
NPS-SM-97-004

NAVAL POSTGRADUATE SCHOOL
Monterey, California

MCTSSA Software Reliability Handbook

Volume III

Integration of Software Metrics
with Quality and Reliability

by

Norman F. Schneidewind

18 June 1997

Approved for public release; distribution is unlimited.

Prepared for: U.S. Marine Corps
Tactical Systems Support Activity
Camp Pendleton, CA 92244-5171

, W^JO ViiX&liTj;/ i"TF -'MnTiB

NAVAL POSTGRADUATE SCHOOL
Monterey, California

RADM M.J. Evans
Superintendent

Richard Elster
Provost

This report was prepared for and funded by the U.S. Marine Corps, Systems Support
Activity, Camp Pendieton, CA92255-5171.

Reproduction of all or part of this report is authorized.

This report was prepared by:

/%%&g ii^^^^^Mw^t,
Norman F. Schneidewind
Department of Systems Management

Reviewed by:

Reuben T. Harris, Chairman
Systems Management Department

Released by:

D.W.Netzer, Associate Provost and
Dean of Research

REPORT DOCUMENTATION PAGE
Form Approved

OMB No 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

18 June 1997
3. REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE

MCTSSA Software Reliability Handbook
Volume III
Integration of Software Metrics with Quality and Reliability

5. FUNDING
RLACH

6. AUTHOR(S)

Dr. Norman F. Schneidewind

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Systems Management
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

NPS-SM-97-004

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Marine Corps Tactical Systems Support Activity
Box 555171 Building 31345
Camp Pendleton, CA 92255-5171

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this report are those of the authors and do not reflect the
official policy or position of the Department of Defense or the United States Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words.)

The purpose of this handbook is threefold. Specifically, it:
o Serves as a reference guide for implementing standard software reliability practices at Marine Corps Tactical Systems Support Activity
and aids in applying the software reliability model
o Serves as a tool for managing the software reliability program
o Serves as a training aid

This handbook consists of four volumes. The content of each of the volumes is as follows:
Volume I: Software Reliability Engineering Process and Modeling for a Single Function System
Volume II: Data Collection Demonstration and Software Reliability Modeling for a Multi-Function Distributed System
Volume III: Integration of Software Metrics with Quality and Reliability
Volume IV: Schneidewind Software Reliability and Metrics Models Tool List

14. SUBJECT TERMS 15. NUMBER OF PAGES

39

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

SAR
NSN 7540-01-280-5800 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std 239-18

MCTSSA SOFTWARE RELIABILITY HANDBOOK

VOLUME HI

INTEGRATION OF SOFTWARE METRICS WITH QUALITY AND RELIABILITY

18 June 1997

Revised: 15 July 1997

Dr. Norman F. Schneidewind

Code SM/Ss
Naval Postgraduate School

Monterey, CA 93943

Voice: (408) 656-2719
Fax : (408) 656-340 7

Email: schneidewind@nps.navy.mil

jfBß QXTALEY mmstmsD;

TABLE OF CONTENTS

INTRODUCTION 4
Definitions 5

OBJECTIVES 5

DISCRIMINATIVE POWER MODEL
 6

Discriminative Power Validation
 6

Quality Control 6
Discriminative Power 6

DISCRIMINATIVE POWER VALIDATION MODEL
 7

Stage 1: Identify Candidate Metrics
 7

Stage 2: Compute Critical Values
 8

Stage 3: Perform Contingency Table Analysis
 • 9

Application Contingency Table
 10

Statistical Validation
 11

Misclassification 11
Application Criteria
 13

Quality 13
Inspection 14
Summary of Validation Results
 14

Stage 4: Apply a Stopping Rule for Adding Metrics
 15

COMPARISON OF VALIDATION WITH APPLICATION RESULTS
 15

PREDICTABILITY VALIDATION MODEL
 16

Module Counts 17
Quality Factor Counts
 18

INTEGRATION OF METRICS WITH QUALITY AND RELIABILITY
 20

CONCLUSIONS 22

References 22

APPENDIX A. SAMPLE STATGRAPHICS METRICS ANALYSIS SESSION 25
DISCRIMINATIVE POWER VALIDATION MODEL 25
PREDICTABILITY VALIDATION MODEL 36

INTRODUCTION

Metrics should be collected for a purpose. A major purpose is to provide early indicators of software
quality problems which may occur later in the project. You want to correct these problems early in the
project when the cost is low. Thus there should be an integration of metrics, as early indicators, and the
software reliability that is achieved during test and operation. To support this objective, this model has been
developed to validate and apply metrics for quality control and quality prediction, with the primary objective
of using metrics as early indicators of software quality and reliability problems. Metrics and quality factor
data from the Space Shuttle flight software are used as an example. The approach is to integrate quality
control and prediction in a single model and to validate metrics with respect to a quality factor in accordance
with the metrics validation methodology developed in [SCH92] and included in the IEEE Standard for a
Software Quality Metrics Methodology (1061) [IEE93]. Although a quality factor is a direct measurement
of software quality and, hence, of more interest to customers and users than metrics, quality factors cannot
be collected early in a project. Thus the need arises to validate metrics, which developers can collect early
in a project, to act as a indirect measurement for the quality factor.

Boolean discriminant functions (BDFs) have been developed for use in the quality control and
prediction process. These functions provide good accuracy (i.e., <3%) for classifying low quality software.
This is true because the BDFs consist of more than just a set of metrics. They include additional information
for discriminating quality: critical values. Critical values are threshold values of metrics that are used to
either accept or reject modules when the modules are inspected during the quality control process. Note that
to reject a module does not mean to discard it. Rather it means that the module receives priority attention
to see whether its metric's values are a natural consequence of the functionality of the module. If this is not
the case, then the module may be a candidate for redesign or the design may be left intact and the module
given priority treatment during inspection and testing. Note that critical values should be determined
quantitatively and that they can be highly application and project dependent.

A series of nonparametric statistical methods is used to: 1) identify a set of candidate metrics for further
analysis, 2) identify the critical values of the metrics, and 3) find the optimal function of metrics and critical
values based on the ability of the BDF to satisfy both statistical and application (i.e., quality and cost)
criteria. The key to the approach is the use of validated metrics for early identification and resolution of
quality problems.

In order to investigate the feasibility of validating and applying metrics for controlling quality on large
software projects, metrics are validated on one random sample of modules and applied to three random
samples that are both disjoint among themselves and from the validation sample, drawn from a population
of 1397 modules of Space Shuttle flight software.

It is important to perform a marginal analysis when making a decision about how many metrics should
be used in quality control and prediction processes. If many metrics are added at once, the contribution of
individual metrics is obscured. Also, the marginal analysis provides an effective stopping rule for deciding
when to stop adding metrics. Certain metrics are dominant in their effects on classifying quality (i.e,
dominant metrics make fewer mistakes in classifying metrics than non-dominant ones) and that additional
metrics are not needed to accurately classify quality. This effect is called dominance. Related to the property
of dominance is the property of concordance, which is the degree to which a set of metrics produces the
same result in classifying software quality. A high value of concordance implies that additional metrics will

not make a significant contribution to accurately classifying quality; hence, these metrics are redundant. For
example, contrary to what you would expect, the metrics comments and statements, when combined in a
single BDF, were better indicators of the quality of the Space Shuttle software than complexity metrics.

Now definitions are provided that are necessary for understanding the metrics model in general and the
Space Shuttle flight software measurement environment in particular. This is followed by a description of
objectives. Then the Discriminative Power model and its approach to validation are explained. Next
validation results are compared with application results for quality control. Then the quality prediction part
of the integrated model is developed and validation and application results are compared. Last metrics are
integrated with quality and reliability. Appendix A contains a sample Statgraphics metrics analysis session.

Definitions

Quality Factor: An attribute of software that contributes to its quality [SCH92] where quality is the degree
to which software meets customer or user needs or expectations [IEE90]. For example, reliability, an
attribute that contributes to quality, is a factor. Quality factors are customer or user oriented. They are
attributes that customers or users expect to see in the delivered software. Ideally, you want to directly
measure quality factors like reliability. Unfortunately, direct measurement of reliability, for example, by
absence of failure during the specified mission, can only be obtained late in a software project during the
test and operations phases. Therefore the project may have to resort to an indirect measurement of quality,
such as number of discrepancy reports (DRs) written against modules, drcount, where the DRs record
deviations from requirements, as is the case with the Space Shuttle flight software. Thus, in this example,
drcount will be treated as a quality factor.

Quality Metric: A function (e.g., cyclomatic complexity M=e-n+2p) whose inputs are software data
(elementary software measurements, such as number of edges e, number of nodes n, and number of
connected components p, in a directed graph) and whose output is a single numerical value M that can be
interpreted as the degree to which software possesses a given attribute (cyclomatic complexity) that may
affect its quality (e.g., reliability) [IEE93, SCH92]. A special case is the identity function wherein the
software data (e.g., nodes) are used as metrics. This is the case in the Space Shuttle flight software
application.

OBJECTIVES

One objective of this handbook is to show that there are relationships between a quality factor and
metrics that allow you to control and predict the quality of software on large-scale projects such as the Space
Shuttle flight software. In this application the quality factor is number of discrepancy reports drcount written
against a module. A second objective is to integrate quality control and prediction in one model by deriving
prediction equations from the Contingency Table, which provides the framework for the control function.
Quality control is achieved by using metrics in BDFs during design to see whether the quality of the product
is within the thresholds of acceptable quality, and to indicate whether remedial action is necessary (e.g.,
detailed inspection and tracking of the quality of the product during test and operation). Quality prediction
involves computing point estimates and confidence limits of various quality and cost quantities to give
software managers forecasts of quality and the cost to achieve it.

The Boolean discriminant function (BDF) is a new type of discriminant for classifying software quality

5

and the application of Kolmogorov-Smirnov (K-S) distance is a new way to determine a metric's critical
value developed by the author. The author has also developed a new stopping rule for adding metrics: the
ratio of the relative improvement in quality to the relative increase in cost.

DISCRIMINATIVE POWER MODEL

Discriminative Power Validation

Using the metrics validation methodology [SCH92], and the Space Shuttle flight software metrics and
discrepancy reports, it is shown how to validate metrics with respect to the quality factor drcount. In brief,
this involves conducting statistical tests to determine whether there is a high degree of association between
drcount and candidate metrics.

Quality Control

The quality control function is applied to the Application Sample to flag software for detailed inspection
that is below quality limits. Quality control is the evaluation of modules with respect to predetermined
critical values of metrics. The purpose of quality control is to allow software managers to identify software
that does not meet quality requirements, early in the development process so corrective action can be taken
when the cost is low. The Discriminative Power validity criterion is applied to the Validation Sample to
validate metrics which will subsequently be used to control the quality of the Application Sample.
Discriminative Power is defined as follows [SCH92]:

Discriminative Power

Given matrix M^ of n modules and m metrics (i.e., nm metric values), vector Mcj of m metric critical
values, vector F; of n quality factor values, and sealer Fc of quality factor critical value, My must be able to
discriminate with respect to Fi5 for a specified Fc, as shown in the following relation:

Mij>Mcj-Fi>Fcand (1)
Mg < Mcj - Fs < Fc

for 1=1,2,...,n, and j=l,2,...,m with specified a, where a is the significance level of a statistical test for
estimating the degree to which (1) holds. In other words do the indicated metric relations imply
corresponding quality factor relations in (1)?

This criterion assesses whether Mcj has sufficient Discriminative Power to be capable of distinguishing
a set of high quality modules from a set of low quality modules. If this is the case, use the critical values
to flag modules of the Application Sample that appear to have unacceptable or questionable quality.

The desired quality level is set by the choice of Fc by validating Mcj with respect to Fc. If a low value of
Fc (e.g., low drcount implying high quality) is selected, it would produce an Mcj that would flag more
modules than would be the case if a high value of Fc (high drcount implying low quality) were selected.

Having defined the Discriminative Power validity criterion, a model is developed that will allow you
to validate metrics for controlling quality during software design. In order to validate metrics, it is necessary

to collect both quality factor data and metric data. This will only be feasible when development has
progressed to the point where quality factor data, such as discrepancy reports, are available (i.e., inspections
have been conducted or tests have been held). In contrast, when metrics are applied during design, only the
metric data are available. Thus metrics are used as estimates of quality until the point in development is
reached when the quality factor data are available. Also it is important to recognize that validation is
performed retrospectively. That is, with both metrics and quality factors in hand, you can evaluate how well
the metrics would have performed if they had been applied to the Validation Sample. If the metrics perform
well, then they are validated and you would expect that they will perform adequately when applied to the
Application Sample (not as well as when applied to the Validation Sample because of possible differences
in module characteristics between the Validation and Application samples) but better than if unvalidated
metrics are used.

DISCRIMINATIVE POWER VALIDATION MODEL

The basis of this model is a methodology for validating BDFs and their critical values that have the
ability to discriminate high quality from low quality. Now use a three stage process for selecting metrics for
quality control: 1) identify candidate metrics; 2) compute critical values of the candidate metrics; and 3) for
the set of candidate metrics and critical values, find the optimal combination based on statistical and
application (i.e., quality and cost) criteria.

1) Stage 1: Identity Candidate Metrics

In Stage 1 rank the metrics according to their ability to discriminate between two samples of modules:
FxF,. versus F>FC, which correspond to drcount=Q and drcounf>0, respectively, in the Space Shuttle flight
software. This analysis is independent of the metrics' critical values (i.e., only the ranks of the metrics are
used). The Kruskal-Wallis One-Way Analysis By Ranks (K-W) is used for this analysis. Data from the two
samples are ordered and ranked and mean ranks are computed for the sets. If the difference in mean ranks
is significant, as determined by the value of the test statistic and significance level (i.e., a«.005), you would
conclude that the corresponding populations differ; thus, metrics that pass this test are classified as candidate
metrics.

The thirteen metrics that were collected with the quality factor drcount, for 1397 modules written in
HAL/S, are defined in Table 1. The results of the K-W test for the Validation Sample are shown in Table
2; a bar diagram is shown in Figure 1 .Use the K-W test to identify the set of candidate metrics because: 1)
K-W has proven to be a good indicator of the relative ability of metrics to classify quality; 2) experience has
shown that only a subset of the collected metrics is necessary to identify the optimal BDF, as described in
Stage 3; and 3) the amount of computation involved for computing the Kolmogorov-Smirnov (K-S) distance
for all metrics (see Stage 2) is large. Thus you use the procedure of screening the metrics initially, using K-
W as the criterion, and including metrics for further analysis in Stage 2 and Stage 3 by selecting them from
the top in Table 2 (i.e., comments), and continuing the process until the stopping rule in Stage 3 (to be
described later) is satisfied.

Table 1: Metrics Definitions

Symbol

Metric Definition (counts per module) Metric Critical
Value

etal unique operator count El Elc

eta2 unique operand count E2 E2C

Til total operator count nl Tile

r,2 total operand count T)2 Tl2c

statements total statement count (executable code; no comments) S Sc

loc total non-commented lines of code L Lc

comments total comment count C cc

nodes total node count (in control graph) N Nc

edges total edge count (in control graph) E Ec

paths total path count (in control graph) P Pc

maxpath maximum path length (edges in control graph) MP MPC

avepath average path length (edges in control graph) AP APC

cycles total cycle count (in control graph) CY CYC

Stage 2: Compute Critical Values

Once the metrics have been ranked, critical values Mcj are computed, using a new method which the
author has developed, which is based on the Kolmogorov-Smirnov (K-S) test [CON71]. This method tests
whether the sample cumulative distribution functions (CDF) are from the same or different populations. The
test statistic is the maximum vertical difference between the CDFs of two samples (e.g., the CDFs of My for
drcount<¥c and drcount>Fc). If the difference is significant (i.e., a^.005), the value of My corresponding
to maximum CDF difference is used for Mcj. This relationship is expressed in equation (2). This concept is
illustrated in Figure 2, for the critical value of comments, where the CDFs for drcount=Q and drcounf>0 are
shown. In this example, Cc=38. This is the value of comments where there is the maximum difference
between the CDFs. Figure 3 shows the difference in CDFs for comments, where the curve reaches a
maximum at 38. Table 3 shows the metric critical values Mcj and the K-S distances for the thirteen metrics
of the Validation Sample. In addition, the ranks of K-W and K-S show that several metrics rank high with
respect to both statistics.

K-S(Mcj)=max{[CDF(Mij/(Fi<Fc)]-[CDF(Mij/(F>Fc)]}

Metrics are added to the BDF in the order of their K-S Distance.

8

(2)

Table 2: Krushal-Wallis Statistic and Kolmogorov-Smirnov Distance
for drcount=0 vs. drcounP-0

Validation Sample 1 (n=100 modules)

Krushal-Wallis Kolmogorov-Smirnov

Metric Statistic a Rank Critical
Value

Distance a Rank

comments 37.91 -lo-10 1 38 0.585 0.005 1

etal 26.03 -10-7 2 10 0.492 0.005 3

statements 25.60 =io-7 3 26 0.557 0.005 2

nodes 21.34 =io-5 4 11 0.487 0.005 4

edges 21.33 =io-5 5 10 0.487 0.005 4

loc 21.29 = 10"6 6 19 0.415 0.005 9

maxpath 19.18 -lo-5 7 8 0.452 0.005 6

paths 19.14 -lo-4 8 1 0.475 0.005 5

avepath 18.83 -lo-5 9 4 0.440 0.005 8

eta2 18.20 -lo-5 10 33 0.451 0.005 7

nl 16.57 -10-5 11 26 0.386 0.005 10

n2 15.70 -lo-5 12 21 0.386 0.005 10

cycles 6.59 -lo-2
13 o 0.220 0.050 11

Stage 3: Perform Contingency Table Analysis

For each BDF identified in Stage 2 use the Contingency Table (see Table 3) and its accompanying x2

statistic [CON71] to further evaluate the ability of the functions to discriminate high quality from low
quality, from both statistical and application standpoints. In Table 3, Mcj and Fc classify modules into one
of four categories. The left column contains modules where none of the metrics exceeds its critical value;
this condition is expressed with a Boolean AND function of the metrics. This is the ACCEPT column,
meaning that according to the classification decision made by the metrics, these modules have acceptable
quality. The right column contains modules where at least one metric exceeds its critical value; this
condition is expressed by a Boolean OR function of the metrics. This is the REJECT column, meaning that
according to the classification decision made by the metrics, these modules have unacceptable quality. The
top row contains modules that are high quality; these modules have a quality factor that does not exceed its
critical value (e.g., zero drcounf). The bottom row contains modules that are low quality; these modules have
a quality factor that exceeds its critical value (e.g., drcounOQ).

Equation (3) gives the module count, based on BDFs of F; and M^ that are calculated over the n modules
for m metrics. This equation is an implementation of the relation given in (1).

Cn=COUNT FOR ((F.sFc)A(M1iMcl)...A(M.sM.)...A(MoiMJ)
i-1

n

CI2=COUNT FOR ((F^F^ACCM>Mcl)...V(M.>M.)...V(M.m>MJ))
i-1

n

C2]=COUNT FOR ((F.>F^A(M1^Mc])...A(M.^M(.)...A(Ma^MJ)
i-1

n

C22=COUNT FOR ((F^F^ACCM >Mc])...V(M.>M)...V(Mm>MJ))

(3)

for j=l,...,m, and where COUNT(I)=COUNT(I-l)+l FOR Boolean expression true and
COUNT(I)=COUNT(I-l), otherwise; COUNT(0)=0.

The counts correspond to the cells of the Contingency Table, as shown in Table 3, where row and
column totals are also shown: n, nl5 n2, N„ and N2. The analysis could be generalized to include multiple
quality factors, if necessary; in this case the Contingency Table would have more than two rows. Note that
Table 3 is the Contingency Table for validation that contains both quality factor and metric data.

In addition to counting modules in Table 3, you must also count the quality factor (e.g., drcount) that
is incorrectly classified. This is shown as Remaining Factor, RF, in the ACCEPT column. This is the quality
factor count (e.g., drcount) on modules that should have been rejected. Also shown is Total Factor, TF, the
total quality factor count on all the modules in the sample. Lastly Table 3 shows RFM (Remaining Factor
Modules) that is the count of modules with quality factor count >0 (i.e., modules with Remaining Factor,
RF).

Table 3 and subsequent equations show an example validation, where the optimal combination of
metrics from Table 1 and their critical values for a random sample of 100 modules (sample 1), from the
population of 1397, is comments with a critical value of 38 and statements with a critical value of 26. The
critical values were obtained by using the ranking of metrics from the K-W test in Table 2 and applying the
K-S criterion as given by equation (2) and illustrated in Figures 2 and 3. Later it will be explained how you
would arrive at the particular combination of metrics as the optimal set. The reason that comments is the
leading metric in this example is that in the case of the Space Shuttle the comments are not limited to the
conventional comments of describing the purpose and action of the statements in a program. In addition to
this type of comment, and more important, the Space Shuttle comments contain a history of the experience
with a module: requirements, design approach, inspections, tests, discrepancy reports, etc. Thus, in general,
more comments, means more problems with the software!

Application Contingency Table

A different Contingency Table is used for the application of validated metrics. This table contains only
metrics data. This is shown in Table 4, where the "?" indicates that the quality factor data Ff is not available

10

when the validated metrics are used in the quality control function of the application project. During the
design phase of the application project, modules are classified according to the criteria that have been
described. A second disjoint random sample of 100 modules (sample 2) was used to illustrate the process.
Whereas 31 and 69 modules were accepted and rejected, respectively during validation, 40 and 60 modules
were accepted and rejected, respectively, during the application. The rejected modules would be given
priority attention, as was described previously.

Statistical Validation

Validate Mcj statistically by demonstrating that it partitions Table 3 in such a way that Cn and C22 are
large relative to C12 and C21. If this is the case, a large number of high quality modules (e.g., modules with
zero drcount) would have M^M^ and would be correctly classified as high quality. Similarly, a large
number of low quality modules (e.g., modules with drcounOO) would have M;>Mcj and would be correctly
classified as low quality. The degree to which this is the case is estimated by the chi-square (x2) statistic.
If calculated x2

c>X2
s (chi-square at specified as) and if calculated ccc<as, conclude that Mcj is statistically

significant.

Misclassification

As part of the statistical validation, estimate the Discriminative Power of Mcj by noting in Table 3 that
ideally Cn=n,=N1, C12=0, C21=0, C22=n2=N2. The extent that this is not the case is estimated by Type 1
misclassifications (i.e., the module has Low Quality and the metrics "say" it has High Quality) and Type 2
misclassifications (i.e., the module has High Quality and the metrics "say" it has Low Quality). Thus the
following measures of misclassification are defined:

Proportion of Type 1: P^C^/n (4)

For the example, P^i/lOO)* 100=1%.

Proportion of Type 2: P2=CI2/n (5)

P2=(27/l 00)* 100=27%.

Proportion of Type 1+Type 2: P]2
=(C2i+C12)/n (6)

P12=((l +27)/100)* 100=28%.

11

Table 3: Validation Contingency Table

C;<38AS^26
VCM^M.j)
Ci>38VS>26

High Quality
FS<FC

drcount=0

Cn=30 C12=27
Type 2

n,=57

Low Quality
F>F x 1 x c

drcount>0

c21=i
Typel

C22=42 n2=43

N,=31
RF=1, RFM=1

N2=69 n=100
TF=192

ACCEPT REJECT

Table 4: Application Contingency Table

Ci<38ASi<26
V(My>Mcj)
C>38VS>26

High Quality
?

Type 2
?

?

Low Quality
?

Typel
? ?

?

N,=40 N,=60 n=100

ACCEPT REJECT

12

Application Criteria

It is insufficient to just validate with respect to statistical criteria. In the final analysis, it is the
performance of the metrics in the application context that counts. Therefore, validate metrics with respect
to the application criteria: Quality and Inspection [SCH951, SCH952, SCH94].

Quality

First estimate the ability of the metrics to correctly classify quality, given that the quality is known to
be low:

LQC: Proportion of low quality (i.e., drcount>0) software correctly classified=C22/n2 (7)

For the example, LQC=(42/43)* 100=97.7%.

As part of the application validation, estimate the Discriminative Power of Mcj by summing quality
factor in the ACCEPT column in Table 3 to produce Remaining Factor RF (e.g., remaining drcount), given
by equation (8). This is the sum of F; not caught by inspection because (F^F^ACM^M^) for these modules.

RF-DF, FOR (F>Fc)A(M^McI)...A(M^M.)...A(Mta^MJ) (8)

forj=l,...,m.

Estimate the proportion of RF by equation (9), where TF is the total Fj prior to inspection.

RFP=RF/TF (9)

and

TF.£"F.
i.i

For the example, from Table 3 there is a one DR on one module that is incorrectly classified (i.e., RF=1).
The total number of DRs for the 100 modules is 192. Therefore, RFP=(1/192)*100=. 52%.

Estimate the density of RF by equation (10).

RFD=RF/n (10)

For the example, RFD=1/100=.01 drcount/module.

In addition estimate the count of modules remaining that have Fi>Fc. The proportion remaining RMP
is given by equation (11). Note that RMP=P, (proportion of Type 1 misclassifications) when Fc=0 (i.e., the
only modules with F>0 will be in the C21 cell); see Table 3.

13

RMP=RFM/n, (11)

where RFM is given by:

RFNUCOUNT FOR ((F.>0)A(M.1^Mc])...A(M..iM(.)...A(Mta^MJ)
i-1

For the example, there is one accepted module with one DR., so RMP=(1/100)* 100=1%.

Inspection

Inspection is one of the costs of high quality. You would be interested in weighing inspection
requirements against the quality that is achieved for various values of Mcj. Estimate inspection requirements
by noting that all modules with Mij>Mcj must be inspected; this is the count C12+C22. Thus the proportion
of modules that must be inspected is given by:

I=(CI2+C22)/n (12)

For the example, I=((27+42)/l00)* 100=69%.

Note that I is also equal to the proportion of modules rejected as a result of applying the critical values
of metrics to the modules (see Tables 3 and 4) and that 1-1 is equal to the proportion of modules accepted.
Thus, for the example, the proportion of modules accepted is 31%.

Part of this inspection is "wasted" because of Type 2 (C12) misclassifications (i.e., modules are inspected
because they are incorrectly flagged). Estimate wasted inspection by using equation (13) for Type 2
misclassifications:

RI=C22/C12 (13)

For the example, RI=42/27=1.56.

Summary of Validation Results

The results of the validation example are summarized in Table 5. The properties of dominance and
concordance, which were defined previously, were evident in these validation results and in other samples
that have analyzed from this data. That is, a point is reached in adding metrics where Discriminative Power
is not increased because: 1) the contribution of the dominant metrics in correctly classifying quality has
already taken effect and 2) additional metrics essentially replicate the classification results of the dominant
metrics — the concordance effect. This result is due to the property of the BDF used as an OR function,
which will cause a module to be rejected if only one of the module's metrics exceeds its critical value. These
effects can only be observed if a marginal analysis is performed, where metrics are added to the set one-by-
one and the calculations shown in Table 5 are made after each metric is added. For each added metric, its
effect is evaluated with respect to both statistical and application criteria. In addition, a suitable stopping rule
must be used to know when to stop adding metrics (see the next section).

14

Because, as mentioned earlier, the prominence of the metric comments was an unexpected result, an
analysis was made in Table 5 of the best set of metrics excluding comments. Thus entering the metrics in
the set according to the K-S rule, statements, etal, and nodes are shown in Table 5. Note that these three
metrics are required to reach the same value of RFP as comments alone and that other measures of quality -
LQC and RMP - are inferior. Thus comments alone is superior to the three metric set for this sample.

Table 5: Discriminative Power Validity Evaluation (Sample 1, n=100 modules)

Critical Values Statistical Criteria Application Criteria

Metric Set cc Sc Elc Nc
%

P2
%

l\ ccc for x2
c LQC

%
RFP
%

RMP
%

I
%

C 38 . 2 21 33.2 8.4x10"9 95.3 1.56 2 62
C,S 38 26 1 27 26.7 2.4xl07 97.7 0.52 1 69
C,S,E1 38 26 10 1 30 22.5 2.1xl0-6 97.7 0.52 1 72

S,E1,N 26 10 11 3 22 28.6 9.1xl0"8 93.0 1.56 3 62
K-S Distance 0.585 0.557 0.492 0.487

Note: No improvement in the quality criteria (LQC, RFP, RMP) was achieved when additional metrics
which are not shown in the table, were added.

Stage 4; Apply a Stopping Rule for Adding Metrics

One rule for stopping the addition of metrics to a BDF is to quit when RFP no longer decreases as
metrics are added. This is the maximum quality rule. This rule is illustrated in Table 5. When a third metric,
etal, is added, there is no decrease in RFP and RMP nor is there an increase in LQC. If it is important to
strike a balance between quality and cost (i.e., between RFP and I), add metrics until the ratio of the relative
change in RFP to the relative change in I is maximum, as given by the Quality Inspection Ratio in equation
(14), where /refers to the previous RFP and I:

QIR=(lARFP l/RFPj)/(AI/Ii) (14)

For the example, QIR(C-C,S)=((1.52-1.56 l)/L56)/((69-62)/62)=5.90.
QIR(C,S-C,S,E1)=0. Therefore, stop adding metrics after statements has been added. In this particular case,
equation (14) produces the same metric set as the maximum quality rule.

COMPARISON OF VALIDATION WITH APPLICATION RESULTS

A comparison of the Validation Sample with the Application Samples with respect to statistical criteria
is shown in Table 6. A comparison of the Validation Sample with the Application Samples with respect to
application criteria is shown in Tables 7 and 8. As was mentioned, only metrics data is available when the
validated metrics are applied. However, to have a basis for comparison with the validation results, the values

15

shown in Tables 6, 7, and 8 were computed retrospectively (i.e, after the application project was far enough
along to be able to collect the quality factor data). RMP is not shown in these tables because it is equal to
P, when Fc=0. The average relative error (validation-application/application) across eighteen comparisons
between sample 1 versus samples 2,3,4 in Tables 6,7, and 8 is 32.9% with a standard deviation of 31.3%.

Table 6: Statistical Criteria PI and P2 for Metric Set: C,S
Validation (Sample 1) vs. Application (Samples 2, 3, and 4), n=100 modules

PI : Percentage Type 1 Misclassification P2: Percentage Type 2 Misclassification

Sample 1 Sample 2 Sample 3 Sample 4 Sample 1 Sample 2 Sample 3 Sample 4

1.0 1.0 4.0 3.0 27.0 24.0 18.0 22.0

Table 7: Application Criteria LQC and RFP for Metric Set: C,S
Validation (Sample 1) vs. Application (Samples 2, 3, and 4), n=100 modules

LQC: Percentage of low quality software (drcounOO)
correctly classified

RFP: Percentage of quality factor {drcount) not caught by
inspection

Sample 1 Sample 2 Sample 3 Sample 4 Sample 1 Sample 2 Sample 3 Sample 4

97.7 97.3 91.1 93.2 .52 .62 3.01 1.50

Table 8: Application Criteria RFD and I for Metric Set: C,S
Validation (Sample 1) vs. Application (Samples 2, 3, and 4), n=100 modules

RFD: Density of quality factor (drcountlmodxAe) not caught
by inspection

I: Percentage of modules inspected

Sample 1 Sample 2 Sample 3 Sample 4 Sample 1 Sample 2 Sample 3 Sample 4

.01 .01 .05 .03 69 60 59 63

PREDICTABILITY VALIDATION MODEL

In addition to using the Contingency Table to classify the Validation Sample during validation and
subsequently to apply the results during quality control to the Application Sample, various quality
predictions, such as proportion of modules with zero and non-zero drcount and their confidence limits, are
derived from the Contingency Table. This approach has the advantage of integrating quality control and
quality prediction in one basic model. Thus the software developer is provided with validated metrics to both
control and predict the quality of the Application Sample. The predictions are used by the developer to
anticipate rather than react to quality problems. For example, the predictions provide indications of the
quality of the software that would be delivered to the customer if remedial steps (e.g., inspection, testing)
are not taken. In addition, the predictions provide indications of resource levels that are needed to achieve
quality goals. For example, if the predicted quality of the software is lower than the specified quality, the

16

difference would be an indication of increased usage of personnel and computer time during inspection and
testing, respectively. This is a new application of BDFs, developed by the author, used within the framework
of a Contingency Table, to both control and predict software quality.

Two type of predictions are made: module counts and quality factor counts. Using Validation Sample
1, point estimates and confidence intervals are computed for each and compared with the actual values of
Application Samples 2,3, and 4. The normal approximation to the binomial distribution is used to compute
the confidence limits of the proportions.

Module Counts

The proportion of modules that are either not flagged or flagged for inspection are estimated below and
are shown in Table 9.

N,: number of modules not flagged for inspection in the Validation Sample

N2: number of modules flagged for inspection in the Validation Sample

N,': number of modules not flagged for inspection in the Application Sample

N2': number of modules flagged for inspection in the Application Sample

o proportion of modules with F>0 (e.g., drcount>0 on module I) in the Validation Sample prior to
inspection and correction of defects:

pn=(COUNT FOR F>0)/n (15)
i-l

where COUNT(I)=COUNT(I-l)+l FOR expression true and COUNT(I)=COUNT(I-l), otherwise;
COUNT(0)=0.

o two-sided confidence limits of pn, used as predicted limits of pn' in the Application Sample:

CLp^piZ^ W> (16)

o proportion of modules not flagged for inspection (i.e., contained in Nj) with F>0 (e.g., drcount>0 on
module I) in the Validation Sample:

pN^RFM/N, (17)

o one-sided upper confidence limit of pNl5 used as predicted limit of pN,' in the Application Sample:

ULpN.-pN^
(PN,)(1-PN,)

N^T~ (18)

17

o proportion of modules flagged for inspection (i.e., contained in N2) with F>0 (e.g., drcount>0 on
module I) in the Validation Sample:

pN2=((pn)(n)-(RFM))/N2 (19)

o one-sided lower confidence limit of pN2, used as predicted limit of pN2' in the Application Sample:

LLpN.-pN.-Z,

Quality Factor Counts

N
(pN,)(l-pN,)
^ 2A V 2 (20)

N,

The proportion of quality factor count (e.g., drcount) on modules that are either not flagged or flagged
for inspection are estimated below and are shown in Table 9. In addition, point estimates of total quality
factor count on the modules is estimated and shown in Table 10.

o proportion of quality factor that occurs on modules not flagged for inspection (i.e., contained in N^ in
the Validation Sample:

d]=RF/TF (same as RFP if RFP is expressed as a proportion) (21)

o one-sided upper confidence limit of d„ used as predicted limit of d,' in the Application Sample

ULd,=d1+Za,
\

<W (22)
TF

o proportion of quality factor that occurs on modules flagged for inspection (i.e., contained in N2) in the
Validation Sample:

d2=l-d, (23)

o one-sided lower confidence limit of d2, used as predicted limit of d2' in the Application Sample:

LLd2=d2-Z.
N TF

o expected quality factor count (e.g., drcount) that occurs on modules not flagged for inspection (i.e.,
contained in N,1) in the Application Sample (note that no knowledge of the Application quality factor
is required to make this estimate):

D.KRF/N.XN/) (25)

o expected quality factor count (e.g., drcount) that occurs on modules flagged for inspection (i.e.,
contained in N2') in the Application Sample (note that no knowledge of the Application quality factor
is required to make this estimate):

18

D2=((TF-RF)/N2)(N2') (26)

Ten of the actual values out of the fifteen cases in Table 9 fall within the confidence limits. The average
relative error across six comparisons between sample 1 versus samples 2, 3, 4 in Table 10 is 28.9% with a
standard deviation of 30.7%.

Table 9: Validation Predictions (Sample 1) vs. Application Actual Values (Samples 2, 3, and 4)

Point
Estimates

(Sample 1)

95%
Confidence

Limits
(Sample 1)

Actual Values

Sample 2 Sample 3 Sample 4

P.':
proportion of modules with
drcounf>0

43.0% 33.3%-52.7% 37.0% 45.0% 44.0%

PN,':
proportion of modules not flagged
for inspection with drcount>0

3.22% LE 8.45% 2.50% 9.76% 8.11%

pN2':
proportion of modules flagged for
inspection with drcounOO

60.9% GE51.2% 60.0% 69.5% 65.1%

d,':
proportion of drcount on modules
not flagged for inspection

.52% LE 1.38% .62% 3.01% 1.50%

d2':
proportion of drcount on modules
flagged for inspection

99.5% GE 98.6% 99.4% 97.0% 98.5%

Table 10: Validation Actual Values and Predictions (Sample 1) vs. Application Actual Values (Samples 2, 3, and 4)

Actual
Sample 1

Predicted
Sample 1

Actual
Sample

Predicted
Sample 1

Actual
Sample 3

Predicted
Sample 1

Actual
Sample 4

D/:
expected drcount
on modules not
flagged for
inspection

1 1.29 1 1.32 5 1.19 3

D2':
expected drcount
on modules
flagged for
inspection

191 166.1 160 163.3 161 174.4 197

19

INTEGRATION OF METRICS WITH QUALITY AND RELIABILITY

For metrics to be used as leading indicators of quality and reliability, you must show that the modules
that cause failures have both a significant number of DRs written against them and that the modules' key
metrics have values that exceed the critical values. To make a tie with the Discriminative Power Validation
Model, an example of this process is shown in Table 11, listing the DR count and values for the thirteen
metrics of the five failures experienced by the Space Shuttle Operational Increment M (a series of builds to
meet mission requirements). Because software failures are rare on the Space Shuttle, only five failures are
shown. But this amount of data is sufficient to demonstrate the concept. In the table there are multiple DRs
written against the failed modules and the comments and statements values - this is the optimal set of
metrics derived in Table 5 ~ exceed their critical values by significant amounts. Also there are only three
cases (bolded) where any of the thirteen metrics' values do not exceed their critical value. Also, for
comparison purposes, the mean and median of the metrics' values for the 1397 modules that comprise the
Space Shuttle Operational Increment M are shown. In general, the metrics values of the failed modules are
far in excess of the mean and median.

Also, to make a tie with the Predictability Validation Model, the proportion of the 1397 modules that
have DRs was calculated as 41.2%, which is within the confidence limits predicted in the first row of Table
9.

20

Table 11: Integration of Metrics with Quality and Reliability

Failed Module DR and Metrics Counts, Operational Increment M

Metric Critical
Value

Module 1 Module 2 Module 3 Module 4 Module 5 Population
Module

Mean

Population
Module
Median

DRs 0 13 9 5 6 2 1.8 0

comments 38 448 204 79 434 68 134.6 64

etal 10 39 37 38 30 23 16.7 13

statements 26 366 261 103 563 36 70.2 23

nodes 11 70 10 21 137 16 28.4 7

edges 10 90 11 27 181 18 36.2 6

loc 19 484 326 140 485 83 132.3 61

maxpath 8 80 9 25 94 12 24.5 6

paths 1 10000 4 224 10000 6 1587.2 2

avepath 4 67.7 8.00 19.4 78.5 11.0 20.7 5

eta2 33 344 162 126 166 52 81.3 46

Til 26 1712 1089 386 2526 458 480.0 171

T)2 21 1026 608 292 1358 216 307.7 106

cycles 0 3 0 1 2 0 • 0.93 0

21

CONCLUSIONS

It is important when validating and applying metrics to consider both statistical and application criteria
and to measure the marginal contribution of each metric in satisfying these criteria. When this approach is
used, a point is reached where adding metrics makes no contribution to improving quality and the cost of
using additional metrics increases. This phenomenon is due to the metric classification properties of
dominance and concordance. The ratio of the relative improvement in quality to the relative increase in cost
provides a good stopping rule for adding metrics. The Boolean discriminant function (BDF) is a new type
of discriminant for classifying software quality to support an integrated approach to control and prediction
in one model, and the application of Kolmogorov-Smirnov (K-S) distance is a new way to determine a
metric's critical value. It was shown that the metrics comments and statements, when combined in a single
BDF, were better indicators (i.e., <3% error in classifying low quality modules) of the quality of the Space
Shuttle software than complexity metrics.

References

[CON71] W. J. Conover, Practical Nonparametric Statistics, John Wiley & Sons, Inc., 1971.

[IEE93] Standard for a Software Quality Metrics Methodology, IEEE Std 1061-1992, March 12,
1993.

[IEE90] IEEE Glossary of Software Engineering Terminology, 610.12, 1990.

[SCH951] Norman F. Schneidewind, "Software Metrics Validation: Space Shuttle Flight Software
Example", Annals of Software Engineering, J. C. Baltzer AG, Science Publishers, 1995.

[SCH952] Norman F. Schneidewind, "Controlling and predicting the quality of space shuttle software
using metrics", Software Quality Journal 4,49-68, (1995), Chapman & Hall.

[SCH94] Norman F. Schneidewind, "Validating Metrics for Controlling and Predicting the Quality of
Space Shuttle Flight Software", IEEE Computer, Vol. 27, No. 8, August, 1994, pp. 50-57.

[SCH92] Norman F. Schneidewind, "Methodology for Validating Software Metrics", IEEE
Transactions on Software Engineering, Vol. 18, No. 5, May 1992, pp. 410-422.

22

comments

etal

stmts

nodes

edges

loc

maxpath

paths

avepath

eta2

n1

n2

cycles

10 20 30 40

Test Statistic (sample 1, n=100 modules)

Figure 1. Kruskal-Wallis Analysis of Metrics

23

LL.
D
O

ts

8

TO

E

0.6

0.2

drcount=0

' I" i c-=38

0 400 800 1200 1600 2000 2400

comments

Figure 2. K-S Test: comments CDF (sample 1, n=»100 modules)

60r Cc=38

50
 /

o"
A
c 40 /
3

| /
■o \
fe 30 -
O I
^k j
o
ii

§ 20 1
| I
2,
C
S 10

0
1 I 1 1 1 !

0 10 20 30 40 50

comments

Figure 3. Difference in CDFs for comments (sample 1, n«100 modules)

- -

24

APPENDIX A. SAMPLE STATGRAPHICS METRICS ANALYSIS SESSION

DISCRIMINATIVE POWER VALIDATION MODEL

Comments are in parentheses to distinguish them from Statgraphics input and output. Equation, figure, and

table numbers refer to the text.

(Stage 1 of the metrics analysis: Identify Candidate Metrics)

Kruskal-Wallis One-Way Analysis by Ranks

Data: comments SELECT sample EQ 1

Level codes: drcount EQ 0

(This is an example of the setup menu for Stage 1 of the metrics analysis. The menu was entered from the

Analysis of Variance and Krusal-Wallis One-Way Analysis by Ranks. The metric comments and the

random Validation Sample 7 of 100 modules have been specified. The quality factor drcount is used to

separate the modules into two classes: drcount EQ 0 and drcount GT 0.)

Kruskal-Wallis analysis of comments SELECT sample EQ 1 by drcount EQ 0

Level Sample Size Average Rank

0 43 71.0581

1 57 34.9912

Test statistic = 37.913 Significance level = 7.39689E-10

(The 57 modules with drcount EQ 0 (Level 1) have an average rank of 34. The 43 modules with drcount

GT 0 (Level 0) have an average rank of 71. The K-W test statistic of 37 is highly significant as indicated

by the significance level, which is close to 0. These values are entered in Table 2 and used in Figure 1. This

process is repeated for the remaining 12 metrics.)

25

(Stage 2: Compute Critical Values)

Percentiles

Data vector: comments SELECT ((drcount EQ 0) AND (sample EQ 1))

Percentages comments

12.2807 = 0

17.5439 = 1

21.0526 = 2

22.807 = 3

22.807 = 4

35.0877 = 5

35.0877 = 6

35.0877 = 7

35.0877 = 8

35.0877 = 9

35.0877 = 10

35.0877 = 11

36.8421 = 12

38.5965 - 13

38.5965 = 14

(This is an example of Stage 2 of the metrics analysis. The menu was entered from Descriptive Methods

and Percentiles. The objective is to form and save a CDF of comments for modules with drcount EQ 0.

The left column is the CDF in % for the specified values of comments in the right column. This part of

the CDF is saved in a file for future computation of Cc. These values are used in Figure 2. Note that the

editor was used to replace the original title Percentiles with comments in the right column.)

Enter variable in which to save the percentages:

File: lowlevel Variable: commcdfOl

(The first part of the CDF for comments is saved in the file lowlevel as variable commcdfOl. The process

is repeated for the second part (comments=15,29 and third part (comments=30,44) except these parts are

appended to the original file. Three parts are sufficient to compute Cc.)

26

Percentiles

Data vector: comments SELECT ((drcount GT 0) AND (sample EQ 1))

Percentages comments

0 =0

0 = 1

0 =2

0 =3

0 =4

0 =5

0=6

0 = 7

0=8

0 =9

0 = 10

0 =11

0 =12

0 =13

0 =14

(The objective is to form and save a CDF of comments for modules with drcount GT 0. The left column

is the CDF in % for the specified values of comments in the right column. This part of the CDF is saved

in a file for future computation of Cc. These values are used in Figure 2. Note that the editor was used to

replace the original title Percentiles with comments in the right column.)

27

(The following is a continuation of Stage 2 designed to find the values of comments with the maximum

difference between the CDFs for drcount EQ 0 and drcount GT 0. This process is the implementation of

equation (2). The process starts with comments because it was the metric with the largest value of the K-W

statistic in Stage 1. When an equation is used for the first time, it is displayed by typing its name. When

an equation is computer, its name is preceded by the reserved word EVAL). Inputs have a colon prompt

and outputs have no colon.)

: maxcdfdiff (Equations for computing the maximum difference in CDFs)

MAX (EVAL (cdfdiff))

: cdfdiff

(ABS(ml-m2))/100

: ml GETS commcdfOl (The CDF for drcount EQ 0 is loaded)

: m2 GETS commcdfl 1 (The CDF for drcount GT 0 is loaded)

: EVAL maxcdfdiff (The maximum difference is computed and entered in Table 2)

0.585067

: (commcdf01/100)-(commcdfl 1/100)

0.122807 0.175439 0.210526 0.22807 0.22807 0.350877 0.350877 0.350877

0.350877 0.350877 0.350877 0.350877 0.368421 0.385965 0.385965

0.415341 0.415341 0.415341 0.415341 0.432885 0.432885 0.450428

0.450428 0.450428 0.450428 0.485516 0.485516 0.485516 0.485516

0.485516 0.485516 0.50306 0.50306 0.520604 0.538148 0.555692 0.555692

0.573235 0.585067 0.585067 0.585067 0.585067 0.561812 0.538556

0.538556

(The difference in the CDFs is computed. These data are used in Figure 3. The value of Cc=38 is
determined by counting from upper left, top to bottom, left to right, remembering that the first value is
C=0. The critical value of comments is entered in Table 2. This process is repeated for as many metrics as
are required in the Stage 3 analysis — see below — taking the metrics in the order of their K-W statistic.)

28

(Stage 3: Perform Contingency Table Analysis)

(The following are computations dealing with Stage 3 of the metrics analysis. Equation (3) is implemented

using a formula which can handle up to four metrics. There is also a version of this formula which can

handle up to six metrics. This example shows a BDF consisting of comments and stmts, and their critical

values. Because the computations for Cl 1, C12, C21, and C22 require that a metric be specified for each

of the four or possible six metrics, stmts is used in the computation three times. Because the and OR

Boolean operations are not affected by the repetition of metrics, the correct result is achieved. Various

quantities - both statistical and quality - are computed as part of the validation process).

: Ss GETS 1 (Load ID of random sample 1 of 100 modules)

(The following are Validation Sample 1 computations for Table 3)

: Cl 1 (Module count for Cn of equation (3) and Table 3)

SUM ((drcount LE Dc) AND (Ml LE Mlc) AND (M2 LE M2c) AND (M3 LE M3c) AND (M4 LE M4c)

AND (sample EQ Ss))

: Dc GETS 0 (Load critical value of drcount)

: Ml GETS comments (Load metric vector comments)

: M2 GETS stmts (Load metric vector stmts three times)

: M3 GETS stmts

: M4 GETS stmts

: Mlc GETS 38

: M2c GETS 26

: M3c GETS 26

: M4c GETS 26

:EVALC11

30

(Load critical value of comments)

(Load critical value of stmts three times)

(Compute module count for C,,. Enter in Table 3)

29

: C12 (Module count for C12 of equation (3) and Table 3)

SUM ((drcount LE Dc) AND ((Ml GT Mlc) OR (M2 GT M2c) OR (M3 GT M3c) OR (M4 GT M4c))

AND (sample EQ Ss))

: EVAL C12 (Compute module count for C,2. Enter in Table 3)

27

: C21 (Module count for C21 of equation (3) and Table 3)

SUM ((drcount GT Dc) AND (Ml LE Mlc) AND (M2 LE M2c) AND (M3 LE M3c) AND (M4 LE M4c)

AND (sample EQ Ss))

: EVAL C21 (Compute module count for C2]. Enter in Table 3)

1

: C22 (Module count for C22 of equation (3) and Table 3)

SUM ((drcount GT Dc) AND ((Ml GT Mlc) OR (M2 GT M2c) OR (M3 GT M3c) OR (M4 GT M4c))

AND (sample EQ Ss))

: EVAL C22 (Compute module count for C22. Enter in Table 3)

42

: Nl (Count of accepted modules in Table 3)

SUM ((Ml LE Mlc) AND (M2 LE M2c) AND (M3 LE M3c) AND (M4 LE M4c) AND (sample EQ Ss))

: EVAL Nl (Compute accepted module count. Enter in Table 3)

31

: N2 (Count of rejected modules in Table 3)

SUM (((Ml GT Mlc) OR (M2 GT M2c) OR (M3 GT M3c) OR (M4 GT M4c)) AND (sample EQ Ss))

: EVAL N2 (Compute rejected module count. Enter in Table 3)

69
30

:nl

(EVALC11)+(EVALC12)

: EVAL nl

57

:n2

(EVAL C21)+(EVAL C22)

: EVAL n2

43

(Count of high quality modules in Table 3)

(Compute count of high quality modules. Enter in Table 3)

(Count of low quality modules in Table 3)

(Compute count of low quality modules. Enter in Table 3)

: TF (Total drcount of equation (9) and Table 3)

SUM (drcount SELECT sample EQ Ss)

: EVAL TF (Compute total drcount. Enter in Table 3)

192

: RF (Remaining drcount of equation (9) and Table 3)

SUM (drcount SELECT ((Ml LE Mlc) AND (M2 LE M2c) AND (M3 LE M3c) AND (M4 LE M4c) AND

(drcount GT Dc) AND (sample EQ Ss)))

: EVAL RF (Compute remaining drcount. Enter in Table 3)

1

: RFM (Module count with remaining drcount of equation (11) and Table 3)

SUM ((drcount GT Dc) AND (Ml LE Mlc) AND (M2 LE M2c) AND (M3 LE M3c) AND (M4 LE M4c)

AND (sample EQ Ss))

: EVAL RFM (Compute module count with remaining drcount. Enter in Table 3)

1

: Ss GETS 2 (Load ID of random sample 2 of 100 modules)

31

(The following are Application Sample 2 computations for Table 4)

: EVAL Nl (Compute accepted module count. Enter in Table 4)

40

: EVAL N2 (Compute rejected module count. Enter in Table 4)

60

: Ss GETS 1 (Load ID of random sample 7 of 100 modules)

(The following are Validation Sample 1 computations for Tables 5-8)

•" PI (Proportion of Type 1 misclassifications of equation (4) and Tables 5 and 6)

((EVAL C21)/n)* 100

: EVAL PI (Estimate proportion of Type 1 misclassifications of. Enter in Tables 5 and 6)

1%

: P2 (Proportion of Type 2 misclassifications of equation (5) and Tables 5 and 6)

((EVAL C12)/n)* 100

: EVAL P2

27 % (Estimate proportion of Type 2 misclassifications of. Enter in Tables 5 and 6)

: P12 (Proportion of Type 1+Type 2 misclassifications of equation (6))

(((EVAL C12)+(EVAL C21))/n)*100

: EVAL P12 (Estimate Proportion of Type 1+Type 2 misclassifications)

28 %

: LQC (Proportion of low quality software correctly classified of equation (7) and Tables 5 and 7)

((EVAL C22)/(EVAL n2))*100

: EVAL LQC (Estimate proportion of low quality software correctly classified. Enter in Tables 5 and 7)

97.6744 %

32

: RFP (Proportion of RF of equation (9) and Tables 5 and 7)

((EVAL RF)/(EVAL TF))*100

: EVAL RFP (Estimate proportion of RF. Enter in Tables 5 and 7)

0.520833 %

:RFD

(EVAL RF)/n

: EVAL RFD

0.01 drcount/modale

:RMP

((EVAL RFM)/n)* 100

: EVAL RMP

1%

(Density of RF of equation (10) and Table 8)

(Estimate density of RF. Enter in Table 8)

(Proportion of RFM of equation (11))

(Estimate proportion of RFM)

: I (Proportion of modules that must be inspected of equation (12) and Tables 5 and 8)

(((EVAL C12)+(EVAL C22))/n)*100

:EVALI

69 % (Estimate proportion of modules that must be inspected. Enter in Tables 5 and 8)

: RI (Wasted inspection of equation (13)

(EVAL C22)/(EVAL C12)

: EVAL RI (Estimate wasted inspection)

1.55556

33

Contingency Tables

Table matrix: 2 2 RESHAPE 30 27 1 42 (Enter the values C„, C12, C2I, and C22)

(This is an example of the setup menu using Contingency Tables for Validation Sample 1 entered from

Categorical Data Analysis and Contingency Tables. The operation "2 2 RESHAPE" converts the vector

of cell values to a 2x2 matrix).

(Compute x2
c and ac for x2

c of Table 5)

Summary Statistics for Contingency Tables

Chi-square D.F. Significance

26.6941 1 2.38348E-7 with Yates correction (Enter in Table 5)

34

Ss GETS 2 (LoadIDofrandomsample2of 100 modules)

(The following are Application Sample 2 computations for Tables 6-8)

: EVAL PI (Estimate proportion of Type 1 misclassifications of. Enter in Table 6)

1 %

:EVAL P2

24 %

(Estimate proportion of Type 2 misclassifications of. Enter in Table 6)

: EVAL LQC (Estimate proportion of low quality software correctly classified. Enter in Table 7)

97.2973 %

: EVAL RFP

0.621118 %

: EVAL RFD

0.01 drcount/module

: EVALI

60 %

(Estimate proportion of RF. Enter in Table 7)

(Estimate density of RF. Enter in Table 8)

(Estimate proportion of modules that must be inspected. Enter in Table 8)

35

PREDICTABILITY VALIDATION MODEL

: pn (Proportion of modules with drcount>0 of equation (15) and Table 9)

(SUM((drcount GT 0) AND (sample EQ Ss)))/n

: Ss GETS 1 (Load ID of random sample 7 of 100 modules)

(The following are Validation Sample 1 point estimates used to compute confidence limits for

Application Sample 2 in Table 9)

: EVAL pn (Compute proportion of modules with drcount>0. Enter in Table 9)

0.43

: CLpn (Two-sided confidence limits of pn, of equation (16) and Table 9)

((EVAL pn)+(Z*(SQRT (((EVAL pn)*(l-(EVAL pn)))/n))))

: Z GETS 1.96 (Set computation for 95% upper confidence limit)

: EVAL CLpn (Compute upper confidence limit of pn. Enter in Table 9)

: Z GETS -1.96 (Set computation for 95% lower confidence limit)

: EVAL CLpn (Compute lower confidence limit of pn. Enter in Table 9)

0.332965

: pNl (Proportion of modules not flagged for inspection of equation (17) and Table 9)

(EVAL RFM)/(EVAL Nl)

: EVAL pNl (Compute proportion of modules not flagged for inspection. Enter in Table 9)

0.0322581

: ULpNl (Upper Confidence limit of pN, of equation (18) and Table 9)

((EVAL pNl)+(Z*(SQRT (((EVAL pNl)*(l-(EVAL pNl)))/(EVAL Nl)))))

: Z GETS 1.6449 (Set computation for 95% confidence limit)

36

: EVAL ULpNl (Compute upper confidence limit of pNl. Enter in Table 9)

0.0844565

: pN2 (Proportion of modules flagged for inspection of equation (19) and Table 9)

((n*(EVAL pn))-(EVAL RFM))/(EVAL N2)

: EVAL pN2 (Compute proportion of modules flagged for inspection. Enter in Table 9)

0.608696

: LLpN2 (Lower confidence limit of pN2 of equation (20) and Table 9)

((EVAL pN2)-(Z*(SQRT (((EVAL pN2)*(l-(EVAL pN2)))/(EVAL N2)))))

: EVAL LLpN2 (Compute lower confidence limit of pN2. Enter in Table 9)

0.512052

: dl (Proportion of drcount that occurs on modules not flagged for inspection of equation (21) and Table 9)

(EVAL RF)/(EVAL TF)

: EVAL dl (Compute proportion of drcount that occurs on modules not flagged for inspection. Enter in Table 9)

0.00520833

: ULdl (Upper confidence limit of d, of equation (22) and Table 9)

((EVAL dl)+(Z*(SQRT (((EVAL dl)*(EVAL d2))/(EVAL TF)))))

: EVAL ULdl (Compute upper confidence limit of d,. Enter in Table 9)

0.0137532

: d2 (Proportion of drcount that occurs on modules flagged for inspection of equation (23) and Table 9)

(1-EVAL (dl))

: EVAL d2 (Compute proportion of drcount that occurs on modules flagged for inspection. Enter in Table 9)

0.994792

37

: LLd2 (Lower confidence limit of d2 of equation (24) and Table 9)

((EVAL d2)-(Z*(SQRT (((EVAL dl)*(EVAL d2))/(EVAL TF)))))

: EVAL LLd2 (Compute lower confidence limit of d2. Enter in Table 9)

0.986247

(The following are Validation Sample 1 expected value computations for Table 10)

: Dl (Expected drcount that occurs on modules not flagged for inspection of equation (25) and Table 10)

((EVAL RF)/(EVAL Nl))*Nla

: Nla GETS 31 (Computation of D, is for Validation Sample 1. Thus, Nla=Nl = "31", computed in an earlier step)

: EVAL D1 (Compute expected drcount that occurs on modules not flagged for inspection. Enter in Table 10)

1

: D2 (Expected drcount that occurs on modules flagged for inspection of equation (26) and Table 10)

(((EVAL TF)-(EVAL RF))/(EVAL N2))*N2a

: N2a GETS 69 (Computation of D2 is for Validation Sample 1. Thus, N2a=N2 = "69", computed in an earlier step)

: EVAL D2 (Compute expected drcount that occurs on modules flagged for inspection. Enter in Table 10)

191

: Ss GETS 2 (Load ID of random sample 2 of 100 modules)

(The following are Application Sample 2 proportions actual values computations for Table 9)

: EVAL pn (Compute proportion of modules with drcount>Q. Enter in Table 9)

0.37

: EVAL pNl (Compute proportion of modules not flagged for inspection. Enter in Table 9)

0.025

: EVAL pN2 (Compute proportion of modules flagged for inspection. Enter in Table 9)

0.6
38

: EVAL dl (Compute proportion of drcount that occurs on modules not flagged for inspection). Enter in Table 9)

0.00621118

: EVAL 62 (Compute proportion of drcount that occurs on modules flagged for inspection). Enter in Table 9)

0.993789

: Ss GETS 1 (Load ID of random sample 7 of 100 modules)

(The following are Application Sample 2 expected value computations for Table 10. However,

values from Validation Sample 1 are used except for Nla and N2a)

: Nla GETS 40 (Computation of D, is for Application Sample 2. Thus, Nla=Nl = "40", computed in an earlier step)

: EVAL Dl (Compute expected drcount that occurs on modules not flagged for inspection. Enter in Table 10)

1.29032

: N2a GETS 60 (Computation of D2 is for Application Sample 2. Thus, N2a=N2= "60", computed in an earlier step)

: EVAL D2 (Compute expected drcount that occurs on modules flagged for inspection. Enter in Table 10)

166.087

39

DISTRIBUTION LIST

Agency No. of Copies

Defense Technical Information Center 2
8725 John J. King Rd., STE 0944
Ft. Belvoir, VA 22314

Dudley Knox Library, Code 013 2
Naval Postgraduate School
Monterey, CA 93943

Office of Research Administration, Code 91 1
Naval Postgraduate School
Monterey, CA 93943

Department of Systems Management Library, Code SM/Eb 1
Naval Postgraduate School
555 Dyer Rd Rm 239 Bldg. 330
Monterey, CA 93943

Commanding Officer 1
Marine Corps Tactical Systems Support Activity
Box 555171
Camp Pendleton. CA 92055-5171

Capt. Kenneth Warburton 5
Marine Corps Tactical Systems Support Activity
Box 555171
Bldg. 31345
Camp Pendleton, CA 92055-5171

Dr. Norman F. Schneidewind 10
Naval Postgraduate School
Code SM/Ss
Monterey, CA 93943

