling was continuous with 

a sampling frequency of 2 Hz . 

Because the pressure gauge responds to the rise and fall to the free 

surface, the pressure at depth z attenuates by a factor proportional to e "te 

where k is 2n/X and X is the wavelength of the Fourier component of the surface 

disturbance. At the 15' and 25' depths, (gauges 1 and 2) frequencies above 0.3 

Hz were below the noise level of the instruments and, therefore, were ignored in 

the analysis. The high frequency cut-off for gauge number 3 is 0.5 Hz. 

Table 2-1 shows the data collection periods for each instrument. We analyzed 

the data collected by the three buoys in 16 July 1994. 
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Gauge 1 2 3 

DATES 

14JUL-20JUL 14 JUL-20 JUL 14 JUL-20 JUL 

20 JUL-29 JUL 20 JUL- 29 JUL 20 JUL- 29 JUL 

29 JUL-1 AUG 29 JUL- 3 AUG 29 JUL- 3 AUG 

3AUG-10AUG 3AUG-10AUG 3 AUG-9 AUG 

12AUG-17AUG 10AUG-17AUG FAILED 

18AUG-24AUG 18AUG-24AUG 17AUG-24AUG 

24 AUG-4 SEP FAILED FAILED 

Table 2-1    Dates for the data collected at the three buoys. The data analyzed in this thesis 
corresponds to data collected on 16 July 1994. 

From the bathymetry survey shown in Figure 2.2, we can see that 

refraction and diffraction effects from waves 60 m long and longer may be used 

to characterize the bottom topography. This long waves, due mainly to swell, are 

essentially nondispersive and already violate the conditions for ray optics to 

apply.   Because shorter dispersive waves are mainly due to local winds, they 

would not give accurate topography estimates. Thus, phase velocity estimates 

from the long waves are the first step to determine an unknown bathymetry. 
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III. THE HILBERT TRANSFORM 

In this chapter we review some of the basic concepts of the Hubert 

transform, following the review article by Bendat (1989). In order to elucidate the 

concept and possible applications of the Hubert transform, we present three 

equivalent definitions, namely as a convolution integral, as a 7t/2 phase shifter, 

and as an imaginary part of an analytic signal. 

The Hilbert Transform of a real valued signal is a complex signal called 

the analytic signal. The real part of the analytic signal is the original real-valued 

time signal while the imaginary part is a copy of the original signal with each of its 

Fourier components shifted in phase by 90 (Bendat, 1989). The transformed 

signal retains the same amplitude and frequency information contained in the 

original signal with the added phase information dependent on the phase of the 

original data. 

For any real time series, £(t), the Hilbert transform £ (t) is 

^MrV    ' (3-i) K     J   T —t 
—OO 

in which P implies the principal value. The analytic continuation of the Hilbert 

transform is thus the Cauchy integral which corresponds to translations of an 

analytic function in the complex domain of integration. 

The analytic signal Z(t) is the real based time series defined by 
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Z (t) = C(t) + j m , (3.2) 

which can also be written as 

Z(t) = A(t) em , (3.3) 

where A(t) is called the envelope signal or the amplitude and #(t) is called the 

instantaneous phase signal, defined by: 

A(t) = K2(t) + S2(t)]1/2, (3.4) 

and 

m = tan-1£(t) / £(t)], (3.5) 

respectively. The instantaneous frequency co is given by 

dd(t) 
a» = -^   , (3.6) 

and the local energy is one half of the square value of the amplitude. Eqs. (3.4), 

(3.5), and (3.6) represents local properties in time. 

The properties of the Hubert Transform can be best understood in terms 

of three equivalent definitions. 

1)       Definition as Convolution Integral 

The Hubert Transform of a real valued function  £(t) extending from - ~ < t 

< + - is a real valued function as described in (3.1): 

12 



5(x) = HK(t)]-ipJ^dt , (3.7) 

thus £ (t) is the convolution integral of £(t) with (1 / % t), written as 

Ut) = C (t) 'Pr] ■ (3-8) 
Vic t; 

2)       Definition as (TC / 2) Phase Shift System 

If f'( f) is the Fourier transform of % (t), namely 

F '(f) =  JZ, (t) e -'i2nU dt , (3.9) 

then, from the convolution property of the Hubert transform (Bendat, 1989) and 

equation (3.7), it follows that F7( f) is the Fourier transform of £(t), multiplied by 

the Fourier transform of (1 / n t) where 

+~ -i2*ft . f- j for f > 0 e e   ' -J «or T > u 
I- dt = -jsgnf=   .I    .    n (3.10) 
J       7ct [j for f < 0 v       ' 

Hence, equation (3.6) is equivalent to the passage of £ (t) through a system 

defined by (-j sgnf) to yield: 

F'(f) = (-jsgnf)F"(f)     , (3.11) 

13 



where F/7(f) is the Fourier transform of C(t). The complex-valued quantity F7( f) is 

the Hubert transform of the complex-valued quantity F" (f) as defined by: 

F7(f) = H[F"(f)]= (-JsgnflF"(f) (3.12) 

The Fourier transform (-j sgnf) can be represented by 

B (f) =  - j sgnf  = 
e-i(*/2)forf > Q- 

j (K / 2) forf < 0 
(3.13) 

or using the complex polar notation 

i     ,   -j<i) (f) 
B(f) = |B(f)| e    •» (3.14) 

Hence, B(f) is a (rc / 2) phase shift system where 

|B(f)| = 1 for all f (3.15) 

and 

<P b (f) = 
\ % I 2 for  f > 0 1 

I-7C / 2   for  f < 0 f' (3.16) 

Thus if one writes: 

" (f\ = \r=" ml o-i^xW F7/ (f) = |F" (f)| e (3.17) 
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it follows that 

F(f) = |F(f)| e-j(p*(f) =|F//(f)| e'^^^H ,     ' (3.18) 

Thus the Hubert transform consist of passing £(t) through a system which leaves 

the magnitude of F/x (f) unchanged, but changes the phase from <|> x (f) to § x (f) + 

(j) b (f). Thus 

<Px(f) -» <Px (Ü + fa / 2)    for f > 0    , (3.19a) 

9x(f) -» <Px(f) - (« / 2)     for f < 0 (3.19b) 

in other words, the Hubert transform shifts by % 12 for positive frequencies and 

by -rc/2 for negative frequencies. 

3)       Definition as Imaginary part of Analytic Signal 

A third useful way to understand and to compute the Hilbert transform is 

to introduce the analytic signal Z(t) which allows us to work with the amplitude 

A(t), and the phase § (t) equations (3.4 and 3.5). Time derivatives of the phase 

yield the instantaneous frequency co (3.6). 

Examples of Hilbert transforms and the corresponding Fourier transform 

of some simple functions are shown in Figure 3.1. The convolution and phase 

shifts due to the Hilbert transform are apparent. Also apparent is the fact that 

the analytic signal preserves local amplitude. 
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SIGNAL   TRANSFORM HUBERT     TRANSFORM 

cos (2% fot) 

sint 

FOURIER 

sin (2% fo t) 

-^7^7 /\r\ 

1  - COS t 

0 

Figure 3.1. Some examples of Hubert Transform. 
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IV. DATA ANALYSIS 

In this chapter we present the procedure and the results of the analysis of 

the Hamlet's Cove I surface wave data. The main goal is to determine if there is 

any phase correlation between data at the three buoys after low pass filtering 

and applying the Hubert transform to the filtered data. Phase correlations can 

provide valuable information because they can tell us if the signal recorded from 

the three buoys corresponded to the same wave and if so, they can yield directly 

the phase velocity of the wave. Phase velocity is obtained by interpolating the 

correlation time between the buoys for which the location is known. 

The data analyzed is of pressure measurements from a pressure gauge 

and two orthogonal components of velocity from a current meter. Because 

pressure gauge measurements are more sensitive to long waves, we will 

consider the low pass filtered output from for pressure gauge of measurements 

on 16 July 1994. 

A. THE CHEBYSHEV TYPE II FILTER 

An optimal filter needs to maintain amplitude information with no phase 

distortion in the pass band. In our case, the latter requirement is particularly 

important because from our approach, phase velocity values can only be 

determined from phase correlations. Because the filtering process should 

17 



minimize distortion of all small amplitude fluctuations, the stop band has to be at 

least 40 dB below the pass band to eliminate possible leakage problems and it 

has to have a minimum transition width to ensure good frequency separation. 

Most of these requirements can be met by with a Chebyshev type II filter. Higher 

order filters could introduce numerical errors, so the filter has to meet the 

requirements with the lowest order possible. 

As shown in the Appendix (mfile), we used Matlab Signal Processing 

Toolbox (Mathworks, 1994). Of the two techniques, Analog Prototyping and 

Direct Design, we chose Analog Prototyping because the Direct Design 

technique has very stringent numerical accuracy constraints. 

The Analog Prototyping technique allows the construction of digital 

equivalents of certain classical analog filters, especially Butterworth, Bessel, 

Chebyshev, and Elliptic. Among them and for ours purpose the Chebyshev Type 

II filter has the narrower transition and the flatter pass band response needed for 

the analysis of the data. 

Analog filters are IIR (infinite-duration impulse) type filters, which 

necessarily introduce phase distortion. In order to overcome this problem the 

data was filtered both directions, forward and reverse by using the Matlab 

function filtfilt (Mathworks, 1994). With this approach, we can get precise zero- 

phase distortion and doubling of the filter order. Also, filtfilt minimizes startup 

and ending transients by adjusting initial conditions. 

18 



B. THE XCORRELATION FUNCTION 

Matlab's function xcorr estimates the cross-correlation sequence of 

random processes. For the purpose of determining phase velocity values from 

apparently random time series, the cross-correlation function is important 

because it can provide a measure of the similarity between two signals. 

The xcorr function can calculate the cross-correlation between two arrays 

of vectors of the same length, the autocorrelation for a vector, and the cross- 

correlation for a matrix. In all these forms of xcorr, the zero lag of the output is in 

the middle of the sequence. In order to normalized the sequence we used the 

option 'coeff so the autocorrelations at zero lag are identically 1.0. 

C. PROCEDURE AND RESULTS 

Figure 4.1 shows the Fourier transform of the pressure time series for the 

three buoys. From the shape of the spectrum, we can conclude that waves due 

to the local wind may correspond to frequencies above 0.1 Hz. If phase velocity 

values can be used to determine local bathymetry, waves generated by the local 

wind are unwelcome noise for the purpose of our analysis. Instead, the longer 

waves in the swell may characterize the bathymetry more accurately because of 

their direct response to the bottom topography manifested by refraction and 

diffraction effects. Swell may correspond to frequencies below 0.08 Hz, which 

we chose as the cutoff frequency for the low pass band of the filter. 
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Figure 4.1. FFT of the pressure data for the three buoys. Frequencies above 0.1 Hz may 
correspond to waves generated by the local wind as evidenced by the increase of 
spectral energy and range. 

With this information in mind, we filtered the whole time series using a 

Chebyshev Type II filter with a cut off frequency of 0.08 Hz.   Because of the 

Chebyshev Type II filter introduces phase distortion, the wave data was filtered 

in both the forward and reverse directions using the MATLAB function  filtfilt, thus 
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obtaining precise zero-phase distortion and doubling of the filter order. As 

mentioned before, filtfilt minimizes startup and ending transients by adjusting 

initial conditions. 

We applied the Hubert transform to the filtered time series. Figure 4.2 

shows the Matlab Power Spectrum function (PSD) of unfiltered time series and 

the PSD of the Hubert transform of the data from the first buoy after filtering. 

Apparent from the figure, is that the power spectrum of the unfiltered data does 

not exhibit very good frequency-energy decomposition. On the other hand, the 

power spectrum of the Hubert transform of the filtered time series shows good 

frequency-energy decomposition and enhancement of the more energetic waves 

of the filtered time series. 

The data from each buoy has 172,800 points corresponding to two data 

point per second in a full day. Because this large array is numerically very 

demanding, we chose to work with a window of two hours, or 10% of the whole 

data. We applied Matlab's Hilbert transform (£(t)) function to the filtered data in 

this time window.  Along with the real time series (Y1), MATLAB generates the 

analytical signal 

Z(t) = Y1(t) + i^ (t)   , (4.1) 

which is similar to Eq. (3.2). 
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Figure 4.2. a) Power spectrum density for the pressure data at buoy 1 without filtering, b) Power 
spectra density of the Hubert transform after low pass filtering using a Chebyshev 
type II filter with a 0.08 cutoff frequency. 

Matlab's functions angle and unwrap (phase in radians 2*pi wrap), provide 

the phase of the time series (4.1). Shown in Figure 4.3 are the graphs 

corresponding to the phase of the whole pressure data from buoy 1 and also for 

the two hours window. 
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Figure 4.3. Phase (rad) as a function of time (min) for the pressure data at buoy 1 for a) one day, 
b) two hours. 

The local frequency is by definition the slope of the phase and we applied 

to the phase data the MATLAB function diff and divided by the time between 

points (called tbp in Appendix) to get this slope. Figure 4.4 shows a plot of the 

local frequency as a function of time obtained from the data shown in Figure 4.3. 
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Figure 4.4. Local angular frequency as a function of time for buoy 1 for a two hour time window. 
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Figure 4.5 shows the cross-correlation of data from buoys 1, 2, and 3 

using the xcorrfunction in MATLAB. The cross-correlation is blown-up in Figure 

4.6. At the maximum of the cross-correlation we can obtain the time when the 

signals from two different buoys are highly correlated. Using this time, and 

knowing the distance between buoys, we can estimate the phase velocity at 

which the wave is moving from one buoy to the other.   Assuming that the three 

buoys started to record the data at the same time, we get the phase velocities 

estimates shown in Table 4-1. 
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Figure 4.5. Cross correlation of the phase between a) buoys 1 and 2, b) buoys 1 and 3, and c) 
buoys 3 and 2. 
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Figure 4.6. Blown up of the cross correlations in Figure 4.5. 

distance correlation time calculated phase 
velocity 

Buoy 1 - Buoy 2 123.46 m 34 s 3.63 m/s 

Buoy 2 - Buoy 3 219.16 m 163 s 1.35 m / s 

Buoy 1 - Buoy 3 342.62 m 102 s 3.36 m / s 

Table 4-1. Relations of the distances among the buoys, correlation time and phase velocity. 
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V. DISCUSSION OF RESULTS AND RECOMMENDATIONS FOR 
FUTURE WORK 

We have investigated the Hubert transform as a tool to determine phase 

velocity from ocean wave data of three buoys. The values tabulated in Table 4-1 

were obtained by dividing the distance between buoys by the time for maximum 

phase correlation of the time series of pressure measurements at the 

corresponding buoys. 

Table 5-1 is a comparison between the values of phase velocity as 

determined by the correlation times to the values of phase velocity assuming 

linear shallow water theory over uniform bottom topography. The value of the 

phase velocity determined from shallow water theory represents an upper bound. 

If the normal to the wave front makes an angle with the line joining two buoys, 

the value of phase velocity obtained from correlations of the time series will yield 

an underestimation. Thus, the low values obtained from the correlations may be 

due, in part, to an effective average over all possible directions. 

phase velocity from 
correlations 

average depth calculated phase 
velocity 

Buoy 1 - Buoy 2 3.63 m/s 6.10 m 7.73 m/sec 

Buoy 2 - Buoy 3 1.35 m/s 3.81 m 6.11 m/sec 

Buoy 1 - Buoy 3 3.36 m/s 5.34 m 7.23 m / sec 

Table 5.1 Comparison of phase velocity values determined from correlations (second 
column) and from shallow water theory (fourth column) assuming uniform depth 
(third column). 
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It is then apparent that to accurately determine the phase velocity from 

time series, we require an accurate directional spectral data or surface height 

time series from a bigger array of buoys. An accurate directional spectra 

provides the necessary angular information that can be used to determine the 

true value of the phase velocity. As shown by Rikiishi (1978) time series from a 

minimum of three buoys cannot be used to determine directional spectra for a 

broadband distribution of waves. 

Any data analysis on time series from pressure gauge measurements 

have fundamental limitations. First, because the pressure gauge responds to 

the rise and fall to the free surface, the pressure at depth z attenuates by a factor 

proportional to e_kz where k is 2%IX and X is the wavelength of the Fourier 

component of the surface disturbance. Unless the wave data corresponds 

exclusively to shallow water, the correlation time determined from the phase of 

the Hubert transform at two points may be inaccurate. Second, if the wave field 

is nonlinear, the pressure and the surface height are nonlinearly related. Due to 

nonlinearities, the correlation time from pressure gauge measurements may yield 

misleading phase velocity results. Thus, phase velocity values from phase 

correlations using the Hubert transform, are more reliable with time series of 

surface height measurements. 

If the deficiencies noted above can be corrected, the preliminary results of 

this thesis are evidence of the powerful technique of using Hubert transform to 

determine the phase velocity of low frequency shoaling waves. This technique 

can be summarize operationally as follows. The analytic signal of a time series 
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possesses a natural phase. Correlations of the phase yield an average time of 

travel. If directional spectra are available, the angular information can then yield 

the true time of travel from which the phase velocity can be determined. In this 

approach, there is no explicit assumption of the relation between frequency and 

wavenumber of waves in the wave field, indicating that it may be applicable to 

arbitrary wave fields, both linear and nonlinear. 
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APPENDIX MATLAB CODE 

This appendix contains the particular mfile (Matlab Code) that we used to 

analyze the data from the three buoys in order to extract the information that we 

were interesting on. 

%Loading the desired data 

load 16jul1a.dat 

p1=16jul1a(:,1) 

clear 16jul1a 

load 16jul2a.dat 

P2=jul2a(:,1) 

clear 16jul2a 

load 16jul3a.dat 

p3=16jul3a(:,3) 

clear 16jul3a 

p1=p1-mean(p1) 

p2=p2-mean(p2) 

p3=p3-mean(p3) 

fs=2 

M1=max(size(p1)) 

N=172800 

f=0:fs/N:(N-1)*(fs/N) 

tbp=0.5 

t1=[1:M1].*(tbp/60) 

%Sampling frequency 

%Get Number of data points 

%Total number of points 

%Normalizing the x-axis to frequency 

%Time between data points in seconds 

%Normalizing the x-axis to time in minutes 

% Looking for the FFT of the data from the three buoys to select the 

desired frequencies 
P1=fft(p1)*2/length(p1) 

P2=fft(p2)*2/length(p2) 

P3=fft(p3)*2/length(p3) 

% Applying the filter and Hubert Transform to the data 
cf_low=0.08 ; %cut off frequency for buoys 1,2 and 3. 

[b1,a1]=cheby2(5,40,cfJow/(fs/2));%Chebyshev filter 5 order 40 dB for data 

%form buoy 1 
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Y1=filtfilt(b1,a1,p1) 

clear p1 

V_wavep1=hilberl(Y1) 

phasepl =angle(V_wavep1) 

[S1,f1]=psd(Y1,1024,fs) 

[S2,f2]=psd(V_wavep1,1024,fs) 

; %Filtering data from buoy 1 

; %Clear data pressure 1 from memory 

; %Hilbert Transform data from buoy 1 

; %Phase of the Hubert Transform for buoy 1 

;%examine spectrum of the low wave 

%without filtering 

;%examine spectrum of the low wave 

%after filtering and the Hubert transform 

[b2,a2]=cheby2(5,40,cf_low/(fs/2)); %Chebyshev filter order 5 , 40 dB. 

Y2=filtfilt(b2, a2, p2) ;%Filtering data from buoy2 

clear p2 ; %Clear data pressure 2 from memory 

V_wavep2=hilbert(Y2) ; %Hilbert Transform data from buoy 2 

phasep2=angle(V_wavep2) ; %Phase of the Hubert Transform for buoy 1 

[b3,a3]=cheby2(5,40,cf_low/(fs/2)); %Chebyshev filter for data from buoy 3 

Y3=filtfilt(b3, a3, p3) ; %Filtering data from buoy 3 

V_wavep3=hilbert(Y3) ; %Hilbert Transform data from buoy 3 

phasep3=angle(V_wavep3) ; %Phase of the Hilbert Transform for buoy 1 

clear p3 ; %Clear data pressure 3 from memory 
%Looking in a two hours windows of the data for each buoy 
V_wavep1 =V_wavep1 (1:14400) 

V_wavep2=V_wavep2(1:14400) 

V_wavep3=V_wave p3(1:14400) 

Y1=Y1 (1:14400) 

Y2=Y2(1:14400) 

Y3=Y3(1:14400) 

t1=t1 (1:14400) 

%points correspond to a two hours  windows 

%points correspond to a two hours windows 

%points correspond, to a two hours windows 

%points correspond to a two hours windows 

%points correspond to a two hours windows 

%points correspond to a two hours windows 

%Two hour time window 

%Looking for the phase of the Hilbert Transform for the two hour window 
theta1=unwrap(angle(V_wavep1)); %Phase of the Hilbert transform in radians 

theta2=unwrap(angle(V_wavep2)); %Phase of the Hilbert transform in radians 

theta3=unwrap(angle(V_wavep3)); %Phase of the Hilbert transform in radians 

%Looking for the derivative of the phase of the Hilbert Transform for the 
two hour window 
dthetal = diff(theta1 ./tbp) ; %By definition the Local frequency at 

32 



%buoy 1 

dtheta2 = diff(theta2./tbp) ;%By definition the Local frequency at 

%buoy 2 

dtheta3 = diff(theta3./tbp) ;%By definition the Local frequency at 

%buoy 3 

%Looking for the cross-correlation of the phase of the Hubert transform 

Cp21=xcorr(phasep2, phasepl ,'coeff)      ;%Xcorrelations of the phase of the 

%signal from Buoy 2 and 1. 

Cp31=xcorr(phasep3, phasepl ,'coeff')      ;%Xcorrelations of the phase of the 

%signal from Buoy 3 and 1. 

Cp32=xcorr(phasep3, phasep2,'coeff')      ;%Xcorrelations of the phase of the 

%signal from Buoy 3 and 2. 

Cps21 =fftshift(Cp21) ; %Shift of the correlations 

Cps31 =fftshift(Cp31) ; %Shift of the correlations 

Cps32=fftshift(Cp32) ; %Shift of the correlations 

%Plots of the FFT of the data pressure from the three buoys 

subplot (3,1,1) 

plot(f,abs(P1)),axis([0 0.5 0 0.05]),grid,title('FFT of Data Pressure 

of buoy 1 vs Frequency'), 

subplot (3,1,2) 

plot(f,abs(P2)),axis([0 0.5 0 0.05]),grid, 

title('FFT of Data Pressure of buoy 2 vs Frequency'), 
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subplot (3,1,3) 

plot(f,abs(P3)),axis([0 0.5 0 0.05]),grid, 

title('FFT of Data Pressure of buoy 3 vs Frequency'), 

xlabel('Frequency'),ylabel('Normalized magnitude')     ; 

clear P1; clear P2; clear P3 ;%Release memory 

%Plot of the Power Estimate Spectrum 

figure; elf; 

subplot(2,1, 1) 

loglog(f1,S1),axis([1E-3 1 1E-6 1]); 

title('Power spectrum Estimate of Pressure data frequency without filtering'); 

ylabel('magnitude (dB)'); 

subplot(2, 1,2) 

loglog(f2,S2),axis([1E-3 1 1E-6 1]); 

title('Power spectrum Estimate of V_wavep1 after Hilbert Transform '); 

xlabel(['frequency(Hz)-cutofffrequency',num2str(cf_low),'Hz']); 

ylabel('magnitude (dB)'); 

%Plot of the Phase in radians (Unwrap) of the Hilbert transform 

figure; elf; 

subplot(3,1,1) 

plot(t1,(phase_1)), 

titlefPlot of the phase of Hilbert Transform of the pressure data buoy 1'); 

xlabel('time(min)');ylabel('Phase(rad)'); 
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subplot(3,1,2) 

plot(t1 ,(phase_2)),title('Plot of the phase of Hilbert Transform of the pressure 

data buoy 2'); xlabel('time(min)');ylabel('Phase(rad)'); 

subplot(3,1,3) 

plot(t1,(phase_3)),title('Plot of the phase of Hilbert Transform of the pressure 

data buoy 3'); xlabel('time(min)'); ylabel('Phase(rad)'); 

%Plots of the Local frequency as a function of the time, data from buoy 1 

figure; elf; 

plot(t1,dtheta1); titlefPlot of the Local Frequency as a function of time at buoy 

1'); xlabel('time(min)'); ylabel('frequency(rad/sec)'); 

%Plots of the correlations of the data of the three buoys 

figure;clf; 

subplot(3,1,1) 

plot(t1,abs(Cp21)),grid,title('Correlation of Phase of the data from Buoy 2 and 

Buoy 1'),xlabel(Time(sec)'); 

subplot(3, 1,2) 

plot(t1,abs(Cp31)),grid,title('Correlation of   Phase of the data from Buoy 3 and 

Buoy 1'))xlabel(Time(sec)'); 

subplot(3, 1,3) 

plot(t1 ,abs(Cp32)),grid,title('Correlation of   Phase of the data from Buoy 3 and 

Buoy 2'),xlabel(Time(sec)'); 

%Plot of the shift of the correlations of the Phase from the three buoys 
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figure;clf; 

subplot(3,1,1) 

plot(t1,abs(Cps21)),grid)title('Shift of Correlation of Phase of the data from Buoy 

2 and Buoy 1 '),axis([0 1500 0 1]); 

subplot(3, 1, 2) 

plot(t1,abs(Cps31)),grid,title('Shift of Correlation of Phase of the data from Buoy 

3 and Buoy 1'),axis([0 1500 0 1]); 

subplot(3,1,3) 

plot(t1,abs(Cps32)),grid,title('Shift of Correlation of Phase of the data from Buoy 

3 and Buoy 2'),axis([0 1500 0 1]); 

%Plot of the Maximum values of the shifted correlations 

figure;clf; 

subplot(3, 1,1) 

plot(abs(Cps21)),grid,title('Max. value of the Correlation of the Phase of the data 

from Buoy 2 and Buoy 1'),axis([0 40 0.7 0.85]); 

subplot(3, 1,2) 

plot(abs(Cps31)),grid,title('Max. value of the Correlation of the Phase of the data 

from Buoy 3 and Buoy 1'),axis([75 150 0.5 0.7]); 

subplot(3, 1,3) 

plot(abs(Cps32)),grid,title('Max. value of the Correlation of the Phase of the data 

from Buoy 3 and Buoy 2'),axis([120 200 0.5 0.66]); 
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