
I* National Defence Defense nationale
Research and Bureau de recherche
Development Branch et developpement

TECHNICAL MEMORANDUM 97/231
June 1996

TRANSOM: A MULTI-METHOD
REYNOLDS-AVERAGED NAVIER-STOKES SOLVER:

OVERALL DESIGN

David Hally

S3TI0 flU&MST BffHEBCaBD 4

Defence
Research
Establishment
Atlantic

Canada

Centre de
Recherches pour la
Defense
Atlantique

19970911 078

DEFENCE RESEARCH ESTABLISHMENT ATLANTIC CENTRE DE RECHERCHES POUR LA DEFENSE ATLANT1QUE

9 GROVE STREET P.O. BOX1012 9 GROVE STREET C.P. BOX 1012
DARTMOUTH, N.S. TELEPHONE DARTMOUTH, N.E.
B2Y 3Z7 (902)426-3100 B2Y 3Z7

Illpl National Defence Defense nationale
Research and Bureau de recherche
Development Branch et developpement

TRANSOM: A MULTI-METHOD

REYNOLDS-AVERAGED NAVIER-STOKES SOLVER:

OVERALL DESIGN

David Hally

June 1996

Approved by R.W. Graham: / (x^y/^-y\, .-> •/-,-,
Head/Hydronautics Section !/sf ~/y

TECHNICAL MEMORANDUM 97/231

Defence A^Ä^- Centre de

Research ofii^itw Recnercnes P°ur la
Establishment {Mjm^r^ Defense
Atlantic mmß> Atlantique

Canada

Abstract

TRANSOM is a multi-block, multi-method Reynolds-Averaged Navier
Stokes solver being developed at DREA to address problems associated with
the flow around ships and submarines. It is multi-block because the flow is
divided into several distinct regions. It is multi-method because a different
solution method may be used on each of the flow regions. At present two
different methods of solution can be chosen: a finite-volume solver based on
the pseudo-compressibility method; and a finite element solver which uses
the penalty function method to determine the pressure.

TRANSOM is written in C++ following principles of Object Oriented
Programming. This document describes the overall design of TRANSOM
with emphasis on the class hierarchies used to represent different types of
blocks and flow solvers. The algorithms used to implement the pseudo-
compressibility and finite element methods are not discussed here; two
companion reports describe these sub-solvers in detail.

Resume
TRANSOM est un resolveur Navier-Stokes pondere Reynolds,

multim£thode, multibloc, que le CRDA est en train de developper pour
r£soudre des problemes concernant l'gcoulement autour des navires et des
sous-marins. II est multibloc parce que l'öcoulement se divise en plusieurs
regions distinctes. II est multim£thode parce qu'il permet d'utiliser une
technique de solution differente pour chacun des regions de l'6coulement. A
l'heure actuelle on peut choisir entre deux m£thodes de solution: un
resolveur ä volumes finis base sur la möthode de pseudo-compressibilite et
un resolveur par elements finis qui utilise la m£thode de la fonction de
penalite" pour determiner la pression.

TRANSOM a £te £crit en C++ en suivant les principes de la
programmation orientee objet. Ce document döcrit la conception generate de
TRANSOM et met 1'accent sur les hierarchies de classe utilises pour
repr£senter differents types de blocs et de resolveurs d'ecoulement. Les
algorithmes utilises pour mettre en oeuvre les m<§thodes de pseudo-
compressibilite et par elements finis ne sont pas trails ici. Deux rapports
d'accompagnement decrivent ces sous-resolveurs en detail.

11

DREA TEchnical Memorandum TM/97/231

TRANSOM

A Multi-Method Reynolds-Averaged Navier-Stokes Solver

Overall Design
by

David Hally

Executive Summary

Background

The numerical prediction of marine propeller performance and
cavitation requires an accurate prediction of the nominal wake: that is, the
flow into the propeller plane without the influence of the propeller itself. At
DREA, the nominal wake is currently calculated with the HLLFLO programs
which use a panel method to predict the potential flow and a boundary layer
method to predict the viscous flow.

The HLLFLO programs have the advantage that they are very fast. They
yield fairly good predictions for unappended destroyer hulls; however, there
are several areas in which the predictions can be improved.
1. As is typical of boundary layer methods, the wake deficit is over-predicted

near the stern. This is especially noticeable at model-scale Reynolds
numbers.

2. HLLFLO is incapable of handling the flow past appendages. The wakes
shed from the propeller shafts and shaft brackets can cause significant
spatially concentrated wake defects which, in turn, affect higher
harmonics of the radiated propeller noise and the speed at which
cavitation first occurs.

3. HLLFLO does not account for the influence of the boundary layer on the
potential flow.

These effects are especially important for smaller vessels with low
length /beam ratios. Moreover, HLLFLO is incapable of handling the complex
geometries of submarines or advanced marine vehicles such as small water
area twin hull (SWATH) ships.

Principal Results

The program TRANSOM has been developed address these deficiencies.
TRANSOM is a multi-block, multi-method Reynolds-Averaged Navier
Stokes solver; multi-block because the flow is divided into several distinct
regions called blocks; multi-method because a different solution method may
be used on each of the blocks.

The current version of TRANSOM includes two different solution

in

methods which can be used on the blocks. The first is a pseudo-
compressibility method based on the work of Rogers and Kwak; it is suitable
for use on structured blocks. The second uses the finite element method and
is based on the program MEF developed at University Laval; it is suitable for
use on unstructured blocks. Turbulence may be modelled using variants of
the k-e model or by the Baldwin-Lomax model. Currently only two-
dimensional flow can be modelled.

TRANSOM is written in C++ following principles of Object Oriented
Programming. This document describes the overall design of TRANSOM
and, in particular, the class hierarchies used to represent different types of
blocks and flow solvers. The algorithms used to implement the pseudo-
compressibility and finite element methods are not discussed here; two
companion reports describe these sub-solvers in detail.

Significance of Results
When TRANSOM is fully developed it will provide accurate numerical

predictions of the flow into the propeller plane. It will also be applicable to
many other flow problems related to ships: for example, flow around
submarines, vortex generation from propellers and control surfaces, bilge
vortex generation, prediction of roll damping coefficients, and prediction of
the lift and drag characteristics of lifting surfaces such as submarine control
planes, rudders, and fin stabilizers.

Future Work
TRANSOM is still under development; the current version will only

solve two-dimensional flows and requires upgrading in many areas, in
particular the ways in which different solution methods interact at their
common block boundaries. Further development will be done at DREA and
under contract.

IV

Table of Contents
Abstract ii

R£sum£ ii

Executive Summary iii

Table of Contents v

List of Figures vi

1 Introduction 1

2 Grids, Blocks and Point Collections 3

2.1 Nodes 3

2.2 Node Iterators 4

2.3 Node Organizers 5

2.4 Collections of Points 6

2.5 Grids 8

3 Flow Representation 10

3.1 The NodeVar class 10

3.2 The NumNodeVar Class 11

3.3 The MultiNumVar Class 12

3.4 The lOVar Class 13

3.5 Flow Representation Classes 15

3.5.1 The VellOVar Class 15

3.5.2 The PVlOVar Class 16

3.5.3 The SfnclOVar Class 16

3.5.4 The TurblOVar Class 17

3.4.5 The KEIOVar Class 17

4 Solvers 17

4.1 The Sweep class 18

4.2 The StopTest class 19

4.2.1 The ReportStopTest Class 20

4.2.2 The NTimesStopTest class 21

4.2.3 The CompDataStopTest class 22

4.3 The Solver class 23

4.4 Multiple Sweep Solvers 24

4.4.1 Concurrent Solvers 24

4.4.2 Sequential Solvers 25

4.4.3 Implementation of Multiple Sweep Solvers 26

4.4.3.1 The SweepConnection Class 26

4.4.3.2 The ConnectedSolver Class 26

4.4.3.3 The ConcSolver Class 28

4.4.3.4 The SeqSolver Class 29

4.5 Flow Solvers 29

4.6 Residual Solvers 32

4.6.1 The ResidualStopTest Class 33

4.6.2 The ResidualSweep Class 33

4.6.3 The ResidualSolver Class 34

5 The Main Program 35

6 Concluding Remarks 35

References 37

List of Figures
Figure 1: Class hierarchy for the PointColl Class and its specializations 4

Figure 2: Class hierarchy for the NodeOrg Class and its specializations 6

Figure 3: Class hierarchy for classes describing flow variables 10

Figure 4: Class hierarchy for Sweep and its specializations 19

Figure 5: Class hierarchy for StopTest and its specializations 20

Figure 6: Class hierarchy for Solver and its specializations 24

Figure 7: Class hierarchy for FlowSolver and its specializations 30

VI

1 Introduction
At high speeds the noise radiated by a warship is primarily due to

cavitation on its propellers. Naval propellers are designed so that cavitation
inception is delayed to as high a speed as possible, but the design method
requires an accurate prediction of the flow into the propeller plane. Over the
past decade computer programs have been developed at DREA to predict the
flow into the propeller plane. Known collectively as HLLFLO[l], these
programs use a low-order panel method to predict the potential flow and a
boundary layer method to calculate the viscous flow.

The HLLFLO programs have the advantage that they are very fast. They
yield fairly good predictions for unappended destroyer hulls[2]; however,
there are several areas in which the predictions can be improved.

1. As is typical of boundary layer methods, the wake deficit is over-predicted
near the stern. This is especially noticeable at model-scale Reynolds
numbers.

2. HLLFLO is incapable of handling the flow past appendages. The wakes
shed from the propeller shafts and shaft brackets can cause significant spa-
tially concentrated wake defects which, in turn, affect higher harmonics of
the radiated propeller noiseand the speed at which cavitation first occurs.

3. HLLFLO does not account for the influence of the boundary layer on the
potential flow.

These effects will be exacerbated by the current trend toward smaller vessels
with smaller length/beam ratios. Moreover, HLLFLO is incapable of han-
dling the complex geometries of submarines or advanced marine vehicles
such as SWATHs.

The program TRANSOM is intended to address these deficiencies.
TRANSOM is a Reynolds-Averaged Navier-Stokes (RANS) solver: in con-
junction with a turbulence model, it solves the Navier-Stokes equations on a
grid of points which cover the regions of flow.

The chief practical problem in developing a Navier-Stokes solver for the
flow past a ship is that the Reynolds Number is so high: for a destroyer
moving at 20 knots the Reynolds number is about 109. The higher the
Reynolds number, the more grid points are necessary to resolve the severe
velocity gradients near solid surfaces. For this reason, issues of computer
storage are of extreme importance.

Because of the complex geometries of appended surface ships or
submarines, the type of grid used in the calculations is also important because
it affects the amount of computer storage required. Methods which allow the
use of unstructured grids (e.g. finite element solvers) typically require far
greater computer storage than methods which require structured grids. Thus,
there is a trade-off between the ease generating the grid, and the storage
requirements. To address this problem, TRANSOM has been designed as a

multi-block multi-method solver. The numerical grid may consist of several
blocks, some of which are structured, some unstructured. On each block a
solver appropriate to the block structure is used. Since the areas of complex
geometry are usually small in comparison with the whole ship, it should be
possible to reduce the computer storage requirements significantly.

The current version of TRANSOM includes two different solution meth-
ods which can be used on the blocks. The first is based on the program NSI2D
developed for DREA under contract to the University of Toronto[3,4,5]; it is
suitable for use on a single structured block. The algorithm is a variant of the
pseudo-compressibility method developed by Rogers and Kwak[6]. Currently
only two-dimensional flow can be modelled; NSI2D was extended to three-
dimenional flow in 1996 but the changes have not yet been incorporated into
TRANSOM. Turbulence may be modelled either by the Baldwin-Lomax
model[7] or by the Chen-Patel variant of the k-e model[8]. Implementation of
the Baldwin-Barth model[9] is currently underway.

The second solution is based on the finite element program MEF devel-
oped at Universite Laval[10]; it is suitable for use on unstructured blocks.
MEF was modified at DREA to model turbulence using a variant of the k-e
modelfll]. However, the turbulence modelling has not yet been incorporated
into TRANSOM; the finite element solver is currently restricted to two-
dimensional laminar flow.

The name TRANSOM stands for The Reynolds-Averaged Navier-Stokes
Omnigenic Method, a rather strained attempt to generate an acronym that is
both easy to remember and has a connection with the ship-based flows for
which TRANSOM is to be used.

TRANSOM is written in C++ following principles of Object Oriented
Programming. This document describes the overall design of TRANSOM
and, in particular, the class hierarchies used to represent different types of
blocks and flow solvers. The algorithms used to implement the pseudo-
compressibility and finite element methods are not discussed here; two
companion reports[12,13] describe these sub-solvers in detail.

TRANSOM is still under development; the current version will only
solve two-dimensional flows and requires upgrading in many areas, in
particular the ways in which different solution methods interact at their
common block boundaries. Further development will be done both at DREA
and under contract.

When TRANSOM is fully developed it will provide accurate numerical
predictions of the flow into the propeller plane. It will also be applicable to
many other flow problems related to ships: for example, flow around
submarines, vortex generation from propellers and control surfaces, bilge
vortex generation, prediction of roll damping coefficients, and prediction of
the lift and drag characteristics of lifting surfaces such as submarine control
planes, rudders, and fin stabilizers.

TRANSOM is primarily concerned with three main types of object:
collections of points such as grids, structured blocks, and unstructured blocks;
collections of variables at the points of the grid; and solvers. Class hierarchies
for each of these objects are described in Sections 2 to 4. Section 5 describes the
TRANSOM main program. A user's guide for the program is also provided
in Reference [14].

TRANSOM input and output files use the OFFSRF format described in
Reference 15. Reference 16 describes C++ classes which implement special-
ized input and output streams for OFFSRF files and a base class which is in-
herited by all classes which read from or write to OFFSRF files; it should be
read prior to this document for a proper understanding of TRANSOM input
and output.

2 Grids, Blocks and Point Collections
In TRANSOM, the flow is approximated by specifying flow parameters

(velocity, pressure, turbulence model variables, etc.) at each point of a grid.
Borrowing from finite element jargon, we will call each point in a grid a
node.

Collections of nodes may be ordered in many different ways. For
example, a grid is simply a collection of sub-grids or blocks. A block may be
structured, i.e. it can be ordered into a rectangular array of points, or
unstructured, like the grids used in calculations using the finite element
method. In TRANSOM, the organization of a collection of points is
recognized as an important abstraction independent of the points themselves;
it is represented by the class NodeOrg described in Section 2.3.

There are several classes for representing different types of collections of
points, each of which is derived from the base class PointColl. Figure 1 shows
the class hierarchy for the most important of these classes. In this section the
PointColl and Grid classes are described. The class SBIock and its specializations
S2dBlock and S3dBlock represent structured blocks; they are described in
Reference 12. The class FEBIock represents an unstructured block organized
into elements suitable for finite element calculations; it is described in
Reference 13.

2.1 Nodes

The Node class is used as an index to the nodes in a grid. In TRANSOM
the Node class is implemented as an integer: the number of the node.

Since a Node is simply an index, its value depends on a numbering
system for the collection of nodes. In different contexts the same nodes may
be numbered in different ways. For example, consider a grid of 300 nodes
which are separated into three blocks of 100 nodes each. In a function which
uses the whole grid, the nodes of the third block are numbered from 200 to

PointColl

f >

Grid SBIock FEBIock

f 1
S2dBlock] S3dBlock

Figure 1: Class hierarchy for the PointColl Class and its specializations

299. However, in a function which uses only one block at a time, it may be
more convenient to number the 100 nodes of the third block from 0 to 99. In
both cases the Node class is used to store the number of the nodes.

The allocation of a numbering system to a collection of nodes is the job of
node organizers, discussed in the Section 2.3.

2.2 Node Iterators
An iterator is a class which returns, in some well-defined sequence, each

object in a collection of objects. A Nodelter is an iterator over a collection of
nodes. Suppose that iter is a Nodelter. Then the iteration can be performed as
follows:

iter.reset();
while(iter.in_range())

{
Node n = (Node)iter;
// Do something with n
iter.next();

}
At any time during the iteration the current node may be obtained by

casting the iterator to a Node; in the above code this is done on the first line in
the while loop. This syntax is very convenient when the node is to be used as
an argument to a function; then the conversion will take place automatically
if the iterator is used as the argument. TRANSOM uses a similar syntax for
all its iterator classes.

The member function reset() resets the iterator to the first node in the
collection. The member function next() advances the iterator to the next
node; most iterators also have a prev() function which backs the iteration up
to the previous node. The member function in_range() returns true if the
current node belongs to the collection, false if it does not (i.e. if the iteration
has finished).

For maximum efficiency, the member functions of a Nod elter are not
virtual functions; however, there are many cases in which it is necessary that
they be so. For this reason a second class, AIINodelter, is also provided. It is
identical to Nodelter, but its member functions are declared virtual. The
name AIINodelter arises from the main use of the base class, namely to iterate
over all the nodes in a collection (see the next section).

2.3 Node Organizers

Algorithms for solving the Navier-Stokes equations are almost always
highly dependent on the way in which the nodes are organized. Finite
difference and finite volume methods usually require structured grids: i.e.
grids which are organized into rectangular arrays of nodes. For finite element
methods the grids need not be structured but they must be sub-divided into
elements of different kinds; each element is itself a collection of nodes.
Multigrid methods can require a hierarchy of grids: each grid in the hierarchy
is a subset of its parent so that a sparser covering of the fluid domain is
provided. Other subsets of a grid, such as its boundaries, are also commonly
considered as separate collections of nodes.

In TRANSOM the structure of collections of nodes is described by classes
called node organizers. Implicit in each node organizer is a numbering
scheme for the nodes. The full range of node numbers used by the
numbering scheme is from zero to N-l, where N, is called the "maximal
number of nodes". However, since the node organizer may only describe a
subset of the full range of nodes, N is not necessarily the same as the number
of nodes governed by the node organizer.

For example, consider a collection of eleven nodes numbered 0,--,10. A
node organizer, norg, is used to represent the odd numbered nodes. Then the
maximal number of nodes for norg is 11, while the number of nodes
governed by norg is only 5.

Most member functions of node organizers do one of four things.

1. They return the size of the collection of nodes. All node organizers will
return the total number of nodes. Node organizers for structured grids
also return the dimensions of the rectangular node array. Node organiz-
ers for finite element blocks return the number of elements of which the
block is comprised.

2. They return node iterators which navigate through the nodes in various
ways. All node organizers return a iterator which iterates over all the
nodes in the collection. Node organizers for structured blocks return
iterators over a single row or column of the block.

3. They return node organizers which describe a subset of the node
collection. For example, node organizers for finite element blocks will
return node organizers for any of the elements which they contain.

4. They alter the node organizer so that it describes a subset (or superset) of

NodeOrg

i + + +
RNodeOrg)[BaseS2dNodeOrg] fÜementNodeÖrg] [FENodeOrg]

£_=*
[S2dNodeOrg RefElement]

Figure 2: Class hierarchy for the NodeOrg Class and its specializations

the original collection of nodes. This type of member function is
particularly useful in multigrid solvers; the member function is called to
restrict the node organizer to the nodes in the next level of the hierarchy.
It is important to recognize that node organizers contain no information

on the location of a node in space; that is contained in the PointColl class and
its specializations, described in the next section.

The base class for node organizers is NodeOrg. It has only two member
functions:

unsigned num_nodes() const;
Returns the number of nodes organized by this NodeOrg.

virtual AIINodelter* get_all_node_iter() const-
Returns a pointer to an AIINodelter which iterates over the all the
nodes in the current NodeOrg. Memory for the iterator is allocated
from the heap and it is the responsibility of the calling function to
delete the node iterator when it is finished using it.

Figure 2 shows the class hierarchy for the most important node organiz-
ers used in TRANSOM. The RNodeOrg class defines a restriction to a subset of
the nodes in a collection; it is most useful for defining the rows or columns of
structured block; it is described in Reference 12. The classes Base2dNodeOrg
and S2dNodeOrg are used to organize structured two-dimensional blocks; they
are described in Reference 12. The FENodeOrg class organizes nodes into a col-
lection of elements for use in finite element calculations; it is described in
Reference 13. The class ElementNodeOrg is used to organize the nodes in a
single finite element and its specialization RefElement provides a description
of a generic reference element; both classes are described in Reference 12.

2.4 Collections of Points
The coordinate values of a collection of nodes are represented by the

PointColl class which is capable of describing points in one, two, or three
dimensions. It is the base of a hierarchy of classes which describe collections
of points with different structures; the most important classes in the

hierarchy are shown in Figure 1.

Each PointColl contains a NodeOrg which imparts the structure to the
collection of points. The prototypes for the PointColl constructors are:

PointCollfunsigned ndim, const NodeOrg &norg, double *d = 0);
Makes a PointColl whose points are of dimension ndim (one, two, or
three) and are organized by norg. If d is null, the default, new
memory will be allocated from the heap to store the coordinate
values; this memory is freed by the PointColl destructor. Otherwise the
values will be stored in the memory beginning at d; in this case the
memory is not freed by the PointColl destructor. Enough memory to
store ndim* N doubles is required, where N is the maximal number of
nodes of the node organizer.

PointColl(const PointColl &pc);
A copy constructor; new memory is allocated and the values in pc are
copied to the new PointColl.

Each PointColl also has a name by which it can be referred. For example,
when reading an input file, TRANSOM uses the name to allow two different
solvers to share the same block. The block is defined independently of the
solvers. The solvers specify the name of the block which they will use. The
block is then found and passed to the solvers for use in calculating the flow.

Values for the name and for the coordinates may be read from an
OFFSRF file using an extractor overloaded for the PointColl and OFFSRF_ifstream
classes (see Reference 16 for a description of OFFSRF files and the class
OFFSRFJfstream). If p is a PointColl and in_stream is an OFFSRFjfstream, then the
code

in_stream » p;

will read the name and the coordinate values from the OFFSRF file associated
with in_stream. The coordinates must be in the following format.

{NAME: name }
{COORDINATES

x2 y2 z2

JCOORDINATES

For one-dimensional point collections the y and z values are missing from
the COORDINATES record. For two-dimensional point collections only the z
values are missing.

All point collections have the following member functions.

unsigned num_nodes() const;
Returns the number of nodes in the point collection.

unsigned dim() const;
Returns the dimension (one, two, or three) of the points.

const Str& get_name() const;
Returns the name of the point collection (Str is a class representing
character strings).

NodeOrg *get_node_org() const;
Returns a pointer to the node organizer which gives the point
collection its structure.

double* operator[](Node);
Returns a pointer to the values of the coordinates. Thus, if p is a
PointColl, then p[n][0] is the x-value of the coordinates at node n, p[n][l]
is the y-value, and p[n][2] is the z-value.

2.5 Grids

A grid is a collection of points organized into blocks. It is represented by
the class Grid, a specialization of the class PointColl (see Figure 1). Each of the
blocks is also represented as a PointColl. Notice that, since a Grid is a type of
PointColl, this means that a grid can serve as the block of a different grid.

The coordinates of the points in the grid are shared with each of the
blocks. For example, suppose that g is a Grid which contains 100 points
shared among three blocks. The first block uses the first 30 of these points:
zero through 29. The second block uses the 50 points 30 through 79. The
third block uses the 30 points 70 through 99. Notice that the ten points 70
through 79 are used by two of the blocks.

The member function get_block returns a pointer to the block specified by
the argument name; its full prototype is

PointColl* get_block(const Str &name) const;
All the PointColl member functions described in Section 2.4 are also inherited
by the Grid class.

The name, coordinate values, and the blocks of a grid are specified by a
GRID record in an OFFSRF input file. The GRID record has the following
format.

{GRID: ndim npts
{NAME: name }
{COORDINATES

xi Vi z2

x2 y2 z2

%n y« zn

}COORDINATES
{FIRST NODE: node block-name }
Records to specify the blocks

}GRID

where ndim is the dimension of the coordinates (one, two, or three), and npts
is the number of points in the grid. For one-dimensional point collections

the y and z values are missing from the COORDINATES record. For two-
dimensional point collections only the z values are missing.

Currently three different types of blocks may be specified; each has an
associated class (derived from PointColl) and OFFSRF record.

1. The record FE BLOCK causes an FEBIock to be created and added to the grid.
These blocks are used in finite element solvers. The FEBIock class is
described in detail in Reference 13. The FE BLOCK record contains data
which define the FEBIock.

2. The record STRUCTURED BLOCK causes an S2dBlock to be created and
added to the grid. This class describes structured blocks which may be
used in finite difference or finite volume solvers. The S2dBlock class is
described in detail in Reference 12. The STRUCTURED BLOCK record
contains data which define the S2dBlock.

3. A nested GRID record causes a new Grid to be created and added as a block
to the current grid.
The FIRST NODE record is used to specify which node in the grid is used

for the first node in a block: node is the number of the node to be used as the
first node in the block with name block_name. If no first node is specified for
a given block, then the first unused node in the grid will be used. For
example, consider a GRID record which specifies that a grid has three blocks
each containing 30 points, but which has no FIRST NODE record. The first
block will then use the grid points 0 through 29, the second will use the grid
points 30 through 59, and the third the points 60 through 89.

An extractor is overloaded for the Grid and OFFSRF_ifstream classes. If g is a
Grid and in_stream is an OFFSRFjfstream, then the code

in_stream » g;

will read the records NAME, COORDINATES, FE BLOCK, STRUCTURED
BLOCK, FIRST NODE, and GRID and use them to update g.

The classes Grid, FEBIock, and S2dBlock are all able to read coordinate values
from a COORDINATES record. This means that one may choose where to
define the coordinate values in the input file. They can all be specified in the
GRID record, as shown above. Alternatively, the points for each block may be
specified within the records defining the blocks as in the following example.

{GRID: 2 90
{STRUCTURED BLOCK: 2 5 10

{NAME: Block #1 }
{COORDINATES

x49 y4g

JCOORDINATES
STRUCTURED BLOCK
{STRUCTURED BLOCK: 2 8 5

{NAME: Block #2 }

{COORDINATES
X50 V50

*89 3/89
}COORDINATES

JSTRUCTURED BLOCK
}GRID

If coordinate values are specified in both the grid and its blocks, the
values read last (i.e. those appearing last in the file) will override the values
read in earlier.

3 Flow Representation
In TRANSOM, the flow is approximated by specifying flow parameters

(velocity, pressure, turbulence model variables, etc.) at each point of the grid.
A hierarchy of classes is defined which allows variables of different types to be
associated with nodes. A diagram of the main classes in the hierarchy is
shown in Figure 3.

NodeVar MultiNumVar

NumNodeVar
±
lOVar

f J
PointCollection PVIOVar

See Figure 1

I
TurblOVar C

1
SfnclOVar

KEIOVar VellOVar]

Figure 3: Class hierarchy for classes describing flow variables

3.1 The NodeVar class

The NodeVar class is a template used to create collections of variables each
having a value at every node of a collection of points. Every instance of a
NodeVar is associated with a NodeOrg; the dimensions of the NodeVar are
derived from the NodeOrg and iterators returned by the NodeOrg may be used
to navigate through the elements of the NodeVar.

The prototypes for the constructors of a NodeVar which stores objects of
class T are:

NodeVar(const NodeOrg &norg, T *v = 0);
Creates a NodeVar which stores an object of class T at every node

10

governed by norg. If v is null, the default, new memory will be
allocated from the heap to store the values; this memory is freed by
the NodeVar destructor. Otherwise the values will be stored in the
memory beginning at v; in this case the memory is not freed by the
destructor. The memory required is sizeof(T)*N bytes, where TV is the
maximal number of nodes of the node organizer.

NodeVarfconst NodeVar &nv);
A copy constructor; new memory is allocated to store the objects and
their values are obtained by copying the objects in nv.

The first constructor allows values of a NodeVar to be shared with an
existing NodeVar. Shared values make sub-arrays possible so that, for
example, a NodeVar containing the coordinates for a block could share these
coordinates with a NodeVar containing the coordinates for a whole grid.

The following member functions are defined for the NodeVar class.

unsigned num_nodes() const;
Returns the number of nodes governed by the NodeVar node
organizer.

T& operator[](Node);
const T& operator[](Node) const;

The square bracket operator with Node arguments allows access to the
stored values. Thus if x is a NodeVar<int>, then x[n] is the integer
associated with node n.

3.2 The NumNodeVar Class

The class NumNodeVar is a specialization of the class NodeVar<double>: it
associates a single floating point value with every node governed by a node
organizer. Its constructors are the same as the constructors for
NodeVar<double>. The NodeVar member functions described in Section 3.1 are
also inherited by the NumNodeVar class.

The floating point values may be obtained using the square bracket opera-
tor with a Node argument. Thus, the following code creates a NumNodeVar
containing 100 nodes, then assigns the value 1.5 at every node. Recall that the
Nodelter n will automatically be converted to a Node when used as an argu-
ment to operator[](Node).

NodeOrg norg(100);
NumNodeVar nv(norg);
AIINodelter *n = norg.get_all_node_iter();
while (n->in_range())

{
nv[n] = 1.5;
n.next();

}
delete n;

The class NumNodeVar has been given several arithmetic operators to
facilitate computations which are applied to floating point values at every

11

node. The following member operators have been defined.

NumNodeVar& operator=(const NumNodeVar &v);
Copies the values in v.

NumNodeVar& operator-();
Negates all values.

NumNodeVar& operator+=(const NumNodeVar &v);
Increments the values by the values in v.

NumNodeVar& operator—(const NumNodeVar &v);
Decrements the values by the values in v.

NumNodeVar& operator*=(double d);
Multiplies all values by d.

NumNodeVar& operator/= (double d);
Divides all values by d.

NumNodeVar& zero();
Sets all values to zero.

The following operators and functions are also defined.

int operator==(const NumNodeVar &vcl, const NumNodeVar &vc2);
Returns true if vcl and vc2 are governed by the same node organizer
and, for every node, the value in vc 1 is the same as the value in vc2.

int operator!=(const NumNodeVar &vcl, const NumNodeVar &vc2);
Returns !(vcl == vc2).

double absfconst NumNodeVar &vc);
Returns the square root of the sum of the squares of the values at all
nodes.

double min(const NumNodeVar &vc);
Returns the minimum value stored at all nodes of vc.

double max(const NumNodeVar &vc);
Returns the maximum value stored at all nodes of vc.

double min_abs(const NumNodeVar &vc);
Returns the value stored in vc whose absolute value is smallest.

double max_abs(const NumNodeVar &vc);
Returns the value stored in vc whose absolute value is largest.

3.3 The MultiNumVar Class

The class MultiNumVar is similar to the NumNodeVar class: it associates
several floating point values with every node. The MultiNumVar class has
three constructors with the following prototypes.

MultiNumVar(unsigned nd, const NodeOrg &norg, double *d = 0);
Constructs an MultiNumVar governed by the NodeOrg norg. At each
node, nd doubles are stored. The doubles are stored starting at
memory location d. If d is null, new memory will be allocated for the
stored values.

12

MultiNumVar(const NodeOrg &norg, const MultiNumVar &iv, const Node &n);
Shared Copy constructor: constructs an MultiNumVar governed by norg
and with the same number of doubles as iv. The values in iv starting
at node n are shared.

MultiNumVarfconst MultiNumVar &iv);
A copy constructor: new memory is allocated for the stored values.

The following member functions are also defined.

unsigned num_nodes() const;
Returns the number of nodes at which the values are stored.

unsigned dim() const;
Returns the number of values stored at each node.

Given a Node argument, the square bracket operator returns a pointer to
the doubles associated with the node. Thus, the following code creates a
MultiNumVar with 100 nodes and associates 10 doubles with each node. At each
node the values of the doubles are set to 1.0 to 10.0.

NodeOrg norg(100);
MultiNumVar nv(10,&norg);
AIINodelter *n = norg.get_all_node_iter();
while (n->in_range())

{
for (unsigned i = 0; i < nv.dimf); i++)

nv[n][i] = i + 1;
n.nextf);

}
delete n;

The MultiNumVar class has the same arithmetic operators as the class
NumNodeVar, but they operate on all the doubles stored at each node.

3.4 The lOVar Class

The lOVar class is a specialization of the MultiNumVar class which is used to
represent global variables in TRANSOM. It provides a means of organizing
the floating point values at each node so that they can be associated more
easily with independent variables. A subset of the floating point values can
be identified and the arithmetic operators restricted so that they act upon that
subset only. Input and output functions are also defined so that the values
can be read from or written into an OFFSRF file.

The organization of the floating point values is specified using successive
calls to the lOVar member function add_to_structure whose full prototype is

void add_to_structure(const Str &s, unsigned n, unsigned off);
A call to add_to_structure assigns the name s to the n floating point values
beginning at the offset off. For example, suppose the lOVar pv is intended to
store the values of pressure and velocity in a two-dimensional flow. Three
floating point values are required at each node and it is decided that the first
should be pressure followed by the two velocity components. The lOVar can

13

be set up in this manner using the following code.

lOVar pv(3,norg); // norg is a pointer to a NodeOrg
pv.add_to_structure("Pressure", 1, 0);
pv.add_to_structure("Velocity", 2, 1);

The value of the pressure at node n may then be obtained by pv[n][0] and the
two velocity components by pv[n][l] and pv[n][2].

The member functions clear_active and activate_only may also be used to
change the organization of the variables. Their full prototypes are

void clear_active();
void activate_only(const Array<Str> &fields);

The former removes all organization of the variables; a new organization
may be defined using successive calls to add_to_structure.

The member function activate_only is used to restrict the organization of
an lOVar to certain variables. The argument fields is a list of names of the
variables which are to remain active. If a variable name is not in the list, it
will no longer be active. If fields contains a name which is not already part of
the lOVar organization, a fatal error will result.

The values for any of the named variables may be read from an OFFSRF
file using an extractor overloaded for the lOVar and OFFSRFjfstream classes (see
Reference 16 for a description of OFFSRF files and the class OFFSRFjfstream). If
pv is the lOVar defined above and in_stream is an OFFSRFjfstream, then the code

in_stream » pv;

will read the values for the pressure and velocity at each node from the
OFFSRF file associated with in_stream. The OFFSRF records should be named
"Pressure" and "Velocity", the same names used when defining the structure
of the floating point values with the calls to add_to_structure.

{Pressure
Vi Vi ■■■ Pn

JPressure
{Velocity

vx0 vy0
VX1 Vy!

Vxn Vyn

}Velocity
If one of the records is missing, the values for that variable will remain
undefined.

Similarly, an inserter is overloaded for the lOVar and OFFSRF_ofstream
classes. If pv is the lOVar defined above and out_stream is an OFFSRF_ofstream,
then the code

out_stream « pv;
will write "Pressure" and "Velocity" records in the OFFSRF file associated
with in stream.

14

The lOVar constructors are similar to those of the MultiNumVar class. Their
prototypes are:

lOVarfunsigned nd, const NodeOrg &norg, double *d = 0);
IOVar(const NodeOrg &norg, const lOVar &iv, const Node &n);
lOVarfconst lOVar &iv);

An important function of the lOVar class is to restrict a set of global vari-
ables to a subset of independent variables used by a solver. For example, con-
sider a solver, S, which solves the laminar Navier Stokes equations on a sin-
gle block. The solver is split into two sub-solvers, Si and S2, which are solved
in sequence: Si first determines the values of the pressure and velocity, then
S2 determines the streamfunction. A member of the main solver is an lOVar,
vars, which contains the fields "Pressure", "Velocity", and "Streamfunction";
it is passed to both Si and S2. Within Si the streamfunction is not used.
Therefore, a new lOVar, pv, is constructed from vars; it shares the values in vars
but restricts the active fields to "Pressure" and "Velocity". This is done as fol-
lows (a simpler method using the specialized class PVIOVar is described in
Section 3.5.2).

lOVar pv(*vars->get_node_org(),vars,0);
Array<Str> fields(2);
fields [0] = "Pressure";
fields[l] = "Velocity";
pv.activate_only (fields);

Similarly, in S2, an lOVar restricted only to the "Streamfunction" field is used.
Notice that, since the values of the restricted lOVar are shared with vars, the
main solver, S, has access to all the variables and can be used to handle all the
input and output in a consistent way.

3.5 Flow Representation Classes

The classes PVIOVar, VeNOVar, SfnclOVar, TurblOVar, and KEIOVar are
specializations of the lOVar class designed specifically for representing flow
variables.

3.5.1 The VeNOVar Class

A VeNOVar is an lOVar containing a single active field named "Velocity".
It has three constructors which correspond closely with the lOVar constructors.

VellOVarfunsigned nd, const NodeOrg &norg, double *d = 0);
Creates a VeNOVar for velocity variables of dimension nd. If d is non-
null, the velocity values will be stored starting at memory location d;
otherwise new memory will be allocated (and destroyed when the
VellOVar is destroyed).

VellOVarfconst NodeOrg &norg, const lOVar &iv, const Node &n);
Creates a VellOVar which shares the velocity values with the lOVar iv
starting at node n. If iv does not contain a field named "Velocity"
whose length is nd, a fatal error will result.

15

VellOVarfconst VellOVar &iv);
A copy constructor; new memory is allocated for the velocity values
and all values are copied to the newly constructed VellOVar.

The member function vel allows easy access to the velocity values; given a
Node argument, it returns a pointer to the velocity values at that node. Thus,
if v is a VellOVar, then v.vel(n)[0] is the x-component of the velocity at node n.

3.5.2 The PVIOVar Class

A PVIOVar is an lOVar containing two active fields named "Pressure" and
"Velocity". It has the following three constructors.

PVIOVar(unsigned nv, const NodeOrg &norg, double *d = 0);
Creates a PVIOVar with velocity variables of dimension nd. If d is non-
null, the pressure and velocity values will be stored starting at
memory location d; otherwise new memory will be allocated (and
destroyed when the PVIOVar is destroyed).

PVIOVarfconst NodeOrg &norg, const lOVar &iv, const Node &n);
Creates a PVIOVar which shares its values with the lOVar iv starting at
node n. If iv does not contain a field named "Pressure" and a field
named "Velocity" whose length is nd, a fatal error will result.

PVIOVar(const PVIOVar &iv);
A copy constructor; new memory is allocated for the velocity values
and all values are copied to the newly constructed PVIOVar.

The member functions p and vel allow easy access to the velocity values.
The latter is the same as the vel function of the VellOVar class. Given a Node
argument, the member function p returns the pressure value at that node.
Thus, if pv is a PVIOVar, then pv.p(n) is the pressure at node n.

3.5.3 The SfnclOVar Class

A SfnclOVar is an lOVar containing a single active field named
"Streamfunction". It has the following three constructors.

SfnclOVar(const NodeOrg &norg, double *d = 0);
Creates a SfnclOVar which stores only the value of the streamfunction
at each node. If d is non-null, the streamfunction values will be
stored starting at memory location d; otherwise new memory will be
allocated (and destroyed when the SfnclOVar is destroyed).

SfnclOVarfconst NodeOrg &norg, const lOVar &iv, const Node &n);
Creates a SfnclOVar which shares its values with the lOVar iv starting at
node n. If iv does not contain a field named "Streamfunction", a fatal
error will result.

SfnclOVarfconst SfnclOVar &iv);
A copy constructor; new memory is allocated for the velocity values
and all values are copied to the newly constructed SfnclOVar.

The member function sfnc allows easy access to the streamfunction val-

16

ues; given a Node argument, it returns the value of the streamfunction at that
node. Thus, if s is a SfnclOVar, then s.sfnc(n) is the streamfunction at node n.

3.5.4 The TurblOVar Class

A TurblOVar is an lOVar containing a single active field named "Turbulent
Viscosity". It has three constructors which are similar in function to those of
the SfnclOVar class.

TurblOVar(const NodeOrg &norg, double *d = 0);
TurblOVarjconst NodeOrg &norg, const lOVar &iv, const Node &n);
TurblOVar(const TurblOVar &iv);

The member function vise allows easy access to the values of turbulent
viscosity.

3.4.5 The KEIOVar Class

A KEIOVar is an lOVar containing two active fields named "k" and
"Epsilon"; it stores value of k and e used by the k-e turbulence model and its
many variants. It has three constructors which are similar in function to
those of the SfnclOVar class.

KEIOVarfconst NodeOrg &norg, double *d = 0);
KEIOVarjconst NodeOrg &norg, const lOVar &iv, const Node &n);
KEIOVarfconst PVIOVar &iv);

The member functions k and eps allows easy access to the values of k and
e respectively.

4 Solvers
A solver is an abstraction of iterative methods used to determine a solu-

tion to some problem. Let x be the state vector for the problem. The solution
is found by postulating an initial state, x0, then determining successive val-
ues of the state by applying a function, F, which will be called the sweep.

The iteration must be stopped at some point. For this purpose a stopping test
is defined (we avoid the term convergence criterion because, in many cases, it
will be desirable to stop the iteration before convergence is attained); it is a
Boolean-valued function of the state vector, C(x). The solver algorithm is
then:

S(x) = { x <— JC0

while not C(x) : { x <- F(x) } (1)

}
Sometimes it will be useful to define new sweeps using existing sweeps as

building blocks: for example, the sweep for a multigrid solver is defined as a
sequence of sweeps on each of the grids. Since this implies that a sweep

17

might be used in more than one solver, it is best to define the solver and the
sweep as separate classes. Similarly, it may be useful to define different stop-
ping tests for a solver; moreover, the stopping test for a sweep may be differ-
ent depending upon its use within different solvers. Hence, the stopping test
should not be implemented as a member function of either the solver class or
the sweep class; it is implemented as a separate class.

Since, in general, both the sweep and the stopping test will need to use
the state vector, it must be defined separately and shared.

4.1 The Sweep class

The Sweep class is defined to have three member functions:

virtual void initialize!):
Initializes the state vector to x0 and performs any other initialization
necessary for the efficient execution of the iteration function F(x).

virtual void sweep():
Implements the iteration function F(x) by altering the state vector
from the value xn to xn+1.

virtual void finalize)):
Performs any tasks necessary after the iteration has been stopped: for
example, freeing of memory allocated by initialize)). Often finalize!) does
nothing.

The Sweep class is derived from the class OFFSRF described in Reference 16.
Hence, every specialization of Sweep has an inserter and extractor defined for
the OFFSRF streams OFFRSF_ofstream and OFFSRFjfstream. The inserter and
extractor for the class Sweep itself do nothing.

The most important specializations of the Sweep class are shown in the
class hierarchy of Figure 4. The ResidualSweep class is described in Section 4.6.
Its specializations, SPC2dPVSweep and SPC2dKESweep, along with
SPC2dBLSweep are used to implement a two-dimensional pseudo-compress-
ibility solution of the Navier-Stokes equations on a structured grid. An
SPC2dPVSweep calculates pressure and velocity in the flow, an SPC2dKESweep
calculates the turbulence variables using the k-e turbulence model, and
SPC2dBLSweep calculates the turbulent viscosity using the Baldwin-Lomax
turbulence model. The class SPCMtxSweep solves the linear system which
arises in the pseudo-compressibility sweeps; a line relaxation method is used.
These classes are described in detail in Reference 12. The SeqSweep and
ConcSweep classes are described in Section 4.4. The FESweep class is a generic
finite element sweep; it assembles a linear system of equations and solves it.
Its specialization FE2dNSSweep is used to solve the two-dimensional Navier-
Stokes equations. The FESfncSweep calculates the streamfunction for an
incompressible velocity field. The classes FESweep, FE2dNSSweep and
FESfncSweep are all described in Reference 13.

18

Sweep

f
SPC2dBLSweep]

I
ConcSweep

j
SeqSweep

7^
[SPCMtxSweep)

ResidualSweep

I
FESweep)

[SPC2dPVSweep] SPC2dKESweep FE2dNSSweep^[FESfncSweep]

Figure 4: Class hierarchy for Sweep and its specializations

4.2 The StopTest class

The StopTest class has two member functions:

virtual void initialize!);
Performs any initialization necessary for the proper functioning of
the stop test.

virtual int stopf):
Returns true if the sweeps should be stopped; false if they should
continue. Thus, stop() implements the function C{x). Note that, as
described above, the state vector x is shared data of both the StopTest
class and the Sweep class; hence, it is not provided as an argument to
stop(). Of course, this also circumvents the problem that the type of
data is not yet specified so that, for a strongly typed language like C++,
the type of the argument would not be known.

There are several simple but important specializations of stop tests. The
TrueStopTest always returns true; the FalseStopTest always returns false. The
OrStopTest combines two stop tests, C\ and C2, to obtain C = C1AC2. An
AndStopTest is similar but is defined by C = Cx v C2.

Figure 5 shows the hierarchy of classes derived from StopTest. A
ReportStopTest is a stop test which reports on its state whenever is stopf)
function is executed; it is described in Section 4.2.1. An NTimesStopTest allows
the sweep to be performed n times; it is described in Section 4.2.2. A
CompDataStopTest returns true when successive values of the state vector
have changed by less than some pre-defined small amount; it is described in
Section 4.2.3. A ResidualStopTest is a stop test suitable for a residual solver; it is
described in Section 4.6.1. The SeqStopTest and ConcStopTest classes represent
stop tests suitable for solvers which use more than one sweep; they are
described in Sections 4.4.1 to 4.4.3.

19

[StopTest]

[ReportStopTest J

I

[NTimesStopTest J

[CompDataStopTest J

[ResidualStopTest

(TrueStopTest]*

[FalseStopTest]-

[OrStopTest]

[AndStopTest]

[SeqStopTest]

[ConcStopTest)^-

Figure 5: Class hierarchy for StopTest and its specializations

4.2.1 The ReportStopTest Class

A ReportStopTest is a StopTest with the ability to report on its state when-
ever the stop function is called. The virtual function report is used to write
the report. A character string may be prepended to the report; normally this is
used to identify the solver to which the stop test applies.

Each ReportStopTest can be set so that the report is written before the stop
test is executed, after the stop test is executed, or not at all. The member func-
tion set_report() is used for this purpose. Its argument should be one of the
following:

ReportStopTest::before
Write the report before the stop test is executed.

ReportStopTest::after
Write the report after the stop test is executed, but only if the stop test
returned true.

ReportStopTest::after_alwoys
Write the report after the stop test is executed, irrespective of the
result of the stop test.

ReportStopTest::none
Do not write the report.

For example, if rst is a ReportStopTest, then

rst.set_report(ReportStopTest::before);

sets the stop test so that the report will be written before the stop test is
executed. By default, a ReportStopTest is set so that no report is written.

20

The ReportStopTest class does not define the initialize!) virtual function
inherited from StopTest. It must be defined by specializations of the class.

The constructors and member functions are:

ReportStopTest!);
Creates a new ReportStopTest. By default no report will be written.

void report(ostream&);
Writes a report on the state of the stop test to the output stream.

virtual void report_no_prepend(ostream&) = 0;
Writes the report with no prepended string. This function must be
defined by specializations of the class.

virtual int stopf);
Calls the function stop_no_report() to execute the stop test. The report
is written before or after this call as specified by the most recent call to
set_report().

virtual int stop_no_report() = 0;
Executes the stop test with no reporting. This function must be
defined by specializations of the class.

void set_report_string(const Str &s)
Sets the character string which is prepended to the report.

4.2.2 The NTimesStopTest class

An NTimesStopTest allows the sweep to be performed n times; its stopf)
function returns true the (n+l)st time it is called. It is a specialization of the
ReportStopTest class. Its constructor has the following prototype:

NTimesStopTestfunsigned m);

where m is the number of times the sweep is to be executed before the stop
test returns true. The initialize!) function resets the iteration count so that the
stop test will be executed m more times. The number of times to execute the
iteration may be changed using the following member function.

void set_numPer(unsigned m);

The NTimesStopTest inherits the member functions set_report(), report!) and
set_report_string(), from ReportStopTest. The report from the NTimesStopTest
simply prints the current iteration count followed by an end-of-line character.
Thus, the code

NTimesStopTest nst(3);
nst.set_report(ReportStopTest::before);
nst.set_report_string ("Iteration ");
while (nst.stopO);

will cause the following to be written to cout:

Iteration 0
Iteration 1
Iteration 2

21

If ReportStopTest::after_always had been used, then the result would have been

Iteration 1
Iteration 2
Iteration 3

since in this case the iteration count is incremented prior to the report.

4.2.3 The CompDataStopTest class

Another important type of stop test checks convergence by comparing
successive values of the state vector; if it has not changed much, then the
solver has converged. The CompDataStopTest is used to implement this
condition. In a CompDataStopTest the state vector is represented by an lOVar.
When the CompDataStopTest is constructed, a copy of the state vector is made;
it is used to store the state vector from the previous iteration. The stop test
always returns false the first time it is called after initialization. Otherwise it
compares the current state vector with the state vector from the previous
iteration and returns true if one of two conditions is satisfied.

1. The absolute value of the largest difference in the state vectors is less than
the small pre-defined value £aCc- This condition stops the solver when
the solution has converged.

2. The absolute value of the largest difference in the state vectors is greater
than the large pre-defined value £div This condition stops the solver
when the solution has diverged.
The CompDataStopTest constructors and member functions are:

CompDataStopTest(IOVar *d, double a, double maxa);
Makes a CompDataStopTest with state vector obtained from d, with

-ace set to a, and with £diV set to maxa.

virtual void initialize!);
Initializes the stop test. The next call to stop() will return false.

virtual int stop();
Executes the stop test.

void set_max_residual(double maxa);
Sets the value of 8diV to maxa.

void set_acc(double a);
Sets the value of £acc to a.

The CompDataStopTest class is a specialization of the ReportStopTest class.
The member functions set_report(), reportf), and set_report_string() are inherited
from ReportStopTest. The report from the CompDataStopTest prints the maxi-
mum difference found for each of the active variables in the lOVar d. The de-
fault string prepended to the report is "Max.Acc. = ", but it can be changed using
set_report_string(). Thus, if edst is a CompDataStopTest constructed using a
PVIOVar (three active variables: pressure and two velocity components), then
the report is similar to the following.

22

Max. Ace. = 0.123456 -0.0256543 0.0365476

The first number is the maximum difference in the pressure values, and the
latter two numbers are the maximum differences in each of the velocity
components.

4.3 The Solver class

The Solver class is an implementation of the abstract solver defined above.
It has a shared Sweep, sw, and a shared StopTest, st, as data and the following
member functions.

virtual void initializef):
Initializes the sweep sw and the stop test st.

virtual void solve():
Implements the solution algorithm of equation (1).

virtual void finalize():
Finalizes the sweep sw and the stop test st.

The Solver class has two constructors.

Solver(Sweep *s, StopTest *t);
Makes a Solver with sweep sw and stopping test st.

Solver(const Solver&);
Copy constructor.

The Solver class is derived from the class OFFSRF described in Reference 16.
Hence, every specialization of Solver has an inserter and extractor defined for
the OFFSRF streams OFFRSF_ofstream and OFFSRFjfstream. The Solver inserter
simply calls the inserter for its sweep. Similarly, its extractor calls the extrac-
tor for its sweep.

The most important specializations of the Solver class are shown in the
class hierarchy of Figure 6. The ResidualSolver class is described in Section 4.6.
The ConnectedSolver class is described in Section 4.4.3.2. The FE2dNSSolver class
solves the laminar two-dimensional Navier-Stokes equations using the finite
element method; it is described in Reference 13. The SeqSolver and ConcSolver
classes are used to combine several different solvers so that they may be exe-
cuted as a single solver; they are described in Section 4.4. The SeqFlowSolver
and ConcFlowSolver classes are specializations of SeqSolver and ConcSolver
which are specifically designed for use by flow solvers; they are described in
Section 4.5. An SPC2dSolver solves the two-dimensional Navier-Stokes equa-
tions using a pseudo-compressibility method; it is described in Reference 12.
Finally, an SPC2dTurbSolver solves the two-dimensional turbulent transport
equations on a structured grid; it is used in conjunction with the SPC2dSolver;
it is described in Reference 12.

23

Solver

ResidualSolver]
i

[ConnectedSolver]
1

FE2dNSSolver

[SeqSolver]

i
ConcSolver

1
[SPC2dTurbSolver] SeqFlowSolver

1
ConcFlowSolver SPC2dSolver]

Figure 6: Class hierarchy for Solver and its specializations

4.4 Multiple Sweep Solvers
An important specialization of a solver is one which consists of a

collection of sub-solvers each applied to a subset of the state vector. For
n = l,...,N, let Sn(xn) be the collection of sub-solvers each with its sweep,Fn,
and stop testC„. Each of these solvers can be run independently to achieve a
solution over its sub-state-vector,xn. However, in general, the sub-state-
vectors will not be disjoint so that, when the solvers are run sequentially,
they interact, the solution algorithm of one solver affecting the solution of
another.

Moreover, the sub-state-vectors may be implemented in such a way that a
single parameter has copies in more than one sub-state-vector. In this case
whenever the parameter is changed in one sub-state-vector, its value must
also be altered in all the others in which it appears. Often, but not always,
such redundancy will be avoided by sharing state variables among the
solvers.

It is probably clear that, in presenting the multiple sweep solver, we have
in mind a multi-block Navier-Stokes solver. On each block a solution
method is defined. Boundaries may be shared by two blocks and each of the
block solvers may store copies of the independent variables on the
boundaries.

There are two main types of multiple sweep solvers; they are described in
the following two sections.

4.4.1 Concurrent Solvers
A concurrent solver is a multiple sweep solver which finds a solution to

all the sub-solvers concurrently. Each of the sweeps is executed in turn

24

(perhaps more than once), the cycle of sweeps continuing until the stop tests
of all sub-solvers return true. More precisely:

1. The stop test for the solver is the union of all the sub-stop-tests: i.e. the
stop test returns true when all of the sub-stop-tests return true.
C(xv...,xN) = Ci(xi)v...vCN(xN)

2. The solver is initialized by initializing all sub-sweeps and sub-stop-tests,
for n = 1 to N {initialize Cn (xn) and Fn (xn) }

3. The algorithm for the sweep for the concurrent solver is:
for n = 1 to N

{initialize C*n(xn)

while Cn(xn):xn <- Fn(xn)

for m = 1 to TV & m * n :

{if (xn andxffl are redundant) Tnm(Sn(xn),Sm(xJ) }

}

where the C*. are a new stop tests and Tnm is a function which maintains
the consistency of the sub-state-vectors xn and xm by changing the values
of xm according to the values of xn.

4. The solver is finalized by finalizing all sub-sweeps,

for n = 1 to N { finalize Fn (xn) }

Notice that the arguments of Tnm are not the state vectors xn and xm, but
the solvers Sn(xn) and Sm(x„). This is because the algorithm to update the
state vectors will usually depend on the types of solvers used and not only on
the data itself.

The sweep algorithm can be made more efficient if it is assumed that the
redundancy of all pairs (xn,xm) is known a priori. In that case the loop over
mean be restricted to the sub-state-vectors which are known to be redundant
with xn. In many cases there will be no redundant state vector pairs.

4.4.2 Sequential Solvers

A sequential solver consists of a sequence of solvers; when the stop test of
one solver is satisfied, the next solver in the sequence is started. As with
concurrent solvers, the sub-solvers may share portions of the state vector;
hence, after each sub-solver has been solved, update functions Tnm must be
called to preserve the consistency of the state vectors.

A solver which finds a solution to all the sub-solvers in sequence may be
defined as follows. For n = l,...,N, let Sn(xn) be the collection of sub-solvers
each with its sweep, Fn, and stop testQ. At any time only one of the solvers,

25

the «th, is active.
1. The stop test tests the stop test of the current solver. If it is true, the

current solver is finalized, its connections updated, then the next solver
in the sequence is activated and initialized. The stop test returns true
when the stop test of the last solver in the sequence returns true.

L,{Xi,...,Xfj) —

{ while Cn(xH)& n<N

{initialize SB+1(*B+1)

form = 1 toN& m^n :

{if (xn mdxm are redundant) Tnm(Sn(xn),Sm(xm)) }

finalize S„(JCB)
(3)

n <— n + \

}
return Cn(xn)

}
2. The solver is initialized by resetting n to 1 and initializing £,(*,).
3. The sweep simply executes the sweep of the current solver:

F(x1,...,xN) = Fn(xn)

4. The solver finalize function does nothing, since all the sub-solvers are
finalized during the execution of the stop test.

4.4.3 Implementation of Multiple Sweep Solvers
In TRANSOM, both concurrent and sequential solvers are implemented

with the help of several special classes.

4.4.3.1 The SweepConnection Class

The SweepConnection class represents the connection function r(5p52)
between two solvers having redundant state vectors. It has two member
functions:

virtual void initialize!):
Performs initializations required for the efficient execution of r(S,,52)

virtual void updatef):
Implements the function T(SVS2). The solver arguments S, and S2

will normally be specified as arguments to the constructor when an
instance of SweepConnection is created.

4.4.3.2 The ConnectedSolver Class

To implement the sweep algorithms of the multiple sweep solvers the
class ConnectedSolver is defined. A ConnectedSolver, S, consists of a solver and
a list of connection functions, T(S,Sn).

26

It is important that it be possible to promote any Solver to a
ConnectedSolver; hence it should have a constructor with the following
prototype.

ConnectedSolverfSolver &s);

When this constructor is used, the ConnectedSolver should behave exactly as
did the original solver, s, except that the ability to add and to execute connec-
tion functions is provided. A natural way to implement this constructor
would be to copy the sweep and stop test from s; however, in that case, any
overloaded member functions of s would be lost. Instead the ConnectedSolver
class stores a pointer, slv, to the original solver; the Solver member functions
are then overloaded so that they execute the corresponding member function
of slv.

Notice that in this implementation a ConnectedSolver stores two sweeps,
Solver::sw and slv->sw, and two stop tests, Solver::st and slv->st. The duplication
of sweeps has no utility; Solver::sw is always ignored. However, the second
stop test can be used to store the stop test, C*, required by the concurrent
solver. Accordingly, constructors are supplied to allow Solver::st and slv->st to
be defined independently.

When a connection between two solvers is defined in an input file, there
must be some means of identifying the solvers which are to be connected. To
make this easier, a connected solver also has a name. ConnectedSolver
overloads the Solver extractor so that it may read the name from a NAME
record having the following format.

{NAME: name}

where name is any character string. When comparing the name with other
names, leading and trailing whitespace is ignored but the comparison is case
sensitive. Other input records are read by calling slv->read_record (see
Reference 16).

Following are prototypes for the ConnectedSolver constructors and mem-
ber functions.

ConnectedSolverfSolver &s);
Creates a ConnectedSolver from the solver s. The pointer slv is set to
&s. The list of connection functions is empty; they must be added
using the member function insert.

ConnectedSolver(const ConnectedSolver &cs, StopTest *t = 0);
Copies cs including its list of connection functions. If t is non-null,
the stop test pointer Solver::st will be set to t; otherwise it will be set to
slv->st.

void insertfSweepConnection *sc);
Adds a connection function to the list

virtual void initialize!);
Initializes the ConnectedSolver prior to its solution. Initializes the
solver slv, the stop test Solver::st, and all of the connection functions.

27

virtual void finalize();
Finalizes the ConnectedSolver after its solution; equivalent to
slv->finalize().

virtual void update_connections();
Calls update() for every connection function in the list.

Solver* get_solver() const;
Returns slv.

StopTest* get_originaLstop_test() const;
Returns a pointer to the stop test used by slv: i.e. returns slv->st.

const Str& get_name() const;
Returns the solver name.

4.4.3.3 The ConcSolver Class

Concurrent solvers are represented by the class ConcSolver; the sub-solvers
are represented by a list of ConnectedSolvers. For each sub-solver, Sn, the stop
test C„ is represented by the stop test slv->st in the ConnectedSolver; the stop test

C* is represented by Solveri:st. The stop test for the ConcSolver is a
ConcStopTest; its stop() function implements algorithm described in
Section 4.4.1.

The ConcSolver class has the following constructors and member
functions.

ConcSolver():
Creates a new ConcSolver with an empty list of sub-solvers. Sub-
solvers must be added using one of the insert functions defined below.
During the sweep, the sub-solvers will be executed in the order in
which they are added to the list.

void insert(ConnectedSolver *s, StopTest *t = 0);
Adds a new connected solver to the list of sub-solvers. If t is non-
null, the stop test cs->st is replaced by t: i.e. when the sweep is
performed, the stop test C* will be evaluated using t.

void insert(Solver *s, StopTest *t);
Add a new solver to the list of sub-solvers by first converting it to a
ConnectedSolver with an empty list of connection functions. The stop
test C is represented by s->st and the stop test C* by t.

int is_empty() const;
Returns true if there are no sub-solvers.

virtual void initialize!);
Initializes all the sub-solvers prior to execution of the sweeps.

virtual void sweep();
Executes the sweeps as described in Section 4.4.1.

virtual void finalize!);
Finalizes all sub-solvers after execution of the sweeps.

28

4.4.3.4 The SeqSolver Class

Sequential solvers are represented by the class SeqSolver; the sub-solvers
are represented by a list of ConnectedSolvers. Since only one stop test is
required for each sub-solver, in the ConnectedSolvers the stop tests slv->st and
Solver::st are always the same. The stop test for the SeqSolver is a SeqStopTest;
its stopf) function implements algorithm (3).

The SeqSolver class has the following constructors and member functions.

SeqSolverf);
Makes a SeqSolver with an empty list of sub-solvers. The sub-solvers
must be added using the insert function.

void insert(ConnectedSolver *s);
Adds a new connected solver to the list of sub-solvers.

void insert(Solver *s);
Adds a new solver to the list of sub-solvers by first converting it to a
ConnectedSolver with an empty list of connection functions.

virtual void initialize!);
Initializes the first sub-solver prior to execution of the sweeps.

virtual void sweepf);
Executes the sweep algorithm described in Section 4.4.2.

virtual void finalizef);
Does nothing, since all sub-solvers are finalized during execution of
the stop tests.

4.5 Flow Solvers

The FlowSolver class is an abstract base class for solvers used to calculate
fluid flow. Its state consists of a Grid, an lOVar used to represent flow variables
having values at all nodes, and a single double used to store the Reynolds
number. The prototypes for the FlowSolver constructors are:

FlowSolver(Grid *g = 0, double r = -1.0, lOVar *v = 0);
Creates a FlowSolver using the grid g, the flow variables v, and the
Reynolds number r. If the grid is null, it must be defined by reading it
from an input file using the extractor described below. A negative
Reynolds number is used as a flag that the Reynolds number has not
been defined.

FlowSolverfconst FlowSolver&);
A copy constructor.

The FlowSolver class has two specializations: SeqFlowSolver and
ConcFlowSolver. Each adds a list of sub-solvers to the FlowSolver: SeqFlowSolver
solves the sub-solvers in sequence, ConcFlowSolver concurrently. This is
implemented by deriving the former from the SeqSolver class as well as
FlowSolver, the latter from the ConcFlowSolver class as well as FlowSolver. This
multiple inheritance hierarchy is illustrated in Figure 7.

29

c Solver

I SeqSolver

I
SeqFlowSolver]

[FlowSolver
73_
I ConcSolver

I
ConcFlowSolver

Figure 7: C/flss hierarchy for FlowSolver and its specializations

Instances of both SeqFlowSolver and ConcFlowSolver can be defined by
reading records from an OFFSRF input file. Extractors are overloaded for the
SeqFlowSolver and OFFSRFJfstream classes, and for the ConcFlowSolver and
OFFSRFJfstream classes. Thus, if s is a SeqFlowSolver or a ConcFlowSolver and
in_stream is an OFFSRFJfstream, then the code

in_stream » s;
will define s by reading the OFFSRF file associated with the stream in_streom.
The extractor reads the following OFFSRF records.

1. A GRID record in the format described in Section 2.5.
2. A GLOBAL VARIABLES record which defines the organization of the

independent variables. The format of this record is described below.
3. A REYNOLDS NUMBER record with format

{REYNOLDS NUMBER: number }
where number is the value of the Reynolds number.

4. Any number of records describing the sub-solvers. In the current version
of TRANSOM the following OFFSRF records are recognized for defining
the sub-solvers.
SPC 2D SOLVER: Creates a solver which uses the pseudo-compressibility

method to solve the Navier-Stokes equations on a structured grid.
The format of this record is described in Reference 12.

STRUCTURED STREAMFUNCTION SOLVER: Creates a solver which
calculates a streamfunction for a two-dimensional flow field on a
structured grid. Typically this solver is used in sequence with an SPC
2D SOLVER.

FE 2D NS SOLVER: Creates a solver which solves the two-dimensional
Navier-Stokes equations using the finite element method. The
format of this record is described in Reference 13.

FE STREAMFUNCTION SOLVER: Creates a solver which uses the finite
element method to calculate a streamfunction for a two-dimensional

30

flow field. Typically this solver is used in sequence with an FE NS
SOLVER.

FE LAPLACE SOLVER: Creates a solver which uses the finite element
method to solve Laplace's equation.

SEQUENTIAL SOLVER: Creates a new instance of a SeqFlowSolver. This
record should have a format similar to that of the TRANSOM input
file except that it may not include a GRID record. If independent
variables have been inherited from the parent solver, then it also
must not contain a GLOBAL VARIABLES record.

CONCURRENT SOLVER: Creates a new instance of a ConcFlowSolver.
The format of this record is exactly the same as for the SEQUENTIAL
SOLVER record.

The format of the GLOBAL VARIABLES record is as follows:

{GLOBAL VARIABLES
name-1 length-1
name-2 length-2

natne-n length-n
}GLOBAL VARIABLES

where name-1 to name-n are the names of the variables and length-1 to
length-n are the number of doubles required per node for the corresponding
variable. If the variable names contain spaces, they must be enclosed in
double quotes. For example, the following record defines three global
variables: Pressure, two-dimensional Velocity, and Turbulent Viscosity.

{GLOBAL VARIABLES
Pressure 1
Velocity 2
"Turbulent Viscosity" 1

}GLOBAL VARIABLES

The variables can also be initialized from within the GLOBAL
VARIABLES record; simply include a record whose name is the name of the
variable, followed by the values of that variable at all the nodes (note that this
is the format required by the lOVar extractor as described in Section 3.2). Thus,
the following record defines Pressure and two-dimensional Velocity and
initializes the values of Pressure.

{GLOBAL VARIABLES
Pressure 1
Velocity 2
{Pressure

Pi Pi ■•■ Pn
JPressure

}GLOBAL VARIABLES

To implement the extractors, a mechanism must be provided for defining
the sequence of sub-solvers by reading OFFSRF records. Moreover, it should
be possible for the sub-solvers themselves to be instances of the SeqFlowSolver

31

and ConcFlowSolver. To avoid duplication of code between the two solvers,
the task of reading the input records is relegated to the base class FlowSolver.
The FlowSolver virtual member function insert(ConnectedSolver*) is used to
insert the sub-solver into the list of sub-solvers; for the class SeqFlowSolver this
function is simply redefined as SeqSolver::insert(ConnectedSolver*), while for
the ConcFlowSolver it is redefined as ConcSolver::insert(ConnectedSolver*).

Whenever a sub-solver is created by a FlowSolver, the grid (or perhaps an
appropriate block of the grid) and the independent variables of the FlowSolver
are passed to the sub-solver via its constructor. All the sub-solvers then share
the grid and the variables of their parent. If a sub-solver requires an
independent variable which is not defined by the parent (e.g. if the solver
requires turbulent viscosity but the parent defines only pressure and velocity),
then a local copy of that variable will normally be generated.

4.6 Residual Solvers

Residual solvers are an important abstraction of solvers used to solve
systems of equations. Consider the system of equations

f(x) = 0

where x is a state vector and / is a vector of functions. In a residual solver,
one evaluates r = f(x) for the current approximation to the state vector x,
then determines a correction to x which will reduce the magnitude of the
vector r. The elements of r are called the residuals of the system of equa-
tions. The solution algorithm can be written as follows.

S(x) = { X <r- X0

repeat

{ r <-/(*)

x<-x + g(x,r) .4v

}

while not C(r)

}

where x0 is the initial state vector, g(x,r) is the correction to x, and C(r) is a
stop test which returns true when the residuals are sufficiently small. To
conform to the solution algorithm (1) in Section 4, the post-tested loop must
be converted to a pre-tested loop. This is done simply by requiring that the
stop test always return false the first time it is called after initialization.
Algorithm (1) may then be used with the sweep function defined by

F(x) = { /•*-/(*)

x<r-x + g(x,r) (5)

}
In TRANSOM, residual solvers are implemented using the three classes

32

ResidualSolver, ResidualStopTest, and ResidualSweep. In these classes the residu-
als are represented as a Vec: an array of floating point values for which many
arithmetic operators have been defined. The full definition of the Vec class
may be found in the source files Mtx.h and Mtx.c. The state vector is repre-
sented as an lOVar.

4.6.1 The ResidualStopTest Class

The ResidualStopTest class represents a stop test suitable for use in a resid-
ual solver. The stop test always returns false the first time it is called after ini-
tialization. Otherwise it returns true if one of two conditions is satisfied.

1. The largest absolute value of all the residuals is less than the small pre-
defined value £acc. This conditions stops the solver when the solution
has converged.

2. The largest absolute value of all the residuals is greater than the large pre-
defined value £div This condition stops the solver when the solution has
diverged.

The ResidualStopTest constructors and member functions are:

ResidualStopTest(Vec *r, double a, double maxa);
Makes a ResidualStopTest with residuals obtained from r, with eacc set to
a, and with £div set to maxa.

virtual void initialize();
Initializes the stop test. The next call to stop() will return false.

virtual int stopf);
Executes the stop test.

void set_max_residual(double maxa);
Sets the value of £div to maxa.

void set_acc(double a);
Sets the value of £acc to a.

The ResidualStopTest class is a specialization of the ReportStopTest class.
The member functions set_report(), report(), and set_report_string() are inherited
from ReportStopTest. The report from the ResidualStopTest prints the maxi-
mum and the root mean square residual. The default string prepended to the
report is "Accuracy = ", but it can be changed using set_report_string(). Thus, if rst
is a ResidualStopTest, then the report is similar to the following.

Accuracy = -0.123456 0.0256543

The first number is the residual with the largest absolute value and the sec-
ond is the root mean square residual.

4.6.2 The ResidualSweep Class

The ResidualSweep class is used to implement the sweep algorithm (5). Its
data includes a Vec to represent the residuals, and an lOVar, data, to represent

33

the state vector. It has the following constructors and member functions.

ResidualSweep(IOVar *d, unsigned nr = 0);
Makes a ResidualSweep with state vector d. The length of the residual
vector is given by nr. If nr is zero, then the length of the residual
vector is set to the number of doubles in d.

virtual void calc_residual() = 0;
Calculates the residuals. This is a pure virtual function which must
be defined by the specializations of the ResidualSweep class.

virtual MultiNumVar& correct() = 0;
Returns the correction to the state vector g(x,r). This is a pure
virtual function which must be defined by the specializations of the
ResidualSweep class.

virtual void sweep();
Executes the sweep algorithm (5) by calling calc_residual() and then
incrementing the state vector by the returned value of correct().

An extractor is overloaded for the ResidualSweep and OFFSRFjfstream
classes. It reads in values of the state vector, data. Thus, if rsw is a
ResidualSweep and in_stream is an OFFSRFjfstream, then the code

in_stream » rsw;
will define data by reading the OFFSRF file associated with the stream
in_stream. This code is identical in function to

in_stream » rsw->data;
The format for the records to define an lOVar is described in Section 3.4.

4.6.3 The ResidualSolver Class

Residual solvers are represented by the ResidualSolver class. The sweep of a
ResidualSolver is a specialization of a ResidualSweep. Its stop test is an OrStopTest
which combines an NTimesStopTest and a ResidualStopTest. Thus, the solver
will stop either when the residuals are sufficiently small (or too large) or
when a fixed number of sweeps have been performed. The ResidualSolver
ensures that its sweep and the ResidualStopTest share the same residuals. The
constructor and member functions of the ResidualSolver class are:

ResidualSolver(ResidualSweep *s, unsigned mxniter = 1000, double ace = 1.0e-04,
double maxacc = 1.0e+04);

Makes a ResidualSolver having sweep s. A maximum of mxniter sweeps
will be performed. The solver stops executing sweeps when the
maximum residual is smaller than ace or if it is greater than maxacc.

void set_max_residual(double maxacc)
Sets the value of £div for the ResidualStopTest to maxacc.

void set_acc(double ace);
Sets the value of eacc for the ResidualStopTest to ace.

34

void set_max_number_sweeps(unsigned mxniter);
Sets the maximum number of sweeps to mxniter.

The values of eacc and 8div can be defined by reading records from an
OFFSRF input file. An extractor is overloaded for the ResidualSolver and
OFFSRFjfstream classes. Thus, if rslv is a ResidualStopTest and in_stream is an
OFFSRFjfstream, then the code

in_stream » rslv;

will define st by reading the OFFSRF file associated with the stream in_stream.
The records should have the following format (all records are optional).

{RESIDUAL ACCURACY: eps_acc }
{MAXIMUM RESIDUAL: eps_div }
{MAXIMUM NUMBER ITERATIONS: num }

where eps_acc is the value of £max, eps_div is the value of £diV and num is the
maximum number of iterations allowed. Any other records will be passed to
the sweep for interpretation.

5 The Main Program
The TRANSOM main program is very simple. It consists of four phases.

1. First a ConcFlowSolver, ms, is created.
2. Then an OFFSRF file is opened (its name is supplied as a command line

argument when TRANSOM is executed from the shell) and the
ConcFlowSolver extractor is used to define ms according to the contents of
the file. As described in Section 4.5, this will define the grid, any global
variables to be shared among sub-solvers, and all the sub-solvers to be
executed.

3. Next ms.solvef) is called to generate a solution to the problem.
4. Finally an OFFSRF output file is opened (its name is supplied as a

command line argument when TRANSOM is executed from the shell)
and the solution is written to it using the ConcFlowSolver inserter.

6 Concluding Remarks
TRANSOM is a complex program which is still in the early stage of de-

velopment. There is little doubt that some of the structure defined in this
memorandum will be changed as that development continues. Never-
theless, in the two flow solvers which have been implemented so far, the
current class hierarchies have proved their worth.

At present TRANSOM works well when either the pseudo-
compressibility solver or the finite element solver is used on a single block.
Experimentation with a single solution method on multiple blocks has also
shown that acceptable levels of convergence can be achieved. Some flows
have also been solved in which both the pseudo-compressibility method and

35

the finite element method have been used on neighbouring blocks[17],
although convergence is at best slow and at worst not attained. Work in this
area will continue over the coming year; it will likely lead to significant
changes in the ConnectedSolver and SweepConnection classes currently used to
implement the transfer of information between solvers on neighbouring
blocks.

Further development will also continue on each of the solvers imple-
mented so far. Details of their shortcomings and the modifications proposed
are described in References 12 and 13.

36

References

1. D. Hally, "User's Guide for HLLFLO Version 2.0", DREA Technical
Memorandum 93/309, 1993.

2. D. Hally, "Implementation of a Free Surface in Calculations of the Flow
into the Propeller Plane of a Ship", in Proceedings of CADM092: Third
International Conference on Computer Aided Design Manufacture and
Operation in the Marine and Offshore Industries, Madrid, Spain, October
1992.

3. D. J. Hall and D. W. Zingg and C. R. Ethier, "A Laminar Incompressible
Navier-Stokes Flow Solver", DREA Contractor Report CR/93/462, 1993.

4. D. J. Hall and D. W. Zingg and C. R. Ethier, "A Two-Dimensional
Incompressible Navier-Stokes Turbulent Flow Solver", DREA Contractor
Report, CR/94/435,1994.

5. D. Hally, "Revisions to NSI2D", DREA Technical Memorandum 94/303,
1994.

6. S. E. Rogers and D. Kwak, "An Upwind Differencing Scheme for the
Incompressible Navier-Stokes Equations," NASA TN 101051, Nov. 1988.

7. B. S. Baldwin and H. Lomax, "Thin Layer Approximation and Algebraic
Model for Separated Turbulent Flows," AIAA Paper 78-257, 1978.

8. H. C. Chen and V. C. Patel, "Near-Wall Turbulence Models for Complex
Flows Including Separation," AIAA Journal, Vol. 26, No. 6, pp. 641-648,
June 1988.

9. B. S. Baldwin and T. J. Barth, "A One-Equation Turbulence Transport
Model for High Reynolds Number Wall-Bounded Flows," NASA TM
102847, August 1990.

10. G. Dhatt and G. Touzot, Une Presentation de la Methode des Elements
Finis, S. A. Maloine, ed., Paris, 1981.

11. F. Pineau, "A Finite Element Based Reynolds Averaged Navier-Stokes
Solver for Modelling Three-Dimensional Turbulent Flows," DREA
Report 93/106,1993.

12. D. Hally, "Implementation of a Pseudo-Compressibility Navier-Stokes
Solver in TRANSOM", DREA Technical communication, in preparation.

13. D. Hally, "Implementation of a Finite Element Navier-Stokes Solver in
TRANSOM", DREA Technical communication, in preparation.

14. D. Hally, "User's Guide for TRANSOM Version 1.0: A Two-Dimensional
Multi-Method Reynolds-Averaged Navier-Stokes Solver", DREA
Technical Memorandum, in preparation.

15. D. Hally, "OFFSRF: A System for Representing Ship Offset Data", DREA
Technical Memorandum 89/305, 1989.

37

16. D. Hally, "C++ Classes for Reading and Writing files in OFFSRF Format",
DREA Technical Memorandum 94/302, 1994.

17. D. Hally, "Experiments with mixed-method flow solutions using
TRANSOM", DREA Note, in preparation.

38

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(highest classification ol Title, Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (The name and address of the organization preparing the
document. Organizations for whom the document was prepared, e.g.
Establishment sponsoring a contractor's report, or tasking agency, are entered
in section 8.)

Defence Research Establishment Atlantic
P.O. Box 1012, Dartmouth, N.S. B2Y 3Z7

2. SECURITY CLASSIFICATION
(Overall security of the document including
special warning terms if applicable.)

UNCLASSIFIED

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S.C.R or U) in parentheses after the title.)

TRANSOM: A Multi-Method Reynolds-Averaged Navier-Stokes Solver:
Overall Design

4. AUTHORS (Last name, first name, middle initial. II military, show rank, e.g. Doe, Maj. John E.)

HALLY, David

5. DATE OF PUBLICATION (Month and year of publication of
document.)

June 1996

NO. OF PAGES (Total
containing information.
Include Annexes, Appendices,
etc.)

46

6b. NO, OF REFS. (Total
cited in document.)

17

DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter
the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is
covered.)

Technical Memorandum

SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the reseach and development, include
the address.^

Defence Research Establishment Atlantic
P.O. Box 1012, Dartmouth, N.S. B2Y 3Z7

PROJECT OR GRANT NUMBER (If appropriate, the
applicable research and development project or grant number
under which the document was written. Please specify whether
project or grant.)

l.g.a.

9b. CONTRACT NUMBER (If appropriate, the applicable number
under which the document was written.)

10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number mrst be unique to this document.)

DREA Technical Memorandum 97/231

10b. OTHER DOCUMENT NUMBERS (Any other numbers which
may be assigned this document either by the originator or by
the sponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security
classification)

X Unlimited distribution
Distribution limited to defence departments and defence contractors; further distribution only as approved
Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
Distribution limited to government departments and agencies; futher distribution only as approved
Distribution limited to defence departments; further distribution only as approved
Other (please specify):

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic annoucement of this document. This will normally correspond to
the Document Availability (11). However, where futher distribution (beyond the audience specified in 11) is possible, a wider
announcement audience may be selected.)

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM DCD03 2/06/87

39

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract of
classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the information in the paragraph
(unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in both official languages unless the text is
bilingual).

TRANSOM is a multi-block, multi-method Reynolds-Averaged Navier Stokes solver
being developed at DREA to address problems associated with the flow around ships and
submarines. It is multi-block because the flow is divided into several distinct regions. It is
multi-method because a different solution method may be used on each of the flow regions.
At present two different methods of solution can be chosen; a finite-volume solver based
on the pseudo-compressibility method; and a finite element solver which uses the penalty
function method to determine the pressure.

TRANSOM is written in C++ following principles of Object Oriented Programming.
This document describes the overall design of TRANSOM with emphasis on the class
hierarchies used to represent different types of blocks and flow solvers. The algorithms
used to implement the pseudo-compressibility and finite element methods are not discussed
here; two companion reports describe these sub-solvers in detail.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be helpful in
cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military
project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus, e.g. Thesaurus of Engineering and
Scientific Terms (TEST) and that thesaurus-identified. If it not possible to select indexing terms which are Unclassified, the classification of each should be indicated
as with the title).

Fluid flow
Turbulence
Reynolds-Averaged Navier-Stokes Equations
Hydrodynamics
Computer programs
Object Oriented Design
TRANSOM

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

40

