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RELIABILITY ESTIMATION BASED UPON 

TEST PLAN RESULTS 

Robert R. Read 

Operations Research Deptartment 
Naval Postgraduate School 
Monterey, CA 93943 USA 

Abstract 

The report contains a brief summary of aspects of the Maximus 
reliability point and interval estimation technique as it has been applied to 
the reliability of a device whose surveillance tests contain a succession of 
stressful environments. The lower confidence limits appear to be ultra 
conservative. It is argued that the serial system approach to modeling of 
the cumulative effect of the stresses is inappropriate. Some alternative 
modeling is suggested. Some numerical comparisons are offered. 

1. Introduction. 

The Naval Surface Warfare Center in Crane, Indiana (NSWC - Crane) is engaged in a 

number of reliability assessment programs for ammunition and pyrotechnic devices. Often 

reliability figures must be developed from information derived from diverse sources. It is 

common to "bench" test the components and subsystems individually in order to 

understand the sources of unreliability. Such tests can be of the binary type, success or 

failure, and the component reliability information is integrated into a computation of the 

system reliability. 

Computational methodologies have been developed to support these activities [2,3,6, 

7,9,14]. Certain aspects are of immediate interest. Complicated systems are decomposed. 
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Those collections of components that utilize their units in either a purely series or purely 

parallel way are identified as subsystems. Their reliabilities are estimated from the 

component test data by either forming products of success rates (series case), or 

complementing the products of failure rates (parallel case). These subsystems are then 

viewed as pseudo components whose performances are treated as Bernoulli random 

variables with success rate estimated as just stated. Since a number of component tests 

were performed to produce these rates, not all having the same sample numbers, rules 

[8,9,14] have been developed to convert the collection of component sample numbers into 

a single number which is used to represent the number of times that the pseudo subsystem 

has been tested. Further, this number is then multiplied by the estimated reliability in order 

to obtain an 'equivalent number of successful tests'. Of course this latter number need not 

be an integer, but still it is regarded as being a binomial random variable in a sense to be 

described. 

The technique cascades. Several such pseudo components combined in either purely 

series or purely parallel ways are given like treatment; sample sizes and success counts of 

these new pseudo components are computed as before. Neither of these two quantities 

need be integral. Nonetheless, it is convenient to speak of them as sample sizes and 

binomial random variables. Only the ratio is required to produce a success rate, and the 

Incomplete Beta function can be used to compute confidence intervals. Thus, neither the 

sample 'size' nor the 'number' of success need be integers. Lower confidence bounds (lcb) 

of the ultimate system reliability are of particular interest. Generally the lcb's are 

conservative. 

Ideas similar to those just described are also being applied to treat the 'lot acceptance' 

and 'shelf life' problems; that is, the problem of the initial acceptance of a freshly 

produced lot and, at later times, the (periodic) surveillance testing of the accepted lots to 

determine if time, treatment and the environment have affected performance. Lots that 



may have deteriorated to below acceptable levels need to be identified and discarded. To 

this end the test plans contain provision for subjecting the items to sets of specified 

treatments designed to provide stress and hasten the exposure of defects. The test plans 

specify the partitioning of the selected sample into subsets such that the items in a single 

subset receive one and only one of the stresses. No stress at all is usually one of the 

subsets. Testing ultimately results in the destruction of the items. 

Although no single item is subjected to more than one of the stresses, there is a 

requirement that the reliability estimates refer to items that have received all of the 

stresses. This requirement is approached with the same methodology indicated in 

paragraphs two and three above, i.e. treat the various stresses as components of the 

system. In this case they are treated as independent components of a serial system. The 

lcb's produced when so doing appear to be overly conservative. 

The present report reviews this situation as it pertains to the marine smoke and 

illumination signal, MK 124 MOD 0, and presents some alternatives that may yield more 

realistic estimates. Section 2 contains a description of the performance characteristics of 

the device and the nature of the test plan. The mathematical modeling and notation are 

presented in Section 3. Section 4 contains summaries of six methods for treating the 

reliability calculation; two from the Sandia approach [2,14], two from the L.J. Gleser [6] 

approach, and two by the author. Next, the six methods are subjected to numerical 

comparison using two test cases in Section 5. This section also contains some simple 

modeling that could lead to improvement of the lcb's, but at the cost of heavier 

computation. Such computations have not been pursued. Finally some log linear modeling 

is proposed in Section 6. This is done to show how one could exploit more of the 

information that is contained in the test results and to suggest ways to set decision rules in 

anticipation of changes in the testing requirements. It is expected that the changes will not 

permit any failures at all in order to accept a lot. A summary section follows and contains 



commentary on the appropriateness of the methods. Several appendices are attached that 

document a variety of details that appear in support of the report. 

2. Description of Item Characteristics and Test Plan. 

The device is approximately 5.408 inches long and 1.7 inches in diameter. It weighs 

about half a pound. A flare candle is at one end and a smoke candle is at the other. There 

are five performance characteristics to be met by the signal: 

a. Display color:    Exhibit orange smoke from one end and a red flare from the 
other. 

b. Function: Ignite and produce the displays. 
c. Delay: No more than three seconds from initiation to the generation 

of display. 
d. Display Times:   The display time begins after the delay time ends; minimal and 

maximal display times are specified for each of the two types 
of signal. 

e. Safety: The igniter will not separate from the container during 
function (b). 

These are grouped and an item test can have one of four outcomes. That is, a test 

failure will be marked as being in exactly one of the first three outcomes; the fourth is for a 

successful test. These outcomes are: 

a&e. Color display or safety failure. 
b. Ignition failure. 
c&d. Delay or burning time specification failure. 
sue. Success; no functioning out of zone. 

Prior to testing, an item is subjected to one of the following treatments whose details 

are specified in [12]. It must withstand them without exploding or burning. 

i. Five foot drop. 
ii. Forty foot drop. 
iii. Vibration. 
iv. Temperature and Humidity. 
v. High Temperature. 
vi. Low temperature. 
vii. No stress. 



The system test procedures include visual inspection and X-ray prior to proceeding 

with the ultimate performance tests which are destructive in nature. Of course the 

inspections are non destructive and when they identify defects in the samples the lots are 

rejected out of hand. No further testing is done. No reliability computations are required. 

For those lots that pass the non destructive phase, there is the requirement that reliability 

figures should reflect the item's ability to perform after having been subjected to all of the 

stressful situations prescribed. 

A random sample of N items is selected from the lot. They are partitioned into k 

groups of size nt for i = 1,..., k. Thus each sample unit is subjected to exactly one of the 

treatments. Further, the test plan specifies the threshold for the allowable number of 

failures in each treatment group and by failure type. The common way is to provide a pair 

of values separated by a 'slash', e.g. 1/2, which means that a successful test in an outcome 

type is allowed to suffer zero or one failures among its n,- samples, but must be designated 

as an item failure if it fails in two or more cases. An excerpt of a test plan sheet is 

exhibited in Appendix A. For this plan k = 7. The present description has been curtailed to 

show only those aspects that may be of immediate use in the reliability computations. Full 

details can be found in [12]. 

3. The Reliability Model. 

The goal is to produce point estimates and lower confidence bounds for the reliability 

of the device, in this case the marine signal. The definition of reliability used is that the 

item must perform acceptably having been subjected to all of the specified stresses. 

The reliability computations presently in use [6,14] reflect models that assume a series 

system with independent components. Let us examine two of these models in order to 

understand what they reflect Much notation and jargon will be borrowed from Gleser [6]. 



Suppose there are k-1 stress treatments and an additional 'no-stress' condition 

bringing the total to k. This latter situation is tested directly. Gleser would call this the 

hazard of being produced, and it is marked first in the notation. That is, £j is the event 

that a freshly manufactured device performs acceptably. Let £,• be the event that the device 

survives the Ith stress environment for / = 2,..., k. The reliability, R, as defined above is the 

probability of the intersection of the events Ei,..., Ek. When a single stress (say the /*) is 

a treatment prior to a device test, the success probability is the probability of Ey and Ej. 

Thus the reliability goal can be represented as 

R = Pr{EinE2n...nEk} 

= Pv{E1}PT{E2nE3n...nEk}. (1) 

When one assumes the independence of the survivability of stresses, then one can express 

the reliability in terms of estimable quantities 

k 
R = Pr{El}JJP{Ei\El} 

2 

= Pr{ElnE2}...P{Elr,Ek}/[Pr{El}f-
2. (2) 

The quantities Ri = PrfjEj} and R; = Pr^ and E;} are directly estimable from the test 

using the proportion of successes. The interpretation depends upon what is meant by 

'surviving an environment'. In the large, it means acceptable performance after having 

been treated with the stress. If the conditional probabilities are not unity then some 

deterioration has taken place. We know not how to measure the deterioration nor how 

much of it is acceptable. The assumption of independence is made as an expedient since no 

modeling of this deterioration has been proposed. There is a latent "coherence" 

assumption that says that application of the stresses do not improve the reliability of the 

device. 



4. Methods. 

Three pairs of methods are outlined in this section; Sandia, Gleser, and NPS. The last 

is proposed by the author. The first two have been proposed in earlier times. It seems 

useful to summarize them all at once and in a common notation. Also, there are two 

versions of each (denoted I and II). 

Sandia: Let qh q2,..., q^ be the failure probabilities of the devices after subjection to the 

various stresses. That is, 

fc=Pr{Ef}    for* = l,2,...,£. 

Then 

Ri = Pifa n £,} = 1 - Pr{£f uE?} 

= l-qi-qi + Pr{EfnEf}. (3) 

Assume the last term is negligible 

PrJEf n E-} « 0, for all/ = 2,..., k. (4) 

The independence assumption allows us to write 

R2Rz...Rk =Pr{£i n£2}Pr{£l n£3}--Pr{£l nEk} 

«(1-tfi -<72)(l-<7l -?3)-(l-?l "?*) 

On the other hand 

k 
~l-(k-l)qi-^qi. 

2 

R = Pr{EinE2n...nEk} 

= 1-Pr{£fu££u...u£f} 

= l-ipr{£f} + 2EPr{£fn4} 
1 I'   j 

k 

1 

(5) 



Combine with (5) and get 

R = flRi + (k-2)qi. (6) 

Suppose rij is the number of items subjected to the rth stress (i = 1,..., k) and Xj is the 

corresponding failure count. We use the estimators /?, = 1 - Xj/rij. The approximation (6) 

suggests the estimator 

R = Rp + (k-2)ql (7) 

where Rp is an estimator for the product J^[ i?z-. 
2 

It remains to get the lower confidence bound; two methods have been put forth: 

original [14] and the Gleser [6] modification. We will call them I and H Both are based 

upon the use of an equivalent sample size computed from 

n   =R(l-R)/vax(R) (8) 

and an equivalent number of successes 

*      * ~ 
x =n R. (9) 

Then the (1 - a) level lower confidence bound is found by solving the equation 

a = m(lcb,x*,l + n*-x*) (10) 

where IB is the incomplete Beta function; see Appendix B. The difference in the two 

methods lies in the manner of estimating the variance of R in the denominator of (8). 

I. Use the independence of the two terms of (7) in the approximation 

var (*)- 

' k 

. 2 

k 

1-YlRi 
2 

mm M 
+ (*-2) 2<?l(1"|l) 

"1 
(11) 

The use of the min(«,) comes from the Lindstrom-Madden method [8,14]. 



n.       Gleser has suggested the use of an approximation formula for the variance of the 

product of independent proportions, see Appendix C. The variance of Rp, (the first term 

in (11)) is approximated by eq. (C.l). The estimated form is 

var 
( k     \ 

IM- 
V 2   ; 

" k 

. 2 7=2 2 

These two methods are called Sandia I and Sandia II. 

The Gleser Approach. 

Gleser [6] suggested more exploitation of the independence assumption that is implicit 

in the Sandia analysis. Specifically use estimators in equation (2), i.e. 

R = R2R3...Rk/(l-qlf-2. (13) 

The lower confidence bound uses the Sandia method, but the denominator of (8) is 

approximated using the delta method for the ratio (13) of two independent random 

variables. This is outlined in Appendix D and appears as formula (D.3). The approximate 

variance of (13) is 

(l-<7l) (1-tfi) 

and the point estimators Rj and fa can be inserted for computation. Then apply (8, 9, 10). 

This is Gleser I. 

Gleser further draws attention to the fact that R is the maximum likelihood estimator 

for R under the model that X; ~ Bin(/ij, Pj) for z = 1,..., £ and independent. 

For Gleser II the following crude ad hoc method is presented to improve the lower 

confidence bound. The point estimate is the same, (13). For an approximate lower 

confidence bound we exploit the fact that the numerator and denominator of (13) are 

independent random variables. These factors are direct point estimates of Rp and 



(1 - q{)k~2, respectively, and the ratio of these latter two parameters represent R. We can 

easily develop an upper confidence bound for (1 - q{) and a lower confidence bound for 

Rp. The ratio of these bounds, properly adjusted, can provide a lower confidence bound 

for R. The implementation proceeds as follows. Let 

{\cb{Rp)<Rp)   and   {(l-^)<ucb(l-^)} 

each be events of probability Vl-ec. Because of the independence, their joint occurrence 

has probability 1 - a. It follows that 

n. ^cb(Rp)l[xxcb(l-q{)f~2 <R}>\-(X (15) 

and hence that the ratio in the above event, denoted lcb(i?j, is a lower confidence bound 

of probability at least 1 - a. Gleser's numerical example shows that this bound can be a 

noticeable improvement over the earlier ones. See Table 2. 

NPS. 

This method was motivated by the fact that no item is subjected to more than one 

stress. So, the requirement of the device being able to function after being subjected to all 

of the stresses is not reflected in the testing program. The model adopted to use test 

results for this requirement is a highly conservative one. It says, in effect, that the device 

failure rate is the sum of the failure rates associated with the failure rates of items 

subjected to the single stresses. This form of accumulation is simple but overly 

conservative. Other models of damage accumulation can be rather complicated. 

The author suggests that this requirement be abandoned in favor of one that is 

compatible with the test plan. Suppose that the maximum stress failure rate is used instead 

of the sum to represent the device failure rate. This can be estimated directly from the 

tests. It recognizes that the various stressful environments have their individual effects, but 

they are not additive. There is an extreme effect that dominates the others. Perhaps the 
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deterioration in system performance is represented by a worst case or cases; there may be 

many paths to those cases and the level of such deterioration would increase with the 

continued application of stresses. The test plan merely specifies an amount and variety of 

stresses. 

This change in requirement is certainly far less conservative. It may be optimistic. It 

seems worthwhile to take a look at its effect. 

I. The new reliability parameter is RQ = max(R2,...,Rk). The empirical counterpart 

will be the point estimator 

Ro=max{R2,R3,...,Rk} (16) 

and an ad hoc lower confidence bound can be constructed as follows. Take the total 

sample size for the stressed tests 

k 

^0 = 5> (17) 
i=2 

and the equivalent number of successes assuming the common success probability 

X0=N0R0. (18) 

Treat XQ ~ Bin(iV0, RQ) and use the incomplete Beta function method, Appendix B. 

n. This method builds upon the log-linear analysis of the data (refined by failure 

category, see Section 6). The test plan, when viewed as a contingency table, shows that, 

on the basis of the data from tests that lead to product acceptance, there is no reason to 

claim that the treatment effects are not all the same. This supports a model that says the 

distributions in the columns of Table 3 are the same. In other words, we have no evidence 

that any of the Rh R2,..., R^ are different The data can be pooled into a single set of 140 

observations. Let RR be the probability of success and X be the total number of failures. 
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The point estimate of RR is 1 -X/140 and the lower confidence bound follows from usual 

binomial theory. 

5. Numerical Comparisons. 

Let us apply all six methods to two data sets. They appear in Table 1. The first, DS1, 

was used in [6] and likely is fictitious. It has k = 4. The second, DS2, is a threshold case in 

the template of Appendix A; it also appears in Table 3. The three rows are sample sizes, 

failure counts, and empirical success rates. 

Table 1. Data Sets 

Environment l 2 3 4 5 6 7 
DS1 Sample Size 20 20 32 20 — — — 

Failures 1 1 2 1 — — — 

R{ .95 .9375 .95 .95 — - - 

DS2 Sample Size 50 5 5 20 20 20 20 
Failures 3 1 0 1 2 2 1 

Ri .94 .80 1.00 .95 .90 .90 .95 

The application of the methods outlined produce the following results. (The DS1 results 

are not exactly the same as those in [6] because, using modern software, it is not necessary 

to interpolate from Incomplete Beta function tables.) The lower confidence level is 0.95. 

Table 2 

DS1 

DS2 

R 
lcb 

R 
lcb 

Sandia 
i n 

0.9461     0.9461 
0.3411     0.3681 

0.8848 
0.0686 

0.8848 
0.1582 

Gleser 
i n 

0.9375     0.9375 
0.3852     0.6186 

0.7969 
0.1753 

0.7969 
0.1478 

NPS 
i n 

0.9375     0.9457 
0.8684     0.8891 

0.800 
0.718 

0.9286 
0.8819 

Referring to DS1, the reliability estimates are generally high, but there is considerable 

dispersion in the lcb's. The Gleser techniques appear noticeably better than the Sandia 

ones. Although the NPS lcb's are even better, do not forget that they refer to less stringent 

12 



definitions of the device reliability. Turning to DS2, the reliability estimates are higher for 

the Sandia technique than for the Gleser. None of these two lcb's are high. DS2 may be 

special in that the observed maximal number of failures in the unstressed samples causes 

the reliability to appear higher than that for the stressed samples. It seems that this has an 

effect upon the lcb's as well. In contrast to this, the NPS values are attractive. But again 

one must not ignore the relaxation of the stringency of reliability definition. 

Simple Modeling. 

Although the test plan does not directly support the requirement that the reliability 

definition should include successful performance of the device after suffering all of the 

stresses, it may contain enough information to estimate model parameters that help 

describe that goal. The following describes a simple structure for accomplishing this. 

Suppose that we assert that 

R2=R1d2,   R3=Rld3,...,Rk = Rldk (19) 

where i?i is the probability that an unstressed device functions successfully and the {dj} 

represent the degradation of Ri due to the Ith stress treatment. All dj must satisfy the 

constraint that 0 < dj < 1 so a natural estimator would be 

d/ = min(l,Ä//^l) (20) 

and the estimator for the equation (1) definition ofR would be 

k 

*=AIL*i- (21) 
2 

The estimator (21) cannot be larger than (13). To see this, use (20) in (21) and rewrite 

it as 

R = nän(RhR2)nän(Rl,R3)...Tmx\(RhRlc)/(l-ql)
k~2 (22) 

13 



and compare with (13). On the other hand, the variance of the numerator of (22) is smaller 

than that of (13). Heuristically, this should produce a larger lcb for the reliability using 

methods similar to Gleser I and II. Unfortunately the sampling distribution of this statistic 

is quite awkward and the lower confidence bounds difficult to find. 

The situation improves slightly if we assume that all dj are the same, say d. Then d 

could be estimated with an average of the df from equation (20) and the point estimator 

would become 

A A.      I  *\k — 1 
R = R1[d) (23) 

but the lower confidence bound is still difficult 

Let us compute this point estimator for our two examples: 

DS1: £=.9376 DS2: R = .8 

In the second case the value is Ri because all Rj > Ri for i = 2,...,7. The point estimates 

are smaller but similar to those of the previous models. The advantage would appear in the 

lower confidence bound once such a computation has been developed. 

6. Log Linear Analysis. 

The result of testing each item in each group results in exactly one of the following 

four classifications mentioned in Section 2: 

a&e. Color display or safety failure 
b. Ignition failure 
c&d. Delay or burning time specification failure 
sue. No functioning out of zone; success. 

The first three classifications are failure types and the fourth identifies a successful test. So 

far no use has been made of the extra information. 

The test plan specifies the sample size for each group and threshold numbers for 

accepting the lot by classification for each group. Also there is a threshold failure count 

for the entire sampled set regardless of the group designation. For example, it may specify 

14 



20 Signals for testing in the transportation & vibration group, and allow no a&e failures; at 

most one b failure; and at most two c&d failures for passage of the lot through that group. 

Requirements of this type are listed for all the groups and, in addition, there is a restriction 

on the total number of failures, by classification type, for the entire sampled set 

There are also a number of non destructive inspections, but they are of no concern in 

the development of reliability analysis for the sampling plan outlined. 

Analysis. 

It is recommended that the test plan be viewed as a two-way table of counts as 

exemplified in Table 3. (This is DS2 with greater detail.) 

Table 3 

5ft 40ft tran&vib temp&hum hi temp lo temp no stress total 
a&e 0 0 0 0 0 0 0 0 
b 0 0 1 1 •o 0 1 3 
c&d 1 0 0 1 2 1 2 7 
sue 4 5 19 18 18 19 47 130 

total 5 5 20 20 20 20 50 140 

Each column of this table is the result of multinomial sampling from a four-cell 

classification and the column total marks the sample size. The columns are statistically 

independent and are identified with the stress groups. Let n(i, f) be the counts of items 

falling into the Ith classification in the;th stress group, and let p(i,f) be the multinomial 

probabilities for column./, i = 1,...,4. The maximum likelihood estimator for the reliability 

of the 7th group is «(4, /)/«(., J) where n(.,J) is the sample size for the;th group. These are 

the same /?,■ numbers used earlier. 

Let us fit a log-linear model, ref [1,4,5], to our two-way table. The general plan is to 

use the estimated cell probabilities from an acceptably fitted model. The minimum of the 

column reliabilities has been proposed for the estimated lot reliability. However the test 

15 



plan is such that the distinctions between the various stresses are not significantly different 

in the case of acceptable lots. (But this could change if the sample numbers were larger.) 

The common success probability is more readily estimated as done in NPS II. The log- 

linear model approach is described first 

Let m(i,f) be the expected value of log{n(i,f)}. The two-way layout model has been 

acceptably fitted for the test plans described above. In algebraic notation it is described by 

m(i, j) = ii + rf+ XBj    for i = 1.. .4 and; = 1.. .7 (24) 

and linear contrast constraints [1,4] on the |AZ j and \Xj\ apply. 

The maximum likelihood estimates are easily found (either algebraically or with commonly 

available statistical software). Indeed the cell probabilities are the classical contingency 

table estimators. When the above log-linear model is tested against the saturated model, 

the fit cannot be rejected for data that are accepted by the test plans. Hence it follows that 

this procedure is the classical test for a common (multinomial) column distribution for the 

four classified outcomes. This in turn justifies the pooling of the column data into a single 

four-celled multinomial distribution and using the empirical probability of the fourth row 

as the estimated reliability. For the example above this value is 

tf=™=.929. 
140 

The 95% lower confidence limit is .8819 (from usual binomial formulas). Finally, keep in 

mind that this example was chosen at the boundary threshold of acceptability according to 

the test plan rules. 

The model (24) could have included some interaction terms of the form 

m- 
A more detailed appropriate model could be developed. It would require more data in 

order to estimate its terms. Once done one can compute probabilities of the form 

16 



Pj(i) = Pr{ outcome i given stress j has been applied} = expj/* + A.f + Ay + XJf\.    (25) 

A model of this type could be used to allocate the total sample over the various stress 

types and to specify the decision rule for each outcome category. One objective would be 

to avoid the condition of a small sample size for a stress type having undue influence on 

the estimates of system reliability. (Such has occurred for the five foot drop.) 

It appears that new decision rules are being proposed; they do not allow any failures in 

order for a lot to be acceptable. It seems to this author that such a rule could produce 

considerable waste. The Operating Characteristic function is of the form 

Pn (26) 

where p is the probability of a successful test and n is the number of items tested. Suppose 

Pl is the lower limit specified for success. Values of pi around .95 and sample sizes of 

about 100 produce rather large Type I error probabilities. That is, many acceptable lots 

will be discarded 

It seems wiser to do more testing, keep better records, and develop sharper decision 

rules based upon careful modeling such as that suggested above. Then the process would 

be better understood and far fewer acceptable lots would be thrown out. 

7. Summary. 

The numerical comparisons in Table 2 for Sandia and Gleser serve to illustrate the 

conservative nature of the methods in place. The Gleser II method showed improvement 

for DS1, but seemed to break down when used with the DS2 data. The NPS approach 

shows attractive numbers but the interpretations are not the same. 

The author argues that the test plan cannot support the original goal; at least not 

without some additional modeling. To begin with, no sample is subjected to all of the 

stresses and hence there is no direct testing of this condition. Further, the requirement 

does not specify the order of application of the various stresses. For example, suppose that 
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the vibration stresses are applied first. They hasten the loosening of the seals. This in turn 

makes the sample more susceptible to the effects of the temperature and humidity stresses. 

On the other hand, suppose that the vibration stresses are applied after the temperature 

and humidity stresses. Then the original resistance to temperature and humidity is 

maintained. Other scenarios reflecting the importance of order can be concocted. 

The simple modeling in Section 5 may offer improvement, but it does nothing to offset 

the comments of the previous paragraph. The log linear analysis uses more of the test 

result information. If pursued, the results could be valuable for use in the design of test 

plans. The nature of the test plan can have substantial effects on the estimation of 

reliability. Recall that a single failure in the 5 ft drop stress can have a marked effect on the 

reliability estimate simply because of the low sample size. 

Unfortunately a large amount of data must be analyzed in order to pick up any 

interaction information. Also there is likely to be a manufacturer effect that should be 

considered. Another idea would be to apply multiple stresses to the individual items. The 

log linear analysis could be quite useful if it were decided to do this. Perhaps simply 

applying them in pairs could reveal useful information. 

At the present there appears to be no information relating the effect of sustaining a 

stress over a variety of time intervals, and not just those specified [12]. What is needed 

further is some information that can allow the modeling of the failure rates with time and 

how the various stresses compress time. 
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APPENDIX A 

Excerpts from Test Plan WS13697 

The following table summarizes the decision rules for the destructive testing portion of 

the cited inspection plans, Table I (plan A). The notation k/(k + 1) means: 'accept with k 

or fewer failures/reject with k + 1 or more failures'. The failure outcomes are as in 

Section 2. 

Stress Type 

L   Five foot drop 

ii.   Forty foot drop 

iii.   Vibration 

iv.   Temperature & Humidity 

v.   High Temperature 

vi.   Low Temperature 

vii.   No Stress 

total 

sample size    outcome    rule 

5 

5 

20 

20 

20 

20 

50 

140 

Group requirement (for the above tests) 140 

a&e 
b,c&d 
a&e 

b/c&d 
a&e 

b 
c&d 
a&e 

b 
c&d 
a&e 

b 
c&d 
a&e 

b 
c&d 
a&e 

b 
c&d 

b 
c&d 

0/1 
1/2 
0/1 
1/2 
0/1 
1/2 
2/3 
0/1 
1/2 
2/3 
0/1 
1/2 
2/3 
0/1 
1/2 
2/3 
0/1 
1/2 
3/4 

3/4 
7/8 

The group requirement places an additional limitation on the total acceptable number of 

failures, by failure outcome. (Of course no a&e failures are tolerated.) 
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APPENDIX B 

The Use of the Incomplete Beta Function to Produce Binomial Confidence Limits 

Suppose X is a binomial (n, p) random variable. The cumulative distribution function is 

related to the incomplete beta function by the well known formula 

p(x)=p{x<x}=f(jyj(i-PT-j 
y=ov 

= l-TB(p,x + l,n-x) 

and the incomplete beta function is given by 

lB(p,x + l,n-x) = n(n~l]^tx(l-t)n-x-ldt. 

The Maximus [9] methodology employs a technique of identifying subsystems of 

components with a fictional equivalent component. The reliability of the subsystem is 

estimated from the results of testing its components and the result is viewed as a binomial 

proportion. But the parameters of this equivalent component need not be integral 

numbers. That is, neither the sample size nor the number of successes need be whole 

numbers. This leads to the need for some interpolation formulae. Incomplete Beta function 

software is readily available, so one may as well use it. The coefficient in IB is related to 

the Beta function 

nln     j = [Beta(;t,/i-jt-l)] l 

and there is no longer any requirement that x and n be integers. 

To find a 1 - a level lower confidence limit for/? one seeks the solution of 

<*=itlnj)pj(l-p)n~j =m(p,x,n + l-x) 
j=x 

as a function of p. Whenx = 0, use zero for the lcb. 
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To find a 1 - a level upper confidence limit for/? one seeks the solution of 

a=jjnXj{l-p)n-j =l-W{p,x + l,n-x). 
j=0KJ/ 

When x = n, use unity for the ucb. Software for computing the inverse incomplete beta 

function is available. For example, the function qbeta(p,x+1, n-x) in the SPLUS 

package [13] is used in our work. 
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APPENDIX C 
The Variance of a Product of Independent Random Variables 

Let m = E(Xf) and of = V(Xj), for i = 1, 2,.... The formula for the variance of the 

product is: 

Var 

U=1   ; 
A, 

=nH+^)-Ä2-^- 
i 

From this one can verbalize the expanded series in the following way. It is a series of 

terms having k factors per term. Each factor is of second order, i.e. either a ß2 or a a2 

(with subscripts). Every combination of fß and o2 must appear, there is a term consisting 

of the product of all variances; there is no term which is the product of all squared means, 

so 2k - 1 terms in total. 

For our application the Xj are binomial proportions so 

ßi=Pi  and  aj=pi(l-pi)/ni    foii = l,...k. 

If the {«;} are large then we can ignore all terms that have two or more of the {of}. This 

leads to the simplified approximation 

viPlP2-Pk) = yL 
k Pi^zPiljji 

1 J*l 1=1 

rf\p-)y pipi~'pi-iPi+i'"p&~Pi) 
s. 1      )i=l 

ni 
(Cl) 

All of the ignored terms are positive. 
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APPENDIX D 
Details for a Delta Method 

We develop the delta method for approximating the variance of 

W = X/T (D.l) 

assuming X and Y are independent random variables and r is an integral constant 

Start with the first order Taylor expansion of W(X, Y) about (XQ, J0). 

W = x0/yr
0+(X-x0)/y

r
0-rx0(Y-y0)/y

r
0
+1. 

The remainder terms are assumed negligible when (XQ, JQ) is *he centroid of the (X, Y) 

distribution. Then 

Var(W) « Var{X)/ylr + (xQr2 /')$r+2)Var(F). (D.2) 

The present application calls for X = Rp, Y = (l - #,) and r = k-2. Then 

(Wl) (l-^l) 
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APPENDIX E 
Alteration of Empirical Proportion Estimates 

When X is distributed ~ Bin(n, p) the maximum likelihood estimator for p is the 

empirical proportion of successes. This produces values of zero or one in the extreme 

cases of X = 0 or X = n, respectively. In many applications such values are either 

inappropriate or unusable and relief from these extremes is required. A popular form of 

relief is to use one sided confidence limits as point estimates in these two cases. In the case 

X = n the 1 - a lower confidence limit for/? is computed from the equation 

pn = a. 

and in the case X = 0 the 1 - a upper confidence limit is computed from 

(1 -pY = a. 

The Maximus technology [9] uses a = 0.7. The following graphs provide some visual 

comparisons of estimators of this type by plotting the estimators for several choices of a 

as a function of n. Also included are some maximum likelihood estimate curves for values 

of X 'nearby'. The 'X = 0' curves are simply one minus the 'X = rC curves. 

High X Proportion Estimates 

Sample Size 
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