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1.0 INTRODUCTION 
The ARPA/Rome Laboratory Knowledge Based Planning and Scheduling Initiative (ARPI) 

is an Advanced Research Projects Agency (ARPA) and Rome Laboratory (RL) sponsored 
initiative to promote the development of new knowledge-based planning and scheduling 
technology for use by the military in support of operational planning and scheduling problems. 
Included in the program are research efforts aimed at developing new AI planning technologies 
in the areas of plan generation and replanning, schedule optimization, formal plan validation, 
decision-theoretic planning, heterogeneous database access, reasoning under uncertainty, and 
case-based reasoning. An important goal of the ARPI program is to foster the integration of these 
technologies, and transition successful applications of these technologies to operational 
prototypes that can effectively demonstrate their utility to the military. 

The Common Prototyping Environment Project was established in order to facilitate the 
communication of an understanding of military problems to the research community, provide 
sample data and problems, promote the sharing and reuse of software tools, and ultimately 
provide a platform for the experimental testing and integration of research products, so that 
successful technologies could be demonstrated solving operational problems (See Figure 1). The 
CPE team of BBN Systems and Technologies and ISX Corporation was tasked to provide a wide 
variety of infrastructure services for the initiative, including the collection and dissemination of 
domain data and reference materials, support software, knowledge representation tools, and 
services including the organization of annual ARPI workshops and quarterly meetings, assistance 
in developing integration experiments and software feasibility demonstrations (IFDs). They 
developed the CPE Testbed as a distributed platform for researchers to build and conduct 
collaborative experiments and demonstrations. 

T^phnology 
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Figure 1: The Common Prototyping Environment as a facilitator of technology transition. 

The general organization of the initiative is based on three tiers of efforts (See Figure 2).  Tier 1 
involves a number of independent research efforts, primarily at universities, that are oriented 

1 



toward developing fundamental knowledge-based reasoning capabilities which can be applied to 
operational planning and scheduling problems. Tier 2 efforts, taking place primarily at 
industrial research and development laboratories, are aimed at taking these fundamental 
technological capabilities and producing Technology Integration Experiments (TIEs) that are 
attempts to merge many of the individual developments in Tier 1 into coordinated systems that 
demonstrate the application of the Tier 1-developed technologies to an operational problem. Tier 
3 involves technology transfer of knowledge-based planning technology via the development of 
Integrated Feasibility Demonstrations (IFDs) and user-supported operational prototypes. Each 
Tier 2 laboratory was made responsible for the development and hardening of research at Tier 1 
into software that could be demonstrated in an operational domain. 
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Figure 2: The Tiers of the ARPI Community 
From an operational perspective, the ARPI focused for the first three or four years on the 
problem of MilitaryTransportation Planning^. The initial Tier 3 effort (for IFD-1) was the 
development of a transportation planning tool called DART (Dynamic Analysis and Replanning 
Tool). DART provided transportation planners with an ability to rapidly generate, evaluate and 
modify transportation plans. An initial version of DART was deployed to support transportation 
planning during the DESERT SHIELD/DESERT STORM operation. The second IFD 
demonstrated SOCAP, a plan generation system developed as an application of the SIPE-2 plan 

1. See (Burstein, 1991), BBN Technical Report 7495, for a brief description of the military transportation planning 
domain, and an early description of the CPE. 



generation system by SRI International. The third IFD demonstrated TARGET, a collaborative 
planning tool that provided an object-oriented plan database and interface, while providing an 
integrating platform for demonstrating some of the case-based reasoning, decision-theoretic 
analysis, constraint-based scheduling and knowledge/data representation techniques that had 
been developed. The fourth IFD demonstrated these and additional technologies applied in a tool 
for Air Campaign Planning (ACPT). 

In addition to the individual research and development efforts, the ARPI organized a number of 
issue and technology working groups. The issue working groups were concerned with the 
general management and scheduling of the Tier 1 and Tier 2 activities. The four working groups 
discussed 

• The Technology Roadmap 
• Knowledge Representation, Knowledge Acquisition and System Architecture Issues 
• The Common Prototyping Environment 
• IFDs and a "Visionary Demonstration" 

In order to guarantee that research developments are focused on operational needs, an issue 
working group was established to maintain a technology roadmap. The Technical Roadmap 
provides a general plan/schedule for the developments to occur on the Tier 1 efforts, and their 
impact on Tiers 2. An early version of this roadmap is shown in Figure 3. Overall, the Technical 
Roadmap was expected to: 

• identify specific technology developments to occur as part of the ARPI and included a 
schedule that anticipated when these technology developments would be available. 

• identify the operationally-relevant functional capabilities that each technology 
development would provide. 

• identify a series of Critical Experiments that would serve to evaluate the maturity of the 
individual technology developments. Specifically, it included a schedule for the IFDs, and 
the technical/functional capabilities that will be demonstrated at each IFD. 

The Knowledge Representation, Acquisition and System Architecture group was responsible for 
developing representational structures, requirements for domain knowledge, and architectures 
and functional description for planning system components that will promote collaborative work 
and knowledge sharing among members of the Pi's research community. This includes the 
development and dissemination of conventions and constraints on representational structures, 
reasoning processes, and the architectural infrastructure. Their primary product was a 
specification of the KRSL language for describing shared representations of content. 

The Feasibility and Visionary Demonstrations working group was responsible for characterizing 
a future system for Joint Operations Planning that reflected the application of new technologies 
developed by DARPA, Rome Laboratory and other organizations. The specific focus was on 
technologies to be developed as part of the ARPI. The Visionary Demonstration that was 
ultimately developed was in the form hypermedia presentation depicting a technology-supported 
Joint Operational Planning scenario. Specific aspects of the Visionary Demonstration were 
implemented in the IFDs. 
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Figure 3: ARPI Technology Roadmap (as of 1991) 

The Common Prototyping Environment (CPE) working group was responsible for specifying 
requirements for the Common Prototyping Environment such that it would provide both 
developmental support and a testbed for accumulating research results and assessing research 
progress. 

2.0 THE COMMON PROTOTYPING ENVIRONMENT 
The Initiative involves dozens of researchers at many sites, each working on basic or applied 

research with a view to supporting large scale, spatially- and functionally-distributed planning 
and scheduling systems for the deployment and employment of military resources. The 
researchers in these groups are working on different aspects of the overall problem, and in many 



cases, have different goals and criteria for the success of their research programs. For example, 
while one group was working on the adaptation of existing generative planning technology to a 
near-term demonstration of automated planning in the transportation domain, another was 
attempting to formalize concepts such as "cooperation" between automated agents in a 
distributed planning system. At the same time, a third group was developing scheduling 
algorithms that are tractable at the large scales inherent in the military transportation planning 
problems routinely faced by the Joint Staff. 

In support of the initiative, a Common Prototyping Environment (CPE) was envisioned to 
alleviate the tremendous burden all of these researchers would otherwise bear in individually 
acquiring data and knowledge of the domain, and in coordinating the development of their 
software systems. The general purpose of the common prototyping environment (CPE) was to 
encourage convergence between all of the researchers taking part in the ARPI. The ultimate goal 
was a complete, operational transportation planning system to which all participants of the ARPI 
contributed technology. Along the way to this ultimate goal, the CPE would serve to support 
cooperative software development, and provide an environment within which all participants can 
run experiments and derive scientific results on the effectiveness of their individual technologies. 

BBN Systems and Technologies and ISX Corporation were teamed to provide the CPE, 
supporting the research community by providing access to realistic military planning problems, 
while reducing each individual project's overhead by providing a suite of sharable software tools 
that would foster the integration, evaluation and transitioning of the planning and scheduling 
technologies developed. The CPE development initially supported the community through the 
CPE Repository, an "electronic clearinghouse" for software (sources, executables, and 
sometimes both) and representative data and knowledge, in both textual and electronic forms, 
about the military transportation planning process. The CPE Testbed was developed in 1993-4, 
as a distributed environment for continuing the series of Technology Integration Experiments 
(TIEs). The CPE Testbed, consists of a suite of software tools that enable systems 
implementing specific technological techniques to be experimentally integrated in a distributed 
knowledge-based communications environment. 

The initially stated goals for the CPE were: 

• To provide software, data and domain representations as communal resources on a 
standard hardware platform for research and development in the domain of military 
transportation planning and scheduling. 

• To form a repository for examples, test cases, open problems and fruitful approaches to 
solving those problems, or supporting technologies that might be used in developing such 
solutions. 

• To provide an environment in which solutions to similar problems can be compared and 
contrasted on an even footing. 

• To facilitate transfer of data and problems to the research community and potential 
solutions to operational technology developers. 

• To avoid unnecessary "reinventing of wheels" for interfaces, data access tools, basic 
domain representations. 

From the outset, BBN and ISX sought to fulfill these objectives in a number of different ways. 
ISX took primary responsibility for the collection and dissemination of domain data and 
information, to be provided in the form of "Domain Packages", the first being for the joint 
military transportation planning domain. At the same time BBN collected and organized a set of 
primarily LISP-based software tools to form the core of an "ARPI community standard" 
hardware/software environment.   BBN and ISX worked together, with input from the ARPI 



community, to develop a Knowledge Representation Specification Language (KRSL) that could 
be used as a common language for representing domain information and communicating between 
the different Al-based software technologies developed under the initiative. KRSL was built on 
top of the LOOM knowledge representation system from USC Information Sciences Institute. 

Throughout the course of the initiative, the primary means of disseminating the tools and data 
collected for the CPE was through the CPE Repository, an internet-accessible (by FTP) 
repository housed at Rome Laboratory. Later, as described below, a distributed CPE Testbed 
was also developed, enabling ARPI participants to work with software systems running at remote 
sites, and develop experiments and demonstrations where their technologies were used in 
conjunction with those remote systems. 

The CPE Testbed grew out of experiences in collaborative projects from the first several years of 
the Planning Initiative. These included our participation in the cooperative development of 
software demonstrations called Integrated Feasibility Demonstrations (IFDs) (see 
accompanying article) and smaller-scale. Technology Integration Experiments (TIEs) where 
different research and development teams explored the issues involved in successfully 
combining their research software and techniques. 

The CPE Testbed was first released in May of 1993. It capitalized on all of the TIEs conducted 
during 1992, bringing the software used in all of those TIEs into a common distributed 
environment and using a single knowledge representation language for information exchange 
(KRSL). The CPE Testbed was also designed to support experiments in which components were 
combined in novel ways, or directly compared doing similar functions. To address the issue of 
experimentation, the testbed included a suite of tools for collecting and analyzing data about the 
performance of the modules used in solving planning problems. The CPE Testbed ultimately 
included technology components developed in more than ten different R&D laboratories 
sponsored under the initiative. These software systems all provide services that can be utilized in 
experiments based on solving military planning problems, even when the software systems are 
physically hosted at sites dispersed throughout the country. 

The CPE Repository 
As originally envisioned, the Common Prototyping Environment was to be built up as a 

layered set of reusable software tools, some to be purchased commercially, others to be provided 
through the CPE Repository as contributions from ARPI participants. A number of software 
components used in the DART system were provided for use by other initiative members as part 
of the CPE. Domain Package information, especially the useful data that had been collected 
about the transportation planning domain. This information was "cleaned up" and provided in a 
form that could be more easily incorporated into research projects as background for 
demonstrations and research development efforts alike. Overall, The layers of the environment 
were as follows: 

Planning Support tools: 
• Temporal Reasoning Systems 
• Uncertainty Maintenance Systems 
• Case indexing and Retrieval Mechanisms 
• Generative Planning Tools 

Modeling Support 
• Scenario Description and Aggregate Force Model Editing Tools 



Simulation and Analysis Tools 
• Domain Simulations and associated graphics 
• Transportation Analysis Tools 
• Decision Support Tools 

Domain Information 
• Sample Domain Data in ASCII and RDBMS formats 
• Object descriptions in LOOM and KRSL 
• Sample problems, examples, and other supporting textual materials 

Prototyping Environment Support 
• System Performance Metering Tools 
• Reusable CLIM-based Interface tools provided by BBN and others. 

Baseline System (Mostly COTS) 
• Knowledge Representation tools (LOOM, KRSL) 
• SQL DBMS (Oracle) and LISP-SQL interface 
• Common Lisp Interface Manager (CLIM) for developing GUIs. 

Hardware/Software Substrate (COTS) 
• X Windows 
• Common Lisp, other programming languages as needed. 
• Ethernet, TCP/IP 
• UNIX OS 
• Sun Workstations 

Throughout the course of the initiative, demonstration systems from each ARPI contractor, 
technology component systems (such as temporal reasoners, decision support tools, planners, 
schedulers), and domain-specific software systems developed for IFDs and TIEs were added to 
the repository. ISX also collected an extremely large amount of textual materials and databases 
that were used in planning and executing the various IFDs, and added this information to the 
repository. Where appropriate, KRSL forms of the data were also made available. The 
Electronic Card Catalog for the ARPI CPE Repository contains well over 300 items at the 
present time. 

The CPE Testbed 
For the first IFDs and TIEs, ARPI contractors developed and used largely domain- 

independent AI tools to address military planning problems. After the initial round of TIEs was 
completed, all of the technology components involved in the TIEs were integrated into the CPE 
Testbed, a single environment based on the interoperability model used in the "Infrastructure 
TIE", which explored the use of KQML, the Knowledge Query Meta Language, as a message 
passing model for distributed knowledge-based communications, and introduced Paramax' (now 
Loral) LIM/IDI mechanism for connecting KRSL/LOOM representations to SQL databases. The 
CPE Testbed was designed to: 

• Provide an infrastructure for future TIEs that supported experimental metrics and their 
evaluation and uniform access to data and scenarios for the transportation planning 
domain. 



• Establish a common representational basis for all remote communications between 
planning and scheduling systems. 

• Facilitate the transition of technologies into IFDs and operational prototypes. 
• Enable the exploration of coordination and control issues in a heterogeneous system for 

replanning and rescheduling. 
CPE Testbed Release 1.0 was developed in an intense five month effort during the spring of 
1993 involving all of the participants in TIEs. During that time, all of the ad-hoc 
communications that has occurred in the TIEs were transformed into consistent KRSL 
representations. CPE Release 2.0, which included a number of additional modules and improved 
experimental analysis support was released in the February of 1994. 

The CPE Testbed was designed to run experiments that tested the speed and effectiveness of new 
technologies, both singly and in TIE-like combinations. To run an experiment in the CPE, one 
first chooses sets of modules that will run in each of a number of 'trials'. One defines the data to 
be collected using a mechanism for adding 'alligator clips' or meters at various points in the 
computations of modules, and in their communications with other modules. 

The CPE successfully demonstrated the potential for increased collaboration and sharing among 
a large set of research and development projects. It served as a validation of the concept and 
methodology for promoting more effective software and information sharing, moved a large 
community of researchers toward mechanisms for validating the products of their work both in 
terms of increased effort to demonstrate interoperability and increased attention to the 
establishment of experimental metrics for progress. The CPE Testbed facilitated a number of 
experiments in which similar technologies were compared, and compatible technologies were 
integrated to exhibit improved planning capabilities. The CPE Testbed is described in detail in 
the paper in Appendix B, and in the CPE Testbed Users Manual and Reference Guide. 



3.0 A BRIEF HISTORY OF THE CPE PROJECT 

In the Beginning - DART 
To a large extent planning for the ARPI program began with a DARPA (now ARPA)- 

sponsored planning workshop in December of 1989. At this workshop issues relating to the 
potential application of AI planning technology to transportation scheduling and planning were 
examined. One result of this workshop was the identification of fundamental research issues that 
needed to be addressed in order to promote the application of AI planning technology to 
operational crises action planning problems. As a result of the workshop, a BAA was released in 
April 1990. This BAA solicited Tier 1 and Tier 2 proposals. 

The ARPI program was initiated in January of 1990. Work by BBN, ISX, and Ascent 
Technologies on the DART demonstration system began shortly thereafter, along with other 
scheduling technology demonstrations by MITRE (MDART) and CMU (CDART). The 
objective of the DART project was to provide a quick demonstration of the operational impact of 
knowledge-based planning and scheduling technology on transportation planning at 
USTRANSCOM (US Transportation Command). Installation of basic support software at 
USTRANSCOM was completed in May 1990. Demonstrations of DART's operational concepts 
were held July 25 and August 3, and initial installation of DART software at USTRANSCOM J5 
occurred August 13-17. Shortly after that the DART project was redirected to support Desert 
Shield. After a period of intense development that fall and winter, DART was successfully used 
to assist transportation planning for portions of this operation. The DART workstation 
environment which was installed at USTRANSCOM at that time was credited with reducing 
routine plan analysis from 3 days to 1 day. 

In addition to providing an early standard-setting demonstration of the state of the art in planning 
technology, the DART effort set standards and expectations for the application of knowledge- 
based planning and scheduling technology, promoting necessary changes in the operational 
domain for introducing new technologies, and exploring the impact and effectiveness of 
strategies for focusing related research projects and transitioning new technology to operational 
domains. 

During the November and December of 1990, BBN also teamed with CMU to turn the core of 
CMU's CDART demonstration into a research tool called the Prototype Feasibility Estimator 
(PFE). PEE was a LISP-based transportation simulation model that produced results very similar 
to the RAPIDSIM model used in the deployed DART system. PFE later served as an important 
domain model for much of the constraint-based scheduling work done under the auspices of the 
initiative. PFE is described in detail in (Burstein & Kosy, 1991) 

First Year Activities - ARPI Kickoff, CPE Repository and IFD-2 
The kickoff meeting for the ARPI, organized by BBN and ISX, occurred in February 1991. 

Initial plans for the Common Prototyping Environment were distributed and discussed. During 
the meeting, several working groups were established to support management and coordination 
of the Tier 1 research and to plan the sequence of IFDs. (Tiers 2, 3). After several meetings a set 
of issue working group reports were generated and compiled into a single informal document. 
This document was distributed in October 1991. In November 1991 a workshop was held for all 
the ARPI participants. The objective of this workshop was to review and revise the issue 
working group reports. In addition, a set of technology working groups were established. 



Throughout 1991, BBN and ISX supported several threads of activity. We collected 
transportation planning materials into the first "Domain Package", a set of textual documents, 
databases, and problem characteristics for a Joint military operation that was to be the model for 
IFD-2. We began to populate the CPE Repository, an on-line archive of reusable software 
components, demonstration systems, and domain information and data. We developed, with 
support from many initiative researchers, a specification and first implementation of KRSL, a 
knowledge representation language "interlingua" to be used to as the description language for 
military concepts and data to be shared among the researchers. (See The KRSL Reference 
Manual by N. Lehrer on the ARPI Web site.) 
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A Planner's Aid that retrieves pre-packaged 
forces from a Force Module Library and 
supports edit ing of them for the current 
operational environment.. 

(Operational Force TPFDP) 

Rules from AFG u.ied to add CS, CSS 
and sustainment requirements to the 
developing TPFDD, while preserving the 
justifications for each support unit 
introduced. 

Component 
Modules of IFD-2 

Figure 4: Flow of plan development and analysis in the modules of IFD-2. 

One of the primary activities organizing much of the CPE-related effort during 1991, was 
working with SRI to produce IFD-2, the first IFD highlighting the potential impact of using 
generative planning techniques for military transportation planning. IFD-2 featured SOCAP, an 
application of the SIPE-2 generative planning system which was designed to help planners by 
automatically expanding and interleaving the activities necessary to develop a plan, while 
maintaining the (e.g. temporal) dependencies, that would be critical to an operation's success. 
SOCAP produced, with user input, a set of alternative high-level operations plans that could be 
expanded to a full transportation plan to test for feasibility of a proposed deployment. BBN and 
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ISX worked closely with SRI during the year, both collecting and providing domain information, 
and also developing the Force Module Expanded Requirements Generator (FMERG), a 
prototype force expansion tool that took SOCAP output (in the form of a list of major force units 
to be deployed) and produced a detailed TPFDD (for Time Phased Force Deployment Data), the 
military database corresponding to a transportation plan. FMERG also used a set of rules for 
augmenting the TPFDD with records describing the sustainment and resupply materials that 
would naturally flow to the theater following the initial deployment of forces. The TPFDDs 
produced were then analyzed for transportation feasibility using DART and PEE as part of the 
IFD-2 demonstration. The final demonstration took place at CENTCOM in January of 1992. 
Figure 4 shows the flow of control between modules for IFD-2. Appendix A contains a brief 
description of SOCAP and the the Force Module Expanded Requirements Generator, FMERG, 
as developed for IFD-2. 

During the course of 1991, BBN and ISX, as administrators of the CPE Repository, also worked 
to collect and disseminate to initiative members the detailed textual materials, databases, and 
problem descriptions that were used as the basis for IFD-2. These materials, collected primarily 
from the Armed Forces Staff College, with much assistance from MITRE, formed the initial 
basis for the first "Domain Package" deposited in the CPE Repository. 

Second Year Activities - Technology Integration Experiments 
After the successful demonstration of IFD-2 at CENTCOM in February of 1992, BBN and 

ISX introduced the notion of Technology Integration Experiments as an additional means of 
encouraging initiative contractors to develop demonstrations that would test the potential power 
of integrating multiple planning and scheduling technologies together. The main emphasis in the 
TIEs was to promote the model where several contractors with compatible technologies would 
explore how to most effectively integrate their capabilities to produce a better planning system, 
by designing experiments which had established goals, and a 'final exam' where specific 
performance improvements, be they qualitative or quantitative, were anticipated and measured. 
The Common Prototyping Environment was ultimately developed to support such TIEs, as well 
as demonstration and testing of technologies; facilitate experimental system integration and 
evaluation activities; and capture and re-use databases, knowledge bases, software modules, and 
test cases. 

BBN, in conjunction with ARPA and Rome Laboratory and the participating contractors, helped 
plan a series of Technology Integration Experiments to demonstrate interoperability between 
emerging initiative technologies, collect data on trade-offs between technical alternatives, and 
validate various technologies for potential use in an IFD. The series of TIE's, taken as a whole, 
also served to demonstrate a majority of the Initiative-contributed elements of infrastructure and 
component technology to be introduced into the Common Prototyping Environment over the 
next 18 months. 

The TIEs were explicitly experimental: the intent was to systematically examine alternative 
methods of combining and utilizing a variety of technical components in radically new 
configurations. For example, a number of methods for exploiting temporal reasoning capabilities 
in the process of Course of Action Generation (COAG) were examined. Each TIE included a 
Final Exam in which the performance of the technical components involved were measured 
against some baseline criteria. The process of conducting TIE Final Exams also served to 
identify and prepare component technologies for insertion into IFD-3 or operational systems, as 
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well as benchmark performance on typical planning and scheduling problems. Table 1 lists the 
initial set of ties. 

1. Infrastructure TIE (BBN, ISX, Unisys) demonstrated the knowledge services and 
distributed, knowledge-based communications elements of the envisioned distributed 
CPE planning environment. 

2. Case Based Reasoning - Generative Planning TIE (GE-CRD, SRI) applied a CBR 
system developed at GE to select force units for roles in plan operators of military 
operations plans built by a generative planner. 

3. Constraint Based Scheduling - Deployment Planning TIE (CMU, BBN, SRI) 
demonstrated constraint-based scheduling system in a heterogeneous military planning 
system. TIE #3A used deployment constraints to do the final stages of deployment 
plan development. TIE #3B used the scheduler for preliminary deployment plan 
analysis during the initial COA development, as a means of filtering the options based 
on transportation resource constraints. 

4. Temporal Reasoning - Generative Planning TIE (GE-CRD, Honeywell, SRI) used 
a temporal reasoning system (Tachyon or TMM) during generative planning to 
propagate the temporal constraints in a developing plan. This arrangement enabled 
some comparative experiments with Tachyon and TMM. 

5. Temporal Reasoning - Case-based Force Expansion (GE-CRD, BBN) applied 
temporal constraints during case-based force expansion, to ensure that units that would 
be available at the time they were needed. 

6. Case-based reasoning - Force Expansion (GE-CRD, BBN, MITRE) used CBR 
techniques to refine and enumerate the elements of forces selected during high-level 
planning.  

Table 1: The Initial TIEs 

There were four general categories of TIEs: 

1) Infrastructure development: TIEs in this category were intended to instantiate and 
evaluate major components of the shared CPE infrastructure needed for integrating 
and/or supporting planning and scheduling technical components into a cohesive system 
environment. (TIE#1) 

2) Component enhancement and integration experiments: TIEs in this category were 
intended to investigate the value of and approaches toward enhancing technical 
components by composing them with others through data level interactions at various 
levels of granularity. Of particular importance was the determination of appropriate 
levels of integration and standardization and the identification and reuse of shared 
subcomponents. (TIEs # 2, 3, 5, 6) 

3) Tool utility experiments: TIEs in this category evaluate the utility of general purpose 
tools which may contribute to one or more components. (TIEs #4, 5) 

4) System integration and evaluation experiments: TIEs in this category were for 
purposes of evaluating whole system functionality, performance, and concepts of 
operation. In effect, IFDs represent much extended TIEs in this category. However, it 
was hoped that smaller scale integration experiments of this kind would spur knowledge 
acquisition and system design activities. (None shown.) 
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TIE#1 Demonstration (Nov. 1992) 
SOCAP 
Course of <.^ 
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Force Module Expansion 

DART/PFE 

Deployment Analysis 
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Server 

TPFDD Data 
Force Module Library 
Location Data 

Figure 5: Block Diagram of Infrastructure TIE. 

Throughout most of 1992, BBN and ISX worked with Paramax (once a unit of Unisys, now a 
unit of Loral) on the Infrastructure TIE, which demonstrated most of the architectural concepts 
that were ultimately used in the CPE Testbed. The goals of the Infrastructure TIE were; to 
provide and test infrastructure components to support a common knowledge base and 
intercomponent communication; to integrate KRSL, a knowledge-based distributed 
communications mechanism (KQML) and Paramax' Intelligent Database Interface (IDI) into a 
'knowledge server', an agent in a distributed system that would answer knowledge-based queries 
for information from an external SQL database or from a LOOM knowledge base, and, finally; 
to create a knowledge level interprocess communication infrastructure for the CPE. 

The Infrastructure TIE was built using most of the components of IFD-2, but replacing the file- 
based inter-process communications with KQML messages, and for the first time introducing 
KRSL syntax for all of the message content. Figure 5 depicts the Infrastructure TIE 
configuration. Intermediate representational products were stored in the 'knowledge server' by 
assertional statements in KRSL, and information needed by subsequent processes was retrieved 
from the knowledge server using KRSL queries. Knowledge server queries for data stored in the 
Oracle database were handled within the knowledge server using Paramax' LIM (LOOM 
Interface Module) and IDI (Intelligent Database Interface) systems, the former translating the 
LOOM query into an IDI format, and the latter generating the SQL query, and returning the data, 
which was then translated back into LOOM by LIM. The KRSL Kernel, written by Nancy 
Lehrer at ISX, handled the translation of KRSL queries into the corresponding LOOM query. 
Figure 6 shows this architecture of the knowledge server, as it was later instantiated in the CPE 
Testbed. 
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Figure 6: Architecture of tlie CPE Knowledge Server and communications mechanisms. 

Third Year Activities - The Common Prototyping Environment Testbed 
Immediately after the TIE was completed in November of 1992, work began on the CPE 

Testbed, which was to use many of the concepts from the Infrastructure TIE, while generalizing 
some of the translation and communications mechanisms. By May of 1993, when CPE Release 
1.0 was demonstrated at Rome Laboratory, all of the systems that had participated in TIEs the 
prior year were running within the distributed CPE Testbed, using KRSL as the interlingua 
between modules. The various TIEs that had occurred the previous year were used as the basis 
for defining the functional relationships possible between the various software components that 
had been demonstrated. Figure 7 shows how these relationships spanned the planning functions 
of Course of Action Generation, Deployment Plan expansion and Scheduling and Plan Analysis. 
The temporal constraint managers, for example, served as plan analysis tools, providing 
feedback on the temporal feasibility of plans, while also propagating the temporal constraints in 
feasible plans to give additional guidance to the generative planner SOCAP. 
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Figure 7: Relationships between TIEs in a functional architecture. 

During the intervening months, several important things occurred. First, KQML, which only 
worked in a LISP environment at the time, was replaced by CRONUS, a more robust multi- 
platform, multi-language distributed interprocess communications mechanism. This permitted C 
applications like GE's Tachyon Temporal Reasoner to run in the same distributed environment. 
CRONUS also provided the functionality needed to remotely start and stop modules that could 
be running on any machine within the same "CPE Configuration", which might include remote 
sights anywhere on the Internet, such as SRI in Palo Alto, ISX in Los Angeles, Rome Laboratory 
in upstate New York, BBN in Cambridge, or CMU in Pittsburgh. A number of speed 
improvements also occurred, by using CRONUS and some data encoding techniques for list 
structures, we achieved an order of magnitude speedup in the time required to transmit large plan 
objects. 
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Figure 8: Communications Paths Defined between Module Types in CPE Testbed 

The second major activity was defining the KRSL representations for the interprocess 
communications between major modules, including SOCAP, Tachyon, TMM, FMERG, PFE, 
and the Knowledge Server. The beginnings of a Shared Domain Ontology (SDO) were formed 
as representations of all of the concepts for objects reasoned over by the various modules were 
represented in KRSL within the Knowledge Server. (See Figure 6). These interfaces were 
defined based on the functionality provided by the module, so that several modules serving the 
same function (e.g., TMM and Tachyon, both temporal constraint managers) would use the same 
KRSL interface. Modules types, corresponding to the fuctionality provided by the various 
systems, were established, and standard message patterns were defined for each type. These 
communications were defined for all of the paths between module types shown in Figure 8. The 
messages supported by each module type are shown in Figure 9. When running experiments, one 
specified which software module of each relevant type was to be activated, so that comparison 
experiments between different technologies that could provide the same functionality were easily 
defined. 
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Current System 
Familiar name SERVER ABSTRACT TYPE(s) NICKNAME PRIMARY OPERATIONS 

Knowledge-Server 
TARGET 

KNOWLEDGE-SERVER 
PLAN-SERVER 

KS 
TARGET 

QUERY, ASSERT, DEFINE 
QUERY 

SOCAP PLAN-GENERATOR PLANNER CREATE 

FIWERG DEPLOYMENT-PLAN-EXPANDER EXPANDER EXPAND 

TACHYON 
TMM 

TEMPORAL-REASONER TR ANALYZE 

CAPS FORCE-SELECTOR FS SUGGEST-BINDING 

PFE 
KTS 
DITOPS 

DEPLOYMENT-SIMULATOR 

" plus CAPACITY- ANALYZER 

SIMULATOR SIMULATE 

ANALYZE 

ALL KNET MODULES should respond 
to these instrumentation operations: 

CLIENTS:                     Description 
CPE Interface             Experiment and KNET Definition/Status Interface 
FORMAT                      Force Module KA tool: Uses FM Library accessed 

SYNCHRONIZE-EXPERIMENT 
GET-EXPERIMENT-DATA 
INITIALIZE-SERVER 

thru Knowledge Server 

Figure 9: Operations defined for Module Types (as of Release 2.0) 

A major portion of this effort was in defining the KRSL equivalents for plans, as produced by 
SIPE/SOCAP in a more generic form so that other planners might be expected to generate 
similar plans. Figure 10 shows the representation of a typical node in a SOCAP-produced plan, 
as represented in KRSL for transmission to the Knowledge Server. Figure 11 shows the KRSL 
content of messages between the generative planner SOCAP and the Case-based force selection 
module CAFS. 

(:the plan :name p6120 
:documentation "a node in a plan" 
:method DETER-THREAT-BY-SHOW-OF-FORCE ;; operator 
:parameters ((opposing-force :VALUE (:the FORCE :name 1ST-ARMBDE)) 

(situation :VALUE (:tlie ENEIVIY-COA :name ENEMY-COA-1))) 
:goal (DETER-IMMEDIATE-THREAT 1ST-ARMBDE ENEIVIY-COA-1 21) 
:in-servJce-of (PROTECTED-TI ENEMY-COA-1) 
:effects (DETER-IMMEDIATE-THREAT 1ST-ARIV1BDE ENEMY-COA-1 21) 
:let (CDAY 23) ;; latest end time 
:expansions (:the PLAN-EXPANSION :name EXP101 

NODES (lvalues (:the plan :name P6390) 
(:theplan:nameP6391) 
(:theplan:nameP63192)) 

GRAPH (lvalues 
(INTERVAL-BEFORE P6390 P6391) 
(INTERVAL-BEFORE P6391 P6392))))) 

Figure 10: A KRSL Plan Node 
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PLANNER Sends: 

(knet:SEND :force-selector -.suggest-binding 
:for-arg 'FRIENDLY-UNIT 
:in-plan 

(:THEPLAN:NAMEP6158 
:METH0DDETER-B0RDER-1NCURSI0N-BY-GR0UND-PATR0L 
PARAMETERS 

((FRIENDLY-UNIT TYPE-RESTRICTION ARMY) 
(ENEMY-UNIT :VALUE (:THE ARMORED ;NAME ALG-1STARMBDE)) 
(COA :VALUE (:THE ENEMY-COA :NAME ENEMY-COA-1)) 
(ROUTE lvalue (:the ROUTE :name ROUTE-1)))) 

iGONSTRAINTS 
(:and (can-traverse (friendly-unit p6158) (route p6158)) 

(greaterp (firepower (friendly-unit p6158)) 
(firepower (enemy-unit p6158)))) 

) 

Force Selector returns a list of possibilities like: 

(PARAMETER-BINDING P6390 'FRIENDLY-ARMY (:the 1MB :name IMB-1889) 

'"COMPLETE-MATCH*) 

Figure 11: Communications between COAG Planner and Force Selector 

This facilitated comparative experiments, such as a direct comparison of TMM and Tachyon 
supporting SOCAP as it built the same plan structures. Figure 12 shows the modules of the CPE 
Testbed involved in such an experiment. From the CPE Experiment Control User Interface, two 
trials are set up, one in which SOCAP is called to build a plan using TMM for temporal 
reasoning support, the other using Tachyon. Each trial is metered such that the timings of the 
various processes are collected (SOCAP calls the temporal reasoner twice during each level of 
plan expansion). The results are collected from each module at the end of each trial, and sorted 
to form tables of data that can be analyzed using the CLASP statistical analysis system (provided 
by UMASS). 

Figure 13 shows the CPE Experiment Control interface from which such experiments were 
defined. The displayed menus cover defining experiments and trials, collecting data for analysis 
by CLASP, means of browsing the knowledge server, defining and managing the software 
modules within the distributed CPE network configuration, and other miscellaneous commands. 
See the CPE Users Manual, Reference Guide and Installation Guide for complete descriptions of 
all of the commands shown. 
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Figure 13: CPE Testbed Experimenters Interface (Release 2.0) 
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CPE Testbed Release 1.0 was demonstrated at the end of May, 1993 at Rome Laboratory. It 
involved modules running at Rome Laboratory, BBN Cambridge, Paramax in Philadelphia and 
ISX in Atlanta. The CPE was first presented to the ARPI community at a quarterly meeting that 
took place during the AAAI conference in Washington DC during July of 1993. 

CPE Testbed Release 2.0 

After the first release of the CPE Testbed, work began on a second release that addressed 
some of the outstanding issues relating primarily to the use of the CPE Testbed by new research 
groups. The issues included: 

• Ease of installation of the CPE Testbed at a new sight, and its configuration for use with 
other CPE Testbed sites. 

• The reduction in size of the installed systems, and the development of a 'CPE Lite' 
installation. 

• Generalized mechanisms for "wrapping" modules with pre-defined KRSL translators. 
The development of translators for LISP/CLOS, and for modules written in C++. 

• Mechanisms for asynchronous communications and multi-casting. 
• Improved mechanisms for defining and controlling experiment meters (data collectors) at 

arbitrary points within the source code for a module, and better means of controlling 
those meters during experiments. 

• Improvements to the meter data collection system, and the automatic generation of 
CLASP compatible data files so that the data could be analyzed using simple commands 
from the CPE and CLASP interfaces. 

• The generation of a complete set of installation, reference and user manual documents. 
This work continued throughout the remainder of 1993, and CPE Testbed 2.0 was formally 
released at the ARPI workshop that occurred in February of 1994. 

As an example of the new capabilities of the CPE Testbed, a demonstration was given that 
included a 'Plan Server', represented as a Knowledge Server module type. This plan server was 
built by defining a module that could access the TARGET object database and answer requests 
for plans that had been built using the TARGET Plan Editor interface, using a query identical to 
one that would retrieve a plan from the original Knowledge Server. The TARGET Plan Server 
module was written in C++ to access the C++ based Objectivity TM OODB. For the 
demonstration, the FMERG Force Expansion module was called on to expand a plan. This 
caused an asynchronous, multi-cast request to go out to all Knowledge Servers that might 
contain the high-level major forces plan named. Since both the original Knowledge Server and 
the new Plan Server were active during the experiment, both would be available to answer the 
query, but only the Plan Server had the plan named. It's response, in KRSL, looked syntactically 
identical to one that might have come from the Knowledge Server. Figure 14 shows this 
demonstration. 
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Figure 14: CPE 2.0 Demonstration using TARGET Plan Server 

In another demonstration of the new capabiHties of the CPE, an experiment was defined in which 
a whole set of trials were defined at once, by building the cross-product of sets of alternative 
modules, and sets of alternative inputs. The CPE Testbed Experimenter's interface took care of 
the process of correctly initializing each trial, and organizing the resulting metering data into 
tables that could be used for a scatterplot or regression analyses. Figure 15 shows the structure 
of this experiment and gives a sense of the interfaces involved. 

The 1994 ARPI Workshop 

One of the responsibilities of the CPE team was the organization of the annual ARPI 
Workshops, including participation in most of the working groups that met at quarterly meetings 
and especially at the annual meetings in which all ARPI contractors participated. The 1994 
ARPI Workshop, which took place in Tuscon, Arizona in February of 1994, was organized 
somewhat differently in that it had three parallel technical paper sessions in addition to several 
working groups. 

Mark Burstein of BBN served as the program chair for the paper tracks and edited the 500+ page 
proceedings of that workshop, distributed by Morgan Kaufman Publishers. He also served as co- 
chair, with Prof. Drew McDermott, of the working group on Mixed-Initiative Planning, which 
had met first at Yale University at the preceding ARPI quarterly in November of 1993. The 
report of the Mixed-Initiative Planning working group was published in the 1994 ARPI 
Workshop Proceedings (Burstein, 1994), and an edited version (Burstein & McDermott, 1996) 
appeared as a chapter in the hookCognitive Technology (Gorayska and Mey, 1996). 
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CPE Command> Make Trial Set 
CPE Command> Build Trial Set CLASP Table 

Experiment Name: Experiment-2 
Documentation: a string 
Generic Service: Plan Generator  Deployment Plan Expander 

Deployment Simulator            Force Selector 
Temporal Reasoner 

Specific Service: PFE    KTS DITOPS 
Metering Enabled:    Yes No 
Run Experiment: Yes No 

<Abort>                                 <Finish> 

Deployment Simulator Parameters: 
Deployment Plan:     Medcom-1 Medcom-2 NEO-1 NEO-2NEO-3 
Situation:    Medcom-Situation-1 Medcom-Situation-2 NEO-Sit-1 NEO-Sit-2 
Stop Day: A set of integers greater than 0 

Triall KTS     Medcom-1 Medcom-Situation-1 
Trial!    KTS    Medcom-1 Medcom-Situation-2 
TriaU   KTS    Medcoin-2 Medcoin-Situation-1 D^mmBmii^m m 
Trial4   KTS    Medcom-2 Medconi-Situation-2 
Trials   DITOPS Medcom-1 Medcom-Situation-1 New tools for Generating 
Trial6   DITOPS Medcom-1 Medcom-Situation-2 
Trial7   DITOPS Medcom-2 Medcom-Situation-1 

and Running Multi-Trial 
Trials    DITOPS Medcom-2 Medcom-Situation-2 Experiments 

*s. —) 
Figure 15: Automatic generation of a set of related experiment trials. 

Fourth Year Activities - New CPE Modules 
During 1994, a number of additional modules were added to the CPE Testbed. In addition to 

the TARGET Plan Server, described above, the ForMAT Case-based Force Module Acquisition 
Tool developed by MITRE was incorporated into the CPE, as a way of building and re-using 
force modules for deployment plan expansion. DITOPS, the constraint-based scheduling tool 
from CMU was given a second function as a high-level resource analysis tool in support of 
COAG planning (e.g. using SOCAP). 

In the area of data access, CoBase (UCLA) and SIMS (ISI) were connected in a TIE that enabled 
the SIMS query planning system to find results even when not precisely the desired data was 
available, using CoBase's inexact query mechanisms. These systems were demonstrated using 
some CPE component technologies. 

Fourth Year Activities - Publications and Domain Models 
Also during that year, an ARPI web site was introduced, as an alternative means of 

distributing information to initiative members and the general public. Documents of general 
interest, such as KRSL language specifications, were made available by this means. 

A paper and videotape of the CPE Testbed were produced. The videotape describes the 
mechanisms of the CPE and runs through several experiments as demonstrations. The paper, 
which appeared in IEEE Expert issue for February 1995, is included as Appendix B. 
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During the third and fourth years, ISX worked with the University of Edinburgh, MITRE and 
USC/ISI on a 'toy domain' model for research on military planning. This model was built around 
a fictional island called 'Pacifica', shown in Figure 16. A paper describing this environment, 
dubbed PRECIS, is available as (Reece et al, 1993) from the ARPI Web site. ISX also encoded 
this domain model in KRSL and placed it in the CPE Repository for access by ARPI members. 
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Figure 16: Island State of Pacifica 

Fourth Year Activities - ITAS 
During the final year of the contract, BBN and ISX each engaged heavily in technology 

transition activities. BBN, working with Kestrel Institute, developed the In-Theater Airlift 
Scheduler (ITAS), as an application of Kestrel's semi-automatic program generation system 
KIDS which had previously built KTS, a strategic air and sealift scheduler similar to DITOPS 
and based on the model provided by PFE. ITAS, in contrast, was built with the close 
cooperation and support of the airlift schedulers commanded by LtC. Stuhldreher at PACAF, the 
US Airforce Pacific Command. It was built as an operational prototype that could be used in the 
field by PACAF, and so was designed to run on the Apple Macintosh ^M hardware that was used 
in that command. ITAS is much closer to a real-world scheduling application than previous 
schedulers generated under ARPI funding had been. It enables airlift schedulers to do in minutes 
what used to take hours each day, and permits them to look at a much wider variety of 
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alternatives than they were previously able to do. ITAS was successfully demonstrated in 
exercises at JWID 1994 and JWID 1995. It is described in detail in (Burstein and Smith, 1996), 
which appears as Appendix C. 
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APPENDICES 
PUBLISHED REPORTS AND OTHER ARPI AND CPE RELATED DOCUMENTS 

The appendices to this report contain additional important material. 

Appendix A contains a summary of the Force Module Expanded Requirements Generator, 
FMERG, that was used in IFD-2 and in the CPE Testbed. 

Appendix B contains a paper describing the Common Prototyping Environment, as published in 
(A. Tate, Ed.) Advanced Planning Technology , The AAAI Press, 1996. 

Appendix C contains a paper describing the In-theater Airlift Scheduler, IT AS, to appear in (B. 
Drabble, Ed.) the Proceedings of the Third AI Planning Systems Conference, Edinburgh, 
Scotland, The AAAI Press, 1996. 

Other papers relating to the CPE project can be obtained via the ARPI Web site 
(http://arpi.isx.com) or by contacting Dr. Mark Burstein at BBN (burstein@bbn.com) or Mr. 
Mark Hoffman at ISX (mhoffman@isx.com): 

Burstein, M. (February 1991) Software Specification of the CPE, with an appendix describing 
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A Brief Summary of the role of the 

Force Module Expanded Requirements Generator (FMERG) 
in IFD-2 (February, 1992) 

Mark Burstein (BBN) and 

Marie Bienkowski (SRI International) 

January, 1992 

1.   INTRODUCTION 
This is a brief description of the FMERG component of the January 1992 integrated 

feasibility demonstration (IFD-2) that was produced in support of the DARPA/RL Knowledge- 
based Planning and Scheduling Initiative. Part of this initiative, which includes work that will 
advance the state of the art in artificial intelligence (AI) techniques for planning and scheduling, 
is to demonstrate yearly the feasibility of applying existing or newly-developed technologies to 
the problem of planning and executing joint military operations. Particular emphasis has been 
placed on transportation planning as the target problem; thus it is envisioned that the US 
Transportation Command (TRANSCOM) could make use of or benefit from the technology or 
applications developed in conjunction with planners at other CINCs. 

The main purpose of the integrated feasibility demonstrations is to show the end user community 
— military planners — the ability of state-of-the-art technology (including AI and conventional 
software) to significantly impact their operations. The demonstration will show the possibility of 
improvements in their existing methods, either by shortening the time it takes them to plan or by 
improving the quality and quantity of the plans produced. The IFDs might also suggest to the 
end users ways in which they might alter the way they plan to exploit these improvements. 

As part of the planning initiative, SRI is applying a knowledge-based generative planning system 
(called SIPE-2) to the problem of generating joint operations plans. The system, SIPE-2 for 
Operations Crisis Action Planning (SOCAP), will act as a decision aid to enable both 
employment and deployment actions to be generated given a mission, constraints, and guidance. 
SOCAP is targeted for the J3 staff (operations) at a joint command such as US Central Command 
(CENTCOM). 

The main focus of SOCAP is the development of the operations plan and estimations of its 
feasibility on a number of features. The planning technology underlying SOCAP could also be 
applied to generating other parts of the complete plan needed to execute a mission, such as the 
logistics or intelligence plan. SOCAP was designed to aid an operations planner in determining 
that a generated course of action (COA) is transportationally feasible. As users develop a COA 
using SOCAP, they can make use of a transportation feasibility estimator, such as the ones in 
DART, to check their plan. The integrated system is designed so that later versions will permit 
the insertion of different types of feasibility estimators, e.g., for logistics, command and control, 
etc. Furthermore, since the underlying generative planning technology (SIPE-2) develops a plan 
at successively finer levels of detail, it may be possible to estimate the feasibility of the plan at 
different levels as well. 
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Figure 1 shows thefunctional impact of the use of SOCAP and DART, as well as the connection 
between them. SOCAP generates a plan which includes both employment actions that 
accomplish a mission and deployment actions that move the forces referenced in the employment 
actions to the theatre where they will be employed. DART uses the TPFDD data derived from 
the deployment actions to assess the transportation feasibility of the operations plan. Shortfalls 
are fed back to the SOCAP users, who then modify the plan to overcome the transportation 
problem. The gap between the plan generated by SOCAP and the TPFDD input expected by 
DART will be bridged by the FMERG module, which performs functions similar to those of the 
Auto Force Generator (AFG) and Movement Requirements Generator (MRG). Essentially, 
FMERG must take the skeletal plan produced by SOCAP and create a standard TPFDD that can 
be tested by DART using one of the transportation feasibility estimation simulators, RAPIDSIM 
or PEE. For IFD-2, PEE was extended to return information on transportation feasibility to 
SOCAP, to enable some replanning to occur. 

2. FMERG 
The Force Module Expanded Requirements Generator module in the 1992 Integrated 

Feasibility Demonstration (IFD-2) provides a "vertical slice" thru the process of developing a 
TPFDD from a list of major forces to be deployed. As such it is a placeholder for several more 
sophistocated components in our vision of a highly automated transportation planning and 
scheduling system of the future. FMERG expands force modules and inserts their component 
units into a transportation plan, by drawing on a library of hierarchical Force Module 
descriptions. It takes as its primary input a high-level plan produced by SOCAP, and extracts 
from that plan the deployment requirements for the major force units referenced in the plan. 
Using its library of hierarchical descriptions of force module compositions, it developes a 
TPFDD with requirements to deploy all force module elements from their home bases to the 
operations staging areas specified in the SOCAP plan. The TPFDD produced includs relative 
temporal constraints on the deployment of those units. It augments this basic TPFDD plan with 
additional deployment requirements for Combat Support, Combat Service Support and 
Sustainment elements. The main product of the FMERG module is a TPFDD embodying the 
decisions made by the high-level planner (The SOCAP automatted planning system was used for 
this purpose in IFD-2) about the deployment of major force units. 

The primary components of IFD-2 are shown in figure 2 below. Overall, the demonstration 
highlights the semi-automated plan generation capability to be embodied in SOCAP, and support 
its use in developing a feasible TPFDD by connecting it to DART thru simple versions of two 
other tools which together formed the FMERG system: a Force Module Refinement tool (FMR), 
and a Support Force Generation (SFG) tool. The latter used rulesets like those developed for 
two JOPES systems: AFG, the Auto-Force Generator, and MRG, the Movement Requirements 
Generator. Within DART, the PEE deployment simulation tool (a model much like RAPIDSIM) 
was used to estimate the feasibility of the TPFDD generated. 

Ultimately, we would expect information about closure to be be fed directly back to SOCAP to 
support plan revision. 
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Figure 1: IFD-2 Functional Flow 
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Figure 2: Major Modules in IFD-2. 
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The Force Module Library that was used in the demonstration was based on that utilized at the 
Armed Forces Staff College (AFSC) in their training course exercise on Joint Military Planning, 
with additional information included about the inter-unit constraints on unit deployment to 
support an employment concept. The FM library used contained approximately 35 FMs from 
all branches of the service and from various force levels from Corps down to Brigade. 

A specially adapted TPFDD editor was included with FMERG to allow the user to modify and 
further adapt the Force Modules to be used in the plan. A procedural interface will allow both 
the planning system and the human planner to manipulate {augment or reduce} the detailed force 
list prior to passing it back to SOCAP or other modules. 

At this point in the normal planning process, additions for supply, resupply, and buildup (CINS 
and PINS) are made. These additions were developed in FMERG based on a set of adjustable 
planning, supply, casualty, and resupply factors similar in nature to those supported by the AFSC 
Joint Operation and Planning System (JOPS) in the Auto Force Generator (AFG) and Movement 
Requirement Generator MRG. Sustainment CINS and PINS were added using a variety of 
standard planning factors modeled after those in LOGGEN. 
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APPENDIX B: 
The Common Prototyping Environment: 

A Framework for Technology Integration, Evaluation and Transition 

- as published in Advanced Planning Technology (A. Tate, Ed.) 
The AAAI Press, Menlo Park, CA, May 1996. 

(c) 1995 IEEE. Reprinted, with permission, from IEEE Expert; 
Vol. 10, Number 1, pp. 17-26; February, 1995. 
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The ARPA/Rome Laboratory Planning Initiative 

Common Prototyping Environment: 
A Framework for Technology Integration, Evaluation and Transition 

Mark H. Burstein, Richard Schantz 
BBN Systems and Technologies 

Marie A. Bienkovt'ski, Marie E. desjardins 
SRI International 

Steven Smith 
CMU Robotics Institute 

INTRODUCTION 

The ARPA and Rome Laboratory sponsored Planning Initiative (ARPI), is a government 
funded research program that began in 1989. Its long range objective is to develop large-scale 
distributed, collaborative, automated and semi-automated military planning and scheduling 
systems. At the outset of the initiative, BBN Systems and Technologies and ISX Corporation 
were teamed to provide in the form of a Common Prototyping Environment (CPE), and aid the 
Initiative's research community by providing access to realistic military planning problems, 
while reducing each individual project's overhead by providing a suite of sharable software tools 
that would foster the integration, evaluation and transitioning of the planning and scheduling 
technologies developed. The CPE Testbed, the primary focus of this article, was developed in 
1993-4, as a distributed environment for Technology Integration Experiments that combined the 
planning and scheduling systems developed by the community to address specific kinds of 
problems. 

The goals of the Common Prototyping Environment project are: 

• To foster the development of reusable planning and scheduling technologies by providing 
access to useful supporting software and development tools and sharable domain knowledge 
and data, 

• To support the performance of experiments in which these technologies are combined to 
solve planning problems of interest to the military, and 

• To ease the transitioning of technologies into military operational prototype systems through 
demonstrations of interoperability. ■ 

The CPE project is a team of people dedicated to these tasks. BBN Systems and Technologies 
and ISX Corporation were teamed together to develop and support the CPE. BBN has had 
primary responsibility for the development the CPE system and some of the supporting software 
systems used in integration experiments, and ISX has been primarily responsible for providing 
access to domain data and knowledge to support the Initiative's researchers and specific 
integration efforts and experiments. 

This article describes the major activities associated with the development of the CPE. We cieal 
separately with the two major aspects of the CPE project as a whole. The CPE Repository is an 
"electronic clearinghouse" for software (sources, executables, and sometimes both) developed 
under ARPI auspices, and representative data and knowledge, in both textual and electronic 
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forms, about the military transportation planning processes. The CPE Testbed, developed in the 
last two years of the project, is a suite of software tools to support the integration of and 
experimentation with prototype planning and scheduling systems in a distributed 
communications environment. 

There have been a number of collaborative project activities throughout the course of the 
Planning Initiative that have helped to foster cooperative development of software 
demonstrations and the experimental integration of technology components. Integrated 
Feasibility Demonstrations (IFDs) (see accompanying article, this issue) were joint projects to 
integrate existing state-of-the-art technology components and demonstrate their potential to 
greatly improve on the time or quality of planning within the military. In addition, smaller-scale, 
Technology Integration Experiments (TIEs) were developed so that different research and 
development teams could explore the issues involved in successfully combining their research 
software. 

IFD's have had a much stronger operational focus than the TIEs. IFD-1, which produced the 
DART system, was developed just before and during Operation Desert Shield, and was in active 
use almost immediately. IFD-2 and IFD-3 were developed primarily as demostrations, built 
around a different, specific type of military planning situation. IFD-2 was focused on strategic 
and transportation planning for a "typical" small scale, primarily defensive, military operation, 
while IFD-3 was developed using as a test-scenario a non-combatant evacuation operation or 
NEO. The unclassified data and textual materials describing the scenarios used in each of these 
demonstrations was captured and made available to the ARPI research community as part of the 
CPE Repository, as described in Section 2. 

The series of Technology Integration Experiments or TIEs began shortly after IFD-2 concluded 
in February of 1992. The initial set of TIEs focused on integrating more researchers 
technologies into a distributed software environment that included the IFD-2 demonstration 
prototypes. These TIEs addressed a range of related transportation planning and scheduling 
problems grounded in the IFD-2 scenario. One additional TIE, called the "Infrastructure TIE" 
focused on applying the techniques for database and knowledge-base access and for distributed, 
knowledge-based systems inter-communications (KQML) being developed under ARPA 
sponsorship. For that TIE, BBN and ISX worked with Paramax Corporation (now Unisys) to 
develop the initial version of a software infrastructure that became the core of the CPE Testbed, 
including the first prototype of a "knowledge server". 

Release 1.0 of the CPE Testbed in May, 1993 was, first and foremost, an engineering effort 
capitalizing on all of the TIEs conducted during 1992. It brought all of the planning systems that 
had used in the TIES "together", so that they all worked in the same distributed environment, 
communicating among themselves using a consistent set of distributed software communications 
protocols (KNET, a simple variant of KQML) and using a single knowledge representation 
language for information exchange (KRSL). 

The CPE Testbed was also designed to support experiments in which components were 
combined in novel ways, or directly compared doing similar functions. To address the issue of 
experimentation, the testbed includes a suite of tools for collecting and analyzing data about the 
performance of the modules used in solving planning problems. Comparative experiments are 
readily conducted in the CPE by substituting one software system providing a defined type of 
service for another, and collecting the same performance measures for both systems. The data 
that is collected can be analyzed using the CLASP statistics package, provided by the University 
of Massachusetts, all from within the CPE Interface. 
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The CPE Testbed now includes technology components developed in more than ten different 
R&D laboratories sponsored under the initiative. These software systems all provide services 
that can be utilized in experiments based on solving military planning problems, even when the 
software systems are physically hosted at sites dispersed throughout the country. 

COORDINATING R&D BY SHARING OF DATA AND SOFTWARE 

From the outset, an effort was made to promote the sharing of data and software development 
tools among the Initiative's research and development contractors, both to increase the focus on 
a common set of domain-specific problems, and to reduce the amount of effort put into 
redundant "tool building". The CPE Repository was established at the inception of the initiative 
to serve as a central clearinghouse for these tools and information. Housed on a UNIX 
workstation system and accessed by FTP, it has been used ever since as the primary means of 
collecting and disseminating data, sources for reusable development software tools, 
demonstration prototype software systems , and software collected or developed by the intiative's 
contractors. 

One of the two major motivations for the CPE Repository was to help coordinate the many 
software development efforts that were to go on at different laboratories as part of the initiative. 
In anticipation of the issues that always arise when software systems developed in different 
places are to be integrated, some community "standards" were established for basic hardware and 
software underpinnings of the prototype software to be developed. These community standards 
covered such things as the type of UNIX workstations to be used, the version of Common LISP 
to be used, and also included the adoption of the Common Lisp Interface Manager for user 
interface development. Other standards were set for such things as X-windows, TCP/IP, etc. 

On top of these basic necessities for software development, a range of software tools were added 
to the repository over time by BBN/ISX and other participating Planning Initiative contractors. 
These included such things as graphical interface tools (knowledge-base network browsers, a 
scientific graphics plotting package, a map display system, supplied by BBN), system 
development tools (a standard LISP DEFSYSTEM, logical pathnames), a knowledge-base 
maintenance system (LOOM from USC/Information Sciences Institute), a knowledge-directed 
database-access mechanism compatible with LOOM (LIM/IDI from UNISYS), a knowledge- 
based systems intercommunications protocol (KQML from UNISYS), and an object-oriented 
distributed communications mechanism that works with many different hardware platforms and 
programming languages (CRONUS from BBN) 

Using these and other tools from their own laboratories, as appropriate to their research agendas, 
a number of other "technology packages" were developed by initiative contractors and installed 
in the CPE Repository together with documentation. Some contributions were primarily 
technology demonstrations, while others were intended for use directly in other development 
efforts. Among the contributions, there were several implementations each of generative 
planners (SIPE from SRI, 0-Plan from the University of Edinburgh) , temporal information 
maintenance systems (TMM from Honeywell, Tachyon from GE Center for Research and 
Development), constraint-based scheduling systems (OPIS from CMU Robotics Institute), and 
intelligent database-access and database query planning systems (SIMS from USC/Information 
Sciences Institute, CoBase from UCLA). Other contributions included decision support and 
analysis tools (DEMOS and DT from Rockwell International's AI Laboratory), a knowledge- 
based systems development tool for reasoning with uncertainty (PRIMO from GE CRD) and a 
LISP-based statistics and metering package to support quantitatixe experiment analysis for AI 
systems (CLIP/CLASP from the University of Massachusetts). 
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Over the course of the initiative, a number of military planning appHcations were developed 
using these largely "domain-independent" AI tools that tailored or adapted them to the military 
transportation planning domain. Table 1 briefly describes a number of these. Many of these 
systems were developed for or in conjunction with IFDs or TIEs. All of the ones listed have all 
been incorporated into the CPE Testbed. 

SOCAP (SRI) An application of the SIPE-2 generative planning system to military 
employment planning, SOCAP consists primarily of a domain model and operators for a range 
of plans to address variants of the IFD-2 scenario. It also includes some additional tools for 
scenario data management and for communication with other Planning Initiative components. 
It also has its own user interface. 
CAFS (GE CRD) An application of Case-based Reasoning to the task of major force selection 
during employment planning, CAFS was designed to work in conjunction with SOCAP, or a 
human user. It is built on top of PRIMO and a Case-based reasoning system developed by GE 
called CARET, scheduled for release into the CPE this year. 

DITOPS (CMU Robotics Institute) A re-engineered version of the OPIS constraint-based 
scheduling system, with a constraint set and support tools to enable its use in military 
deployment transportation scheduling and transportation resource capacity analysis. 
KTS (Kestrel Institute) KTS is a very efficient constraint-based scheduling system for 
transportation deployment scheduling that was developed using Kestrel's KIDS semi- 
automatic program generation environment. 
FORMAT (MITRE) A knowledge acquisition tool for retroactive annotation of Force 
Modules, to enable their indexing and reuse, as by a case-based reasoning system (or a person). 
LOGGEN (MITRE) A tool for computing the amount of "sustainment" (food, supplies, etc.) 
that will be required by a military operation. LOGGEN has recently been incorporated into the 
DART system for use in operational contexts. 
PFE (BBN and CMU) The first tool developed specifically for the CPE, and one of the most 
frequently "checked out" of the CPE Repository, PFE is a LISP implementation of a military 
transportation simulator, modeled after the ones used in DART by the military to estimate the 
feasibility of a "TPFDD" deployment plan, given a set of available transportation resources. 
PFE's data input and output requirements were used as a model for both DITOPS and KTS. 
FMERG (BBN and ISX) FMERG was developed as a means of expanding SOCAP-generated 
plans into military "TPFDDs" or deployment plans for IFD-2. It is a simplified model of a 
force package elaboration and augmentation system. It consists of several subsystems that 
together span the gap between a high-level description of a set of forces with missions, to be 
deployed as part of a plan, and the detailed descriptions of those forces and their 
subcomponents, augmented by various kinds of combat support and sustainment elements, all 
of which need to be deployed.  

Table 1: Prototype Planning Systems 

The other important aspect of the CPE Repository was its role as a clearinghouse for domain 
knowledge and data about the military's transportation planning process. For this reason, the 
repository included a large body of textual materials detailing the processes and sample problems 
related to joint transportation planning derived from military officer's training courses on the 
subject, and data files containing a variety of sample datasets, taken primarily from unclassified 
military training materials and IFD demonstration scenarios. 

B-4 



THE KRSL LANGUAGE AND THE SHARED DOMAIN ONTOLOGY 
In order to promote a consistent way of accessing all of the data and different kinds of 

representations of objects, actions, time relations, and plans, that are inputs or products of the 
military planning process, a substantial effort was undertaken during the second year of the 
project to develop a representation language specification that could be used uniformly to 
describe and store the domain data in the repository. This language, dubbed KRSL (pronounced 
just like 'carousel') for Knowledge Representation Specification Language, was a joint effort 
of many members of the initiative. In addition to basic object and concept descriptions, KRSL 
includes forms for units of measure, general relations and propositions, temporal relations, 
plan/goal descriptions, and producer-consumer constraints. 

On top of this basic definitional syntax, substantial fragments of a uniform Shared Domain 
Ontology (SDO) were developed, describing all of the data elements and object types that 
participated as inputs or outputs to the systems that could be coupled in solving sample planning 
problems. This ontology is really a vocabulary of objects and relationships spanning all of the 
different kinds of transportation resources, ports, equipment, and other data structures that 
participate in the planning process. In its current form, it is sufficient to handle all of the 
information involved in the kinds of planning problems captured during the IFD-2 
demonstration. More recent efforts to extend it have focused on extending the additional 
concepts involved in NEO operations, as in IFD-3, and in air campaign planning.. 

The CPE repository includes a large volume of data in its original textual and fixed-format 
ASCII forms. However, in order to make the data more uniformly available, a concerted effort 
was made to translate selected subsets of that data into KRSL using the concepts in the SDO, so 
that researchers and developers could draw on a consistently described reservoir of domain data, 
and appeal to a consistent vocabulary for that data. This standardization process began during 
the TIEs, and was fully realized in the CPE testbed. In the CPE Testbed, all communications 
between modules were TCP/IP based messages in terms of the KRSL language, and using the 
vocabulary provided by the SDO. 

TECHNOLOGY INTEGRATION EXPERIMENTS 

In the spring of 1992, following IFD-2, planning began for a series of Technology Integration 
Experiments (TIEs) that would develop and demonstrate interoperability between emerging 
initiative technologies, collect information about trade-offs between technical alternatives, and 
validate various technologies for potential use in IFDs. As a group, these TIEs demonstrated 
most of the elements of infrastructure and planning technology to be introduced into the 
Common Prototyping Environment over the succeeding 24 months. 

The TIEs were explicitly designed to be experimental in nature: the intent being to explore 
methods of combining technical components that had been designed to play specific roles in 
planning or problem solving, and test designers' claims for their technology's applicability. 
When possible, we sought to contrast different mechanisms providing the same or similar 
functions, such as maintaining and reasoning with temporal information. For example, TMM and 
Tachyon, two systems for temporal constraint maintenance were made to interoperate with a plan 
generation system (SOCAP) during course of action generation (COAG). By sharing a standard 
interface, the two could be directly compared performing the same task. In other cases, TIES 
focused on exploring the potential of pairs of technologies that might mutually benefit from 
interoperation. 
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Each TIE included a 'Final Exam' in which the performance of the technical components 
involved was to be measured against some baseline criteria. The process of conducting TIE Final 
Exams was in part to identify and prepare component technologies for insertion into an IFD, and, 
in part, to benchmark performance on typical military planning and scheduling problems. 

Table 2 lists the TIEs that were completed during 1992, all of which contributed to the 
development of the initial CPE Testbed. Figure 1 places these ties in the context of a simple 
"waterfall" model of the overall military plan development process. The top of the figure shows 
TIE #1, which was a first attempt to prototype several key infrastructure components; 
knowledge-directed information access and a knowledge-representation based distributed 
communications infrastructure. This TIE laid the groundwork for all of the components 
participating in the planning process to be able to rely on a uniform means of accessing and 
communicating information about the plans under construction. It introduced the notion of a 
"knowledge service", an intermediary between planning systems and data and knowledge bases. 

The three major functional areas of plan development activity are also represented in the figure. 
Course of action generation (COAG) is the first, deployment plan expansion the second, and plan 
analysis the third. COAG involves strategic and tactical planning for both employment and 
deployment of forces. In the TIEs, SOCAP, the SIPE-based plan generator was the locus of 
most of the activity relating to COAG. Different TIEs examined how SOCAP could be 
improved, in terms primarily of the quality of plans produced by taking advantage of three 
different kinds of external functionality: Temporal constraint management, case-based reasoning 
for force selection, and constraint-based reasoning for transportation resource analysis. Both the 
use of temporal reasoners and constraint-based schedulers in this regard was an attempt to get 
early feedback to the COAG process from different kinds of automated plan evaluation tools 

The second major focus in the TIEs was on Force Expansion, the process of producing a TPFDD 
or detailed deployment plan from high level inputs about major force groups to be deployed (the 
output of the COAG process). TIE #3, described below, used constraint-based scheduling 
techniques to develop reasonable deadlines and choices for mode of transport (air, sea) for the 
forces during deployment planning. 

THE INFRASTRUCTURE TIE: DISTRIBUTED KNOWLEDGE ACCESS 
The objective of the Infrastructure TIE was to demonstrate integration and interoperability 

technology for the Common Prototyping Environment and new Planning Initiative software 
generally. It was developed with the premise that knowledge-based software systems could 
interoperate most effectively with other software systems in a distributed environment using a 
consistent representation language as 'interlingua'. They could thereby avoid having to develop 
and maintain independent means of translating messages between every pair of communicating 
systems. The TIE demonstrated the feasibility of this integrated approach to inter-agent 
communications and the sharing of knowledge among knowledge-based software agents and 
knowledge-level access to common databases. It was a joint project with participants from BBN, 
ISX, SRI and Paramax (previously and now Unisys). It formed the basis for the first working 
prototype of the CPE infrastructure. 
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1. Infrastructure TIE (BBN, ISX, Unisys) demonstrated the knowledge services and 
distributed, knowledge-based communications elements of the envisioned distributed CPE 
planning environment. 

2. Case Based Reasoning - Generative Planning TIE (GE-CRD, SRI) applied a CBR system 
developed at GE to do operator role selection for force units used in a military operations plan 
built by a generative planner. 

3. Constraint Based Scheduling - Deployment Planning TIE (CMU, BBN, SRI) 
demonstrated constraint-based scheduling system in a heterogeneous military planning system. 
TIE #3A used deployment constraints to do the final stages of deployment plan development, 
producing a feasible TPFDD. TIE #3B used the scheduler as a means of doing preliminary 
deployment plan analysis during the intial phases of COA development, as a means of filtering 
the options for an operations plan. 

4. Temporal Reasoning - Generative Planning TIE (GE-CRD, Honeywell, SRI) used a 
temporal reasoning system (Tachyon or TMM) during generative planning to propagate the 
temporal constraints in a developing plan. This arrangement enabled some comparative 
experimentation with Tachyon and TMM. 

5. Temporal Reasoning - Case-based Force Expansion (GE CRD, BBN) applied temporal 
constraint management during case-based force selection and expansion, where selected forces 
are "unpacked" to form elements of a TPFDD. 

6. Case-based reasoning - Force Expansion (GE CRD, BBN, MITRE) used CBR techniques 
to refining and enumerating the elements of forces selected during high-level planning.  

Table 2:1992 TIEs 

SOCAP  
Generative 

Planning 
for 

COA 
Deveiopment 

CAFS/CAFE        
Case-Based 

Reasoning for 
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and Tailoring 

COA 
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Temporal 
Constraint 

Management 

WM mm 
Deployment 

Plan 
Expansion 

.DITOPS  C  

Constraint-Based 
Transportation 

Scheduling 

Plan Analysis 
Figure 1: Relationships between TIEs in a functional architecture. 
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The language used as interlingua in this experiment, KRSL, was developed for the CPE by ISX, 
in collaboration with BBN and many members of the initiative community, who contributed their 
expertise on the aspects of the language that they were most concerned with. The language 
provided a simple syntax for definitions of concepts and instances, relations, units, and some of 
the basic elements of an ontology for representing plans, specifically temporal relations and 
events. An implementation of the KRSL language, the 'KRSL Kernel' was developed as a 
software layer that translated forms, queries and assertions into and out of the LOOM knowledge 
representation system, developed at USC/Information Sciences Institute (MacGregor and Yen, 
1989; MacGregor and Burstein, 1991). To construct a 'knowledge server' to play the role of 
information broker in the distributed architecture, LOOM was also integrated with Paramax' 
Intelligent Database Interface (IDI) through an intermediate layer called LIM (LOOM Interface 
Module). This provided access to a set of persistent relational databases maintained in Oracle's 
(tm) RDBMS. 

The generall architecture of the knowledge server and communications substrates that were 
developed during the Infrastucture TIE and used later in the CPE is represented in Figure 2. The 
TIE communications software was built around Paramax' implementation of KQML, a 
distributed communications model for intelligent software-agents developed from a specification 
that was the work of a number of AI researchers under the auspices of the DARPA Knowledge 
Sharing Project. KQML supported the message encapsulation and routing of messages 
composed of KRSL expressions. During the TIE, messages were passed among the Knowledge 
Server, FMERG and PEE, the latter two being components developed by BBN, ISX and CMU 
that had participated in the previous IFD-2 demonstration where communications were by file 
transfer or by pointer in a shared LISP data space. 

Server 
Process 

Encodings 
Decoding 

(KNET-.SEND :KS -.QUERY 
<KRSL QUERY>) 

Answer: 
((-.the TYPE -.name...)...) 

TCP/IP 

LIM/IDI 
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KRIL 
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Decoding 
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Figure 2: CPE Knowledge Server and Distributed Communications Model 
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The KQML communications mechanism was implemented as a "wrapper" consisting of two 
pieces of software that were added to each component "agent" that was to be capable of remote 
communications. The two pieces are a "Router" and a "Knowledge Router Interface Library" 
(KRIL). The router is a program that formats expressions in KQML message syntax and 
forwards them through the distributed network. There is one router per implementation language 
(e.g., there is one Common Lisp router). The KRIL is a representation language specific 
interface to the router that acts primarily as a representation translator (e.g., from LOOM to 
KRSL and back) and local dispatcher for the set of KQML dialogue primitives (e.g., queries, 
replies and assertions) that will be supported by the agent. In the TIE, FMERG, PFE and the 
Knowledge Server (KS) all used the same Common Lisp router; FMERG, and the KS used the 
KRSL KRIL to translate KRSL messages into their local LOOM representations; PFE used a 
special purpose KRIL that later was developed into a more general package to support the 
translation of KRSL into Common Lisp Object Specification (CLOS) descriptions. 

Communications between these agents, consisting primarily of representations of military plans 
and deployment schedules were standardized as much as possible using what then existed of an 
evolving Shared Domain Ontology (SDO), a common set of terms, concepts and relations 
defined in KRSL to be used for all communications between agents in the CPE environment. 
This catalog of definitions included standard frames or concepts for such things as air ports, sea 
ports, geographic locations (called GEOLOCs), transportation movement (TPFDD) plan 
elements, and specific representations required to enable communication among the modules 
involved, e.g., the major force list representation of SOCAP plans and the representation of force 
modules developed from IFD-2. 

The Infrastructure TIE also developed the first implementation of a Knowledge Server (KS), an 
agent whose primary purpose was to act as a maintainer of shared knowledge and information, 
and a mediator to databases containing additional information. The Knowledge Server consisted 
of the KRSL Kernel, LOOM, the Intelligent Database Interface (IDI), and the LIM interface 
between LOOM and IDI. IDI also communicated with an external Oracle data base containing 
most of the relevant data from IFD-2, including geolocs, force descriptions, etc. The Knowledge 
Server supported external queries and assertions in the KRSL interlingua, communicated via 
KQML. The information in the answers it provided could either come directly from the LOOM 
knowledge base or from the Oracle data base, via LIM and IDI. 

The final demonstration for the TIE consisted of recreating a portion of the IFD-2 demonstration, 
this time using KRSL and KQML to access and store intermediate information and results in the 
Knowledge Server. A SOCAP major force plan was asserted into the knowledge server using 
KRSL. FMERG was invoked, and issued KRSL queries to the knowledge server for the major 
force plan and definitions of the forces involved, and received that information back in KRSL 
forms based on the SDO definitions of the objects involved. It then produced a TPFDD for that 
plan, and asserted that result back into the Knowledge Server, from which it could be retrieved 
by PFE for a transportation feasibility analysis^. The overall Infrastructure Prototype 
configuration is extremely flexible, allowing various components to reside on the same 
workstation or be distributed across the Internet. The specific configuration demonstrated had 
FMERG running at Rome Laboratory, communicating over the internet with a Knowledge 
Server running at Paramax in Philadelphia. 

^This last step, connecting the Knowledge Server to PFE, was accomplished a short time after the initial TIE was 
completed. 
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Much of the initial infrastructure was instrumented to collect timing information. As might be 
expected for a first prototype, there were many performance issues outstanding, and some steps 
were quite slow, especially given the size of the data that was transmitted (e.g., 20 minutes to 
retrieve approximately 1MB of information about forces for a plan). This information served as 
a guide to us in the subsequent development of the CPE Testbed. 

The attempted integration of KRSL, LIM and LOOM also raised some representational issues 
and inconsistencies that needed to be addressed. One of the more interesting of these was the 
issue of how to handle the relationship between class-level information as stored in database 
records and the corresponding classes or concepts in the knowledge base. For example, a data 
table might contain information about types of aircraft (e.g., their average speed, cargo capacity, 
etc.) which might be represented as attributes of class-level concepts in LOOM or KRSL. 
Unfortunately, the versions of LIM and IDI at that time only supported the mapping of database 
records into instances. Another issue was the mapping between KRSL objects with subparts and 
representations of that information in the data base. Recursive or cyclic relations are well known 
to be difficult for relational databases to handle effectively. 

USING EXTERNAL REASONING TOOLS IN SUPPORT OF GENERATIVE 
PLANNING 

In tackling a real-world problem using a single, uniform strategy AI reasoning tool, it is not 
uncommon to find that the real-world problem requires solving subproblems which are best 
approached using different strategies. In some cases, legacy software must be integrated with the 
AI system; or the AI system must be altered to fit the new problem (e.g., with a customized user 
interface); or additional automated reasoning techniques must be added to round out the 
capabilities of the AI system for work in that domain. Several of the TIEs provided some unique 
experience with supplementing a mature generative planning tool with several other substantial 
pieces of AI technology: a case-based reasoner; a temporal reasoner, and a scheduling system. 
These technology integration experiments were among the first examples where mature AI 
systems whose development paths were completely orthogonal were harnessed to solve the same 
problem. 

The goal of these integration experiments was to improve the quality of the plans generated by 
SOCAP. One TIE (#4) experimentally combined temporal constraint propagation systems 
(Tachyon, TMM) with SOCAP to improve SOCAP's temporal reasoning capabilities. This 
integration resulted in SOCAP being able to represent more sophisticated temporal constraints 
within plans and to reason more accurately about the times and durations of actions and about 
resource utilization over time. Another TIE (#2) incorporated a case-based reasoning (CBR) 
system, CAFS (for Case-based Force Selection) to extend SOCAP's ability to choose objects to 
participate in operations. CAFS selected appropriate forces from a library based on similarity 
comparisons between those forces and the operator requirements and context provided by the 
new plan. A third TIE (#3B) integrated SOCAP's planning capabilities with DITOPS 
(Distributed Transportation Scheduling in OPIS), a constraint-based scheduling system 
developed at Carnegie Mellon University. SOCAP's ability to generate robust, feasible plans 
with realistic allocation of resources was improved by using feedback from the scheduling 
system directly during planning. 

These integration projects were unique in two ways: first, they utilized existing, independently 
developed Al-based modules to supplement an existing generative planning system; second, they 
add capabilities that are novel or relatively unexplored in generative planning systems. 
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TEMPORAL REASONING IN SUPPORT OF GENERATIVE PLANNING WITH SIPE-2 
When SOCAP was originally developed as an application of SIPE-2, SIPE-2's limited 

temporal reasoning capability surfaced as a shortcoming. Before the TIE, SIPE-2 was unable to 
reason about utilization of resources and could not place temporal constraints between actions in 
the plans. Consequently, the plans generated did not represent important constraints that existed 
in the planning application domain. 

In previous versions of SIPE-2, time was treated strictly as a consumable resource; that is, it 
could be consumed but not produced, and its consumption over parallel tasks was nonadditive. 
Each action specification could have associated start-time and duration variables, but SIPE-2 
calculated specific values for time variables only when the constraints forced a particular value; 
otherwise, the allowable range was computed. 

SIPE-2 has several techniques for establishing the relative orderings of actions: inserting 
ordering links to avoid resource conflicts; using one action to meet several other actions' 
precondition requirements by ordering those actions after the action that achieved those 
conditions; and coordinating separate subplans by adding ordering links between subgoals of the 
two subplans. These capabilities allow many simple temporal problems to be solved, but the 
inability to represent the time constraints of two possibly unordered actions was seen as a 
problem. Two SIPE-2 actions are either ordered with respect to each other, or they are 
unordered. If the latter, the planner considers it possible to order them either way or to execute 
them simultaneously. It was not possible to model when the various effects of an action become 
true during its execution, or that must occur simultaneously. By adding as a support system a 
temporal constraint manager for Allen's (Allen, 1981) temporal relations calculus, it became 
possible to explicitly represent actions starting or finishing at the same time, overlapping each 
other, or one occurring during another. Many dependencies between different military actions 
should be represented in this way in SOCAP. For instance, cargo off-load teams should arriye at 
the same time as the first air or sea transport arrives at the destination airport or seaport. 

For the TIE, SOCAP's ability to represent and reason about time was extended by adding a layer 
on top of SIPE-2 that would keep track of the temporal constraints within the plan, initially using 
the Tachyon temporal reasoning system (Arthur, Deitsch and Stillman, 1993) to maintain and 
propagate these constraints. The interface to Tachyon was designed to be general enough to 
permit a different temporal reasoner to be substituted (in particular, TMM (Dean & McDermott, 
1988; Schrag et al. 1992). 

Our approach to the integration of a temporal reasoning engine was somewhat "coarse-grained". 
A new plan critic was written for SIPE-2 to be run at the end of each "planning level", rather 
than as each new constraint was encountered during planning. This critic extracts all of the 
temporal information (time windows and internode constraints) from the plan, sends it to a 
Temporal Reasoner, and stores the updated time windows returned back into the nodes in the 
plan. In addition, methods were added to maintain these constraints on the plan as goals are 
expanded to a new level by SOCAP. SIPE-2's operator syntax was extended to allow a designer 
to specify any of the 13 Allen relations or quantitative constraints (the permissible range of 
metric distances) between the endpoints of any pair of nodes in an operator. 

The extended system found temporal inconsistencies in previously generated plans which could 
only be resolved by changing the dates on which military units were available to perform 
missions, or by assigning different units to those missions. This shows that the system now 
reasons with a more complete model of the constraints operating in the military domain. The 
temporal information is especially important for proper use of the planner's products by 
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downstream scheduling software, since SOCAP is able to pass a more complete and consistent 
set of constraints to the scheduler. Although the temporal reasoning introduced into SIPE-2 by 
the TIE cannot be considered "complete" since representation and reasoning support for both 
continuous and interruptable events are still lacking, the limited capabilities that were added 
provide a significant source of power in dealing with important constraints in the domain of 
military planning and improve the generated plans substantially. 

CASE-BASED REASONING FOR FORCE SELECTION IN PLANNING 
Selecting the right force to participate in a military operation and tailoring a force to meet 

special requirements of a specific operation are two important parts of operations planning. 
Considerations such as a unit's potential to deter or defend against an enemy threat, its 
mobilization, its ability to handle the terrain, and its time to deploy must be reviewed. When it 
was initially developed, SOCAP always asked the user to select the force units that would be 
used to achieve specific missions, by presenting a list of available units that met the constraints 
of the operator (to perform the mission) when expanding a goal for which that operator applied. 
The user could see what constraints were met by the units in the list but had to rely on personal 
knowledge of the mission context, and capabilities of the each possible unit to determine which 
was most appropriate in that context. SOCAP itself had no way of ranking or preferring some 
units over others if they all satisfied the necessary constraints on their utilization for a given job. 

This kind of preferential force selection and tailoring was seen as an area where case-based 
reasoning (Kolodner, 1993) would apply. TIE #2 was an addressed this issue by integrating a 
CBR system from GE's Center for Research and Development called CAPS (CAse-based Force 
Selection) which was built on GE's CAse-based REasoning Tool (CARET). In CAPS, 
descriptions of forces from a case library of force units are indexed and retrieved based on their 
mission requirements, climate, terrain, mobility and other related information. 

For TIE #2, SOCAP was modified to call the CAPS module for major force selection instead of 
presenting a list to the user for selection. CAPS uses the constraints and context information 
provided by the SOCAP operator and bindings to find and rank potential force units as to their 
appropriateness for a given mission (including ones that were tailored to specific missions in the 
past). If the closest matching force does not fit SOCAP's requirements, heuristics can be applied 
within CAPS to modify the force in the appropriate manner. For example, it might be necessary 
to add additional support units to the retrieved force structure to account for differences between 
the prior and current situation. 

CONSTRAINT-BASED SCHEDULING AS A CAPACITY ANALYSIS TOOL 
DURING PLANNING 

An important feature of the type of decision support that SOCAP is intended to provide is a 
capability for replanning based on feedback from (usually external) plan feasibility evaluation 
tools. Assessing the transportation feasibility (essentially the use of resources over time) of a 
plan is a major point of focus for military planners. To investigate this issue, and also explore 
ways of overcoming SOCAP's simplified model of resource management, TIE #3 explored an 
integration of SOCAP with CMU's DITOPS system for constraint-based resource reasoning and 
scheduling. In this TIE (#3B), SOCAP was modified to call DITOPS at various stages of its 
search through the space of possible plans to assess the feasibility of the current partial plan from 
the standpoint of transportation resource capacity requirements. This early analysis aids in the 
assignment of resources to operations based on projections of resource bottlenecks.   That is. 
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either SOCAP or a user can use the analysis results to choose feasible deployment destinations 
for major forces during initial plan generation or to reassign transportation resources. 

To focus DITOPS' attention on the relevant parts of the plan, SOCAP extracts a temporally 
ordered plan network that included only the transport operations and other non-resource-using 
actions that contributed temporal constraint information. For each operation, it supplies the 
transportation resources (planes, ships) assigned to transport specific units, and holding capacity 
required on those resources to transport the personnel and materials involved. This information 
is analyzed by DITOPS' capacity analysis routines and the result is passed back to SOCAP in the 
form of comparative estimates for the expected availability versus demand for aggregate 
resources, by class of transport, over time. This data is presented on a color graph showing 
expected demand on a resource type vs. available capacity over time. Users (and, eventually, 
SOCAP itself) can then reassign resources or change the time of an operation. 

FORCE ELABORATION AND THE TRANSPORTATION SCHEDULING TIES 
A TPFDD (Time-Phased Force Deployment Database) is the current-day operational data 

form of a military deployment plan. It is a table of all of the individual units to be deployed by 
air or sea to specific destinations, their sizes (in tons of air or sea cargo), and the dates that they 
are available for shipment and need to arrive at their destinations. TPFDDs are used as inputs to 
simulators to estimate the transportation feasibility of a plan in plan analysis tools such as 
DART. They are also input to scheduling algorithms used to produce detailed schedules and 
manifests for shipments of air and sea cargo. They are thus a critical link in the data path for 
current military planning operations. 

The current-day process of developing a TPFDD is a labor-intensive function, primarily 
performed by the command staffs of individual services (Air Force, Army, Navy). Once a 
general operations plan has been developed by the Joint Staff, the services are tasked to "fill in 
the details" of the operations, and determine the lists personnel and equipment that will be 
needed. They often do this by of "cut and paste" operations on detailed force lists developed for 
prior missions, although this is largely a paper and pencil and "fat finger" data entry task without 
the proper software support tools. Since TPFDDs can number in the thousands or tens of 
thousands of records for large operations, this is a labor-intensive task, indeed. 

In order to fill in required data elements in each TPFDD record, these service planners must 
attempt, sometimes without all of the necessary information, to do a rough scheduling of the 
deployment of those units, specifying the ports and the time windows for the arrival and 
departure of each unit from ports along the path of their deployment to a theater of operations. 
Frequently, they do this with only approximate information about the transportation resources 
that will be available, and even less information about the constraints on loading and unloading 
of cargo at individual ports. 

They are forced to do this because they have no way of specifying directly what they do know, 
namely the ordering and timing constraints (e.g., which units need to arrive before other units) 
that are based on their knowledge of the plan under construction and military planning more 
generally. If they were able to specify this information directly and conveniently, then more 
dynamic and automated means of scheduling and rescheduling the transportation elements of the 
plan would be possible when better information was available. 

Within the Planning Initiative, we have sought to demonstrate a path to automation of some of 
these staff functions, at least to the point of demonstrating how automated tools could help, given 
the right information. In IFD-2, BBN and ISX developed FMERG as a very simplified first step 
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toward automated TPFDD generation directly from operations plans produced by SOCAP. 
FMERG approximated parts of this currently manual process, expanding each force mentioned 
in the SOCAP plan into a list of units and materials by using a force module library, augmenting 
the list of operational units to be deployed with a number of other units serving combat support 
and service support functions (local transportation, medical, food services, etc.), and, finally, 
adding units to the deployment plan based on doctrinal rules about resupply for things like food, 
fuel and ammunition (this last activity is more fully realized in the system LOGGEN, developed 
by MITRE). 

FMERG was designed to be replaced by technologies developed by other Planning Initiative 
R&D projects. Two of the TIEs were designed as steps in that direction. In one, still under way, 
GE-CRD has been working on extending their Case-Based Reasoning tool, CAFS, to provide 
more capability to do intelligent tailoring of those configured units to adapt them to new 
situations. In the other TIE, CMU developed scheduled departure and arrival time information 
for TPFDDs using the DITOPS constraint-based transportation scheduling tool. 

CONSTRAINT-BASED TPFDD SCHEDULING 
DITOPS is a constraint-based scheduling system for military transportation planning based 

on the OPIS system for job-shop scheduling (Smith, 1994). In the job-shop scheduling domain, 
there are typically a number of ways in which manufacturing of an item might be accomplished, 
by using sequences of operations, each of which can be accomplished by using tools that exist at 
multiple stations on the factory floor. In transferring this model to transportation scheduling, 
DITOPS was made to work with largely completed TPFDDs, which specified the goods to move, 
and required destinations, but could leave open some of the decisions about which resources 
would be used to move the goods, and, potentially, which intermediate ports the goods would 
travel through. DITOPS then builds detailed schedules of which ships and planes will be used to 
transport each good, in effect combining a transportation feasibility analysis similar in spirit to 
what military simulators had done before with the development of actual schedules. 

TIE#3 experimented with relaxing some of the constraints on how complete a TPFDD was 
required to do this kind of scheduling, in effect opening up the possibility that DITOPS would 
take over some of the decisionmaking relating to port and mode (air or sea-based transport) 
assignment, rather than taking the overly restrictive prescriptions embodied in a TPFDD, and just 
scheduling air and sea craft to carry cargo along proscribed routes. These kinds of choices are the 
analog in the transportation planning problem of the choice in the job-shop world about which of 
several paths through the factory can be used to complete a manufacturing task in the most 
timely fashion. 

For these experiments, DITOPS was made to use a less constrained description of the plan than 
that normally embodied in a TPFDD, leaving open choices to be made in terms of which ports 
ships could use as destinations for each load, and which kinds of transportation resources to use 
(air or sea craft) to get the most effective transportation plan. Normally, the military uses a rule 
of thumb that, for large operations, 20 percent of the cargo should move by air, and 80 percent 
by sea. However, given timing considerations and available lift options, this heuristic can easily 
be wrong. By relaxing some of these constraints on the shape of the scheduler's output, but 
providing more information about the structure and dependencies in the plan, more efficient 
plans and schedules can often be produced, and they are certainly more readily revised. 

To achieve this, DITOPS was provided some additional information about the doctrinal 
constraints on which elements of a force needed to move before other elements, replacing fixed. 
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but estimated, dates for unit movements found in a TPFDD. Given this additional information, 
DITOPS was able to demonstrate the potential for automating some mode and port decisions 
based on resource capacity information. DITOPS was able to balances the use of ports, and 
avoid some bottlenecks due to port capacity overload. Similarly, by avoiding early commitments 
on how cargo was to be shipped (air or sea modes) the scheduler was able to find efficient means 
of transportation for each unit (for example, using excess air transport capacity to improve 
arrival times) and better balance the limited resources available. This TIE successfully 
demonstrated how a more appropriate encoding of the available information could lead to better, 
and more easily and automatically revisable, transportation plans. 

THE CPE TESTBED: AN EXPERIMENTAL DISTRIBUTED PLANNING 
ENVIRONMENT 

Tying the TIEs Together 
After the initial round of TIEs was completed, work began in earnest to bring together all of 

the technology components involved into a single distributed environment called the CPE 
Testbed, based on the interoperability model used in the Infrastructure TIE. Beyond this 
unifying function, the CPE Testbed was designed to: 

• Provide a support infrastructure for future TIEs that included support for experimental metrics 
and their evaluation and uniform access to data and scenarios for the transportation planning 
domain. 

• Establish a common representational basis for all remote communications between planning 
and scheduling systems. 

• Facilitate the transitioning of technologies into IFDs and operational prototypes. 
• Enable exploration of issues of coordination and control in a heterogeneous system for 

replanning and rescheduling. 
CPE Testbed Release 1.0 was developed from the systems represented by the TIEs in an intense 
five month effort involving all of the TIE participants during the spring of 1993. During that 
time, all of the ad-hoc communications that has occurred in the TIEs were transformed into 
consistent KRSL representations, including the development of KRSL plan representations and a 
translator from SIPE-2 plan representations to KRSL forms. Support for remote starting and 
metering of software modules was developed, in part by replacing some of the underpinnings of 
the prototype KQML software with a more mature object-oriented communications substrate3 
and by adding a simple, uniform interface to that functionality as a package called KNET. 

A substantial amount of effort and voluminous EMAIL traffic was devoted to standardizing the 
language of communications between the modules using KRSL. To standardize the 
functionalities of the different systems for experimental comparison purposes, all 
communications between modules were organized around standard sets of messages to be 
defined for pairs of functional classes of software modules. Systems were typed as Plan 
Generators, Force Selectors, Temporal Reasoners, Force Expanders, Deployment 
Simulators/Schedulersn and Knowledge Servers. For each type of module, KNET messages that 
it would have a contract to respond to were defined,    inputs and outputs characterized 

^BBN's CRONUS system was used for this, primarily because of its relative maturity at the time, and its capabiUties 
for multiple language support (including C, C++, LISP), and its tools for remote process control. 

B-15 



descriptively and in terms of KRSL syntax. Figure 3 shows the interactions paths for which 
these communications were defined. 

At the time of the first CPE release, there was one Plan Generator (SOCAP) two temporal 
reasoners (Tachyon, TMM), one Force Selector (CAFS), one Force Expander (FMERG), two 
Deployment Simulators/Schedulers (PFE, KTS) and one Knowledge Server, plus a "client" 
system called the CPE Interface which was used for remote process and experiment control, but 
was not a server that responded to messages. DITOPS was soon added as a third 
scheduler/simulator. Recently, the communications between DITOPS and SOCAP (from TIE 
#3B) was implemented in the CPE as well, by giving DITOPS a second role as a Capacity 
Analyzer. 
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Figure 3: Defined KRSL Communications paths in CPE Testbed Release 1.0 

The effort to standardize the content of communications between modules was largely 
successful, though time constraints forced some hard choices on the process. In particular, the 
communications between plan generators and the temporal reasoners continued to have the 
batch-oriented flavor of the original TIE interface between SOCAP and Tachyon, even though 
TMM, the other temporal reasoner, was designed for more incremental interactions with clients^. 
Similarly, there were some aspects of SIPE's plan language that are unique to that system which 

^An experiment where TMM is used more as it was intended, in conjunction with the 0-Plan planning is planned for 
the near future. This should lead to a revised interaction style for temporal reasoners in the CPE. 
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carried over into KRSL and the SDO. Ironing out some of these issues will require further effort 
by the research community as a whole. 

Other improvements over the system represented by the Infrastructure TIE included an improved 
message encoding scheme that achieved a three-fold reduction in the size of large messages, and 
a ten-fold decrease in transmission time of those messages. This meant that the communication 
of a TPFDD object of transmission size over 1.5 MBytes during the TIE was reduced to 
.5Mbytes and the time reduced from 20 minutes to 2 minutes. Additional speedups occurred in 
accessing remote databases from the Knowledge Server as well. 

CPE TESTBED AS A PLATFORM FOR TECHNOLOGY EVALUATION 
EXPERIMENTS. 

It was a critical goal for the CPE Testbed that it be capable of and easy to run experiments 
that tested the speed and effectiveness of new technologies that were introduced into the 
environment, both singly and in TIE-Iike combinations. To this end, the process of running 
programs in the CPE was organized around the notions of an experiment with multiple trials, and 
a mechanism for adding 'alligator clips' or meters at various points in the computations of 
modules was included in the CPE and KNET software. By simple declarations, information 
about run times and process parameters could be collected on a trial-by-trial basis, where each 
trial might, for example, vary which module was performing a particular problem solving 
function. For example, Tachyon and TMM could be compared in sets of trials where they were 
called by SOCAP with the same sequence of inputs, simply by setting up the sequence of trials in 
the CPE Testbed Experimenter's User Interface. To evaluate the results of experiments, the 
CLASP analytical statistics package from the university of Massachusetts was incorporated into 
the CPE User Interface as well, so that data collected by CPE meters could be directly analyzed 
using a variety of statistical measures. 

Also from the CPE User Interface, one could specify which hosts the modules would run on 
during a trial. All active hosts in the same CPE configuration, be they at BBN in Cambridge, 
ISX in Los Angeles, Rome Laboratory in New York state, or one of the developer sites at other 
locations around the country could be used during a single trial, if the modules involved were 
installed at those sites. 

At the time of this writing, there are twelve modules different "modules" or "agents" that can 
communicate via the CPE's distributed communications model. These systems represent the 
contributions of ten different corporations and university laboratories, and several others will be 
added shortly. They include, in addition to the "CPE User Interface" module, SOCAP, Tachyon, 
TMM, CAFS, DITOPS, KTS, FMERG, PEE, FORMAT, the Knowledge Server, and an 
experimental "Plan Server" for plans developed by the TARGET plan authoring system from 
IFD-3. There are also a number of research prototype systems that are under consideration for 
future incorporation into the CPE, including OPLAN-2, SIMS, CoBase, and several others. 
Other, more operationally oriented systems under consideration include LOGGEN, AMP, a 
successor to DART, and ACPT, a plan authoring tool for air campaign planning. 

SUMMARY AND CONCLUSION 
The CPE, including both its testbed and repository aspects, has successfully demonstrated the 

potential for increased collaboration and sharing among a large set of research and development 
projects. It has served as a validation of the concept and methodology for promoting more 
effective software and information sharing, moved a large community of researchers toward 
mechanisms for validating the products of their work both in terms of increased effort to 
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demonstrate interoperability and increased attention to the establishment of experimental metrics 
for progress. 

There are still many directions in which this environment could improve and mature. Some in 
the university research community have found the CPE to be less directly useful to them than we 
had hoped, partly because of when it became available, and partly because of its size and the 
compromises involved in designing an environment that integrates a wide group of software 
systems with current technologies. A number of other the problems that have surfaced and are 
being addressed at the current time. Most of the systems that have to-date been incorporated 
into the testbed were the applications of AI technologies that pre-dated the Planning Initiative. 
Addressing the needs of the university researchers developing the next generation of tools is now 
one of our biggest concerns. 

Devising an architecture for a diverse, heterogeneous population of software systems all 
participating in solving complex planning problems is a challenging task. It is in some ways 
even more challenging when one understands that there will always be a strong human element 
to these distributed systems. The challenge we now face is not just to build knowledge- 
intensive distributred software systems, but systems in which many people, at many different 
locations are assisted by intelligent planning software in their dynamic, ongoing efforts to 
coordinate the activities of one of the largest single organizations in the world. 

Acknowledgements. The portion of this work performed by BBN and ISX was funded by 
ARPA and monitored by Rome Laboratory under Contract F30602-91-C0014. 
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ABSTRACT 

In a joint project, BBN and Kestrel Institute have developed a prototype of a mixed-initiative 
scheduling system called ITAS (In-Theater Airlift Scheduler) for the U.S. Air Force, Pacific 
Command. The system was built in large part using the KIDS (Kestrel Interactive Development 
System) program synthesis tool. In previous work for the ARPA/Rome Laboratory Planning 
Initiative (ARPI), Kestrel has used their program transformation technology to derive extremely 
fast and accurate transportation schedulers from formal specifications, as much as several orders 
of magnitude faster than currently deployed systems. The development process can produce 
highly efficient code along with a proof of the code's correctness. 

This paper describes the current prototype ITAS system and its scheduling algorithm, as a 
concrete example of a generated scheduling working on a real problem. We outline the 
generated search algorithm in order to promote and facilitate comparison with other constraint- 
based scheduling systems. The overall system includes a database and interactive interface that 
allows users to control shape of the schedule produced in a number of ways. ITAS runs on a 
Macintosh Powerbook"" notebook computer, for reasons of portability. 

INTRODUCTION 

This report describes a prototype application of Kestrel Institute's research on the 
transformational development of high-performance transportation schedulers^. The system. 

5 This research was supported by ARP A/Rome Laboratories under Contracts F30602-91-C-014 (BBN) and F30602- 
91-C-0043 (Kestrel). 
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IT AS, for In-Theater Transportation Scheduler, is designed to assist human schedulers of 
airplanes who work to produce daily flight plans to move cargo and people within a specific 
theater of operations. For example, after the Iniki Hurricane in the Hawaiian Islands a few years 
ago, these airlift schedulers sent planes from Honolulu and other islands to the Hawaiian island 
of Kauai to deliver supplies and relief workers to that area. This scenario is not atypical, and was 
used as a working example as we developed the system. 

Previously, Kestrel had demonstrated the potential to produce extremely fast and accurate 
transportation schedulers from formal specifications using the Kestrel Interactive Development 
System (KIDS) (SmithD9009). On test data for strategic transportation plans provided by U.S. 
government planners, the generated schedulers (called KTS for Kestrel Transportation 
Scheduler) solved problems with impressive speed. A typical problem, with 10,000 movement 
requirements, takes the derived scheduler 1 — 3 minutes to solve, compared with 2.5 hours for a 
deployed feasibility estimator (JFAST) and 36 hours for deployed schedulers (FLOGEN, 
ADANS). The computed schedules use relatively few resources and satisfy all specified 
constraints. The speed of this scheduler was due to the synthesis of strong constraint checking 
and constraint propagation code. 

In 1994 Kestrel and BBN began to develop a scheduler to support PACAF (Pacific Air Force) at 
Hickham AFB, Honolulu which is tasked with in-theater scheduling of a fleet of 26 C-130 cargo 
aircraft in the Pacific region. We developed (and are continuing to evolve) a domain model of 
theater transportation scheduling. Several variants of a theater scheduler (called IT AS for In- 
Theater Airlift Scheduler) have been developed to date, and more are planned. The ITAS 
interface and was built on top of a commercial database package (Microsoft FoxPro"" ) and 
integrated with the generated LISP-based scheduler by BBN. ITAS runs on an Apple 
Powerbook laptop computer. The laptop platform makes it attractive both for field and 
command center operations. ITAS can currently produce ATOs (Air Tasking Orders) based on 
the schedules that it generates. 

The current ITAS scheduler algorithm is another in the KTS family of synthesized algorithms, 
using a number of new and different constraints from the previous, strategic (inter-theater) 
model. In this domain, the size of the problems is smaller (small tens of movement 
requirements, planes and ports), and the time horizon is shorter (typically, less than one week) 
because the domain is much more reactive. However, there are many more constraints that must 
be handled, and users need very rapid response from the scheduler in order to be able to iterate 
on the final schedule, often in less than an hour. On relatively small but realistic problems we 
have tested so far^ in ITAS' intended domain of application, the scheduler runs in 5 to 30 seconds 
on a Macintosh Powerbook 540. Relatively little effort has been spent on optimizing the code to 
date. 

ITAS simultaneously schedules the following classes of resources: (1) aircraft, (2) air crews and 
their duty day cycles, (3) ground crews for unloading, and (4) ramp space at ports. By its very 
dynamic nature, the domain presents many special one-time issues that we leave to the user to 
handle, as discussed later. Basically, ITAS as a system is designed to allow users control the 
-'shape" of the final schedule by editing and ''seeding" the schedule in several ways, and to do 
daily rescheduling, without losing this user input to the process. 

^ Roughly speaking, 10 planes, 10 movement requirements, generating about 50 flights. 
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In this paper, we describe tiie current prototype of IT AS. We discuss the constraints from the 
domain that were handled, and some that have not, as yet, been handled directly in the generated 
code. We attempt to describe, in informal terms, the algorithm that was produced using KIDS, in 
an attempt to make clear where this style of scheduling algorithm gets its great speed, and to 
promote comparison with other constraint-based scheduling systems in the literature. Finally, we 
briefly describe the nature of user interactions with the scheduler, as they have evolved so far. 

AN APPROACH TO SYNTHESIZING SCHEDULERS 

Kestrel's approach to developing scheduling software involves several stages. The first step 
is to develop a formal model of the transportation scheduling domain, called a domain theory. 
Second, the constraints, objectives, and preferences of a particular scheduling problem are stated 
within a domain theory as a problem specification. Finally, an executable scheduler is produced 
semi-automatically by applying a sequence of transformations to the problem specification. The 
transformations embody programming knowledge about algorithms, data structures, program 
optimization techniques, etc. The result of the transformation process is executable code that is 
consistent with the given problem specification. Furthermore, the resulting code can be 
extremely efficient. 

One of the benefits of a transformational approach to scheduling is the synthesis of specialized 
constraint management code. Previous systems for performing scheduling in AI (e.g. Fox and 
Smith, 1984; Fox, 1989; Smith.S. et al. 1986, Smith.S. 1989) and Operations Research 
(Applegate and Cook, 1991; Luenberger, 1989) use constraint representations and operations that 
are geared for a broad class of problems, such as constraint satisfaction problems or linear 
programs. In contrast, transformational techniques can derive specialized representations for 
constraints and related data, and also derive efficient specialized code for constraint checking 
and constraint propagation. 

Our approach tries to make the domain model and scheduling problem explicit and clear, so that, 
ultimately, users can build new schedulers of the same general class by defining the constraints 
embodied in their problem and generating a new, situation-specific, scheduler. Basically, the 
idea is to rapidly develop a situation-specific domain model and problem specification using a 
knowledge-elicitation system, and then to synthesize high-performance planning and scheduling 
tools that are specialized to the current situation. The majority of users' interaction would be 
codifying the domain theory and specification of the current situation, to aid in synthesizing a 
customized planning/scheduling tool. 

Our current scheduling theories have evolved over months of effort into about 3500 lines of text. 
It currently takes about 90 minutes to transform our most complex scheduling specification (for 
ITAS) into optimized and compiled Common Lisp code for Sun workstations. Evolution of the 
scheduler is performed by evolving the domain theory and specification, followed by 
regeneration of code. The resulting code, after optimizing transformations, is roughly 3000 lines 
of code in the REFINE language (depending on how its formatted), which is transformed 
automatically into about 5200 lines of (largely unreadable) Common LISP code. 

CHARACTERIZING THE APPLICATION DOMAIN 

A domain theory for scheduling defines the basic concepts of scheduling and the laws for 
reasoning about the concepts. A scheduling domain model generally consists of models of the 
activities to be scheduled, the resources to be used by those activities, time {e.g., a time- 
interval calculus, the constraints on the use of resources for activities (capacity constraints), and 
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the ordering of activities (precedence constraints), and the utility of the produced schedule (e.g., 
minimize a cost objective function). 

Using the above concepts we can formulate a variety of scheduling problems. A reservation is a 
triple consisting of an activity, a resource, and a time interval. Generally, a schedule is a set of 
reservations that satisfy a collection of constraints and optimize (or produce a reasonably good 
value of) the objective. Transportation scheduling specializes this general notion of scheduling: 
activities correspond to movement requirements and resources correspond to transportation 
assets such as planes, ships, and trucks. For the ITAS domain, the main assets are planes, but 
other resources must also be managed including: air crews, ground crews (that load and unload 
the planes), and parking spaces at airports (for the port constraint called MOG or maximum on 
ground number). 

For ITAS and other transportation schedulers, the activities are called movement requirements. 
ITAS movement requirements include the following information (All times are in seconds from 
time tj.): 

POE: port -> PHIK 
POD: port -> PHLI 
ALD: time -> 0 
BAD: time -> 86400 
LAD: time -> 86400 
Loads: integer -> 20 
Load-type : aircraft-class   •> C130E 
PAX: integer -> 1500 
Pallets: integer -> 50 

Here, the Port of Embarkation (POE) and Port of Debarkation (POD) are the origin and 
destination of the cargo, respectively. PHIK and PHLI are ICAO codes for Hickham AFB and 
Lihue Airport, respectively. The ALD (available to load date), EAD (earliest arrival date), LAD 
(latest arrival date) represent the time bounds on a feasible schedule for the movement 
requirement. The cargo itself is represented somewhat differently from most strategic 
transportation models. For a problem at this level (smaller planes, local scheduling), packing of 
the aircraft is a crucial issue, and irregular size and shape loads must be considered. We do not 
address the packing problem in this system, so we instead rely on the user to specify irregular 
cargo in full Loads for a specific kind of aircraft, and with a particular configuration of the 
plane's cargo area (indicated by the Load-type). More regular cargo (PAX and Pallets) may be 
loaded onto any aircraft that has available space for that type of cargo. 

The ITAS schedulers have emphasized efficient search and rich constraint modeling. The 
current version of ITAS simultaneously schedules the following types of resources, each of 
which has a variety of constraints associated with it: 

1. Aircraft are characterized by their capacities, both passenger (PAX) and cargo (pallet) 
capacities, and travel rate in knots. They also have minimum runway length requirements in 
order to be acceptable for use at specific airports. 

2. Air crews typically have 16 hour work days, followed by 12 hours rest. They are not 
expected to take off until one hour after they are called for duty^.They also receive a day off 

^ Thus far, we only handle one air crew permanently assigned to each aircraft. This should be fixed by the time of 
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after a short number of days on duty. When only one crew is available for a plane, the plane 
does not fly during crew rest periods. 

3. Ground crews are scheduled for loading and unloading planes at each port. 

4. Parking spaces at each port are used to model the MOG (Maximum on Ground) constraint 
on ports where this applies. 

5. Airports are not treated as resources themselves, but have restrictions like their maximum 
runway length, and operating hours, and whether they are in a combat zone that impact 
flights into and out of those locations. They also organize other resources (ground crews, 
parking spaces). 

Ground crews and parking slots (MOG) at airports are essentially aggregate resources in a naive 
description of the ITAS problem, but are scheduled as if they were individual unit resources in 
the current system, since KIDS cannot currently generate code that treats these constraints in 
their aggregate form. This is an area of ongoing research. 

ITAS' SCHEDULING CONSTRAINTS 

At present, twenty-three constraints characterize a feasible schedule for ITAS^. The list 
below collapses the descriptions of some of these together^: 

1. Consistent POE and POD * — The POE and POD of each movement requirement on a given 
trip of a resource must be the same as that flight's origin and destination respectively. 

2. Consistent Load Type * — Each resource can handle only loads for some movement 
requirements. For example, a C-141 aircraft can only carry loads of C-141 cargo. 

3. Consistent PAX and Pallet Capacity * — For cargo in movement requirements expressed as 
PAX (passengers) or Pallets (pre-packaged cargo), the capacity of each aircraft to carry that 
type of cargo cannot be exceeded on a given flight. A flight containing a full load can carry 
no additional PAX or Pallets. 

4. Consistent Release Time — The start time of a movement (the flight's earliest departure time 
(EDT)) must not precede the release time (ALD) of all movement requirements in the flight's 
manifest, plus the aircraft's load time. 

this publication. 

^ Some of these constraints (*'d) are not currently given explicitly as part of the top level Problem Specification to 
the KIDS system, but are implicit in the Global Search Theory, another part of the domain theory that is 
essentially an abstract schema describing the branching structure for the search control model to be employed in 
the generated algorithm. These constraints were ""rolled into" that structure for the sake of the efficiency of the 
generated code. Future systems will make these constraints explicit again. 

^ The number of corresponding formal constraints is noted in parenthesis. Typically, temporal constraints come in 
pairs, one that is used to propagate the Earliest Departure Time (EDT) forward, and one that is used to 
propagate the Latest Departure Time (LDT) backward through the schedule. 
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5. Consistent Due Time - The finish time of a movement (the flight's latest departure time + 
flight duration + unload time) must not be later than the Latest Arrival Date (LAD) of all 
movement requirements in the flight's manifest. 

6. Consistent Flight Separation - For flights of the same aircraft, the earliest (latest) departure 
time plus the flight duration and on-ground time at the destination must be less than the 
earliest (latest) departure time of the aircraft's next flight. 

7. Consistent Air Crew Usage — Only use the given air crews. 

8. Consistent Air Crew Duty Day — For a sequence of flights by one crew without a rest period, 
the earliest (latest) departure time of the last flight, plus the last flight's duration and unload 
time, should be less than the length of a duty day after the earliest (latest) departure time of 
the first flight. 

9. Consistent Air Crew Transition ~ By similar formulae, crews get a full 12 hours rest after a 
duty day plus at least 3.25 hours preparation time before their next flight. 

10. Consistent Air Crew Qualifications — Crews must be qualified for the aircraft they are 
assigned to, the mission types to be flown, and must belong to the unit that 'owns' the 
aircraft. (3 constraints) 

11. Consistent Port Usage - Only schedule flights into/out of the given ports. 

12. Consistent Port Runway Length — Aircraft cannot land or take off from airports whose 
maximum runway length is less than the aircraft's minimum take-off/landing runway 
length 10. 

13. Consistent Port MOG — The constraints here are actually on the use of parking spaces, which 
are assigned individually during search. Basically they state that the earliest (latest) departure 
time of the aircraft leaving a space must be before the earliest (latest) arrival time of the next 
aircraft assigned to that space. 

14. Consistent Port Ground Crew — Similar to MOG, ground crew reservations must be 
separated by the corresponding load/unload time. For now, it is assumed that there are a 
constant number of ground crews available whenever a port is open. 

15. Consistent Port Operating Hours — Ports may be closed for take-offs/ landings for some 
period each day (e.g., night time). (2 constraints) 

16. Consistent Mission Type — The cargo in a flight manifest must be from movement 
requirements with the same mission type {e.g., normal land and unload vs. airdrop). 

17. Consistent Aircraft Usage — Only the given aircraft are to be used. 

18. Completeness — All movement requirements must be scheduled. 

Constraints in the domain theory are defined formally by reference to data structures that are 
maintained during search, basically mappings of resources (parking spaces, ground crews) to 

'^his constraint could be made considerably more complex if it were to take into account whether the plane was 
loaded or not, its expected fuel level, and the different true minimums for take-off and landing. 
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sequences of reservations (tuples referencing the aircraft and flight involved). For example, here 
is a (slightly simplified) constraint on the LAD of a movement requirement: 

function CONSISTENT-LAD 
(sched : schedule): boolean 
= forall (ac-indx : integer, fit: integer, mvr : movement-record, 

flt-indx : integer, lat: time) 
(ac-indx in domain(sched) 

and flt-indx in domain(sched(ac-index).flight-sched) 
and fit = sched(iac-index).flight-sched(flt-indx) 
and mvr in flt.manifest 
and lat = flt.latest-departure-time -i- flt.flt-duration) 

Implies 
mvr.LAD >= (lat + flt.unload-time) 

This predicate expresses the constraint that every scheduled movement-record arrives and is 
unloaded before its latest arrival date^^. The generated code checks this constraint and 
propagates any time bounds changes that its enforcement causes. 

Similarly, air crew constraints are defined by reference to a mapping from air crews to a data 
structure containing the sequence of flights they are scheduled to be on, plus other associated 
information. These data structures are defined as part of the domain theory. They are not 
generated automatically. Data structure design and refinement is an explicit goal of the next 
generation KIDS-like environment, Specware (Srinivas and JuUig, 1994). 

PREFERENTIAL CONSTRAINTS 
A typical scheduling problem will involve some choices best expressed as preferences or 

prioritizations for the use of resources. Although some experiments have been done with KIDS 
where its search was based in part on a utility or cost function, the current IT AS scheduler does 
not explicitly handle preferential constraints at all. Instead, at points where choices are made 
about which resources to use, user-defined functions order the choices. We have experimented 
with a number of different ordering heuristics, to improve the overall quality of the schedules 
produced, from the user's perspective. 

There are functions (called variously ASSET-ORDER, AIR-CREW-ORDER ...) that define the 
order of consideration of each kind of resource: 

• Movement Requirements — E.g., sorted by their LAD, BAD, ALD. 

• Assets (aircraft) — E.g., prefer locally available aircraft. 

• Air Crews ~ E.g., prefer the most rested air crews from the aircraft's home unit. 

• Ground Crews — Prefer the earliest available crew. 

• Parking Spaces — Prefer the earliest available space. 

^^ A schedule is defined as a sequence of aircraft (which are data structures that contain their flight schedules, also 
sequences). Thus sched(i) indexes the f" aircraft, and domain(sched) is the integers [l..k] if there are k aircraft 
available. 
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SYNTHESIZING A SCHEDULER 

There are two basic approaches to computing a schedule: local and global. Local methods 
focus on individual schedules and similarity relationships between them. Once an initial 
schedule is obtained, it is iteratively improved by moving to neighboring structurally similar 
schedules. Repair strategies (Zweben et al., 1990; Minton et al, 1990; Biefeld and Cooper, 1990; 
Selman et al. 1992), and fixed-point iteration (Cai and Paige 1989), and linear programming 
algorithms are examples of local methods. 

Global methods focus on sets of schedules. A feasible or optimal schedule is found by 
repeatedly splitting an initial set of schedules into subsets until a feasible or optimal schedule can 
be easily extracted. Backtrack, heuristic search, and branch-and-bound methods are all examples 
of global methods. We used a global methods to generate the KTS family of schedulers, 
including IT AS. Other projects taking a global approach include ISIS (Fox and Smith, 1984), 
OPIS/DITOPS (Smith S., 1989) and MicroBoss (Sadeh, 1991) (all at CMU). 

Global search algorithms manipulate sets of candidate solutions. The principal operations are to 
extract candidate solutions from a set and to split a set into subsets. Derived operations include 
vsinons filters which are used to eliminate sets containing no feasible or optimal solutions. 
Starting from an initial set that contains all solutions to the given problem instance, these 
algorithms repeatedly extracts solutions, splits sets, and eliminates sets via filters until no sets 
remain to be split. The process is often described as a tree (or DAG) search in which a node 
represents a set of candidates and an arc represents the split relationship between set and subset. 
The filters serve to prune off branches of the tree that cannot lead to solutions. 

In a simple global search theory of scheduling, schedules are represented as maps from resources 
to sequences of trips, where each trip includes earliest-start-time, latest-start-time, travel-time, 
port of embarkation, port of debarkation, and a manifest describing the cargo. This type of 
schedules has the invariant (or subtype characteristic) that for each trip, the earliest-start-time is 
no later than the latest-start-time. A partial schedule is a schedule over a subset of the given 
movement records. Thus the root denotes the set of all candidate solutions found in the tree. 
This initial (partial) schedule is just the empty schedule — a map from the available resources to 
the empty sequence of trips. A partial schedule is extended by first selecting a movement record 
mvr to schedule, then selecting a resource r, and then a trip t on r (either an existing trip or a 
newly created one) — the triple <mvr, r, t> represents a possible refinement of the current partial 
schedule in the search space. The alternative ways that a partial schedule can be extended 
naturally gives rise to the branching structure underlying global search algorithms. 

A global search algorithm checks for consistency of the partial solution at each node it explores, 
pruning those nodes where the test fails. More generally, necessary conditions on the existence 
of feasible (or optimal) solutions below a node in a branching structure underlie pruning in 
backtracking and the bounding and dominance tests of branch-and-bound algorithms (Smith D., 
1987). 

CUTTING CONSTRAINTS AND TEMPORAL CONSTRAINT PROPAGATION 
A key technical achievement of the Kestrel work was discovering and implementing 

technology for generating efficient constraint propagation code. The speed of the KTS 
schedulers derives from the extremely fast checking and propagation of constraint information at 
every node of the runtime search tree. Whereas some knowledge-based approaches to 
scheduling will search a tree at the rate of several nodes per second, some of the synthesized 
schedulers search several hundred thousand nodes per second. 
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The idea is to derive and utilize the necessary conditions on feasibility of a candidate (partial) 
schedule. These conditions are called cutting constraints. The derived cutting constraints for a 
particular scheduling problem are analyzed to produce code that iteratively fixes violated 
constraints (for the current KTS schedulers, by tightening time bounds on reservations) until the 
cutting constraints are satisfied. This iterative process subsumes the well-known processes of 
constraint propagation in the AI literature and the notion of cutting planes from the Operations 
Research literature (Smith D., 1987). 

Kestrel researchers developed a general mechanism for deriving constraint propagation code and 
applied it to scheduling. This model of constraint propagation generalizes the concepts of 
cutting planes in the Operations Research literature (Nemhauser and Wolsey, 1988) and the 
forms of propagation studied in the constraint satisfaction literature (e.g. (Hentenryck, 
1989)i2)The use of fixed-point iteration for constraint propagation is similar to Paige's work on 
fixed-point iteration in RAPTS (Cai and Paige, 1989). 

KIDS generates propagation code automatically from a subset of the constraints given for a 
problem, using information in the global search theory schema as a guide. Stephen Westfold of 
Kestrel was responsible for the design and implementation of the propagation generation 
subsystem of KIDS (Smith D. and Westfold, 1995). The constraint propagation code that was 
generated for the original KTS scheduler is nearly as fast as handwritten propagation code for the 
same problem (cf. Appendix C in (Smith D. 1992)). The propagation code for the current IT AS 
is many times more complicated, and it would have been quite difficult to generate it by hand. 

The generated propagation code called at each node during search operates much the way a 
temporal constraint system does, although the code is targeted to the problem domain using 
specific knowledge of the particular constraints handled, the choices being considered at that 
point by the scheduler, and a logical analysis of the possible effects of tightening particular time 
bounds. The result is code tailored to the specific scheduling problem addressed, based on the 
constraints specified in the domain theory. The overall effect is very efficient pruning of the 
search space. At each node in the space, after each potential choice is made by satisfying all 
relevant non-temporal necessary constraints, the propagation code is run to see if the schedule is 
still viable. If so, the system recurs on the new refined state. Otherwise, a new choice is made. 

THE ITAS SCHEDULER ALGORITHM 

This section provides a brief outline of the generated scheduler's algorithm, in order to 
convey a sense of how the system works, and (hopefully) why it is fast. Due to space limitations, 
we have greatly simplified and summarized what goes on. The code itself is extremely complex 
and barely readable, with few function breaks and numerous generated intermediate variables. 

In ITAS, a schedule is a list of all of the aircraft, where each aircraft is an object that contains its 
(partial) schedule. A sortie is essentially a short sequence of flights that contains (at most) a 
positioning flight to get to a POE, a POE-to-POD flight, and a recovery flight away from the 
POD to a refueling or resting station. 

The top level function, KTS, just calls KTS-AUX, which recursively searches the space of partial 
schedules. KTS then tests to see if the result is defined and UNSCHED-MVRS is empty, in which 
case it extracts a solution from the current search state. 

12 For details of deriving pruning mechanisms for other problems see (Smith D. 1987, Smith D. 1990, Smith D. and 

Lowry, 1990, Smith D. 1991). 
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The arguments to KTS-AUX constitute a state in the search space: 

1. MVRS: a sorted hst of all original movement requirements 

2. ASSETS: a list of all available aircraft for the problem 

3. PORTS: a list of all of the ports in the problem 

4. AIR-CREWS:        a list of all air crews 

5. PSCHED:  a partially completed schedule 

6. SCHED-MVRS: all of the movement requirements that are already scheduled 

7. UNSCHED-MVRS: all of the remaining unscheduled movement requirements 

8. AIR-CREW-MAP: a mapping of air crews to their schedules 

9. GND-CREW-MAP: a mapping of ground crews to their schedules 

10. GS-FLTS: flights remaining to be scheduled for the current sortie 

11. PRK-SLOT-MAP: a mapping of parking spots at ports to their reservations 

KTS-AUX for the HAS problem splits the search into four main branches, as defined by the 
global search theory schema of the domain theory. The first two branches consider refinements 
of the current partial schedule for flights that are part of the current sortie. A current sortie exists 
while a movement requirement is being processed, but not all of the necessary flights 
(positioning, cargo-moving, depositioning) have been scheduled (so GS-FLTS is not empty). The 
third and fourth branches consider the next movement requirement, and search to place as much 
of that requirement as possible on an existing or new flight, respectively. In the process, a new 
sortie is created. 

Within each of the four main branches of KTS-AUX, one of two versions of 
SPLIT&PROPAGATE is called, to generate the proposed new state, and run the propagation 
routines for each temporal constraint that might be violated at that point. If 
SPLIT&PROPAGATE succeeds and returns a new state. When i^rS-A f/X finds a possible a new 
state, it calls SPLIT&PROPAGATE with these additional arguments S-State to represent the 
currently considered resources: 

1. FLT: the currently considered flight, if any 

2. POE-TO-POD-FLT: the load-carrying flight for this move reqt., if known 

3. AIR-CREW: the flight's air crew 

4. CURRENT-DUTY-DAY?: Boolean indicating to search in the current (next) duty day 

5. GROUND-CREW: the ground crew scheduled to unload the plane, if defined 

6. GND-CREW-RES: the reservation for that crew, if defined. 

7. PARKING-SLOT: the parking slot to be used at the destination, if defined 

The branches, considered sequentially, are: 

1    If GS-FLTS is not empty, consider all possible ground crews and parking slots for 
FLT=first(GS-FLTS) 
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and 
MVR =first(UNSCHED-MVRS), 

by calling SPLIT&PROPAGATEl on each, but considering only flights in the current duty 
day of the flight's air crew. 

2. If GS-FLTS is not empty, consider all possible ground crews and parking slots for 
FLT=first(GS-FLTS 

and 
MVR =first(UNSCHED-MVRS), 

by calling SPLIT&PROPAGATEl on each, but considering only flights in the next duty day 
of the flight's air crew. 

3. If GS-FLTS is empty, let 
MVR =first(UNSCHED-MVRS), 

and consider all cargo-carrying flights of aircraft in the current S-State's partial schedule that 
have remaining capacity for MVR by calling SPLIT&PROPAGATEl on each. 

4. If GS-FLTS is empty, let 
MVR =first(UNSCHED-MVRS), 

and consider all aircraft in ASSET-ORDER, calling SPLIT&PR0PAGATE2 on each, which 
creates a flight sortie for that MVR, and tests that requirement's LAD can be met. 

5. (optional) If no feasible (partial) schedule is found, relax the LAD of the last movement 
requirement. 

Each SPLIT&PROPAGATE function contains a version of the generated constraint checking and 
propagation code for a different set of conditions, depending on how the partial schedule has 
been changed. Essentially, these functions take the constraints stated in the problem description, 
in turn, and, if they are temporal constraints, propagate their bounds either forward or backward 
in time, depending on whether the earliest (ED'T) or latest departure time (LDT) of a flight is 
referenced in the constraint. For example, SPLIT&PROPAGATEl, which is used to schedule an 
existing flight in GS-FLTS, does the following: 

1. Check CONSISTENT-R UNWA Y-LENGTH. 

2. Check CONSISTENT-MISSION-TYPE. 

3. Generate a state vector with reservations for the Ground Crew, Air Crew, and Parking Slot 
assignments for the flight 

4. Propagate EDT, checking CONSISTENT-AIR-CREW-DUTY-DAY-EDT 

5. Propagate LDT, checking CONSISTENT-AIR-CREW-DUTY-DAY-LDT 

6. Propagate EDT, checking CONSISTENT-FLIGHT-SEPARATION-EDT for all aircraft used in 
PSCHED. 

7. Propagate LDT, checking CONSISTENT-FLIGHT-SEPARATION-LDT for all aircraft used in 
PSCHED. 

8. Propagate EDT, checking CONSISTENT-ALD for all MVR in the manifest. 

9. Propagate EDT, checking CONSISTENT-GROUND-UNLOAD-CREW-EDT  for all of the 
current ground crews at the destination. 
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10. Propagate LDT, checking CONSISTENT-GROUND-UNLOAD-CREW-LDT  for all of the 
current ground crews at the destination. 

Each propagation of the EDT or LDT above is based on recursively checking the corresponding 
constraints for CONSISTENT-FLIGHT-SEPARATION, CONSISTENT-AIR-CREW-DUTY-DAY, 
CONSISTENT-AIR-CREW-TRANSITION, and CONSISTENT-MOG. 

If the state is still defined (consistent) at the end of all of this, the proposed state is accepted, the 
movement requirement is marked scheduled and KTS-AUX is called recursively. 

SPLIT&PR0PAGATE2 is similar, but somewhat more complicated, since it generates a sortie of 
flights for the next movement requirement, and finds an aircraft and crew for that sortie. 

CONSTRAINT RELAXATION 
Many scheduling problems are over-constrained. Over-constrained problems are typically 

handled by relaxing the constraints. The usual method, known as Lagrangian Relaxation 
(Nemhauser and Wolsey, 1988), is to move constraints into the objective function. This entails 
reformulating the constraint so that it yields a quantitative measure of how well it has been 
satisfied. 

Our current experimental approach is to relax the input data just enough that a feasible solution 
exists (the optional branch 5 of KTS-AUX ). This approach is available as an option in ITAS to 
avoid an exhaustive search when no feasible solution may exist. This mode relaxes the LAD 
(Latest Arrival Date) constraint, when the current search reaches an impasse, rather than backing 
up. The relaxation takes place only when there is no feasible solution to the problem data. ITAS 
uses the difference between the arrival date of a trip and the LAD of a movement requirement in 
that trip as a measure of how much to relax the LAD. The relaxation is such as to minimally 
delay the arrival of the requirement to its POD. 

SYSTEM DESIGN AND USER INTERACTIONS ISSUES WITH ITAS 

The target user community for ITAS needed a tool that was fast, easy to use, flexible and 
portable. These factors motivated us to develop the system on Macintoshes, so that it could be 
deployed on a Mac Powerbook notebook computer. Given the speed of the scheduler, size of the 
problems to be faced, and the short scheduling horizon, we expect that most problems will run in 
under a minute with the current system. We used Microsoft FoxPro'" as the primary database and 
interface substrate, because it runs on Macintoshes and it was simple to understand. For the 
current prototype, data exchanges with the scheduler (running in Macintosh Commonlisp) are 
done using a simple combination of Applescript and file I/O. On our current suite of test 
problems, it takes as long to do the inter-module I/O as it does to build a schedule. 

The interface uses Apple's menu system and set of data entry screens, organized around two 
types of data: background data (for caches of locations (airports), units, aircraft types and 
characteristics, frequently used aircraft, etc.) and situation data, the current collection of aircraft, 
crews, ports and movement requirements for which a schedule is being built. The primary 
graphical schedule display is a mouse sensitive version of a schedule Gantt chart modeled after 
what the airlift schedulers call their 'Rainbow' chart, because the different types of aircraft are 
assigned different colors. 

There is also a flight editor that enables users to make modifications to the existing schedule 
before exporting it, and to iterate on a solution with the scheduler in the loop. Users of this tool 
need to be able to edit the schedules produced, when circumstances not captured by the available 
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constraints come up. We needed to make it possible for parts of the schedule to be specified 
directly by the user, and not revised by the scheduler. 

The IT AS domain is extremely reactive. The people who now generate schedules by hand do so 
a day at a time, since their information is often only good enough to estimate what will be 
required three, or even two days hence. Given a tool that will build schedules for them, they will 
likely extend their planning horizon (currently 10 days or less), at least for plan/resource 
evaluation purposes, but for day to day operations, they will continue to schedule only a few 
days at a time, and do daily rescheduling, as needed. 

In support of rescheduling, users can mark (or edit then mark) flights in the existing current 
schedule as Trozen'. ITAS-KTS takes as part of its input the leading frozen edge of a schedule, 
and uses it only to properly reflect resource availability, and so that those flights and their 
itineraries are reflected in its output. Because the ITAS-KTS scheduling algorithm generates 
candidate flights in a time forward fashion, a frozen flight necessarily means that all prior flights 
by that aircraft are also frozen. Thus the current scheduler does not give users as much 
flexibility to edit and then rerun schedules as is found in some other global-search based 
rescheduling systems whose search is not time ordered (e.g., (Smith S., 1989)) or in systems 
using local repair strategies (Zweben et al. 1990). We are planning to generate an IT AS 
scheduler that inserts flights in a schedule rather than adding them to the end of schedule. The 
interesting issue is to evaluate the resulting tradeoff between the slowdown due to greatly 
increased search tree branching and the extra flexibility gained during (re)scheduling. 

Our users also wished to be able to lay out patterns of flight itineraries for some sets of aircraft, 
based on their paper process. For example, it is customary for them, when scheduling a group of 
planes carrying loads to the same destination, to stagger the departure times to assure a uniform 
flow into an airport. We have not yet been able to reproduce this style of output automatically, 
but have provided a mechanism that allows users to lay out itineraries (sequences of ports to 
visit) for sets of aircraft, each departure offset by some specified time interval. Flights of this 
kind that are seen by ITAS-KTS as having fixed earliest departure times, but infinite latest 
departure times, so they can effectively be ''slid forward" in time to accommodate port and 
ground crew constraints. A planned extension of this capability is to provide these ''flows" to 
the scheduler as patterns that can be used repeatedly in normal scheduling, especially where the 
distance is great enough that an intermediate stop en route is required when transporting some 
cargo. The current scheduler does not support multi-leg trips between cargo sources and 
destinations. 

CONCLUSIONS 

This project was conceived of as a short term effort to demonstrate the potential and practical 
utility of automatically generated scheduling software. Given the previously demonstrated speed 
of the algorithms produced and this demonstration that the technique can be scaled up to realistic 
sets of constraints, we believe that those conclusions are clearly justified. This paper is an 
attempt to make clear how the current class of generated schedulers work, why they are fast, and 
what some of the tradeoffs were in terms of flexibility. We believe that it will often be better to 
generate, and make available through a single interface, a suite of quick schedulers, tailored to 
different constraints, than to have one scheduler that is slow on all problems. 

The great advantage of the synthesis approach is the ability to expose problem structure and 
exploit it by transformationally deriving efficient problem-specific code. In this case, the reuse 
of design knowledge (global search, constraint propagation) made an enormous difference in 
performance. Future directions include making it easier for domain experts to specify their own 
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constraints, and generate their own problem-specific schedulers, and broadening the classes of 
scheduling algorithms that can be generated, and the types of constraints that can be handled. 
The next generation of KIDS, Specware, will also address the need for more automatic and 
controllable data structure design. We should note that a preliminary test indicates that there is 
at least an order of magnitude speedup still to be had, since the current scheduler uses lists for all 
of its object data structures! Specware will be able to use a variety of data types, and generate 
code in other languages than LISP (e.g., C++). 

On the interface side, we seek to exploit the great speed of even the current class of schedulers 
by greatly increasing the interactive nature of the scheduling task, providing more automatic 
capabilities in the area of resource analysis and comparative schedule analysis. 

ACKNOWLEDGMENTS 
The authors would like to thank the following people for their important contributions to the 
IT AS effort: Don Roberts and John Lemmer of Rome Laboratory; Stephen Westfold of Kestrel 
Institute; and LtCol Chris Stuhldreher, Maj Keith LaCrosse, and Cpt Rob Burgess of the PACAF 
Airlift Operations Center. 

BIBLIOGRAPHY 

Applegate, D., and Cook, W. 1991. A computational study of the job-shop scheduling problem. 
ORSA Journal on Computing 3(2): 149-156. 

Biefeld, E., and Cooper, L. 1990. Operations mission planner. Technical Report JPL 90-16, Jet 
Propulsion Laboratory. 

Cai, J., and Paige, R. 1989. Program derivation by fixed point computation. Science of Computer 
Programming 11:197-261. 

Fox, M. S., and Smith, S. F. 1984. ISIS - a knowledge-based system for factory scheduling. 
Expert Systems 1(1):25—49. 

Fox, M.S., Sadeh, N., and Baykan, C. 1989. Constrained heuristic search. In Proceedings of the 
Eleventh International Joint Conference on Artificial Intelligence, 309—315. 

Hentenryck, P. V. 1989. Constraint Satisfaction in Logic Programming. Cambridge, MA: 
Massachusetts Institute of Technology. 

Luenberger, D. G. 1989. Linear and Nonlinear Programming. Reading, MA: Addison-Wesley 
Publishing Company, Inc. 

Minton, S., Johnson, M., Philips, A.B., and Laird, P. 1990. Solving large-scale constraint 
satisfaction and scheduling problems using a heuristic repair method. In Proceedings of the 
Eighth National Conference on Artificial Intelligence., 290—295. 

Nemhauser, G. L., and Wolsey, L. A. 1988. Integer and Combinatorial Optimization. New 
York: John Wiley & Sons, Inc. 

Sadeh, N. 1991. Look-ahead techniques for micro-opportunistic job shop scheduling. Technical 
Report CMU-CS-91-102, Carnegie-Mellon University. 

Selman, B., Levesque, H. and Mitchell, D. 1992. A new method for solving hard satisfiability 
problems. In Proceedings of the Tenth National Conference on Artificial Intelligence, 440-446. 

C-14 



Smith, D. R. 1987. Structure and design of global search algorithms. Technical Report 
KES.U.87.12, Kestrel Institute. 

Smith, D. R. September 1990. KIDS — a semi-automatic program development system. IEEE 
Transactions on Software Engineering Special Issue on Formal Methods in Software 
Engineering 16(9): 1024-1043. 

Smith, D. R., and Lowry, M. R. 1990. Algorithm theories and design tactics. Science of 
Computer Programming 14(2-3):305-321. 

Smith, D. R. 1991. KIDS: A knowledge-based software development system. In Lowry, M., and 
McCartney, R., eds., Automating Software Design. Menlo Park: MIT Press. 483-514. 

Smith, D. R. 1992. Transformational approach to scheduling. Technical Report KES.U.92.2, 
Kestrel Institute. 

Smith, D. R., and Westfold, S. J. 1995. Synthesis of constraint algorithms. In Saraswat, V., and 
Hentenryck, P. V., eds.. Principles and Practice of Constraint Programming. Cambridge, MA: 
The MIT Press. 

Smith, D. R., Parra, E. A., and Westfold, S. J. 1995. Synthesis of high performance 
transportation schedulers. Technical Report KES.U.95.6, Kestrel Institute. 

Smith, S. F., Fox, M. S, and Ow, P.S. 1986. Constructing and maintaining detailed production 
plans: Investigations into the development of knowledge-based factory scheduling systems. AI 
Magazine l{A):A5-6\. 

Smith, S. F. 1989. The OPIS framework for modeling manufacturing systems. Technical Report 
CMU-RI-TR-89-30, The Robotics Institute, Carnegie Mellon University. 

Srivivas, Y. V., and Jullig, R. 1994. Specware:"" formal support for composing software. 
Technical Report KES.U.94.5, Kestrel Institute. In Proceedings of the Conference on 
Mathematics of Program Construction, Kloster Irsee, Germany, July, 1995. 

Zweben, M., Deal, M., and Gargan, R. 1990. Anytime rescheduling. In Proceedings of the 
Workshop on Innovative Approaches to Planning, Scheduling and Control, 215-219. San Diego, 
CA: DARPA. 

C-15 



DISTRIBUTION LIST 

addresses 

DONALD ROBERTS 
RL/C3Cft 
525 SRQOKS RO 
ROME NT  13441-4505 

number 
of copies 

10 

OR MARK H BURSTEIN 
93N CORP 
10 MOULTON ST 
CAMSRIDGE MA  02138 

ROHE LA80RATQRY/SUL 
TECHNICAL LIBRARY 
26 ELECTRONIC PKY 
ROHE NY 13441-4514 

ATTENTION: OTIC-OCC 
OEFEMSE TECHNICAL INFO CENTER 
8725 JOHN J. KINGMAH ROAD, STE 0944 
FT. 3£LV0IRf VA 22060-6218 

fiOVANCtO RESEARCH PROJECTS AGENCY 
3701 NORTH FAIRFAX DRIVE 
ARLINGTON VA 22203-1714 

RELIABILITY ANALYSIS CENTER 
201 MILL ST. 
ROME NY 13440-8200 

RQNIE LA80RfiT0RY/C3A3 
525 BROOKS RO 
RQnE   HY 13441-4505 

ATTN:  RAY»^0MQ TAORQS 

GIDEP 
P.O. BOX 3Q00 
CORONA Ca 91718-8000 

DL-1 



flFIT ACADEMIC LI8RARY/L0EE 
2950 P STREET 
AREA 3, BLOG 642 
WRIGHT-PATTERSON AFB OH 45433-7765 

ATTN: R.L, DENISQN 
WRIGHT Lfl90RArORY/f^LPO, SLDG. 651 
3005 P STRHET, STE 6 
WRIGHT-PATTERSON AFS OH 45433-7707 

ATTN:  GILBERT G. KUPERMAN 
AL/CFHI, SLOG, 243 
2255 H STREET 
WRIGHT-PATTERSON AFB OH 45433-7022 

OL AL HSC/HRG, SLOG. 190 
2698 G STREET 
WRIGHT-PATTERSON AFS OH 45433-7604 

AUL/LSAD 
600 CHEHNAULT CIRCLE, SLDG. 1405 
MAXWELL AFS AL 36112-6424 

US ARMY STRATEGIC DEFEMSE COMMAND 
CSSD-IM-PA 
J'.O. BOX 150G 
HUNTSVILLS AL 35807-3301 

COMMANOIMS a?=FiceR 
HCCOSC ROr&E OIVISIQN 
ATTH: TECHNICAL LIBRARY,CODE 0274 
53560 HULL STREET 
SA«'^ OIEGO CA 92152-5001 

DL-. 



COMMANDE'?, TECHNICAL LIBRARY 
474700O/C0223 
NAVftlRWARCENWPNOIV 
1 AOHINISTRATIQN CIRCLE 
CHINA LAKE CA 93555-6001 

SPACE & NAVAL WARFARE SYSTEMS 
COMMAND CPl^W 178-1:) 
2451 CRYSTAL DRIVE 
ARLINGTON VA 22245-5200 

SPACE f. NAVAL WARFARE SYSTEMS 
CO^IMANO, EXECUTIVE DIRECTOR <PD13A) 
ATTN:  MR, CARL ANDRIAMI 
2451 CRYSTAL Q^IVE 
ARLINSTOf'j VA 22245-5200 

COMMANDER, SPACE & NAVAL WARFARE 
SYSTEMS COMMAND CCOOS 32) 
2451 CRYSTAL D^IVE 
ARLINGTON VA 22245-5200 

COR, US ARMY MISSILE COF^WAND 
RSIC, BLDG. 4484 
AMSMI-RD-CS-R, DOCS 
REDSTONE ARSEs^AL AL 35398-5241 

ADVISORY SRQUP ON ELECTRON DEVICES 
SUITE 500 
1745 JEFFERSON OAVIS HIGHWAY 
ARLINGTON VA 22202 

REPORT COLLECTION, CIC-14 
MS P364 
LOS ALAMOS NATIONAL LABORATORY 
LOS ALAMOS NM 8 7545 

AEDC LIBRARY 
TECHNICAL REPORTS FILE 
100 KINOEL DRIVE, SUITE C211 
ARX'OLO Af=s TN 37339-3211 

COMMANDER 
USAI5C 
ASHC-I«!D-L, BLDG 61801 
FT HUACHUCA AZ 85613-5000 

OL-3 



yS DEPT OF TRANSPORTfiTION LIBRARY 
FaiOA, M-457, RM 930 
800 INOEPENOENCt AVE, SW 
WASH OC 22591 

AIR WEATHER SERVICE TECHNICAL 
LIBRARY CFL 4414) 
859 BUCHANAN STREET 
SCOTT AF8 IL 62225-5118 

AFIWC/MSO 
102 HALL 8LVD, 
SAM ANTaNI^? TX 

STE 315 
78243-7016 

SOPTWARt ENGINEERING INSTITUTi 
CARNEGIE MELLON UNIVERSITY 
4500 FIFTH AVENUE 
PITT58URGH PA 15213 

NSA/CSS 
Kl 
FT MEAOe MD 20755-6000 

DCHA0/WICHITA/5KEP 
SUITE 3-34 
401 N -MARKET STREET 
WICHIia KS 6T202-2D95 

PHILLIPS LABORATORY 
PL/TL (LIBRARY) 
5 WRIGHT STREET 
HANSCOM AF9 HA 01731-3004 

THE mJRf.   CORPORATION 
ATTN: E. LADURE 
0460 
202 BURLINGTON RD 
BEDFORD «A 01732 

OUSDCP)/OTSA/DUTO 
ATTf4:  PATRICK G. SULLIVAN, 
400 ARWY NAVY DRIVE 
SUITE 300 
ARLINSTQ'.! VA 22202 

JR. 

DL-4 



OR JAMES ALLEN 
C0IS1PUTER   SCIENCE   OEPT/SLOG   RH 
UNIV OF ROCHESTER 
WILSON BLVD 
ROCHESTER MY 14627 

732 

OR YIGAL ARENS 
USC-ISI 
4676 ADMIRALTY 
MARINA OEL RAY 

WAY 
CA 90292 

OR RAY 8AR5ISS 
THE INST. FOR LEARNING SCIENCES 
NaRTHW=STERN UNIV 
1890 MAPLE AVe 
EVANSTQN IL 60201 

DR MARIE A. SIENKQWSKI 
SRI IiMTcR?JATIONAL 
333 RAVENSMOOD AVE/EK 337 
MENLO PRK CA 94025 

OR PIERO P. 80NISS0NE 
G£ CORPORATE RESEARCH £> DEVELOPMEMT 
BLDG Kl-RH 5C-32A 
P. 0. SOX 8 
SCHENECTADY NY 12301 

^1R. DAVID BROWN 
^UTRE 
EAGLE CENTER 3f SUITE B 
O'FALLON IL 62269 

OR MARK BURSTEI^J 
35N SYSTEMS fi TECHNOLOGIES 
10 MOULTON STREET 
CAMSRinGF MA 02138 

OR GREGG COLLINS 
INST FOR LEARNING SCIENCES 
1890 MAPLE AVE 
EVAMSTON IL 60201 

DR STcPHEi^ E. CROSS 
SCH01L Q^    CQ^^PUTFR SCIENCE 
CARNEGIE MELLON UMIVcRSI'^Y 
oiTTSSlJRGH PA 15213 

DL-,5 



OR THOMAS CHEATHAM 
HARVARD UhllVERSIir 
OIV OF APPLIFO SCIENCE 
AIKEN, RH 104 
CAMBRIDGE WA 02138 

MS. LAURA OAVIS 
COOE 5510 
NAVY CTR FOR APPLIEO RES IN 
NAVAL RESEARCH LASORATORY 
MASH OC 20375-5337 

A I 

OR THOi^AS L. DEAN 
BROWN UNIVERSITY 
OEPT OF COMPUTER SCIENCE 
P.O. sax 1910 
PROVIDENCE RI 02912 

OR WESLEY CHU 
COMPUTER SCIENCE DEPT 
UNIV OE CALIFORNIA 
LOS ANGELES CA 90024 

OR PAUL R. COHEN 
UNIV 0?= "lASSACHUSETTS 
COINS HEOT 
LEDERLE GRC 
AHHERST MA 01003 

OR JON OQYLE 
LABORATORY FOR 
MASS I^4STITUTE 
545 TECH?>!3LQ(;Y 

COMPUTER SCIENCE 
OF TECHNOLOGY 
SQUARE 

CAM3RIDGE «IA 02139 

OR. BRIAN 0RA33LE 
AI APPLICATIONS INSTITUTE 
UNIV QP   EOTHQURGH/SO S. ^RIOGI 
E0IN3URGH FHl LHN 
UNITED KINGDOM 

MR. SCOTT POUSE 
ISX CORPORATION 
4353   Pli.R¥    TERRACE   DRIVE 
WESTLAKE VILLAGE CA 91361 

MR. STU DRAPER 
MITRE 
EAGLE CENTER 3, SUITE 
Q»FALLON IL 62269 



DR HMiK   FOX 
D5PT OF INOUSTRIAL cHG 
UNIV 0= TORONTO 
4 TA[)DLE CREEK ROAD 
TORONTa, 3MTARIU, CANADA 

MR. GAR¥ EDWASDS 
ISX CO«?POR(\TION 
2000 H   .15TH ST, SUITE 
ARLINGTON, VA  22201 

1000 

HR. PUSS FREW 
GENERAL ELECTRIC 
MDORES^aWM CnRPGRATE 
8LDG ATK 145-2 
MOORESTQWN NJ 08057 

CEMTSR 

OR MICHAEL FEHLING 
STANFO'^0 UNIVERSITY 
ENGIME5PIN5 ECO SYSTEMS 
STANFORD CA 94305 

RICK HAYES-ROTH 
CIMFLEX-TEKNOWLEDGE 
1810 EHBARCAOERO RO 
PALO ALTO CA 94303 

DR JIM HENDL5R 
UNIV OF I^ACYLANO 
OEPT OP COMPUTER SCIENCE 
COLLEGF PA!?K MD 20742 

MS. YOLANOA GIL 
USC/TSI 
4676 ADMIRALTY 
MARINA DEL RAY 

WAY 
CA 90292 

MR. Js^ORTQN A. HIRSCHBERG, DIRI 
US ARHY RESEARCH LABORATORY 
ATTN;  A^SRL-CI-C8 
ABERDEEN PROVING GROUND MD 
21005-5066 

CTOR 

MR. MARK A. HOFFMAN 
ISX CORPORATION 
1165 NORTHCHASE PARKWAY 
MARIETTA GA 30067 

DL-7 



OR RON LARStN 
NAVAL CMD, CONTi^OL & QC£A 
RESEARCH, DEVELOP, T5=ST £. 
CODE 444 
SAN DIEGO CA 92152-5000 

i SUR CTR 
EVAL DIV 

OR CRAIG KM03LQCK 
usc-rsi 
4676 anMIRfiLTY 
MARINA DEL RAY 

WAY 
CA 90292 

MR. RICHARD LGW£ CAP-10) 
SRA CQ»PORATia?«i 
2300 15TH STREET NORTH 
ARLINGTON VA 2220.1 

nR).   TEO C. KRAL 
SSN SYSTEMS S. TECHNOLOGIES 
4015 HANCOCK STREET, SUI^E 
SAN OIEGO CA 92110 

101 

DR JOHN LOWRENCe 
SRI INTERMATIONAL 
ARTIFICIAL INTELLIGENCE 
333 RAVENSWOOO AVE 
MSNLO PARK CA 94025 

CENTER 

DR. ALAN MEYROHITZ 
NAVAL RESEARCH LABORATDRY/CODE 5510 
4555 OVERLOOK AVE 
WASH OC 20 375 

ALICE MULVEHILL 
88N 
10 MOULTON STREET 
CAMBRIOGE ♦'A  02238 

OR ROBERT MACGREGOR 
USC/ISI 
4676 ADMIRALTY WAY 
NIARINA DEL REY CA 90292 

DR DREW MCDERMOTT 
YALE COMPUTER SCIENCE DEPT 
P.O. BOX 2158, YALE STATION 
51 PROPSPECT STREET 
MEW HAVEN CT 06520 
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OR DOUGLAS SMITH 
KESTREL INSTTTUTE 
3260 HILLVISW AV^ 
PALO ALTO CA 94304 

OR, AUSTIN TATE 
AI APPLICATIONS INSTITUTE 
UNIV 05= EOINRUPGH 
90 SOUTH SRIOSE 
EOINBUl^GH EHl IHN - SCOTLAMD 

DIRECTOR 
DARPA/TTO 
3701 N. FAIRFAX OR,, 7TH 
ARLINGTON VA 22209-1714 

FL 

OR STfcfHEN F, SMITH 
R03QTICS INSTITUTe/CMU 
SCHENLEY PRK 
PITTSaURGH PA 15213 

OR. ABRAHAM WAKSHAN 
AFOSR/NM 
110 DUNCAN AVE 
BOLLIMG AF3 DC 

, SUITE E115 
20331-OGOl 

OR JONATHAN P. STILLMAN 
GENERAL ELECT8IC CRD 
1 RIVER RO, RM K1-5C31A 
P. 0, aox 8 
SCHENECTADY NY 12345 

OR EDWARD C.T. 'WALKER 
B8N SYSTEMS t   TECHNOLOGIES 
10 HOULTON STREET 
CAHSRIOGE N!A 02138 

OR aiLL SWARTOUT 
USC/ISI 
4676 ADMIRALTY 
MARINA OEL RAY 

WAY 
CA 90292 

SIO MIEDERHOLO 
STANFORD UNIVERSITY 
DEPT OF COMPUTER SCIENCE 
433 MIARGAR5T JACKS HALL 
STANFORD CA 94305-2140 
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OR KATIA SYCARA/THE ROBOTICS 
SCHOOL OF COMPUTER SCI^NCF 
CARNEGIE MELLON UNIV 
OOHE'?TY HALL R'" 3325 
PITTSBURGH PA 15213 

IMS' 

DR   OAVTD =. WILKINS 
SRI TNTFRNATIONAL 
ARTI-ICIAL INTELLIGENCE 
333 RAVENSMOOD AVE 
MENLO PARK Ca 94025 

C ENT?R 

DR. PATRICK WINSTON 
«^ASS INSTITUTE Q^   TECH^^QLOGY 
RH NE43-8.17 
S45 TECHNOLOGY SQUARE 
CAM3RIDGE ^A   02139 

DR JOH*^ P.    SCHILL 
ARPA/ISO 
3701 H   FAIRFAX DRIVE 
ARLINGTON VA 22203-1714 

DR STcVt ROTH 
C£?^TeR FOR INTEGRATED MANUFACTURING 
THE RQ90TICS INSTITUTE 
CARNEGIE MFLLON UNIV 
PITTSBURGH PA 1S213-3890 

OR YOAV SHOHAH 
STANFORD UNIVERSITY 
COMPUTER SCIENCE OePT 
STANFORD CA 94305 

MR. MIKE ROUSE 
AFSC 
7800 HAMPTDM RD 
NORFOLK VA 23511-6097 

OR LARRY BIRNaAUH 
NORTHWESTERN UNIVERSITY 
ILS 
1890 MAPLE AVE 
EVANSTON IL 60201 

MR. LEE ERMAN 
CIMFLEX TECKNOMLEOGE 
1810 EH3ARCAROER0 RO 
PALO ALTO CA 94303 
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DR MATTHEW L. GINSBERG 
CIRL, 126i 
UNIVERSITY OF OREGON 
EUGENE 0!? 97403 

MR IRA GQLD5TtlN 
OPEN SM POUNDATIOH RESEARCH 
ON? CA'^SRIDG? CENTER 
CAH3=!IDGE »1A 02142 

INST 

MR   JEF?= GRaSSHfiM* CO 
NCCOSC ROTE DIV 44 
5370 SILVERGATE AV5, ROOM 
SAM OI=GC CA 92152-5146 

1405 

JAN GUMTHER 
ASCENT TECHNOLOGY, INC. 
64 SIDNEY ST, SUITE 33(3 
CA^IBRIDGE MA 02139 

OR LYNETTE HIRSCHHAN 
MITRE CORPHRATIQN 
202 BUi?LINGTDM RO 
BEDFORD MA 01733 

OR ADELE £. HOWE 
COMPUTER SCIENCE OEPT 
COLORAOO STATE UNiy£??SITY 
FORT COLLINS CO 80523 

OR LESLIE PACK KAELSLING 
COMPUTER SCIENCE OEPT 
BROWN UNIVERSITY 
PROVIDENCE RI 02912 

OR SUBBARAO KAMBHAMPATI 
OEPT OP COMPUTER SCIENCE 
ARIZONA STATE UNIVERSITY 
TEMPF AZ 85287-5406 

MR THOMAS E. KAZMIERCZAK 
SRA CORPORATION 
331 SALEM PLACE, SUITE 200 
FAIRViey HEIGHTS IL 62208 
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OR CARLA GOMES 
ROME LA80RSTQRY/C3CA 
525 SSnOKS RO 
ROME Nf 13441-4505 

OR MARK T. MAYSUSr 
asSGCI^T?^ DIRECTOR 3F ftl CFMTER 
AOVAHCEO IK'FQ SYSTEHS TECH G041 
HIJRE   C05?P, SURLINGTON RO, MS K-329 
9E0F0Rn MA 01730 

Si!R DONALD P, MCKAY 
PARAMAX/UNISYS 
P 0 BOX 51? 
PAOLI PA 19301 

OR KAR5N MYERS 
AI CENTER 
SRI IMTERNTIONAL 
333 RAVEf^SWOOO 
MENLO PASK CA 94025 

OR MARTHA E POLLACK 
OEPT 0'= CQ^^PUTER SCIENCE 
UNIVERSITY OF PITTSBURGH 
PITTSBURGH PA 15260 

OR RAJ RED9Y 
SCHOOL OF CO,^PUrER SCIENCE 
CARNEGIE MELLON UNIVERSITY 
PITTSBURGH PA 15213 

OR EOWINA RISSLANO 
OEPT OF COMPUTER & INFO SCIENCE 
UNIVERSITY OF MASSACHUSETTS 
AMHERST i^A 01003 

OR MANUELA VELOSQ 
CARNEGIE MELLON UNIVERSITY 
SCHOOL OF COMPUTER SCIENCE 
PITTSBURGH PA 15213-3391 

OR DAN WELD 
OEPT OF COMPUTER SCIENCE & ENG 
MAIL STOP FR-35 
UNIVERSITY OF WASHINGTON 
SEATTLE WA 98195 

OL-12 



MR JOE ROBERTS 

4301 H   FAIRFAX DRIVE, 
ARLINGTON VA 22203 

SUITE 301 

OR TOH GARVEY 
ARPA/ISa 
3701 UnRJH   FAIRFAX ORIVt 
flRLINSTON VA 22203-1714 

MR JOHN H.   ENTZHINGtR, J^^ 
ARPA/OIRO 
3701 NORTH FAIRFAX DRIVE 
ARLINGTON VA 22203-1714 

DIRECTOR 
ARPA/ISO 
3701 MHSTH FAIRFAX DRIVE 
ARLIN&TOIM VA 22203-1714 

OFFICE OF THE CHIEF OF 
ATTN:  m   PAUL QUINN 
COOE 311 
800 N. QUINCY STREET 
ARLINGTON VA 22217 

NAVAL RSCH 

OR GREN STZIQNI 
OEPT OF COMPUTER SCIENCE 
UNIVERSITY OF WASHINGTON 
SEATTLE WA 98195 

OR GEOS?GE FERGUSON 
UNIVERSITY OF ROCHESTER 
COMPUTER STUDIES SLOG, RM 
WILSON SLVO 
ROCHESTER NY 14627 

732 

OR STEVE HANKS 
DEPT Or COf^PUTER SCIENCE & 
UNIVERSITY OF WASHINGTON 
SEATTLE WA 93195 

£NG*G 

MR OON MORROW 
BBN SYSTEMS S> TECHOLOGIES 
101 MOONGLOy m 
BELLEVTLLE XL 62221 
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OR CHRISTOPHER OWENS 
3flN SYSTEMS r.   TECHNOLQGIFS 
10 MOULTON ST 
CAWiSf?10GF '^A Q2i.33 

OR ADkAH    DARMICHE 
INFORMATION 11 DECISION SCIENCcS 
ROCKWELL IMT'L SCIENCE CFNT5R 
1049 CAMIhlO DOS RIGS 
THQUSAHD OARS CA    91360 

OR JAIHE CARBOMNEL 
THE PQ«.OTICS INSTITUTE 
CARNEGIE MELLOM UNIVERSITY 
OOHERTY HALL, ROOM 3325 
PITTSaURGH pa 15213 

DR MaRMAr-4 SAOEH 
THE ROBOTICS INSTITUTE 
CARNEGIE MELLON UNIVERSITY 
OOHERTY HALL, ROOf*! 3315 
PITTSaURGH PA 15213 

DR JAHtS CRAWFDRO 
CIRL, 1269 
UNIVERSITY OF OREGON 
EUGENE OR 97403 

DR TAIEB 2»UTI 
UNIVERSITY OF PITTS3USGH 
OEPT OF COMPUTER SCIENCE 
OITTS8L1RGH PA 15260 

DR MARIE DEJARDINS 
SRI INTERMATIONAL 
333 RAVENSWOOD AVENUE 
MENLO PARK CA 94025 

ROBERT J. KRUCHTEN 
HQ AMC/SCA 
203 M LOSEY ST, SUITE 1016 
SCOTT AFB  IL  62225-5223 

OR. OAVE GUNNING 
DARPA/ISQ 
3701 NORTH FAIRFAX DRIVE 
ARLINGTON VA  22203-1714 
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nS.   LEAH WONG 
NCCOSC ROTE DIVISIION 
53560 HULL STREET 
SAN DIEGO Cfl  92152-5001 

8. MCMIJRREY 
NCCOSC ROTS>e OIVISTQN 
CODE 47.1 
53560 HULL STREET 
SAN OIEGQ CA  95152-5001 

QlUm   ALBERT 
LQGICQM ITG 
2100 WASHINGTON BLVD 
ARLINGTON VA  22204 

0AVI9 HESS 
SAIC ATLANTIC PROGRAf-^S 
ONE ENTERPS?IS£ PARKWAY, SUITE 370 
HAHPTON VA  23666 

COL ROBERT PLE8ANEK 
OARPA/ISO 
3701 H   FAIRFAX OR 
ARLINGTON VA  22203 

ADAM PEASE 
TECKMO'-ILEDSE 
1810 E!^8ARCA0£R0 R^ 
PALQ ALTO CA  94303 

JI^l SHTOP 
ISX CORPQRATiaN 
4353 PARK TERRACE OR 
WESTLAKE VILLAGE CA  91361 

DR ROBER'^ NECHE5 
DARPA/ISn 
37 01 N FAIRFAX 03 
ARLINGTON VA  2 2203 

OAVID SWANSON 
NRAD 
5311:=? GATCHELL RD 
44207 BLQG 600 RH 422C 
SAN 01-GO CA  9 215 2 
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DR STEPHEM WESTFOLO 
KESTREL INSTITUTE 
3260 HILLVIEW ftVE 
PALO ALTO CA  94304 

MAJ TOMMY LANCASTER 
fJSTRANSC0«/TCJ5-SC 
508 SCGTT 
SCOTT AF8 

DR 
IL 62225-5357 

JAHES APPLEGATE 
MITRE 
fAGLE CENTER 
O'FALLON IL 

3, SUITE 
62 269 

SOFTWARE ENGINEERING INSTITUTi 
CARNEGIE ?1ELL0N UNIVERSITY 
4500 FIFTH AVE 
PITTSBURGH PA  15213 

QIRNSA 
R509 
9800 SAVAGE RO 
FT   MEADc m      20755-5000 

NSA/CSS 

FT MEAOe MD  20755-6000 

OC^^AO/WICHITA/GKEP 
SUITE B-34 
401 n   MARKET ST 
WICHITA KS  67202-2095 

PHILLIPS LASORATORY 
PL/TL CLIoRARY) 
5 WRIGHT STREET 
HANSCu*^ AF3 «^A  01731-3004 

THE MITRE CORPORATiaN 
ATTN: E LAOURE 
D460 
202 BURLINGTON RD 
BEDFORD HA  01732 
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OUSO CP)/OTSA/OUTO 
ATTN: PATRICK G. SULLIVAN, JR 
400 ARMY NAVY OR 
SiJITE 300 
ARLINSTON   VA      22202 

OU.S. GOVERNMENT PRINTING OFFICE:     1997-509-127-61005 
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MISSION 
OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Material 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, 
reliability science, electro-magnetic technology, photonics, signal 
processing, and computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


