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Abstract 

TRANSOM is a multi-block, multi-method Reynolds-Averaged Navier 
Stokes solver being developed at DREA to address problems associated with 
the flow around ships and submarines. It is multi-block because the flow is 
divided into several distinct regions. It is multi-method because a different 
solution method may be used on each of the flow regions. At present two 
different methods of solution can be chosen: a finite-volume solver based on 
the pseudo-compressibility method; and a finite element solver which uses 
the penalty function method to determine the pressure. 

TRANSOM is written in C++ following principles of Object Oriented 
Programming. This document describes the overall design of TRANSOM 
with emphasis on the class hierarchies used to represent different types of 
blocks and flow solvers. The algorithms used to implement the pseudo- 
compressibility and finite element methods are not discussed here; two 
companion reports describe these sub-solvers in detail. 

Resume 
TRANSOM est un resolveur Navier-Stokes pondere Reynolds, 

multim£thode, multibloc, que le CRDA est en train de developper pour 
r£soudre des problemes concernant l'gcoulement autour des navires et des 
sous-marins. II est multibloc parce que l'öcoulement se divise en plusieurs 
regions distinctes. II est multim£thode parce qu'il permet d'utiliser une 
technique de solution differente pour chacun des regions de l'6coulement. A 
l'heure actuelle on peut choisir entre deux m£thodes de solution: un 
resolveur ä volumes finis base sur la möthode de pseudo-compressibilite et 
un resolveur par elements finis qui utilise la m£thode de la fonction de 
penalite" pour determiner la pression. 

TRANSOM a £te £crit en C++ en suivant les principes de la 
programmation orientee objet. Ce document döcrit la conception generate de 
TRANSOM et met 1'accent sur les hierarchies de classe utilises pour 
repr£senter differents types de blocs et de resolveurs d'ecoulement. Les 
algorithmes utilises pour mettre en oeuvre les m<§thodes de pseudo- 
compressibilite et par elements finis ne sont pas trails ici. Deux rapports 
d'accompagnement decrivent ces sous-resolveurs en detail. 
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Executive Summary 

Background 

The numerical prediction of marine propeller performance and 
cavitation requires an accurate prediction of the nominal wake: that is, the 
flow into the propeller plane without the influence of the propeller itself. At 
DREA, the nominal wake is currently calculated with the HLLFLO programs 
which use a panel method to predict the potential flow and a boundary layer 
method to predict the viscous flow. 

The HLLFLO programs have the advantage that they are very fast. They 
yield fairly good predictions for unappended destroyer hulls; however, there 
are several areas in which the predictions can be improved. 
1. As is typical of boundary layer methods, the wake deficit is over-predicted 

near the stern. This is especially noticeable at model-scale Reynolds 
numbers. 

2. HLLFLO is incapable of handling the flow past appendages. The wakes 
shed from the propeller shafts and shaft brackets can cause significant 
spatially concentrated wake defects which, in turn, affect higher 
harmonics of the radiated propeller noise and the speed at which 
cavitation first occurs. 

3. HLLFLO does not account for the influence of the boundary layer on the 
potential flow. 

These effects are especially important for smaller vessels with low 
length /beam ratios. Moreover, HLLFLO is incapable of handling the complex 
geometries of submarines or advanced marine vehicles such as small water 
area twin hull (SWATH) ships. 

Principal Results 

The program TRANSOM has been developed address these deficiencies. 
TRANSOM is a multi-block, multi-method Reynolds-Averaged Navier 
Stokes solver; multi-block because the flow is divided into several distinct 
regions called blocks; multi-method because a different solution method may 
be used on each of the blocks. 

The  current version of TRANSOM includes  two  different solution 

in 



methods which can be used on the blocks. The first is a pseudo- 
compressibility method based on the work of Rogers and Kwak; it is suitable 
for use on structured blocks. The second uses the finite element method and 
is based on the program MEF developed at University Laval; it is suitable for 
use on unstructured blocks. Turbulence may be modelled using variants of 
the k-e model or by the Baldwin-Lomax model. Currently only two- 
dimensional flow can be modelled. 

TRANSOM is written in C++ following principles of Object Oriented 
Programming. This document describes the overall design of TRANSOM 
and, in particular, the class hierarchies used to represent different types of 
blocks and flow solvers. The algorithms used to implement the pseudo- 
compressibility and finite element methods are not discussed here; two 
companion reports describe these sub-solvers in detail. 

Significance of Results 
When TRANSOM is fully developed it will provide accurate numerical 

predictions of the flow into the propeller plane. It will also be applicable to 
many other flow problems related to ships: for example, flow around 
submarines, vortex generation from propellers and control surfaces, bilge 
vortex generation, prediction of roll damping coefficients, and prediction of 
the lift and drag characteristics of lifting surfaces such as submarine control 
planes, rudders, and fin stabilizers. 

Future Work 
TRANSOM is still under development; the current version will only 

solve two-dimensional flows and requires upgrading in many areas, in 
particular the ways in which different solution methods interact at their 
common block boundaries. Further development will be done at DREA and 
under contract. 

IV 
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1 Introduction 
At high speeds the noise radiated by a warship is primarily due to 

cavitation on its propellers. Naval propellers are designed so that cavitation 
inception is delayed to as high a speed as possible, but the design method 
requires an accurate prediction of the flow into the propeller plane. Over the 
past decade computer programs have been developed at DREA to predict the 
flow into the propeller plane. Known collectively as HLLFLO[l], these 
programs use a low-order panel method to predict the potential flow and a 
boundary layer method to calculate the viscous flow. 

The HLLFLO programs have the advantage that they are very fast. They 
yield fairly good predictions for unappended destroyer hulls[2]; however, 
there are several areas in which the predictions can be improved. 

1. As is typical of boundary layer methods, the wake deficit is over-predicted 
near the stern. This is especially noticeable at model-scale Reynolds 
numbers. 

2. HLLFLO is incapable of handling the flow past appendages. The wakes 
shed from the propeller shafts and shaft brackets can cause significant spa- 
tially concentrated wake defects which, in turn, affect higher harmonics of 
the radiated propeller noiseand the speed at which cavitation first occurs. 

3. HLLFLO does not account for the influence of the boundary layer on the 
potential flow. 

These effects will be exacerbated by the current trend toward smaller vessels 
with smaller length/beam ratios. Moreover, HLLFLO is incapable of han- 
dling the complex geometries of submarines or advanced marine vehicles 
such as SWATHs. 

The program TRANSOM is intended to address these deficiencies. 
TRANSOM is a Reynolds-Averaged Navier-Stokes (RANS) solver: in con- 
junction with a turbulence model, it solves the Navier-Stokes equations on a 
grid of points which cover the regions of flow. 

The chief practical problem in developing a Navier-Stokes solver for the 
flow past a ship is that the Reynolds Number is so high: for a destroyer 
moving at 20 knots the Reynolds number is about 109. The higher the 
Reynolds number, the more grid points are necessary to resolve the severe 
velocity gradients near solid surfaces. For this reason, issues of computer 
storage are of extreme importance. 

Because of the complex geometries of appended surface ships or 
submarines, the type of grid used in the calculations is also important because 
it affects the amount of computer storage required. Methods which allow the 
use of unstructured grids (e.g. finite element solvers) typically require far 
greater computer storage than methods which require structured grids. Thus, 
there is a trade-off between the ease generating the grid, and the storage 
requirements.   To address this problem, TRANSOM has been designed as a 



multi-block multi-method solver. The numerical grid may consist of several 
blocks, some of which are structured, some unstructured. On each block a 
solver appropriate to the block structure is used. Since the areas of complex 
geometry are usually small in comparison with the whole ship, it should be 
possible to reduce the computer storage requirements significantly. 

The current version of TRANSOM includes two different solution meth- 
ods which can be used on the blocks. The first is based on the program NSI2D 
developed for DREA under contract to the University of Toronto[3,4,5]; it is 
suitable for use on a single structured block. The algorithm is a variant of the 
pseudo-compressibility method developed by Rogers and Kwak[6]. Currently 
only two-dimensional flow can be modelled; NSI2D was extended to three- 
dimenional flow in 1996 but the changes have not yet been incorporated into 
TRANSOM. Turbulence may be modelled either by the Baldwin-Lomax 
model[7] or by the Chen-Patel variant of the k-e model[8]. Implementation of 
the Baldwin-Barth model[9] is currently underway. 

The second solution is based on the finite element program MEF devel- 
oped at Universite Laval[10]; it is suitable for use on unstructured blocks. 
MEF was modified at DREA to model turbulence using a variant of the k-e 
modelfll]. However, the turbulence modelling has not yet been incorporated 
into TRANSOM; the finite element solver is currently restricted to two- 
dimensional laminar flow. 

The name TRANSOM stands for The Reynolds-Averaged Navier-Stokes 
Omnigenic Method, a rather strained attempt to generate an acronym that is 
both easy to remember and has a connection with the ship-based flows for 
which TRANSOM is to be used. 

TRANSOM is written in C++ following principles of Object Oriented 
Programming. This document describes the overall design of TRANSOM 
and, in particular, the class hierarchies used to represent different types of 
blocks and flow solvers. The algorithms used to implement the pseudo- 
compressibility and finite element methods are not discussed here; two 
companion reports[12,13] describe these sub-solvers in detail. 

TRANSOM is still under development; the current version will only 
solve two-dimensional flows and requires upgrading in many areas, in 
particular the ways in which different solution methods interact at their 
common block boundaries. Further development will be done both at DREA 
and under contract. 

When TRANSOM is fully developed it will provide accurate numerical 
predictions of the flow into the propeller plane. It will also be applicable to 
many other flow problems related to ships: for example, flow around 
submarines, vortex generation from propellers and control surfaces, bilge 
vortex generation, prediction of roll damping coefficients, and prediction of 
the lift and drag characteristics of lifting surfaces such as submarine control 
planes, rudders, and fin stabilizers. 



TRANSOM is primarily concerned with three main types of object: 
collections of points such as grids, structured blocks, and unstructured blocks; 
collections of variables at the points of the grid; and solvers. Class hierarchies 
for each of these objects are described in Sections 2 to 4. Section 5 describes the 
TRANSOM main program. A user's guide for the program is also provided 
in Reference [14]. 

TRANSOM input and output files use the OFFSRF format described in 
Reference 15. Reference 16 describes C++ classes which implement special- 
ized input and output streams for OFFSRF files and a base class which is in- 
herited by all classes which read from or write to OFFSRF files; it should be 
read prior to this document for a proper understanding of TRANSOM input 
and output. 

2 Grids, Blocks and Point Collections 
In TRANSOM, the flow is approximated by specifying flow parameters 

(velocity, pressure, turbulence model variables, etc.) at each point of a grid. 
Borrowing from finite element jargon, we will call each point in a grid a 
node. 

Collections of nodes may be ordered in many different ways. For 
example, a grid is simply a collection of sub-grids or blocks. A block may be 
structured, i.e. it can be ordered into a rectangular array of points, or 
unstructured, like the grids used in calculations using the finite element 
method. In TRANSOM, the organization of a collection of points is 
recognized as an important abstraction independent of the points themselves; 
it is represented by the class NodeOrg described in Section 2.3. 

There are several classes for representing different types of collections of 
points, each of which is derived from the base class PointColl. Figure 1 shows 
the class hierarchy for the most important of these classes. In this section the 
PointColl and Grid classes are described. The class SBIock and its specializations 
S2dBlock and S3dBlock represent structured blocks; they are described in 
Reference 12. The class FEBIock represents an unstructured block organized 
into elements suitable for finite element calculations; it is described in 
Reference 13. 

2.1 Nodes 

The Node class is used as an index to the nodes in a grid. In TRANSOM 
the Node class is implemented as an integer: the number of the node. 

Since a Node is simply an index, its value depends on a numbering 
system for the collection of nodes. In different contexts the same nodes may 
be numbered in different ways. For example, consider a grid of 300 nodes 
which are separated into three blocks of 100 nodes each. In a function which 
uses the whole grid, the nodes of the third block are numbered from 200 to 
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Figure 1: Class hierarchy for the PointColl Class and its specializations 

299. However, in a function which uses only one block at a time, it may be 
more convenient to number the 100 nodes of the third block from 0 to 99. In 
both cases the Node class is used to store the number of the nodes. 

The allocation of a numbering system to a collection of nodes is the job of 
node organizers, discussed in the Section 2.3. 

2.2 Node Iterators 
An iterator is a class which returns, in some well-defined sequence, each 

object in a collection of objects. A Nodelter is an iterator over a collection of 
nodes. Suppose that iter is a Nodelter. Then the iteration can be performed as 
follows: 

iter.reset(); 
while(iter.in_range()) 

{ 
Node n = (Node)iter; 
// Do something with n 
iter.next(); 

} 
At any time during the iteration the current node may be obtained by 

casting the iterator to a Node; in the above code this is done on the first line in 
the while loop.  This syntax is very convenient when the node is to be used as 
an argument to a function; then the conversion will take place automatically 
if the iterator is used as the argument.   TRANSOM uses a similar syntax for 
all its iterator classes. 

The member function reset() resets the iterator to the first node in the 
collection. The member function next() advances the iterator to the next 
node; most iterators also have a prev() function which backs the iteration up 
to the previous node. The member function in_range() returns true if the 
current node belongs to the collection, false if it does not (i.e. if the iteration 
has finished). 



For maximum efficiency, the member functions of a Nod elter are not 
virtual functions; however, there are many cases in which it is necessary that 
they be so. For this reason a second class, AIINodelter, is also provided. It is 
identical to Nodelter, but its member functions are declared virtual. The 
name AIINodelter arises from the main use of the base class, namely to iterate 
over all the nodes in a collection (see the next section). 

2.3 Node Organizers 

Algorithms for solving the Navier-Stokes equations are almost always 
highly dependent on the way in which the nodes are organized. Finite 
difference and finite volume methods usually require structured grids: i.e. 
grids which are organized into rectangular arrays of nodes. For finite element 
methods the grids need not be structured but they must be sub-divided into 
elements of different kinds; each element is itself a collection of nodes. 
Multigrid methods can require a hierarchy of grids: each grid in the hierarchy 
is a subset of its parent so that a sparser covering of the fluid domain is 
provided. Other subsets of a grid, such as its boundaries, are also commonly 
considered as separate collections of nodes. 

In TRANSOM the structure of collections of nodes is described by classes 
called node organizers. Implicit in each node organizer is a numbering 
scheme for the nodes. The full range of node numbers used by the 
numbering scheme is from zero to N-l, where N, is called the "maximal 
number of nodes". However, since the node organizer may only describe a 
subset of the full range of nodes, N is not necessarily the same as the number 
of nodes governed by the node organizer. 

For example, consider a collection of eleven nodes numbered 0,--,10. A 
node organizer, norg, is used to represent the odd numbered nodes. Then the 
maximal number of nodes for norg is 11, while the number of nodes 
governed by norg is only 5. 

Most member functions of node organizers do one of four things. 

1. They return the size of the collection of nodes. All node organizers will 
return the total number of nodes. Node organizers for structured grids 
also return the dimensions of the rectangular node array. Node organiz- 
ers for finite element blocks return the number of elements of which the 
block is comprised. 

2. They return node iterators which navigate through the nodes in various 
ways. All node organizers return a iterator which iterates over all the 
nodes in the collection. Node organizers for structured blocks return 
iterators over a single row or column of the block. 

3. They return node organizers which describe a subset of the node 
collection. For example, node organizers for finite element blocks will 
return node organizers for any of the elements which they contain. 

4. They alter the node organizer so that it describes a subset (or superset) of 
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Figure 2: Class hierarchy for the NodeOrg Class and its specializations 

the original collection of nodes.    This type of member function is 
particularly useful in multigrid solvers; the member function is called to 
restrict the node organizer to the nodes in the next level of the hierarchy. 
It is important to recognize that node organizers contain no information 

on the location of a node in space; that is contained in the PointColl class and 
its specializations, described in the next section. 

The base class for node organizers is NodeOrg. It has only two member 
functions: 

unsigned num_nodes() const; 
Returns the number of nodes organized by this NodeOrg. 

virtual AIINodelter* get_all_node_iter() const- 
Returns a pointer to an AIINodelter which iterates over the all the 
nodes in the current NodeOrg.   Memory for the iterator is allocated 
from the heap and it is the responsibility of the calling function to 
delete the node iterator when it is finished using it. 

Figure 2 shows the class hierarchy for the most important node organiz- 
ers used in TRANSOM. The RNodeOrg class defines a restriction to a subset of 
the nodes in a collection; it is most useful for defining the rows or columns of 
structured block; it is described in Reference 12. The classes Base2dNodeOrg 
and S2dNodeOrg are used to organize structured two-dimensional blocks; they 
are described in Reference 12. The FENodeOrg class organizes nodes into a col- 
lection of elements for use in finite element calculations; it is described in 
Reference 13. The class ElementNodeOrg is used to organize the nodes in a 
single finite element and its specialization RefElement provides a description 
of a generic reference element; both classes are described in Reference 12. 

2.4 Collections of Points 
The coordinate values of a collection of nodes are represented by the 

PointColl class which is capable of describing points in one, two, or three 
dimensions. It is the base of a hierarchy of classes which describe collections 
of points with  different structures;  the most important classes  in the 



hierarchy are shown in Figure 1. 

Each PointColl contains a NodeOrg which imparts the structure to the 
collection of points. The prototypes for the PointColl constructors are: 

PointCollfunsigned ndim, const NodeOrg &norg, double *d = 0); 
Makes a PointColl whose points are of dimension ndim (one, two, or 
three) and are organized by norg. If d is null, the default, new 
memory will be allocated from the heap to store the coordinate 
values; this memory is freed by the PointColl destructor. Otherwise the 
values will be stored in the memory beginning at d; in this case the 
memory is not freed by the PointColl destructor. Enough memory to 
store ndim* N doubles is required, where N is the maximal number of 
nodes of the node organizer. 

PointColl(const PointColl &pc); 
A copy constructor; new memory is allocated and the values in pc are 
copied to the new PointColl. 

Each PointColl also has a name by which it can be referred. For example, 
when reading an input file, TRANSOM uses the name to allow two different 
solvers to share the same block. The block is defined independently of the 
solvers. The solvers specify the name of the block which they will use. The 
block is then found and passed to the solvers for use in calculating the flow. 

Values for the name and for the coordinates may be read from an 
OFFSRF file using an extractor overloaded for the PointColl and OFFSRF_ifstream 
classes (see Reference 16 for a description of OFFSRF files and the class 
OFFSRFJfstream). If p is a PointColl and in_stream is an OFFSRFjfstream, then the 
code 

in_stream » p; 

will read the name and the coordinate values from the OFFSRF file associated 
with in_stream.  The coordinates must be in the following format. 

{NAME: name } 
{COORDINATES 

x2    y2 z2 

JCOORDINATES 

For one-dimensional point collections the y and z values are missing from 
the COORDINATES record. For two-dimensional point collections only the z 
values are missing. 

All point collections have the following member functions. 

unsigned num_nodes() const; 
Returns the number of nodes in the point collection. 

unsigned dim() const; 
Returns the dimension (one, two, or three) of the points. 



const Str& get_name() const; 
Returns the name of the point collection (Str is a class representing 
character strings). 

NodeOrg *get_node_org() const; 
Returns a pointer to the node organizer which gives the point 
collection its structure. 

double* operator[](Node); 
Returns a pointer to the values of the coordinates. Thus, if p is a 
PointColl, then p[n][0] is the x-value of the coordinates at node n, p[n][l] 
is the y-value, and p[n][2] is the z-value. 

2.5 Grids 

A grid is a collection of points organized into blocks. It is represented by 
the class Grid, a specialization of the class PointColl (see Figure 1). Each of the 
blocks is also represented as a PointColl. Notice that, since a Grid is a type of 
PointColl, this means that a grid can serve as the block of a different grid. 

The coordinates of the points in the grid are shared with each of the 
blocks. For example, suppose that g is a Grid which contains 100 points 
shared among three blocks. The first block uses the first 30 of these points: 
zero through 29. The second block uses the 50 points 30 through 79. The 
third block uses the 30 points 70 through 99. Notice that the ten points 70 
through 79 are used by two of the blocks. 

The member function get_block returns a pointer to the block specified by 
the argument name; its full prototype is 

PointColl* get_block(const Str &name) const; 
All the PointColl member functions described in Section 2.4 are also inherited 
by the Grid class. 

The name, coordinate values, and the blocks of a grid are specified by a 
GRID record in an OFFSRF input file. The GRID record has the following 
format. 

{GRID: ndim npts 
{NAME: name } 
{COORDINATES 

xi   Vi        z2 

x2  y2       z2 

%n  y«       zn 

}COORDINATES 
{FIRST NODE: node block-name } 
Records to specify the blocks 

}GRID 

where ndim is the dimension of the coordinates (one, two, or three), and npts 
is the number of points in the grid.   For one-dimensional point collections 



the y and z values are missing from the COORDINATES record.   For two- 
dimensional point collections only the z values are missing. 

Currently three different types of blocks may be specified; each has an 
associated class (derived from PointColl) and OFFSRF record. 

1. The record FE BLOCK causes an FEBIock to be created and added to the grid. 
These blocks are used in finite element solvers. The FEBIock class is 
described in detail in Reference 13. The FE BLOCK record contains data 
which define the FEBIock. 

2. The record STRUCTURED BLOCK causes an S2dBlock to be created and 
added to the grid. This class describes structured blocks which may be 
used in finite difference or finite volume solvers. The S2dBlock class is 
described in detail in Reference 12. The STRUCTURED BLOCK record 
contains data which define the S2dBlock. 

3. A nested GRID record causes a new Grid to be created and added as a block 
to the current grid. 
The FIRST NODE record is used to specify which node in the grid is used 

for the first node in a block: node is the number of the node to be used as the 
first node in the block with name block_name. If no first node is specified for 
a given block, then the first unused node in the grid will be used. For 
example, consider a GRID record which specifies that a grid has three blocks 
each containing 30 points, but which has no FIRST NODE record. The first 
block will then use the grid points 0 through 29, the second will use the grid 
points 30 through 59, and the third the points 60 through 89. 

An extractor is overloaded for the Grid and OFFSRF_ifstream classes. If g is a 
Grid and in_stream is an OFFSRFjfstream, then the code 

in_stream » g; 

will read the records NAME, COORDINATES, FE BLOCK, STRUCTURED 
BLOCK, FIRST NODE, and GRID and use them to update g. 

The classes Grid, FEBIock, and S2dBlock are all able to read coordinate values 
from a COORDINATES record. This means that one may choose where to 
define the coordinate values in the input file. They can all be specified in the 
GRID record, as shown above. Alternatively, the points for each block may be 
specified within the records defining the blocks as in the following example. 

{GRID: 2 90 
{STRUCTURED BLOCK: 2 5 10 

{NAME: Block #1 } 
{COORDINATES 

x49 y4g 

JCOORDINATES 
STRUCTURED BLOCK 
{STRUCTURED BLOCK: 2 8 5 

{NAME: Block #2 } 



{COORDINATES 
X50 V50 

*89 3/89 
}COORDINATES 

JSTRUCTURED BLOCK 
}GRID 

If coordinate values are specified in both the grid and its blocks, the 
values read last (i.e. those appearing last in the file) will override the values 
read in earlier. 

3 Flow Representation 
In TRANSOM, the flow is approximated by specifying flow parameters 

(velocity, pressure, turbulence model variables, etc.) at each point of the grid. 
A hierarchy of classes is defined which allows variables of different types to be 
associated with nodes. A diagram of the main classes in the hierarchy is 
shown in Figure 3. 

NodeVar MultiNumVar 

NumNodeVar 
± 
lOVar 

f J 
PointCollection PVIOVar 

See Figure 1 

I 
TurblOVar C 

1 
SfnclOVar 

KEIOVar VellOVar   ] 

Figure 3: Class hierarchy for classes describing flow variables 

3.1 The NodeVar class 

The NodeVar class is a template used to create collections of variables each 
having a value at every node of a collection of points. Every instance of a 
NodeVar is associated with a NodeOrg; the dimensions of the NodeVar are 
derived from the NodeOrg and iterators returned by the NodeOrg may be used 
to navigate through the elements of the NodeVar. 

The prototypes for the constructors of a NodeVar which stores objects of 
class T are: 

NodeVar(const NodeOrg &norg, T *v = 0); 
Creates a NodeVar which stores an object of class T at every node 
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governed by norg. If v is null, the default, new memory will be 
allocated from the heap to store the values; this memory is freed by 
the NodeVar destructor. Otherwise the values will be stored in the 
memory beginning at v; in this case the memory is not freed by the 
destructor. The memory required is sizeof(T)*N bytes, where TV is the 
maximal number of nodes of the node organizer. 

NodeVarfconst NodeVar &nv); 
A copy constructor; new memory is allocated to store the objects and 
their values are obtained by copying the objects in nv. 

The first constructor allows values of a NodeVar to be shared with an 
existing NodeVar. Shared values make sub-arrays possible so that, for 
example, a NodeVar containing the coordinates for a block could share these 
coordinates with a NodeVar containing the coordinates for a whole grid. 

The following member functions are defined for the NodeVar class. 

unsigned num_nodes() const; 
Returns the number of nodes governed by the NodeVar node 
organizer. 

T& operator[](Node); 
const T& operator[](Node) const; 

The square bracket operator with Node arguments allows access to the 
stored values. Thus if x is a NodeVar<int>, then x[n] is the integer 
associated with node n. 

3.2 The NumNodeVar Class 

The class NumNodeVar is a specialization of the class NodeVar<double>: it 
associates a single floating point value with every node governed by a node 
organizer. Its constructors are the same as the constructors for 
NodeVar<double>. The NodeVar member functions described in Section 3.1 are 
also inherited by the NumNodeVar class. 

The floating point values may be obtained using the square bracket opera- 
tor with a Node argument. Thus, the following code creates a NumNodeVar 
containing 100 nodes, then assigns the value 1.5 at every node. Recall that the 
Nodelter n will automatically be converted to a Node when used as an argu- 
ment to operator[](Node). 

NodeOrg norg(100); 
NumNodeVar nv(norg); 
AIINodelter *n = norg.get_all_node_iter(); 
while (n->in_range()) 

{ 
nv[n] = 1.5; 
n.next(); 

} 
delete n; 

The class NumNodeVar has been given several arithmetic operators to 
facilitate computations which are applied to floating point values at every 
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node.  The following member operators have been defined. 

NumNodeVar& operator=(const NumNodeVar &v); 
Copies the values in v. 

NumNodeVar& operator-(); 
Negates all values. 

NumNodeVar& operator+=(const NumNodeVar &v); 
Increments the values by the values in v. 

NumNodeVar& operator—(const NumNodeVar &v); 
Decrements the values by the values in v. 

NumNodeVar& operator*=(double d); 
Multiplies all values by d. 

NumNodeVar& operator/= (double d); 
Divides all values by d. 

NumNodeVar& zero(); 
Sets all values to zero. 

The following operators and functions are also defined. 

int operator==(const NumNodeVar &vcl, const NumNodeVar &vc2); 
Returns true if vcl and vc2 are governed by the same node organizer 
and, for every node, the value in vc 1 is the same as the value in vc2. 

int operator!=(const NumNodeVar &vcl, const NumNodeVar &vc2); 
Returns !(vcl == vc2). 

double absfconst NumNodeVar &vc); 
Returns the square root of the sum of the squares of the values at all 
nodes. 

double min(const NumNodeVar &vc); 
Returns the minimum value stored at all nodes of vc. 

double max(const NumNodeVar &vc); 
Returns the maximum value stored at all nodes of vc. 

double min_abs(const NumNodeVar &vc); 
Returns the value stored in vc whose absolute value is smallest. 

double max_abs(const NumNodeVar &vc); 
Returns the value stored in vc whose absolute value is largest. 

3.3 The MultiNumVar Class 

The class MultiNumVar is similar to the NumNodeVar class: it associates 
several floating point values with every node. The MultiNumVar class has 
three constructors with the following prototypes. 

MultiNumVar(unsigned nd, const NodeOrg &norg, double *d = 0); 
Constructs an MultiNumVar governed by the NodeOrg norg. At each 
node, nd doubles are stored. The doubles are stored starting at 
memory location d. If d is null, new memory will be allocated for the 
stored values. 
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MultiNumVar(const NodeOrg &norg, const MultiNumVar &iv, const Node &n); 
Shared Copy constructor: constructs an MultiNumVar governed by norg 
and with the same number of doubles as iv.  The values in iv starting 
at node n are shared. 

MultiNumVarfconst MultiNumVar &iv); 
A copy constructor: new memory is allocated for the stored values. 

The following member functions are also defined. 

unsigned num_nodes() const; 
Returns the number of nodes at which the values are stored. 

unsigned dim() const; 
Returns the number of values stored at each node. 

Given a Node argument, the square bracket operator returns a pointer to 
the doubles associated with the node. Thus, the following code creates a 
MultiNumVar with 100 nodes and associates 10 doubles with each node. At each 
node the values of the doubles are set to 1.0 to 10.0. 

NodeOrg norg(100); 
MultiNumVar nv(10,&norg); 
AIINodelter *n = norg.get_all_node_iter(); 
while (n->in_range()) 

{ 
for (unsigned i = 0; i < nv.dimf); i++) 

nv[n][i] = i + 1; 
n.nextf); 

} 
delete n; 

The MultiNumVar class has the same arithmetic operators as the class 
NumNodeVar, but they operate on all the doubles stored at each node. 

3.4 The lOVar Class 

The lOVar class is a specialization of the MultiNumVar class which is used to 
represent global variables in TRANSOM. It provides a means of organizing 
the floating point values at each node so that they can be associated more 
easily with independent variables. A subset of the floating point values can 
be identified and the arithmetic operators restricted so that they act upon that 
subset only. Input and output functions are also defined so that the values 
can be read from or written into an OFFSRF file. 

The organization of the floating point values is specified using successive 
calls to the lOVar member function add_to_structure whose full prototype is 

void add_to_structure(const Str &s, unsigned n, unsigned off); 
A call to add_to_structure assigns the name s to the n floating point values 
beginning at the offset off. For example, suppose the lOVar pv is intended to 
store the values of pressure and velocity in a two-dimensional flow. Three 
floating point values are required at each node and it is decided that the first 
should be pressure followed by the two velocity components.   The lOVar can 
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be set up in this manner using the following code. 

lOVar pv(3,norg); // norg is a pointer to a NodeOrg 
pv.add_to_structure("Pressure", 1, 0); 
pv.add_to_structure("Velocity", 2, 1); 

The value of the pressure at node n may then be obtained by pv[n][0] and the 
two velocity components by pv[n][l] and pv[n][2]. 

The member functions clear_active and activate_only may also be used to 
change the organization of the variables.  Their full prototypes are 

void clear_active(); 
void activate_only(const Array<Str> &fields); 

The former removes all organization of the variables; a new organization 
may be defined using successive calls to add_to_structure. 

The member function activate_only is used to restrict the organization of 
an lOVar to certain variables. The argument fields is a list of names of the 
variables which are to remain active. If a variable name is not in the list, it 
will no longer be active. If fields contains a name which is not already part of 
the lOVar organization, a fatal error will result. 

The values for any of the named variables may be read from an OFFSRF 
file using an extractor overloaded for the lOVar and OFFSRFjfstream classes (see 
Reference 16 for a description of OFFSRF files and the class OFFSRFjfstream). If 
pv is the lOVar defined above and in_stream is an OFFSRFjfstream, then the code 

in_stream » pv; 

will read the values for the pressure and velocity at each node from the 
OFFSRF file associated with in_stream.  The OFFSRF records should be named 
"Pressure" and "Velocity", the same names used when defining the structure 
of the floating point values with the calls to add_to_structure. 

{Pressure 
Vi   Vi ■■■ Pn 

JPressure 
{Velocity 

vx0  vy0 
VX1   Vy! 

Vxn  Vyn 

}Velocity 
If one of the records is missing, the values for that variable will remain 
undefined. 

Similarly, an inserter is overloaded for the lOVar and OFFSRF_ofstream 
classes. If pv is the lOVar defined above and out_stream is an OFFSRF_ofstream, 
then the code 

out_stream « pv; 
will write "Pressure" and "Velocity" records in the OFFSRF file associated 
with in stream. 
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The lOVar constructors are similar to those of the MultiNumVar class. Their 
prototypes are: 

lOVarfunsigned nd, const NodeOrg &norg, double *d = 0); 
IOVar(const NodeOrg &norg, const lOVar &iv, const Node &n); 
lOVarfconst lOVar &iv); 

An important function of the lOVar class is to restrict a set of global vari- 
ables to a subset of independent variables used by a solver. For example, con- 
sider a solver, S, which solves the laminar Navier Stokes equations on a sin- 
gle block. The solver is split into two sub-solvers, Si and S2, which are solved 
in sequence: Si first determines the values of the pressure and velocity, then 
S2 determines the streamfunction. A member of the main solver is an lOVar, 
vars, which contains the fields "Pressure", "Velocity", and "Streamfunction"; 
it is passed to both Si and S2. Within Si the streamfunction is not used. 
Therefore, a new lOVar, pv, is constructed from vars; it shares the values in vars 
but restricts the active fields to "Pressure" and "Velocity". This is done as fol- 
lows (a simpler method using the specialized class PVIOVar is described in 
Section 3.5.2). 

lOVar pv(*vars->get_node_org(),vars,0); 
Array<Str> fields(2); 
fields [0] = "Pressure"; 
fields[l] = "Velocity"; 
pv.activate_only (fields); 

Similarly, in S2, an lOVar restricted only to the "Streamfunction" field is used. 
Notice that, since the values of the restricted lOVar are shared with vars, the 
main solver, S, has access to all the variables and can be used to handle all the 
input and output in a consistent way. 

3.5 Flow Representation Classes 

The classes PVIOVar, VeNOVar, SfnclOVar, TurblOVar, and KEIOVar are 
specializations of the lOVar class designed specifically for representing flow 
variables. 

3.5.1 The VeNOVar Class 

A VeNOVar is an lOVar containing a single active field named "Velocity". 
It has three constructors which correspond closely with the lOVar constructors. 

VellOVarfunsigned nd, const NodeOrg &norg, double *d = 0); 
Creates a VeNOVar for velocity variables of dimension nd. If d is non- 
null, the velocity values will be stored starting at memory location d; 
otherwise new memory will be allocated (and destroyed when the 
VellOVar is destroyed). 

VellOVarfconst NodeOrg &norg, const lOVar &iv, const Node &n); 
Creates a VellOVar which shares the velocity values with the lOVar iv 
starting at node n. If iv does not contain a field named "Velocity" 
whose length is nd, a fatal error will result. 
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VellOVarfconst VellOVar &iv); 
A copy constructor; new memory is allocated for the velocity values 
and all values are copied to the newly constructed VellOVar. 

The member function vel allows easy access to the velocity values; given a 
Node argument, it returns a pointer to the velocity values at that node. Thus, 
if v is a VellOVar, then v.vel(n)[0] is the x-component of the velocity at node n. 

3.5.2 The PVIOVar Class 

A PVIOVar is an lOVar containing two active fields named "Pressure" and 
"Velocity".  It has the following three constructors. 

PVIOVar(unsigned nv, const NodeOrg &norg, double *d = 0); 
Creates a PVIOVar with velocity variables of dimension nd. If d is non- 
null, the pressure and velocity values will be stored starting at 
memory location d; otherwise new memory will be allocated (and 
destroyed when the PVIOVar is destroyed). 

PVIOVarfconst NodeOrg &norg, const lOVar &iv, const Node &n); 
Creates a PVIOVar which shares its values with the lOVar iv starting at 
node n. If iv does not contain a field named "Pressure" and a field 
named "Velocity" whose length is nd, a fatal error will result. 

PVIOVar(const PVIOVar &iv); 
A copy constructor; new memory is allocated for the velocity values 
and all values are copied to the newly constructed PVIOVar. 

The member functions p and vel allow easy access to the velocity values. 
The latter is the same as the vel function of the VellOVar class. Given a Node 
argument, the member function p returns the pressure value at that node. 
Thus, if pv is a PVIOVar, then pv.p(n) is the pressure at node n. 

3.5.3 The SfnclOVar Class 

A SfnclOVar is an lOVar containing a single active field named 
"Streamfunction".   It has the following three constructors. 

SfnclOVar(const NodeOrg &norg, double *d = 0); 
Creates a SfnclOVar which stores only the value of the streamfunction 
at each node. If d is non-null, the streamfunction values will be 
stored starting at memory location d; otherwise new memory will be 
allocated (and destroyed when the SfnclOVar is destroyed). 

SfnclOVarfconst NodeOrg &norg, const lOVar &iv, const Node &n); 
Creates a SfnclOVar which shares its values with the lOVar iv starting at 
node n. If iv does not contain a field named "Streamfunction", a fatal 
error will result. 

SfnclOVarfconst SfnclOVar &iv); 
A copy constructor; new memory is allocated for the velocity values 
and all values are copied to the newly constructed SfnclOVar. 

The member function sfnc allows easy access to the streamfunction val- 
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ues; given a Node argument, it returns the value of the streamfunction at that 
node. Thus, if s is a SfnclOVar, then s.sfnc(n) is the streamfunction at node n. 

3.5.4 The TurblOVar Class 

A TurblOVar is an lOVar containing a single active field named "Turbulent 
Viscosity". It has three constructors which are similar in function to those of 
the SfnclOVar class. 

TurblOVar(const NodeOrg &norg, double *d = 0); 
TurblOVarjconst NodeOrg &norg, const lOVar &iv, const Node &n); 
TurblOVar(const TurblOVar &iv); 

The member function vise allows easy access to the values of turbulent 
viscosity. 

3.4.5 The KEIOVar Class 

A KEIOVar is an lOVar  containing two active fields named  "k"  and 
"Epsilon"; it stores value of k and e used by the k-e turbulence model and its 
many variants. It has three constructors which are similar in function to 
those of the SfnclOVar class. 

KEIOVarfconst NodeOrg &norg, double *d = 0); 
KEIOVarjconst NodeOrg &norg, const lOVar &iv, const Node &n); 
KEIOVarfconst PVIOVar &iv); 

The member functions k and eps allows easy access to the values of k and 
e respectively. 

4 Solvers 
A solver is an abstraction of iterative methods used to determine a solu- 

tion to some problem. Let x be the state vector for the problem. The solution 
is found by postulating an initial state, x0, then determining successive val- 
ues of the state by applying a function, F, which will be called the sweep. 

The iteration must be stopped at some point. For this purpose a stopping test 
is defined (we avoid the term convergence criterion because, in many cases, it 
will be desirable to stop the iteration before convergence is attained); it is a 
Boolean-valued function of the state vector, C(x). The solver algorithm is 
then: 

S(x) = { x <— JC0 

while not C(x) : { x <- F(x) } (1) 

} 
Sometimes it will be useful to define new sweeps using existing sweeps as 

building blocks: for example, the sweep for a multigrid solver is defined as a 
sequence of sweeps on each of the grids.   Since this implies that a sweep 
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might be used in more than one solver, it is best to define the solver and the 
sweep as separate classes. Similarly, it may be useful to define different stop- 
ping tests for a solver; moreover, the stopping test for a sweep may be differ- 
ent depending upon its use within different solvers. Hence, the stopping test 
should not be implemented as a member function of either the solver class or 
the sweep class; it is implemented as a separate class. 

Since, in general, both the sweep and the stopping test will need to use 
the state vector, it must be defined separately and shared. 

4.1 The Sweep class 

The Sweep class is defined to have three member functions: 

virtual void initialize!): 
Initializes the state vector to x0 and performs any other initialization 
necessary for the efficient execution of the iteration function F(x). 

virtual void sweep(): 
Implements the iteration function F(x) by altering the state vector 
from the value xn to xn+1. 

virtual void finalize)): 
Performs any tasks necessary after the iteration has been stopped: for 
example, freeing of memory allocated by initialize)). Often finalize!) does 
nothing. 

The Sweep class is derived from the class OFFSRF described in Reference 16. 
Hence, every specialization of Sweep has an inserter and extractor defined for 
the OFFSRF streams OFFRSF_ofstream and OFFSRFjfstream. The inserter and 
extractor for the class Sweep itself do nothing. 

The most important specializations of the Sweep class are shown in the 
class hierarchy of Figure 4. The ResidualSweep class is described in Section 4.6. 
Its specializations, SPC2dPVSweep and SPC2dKESweep, along with 
SPC2dBLSweep are used to implement a two-dimensional pseudo-compress- 
ibility solution of the Navier-Stokes equations on a structured grid. An 
SPC2dPVSweep calculates pressure and velocity in the flow, an SPC2dKESweep 
calculates the turbulence variables using the k-e turbulence model, and 
SPC2dBLSweep calculates the turbulent viscosity using the Baldwin-Lomax 
turbulence model. The class SPCMtxSweep solves the linear system which 
arises in the pseudo-compressibility sweeps; a line relaxation method is used. 
These classes are described in detail in Reference 12. The SeqSweep and 
ConcSweep classes are described in Section 4.4. The FESweep class is a generic 
finite element sweep; it assembles a linear system of equations and solves it. 
Its specialization FE2dNSSweep is used to solve the two-dimensional Navier- 
Stokes equations. The FESfncSweep calculates the streamfunction for an 
incompressible velocity field. The classes FESweep, FE2dNSSweep and 
FESfncSweep are all described in Reference 13. 
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Sweep 

f 
SPC2dBLSweep ] 

I 
ConcSweep 

j 
SeqSweep 

7^ 
[ SPCMtxSweep ) 

ResidualSweep 

I 
FESweep     ) 

[SPC2dPVSweep] SPC2dKESweep    FE2dNSSweep^[FESfncSweep ] 

Figure 4: Class hierarchy for Sweep and its specializations 

4.2 The StopTest class 

The StopTest class has two member functions: 

virtual void initialize!); 
Performs any initialization necessary for the proper functioning of 
the stop test. 

virtual int stopf): 
Returns true if the sweeps should be stopped; false if they should 
continue. Thus, stop() implements the function C{x). Note that, as 
described above, the state vector x is shared data of both the StopTest 
class and the Sweep class; hence, it is not provided as an argument to 
stop(). Of course, this also circumvents the problem that the type of 
data is not yet specified so that, for a strongly typed language like C++, 
the type of the argument would not be known. 

There are several simple but important specializations of stop tests. The 
TrueStopTest always returns true; the FalseStopTest always returns false. The 
OrStopTest combines two stop tests, C\ and C2, to obtain  C = C1AC2. An 
AndStopTest is similar but is defined by C = Cx v C2. 

Figure 5 shows the hierarchy of classes derived from StopTest. A 
ReportStopTest is a stop test which reports on its state whenever is stopf) 
function is executed; it is described in Section 4.2.1. An NTimesStopTest allows 
the sweep to be performed n times; it is described in Section 4.2.2. A 
CompDataStopTest returns true when successive values of the state vector 
have changed by less than some pre-defined small amount; it is described in 
Section 4.2.3. A ResidualStopTest is a stop test suitable for a residual solver; it is 
described in Section 4.6.1. The SeqStopTest and ConcStopTest classes represent 
stop tests suitable for solvers which use more than one sweep; they are 
described in Sections 4.4.1 to 4.4.3. 
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[      StopTest      ] 

[ReportStopTest J 

I 

[   NTimesStopTest    J 

[ CompDataStopTest J 

[   ResidualStopTest 

( TrueStopTest ]* 

[ FalseStopTest ]- 

[ OrStopTest ] 

[ AndStopTest ] 

[ SeqStopTest ] 

[   ConcStopTest)^- 

Figure 5: Class hierarchy for StopTest and its specializations 

4.2.1 The ReportStopTest Class 

A ReportStopTest is a StopTest with the ability to report on its state when- 
ever the stop function is called. The virtual function report is used to write 
the report. A character string may be prepended to the report; normally this is 
used to identify the solver to which the stop test applies. 

Each ReportStopTest can be set so that the report is written before the stop 
test is executed, after the stop test is executed, or not at all. The member func- 
tion set_report() is used for this purpose. Its argument should be one of the 
following: 

ReportStopTest::before 
Write the report before the stop test is executed. 

ReportStopTest::after 
Write the report after the stop test is executed, but only if the stop test 
returned true. 

ReportStopTest::after_alwoys 
Write the report after the stop test is executed, irrespective of the 
result of the stop test. 

ReportStopTest::none 
Do not write the report. 

For example, if rst is a ReportStopTest, then 

rst.set_report(ReportStopTest::before); 

sets the stop test so that the report will be written before the stop test is 
executed. By default, a ReportStopTest is set so that no report is written. 
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The ReportStopTest class does not define the initialize!) virtual function 
inherited from StopTest. It must be defined by specializations of the class. 

The constructors and member functions are: 

ReportStopTest!); 
Creates a new ReportStopTest. By default no report will be written. 

void report(ostream&); 
Writes a report on the state of the stop test to the output stream. 

virtual void report_no_prepend(ostream&) = 0; 
Writes the report with no prepended string.   This function must be 
defined by specializations of the class. 

virtual int stopf); 
Calls the function stop_no_report() to execute the stop test.  The report 
is written before or after this call as specified by the most recent call to 
set_report(). 

virtual int stop_no_report() = 0; 
Executes the stop test with no reporting.    This function must be 
defined by specializations of the class. 

void set_report_string(const Str &s) 
Sets the character string which is prepended to the report. 

4.2.2 The NTimesStopTest class 

An NTimesStopTest allows the sweep to be performed n times; its stopf) 
function returns true the (n+l)st time it is called. It is a specialization of the 
ReportStopTest class.  Its constructor has the following prototype: 

NTimesStopTestfunsigned m); 

where m is the number of times the sweep is to be executed before the stop 
test returns true. The initialize!) function resets the iteration count so that the 
stop test will be executed m more times. The number of times to execute the 
iteration may be changed using the following member function. 

void set_numPer(unsigned m); 

The NTimesStopTest inherits the member functions set_report(), report!) and 
set_report_string(), from ReportStopTest. The report from the NTimesStopTest 
simply prints the current iteration count followed by an end-of-line character. 
Thus, the code 

NTimesStopTest nst(3); 
nst.set_report(ReportStopTest::before); 
nst.set_report_string ("Iteration "); 
while (nst.stopO); 

will cause the following to be written to cout: 

Iteration 0 
Iteration 1 
Iteration 2 
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If ReportStopTest::after_always had been used, then the result would have been 

Iteration 1 
Iteration 2 
Iteration 3 

since in this case the iteration count is incremented prior to the report. 

4.2.3 The CompDataStopTest class 

Another important type of stop test checks convergence by comparing 
successive values of the state vector; if it has not changed much, then the 
solver has converged. The CompDataStopTest is used to implement this 
condition. In a CompDataStopTest the state vector is represented by an lOVar. 
When the CompDataStopTest is constructed, a copy of the state vector is made; 
it is used to store the state vector from the previous iteration. The stop test 
always returns false the first time it is called after initialization. Otherwise it 
compares the current state vector with the state vector from the previous 
iteration and returns true if one of two conditions is satisfied. 

1. The absolute value of the largest difference in the state vectors is less than 
the small pre-defined value £aCc- This condition stops the solver when 
the solution has converged. 

2. The absolute value of the largest difference in the state vectors is greater 
than the large pre-defined value £div This condition stops the solver 
when the solution has diverged. 
The CompDataStopTest constructors and member functions are: 

CompDataStopTest(IOVar *d, double a, double maxa); 
Makes a CompDataStopTest with state vector obtained from d, with 

-ace set to a, and with £diV set to maxa. 

virtual void initialize!); 
Initializes the stop test. The next call to stop() will return false. 

virtual int stop(); 
Executes the stop test. 

void set_max_residual(double maxa); 
Sets the value of 8diV to maxa. 

void set_acc(double a); 
Sets the value of £acc to a. 

The CompDataStopTest class is a specialization of the ReportStopTest class. 
The member functions set_report(), reportf), and set_report_string() are inherited 
from ReportStopTest. The report from the CompDataStopTest prints the maxi- 
mum difference found for each of the active variables in the lOVar d. The de- 
fault string prepended to the report is "Max.Acc. = ", but it can be changed using 
set_report_string(). Thus, if edst is a CompDataStopTest constructed using a 
PVIOVar (three active variables: pressure and two velocity components), then 
the report is similar to the following. 
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Max. Ace. = 0.123456      -0.0256543       0.0365476 

The first number is the maximum difference in the pressure values, and the 
latter two numbers are the maximum differences in each of the velocity 
components. 

4.3 The Solver class 

The Solver class is an implementation of the abstract solver defined above. 
It has a shared Sweep, sw, and a shared StopTest, st, as data and the following 
member functions. 

virtual void initializef): 
Initializes the sweep sw and the stop test st. 

virtual void solve(): 
Implements the solution algorithm of equation (1). 

virtual void finalize(): 
Finalizes the sweep sw and the stop test st. 

The Solver class has two constructors. 

Solver(Sweep *s, StopTest *t); 
Makes a Solver with sweep sw and stopping test st. 

Solver(const Solver&); 
Copy constructor. 

The Solver class is derived from the class OFFSRF described in Reference 16. 
Hence, every specialization of Solver has an inserter and extractor defined for 
the OFFSRF streams OFFRSF_ofstream and OFFSRFjfstream. The Solver inserter 
simply calls the inserter for its sweep. Similarly, its extractor calls the extrac- 
tor for its sweep. 

The most important specializations of the Solver class are shown in the 
class hierarchy of Figure 6. The ResidualSolver class is described in Section 4.6. 
The ConnectedSolver class is described in Section 4.4.3.2. The FE2dNSSolver class 
solves the laminar two-dimensional Navier-Stokes equations using the finite 
element method; it is described in Reference 13. The SeqSolver and ConcSolver 
classes are used to combine several different solvers so that they may be exe- 
cuted as a single solver; they are described in Section 4.4. The SeqFlowSolver 
and ConcFlowSolver classes are specializations of SeqSolver and ConcSolver 
which are specifically designed for use by flow solvers; they are described in 
Section 4.5. An SPC2dSolver solves the two-dimensional Navier-Stokes equa- 
tions using a pseudo-compressibility method; it is described in Reference 12. 
Finally, an SPC2dTurbSolver solves the two-dimensional turbulent transport 
equations on a structured grid; it is used in conjunction with the SPC2dSolver; 
it is described in Reference 12. 
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Figure 6: Class hierarchy for Solver and its specializations 

4.4 Multiple Sweep Solvers 
An important specialization of a solver is one which consists of a 

collection of sub-solvers each applied to a subset of the state vector. For 
n = l,...,N, let Sn(xn) be the collection of sub-solvers each with its sweep,Fn, 
and stop testC„. Each of these solvers can be run independently to achieve a 
solution over its sub-state-vector,xn. However, in general, the sub-state- 
vectors will not be disjoint so that, when the solvers are run sequentially, 
they interact, the solution algorithm of one solver affecting the solution of 
another. 

Moreover, the sub-state-vectors may be implemented in such a way that a 
single parameter has copies in more than one sub-state-vector. In this case 
whenever the parameter is changed in one sub-state-vector, its value must 
also be altered in all the others in which it appears. Often, but not always, 
such redundancy will be avoided by sharing state variables among the 
solvers. 

It is probably clear that, in presenting the multiple sweep solver, we have 
in mind a multi-block Navier-Stokes solver. On each block a solution 
method is defined. Boundaries may be shared by two blocks and each of the 
block solvers may store copies of the independent variables on the 
boundaries. 

There are two main types of multiple sweep solvers; they are described in 
the following two sections. 

4.4.1 Concurrent Solvers 
A concurrent solver is a multiple sweep solver which finds a solution to 

all the sub-solvers concurrently.    Each of the sweeps is executed in turn 
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(perhaps more than once), the cycle of sweeps continuing until the stop tests 
of all sub-solvers return true.  More precisely: 

1. The stop test for the solver is the union of all the sub-stop-tests: i.e. the 
stop test returns true when all of the sub-stop-tests return true. 
C(xv...,xN) = Ci(xi)v...vCN(xN) 

2. The solver is initialized by initializing all sub-sweeps and sub-stop-tests, 
for n = 1 to N {initialize Cn (xn) and Fn (xn) } 

3. The algorithm for the sweep for the concurrent solver is: 
for n = 1 to N 

{initialize C*n(xn) 

while Cn(xn):xn <- Fn(xn) 

for m = 1 to TV & m * n : 

{if (xn andxffl are redundant) Tnm(Sn(xn),Sm(xJ) } 

} 

where the C*. are a new stop tests and Tnm is a function which maintains 
the consistency of the sub-state-vectors xn and xm by changing the values 
of xm according to the values of xn. 

4. The solver is finalized by finalizing all sub-sweeps, 

for n = 1 to N { finalize Fn (xn) } 

Notice that the arguments of Tnm are not the state vectors xn and xm, but 
the solvers Sn(xn) and Sm(x„). This is because the algorithm to update the 
state vectors will usually depend on the types of solvers used and not only on 
the data itself. 

The sweep algorithm can be made more efficient if it is assumed that the 
redundancy of all pairs (xn,xm) is known a priori. In that case the loop over 
mean be restricted to the sub-state-vectors which are known to be redundant 
with xn. In many cases there will be no redundant state vector pairs. 

4.4.2 Sequential Solvers 

A sequential solver consists of a sequence of solvers; when the stop test of 
one solver is satisfied, the next solver in the sequence is started. As with 
concurrent solvers, the sub-solvers may share portions of the state vector; 
hence, after each sub-solver has been solved, update functions Tnm must be 
called to preserve the consistency of the state vectors. 

A solver which finds a solution to all the sub-solvers in sequence may be 
defined as follows. For n = l,...,N, let Sn(xn) be the collection of sub-solvers 
each with its sweep, Fn, and stop testQ.   At any time only one of the solvers, 
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the «th, is active. 
1. The stop test tests the stop test of the current solver. If it is true, the 

current solver is finalized, its connections updated, then the next solver 
in the sequence is activated and initialized. The stop test returns true 
when the stop test of the last solver in the sequence returns true. 

L,{Xi,...,Xfj ) — 

{ while Cn(xH)& n<N 

{initialize SB+1(*B+1) 

form = 1 toN& m^n : 

{if (xn mdxm are redundant) Tnm(Sn(xn),Sm(xm)) } 

finalize S„(JCB) 
(3) 

n <— n + \ 

} 
return Cn(xn) 

} 
2. The solver is initialized by resetting n to 1 and initializing £,(*,). 
3. The sweep simply executes the sweep of the current solver: 

F(x1,...,xN) = Fn(xn) 

4. The solver finalize function does nothing, since all the sub-solvers are 
finalized during the execution of the stop test. 

4.4.3 Implementation of Multiple Sweep Solvers 
In TRANSOM, both concurrent and sequential solvers are implemented 

with the help of several special classes. 

4.4.3.1 The SweepConnection Class 

The SweepConnection class represents the connection function r(5p52) 
between two solvers having redundant state vectors. It has two member 
functions: 

virtual void initialize!): 
Performs initializations required for the efficient execution of r(S,,52) 

virtual void updatef): 
Implements the function T(SVS2). The solver arguments S, and S2 

will normally be specified as arguments to the constructor when an 
instance of SweepConnection is created. 

4.4.3.2 The ConnectedSolver Class 

To implement the sweep algorithms of the multiple sweep solvers the 
class ConnectedSolver is defined. A ConnectedSolver, S, consists of a solver and 
a list of connection functions, T(S,Sn). 
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It is important that it be possible to promote any Solver to a 
ConnectedSolver; hence it should have a constructor with the following 
prototype. 

ConnectedSolverfSolver &s); 

When this constructor is used, the ConnectedSolver should behave exactly as 
did the original solver, s, except that the ability to add and to execute connec- 
tion functions is provided. A natural way to implement this constructor 
would be to copy the sweep and stop test from s; however, in that case, any 
overloaded member functions of s would be lost. Instead the ConnectedSolver 
class stores a pointer, slv, to the original solver; the Solver member functions 
are then overloaded so that they execute the corresponding member function 
of slv. 

Notice that in this implementation a ConnectedSolver stores two sweeps, 
Solver::sw and slv->sw, and two stop tests, Solver::st and slv->st. The duplication 
of sweeps has no utility; Solver::sw is always ignored. However, the second 
stop test can be used to store the stop test, C*, required by the concurrent 
solver. Accordingly, constructors are supplied to allow Solver::st and slv->st to 
be defined independently. 

When a connection between two solvers is defined in an input file, there 
must be some means of identifying the solvers which are to be connected. To 
make this easier, a connected solver also has a name. ConnectedSolver 
overloads the Solver extractor so that it may read the name from a NAME 
record having the following format. 

{NAME: name} 

where name is any character string. When comparing the name with other 
names, leading and trailing whitespace is ignored but the comparison is case 
sensitive. Other input records are read by calling slv->read_record (see 
Reference 16). 

Following are prototypes for the ConnectedSolver constructors and mem- 
ber functions. 

ConnectedSolverfSolver &s); 
Creates a ConnectedSolver from the solver s. The pointer slv is set to 
&s. The list of connection functions is empty; they must be added 
using the member function insert. 

ConnectedSolver(const ConnectedSolver &cs, StopTest *t = 0); 
Copies cs including its list of connection functions. If t is non-null, 
the stop test pointer Solver::st will be set to t; otherwise it will be set to 
slv->st. 

void insertfSweepConnection *sc); 
Adds a connection function to the list 

virtual void initialize!); 
Initializes the ConnectedSolver prior to its solution. Initializes the 
solver slv, the stop test Solver::st, and all of the connection functions. 
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virtual void finalize(); 
Finalizes the  ConnectedSolver  after its solution; equivalent to 
slv->finalize(). 

virtual void update_connections(); 
Calls update() for every connection function in the list. 

Solver* get_solver() const; 
Returns slv. 

StopTest* get_originaLstop_test() const; 
Returns a pointer to the stop test used by slv: i.e. returns slv->st. 

const Str& get_name() const; 
Returns the solver name. 

4.4.3.3 The ConcSolver Class 

Concurrent solvers are represented by the class ConcSolver; the sub-solvers 
are represented by a list of ConnectedSolvers. For each sub-solver, Sn, the stop 
test C„ is represented by the stop test slv->st in the ConnectedSolver; the stop test 

C* is represented by Solveri:st. The stop test for the ConcSolver is a 
ConcStopTest; its stop() function implements algorithm described in 
Section 4.4.1. 

The ConcSolver class has the following constructors and member 
functions. 

ConcSolver(): 
Creates a new ConcSolver with an empty list of sub-solvers. Sub- 
solvers must be added using one of the insert functions defined below. 
During the sweep, the sub-solvers will be executed in the order in 
which they are added to the list. 

void insert(ConnectedSolver *s, StopTest *t = 0); 
Adds a new connected solver to the list of sub-solvers. If t is non- 
null, the stop test cs->st is replaced by t: i.e. when the sweep is 
performed, the stop test C* will be evaluated using t. 

void insert(Solver *s, StopTest *t); 
Add a new solver to the list of sub-solvers by first converting it to a 
ConnectedSolver with an empty list of connection functions.  The stop 
test C is represented by s->st and the stop test C* by t. 

int is_empty() const; 
Returns true if there are no sub-solvers. 

virtual void initialize!); 
Initializes all the sub-solvers prior to execution of the sweeps. 

virtual void sweep(); 
Executes the sweeps as described in Section 4.4.1. 

virtual void finalize!); 
Finalizes all sub-solvers after execution of the sweeps. 
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4.4.3.4 The SeqSolver Class 

Sequential solvers are represented by the class SeqSolver; the sub-solvers 
are represented by a list of ConnectedSolvers. Since only one stop test is 
required for each sub-solver, in the ConnectedSolvers the stop tests slv->st and 
Solver::st are always the same. The stop test for the SeqSolver is a SeqStopTest; 
its stopf) function implements algorithm (3). 

The SeqSolver class has the following constructors and member functions. 

SeqSolverf); 
Makes a SeqSolver with an empty list of sub-solvers. The sub-solvers 
must be added using the insert function. 

void insert(ConnectedSolver *s); 
Adds a new connected solver to the list of sub-solvers. 

void insert(Solver *s); 
Adds a new solver to the list of sub-solvers by first converting it to a 
ConnectedSolver with an empty list of connection functions. 

virtual void initialize!); 
Initializes the first sub-solver prior to execution of the sweeps. 

virtual void sweepf); 
Executes the sweep algorithm described in Section 4.4.2. 

virtual void finalizef); 
Does nothing, since all sub-solvers are finalized during execution of 
the stop tests. 

4.5 Flow Solvers 

The FlowSolver class is an abstract base class for solvers used to calculate 
fluid flow. Its state consists of a Grid, an lOVar used to represent flow variables 
having values at all nodes, and a single double used to store the Reynolds 
number.  The prototypes for the FlowSolver constructors are: 

FlowSolver(Grid *g = 0, double r = -1.0, lOVar *v = 0); 
Creates a FlowSolver using the grid g, the flow variables v, and the 
Reynolds number r. If the grid is null, it must be defined by reading it 
from an input file using the extractor described below. A negative 
Reynolds number is used as a flag that the Reynolds number has not 
been defined. 

FlowSolverfconst FlowSolver&); 
A copy constructor. 

The FlowSolver class has two specializations: SeqFlowSolver and 
ConcFlowSolver. Each adds a list of sub-solvers to the FlowSolver: SeqFlowSolver 
solves the sub-solvers in sequence, ConcFlowSolver concurrently. This is 
implemented by deriving the former from the SeqSolver class as well as 
FlowSolver, the latter from the ConcFlowSolver class as well as FlowSolver. This 
multiple inheritance hierarchy is illustrated in Figure 7. 
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Figure 7: C/flss hierarchy for FlowSolver and its specializations 

Instances of both SeqFlowSolver and ConcFlowSolver can be defined by 
reading records from an OFFSRF input file. Extractors are overloaded for the 
SeqFlowSolver and OFFSRFJfstream classes, and for the ConcFlowSolver and 
OFFSRFJfstream classes. Thus, if s is a SeqFlowSolver or a ConcFlowSolver and 
in_stream is an OFFSRFJfstream, then the code 

in_stream » s; 
will define s by reading the OFFSRF file associated with the stream in_streom. 
The extractor reads the following OFFSRF records. 

1. A GRID record in the format described in Section 2.5. 
2. A GLOBAL VARIABLES record which defines the organization of the 

independent variables. The format of this record is described below. 
3. A REYNOLDS NUMBER record with format 

{REYNOLDS NUMBER: number } 
where number is the value of the Reynolds number. 

4. Any number of records describing the sub-solvers. In the current version 
of TRANSOM the following OFFSRF records are recognized for defining 
the sub-solvers. 
SPC 2D SOLVER: Creates a solver which uses the pseudo-compressibility 

method to solve the Navier-Stokes equations on a structured grid. 
The format of this record is described in Reference 12. 

STRUCTURED STREAMFUNCTION SOLVER: Creates a solver which 
calculates a streamfunction for a two-dimensional flow field on a 
structured grid.  Typically this solver is used in sequence with an SPC 
2D SOLVER. 

FE 2D NS SOLVER: Creates a solver which solves the two-dimensional 
Navier-Stokes equations using the finite element method.    The 
format of this record is described in Reference 13. 

FE STREAMFUNCTION SOLVER: Creates a solver which uses the finite 
element method to calculate a streamfunction for a two-dimensional 
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flow field.   Typically this solver is used in sequence with an FE NS 
SOLVER. 

FE LAPLACE SOLVER: Creates a solver which uses the finite element 
method to solve Laplace's equation. 

SEQUENTIAL SOLVER: Creates a new instance of a SeqFlowSolver. This 
record should have a format similar to that of the TRANSOM input 
file except that it may not include a GRID record. If independent 
variables have been inherited from the parent solver, then it also 
must not contain a GLOBAL VARIABLES record. 

CONCURRENT SOLVER: Creates a new instance of a ConcFlowSolver. 
The format of this record is exactly the same as for the SEQUENTIAL 
SOLVER record. 

The format of the GLOBAL VARIABLES record is as follows: 

{GLOBAL VARIABLES 
name-1 length-1 
name-2  length-2 

natne-n   length-n 
}GLOBAL VARIABLES 

where name-1 to name-n are the names of the variables and length-1 to 
length-n are the number of doubles required per node for the corresponding 
variable. If the variable names contain spaces, they must be enclosed in 
double quotes. For example, the following record defines three global 
variables: Pressure, two-dimensional Velocity, and Turbulent Viscosity. 

{GLOBAL VARIABLES 
Pressure 1 
Velocity 2 
"Turbulent Viscosity" 1 

}GLOBAL VARIABLES 

The variables can also be initialized from within the GLOBAL 
VARIABLES record; simply include a record whose name is the name of the 
variable, followed by the values of that variable at all the nodes (note that this 
is the format required by the lOVar extractor as described in Section 3.2). Thus, 
the following record defines Pressure and two-dimensional Velocity and 
initializes the values of Pressure. 

{GLOBAL VARIABLES 
Pressure 1 
Velocity 2 
{Pressure 

Pi Pi  ■•■ Pn 
JPressure 

}GLOBAL VARIABLES 

To implement the extractors, a mechanism must be provided for defining 
the sequence of sub-solvers by reading OFFSRF records. Moreover, it should 
be possible for the sub-solvers themselves to be instances of the SeqFlowSolver 
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and ConcFlowSolver. To avoid duplication of code between the two solvers, 
the task of reading the input records is relegated to the base class FlowSolver. 
The FlowSolver virtual member function insert(ConnectedSolver*) is used to 
insert the sub-solver into the list of sub-solvers; for the class SeqFlowSolver this 
function is simply redefined as SeqSolver::insert(ConnectedSolver*), while for 
the ConcFlowSolver it is redefined as ConcSolver::insert(ConnectedSolver*). 

Whenever a sub-solver is created by a FlowSolver, the grid (or perhaps an 
appropriate block of the grid) and the independent variables of the FlowSolver 
are passed to the sub-solver via its constructor. All the sub-solvers then share 
the grid and the variables of their parent. If a sub-solver requires an 
independent variable which is not defined by the parent (e.g. if the solver 
requires turbulent viscosity but the parent defines only pressure and velocity), 
then a local copy of that variable will normally be generated. 

4.6 Residual Solvers 

Residual solvers are an important abstraction of solvers used to solve 
systems of equations. Consider the system of equations 

f(x) = 0 

where x is a state vector and / is a vector of functions. In a residual solver, 
one evaluates r = f(x) for the current approximation to the state vector x, 
then determines a correction to x which will reduce the magnitude of the 
vector r. The elements of r are called the residuals of the system of equa- 
tions.  The solution algorithm can be written as follows. 

S(x) = { X <r- X0 

repeat 

{ r <-/(*) 

x<-x + g(x,r) .4v 

} 

while not C(r) 

} 

where x0 is the initial state vector, g(x,r) is the correction to x, and C(r) is a 
stop test which returns true when the residuals are sufficiently small. To 
conform to the solution algorithm (1) in Section 4, the post-tested loop must 
be converted to a pre-tested loop. This is done simply by requiring that the 
stop test always return false the first time it is called after initialization. 
Algorithm (1) may then be used with the sweep function defined by 

F(x) = {   /•*-/(*) 

x<r-x + g(x,r) (5) 

} 
In TRANSOM, residual solvers are implemented using the three classes 
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ResidualSolver, ResidualStopTest, and ResidualSweep. In these classes the residu- 
als are represented as a Vec: an array of floating point values for which many 
arithmetic operators have been defined. The full definition of the Vec class 
may be found in the source files Mtx.h and Mtx.c. The state vector is repre- 
sented as an lOVar. 

4.6.1 The ResidualStopTest Class 

The ResidualStopTest class represents a stop test suitable for use in a resid- 
ual solver. The stop test always returns false the first time it is called after ini- 
tialization.  Otherwise it returns true if one of two conditions is satisfied. 

1. The largest absolute value of all the residuals is less than the small pre- 
defined value £acc. This conditions stops the solver when the solution 
has converged. 

2. The largest absolute value of all the residuals is greater than the large pre- 
defined value £div This condition stops the solver when the solution has 
diverged. 

The ResidualStopTest constructors and member functions are: 

ResidualStopTest(Vec *r, double a, double maxa); 
Makes a ResidualStopTest with residuals obtained from r, with eacc set to 
a, and with £div set to maxa. 

virtual void initialize(); 
Initializes the stop test. The next call to stop() will return false. 

virtual int stopf); 
Executes the stop test. 

void set_max_residual(double maxa); 
Sets the value of £div to maxa. 

void set_acc(double a); 
Sets the value of £acc to a. 

The ResidualStopTest class is a specialization of the ReportStopTest class. 
The member functions set_report(), report(), and set_report_string() are inherited 
from ReportStopTest. The report from the ResidualStopTest prints the maxi- 
mum and the root mean square residual. The default string prepended to the 
report is "Accuracy = ", but it can be changed using set_report_string(). Thus, if rst 
is a ResidualStopTest, then the report is similar to the following. 

Accuracy =        -0.123456       0.0256543 

The first number is the residual with the largest absolute value and the sec- 
ond is the root mean square residual. 

4.6.2 The ResidualSweep Class 

The ResidualSweep class is used to implement the sweep algorithm (5). Its 
data includes a Vec to represent the residuals, and an lOVar, data, to represent 
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the state vector.  It has the following constructors and member functions. 

ResidualSweep(IOVar *d, unsigned nr = 0); 
Makes a ResidualSweep with state vector d. The length of the residual 
vector is given by nr. If nr is zero, then the length of the residual 
vector is set to the number of doubles in d. 

virtual void calc_residual() = 0; 
Calculates the residuals. This is a pure virtual function which must 
be defined by the specializations of the ResidualSweep class. 

virtual MultiNumVar& correct() = 0; 
Returns the correction to the state vector g(x,r). This is a pure 
virtual function which must be defined by the specializations of the 
ResidualSweep class. 

virtual void sweep(); 
Executes the sweep algorithm (5) by calling calc_residual() and then 
incrementing the state vector by the returned value of correct(). 

An extractor is overloaded for the ResidualSweep and OFFSRFjfstream 
classes. It reads in values of the state vector, data. Thus, if rsw is a 
ResidualSweep and in_stream is an OFFSRFjfstream, then the code 

in_stream » rsw; 
will define data by reading the OFFSRF file associated with the stream 
in_stream.  This code is identical in function to 

in_stream » rsw->data; 
The format for the records to define an lOVar is described in Section 3.4. 

4.6.3 The ResidualSolver Class 

Residual solvers are represented by the ResidualSolver class. The sweep of a 
ResidualSolver is a specialization of a ResidualSweep. Its stop test is an OrStopTest 
which combines an NTimesStopTest and a ResidualStopTest. Thus, the solver 
will stop either when the residuals are sufficiently small (or too large) or 
when a fixed number of sweeps have been performed. The ResidualSolver 
ensures that its sweep and the ResidualStopTest share the same residuals. The 
constructor and member functions of the ResidualSolver class are: 

ResidualSolver(ResidualSweep *s, unsigned mxniter = 1000, double ace = 1.0e-04, 
double maxacc = 1.0e+04); 

Makes a ResidualSolver having sweep s. A maximum of mxniter sweeps 
will be performed.    The solver stops executing sweeps when the 
maximum residual is smaller than ace or if it is greater than maxacc. 

void set_max_residual(double maxacc) 
Sets the value of £div for the ResidualStopTest to maxacc. 

void set_acc(double ace); 
Sets the value of eacc for the ResidualStopTest to ace. 
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void set_max_number_sweeps(unsigned mxniter); 
Sets the maximum number of sweeps to mxniter. 

The values of eacc and 8div can be defined by reading records from an 
OFFSRF input file. An extractor is overloaded for the ResidualSolver and 
OFFSRFjfstream classes. Thus, if rslv is a ResidualStopTest and in_stream is an 
OFFSRFjfstream, then the code 

in_stream » rslv; 

will define st by reading the OFFSRF file associated with the stream in_stream. 
The records should have the following format (all records are optional). 

{RESIDUAL ACCURACY: eps_acc } 
{MAXIMUM RESIDUAL: eps_div } 
{MAXIMUM NUMBER ITERATIONS: num } 

where eps_acc is the value of £max, eps_div is the value of £diV and num is the 
maximum number of iterations allowed. Any other records will be passed to 
the sweep for interpretation. 

5 The Main Program 
The TRANSOM main program is very simple.  It consists of four phases. 

1. First a ConcFlowSolver, ms, is created. 
2. Then an OFFSRF file is opened (its name is supplied as a command line 

argument when TRANSOM is executed from the shell) and the 
ConcFlowSolver extractor is used to define ms according to the contents of 
the file. As described in Section 4.5, this will define the grid, any global 
variables to be shared among sub-solvers, and all the sub-solvers to be 
executed. 

3. Next ms.solvef) is called to generate a solution to the problem. 
4. Finally an OFFSRF output file is opened (its name is supplied as a 

command line argument when TRANSOM is executed from the shell) 
and the solution is written to it using the ConcFlowSolver inserter. 

6 Concluding Remarks 
TRANSOM is a complex program which is still in the early stage of de- 

velopment. There is little doubt that some of the structure defined in this 
memorandum will be changed as that development continues. Never- 
theless, in the two flow solvers which have been implemented so far, the 
current class hierarchies have proved their worth. 

At present TRANSOM works well when either the pseudo- 
compressibility solver or the finite element solver is used on a single block. 
Experimentation with a single solution method on multiple blocks has also 
shown that acceptable levels of convergence can be achieved. Some flows 
have also been solved in which both the pseudo-compressibility method and 
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the finite element method have been used on neighbouring blocks[17], 
although convergence is at best slow and at worst not attained. Work in this 
area will continue over the coming year; it will likely lead to significant 
changes in the ConnectedSolver and SweepConnection classes currently used to 
implement the transfer of information between solvers on neighbouring 
blocks. 

Further development will also continue on each of the solvers imple- 
mented so far. Details of their shortcomings and the modifications proposed 
are described in References 12 and 13. 
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