
RL-TR-97-35
Final Technical Report
June 1997

THE COMMON PROTOTYPING
ENVIRONMENT

BBN Systems and Technology

Sponsored by
Advanced Research Projects Agency
ARPA Order No. 7703

APPROVED FOR PUBUC RELEASE; D/STR/BUTION UNUM/TED.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Advanced Research Projects Agency or the U.S. Government.

Rome Laboratory
Air Force Materiel Command

Rome, New York

lynC QUALOT ffiSPEOTED 3

This report has been reviewed by the Rome Laboratory PubHc Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-35 has been reviewed and is approved for publication.

p
APPROVED:

DONALD F. ROBERTS
Project Engineer

FOR THE COMMANDER:
JOHN A. GRANIERO, Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3CA, 525 Brooks Rd, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

THE COMMON PROTOTYPING ENVIRONMENT

Contractor: BBN Systems & Technology
Contract Number: F30602-91-C-0014
Effective Date of Contract: 5 December 1990
Contract Expiration Date:
Program Code Number:
Short Title of Work:

28 February 1996
3E20
The Common Prototyping Environment

Period of Work Covered: Dec 90 - Feb 96

Principal Investigator:
Phone:

Mark H. Burstein
(617) 873-3861

RL Project Engineer:
Phone:

Donald F. Roberts
(315)330-3577

Approved for public release; distribution unlimited.

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by
Donald F. Roberts, RL/C3CA, 525 Brooks Rd, Rome, NY.

lynCQUAUnEISPEDTED^.

REPORT DOCUMENTATION PAGE
Form Approved

0MB No. 0704-0188

Public reporting burdan for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and mainteining the data needed, and completing and revievtfing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (07040188), Washington, DC 20503.

1. kamCHWiimVilLeaveblankl 2. REPORT DATE

June 1997
3. REPORT TYPE AND DATES COVERED

Final Dec 90 - Feb 96
4. TITLE AND SUBTITLE

THE COMMON PROTOTYPING ENVIRONMENT

6. AUTHORIS)

Mark H. Burstein

5. FUNDING NUMBERS

C - F306702-91-C-0014
PE -63728F
PR -G703
TA -00
WU-01

7. PERFORMING ORGANIZATION NAMEIS) AND ADDRESS(ES|

BBN Systems and Technology
10 Moulton Street
Cambridge MA 02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

BBN Report No. 8151

9. SPONSORINGIMONITORING AGENCY NAMEIS) AND ADDRESSIES)

Advanced Research Projects Agency
3701 North Fairfax Drive
Ariington VA 22203-1714

Rome Laboratory/C3CA
525 Brooks Road
Rome NY 13441-4505

10. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

RL-TR-97-35

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Donald F. Roberts/C3CA/(315) 330-3577

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release, distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Common Prototyping Environment Abstract: The ARPA/Rome Laboratory Knowledge Based Planning and
Scheduling Initiative (ARPI) is an Advanced Research Projects Agency (ARPA) and Rome Laboratory (RL) sponsored
initiative to promote the development of new knowledge-based planning and scheduling technology for use by the
military in support of operational planning and scheduling problems. The ARPI Common Prototyping Environment
Project was established in order to facilitate the communication of an understanding of military problems to the
research community, provide sample data and problems, promote the sharing and reuse of software tools, and
ultimately provide a platform of the experimental testing and integration of research products, so that successful
technologies could be demonstrated solving operational problems. The CPE team and BBN Systems and Technologies
and ISX Corporation was tasked to provide a wide variety of infrastructure services for the initiative, including
knowledge representation tools, and assistance in developing integration experiments and software feasibility
demonstrations (IFDs).

14. SUBJECT TERMS

Knowledge Based Planning, Scheduling, Transportation Scheduling, Prototyping

17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION

OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION

OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

102
16. PRICE CODE

20. LIMITATION OF ABSTFJACT

UL
Stantlard Fortn 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Table of Contents

1.0 Introduction 1

2.0 The Common Prototyping Environment 4

The CPE Repository 6

The CPE Testbed 7

3.0 A Brief History of the CPE Project 9

In the Beginning - DART 9

First Year Activities - ARPI Kickoff, CPE Repository and IFD-2 9

Second Year Activities - Technology Integration Experiments 11

Third Year Activities - The Common Prototyping Environment Testbed 14

CPE Testbed Release 2.0 20

The 1994 ARPI Workshop 21
22

Fourth Year Activities - New CPE Modules

Fourth Year Activities - Publications and Domain Models ^^

Fourth Year Activities - IT AS 23

APPENDICES

Appendix A: Summary of the Force Module Expanded Requirements Generator.

Appendix B: The Common Prototyping Environment.
In (A. Tate, Ed.) Advanced Planning Technology , The AAAI Press, 1996.

Appendix C: IT AS: A Portable, Interactive Transportation Scheduling Tool Using a Search
Engine Generated from Formal Specifications.

In (B. Drabble, Ed.) the Proceedings of the Third AI Planning Systems Conference,
Edinburgh, Scotland, The AAAI Press, 1996.

LIST OF FIGURES

Fig 1. The Common Prototyping Environment as a facilitator of technology transition 1

Fig 2. The Tiers of the ARPI Community 2

Fig 3. ARPI Technology Roadmap (as of 1991) 4

Fig 4. Flow of plan development and analysis in the modules of IFD-2 10

Fig 5. Block Diagram of Infrastructure TIE 13

Fig 6. Architecture of the CPE Knowledge Server and communications mechanisms 14

Fig 7. Relationships between TIEs in a ftinctional architecture 15

Fig 8. Communications Paths Defined between Module Types in CPE Testbed 16

Fig 9. Operations defined for Module Types (as of Release 2.0) 17

Fig 10. A KRSL Plan Node 17

Fig 11. Communications between COAG Planner and Force Selector 18

Fig 12. A Functional Comparison Experiment 19

Fig 13. CPE Testbed Experimenters Interface (Release 2.0) 19

Fig 14. CPE 2.0 Demonstration using TARGET Plan Server 21

Fig 15. Automatic generation of a set of related experiment trials 22

Fig 16. Island State of Pacifica 23

11

1.0 INTRODUCTION
The ARPA/Rome Laboratory Knowledge Based Planning and Scheduling Initiative (ARPI)

is an Advanced Research Projects Agency (ARPA) and Rome Laboratory (RL) sponsored
initiative to promote the development of new knowledge-based planning and scheduling
technology for use by the military in support of operational planning and scheduling problems.
Included in the program are research efforts aimed at developing new AI planning technologies
in the areas of plan generation and replanning, schedule optimization, formal plan validation,
decision-theoretic planning, heterogeneous database access, reasoning under uncertainty, and
case-based reasoning. An important goal of the ARPI program is to foster the integration of these
technologies, and transition successful applications of these technologies to operational
prototypes that can effectively demonstrate their utility to the military.

The Common Prototyping Environment Project was established in order to facilitate the
communication of an understanding of military problems to the research community, provide
sample data and problems, promote the sharing and reuse of software tools, and ultimately
provide a platform for the experimental testing and integration of research products, so that
successful technologies could be demonstrated solving operational problems (See Figure 1). The
CPE team of BBN Systems and Technologies and ISX Corporation was tasked to provide a wide
variety of infrastructure services for the initiative, including the collection and dissemination of
domain data and reference materials, support software, knowledge representation tools, and
services including the organization of annual ARPI workshops and quarterly meetings, assistance
in developing integration experiments and software feasibility demonstrations (IFDs). They
developed the CPE Testbed as a distributed platform for researchers to build and conduct
collaborative experiments and demonstrations.

T^phnology

Common Prototyping
Environment

Operational

I Prototypes

Int eg rat ed Fea sibility
Demonstrations

Domain Information

Technology Integration
Experiments

Operat ionally Focused
Research & Development

Tier 3:
Transition to Operational

Sponsor

Tier 2:
Industrial R&D

Operational Prototypes

Tier 1:
Research Community

Figure 1: The Common Prototyping Environment as a facilitator of technology transition.

The general organization of the initiative is based on three tiers of efforts (See Figure 2). Tier 1
involves a number of independent research efforts, primarily at universities, that are oriented

1

toward developing fundamental knowledge-based reasoning capabilities which can be applied to
operational planning and scheduling problems. Tier 2 efforts, taking place primarily at
industrial research and development laboratories, are aimed at taking these fundamental
technological capabilities and producing Technology Integration Experiments (TIEs) that are
attempts to merge many of the individual developments in Tier 1 into coordinated systems that
demonstrate the application of the Tier 1-developed technologies to an operational problem. Tier
3 involves technology transfer of knowledge-based planning technology via the development of
Integrated Feasibility Demonstrations (IFDs) and user-supported operational prototypes. Each
Tier 2 laboratory was made responsible for the development and hardening of research at Tier 1
into software that could be demonstrated in an operational domain.

ARPI Technology Community

Tier 3

IFD1: BBN, Ascent, ISX (DART)
IFD 2: SRI, BBN, ISX (SOCAP)
IFD 3: BBN, SR, ISX, tiers 1& 2. (TARGET)
IFD4: ISX, SR, BBN, tiers 1& 2. (ACFT)

Domain Expertise
MITRE, USTRAN9C0M

^ Software Engineering
SEI

Tinr Common
Prototyping Environment

BBN/ISX

Intclllrir'nt
KE3,'DB Af:i:csb
'ind Mediation

Schcdulinrj
>ind Tompotal

Reasoning

Generative
Planning and
Plan Learning

Case-Based
Reasoning

ramax/ Unisys
(now Loral)

CMU, <3E. CRD,
Honeywell

SRI (E CFD

Decision
Theoretic and
Probabillst ic

Analysis
 I

Plan/ Planner
Evaluat ion

Rockwell

Tier 1

use isi, uaA
CMU,
Kestrel

SRI, ORA, Univs. of:
Edinburgh, Oregon,

Maryland, Mass.,
Pitts burg, Rochester

Univ. of
Chicago

MIT
Brown U.

Univ. of
Massachusett s

Figure 2: The Tiers of the ARPI Community
From an operational perspective, the ARPI focused for the first three or four years on the
problem of MilitaryTransportation Planning^. The initial Tier 3 effort (for IFD-1) was the
development of a transportation planning tool called DART (Dynamic Analysis and Replanning
Tool). DART provided transportation planners with an ability to rapidly generate, evaluate and
modify transportation plans. An initial version of DART was deployed to support transportation
planning during the DESERT SHIELD/DESERT STORM operation. The second IFD
demonstrated SOCAP, a plan generation system developed as an application of the SIPE-2 plan

1. See (Burstein, 1991), BBN Technical Report 7495, for a brief description of the military transportation planning
domain, and an early description of the CPE.

generation system by SRI International. The third IFD demonstrated TARGET, a collaborative
planning tool that provided an object-oriented plan database and interface, while providing an
integrating platform for demonstrating some of the case-based reasoning, decision-theoretic
analysis, constraint-based scheduling and knowledge/data representation techniques that had
been developed. The fourth IFD demonstrated these and additional technologies applied in a tool
for Air Campaign Planning (ACPT).

In addition to the individual research and development efforts, the ARPI organized a number of
issue and technology working groups. The issue working groups were concerned with the
general management and scheduling of the Tier 1 and Tier 2 activities. The four working groups
discussed

• The Technology Roadmap
• Knowledge Representation, Knowledge Acquisition and System Architecture Issues
• The Common Prototyping Environment
• IFDs and a "Visionary Demonstration"

In order to guarantee that research developments are focused on operational needs, an issue
working group was established to maintain a technology roadmap. The Technical Roadmap
provides a general plan/schedule for the developments to occur on the Tier 1 efforts, and their
impact on Tiers 2. An early version of this roadmap is shown in Figure 3. Overall, the Technical
Roadmap was expected to:

• identify specific technology developments to occur as part of the ARPI and included a
schedule that anticipated when these technology developments would be available.

• identify the operationally-relevant functional capabilities that each technology
development would provide.

• identify a series of Critical Experiments that would serve to evaluate the maturity of the
individual technology developments. Specifically, it included a schedule for the IFDs, and
the technical/functional capabilities that will be demonstrated at each IFD.

The Knowledge Representation, Acquisition and System Architecture group was responsible for
developing representational structures, requirements for domain knowledge, and architectures
and functional description for planning system components that will promote collaborative work
and knowledge sharing among members of the Pi's research community. This includes the
development and dissemination of conventions and constraints on representational structures,
reasoning processes, and the architectural infrastructure. Their primary product was a
specification of the KRSL language for describing shared representations of content.

The Feasibility and Visionary Demonstrations working group was responsible for characterizing
a future system for Joint Operations Planning that reflected the application of new technologies
developed by DARPA, Rome Laboratory and other organizations. The specific focus was on
technologies to be developed as part of the ARPI. The Visionary Demonstration that was
ultimately developed was in the form hypermedia presentation depicting a technology-supported
Joint Operational Planning scenario. Specific aspects of the Visionary Demonstration were
implemented in the IFDs.

Functional
Milestones

offline
deliberate

static
single agent

online
dynamic

centralized
collaborative

uncertain

distributed
delagation
negotiation
multi-agent

1992
Technology

„ , , , Constraint
Schedule

y based
/ scheduling

Plan

N^ CBR

Generate
Hierarchical
nonlinear
planning

Execute

Existing
simulation

Analyze models

Plan evaluation

Infrastructure

Performance
analysis tools

KRSL
Ontologies

1994

Planning and
scheduling

Repair/Replan

Search control

Interactive
planning and

execution

Situation
assessment

Visualization

Compositional
simulation

Explanation

DB Interface

TMM

Constraint
compiler

1996

Parallel
scheduling

Taxonomic
reformulation

Distributed
planning and
scheduling

Plan
steering

Reversible
simulation

DRMS

Agent
architectures

Multi-level
security

Figure 3: ARPI Technology Roadmap (as of 1991)

The Common Prototyping Environment (CPE) working group was responsible for specifying
requirements for the Common Prototyping Environment such that it would provide both
developmental support and a testbed for accumulating research results and assessing research
progress.

2.0 THE COMMON PROTOTYPING ENVIRONMENT
The Initiative involves dozens of researchers at many sites, each working on basic or applied

research with a view to supporting large scale, spatially- and functionally-distributed planning
and scheduling systems for the deployment and employment of military resources. The
researchers in these groups are working on different aspects of the overall problem, and in many

cases, have different goals and criteria for the success of their research programs. For example,
while one group was working on the adaptation of existing generative planning technology to a
near-term demonstration of automated planning in the transportation domain, another was
attempting to formalize concepts such as "cooperation" between automated agents in a
distributed planning system. At the same time, a third group was developing scheduling
algorithms that are tractable at the large scales inherent in the military transportation planning
problems routinely faced by the Joint Staff.

In support of the initiative, a Common Prototyping Environment (CPE) was envisioned to
alleviate the tremendous burden all of these researchers would otherwise bear in individually
acquiring data and knowledge of the domain, and in coordinating the development of their
software systems. The general purpose of the common prototyping environment (CPE) was to
encourage convergence between all of the researchers taking part in the ARPI. The ultimate goal
was a complete, operational transportation planning system to which all participants of the ARPI
contributed technology. Along the way to this ultimate goal, the CPE would serve to support
cooperative software development, and provide an environment within which all participants can
run experiments and derive scientific results on the effectiveness of their individual technologies.

BBN Systems and Technologies and ISX Corporation were teamed to provide the CPE,
supporting the research community by providing access to realistic military planning problems,
while reducing each individual project's overhead by providing a suite of sharable software tools
that would foster the integration, evaluation and transitioning of the planning and scheduling
technologies developed. The CPE development initially supported the community through the
CPE Repository, an "electronic clearinghouse" for software (sources, executables, and
sometimes both) and representative data and knowledge, in both textual and electronic forms,
about the military transportation planning process. The CPE Testbed was developed in 1993-4,
as a distributed environment for continuing the series of Technology Integration Experiments
(TIEs). The CPE Testbed, consists of a suite of software tools that enable systems
implementing specific technological techniques to be experimentally integrated in a distributed
knowledge-based communications environment.

The initially stated goals for the CPE were:

• To provide software, data and domain representations as communal resources on a
standard hardware platform for research and development in the domain of military
transportation planning and scheduling.

• To form a repository for examples, test cases, open problems and fruitful approaches to
solving those problems, or supporting technologies that might be used in developing such
solutions.

• To provide an environment in which solutions to similar problems can be compared and
contrasted on an even footing.

• To facilitate transfer of data and problems to the research community and potential
solutions to operational technology developers.

• To avoid unnecessary "reinventing of wheels" for interfaces, data access tools, basic
domain representations.

From the outset, BBN and ISX sought to fulfill these objectives in a number of different ways.
ISX took primary responsibility for the collection and dissemination of domain data and
information, to be provided in the form of "Domain Packages", the first being for the joint
military transportation planning domain. At the same time BBN collected and organized a set of
primarily LISP-based software tools to form the core of an "ARPI community standard"
hardware/software environment. BBN and ISX worked together, with input from the ARPI

community, to develop a Knowledge Representation Specification Language (KRSL) that could
be used as a common language for representing domain information and communicating between
the different Al-based software technologies developed under the initiative. KRSL was built on
top of the LOOM knowledge representation system from USC Information Sciences Institute.

Throughout the course of the initiative, the primary means of disseminating the tools and data
collected for the CPE was through the CPE Repository, an internet-accessible (by FTP)
repository housed at Rome Laboratory. Later, as described below, a distributed CPE Testbed
was also developed, enabling ARPI participants to work with software systems running at remote
sites, and develop experiments and demonstrations where their technologies were used in
conjunction with those remote systems.

The CPE Testbed grew out of experiences in collaborative projects from the first several years of
the Planning Initiative. These included our participation in the cooperative development of
software demonstrations called Integrated Feasibility Demonstrations (IFDs) (see
accompanying article) and smaller-scale. Technology Integration Experiments (TIEs) where
different research and development teams explored the issues involved in successfully
combining their research software and techniques.

The CPE Testbed was first released in May of 1993. It capitalized on all of the TIEs conducted
during 1992, bringing the software used in all of those TIEs into a common distributed
environment and using a single knowledge representation language for information exchange
(KRSL). The CPE Testbed was also designed to support experiments in which components were
combined in novel ways, or directly compared doing similar functions. To address the issue of
experimentation, the testbed included a suite of tools for collecting and analyzing data about the
performance of the modules used in solving planning problems. The CPE Testbed ultimately
included technology components developed in more than ten different R&D laboratories
sponsored under the initiative. These software systems all provide services that can be utilized in
experiments based on solving military planning problems, even when the software systems are
physically hosted at sites dispersed throughout the country.

The CPE Repository
As originally envisioned, the Common Prototyping Environment was to be built up as a

layered set of reusable software tools, some to be purchased commercially, others to be provided
through the CPE Repository as contributions from ARPI participants. A number of software
components used in the DART system were provided for use by other initiative members as part
of the CPE. Domain Package information, especially the useful data that had been collected
about the transportation planning domain. This information was "cleaned up" and provided in a
form that could be more easily incorporated into research projects as background for
demonstrations and research development efforts alike. Overall, The layers of the environment
were as follows:

Planning Support tools:
• Temporal Reasoning Systems
• Uncertainty Maintenance Systems
• Case indexing and Retrieval Mechanisms
• Generative Planning Tools

Modeling Support
• Scenario Description and Aggregate Force Model Editing Tools

Simulation and Analysis Tools
• Domain Simulations and associated graphics
• Transportation Analysis Tools
• Decision Support Tools

Domain Information
• Sample Domain Data in ASCII and RDBMS formats
• Object descriptions in LOOM and KRSL
• Sample problems, examples, and other supporting textual materials

Prototyping Environment Support
• System Performance Metering Tools
• Reusable CLIM-based Interface tools provided by BBN and others.

Baseline System (Mostly COTS)
• Knowledge Representation tools (LOOM, KRSL)
• SQL DBMS (Oracle) and LISP-SQL interface
• Common Lisp Interface Manager (CLIM) for developing GUIs.

Hardware/Software Substrate (COTS)
• X Windows
• Common Lisp, other programming languages as needed.
• Ethernet, TCP/IP
• UNIX OS
• Sun Workstations

Throughout the course of the initiative, demonstration systems from each ARPI contractor,
technology component systems (such as temporal reasoners, decision support tools, planners,
schedulers), and domain-specific software systems developed for IFDs and TIEs were added to
the repository. ISX also collected an extremely large amount of textual materials and databases
that were used in planning and executing the various IFDs, and added this information to the
repository. Where appropriate, KRSL forms of the data were also made available. The
Electronic Card Catalog for the ARPI CPE Repository contains well over 300 items at the
present time.

The CPE Testbed
For the first IFDs and TIEs, ARPI contractors developed and used largely domain-

independent AI tools to address military planning problems. After the initial round of TIEs was
completed, all of the technology components involved in the TIEs were integrated into the CPE
Testbed, a single environment based on the interoperability model used in the "Infrastructure
TIE", which explored the use of KQML, the Knowledge Query Meta Language, as a message
passing model for distributed knowledge-based communications, and introduced Paramax' (now
Loral) LIM/IDI mechanism for connecting KRSL/LOOM representations to SQL databases. The
CPE Testbed was designed to:

• Provide an infrastructure for future TIEs that supported experimental metrics and their
evaluation and uniform access to data and scenarios for the transportation planning
domain.

• Establish a common representational basis for all remote communications between
planning and scheduling systems.

• Facilitate the transition of technologies into IFDs and operational prototypes.
• Enable the exploration of coordination and control issues in a heterogeneous system for

replanning and rescheduling.
CPE Testbed Release 1.0 was developed in an intense five month effort during the spring of
1993 involving all of the participants in TIEs. During that time, all of the ad-hoc
communications that has occurred in the TIEs were transformed into consistent KRSL
representations. CPE Release 2.0, which included a number of additional modules and improved
experimental analysis support was released in the February of 1994.

The CPE Testbed was designed to run experiments that tested the speed and effectiveness of new
technologies, both singly and in TIE-like combinations. To run an experiment in the CPE, one
first chooses sets of modules that will run in each of a number of 'trials'. One defines the data to
be collected using a mechanism for adding 'alligator clips' or meters at various points in the
computations of modules, and in their communications with other modules.

The CPE successfully demonstrated the potential for increased collaboration and sharing among
a large set of research and development projects. It served as a validation of the concept and
methodology for promoting more effective software and information sharing, moved a large
community of researchers toward mechanisms for validating the products of their work both in
terms of increased effort to demonstrate interoperability and increased attention to the
establishment of experimental metrics for progress. The CPE Testbed facilitated a number of
experiments in which similar technologies were compared, and compatible technologies were
integrated to exhibit improved planning capabilities. The CPE Testbed is described in detail in
the paper in Appendix B, and in the CPE Testbed Users Manual and Reference Guide.

3.0 A BRIEF HISTORY OF THE CPE PROJECT

In the Beginning - DART
To a large extent planning for the ARPI program began with a DARPA (now ARPA)-

sponsored planning workshop in December of 1989. At this workshop issues relating to the
potential application of AI planning technology to transportation scheduling and planning were
examined. One result of this workshop was the identification of fundamental research issues that
needed to be addressed in order to promote the application of AI planning technology to
operational crises action planning problems. As a result of the workshop, a BAA was released in
April 1990. This BAA solicited Tier 1 and Tier 2 proposals.

The ARPI program was initiated in January of 1990. Work by BBN, ISX, and Ascent
Technologies on the DART demonstration system began shortly thereafter, along with other
scheduling technology demonstrations by MITRE (MDART) and CMU (CDART). The
objective of the DART project was to provide a quick demonstration of the operational impact of
knowledge-based planning and scheduling technology on transportation planning at
USTRANSCOM (US Transportation Command). Installation of basic support software at
USTRANSCOM was completed in May 1990. Demonstrations of DART's operational concepts
were held July 25 and August 3, and initial installation of DART software at USTRANSCOM J5
occurred August 13-17. Shortly after that the DART project was redirected to support Desert
Shield. After a period of intense development that fall and winter, DART was successfully used
to assist transportation planning for portions of this operation. The DART workstation
environment which was installed at USTRANSCOM at that time was credited with reducing
routine plan analysis from 3 days to 1 day.

In addition to providing an early standard-setting demonstration of the state of the art in planning
technology, the DART effort set standards and expectations for the application of knowledge-
based planning and scheduling technology, promoting necessary changes in the operational
domain for introducing new technologies, and exploring the impact and effectiveness of
strategies for focusing related research projects and transitioning new technology to operational
domains.

During the November and December of 1990, BBN also teamed with CMU to turn the core of
CMU's CDART demonstration into a research tool called the Prototype Feasibility Estimator
(PFE). PEE was a LISP-based transportation simulation model that produced results very similar
to the RAPIDSIM model used in the deployed DART system. PFE later served as an important
domain model for much of the constraint-based scheduling work done under the auspices of the
initiative. PFE is described in detail in (Burstein & Kosy, 1991)

First Year Activities - ARPI Kickoff, CPE Repository and IFD-2
The kickoff meeting for the ARPI, organized by BBN and ISX, occurred in February 1991.

Initial plans for the Common Prototyping Environment were distributed and discussed. During
the meeting, several working groups were established to support management and coordination
of the Tier 1 research and to plan the sequence of IFDs. (Tiers 2, 3). After several meetings a set
of issue working group reports were generated and compiled into a single informal document.
This document was distributed in October 1991. In November 1991 a workshop was held for all
the ARPI participants. The objective of this workshop was to review and revise the issue
working group reports. In addition, a set of technology working groups were established.

Throughout 1991, BBN and ISX supported several threads of activity. We collected
transportation planning materials into the first "Domain Package", a set of textual documents,
databases, and problem characteristics for a Joint military operation that was to be the model for
IFD-2. We began to populate the CPE Repository, an on-line archive of reusable software
components, demonstration systems, and domain information and data. We developed, with
support from many initiative researchers, a specification and first implementation of KRSL, a
knowledge representation language "interlingua" to be used to as the description language for
military concepts and data to be shared among the researchers. (See The KRSL Reference
Manual by N. Lehrer on the ARPI Web site.)

SOCAP
Assists in generating multiple COAsfor
CONPLAN s down to major force unit
level. Develops initial plan for force
phasing and logistics requirements, with
direction from CINC staff planners.

I
DART/PFE-

Logistic Simulation

Simulation Output]
X

. FMERG - Force Module Expanded
Requirements Generator

r s
A Planner's Aid that retrieves pre-packaged
forces from a Force Module Library and
supports edit ing of them for the current
operational environment..

(Operational Force TPFDP)

Rules from AFG u.ied to add CS, CSS
and sustainment requirements to the
developing TPFDD, while preserving the
justifications for each support unit
introduced.

Component
Modules of IFD-2

Figure 4: Flow of plan development and analysis in the modules of IFD-2.

One of the primary activities organizing much of the CPE-related effort during 1991, was
working with SRI to produce IFD-2, the first IFD highlighting the potential impact of using
generative planning techniques for military transportation planning. IFD-2 featured SOCAP, an
application of the SIPE-2 generative planning system which was designed to help planners by
automatically expanding and interleaving the activities necessary to develop a plan, while
maintaining the (e.g. temporal) dependencies, that would be critical to an operation's success.
SOCAP produced, with user input, a set of alternative high-level operations plans that could be
expanded to a full transportation plan to test for feasibility of a proposed deployment. BBN and

10

ISX worked closely with SRI during the year, both collecting and providing domain information,
and also developing the Force Module Expanded Requirements Generator (FMERG), a
prototype force expansion tool that took SOCAP output (in the form of a list of major force units
to be deployed) and produced a detailed TPFDD (for Time Phased Force Deployment Data), the
military database corresponding to a transportation plan. FMERG also used a set of rules for
augmenting the TPFDD with records describing the sustainment and resupply materials that
would naturally flow to the theater following the initial deployment of forces. The TPFDDs
produced were then analyzed for transportation feasibility using DART and PEE as part of the
IFD-2 demonstration. The final demonstration took place at CENTCOM in January of 1992.
Figure 4 shows the flow of control between modules for IFD-2. Appendix A contains a brief
description of SOCAP and the the Force Module Expanded Requirements Generator, FMERG,
as developed for IFD-2.

During the course of 1991, BBN and ISX, as administrators of the CPE Repository, also worked
to collect and disseminate to initiative members the detailed textual materials, databases, and
problem descriptions that were used as the basis for IFD-2. These materials, collected primarily
from the Armed Forces Staff College, with much assistance from MITRE, formed the initial
basis for the first "Domain Package" deposited in the CPE Repository.

Second Year Activities - Technology Integration Experiments
After the successful demonstration of IFD-2 at CENTCOM in February of 1992, BBN and

ISX introduced the notion of Technology Integration Experiments as an additional means of
encouraging initiative contractors to develop demonstrations that would test the potential power
of integrating multiple planning and scheduling technologies together. The main emphasis in the
TIEs was to promote the model where several contractors with compatible technologies would
explore how to most effectively integrate their capabilities to produce a better planning system,
by designing experiments which had established goals, and a 'final exam' where specific
performance improvements, be they qualitative or quantitative, were anticipated and measured.
The Common Prototyping Environment was ultimately developed to support such TIEs, as well
as demonstration and testing of technologies; facilitate experimental system integration and
evaluation activities; and capture and re-use databases, knowledge bases, software modules, and
test cases.

BBN, in conjunction with ARPA and Rome Laboratory and the participating contractors, helped
plan a series of Technology Integration Experiments to demonstrate interoperability between
emerging initiative technologies, collect data on trade-offs between technical alternatives, and
validate various technologies for potential use in an IFD. The series of TIE's, taken as a whole,
also served to demonstrate a majority of the Initiative-contributed elements of infrastructure and
component technology to be introduced into the Common Prototyping Environment over the
next 18 months.

The TIEs were explicitly experimental: the intent was to systematically examine alternative
methods of combining and utilizing a variety of technical components in radically new
configurations. For example, a number of methods for exploiting temporal reasoning capabilities
in the process of Course of Action Generation (COAG) were examined. Each TIE included a
Final Exam in which the performance of the technical components involved were measured
against some baseline criteria. The process of conducting TIE Final Exams also served to
identify and prepare component technologies for insertion into IFD-3 or operational systems, as

11

well as benchmark performance on typical planning and scheduling problems. Table 1 lists the
initial set of ties.

1. Infrastructure TIE (BBN, ISX, Unisys) demonstrated the knowledge services and
distributed, knowledge-based communications elements of the envisioned distributed
CPE planning environment.

2. Case Based Reasoning - Generative Planning TIE (GE-CRD, SRI) applied a CBR
system developed at GE to select force units for roles in plan operators of military
operations plans built by a generative planner.

3. Constraint Based Scheduling - Deployment Planning TIE (CMU, BBN, SRI)
demonstrated constraint-based scheduling system in a heterogeneous military planning
system. TIE #3A used deployment constraints to do the final stages of deployment
plan development. TIE #3B used the scheduler for preliminary deployment plan
analysis during the initial COA development, as a means of filtering the options based
on transportation resource constraints.

4. Temporal Reasoning - Generative Planning TIE (GE-CRD, Honeywell, SRI) used
a temporal reasoning system (Tachyon or TMM) during generative planning to
propagate the temporal constraints in a developing plan. This arrangement enabled
some comparative experiments with Tachyon and TMM.

5. Temporal Reasoning - Case-based Force Expansion (GE-CRD, BBN) applied
temporal constraints during case-based force expansion, to ensure that units that would
be available at the time they were needed.

6. Case-based reasoning - Force Expansion (GE-CRD, BBN, MITRE) used CBR
techniques to refine and enumerate the elements of forces selected during high-level
planning.

Table 1: The Initial TIEs

There were four general categories of TIEs:

1) Infrastructure development: TIEs in this category were intended to instantiate and
evaluate major components of the shared CPE infrastructure needed for integrating
and/or supporting planning and scheduling technical components into a cohesive system
environment. (TIE#1)

2) Component enhancement and integration experiments: TIEs in this category were
intended to investigate the value of and approaches toward enhancing technical
components by composing them with others through data level interactions at various
levels of granularity. Of particular importance was the determination of appropriate
levels of integration and standardization and the identification and reuse of shared
subcomponents. (TIEs # 2, 3, 5, 6)

3) Tool utility experiments: TIEs in this category evaluate the utility of general purpose
tools which may contribute to one or more components. (TIEs #4, 5)

4) System integration and evaluation experiments: TIEs in this category were for
purposes of evaluating whole system functionality, performance, and concepts of
operation. In effect, IFDs represent much extended TIEs in this category. However, it
was hoped that smaller scale integration experiments of this kind would spur knowledge
acquisition and system design activities. (None shown.)

12

TIE#1 Demonstration (Nov. 1992)
SOCAP
Course of <.^
ActionGeneration f^FIS, KRSf

FMERG

Force Module Expansion

DART/PFE

Deployment Analysis

KRSLKnowledge
Server

TPFDD Data
Force Module Library
Location Data

Figure 5: Block Diagram of Infrastructure TIE.

Throughout most of 1992, BBN and ISX worked with Paramax (once a unit of Unisys, now a
unit of Loral) on the Infrastructure TIE, which demonstrated most of the architectural concepts
that were ultimately used in the CPE Testbed. The goals of the Infrastructure TIE were; to
provide and test infrastructure components to support a common knowledge base and
intercomponent communication; to integrate KRSL, a knowledge-based distributed
communications mechanism (KQML) and Paramax' Intelligent Database Interface (IDI) into a
'knowledge server', an agent in a distributed system that would answer knowledge-based queries
for information from an external SQL database or from a LOOM knowledge base, and, finally;
to create a knowledge level interprocess communication infrastructure for the CPE.

The Infrastructure TIE was built using most of the components of IFD-2, but replacing the file-
based inter-process communications with KQML messages, and for the first time introducing
KRSL syntax for all of the message content. Figure 5 depicts the Infrastructure TIE
configuration. Intermediate representational products were stored in the 'knowledge server' by
assertional statements in KRSL, and information needed by subsequent processes was retrieved
from the knowledge server using KRSL queries. Knowledge server queries for data stored in the
Oracle database were handled within the knowledge server using Paramax' LIM (LOOM
Interface Module) and IDI (Intelligent Database Interface) systems, the former translating the
LOOM query into an IDI format, and the latter generating the SQL query, and returning the data,
which was then translated back into LOOM by LIM. The KRSL Kernel, written by Nancy
Lehrer at ISX, handled the translation of KRSL queries into the corresponding LOOM query.
Figure 6 shows this architecture of the knowledge server, as it was later instantiated in the CPE
Testbed.

13

S0rvw
Process

(KNET:SEND :KS -.QUERY
<KRSL QUERY>)

Ansv/er:
((-.the TYPE -.name...)...)

TCP/IP

LIM/IDI

LOOM-KRSL
KRIL

Encoding&>
Decoding

}(oim §®im®ir

■© C-KRSL
KRIL

C Application

Figure 6: Architecture of tlie CPE Knowledge Server and communications mechanisms.

Third Year Activities - The Common Prototyping Environment Testbed
Immediately after the TIE was completed in November of 1992, work began on the CPE

Testbed, which was to use many of the concepts from the Infrastructure TIE, while generalizing
some of the translation and communications mechanisms. By May of 1993, when CPE Release
1.0 was demonstrated at Rome Laboratory, all of the systems that had participated in TIEs the
prior year were running within the distributed CPE Testbed, using KRSL as the interlingua
between modules. The various TIEs that had occurred the previous year were used as the basis
for defining the functional relationships possible between the various software components that
had been demonstrated. Figure 7 shows how these relationships spanned the planning functions
of Course of Action Generation, Deployment Plan expansion and Scheduling and Plan Analysis.
The temporal constraint managers, for example, served as plan analysis tools, providing
feedback on the temporal feasibility of plans, while also propagating the temporal constraints in
feasible plans to give additional guidance to the generative planner SOCAP.

14

rsocAP
Generative
Planning

for
COA

Development

CAFS/CAFE
Case-Based

Reasoning for
Force Selection
and Tailoring

COA
Generation

FMERG
Transportation
Plan Expansion

7
w/i m§}

■ Tachyon &TMM

Temporal
Constraint

Management

.DITOPS L
Deployment

Plan
Expansion

Constraint-Based
Transportation

Scheduling

Plan Analysis
Figure 7: Relationships between TIEs in a functional architecture.

During the intervening months, several important things occurred. First, KQML, which only
worked in a LISP environment at the time, was replaced by CRONUS, a more robust multi-
platform, multi-language distributed interprocess communications mechanism. This permitted C
applications like GE's Tachyon Temporal Reasoner to run in the same distributed environment.
CRONUS also provided the functionality needed to remotely start and stop modules that could
be running on any machine within the same "CPE Configuration", which might include remote
sights anywhere on the Internet, such as SRI in Palo Alto, ISX in Los Angeles, Rome Laboratory
in upstate New York, BBN in Cambridge, or CMU in Pittsburgh. A number of speed
improvements also occurred, by using CRONUS and some data encoding techniques for list
structures, we achieved an order of magnitude speedup in the time required to transmit large plan
objects.

15

KNETMsg + Response
KEV: -* ►

KRSL Query & Response

KRSL Assert + Acknwidge

Non-KNETMsgs ^

Oracle

IDI
Msg

Temporal
Reasoner

TMM, Tachyon

Force
Selector

CAPS

0 LIM/IDI 1 LOOM KBs

KRSL Interpreter

VJA
mc§mi

SOCAP

-' // / V
\WpSimQ3®m

FMERG

I

v\
PFE,
KTS,

DITOPS

Figure 8: Communications Paths Defined between Module Types in CPE Testbed

The second major activity was defining the KRSL representations for the interprocess
communications between major modules, including SOCAP, Tachyon, TMM, FMERG, PFE,
and the Knowledge Server. The beginnings of a Shared Domain Ontology (SDO) were formed
as representations of all of the concepts for objects reasoned over by the various modules were
represented in KRSL within the Knowledge Server. (See Figure 6). These interfaces were
defined based on the functionality provided by the module, so that several modules serving the
same function (e.g., TMM and Tachyon, both temporal constraint managers) would use the same
KRSL interface. Modules types, corresponding to the fuctionality provided by the various
systems, were established, and standard message patterns were defined for each type. These
communications were defined for all of the paths between module types shown in Figure 8. The
messages supported by each module type are shown in Figure 9. When running experiments, one
specified which software module of each relevant type was to be activated, so that comparison
experiments between different technologies that could provide the same functionality were easily
defined.

16

Current System
Familiar name SERVER ABSTRACT TYPE(s) NICKNAME PRIMARY OPERATIONS

Knowledge-Server
TARGET

KNOWLEDGE-SERVER
PLAN-SERVER

KS
TARGET

QUERY, ASSERT, DEFINE
QUERY

SOCAP PLAN-GENERATOR PLANNER CREATE

FIWERG DEPLOYMENT-PLAN-EXPANDER EXPANDER EXPAND

TACHYON
TMM

TEMPORAL-REASONER TR ANALYZE

CAPS FORCE-SELECTOR FS SUGGEST-BINDING

PFE
KTS
DITOPS

DEPLOYMENT-SIMULATOR

" plus CAPACITY- ANALYZER

SIMULATOR SIMULATE

ANALYZE

ALL KNET MODULES should respond
to these instrumentation operations:

CLIENTS: Description
CPE Interface Experiment and KNET Definition/Status Interface
FORMAT Force Module KA tool: Uses FM Library accessed

SYNCHRONIZE-EXPERIMENT
GET-EXPERIMENT-DATA
INITIALIZE-SERVER

thru Knowledge Server

Figure 9: Operations defined for Module Types (as of Release 2.0)

A major portion of this effort was in defining the KRSL equivalents for plans, as produced by
SIPE/SOCAP in a more generic form so that other planners might be expected to generate
similar plans. Figure 10 shows the representation of a typical node in a SOCAP-produced plan,
as represented in KRSL for transmission to the Knowledge Server. Figure 11 shows the KRSL
content of messages between the generative planner SOCAP and the Case-based force selection
module CAFS.

(:the plan :name p6120
:documentation "a node in a plan"
:method DETER-THREAT-BY-SHOW-OF-FORCE ;; operator
:parameters ((opposing-force :VALUE (:the FORCE :name 1ST-ARMBDE))

(situation :VALUE (:tlie ENEIVIY-COA :name ENEMY-COA-1)))
:goal (DETER-IMMEDIATE-THREAT 1ST-ARMBDE ENEIVIY-COA-1 21)
:in-servJce-of (PROTECTED-TI ENEMY-COA-1)
:effects (DETER-IMMEDIATE-THREAT 1ST-ARIV1BDE ENEMY-COA-1 21)
:let (CDAY 23) ;; latest end time
:expansions (:the PLAN-EXPANSION :name EXP101

NODES (lvalues (:the plan :name P6390)
(:theplan:nameP6391)
(:theplan:nameP63192))

GRAPH (lvalues
(INTERVAL-BEFORE P6390 P6391)
(INTERVAL-BEFORE P6391 P6392)))))

Figure 10: A KRSL Plan Node

17

PLANNER Sends:

(knet:SEND :force-selector -.suggest-binding
:for-arg 'FRIENDLY-UNIT
:in-plan

(:THEPLAN:NAMEP6158
:METH0DDETER-B0RDER-1NCURSI0N-BY-GR0UND-PATR0L
PARAMETERS

((FRIENDLY-UNIT TYPE-RESTRICTION ARMY)
(ENEMY-UNIT :VALUE (:THE ARMORED ;NAME ALG-1STARMBDE))
(COA :VALUE (:THE ENEMY-COA :NAME ENEMY-COA-1))
(ROUTE lvalue (:the ROUTE :name ROUTE-1))))

iGONSTRAINTS
(:and (can-traverse (friendly-unit p6158) (route p6158))

(greaterp (firepower (friendly-unit p6158))
(firepower (enemy-unit p6158))))

)

Force Selector returns a list of possibilities like:

(PARAMETER-BINDING P6390 'FRIENDLY-ARMY (:the 1MB :name IMB-1889)

'"COMPLETE-MATCH*)

Figure 11: Communications between COAG Planner and Force Selector

This facilitated comparative experiments, such as a direct comparison of TMM and Tachyon
supporting SOCAP as it built the same plan structures. Figure 12 shows the modules of the CPE
Testbed involved in such an experiment. From the CPE Experiment Control User Interface, two
trials are set up, one in which SOCAP is called to build a plan using TMM for temporal
reasoning support, the other using Tachyon. Each trial is metered such that the timings of the
various processes are collected (SOCAP calls the temporal reasoner twice during each level of
plan expansion). The results are collected from each module at the end of each trial, and sorted
to form tables of data that can be analyzed using the CLASP statistical analysis system (provided
by UMASS).

Figure 13 shows the CPE Experiment Control interface from which such experiments were
defined. The displayed menus cover defining experiments and trials, collecting data for analysis
by CLASP, means of browsing the knowledge server, defining and managing the software
modules within the distributed CPE network configuration, and other miscellaneous commands.
See the CPE Users Manual, Reference Guide and Installation Guide for complete descriptions of
all of the commands shown.

18

■^ u ^J '^^^^^^'^^^'^^^'^^'^ Experiment Control

Run
Trials

Temporal
Reasoner

Trial 1 TMM Tachyon

Trial 2 j^yi^/i Tachyon

Collect
Meter
Data

Instrumentation,
Data Collection
and Analysis

CLASP
Figure 12: A Functional Comparison Experiment

Elxperiment Trial Knowledge Server KNET General

1
[Define Experiment |
uescrice Experiment
List Experiments
Load Experiment
Run Experiment
Save Experiment
Set Current Experiment
Show Current Experiment

Build CLASP Table
Define Trial
Describe Trial
Edit Trial
[Run Trial |

Assert
JBrowse Plan]
Browse suu
File Assert
Find Object
Query

i Output Pane

Define Generic Service
Define Service
Deinstall Service
Describe Generic Service
Describe Host
Describe Service
Initialize Service
Install Service
Invoke Service
List Hosts
List Services
Note Knet Changes
Restart Service
Set Default Host
Show Host Defaults
[Show Services"]
Start service
Stop Service
Trace Packets
Undefine Generic Service
Undefine Service
Untrace Packets

CLASP
Clear
Eval
iHelp I
Load File
Quit
Reset

. Trace Pane

Command Pane

Mouse Documentation Line

Figure 13: CPE Testbed Experimenters Interface (Release 2.0)
19

CPE Testbed Release 1.0 was demonstrated at the end of May, 1993 at Rome Laboratory. It
involved modules running at Rome Laboratory, BBN Cambridge, Paramax in Philadelphia and
ISX in Atlanta. The CPE was first presented to the ARPI community at a quarterly meeting that
took place during the AAAI conference in Washington DC during July of 1993.

CPE Testbed Release 2.0

After the first release of the CPE Testbed, work began on a second release that addressed
some of the outstanding issues relating primarily to the use of the CPE Testbed by new research
groups. The issues included:

• Ease of installation of the CPE Testbed at a new sight, and its configuration for use with
other CPE Testbed sites.

• The reduction in size of the installed systems, and the development of a 'CPE Lite'
installation.

• Generalized mechanisms for "wrapping" modules with pre-defined KRSL translators.
The development of translators for LISP/CLOS, and for modules written in C++.

• Mechanisms for asynchronous communications and multi-casting.
• Improved mechanisms for defining and controlling experiment meters (data collectors) at

arbitrary points within the source code for a module, and better means of controlling
those meters during experiments.

• Improvements to the meter data collection system, and the automatic generation of
CLASP compatible data files so that the data could be analyzed using simple commands
from the CPE and CLASP interfaces.

• The generation of a complete set of installation, reference and user manual documents.
This work continued throughout the remainder of 1993, and CPE Testbed 2.0 was formally
released at the ARPI workshop that occurred in February of 1994.

As an example of the new capabilities of the CPE Testbed, a demonstration was given that
included a 'Plan Server', represented as a Knowledge Server module type. This plan server was
built by defining a module that could access the TARGET object database and answer requests
for plans that had been built using the TARGET Plan Editor interface, using a query identical to
one that would retrieve a plan from the original Knowledge Server. The TARGET Plan Server
module was written in C++ to access the C++ based Objectivity TM OODB. For the
demonstration, the FMERG Force Expansion module was called on to expand a plan. This
caused an asynchronous, multi-cast request to go out to all Knowledge Servers that might
contain the high-level major forces plan named. Since both the original Knowledge Server and
the new Plan Server were active during the experiment, both would be available to answer the
query, but only the Plan Server had the plan named. It's response, in KRSL, looked syntactically
identical to one that might have come from the Knowledge Server. Figure 14 shows this
demonstration.

20

TARQET

COM

Map-based Plan Authoring Tool

(KS:QUERY?MFL"C0A1"

Build TPFDD

Invoke Service FMERG

,on PlanCOAl

Object

Database

- (C++))

CPE

Experimental Integration
of Applied Planning

Tools with CPE
Components

IB~^^i5i3>SS'nB
1^

Figure 14: CPE 2.0 Demonstration using TARGET Plan Server

In another demonstration of the new capabiHties of the CPE, an experiment was defined in which
a whole set of trials were defined at once, by building the cross-product of sets of alternative
modules, and sets of alternative inputs. The CPE Testbed Experimenter's interface took care of
the process of correctly initializing each trial, and organizing the resulting metering data into
tables that could be used for a scatterplot or regression analyses. Figure 15 shows the structure
of this experiment and gives a sense of the interfaces involved.

The 1994 ARPI Workshop

One of the responsibilities of the CPE team was the organization of the annual ARPI
Workshops, including participation in most of the working groups that met at quarterly meetings
and especially at the annual meetings in which all ARPI contractors participated. The 1994
ARPI Workshop, which took place in Tuscon, Arizona in February of 1994, was organized
somewhat differently in that it had three parallel technical paper sessions in addition to several
working groups.

Mark Burstein of BBN served as the program chair for the paper tracks and edited the 500+ page
proceedings of that workshop, distributed by Morgan Kaufman Publishers. He also served as co-
chair, with Prof. Drew McDermott, of the working group on Mixed-Initiative Planning, which
had met first at Yale University at the preceding ARPI quarterly in November of 1993. The
report of the Mixed-Initiative Planning working group was published in the 1994 ARPI
Workshop Proceedings (Burstein, 1994), and an edited version (Burstein & McDermott, 1996)
appeared as a chapter in the hookCognitive Technology (Gorayska and Mey, 1996).

21

CPE Command> Make Trial Set
CPE Command> Build Trial Set CLASP Table

Experiment Name: Experiment-2
Documentation: a string
Generic Service: Plan Generator Deployment Plan Expander

Deployment Simulator Force Selector
Temporal Reasoner

Specific Service: PFE KTS DITOPS
Metering Enabled: Yes No
Run Experiment: Yes No

<Abort> <Finish>

Deployment Simulator Parameters:
Deployment Plan: Medcom-1 Medcom-2 NEO-1 NEO-2NEO-3
Situation: Medcom-Situation-1 Medcom-Situation-2 NEO-Sit-1 NEO-Sit-2
Stop Day: A set of integers greater than 0

Triall KTS Medcom-1 Medcom-Situation-1
Trial! KTS Medcom-1 Medcom-Situation-2
TriaU KTS Medcoin-2 Medcoin-Situation-1 D^mmBmii^m m
Trial4 KTS Medcom-2 Medconi-Situation-2
Trials DITOPS Medcom-1 Medcom-Situation-1 New tools for Generating
Trial6 DITOPS Medcom-1 Medcom-Situation-2
Trial7 DITOPS Medcom-2 Medcom-Situation-1

and Running Multi-Trial
Trials DITOPS Medcom-2 Medcom-Situation-2 Experiments

*s. —)
Figure 15: Automatic generation of a set of related experiment trials.

Fourth Year Activities - New CPE Modules
During 1994, a number of additional modules were added to the CPE Testbed. In addition to

the TARGET Plan Server, described above, the ForMAT Case-based Force Module Acquisition
Tool developed by MITRE was incorporated into the CPE, as a way of building and re-using
force modules for deployment plan expansion. DITOPS, the constraint-based scheduling tool
from CMU was given a second function as a high-level resource analysis tool in support of
COAG planning (e.g. using SOCAP).

In the area of data access, CoBase (UCLA) and SIMS (ISI) were connected in a TIE that enabled
the SIMS query planning system to find results even when not precisely the desired data was
available, using CoBase's inexact query mechanisms. These systems were demonstrated using
some CPE component technologies.

Fourth Year Activities - Publications and Domain Models
Also during that year, an ARPI web site was introduced, as an alternative means of

distributing information to initiative members and the general public. Documents of general
interest, such as KRSL language specifications, were made available by this means.

A paper and videotape of the CPE Testbed were produced. The videotape describes the
mechanisms of the CPE and runs through several experiments as demonstrations. The paper,
which appeared in IEEE Expert issue for February 1995, is included as Appendix B.

22

During the third and fourth years, ISX worked with the University of Edinburgh, MITRE and
USC/ISI on a 'toy domain' model for research on military planning. This model was built around
a fictional island called 'Pacifica', shown in Figure 16. A paper describing this environment,
dubbed PRECIS, is available as (Reece et al, 1993) from the ARPI Web site. ISX also encoded
this domain model in KRSL and placed it in the CPE Repository for access by ARPI members.

El Bridge 0 Cliffs
^ Mud & Volcanic Activity Q Sand

[^ Fresh Water _______ Prim ii r.

ga High Ground • Dirt I ■

("jl Marsh

liAiiwni:

m

4 4 ♦ \ ♦ ♦

AllVj.S .

Figure 16: Island State of Pacifica

Fourth Year Activities - ITAS
During the final year of the contract, BBN and ISX each engaged heavily in technology

transition activities. BBN, working with Kestrel Institute, developed the In-Theater Airlift
Scheduler (ITAS), as an application of Kestrel's semi-automatic program generation system
KIDS which had previously built KTS, a strategic air and sealift scheduler similar to DITOPS
and based on the model provided by PFE. ITAS, in contrast, was built with the close
cooperation and support of the airlift schedulers commanded by LtC. Stuhldreher at PACAF, the
US Airforce Pacific Command. It was built as an operational prototype that could be used in the
field by PACAF, and so was designed to run on the Apple Macintosh ^M hardware that was used
in that command. ITAS is much closer to a real-world scheduling application than previous
schedulers generated under ARPI funding had been. It enables airlift schedulers to do in minutes
what used to take hours each day, and permits them to look at a much wider variety of

23

alternatives than they were previously able to do. ITAS was successfully demonstrated in
exercises at JWID 1994 and JWID 1995. It is described in detail in (Burstein and Smith, 1996),
which appears as Appendix C.

24

APPENDICES
PUBLISHED REPORTS AND OTHER ARPI AND CPE RELATED DOCUMENTS

The appendices to this report contain additional important material.

Appendix A contains a summary of the Force Module Expanded Requirements Generator,
FMERG, that was used in IFD-2 and in the CPE Testbed.

Appendix B contains a paper describing the Common Prototyping Environment, as published in
(A. Tate, Ed.) Advanced Planning Technology , The AAAI Press, 1996.

Appendix C contains a paper describing the In-theater Airlift Scheduler, IT AS, to appear in (B.
Drabble, Ed.) the Proceedings of the Third AI Planning Systems Conference, Edinburgh,
Scotland, The AAAI Press, 1996.

Other papers relating to the CPE project can be obtained via the ARPI Web site
(http://arpi.isx.com) or by contacting Dr. Mark Burstein at BBN (burstein@bbn.com) or Mr.
Mark Hoffman at ISX (mhoffman@isx.com):

Burstein, M. (February 1991) Software Specification of the CPE, with an appendix describing
the domain of the Military Transportation Planning. (BBN TR No. 7495)

Burstein, M. and Kosy, D. (April, 1991) The Prototype Feasibility Estimator (PFE). BBN
Technical Report No. 7598, a description of a LISP-based simulator developed by BBN and
CMU to model strategic transportation, based on the RAPIDSIM model used in DART.

Reece, G., Tate, A. Brown, D. and Hoffman, M. (August, 1993) The PRECIS Environment.

Burstein, M. (Ed.) (1994).) The 1994 ARPI Workshop Proceedings., Morgan Kaufman.

Burstein, M. and McDermott, D. V. (1994) "Issues in the Development of Human-Computer
Mixed-Initiative Planning Systems" In M. Burstein (ed.) The 1994 ARPI Workshop
Proceedings., Morgan Kaufman. " (A similar paper appears in (B. Gorayska and J. Mey, Eds.
Cognitive Technology., Elsevier, 1996.)

Lehrer, N., et al. The KRSL Reference Manual, (latest revision)

Hoffman, M., et al. The Shared Domain Ontology, (latest revision)

25

APPENDIX A:

Developed for IFD-2 (1992)

and adapted for use in the CPE

A-i

A Brief Summary of the role of the

Force Module Expanded Requirements Generator (FMERG)
in IFD-2 (February, 1992)

Mark Burstein (BBN) and

Marie Bienkowski (SRI International)

January, 1992

1. INTRODUCTION
This is a brief description of the FMERG component of the January 1992 integrated

feasibility demonstration (IFD-2) that was produced in support of the DARPA/RL Knowledge-
based Planning and Scheduling Initiative. Part of this initiative, which includes work that will
advance the state of the art in artificial intelligence (AI) techniques for planning and scheduling,
is to demonstrate yearly the feasibility of applying existing or newly-developed technologies to
the problem of planning and executing joint military operations. Particular emphasis has been
placed on transportation planning as the target problem; thus it is envisioned that the US
Transportation Command (TRANSCOM) could make use of or benefit from the technology or
applications developed in conjunction with planners at other CINCs.

The main purpose of the integrated feasibility demonstrations is to show the end user community
— military planners — the ability of state-of-the-art technology (including AI and conventional
software) to significantly impact their operations. The demonstration will show the possibility of
improvements in their existing methods, either by shortening the time it takes them to plan or by
improving the quality and quantity of the plans produced. The IFDs might also suggest to the
end users ways in which they might alter the way they plan to exploit these improvements.

As part of the planning initiative, SRI is applying a knowledge-based generative planning system
(called SIPE-2) to the problem of generating joint operations plans. The system, SIPE-2 for
Operations Crisis Action Planning (SOCAP), will act as a decision aid to enable both
employment and deployment actions to be generated given a mission, constraints, and guidance.
SOCAP is targeted for the J3 staff (operations) at a joint command such as US Central Command
(CENTCOM).

The main focus of SOCAP is the development of the operations plan and estimations of its
feasibility on a number of features. The planning technology underlying SOCAP could also be
applied to generating other parts of the complete plan needed to execute a mission, such as the
logistics or intelligence plan. SOCAP was designed to aid an operations planner in determining
that a generated course of action (COA) is transportationally feasible. As users develop a COA
using SOCAP, they can make use of a transportation feasibility estimator, such as the ones in
DART, to check their plan. The integrated system is designed so that later versions will permit
the insertion of different types of feasibility estimators, e.g., for logistics, command and control,
etc. Furthermore, since the underlying generative planning technology (SIPE-2) develops a plan
at successively finer levels of detail, it may be possible to estimate the feasibility of the plan at
different levels as well.

A-1

Figure 1 shows thefunctional impact of the use of SOCAP and DART, as well as the connection
between them. SOCAP generates a plan which includes both employment actions that
accomplish a mission and deployment actions that move the forces referenced in the employment
actions to the theatre where they will be employed. DART uses the TPFDD data derived from
the deployment actions to assess the transportation feasibility of the operations plan. Shortfalls
are fed back to the SOCAP users, who then modify the plan to overcome the transportation
problem. The gap between the plan generated by SOCAP and the TPFDD input expected by
DART will be bridged by the FMERG module, which performs functions similar to those of the
Auto Force Generator (AFG) and Movement Requirements Generator (MRG). Essentially,
FMERG must take the skeletal plan produced by SOCAP and create a standard TPFDD that can
be tested by DART using one of the transportation feasibility estimation simulators, RAPIDSIM
or PEE. For IFD-2, PEE was extended to return information on transportation feasibility to
SOCAP, to enable some replanning to occur.

2. FMERG
The Force Module Expanded Requirements Generator module in the 1992 Integrated

Feasibility Demonstration (IFD-2) provides a "vertical slice" thru the process of developing a
TPFDD from a list of major forces to be deployed. As such it is a placeholder for several more
sophistocated components in our vision of a highly automated transportation planning and
scheduling system of the future. FMERG expands force modules and inserts their component
units into a transportation plan, by drawing on a library of hierarchical Force Module
descriptions. It takes as its primary input a high-level plan produced by SOCAP, and extracts
from that plan the deployment requirements for the major force units referenced in the plan.
Using its library of hierarchical descriptions of force module compositions, it developes a
TPFDD with requirements to deploy all force module elements from their home bases to the
operations staging areas specified in the SOCAP plan. The TPFDD produced includs relative
temporal constraints on the deployment of those units. It augments this basic TPFDD plan with
additional deployment requirements for Combat Support, Combat Service Support and
Sustainment elements. The main product of the FMERG module is a TPFDD embodying the
decisions made by the high-level planner (The SOCAP automatted planning system was used for
this purpose in IFD-2) about the deployment of major force units.

The primary components of IFD-2 are shown in figure 2 below. Overall, the demonstration
highlights the semi-automated plan generation capability to be embodied in SOCAP, and support
its use in developing a feasible TPFDD by connecting it to DART thru simple versions of two
other tools which together formed the FMERG system: a Force Module Refinement tool (FMR),
and a Support Force Generation (SFG) tool. The latter used rulesets like those developed for
two JOPES systems: AFG, the Auto-Force Generator, and MRG, the Movement Requirements
Generator. Within DART, the PEE deployment simulation tool (a model much like RAPIDSIM)
was used to estimate the feasibility of the TPFDD generated.

Ultimately, we would expect information about closure to be be fed directly back to SOCAP to
support plan revision.

A-2

Crisis action planning commences in
response to crisis

CENTCOM

Component

TRANSCOM

CENTCOIVI J3 staff on CAT use
SOCAPto generate alternative
courses of action

COA, listing employment and
deployment actions for major forces

Component command G3 (or
CENTCOM J3) uses AFGand Force
Module Editor to create FMs for the
given COA

Deployment actions,
including lift method,

y times, and units involved

TRANSCOM CAT uses DART/PFEto
assess transportation feasibility

feasibility
estimation

TRANSCOM

TCC

TRANSCOM CAT uses scheduler
to generate TPFDD from DP

TPFDD

Transportation Component Commands
execut e TPFDD

Status of
deployment

TRANSCOM

1
Status of
employment

CENTCOM

Figure 1: IFD-2 Functional Flow

A-3

Year 1IFD
Major Modules

SOCAP
Assists in generating multiple CO As for
CONPLAN s down to major force unit
level. Develops initial plan for force
phasing and logistics requirements, with
direction from CINC staff planners.

T
f Skeletal Deployment Plan j

T
FMR - Force Module Refiner
A Planner's Assistant that helps to select
pre-packaged forces from a library and
edit them to fit the current situation and
expected operational environment..

Operational Force TPFDD j

T
SFG - Support Force Generator
A system to augment FMRefine by
adding CS and CSS and sustainment
requirements to the developing TPFDD,
while preserving the justifications for
each support unit introduced. Based on
rules from AFG and MRG.

(Full TPFDD)

DART / PFE - Logistic Simulation
The Prototype Feasibility Estimator (PFE)
is a model like DART/RAPIDSIM, but
designed for incorporation into an AI system.
It simulates the movement of TPFDD units
to uncover transportation feasibility problems
that can be used by SOCAP for replanning.

(Alert Order^

CCFl

Figure 2: Major Modules in IFD-2.

A-4

The Force Module Library that was used in the demonstration was based on that utilized at the
Armed Forces Staff College (AFSC) in their training course exercise on Joint Military Planning,
with additional information included about the inter-unit constraints on unit deployment to
support an employment concept. The FM library used contained approximately 35 FMs from
all branches of the service and from various force levels from Corps down to Brigade.

A specially adapted TPFDD editor was included with FMERG to allow the user to modify and
further adapt the Force Modules to be used in the plan. A procedural interface will allow both
the planning system and the human planner to manipulate {augment or reduce} the detailed force
list prior to passing it back to SOCAP or other modules.

At this point in the normal planning process, additions for supply, resupply, and buildup (CINS
and PINS) are made. These additions were developed in FMERG based on a set of adjustable
planning, supply, casualty, and resupply factors similar in nature to those supported by the AFSC
Joint Operation and Planning System (JOPS) in the Auto Force Generator (AFG) and Movement
Requirement Generator MRG. Sustainment CINS and PINS were added using a variety of
standard planning factors modeled after those in LOGGEN.

A-5

APPENDIX B:
The Common Prototyping Environment:

A Framework for Technology Integration, Evaluation and Transition

- as published in Advanced Planning Technology (A. Tate, Ed.)
The AAAI Press, Menlo Park, CA, May 1996.

(c) 1995 IEEE. Reprinted, with permission, from IEEE Expert;
Vol. 10, Number 1, pp. 17-26; February, 1995.

B-i

(c) 1995 IEEE. Reprinted, with permission, from IEEE Expert;
Vol. 10, Number 1, pp. 17-26; February, 1995.

The ARPA/Rome Laboratory Planning Initiative

Common Prototyping Environment:
A Framework for Technology Integration, Evaluation and Transition

Mark H. Burstein, Richard Schantz
BBN Systems and Technologies

Marie A. Bienkovt'ski, Marie E. desjardins
SRI International

Steven Smith
CMU Robotics Institute

INTRODUCTION

The ARPA and Rome Laboratory sponsored Planning Initiative (ARPI), is a government
funded research program that began in 1989. Its long range objective is to develop large-scale
distributed, collaborative, automated and semi-automated military planning and scheduling
systems. At the outset of the initiative, BBN Systems and Technologies and ISX Corporation
were teamed to provide in the form of a Common Prototyping Environment (CPE), and aid the
Initiative's research community by providing access to realistic military planning problems,
while reducing each individual project's overhead by providing a suite of sharable software tools
that would foster the integration, evaluation and transitioning of the planning and scheduling
technologies developed. The CPE Testbed, the primary focus of this article, was developed in
1993-4, as a distributed environment for Technology Integration Experiments that combined the
planning and scheduling systems developed by the community to address specific kinds of
problems.

The goals of the Common Prototyping Environment project are:

• To foster the development of reusable planning and scheduling technologies by providing
access to useful supporting software and development tools and sharable domain knowledge
and data,

• To support the performance of experiments in which these technologies are combined to
solve planning problems of interest to the military, and

• To ease the transitioning of technologies into military operational prototype systems through
demonstrations of interoperability. ■

The CPE project is a team of people dedicated to these tasks. BBN Systems and Technologies
and ISX Corporation were teamed together to develop and support the CPE. BBN has had
primary responsibility for the development the CPE system and some of the supporting software
systems used in integration experiments, and ISX has been primarily responsible for providing
access to domain data and knowledge to support the Initiative's researchers and specific
integration efforts and experiments.

This article describes the major activities associated with the development of the CPE. We cieal
separately with the two major aspects of the CPE project as a whole. The CPE Repository is an
"electronic clearinghouse" for software (sources, executables, and sometimes both) developed
under ARPI auspices, and representative data and knowledge, in both textual and electronic

B-1

forms, about the military transportation planning processes. The CPE Testbed, developed in the
last two years of the project, is a suite of software tools to support the integration of and
experimentation with prototype planning and scheduling systems in a distributed
communications environment.

There have been a number of collaborative project activities throughout the course of the
Planning Initiative that have helped to foster cooperative development of software
demonstrations and the experimental integration of technology components. Integrated
Feasibility Demonstrations (IFDs) (see accompanying article, this issue) were joint projects to
integrate existing state-of-the-art technology components and demonstrate their potential to
greatly improve on the time or quality of planning within the military. In addition, smaller-scale,
Technology Integration Experiments (TIEs) were developed so that different research and
development teams could explore the issues involved in successfully combining their research
software.

IFD's have had a much stronger operational focus than the TIEs. IFD-1, which produced the
DART system, was developed just before and during Operation Desert Shield, and was in active
use almost immediately. IFD-2 and IFD-3 were developed primarily as demostrations, built
around a different, specific type of military planning situation. IFD-2 was focused on strategic
and transportation planning for a "typical" small scale, primarily defensive, military operation,
while IFD-3 was developed using as a test-scenario a non-combatant evacuation operation or
NEO. The unclassified data and textual materials describing the scenarios used in each of these
demonstrations was captured and made available to the ARPI research community as part of the
CPE Repository, as described in Section 2.

The series of Technology Integration Experiments or TIEs began shortly after IFD-2 concluded
in February of 1992. The initial set of TIEs focused on integrating more researchers
technologies into a distributed software environment that included the IFD-2 demonstration
prototypes. These TIEs addressed a range of related transportation planning and scheduling
problems grounded in the IFD-2 scenario. One additional TIE, called the "Infrastructure TIE"
focused on applying the techniques for database and knowledge-base access and for distributed,
knowledge-based systems inter-communications (KQML) being developed under ARPA
sponsorship. For that TIE, BBN and ISX worked with Paramax Corporation (now Unisys) to
develop the initial version of a software infrastructure that became the core of the CPE Testbed,
including the first prototype of a "knowledge server".

Release 1.0 of the CPE Testbed in May, 1993 was, first and foremost, an engineering effort
capitalizing on all of the TIEs conducted during 1992. It brought all of the planning systems that
had used in the TIES "together", so that they all worked in the same distributed environment,
communicating among themselves using a consistent set of distributed software communications
protocols (KNET, a simple variant of KQML) and using a single knowledge representation
language for information exchange (KRSL).

The CPE Testbed was also designed to support experiments in which components were
combined in novel ways, or directly compared doing similar functions. To address the issue of
experimentation, the testbed includes a suite of tools for collecting and analyzing data about the
performance of the modules used in solving planning problems. Comparative experiments are
readily conducted in the CPE by substituting one software system providing a defined type of
service for another, and collecting the same performance measures for both systems. The data
that is collected can be analyzed using the CLASP statistics package, provided by the University
of Massachusetts, all from within the CPE Interface.

B-2

The CPE Testbed now includes technology components developed in more than ten different
R&D laboratories sponsored under the initiative. These software systems all provide services
that can be utilized in experiments based on solving military planning problems, even when the
software systems are physically hosted at sites dispersed throughout the country.

COORDINATING R&D BY SHARING OF DATA AND SOFTWARE

From the outset, an effort was made to promote the sharing of data and software development
tools among the Initiative's research and development contractors, both to increase the focus on
a common set of domain-specific problems, and to reduce the amount of effort put into
redundant "tool building". The CPE Repository was established at the inception of the initiative
to serve as a central clearinghouse for these tools and information. Housed on a UNIX
workstation system and accessed by FTP, it has been used ever since as the primary means of
collecting and disseminating data, sources for reusable development software tools,
demonstration prototype software systems , and software collected or developed by the intiative's
contractors.

One of the two major motivations for the CPE Repository was to help coordinate the many
software development efforts that were to go on at different laboratories as part of the initiative.
In anticipation of the issues that always arise when software systems developed in different
places are to be integrated, some community "standards" were established for basic hardware and
software underpinnings of the prototype software to be developed. These community standards
covered such things as the type of UNIX workstations to be used, the version of Common LISP
to be used, and also included the adoption of the Common Lisp Interface Manager for user
interface development. Other standards were set for such things as X-windows, TCP/IP, etc.

On top of these basic necessities for software development, a range of software tools were added
to the repository over time by BBN/ISX and other participating Planning Initiative contractors.
These included such things as graphical interface tools (knowledge-base network browsers, a
scientific graphics plotting package, a map display system, supplied by BBN), system
development tools (a standard LISP DEFSYSTEM, logical pathnames), a knowledge-base
maintenance system (LOOM from USC/Information Sciences Institute), a knowledge-directed
database-access mechanism compatible with LOOM (LIM/IDI from UNISYS), a knowledge-
based systems intercommunications protocol (KQML from UNISYS), and an object-oriented
distributed communications mechanism that works with many different hardware platforms and
programming languages (CRONUS from BBN)

Using these and other tools from their own laboratories, as appropriate to their research agendas,
a number of other "technology packages" were developed by initiative contractors and installed
in the CPE Repository together with documentation. Some contributions were primarily
technology demonstrations, while others were intended for use directly in other development
efforts. Among the contributions, there were several implementations each of generative
planners (SIPE from SRI, 0-Plan from the University of Edinburgh) , temporal information
maintenance systems (TMM from Honeywell, Tachyon from GE Center for Research and
Development), constraint-based scheduling systems (OPIS from CMU Robotics Institute), and
intelligent database-access and database query planning systems (SIMS from USC/Information
Sciences Institute, CoBase from UCLA). Other contributions included decision support and
analysis tools (DEMOS and DT from Rockwell International's AI Laboratory), a knowledge-
based systems development tool for reasoning with uncertainty (PRIMO from GE CRD) and a
LISP-based statistics and metering package to support quantitatixe experiment analysis for AI
systems (CLIP/CLASP from the University of Massachusetts).

B-3

Over the course of the initiative, a number of military planning appHcations were developed
using these largely "domain-independent" AI tools that tailored or adapted them to the military
transportation planning domain. Table 1 briefly describes a number of these. Many of these
systems were developed for or in conjunction with IFDs or TIEs. All of the ones listed have all
been incorporated into the CPE Testbed.

SOCAP (SRI) An application of the SIPE-2 generative planning system to military
employment planning, SOCAP consists primarily of a domain model and operators for a range
of plans to address variants of the IFD-2 scenario. It also includes some additional tools for
scenario data management and for communication with other Planning Initiative components.
It also has its own user interface.
CAFS (GE CRD) An application of Case-based Reasoning to the task of major force selection
during employment planning, CAFS was designed to work in conjunction with SOCAP, or a
human user. It is built on top of PRIMO and a Case-based reasoning system developed by GE
called CARET, scheduled for release into the CPE this year.

DITOPS (CMU Robotics Institute) A re-engineered version of the OPIS constraint-based
scheduling system, with a constraint set and support tools to enable its use in military
deployment transportation scheduling and transportation resource capacity analysis.
KTS (Kestrel Institute) KTS is a very efficient constraint-based scheduling system for
transportation deployment scheduling that was developed using Kestrel's KIDS semi-
automatic program generation environment.
FORMAT (MITRE) A knowledge acquisition tool for retroactive annotation of Force
Modules, to enable their indexing and reuse, as by a case-based reasoning system (or a person).
LOGGEN (MITRE) A tool for computing the amount of "sustainment" (food, supplies, etc.)
that will be required by a military operation. LOGGEN has recently been incorporated into the
DART system for use in operational contexts.
PFE (BBN and CMU) The first tool developed specifically for the CPE, and one of the most
frequently "checked out" of the CPE Repository, PFE is a LISP implementation of a military
transportation simulator, modeled after the ones used in DART by the military to estimate the
feasibility of a "TPFDD" deployment plan, given a set of available transportation resources.
PFE's data input and output requirements were used as a model for both DITOPS and KTS.
FMERG (BBN and ISX) FMERG was developed as a means of expanding SOCAP-generated
plans into military "TPFDDs" or deployment plans for IFD-2. It is a simplified model of a
force package elaboration and augmentation system. It consists of several subsystems that
together span the gap between a high-level description of a set of forces with missions, to be
deployed as part of a plan, and the detailed descriptions of those forces and their
subcomponents, augmented by various kinds of combat support and sustainment elements, all
of which need to be deployed.

Table 1: Prototype Planning Systems

The other important aspect of the CPE Repository was its role as a clearinghouse for domain
knowledge and data about the military's transportation planning process. For this reason, the
repository included a large body of textual materials detailing the processes and sample problems
related to joint transportation planning derived from military officer's training courses on the
subject, and data files containing a variety of sample datasets, taken primarily from unclassified
military training materials and IFD demonstration scenarios.

B-4

THE KRSL LANGUAGE AND THE SHARED DOMAIN ONTOLOGY
In order to promote a consistent way of accessing all of the data and different kinds of

representations of objects, actions, time relations, and plans, that are inputs or products of the
military planning process, a substantial effort was undertaken during the second year of the
project to develop a representation language specification that could be used uniformly to
describe and store the domain data in the repository. This language, dubbed KRSL (pronounced
just like 'carousel') for Knowledge Representation Specification Language, was a joint effort
of many members of the initiative. In addition to basic object and concept descriptions, KRSL
includes forms for units of measure, general relations and propositions, temporal relations,
plan/goal descriptions, and producer-consumer constraints.

On top of this basic definitional syntax, substantial fragments of a uniform Shared Domain
Ontology (SDO) were developed, describing all of the data elements and object types that
participated as inputs or outputs to the systems that could be coupled in solving sample planning
problems. This ontology is really a vocabulary of objects and relationships spanning all of the
different kinds of transportation resources, ports, equipment, and other data structures that
participate in the planning process. In its current form, it is sufficient to handle all of the
information involved in the kinds of planning problems captured during the IFD-2
demonstration. More recent efforts to extend it have focused on extending the additional
concepts involved in NEO operations, as in IFD-3, and in air campaign planning..

The CPE repository includes a large volume of data in its original textual and fixed-format
ASCII forms. However, in order to make the data more uniformly available, a concerted effort
was made to translate selected subsets of that data into KRSL using the concepts in the SDO, so
that researchers and developers could draw on a consistently described reservoir of domain data,
and appeal to a consistent vocabulary for that data. This standardization process began during
the TIEs, and was fully realized in the CPE testbed. In the CPE Testbed, all communications
between modules were TCP/IP based messages in terms of the KRSL language, and using the
vocabulary provided by the SDO.

TECHNOLOGY INTEGRATION EXPERIMENTS

In the spring of 1992, following IFD-2, planning began for a series of Technology Integration
Experiments (TIEs) that would develop and demonstrate interoperability between emerging
initiative technologies, collect information about trade-offs between technical alternatives, and
validate various technologies for potential use in IFDs. As a group, these TIEs demonstrated
most of the elements of infrastructure and planning technology to be introduced into the
Common Prototyping Environment over the succeeding 24 months.

The TIEs were explicitly designed to be experimental in nature: the intent being to explore
methods of combining technical components that had been designed to play specific roles in
planning or problem solving, and test designers' claims for their technology's applicability.
When possible, we sought to contrast different mechanisms providing the same or similar
functions, such as maintaining and reasoning with temporal information. For example, TMM and
Tachyon, two systems for temporal constraint maintenance were made to interoperate with a plan
generation system (SOCAP) during course of action generation (COAG). By sharing a standard
interface, the two could be directly compared performing the same task. In other cases, TIES
focused on exploring the potential of pairs of technologies that might mutually benefit from
interoperation.

B-5

Each TIE included a 'Final Exam' in which the performance of the technical components
involved was to be measured against some baseline criteria. The process of conducting TIE Final
Exams was in part to identify and prepare component technologies for insertion into an IFD, and,
in part, to benchmark performance on typical military planning and scheduling problems.

Table 2 lists the TIEs that were completed during 1992, all of which contributed to the
development of the initial CPE Testbed. Figure 1 places these ties in the context of a simple
"waterfall" model of the overall military plan development process. The top of the figure shows
TIE #1, which was a first attempt to prototype several key infrastructure components;
knowledge-directed information access and a knowledge-representation based distributed
communications infrastructure. This TIE laid the groundwork for all of the components
participating in the planning process to be able to rely on a uniform means of accessing and
communicating information about the plans under construction. It introduced the notion of a
"knowledge service", an intermediary between planning systems and data and knowledge bases.

The three major functional areas of plan development activity are also represented in the figure.
Course of action generation (COAG) is the first, deployment plan expansion the second, and plan
analysis the third. COAG involves strategic and tactical planning for both employment and
deployment of forces. In the TIEs, SOCAP, the SIPE-based plan generator was the locus of
most of the activity relating to COAG. Different TIEs examined how SOCAP could be
improved, in terms primarily of the quality of plans produced by taking advantage of three
different kinds of external functionality: Temporal constraint management, case-based reasoning
for force selection, and constraint-based reasoning for transportation resource analysis. Both the
use of temporal reasoners and constraint-based schedulers in this regard was an attempt to get
early feedback to the COAG process from different kinds of automated plan evaluation tools

The second major focus in the TIEs was on Force Expansion, the process of producing a TPFDD
or detailed deployment plan from high level inputs about major force groups to be deployed (the
output of the COAG process). TIE #3, described below, used constraint-based scheduling
techniques to develop reasonable deadlines and choices for mode of transport (air, sea) for the
forces during deployment planning.

THE INFRASTRUCTURE TIE: DISTRIBUTED KNOWLEDGE ACCESS
The objective of the Infrastructure TIE was to demonstrate integration and interoperability

technology for the Common Prototyping Environment and new Planning Initiative software
generally. It was developed with the premise that knowledge-based software systems could
interoperate most effectively with other software systems in a distributed environment using a
consistent representation language as 'interlingua'. They could thereby avoid having to develop
and maintain independent means of translating messages between every pair of communicating
systems. The TIE demonstrated the feasibility of this integrated approach to inter-agent
communications and the sharing of knowledge among knowledge-based software agents and
knowledge-level access to common databases. It was a joint project with participants from BBN,
ISX, SRI and Paramax (previously and now Unisys). It formed the basis for the first working
prototype of the CPE infrastructure.

B-6

1. Infrastructure TIE (BBN, ISX, Unisys) demonstrated the knowledge services and
distributed, knowledge-based communications elements of the envisioned distributed CPE
planning environment.

2. Case Based Reasoning - Generative Planning TIE (GE-CRD, SRI) applied a CBR system
developed at GE to do operator role selection for force units used in a military operations plan
built by a generative planner.

3. Constraint Based Scheduling - Deployment Planning TIE (CMU, BBN, SRI)
demonstrated constraint-based scheduling system in a heterogeneous military planning system.
TIE #3A used deployment constraints to do the final stages of deployment plan development,
producing a feasible TPFDD. TIE #3B used the scheduler as a means of doing preliminary
deployment plan analysis during the intial phases of COA development, as a means of filtering
the options for an operations plan.

4. Temporal Reasoning - Generative Planning TIE (GE-CRD, Honeywell, SRI) used a
temporal reasoning system (Tachyon or TMM) during generative planning to propagate the
temporal constraints in a developing plan. This arrangement enabled some comparative
experimentation with Tachyon and TMM.

5. Temporal Reasoning - Case-based Force Expansion (GE CRD, BBN) applied temporal
constraint management during case-based force selection and expansion, where selected forces
are "unpacked" to form elements of a TPFDD.

6. Case-based reasoning - Force Expansion (GE CRD, BBN, MITRE) used CBR techniques
to refining and enumerating the elements of forces selected during high-level planning.

Table 2:1992 TIEs

SOCAP
Generative

Planning
for

COA
Deveiopment

CAFS/CAFE
Case-Based

Reasoning for
Force Selection

and Tailoring

COA
Generation

■^Tachyon &TMM
Temporal
Constraint

Management

WM mm
Deployment

Plan
Expansion

.DITOPS C

Constraint-Based
Transportation

Scheduling

Plan Analysis
Figure 1: Relationships between TIEs in a functional architecture.

B-7

The language used as interlingua in this experiment, KRSL, was developed for the CPE by ISX,
in collaboration with BBN and many members of the initiative community, who contributed their
expertise on the aspects of the language that they were most concerned with. The language
provided a simple syntax for definitions of concepts and instances, relations, units, and some of
the basic elements of an ontology for representing plans, specifically temporal relations and
events. An implementation of the KRSL language, the 'KRSL Kernel' was developed as a
software layer that translated forms, queries and assertions into and out of the LOOM knowledge
representation system, developed at USC/Information Sciences Institute (MacGregor and Yen,
1989; MacGregor and Burstein, 1991). To construct a 'knowledge server' to play the role of
information broker in the distributed architecture, LOOM was also integrated with Paramax'
Intelligent Database Interface (IDI) through an intermediate layer called LIM (LOOM Interface
Module). This provided access to a set of persistent relational databases maintained in Oracle's
(tm) RDBMS.

The generall architecture of the knowledge server and communications substrates that were
developed during the Infrastucture TIE and used later in the CPE is represented in Figure 2. The
TIE communications software was built around Paramax' implementation of KQML, a
distributed communications model for intelligent software-agents developed from a specification
that was the work of a number of AI researchers under the auspices of the DARPA Knowledge
Sharing Project. KQML supported the message encapsulation and routing of messages
composed of KRSL expressions. During the TIE, messages were passed among the Knowledge
Server, FMERG and PEE, the latter two being components developed by BBN, ISX and CMU
that had participated in the previous IFD-2 demonstration where communications were by file
transfer or by pointer in a shared LISP data space.

Server
Process

Encodings
Decoding

(KNET-.SEND :KS -.QUERY
<KRSL QUERY>)

Answer:
((-.the TYPE -.name...)...)

TCP/IP

LIM/IDI

SQL -*-
"XLATE

LOOM-KRSL
KRIL

SQL-Net

(If I nknown)

Encoding^
Decoding

SSija®wS(Brs]§(B i0cBa-mBS'

r ^
C-KRSL
KRIL

< J

C Applicc Won

Figure 2: CPE Knowledge Server and Distributed Communications Model

B-8

The KQML communications mechanism was implemented as a "wrapper" consisting of two
pieces of software that were added to each component "agent" that was to be capable of remote
communications. The two pieces are a "Router" and a "Knowledge Router Interface Library"
(KRIL). The router is a program that formats expressions in KQML message syntax and
forwards them through the distributed network. There is one router per implementation language
(e.g., there is one Common Lisp router). The KRIL is a representation language specific
interface to the router that acts primarily as a representation translator (e.g., from LOOM to
KRSL and back) and local dispatcher for the set of KQML dialogue primitives (e.g., queries,
replies and assertions) that will be supported by the agent. In the TIE, FMERG, PFE and the
Knowledge Server (KS) all used the same Common Lisp router; FMERG, and the KS used the
KRSL KRIL to translate KRSL messages into their local LOOM representations; PFE used a
special purpose KRIL that later was developed into a more general package to support the
translation of KRSL into Common Lisp Object Specification (CLOS) descriptions.

Communications between these agents, consisting primarily of representations of military plans
and deployment schedules were standardized as much as possible using what then existed of an
evolving Shared Domain Ontology (SDO), a common set of terms, concepts and relations
defined in KRSL to be used for all communications between agents in the CPE environment.
This catalog of definitions included standard frames or concepts for such things as air ports, sea
ports, geographic locations (called GEOLOCs), transportation movement (TPFDD) plan
elements, and specific representations required to enable communication among the modules
involved, e.g., the major force list representation of SOCAP plans and the representation of force
modules developed from IFD-2.

The Infrastructure TIE also developed the first implementation of a Knowledge Server (KS), an
agent whose primary purpose was to act as a maintainer of shared knowledge and information,
and a mediator to databases containing additional information. The Knowledge Server consisted
of the KRSL Kernel, LOOM, the Intelligent Database Interface (IDI), and the LIM interface
between LOOM and IDI. IDI also communicated with an external Oracle data base containing
most of the relevant data from IFD-2, including geolocs, force descriptions, etc. The Knowledge
Server supported external queries and assertions in the KRSL interlingua, communicated via
KQML. The information in the answers it provided could either come directly from the LOOM
knowledge base or from the Oracle data base, via LIM and IDI.

The final demonstration for the TIE consisted of recreating a portion of the IFD-2 demonstration,
this time using KRSL and KQML to access and store intermediate information and results in the
Knowledge Server. A SOCAP major force plan was asserted into the knowledge server using
KRSL. FMERG was invoked, and issued KRSL queries to the knowledge server for the major
force plan and definitions of the forces involved, and received that information back in KRSL
forms based on the SDO definitions of the objects involved. It then produced a TPFDD for that
plan, and asserted that result back into the Knowledge Server, from which it could be retrieved
by PFE for a transportation feasibility analysis^. The overall Infrastructure Prototype
configuration is extremely flexible, allowing various components to reside on the same
workstation or be distributed across the Internet. The specific configuration demonstrated had
FMERG running at Rome Laboratory, communicating over the internet with a Knowledge
Server running at Paramax in Philadelphia.

^This last step, connecting the Knowledge Server to PFE, was accomplished a short time after the initial TIE was
completed.

B-9

Much of the initial infrastructure was instrumented to collect timing information. As might be
expected for a first prototype, there were many performance issues outstanding, and some steps
were quite slow, especially given the size of the data that was transmitted (e.g., 20 minutes to
retrieve approximately 1MB of information about forces for a plan). This information served as
a guide to us in the subsequent development of the CPE Testbed.

The attempted integration of KRSL, LIM and LOOM also raised some representational issues
and inconsistencies that needed to be addressed. One of the more interesting of these was the
issue of how to handle the relationship between class-level information as stored in database
records and the corresponding classes or concepts in the knowledge base. For example, a data
table might contain information about types of aircraft (e.g., their average speed, cargo capacity,
etc.) which might be represented as attributes of class-level concepts in LOOM or KRSL.
Unfortunately, the versions of LIM and IDI at that time only supported the mapping of database
records into instances. Another issue was the mapping between KRSL objects with subparts and
representations of that information in the data base. Recursive or cyclic relations are well known
to be difficult for relational databases to handle effectively.

USING EXTERNAL REASONING TOOLS IN SUPPORT OF GENERATIVE
PLANNING

In tackling a real-world problem using a single, uniform strategy AI reasoning tool, it is not
uncommon to find that the real-world problem requires solving subproblems which are best
approached using different strategies. In some cases, legacy software must be integrated with the
AI system; or the AI system must be altered to fit the new problem (e.g., with a customized user
interface); or additional automated reasoning techniques must be added to round out the
capabilities of the AI system for work in that domain. Several of the TIEs provided some unique
experience with supplementing a mature generative planning tool with several other substantial
pieces of AI technology: a case-based reasoner; a temporal reasoner, and a scheduling system.
These technology integration experiments were among the first examples where mature AI
systems whose development paths were completely orthogonal were harnessed to solve the same
problem.

The goal of these integration experiments was to improve the quality of the plans generated by
SOCAP. One TIE (#4) experimentally combined temporal constraint propagation systems
(Tachyon, TMM) with SOCAP to improve SOCAP's temporal reasoning capabilities. This
integration resulted in SOCAP being able to represent more sophisticated temporal constraints
within plans and to reason more accurately about the times and durations of actions and about
resource utilization over time. Another TIE (#2) incorporated a case-based reasoning (CBR)
system, CAFS (for Case-based Force Selection) to extend SOCAP's ability to choose objects to
participate in operations. CAFS selected appropriate forces from a library based on similarity
comparisons between those forces and the operator requirements and context provided by the
new plan. A third TIE (#3B) integrated SOCAP's planning capabilities with DITOPS
(Distributed Transportation Scheduling in OPIS), a constraint-based scheduling system
developed at Carnegie Mellon University. SOCAP's ability to generate robust, feasible plans
with realistic allocation of resources was improved by using feedback from the scheduling
system directly during planning.

These integration projects were unique in two ways: first, they utilized existing, independently
developed Al-based modules to supplement an existing generative planning system; second, they
add capabilities that are novel or relatively unexplored in generative planning systems.

B-10

TEMPORAL REASONING IN SUPPORT OF GENERATIVE PLANNING WITH SIPE-2
When SOCAP was originally developed as an application of SIPE-2, SIPE-2's limited

temporal reasoning capability surfaced as a shortcoming. Before the TIE, SIPE-2 was unable to
reason about utilization of resources and could not place temporal constraints between actions in
the plans. Consequently, the plans generated did not represent important constraints that existed
in the planning application domain.

In previous versions of SIPE-2, time was treated strictly as a consumable resource; that is, it
could be consumed but not produced, and its consumption over parallel tasks was nonadditive.
Each action specification could have associated start-time and duration variables, but SIPE-2
calculated specific values for time variables only when the constraints forced a particular value;
otherwise, the allowable range was computed.

SIPE-2 has several techniques for establishing the relative orderings of actions: inserting
ordering links to avoid resource conflicts; using one action to meet several other actions'
precondition requirements by ordering those actions after the action that achieved those
conditions; and coordinating separate subplans by adding ordering links between subgoals of the
two subplans. These capabilities allow many simple temporal problems to be solved, but the
inability to represent the time constraints of two possibly unordered actions was seen as a
problem. Two SIPE-2 actions are either ordered with respect to each other, or they are
unordered. If the latter, the planner considers it possible to order them either way or to execute
them simultaneously. It was not possible to model when the various effects of an action become
true during its execution, or that must occur simultaneously. By adding as a support system a
temporal constraint manager for Allen's (Allen, 1981) temporal relations calculus, it became
possible to explicitly represent actions starting or finishing at the same time, overlapping each
other, or one occurring during another. Many dependencies between different military actions
should be represented in this way in SOCAP. For instance, cargo off-load teams should arriye at
the same time as the first air or sea transport arrives at the destination airport or seaport.

For the TIE, SOCAP's ability to represent and reason about time was extended by adding a layer
on top of SIPE-2 that would keep track of the temporal constraints within the plan, initially using
the Tachyon temporal reasoning system (Arthur, Deitsch and Stillman, 1993) to maintain and
propagate these constraints. The interface to Tachyon was designed to be general enough to
permit a different temporal reasoner to be substituted (in particular, TMM (Dean & McDermott,
1988; Schrag et al. 1992).

Our approach to the integration of a temporal reasoning engine was somewhat "coarse-grained".
A new plan critic was written for SIPE-2 to be run at the end of each "planning level", rather
than as each new constraint was encountered during planning. This critic extracts all of the
temporal information (time windows and internode constraints) from the plan, sends it to a
Temporal Reasoner, and stores the updated time windows returned back into the nodes in the
plan. In addition, methods were added to maintain these constraints on the plan as goals are
expanded to a new level by SOCAP. SIPE-2's operator syntax was extended to allow a designer
to specify any of the 13 Allen relations or quantitative constraints (the permissible range of
metric distances) between the endpoints of any pair of nodes in an operator.

The extended system found temporal inconsistencies in previously generated plans which could
only be resolved by changing the dates on which military units were available to perform
missions, or by assigning different units to those missions. This shows that the system now
reasons with a more complete model of the constraints operating in the military domain. The
temporal information is especially important for proper use of the planner's products by

B-11

downstream scheduling software, since SOCAP is able to pass a more complete and consistent
set of constraints to the scheduler. Although the temporal reasoning introduced into SIPE-2 by
the TIE cannot be considered "complete" since representation and reasoning support for both
continuous and interruptable events are still lacking, the limited capabilities that were added
provide a significant source of power in dealing with important constraints in the domain of
military planning and improve the generated plans substantially.

CASE-BASED REASONING FOR FORCE SELECTION IN PLANNING
Selecting the right force to participate in a military operation and tailoring a force to meet

special requirements of a specific operation are two important parts of operations planning.
Considerations such as a unit's potential to deter or defend against an enemy threat, its
mobilization, its ability to handle the terrain, and its time to deploy must be reviewed. When it
was initially developed, SOCAP always asked the user to select the force units that would be
used to achieve specific missions, by presenting a list of available units that met the constraints
of the operator (to perform the mission) when expanding a goal for which that operator applied.
The user could see what constraints were met by the units in the list but had to rely on personal
knowledge of the mission context, and capabilities of the each possible unit to determine which
was most appropriate in that context. SOCAP itself had no way of ranking or preferring some
units over others if they all satisfied the necessary constraints on their utilization for a given job.

This kind of preferential force selection and tailoring was seen as an area where case-based
reasoning (Kolodner, 1993) would apply. TIE #2 was an addressed this issue by integrating a
CBR system from GE's Center for Research and Development called CAPS (CAse-based Force
Selection) which was built on GE's CAse-based REasoning Tool (CARET). In CAPS,
descriptions of forces from a case library of force units are indexed and retrieved based on their
mission requirements, climate, terrain, mobility and other related information.

For TIE #2, SOCAP was modified to call the CAPS module for major force selection instead of
presenting a list to the user for selection. CAPS uses the constraints and context information
provided by the SOCAP operator and bindings to find and rank potential force units as to their
appropriateness for a given mission (including ones that were tailored to specific missions in the
past). If the closest matching force does not fit SOCAP's requirements, heuristics can be applied
within CAPS to modify the force in the appropriate manner. For example, it might be necessary
to add additional support units to the retrieved force structure to account for differences between
the prior and current situation.

CONSTRAINT-BASED SCHEDULING AS A CAPACITY ANALYSIS TOOL
DURING PLANNING

An important feature of the type of decision support that SOCAP is intended to provide is a
capability for replanning based on feedback from (usually external) plan feasibility evaluation
tools. Assessing the transportation feasibility (essentially the use of resources over time) of a
plan is a major point of focus for military planners. To investigate this issue, and also explore
ways of overcoming SOCAP's simplified model of resource management, TIE #3 explored an
integration of SOCAP with CMU's DITOPS system for constraint-based resource reasoning and
scheduling. In this TIE (#3B), SOCAP was modified to call DITOPS at various stages of its
search through the space of possible plans to assess the feasibility of the current partial plan from
the standpoint of transportation resource capacity requirements. This early analysis aids in the
assignment of resources to operations based on projections of resource bottlenecks. That is.

B-12

either SOCAP or a user can use the analysis results to choose feasible deployment destinations
for major forces during initial plan generation or to reassign transportation resources.

To focus DITOPS' attention on the relevant parts of the plan, SOCAP extracts a temporally
ordered plan network that included only the transport operations and other non-resource-using
actions that contributed temporal constraint information. For each operation, it supplies the
transportation resources (planes, ships) assigned to transport specific units, and holding capacity
required on those resources to transport the personnel and materials involved. This information
is analyzed by DITOPS' capacity analysis routines and the result is passed back to SOCAP in the
form of comparative estimates for the expected availability versus demand for aggregate
resources, by class of transport, over time. This data is presented on a color graph showing
expected demand on a resource type vs. available capacity over time. Users (and, eventually,
SOCAP itself) can then reassign resources or change the time of an operation.

FORCE ELABORATION AND THE TRANSPORTATION SCHEDULING TIES
A TPFDD (Time-Phased Force Deployment Database) is the current-day operational data

form of a military deployment plan. It is a table of all of the individual units to be deployed by
air or sea to specific destinations, their sizes (in tons of air or sea cargo), and the dates that they
are available for shipment and need to arrive at their destinations. TPFDDs are used as inputs to
simulators to estimate the transportation feasibility of a plan in plan analysis tools such as
DART. They are also input to scheduling algorithms used to produce detailed schedules and
manifests for shipments of air and sea cargo. They are thus a critical link in the data path for
current military planning operations.

The current-day process of developing a TPFDD is a labor-intensive function, primarily
performed by the command staffs of individual services (Air Force, Army, Navy). Once a
general operations plan has been developed by the Joint Staff, the services are tasked to "fill in
the details" of the operations, and determine the lists personnel and equipment that will be
needed. They often do this by of "cut and paste" operations on detailed force lists developed for
prior missions, although this is largely a paper and pencil and "fat finger" data entry task without
the proper software support tools. Since TPFDDs can number in the thousands or tens of
thousands of records for large operations, this is a labor-intensive task, indeed.

In order to fill in required data elements in each TPFDD record, these service planners must
attempt, sometimes without all of the necessary information, to do a rough scheduling of the
deployment of those units, specifying the ports and the time windows for the arrival and
departure of each unit from ports along the path of their deployment to a theater of operations.
Frequently, they do this with only approximate information about the transportation resources
that will be available, and even less information about the constraints on loading and unloading
of cargo at individual ports.

They are forced to do this because they have no way of specifying directly what they do know,
namely the ordering and timing constraints (e.g., which units need to arrive before other units)
that are based on their knowledge of the plan under construction and military planning more
generally. If they were able to specify this information directly and conveniently, then more
dynamic and automated means of scheduling and rescheduling the transportation elements of the
plan would be possible when better information was available.

Within the Planning Initiative, we have sought to demonstrate a path to automation of some of
these staff functions, at least to the point of demonstrating how automated tools could help, given
the right information. In IFD-2, BBN and ISX developed FMERG as a very simplified first step

B-13

toward automated TPFDD generation directly from operations plans produced by SOCAP.
FMERG approximated parts of this currently manual process, expanding each force mentioned
in the SOCAP plan into a list of units and materials by using a force module library, augmenting
the list of operational units to be deployed with a number of other units serving combat support
and service support functions (local transportation, medical, food services, etc.), and, finally,
adding units to the deployment plan based on doctrinal rules about resupply for things like food,
fuel and ammunition (this last activity is more fully realized in the system LOGGEN, developed
by MITRE).

FMERG was designed to be replaced by technologies developed by other Planning Initiative
R&D projects. Two of the TIEs were designed as steps in that direction. In one, still under way,
GE-CRD has been working on extending their Case-Based Reasoning tool, CAFS, to provide
more capability to do intelligent tailoring of those configured units to adapt them to new
situations. In the other TIE, CMU developed scheduled departure and arrival time information
for TPFDDs using the DITOPS constraint-based transportation scheduling tool.

CONSTRAINT-BASED TPFDD SCHEDULING
DITOPS is a constraint-based scheduling system for military transportation planning based

on the OPIS system for job-shop scheduling (Smith, 1994). In the job-shop scheduling domain,
there are typically a number of ways in which manufacturing of an item might be accomplished,
by using sequences of operations, each of which can be accomplished by using tools that exist at
multiple stations on the factory floor. In transferring this model to transportation scheduling,
DITOPS was made to work with largely completed TPFDDs, which specified the goods to move,
and required destinations, but could leave open some of the decisions about which resources
would be used to move the goods, and, potentially, which intermediate ports the goods would
travel through. DITOPS then builds detailed schedules of which ships and planes will be used to
transport each good, in effect combining a transportation feasibility analysis similar in spirit to
what military simulators had done before with the development of actual schedules.

TIE#3 experimented with relaxing some of the constraints on how complete a TPFDD was
required to do this kind of scheduling, in effect opening up the possibility that DITOPS would
take over some of the decisionmaking relating to port and mode (air or sea-based transport)
assignment, rather than taking the overly restrictive prescriptions embodied in a TPFDD, and just
scheduling air and sea craft to carry cargo along proscribed routes. These kinds of choices are the
analog in the transportation planning problem of the choice in the job-shop world about which of
several paths through the factory can be used to complete a manufacturing task in the most
timely fashion.

For these experiments, DITOPS was made to use a less constrained description of the plan than
that normally embodied in a TPFDD, leaving open choices to be made in terms of which ports
ships could use as destinations for each load, and which kinds of transportation resources to use
(air or sea craft) to get the most effective transportation plan. Normally, the military uses a rule
of thumb that, for large operations, 20 percent of the cargo should move by air, and 80 percent
by sea. However, given timing considerations and available lift options, this heuristic can easily
be wrong. By relaxing some of these constraints on the shape of the scheduler's output, but
providing more information about the structure and dependencies in the plan, more efficient
plans and schedules can often be produced, and they are certainly more readily revised.

To achieve this, DITOPS was provided some additional information about the doctrinal
constraints on which elements of a force needed to move before other elements, replacing fixed.

B-14

but estimated, dates for unit movements found in a TPFDD. Given this additional information,
DITOPS was able to demonstrate the potential for automating some mode and port decisions
based on resource capacity information. DITOPS was able to balances the use of ports, and
avoid some bottlenecks due to port capacity overload. Similarly, by avoiding early commitments
on how cargo was to be shipped (air or sea modes) the scheduler was able to find efficient means
of transportation for each unit (for example, using excess air transport capacity to improve
arrival times) and better balance the limited resources available. This TIE successfully
demonstrated how a more appropriate encoding of the available information could lead to better,
and more easily and automatically revisable, transportation plans.

THE CPE TESTBED: AN EXPERIMENTAL DISTRIBUTED PLANNING
ENVIRONMENT

Tying the TIEs Together
After the initial round of TIEs was completed, work began in earnest to bring together all of

the technology components involved into a single distributed environment called the CPE
Testbed, based on the interoperability model used in the Infrastructure TIE. Beyond this
unifying function, the CPE Testbed was designed to:

• Provide a support infrastructure for future TIEs that included support for experimental metrics
and their evaluation and uniform access to data and scenarios for the transportation planning
domain.

• Establish a common representational basis for all remote communications between planning
and scheduling systems.

• Facilitate the transitioning of technologies into IFDs and operational prototypes.
• Enable exploration of issues of coordination and control in a heterogeneous system for

replanning and rescheduling.
CPE Testbed Release 1.0 was developed from the systems represented by the TIEs in an intense
five month effort involving all of the TIE participants during the spring of 1993. During that
time, all of the ad-hoc communications that has occurred in the TIEs were transformed into
consistent KRSL representations, including the development of KRSL plan representations and a
translator from SIPE-2 plan representations to KRSL forms. Support for remote starting and
metering of software modules was developed, in part by replacing some of the underpinnings of
the prototype KQML software with a more mature object-oriented communications substrate3
and by adding a simple, uniform interface to that functionality as a package called KNET.

A substantial amount of effort and voluminous EMAIL traffic was devoted to standardizing the
language of communications between the modules using KRSL. To standardize the
functionalities of the different systems for experimental comparison purposes, all
communications between modules were organized around standard sets of messages to be
defined for pairs of functional classes of software modules. Systems were typed as Plan
Generators, Force Selectors, Temporal Reasoners, Force Expanders, Deployment
Simulators/Schedulersn and Knowledge Servers. For each type of module, KNET messages that
it would have a contract to respond to were defined, inputs and outputs characterized

^BBN's CRONUS system was used for this, primarily because of its relative maturity at the time, and its capabiUties
for multiple language support (including C, C++, LISP), and its tools for remote process control.

B-15

descriptively and in terms of KRSL syntax. Figure 3 shows the interactions paths for which
these communications were defined.

At the time of the first CPE release, there was one Plan Generator (SOCAP) two temporal
reasoners (Tachyon, TMM), one Force Selector (CAFS), one Force Expander (FMERG), two
Deployment Simulators/Schedulers (PFE, KTS) and one Knowledge Server, plus a "client"
system called the CPE Interface which was used for remote process and experiment control, but
was not a server that responded to messages. DITOPS was soon added as a third
scheduler/simulator. Recently, the communications between DITOPS and SOCAP (from TIE
#3B) was implemented in the CPE as well, by giving DITOPS a second role as a Capacity
Analyzer.

KNETMsg + Response

KEV: -* ►
KRSL Query & Response

-^ ? ^'

KRSL Assert + Acknwldge

Non-KNET Msgs

Oracle
IDt

Msgs

Temporal
Reasoner
TMM, Tachyon

I J LOOM KBs 1 LIM/IDI J LOOM KBs

KRSL Interpreter

©!PIM HUSKS'

PFE,
KTS,

DITOPS

Figure 3: Defined KRSL Communications paths in CPE Testbed Release 1.0

The effort to standardize the content of communications between modules was largely
successful, though time constraints forced some hard choices on the process. In particular, the
communications between plan generators and the temporal reasoners continued to have the
batch-oriented flavor of the original TIE interface between SOCAP and Tachyon, even though
TMM, the other temporal reasoner, was designed for more incremental interactions with clients^.
Similarly, there were some aspects of SIPE's plan language that are unique to that system which

^An experiment where TMM is used more as it was intended, in conjunction with the 0-Plan planning is planned for
the near future. This should lead to a revised interaction style for temporal reasoners in the CPE.

B-16

carried over into KRSL and the SDO. Ironing out some of these issues will require further effort
by the research community as a whole.

Other improvements over the system represented by the Infrastructure TIE included an improved
message encoding scheme that achieved a three-fold reduction in the size of large messages, and
a ten-fold decrease in transmission time of those messages. This meant that the communication
of a TPFDD object of transmission size over 1.5 MBytes during the TIE was reduced to
.5Mbytes and the time reduced from 20 minutes to 2 minutes. Additional speedups occurred in
accessing remote databases from the Knowledge Server as well.

CPE TESTBED AS A PLATFORM FOR TECHNOLOGY EVALUATION
EXPERIMENTS.

It was a critical goal for the CPE Testbed that it be capable of and easy to run experiments
that tested the speed and effectiveness of new technologies that were introduced into the
environment, both singly and in TIE-Iike combinations. To this end, the process of running
programs in the CPE was organized around the notions of an experiment with multiple trials, and
a mechanism for adding 'alligator clips' or meters at various points in the computations of
modules was included in the CPE and KNET software. By simple declarations, information
about run times and process parameters could be collected on a trial-by-trial basis, where each
trial might, for example, vary which module was performing a particular problem solving
function. For example, Tachyon and TMM could be compared in sets of trials where they were
called by SOCAP with the same sequence of inputs, simply by setting up the sequence of trials in
the CPE Testbed Experimenter's User Interface. To evaluate the results of experiments, the
CLASP analytical statistics package from the university of Massachusetts was incorporated into
the CPE User Interface as well, so that data collected by CPE meters could be directly analyzed
using a variety of statistical measures.

Also from the CPE User Interface, one could specify which hosts the modules would run on
during a trial. All active hosts in the same CPE configuration, be they at BBN in Cambridge,
ISX in Los Angeles, Rome Laboratory in New York state, or one of the developer sites at other
locations around the country could be used during a single trial, if the modules involved were
installed at those sites.

At the time of this writing, there are twelve modules different "modules" or "agents" that can
communicate via the CPE's distributed communications model. These systems represent the
contributions of ten different corporations and university laboratories, and several others will be
added shortly. They include, in addition to the "CPE User Interface" module, SOCAP, Tachyon,
TMM, CAFS, DITOPS, KTS, FMERG, PEE, FORMAT, the Knowledge Server, and an
experimental "Plan Server" for plans developed by the TARGET plan authoring system from
IFD-3. There are also a number of research prototype systems that are under consideration for
future incorporation into the CPE, including OPLAN-2, SIMS, CoBase, and several others.
Other, more operationally oriented systems under consideration include LOGGEN, AMP, a
successor to DART, and ACPT, a plan authoring tool for air campaign planning.

SUMMARY AND CONCLUSION
The CPE, including both its testbed and repository aspects, has successfully demonstrated the

potential for increased collaboration and sharing among a large set of research and development
projects. It has served as a validation of the concept and methodology for promoting more
effective software and information sharing, moved a large community of researchers toward
mechanisms for validating the products of their work both in terms of increased effort to

B-17

demonstrate interoperability and increased attention to the establishment of experimental metrics
for progress.

There are still many directions in which this environment could improve and mature. Some in
the university research community have found the CPE to be less directly useful to them than we
had hoped, partly because of when it became available, and partly because of its size and the
compromises involved in designing an environment that integrates a wide group of software
systems with current technologies. A number of other the problems that have surfaced and are
being addressed at the current time. Most of the systems that have to-date been incorporated
into the testbed were the applications of AI technologies that pre-dated the Planning Initiative.
Addressing the needs of the university researchers developing the next generation of tools is now
one of our biggest concerns.

Devising an architecture for a diverse, heterogeneous population of software systems all
participating in solving complex planning problems is a challenging task. It is in some ways
even more challenging when one understands that there will always be a strong human element
to these distributed systems. The challenge we now face is not just to build knowledge-
intensive distributred software systems, but systems in which many people, at many different
locations are assisted by intelligent planning software in their dynamic, ongoing efforts to
coordinate the activities of one of the largest single organizations in the world.

Acknowledgements. The portion of this work performed by BBN and ISX was funded by
ARPA and monitored by Rome Laboratory under Contract F30602-91-C0014.

B-18

REFERENCES

Allen, J.F. "Maintaining knowledge about temporal intervals." Communications of the ACM,
26(11):832-843, 1983.

Arthur, R., Deitsch, A., and Stillman, J. "Tachyon: A constraint-based temporal reasoning model
and its implementation." SIGARTBulletin, 4:3, July 1993.

Bienkowski, M.A, Desimone, R.V., and desJardins, M.E., "Decision Support for Transportation
Planning in Joint COA Development: Annual Report." SRI International Technical Report
ITAD-2062-AR-93-101. March 1993.

Dean, T.L. and McDermott, D.V., " Temporal Data Base Management, Artificial Intelligence
36:1-55. 1988.

MacGregor, R. and Yen, J. The Knowledge Representation Project at ISI. ISI Research Reports
ISI/RS-88-199, July 1989, University of Southern California.

MacGregor, R. and Burstein, M.H., Using a Description Classifier to Enhance Knowledge
Representation. IEEE Expert, 6:3, June 1991, pp. 41-46.

Wilkins, D.E., Practical Planning: Extending the Classical AI Planning Paradigm. Morgan
Kaufmann Publishers, Inc., San Mateo, CA. August 1988.

Wilkins, D.E., and Desimone R.V., "Applying an AI Planner to Military Operations Planning."
In M. Fox and M. Zweben, eds., Intelligent Scheduling. Morgan Kaufmann Publishers, Inc., San
Mateo, CA. 1993.

Schrag, B., Carciofini, J., and Boddy, M. "b-TMM Manual (version bl9)." Technical Report CS-
R92-012, Honeywell Systems & Research Center, 1992.

Allen J. F. et al. Reasoning About Plans Morgan Kaufmann Publishers, Inc., San Mateo, CA.
1991.

Kolodner, J. Case-Based Reasoning. Morgan Kaufmann Publishers, Inc., San Mateo, CA. 1993.

Smith, S.F., "OPIS: A Methodology and Architecture for Reactive Scheduling", in (Eds.) Fox,
M. and Zweben, M. Intelligent Scheduling, Morgan Kaufman, Palo Alto, 1994.

B-19

APPENDIX C:
ITAS:

A Portable, Interactive Transportation Scheduling Tool
Using a Search Engine Generated from Formal Specifications

(c) 1996 AAAI. Reprinted, with permission, from
Proceedings of the Third AI Planning Systems Conference,

Edinburgh, Scotland, The AAAI Press, 1996.

C-i

(c) AAAI. Reprinted, with permission, from the

Proceedings of the Third International Conference on
Artificial Intelligence Planning System (AIPS-96)

ITAS:
A Mixed-Initiative Transportation Scheduler

Generated from Formal Specifications

Mark H. Burstein
BBN Systems and Technologies

lOMoultonSt.
Cambridge, MA 02138

Email: burstein@bbn.com

and

Douglas R. Smith
Kestrel Institute

3260 Hillview Avenue
Palo Alto, California 94304
Email: smith@kestrel.edu

ABSTRACT

In a joint project, BBN and Kestrel Institute have developed a prototype of a mixed-initiative
scheduling system called ITAS (In-Theater Airlift Scheduler) for the U.S. Air Force, Pacific
Command. The system was built in large part using the KIDS (Kestrel Interactive Development
System) program synthesis tool. In previous work for the ARPA/Rome Laboratory Planning
Initiative (ARPI), Kestrel has used their program transformation technology to derive extremely
fast and accurate transportation schedulers from formal specifications, as much as several orders
of magnitude faster than currently deployed systems. The development process can produce
highly efficient code along with a proof of the code's correctness.

This paper describes the current prototype ITAS system and its scheduling algorithm, as a
concrete example of a generated scheduling working on a real problem. We outline the
generated search algorithm in order to promote and facilitate comparison with other constraint-
based scheduling systems. The overall system includes a database and interactive interface that
allows users to control shape of the schedule produced in a number of ways. ITAS runs on a
Macintosh Powerbook"" notebook computer, for reasons of portability.

INTRODUCTION

This report describes a prototype application of Kestrel Institute's research on the
transformational development of high-performance transportation schedulers^. The system.

5 This research was supported by ARP A/Rome Laboratories under Contracts F30602-91-C-014 (BBN) and F30602-
91-C-0043 (Kestrel).

C-1

IT AS, for In-Theater Transportation Scheduler, is designed to assist human schedulers of
airplanes who work to produce daily flight plans to move cargo and people within a specific
theater of operations. For example, after the Iniki Hurricane in the Hawaiian Islands a few years
ago, these airlift schedulers sent planes from Honolulu and other islands to the Hawaiian island
of Kauai to deliver supplies and relief workers to that area. This scenario is not atypical, and was
used as a working example as we developed the system.

Previously, Kestrel had demonstrated the potential to produce extremely fast and accurate
transportation schedulers from formal specifications using the Kestrel Interactive Development
System (KIDS) (SmithD9009). On test data for strategic transportation plans provided by U.S.
government planners, the generated schedulers (called KTS for Kestrel Transportation
Scheduler) solved problems with impressive speed. A typical problem, with 10,000 movement
requirements, takes the derived scheduler 1 — 3 minutes to solve, compared with 2.5 hours for a
deployed feasibility estimator (JFAST) and 36 hours for deployed schedulers (FLOGEN,
ADANS). The computed schedules use relatively few resources and satisfy all specified
constraints. The speed of this scheduler was due to the synthesis of strong constraint checking
and constraint propagation code.

In 1994 Kestrel and BBN began to develop a scheduler to support PACAF (Pacific Air Force) at
Hickham AFB, Honolulu which is tasked with in-theater scheduling of a fleet of 26 C-130 cargo
aircraft in the Pacific region. We developed (and are continuing to evolve) a domain model of
theater transportation scheduling. Several variants of a theater scheduler (called IT AS for In-
Theater Airlift Scheduler) have been developed to date, and more are planned. The ITAS
interface and was built on top of a commercial database package (Microsoft FoxPro"") and
integrated with the generated LISP-based scheduler by BBN. ITAS runs on an Apple
Powerbook laptop computer. The laptop platform makes it attractive both for field and
command center operations. ITAS can currently produce ATOs (Air Tasking Orders) based on
the schedules that it generates.

The current ITAS scheduler algorithm is another in the KTS family of synthesized algorithms,
using a number of new and different constraints from the previous, strategic (inter-theater)
model. In this domain, the size of the problems is smaller (small tens of movement
requirements, planes and ports), and the time horizon is shorter (typically, less than one week)
because the domain is much more reactive. However, there are many more constraints that must
be handled, and users need very rapid response from the scheduler in order to be able to iterate
on the final schedule, often in less than an hour. On relatively small but realistic problems we
have tested so far^ in ITAS' intended domain of application, the scheduler runs in 5 to 30 seconds
on a Macintosh Powerbook 540. Relatively little effort has been spent on optimizing the code to
date.

ITAS simultaneously schedules the following classes of resources: (1) aircraft, (2) air crews and
their duty day cycles, (3) ground crews for unloading, and (4) ramp space at ports. By its very
dynamic nature, the domain presents many special one-time issues that we leave to the user to
handle, as discussed later. Basically, ITAS as a system is designed to allow users control the
-'shape" of the final schedule by editing and ''seeding" the schedule in several ways, and to do
daily rescheduling, without losing this user input to the process.

^ Roughly speaking, 10 planes, 10 movement requirements, generating about 50 flights.

C-2

In this paper, we describe tiie current prototype of IT AS. We discuss the constraints from the
domain that were handled, and some that have not, as yet, been handled directly in the generated
code. We attempt to describe, in informal terms, the algorithm that was produced using KIDS, in
an attempt to make clear where this style of scheduling algorithm gets its great speed, and to
promote comparison with other constraint-based scheduling systems in the literature. Finally, we
briefly describe the nature of user interactions with the scheduler, as they have evolved so far.

AN APPROACH TO SYNTHESIZING SCHEDULERS

Kestrel's approach to developing scheduling software involves several stages. The first step
is to develop a formal model of the transportation scheduling domain, called a domain theory.
Second, the constraints, objectives, and preferences of a particular scheduling problem are stated
within a domain theory as a problem specification. Finally, an executable scheduler is produced
semi-automatically by applying a sequence of transformations to the problem specification. The
transformations embody programming knowledge about algorithms, data structures, program
optimization techniques, etc. The result of the transformation process is executable code that is
consistent with the given problem specification. Furthermore, the resulting code can be
extremely efficient.

One of the benefits of a transformational approach to scheduling is the synthesis of specialized
constraint management code. Previous systems for performing scheduling in AI (e.g. Fox and
Smith, 1984; Fox, 1989; Smith.S. et al. 1986, Smith.S. 1989) and Operations Research
(Applegate and Cook, 1991; Luenberger, 1989) use constraint representations and operations that
are geared for a broad class of problems, such as constraint satisfaction problems or linear
programs. In contrast, transformational techniques can derive specialized representations for
constraints and related data, and also derive efficient specialized code for constraint checking
and constraint propagation.

Our approach tries to make the domain model and scheduling problem explicit and clear, so that,
ultimately, users can build new schedulers of the same general class by defining the constraints
embodied in their problem and generating a new, situation-specific, scheduler. Basically, the
idea is to rapidly develop a situation-specific domain model and problem specification using a
knowledge-elicitation system, and then to synthesize high-performance planning and scheduling
tools that are specialized to the current situation. The majority of users' interaction would be
codifying the domain theory and specification of the current situation, to aid in synthesizing a
customized planning/scheduling tool.

Our current scheduling theories have evolved over months of effort into about 3500 lines of text.
It currently takes about 90 minutes to transform our most complex scheduling specification (for
ITAS) into optimized and compiled Common Lisp code for Sun workstations. Evolution of the
scheduler is performed by evolving the domain theory and specification, followed by
regeneration of code. The resulting code, after optimizing transformations, is roughly 3000 lines
of code in the REFINE language (depending on how its formatted), which is transformed
automatically into about 5200 lines of (largely unreadable) Common LISP code.

CHARACTERIZING THE APPLICATION DOMAIN

A domain theory for scheduling defines the basic concepts of scheduling and the laws for
reasoning about the concepts. A scheduling domain model generally consists of models of the
activities to be scheduled, the resources to be used by those activities, time {e.g., a time-
interval calculus, the constraints on the use of resources for activities (capacity constraints), and

C-3

the ordering of activities (precedence constraints), and the utility of the produced schedule (e.g.,
minimize a cost objective function).

Using the above concepts we can formulate a variety of scheduling problems. A reservation is a
triple consisting of an activity, a resource, and a time interval. Generally, a schedule is a set of
reservations that satisfy a collection of constraints and optimize (or produce a reasonably good
value of) the objective. Transportation scheduling specializes this general notion of scheduling:
activities correspond to movement requirements and resources correspond to transportation
assets such as planes, ships, and trucks. For the ITAS domain, the main assets are planes, but
other resources must also be managed including: air crews, ground crews (that load and unload
the planes), and parking spaces at airports (for the port constraint called MOG or maximum on
ground number).

For ITAS and other transportation schedulers, the activities are called movement requirements.
ITAS movement requirements include the following information (All times are in seconds from
time tj.):

POE: port -> PHIK
POD: port -> PHLI
ALD: time -> 0
BAD: time -> 86400
LAD: time -> 86400
Loads: integer -> 20
Load-type : aircraft-class •> C130E
PAX: integer -> 1500
Pallets: integer -> 50

Here, the Port of Embarkation (POE) and Port of Debarkation (POD) are the origin and
destination of the cargo, respectively. PHIK and PHLI are ICAO codes for Hickham AFB and
Lihue Airport, respectively. The ALD (available to load date), EAD (earliest arrival date), LAD
(latest arrival date) represent the time bounds on a feasible schedule for the movement
requirement. The cargo itself is represented somewhat differently from most strategic
transportation models. For a problem at this level (smaller planes, local scheduling), packing of
the aircraft is a crucial issue, and irregular size and shape loads must be considered. We do not
address the packing problem in this system, so we instead rely on the user to specify irregular
cargo in full Loads for a specific kind of aircraft, and with a particular configuration of the
plane's cargo area (indicated by the Load-type). More regular cargo (PAX and Pallets) may be
loaded onto any aircraft that has available space for that type of cargo.

The ITAS schedulers have emphasized efficient search and rich constraint modeling. The
current version of ITAS simultaneously schedules the following types of resources, each of
which has a variety of constraints associated with it:

1. Aircraft are characterized by their capacities, both passenger (PAX) and cargo (pallet)
capacities, and travel rate in knots. They also have minimum runway length requirements in
order to be acceptable for use at specific airports.

2. Air crews typically have 16 hour work days, followed by 12 hours rest. They are not
expected to take off until one hour after they are called for duty^.They also receive a day off

^ Thus far, we only handle one air crew permanently assigned to each aircraft. This should be fixed by the time of

C-4

after a short number of days on duty. When only one crew is available for a plane, the plane
does not fly during crew rest periods.

3. Ground crews are scheduled for loading and unloading planes at each port.

4. Parking spaces at each port are used to model the MOG (Maximum on Ground) constraint
on ports where this applies.

5. Airports are not treated as resources themselves, but have restrictions like their maximum
runway length, and operating hours, and whether they are in a combat zone that impact
flights into and out of those locations. They also organize other resources (ground crews,
parking spaces).

Ground crews and parking slots (MOG) at airports are essentially aggregate resources in a naive
description of the ITAS problem, but are scheduled as if they were individual unit resources in
the current system, since KIDS cannot currently generate code that treats these constraints in
their aggregate form. This is an area of ongoing research.

ITAS' SCHEDULING CONSTRAINTS

At present, twenty-three constraints characterize a feasible schedule for ITAS^. The list
below collapses the descriptions of some of these together^:

1. Consistent POE and POD * — The POE and POD of each movement requirement on a given
trip of a resource must be the same as that flight's origin and destination respectively.

2. Consistent Load Type * — Each resource can handle only loads for some movement
requirements. For example, a C-141 aircraft can only carry loads of C-141 cargo.

3. Consistent PAX and Pallet Capacity * — For cargo in movement requirements expressed as
PAX (passengers) or Pallets (pre-packaged cargo), the capacity of each aircraft to carry that
type of cargo cannot be exceeded on a given flight. A flight containing a full load can carry
no additional PAX or Pallets.

4. Consistent Release Time — The start time of a movement (the flight's earliest departure time
(EDT)) must not precede the release time (ALD) of all movement requirements in the flight's
manifest, plus the aircraft's load time.

this publication.

^ Some of these constraints (*'d) are not currently given explicitly as part of the top level Problem Specification to
the KIDS system, but are implicit in the Global Search Theory, another part of the domain theory that is
essentially an abstract schema describing the branching structure for the search control model to be employed in
the generated algorithm. These constraints were ""rolled into" that structure for the sake of the efficiency of the
generated code. Future systems will make these constraints explicit again.

^ The number of corresponding formal constraints is noted in parenthesis. Typically, temporal constraints come in
pairs, one that is used to propagate the Earliest Departure Time (EDT) forward, and one that is used to
propagate the Latest Departure Time (LDT) backward through the schedule.

C-5

5. Consistent Due Time - The finish time of a movement (the flight's latest departure time +
flight duration + unload time) must not be later than the Latest Arrival Date (LAD) of all
movement requirements in the flight's manifest.

6. Consistent Flight Separation - For flights of the same aircraft, the earliest (latest) departure
time plus the flight duration and on-ground time at the destination must be less than the
earliest (latest) departure time of the aircraft's next flight.

7. Consistent Air Crew Usage — Only use the given air crews.

8. Consistent Air Crew Duty Day — For a sequence of flights by one crew without a rest period,
the earliest (latest) departure time of the last flight, plus the last flight's duration and unload
time, should be less than the length of a duty day after the earliest (latest) departure time of
the first flight.

9. Consistent Air Crew Transition ~ By similar formulae, crews get a full 12 hours rest after a
duty day plus at least 3.25 hours preparation time before their next flight.

10. Consistent Air Crew Qualifications — Crews must be qualified for the aircraft they are
assigned to, the mission types to be flown, and must belong to the unit that 'owns' the
aircraft. (3 constraints)

11. Consistent Port Usage - Only schedule flights into/out of the given ports.

12. Consistent Port Runway Length — Aircraft cannot land or take off from airports whose
maximum runway length is less than the aircraft's minimum take-off/landing runway
length 10.

13. Consistent Port MOG — The constraints here are actually on the use of parking spaces, which
are assigned individually during search. Basically they state that the earliest (latest) departure
time of the aircraft leaving a space must be before the earliest (latest) arrival time of the next
aircraft assigned to that space.

14. Consistent Port Ground Crew — Similar to MOG, ground crew reservations must be
separated by the corresponding load/unload time. For now, it is assumed that there are a
constant number of ground crews available whenever a port is open.

15. Consistent Port Operating Hours — Ports may be closed for take-offs/ landings for some
period each day (e.g., night time). (2 constraints)

16. Consistent Mission Type — The cargo in a flight manifest must be from movement
requirements with the same mission type {e.g., normal land and unload vs. airdrop).

17. Consistent Aircraft Usage — Only the given aircraft are to be used.

18. Completeness — All movement requirements must be scheduled.

Constraints in the domain theory are defined formally by reference to data structures that are
maintained during search, basically mappings of resources (parking spaces, ground crews) to

'^his constraint could be made considerably more complex if it were to take into account whether the plane was
loaded or not, its expected fuel level, and the different true minimums for take-off and landing.

C-6

sequences of reservations (tuples referencing the aircraft and flight involved). For example, here
is a (slightly simplified) constraint on the LAD of a movement requirement:

function CONSISTENT-LAD
(sched : schedule): boolean
= forall (ac-indx : integer, fit: integer, mvr : movement-record,

flt-indx : integer, lat: time)
(ac-indx in domain(sched)

and flt-indx in domain(sched(ac-index).flight-sched)
and fit = sched(iac-index).flight-sched(flt-indx)
and mvr in flt.manifest
and lat = flt.latest-departure-time -i- flt.flt-duration)

Implies
mvr.LAD >= (lat + flt.unload-time)

This predicate expresses the constraint that every scheduled movement-record arrives and is
unloaded before its latest arrival date^^. The generated code checks this constraint and
propagates any time bounds changes that its enforcement causes.

Similarly, air crew constraints are defined by reference to a mapping from air crews to a data
structure containing the sequence of flights they are scheduled to be on, plus other associated
information. These data structures are defined as part of the domain theory. They are not
generated automatically. Data structure design and refinement is an explicit goal of the next
generation KIDS-like environment, Specware (Srinivas and JuUig, 1994).

PREFERENTIAL CONSTRAINTS
A typical scheduling problem will involve some choices best expressed as preferences or

prioritizations for the use of resources. Although some experiments have been done with KIDS
where its search was based in part on a utility or cost function, the current IT AS scheduler does
not explicitly handle preferential constraints at all. Instead, at points where choices are made
about which resources to use, user-defined functions order the choices. We have experimented
with a number of different ordering heuristics, to improve the overall quality of the schedules
produced, from the user's perspective.

There are functions (called variously ASSET-ORDER, AIR-CREW-ORDER ...) that define the
order of consideration of each kind of resource:

• Movement Requirements — E.g., sorted by their LAD, BAD, ALD.

• Assets (aircraft) — E.g., prefer locally available aircraft.

• Air Crews ~ E.g., prefer the most rested air crews from the aircraft's home unit.

• Ground Crews — Prefer the earliest available crew.

• Parking Spaces — Prefer the earliest available space.

^^ A schedule is defined as a sequence of aircraft (which are data structures that contain their flight schedules, also
sequences). Thus sched(i) indexes the f" aircraft, and domain(sched) is the integers [l..k] if there are k aircraft
available.

C-7

SYNTHESIZING A SCHEDULER

There are two basic approaches to computing a schedule: local and global. Local methods
focus on individual schedules and similarity relationships between them. Once an initial
schedule is obtained, it is iteratively improved by moving to neighboring structurally similar
schedules. Repair strategies (Zweben et al., 1990; Minton et al, 1990; Biefeld and Cooper, 1990;
Selman et al. 1992), and fixed-point iteration (Cai and Paige 1989), and linear programming
algorithms are examples of local methods.

Global methods focus on sets of schedules. A feasible or optimal schedule is found by
repeatedly splitting an initial set of schedules into subsets until a feasible or optimal schedule can
be easily extracted. Backtrack, heuristic search, and branch-and-bound methods are all examples
of global methods. We used a global methods to generate the KTS family of schedulers,
including IT AS. Other projects taking a global approach include ISIS (Fox and Smith, 1984),
OPIS/DITOPS (Smith S., 1989) and MicroBoss (Sadeh, 1991) (all at CMU).

Global search algorithms manipulate sets of candidate solutions. The principal operations are to
extract candidate solutions from a set and to split a set into subsets. Derived operations include
vsinons filters which are used to eliminate sets containing no feasible or optimal solutions.
Starting from an initial set that contains all solutions to the given problem instance, these
algorithms repeatedly extracts solutions, splits sets, and eliminates sets via filters until no sets
remain to be split. The process is often described as a tree (or DAG) search in which a node
represents a set of candidates and an arc represents the split relationship between set and subset.
The filters serve to prune off branches of the tree that cannot lead to solutions.

In a simple global search theory of scheduling, schedules are represented as maps from resources
to sequences of trips, where each trip includes earliest-start-time, latest-start-time, travel-time,
port of embarkation, port of debarkation, and a manifest describing the cargo. This type of
schedules has the invariant (or subtype characteristic) that for each trip, the earliest-start-time is
no later than the latest-start-time. A partial schedule is a schedule over a subset of the given
movement records. Thus the root denotes the set of all candidate solutions found in the tree.
This initial (partial) schedule is just the empty schedule — a map from the available resources to
the empty sequence of trips. A partial schedule is extended by first selecting a movement record
mvr to schedule, then selecting a resource r, and then a trip t on r (either an existing trip or a
newly created one) — the triple <mvr, r, t> represents a possible refinement of the current partial
schedule in the search space. The alternative ways that a partial schedule can be extended
naturally gives rise to the branching structure underlying global search algorithms.

A global search algorithm checks for consistency of the partial solution at each node it explores,
pruning those nodes where the test fails. More generally, necessary conditions on the existence
of feasible (or optimal) solutions below a node in a branching structure underlie pruning in
backtracking and the bounding and dominance tests of branch-and-bound algorithms (Smith D.,
1987).

CUTTING CONSTRAINTS AND TEMPORAL CONSTRAINT PROPAGATION
A key technical achievement of the Kestrel work was discovering and implementing

technology for generating efficient constraint propagation code. The speed of the KTS
schedulers derives from the extremely fast checking and propagation of constraint information at
every node of the runtime search tree. Whereas some knowledge-based approaches to
scheduling will search a tree at the rate of several nodes per second, some of the synthesized
schedulers search several hundred thousand nodes per second.

C-8

The idea is to derive and utilize the necessary conditions on feasibility of a candidate (partial)
schedule. These conditions are called cutting constraints. The derived cutting constraints for a
particular scheduling problem are analyzed to produce code that iteratively fixes violated
constraints (for the current KTS schedulers, by tightening time bounds on reservations) until the
cutting constraints are satisfied. This iterative process subsumes the well-known processes of
constraint propagation in the AI literature and the notion of cutting planes from the Operations
Research literature (Smith D., 1987).

Kestrel researchers developed a general mechanism for deriving constraint propagation code and
applied it to scheduling. This model of constraint propagation generalizes the concepts of
cutting planes in the Operations Research literature (Nemhauser and Wolsey, 1988) and the
forms of propagation studied in the constraint satisfaction literature (e.g. (Hentenryck,
1989)i2)The use of fixed-point iteration for constraint propagation is similar to Paige's work on
fixed-point iteration in RAPTS (Cai and Paige, 1989).

KIDS generates propagation code automatically from a subset of the constraints given for a
problem, using information in the global search theory schema as a guide. Stephen Westfold of
Kestrel was responsible for the design and implementation of the propagation generation
subsystem of KIDS (Smith D. and Westfold, 1995). The constraint propagation code that was
generated for the original KTS scheduler is nearly as fast as handwritten propagation code for the
same problem (cf. Appendix C in (Smith D. 1992)). The propagation code for the current IT AS
is many times more complicated, and it would have been quite difficult to generate it by hand.

The generated propagation code called at each node during search operates much the way a
temporal constraint system does, although the code is targeted to the problem domain using
specific knowledge of the particular constraints handled, the choices being considered at that
point by the scheduler, and a logical analysis of the possible effects of tightening particular time
bounds. The result is code tailored to the specific scheduling problem addressed, based on the
constraints specified in the domain theory. The overall effect is very efficient pruning of the
search space. At each node in the space, after each potential choice is made by satisfying all
relevant non-temporal necessary constraints, the propagation code is run to see if the schedule is
still viable. If so, the system recurs on the new refined state. Otherwise, a new choice is made.

THE ITAS SCHEDULER ALGORITHM

This section provides a brief outline of the generated scheduler's algorithm, in order to
convey a sense of how the system works, and (hopefully) why it is fast. Due to space limitations,
we have greatly simplified and summarized what goes on. The code itself is extremely complex
and barely readable, with few function breaks and numerous generated intermediate variables.

In ITAS, a schedule is a list of all of the aircraft, where each aircraft is an object that contains its
(partial) schedule. A sortie is essentially a short sequence of flights that contains (at most) a
positioning flight to get to a POE, a POE-to-POD flight, and a recovery flight away from the
POD to a refueling or resting station.

The top level function, KTS, just calls KTS-AUX, which recursively searches the space of partial
schedules. KTS then tests to see if the result is defined and UNSCHED-MVRS is empty, in which
case it extracts a solution from the current search state.

12 For details of deriving pruning mechanisms for other problems see (Smith D. 1987, Smith D. 1990, Smith D. and

Lowry, 1990, Smith D. 1991).

C-9

The arguments to KTS-AUX constitute a state in the search space:

1. MVRS: a sorted hst of all original movement requirements

2. ASSETS: a list of all available aircraft for the problem

3. PORTS: a list of all of the ports in the problem

4. AIR-CREWS: a list of all air crews

5. PSCHED: a partially completed schedule

6. SCHED-MVRS: all of the movement requirements that are already scheduled

7. UNSCHED-MVRS: all of the remaining unscheduled movement requirements

8. AIR-CREW-MAP: a mapping of air crews to their schedules

9. GND-CREW-MAP: a mapping of ground crews to their schedules

10. GS-FLTS: flights remaining to be scheduled for the current sortie

11. PRK-SLOT-MAP: a mapping of parking spots at ports to their reservations

KTS-AUX for the HAS problem splits the search into four main branches, as defined by the
global search theory schema of the domain theory. The first two branches consider refinements
of the current partial schedule for flights that are part of the current sortie. A current sortie exists
while a movement requirement is being processed, but not all of the necessary flights
(positioning, cargo-moving, depositioning) have been scheduled (so GS-FLTS is not empty). The
third and fourth branches consider the next movement requirement, and search to place as much
of that requirement as possible on an existing or new flight, respectively. In the process, a new
sortie is created.

Within each of the four main branches of KTS-AUX, one of two versions of
SPLIT&PROPAGATE is called, to generate the proposed new state, and run the propagation
routines for each temporal constraint that might be violated at that point. If
SPLIT&PROPAGATE succeeds and returns a new state. When i^rS-A f/X finds a possible a new
state, it calls SPLIT&PROPAGATE with these additional arguments S-State to represent the
currently considered resources:

1. FLT: the currently considered flight, if any

2. POE-TO-POD-FLT: the load-carrying flight for this move reqt., if known

3. AIR-CREW: the flight's air crew

4. CURRENT-DUTY-DAY?: Boolean indicating to search in the current (next) duty day

5. GROUND-CREW: the ground crew scheduled to unload the plane, if defined

6. GND-CREW-RES: the reservation for that crew, if defined.

7. PARKING-SLOT: the parking slot to be used at the destination, if defined

The branches, considered sequentially, are:

1 If GS-FLTS is not empty, consider all possible ground crews and parking slots for
FLT=first(GS-FLTS)

C-10

and
MVR =first(UNSCHED-MVRS),

by calling SPLIT&PROPAGATEl on each, but considering only flights in the current duty
day of the flight's air crew.

2. If GS-FLTS is not empty, consider all possible ground crews and parking slots for
FLT=first(GS-FLTS

and
MVR =first(UNSCHED-MVRS),

by calling SPLIT&PROPAGATEl on each, but considering only flights in the next duty day
of the flight's air crew.

3. If GS-FLTS is empty, let
MVR =first(UNSCHED-MVRS),

and consider all cargo-carrying flights of aircraft in the current S-State's partial schedule that
have remaining capacity for MVR by calling SPLIT&PROPAGATEl on each.

4. If GS-FLTS is empty, let
MVR =first(UNSCHED-MVRS),

and consider all aircraft in ASSET-ORDER, calling SPLIT&PR0PAGATE2 on each, which
creates a flight sortie for that MVR, and tests that requirement's LAD can be met.

5. (optional) If no feasible (partial) schedule is found, relax the LAD of the last movement
requirement.

Each SPLIT&PROPAGATE function contains a version of the generated constraint checking and
propagation code for a different set of conditions, depending on how the partial schedule has
been changed. Essentially, these functions take the constraints stated in the problem description,
in turn, and, if they are temporal constraints, propagate their bounds either forward or backward
in time, depending on whether the earliest (ED'T) or latest departure time (LDT) of a flight is
referenced in the constraint. For example, SPLIT&PROPAGATEl, which is used to schedule an
existing flight in GS-FLTS, does the following:

1. Check CONSISTENT-R UNWA Y-LENGTH.

2. Check CONSISTENT-MISSION-TYPE.

3. Generate a state vector with reservations for the Ground Crew, Air Crew, and Parking Slot
assignments for the flight

4. Propagate EDT, checking CONSISTENT-AIR-CREW-DUTY-DAY-EDT

5. Propagate LDT, checking CONSISTENT-AIR-CREW-DUTY-DAY-LDT

6. Propagate EDT, checking CONSISTENT-FLIGHT-SEPARATION-EDT for all aircraft used in
PSCHED.

7. Propagate LDT, checking CONSISTENT-FLIGHT-SEPARATION-LDT for all aircraft used in
PSCHED.

8. Propagate EDT, checking CONSISTENT-ALD for all MVR in the manifest.

9. Propagate EDT, checking CONSISTENT-GROUND-UNLOAD-CREW-EDT for all of the
current ground crews at the destination.

C-11

10. Propagate LDT, checking CONSISTENT-GROUND-UNLOAD-CREW-LDT for all of the
current ground crews at the destination.

Each propagation of the EDT or LDT above is based on recursively checking the corresponding
constraints for CONSISTENT-FLIGHT-SEPARATION, CONSISTENT-AIR-CREW-DUTY-DAY,
CONSISTENT-AIR-CREW-TRANSITION, and CONSISTENT-MOG.

If the state is still defined (consistent) at the end of all of this, the proposed state is accepted, the
movement requirement is marked scheduled and KTS-AUX is called recursively.

SPLIT&PR0PAGATE2 is similar, but somewhat more complicated, since it generates a sortie of
flights for the next movement requirement, and finds an aircraft and crew for that sortie.

CONSTRAINT RELAXATION
Many scheduling problems are over-constrained. Over-constrained problems are typically

handled by relaxing the constraints. The usual method, known as Lagrangian Relaxation
(Nemhauser and Wolsey, 1988), is to move constraints into the objective function. This entails
reformulating the constraint so that it yields a quantitative measure of how well it has been
satisfied.

Our current experimental approach is to relax the input data just enough that a feasible solution
exists (the optional branch 5 of KTS-AUX). This approach is available as an option in ITAS to
avoid an exhaustive search when no feasible solution may exist. This mode relaxes the LAD
(Latest Arrival Date) constraint, when the current search reaches an impasse, rather than backing
up. The relaxation takes place only when there is no feasible solution to the problem data. ITAS
uses the difference between the arrival date of a trip and the LAD of a movement requirement in
that trip as a measure of how much to relax the LAD. The relaxation is such as to minimally
delay the arrival of the requirement to its POD.

SYSTEM DESIGN AND USER INTERACTIONS ISSUES WITH ITAS

The target user community for ITAS needed a tool that was fast, easy to use, flexible and
portable. These factors motivated us to develop the system on Macintoshes, so that it could be
deployed on a Mac Powerbook notebook computer. Given the speed of the scheduler, size of the
problems to be faced, and the short scheduling horizon, we expect that most problems will run in
under a minute with the current system. We used Microsoft FoxPro'" as the primary database and
interface substrate, because it runs on Macintoshes and it was simple to understand. For the
current prototype, data exchanges with the scheduler (running in Macintosh Commonlisp) are
done using a simple combination of Applescript and file I/O. On our current suite of test
problems, it takes as long to do the inter-module I/O as it does to build a schedule.

The interface uses Apple's menu system and set of data entry screens, organized around two
types of data: background data (for caches of locations (airports), units, aircraft types and
characteristics, frequently used aircraft, etc.) and situation data, the current collection of aircraft,
crews, ports and movement requirements for which a schedule is being built. The primary
graphical schedule display is a mouse sensitive version of a schedule Gantt chart modeled after
what the airlift schedulers call their 'Rainbow' chart, because the different types of aircraft are
assigned different colors.

There is also a flight editor that enables users to make modifications to the existing schedule
before exporting it, and to iterate on a solution with the scheduler in the loop. Users of this tool
need to be able to edit the schedules produced, when circumstances not captured by the available

C-12

constraints come up. We needed to make it possible for parts of the schedule to be specified
directly by the user, and not revised by the scheduler.

The IT AS domain is extremely reactive. The people who now generate schedules by hand do so
a day at a time, since their information is often only good enough to estimate what will be
required three, or even two days hence. Given a tool that will build schedules for them, they will
likely extend their planning horizon (currently 10 days or less), at least for plan/resource
evaluation purposes, but for day to day operations, they will continue to schedule only a few
days at a time, and do daily rescheduling, as needed.

In support of rescheduling, users can mark (or edit then mark) flights in the existing current
schedule as Trozen'. ITAS-KTS takes as part of its input the leading frozen edge of a schedule,
and uses it only to properly reflect resource availability, and so that those flights and their
itineraries are reflected in its output. Because the ITAS-KTS scheduling algorithm generates
candidate flights in a time forward fashion, a frozen flight necessarily means that all prior flights
by that aircraft are also frozen. Thus the current scheduler does not give users as much
flexibility to edit and then rerun schedules as is found in some other global-search based
rescheduling systems whose search is not time ordered (e.g., (Smith S., 1989)) or in systems
using local repair strategies (Zweben et al. 1990). We are planning to generate an IT AS
scheduler that inserts flights in a schedule rather than adding them to the end of schedule. The
interesting issue is to evaluate the resulting tradeoff between the slowdown due to greatly
increased search tree branching and the extra flexibility gained during (re)scheduling.

Our users also wished to be able to lay out patterns of flight itineraries for some sets of aircraft,
based on their paper process. For example, it is customary for them, when scheduling a group of
planes carrying loads to the same destination, to stagger the departure times to assure a uniform
flow into an airport. We have not yet been able to reproduce this style of output automatically,
but have provided a mechanism that allows users to lay out itineraries (sequences of ports to
visit) for sets of aircraft, each departure offset by some specified time interval. Flights of this
kind that are seen by ITAS-KTS as having fixed earliest departure times, but infinite latest
departure times, so they can effectively be ''slid forward" in time to accommodate port and
ground crew constraints. A planned extension of this capability is to provide these ''flows" to
the scheduler as patterns that can be used repeatedly in normal scheduling, especially where the
distance is great enough that an intermediate stop en route is required when transporting some
cargo. The current scheduler does not support multi-leg trips between cargo sources and
destinations.

CONCLUSIONS

This project was conceived of as a short term effort to demonstrate the potential and practical
utility of automatically generated scheduling software. Given the previously demonstrated speed
of the algorithms produced and this demonstration that the technique can be scaled up to realistic
sets of constraints, we believe that those conclusions are clearly justified. This paper is an
attempt to make clear how the current class of generated schedulers work, why they are fast, and
what some of the tradeoffs were in terms of flexibility. We believe that it will often be better to
generate, and make available through a single interface, a suite of quick schedulers, tailored to
different constraints, than to have one scheduler that is slow on all problems.

The great advantage of the synthesis approach is the ability to expose problem structure and
exploit it by transformationally deriving efficient problem-specific code. In this case, the reuse
of design knowledge (global search, constraint propagation) made an enormous difference in
performance. Future directions include making it easier for domain experts to specify their own

C-13

constraints, and generate their own problem-specific schedulers, and broadening the classes of
scheduling algorithms that can be generated, and the types of constraints that can be handled.
The next generation of KIDS, Specware, will also address the need for more automatic and
controllable data structure design. We should note that a preliminary test indicates that there is
at least an order of magnitude speedup still to be had, since the current scheduler uses lists for all
of its object data structures! Specware will be able to use a variety of data types, and generate
code in other languages than LISP (e.g., C++).

On the interface side, we seek to exploit the great speed of even the current class of schedulers
by greatly increasing the interactive nature of the scheduling task, providing more automatic
capabilities in the area of resource analysis and comparative schedule analysis.

ACKNOWLEDGMENTS
The authors would like to thank the following people for their important contributions to the
IT AS effort: Don Roberts and John Lemmer of Rome Laboratory; Stephen Westfold of Kestrel
Institute; and LtCol Chris Stuhldreher, Maj Keith LaCrosse, and Cpt Rob Burgess of the PACAF
Airlift Operations Center.

BIBLIOGRAPHY

Applegate, D., and Cook, W. 1991. A computational study of the job-shop scheduling problem.
ORSA Journal on Computing 3(2): 149-156.

Biefeld, E., and Cooper, L. 1990. Operations mission planner. Technical Report JPL 90-16, Jet
Propulsion Laboratory.

Cai, J., and Paige, R. 1989. Program derivation by fixed point computation. Science of Computer
Programming 11:197-261.

Fox, M. S., and Smith, S. F. 1984. ISIS - a knowledge-based system for factory scheduling.
Expert Systems 1(1):25—49.

Fox, M.S., Sadeh, N., and Baykan, C. 1989. Constrained heuristic search. In Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, 309—315.

Hentenryck, P. V. 1989. Constraint Satisfaction in Logic Programming. Cambridge, MA:
Massachusetts Institute of Technology.

Luenberger, D. G. 1989. Linear and Nonlinear Programming. Reading, MA: Addison-Wesley
Publishing Company, Inc.

Minton, S., Johnson, M., Philips, A.B., and Laird, P. 1990. Solving large-scale constraint
satisfaction and scheduling problems using a heuristic repair method. In Proceedings of the
Eighth National Conference on Artificial Intelligence., 290—295.

Nemhauser, G. L., and Wolsey, L. A. 1988. Integer and Combinatorial Optimization. New
York: John Wiley & Sons, Inc.

Sadeh, N. 1991. Look-ahead techniques for micro-opportunistic job shop scheduling. Technical
Report CMU-CS-91-102, Carnegie-Mellon University.

Selman, B., Levesque, H. and Mitchell, D. 1992. A new method for solving hard satisfiability
problems. In Proceedings of the Tenth National Conference on Artificial Intelligence, 440-446.

C-14

Smith, D. R. 1987. Structure and design of global search algorithms. Technical Report
KES.U.87.12, Kestrel Institute.

Smith, D. R. September 1990. KIDS — a semi-automatic program development system. IEEE
Transactions on Software Engineering Special Issue on Formal Methods in Software
Engineering 16(9): 1024-1043.

Smith, D. R., and Lowry, M. R. 1990. Algorithm theories and design tactics. Science of
Computer Programming 14(2-3):305-321.

Smith, D. R. 1991. KIDS: A knowledge-based software development system. In Lowry, M., and
McCartney, R., eds., Automating Software Design. Menlo Park: MIT Press. 483-514.

Smith, D. R. 1992. Transformational approach to scheduling. Technical Report KES.U.92.2,
Kestrel Institute.

Smith, D. R., and Westfold, S. J. 1995. Synthesis of constraint algorithms. In Saraswat, V., and
Hentenryck, P. V., eds.. Principles and Practice of Constraint Programming. Cambridge, MA:
The MIT Press.

Smith, D. R., Parra, E. A., and Westfold, S. J. 1995. Synthesis of high performance
transportation schedulers. Technical Report KES.U.95.6, Kestrel Institute.

Smith, S. F., Fox, M. S, and Ow, P.S. 1986. Constructing and maintaining detailed production
plans: Investigations into the development of knowledge-based factory scheduling systems. AI
Magazine l{A):A5-6\.

Smith, S. F. 1989. The OPIS framework for modeling manufacturing systems. Technical Report
CMU-RI-TR-89-30, The Robotics Institute, Carnegie Mellon University.

Srivivas, Y. V., and Jullig, R. 1994. Specware:"" formal support for composing software.
Technical Report KES.U.94.5, Kestrel Institute. In Proceedings of the Conference on
Mathematics of Program Construction, Kloster Irsee, Germany, July, 1995.

Zweben, M., Deal, M., and Gargan, R. 1990. Anytime rescheduling. In Proceedings of the
Workshop on Innovative Approaches to Planning, Scheduling and Control, 215-219. San Diego,
CA: DARPA.

C-15

DISTRIBUTION LIST

addresses

DONALD ROBERTS
RL/C3Cft
525 SRQOKS RO
ROME NT 13441-4505

number
of copies

10

OR MARK H BURSTEIN
93N CORP
10 MOULTON ST
CAMSRIDGE MA 02138

ROHE LA80RATQRY/SUL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROHE NY 13441-4514

ATTENTION: OTIC-OCC
OEFEMSE TECHNICAL INFO CENTER
8725 JOHN J. KINGMAH ROAD, STE 0944
FT. 3£LV0IRf VA 22060-6218

fiOVANCtO RESEARCH PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

RELIABILITY ANALYSIS CENTER
201 MILL ST.
ROME NY 13440-8200

RQNIE LA80RfiT0RY/C3A3
525 BROOKS RO
RQnE HY 13441-4505

ATTN: RAY»^0MQ TAORQS

GIDEP
P.O. BOX 3Q00
CORONA Ca 91718-8000

DL-1

flFIT ACADEMIC LI8RARY/L0EE
2950 P STREET
AREA 3, BLOG 642
WRIGHT-PATTERSON AFB OH 45433-7765

ATTN: R.L, DENISQN
WRIGHT Lfl90RArORY/f^LPO, SLDG. 651
3005 P STRHET, STE 6
WRIGHT-PATTERSON AFS OH 45433-7707

ATTN: GILBERT G. KUPERMAN
AL/CFHI, SLOG, 243
2255 H STREET
WRIGHT-PATTERSON AFB OH 45433-7022

OL AL HSC/HRG, SLOG. 190
2698 G STREET
WRIGHT-PATTERSON AFS OH 45433-7604

AUL/LSAD
600 CHEHNAULT CIRCLE, SLDG. 1405
MAXWELL AFS AL 36112-6424

US ARMY STRATEGIC DEFEMSE COMMAND
CSSD-IM-PA
J'.O. BOX 150G
HUNTSVILLS AL 35807-3301

COMMANOIMS a?=FiceR
HCCOSC ROr&E OIVISIQN
ATTH: TECHNICAL LIBRARY,CODE 0274
53560 HULL STREET
SA«'^ OIEGO CA 92152-5001

DL-.

COMMANDE'?, TECHNICAL LIBRARY
474700O/C0223
NAVftlRWARCENWPNOIV
1 AOHINISTRATIQN CIRCLE
CHINA LAKE CA 93555-6001

SPACE & NAVAL WARFARE SYSTEMS
COMMAND CPl^W 178-1:)
2451 CRYSTAL DRIVE
ARLINGTON VA 22245-5200

SPACE f. NAVAL WARFARE SYSTEMS
CO^IMANO, EXECUTIVE DIRECTOR <PD13A)
ATTN: MR, CARL ANDRIAMI
2451 CRYSTAL Q^IVE
ARLINSTOf'j VA 22245-5200

COMMANDER, SPACE & NAVAL WARFARE
SYSTEMS COMMAND CCOOS 32)
2451 CRYSTAL D^IVE
ARLINGTON VA 22245-5200

COR, US ARMY MISSILE COF^WAND
RSIC, BLDG. 4484
AMSMI-RD-CS-R, DOCS
REDSTONE ARSEs^AL AL 35398-5241

ADVISORY SRQUP ON ELECTRON DEVICES
SUITE 500
1745 JEFFERSON OAVIS HIGHWAY
ARLINGTON VA 22202

REPORT COLLECTION, CIC-14
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 8 7545

AEDC LIBRARY
TECHNICAL REPORTS FILE
100 KINOEL DRIVE, SUITE C211
ARX'OLO Af=s TN 37339-3211

COMMANDER
USAI5C
ASHC-I«!D-L, BLDG 61801
FT HUACHUCA AZ 85613-5000

OL-3

yS DEPT OF TRANSPORTfiTION LIBRARY
FaiOA, M-457, RM 930
800 INOEPENOENCt AVE, SW
WASH OC 22591

AIR WEATHER SERVICE TECHNICAL
LIBRARY CFL 4414)
859 BUCHANAN STREET
SCOTT AF8 IL 62225-5118

AFIWC/MSO
102 HALL 8LVD,
SAM ANTaNI^? TX

STE 315
78243-7016

SOPTWARt ENGINEERING INSTITUTi
CARNEGIE MELLON UNIVERSITY
4500 FIFTH AVENUE
PITT58URGH PA 15213

NSA/CSS
Kl
FT MEAOe MD 20755-6000

DCHA0/WICHITA/5KEP
SUITE 3-34
401 N -MARKET STREET
WICHIia KS 6T202-2D95

PHILLIPS LABORATORY
PL/TL (LIBRARY)
5 WRIGHT STREET
HANSCOM AF9 HA 01731-3004

THE mJRf. CORPORATION
ATTN: E. LADURE
0460
202 BURLINGTON RD
BEDFORD «A 01732

OUSDCP)/OTSA/DUTO
ATTf4: PATRICK G. SULLIVAN,
400 ARWY NAVY DRIVE
SUITE 300
ARLINSTQ'.! VA 22202

JR.

DL-4

OR JAMES ALLEN
C0IS1PUTER SCIENCE OEPT/SLOG RH
UNIV OF ROCHESTER
WILSON BLVD
ROCHESTER MY 14627

732

OR YIGAL ARENS
USC-ISI
4676 ADMIRALTY
MARINA OEL RAY

WAY
CA 90292

OR RAY 8AR5ISS
THE INST. FOR LEARNING SCIENCES
NaRTHW=STERN UNIV
1890 MAPLE AVe
EVANSTQN IL 60201

DR MARIE A. SIENKQWSKI
SRI IiMTcR?JATIONAL
333 RAVENSMOOD AVE/EK 337
MENLO PRK CA 94025

OR PIERO P. 80NISS0NE
G£ CORPORATE RESEARCH £> DEVELOPMEMT
BLDG Kl-RH 5C-32A
P. 0. SOX 8
SCHENECTADY NY 12301

^1R. DAVID BROWN
^UTRE
EAGLE CENTER 3f SUITE B
O'FALLON IL 62269

OR MARK BURSTEI^J
35N SYSTEMS fi TECHNOLOGIES
10 MOULTON STREET
CAMSRinGF MA 02138

OR GREGG COLLINS
INST FOR LEARNING SCIENCES
1890 MAPLE AVE
EVAMSTON IL 60201

DR STcPHEi^ E. CROSS
SCH01L Q^ CQ^^PUTFR SCIENCE
CARNEGIE MELLON UMIVcRSI'^Y
oiTTSSlJRGH PA 15213

DL-,5

OR THOMAS CHEATHAM
HARVARD UhllVERSIir
OIV OF APPLIFO SCIENCE
AIKEN, RH 104
CAMBRIDGE WA 02138

MS. LAURA OAVIS
COOE 5510
NAVY CTR FOR APPLIEO RES IN
NAVAL RESEARCH LASORATORY
MASH OC 20375-5337

A I

OR THOi^AS L. DEAN
BROWN UNIVERSITY
OEPT OF COMPUTER SCIENCE
P.O. sax 1910
PROVIDENCE RI 02912

OR WESLEY CHU
COMPUTER SCIENCE DEPT
UNIV OE CALIFORNIA
LOS ANGELES CA 90024

OR PAUL R. COHEN
UNIV 0?= "lASSACHUSETTS
COINS HEOT
LEDERLE GRC
AHHERST MA 01003

OR JON OQYLE
LABORATORY FOR
MASS I^4STITUTE
545 TECH?>!3LQ(;Y

COMPUTER SCIENCE
OF TECHNOLOGY
SQUARE

CAM3RIDGE «IA 02139

OR. BRIAN 0RA33LE
AI APPLICATIONS INSTITUTE
UNIV QP EOTHQURGH/SO S. ^RIOGI
E0IN3URGH FHl LHN
UNITED KINGDOM

MR. SCOTT POUSE
ISX CORPORATION
4353 Pli.R¥ TERRACE DRIVE
WESTLAKE VILLAGE CA 91361

MR. STU DRAPER
MITRE
EAGLE CENTER 3, SUITE
Q»FALLON IL 62269

DR HMiK FOX
D5PT OF INOUSTRIAL cHG
UNIV 0= TORONTO
4 TA[)DLE CREEK ROAD
TORONTa, 3MTARIU, CANADA

MR. GAR¥ EDWASDS
ISX CO«?POR(\TION
2000 H .15TH ST, SUITE
ARLINGTON, VA 22201

1000

HR. PUSS FREW
GENERAL ELECTRIC
MDORES^aWM CnRPGRATE
8LDG ATK 145-2
MOORESTQWN NJ 08057

CEMTSR

OR MICHAEL FEHLING
STANFO'^0 UNIVERSITY
ENGIME5PIN5 ECO SYSTEMS
STANFORD CA 94305

RICK HAYES-ROTH
CIMFLEX-TEKNOWLEDGE
1810 EHBARCAOERO RO
PALO ALTO CA 94303

DR JIM HENDL5R
UNIV OF I^ACYLANO
OEPT OP COMPUTER SCIENCE
COLLEGF PA!?K MD 20742

MS. YOLANOA GIL
USC/TSI
4676 ADMIRALTY
MARINA DEL RAY

WAY
CA 90292

MR. Js^ORTQN A. HIRSCHBERG, DIRI
US ARHY RESEARCH LABORATORY
ATTN; A^SRL-CI-C8
ABERDEEN PROVING GROUND MD
21005-5066

CTOR

MR. MARK A. HOFFMAN
ISX CORPORATION
1165 NORTHCHASE PARKWAY
MARIETTA GA 30067

DL-7

OR RON LARStN
NAVAL CMD, CONTi^OL & QC£A
RESEARCH, DEVELOP, T5=ST £.
CODE 444
SAN DIEGO CA 92152-5000

i SUR CTR
EVAL DIV

OR CRAIG KM03LQCK
usc-rsi
4676 anMIRfiLTY
MARINA DEL RAY

WAY
CA 90292

MR. RICHARD LGW£ CAP-10)
SRA CQ»PORATia?«i
2300 15TH STREET NORTH
ARLINGTON VA 2220.1

nR). TEO C. KRAL
SSN SYSTEMS S. TECHNOLOGIES
4015 HANCOCK STREET, SUI^E
SAN OIEGO CA 92110

101

DR JOHN LOWRENCe
SRI INTERMATIONAL
ARTIFICIAL INTELLIGENCE
333 RAVENSWOOO AVE
MSNLO PARK CA 94025

CENTER

DR. ALAN MEYROHITZ
NAVAL RESEARCH LABORATDRY/CODE 5510
4555 OVERLOOK AVE
WASH OC 20 375

ALICE MULVEHILL
88N
10 MOULTON STREET
CAMBRIOGE ♦'A 02238

OR ROBERT MACGREGOR
USC/ISI
4676 ADMIRALTY WAY
NIARINA DEL REY CA 90292

DR DREW MCDERMOTT
YALE COMPUTER SCIENCE DEPT
P.O. BOX 2158, YALE STATION
51 PROPSPECT STREET
MEW HAVEN CT 06520

DL-3

OR DOUGLAS SMITH
KESTREL INSTTTUTE
3260 HILLVISW AV^
PALO ALTO CA 94304

OR, AUSTIN TATE
AI APPLICATIONS INSTITUTE
UNIV 05= EOINRUPGH
90 SOUTH SRIOSE
EOINBUl^GH EHl IHN - SCOTLAMD

DIRECTOR
DARPA/TTO
3701 N. FAIRFAX OR,, 7TH
ARLINGTON VA 22209-1714

FL

OR STfcfHEN F, SMITH
R03QTICS INSTITUTe/CMU
SCHENLEY PRK
PITTSaURGH PA 15213

OR. ABRAHAM WAKSHAN
AFOSR/NM
110 DUNCAN AVE
BOLLIMG AF3 DC

, SUITE E115
20331-OGOl

OR JONATHAN P. STILLMAN
GENERAL ELECT8IC CRD
1 RIVER RO, RM K1-5C31A
P. 0, aox 8
SCHENECTADY NY 12345

OR EDWARD C.T. 'WALKER
B8N SYSTEMS t TECHNOLOGIES
10 HOULTON STREET
CAHSRIOGE N!A 02138

OR aiLL SWARTOUT
USC/ISI
4676 ADMIRALTY
MARINA OEL RAY

WAY
CA 90292

SIO MIEDERHOLO
STANFORD UNIVERSITY
DEPT OF COMPUTER SCIENCE
433 MIARGAR5T JACKS HALL
STANFORD CA 94305-2140

DL-9

OR KATIA SYCARA/THE ROBOTICS
SCHOOL OF COMPUTER SCI^NCF
CARNEGIE MELLON UNIV
OOHE'?TY HALL R'" 3325
PITTSBURGH PA 15213

IMS'

DR OAVTD =. WILKINS
SRI TNTFRNATIONAL
ARTI-ICIAL INTELLIGENCE
333 RAVENSMOOD AVE
MENLO PARK Ca 94025

C ENT?R

DR. PATRICK WINSTON
«^ASS INSTITUTE Q^ TECH^^QLOGY
RH NE43-8.17
S45 TECHNOLOGY SQUARE
CAM3RIDGE ^A 02139

DR JOH*^ P. SCHILL
ARPA/ISO
3701 H FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DR STcVt ROTH
C£?^TeR FOR INTEGRATED MANUFACTURING
THE RQ90TICS INSTITUTE
CARNEGIE MFLLON UNIV
PITTSBURGH PA 1S213-3890

OR YOAV SHOHAH
STANFORD UNIVERSITY
COMPUTER SCIENCE OePT
STANFORD CA 94305

MR. MIKE ROUSE
AFSC
7800 HAMPTDM RD
NORFOLK VA 23511-6097

OR LARRY BIRNaAUH
NORTHWESTERN UNIVERSITY
ILS
1890 MAPLE AVE
EVANSTON IL 60201

MR. LEE ERMAN
CIMFLEX TECKNOMLEOGE
1810 EH3ARCAROER0 RO
PALO ALTO CA 94303

DL-10

DR MATTHEW L. GINSBERG
CIRL, 126i
UNIVERSITY OF OREGON
EUGENE 0!? 97403

MR IRA GQLD5TtlN
OPEN SM POUNDATIOH RESEARCH
ON? CA'^SRIDG? CENTER
CAH3=!IDGE »1A 02142

INST

MR JEF?= GRaSSHfiM* CO
NCCOSC ROTE DIV 44
5370 SILVERGATE AV5, ROOM
SAM OI=GC CA 92152-5146

1405

JAN GUMTHER
ASCENT TECHNOLOGY, INC.
64 SIDNEY ST, SUITE 33(3
CA^IBRIDGE MA 02139

OR LYNETTE HIRSCHHAN
MITRE CORPHRATIQN
202 BUi?LINGTDM RO
BEDFORD MA 01733

OR ADELE £. HOWE
COMPUTER SCIENCE OEPT
COLORAOO STATE UNiy£??SITY
FORT COLLINS CO 80523

OR LESLIE PACK KAELSLING
COMPUTER SCIENCE OEPT
BROWN UNIVERSITY
PROVIDENCE RI 02912

OR SUBBARAO KAMBHAMPATI
OEPT OP COMPUTER SCIENCE
ARIZONA STATE UNIVERSITY
TEMPF AZ 85287-5406

MR THOMAS E. KAZMIERCZAK
SRA CORPORATION
331 SALEM PLACE, SUITE 200
FAIRViey HEIGHTS IL 62208

DL-11

OR CARLA GOMES
ROME LA80RSTQRY/C3CA
525 SSnOKS RO
ROME Nf 13441-4505

OR MARK T. MAYSUSr
asSGCI^T?^ DIRECTOR 3F ftl CFMTER
AOVAHCEO IK'FQ SYSTEHS TECH G041
HIJRE C05?P, SURLINGTON RO, MS K-329
9E0F0Rn MA 01730

Si!R DONALD P, MCKAY
PARAMAX/UNISYS
P 0 BOX 51?
PAOLI PA 19301

OR KAR5N MYERS
AI CENTER
SRI IMTERNTIONAL
333 RAVEf^SWOOO
MENLO PASK CA 94025

OR MARTHA E POLLACK
OEPT 0'= CQ^^PUTER SCIENCE
UNIVERSITY OF PITTSBURGH
PITTSBURGH PA 15260

OR RAJ RED9Y
SCHOOL OF CO,^PUrER SCIENCE
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213

OR EOWINA RISSLANO
OEPT OF COMPUTER & INFO SCIENCE
UNIVERSITY OF MASSACHUSETTS
AMHERST i^A 01003

OR MANUELA VELOSQ
CARNEGIE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTSBURGH PA 15213-3391

OR DAN WELD
OEPT OF COMPUTER SCIENCE & ENG
MAIL STOP FR-35
UNIVERSITY OF WASHINGTON
SEATTLE WA 98195

OL-12

MR JOE ROBERTS

4301 H FAIRFAX DRIVE,
ARLINGTON VA 22203

SUITE 301

OR TOH GARVEY
ARPA/ISa
3701 UnRJH FAIRFAX ORIVt
flRLINSTON VA 22203-1714

MR JOHN H. ENTZHINGtR, J^^
ARPA/OIRO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DIRECTOR
ARPA/ISO
3701 MHSTH FAIRFAX DRIVE
ARLIN&TOIM VA 22203-1714

OFFICE OF THE CHIEF OF
ATTN: m PAUL QUINN
COOE 311
800 N. QUINCY STREET
ARLINGTON VA 22217

NAVAL RSCH

OR GREN STZIQNI
OEPT OF COMPUTER SCIENCE
UNIVERSITY OF WASHINGTON
SEATTLE WA 98195

OR GEOS?GE FERGUSON
UNIVERSITY OF ROCHESTER
COMPUTER STUDIES SLOG, RM
WILSON SLVO
ROCHESTER NY 14627

732

OR STEVE HANKS
DEPT Or COf^PUTER SCIENCE &
UNIVERSITY OF WASHINGTON
SEATTLE WA 93195

£NG*G

MR OON MORROW
BBN SYSTEMS S> TECHOLOGIES
101 MOONGLOy m
BELLEVTLLE XL 62221

DL-13

OR CHRISTOPHER OWENS
3flN SYSTEMS r. TECHNOLQGIFS
10 MOULTON ST
CAWiSf?10GF '^A Q2i.33

OR ADkAH DARMICHE
INFORMATION 11 DECISION SCIENCcS
ROCKWELL IMT'L SCIENCE CFNT5R
1049 CAMIhlO DOS RIGS
THQUSAHD OARS CA 91360

OR JAIHE CARBOMNEL
THE PQ«.OTICS INSTITUTE
CARNEGIE MELLOM UNIVERSITY
OOHERTY HALL, ROOM 3325
PITTSaURGH pa 15213

DR MaRMAr-4 SAOEH
THE ROBOTICS INSTITUTE
CARNEGIE MELLON UNIVERSITY
OOHERTY HALL, ROOf*! 3315
PITTSaURGH PA 15213

DR JAHtS CRAWFDRO
CIRL, 1269
UNIVERSITY OF OREGON
EUGENE OR 97403

DR TAIEB 2»UTI
UNIVERSITY OF PITTS3USGH
OEPT OF COMPUTER SCIENCE
OITTS8L1RGH PA 15260

DR MARIE DEJARDINS
SRI INTERMATIONAL
333 RAVENSWOOD AVENUE
MENLO PARK CA 94025

ROBERT J. KRUCHTEN
HQ AMC/SCA
203 M LOSEY ST, SUITE 1016
SCOTT AFB IL 62225-5223

OR. OAVE GUNNING
DARPA/ISQ
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

OL-14

nS. LEAH WONG
NCCOSC ROTE DIVISIION
53560 HULL STREET
SAN DIEGO Cfl 92152-5001

8. MCMIJRREY
NCCOSC ROTS>e OIVISTQN
CODE 47.1
53560 HULL STREET
SAN OIEGQ CA 95152-5001

QlUm ALBERT
LQGICQM ITG
2100 WASHINGTON BLVD
ARLINGTON VA 22204

0AVI9 HESS
SAIC ATLANTIC PROGRAf-^S
ONE ENTERPS?IS£ PARKWAY, SUITE 370
HAHPTON VA 23666

COL ROBERT PLE8ANEK
OARPA/ISO
3701 H FAIRFAX OR
ARLINGTON VA 22203

ADAM PEASE
TECKMO'-ILEDSE
1810 E!^8ARCA0£R0 R^
PALQ ALTO CA 94303

JI^l SHTOP
ISX CORPQRATiaN
4353 PARK TERRACE OR
WESTLAKE VILLAGE CA 91361

DR ROBER'^ NECHE5
DARPA/ISn
37 01 N FAIRFAX 03
ARLINGTON VA 2 2203

OAVID SWANSON
NRAD
5311:=? GATCHELL RD
44207 BLQG 600 RH 422C
SAN 01-GO CA 9 215 2

DL-15

DR STEPHEM WESTFOLO
KESTREL INSTITUTE
3260 HILLVIEW ftVE
PALO ALTO CA 94304

MAJ TOMMY LANCASTER
fJSTRANSC0«/TCJ5-SC
508 SCGTT
SCOTT AF8

DR
IL 62225-5357

JAHES APPLEGATE
MITRE
fAGLE CENTER
O'FALLON IL

3, SUITE
62 269

SOFTWARE ENGINEERING INSTITUTi
CARNEGIE ?1ELL0N UNIVERSITY
4500 FIFTH AVE
PITTSBURGH PA 15213

QIRNSA
R509
9800 SAVAGE RO
FT MEADc m 20755-5000

NSA/CSS

FT MEAOe MD 20755-6000

OC^^AO/WICHITA/GKEP
SUITE B-34
401 n MARKET ST
WICHITA KS 67202-2095

PHILLIPS LASORATORY
PL/TL CLIoRARY)
5 WRIGHT STREET
HANSCu*^ AF3 «^A 01731-3004

THE MITRE CORPORATiaN
ATTN: E LAOURE
D460
202 BURLINGTON RD
BEDFORD HA 01732

OL-16

OUSO CP)/OTSA/OUTO
ATTN: PATRICK G. SULLIVAN, JR
400 ARMY NAVY OR
SiJITE 300
ARLINSTON VA 22202

OU.S. GOVERNMENT PRINTING OFFICE: 1997-509-127-61005

OL-17

MISSION
OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence,
reliability science, electro-magnetic technology, photonics, signal
processing, and computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

