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INTRODUCTION 

Metrics should be collected for a purpose. A major purpose is to provide early indicators of software 
quality problems which may occur later in the project. You want to correct these problems early in the 
project when the cost is low. Thus there should be an integration of metrics, as early indicators, and the 
software reliability that is achieved during test and operation. To support this objective, this model has been 
developed to validate and apply metrics for quality control and quality prediction, with the primary objective 
of using metrics as early indicators of software quality and reliability problems. Metrics and quality factor 
data from the Space Shuttle flight software are used as an example. The approach is to integrate quality 
control and prediction in a single model and to validate metrics with respect to a quality factor in accordance 
with the metrics validation methodology developed in [SCH92] and included in the IEEE Standard for a 
Software Quality Metrics Methodology (1061) [IEE93]. Although a quality factor is a direct measurement 
of software quality and, hence, of more interest to customers and users than metrics, quality factors cannot 
be collected early in a project. Thus the need arises to validate metrics, which developers can collect early 
in a project, to act as a indirect measurement for the quality factor. 

Boolean discriminant functions (BDFs) have been developed for use in the quality control and 
prediction process. These functions provide good accuracy (i.e., <3%) for classifying low quality software. 
This is true because the BDFs consist of more than just a set of metrics. They include additional information 
for discriminating quality: critical values. Critical values are threshold values of metrics that are used to 
either accept or reject modules when the modules are inspected during the quality control process. Note that 
to reject a module does not mean to discard it. Rather it means that the module receives priority attention 
to see whether its metric's values are a natural consequence of the functionality of the module. If this is not 
the case, then the module may be a candidate for redesign or the design may be left intact and the module 
given priority treatment during inspection and testing. Note that critical values should be determined 
quantitatively and that they can be highly application and project dependent. 

A series of nonparametric statistical methods is used to: 1) identify a set of candidate metrics for further 
analysis, 2) identify the critical values of the metrics, and 3) find the optimal function of metrics and critical 
values based on the ability of the BDF to satisfy both statistical and application (i.e., quality and cost) 
criteria. The key to the approach is the use of validated metrics for early identification and resolution of 
quality problems. 

In order to investigate the feasibility of validating and applying metrics for controlling quality on large 
software projects, metrics are validated on one random sample of modules and applied to three random 
samples that are both disjoint among themselves and from the validation sample, drawn from a population 
of 1397 modules of Space Shuttle flight software. 

It is important to perform a marginal analysis when making a decision about how many metrics should 
be used in quality control and prediction processes. If many metrics are added at once, the contribution of 
individual metrics is obscured. Also, the marginal analysis provides an effective stopping rule for deciding 
when to stop adding metrics. Certain metrics are dominant in their effects on classifying quality (i.e, 
dominant metrics make fewer mistakes in classifying metrics than non-dominant ones) and that additional 
metrics are not needed to accurately classify quality. This effect is called dominance. Related to the property 
of dominance is the property of concordance, which is the degree to which a set of metrics produces the 
same result in classifying software quality. A high value of concordance implies that additional metrics will 



not make a significant contribution to accurately classifying quality; hence, these metrics are redundant. For 
example, contrary to what you would expect, the metrics comments and statements, when combined in a 
single BDF, were better indicators of the quality of the Space Shuttle software than complexity metrics. 

Now definitions are provided that are necessary for understanding the metrics model in general and the 
Space Shuttle flight software measurement environment in particular. This is followed by a description of 
objectives. Then the Discriminative Power model and its approach to validation are explained. Next 
validation results are compared with application results for quality control. Then the quality prediction part 
of the integrated model is developed and validation and application results are compared. Last metrics are 
integrated with quality and reliability. Appendix A contains a sample Statgraphics metrics analysis session. 

Definitions 

Quality Factor: An attribute of software that contributes to its quality [SCH92] where quality is the degree 
to which software meets customer or user needs or expectations [IEE90]. For example, reliability, an 
attribute that contributes to quality, is a factor. Quality factors are customer or user oriented. They are 
attributes that customers or users expect to see in the delivered software. Ideally, you want to directly 
measure quality factors like reliability. Unfortunately, direct measurement of reliability, for example, by 
absence of failure during the specified mission, can only be obtained late in a software project during the 
test and operations phases. Therefore the project may have to resort to an indirect measurement of quality, 
such as number of discrepancy reports (DRs) written against modules, drcount, where the DRs record 
deviations from requirements, as is the case with the Space Shuttle flight software. Thus, in this example, 
drcount will be treated as a quality factor. 

Quality Metric: A function (e.g., cyclomatic complexity M=e-n+2p) whose inputs are software data 
(elementary software measurements, such as number of edges e, number of nodes n, and number of 
connected components p, in a directed graph) and whose output is a single numerical value M that can be 
interpreted as the degree to which software possesses a given attribute (cyclomatic complexity) that may 
affect its quality (e.g., reliability) [IEE93, SCH92]. A special case is the identity function wherein the 
software data (e.g., nodes) are used as metrics. This is the case in the Space Shuttle flight software 
application. 

OBJECTIVES 

One objective of this handbook is to show that there are relationships between a quality factor and 
metrics that allow you to control and predict the quality of software on large-scale projects such as the Space 
Shuttle flight software. In this application the quality factor is number of discrepancy reports drcount written 
against a module. A second objective is to integrate quality control and prediction in one model by deriving 
prediction equations from the Contingency Table, which provides the framework for the control function. 
Quality control is achieved by using metrics in BDFs during design to see whether the quality of the product 
is within the thresholds of acceptable quality, and to indicate whether remedial action is necessary (e.g., 
detailed inspection and tracking of the quality of the product during test and operation). Quality prediction 
involves computing point estimates and confidence limits of various quality and cost quantities to give 
software managers forecasts of quality and the cost to achieve it. 

The Boolean discriminant function (BDF) is a new type of discriminant for classifying software quality 
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and the application of Kolmogorov-Smirnov (K-S) distance is a new way to determine a metric's critical 
value developed by the author. The author has also developed a new stopping rule for adding metrics: the 
ratio of the relative improvement in quality to the relative increase in cost. 

DISCRIMINATIVE POWER MODEL 

Discriminative Power Validation 

Using the metrics validation methodology [SCH92], and the Space Shuttle flight software metrics and 
discrepancy reports, it is shown how to validate metrics with respect to the quality factor drcount. In brief, 
this involves conducting statistical tests to determine whether there is a high degree of association between 
drcount and candidate metrics. 

Quality Control 

The quality control function is applied to the Application Sample to flag software for detailed inspection 
that is below quality limits. Quality control is the evaluation of modules with respect to predetermined 
critical values of metrics. The purpose of quality control is to allow software managers to identify software 
that does not meet quality requirements, early in the development process so corrective action can be taken 
when the cost is low. The Discriminative Power validity criterion is applied to the Validation Sample to 
validate metrics which will subsequently be used to control the quality of the Application Sample. 
Discriminative Power is defined as follows [SCH92]: 

Discriminative Power 

Given matrix M^ of n modules and m metrics (i.e., nm metric values), vector Mcj of m metric critical 
values, vector F; of n quality factor values, and sealer Fc of quality factor critical value, My must be able to 
discriminate with respect to Fi5 for a specified Fc, as shown in the following relation: 

Mij>Mcj-Fi>Fcand (1) 
Mg < Mcj - Fs < Fc 

for 1=1,2,...,n, and j=l,2,...,m with specified a, where a is the significance level of a statistical test for 
estimating the degree to which (1) holds. In other words do the indicated metric relations imply 
corresponding quality factor relations in (1)? 

This criterion assesses whether Mcj has sufficient Discriminative Power to be capable of distinguishing 
a set of high quality modules from a set of low quality modules. If this is the case, use the critical values 
to flag modules of the Application Sample that appear to have unacceptable or questionable quality. 

The desired quality level is set by the choice of Fc by validating Mcj with respect to Fc. If a low value of 
Fc (e.g., low drcount implying high quality) is selected, it would produce an Mcj that would flag more 
modules than would be the case if a high value of Fc (high drcount implying low quality) were selected. 

Having defined the Discriminative Power validity criterion, a model is developed that will allow you 
to validate metrics for controlling quality during software design. In order to validate metrics, it is necessary 



to collect both quality factor data and metric data. This will only be feasible when development has 
progressed to the point where quality factor data, such as discrepancy reports, are available (i.e., inspections 
have been conducted or tests have been held). In contrast, when metrics are applied during design, only the 
metric data are available. Thus metrics are used as estimates of quality until the point in development is 
reached when the quality factor data are available. Also it is important to recognize that validation is 
performed retrospectively. That is, with both metrics and quality factors in hand, you can evaluate how well 
the metrics would have performed if they had been applied to the Validation Sample. If the metrics perform 
well, then they are validated and you would expect that they will perform adequately when applied to the 
Application Sample (not as well as when applied to the Validation Sample because of possible differences 
in module characteristics between the Validation and Application samples) but better than if unvalidated 
metrics are used. 

DISCRIMINATIVE POWER VALIDATION MODEL 

The basis of this model is a methodology for validating BDFs and their critical values that have the 
ability to discriminate high quality from low quality. Now use a three stage process for selecting metrics for 
quality control: 1) identify candidate metrics; 2) compute critical values of the candidate metrics; and 3) for 
the set of candidate metrics and critical values, find the optimal combination based on statistical and 
application (i.e., quality and cost) criteria. 

1) Stage 1: Identity Candidate Metrics 

In Stage 1 rank the metrics according to their ability to discriminate between two samples of modules: 
FxF,. versus F>FC, which correspond to drcount=Q and drcounf>0, respectively, in the Space Shuttle flight 
software. This analysis is independent of the metrics' critical values (i.e., only the ranks of the metrics are 
used). The Kruskal-Wallis One-Way Analysis By Ranks (K-W) is used for this analysis. Data from the two 
samples are ordered and ranked and mean ranks are computed for the sets. If the difference in mean ranks 
is significant, as determined by the value of the test statistic and significance level (i.e., a«.005), you would 
conclude that the corresponding populations differ; thus, metrics that pass this test are classified as candidate 
metrics. 

The thirteen metrics that were collected with the quality factor drcount, for 1397 modules written in 
HAL/S, are defined in Table 1. The results of the K-W test for the Validation Sample are shown in Table 
2; a bar diagram is shown in Figure 1 .Use the K-W test to identify the set of candidate metrics because: 1) 
K-W has proven to be a good indicator of the relative ability of metrics to classify quality; 2) experience has 
shown that only a subset of the collected metrics is necessary to identify the optimal BDF, as described in 
Stage 3; and 3) the amount of computation involved for computing the Kolmogorov-Smirnov (K-S) distance 
for all metrics (see Stage 2) is large. Thus you use the procedure of screening the metrics initially, using K- 
W as the criterion, and including metrics for further analysis in Stage 2 and Stage 3 by selecting them from 
the top in Table 2 (i.e., comments), and continuing the process until the stopping rule in Stage 3 (to be 
described later) is satisfied. 



Table 1: Metrics Definitions 

Symbol 

Metric Definition (counts per module) Metric Critical 
Value 

etal unique operator count El Elc 

eta2 unique operand count E2 E2C 

Til total operator count nl Tile 

r,2 total operand count T)2 Tl2c 

statements total statement count (executable code; no comments) S Sc 

loc total non-commented lines of code L Lc 

comments total comment count C cc 

nodes total node count (in control graph) N Nc 

edges total edge count (in control graph) E Ec 

paths total path count (in control graph) P Pc 

maxpath maximum path length (edges in control graph) MP MPC 

avepath average path length (edges in control graph) AP APC 

cycles total cycle count (in control graph) CY CYC 

Stage 2: Compute Critical Values 

Once the metrics have been ranked, critical values Mcj are computed, using a new method which the 
author has developed, which is based on the Kolmogorov-Smirnov (K-S) test [CON71]. This method tests 
whether the sample cumulative distribution functions (CDF) are from the same or different populations. The 
test statistic is the maximum vertical difference between the CDFs of two samples (e.g., the CDFs of My for 
drcount<¥c and drcount>Fc). If the difference is significant (i.e., a^.005), the value of My corresponding 
to maximum CDF difference is used for Mcj. This relationship is expressed in equation (2). This concept is 
illustrated in Figure 2, for the critical value of comments, where the CDFs for drcount=Q and drcounf>0 are 
shown. In this example, Cc=38. This is the value of comments where there is the maximum difference 
between the CDFs. Figure 3 shows the difference in CDFs for comments, where the curve reaches a 
maximum at 38. Table 3 shows the metric critical values Mcj and the K-S distances for the thirteen metrics 
of the Validation Sample. In addition, the ranks of K-W and K-S show that several metrics rank high with 
respect to both statistics. 

K-S(Mcj)=max{[CDF(Mij/(Fi<Fc)]-[CDF(Mij/(F>Fc)]} 

Metrics are added to the BDF in the order of their K-S Distance. 
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Table 2: Krushal-Wallis Statistic and Kolmogorov-Smirnov Distance 
for drcount=0 vs. drcounP-0 

Validation Sample 1 (n=100 modules) 

Krushal-Wallis Kolmogorov-Smirnov 

Metric Statistic a Rank Critical 
Value 

Distance a Rank 

comments 37.91 -lo-10 1 38 0.585 0.005 1 

etal 26.03 -10-7 2 10 0.492 0.005 3 

statements 25.60 =io-7 3 26 0.557 0.005 2 

nodes 21.34 =io-5 4 11 0.487 0.005 4 

edges 21.33 =io-5 5 10 0.487 0.005 4 

loc 21.29 = 10"6 6 19 0.415 0.005 9 

maxpath 19.18 -lo-5 7 8 0.452 0.005 6 

paths 19.14 -lo-4 8 1 0.475 0.005 5 

avepath 18.83 -lo-5 9 4 0.440 0.005 8 

eta2 18.20 -lo-5 10 33 0.451 0.005 7 

nl 16.57 -10-5 11 26 0.386 0.005 10 

n2 15.70 -lo-5 12 21 0.386 0.005 10 

cycles 6.59 -lo-2 
13 o 0.220 0.050 11 

Stage 3: Perform Contingency Table Analysis 

For each BDF identified in Stage 2 use the Contingency Table (see Table 3) and its accompanying x2 

statistic [CON71] to further evaluate the ability of the functions to discriminate high quality from low 
quality, from both statistical and application standpoints. In Table 3, Mcj and Fc classify modules into one 
of four categories. The left column contains modules where none of the metrics exceeds its critical value; 
this condition is expressed with a Boolean AND function of the metrics. This is the ACCEPT column, 
meaning that according to the classification decision made by the metrics, these modules have acceptable 
quality. The right column contains modules where at least one metric exceeds its critical value; this 
condition is expressed by a Boolean OR function of the metrics. This is the REJECT column, meaning that 
according to the classification decision made by the metrics, these modules have unacceptable quality. The 
top row contains modules that are high quality; these modules have a quality factor that does not exceed its 
critical value (e.g., zero drcounf). The bottom row contains modules that are low quality; these modules have 
a quality factor that exceeds its critical value (e.g., drcounOQ). 



Equation (3) gives the module count, based on BDFs of F; and M^ that are calculated over the n modules 
for m metrics. This equation is an implementation of the relation given in (1). 

Cn=COUNT FOR ((F.sFc)A(M1iMcl)...A(M.sM.)...A(MoiMJ) 
i-1 

n 

CI2=COUNT FOR ((F^F^ACCM>Mcl)...V(M.>M.)...V(M.m>MJ)) 
i-1 

n 

C2]=COUNT FOR ((F.>F^A(M1^Mc])...A(M.^M(.)...A(Ma^MJ) 
i-1 

n 

C22=COUNT FOR ((F^F^ACCM >Mc])...V(M.>M )...V(Mm>MJ)) 

(3) 

for   j=l,...,m,    and   where    COUNT(I)=COUNT(I-l)+l    FOR   Boolean   expression   true   and 
COUNT(I)=COUNT(I-l), otherwise; COUNT(0)=0. 

The counts correspond to the cells of the Contingency Table, as shown in Table 3, where row and 
column totals are also shown: n, nl5 n2, N„ and N2. The analysis could be generalized to include multiple 
quality factors, if necessary; in this case the Contingency Table would have more than two rows. Note that 
Table 3 is the Contingency Table for validation that contains both quality factor and metric data. 

In addition to counting modules in Table 3, you must also count the quality factor (e.g., drcount) that 
is incorrectly classified. This is shown as Remaining Factor, RF, in the ACCEPT column. This is the quality 
factor count (e.g., drcount) on modules that should have been rejected. Also shown is Total Factor, TF, the 
total quality factor count on all the modules in the sample. Lastly Table 3 shows RFM (Remaining Factor 
Modules) that is the count of modules with quality factor count >0 (i.e., modules with Remaining Factor, 
RF). 

Table 3 and subsequent equations show an example validation, where the optimal combination of 
metrics from Table 1 and their critical values for a random sample of 100 modules (sample 1), from the 
population of 1397, is comments with a critical value of 38 and statements with a critical value of 26. The 
critical values were obtained by using the ranking of metrics from the K-W test in Table 2 and applying the 
K-S criterion as given by equation (2) and illustrated in Figures 2 and 3. Later it will be explained how you 
would arrive at the particular combination of metrics as the optimal set. The reason that comments is the 
leading metric in this example is that in the case of the Space Shuttle the comments are not limited to the 
conventional comments of describing the purpose and action of the statements in a program. In addition to 
this type of comment, and more important, the Space Shuttle comments contain a history of the experience 
with a module: requirements, design approach, inspections, tests, discrepancy reports, etc. Thus, in general, 
more comments, means more problems with the software! 

Application Contingency Table 

A different Contingency Table is used for the application of validated metrics. This table contains only 
metrics data. This is shown in Table 4, where the "?" indicates that the quality factor data Ff is not available 
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when the validated metrics are used in the quality control function of the application project. During the 
design phase of the application project, modules are classified according to the criteria that have been 
described. A second disjoint random sample of 100 modules (sample 2) was used to illustrate the process. 
Whereas 31 and 69 modules were accepted and rejected, respectively during validation, 40 and 60 modules 
were accepted and rejected, respectively, during the application. The rejected modules would be given 
priority attention, as was described previously. 

Statistical Validation 

Validate Mcj statistically by demonstrating that it partitions Table 3 in such a way that Cn and C22 are 
large relative to C12 and C21. If this is the case, a large number of high quality modules (e.g., modules with 
zero drcount) would have M^M^ and would be correctly classified as high quality. Similarly, a large 
number of low quality modules (e.g., modules with drcounOO) would have M;>Mcj and would be correctly 
classified as low quality. The degree to which this is the case is estimated by the chi-square (x2) statistic. 
If calculated x2

c>X2
s (chi-square at specified as) and if calculated ccc<as, conclude that Mcj is statistically 

significant. 

Misclassification 

As part of the statistical validation, estimate the Discriminative Power of Mcj by noting in Table 3 that 
ideally Cn=n,=N1, C12=0, C21=0, C22=n2=N2. The extent that this is not the case is estimated by Type 1 
misclassifications (i.e., the module has Low Quality and the metrics "say" it has High Quality) and Type 2 
misclassifications (i.e., the module has High Quality and the metrics "say" it has Low Quality). Thus the 
following measures of misclassification are defined: 

Proportion of Type 1: P^C^/n (4) 

For the example, P^i/lOO)* 100=1%. 

Proportion of Type 2: P2=CI2/n (5) 

P2=(27/l 00)* 100=27%. 

Proportion of Type 1+Type 2: P]2
=(C2i+C12)/n (6) 

P12=((l +27)/100)* 100=28%. 
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Table 3: Validation Contingency Table 

C;<38AS^26 
VCM^M.j) 
Ci>38VS>26 

High Quality 
FS<FC 

drcount=0 

Cn=30 C12=27 
Type 2 

n,=57 

Low Quality 
F>F x 1    x c 

drcount>0 

c21=i 
Typel 

C22=42 n2=43 

N,=31 
RF=1, RFM=1 

N2=69 n=100 
TF=192 

ACCEPT REJECT 

Table 4: Application Contingency Table 

Ci<38ASi<26 
V(My>Mcj) 
C>38VS>26 

High Quality 
? 

Type 2 
? 

? 

Low Quality 
? 

Typel 
? ? 

? 

N,=40 N,=60 n=100 

ACCEPT REJECT 
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Application Criteria 

It is insufficient to just validate with respect to statistical criteria. In the final analysis, it is the 
performance of the metrics in the application context that counts. Therefore, validate metrics with respect 
to the application criteria: Quality and Inspection [SCH951, SCH952, SCH94]. 

Quality 

First estimate the ability of the metrics to correctly classify quality, given that the quality is known to 
be low: 

LQC: Proportion of low quality (i.e., drcount>0) software correctly classified=C22/n2 (7) 

For the example, LQC=(42/43)* 100=97.7%. 

As part of the application validation, estimate the Discriminative Power of Mcj by summing quality 
factor in the ACCEPT column in Table 3 to produce Remaining Factor RF (e.g., remaining drcount), given 
by equation (8). This is the sum of F; not caught by inspection because (F^F^ACM^M^) for these modules. 

RF-DF, FOR (F>Fc)A(M^McI)...A(M^M.)...A(Mta^MJ) (8) 

forj=l,...,m. 

Estimate the proportion of RF by equation (9), where TF is the total Fj prior to inspection. 

RFP=RF/TF (9) 

and 

TF.£"F. 
i.i 

For the example, from Table 3 there is a one DR on one module that is incorrectly classified (i.e., RF=1). 
The total number of DRs for the 100 modules is 192. Therefore, RFP=(1/192)*100=. 52%. 

Estimate the density of RF by equation (10). 

RFD=RF/n (10) 

For the example, RFD=1/100=.01 drcount/module. 

In addition estimate the count of modules remaining that have Fi>Fc. The proportion remaining RMP 
is given by equation (11). Note that RMP=P, (proportion of Type 1 misclassifications) when Fc=0 (i.e., the 
only modules with F>0 will be in the C21 cell); see Table 3. 
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RMP=RFM/n, (11) 

where RFM is given by: 

RFNUCOUNT FOR ((F.>0)A(M.1^Mc])...A(M..iM(.)...A(Mta^MJ) 
i-1 

For the example, there is one accepted module with one DR., so RMP=(1/100)* 100=1%. 

Inspection 

Inspection is one of the costs of high quality. You would be interested in weighing inspection 
requirements against the quality that is achieved for various values of Mcj. Estimate inspection requirements 
by noting that all modules with Mij>Mcj must be inspected; this is the count C12+C22. Thus the proportion 
of modules that must be inspected is given by: 

I=(CI2+C22)/n (12) 

For the example, I=((27+42)/l00)* 100=69%. 

Note that I is also equal to the proportion of modules rejected as a result of applying the critical values 
of metrics to the modules (see Tables 3 and 4) and that 1-1 is equal to the proportion of modules accepted. 
Thus, for the example, the proportion of modules accepted is 31%. 

Part of this inspection is "wasted" because of Type 2 (C12) misclassifications (i.e., modules are inspected 
because they are incorrectly flagged). Estimate wasted inspection by using equation (13) for Type 2 
misclassifications: 

RI=C22/C12 (13) 

For the example, RI=42/27=1.56. 

Summary of Validation Results 

The results of the validation example are summarized in Table 5. The properties of dominance and 
concordance, which were defined previously, were evident in these validation results and in other samples 
that have analyzed from this data. That is, a point is reached in adding metrics where Discriminative Power 
is not increased because: 1) the contribution of the dominant metrics in correctly classifying quality has 
already taken effect and 2) additional metrics essentially replicate the classification results of the dominant 
metrics — the concordance effect. This result is due to the property of the BDF used as an OR function, 
which will cause a module to be rejected if only one of the module's metrics exceeds its critical value. These 
effects can only be observed if a marginal analysis is performed, where metrics are added to the set one-by- 
one and the calculations shown in Table 5 are made after each metric is added. For each added metric, its 
effect is evaluated with respect to both statistical and application criteria. In addition, a suitable stopping rule 
must be used to know when to stop adding metrics (see the next section). 
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Because, as mentioned earlier, the prominence of the metric comments was an unexpected result, an 
analysis was made in Table 5 of the best set of metrics excluding comments. Thus entering the metrics in 
the set according to the K-S rule, statements, etal, and nodes are shown in Table 5. Note that these three 
metrics are required to reach the same value of RFP as comments alone and that other measures of quality - 
LQC and RMP - are inferior. Thus comments alone is superior to the three metric set for this sample. 

Table 5: Discriminative Power Validity Evaluation (Sample 1, n=100 modules) 

Critical Values Statistical Criteria Application Criteria 

Metric Set cc Sc Elc Nc 
% 

P2 
% 

l\ ccc for x2
c LQC 

% 
RFP 
% 

RMP 
% 

I 
% 

C 38 . 2 21 33.2 8.4x10"9 95.3 1.56 2 62 
C,S 38 26 1 27 26.7 2.4xl07 97.7 0.52 1 69 
C,S,E1 38 26 10 1 30 22.5 2.1xl0-6 97.7 0.52 1 72 

S,E1,N 26 10 11 3 22 28.6 9.1xl0"8 93.0 1.56 3 62 
K-S Distance 0.585 0.557 0.492 0.487 

Note: No improvement in the quality criteria (LQC, RFP, RMP) was achieved when additional metrics 
which are not shown in the table, were added. 

Stage 4; Apply a Stopping Rule for Adding Metrics 

One rule for stopping the addition of metrics to a BDF is to quit when RFP no longer decreases as 
metrics are added. This is the maximum quality rule. This rule is illustrated in Table 5. When a third metric, 
etal, is added, there is no decrease in RFP and RMP nor is there an increase in LQC. If it is important to 
strike a balance between quality and cost (i.e., between RFP and I), add metrics until the ratio of the relative 
change in RFP to the relative change in I is maximum, as given by the Quality Inspection Ratio in equation 
(14), where /refers to the previous RFP and I: 

QIR=( lARFP l/RFPj)/(AI/Ii) (14) 

For the example, QIR(C-C,S)=(( 1.52-1.56 l)/L56)/((69-62)/62)=5.90. 
QIR(C,S-C,S,E1)=0. Therefore, stop adding metrics after statements has been added. In this particular case, 
equation (14) produces the same metric set as the maximum quality rule. 

COMPARISON OF VALIDATION WITH APPLICATION RESULTS 

A comparison of the Validation Sample with the Application Samples with respect to statistical criteria 
is shown in Table 6. A comparison of the Validation Sample with the Application Samples with respect to 
application criteria is shown in Tables 7 and 8. As was mentioned, only metrics data is available when the 
validated metrics are applied. However, to have a basis for comparison with the validation results, the values 
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shown in Tables 6, 7, and 8 were computed retrospectively (i.e, after the application project was far enough 
along to be able to collect the quality factor data). RMP is not shown in these tables because it is equal to 
P, when Fc=0. The average relative error (validation-application/application) across eighteen comparisons 
between sample 1 versus samples 2,3,4 in Tables 6,7, and 8 is 32.9% with a standard deviation of 31.3%. 

Table 6: Statistical Criteria PI and P2 for Metric Set: C,S 
Validation (Sample 1) vs. Application (Samples 2, 3, and 4), n=100 modules 

PI : Percentage Type 1 Misclassification P2: Percentage Type 2 Misclassification 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 1 Sample 2 Sample 3 Sample 4 

1.0 1.0 4.0 3.0 27.0 24.0 18.0 22.0 

Table 7: Application Criteria LQC and RFP for Metric Set: C,S 
Validation (Sample 1) vs. Application (Samples 2, 3, and 4), n=100 modules 

LQC: Percentage of low quality software (drcounOO) 
correctly classified 

RFP: Percentage of quality factor {drcount) not caught by 
inspection 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 1 Sample 2 Sample 3 Sample 4 

97.7 97.3 91.1 93.2 .52 .62 3.01 1.50 

Table 8: Application Criteria RFD and I for Metric Set: C,S 
Validation (Sample 1) vs. Application (Samples 2, 3, and 4), n=100 modules 

RFD: Density of quality factor (drcountlmodxAe) not caught 
by inspection 

I: Percentage of modules inspected 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 1 Sample 2 Sample 3 Sample 4 

.01 .01 .05 .03 69 60 59 63 

PREDICTABILITY VALIDATION MODEL 

In addition to using the Contingency Table to classify the Validation Sample during validation and 
subsequently to apply the results during quality control to the Application Sample, various quality 
predictions, such as proportion of modules with zero and non-zero drcount and their confidence limits, are 
derived from the Contingency Table. This approach has the advantage of integrating quality control and 
quality prediction in one basic model. Thus the software developer is provided with validated metrics to both 
control and predict the quality of the Application Sample. The predictions are used by the developer to 
anticipate rather than react to quality problems. For example, the predictions provide indications of the 
quality of the software that would be delivered to the customer if remedial steps (e.g., inspection, testing) 
are not taken. In addition, the predictions provide indications of resource levels that are needed to achieve 
quality goals. For example, if the predicted quality of the software is lower than the specified quality, the 
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difference would be an indication of increased usage of personnel and computer time during inspection and 
testing, respectively. This is a new application of BDFs, developed by the author, used within the framework 
of a Contingency Table, to both control and predict software quality. 

Two type of predictions are made: module counts and quality factor counts. Using Validation Sample 
1, point estimates and confidence intervals are computed for each and compared with the actual values of 
Application Samples 2,3, and 4. The normal approximation to the binomial distribution is used to compute 
the confidence limits of the proportions. 

Module Counts 

The proportion of modules that are either not flagged or flagged for inspection are estimated below and 
are shown in Table 9. 

N,: number of modules not flagged for inspection in the Validation Sample 

N2: number of modules flagged for inspection in the Validation Sample 

N,': number of modules not flagged for inspection in the Application Sample 

N2': number of modules flagged for inspection in the Application Sample 

o   proportion of modules with F>0 (e.g., drcount>0 on module I) in the Validation Sample prior to 
inspection and correction of defects: 

pn=(COUNT FOR F>0)/n (15) 
i-l 

where COUNT(I)=COUNT(I-l)+l FOR expression true and COUNT(I)=COUNT(I-l), otherwise; 
COUNT(0)=0. 

o   two-sided confidence limits of pn, used as predicted limits of pn' in the Application Sample: 

CLp^piZ^ W> (16) 

o   proportion of modules not flagged for inspection (i.e., contained in Nj) with F>0 (e.g., drcount>0 on 
module I) in the Validation Sample: 

pN^RFM/N, (17) 

o   one-sided upper confidence limit of pNl5 used as predicted limit of pN,' in the Application Sample: 

ULpN.-pN^ 
(PN,)(1-PN,) 

N^T~ (18) 
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o   proportion of modules flagged for inspection (i.e., contained in N2) with F>0 (e.g., drcount>0 on 
module I) in the Validation Sample: 

pN2=((pn)(n)-(RFM))/N2 (19) 

o    one-sided lower confidence limit of pN2, used as predicted limit of pN2' in the Application Sample: 

LLpN.-pN.-Z, 

Quality Factor Counts 

N 
(pN,)(l-pN,) 
^  2A   V  2 (20) 

N, 

The proportion of quality factor count (e.g., drcount) on modules that are either not flagged or flagged 
for inspection are estimated below and are shown in Table 9. In addition, point estimates of total quality 
factor count on the modules is estimated and shown in Table 10. 

o   proportion of quality factor that occurs on modules not flagged for inspection (i.e., contained in N^ in 
the Validation Sample: 

d]=RF/TF (same as RFP if RFP is expressed as a proportion) (21) 

o    one-sided upper confidence limit of d„ used as predicted limit of d,' in the Application Sample 

ULd,=d1+Za, 
\ 

<W (22) 
TF 

o   proportion of quality factor that occurs on modules flagged for inspection (i.e., contained in N2) in the 
Validation Sample: 

d2=l-d, (23) 

o    one-sided lower confidence limit of d2, used as predicted limit of d2' in the Application Sample: 

LLd2=d2-Z. 
N TF 

o expected quality factor count (e.g., drcount) that occurs on modules not flagged for inspection (i.e., 
contained in N,1) in the Application Sample (note that no knowledge of the Application quality factor 
is required to make this estimate): 

D.KRF/N.XN/) (25) 

o expected quality factor count (e.g., drcount) that occurs on modules flagged for inspection (i.e., 
contained in N2') in the Application Sample (note that no knowledge of the Application quality factor 
is required to make this estimate): 
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D2=((TF-RF)/N2)(N2') (26) 

Ten of the actual values out of the fifteen cases in Table 9 fall within the confidence limits. The average 
relative error across six comparisons between sample 1 versus samples 2, 3, 4 in Table 10 is 28.9% with a 
standard deviation of 30.7%. 

Table 9: Validation Predictions (Sample 1) vs. Application Actual Values (Samples 2, 3, and 4) 

Point 
Estimates 

(Sample 1) 

95% 
Confidence 

Limits 
(Sample 1) 

Actual Values 

Sample 2 Sample 3 Sample 4 

P.': 
proportion of modules with 
drcounf>0 

43.0% 33.3%-52.7% 37.0% 45.0% 44.0% 

PN,': 
proportion of modules not flagged 
for inspection with drcount>0 

3.22% LE 8.45% 2.50% 9.76% 8.11% 

pN2': 
proportion of modules flagged for 
inspection with drcounOO 

60.9% GE51.2% 60.0% 69.5% 65.1% 

d,': 
proportion of drcount on modules 
not flagged for inspection 

.52% LE 1.38% .62% 3.01% 1.50% 

d2': 
proportion of drcount on modules 
flagged for inspection 

99.5% GE 98.6% 99.4% 97.0% 98.5% 

Table 10: Validation Actual Values and Predictions (Sample 1) vs. Application Actual Values (Samples 2, 3, and 4) 

Actual 
Sample 1 

Predicted 
Sample 1 

Actual 
Sample 

Predicted 
Sample 1 

Actual 
Sample 3 

Predicted 
Sample 1 

Actual 
Sample 4 

D/: 
expected drcount 
on   modules   not 
flagged          for 
inspection 

1 1.29 1 1.32 5 1.19 3 

D2': 
expected drcount 
on          modules 
flagged          for 
inspection 

191 166.1 160 163.3 161 174.4 197 
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INTEGRATION OF METRICS WITH QUALITY AND RELIABILITY 

For metrics to be used as leading indicators of quality and reliability, you must show that the modules 
that cause failures have both a significant number of DRs written against them and that the modules' key 
metrics have values that exceed the critical values. To make a tie with the Discriminative Power Validation 
Model, an example of this process is shown in Table 11, listing the DR count and values for the thirteen 
metrics of the five failures experienced by the Space Shuttle Operational Increment M (a series of builds to 
meet mission requirements). Because software failures are rare on the Space Shuttle, only five failures are 
shown. But this amount of data is sufficient to demonstrate the concept. In the table there are multiple DRs 
written against the failed modules and the comments and statements values - this is the optimal set of 
metrics derived in Table 5 ~ exceed their critical values by significant amounts. Also there are only three 
cases (bolded) where any of the thirteen metrics' values do not exceed their critical value. Also, for 
comparison purposes, the mean and median of the metrics' values for the 1397 modules that comprise the 
Space Shuttle Operational Increment M are shown. In general, the metrics values of the failed modules are 
far in excess of the mean and median. 

Also, to make a tie with the Predictability Validation Model, the proportion of the 1397 modules that 
have DRs was calculated as 41.2%, which is within the confidence limits predicted in the first row of Table 
9. 
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Table 11: Integration of Metrics with Quality and Reliability 

Failed Module DR and Metrics Counts, Operational Increment M 

Metric Critical 
Value 

Module 1 Module 2 Module 3 Module 4 Module 5 Population 
Module 

Mean 

Population 
Module 
Median 

DRs 0 13 9 5 6 2 1.8 0 

comments 38 448 204 79 434 68 134.6 64 

etal 10 39 37 38 30 23 16.7 13 

statements 26 366 261 103 563 36 70.2 23 

nodes 11 70 10 21 137 16 28.4 7 

edges 10 90 11 27 181 18 36.2 6 

loc 19 484 326 140 485 83 132.3 61 

maxpath 8 80 9 25 94 12 24.5 6 

paths 1 10000 4 224 10000 6 1587.2 2 

avepath 4 67.7 8.00 19.4 78.5 11.0 20.7 5 

eta2 33 344 162 126 166 52 81.3 46 

Til 26 1712 1089 386 2526 458 480.0 171 

T)2 21 1026 608 292 1358 216 307.7 106 

cycles 0 3 0 1 2 0 • 0.93 0 
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CONCLUSIONS 

It is important when validating and applying metrics to consider both statistical and application criteria 
and to measure the marginal contribution of each metric in satisfying these criteria. When this approach is 
used, a point is reached where adding metrics makes no contribution to improving quality and the cost of 
using additional metrics increases. This phenomenon is due to the metric classification properties of 
dominance and concordance. The ratio of the relative improvement in quality to the relative increase in cost 
provides a good stopping rule for adding metrics. The Boolean discriminant function (BDF) is a new type 
of discriminant for classifying software quality to support an integrated approach to control and prediction 
in one model, and the application of Kolmogorov-Smirnov (K-S) distance is a new way to determine a 
metric's critical value. It was shown that the metrics comments and statements, when combined in a single 
BDF, were better indicators (i.e., <3% error in classifying low quality modules) of the quality of the Space 
Shuttle software than complexity metrics. 
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APPENDIX A. SAMPLE STATGRAPHICS METRICS ANALYSIS SESSION 

DISCRIMINATIVE POWER VALIDATION MODEL 

Comments are in parentheses to distinguish them from Statgraphics input and output. Equation, figure, and 

table numbers refer to the text. 

(Stage 1 of the metrics analysis: Identify Candidate Metrics) 

Kruskal-Wallis One-Way Analysis by Ranks 

Data: comments SELECT sample EQ 1 

Level codes: drcount EQ 0 

(This is an example of the setup menu for Stage 1 of the metrics analysis. The menu was entered from the 

Analysis of Variance and Krusal-Wallis One-Way Analysis by Ranks. The metric comments and the 

random Validation Sample 7 of 100 modules have been specified. The quality factor drcount is used to 

separate the modules into two classes: drcount EQ 0 and drcount GT 0.) 

Kruskal-Wallis analysis of comments SELECT sample EQ 1 by drcount EQ 0 

Level Sample Size    Average Rank 

0 43 71.0581 

1 57 34.9912 

Test statistic = 37.913 Significance level = 7.39689E-10 

(The 57 modules with drcount EQ 0 (Level 1) have an average rank of 34. The 43 modules with drcount 

GT 0 (Level 0) have an average rank of 71. The K-W test statistic of 37 is highly significant as indicated 

by the significance level, which is close to 0. These values are entered in Table 2 and used in Figure 1. This 

process is repeated for the remaining 12 metrics.) 
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(Stage 2: Compute Critical Values) 

Percentiles 

Data vector: comments SELECT ((drcount EQ 0) AND (sample EQ 1)) 

Percentages     comments 

12.2807   =   0 

17.5439   =   1 

21.0526   =  2 

22.807    =   3 

22.807    =  4 

35.0877   =   5 

35.0877   =   6 

35.0877   =   7 

35.0877   =   8 

35.0877    =   9 

35.0877   = 10 

35.0877   = 11 

36.8421    = 12 

38.5965    - 13 

38.5965 = 14 

(This is an example of Stage 2 of the metrics analysis. The menu was entered from Descriptive Methods 

and Percentiles. The objective is to form and save a CDF of comments for modules with drcount EQ 0. 

The left column is the CDF in % for the specified values of comments in the right column. This part of 

the CDF is saved in a file for future computation of Cc. These values are used in Figure 2. Note that the 

editor was used to replace the original title Percentiles with comments in the right column.) 

Enter variable in which to save the percentages: 

File: lowlevel    Variable: commcdfOl 

(The first part of the CDF for comments is saved in the file lowlevel as variable commcdfOl. The process 

is repeated for the second part  (comments=15,29 and third part (comments=30,44) except these parts are 

appended to the original file. Three parts are sufficient to compute Cc.) 
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Percentiles 

Data vector: comments SELECT ((drcount GT 0) AND (sample EQ 1)) 

Percentages     comments 

0 =0 

0 =   1 

0 =2 

0 =3 

0 =4 

0 =5 

0=6 

0 =   7 

0=8 

0 =9 

0 = 10 

0 =11 

0 =12 

0 =13 

0 =14 

(The objective is to form and save a CDF of comments for modules with drcount GT 0. The left column 

is the CDF in % for the specified values of comments in the right column. This part of the CDF is saved 

in a file for future computation of Cc. These values are used in Figure 2. Note that the editor was used to 

replace the original title Percentiles with comments in the right column.) 
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(The following is a continuation of Stage 2 designed to find the values of comments with the maximum 

difference between the CDFs for drcount EQ 0 and drcount GT 0. This process is the implementation of 

equation (2). The process starts with comments because it was the metric with the largest value of the K-W 

statistic in Stage 1. When an equation is used for the first time, it is displayed by typing its name. When 

an equation is computer, its name is preceded by the reserved word EVAL). Inputs have a colon prompt 

and outputs have no colon.) 

: maxcdfdiff (Equations for computing the maximum difference in CDFs) 

MAX (EVAL (cdfdiff)) 

: cdfdiff 

(ABS(ml-m2))/100 

: ml GETS commcdfOl (The CDF for drcount EQ 0 is loaded) 

: m2 GETS commcdfl 1 (The CDF for drcount GT 0 is loaded) 

: EVAL maxcdfdiff (The maximum difference is computed and entered in Table 2) 

0.585067 

: (commcdf01/100)-(commcdfl 1/100) 

0.122807 0.175439 0.210526 0.22807 0.22807 0.350877 0.350877 0.350877 

0.350877 0.350877 0.350877 0.350877 0.368421 0.385965 0.385965 

0.415341 0.415341 0.415341 0.415341 0.432885 0.432885 0.450428 

0.450428 0.450428 0.450428 0.485516 0.485516 0.485516 0.485516 

0.485516 0.485516 0.50306 0.50306 0.520604 0.538148 0.555692 0.555692 

0.573235 0.585067 0.585067 0.585067 0.585067 0.561812 0.538556 

0.538556 

(The difference in the CDFs is computed. These data are used in Figure 3. The value of Cc=38 is 
determined by counting from upper left, top to bottom, left to right, remembering that the first value is 
C=0. The critical value of comments is entered in Table 2. This process is repeated for as many metrics as 
are required in the Stage 3 analysis — see below — taking the metrics in the order of their K-W statistic.) 
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(Stage 3: Perform Contingency Table Analysis) 

(The following are computations dealing with Stage 3 of the metrics analysis. Equation (3) is implemented 

using a formula which can handle up to four metrics. There is also a version of this formula which can 

handle up to six metrics. This example shows a BDF consisting of comments and stmts, and their critical 

values. Because the computations for Cl 1, C12, C21, and C22 require that a metric be specified for each 

of the four or possible six metrics, stmts is used in the computation three times. Because the and OR 

Boolean operations are not affected by the repetition of metrics, the correct result is achieved. Various 

quantities - both statistical and quality - are computed as part of the validation process). 

: Ss GETS 1 (Load ID of random sample 1 of 100 modules) 

(The following are Validation Sample 1 computations for Table 3) 

: Cl 1 (Module count for Cn of equation (3) and Table 3) 

SUM ((drcount LE Dc) AND (Ml LE Mlc) AND (M2 LE M2c) AND (M3 LE M3c) AND (M4 LE M4c) 

AND (sample EQ Ss)) 

: Dc GETS 0 (Load critical value of drcount) 

: Ml GETS comments (Load metric vector comments) 

: M2 GETS stmts (Load metric vector stmts three times) 

: M3 GETS stmts 

: M4 GETS stmts 

: Mlc GETS 38 

: M2c GETS 26 

: M3c GETS 26 

: M4c GETS 26 

:EVALC11 

30 

(Load critical value of comments) 

(Load critical value of stmts three times) 

(Compute module count for C,,. Enter in Table 3) 
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: C12 (Module count for C12 of equation (3) and Table 3) 

SUM ((drcount LE Dc) AND ((Ml GT Mlc) OR (M2 GT M2c) OR (M3 GT M3c) OR (M4 GT M4c)) 

AND (sample EQ Ss)) 

: EVAL C12 (Compute module count for C,2. Enter in Table 3) 

27 

: C21 (Module count for C21 of equation (3) and Table 3) 

SUM ((drcount GT Dc) AND (Ml LE Mlc) AND (M2 LE M2c) AND (M3 LE M3c) AND (M4 LE M4c) 

AND (sample EQ Ss)) 

: EVAL C21 (Compute module count for C2]. Enter in Table 3) 

1 

: C22 (Module count for C22 of equation (3) and Table 3) 

SUM ((drcount GT Dc) AND ((Ml GT Mlc) OR (M2 GT M2c) OR (M3 GT M3c) OR (M4 GT M4c)) 

AND (sample EQ Ss)) 

: EVAL C22 (Compute module count for C22. Enter in Table 3) 

42 

: Nl (Count of accepted modules in Table 3) 

SUM ((Ml LE Mlc) AND (M2 LE M2c) AND (M3 LE M3c) AND (M4 LE M4c) AND (sample EQ Ss)) 

: EVAL Nl (Compute accepted module count. Enter in Table 3) 

31 

: N2 (Count of rejected modules in Table 3) 

SUM (((Ml GT Mlc) OR (M2 GT M2c) OR (M3 GT M3c) OR (M4 GT M4c)) AND (sample EQ Ss)) 

: EVAL N2 (Compute rejected module count. Enter in Table 3) 

69 
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:nl 

(EVALC11)+(EVALC12) 

: EVAL nl 

57 

:n2 

(EVAL C21)+(EVAL C22) 

: EVAL n2 

43 

(Count of high quality modules in Table 3) 

(Compute count of high quality modules. Enter in Table 3) 

(Count of low quality modules in Table 3) 

(Compute count of low quality modules. Enter in Table 3) 

: TF (Total drcount of equation (9) and Table 3) 

SUM (drcount SELECT sample EQ Ss) 

: EVAL TF (Compute total drcount. Enter in Table 3) 

192 

: RF (Remaining drcount of equation (9) and Table 3) 

SUM (drcount SELECT ((Ml LE Mlc) AND (M2 LE M2c) AND (M3 LE M3c) AND (M4 LE M4c) AND 

(drcount GT Dc) AND (sample EQ Ss))) 

: EVAL RF (Compute remaining drcount. Enter in Table 3) 

1 

: RFM (Module count with remaining drcount of equation (11) and Table 3) 

SUM ((drcount GT Dc) AND (Ml LE Mlc) AND (M2 LE M2c) AND (M3 LE M3c) AND (M4 LE M4c) 

AND (sample EQ Ss)) 

: EVAL RFM (Compute module count with remaining drcount. Enter in Table 3) 

1 

: Ss GETS 2 (Load ID of random sample 2 of 100 modules) 
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(The following are Application Sample 2 computations for Table 4) 

: EVAL Nl (Compute accepted module count. Enter in Table 4) 

40 

: EVAL N2 (Compute rejected module count. Enter in Table 4) 

60 

: Ss GETS 1 (Load ID of random sample 7 of 100 modules) 

(The following are Validation Sample 1 computations for Tables 5-8) 

•" PI (Proportion of Type 1 misclassifications of equation (4) and Tables 5 and 6) 

((EVAL C21)/n)* 100 

: EVAL PI (Estimate proportion of Type 1 misclassifications of. Enter in Tables 5 and 6) 

1% 

: P2 (Proportion of Type 2 misclassifications of equation (5) and Tables 5 and 6) 

((EVAL C12)/n)* 100 

: EVAL P2 

27 % (Estimate proportion of Type 2 misclassifications of. Enter in Tables 5 and 6) 

: P12 (Proportion of Type 1+Type 2 misclassifications of equation (6)) 

(((EVAL C12)+(EVAL C21))/n)*100 

: EVAL P12 (Estimate Proportion of Type 1+Type 2 misclassifications) 

28 % 

: LQC (Proportion of low quality software correctly classified of equation (7) and Tables 5 and 7) 

((EVAL C22)/(EVAL n2))*100 

: EVAL LQC  (Estimate proportion of low quality software correctly classified. Enter in Tables 5 and 7) 

97.6744 % 
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: RFP (Proportion of RF of equation (9) and Tables 5 and 7) 

((EVAL RF)/(EVAL TF))*100 

: EVAL RFP (Estimate proportion of RF. Enter in Tables 5 and 7) 

0.520833 % 

:RFD 

(EVAL RF)/n 

: EVAL RFD 

0.01 drcount/modale 

:RMP 

((EVAL RFM)/n)* 100 

: EVAL RMP 

1% 

(Density of RF of equation (10) and Table 8) 

(Estimate density of RF. Enter in Table 8) 

(Proportion of RFM of equation (11)) 

(Estimate proportion of RFM) 

: I (Proportion of modules that must be inspected of equation (12) and Tables 5 and 8) 

(((EVAL C12)+(EVAL C22))/n)*100 

:EVALI 

69 % (Estimate proportion of modules that must be inspected. Enter in Tables 5 and 8) 

: RI (Wasted inspection of equation (13) 

(EVAL C22)/(EVAL C12) 

: EVAL RI (Estimate wasted inspection) 

1.55556 
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Contingency Tables 

Table matrix: 2 2 RESHAPE 30 27 1 42       (Enter the values C„, C12, C2I, and C22) 

(This is an example of the setup menu using Contingency Tables for Validation Sample 1 entered from 

Categorical Data Analysis and Contingency Tables. The operation "2 2 RESHAPE" converts the vector 

of cell values to a 2x2 matrix). 

(Compute x2
c and ac for x2

c of Table 5) 

Summary Statistics for Contingency Tables 

Chi-square     D.F.    Significance 

26.6941 1      2.38348E-7 with Yates correction       (Enter in Table 5) 
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Ss GETS 2 (LoadIDofrandomsample2of 100 modules) 

(The following are Application Sample 2 computations for Tables 6-8) 

: EVAL PI (Estimate proportion of Type 1 misclassifications of. Enter in Table 6) 

1 % 

:EVAL P2 

24 % 

(Estimate proportion of Type 2 misclassifications of. Enter in Table 6) 

: EVAL LQC (Estimate proportion of low quality software correctly classified. Enter in Table 7) 

97.2973 % 

: EVAL RFP 

0.621118 % 

: EVAL RFD 

0.01 drcount/module 

: EVALI 

60 % 

(Estimate proportion of RF. Enter in Table 7) 

(Estimate density of RF. Enter in Table 8) 

(Estimate proportion of modules that must be inspected. Enter in Table 8) 
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PREDICTABILITY VALIDATION MODEL 

: pn (Proportion of modules with drcount>0 of equation (15) and Table 9) 

(SUM((drcount GT 0) AND (sample EQ Ss)))/n 

: Ss GETS 1 (Load ID of random sample 7 of 100 modules) 

(The following are Validation Sample 1 point estimates used to compute confidence limits for 

Application Sample 2 in Table 9) 

: EVAL pn (Compute proportion of modules with drcount>0. Enter in Table 9) 

0.43 

: CLpn (Two-sided confidence limits of pn, of equation (16) and Table 9) 

((EVAL pn)+(Z*(SQRT (((EVAL pn)*(l-(EVAL pn)))/n)))) 

: Z GETS 1.96 (Set computation for 95% upper confidence limit) 

: EVAL CLpn (Compute upper confidence limit of pn. Enter in Table 9) 

: Z GETS -1.96 (Set computation for 95% lower confidence limit) 

: EVAL CLpn (Compute lower confidence limit of pn. Enter in Table 9) 

0.332965 

: pNl (Proportion of modules not flagged for inspection of equation (17) and Table 9) 

(EVAL RFM)/(EVAL Nl) 

: EVAL pNl (Compute proportion of modules not flagged for inspection. Enter in Table 9) 

0.0322581 

: ULpNl (Upper Confidence limit of pN, of equation (18) and Table 9) 

((EVAL pNl)+(Z*(SQRT (((EVAL pNl)*(l-(EVAL pNl)))/(EVAL Nl))))) 

: Z GETS 1.6449 (Set computation for 95% confidence limit) 
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: EVAL ULpNl (Compute upper confidence limit of pNl. Enter in Table 9) 

0.0844565 

: pN2 (Proportion of modules flagged for inspection of equation (19) and Table 9) 

((n*(EVAL pn))-(EVAL RFM))/(EVAL N2) 

: EVAL pN2 (Compute proportion of modules flagged for inspection. Enter in Table 9) 

0.608696 

: LLpN2 (Lower confidence limit of pN2 of equation (20) and Table 9) 

((EVAL pN2)-(Z*(SQRT (((EVAL pN2)*(l-(EVAL pN2)))/(EVAL N2))))) 

: EVAL LLpN2 (Compute lower confidence limit of pN2. Enter in Table 9) 

0.512052 

: dl (Proportion of drcount that occurs on modules not flagged for inspection of equation (21) and Table 9) 

(EVAL RF)/(EVAL TF) 

: EVAL dl (Compute proportion of drcount that occurs on modules not flagged for inspection. Enter in Table 9) 

0.00520833 

: ULdl (Upper confidence limit of d, of equation (22) and Table 9) 

((EVAL dl)+(Z*(SQRT (((EVAL dl)*(EVAL d2))/(EVAL TF))))) 

: EVAL ULdl (Compute upper confidence limit of d,. Enter in Table 9) 

0.0137532 

: d2 (Proportion of drcount that occurs on modules flagged for inspection of equation (23) and Table 9) 

(1-EVAL (dl)) 

: EVAL d2 (Compute proportion of drcount that occurs on modules flagged for inspection. Enter in Table 9) 

0.994792 
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: LLd2 (Lower confidence limit of d2 of equation (24) and Table 9) 

((EVAL d2)-(Z*(SQRT (((EVAL dl)*(EVAL d2))/(EVAL TF))))) 

: EVAL LLd2 (Compute lower confidence limit of d2. Enter in Table 9) 

0.986247 

(The following are Validation Sample 1 expected value computations for Table 10) 

: Dl (Expected drcount that occurs on modules not flagged for inspection of equation (25) and Table 10) 

((EVAL RF)/(EVAL Nl))*Nla 

: Nla GETS 31        (Computation of D, is for Validation Sample 1. Thus, Nla=Nl = "31", computed in an earlier step) 

: EVAL D1 (Compute expected drcount that occurs on modules not flagged for inspection. Enter in Table 10) 

1 

: D2 (Expected drcount that occurs on modules flagged for inspection of equation (26) and Table 10) 

(((EVAL TF)-(EVAL RF))/(EVAL N2))*N2a 

: N2a GETS 69       (Computation of D2 is for Validation Sample 1. Thus, N2a=N2 = "69", computed in an earlier step) 

: EVAL D2 (Compute expected drcount that occurs on modules flagged for inspection. Enter in Table 10) 

191 

: Ss GETS 2 (Load ID of random sample 2 of 100 modules) 

(The following are Application Sample 2 proportions actual values computations for Table 9) 

: EVAL pn (Compute proportion of modules with drcount>Q. Enter in Table 9) 

0.37 

: EVAL pNl (Compute proportion of modules not flagged for inspection. Enter in Table 9) 

0.025 

: EVAL pN2 (Compute proportion of modules flagged for inspection. Enter in Table 9) 

0.6 
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: EVAL dl (Compute proportion of drcount that occurs on modules not flagged for inspection). Enter in Table 9) 

0.00621118 

: EVAL 62 (Compute proportion of drcount that occurs on modules flagged for inspection). Enter in Table 9) 

0.993789 

: Ss GETS 1 (Load ID of random sample 7 of 100 modules) 

(The following are Application Sample 2 expected value computations for Table 10. However, 

values from Validation Sample 1 are used except for Nla and N2a) 

: Nla GETS 40 (Computation of D, is for Application Sample 2. Thus, Nla=Nl = "40", computed in an earlier step) 

: EVAL Dl (Compute expected drcount that occurs on modules not flagged for inspection. Enter in Table 10) 

1.29032 

: N2a GETS 60 (Computation of D2 is for Application Sample 2. Thus, N2a=N2= "60", computed in an earlier step) 

: EVAL D2 (Compute expected drcount that occurs on modules flagged for inspection. Enter in Table 10) 

166.087 
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