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ABSTRACT 

AN EMPIRICAL COMPARISON OF TABU SEARCH, SIMULATED 
ANNEALING, AND GENETIC ALGORITHMS FOR FACILITIES LOCATION 

PROBLEMS 

Marvin A. Arostegui, Jr. 

Operations managers are typically faced with the need to find good solutions 

to difficult problems. Such problems include job scheduling, assembly line 

balancing, process layout, project scheduling, and facilities locations. Although 

optimal solutions are preferable, the combinatorial nature of these problems 

means that in many cases problems found in practical applications cannot be 

solved to optimality within reasonable resources. In these cases, operations 

managers turns to heuristics. Since the early 1980s, much interest has been 

devoted to the development and application of three general heuristic algorithms: 

tabu search, simulated annealing, and genetic algorithms. Each of them 

specifies a strategy for searching the solution space of a problem looking for 

"good" local optima. From a practical point of view, we would like to know if any 

of these methods is indeed better than the other two. 

In this research study we conduct an empirical comparison of these three 

heuristic algorithms using three variants of the facilities location problem: 

capacitated (CFLP), multiple-periods (MP-FLP), and multiple-commodities (MC- 

FLP). The selection of three different problem structures allowed us to explore 

the behavior of the heuristics under different circumstances and constraints. 

Furthermore, none of the heuristics have been previously applied to these 

problems. 



Our empirical work consisted of several stages including the proper selection 

of problem solutions representations, parameter searches, and benchmarking. 

Our final stage was a statistical study to compare the performance of each 

heuristic along two dimensions: same computation time allowed and same 

amount of information allowed (i.e., number of solutions evaluated). We also 

compared the performance without any such restrictions. 

When all heuristics are limited to the same amount of computation time, tabu 

search performs consistently well for all three problem types. However, for MP- 

FLP, the performance of simulated annealing shows no statistically significant 

difference from tabu search; and, for MC-FLP, the performance of the genetic 

algorithm shows no statistically significant difference form tabu search. When all 

heuristics are limited to the same number of solutions they may evaluate, each 

heuristic does best for one type of problem. Simulated annealing does best for 

C-FLP, genetic algorithms do best for MP-FLP, and tabu search does best for 

MC-FLP. When no constraints are place on the heuristics, tabu search does 

best for CFLP and MC-FLP and simulated annealing does best for MP-FLP. 

Overall, tabu search tends to give the most robust results closely followed by 

simulated annealing. Genetic algorithms do not generally perform well for these 

types of problems. They do appear to complement the other two heuristics to the 

extent that genetic algorithms are better suited for problems where a 

neighborhood search cannot be easily defined or a large number of solutions 

cannot be efficiently evaluated. 



REFERENCES 

Adenso-Diaz, Belarmino (1996) An SA/TS Mixture Algorithm for the Scheduling 
Tardiness Problem. European Journal of Operational Research, 88, 516- 
524. 

Akinc, Umit (1973) A Branch And Bound Procedure for Solving Warehouse 
Location Problems with Capacity Constraints. Unpublished Ph.D. 
Dissertation, University of Houston. 

Akinc, Umit and B.M. Khumawala (1977) An Efficient Branch and Bound 
Algorithm for the Capacitated Warehouse Location Problem. Management 
Science, 23(6), 585-594. 

Balakrishnan, P. V. and Varghese S. Jacob (1996) Genetic Algorithms for 
Product Design. Management Science, 42(8), 1105-1117. 

Barnes, J. Wesley and Manuel Laguna (1993) Solving the Multiple-Machine 
Weighted Flow Time Problem Using Tabu Search. HE Transactions, 
25(2), 121-128. 

Barnes, J. Wesley and John B. Chambers (1995) Solving the Job Shop 
Scheduling Problem with Tabu Search. HE Transactions, 27, 257-263. 

Ben-Daya, M., and M. AI-Fawzan (1996) A Simulated Annealing Appraoch for 
the One-Machine Mean Tardiness Scheduling Problem. European 
Journal of Operational Research, 93, 61-67. 

Bulgak, A. A., P. D. Diwan, and B. Inozu (1995) Buffer Size Optimization in 
Asynchronous Assembly Systems Using Genetic Algorithms. Computers 
and Industrial Engineering, 28(2), 309-322. 

Cerny, V. (1985) Thermodynamical Approach to the Traveling Salesman 
Problem: An Efficient Simulation Algorithm. Journal of Optimization 
Theory and Applications, 45, 41-51. 

Chan, K. C. and H. Tansri (1994) A Study of Genetic Crossover Operations on 
the Facilities Layout Problem. Computers and Industrial Engineering, 
26(3), 537-550. 



Cheh, K. M„ J. B. Goldberg and R. G. Askin (1991) A Note on the Effect of 
Neighborhood Structure in Simulated Annealing. Computers and 
Operations Research, 18, 537-547. 

Chen, W.-H., and B. Srivastava (1994) Simulated Annealing Procedures for 
Forming Machine Cells in Group Technology. European Journal of 
Operational Research, 75,100-111. 

Cheng, Runwei, Mitsuo Gen, and Yasuhiro Tsujimura (1996) A Tutorial Survey of 
Job-Shop Scheduling Problems Using Genetic Algorithms—I. 
Representation. Computers and Industrial Engineering, 30(4), 983-997. 

Collins, N. E., R. W. Eglese and B. L. Golden (1988) Simulated Annealing—An 
Annotated Bibliography. American Journal of Mathematical Management 
Science, 3(3), 209-307. 

Connolly D. (1992) General Purpose Simulated Annealing. Journal of the 
Operational Research Society, 43, 495-505. 

Crainic, Teodor G., Michel Gendreau, Patrick Soriano, and Michel Toulouse 
(1993) A Tabu Search Procedure for Multi-commodity Location/Allocation 
with Balancing Requirements. Annals of Operations Research, 41, 359- 
383. 

Davis P.S. and T.L. Ray (1969) A Branch-Bound Algorithm for the Capacitated 
Facilities Location Problem. Naval Research Logistics Quarterly. 16, 331- 
344. 

Dowsland, Kathryn A. (1996) Genetic Algorithms—a Tool for OR? Journal of the 
Operational Research Society, 47, 550-561. 

Dowsland, Kathryn A. (1993) Some Experiments with Simulated Annealing 
Techniques for Packing Problems. European Journal of Operational 
Research, 68, 389-399. 

Dudewicz, E.J. and S.R. Dalai (1975) Allocation of Observations in Ranking and 
Selection with unequal Variances. Sankhya, B37, 28-78. 

Eglese, R. W. (1990) Simulated Annealing: A Tool for Operational Research. 
European Journal of Operational Research, 46, 271 -281. 

Ellwein, L.B. and P. Gray (1971) Solving Fixed Charge Location-Allocation 
Problems with Capacity and Configuration Constraints. AIIE Transactions, 3, 
290-299. 



Franca, Paulo M., Michel Gendreau, Gilbert Laporte, and Felipe M. Müller (1996) 
A Tabu Search Heuristic for the Multiprocessor Scheduling Problem With 
Sequence Dependent Setup Times. International Journal of Production 
Economics, 43, 79-89. 

Garavelli, A.C., O.G. Okogbaa, and V. Nicola (1996) Global Manufacturing 
Systems: A Model Supported by Genetic Algorithms to Optimize 
Production Planning. Computers & Industrial Engineering, 31,193-196. 

Gendreau, Michel, Alain Hertz, and Gilbert Laporte (1994) A Tabu Search 
Heuristic for the Vehicle Routing Problem. Management Science, 40(10), 
1276-1290. 

Geoffrion, A.M. and G.W. Graves (1974) Multi-commodity Distribution Systems 
Design. Management Science, 20, 822-844. 

Glover, F. (1977) Heuristic for Integer Programming Using Surrogate Constraints. 
Decision Sciences, 8,156-166. 

Glover, F. (1989) Tabu search—Part I. ORSA Journal on Computing, 1(3), 190- 
206. 

Glover, F. (1990a) Tabu Search—Part II. ORSA Journal on Computing, 2(1), 4- 
32. 

Glover, F. (1990b) Tabu Search: A Tutorial. Interfaces, 20(4), 74-94. 

Glover, F. (1993) A User's Guide to Tabu Search. Annals of Operations 
Research. 

Glover, Fred and Harvey J. Greenberg (1989) New Approaches for Heuristic 
Search: A Bilateral Linkage with Artificial Intlligence. European Journal of 
Operational Research, 39,119-130. 

Goldberg, David E. (1989) Genetic Algorithms in Search, Optimization, and 
Machine Learning. Reading, Massachusetts: Addison Wesley Publishing 
Company, Inc. 

Golden, B.L. and W.R. Stewart (1985) Empirical Analysis of Heuristics. In The 
Travelling Salesman Problem, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy 
Kan, and D.B. Shmoys, eds., Chichester: John Wiley & Sons, 207-249. 

Hajek, B. (1988) Cooling Schedules for Optimal Annealing. Mathematics and 
Operations Research, 13(2), 311-329. 



Hao, Qi, Zihou Yang, Dingwei Wang, and Zheng Li (1996) Common Due-Date 
Determination and Sequencing Using Tabu Search. Computers and 
Operations Research, 23(5), 409-417. 

He, Zesheng, Taeyong Yang, and Andy Tiger (1996) An Exchange Heuristic 
Imbedded with Simulated Annealing for Due-Dates Job-Shop Scheduling. 
European Journal of Operational Research, 91, 99-117. 

Hindi, K. S. (1995) Solving the Single-Item, Capacitated Dynamic Lot-Sizing 
Problem with Startup and Reservation Costs by Tabu Search. Computers 
and Industrial Engineering, 28(4), 701 -707. 

Holland, John H. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor: 
The university of Michigan Press. 

Hormozi, A.M. (1987) An Improved Multi-Period Facility Location Problem. 
Unpublished Ph.D. Dissertation, University of Houston. 

Hormozi, A.M. and B.M. Khumawala (1996) An Improved Multi-Period Facility 
Location Problem. HE Transactions, 28, 105-114. 

Houck, Christopher R., Jeffrey A. Joines and Michael G. Kay (1996) Comparison 
of Genetic Algorithms, Random Restart and Two-Opt Switching for 
Solving Large Location-Allocation Problems. Computers and Operations 
Research, 23(6) 587-596. 

Icmeli, Oya and S. Selcuk Erenguc (1994) A Tabu Search Procedure for the 
Resource Constrained Project Scheduling Problem With Discounted Cash 
Flows. Computers and Operations Research, 21 (8), 841 -853. 

Ishibuchi, Hisao, Shinta Misaki, and Hideo Tanaka (1995) Modified Simulated 
Annealing Algorithms for the Flow Show Sequencing Problem. European 
Journal of Operational Research, 81, 388-398. 

Joines, Jeffrey A., C. Thomas Culbreth, and Russell E. King (1996) 
Manufacturing Cell Design: An Integer Programming Model Employing 
Genetic Algorithms. HE Transactions, 28, 69-85. 

Khumawala, B.M. (1974) An Efficient Heuristic Procedure for the Capacitated 
Warehouse Location Problem. Naval Research Logistics Quarterly, 21(4), 
609-623. 

Kim, Jung-Ug and Yeong-Dae Kim (1996) Simulated Annealing and Genetic 
Algorithms for Scheduling Products With Multi-Level Product Structure. 
Computers and Operations Research, 23(9), 857-868. 



Kim, Yeo Keun, Yong Ju Kim, and Yeongho Kim (1996) Genetic Algorithms for 
Assembly Line Balancing With Various Objectives. Computers and 
Industrial Engineering, 30(3), 397-409. 

Kim, Yeöng-Dae, Hyeong-Gyu Lim, and Moon_Won Park (1996) Search 
Heuristics for a Flowshop Scheduling Problem in a Printed Circuit Board 
Assembly Process. European Journal of Operational Research, 91,124- 
143. 

Kincaid, Rex K. (1992) Good Solutions to Discrete Noxious Location Problems 
Via Metaheuristics. Annals of Operations Research, 40, 265-281. 

Kirkpatrick S., C. Gelatt, and P. Vecchi (1983) Optimization by Simulated 
Annealing. Science, 220, 671-679. 

Koulamas, C, S. R. Antony, and R. Jaen (1994) A Survey of Simulated 
Annealing Applications to Operations Research Problems. Omega, 
International Journal of Management Science, 22(1), 41 -56. 

Kuehn Alfred A. and Michael J. Hamburger (1963) A Heuristic Program for 
Locating Warehouses. Management Science, 9(4), 643-666. 

Kuik, Roelof, Marc Salomon, Luk N. Van Wassenhove, and Johan Maes (1993) 
Linear Programming, Simulated Annealing and Tabu Search Heuristics for 
Lotsizing in Bottleneck Assembly Systems. HE Transactions, 25(1), 62- 
72. 

Laguna, Manuel, James P. Kelly, Jose Luis Gonzalez-Velarde, and Fred Glover 
(1995) Tabu Search for the Multilevel Generalized Assignment Problem. 
European Journal of Operational Research, 82,176-189. 

Law, Averill M. and W. David Kelton (1991) Simulation Modeling & Analysis, 2nd 

ed., McGraw-Hill, Inc. 

Lee, Jae-Kwan and Yeong-Dae Kim (1996) Search Heuristics for Resource 
Constrained Project Scheduling. Journal of the Operational Research 
Society, 47, 678-689. 

Leu Yow-Yuh, Lance A. Matheson, and Loren Paul Rees (1994) Assembly Line 
Balancing Using Genetic Algorithms With Heuristic-Generated Initial 
Populations and Multiple Evaluation Criteria. Decision Sciences, 25(4), 
581-606. 



Leu, Yow-Yuh, Lance A. Matheson, and Loren Paul Rees (1996) Sequencing 
Mixed-Model Assembly Lines With Genetic Algorithms. Computers and 
Industrial Engineering, 30(4), 1027-1036. 

Liu, Chin-Ming, Ruey-Li Kao, and An-Hsiang Wang (1994) Solving Location- 
Allocation Problems with Rectilinear Distances by Simulated Annealing. 
Journal of the Operational Research Society, 45(11), 1304-1315. 

Lundy, M. and A. Mees (1986) Convergence of an Annealing Algorithm. 
Mathematical Programming, 34,111 -124. 

Malmborg, Charles J. (1996) A Genetic Algorithm for Service Level Based 
Vehicle Scheduling. European Journal of Operational Research, 93,191 - 
134. 

Marett, Richard and Mike Wright (1996) A Comparison of Neighborhood Search 
Techniques for Multi-Objective Combinatorial Problems. Computers and 
Operations Research, 23(5), 465-483. 

Metropolis, N. A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller 
(1953) Equations of State Calculations by Fast Computing Machines. 
Journal of Chemical Physics, 21,1087-1091. 

Murata, Tadahiko, Hisao Ishibuchi, and Hideo Tanaka (1996) Genetic 
Algorithms for Flowshop Scheduling Problems. Computers and Industrial 
Engineering, 30(4), 1061 -1071. 

Neebe, A.W. and B.M. Khumawala (1981) An Improved Algorithm for the Multi- 
Commodity Location Problem. Journal of Operational Research Society, 32, 
143-149. 

Nowicki, Eugeniusz, and Czeslaw Smutnicki (1996) A Fast Tabu Search 
Algorithm for the Permutation Flow Shop Problem. European Journal of 
Operational Research, 91,160-175. 

Nowicki, E. and S. Zdrazalka (1996) Single Machine Scheduling With Major and 
Minor Setup Times: A Tabu Search Approach. Journal of the Operational 
Research Society, 47,1054-1064. 

Osman, I. H. and C. N. Potts (1989) Simulated Annealing for Permutation Flow- 
Shop Scheduling. Omega, International Journal of Management Science, 
17(6), 551-557. 

Reeves, Colin R., ed. (1993) Modern Heuristic Techniques for Combinatorial 
Problems. New York: John Wiley & Sons. 



Renaud, Jacques, Gilbert Laporte, and Gayez F. Boctor (1996) A Tabu Search 
Heuristic for the Multi-Depot Vehicle Routing Problem. Computers and 
Operations Research, 23(3), 229-235. 

Roach, Anthony and Rakesh Nagi (1996) A Hybrid GA-SA Algorithm for Just-In- 
Time Scheduling of Multi-Level Assemblies. Computers and Industrial 
Engineering, 30(4), 1047-1060. 

Rolland, Erik, David A. Schilling, and John R. Current (1996) An Efficient Tabu 
Search Procedure for the p-Median Problem. European Journal of 
Operational Research, 96, 329-342. 

Roodman, G.M. and L.B. Schwarz (1975) Optimal and Heuristic Facility Phase- 
out Strategies. AIEE Transactions, 7,177-184. 

Roodman, G.M. and L.B. Schwarz (1977) Extension of the Multi-Period Facility 
Phase-Out Model; New Procedures and Applications to a Phase-in/Phase- 
out Problem. AIEE Transactions, 9,103-107. 

Sä., G. (1969) Branch and Bound and Approximate Solutions to the Capacitated 
Plant Location Problem. Operations Research, 17,1005-1016. 

Sakawa, Masatoshi, Kosuke Kato, and Tetsuya Mori (1996) Flexible Scheduling 
in a Machining Center Through Genetic Algorithms. Computers and 
Industrial Engineering, 30(4), 931-940. 

Schmidt, Linda C and John Jackman (1995) Evaluating Assembly Sequences for 
Automatic Assembly Systems. HE Transactions, 27, 23-31. 

Sinclair, Marius (1993) Comparison of the Performance of Modern Heuristics for 
Combinatorial Optimization on Real Data. Computers and Operations 
Research, 20(7), 687-695. 

Skorin-Kapov, Darko and Jadranka Skorin-Kapov (1994) On Tabu Search for the 
Location of Interacting Hub Facilities. European Journal of Operational 
Research, 73, 502-509. 

Sweeney, D.J. and Ronald L. Tatham (1976) An Improved Long Run Model for 
Multiple Warehouse Location. Management Science, 22(7), 748-758. 

Taillard, E. (1991) Robust Taboo Search for the Quadratic Assignment Problem. 
Parallel Computing, 17, 433-455. 



8 

Taillard, Eric D., Gilbert Laporte, and Michel Gendreau (1996) Vehicle Routeing 
with Multiple Use of Vehicles. Journal of the Operational Research 
Society, 47,1065-1070. 

Thompson, Gary M. (1996) A Simulated Annealing Heuristic for Shift Scheduling 
Using Non-Continuously Available Employees. Computers and 
Operations Research, 23(3), 275-288. 

Van Laarhoven, Peter J. M., and E. H. L. Aarts (1987) Simulated Annealing: 
Theory and Applications. Reidel, Dordrecht. 

Van Laarhoven, Peter J. M., Emile H. L. Aarts, and Jan Karel Lenstra (1992) Job 
Shop Scheduling by Simulated Annealing. Operations Research, 40(1), 
113-125. 

Vignaux, G. A., and Z. Michalewicz (1991) A Genetic Algorithm for the Linear 
Transportation Problem. IEEE Transactions on Systems, Man, and 
Cybernetics, 21(2), 445-452. 

Warszawski, A. (1987) Multi-Dimensional Location Problems. Operational 
Research Quarterly, 24,165-179. 

Wilhelm, Mickey R. and Thomas L. Ward (1987) Solving Quadratic Assignment 
Problems by Simulated Annealing. HE Transactions, 107, 107-119. 



AN EMPIRICAL COMPARISON OF TABU SEARCH, SIMULATED 
ANNEALING, AND GENETIC ALGORITHMS FOR FACILITIES LOCATION 

PROBLEMS 

A Dissertation 

Presented to 

the Faculty of the College of Business Administration 

University of Houston 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

By 

Marvin A. Arostegui, Jr. 

August 1997 



AN EMPIRICAL COMPARISON OF TABU SEARCH, SIMULATED 
ANNEALING, AND GENETIC ALGORITHMS FOR FACILITIES LOCATION 

PROBLEMS 

APPROVED: 

A>. ts/^ 

Basheer M. Khumawala,  Professor 
Decision and Information Sciences 
Chairperson of Committee 

of 

Everette S. Gardner.lo/r., Professor/of 
Decision and Information Sciences 

Qiil^ron        M      • t^orlinocanMi i h Sukran    N 
Professor of 
Sciences 

Kadipasao#u,    Assistant 
Decision and Information 

Julio L. Peixoto, Associate Ptfofessor of 
Decision and Information Sciences 

/H.lr, #7fc 
Sara M. Freedman, Dean 
College of Business Administration 



ACKNOWLEDGEMENTS 

I would like to express deepest gratitude to Professor Basheer M. 

Khumawala, my Dissertation Committee Chairman, Ph.D. advisor, and overall 

mentor. Over the space of three years, he was a constant source of 

encouragement, advise, and ideas. He provided me all the opportunities I 

needed to gain the proper experience so I could achieve my goals and 

engendered a great sense of self confidence by his willingness to trust in me. I 

would like to thank Professor Sukran N. Kadipasaoglu for her support and 

interest in my professional development and my research. Such caring attitudes 

make this process much more enjoyable. My thanks also to Professors Everette 

S. Gardner, Jr., and Julio L. Peixoto for passing some of their knowledge and 

experience down to me as well as for their ideas, suggestions, and participation 

during this research project. 

Finally I want to thank the many members of my family whose consistent 

confidence in me and constant encouragement ensured the last three years were 

filled only with high and positive moments. 



ABSTRACT 

AN EMPIRICAL COMPARISON OF TABU SEARCH, SIMULATED 
ANNEALING, AND GENETIC ALGORITHMS FOR FACILITIES LOCATION 

PROBLEMS 

A Dissertation 

Presented to 

the Faculty of the College of Business Administration 

University of Houston 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy 

By 

Marvin A. Arostegui, Jr. 

August 1997 



ABSTRACT 

AN EMPIRICAL COMPARISON OF TABU SEARCH, SIMULATED 
ANNEALING, AND GENETIC ALGORITHMS FOR FACILITIES LOCATION 

PROBLEMS 

Marvin A. Arostegui, Jr. 

Operations managers are typically faced with the need to find good solutions 

to difficult problems. Such problems include job scheduling, assembly line 

balancing, process layout, project scheduling, and facilities locations. Although 

optimal solutions are preferable, the combinatorial nature of these problems 

means that in many cases problems found in practical applications cannot be 

solved to optimality within reasonable resources. In these cases, operations 

managers turns to heuristics. Since the early 1980s, much interest has been 

devoted to the development and application of three general heuristic algorithms: 

tabu search, simulated annealing, and genetic algorithms. Each of them 

specifies a strategy for searching the solution space of a problem looking for 

"good" local optima. From a practical point of view, we would like to know if any 

of these methods is indeed better than the other two. 

In this research study we conduct an empirical comparison of these three 

heuristic algorithms using three variants of the facilities location problem: 

capacitated (CFLP), multiple-periods (MP-FLP), and multiple-commodities (MC- 

FLP). The selection of three different problem structures allowed us to explore 

the behavior of the heuristics under different circumstances and constraints. 

Furthermore, none of the heuristics have been previously applied to these 

problems. 
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Our empirical work consisted of several stages including the proper selection 

of problem solutions representations, parameter searches, and benchmarking. 

Our final stage was a statistical study to compare the performance of each 

heuristic along two dimensions: same computation time allowed and same 

amount of information allowed (i.e., number of solutions evaluated). We also 

compared the performance without any such restrictions. 

When all heuristics are limited to the same amount of computation time, tabu 

search performs consistently well for all three problem types. However, for MP- 

FLP, the performance of simulated annealing shows no statistically significant 

difference from tabu search; and, for MC-FLP, the performance of the genetic 

algorithm shows no statistically significant difference form tabu search. When all 

heuristics are limited to the same number of solutions they may evaluate, each 

heuristic does best for one type of problem. Simulated annealing does best for 

C-FLP, genetic algorithms do best for MP-FLP, and tabu search does best for 

MC-FLP. When no constraints are place on the heuristics, tabu search does 

best for CFLP and MC-FLP and simulated annealing does best for MP-FLP. 

Overall, tabu search tends to give the most robust results closely followed by 

simulated annealing. Genetic algorithms do not generally perform well for these 

types of problems. They do appear to complement the other two heuristics to the 

extent that genetic algorithms are better suited for problems where a 

neighborhood search cannot be easily defined or a large number of solutions 

cannot be efficiently evaluated. 
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Chapter 1 

INTRODUCTION 

Decision makers in any field have a natural desire to find optimal solutions to 

their problems. Unfortunately, there is a class of common business operations 

problems that are extremely difficult to solve optimally. Such problems include 

job scheduling, assembly line balancing, process layout, project scheduling, and 

facilities location. Although optimal algorithms have been developed to solve 

some of these problems, they suffer from combinatorial explosion, where the 

time required to solve them grows exponentially with the size of the problem. 

These problems belong to the class of combinatorial problems known as NP- 

hard, for which no known optimal algorithms exist that can execute in 

deterministic polynomial time. In most cases, the time and computing resources 

required to solve practical sized instances become prohibitive. 

Nonetheless, decision makers still have a need for sensible solutions. In 

these cases, heuristic methods are the only viable alternative. Heuristics are 

approximation algorithms that yield "good" solutions within a reasonable amount 

of computation time. Van Laarhoven and Aarts (1987) classify heuristics into 

tailored and general algorithms. Tailored algorithms have a limited applicability 

to a specific problem. General algorithms are widely applicable to various forms 



of combinatorial optimization problems. In fact, general algorithms define a 

strategy for obtaining approximate solutions to these difficult problems. 

1.1 Background 
Since the early 1980s, much interest has been devoted to the development 

and application of three general heuristic algorithms: tabu search, simulated 

annealing, and genetic algorithms. Each of them specifies a strategy for 

searching the solution space of a problem looking for "good" local optima (which 

may be the global optimum or close to it). Tabu search and simulated annealing 

are based on a neighborhood search and each specifies a strategy to climb out 

of a local optimum to ensure a wide search of the solution space. Genetic 

algorithms use an evolutionary, survival of the fittest strategy where new 

solutions (children) are generated by combining portions of two prior solutions 

(parents). In the last 20 years or so, researchers have used these general 

heuristic algorithms to solve a wide array of combinatorial problems. In all this 

effort, however, it is still not clear if one of these heuristics is consistently better 

than the other two. 

The number of papers published and the variety of subjects addressed as 

recently as 1996 show the great degree of interest in these heuristics. Tabu 

search was used to solve problems in scheduling (Franca, et al., 1996; Nowicki 

and Zdrzalka, 1996; Nowicki and Smutnicki, 1996; Hao, et al., 1996), vehicle 

routing (Taillard, Laporte, and Gendreau, 1996; Renaud, Laporte, and Boctor, 

1996), lot-sizing (Hindi, 1996), and the p-median location problem (Rolland, 

Schilling, and Current, 1996).   Simulated annealing was used extensively to 



solve various forms of the scheduling problem (Roach and Nagi, 1996; Ben-Daya 

and Al-Fawzan, 1996; He, Yang, and Tiger, 1996; Adenso-Diaz, 1996; 

Thompson, 1996). Finally, genetic algorithms were used in production 

assignment (Garavelli, Okogbaa, and Violante, 1996), product design 

(Balakrishnan and Jacob, 1996), scheduling (Leu, Matheson, and Rees, 1996; 

Cheng, Gen, and Tsujimura, 1996; Sakawa, Kato, and Mori, 1996), assembly 

line balancing (Kim, Kim, and Kim, 1996), and manufacturing cell design (Joines, 

Culbreth, and King, 1996). In most cases, empirical studies show the new 

heuristics are superior or at least as good as existing, problem specific heuristics. 

The broad interest and applicability of these heuristics leads to the natural 

question of which is better. Some papers have been published comparing tabu 

search versus simulated annealing (Kim, Lim, and Park, 1996; Marett and 

Wright, 1996) and simulated annealing versus genetic algorithms (Kim and Kim, 

1996). Some three way comparisons are also found for the problem of balancing 

hydraulic turbine runners (Sinclair, 1993), project scheduling (Lee and Kim, 1996) 

and flow shop scheduling (Murata, Ishibuchi, and Tanaka, 1996). Unfortunately, 

conclusions in these studies are based on simple observational comparisons of 

mean performance. None of the studies above reported the statistical 

significance of their conclusions or base their results on any statistical measure. 

Clearly, the need remains for a comparative study that incorporates rigorous 

statistical analysis. 



1.2 Purpose 
The aim of this dissertation is to provide an empirical comparison of these 

three heuristic algorithms using three variants of the facilities location problem: 

capacitated (CFLP), multiple periods (MP-FLP), and multiple commodities (MC- 

FLP). We selected the facilities location problem domain for several reasons: 

(1) It is an important problem domain in the field of operations management; 

(2) It provides challenging problems whose solutions can be represented in 
various ways; and 

(3) The new heuristics have not been widely applied to these problems 
creating an opportunity for new contributions. 

Specifically, we intend to address the following questions: 

What is an appropriate problem representation that facilitates problem 
solution using the new heuristics? 

For each heuristic, what is the relationship and effect of various levels of key 
parameters and the quality of solutions? 

For a set of medium sized, benchmark problems, what is the quality of 
solutions for each heuristic? 

For each heuristic, what is the relationship between time allowed for 
computation and quality of solutions? 

For each heuristic, is there a relationship between the size of the problem 
and the computation time required to reach a good solution? 

For randomly generated sets of large problems, is there a dominant heuristic 
for all forms of facilities location problems? 

If not, is there a dominant heuristic for each form of the facilities location 
problem? 

In Chapter 2, we present a tutorial explaining how each of the heuristics 

works.   Along with the basic algorithm and associated terminology, we also 

illustrate their operation using a small example.   In Chapter 3 we review the 



pertinent literature. We first review papers that not only demonstrate the wide 

array of applications for these heuristics but also show a variety of techniques for 

implementation. We then review papers that have compared all three of the 

heuristics. In Chapter 4, we outline our research methodology. In Chapters 5, 6, 

and 7, we develop the necessary heuristics for each of CFLP, MP-FLP, and MC- 

FLP respectively. In Chapter 8 we conduct the actual comparative study, and in 

Chapter 9 we present our conclusions. 



Chapter 2 

HEURISTICS TUTORIAL 

In this chapter we introduce the operation of each of the three general 

heuristic algorithms: tabu search, simulated annealing, and genetic algorithms. 

For each one, we outline their origin, their basic algorithm, and their associated 

terminology. To further illustrate how each heuristic operates, we walk through 

the early solution steps for a small sample problem. We take the sample 

problem from the uncapacitated facilities location problem (UFLP) domain. Since 

we use the same problem for each heuristic, we introduce it first. 

2.1 A UFLP Sample Problem 
A UFLP consists of a set of N potential locations from which a set of M 

customers must be supplied. There is a fixed cost for operating any given 

location, and a variable cost per unit to supply a customer from a given location. 

The objective is to select the subset of facilities that can serve all customers at 

the lowest total cost. Mathematically, this problem is formulated as a mixed 

integer program: 

N    M N 

minZ = XZC^+E^ W 
;=1 7=1 ;=1 

subject to 

J>&.=1, j = l,2,...,M (2) 
/=i 

y.-x^O,        i = l&...,N (3) 



Fixed 
Costs 

1 2 3 4 5 6 7 8 9 10 

A $300 $2 $4 $5 $10 $6 $3 $8 $2 $8 $4 

B $210 $4 $5 $4 $11 $9 $11 $9 $12 $6 $11 

C $150 $12 $2 $3 $4 $10 $2 $7 $11 $10 $10 

D $200 $10 $8 $7 $2 $4 $12 $4 $5 $2 $2 

E $275 $6 $7 $12 $3 $6 $4 $5 $3 $4 $7 

F $325 $7 $10 $6 $5 $5 $6 $3 $2 $3 $5 

Demand 10 30 10 40 20 10 40 20 10 30 

y e {04} 

x,>0 

Figure 1. UFLP Sample Problem 

i = l,2,-..,N 

i = l,2,...N,   j = l,2,...,M 

(4) 

(5) 
where 

cost to satisfy customer/s demand from location /' 
Fj fixed cost of operating a warehouse at location i 
Xjj fraction of demand for customer y shipped from location i 
y, {0,1} indicator where y,=7 implies a warehouse is located at location i 

Figure 1 shows an instance of this problem in tableau form which we use in 

the subsequent tutorials. The problem consists of six potential locations and ten 

customers. The fixed costs, variable costs, and customer demands are as 

shown. Before the heuristics can solve this problem, a structure to represent a 

solution must be specified.   An easy solution representation for the UFLP is a 

vector s = {yl,y2,y3,y4,y5,y6), where y{ e{o,l}  represents whether the specific 

location i is in operation (yi = 1) or not (yi =0). 

2.2 Tabu Search 
The initial concepts of a tabu search strategy were first introduced by Glover 

as early as 1977 in a paper that introduced the idea of oscillating assignment as 

a heuristic approach for solving integer programming problems (Glover, 1977). 
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Glover explains that up to this point two heuristic strategies prevailed. The first 

one was an outside-in strategy that started with a solution from outside of the 

feasible region and made moves that led directly into the feasible region and 

stayed there. A second strategy, inside-out, started with a solution within the 

feasible region and made improving moves until no moves were available except 

those that would lead outside the feasible region. Glover's oscillating assignment 

consists of applying these methods alternatively, allowing the inside-out strategy 

to move back outside the feasible region. In this way new areas of the solution 

space can be investigated. Glover formally presented the full tabu search 

strategy in a series of papers and tutorials that address the various aspects of 

the algorithm (Glover 1989; Glover 1990a; Glover 1990b; Glover 1993). These 

papers present the basic algorithm and discuss various technical elements such 

as neighborhoods and neighborhood sizes, tabu list types, tabu list size, and 

aspiration criteria. 

Tabu search starts with a random, feasible solution to the problem. From 

this solution, a set of neighboring solutions is generated. A neighbor solution is 

generated through a pre-defined change to the incumbent solution. The change, 

also known as a move, is specified such that the resulting solution is feasible. A 

cost function is specified and used to evaluate the quality of each solution. From 

the current set of neighboring solutions, the best one is selected according to the 

cost function and becomes the new incumbent solution. A new set of 

neighboring solutions is generated from the new incumbent solution and the 

process repeats until some stopping condition is met. 



Without any modifications, the process described above will find the nearest 

local optimum and stay there. The salient characteristic of tabu search is a 

flexible short-term memory of recent moves known as the tabu list. With a tabu 

list, the selection for a new incumbent solution becomes: select the best 

neighboring solution according to the cost function whose generating move is not 

on the tabu list. This strategy in essence prevents backtracking into local optima 

and at times forces acceptance of inferior solutions. The size of the tabu list is a 

critical parameter and determines the length of time moves remain unavailable. 

A list that is too short will result in cycling of solutions; a list that is too long will 

restrict too many moves and, therefore, the overall search. 

As new incumbent solutions are selected, the strategy keeps track of the 

best solution found so far. If at any time a move on the tabu list would result in a 

solution that is better than the best one so far, the move's tabu status is ignored 

and the solution accepted immediately. This is formally known as the aspiration 

criteria. The complete algorithm is shown in Figure 2. 

Formally, we can define a tabu search as a set of structures, functions, and 

parameters required to fully implement the associated algorithm: 

TS = {3B, yW W. ^/y, WA &} 
Where 

3% is the solution representation structure 
J9ZJ is the neighborhood structure; 
WfJ is the cost function 
j&ß is the aspiration criterion function 
37J is the terminating condition function 
& is the set of control parameters 
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Define move operation x that generates neighbor solutions from incumbent solution ; 
Define cost function C(») ; 
Define tabu list length Ti = T; 

Generate initial solution s0; 
Set "best so far" solution sb = s0; 
Set best cost Cb = C(s0) ; 
Set tabu list T = {0}; 
Repeat 

Generate the set X = {x,, x2,...j of all possible moves from s0; 
Generate the set S = {slt s2,...} of neighbor solutions from each move Xj eX\ 
Repeat 

Find best st e S such that C(SJ) > C(sß, Sj eS, j #z (assumes maximizing objective); 
If corresponding xt is not tabu (x, g T) 

So      Sj , 

T = T + xr, 
Else 

If/fV > C„ 

T = T+JC,; 

Else 
S = S-sr, 

Until s0 has been replaced; 
If |T| > Ti, remove oldest x, from tabu list T; 
Iff(s0) > Cb 

$b      -^0 3 

Cb = C(s0) ; 
Until some stopping condition 

Figure 2. Tabu Search Algorithm 

At first, &= {x}, the length of the tabu list. If we use a maximum number of 

iterations as a terminating condition, then &>■=■ {x, ©}. 

We now use the UFLP problem to illustrate the basic operation of the tabu 

search algorithm. As explained in the previous section, we use a vector to 

represent solutions. Our first task is to define the neighborhood of solutions and 

the associated moves. For a given UFLP solution, we can define a neighboring 

solution as one where the operating status of a single potential location has 

changed.   Let x = {/} be the associated move indicating a change in status for 

location /. Thus, given incumbent solution s = {1,1,0,0,0,1}, a move x = {1} results 
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in a neighboring solution Sj = {0,1,0,0,0,1} ■ The move indicated a change in status 

for the first potential location. Therefore, the neighboring solution differs from the 

incumbent solution only in the status of the first location. Note that for any 

incumbent solution in this example, there are six neighboring solutions. In 

general, for UFLP and the neighborhood structure we have defined, the size of 

the neighborhood is N, the number of potential locations. 

The cost function is the one shown in (1) in the previous section. We use the 

traditional aspiration criteria: the tabu status of a move is ignored if the cost of the 

resulting solution is better than the cost of the best solution so far. The length of 

the tabu list will be set at two. 

Our initial incumbent solution will be generated randomly by taking the first 

six random numbers from Table 1.   The rule will be y,=\\imdi >0.5, zero 

otherwise. Our starting incumbent solution s0 = {0,1,1,0,0,0} has a cost 

C(s0) = 1710. We set our "best so far" solution and cost to these values also and 

set our tabu list T = {0}. We will now iterate through the algorithm. 

Iteration 1. By definition, we can make six moves to generate six new 

solutions from the incumbent solution. The set of possible moves is then 

X={{1}, {2}, {3}, {4}, {5}, {6}}, where x, = {1}indicates a move changing the 

status of location one in the incumbent solution. By applying X to s0, we arrive at 

the set of neighboring solutions S = {{1,1,1,0,0,0}, {0,0,1,0,0,0}, {0,1,0,0,0,0}, 

{0,1,1,1,0,0}, {0,1,1,0,1,0}, {0,1,1,0,0,1}}. Of these solutions, s4 = {0,1,1,1,0,0} has 

the "best" cost at $1210. Since x4= {4} is not in the tabu list, we will let s0 = s4, be 
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Table 1. Random Numbers 

0.172660 0.786573 0.449903 0.546213 
0.889322 0.935427 0.523163 0.193679 
0.834534 0.716905 0.796399 0.162223 
0.009002 0.025920 0.080756 0.482895 
0.303151 0.634895 0.262880 0.015289 
0.053135 0.687167 0.225513 0.960717 
0.046045 0.222020 0.196931 0.763701 
0.878358 0.494333 0.816749 0.527953 
0.560228 0.246860 0.104934 0.306651 
0.747382 0.979987 0.621410 0.884274 
0.243208 0.644853 0.036288 0.992566 
0.598157 0.038312 0.899635 0.065116 
0.217797 0.904357 0.168491 0.406552 
0.520997 0.520354 0.832720 0.914466 
0.393537 0.596678 0.528487 0.424163 
0.182925 0.358830 0.285751 0.907070 
0.427306 0.860678 0.610157 0.127950 
0.739046 0.408201 0.911457 0.454823 
0.150650 0.641046 0.857670 0.214733 
0.982749 0.056209 0.864828 0.023002 
0.058134 0.704880 0.161430 0.592212 
0.054058 0.912767 0.147810 0.315352 
0.550153 0.872777 0.250357 0.122942 
0.420510 0.770607 0.742809 0.285305 
0.503944 0.596445 0.398021 0.129142 

our new incumbent solution and T={{4}}.   Also, since our new incumbent is 

better than our "best so far," sb = s0 and C6=$1210. 

Iteration 2.    The set of possible moves remains the same as before. 

Elements in the tabu list are not considered at this point.  By applying X to our 

new s0, we arrive at a new set of neighboring solutions S = {{1,1,1,1,0,0}, 

{0,0,1,1,0,0},   {0,1,0,1,0,0},  {0,1,1,0,0,0},  {0,1,1,1,1,0},  {0,1,1,1,0,1}}.     Of these 

solutions, s2= {0,0,1,1,0,0} has the "best" cost at $1060. Since x2 = {2} is not in 

the tabu list, we will let s0 = s2, be our new incumbent solution and T={{2},{4}}. 
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Also since our new incumbent is better than our "best so far," sb = s0 and Cb = 

$1060. 

Iteration 3.    By applying X to our new s0, we arrive at a new set of 

neighboring solutions S = {{1,0,1,1,0,0}, {0,1,1,1,0,0}, {0,0,0,1,0,0}, {0,0,1,0,0,0}, 

{0,0,1,1,1,0}, {0,0,1,1,0,1}}. Of these solutions, s2= {0,1,1,1,0,0} has the "best" 

cost at $1210. However, x2 is in the tabu list and C(s2) does not meet the 

aspiration criteria. Therefore, s2 is discarded. The next "best" solution is si with 

a cost of $1220. Since xi = {1} is not in the tabu list, we will let 80 = 8!, be our 

new incumbent solution and T={{1},{2}}. Note that x4= {4} has dropped off the 

tabu list since the maximum length of the list was set at two. Also since our new 

incumbent is not better than our "best so far," sb and Cb remain unchanged- 

Iteration three demonstrates the power of tabu search. An inferior solution 

was accepted in order not to backtrack to the incumbent solution found at 

iteration one. From this inferior solution, the solution space can be further 

investigated. The algorithm continues until a stopping condition, commonly a 

pre-set number of iterations. For this particular problem, the optimal solution is in 

fact the same one found at iteration two with a cost of $1060. 

The basic algorithm shown above can be enhanced with different, dynamic 

types of tabu lists. Techniques can be used that intensify the search around 

regions of the solution space that generate good solutions. There are also 

various techniques for implementing a long-term memory to diversify the search 
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into broad areas of the solution space. We will explore these techniques in more 

detail as we review applications of tabu search in the next chapter. 

2.3 Simulated Annealing 
The first concepts of simulated annealing were introduced in Metropolis, et 

al., (1953), as a Monte Carlo approach for estimating the thermodynamic 

equilibrium of solids at a given temperature. The idea is to start the solid with the 

state of its particles set at random. Particles are then selected at random, and 

their state changed. If the change reduces total energy, the change is accepted; 

but, if the change increases total energy, the changed is accepted using a 

probability function tuned to the desired temperature. This approach served as 

the basis for an algorithm that could be used to solve difficult combinatorial 

problems. Kirkpatrick, et al. (1983) and Cerny (1985) independently developed 

the algorithm we now know as simulated annealing by applying the Metropolis 

algorithm to combinatorial problems. Unlike the Metropolis algorithm which is 

applied at a given temperature, these authors applied the algorithm in stages, 

starting at a high temperature and reducing the temperature control at each 

stage until a frozen state is reached. Kirkpatrick, et al., demonstrated the 

algorithm on the problem of locating circuits on a chip and also on the traveling 

salesman problem. Cerny also demonstrated the algorithm on the traveling 

salesman problem. Since these early experiments, simulated annealing has 

received much attention and has been applied to a variety of combinatorial 

problems. 
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Like tabu search, simulated annealing begins with a randomly generated 

solution; but, unlike tabu search, only one randomly selected neighboring 

solution is considered at a time.   The neighboring solution is generated in the 

same way, through a pre-defined change or perturbation to the incumbent 

solution, so, resulting in a new, feasible solution, s'.    If the cost of the new 

solution is "better" than the cost of the incumbent solution, the incumbent solution 

is replaced.   If the new solution is inferior in cost, it may still be accepted with 

some probability.   The probability of accepting inferior solutions is based on 

some probability function. A commonly used function is: 

P(£) = exp(-£/0 (6) 
where 

Sis the cost difference between the two solutions, C(s')- C(s0) 
t is a "temperature" parameter 

The rate at which inferior solutions are accepted is controlled by the 

temperature parameter, /. This parameter is initially set to a high value to allow 

free exploration of the solution space and gradually decreased over time. The 

rate at which t is decreased is called the cooling schedule, and the time between 

each update of t is called an epoch. The cooling schedule could be an 

exponential or geometric decay function such as t = at, where a < 1 or a linear 

decay function such as t = t-c, where c is a constant amount. Other functions 

are of course possible. During each epoch, one or more iterations of the 

perturbation process may be accomplished. The algorithm terminates whenever 

a stopping condition is met. The full algorithm is summarized in Figure 3. 
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Define a neighborhood function A^So); 
Select probability function P(8) = exp(-S/t); 
Select initial temperature t0; 
Select a cooling schedule a(t); 
Generate initial solution s0; 
Repeat 

Repeat 
Randomly select s e N(s0); 

If<S<0 
s0 — s, 

else 
x = random(0,l) 
if x < ex$(-8/t) then s0 = s; 

Until r\ iterations 
Set t = a(t); 

Until stopping condition; 

Figure 3. Simulated Annealing Algorithm 

As we did for tabu search, we can formally define a simulated annealing 

algorithm as follows: 

where 
M is the solution representation structure 
JPTJ is the neighborhood structure; 
WfJ is the cost function 
5fJ is the cooling schedule 
WJ is the terminating condition function 
5s is the set of control parameters 

At first &= {t0,f?}, the initial temperature and number of iterations per epoch. 

Other control parameters may be required for the cooling schedule and 

terminating condition functions. 

We now use the same UFLP shown in Figure 1 to illustrate how simulated 

annealing works. We use the same vector representation for our solutions as 

before and we use (6) as our probability function.. For our cooling schedule, we 

use a simple geometric schedule, tM = ati, with a = 0.95.   We set our initial 
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temperature t0 at 145 and the number of iterations per epoch, 77, to two.   We 

address how these parameters are selected in the next chapter. 

The initial solution is generated in the same way as in the tabu search 

example, randomly setting the status of each potential location. Since the same 

random numbers would be used (the list is reset for each algorithm), the initial 

solution will be the same, s0 = {0,1,1,0,0,0} with a cost C(s0) = 1710. 

Epoch 1, Iteration 1. A neighboring solution s' is randomly selected by 

changing the status of one of the potential locations. The element to change is 

randomly selected using the function x = ceil(«*rnd(«)), where the ceiling function 

returns the next largest integer, n is the number of elements in the solution, and 

the random number function returns a uniformly distributed number in the range 

(0,1). Since our next random number is 0.046045, x = 1, s' = {1,1,1,0,0,0}, and 

C(s') = $1570. Since this is a better solution, we accept it as the new incumbent. 

Epoch 1, Iteration 2. Our next random number is 0.878358. This results in 

x = 6, s'= {1,1,1,0,0,1}, and C(s') = $1685. Since this is an inferior solution, we 

must consider whether to accept it based on our probability function. We will 

accept this solution if the next random number is less than P(5) = .452438. 

Since our next random number is 0.560228, the incumbent solution remains 

unchanged. 

Epoch 2, Iteration 1. At this point we decrease the current temperature t0 = 

145, to 0.95t0 = 137.75. With our next random number, 0.747382, x = 5, s' = 

{1,1,1,0,1,0}, and C(s') = $1705. Again, since this is an inferior solution, we must 
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test for acceptance. With P(8) = 0.375297 and our next random number 

0.243208, we accept this inferior solution as our new incumbent. 

The simulated annealing algorithm continues in this fashion, keeping track of 

the best solution found overall. The algorithm would stop when some condition is 

met, such as the temperature falling below some parameter Tmin. We will discuss 

further enhancements in the next chapter. 

2.4 Genetic Algorithms 
Holland (1975) formally introduced genetic algorithms as a general theory of 

adaptive algorithms based on the biology of reproductive systems. Holland's 

reproductive plan starts with an initial population that evolves over time. In the 

language of genetic algorithms, a population is a set of incumbent solutions, 

solutions are called chromosomes, and the elements or variables in each 

solution are called genes. Four genetic operators control evolution: selection, 

crossover, inversion, and mutation. These operators are applied probabilistically 

to each element of the population. Considering a vector usually represents a 

solution or chromosome in genetic algorithms, we explain the genetic operators 

this way: 

Selection: a survival-of-the-fittest operation that assigns a probability of 

survival from one generation to the next to each chromosome in a population. 

The assigned probability is based on the fitness of the chromosome relative to 

the other chromosomes in the population. In practical terms, fitness is a mapping 

function that translates a solutions' objective function value to some probability in 

(0,1),or.r:C(.)->(0,l). 
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Crossover, a recombination operation that generates a new solution or 

chromosome from portions of two other incumbent solutions (parents). The new 

solution (offspring) will consist of the head portion from the first parent, and the 

tail portion from the second parent. The point at which the parents are split to 

create head and tail portions is called the crossover point and is selected 

randomly. The first parent is normally selected at random, with chromosomes 

having a probability of selection in proportion to their fitness values. The second 

parent is also selected at random, but with all chromosomes having an equal 

probability of selection. 

Inversion: a reordering operation that reverses the order of elements in the 

selected incumbent solution or chromosome. 

Mutation: an operation that randomly alters genes in chromosomes. In its 

simplest form, a mutation may simply change the value of a single variable in an 

incumbent solution. Many other mutations are possible such as swapping the 

value of two variables in a solution, or reordering the values of a few variables in 

a solution. 

There are two ways in which generation of solutions evolve. One way is to 

maintain a single population of solutions. As genetic operators are applied to the 

members of the population, the resulting offspring replace other members in the 

population, thereby maintaining the size of the population fixed. The member to 

be replaced may be selected at random from the existing population, or may be 

selected using an elitist approach where the member with the lowest fitness 

value is replaced. An alternative way to evolution is to create a new population 
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for each generation.    Using this approach, offspring resulting from genetic 

operators are copied to the new population.   When the new population has 

reached its proper size, the old population is discarded and the new population 

becomes the incumbent generation. In general, genetic algorithms continue this 

evolution process until they converge to a single chromosome populating the 

whole generation, or until some fixed number of generations have elapsed. The 

full algorithm is shown in Figure 4. 

As we did before with tabu search and simulated annealing, we now define 

genetic algorithms as: 

GA = {M, W/WJ, J&V. W &) 
Where 

M is a solution representation 
WJ is the fitness function 
3£fJ is the crossover operation function 
J&/y is the mutation operation function 
WJ is the terminating condition function 
& is the set of control parameters 

At first &= {y/,7Tx,nm,co} where y/ is the population size, nx is the probability of 

applying the crossover operator, nm is the probability of applying the mutation 

operator, and  a  is the number of generations before termination.    Other 

parameters may be required for a specific implementation. 

We now use the UFLP in Figure 2 to illustrate how genetic algorithms work. 

We use the same vector representation and cost functions as before. Our fitness 

function assigns a selection probability to each chromosome in a generation such 

that chromosomes with lower cost will have a proportionally higher probability: 
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Define a cost function C(»); 

Define a fit function F(»); 
Define crossover operation <8>; 
Define a mutation function M(»); 
Select a population size yr, 
Select a crossover rate Jtx ; 

Select a mutation rate, ;rm; 
Generate a staring population S; 
Repeat 

snew={0}; 
Repeat 

Randomly select p, eS , based on F(C(4 seS; 

Randomly select p2eS, p2 *Pi, based on F(c(s)),seS; 

If Random(») <nx s = p, ® p2 else s = p,; 

If Randorri^) < nm then s = M| -); 
If C(s) best so far, sbest = s ; 

S„ew =^new + {SJ ! 

Until |S„ew| = ^, 

S = ^new i 
Until max_generations or other stopping condition; 

Figure 4. Genetic Algorithm 

,,       max{c(s)|seS}-C(») 

^maxfcCs^seSJ-CCs) 
SES 

Note that the worst solution will receive a selection probability of zero. Our 

crossover operation consists of randomly selecting a point where each parent 

vector will be split. The offspring consists of the first portion of the first parent 

and the second portion of the other parent. For simplicity, we use a population 

size of five and no mutations are allowed. The crossover operator is applied with 

100% probability. 

We first generate a starting population of five solutions.   Each solution is 

generated as shown in §2.2, using the random numbers in Table 1. Our starting 
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Table 2. Genetic Algorithm Starting Generation 

si C(s) F(s) 

{0,1,1,0,0,0} $1710.00 .0062 

{0,1,1,1,0,1} $1435.00 .3522 

{0,1,0,0,0,1} $1415.00 .3773 

{0,1,0,0,1,0} $1505.00 .2641 

{1,1,1,1,0,1}      $1715.00       0 

generation is shown in Table 2 including the corresponding cost and fit values. 

To create our second generation, we must create five new offspring solutions 

from this starting generation. 

To create the first child solution we must select two parents based on their fit 

values. Our next available random number is 0.687167, since we used the first 

30 numbers to create our starting generation. We select as our first parent, pi, 

the nth solution, such that n is the smallest number for which the sum of fit values 

for the first n solutions exceed our random number. Using this method, our first 

parent is s3. Our second parent, p2> is selected similarly, using the next random 

number 0.222020. This results in s2. To accomplish the crossover operation, we 

use the next random number, 0.494333, with the function x = ceil(«*rnd(»))to 

select a point between one and six (the point where the solution vectors will be 

split). Since this function evaluates to three, our child solution will consist of the 

first two elements of pi, and the last four elements of p2. Our child solution is {0, 

1,1, 1, 0,1}, which is the same as s2 in our current generation, indicating that s2 

will survive into the new generation. The next four children of the new generation 
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Table 3. Genetic Algorithm Second Generation 

Si C(s) F(s) 

{0,1,1,1,0,1} 

{0,1,1,0,1,0} 

{0,1,1,0,1,0} 

{0,1,0,0,1,0} 

{0,1,0,0,0,1} 

$1435.00 0.4000 

$1535.00 0.0000 

$1535.00 0.0000 

$1505.00 0.1200 

$1415.00 0.4800 

are created similarly and the whole new generation, along with cost and fit 

values, is shown in Table 3. 

The genetic algorithm continues by creating one generation after another 

until a stopping condition is met. Looking at Table 3, two observations should be 

made about this example. First, the three best solutions from the starting 

generation survived to the new generation. Second, one of the new solutions 

has been duplicated, reducing the diversity in the pool of parent chromosomes. 

Fortunately, by our fitness function, these solutions will not be selected since 

they are the worst of the generation. Unfortunately, the remaining solutions have 

a schemata or pattern of the form {0,1, *, *, *, *}, and the optimal solution is {0, 

0, 1, 1, 0, 0}. Clearly, without mutation, the optimal solution cannot be reached 

from the current pool of parent chromosomes. The first observation shows the 

strength of genetic algorithms (survival of the fittest solutions) and the second 

observation a potential weakness that must be considered. In the next chapter 

we will review the pertinent literature that addresses these and other issues, 

including variations on the algorithm. 
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2.5 Chapter Summary 

In this chapter, we first developed an example of an uncapacitated facilities 

location problem (UFLP) that we used to illustrate the operation of each general 

heuristic algorithm. For each heuristic, we then outlined a short history of its 

development and introduced the basic strategy. We then walked through the 

initial steps of each heuristic using the UFLP example. 

The next chapter will consist of a literature review covering publications on 

the theory and application of each of these heuristics. We are interested in 

finding out the extent to which these heuristics have been used to solve business 

problems and the various techniques that have been used and developed in 

implementing these heuristics. We will also review in detail several comparative 

papers so we can establish the state of the art in the use of these heuristics. 



Chapter 3 

LITERATURE REVIEW 

The objective of this chapter is to review the pertinent literature on tabu 

search, simulated annealing, and genetic algorithms. For each heuristic strategy, 

we will review papers to see how the methods have been applied to solve 

various problems with a specific interest in problem representations, technical 

implementation, and computational experience. We will conclude with a review 

of the few papers that report on comparative studies between all three of these 

heuristics. 

3.1 Tabu Search 

As we noted in the previous chapter, Glover introduced the full tabu search 

strategy in a series of papers and tutorials that address the various aspects of 

the algorithm (Glover 1989; Glover 1990a; Glover 1990b; Glover 1993). In this 

section, we review some of the published papers that apply tabu search to 

various combinatorial problems. A summary of these papers is shown in Table 

4. 

3.1.1 Assignment Problems 
The classic quadratic assignment problem (QAP) is one of many hard 

combinatorial problems where tabu search has been used successfully. Taillard 

(1991), presents an efficient tabu search algorithm for this problem along with a 

25 
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Table 4. Tabu Search Articles Reviewed 

Author(s) Year Domain  
Taillard '91 QAP 
Laguna, et al. '95 Assignment 
Gendreau, et al. '94 VRP 
Renaud, et al. '96 VRP 
Hindi '95 Lot Sizing 
Barnes and Chambers '95 JS Scheduling 
Barnes and Laguna '93 JS Scheduling 
Icmeli and Erenguc '94 Project Scheduling 
Rolland, et al. '96 p-Median 
Skorin-Kapov & Skorin Kapov '94 Location/Allocation 
Crainic, et al. '93 Location/Allocation 

comparison of previous results from earlier implementations of tabu search, 

simulated annealing, and other heuristics. Taillard's implementation of tabu 

search incorporates a random sized tabu list. A typical decision with tabu search 

is trying to determine a tabu list size that will prevent cycling without being too 

restrictive. Taillard's approach is to establish a range for the size of the list 

between smin and smax = smin + A where A is some constant, and then change the 

size of the list every 2 * smax iterations to a random size within the range. Taillard 

found that using the random tabu list size resulted in a more reliable algorithm 

that found the best solution in about 30% fewer iterations than with a fixed size 

list. His numerical results show near-optimal solutions for problems of size up to 

N = 100 that are better than those found by any other algorithm, including earlier 

implementations of tabu search. 

Laguna, et al. (1995) used tabu search to find solutions for the multilevel 

generalized assignment problem (MGAP). This problem consists of assigning n 

tasks to m agents at each of i levels of efficiency. At each level, each task n must 

be assigned to at most one agent, and each agent may have more than one task 
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assigned. However, each agent has a limited amount of a single resource, and 

each task requires some amount of that resource dependent on the agent and 

the level of efficiency. A network representation is used where tasks and agents 

are nodes and arcs between nodes represent assignments. In their 

implementation, the authors use a dynamic tabu list where an element remains 

tabu for a time based on its own attributes rather than on a fixed sized list. 

Specifically, when an arc is removed from the network and another inserted, the 

leaving arc remains tabu for a time. The tabu time is based on the number of 

alternate arcs in the same node, the difference in ranks between the leaving and 

the entering arcs, and the frequency with which the leaving arc has been 

selected previously. To benchmark their algorithm, a set of 100 single level test 

problems with 5 agents and 20 tasks were solved to optimality with a branch- 

and-bound algorithm. Tabu search was able to find the optimal solution in 94 of 

these cases. Using slightly larger single level problems with 5 agents and 25 

tasks that could not be solved to optimality, Laguna, et al. showed that their tabu 

search algorithm found better average solutions than the branch-and-bound 

algorithm for a given length of computation time. A similar experiment was 

conducted for multilevel problems. Allowing 180 CPU seconds for the tabu 

search and a MIP optimization package, the authors showed the tabu search 

algorithm found average solutions at least as good in 7 out of 9 cases. They 

noted that tabu search had greatest difficulty with sparse problems where the 

number of levels is larger than the number of agents. 
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3.1.2 Vehicle Routing Problems 
Another class of problems where tabu search has been applied is the vehicle 

routing problem (VRP). Gendreau, et al., (1994), develop a tabu search algorithm 

for this problem that, unlike previous algorithms, allows infeasible solutions to 

become the incumbent solution as a way to diversify the search. To implement 

this technique, the authors added two penalty elements to the objective function, 

one for exceeding vehicle capacity and one for exceeding tour length. The 

penalties, however, are not constant throughout the search. Each penalty 

element is associated with a penalty factor: a for capacity and ß for length. 

Every h iterations, if the previous h solutions were feasible with respect to 

capacity, then a = a/2; if they were infeasible then a = 2*a. The same operation 

is done for ß with respect to tour length. The inclusion of these dynamic penalty 

factors results in a balance of feasible and infeasible solutions being accepted as 

the incumbent solution. Their computational experience on a set of benchmark 

problems, shows that tabu search dominates eight other classical heuristics and 

outperforms other simulated annealing and tabu search implementations (except 

for a tabu search algorithm due to Taillard that performs as well). 

Renaud et al., (1996) present a variant of the vehicle routing problem which 

includes multiple depots. The objective of this problem is to find a set of routes 

where each route starts and ends at the same depot, a single vehicle visits each 

customer, vehicle capacity is not exceeded, and the travel duration of each route 

is limited. Renaud et al., report on a tabu search algorithm that uses three 

phases:   fast-improvement,   intensification,   and   diversification.      The   fast- 
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improvement phase is a basic tabu search that ends when no improvement has 

been found in the last 0 iterations. The intensification phase looks for 

improvements through changes in the routes within each depot, and the 

diversification phase looks for improvements through changes in routes across 

depots. Computational results on 23 problems from the literature show the tabu 

search heuristic finds the best solution in 20 cases. 

3.1.3 Lot Sizing 
Hindi (1995) developed a tabu search heuristic for solving the single-item, 

capacitated dynamic lot-sizing problem. This problem is a variant of the classical 

lot-sizing problem, allowing for production runs to continue over several planning 

periods without a new set-up charge and allowing a reservation charge for 

keeping the facility on but idle (i.e., not available for producing other items). 

Hindi uses a basic tabu search algorithm, yet, computational results using two 

sets of problems from the literature showed tabu search found the optimal 

solution in each case. Furthermore, Hindi reports solution times were short and 

not related to structural aspects of the problem. 

3.1.4 Job Shop/Flow Shop Scheduling 
Barnes and Chambers (1995) present an algorithm to solve the job shop 

scheduling problem with an interesting approach for obtaining diversification. 

They begin by selecting a range for the size of the tabu list. In an initial phase, 

the tabu list size is set at the highest point in the range. The algorithm is 

executed as usual, except that every time the incumbent solution is improved 

overall, the solution is pushed down into a last-in, first-out stack. This phase of 
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the algorithm ends after a number of iterations are completed without an 

improvement in the solution. At this point the second phase begins. The top 

solution is popped off the stack and used as a starting solution for a new set of 

tabu searches each at a different level of tabu list size within the range defined. 

Each of these searches ends after a number of iterations without improvements 

in the solution, and each solution found with an overall improvement is pushed 

into the stack. This process continues until all solutions in the stack are 

searched at each level of tabu list size or until a preset time limit is reached. The 

reported test cases include problems with 10 machines and 10, 15, or 20 jobs, 

and problems with 15 machines and 15 or 20 jobs. Ranges for the short-term 

memory used were 11-13, 11-14, 12-14 and 12-15. Limits for CPU times were 

set at 225, 240, and 270 seconds. Their computational results show the tabu 

search heuristic generally dominates other heuristics reported in the literature. 

Barnes and Laguna (1993) report on a tabu search algorithm for the multiple- 

machine, weighted flow time problem, where several jobs must be scheduled on 

several identical machines such that makespan is minimized. Their 

implementation of tabu search is quite routine. However, there are two kinds of 

moves allowed when generating neighbor solutions. A swap move changes the 

position of two jobs on two different machines, while an insertion move takes a 

job from one machine and inserts the job into another machine. At each 

iteration, the best move of either kind is made. In order to implement 

diversification, the authors consider the notion of move distance. That is, moves 

with longer distance explore broader regions of the solution space. With respect 
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to swap and insertion moves, the insertion moves are considered to be of longer 

distance. Thus, after a certain period of time, non-improving swap moves (of 

shorter distance) are disallowed in favor of insertion moves. A set of eight test 

problems with known optimal solutions from a branch and bound algorithm was 

used to benchmark the heuristic. Tabu search was able to find the optimal 

solution for all, and with one exception, the time required was an order of 

magnitude less than branch and bound. A second set of nine, more difficult 

problems showed the heuristic could find the same optimal solution as branch 

and bound when it finished, or as good a solution as branch and bound when it 

failed to finish within 60 hours. In addition, tabu search took two orders of 

magnitude less time to reach its best solution than branch and bound. 

3.1.5 Project Scheduling 
Icmeli and Erenguc (1994) develop a tabu search algorithm for solving the 

resource-constrained project scheduling problem. Initial solutions for their 

algorithm are generated through a separate heuristic that specifies the priority in 

which activities will be delayed whenever a resource constraint conflict occurs. A 

move in this context consists of scheduling an activity to finish one unit of time 

earlier or later. Thus, for N activities, there are at most 2N moves, some of which 

may lead to infeasible solutions. A penalty is added to the cost function for 

infeasible solutions based on the number of constraints violated and their degree 

represented by the value of the constraint's slack variable. Icmeli and Erenguc 

depart from traditional tabu search in their implementation of the tabu list, or S- 

List.   Instead of declaring a move as tabu, the cost function value is saved as 
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tabu, thus preventing the selection of any other solution with the same cost as 

the incumbent. The authors call this version of the tabu search algorithm with 

only a short-term memory TABU-S. Computational experiments showed this 

version found the best solutions in the early stages, suggesting the need for a 

version with long term memory, TABU-L. The long-term memory is implemented 

by restarting the algorithm with different starting solutions. A second tabu list, the 

L-List, is kept with the values of these starting solutions, to prevent repeating a 

starting solution. In addition, the cost value for the best solution of each long 

term memory iteration is made a permanent member of the S-List. Both of these 

techniques avoid cycling into regions that have been previously explored. 

Experiments with a set of 50 problems showed that TABU-L performed as well or 

better than TABU-S in 41 of the problems, with TABU-S performing better in the 

other nine. 

3.1.6 Location Problems 
Rolland, et al. (1996) develop a tabu search algorithm for the uncapacitated 

/^-Median problem. Their implementation is fairly straightforward. Solutions are 

represented by two disjoint sets: one for selected facilities (S) and one for 

unselected facilities ({V-S}, where V is the set of all potential facilities). Moves 

consist of adding or dropping a facility to or from set S. Facilities are placed on 

the tabu list only when added to the set of selected facilities. The time duration 

of a facility in tabu status is set randomly as in Taillard (1991). A form of long 

term memory is implemented using a frequency count of the number of times a 

facility has been added to set S. Thus, to evaluate the cost of adding any facility 
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v, a penalty factor n(v) = &*Freq(v) is added to the cost function. The constant k 

in this problem is set to the value of the largest distance between a source of 

demand and a facility. The authors also introduce Glover's concept of strategic 

oscillation. Following an add or a drop move, the solution may not be feasible 

since it may not consist of p facilities. Strategic oscillation is implemented by 

allowing a range around p for |S|. Within this range, add or drop moves are 

selected randomly. On the boundaries, one or the other is forced to keep |S| 

within the range. Computational results on a set of 88 problems showed the tabu 

search algorithm finds the optimal solution in 66% of the problems with an 

average optimality gap of 0.5% and a maximum optimality gap of 6.0%. On a set 

of 12 larger problems, the tabu search algorithm found better solutions than two 

other heuristics in all but one case. 

Skorin-Kapov and Skorin-Kapov (1994) present an interesting tabu search 

heuristic for solving the location of hub facilities problem. In this problem, given n 

interacting nodes in a network, p must be selected as hubs, and the remaining n- 

p facilities must be assigned to one of the hubs. The objective is to minimize the 

total cost of interaction between all facilities. A starting solution is generated by 

selecting the p facilities with the greatest flows, and assigning the remaining 

facilities to their closest hub. The heuristic actually consists of two tabu 

searches, one within another. The outer tabu search tries to find the best set of 

facilities to designate as hubs. A move consists of replacing one of the hubs with 

a non-hub facility. For a given solution, its neighborhood consists of (n-p)p such 

moves. The tabu list consists of the facilities that have been recently replaced as 
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hubs. In order to select the best move, they must be evaluated. This evaluation 

is done with an inner tabu search heuristic. Given a fixed set of hubs from the 

outer loop, the inner heuristic searches for the best allocation of non-hub facilities 

to the fixed hubs. A move consists of moving a facility from its current hub to 

another. Thus, the neighborhood consists of {n-p)(pA) moves. The tabu list 

consists of the recent facilities whose moves were accepted. Both the inner and 

outer heuristics are limited to a maximum number of iterations. For the inner 

heuristic, maximum iterations were set between 25 and 33% of the neighborhood 

size, while for the outer loop, maximum iterations were set at 20% of the 

neighborhood size. To achieve diversification, the complete heuristic is executed 

for several, distinct starting solutions. A form of long-term memory is used to 

generate each starting solution. A frequency count is maintained of the number 

of times each facility has been selected as a hub. A starting solution consists of 

the p facilities with the greatest flow to frequency ratio.   This ratio penalizes 

facilities that were previously selected as hubs often. Experiments with 3 

invocations of the long-term memory showed no benefit since each invocation 

ended at the same solution. Computational experience showed the tabu search 

heuristic outperformed two other heuristics in solution quality and computation 

time. 

Crainic, et al. (1993), studied a different version of the location/allocation 

problem with multiple commodities. The basis for this problem lies in the logistics 

problem of balancing the allocation of empty transportation containers of various 

types between customers and distribution depots.    The containers are the 
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multiple commodities in this problem. The flow of containers is both ways, 

between customers and depots, and in between depots. The objective of the 

problem, however, is to find a set of depots to use for the redistribution of empty 

containers that will result in the least overall cost, where the cost includes a fixed 

cost of operating a depot and a variable cost based on flows and distances. A 

vector of 0-1 variables representing the status of each potential depot can then 

represent the problem solution. Two types of moves are defined: add/drop 

moves and swap moves. Add/drop moves simply imply changing the status of a 

depot to operational (add) or non-operational (drop), with a resulting change in 

the number of operating depots. Swap moves involve a simultaneous add and 

drop move, thus maintaining the same number of operating depots. The search 

strategy first applies add/drop moves until a local optimum is found that has not 

been improved over several iterations. At this point, swap moves are used to 

intensify the search with the current number of operating depots. This search 

ends when a local optimum is found that has not been improved over several 

iterations. The solution found at this point may be infeasible, in which case the 

algorithm returns to the add/drop moves phase. If the solution found after the 

swap phase is feasible, a new set of swap moves is executed, except that only 

improving moves will be accepted. When no more improvement moves are 

available, the algorithm returns to the add/drop moves phase. This overall 

algorithm, add/drop-normal swaps-strict swaps, is executed for a fixed number of 

iterations. Two tabu lists are maintained: one for the add/drop phase, and one 

for the swap phase. The add/drop phase places the depot corresponding to an 
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add/drop move on the list to prevent its status reversal too soon. The swap 

phase places the pair of depots swapped on the list, to prevent their status 

reversal. The tabu list for swap moves is emptied at the start of a swap moves 

sequence. Following the end of a swap moves sequence, the contents of its 

tabu list are transferred to the add/drop tabu list. This ensures a gradual change 

of the best solution found after the swap sequence. To achieve diversification, a 

long-term memory is implemented to restart the overall algorithm with different 

starting solutions. A frequency count is maintained of the number of times each 

depot changed status either way. At the restart point, the best solution found so 

far is modified to become a new starting solution. The modification consists of 

changing the status for the y depots with the lowest frequency count. The 

parameter y is based on problem size. Computational experience was based on 

a set of 20 test problems, 12 medium problems with 25 potential depots and 125 

customers, and 8 large problems with 44 potential depots and 220 customers. In 

addition, for each of the two problem sizes, half had low fixed-to-variable cost 

ratios, and half had high fixed-to-variable cost ratios. Results of the tabu search 

heuristic were compared against a dual ascent heuristic. The dual ascent 

heuristic showed significantly better computational efficiency, but tabu search 

found a better solution in 12 cases and the same solution in another 2 cases. 

When a descent phase was added to the tabu search algorithm to ensure a local 

optimum from the best solution found, and additional four cases are improved 

over the dual ascent heuristic. 
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The articles we reviewed for tabu search demonstrate a wide range of 

applicability for this heuristic. More importantly, these articles report on a wide 

array of techniques for achieving good results with tabu search. Of these, 

implementation of dynamic length tabu lists and various implementations of long- 

term memory are of particular interest since they enhance the basic search 

strategy. 

3.2 Simulated Annealing 
Since the early experiments of Kirkpatrick et al. (1983) and Cerny (1985) 

discussed in the last chapter, simulated annealing has received much attention 

and has been applied to a variety of combinatorial problems. Most applications 

use the same basic algorithm, with most variations focusing on the cooling 

schedule. We now review several applications to gain a better understanding of 

the state of the art in using simulated annealing. Table 5 summarizes a list of 

these articles. 

On the theoretical front, Lundy and Mees (1986) show that simulated 

annealing can be formulated as a Markov process. They also prove that the 

algorithm can be made to converge arbitrarily close to the global minimum, albeit 

the time required may not be bounded by a polynomial function and may exceed 

that of an optimal algorithm. As an alternative, they recommend cooling 

schedule parameter settings the authors claim give good results in polynomial 

time. For an initial temperature t0, the authors suggest t0» U, where t/is some 

upper bound on the difference in objective function values between any two 

feasible solutions. Such a t0 implies nom-improving moves will have a probability 
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Table 5. Simulated Annealing Articles Reviewed 

Author(s) Year Domain  
Lundy and Mees '86 Theoretical 
Osman and Potts '89 FS Scheduling 
Ishibuchi, et al. '95 FS Scheduling 
Ben-Daya & Al Fawzan '96 Machine Scheduling 
Schmidt and Jackman '95 Assembly Line 
Chen & Srivastava '94 Group Technology 
Liu, et al. '94 Location Allocation 

of acceptance close to one when the algorithm starts. Subsequently, the 

temperature parameter should be updated with tM =t( /(l + ßt^, for some ß« 

MV. Since this schedule results in slow cooling, an epoch consisting of a single 

iteration is appropriate. Finally, for some acceptable solution error e and an 

associated error probability a, the authors indicated the terminal temperature can 

be set at tf <s /(log(|X|-l)-loga), where X represents the solution space. 

Using the above parameters, the algorithm will execute a number of iterations 

proportional to log 1X1. 

3.2.1 Job Shop/Flow Shop Scheduling 
Osman and Potts (1989) test four simulated annealing heuristics on the 

permutation flow shop problem. The problem consists of scheduling n jobs on m 

machines, where each job must be processed on all machines in order, each job 

has a different processing time on each machines, and the schedule selected will 

be used for all machines. The objective is to minimize makespan. The authors 

use the standard probability function exp(-A / T) for their algorithm, and a cooling 

schedule due to Lundy and Mees (1986), where Tk+l =Tk l{\ + ßTk).    They 

n     m 

propose  a  starting  temperature   Tx = 22 A,; /(5w»)   (the   p,/s  represent 
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processing times), and a final temperature of 7^=1. The ß parameter is set at 

ß = (J[-TK)/((K-\)TXTK) and K is the proposed maximum number of iterations, 

which is determined based on problem size using a regression equation. The 

authors test two types of moves for generating a neighbor solution, interchange 

(I) and shift (S), and two orders in which to search the neighborhood, ordered (O) 

and random (R). The combinations of moves and search orders result in four 

simulated annealing heuristics: SA(I, O), SA(I, R), SA(S, O), and SA(S, R). An 

interchange move consists of selecting two jobs in the current solution and 

exchanging their positions. A shift move consists of selecting two jobs in the 

current solution, and placing the earlier one after the later one (a forward shift), or 

taking the later one and placing it before the earlier one (a backward shift). 

Which shift is performed depends on whether the first job selected comes before 

or after the second one.   An ordered selection attempts moves in the same 

sequential order (i.e., (1,2), (1,3) (2,3), etc.) and repeats the sequence when 

finished, whereas a random search picks each job pair in random order. 

Computational experience is based on 12 test problem configurations of all m e 

{4, 7, 10, 20} and n e {20, 50, 100} combinations. For each configuration, ten 

problem instances were generated with random, uniform processing times in 

(1,100). Results showed the SA(S, R) heuristic performed best. Compared 

against the NEH construction heuristic due to Nawaz, Enscore, and Ham (1983), 

SA(S, R) gives better quality solutions, but requires more computation time. 

When compared against two descent heuristics, SA(S, R) again provides better 

solutions but still requires more computation time. 
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Ishibuchi, Misaki and Tanaka (1995) propose a modification to the Osman 

and Potts (1989) heuristic reviewed above. Using the same SA(S, R) algorithm 

above, they propose generating K neighbors of the current solution per iteration 

instead of the traditional single neighbor for simulated annealing. With K 

neighbors available, the best one is selected and the typical acceptance rule is 

applied (accept if it improves the current solution, or with a probability if it is 

inferior).   A second alternate method is proposed where the K neighbors are 

evaluated at random, and the first one that improves the solution is accepted. If 

none improves the solution, then the best one is accepted using the traditional 

acceptance criteria. The advantage of these modifications is that the algorithms 

become insensitive to the selection of a cooling schedule. They compare their 

algorithms to the Osman and Potts algorithm (equivalent to modified algorithms 

when K = 1), a multi-start descent algorithm, and to two tabu search algorithms 

that each implement the same modifications proposed. The comparisons are 

made such that each heuristic examines the same number of candidate 

solutions. A set of 600 test problems was used. Initial experiments showed that 

K should be set proportional to the problem size. The authors use K = .5n (n = 

number of jobs). Comparisons with the best move modification show the multi- 

start algorithm is better for problems with 10 jobs, and simulated annealing is 

slightly better than tabu search for 20 and 50 jobs problems. Comparisons with 

the first move modification show the multi-start algorithm is better for 10 jobs 

problems, simulated annealing is better for 20 jobs problems, and the Osman 

and Potts algorithm is best for 50 jobs problems.  Finally, results also show the 
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first move modification is better than the best move modification. It should be 

noted that the authors made comparisons based on average percent deviations 

from reference solutions without any apparent testing of significance based on 

the variability in solution quality. 

Ben-Daya and Al-Fawzan (1996) report on a simple implementation of 

simulated annealing for the one-machine mean tardiness scheduling problem. 

The objective is to schedule n jobs on one machine to minimize mean tardiness. 

The authors define a perturbation as the switch in order of two randomly chosen 

jobs in the current solution. They use a probability function slightly different from 

others, Pa = exp(-cc * A), where a = \0+COUNT*STEP*2, and COUNT is an 

iteration counter and STEP is set at two. The algorithm is terminated after 2000 

iterations without an improvement. The authors use two sets of test problems. 

The first set consists of problems from the literature and is used for 

benchmarking. The algorithm finds the optimal solution for all of these problems. 

The second set is randomly generated. The algorithm outperforms two other 

heuristics from the literature on this set, and produces solutions within 0.75% of 

the optimal on the average with a maximum optimality gap of 1.49%. 

3.2.2 Assembly Line Problems 
Schmidt and Jackman (1995) present a multi-echelon implementation of 

simulated annealing to solve an assembly line problem. In their formulations, the 

assembly process consists of a set of tasks with precedent requirements. Each 

task also has a set of technical requirements for its completion. An assembly 

station can be one of several types, where each type consists of a set of 



42 

technical capabilities and an associated cost. The objective is to find the least 

cost configuration, including the number of assembly stations, the type assigned 

to each station, and the assignment of tasks to each station according to 

precedent and technical requirements. The authors developed a nested, three 

tier heuristic. The outermost tier sets the number of assembly stations, starting 

with the number of stations equal to the number of tasks and decreasing it by 

one in an iterative manner. The middle tier is executed for each iteration of the 

outermost tier and consists of a simulated annealing phase to select the best 

assignment of station types to the assembly stations. The innermost tier is 

executed for each proposed configuration of the middle tier, and consists of a 

second simulated annealing algorithm to assign tasks to stations. For a given 

number of assembly stations, the middle algorithm generates a starting solution 

by assigning to each station the type with the most capabilities. A move or 

perturbation consists of randomly selecting a station and randomly assigning it a 

different type. For each of these station configurations, the innermost tier 

generates an initial solution by assigning tasks to stations sequentially while 

adhering to the precedence and technical requirements. A solution perturbation 

in this tier consists of randomly picking a task and reassigning it to a different 

station while maintaining a feasible solution. The cooling schedules for both 

simulated algorithms have the same structure. Temperature changes are done 

after NB solutions have been found or after NA iterations (NB<NA), whichever 

comes first. Each algorithm is terminated if Alterations are reached for the last 

Nc  temperature changes.    Finally, the temperature is adjusted using an 
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exponential decay function, T= T0F
NT , where F = 0.9 and NT is the number of 

perturbations so far. The authors provide two small examples of how the overall 

heuristic works, but no computational experience is reported. 

3.2.3 Group Technology 
Chen and Srivastava (1994) develop two simulated annealing algorithms for 

the group technology problem. Given a set of m machines and n parts that must 

be processed on some of those machines, the problem can be described as a 

graph partitioning problem. Here, the machines must be grouped into some 

number K of disjunctive sets while maximizing some objective (the authors use a 

summed similarities objective in their formulation). For their first algorithm an 

initial solution is generated by randomly assigning each machine to one of Kmax 

cells. Neighborhood solutions are generated by randomly selecting a machine 

and moving it from its present cell to a different, randomly selected cell. To 

establish a starting temperature, the authors use a preliminary binary search to 

find a T0 that will result in an initial acceptance rate %, which is high enough so 

that most solutions are accepted during the early iterations of the algorithm. The 

binary search consists of running the simulated annealing program for t iterations 

at some temperature T.  Let t+ and f represent the number of these iterations 

with a positive increase and decrease respectively of the objective equation. 

Then the acceptance rate at the current value of T is computed as: 

exp(-AZ+ / T)t+ + r 
1 

t   +t~ 
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where AZ+ is the average of the positive increases in the objective equation over 

the t+ iterations. If rj is less than the desired acceptance ratio rj0, T is increased; 

otherwise, T is decreased. This search is repeated until rj converges to TJ0 within 

an allowable margin. During experimentation, these values were set at t = 5(K- 

1)m and r/0 = 0.9. The number of iterations at each temperature was set to the 

size of the neighborhood, m(KA), and the temperature parameter was updated 

with TM=T /(1 + yT,) where y = ln(l + <5)/3s(7)), £ controls the cooling speed, 

and s(7]) is the standard deviation of the objective function values at the current 

temperature. The algorithm is stopped when a maximum number of iterations is 

reached, or if the objective value has not changed over some number of 

consecutive iterations. The simulated annealing process is followed by a greedy 

search to ensure a local optimum is found. The authors also develop an 

alternative two-stage simulated annealing algorithm, where the first stage 

consists of a separate, faster heuristic used to find an initial solution. From this 

solution, the annealing algorithm proceeds as normal, except the starting 

temperature is much lower. This starting temperature is found using a similar 

binary search as before, except the objective now is to find the temperature for 

which the initial solution is in equilibrium. Here, equilibrium means the expected 

value of changes in the objective equation over several iterations is zero (i.e., 

increases and decreases cancel each other out). Computational experience 

shows that both algorithms outperform a graph partitioning heuristic, and more 

importantly, the improvement increases with the size of the problem.    As 
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expected, the simulated annealing algorithms are slower than the graph 

partitioning heuristic, and the first algorithm is slower than the second. Since 

both simulated annealing algorithms produce comparable solutions, the second 

one is preferred for its speed of execution. 

3.2.4 Location Problems 
Liu, Kao and Wang (1994) present a simulated annealing algorithm for the 

location-allocation problem with rectilinear distances. The objective is to find the 

best allocation of n customers to m new facilities that minimizes the weighted 

sum of distances traveled. Initial solutions are generated by randomly assigning 

customers to facilities. A neighbor is generated by the random reassignment of a 

customer to another facility. The initial temperature is set very high and reduced 

rapidly, T=0.5T after each temperature change, until a desired acceptance rate is 

achieved after which point the temperature is reduced gradually, T=0.85T. At 

each temperature level, the number of iterations is a factor of the neighborhood 

size (set to five during experimentation). The algorithm terminates when it is 

considered frozen. The algorithm is considered frozen when five consecutive 

temperature changes have elapsed where the acceptance rate at each failed to 

reach a threshold level set at 0.01 (i.e., less than 1% of neighbors were accepted 

at each temperature level). Computational experience on test problems from the 

literature against other heuristics shows the simulated annealing algorithm 

generated comparable solutions with less computation time. 

The papers we reviewed above demonstrate the broad applicability of 

simulated annealing. More importantly, they demonstrate various techniques for 



46 

Table 6. Genetic Algorithm Articles Reviewed 

Author(s) Year Domain  
Leu, et al. '94 Assembly Line 
Bulgak, et al. '95 Buffers in AAS 
Leu, et al. '96 Assembly Line 
Chan and Tansri '94 Facilities Layout 
Houck, et al. '96 Location/Allocation 
Vignaux and Michaelwicz '91 Transportation 
Murata, et al. '96 FS Scheduling  

implementing an effective algorithm.  Some of these techniques include various 

cooling schedules, initial temperature control settings, and terminating conditions. 

3.3 Genetic Algorithms (GAs) 
Since their introduction by Holland, work on genetic algorithms was limited to 

a small group of people and publications were limited to conference proceedings 

and journals on artificial intelligence. As a result, broad interest in genetic 

algorithms from operations research/management researches was slow to grow 

(Dowsland, 1996). Nonetheless, there is now a good body of research on the 

application of genetic algorithms to operations problems. Results of their 

effectiveness are mixed, but promising. We now review several papers that are 

interesting for showing the wide spectrum of applicability as well as their 

innovative approach to adapting the basic genetic algorithm methodology to their 

problem domain. The papers reviewed are listed in Table 6. 

3.3.1 Assembly Line Problems 
Leu,  Matheson and Rees (1994) develop a genetic algorithm for the 

assembly line balancing problem with an objective equation that minimizes the 

number of workstations with maximum efficiency. Their solution representation 

consists of an ordered list of tasks that maintains the precedence requirements. 
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Given a required cycle time, the number of stations and efficiency can be 

determined from the ordered list by assigning tasks to workstation until the cycle 

time limit is reached for each workstations. The authors show that if all feasible 

permutations of such an ordered list are explored, the optimal assembly line 

configuration can be found. Their algorithm maintains a single population of 

chromosomes from which children are created. The starting population consists 

of a few random, feasible solutions. Given a list of allowable tasks (i.e., for which 

all precedents have been assigned), an initial solution is created by randomly 

selecting the next task to place on the ordered list of tasks. The list of allowable 

tasks is then updated and the next task randomly selected. This process 

continues until all tasks have been assigned. From the population of initial 

chromosomes, new children are created and added to the population until it 

grows to some predetermined size. At this point, new children replace their 

principal parent if they have a better fitness value, thereby maintaining a fixed 

sized population. The selection operation is done in proportion to the goodness 

of each chromosome's fit value as usual. The crossover operation is a two point 

crossover, where each point is selected at random. Given two parents, each is 

split into three sections: H1IM1IT1 and H2IM2IT2 (head I middle I tail). Replacing 

the middle section of each parent generates two children. A simple swap, 

however, is not possible since precedence requirements must be maintained to 

achieve to new feasible solutions. Accordingly, for the first child, the tasks 

contained in M1 are identified and replaced in the order in which they appear on 

the second parent. For the second child, the tasks contained in M2 are identified 
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and replaced in the order in which they appear on the first parent. Since the task 

ordering of each parent is feasible, the children are also feasible. At each 

iteration, a decision is made whether to do crossover or mutation. A mutation 

consists of selecting a single parent using the same selection criteria as above, 

and randomly selecting a mutation point. The mutation consists of reordering all 

tasks after the mutation point in the same random fashion as initial solutions are 

generated. The algorithms are stopped after 500 children have been created or 

after 100 consecutive attempts where the best fit value did not change by more 

than 1 percent. The authors conduct an extensive experiment where the initial 

population size, the final population size, and the mutation rate are varied at 

three levels each. In addition, they experiment with generating the initial 

population randomly as described above, or through the use of alternative 

heuristics from the literature. Their experiments show the use of heuristics and 

the mutation rate were significant. In particular, an initial population generated 

from 5 heuristics gave better results than using 3 heuristics or randomly 

generated solutions. Also, a higher mutation rate of 18% was better than 10 or 

2%. The experiments are done with a set of 40 basic problems and five 

replications for each cell of their factorial design. 

Bulgak, Diwan and Inozu (1995) report on the development of a GA for 

determining the buffer sizes of an asynchronous assembly system (AAS). As 

described, an AAS consists of several automated workstations arranged in a 

closed circuit with a fixed number of pallets in the system. The objective is to 

determine the optimal buffer size in front of each station that will maximize the 
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output rate. Since the problem is stochastic in nature based on the probabilistic 

incidence of machine stoppage and restart, the objective function value is 

estimated through a discrete event simulation that executes as a helper routine 

for the GA. The GA itself is fairly routine. The buffer size for each station is 

limited to a range between 1 and 15. Since the numbers in this range can be 

coded as a four position binary number, the solution itself is represented by a 

binary string of length 4*number of stations. The crossover operator is applied at 

a rate of 60% and mutation at a rate of 3.3%. The population size is set at 30. 

The stopping criterion consists of limiting the number of generations to 15 as long 

as the average fit value and the maximum fit value differ by no more than 0.5%. 

If not, the algorithm continues. The authors report the results of various 

experiments; however, in the absence of benchmarking against known optimal 

solutions or other comparative studies, it is difficult to assess performance. 

Leu, Matheson, and Rees (1996) develop a basic genetic algorithm to solve 

the problem of balancing mixed-model assembly lines. In mixed-model assembly 

lines, several models of a product are assembled simultaneously. Toyota 

assumes and it has been shown elsewhere that the best sequence of models on 

the line is cyclical; furthermore, the number of units of each model in a cycle is a 

multiple of the ratio of its demand to total demand. Thus, if a cycle consists of 2 

model A's, 3 model B's and 1 model C, then a sequence might be: AABBBC. 

The objective of the mixed-model balancing problem is to find the permutation of 

this cycle that will result in the least overall variability in demand for subassembly 

and component parts, thereby also minimizing inventory required and balance 
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labor requirements. To solve this problem, the authors develop a genetic 

algorithm using the permutation vector of models for chromosomes. The fitness 

function assigns proportional selection probabilities based on an objective 

equation that measures variability in parts consumption. They use a one-point 

crossover operator which works this way: after the crossover point is determined, 

elements that appear in the tail of the first parent are removed from the second 

parent at random; the remaining elements of the second parent become the head 

of the offspring, and its tail is the tail of the first parent. Their mutation operator, 

swap head and tail, consists of picking a random mutation point, and swapping 

the head and tail of the chromosome. In their algorithm, recombination was 

applied 80% of the time, and mutation 20%. They experimented on a set of 80 

problems with 5 and 10 model cases. The performance of the genetic algorithm 

was compared with Toyota's Goal Chasing Algorithm. On the average, the 

genetic algorithm found solutions that were 1.94% better. 

3.3.2 Facilities Layout Problems 
Chan and Tansri (1994) experiment with three different crossover operators 

while solving the facilities layout problem using genetic algorithms. The solution 

representation is a permutation list indicating which facility/machine goes into 

which position. The three crossover operators are taken from Oliver, Smith and 

Holland (1987) and are Partially Matched Crossover (PMX), Order Crossover 

(OX) and Cycle Crossover (CX). The first two operators are based on a two- 

point crossover where the genes within the crossover points are swapped 

between the two parents. For example, given two parents S1 =2-4-5-13-8-91-6-1-7 
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and S2=3-9-8-l6-5-4l-2-7-1 where the crossover points are as indicated, a simple 

swap would result in S1'=2-4-5-16-5-41-6-1-7 and S2'=3-9-8-l3-8-9l-2-7-1. 

However, both of these solutions are not feasible due to the duplication of 

machines. The PMX and OX operators specify a strategy for resolving this 

duplication. The PMX operator maps the replaced genes (3, 8, 9) to the 

replacements, (6, 5, 4) and adjusts duplicated genes resulting in S1'=2-9-8-16-5- 

41-3-1-7. The reverse mapping is done for S2'=6-4-5-l3-8-9l-2-7-1. The OX 

operator uses a shifting operation to resolve the duplication. Starting with the 

gene after the second crossover point, any duplicated gene is cut, and the 

remaining ones shifted left. For S1, from the original sequence starting after the 

second cut, 6-1-7-2-4-5-3-8-9, the duplicated genes resulting from the crossover 

(6, 4, 5) are eliminated resulting in 1-7-2-3-8-9. This sequence is used to fill out 

the offspring starting after the second crossover point and rotating back to the 

start of the sequence for a feasible solution S1' = 3-8-9-I6-4-5I-1-7-2. The 

operation is similarly done for S2'. The CX operator is entirely different and does 

not use crossover points. The offspring is created by ensuring the position of 

each machine is preserved from at least one of the parents. Thus, if the first 

position is determined from the first parent, 2-?-?-?-?-?-?-?-?, then the position 

for machine 3 will also have to come from the first parent since it occupies the 

first position on the second parent. Similarly, with 2-?-?-3-?-?-?-?-? the position 

for machine 6 must come from S1, resulting in 2-?-?-3-?-?-6-?-?. At this point, 

the placement of machine 6 dictates the placement of machine 2 should come 

from S1.  However, machine 2 is already in the solution, and we have found a 
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cycle. Having found this cycle of positions on S1, we fill the remaining positions 

from S2 for a final offspring S1'=2-9-8-3-5-4-6-7-1. For a fitness function, the 

authors are concerned with obtaining an inverse correlation between the 

objective cost function and a measure of goodness over the range of possible 

objective function values. To achieve the relation, the authors use 

j; = (x"logx)1012, where x is the cost of materials handling and y is the fitness 

value. Preliminary studies showed the CX operator converges early, is very 

sensitive to the size of the population, and does not perform well. The OX 

operator is the slowest to converge, is not sensitive to the size of the population, 

and works well with a large number of generations and a small population. The 

PMX operator is consistent and generally provides the best fit solutions. Since it 

also converges faster than OX, it is the preferred operator. Using the PMX 

operators, the authors develop and test GAs for three variations of the layout 

problems: with fixed machines, with excess space, and with fixed machines and 

excess space. Using a 10 machine problem and fixing 2, the fixed machine GA 

finds optimal layouts 20% of the time (2 out of 10 runs) with the worst solution 

deviating 10% from optimal while only searching 0.22% of the solution space. 

The excess space experiment uses a 25-position layout with 10 actual machines 

and 15 dummy machines (with zero load and cost factors). Using the optimal 

cost value for the fixed machine problem as a substitute benchmark, this GA 

provides solutions within 6% to 23% deviation while only searching (2.063E-19)% 

of the solution space. Using the same benchmark for the fixed machine, excess 

space experiment, the GA finds two solutions with costs less than the benchmark 
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while only searching (1.315E-12)% of the solution space. The authors conclude 

genetic algorithms are a reliable tool for solving this kind of problem. 

3.3.3 Location Problems 
Houck, Joines, and Kay (1996) report on a genetic algorithm for solving the 

location-allocation problem. In this paper, both the placement of new locations 

and the assignment of existing customers to those locations are decision 

variables. The objective is to place the new facilities such that an assignment of 

customers can be accomplished for a least weighted distance objective. Given a 

two-dimensional coordinate map, the placement of a new facility is represented 

by its real-valued coordinates (x, y). A chromosome consists of a string of n such 

coordinate pairs. The cost function is evaluated by a helper method, the 

alternate location-allocation heuristic. The fit value is assigned to each 

chromosome based on an ordered ranking of the cost function and on a 

normalized geometric distribution: 

P(/'th chromosome) = q'(l - q)'~x 

where q'=q/(l-(l-q)N), q is the probability of selecting the best chromosome 

(set at 0.08), / is the rank of the chromosome, and N is the population size (80 in 

this case). The authors use three crossover operators: simple crossover which is 

the standard single point crossover; arithmetic crossover which produces linear 

combinations of the parents at complementary proportions; and a heuristic 

crossover which produces an offspring which is an extrapolation from the better 

parent along a vector joining the two parents. They also use four mutation 

operators: uniform mutation which randomly selects one of the x or y variables in 
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a parent and replaces it with a random, uniformly distributed value along the 

variable's upper and lower bounds; boundary mutation which selects a variable 

from the parent and sets it equal to its upper or lower bound; non-uniform 

mutation which is similar to the uniform mutation except using a non-uniform 

distribution; and multi-non-uniform mutation which applies the non-uniform 

mutation to all variables in the parent. The authors used test cases from the 

literature and compared the genetic algorithm to a random restart heuristic and a 

problem specific heuristic. Computational experience showed the GA 

outperformed the problem specific heuristic in all but the smallest cases. The GA 

also outperformed the random restart heuristic for the larger problems. 

3.3.4 Transportation Problem 
Vignaux and Michalewicz (1991) investigate new genetic operators for 

problems that are best represented as matrices. They develop two genetic 

algorithms for the transportation problem, one using a permutation vector to 

represent solutions, and another using a matrix. The transportation problem 

consists of m sources of supply with limited capacity, and n destinations each 

with a specified demand. The problem is represented by a m x n matrix, where 

each cell cKj identifies the cost of shipping one unit from source i to destination j. 

A matrix also represents the solution, where each cell xtJ identifies the quantity 

to be shipped from source / to destination/. The objective is to find the allocation 

of demand to sources of supply with the least cost. The author's first algorithm, 

Genetic-1, uses a vector to represent the solution. The vector consists of a 

permutation of the numbers {1,2,..., q}, q=m*n, where each number represents a 
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cell in the solution matrix. This representation is translated to a solution in the 

following manner: for each element ck in the vector, determine the corresponding 

cell in the solution matrix, i = [(ck -l)/« + l], j = [(ck -l)mod« + l], and let x/y = 

min (suppfy[i\, demand\j]); adjust the supply and demand data and repeat until all 

demand has been allocated. Using this vector representation, Genetic-1 

implements a PMX crossover operator as described previously, and a mutation 

operator that swaps the order of two elements in the vector. The authors also 

implement an inversion operator that reverses the order of a parent chromosome 

to generate an offspring. The second genetic algorithm, Genetic-2, uses a matrix 

to represent solutions. With this representation, there is no need for translation; 

however, new genetic operators must be developed. The new crossover 

operator takes two parent matrices and generates two intermediate matrices, DIV 

and REM, such that each element of DIV is half the sum of the two 

corresponding elements from the parent matrices (integer part only), and each 

element of REM is the remainder of this division. The resulting REM matrix will 

have an even number of 1's on each row and each column. From the REM 

matrix, two new matrices, REM! and REM2 are generated such that REM = REM! 

+ REM2, and the sum of each row and column of REMT is equal to the sum of 

each corresponding row and column of REM2. Two offspring are now generated 

by adding the DIV matrix to REM, and REM2. An example is shown in Figure 5. 
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v, v2 
1 0 0 7 0 0 0 5 0 3 
0 4 0 0 0 0 4 0 0 0 
2 1 4 0 5 0 0 5 7 0 
2 0 6 0 0 3 1 0 0 2 

DIV REM 
0 0 2 3 1 1 0 1 1 1 
0 4 0 0 0 0 0 0 0 0 
1 0 4 3 1 0 1 1 1 1 
1 0 3 0 1 1 1 0 0 0 

REMi REM2 

0 0 1 0 1 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 
0 1 0 1 0 0 0 1 0 0 
1 0 0 0 0 0 1 0 0 0 

v3 v4 
0 0 3 3 2 1 0 2 4 1 
0 4 0 0 0 0 4 0 0 0 
1 1 4 4 2 1 0 5 3 3 
2 0 3 0 4 1 1 3 0 1 

Figure 5. Sample Crossover Operator for Matrices 
(Vignaux and Michalewicz, 1991) 

The mutation operator works by rearranging selected elements of its parent. 

A sub-matrix W of size pxq is created, 2<p<m, 2<q<n. Then p rows and q 

columns are randomly selected from the parent and the cells at their 

intersections are used to fill the sub-matrix, maintaining their relative orders. The 

sum of each row and column in W now become the capacity and demand for this 

sub-problem. The cell contents are now rearranged using the translation 

algorithm from Genetic-1: all cells are selected in random order and the minimum 

of its remaining supply or available capacity is allocated. The rearranged cells 

are then put back into their corresponding places in the parent matrix. We use 
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the following example from the authors' article for illustration. Assume a parent 

matrix V: 

0 0 5 0 3 
0 4 0 0 0 
0 0 5 7 0 
3 1 0 0 2 

Select at random rows 2 and 4, and columns 2, 3, and 5.    Then the 

corresponding sub-matrix is: 

4 0 0 
1 0 2 

The new capacities for rows 1 and 2 are now 4 and 3; and, the new demands 

for destinations 1, 2, and 3 are 5, 0, and 2. A new arrangement of allocations 

then could be: 

2 0 2 
3 0 0 

Note that in this arrangement the sums of rows and columns remain the 

same. Replacing these cells back into the parent, a new offspring is created: 

0 0 5 0 3 
0 2 0 0 2 
0 0 5 7 0 
3 3 0 0 0 

Vignaux and Michalewicz conducted experiments to compare Genetic-1 and 

Genetic-2. They used some randomly generated problems and others from the 

literature. All of them were small problems, the largest being 10 by 10. Their 

results showed Genetic-2 outperformed Genetic-1 in all cases suggesting a 

matrix representation may be superior to a permutation vector for this class of 

problems. 
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3.3.5 Flow Shop Scheduling Problem 
Murata, Ishibuchi, and Tanaka (1996) investigate the performance of various 

crossover and mutation operators in genetic algorithms for the «-job flow shop 

scheduling problem. They represent the problem of scheduling n jobs on m 

machines as a permutation vector. Parent chromosomes are assigned selection 

probabilities using the following equation: 

P(x)=    VuM-ft,)? 
Z[/M(Y)-/(X,)]2 

*,EY 

where Yis the set of potential parent chromosomes and /M(Y)is the value of 

the worst solution in Y. The authors also experimented with an equation that did 

not square the differences, but they found it to be inferior. Ten crossover 

operators were explored of which six were found useful for the flow shop 

problem. The six crossover operators are: 

(1) one-point crossover where the offspring inherits the elements left of the 

crossover point intact from the first parent and the remaining positions are filled 

in the order they appear in the second parent (Figure 6a); 

(2) two-point crossover (version I) where the offspring inherits from the first 

parent the elements outside the crossover points and the inside elements are 

filled in the order they appear in the second parent (Figure 6b); 

(3) two-point crossover (version II) where the offspring inherits from the first 

parent the elements inside the crossover points and the remaining elements are 

filled from the second parent (Figure 6c); 
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Parent 1  IAIBCJDIE FIGlH Parent 1  IAIBTCIDIEIFIGP 

Child lAIBCIEIHIDiGF 

Parent 2 iEIHAIDIBICIGF 

(a) One-point crossover 

Parent 1  IAIBICJDIEIFTGIH 

liBJCIDIEIFJGiH 

JBIEIDICIFIGTH Child IAIBIEIDICIFIGH 

7T\\ 
Parent 2 lEIHIAIDIBIClGJFl 

(b) Two-point crossover, ver. I 

Parent 1 lAIBICIDEIFlGjft 

Child  IHiAICIDlEIFIgp 

Parent 2 lEIHIAIDIBICIGlFl 

(c) Two-point crossover, ver. II 

TT 
Child iAIBICiaEIGlFlHl 

 ,\\, 
Parent 2 lEIHIAIDBIClGlFl 

(d) Position based crossover 

Figure 6. Crossover Operators (Murata, et al., 1996) 

(4) two-point crossover (version III) which is a mixture of the two previous 

versions each applied with an equal probability; 

(5) position based crossover (version I) where a randomly selected number 

of positions are inherited intact from one parent and the others filled in the order 

they appear in the other parent (Figure 6d); and 

(6) position based crossover (version II) where each position is inherited from 

one parent intact with probability 0.5, and the remaining positions are filled as 

they appear in the other parent. 

Four mutation operators are also investigated: (1) adjacent two-job change 

where the order of two sequential, randomly selected jobs is switched (Figure 

7a); (2) arbitrary two-job change where the order of two randomly selected jobs is 

switched (Figure (7b); (3) arbitrary three-job change where the order of three 

randomly selected jobs is switched (Figure 7c); and (4) shift change, where a 
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AlBICIDIEIFffl 

IAIBICIEIDIFIG1H 

IAIBICIDIEIFIGM 

lAIFicipiEBIGlH 

(a) Adjacent two-job change (b) Arbitrary two-job change 

AIBICIDIE FIGO AIB1CIDEIF1GO 

AIGiCIBIE FIDIH 

(c) Arbitrary three-job change 

r j 

AIGIBICDIEIFlH 

(d) Shift 

Figure 7. Mutation operators (Murata, et al., 1996) 

randomly selected job is removed and reinserted at a different point in the vector 

causing a shift of the jobs between the two points (Figure 7d). The authors 

implement an elitist strategy whereby they remove a random chromosome from 

the new generation and replace it with the best chromosome from the parent 

generation. In their initial experiments, the authors found the two-point crossover 

(version I) and the shift change mutation operators performed best. It is also 

interesting that, unlike most other implementations where mutation is applied 

sparingly, a 100% mutation rate worked best! Using a set of 100 randomly 

generated problems with 20 jobs and 10 machines and a second set of 100 

randomly generated problems with 50 jobs and 10 machines, the authors 

compared their genetic algorithm to a local search heuristic, a tabu search 

heuristic, and a simulated annealing heuristic. Their results indicate the genetic 

algorithm is somewhat inferior to the other algorithms. 

As with tabu search and simulated annealing, genetic algorithms are broadly 

applicable.     The  most  difficult  barrier is finding  an  appropriate  problem 
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Table 7. Comparative Studies Reviewed 

Rankings 
Authors Year Domain TS     SA GA Comparability Basis 
Lee & Kim '96 Project Mgt 2        1 3 CPU time 
Sinclair '93 QAP 1        2 3 Balanced time & solution quality 
Kim & Kim '96 Scheduling 1 2 CPU time 
Kincaid '92 Location 1        2 - Best performance 
Kuik, et al. '93 Lot Sizing 2        1 - CPU time 
Marett & Wright '96 Flow Shop 2        1 - Information 

representation along with effective genetic operators. For our research, insight 

into using permutation vectors and matrices are most useful and will be applied 

in the sequel. 

3.4 Comparative Studies 
In the papers reviewed so far, most authors conducted experiments to 

evaluate the performance of their algorithms. In most cases, benchmark 

experiments were conducted on small problems for which optimal solutions were 

known. Additional comparisons were made with results from other heuristic 

algorithms found in the literature, most of which are problem specific. In some 

cases comparisons were also made with one of the heuristic algorithms we are 

investigating in this research. However, none of the papers previously reviewed 

had as their principal objective an empirical evaluation or comparison of all three 

heuristic algorithms. In this section, we review several papers that do compare 

the performance of two or all three heuristics. Table 7 shows the articles 

reviewed. 

3.4.1 Lee and Kim (1996) 
Lee and Kim (1996) develop heuristic algorithms for the resource constrained 

project scheduling problem. The problem consists of scheduling n tasks, where 
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each task has precedence and resource constraints. The objective is to 

minimize total project completion time (makespan). Given a set of priorities for 

each task, the project can be scheduled using the following procedure: 

(1) Determine the set of eligible tasks (i.e, activities whose precedence 

requirements have been met and for which enough resources are available). 

(2) If all tasks have been scheduled, stop; else, if there are no eligible tasks, 

reset the current project time to the time of the first task completion, adjust the 

available resources data, and return to step (1); otherwise, move to step (3). 

(3) From the set of eligible tasks, schedule the task with highest priority and 

adjust the available resources data; return to step (1) 

This procedure is a priority scheduling procedure and will always result in a 

feasible schedule. All the procedure needs is a set of task priorities; different 

priorities will result in different schedules. The authors use this characteristic to 

represent problem solution. For all heuristics, a solution is represented by a 

vector of length equal to the number of tasks. Each element in the vector 

represents a task, and its value the priority assigned to the task. Initial solutions 

are generated by assigning random priorities to each task from a uniform 

distribution between 0 and 1. We now describe how each heuristic is 

implemented: 

Simulated annealing: neighboring solutions are generated by switching the 

priorities of two tasks. The first task is selected randomly and the second task is 

selected within a range around the first task. The cooling schedule consists of an 

initial temperature that results in some percentage of uphill moves being 
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accepted (70%), an epoch length equal to a multiple of the number of tasks (20 

times), and a geometric cooling rate (with parameter set at 0.99). The algorithm 

is stopped after 15 consecutive epochs where the acceptance rate was less than 

0.5%. 

Tabu search: neighboring solutions are generated in the same way as for 

simulated annealing. Since the neighborhood is fairly large, only a subset is 

investigated (equal to twice the number of tasks), and the best of those (subject 

to tabu restrictions) is selected as the new incumbent solution. The tabu list 

consists of the pairs of tasks involved in the most recent switches (the length set 

at 6). A long term memory is implemented which consists of maintaining a 

frequency count of the number of times each pair of tasks has been involved in a 

switch and using this count as a penalty factor in the objective equation (but only 

if the candidate solution is inferior to the incumbent solution). The algorithm is 

terminated after some number of consecutive iterations elapse without an 

improvement (set at 100). 

Genetic algorithm: population size was determined so the computation time 

was approximately equal as in the other heuristics (set at 20). New generations 

are created by using a single point crossover operator and a mutation operator 

that switches the priorities of two tasks in each chromosome. Both operators are 

applied with certain probabilities (0.7 and 0.4 respectively). The algorithm is 

terminated after some number of generations elapse without improvement on the 

best solution (set at 30). 
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Computational experiments were conducted on two sets of problems, one set 

was randomly generated, and the other set comes from the literature and 

consists of 110 problems. The randomly generated sets consists of ten problems 

for each combination of number of activities (three levels: 50, 100, and 150), 

number of resource types (three levels: 1,4, and 7), and tightness of resource 

constraints (two levels: tight and not tight). This results in 180 test problems. 

The number of activities factor did not affect the relative quality of solutions. 

In general, simulated annealing and tabu search had nearly the same 

performance, with the genetic algorithm lagging slightly behind, especially as the 

number of activities increased. However, the genetic algorithm had the least 

variability overall. 

For the number and tightness of constraint factors, the results are the same 

as above. The genetic algorithm lagged slightly behind the other two heuristics, 

but had the least variability. 

On the second set of problems from the literature, only the simulated 

annealing and tabu search heuristics were tested. After using the same 

parameters from the previous tests on this set, the parameters were updated for 

each heuristic. Both heuristics improved markedly after new parameters were 

employed, and simulated annealing performed better than tabu search. 

Overall, simulated annealing and tabu search had similar results with the 

genetic algorithm slightly inferior. The authors point out that parameters were 

selected to equalize the amount of computing time rather than to get the best 
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results from the heuristics. They suggest that different results may be obtained if 

parameters were selected differently. 

3.4.2 Sinclair (1993) 
Sinclair compares the performance of five heuristic algorithms: the three we 

are researching plus Great Deluge Algorithms and Record-to-Record Travel. We 

will limit our discussion to the three in which we are interested. Sinclair develops 

heuristics for the hydraulic turbine runner balancing problem. In this problem, 

blades that may have slight variations in mass must be placed on the shaft of a 

turbine so as to minimize the unbalance. The problem is formulated as a 

quadratic assignment problem. The solution representation is thus a permutation 

vector that indicates the placement of each blade. This representation is used 

for all heuristics. Sinclair develops basic implementations of each heuristic and 

selects parameters that will result in the best performance in terms of solution 

quality and computation time. The following parameters are used: 

Simulated annealing: the length of each epoch is determined by two 

parameters, a minimum number of candidate solutions that must be accepted 

(set at 30) and a maximum number of solutions that will be explored (set at 100). 

An epoch ends whenever either of these two parameters is exceeded. 

Tabu search: the tabu list size is set at 15, 175 short-term memory iterations 

are allowed for each initial solution, and one initial solution is generated (one 

long-term memory pass) 
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Genetic algorithm: population size is set at 200. A modified one-point 

crossover operator is used and two-element swaps are used for a mutation 

operator. Crossover and mutation rates are set at 60% and 0.05% respectively. 

Sinclair proposes the following methodology for the experimental evaluation 

of optimization algorithms: 

(1) A problem class is selected as test domain for the algorithms. 

(2) Data for different instances of the same problem class are collected. 

(3) The algorithms are applied to the different examples in the problem class. 

(4) Conclusions are drawn from the results. 

Following the above methodology, Sinclair uses the hydraulic turbine runner 

balancing problem as a test domain. He uses a set of 37 real world problems for 

experimentation. Sinclair points out the following steps taken to avoid validity 

problems: 

(1) The same data structures were used for all heuristics and the same 

procedure was used to construct initial solutions. 

(2) Parameters were selected so that no heuristic had an advantage in any 

performance measure at the cost of another. 

(3) The same person did all programming in the same environment. 

(4) All experiments were run on the same machine. 

The performance measures were objective function value and computation 

time. Algorithms that depend on random number streams were executed 100 

times and their average used for comparison purposes. The first finding is that 

the genetic algorithm performed significantly worse than the other heuristics even 
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while requiring more computation time. Between simulated annealing and tabu 

search, tabu search provided the better solution in 28 out of 37 cases. 

Computation time for both of these heuristics was comparable. 

3.4.3 Kim and Kim (1996) 
This paper compares the performance of simulated annealing and genetic 

algorithms on a scheduling problem. The problem consists of scheduling the 

processing of products with a multiple-level structure consisting of finished 

goods, sub-assemblies, sub-sub-assemblies, etc. The objective is to schedule 

processing in order to minimize tardiness and earliness penalties, where 

tardiness is charged only to finished goods and earliness is charged to both 

finished goods and components. The penalties can be thought of as shortage 

and holding costs. 

Their simulated annealing algorithm is controlled by three parameters: the 

cooling ratio, an epoch length parameter, and a terminating condition parameter. 

The cooling ratio determines how fast the temperature control parameter is 

reduced; three levels were explored: 0.75, 0.80, and 0.85. The epoch length is 

set to a maximum number of moves equal to a multiple of the neighborhood size; 

three factor levels were explored: 1, 3, and 5. The algorithm is terminated 

whenever five consecutive epochs terminate with the percentage of moves 

accepted less than the given parameter; four levels were explored: 0.1, 0.2, 0.3, 

and 0.4. 

For the genetic algorithm, the authors fixed the population size to 80 and 

defined the terminating condition  as  100 consecutive generations without 
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improvement.. They experimented with three levels for a mutation rate (0.001, 

0.005, and 0.01), and four levels for a crossover rate (0.6, 0.7, 0.8, and 0.9). 

They also use a scaling factor in their fitness function. 

After conducting parameter selection experiments, they selected five 

parameter combinations for each heuristic. Using a set of 150 randomly 

generated problems, they compared the performance of each heuristic. Their 

results show simulated annealing outperformed the genetic algorithm in all of the 

problems. They speculate the genetic algorithm did not do well because the 

problem representation and constraints were not well suited for taking advantage 

of the inheritance effects. 

3.4.4 Kincaid (1992) 
Kincaid considers the problem of locating p noxious facilities using two 

measures of distance: /»-dispersion and ^-defense-sum. The author develops 

conventional simulated annealing and tabu search heuristics for each of the two 

problems A second version of a tabu search heuristic is also developed where 

the initial solution is generated by a separate semi-greedy heuristic. They typical 

parameter setting experiments were conducted. 

The author tested the heuristics on a set of 30 problems. In general, the 

author found the second version of tabu search performed best, followed by the 

conventional version of tabu search. Simulated annealing came in last even 

though it roughly took 2.5 to 3 times as long as tabu search. 



69 

3.4.5 Kuik et al. (1993) 
In this paper, the authors present simulated annealing and tabu search 

heuristics for solving multilevel capacitated lot sizing problems. Given a 

multilevel product structure, the objective is to determine the setup times and run 

quantities that minimize setup and holding costs. The authors use a problem 

solution representation which consists of a 0-1 vector. Each element in the 

vector represents a possible setup in a given period for a particular product 

component. Given an incumbent solution, a neighboring solution is one where 

the setup status of a single element in the vector has changed while remaining 

feasible. 

Unlike other studies which included a parameter setting experiment, the 

authors in this paper used their experience from previous studies to set 

parameters. Their simulated annealing was set to a maximum of 100 epochs 

with 50 moves allowed per epoch. They also used a conventional cooling 

schedule with a cooling rate of 0.95. Their tabu search algorithm was limited to 

500 short-term memory iterations, a neighborhood size of 10, and a tabu list size 

of 10. The parameter settings ensured each algorithm had comparable 

computation times. They completed five replications of each heuristic on each of 

their 18 test problems. 

In comparing the performance of the two heuristics, the authors conclude 

that simulated annealing did slightly better than tabu search. However, they 

caution that with different parameters, different results can be obtained. 
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3.4.6 Marett and Wright (1996) 
Marett and Wright compare the performance of tabu search and simulated 

annealing for a multiple-machine, flow-shop scheduling problem. In this problem, 

several jobs must be scheduled on three machines. Once scheduled, all jobs 

follow the same sequence on each machine. Each job has its own processing 

time for each machine and a sequence dependent setup time. The problem is 

represented by a permutation vector and the neighborhood consists of all pair- 

wise swaps of elements in the vector. 

The authors develop two general versions of the tabu search algorithm. One 

is the conventional best improvement algorithm which selects the best candidate 

solution from the set of neighboring solutions. An alternative version is a first 

improvement algorithm which while evaluating the neighborhood, selects the first 

candidate solution that is not tabu and improves the incumbent solution (if none 

improves the incumbent, then the best non-tabu candidate solution is selected as 

usual). The authors also consider four different tabu criteria. To select 

parameters, they conducted a Fibonacci search. 

In making their comparisons, the authors allow each heuristic the same 

amount of information rather than the same amount of time. They test the 

heuristics on eight test problems. Among their findings, they authors conclude 

that the first improvement version of tabu search is better than the best 

improvement version. They also find that simulated annealing is sometimes 

better and sometimes worse than tabu search, but its superiority improves with 

the complexity of the problem. 
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3.5 Chapter Summary 
In this chapter we highlighted several papers that are representative of the 

state of the art in applying tabu search, simulated annealing, and genetic 

algorithms to operations problems. Some of these problems include assignment 

problems, vehicle routing problems, job shop and flow shop scheduling, project 

scheduling, layout problems, and location/allocation problems. However, our 

principal interest in these papers was to survey the various techniques, 

enhancements, and variations used in applying each heuristic. These papers 

presented various ways to manage tabu lists, cooling schedules, problem 

representations, and genetic operators among others. This information is 

valuable in developing new algorithms to solve problems in new domains. 



Chapter 4 

RESEARCH METHODOLOGY 

In this chapter, we outline the research methodology for an empirical 

comparison of three general heuristic algorithms: tabu search (TS), simulated 

annealing (SA), and genetic algorithms (GA). In the first section we re-iterate the 

research questions designed to achieve our principal research objective. In the 

following section we outline a four-stage study to answer these questions. 

Subsections describe the experiments and statistical tests used to answer each 

of the research questions. 

4.1 Research Questions 
Our basic research objective is to compare three general heuristic algorithms 

in search of a best performer. To conduct this study, facilities location was 

selected as a problem domain on which to test the heuristics. In particular, we 

study the performance of the three heuristics on three variations of facilities 

location problems: capacitated facilities location problems (CFLP), multiple 

periods facilities location problems (MP-FLP), and multiple commodities facilities 

location problems (MC-FLP). By using three problem variations we ensure a 

broader comparison over different problem structures and degrees of complexity. 

We selected facilities location for three reasons: 

(1) It is an important problem domain in the field of operations management; 

72 
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(2) Problems are difficult to solve optimally; and, 

(3) To our knowledge, none of the heuristic algorithms we are studying have 
been previously applied to the three variants we use. 

In this study we work with nine algorithms corresponding to the nine 

heuristic-problem type combinations. To achieve our research objective, the 

following research questions previously listed in Chapter 1 were developed: 

1. What is an appropriate problem representation that facilitates problem 
solution using the new heuristics? 

2. For each heuristic, what is the relationship and effect of various levels of 
key parameters and the quality of solutions? 

3. For a set of medium sized, benchmark problems, what is the quality of 
solutions for each heuristic? 

4. For each heuristic, what is the relationship between time allowed for 
computation and quality of solutions? 

5. For each heuristic, is there a relationship between the size of the problem 
and the computation time required to reach a good solution? 

6. For a new set of large problems, is there a dominant heuristic for each 
form of the facilities location problem? 

7. For a new set of large problems, is there a dominant heuristic for all forms 
of facilities location problems? 

4.2 Research Outline 
To answer the research questions, we conduct a four-stage study. In the first 

stage we consider how best to represent solutions to each of the facilities 

location problems. In the second stage we conduct experiments to evaluate and 

select control parameters for each heuristic method. In the third stage we 

conduct benchmark experiments and experiments to evaluate the significance of 
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computation time and problem size. In the last stage, we conduct a statistical 

study to compare the heuristics against each other. We now describe each 

stage in greater detail. 

4.2.1 Solution Representations 
Tabu search, simulated annealing, and genetic algorithms are search 

heuristics. As such, they search the solution space by moving from one solution 

to another in some prescribed manner. Crucial to their operation is a 

representation of the problem's solution as it may affect the efficiency and 

effectiveness of the algorithm. A poor representation may result in slow 

searches of large solution spaces. Therefore, finding a good representation that 

facilitates the search process is important. Several representations are 

considered including a 0-1 vector, a permutation vector, and a matrix. We defer 

further explanation of these representations to chapters 5, 6, and 7 following a 

full description of each of the three facilities location problems. Having defined 

each representation, we test each of the nine heuristic-problem algorithms with 

each solution representation on a small problem set. For each of CFLP, MP- 

FLP, and MC-FLP, we select a solution representation that performs well across 

all three heuristics for further study. We consider a "good" solution 

representation one that strikes a balance between computation time and solution 

quality. The results from this stage will answer the first research question. 

4.2.2 Parameter Setting Experiments 
Once a solution representation is selected, each heuristic algorithm must be 

"tuned"  by  selecting  appropriate  control   parameters.     In   general,  these 
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parameters control the quality of solutions found by each algorithm. To select 

the proper parameters, full-factorial experiments are conducted for each heuristic 

on a single problem. For each of CFLP, MP-FLP, and MC-FLP, a single problem 

is selected for the experiments. The problem selected is of medium-size with 

average constraint values. The heuristic control parameters are tested at various 

levels following suggestions from the literature. Each factorial design is fully 

described in subsequent chapters. 

Using the results from the experiments above, we use the Kruskal-Wallis H 

Test on each parameter tested for each heuristic to determine if various levels 

have a significant impact on solution quality. The results from these tests will 

answer the second research question. At the end of this set of experiments, we 

select parameter settings for each of the nine heuristic-problem combinations. 

4.2.3 Benchmarking 
The third stage of this research consists of benchmarking experiments. The 

objective is to measure the "optimality gap" for each heuristic algorithm on small 

and medium-sized problems for which optimal solutions can be computed. For 

each of the nine heuristic-problem combinations, the corresponding algorithm will 

be applied to a set of problems several times and the average optimality gaps 

reported. For these experiments, we use the set of parameters selected in the 

previous stage. Optimal solutions are obtained by adapting algorithms found in 

the open literature. Results from this stage will answer the third research 

question. 
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4.2.4 Time versus Quality 
We  use  the  results  from  the  benchmarking  experiments  to  find  the 

relationship between time of computation and quality of solution. For each of the 

test problems used for benchmarking, we compute Spearman's rank correlation 

coefficient for each of the heuristics applied to the problem.    We use the 

corresponding test of hypothesis to determine if a correlation in fact exists: 

H0: A = ° (There is no population correlation between ranks) 
Ha: A * ° (There is a population correlation between ranks) 

Results of these experiments will answer the fourth research question. 

4.2.5 Size versus Time 
Again, we use the results from the benchmarking experiments to determine if 

the size of a facilities location problem has an impact on the time each heuristic 

requires to find a good solution. For this experiment we use the Kruskal-Wallis H 

Test on each heuristic.  For each heuristic, the statistics ranked are the average 

computation time required for each problem tested over several cases.   The 

probability distributions we are measuring are those for various sizes of CFLP, 

MP-FLP, and MC-FLP.   The following test of hypothesis will be evaluated for 

each heuristic: 

H0: The probability distributions are identical 
Ha: At least two of the probability distributions differ in location 

Results from these experiments will answer the fifth research question. 

4.2.6 Global Comparison 
The fourth and final stage involves a comparative evaluation of the three 

heuristics on larger size problems. The statistical study for this stage follows the 
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method of Dudewicz and Dalai (1975) described in Law and Kelton (1982). This 

method involves a two-stage sampling procedure to determine the total number 

of replications needed for a decision. The decision we want to make is which of k 

systems has the smallest response, and to make that decision with a probability 

of being correct of at least P*. In our case, we want to select which of three 

systems (TS, SA, GA) results in the lowest average cost. The method also 

allows for a degree of indifference (d* > 0) between mean responses. The 

greater the degree of indifference, the fewer number of replications needed to 

make a decision within the desired probability of correctness. 

We apply the following procedure to each of CFLP, MP-FLP, and MC-FLP. 

In the first stage, we make «„(«„ > 2) replications for each heuristic and compute 

the first-stage sample mean and variance: 

2X l[^;-*,(1)("o)]2 

Wf«  \-Jl     onH   „2/.     x_izi Xr(n0) = - , and sf(n0) = 
n0 'vu/ "o-l 

for i = 1,2, and 3, representing TS, SA, and GA. Using this information, we can 

compute N,, the total number of replications needed for each system (TS, SA, 

GA): 

[ \hhUnS 
N, =maxj/i0+l, 2 

where A, is obtained from a table (depending on k, P* and n0) and d* is the 

degree of indifference we are willing to accept. After we make Ni - n0 additional 

replications for each system, we obtain the second-stage sample mean: 
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jr,(2)(tf,-no) = 
>"o+l 

A/'.. - nn 

and the weights 

w =—- 
"     N, 

1+1- 
#, 

*\2 

1- 
hfsf(n0) 

1/2 \ 

and Wa=\-Wn,for i = 1,2, and 3. Finally, we can obtain the weighted sample 

mean for each system, 

X(^) = ^1X,(1)K) + ^2X)
(2)(iV,.-«0) 

and select the system with the lowest X(Nt). 

The results from the procedure above in fact allow us to rank each heuristic 

for each test problem on which they are applied. Following the suggestions from 

Golden and Stewart (1985) for comparing the performance of heuristics, we use 

the Friedman Fr test for a randomized block design to test if any of the heuristics 

is in fact better than the others across all problems. We use the following test of 

hypothesis: 

H0: the probability distributions of the response rates for the heuristics are 
identical 

Ha: at least two of the three distributions differ in location 

If we reject the null hypothesis, we use the Wilcoxon signed rank test for paired 

difference designs to determine which distribution for the heuristics is in fact 

different.   The results from these experiments will answer the sixth question 

when done within FLP problem types and the seventh and final research 

question when done across FLP problem types. 
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Since our intent is to make a selection among comparable systems, the 

answers for the sixth and sevenths research questions will in fact be made with 

respect to the computation time and information allowed each heuristic. 

Specifically, we select the best heuristic when all are allowed comparable 

computation time, and when all process a comparable amount of information. 

4.3 Chapter Summary 
In this chapter we outlined our research methodology for comparing the 

performance of three heuristic algorithms: tabu search, simulated annealing, and 

genetic algorithms. Six research questions were developed and a four-stage 

study to answer these questions was outlined. In the first stage we explore 

problem solution representations. In the second stage we select parameters for 

each heuristic that make them comparable. In the third stage we conduct 

benchmarking experiments. In the final stage, we compare the heuristics 

performance against each other. Due to the nature of the data, we use non- 

parametric statistical tests to obtain our results. 



Chapter 5 

HEURISTICS FOR CAPACITATED FACILITIES LOCATION PROBLEMS 

In this chapter we present the development of tabu search, simulated 

annealing, and genetic algorithm heuristics for solving the capacitated facilities 

location problem (CFLP). In the first section we introduce the CFLP, present a 

formulation, and mention some of the relevant literature. In the following section 

we present the three solution representations we consider for CFLP. We then 

present the heuristic algorithms. For each one, we specify our particular 

implementation and parameters for each representation. After all three heuristics 

have been explained, we report the results from the first three stages of 

experimentation: selection of appropriate representation, parameter selection 

and effects, and benchmarking. 

5.1 The Capacitated Facilities Location Problem 
For CFLP, we wish to determine which of JV capacity constrained locations to 

operate so we can satisfy the demand for M customers at the lowest sum of fixed 

and variable costs. Finding optimal solutions for this problem usually involves an 

implicit enumeration algorithm such as branch and bound. Exact approaches for 

this problem can be found in Davis and Ray (1969), Ellwein and Gray (1971) and 

Akinc and Khumawala (1977). Due to the difficulty of solving this problem, 

domain specific heuristic methods have also been developed such as Sa (1969) 
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and Khumawala (1974). The formulation of this problem is similar to the 

formulation for the uncapacitated facility location problem we saw in Chapter 2 

with the additional constraint for capacity: 

N    M 

subject to 

minZ = 2Zc^+Z^/ W 
;=1 >1 i=l 

where 

Ytxij=DJ, j = l,2,...,M (9) 

M 

^ZxgZS.y, i = \,2,...,N (10) 
7=1 

j,e{0,l} i = l,2,...,N (11) 

x, >0 i = l,2,...N,   j = \,2,...,M (12) 

Fi fixed cost of operating a facility at location i 
Cjj cost to satisfy customer/ s demand from location i 
S) capacity of potential location i 
Dj demand for customery 
Xjj demand for customery shipped from location /' 
y\ {0,1} indicator where j>,=7 implies a facility is located at location i 

Specifically, fixed costs (Fi), variable costs (Q), location capacities (Si), and 

customer demands (DJ) are the given input data for the problem and the demand 

allocation (xy) and facility locations (y,) are the decision variables for the problem. 

5.2 Solution Representations 
Tabu search, simulated annealing and genetic algorithms work on abstract 

representations of the problem's solution and use the representation's structure 

to define "moves" or "operators." In the following subsections, we introduce three 

potential representations for CFLP: a 0-1 vector, a permutation vector, and a 

matrix. For ease of understanding, we refer to the sample CFLP shown in Figure 

8, which consists of five potential locations and ten customers. 
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Fixed 
Costs 

1 2 3 4 5 6 7 8 9 10 

A $300 $2 $4 $5 $10 $6 $3 $8 $2 $8 $4 

B $210 $4 $5 $4 $11 $9 $11 $9 $12 $6 $11 

C $150 $12 $2 $3 $4 $10 $2 $7 $11 $10 $10 

D $200 $10 $8 $7 $2 $4 $12 $4 $5 $2 $2 

E $275 $6 $7 $12 $3 $6 $4 $5 $3 $4 $7 

F $325 $7 $10 $6 $5 $5 $6 $3 $2 $3 $5 

Demand 10 30 10 40 20 10 40 20 10 30 

Figure 8. Sample Capacitated Facilities Location Problem (CFLP) 

5.2.1 0-1 Vector Representation 
The objective in CFLP is to determine the set of locations to operate. The 0- 

1 vector representation embodies this concept directly. The vector consists of n 

elements, where each element represents the operational status of a potential 

location. This is in fact the same solution representation we saw in Chapter 2 for 

the uncapacitated facilities location problem. For the problem in Figure 8, 

s = {yx,...,y6} where yt e {0,1}, i =1, ..., 6, can represent all possible solutions for 

this problem. 

Associated with each representation is a cost function, C:s-»$R, that 

performs a translation. For the 0-1 vector representation, the translation function 

consists of first solving the associated transportation problem to determine the 

proper allocation of customer demand to open locations (i.e., the *,-,). Given this 

set of allocations, the cost is then computed with 

N    M N 

coo=XEc,*,+2>, 
/=1 j=\ i=\ 



83 

5.2.2 Permutation Vector Representation 
A 0-1 vector representation is a natural representation for CFLP but is 

computationally expensive due to the need to solve transportation problems. An 

alternative representation suggested in Vignaux and Michalewicz (1991) is to 

number each xy cell in the problem with a unique number in the range (1../*/). A 

permutation vector then represents an ordering of these cell numbers and a 

specific ordering determines how the xy will be allocated. 

The cost function that translates the permutation vector first determines the 

allocation for the xy. It then determines which locations have at least one positive 

shipment and finally computes the associated cost. To find the allocation for the 

xy, the function begins with the first element in the permutation vector. After 

decoding the corresponding xy cell, it is assigned the minimum of the 

corresponding customer's remaining demand or the corresponding location's 

remaining capacity. The function iterates over each element of the permutation 

vector in order until all demand has been allocated. Using the values of the xy 

we can determine the values for the yit and consequently the solution's cost. 

5.2.3 A Matrix Representation 
Whereas the 0-1 vector and permutation vector representations required 

some form of translation to get the solution their representation implies, a matrix 

representation consists of an actual feasible solution representing the allocation 

of customer demand to potential locations. Since the representation is the 

solution itself, the cost of the solution can be computed directly. 
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5.3 A Tabu Search Heuristic for CFLP 
In Chapter 2, we defined a tabu search heuristic as the following set of 

elements: 

TS = {M,MJ, waM/WP} 
Where 

j^      is the solution representation structure 
JVV    is the neighborhood structure; 
WfJ    is the cost function 
j&fj   is the aspiration criterion function 
WJ     is the terminating condition function 
&       is the set of control parameters 

In the previous section we discussed the three representations and their 

associated cost functions.   We now describe the remaining elements and the 

associated parameters. 

5.3.1 Neighborhood Structure 
Neighborhood structures are closely linked to the problem representation. 

For each representation previously described, we now define their associated 

neighborhood structure and their size. 

For a 0-1 vector solution, a neighbor is defined as a solution where the status 

of a single location has changed. Thus, for a problem with n potential locations, 

a solution has a neighborhood size of n. In our implementation, the entire 

neighborhood is evaluated at each iteration of the algorithm. 

For the permutation vector solution, a neighbor is defined as a solution where 

two of the elements in the vector have swapped positions. Thus, for a problem 

with n potential locations and m customers, a solution has a neighborhood size of 

(n*m)*({n*m)A). Since this is a large neighborhood, our implementation only 

evaluates a subset of this neighborhood at each iteration of the algorithm. The 
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subset consists of swapping each element of the vector once with a randomly 

selected second element. This results in a neighborhood of size (n*m). 

For the matrix solution representation, a neighbor is defined as a solution 

where a single allocation of customer demand is moved from its original supplier 

to another supplier with some positive capacity. The size of this neighborhood is 

variable depending on the number of positive allocations in the incumbent 

solution, but it is certainly large. Again, for this representation we only evaluate a 

subset of the total neighborhood at each iteration of the procedure. The subset 

consists of randomly selecting an existing allocation of demand for each of m 

customers, and reallocating as much as possible to a different, randomly 

selected supplier with some positive remaining capacity. Since only one 

reallocation is made per customer, the resulting neighborhood is of size m. 

5.3.2 Aspiration Criteria 
In our implementation we use Glover's original aspiration criteria: a move that 

is currently "tabu" is only accepted if it results in a neighboring solution whose 

cost function value is better than the best one so far. 

5.3.3 Terminating Condition 
The tabu search procedure is terminated when a certain number of iterations 

have been completed. Two parameters are defined: long-term memory iterations 

(LTM) and short-term memory iteration (STM). Each long-term memory iteration 

consists of a restart with a randomly generated solution and an empty tabu list. 

For each LTM, a number of iterations of the normal tabu search algorithm are 

executed. 
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5.3.4 Parameters 
The parameter set of our implementation of tabu search consists of three 

elements: 

& = {LTM, STM, TLSIZE} 

LTM: number of long-term memory iterations (restarts). 

STM: number of short-term memory iterations. 

TLSIZE: tabu list size. 

LTM and STM are described in the previous section. For TLSIZE, we use a 

random tabu list size as in Taillard (1991). TLSIZE represents the maximum size 

allowed for the tabu list size at any time. 

5.4 A Simulated Annealing Heuristic for CFLP 
In Chapter 2, we defined a simulated annealing algorithm as the following set 

of elements: 

where 
M is the solution representation structure 
jV?y is the neighborhood structure; 
WJ is the cost function 
SfJ is the cooling schedule 
WJ is the terminating condition function 
& is the set of control parameters 

Solution representations and cost functions were described in §5.2. We now 

describe the remaining elements. 

5.4.1 Neighborhood Structure 
The neighborhood structures for simulated annealing are the same as those 

for tabu search described in §5.3.1. However, in simulated annealing, instead of 

evaluating all or part of an incumbent solution's neighborhood, we only evaluate 
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a randomly selected neighbor. For the 0-1 vector representation, we randomly 

select a potential location and change its status. If the resulting solution is not 

feasible due to capacity constraints, it is ignored and a new neighbor randomly 

selected. For the permutation vector representation, we randomly select two 

elements in the vector and swap their positions. For the matrix representation, 

we randomly select a customer. For this customer, we randomly select an 

existing positive allocation of demand to some supplier. We then randomly 

select a different supplier with some positive capacity and reallocate as much of 

the demand as possible from the old to the new supplier. In all cases, the result 

is a new solution with an associated cost. 

5.4.2 Cooling Schedule 
The  cooling  schedule  consists  of  selecting  an   initial  temperature,  a 

probability function, and a temperature adjustment function. The initial 

temperature is selected so that the resulting probability of accepting non- 

improving solutions is 95%. To find this initial temperature, we take the 

difference in cost function value between the incumbent solution and the first 100 

non-improving solutions (the first 20 for the 0-1 vector representation) and get the 

average, C. Using this average we compute the required temperature 

parameter to achieve the 95% acceptance rate. Since we use the standard 

probability function e~A/T, then the initial temperature parameter r = -C/ln(.95). 

Finally, the temperature adjustment function is a simple decay function 

T* = aT, (a < 1). The function is applied at the end of each epoch. The length 

of an epoch is controlled by two parameters: ACCEPT and FACTOR. An epoch 
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consists of evaluating enough solutions such that at least some number of 

solutions are accepted (improving or non-improving). This number of solutions is 

controlled by the ACCEPT parameter. Since the rate of at which solutions are 

accepted decreases as the temperature parameter is lowered, the total number 

of solutions evaluated should be limited to prevent lengthy epochs at lower 

temperatures. The maximum number of solutions that may be evaluated per 

epoch is a factor of the ACCEPT parameter controlled by the FACTOR 

parameter. Thus, an epoch will end when ACCEPT solutions have been 

accepted or FACTOFTACCEPT solutions have been evaluated, whichever 

comes first. 

5.4.3 Terminating Condition 
The algorithm will terminate whenever the system is deemed frozen.  In our 

implementation, frozen is defined as an acceptance rate of less than 1% during 

any one epoch. 

5.4.4 Parameters 
The parameter set of our implementation of simulated annealing consists of 

three elements: 

& = {RATE, ACCEPT, FACTOR} 

RATE: the a parameter in the temperature adjustment function. 

ACCEPT: the minimum number of solutions that must be accepted before 

terminating an epoch. 

FACTOR: the factor used in determining the maximum number of solutions 

that may be evaluated per epoch. 
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5.5 A Genetic Algorithm Heuristic for CFLP 
In Chapter 2, we defined a genetic algorithm as the following set of elements: 

GA = {M. W/WJ. J&0. m &} 
Where 

M      is a solution representation 
WJ    is the fitness function 
3£{J    is the crossover operation function 
J&fJ  is the mutation operation function 
WJ     is the terminating condition function 
&       is the set of control parameters 

Solution representations are discussed in §5.2. The remaining elements are 

discussed in the following sections. 

5.5.1 Fitness Function 
As discussed in Chapter 2, the fitness function assigns a "goodness" value to 

each chromosome or solution at each generation. In our case, the goodness 

value is represented by the objective function value, which is the total cost of the 

solution. Using this value, we assign to each chromosome a probability of 

selection as a parent for the next generation. Our probability assignment 

function is taken from Murata, et al. (1996): 

x.eV 

where *F  is the set of chromosomes/solutions in the current generation, 

/(x;) is the fitness value (objective function value) for solution x,., and /OF) is 

the worst fitness value in the current generation. 

The probability of selection computed above is actually used in selecting only 

the first parent for a crossover operation.   The second parent is selected at 
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random with all chromosomes having an equal probability of selection. This 

selection process is described in Holland (1975). In addition, we use a biased 

selection process where the two best chromosomes are copied to the next 

generation intact. 

5.5.2 Crossover Operators 
The crossover operation is applied probabilistically to a set of two parent 

from which two offspring are generated for the new generation. With probability 

XOVER, the crossover operator is applied to the parents to generate the first 

offspring. With complementary probability, the offspring is a copy of the first 

parent. With probability XOVER, the crossover operator is applied to the parents 

(in reverse order) to generate the second offspring. With complementary 

probability, the offspring is a copy of the second parent. The crossover operators 

are defined appropriately for each solution representation. 

For the 0-1 vector representation, we use a two-point crossover operator. 

The two crossover points are selected at random. If applied, the first offspring 

receives the portion of the solution vector between the two points from the first 

parent, and the head and tail portions from the second parent. The second 

offspring receives the middle portion from the second parent, and the head and 

tail portions from the first parent. Since this kind of crossover operator can lead 

to infeasible solutions, a repair operation must also be added. The repair 

operation is applied whenever the resulting offspring has insufficient capacity to 

meet demand and consists of opening additional, randomly selected locations 

until enough capacity is available. 
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For the permutation vector, we also use a two-point crossover operator. The 

first crossover point is selected from the first N+M elements, where N is the 

number of locations in the problem, and M the number of customers. This is 

done to ensure that at each crossover operation, some of the early elements in 

the permutation are changed, which are the most significant with this kind of 

representation. The second crossover point is selected at random and to the 

right of the first point. The first offspring receives the elements between the 

crossover points from the first parent. The remaining elements are filled from 

head to tail in the same order as they appear in the second parent (i.e., the 

elements not copied from the first parent). The operation is the same for the 

second offspring with the roles of the parents reversed. The resulting offspring 

are always feasible. 

For the matrix representation we use a single crossover point operation. 

Recall the matrix representation is a Nx M tableau solution to the problem. The 

crossover point is randomly selected as one of the M customers. The first 

offspring will receive the columns to the left of the crossover point from the first 

parent matrix and the remaining columns from the second parent. The operation 

is the same for the second offspring with the roles of the parents reversed. As in 

the 0-1 vector representation, there is no guarantee the resulting offspring 

solutions will be feasible, requiring a repair operation. The repair operation is 

applied to each row in the matrix (i.e., each potential location), whenever the 

assigned allocations exceed the corresponding capacity. The repair operation 

consists of randomly selecting allocations and moving them to other, randomly 
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selected locations with some positive capacity. This is done until the total 

demand on a location is less than its capacity, and for each location until the 

solution is feasible. 

For the matrix representation, we also tried to use the matrix crossover 

operator of Vignaux and Michalewicz (1991) described in Chapter 3. However, 

results were inferior to those with the operator described above; we therefore 

abandoned this approach. 

5.5.3 Mutation Operators 
The mutation operator is applied probabilistically.   In the case of the matrix 

representation, the mutation is applied probabilistically to each gene (column) of 

the chromosome. For the other two representations, the operator is applied 

probabilistically to each chromosome in the population. 

For the 0-1 vector representation, the mutation operation is applied to each 

chromosome with MUTATE probability. The operation consists of selecting a 

random element in the vector and switching its status. Notice that when a 

location is closed, the resulting offspring may be infeasible. This situation would 

be corrected during the repair operation as described in the previous section. 

For the permutation vector representation, the mutation operator is also 

applied to each chromosome with MUTATE probability. The operation consists 

of randomly selecting one of the first M + N elements, and swapping it with 

another, randomly selected element. The results are always feasible. 

For the matrix representation, the mutation operator is applied to each gene 

(column) in each chromosome with MUTATE probability. The mutation consists 
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of selecting a random allocation for the customer, and reallocating from the 

current supplier to a different, randomly selected supplier with some positive 

capacity. The smaller of the existing allocation or the available capacity in the 

new supplier is reallocated. The results are always feasible. 

5.5.4 Terminating Condition 
The genetic algorithm is terminated when a fixed number of generations, 

GENS, have elapsed or if the algorithm converges to a single solution (i.e., all of 

the chromosomes in a generation represent the same solution). Convergence 

only tends to happen when the mutation rate MUTATE is small (e.g., 1%). 

5.5.5 Parameters 
The parameter set of our implementation of a genetic algorithm consists of 

four elements: 

^ = {POP, GENS, XOVER, MUTATE} 

POP   =   the   population   size   of   each   generation   (i.e.,   number   of 

chromosomes). 

GENS = the number of generations before terminating the algorithm. 

XOVER = the probability of applying the crossover operation. 

MUTATE = the probability of applying the mutation operation. 

5.6 Benchmark Test Problems 
A set of 20 medium-sized test problems was selected for the purposes of 

representation selection, parameter effects experimentation, and benchmarking. 

The 20 test problems are based on a set of uncapacitated location problems 

found in Khuen and Hamburger (1963) and later modified as capacitated location 
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Table 8. Benchmark Test Problems (CFLP) 

Set Size Capacity Fixed Cost 
1 16x50 10000 7500/12500/17500/2500 
II 16x50 15000 7500/12500/17500/2500 
III 25x50 5000 7500/12500/17500/2500 
IV 25x50 15000 7500/12500/17500/2500 
V 25x50 58268 7500/12500/17500/2500 

problems by Sa (1969) and later used by Ellwein (1971), Khumawala (1974), and 

Akinc and Khumawala (1977). The set contains 8 problems with 16 locations 

and 50 customers, and 12 problems with 25 locations and 50 customers. The 

problems are summarized in Table 8. The capacity indicated is the capacity 

assigned to each potential location. For each size-capacity combination, there 

are four levels of fixed cost per potential location. Optimal solutions for each of 

these problems were obtained from a branch and bound algorithm. 

5.7 Representation Selection 
We conducted a small experiment in order to determine which of the three 

solution representations is best suited for capacitated facility location problems. 

Table 9. Parameters for Representation Selection (CFLP) 

0-1 Vector Permutation Matrix 
TS-CFLP 
LTM 5 5 5 
STM 20 1500 2000 
TLSIZE 7 7 7 
SA-CFLP 
RATE .8 .9 .85 
ACCEPT 15 1000 1000 
FACTOR 2 2 3 
GA-CFLP 
POP 30 40 40 
GENS 75 1500 1500 
XOVER .85 .80 .80 
MUTATE .05 .05 .05 
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In this experiment, each of the three general heuristics was used to solve each of 

the 20 benchmark test problems using each of the three solution representations, 

resulting in an experiment with 180 cells. Due to this number of cells, we 

completed five replications per cell. The parameters used for each of the nine 

heuristic-representation combinations are shown in Table 9. 

In order to determine which representation would be most appropriate, we 

first ranked the performance of the heuristics with each representation. The 

results of these rankings are shown in Table 10. The raw results are shown in 

Tables 95, 96 and 97 in Appendix A. The rankings clearly show that the 0-1 

vector representation dominates the other two representations. In particular, for 

medium-sized problems such as those in our benchmarking set, the 0-1 vector 

Table 10. Representation Performance Ranks (CFLP) 

Prob. TS Solution Ranks SA Solution Ranks GA Solution Ranks 
# V            P T V            P T V             P             T 
1 1              3 2 1              3 2 1              3              2 
2 1              3 2 1              3 2 1              3              2 
3 1              3 2 1              3 2 1              3              2 
4 1              2 3 1              2 3 1              3              2 
5 1              2 3 1              3 2 1              3              2 
6 1              3 2 1              3 2 1              3              2 
7 1              2 3 1              2 3 1              3              2 
8 1              2 3 1              2 3 1              3              2 
9 1              3 2 1              3 2 1              3              2 
10 1              3 2 1              3 2 1              3              2 
11 1              2 3 1              3 2 1              3              2 
12 1              2 3 1              3 2 1              3              2 
13 1              3 2 1              3 2 1              3              2 
14 1              3 2 1              3 2 1              3              2 
15 1              3 2 1              3 2 1              3              2 
16 1              2 3 1              3 2 1              3              2 
17 1              3 2 1              2 3 1              3              2 
18 1              3 2 1              2 3 1              3              2 
19 1              3 2 1              2 3 1              3             2 
20 1              3 2 1              2 3 1              3             2 
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representation is most appropriate. However, since we are also interested in 

applying these general heuristics to larger sized problems, computation time is 

also a key determinant of appropriateness. In Figures 9,10 and 11 we show the 

time performance of each representation for tabu search, simulated annealing, 

and the genetic algorithm respectively. The problems along the x-axis are in the 

same order as in Table 10, sorted by their size, then by their capacity tightness, 

and lastly by their fixed cost. Notice that the time performance for the 0-1 vector 

representation (V) appears to rise sharply as the size and complexity of the 

problem increase, whereas the rise for the other two representations is not as 

pronounced. In particular, the matrix representation (T) does not seem to be 

heavily affected by the size or complexity of the problem. 

At this point, the utility of a 0-1 vector representation for larger sized 

problems is suspect. We conducted the same experiment above for an 

additional test problem from our set of larger sized problems. This problem 

consists of 25 locations and 200 customers. This is the smallest of the larger 

sized problems. The results are shown in Figures 12, 13, and 14. These figures 

clearly show the performance of the 0-1 vector representation is unsuitable for 

larger sized problems. Therefore, we are left with a compromise solution 

representation that balances solution quality and time performance: the 

matrix/tableau representation. These results answer the first research question 

with respect to capacitated facility location problems. 
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5.8 Parameter Effects 
From the literature, it is understood that the performance of tabu search (TS), 

simulated annealing (SA) and genetic algorithms (GA) depends on the parameter 

settings. Accordingly, we conducted an experiment with each of the general 

heuristics to determine the effect of various parameter settings on solution quality 

and computation time. 

For tabu search, we experimented with three levels for the number of restarts 

(LTM), five levels for the number of iterations per restart (STM), and three levels 

of maximum tabu list size (TLSIZE). The experimental levels are summarized in 

Table 11. The three levels of maximum tabu list size correspond to 10%, 15%, 

and 25% of the neighborhood size (i.e., number of customers). 

Table 11. TS Parameters Experimental Levels (CFLP) 

Parameter Experimental Levels 
LTM 1 5           10 
STM 1000 1500      2000      2500 3000 
TLSIZE 5 7           12 

For simulated annealing, we experimented with five levels for the RATE 

parameter, four levels for the ACCEPT parameter, and three levels for the 

FACTOR parameter. The experimental levels are summarized in Table 12. 

Table 12. SA Parameters Experimental Levels (CFLP) 

Parameter Experimental Levels 
RATE 0.75 0.80       0.85       0.90       0.95 
ACCEPT 1000 1500      2000      2500 
FACTOR                1 2 3 
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For genetic algorithms, we experimented with three levels for the POP, 

GENS, and XOVER parameters. The MUTATE parameter was set at two levels. 

The experimental levels are summarized in Table 13. 

Table 13. GA Parameters Experimental 
Levels (CFLP) 

Parameter Experimental Levels 
POP 20 30 40 
GENS 1000      1500      2000 
XOVER 0.85       0.95        1.0 
MUTATE 0.05       0.10 

To conduct these experiments, one of the test problems from the benchmark 

set was selected as a test bed. Looking back at the results from the 

representation selection experiments, we selected a problem that was generally 

difficult to solve for all of the general heuristics. Difficulty is measured by the 

resulting optimality gap. For tabu search and simulated annealing, this problem 

had the worst optimality gap performance at 11.33% and 14.32% respectively. 

The genetic algorithm also had difficulty with this problem resulting in an 

optimality gap of 32.29%, although this was not the worst performance. The 

problem selected has 25 potential locations, 50 customers, a limited capacity of 

5000 per location, and a fixed cost of $25,000 per location. 

The tabu search experiment has 45 cells, the simulated annealing 

experiment has 60 cells and the genetic algorithm experiment has 54 cells. 

Considering the total number of experimental cells, we limited each cell to 10 

replications. In the following sections, we summarize the effects of each 

parameter. Tables 14 and 15 summarize the results of the Kruskal-Wallis H tests 
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Figure 15. TS Parameters Effect on Cost (CFLP) 

and tables 16 and 17 summarize Spearman's correlation coefficients. These 

results answer the second research question with respect to CFLP. 

5.8.1 Tabu Search LTM Parameter 
The effect of increasing the number long-term memory passes (number of 

restarts), is clear from Figure 15. In this figure, each line represents a level of the 

LTM parameter, and each point the averaged cost of ten replications. Going 

from a single pass to five passes has a large impact for all test problems, 

reducing the overall solution costs significantly. Going from five passes to ten 

passes also reduces overall costs, although the effect is not as dramatic. The 

Kruskal-Wallis H test shows the LTM parameter has a significant effect on 

solution quality (see Table 14). 

With respect to computation time, the effect of increasing the number of 

passes is as expected and shown in Figure 16.    Each line in Figure 16 
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Figure 16. TS Parameters Effect on Time (CFLP) 

represents each level of the LTM parameter.  More passes clearly require more 

computation time. This significant effect is also confirmed by the Kruskal-Wallis 

H test (see Table 15). 

5.8.2 Tabu Search STM Parameter 
The effects of changing the STM parameter are also visible in Figure 15. As 

the number of iterations increases (shown on the x-axis), the average cost goes 

down for each of the three levels of the LTM parameter. The decrease rate is not 

very steep at all, and is almost flat for a single pass of the long-term memory. 

The K-W test for this parameter is significant (p = .0304) and a Spearman 

correlation coefficient of -.1272 (p = .007) confirms the slight trend. 

With respect to computation time, Figure 16 shows that more iterations 

require more computation time as one would expect. However, there is an 

interaction between the LTM and STM  parameters.    The rate at which 
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Table 14. Kruskal-Wallis H Test of Heuristic 
Parameters Effect on Solution Quality (CFLP) 

Parameter Chi-Square       D.F. Significance 
LTM 224.2147            2 .0000 
STM 10.6836            4 .0304 
TLSIZE 2.7052            2 .2586 
RATE 72.4681            4 .0000 
ACCEPT 28.4350            3 .0000 
FACTOR 29.5130            2 .0000 
POP 2.3462            2 .3094 
GENS 16.9384            2 .0002 
XOVER 1.3125            2 .5188 
MUTATE 376.3415            1 .0000 

Table 15. Kruskal-Wallis H Test of Heuristic 
Parameters Effect on Computation Time (CFLP) 

Parameters Chi-Square       D.F. Significance 
LTM 359.7749           2 .0000 
STM 81.2943           4 .0000 
TLSIZE .2126           2 .8992 
RATE 359.6451            4 .0000 
ACCEPT 112.9145           3 .0000 
FACTOR 99.3806           2 .0000 
POP 223.5026           2 .0000 
GENS 262.6808           2 .0000 
XOVER .2067           2 .9018 
MUTATE 17.1998           1 .0000 

computation time increases for each level of STM increases as the LTM 

parameter is also increased. Considering both effects on solution quality and 

computation time, the obvious implication is that increasing the STM parameter is 

not as effective as increasing the LTM parameter given some limit on 

computation resources. 

5.8.3 Tabu Search TLSIZE Parameter 
Looking at Figure 15, notice that for each level of short-term memory 

iterations, there are three points. These points correspond to each level of 

TLSIZE. Unfortunately, the effects of this parameter are not entirely clear. For 

the line corresponding to a single pass of the long-term memory, it is obvious that 
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the middle level of TLSIZE, 7, gives the worst performance. The other two levels 

result in comparable solution quality. For the other two levels of LTM, the results 

are more complicated. For lower levels of STM, the middle level of TLSIZE, 7, 

gives the best performance. However, as the level of STM increases, the effect 

reverses. Interestingly, many applications of tabu search found in the literature 

use a tabu list size of 7. However, the present results seem to indicate that the 

effect of this parameter is very sensitive to the settings for the LTM and STM 

parameters. The K-W test (p = .2586) and the Spearman correlation coefficient 

(p = .173) show that this parameter does not have a significant effect on solution 

quality. 

With respect to time, Figure 16 shows that TLSIZE has very little impact on 

computation time. The K-W test (p = .8992) and Spearman correlation coefficient 

(p = .665) confirm this observation. However, there is a slight yet consistent 

trend showing a decrease in computation time as the TLSIZE parameter 

increases. Presumably, this effect comes from the fact that as more moves are 

declared "tabu," fewer solutions must be evaluated. 

5.8.4 Tabu Search Selected Parameters 
Based   on   the   previous   results,   we   set  the   parameters   for  further 

experimentation to the following levels: LTM = 10, STM = 3000, and TLSIZE = 5. 

5.8.5 Simulated Annealing RATE Parameter 
Figure 17 summarizes the effects of simulated annealing parameters on 

solution quality (cost). Each line represents a different experimental level of the 

RATE parameter. Each point is the average cost of ten replications. Looking at 
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Table 16. Spearman Correlation Coefficients of 
Heuristic Parameters vs Solution Quality 

Parameter Coefficient Significance 
LTM -.6863 .000 
STM -.1272 .007 
TLSIZE -.0644 .173 
RATE -.3420 .000 
ACCEPT -.2130 .000 
FACTOR -.2051 .000 
POP -.0572 .184 
GENS -.1753 .000 
XOVER .0102 .814 
MUTATE .8356 .000 

Table 17. Spearman Correlation Coefficient of 
Heuristic Parameters vs Computation Time 
Parameter Coefficient Significance 
LTM .8906 .000 
STM .4245 .000 
TLSIZE -.0205 .665 
RATE .7639 .000 
ACCEPT .4314 .000 
FACTOR .4002 .000 
POP .6411 .000 
GENS .6933 .000 
XOVER -.0007 .986 
MUTATE .1786 .000 

this figure, a general result is that as the RATE parameter increases, solution 

quality improves. Unfortunately, this is not a consistent result across levels of the 

ACCEPT parameter (x-axis). The two highest levels of RATE, 0.90 and 0.95, do 

result in the best performance consistently. Spearman's correlation coefficient of 

-.3420 (p = .000) confirms the direction and significance of the effect. 

Figure 18 summarizes the effects of simulated annealing parameters on 

computation time. The effects are clear, higher levels of RATE require more 

computation time due to the slower cooling rate. Notice that the increase in time 

going from a RATE level of 0.90 to 0.95 is much larger than for the other levels. 

Again, the K-W test (p = .000) and Spearman's correlation coefficient of .7639 (p 

= .0000) confirm these observations. 
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Figure 17. SA Parameters Effect on Cost 

5.8.6 Simulated Annealing ACCEPT Parameter 
Figure 17 shows the levels of the ACCEPT parameter on the x-axis.   The 

general effect is a slight improvement in solution quality as the ACCEPT 

parameter increases. However, the effect is not consistent. It is most visible for 

the RATE levels of 0.75 and 0.90, and most inconsistent for the RATE level of 

0.85. 

With respect to time, Figure 18 clearly shows that as the ACCEPT parameter 

increases, total computation time also increases. This is an expected result as 

more solutions are evaluated for higher levels of ACCEPT. 

5.8.7 Simulated Annealing FACTOR Parameter 
The effects of FACTOR on solution quality can be seen in Figure 17. Notice 

on the x-axis each level of the ACCEPT parameter has three points, each 

corresponding to a level of the FACTOR parameter. Unfortunately, not much can 
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Figure 18. SA Parameters Effect on Time 

be said of this parameter. A larger FACTOR level does not necessarily result in 

superior solutions, even though more solutions are allowed per epoch at the 

lower temperatures in the cooling schedule. 

The effects on computation time, however, are clearly visible in Figure 18. 

For each RATE-ACCEPT combination, higher levels of FACTOR require more 

computation time as expected. Notice that the rate of increase goes up as the 

levels of the RATE parameter also go up. 

5.8.8 Simulated Annealing Selected Parameters 
Based on the preceding results, parameter settings for further experiments 

are set at the following levels: RATE = 0.90, ACCEPT = 2500, and FACTOR = 2. 

These settings achieve good results within reasonable computation times. 
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5.8.9 Genetic Algorithm POP Parameter 
Figure 19 shows the genetic algorithm parameter effects on solution quality 

(cost). Each line in the graph corresponds to a POP-MUTATE parameter 

combination. The legend at the bottom identifies each line with a number and a 

letter. The number refers to the levels of POP, and the letter to the levels of 

MUTATE: A = 0.05 mutation rate, and B = 0.10 mutation rate. Considering only 

the POP parameter, the effect would seem to be slight. For the lines with a 

MUTATE rate of 0.10, the effect is inconsistent. For the lines with a MUTATE 

rate of 0.05, a higher level of POP results in a better solution, though only 

slightly. Neither the K-W test (p = .3094) nor Spearman's correlation coefficient 

(p = .184) show a significant effect at the .05 level. 

Figure 20 shows the effects of parameters on computation time. The results 

are clear and consistent. Higher levels of POP require more time as expected, 

due to the larger number of solutions evaluated. 

5.8.10 Genetic Algorithm GENS Parameter 
Figure 19 shows the effect of the number of generations (GENS) on solution 

quality. The number of generations is shown on the x-axis. As more generations 

are allowed, the solution quality improves. However, there is a leveling-off effect 

and the rate of improvement does not appear to be very large. This is confirmed 

by the low Spearman's correlation coefficient of -.1753 (p = .000). 

Figure 20 shows the effects of the GENS parameter on computation time. 

Again, as expected higher levels of the GENS parameter require more time. 

Notice that the rate of increase as the POP parameter increases does not 
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Figure 19. GA Parameters Effect on Cost 

change much, unlike the effect seen for tabu search and simulated annealing of 

having more iterations. 

5.8.11 Genetic Algorithm XOVER Parameter 
The effects of the XOVER parameter on solution quality can be seen in 

Figure 19. Notice on the x-axis, each level of the GENS parameter has three 

points. These points correspond to each level of the XOVER parameter. The 

only observation that can be made is that the effect of the XOVER parameter on 

solution quality is sensitive to the settings of the other parameters. The statistical 

tests show no significant effect on solution quality. 

With respect to computation time, the effect can be seen in Figure 20. 

Generally, the XOVER parameter does not seem to have much effect on 

computation time, which is confirmed by the statistical tests. 
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Figure 20. GA Parameters Effect on Time 

5.8.12 Genetic Algorithm MUTATE Parameter 
The effects of the MUTATE parameter on solution quality are clearly visible 

in Figure 19. The MUTATE parameter has the most significant effect on solution 

quality. Specifically, a 5% mutation rate is much better than a 10% mutation rate. 

A higher mutation rate has a tendency to disrupt the inheritance property of 

genetic algorithms and this may be the reason for its poor performance. From 

earlier experiments not reported here, we also know that mutation rates lower 

than 5%, (e.g., 1%) are also ineffective as they lead to early convergence to a 

single, poor solution. 

With respect to time, the effects can be seen in Figure 20. In general, the 

higher mutation rate requires slightly more computation time. This is as expected 

since a higher mutation rate implies more changes to a solution. 
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5.8.13 Genetic Algorithm Selected Parameters 
Based on the preceding results, we selected the following parameter settings 

for further experimentation with genetic algorithms: POP = 40, GENS = 2000, 

XOVER = 0.85, and MUTATE = 0.05. These parameters gave the best results. 

5.9 Benchmark Test Results 
In this section we report the results from benchmarking experiments.   We 

used the 20 benchmark test problems described earlier in Table 8 that were also 

used for the representation selection experiments. Each of these problems was 

first solved to optimality using a branch and bound algorithm based on the work 

of Akinc (1973). We then solved each problem using each of the general 

heuristics with the matrix representation. Parameter settings were selected 

based on the results from the previous parameter experiments and are 

summarized in Table 18. For each problem we completed ten replications using 

each heuristic. The average results and optimality gaps are reported in Table 19. 

Table 18. Parameter Settings for Benchmark Experiments (CFLP) 

TS Parameters SA Parameters GA Parameters 
LTM                    10         RATE                 0.90      POP 40 
STM                   3000     ACCEPT           2500     GENS 2000 
TLSIZE              5           FACTOR           2           XOVER 0.85 
 MUTATE 0.05 

The benchmark experiments show that tabu search has an average gap from 

optimality of 2.32%, simulated annealing has an average gap from optimality of 

3.17%, and the genetic algorithm has an average gap from optimality of 21.28%. 

The genetic algorithm did not perform well for any of the test cases even though 

it consistently took the longest time (except for problem CAP201) to finish. 
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Table 19. CFLP Benchmark Results 

Tabu Search Simulated Annealing Genetic Algorithm 
Problem Solution Opt Gap Time Solution Opt Gap Time Solution Opt Gap Time 

CAP201 $547,050 3.18% 186 $554,137 4.51% 313 $634,624 19.69% 308 

CAP202 $489,730 1.13% 205 $490,341 1.26% 270 $548,589 13.28% 307 

CAP203 $447,661 0.66% 236 $448,174 0.78% 266 $482,770 8.56% 307 
CAP204 $394,224 0.26% 202 $394,923 0.43% 280 $416,375 5.89% 308 
CAP205 $575,541 2.04% 183 $582,134 3.21% 276 $668,237 18.47% 330 

CAP206 $515,926 1.05% 182 $519,233 1.69% 264 $575,904 12.79% 306 
CAP207 $472,099 0.92% 193 $474,845 1.51% 262 $514,544 10.00% 327 

CAP208 $420,935 1.11% 185 $418,568 0.54% 268 $443,881 6.62% 306 

CAP209 $424,042 6.73% 271 $421,020 5.97% 322 $583,129 46.77% 456 

CAP210 $346,748 3.11% 269 $349,581 3.95% 317 $444,769 32.26% 456 

CAP211 $287,122 1.94% 266 $287,172 1.96% 318 $350,226 24.34% 453 

CAP212 $206,788 0.52% 277 $206,471 0.36% 314 $238,903 16.13% 456 

CAP213 $413,088 4.06% 266 $415,475 4.66% 300 $566,285 42.65% 461 
CAP214 $336,213 2.29% 271 $338,265 2.91% 353 $437,747 33.18% 456 
CAP215 $276,764 1.23% 267 $276,028 0.96% 299 $340,305 24.47% 457 
CAP216 $199,888 0.37% 267 $200,222 0.54% 356 $233,000 17.00% 458 
CAP217 $533,818 7.28% 254 $547,332 9.99% 354 $649,615 30.55% 456 
CAP218 $420,496 4.10% 260 $441,898 9.40% 313 $500,692 23.96% 453 
CAP219 $344,534 3.66% 249 $349,627 5.20% 324 $404,456 21.69% 461 
CAP220 $253,076 0.74% 252 $260,006 3.49% 312 $294,771 17.33% 454 

These results address the third research question with respect to capacitated 

facility location problems. 

5.10 Computation Time vs. Solution Quality 
To determine what kind of relationship exists between computation time and 

solution quality we again use the data collected during the parameter selection 

experiments. Tables 15 and 17 indicate that most parameters have a significant 

impact on computation time. The immediate by-product of these experiments is 

a set of data points with a range of computation times for the same problem with 

each heuristic. Thus, we can use Spearman's rank correlation coefficient to 

determine if there is a relationship between solution time and solution quality. 
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The correlation coefficients are summarized in Table 20. Note that as 

expected, all coefficients show a negative correlation, meaning solution quality 

improves with longer computation time. However, this relationship is significant 

only for tabu search and simulated annealing. For genetic algorithms, the 

correlation coefficient is not significant. 

Table 20. Spearman's Rank Correlation Coefficients 
for Computation Time vs. Solution Quality (CFLP) 
Heuristic 
Tabu Search 
Simulated Annealing 
Genetic Algorithm 

Spearman's 
-.6827 
-.4505 
-.0274 

Significance 
.000 
.000 
.525 

The best way to appreciate how each of these heuristics performs over time 

is to see how the heuristics make improvements to the solution over time. In 

Figure 21, we show the performance over time for each heuristic. We use the 

same test problem used for the parameters experiment with the heuristic 

parameters set to the same levels as for benchmarking shown in Table 18. 

Looking at Figure 21, it is obvious that tabu search is the most efficient 

heuristic with respect to time, quickly finding better solutions. The flat area where 

apparently the best solution is not improved for a long time is an effect of the long 

term memory parameter (re-starts). Since each re-start begins with a new 

random solution, it is not until the last few iterations of each re-start that the best 

solution from previous starts has a chance to be improved. In this case, the best 

solution from the first or second re-starts is not improved until the last re-start. 
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Figure 21. Heuristics Time Performance (CFLP) 

The performance of simulated annealing is more deliberate with a slow, but 

consistent rate of improvement. However, it takes much longer for simulated 

annealing to reach the same level of performance as tabu search. 

Finally, the genetic algorithm appears to be quite efficient at first, but begins 

to level off too early. Although it continues to improve the solutions over time, its 

rate of improvement slows down so that it seems it will never actually catch up 

with tabu search, and is eventually passed by simulated annealing. 

5.11 Problem Size vs Computation Time 
To explore the relationship between problem size and computation time we 

use the data collected during the benchmarking experiments. These data 

consists of 20 problems, 8 of size 16x50 and 12 of size 25x50, each solved ten 

times with each of the general heuristics. We coded the smaller problems with a 
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Figure 22. Boxplot of TS Computation Time by Size (CFLP) 

"1" and the larger problems with a "2" and computed Spearman's rank correlation 

coefficients. The results are as expected; larger problems require longer 

computation time. Tabu search had a coefficient of .7626, simulated annealing 

had a coefficient of .6787, and the genetic algorithm had a coefficient of .8486. 

All were significant with a p = .000. In Figures 22, 23, and 24 we show boxplots 

generated by the SPSS software, which provide us with more information. 

In each of the figures above, the number at the bottom identifies each of the 

problems. Problems 1 through 8 are the smaller 16x50 problems, and problems 

9 through 20 are the larger 25x50 problems. The most obvious observation is 

that the change in size causes a step change in the computation time, especially 

for tabu search and genetic algorithms. The step change is less pronounced for 

simulated annealing.   The degree of variability for each problem is also of 
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Figure 23. Boxplot of SA Computation Time by Size (CFLP) 

interest. Although the genetic algorithm is the slowest of the three heuristics, it 

has almost no variability in computation time. Simulated annealing, as expected, 

has the most variability due to the particular implementation (recall for each 

epoch, a number of solutions between ACCEPT and FACTOFTACCEPT are 

evaluated). 

5.12 Chapter Summary 
In this chapter we presented the implementation of three general heuristics 

for the capacitated facilities location problem. We then proceeded to conduct 

experiments to select an appropriate solution representation. Our experiments 

indicated the matrix/tableau representation was most appropriate when 

considering solution quality and computation time. Using this representation, we 

conducted a set of parameter setting experiments and reported on the various 
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Figure 24. Boxplot of GA Computation time vs. Size (CFLP) 

effects of parameter levels on solution quality and computation time. In most 

cases, parameters showed a significant impact on both of these measures. A 

subsequent set of benchmark experiments showed that tabu search and 

simulated annealing provide solutions close to optimal, with average optimality 

gaps of 2.32% and 3.17%. The genetic algorithm did not perform well, with an 

average optimality gap of 21.28%. We concluded the chapter with some 

observations about the effects of computation time on solution quality and 

problem size on computation time. The results of statistical tests are reported 

throughout. 

In the next two chapters, we will address the multiple-period and multiple- 

commodities facilities location problems. In Chapter 8, we will report the results 

of using all heuristics on larger sized problems and determine the relative 

performance of each heuristic. 



Chapter 6 

HEURISTICS FOR MULTIPLE-PERIOD FACILITIES LOCATION PROBLEMS 

In the previous chapter, we presented general heuristics for the capacitated 

facilities location problem (CFLP). This chapter parallels the previous chapter in 

presenting tabu search, simulated annealing, and genetic algorithm heuristics for 

the multiple period facilities location problem (MP-FLP). In the first section we 

introduce the MP-FLP, present a formulation, and mention some of the relevant 

literature. In the following sections, we present the heuristic algorithms. For 

each one we specify our particular implementation and parameters for each 

representation. Since much of this work is similar to the work done for CFLP, we 

make references to sections in Chapter 5 whenever it is appropriate. After all 

three heuristics have been explained, we report the results from the first three 

stages of experimentation: selection of appropriate representation, parameter 

experimentation, and benchmarking. 

6.1 The Multiple-Period Facilities Location Problem 
For MP-FLP, we wish to determine which of incapacity constrained locations 

to operate so we can satisfy the demands of M customers over a horizon of V 

periods at the lowest sum of fixed, variable, opening, and closing costs. The 

literature on this topic is rather limited. Warszawski (1973) presented optimal 

and heuristic methods for solving an uncapacitated version of the problem. 

119 
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Roodman and Schwarz (1975,1977) developed branch and bound algorithms for 

a version where existing facilities are to be phased out over a time horizon and 

also for a version where existing facilities may be phased out while other 

potential locations may be phased in over a time horizon. Neither of these 

versions involved capacity constraints. Our work is based primarily on a 

formulation by Sweeney and Tatham (1976) which allows opening or closing 

facilities at a potential location in any period with a corresponding cost. Their 

formulation is for a problem where intermediate warehouse locations must be 

selected to satisfy customer demands when there is also an existing set of 

factories which supply the warehouses. Their solution involves generating 

several static warehouse location problem solutions for each period, and using 

dynamic programming to select the best configuration at each period that will 

result in the overall lowest cost. Hormozi and Khumawala (1996) improve on the 

work of Sweeney and Tatham by reducing the number of static solutions that 

must be considered by the dynamic programming portion of the algorithm. Our 

formulation of MP-FLP is based on these two papers. For a problem with V 

periods, N potential locations, and M customers, the formulation is: 

V      N    M V      N N 

min Z = X £ I Cwxiy + X I F,yH + £ OC,yu 
(=1    ,'=1    j=\ l=\    ; = 1 ; = 1 (13) 

V      N , .       V-\   N 

subject to 

+ £ Z OC,y& - y(l_x)i)+ £ £ CC^O - y(M)i) 

|>,ff=Dtf j = l,2,...,M;   t = l,2,...,V (14) 
N 

I 
i=\ 

M 

Y,xtij<Siyii        i = l,2,...,W = l,2,...,V (15) 
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yae{0,l} i = l,2,...,N;   t = l,2,...,V (16) 

xUJ >0 i = l,2,...N;   j = l,2,...,M;   t = \,2,...,V (17) 
where 

Dtj customer/s demand in period t 
Si location j's capacity 
CHJ per unit cost to satisfy customer/s demand from location i 
Fi fixed cost of operating a warehouse at location /' 
OCj cost to open location i 
CQ cost to close location / 
x,jj demand for customer y shipped from location / in period t 
ya {0,1} indicator whereyü=l implies a warehouse is located at location / during period t 

Specifically, fixed costs (Ft), variable costs (Q,), opening costs (OCt), closing 

costs (CCj), location capacities (St), and customer demands (Dtj) are the given 

input data for the problem and the demand allocation (xaj) and facility locations 

iytij) are the decision variables. Notice that in our formulation we do not vary 

capacity, fixed costs, open costs, nor closing costs over time periods. 

6.2 Solution Representations 
As we previously discussed, tabu search, simulated annealing, and genetic 

algorithms require an abstract representation of the problem's solution in order to 

define "moves" and "operators." In the following subsections we introduce two 

possible representations for MP-FLP: a 0-1 vector and a matrix. 

6.2.1 0-1 Vector Representation 
The 0-1 vector representation is directly related to the yti's in the problem 

formulation. A particular solution is represented by a vector s = {yn, yi2,---,yti}, 

where yti e {0,1} indicating if a particular location is in operation on a particular 

period. Once this vector is determined, the xn/s can be determined by solving 

the transportation problem indicated by the set of open locations for each period. 
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With this information, the total costs for this solution can be computed using (13) 

above. 

6.2.2 A Matrix Representation 
A matrix representation has a direct connection to the xft/s in the problem 

formulation. Each row in the matrix represents a location, and each column one 

of the customers. The first M columns represent the first period, the second M 

columns represent the second period, and so on. The matrix is filled by 

assigning values to each element such that the sum of each column matches the 

corresponding customer's demand, and the sum of each row (by groups of M 

columns) does not exceed the corresponding location's capacity. A matrix thus 

filled represents a solution. The yti's can be easily determined by examining the 

values in the matrix to determine which locations have been assigned some 

demand in any period. With this information, the total costs can be computed 

using (13) above. 

6.3 A Tabu Search Heuristic for MP-FLP 
Previously, we defined a tabu search heuristic as the following set of 

elements: 

TS = {M M/ WJ, M W/ &\ 
Where 

ffi>      is the solution representation structure 
JVKJ    is the neighborhood structure; 
WJ    is the cost function 
J?>/y   is the aspiration criterion function 
WJ     is the terminating condition function 
£P       is the set of control parameters 

In  the  previous  section  we  discussed  two  representations  and  their 

associated cost functions. The aspiration critera, terminating condition function, 
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and control parameters are the same as for CFLP which are described in §5.3.2, 

§5.3.3, and §5.3.4. It only remains to describe the neighborhood structure. 

For a 0-1 vector solution, a neighbor is defined as a solution where the value 

of a single element in the vector has been changed from zero to one, or vice- 

versa. Thus, for a problem with n potential locations and v periods, a solution 

has a neighborhood size of nv. In our implementation, the entire neighborhood is 

evaluated at each iteration of the algorithm. Neighbors that do not represent a 

feasible solution (i.e., too few locations open in a period to meet customers' 

demands) are ignored. 

For a matrix solution representation, a neighbor is defined as a change to 

two of the matrix elements within a column while maintaining the 

demand/capacity constraints. This change amounts to a reallocation of demand 

from one facility to another for a single customer in a single period. This is a very 

large and variable neighborhood since there may be as many reallocations 

possible as there are positive elements in the matrix, and each reallocation can 

be by as little as a quantity of one or as much as the value of the source element. 

Accordingly, we only evaluate a subset of this neighborhood at each iteration. 

The subset consists of making one reallocation for each column in the matrix for 

a neighborhood size of nv.   The two elements involved in the reallocation are 

randomly selected, and the quantity of demand reallocated is the minimum of the 

source element's value or the destination element's remaining capacity. This 

procedure always results in feasible solutions. 
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6.4 A Simulated Annealing Heuristic for MP-FLP 

In Chapter 2, we defined a simulated annealing algorithm as the following set 

of elements: 

where 
3% is the solution representation structure 
jVfJ is the neighborhood structure; 
W/y is the cost function 
3fJ is the cooling schedule 
WJ is the terminating condition function 
& is the set of control parameters 

Solution representations and cost functions were described in §6.2.   The 

cooling schedule, terminating condition function, and control parameters are the 

same as for CFLP and are described in §5.4.2, §5.4.3, and §5.4.4.   We now 

describe the neighborhood structure. 

The neighborhood structure for simulated annealing is the same as for tabu 

search, except that we only evaluate and make a decision based only on a 

single, randomly selected neighbor at a time.  For the 0-1 vector representation, 

we randomly select one element in the vector and change its status.   If the 

resulting neighbor represents a feasible solution, we continue to evaluate it; 

otherwise, we select another one.   For the matrix representation, we randomly 

select a column in the matrix and randomly select a positive element in this 

column.   We then randomly select a destination element in the same column, 

and reallocate from the source to the destination the minimum of the source 

element's value or the remaining capacity in the destination element.   This 

procedure always results in a feasible neighbor which is further evaluated. 
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6.5 A Genetic Algorithm Heuristic for MP-FLP 
In Chapter 2, we defined a genetic algorithm as the following set of elements: 

GA = { M, mm J&V. WJ, &\ 
Where 

M is a solution representation 
WJ is the fitness function 
WJ is the crossover operation function 
J&/y is the mutation operation function 
WJ is the terminating condition function 
@> is the set of control parameters 

Solution  representations are discussed in §6.2.    The fitness function, 

terminating condition, parameters are the same as for CFLP and are discussed 

in §5.5.1, §5.5.4, and §5.5.5.   We now describe the crossover and mutation 

operators. 

6.5.1 Crossover Operators 
The   crossover   operator   is   applied   probabilistically   to   two   parent 

chromosomes in the current generation to create two offspring for the new 

generation. With probability XOVER, the crossover operator is applied to the 

parents to generate the first offspring. With complementary probability, the first 

offspring is a copy of the first parent. With probability XOVER, the crossover 

operator is applied to the parents in reverse order to generate the second 

offspring. With complementary probability, the second offspring is a copy of the 

second parent. The crossover operation itself is a function of the solution 

representation. 

For the 0-1 vector, we implement a single-point crossover operator of 

periods. Specifically, we randomly select x e {\,...,V}; the first offspring consists 

of all elements from the first parent which represent location status for periods 
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less than x, and all elements from the second parent which represent location 

status for periods x and above. For the second offspring, the roles of the parents 

are reversed. Both offspring are always feasible. 

For the matrix representation, we also implement a single-point crossover. 

We select a crossover point x as above, and the first offspring consists of the 

matrix columns from the first parent representing customer demand allocations 

for periods less than x and the columns from the second parent representing 

customer demand allocations for periods x and above. For the second offspring, 

the roles of the parents are reversed. Again, the resulting offspring are always 

feasible. 

6.5.2 Mutation Operators 
The  mutation  operator is  applied  probabilistically to  each  gene  of a 

chromosome, where a gene is defined as a period in the solution. This means a 

single chromosome may get as many as V mutations, but the probability of this 

event is small, (MUTATE)F. For the 0-1 vector representation, a period's 

mutation in a solution consists of randomly selecting a location and changing its 

operating status. In the case the selected location is currently "open," the 

mutation will only take place if closing the location will result in a feasible 

solution. Therefore, the effective rate of mutation is somewhat less than the 

MUTATE parameter specifies. 

For the matrix representation, a period's mutation consists of randomly 

selecting a column (customer) for this period, randomly selecting source and 

destination elements, and making a demand reallocation equal to the minimum of 
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the source element's value or the destination element's remaining capacity. The 

mutation always results in a feasible solution. 

6.6 Benchmark Test Problems 
A set of 20 medium-sized test problems was created for the purposes of 

representation selection, parameter effects experimentation, and benchmarking. 

The data for the test problems was obtained from a database of 250 U.S. cities 

with the inter-city distance and 1990 Census population. For a NxM problem, the 

source locations (potential warehouse locations) are the top N largest cities in 

terms of population while the customer locations are the first M cities arranged 

alphabetically. In this way, source locations are not necessarily also customer 

destinations. The set of 20 benchmark problems is summarized in Table 21. We 

now describe each of the test problem attributes: 

Size: the problem dimensions were selected to match those found in 

Hormozi and Khumawala (1996). Their problem set has problems with 10, 15, or 

20 periods, 10, 11, or 12 locations, and 25, 28, or 30 customers (2.5 times the 

number of locations). From this mix, we selected five combinations: 10 periods x 

10 locations x 25 customers, 10x12x30, 15x10x15, 15x12x30, and 20x10x25. 

Demand: the first period's demand is a fixed fraction of the city's population. 

The remaining period's demand follow one of five different demand patterns, 

again based on the work of Hormozi and Khumawala: increasing, decreasing, 

concave, convex, and seasonal. 

Capacity, for each problem, the capacity assigned to each location is the 

same for all locations. For each problem size, two levels of capacity constraints 
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Table 21. Benchmark Test Problems (MP-FLP) 

Problem Size Capacity Demand Open Close 
MP201 10x10x25 2500 Increasing 4418 3313 
MP202 10x10x25 2500 Increasing 2121 1590 
MP203 10x10x25 5000 Increasing 4418 3313 
MP204 10x10x25 5000 Increasing 2121 1590 
MP205 10x12x30 2500 Decreasing 3692 2769 
MP206 10x12x30 2500 Decreasing 1772 1329 
MP207 10x12x30 5000 Decreasing 3692 2769 
MP208 10x12x30 5000 Decreasing 1772 1329 
MP209 15x10x25 2500 Concave 4804 3603 
MP210 15x10x25 2500 Concave 2306 1729 
MP211 15x10x25 5000 Concave 4804 3603 
MP212 15x10x25 5000 Concave 2306 1729 
MP213 15x12x30 2500 Convex 4645 3484 
MP214 15x12x30 2500 Convex 2230 1672 
MP215 15x12x30 5000 Convex 4645 3484 
MP216 15x12x30 5000 Convex 2230 1672 
MP217 20x10x25 3000 Seasonal 3716 2787 
MP218 20x10x25 3000 Seasonal 1784 1338 
MP219 20x10x25 6000 Seasonal 3716 2787 
MP220 20x10x25 6000 Seasonal 1784 1338 

are established. A tight level consists of assigning capacity to each location such 

that their total sum for each period is approximately twice the total demand from 

all customers for that period. A loose level consists of twice the capacity allowed 

for the tight level. 

Fixed Costs: for each problem size two levels of fixed costs are assigned. 

The basic level is based on the work of Hormozi and Khumawala and consists of 

a fixed costs based on the average throughput cost. The second level is half the 

basic level. 

Opening/Closing Costs: these costs are also set according to Hormozi and 

Khumawala. The opening cost for all locations is 50% of the average fixed cost 

of all locations. The closing cost is 75% of the open cost. 

Variable Costs: these costs are set at 2.5 cents per mile, where the distance 

between any source and destination is obtained from the database. This is the 
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Table 22. Parameters for Representation Selection (MP-FLP) 

0-1 Vector Matrix 
TSMP 
LTM 5 5 
STM 20 2000 
TLSIZE 7 7 
SAMP 
RATE .8 .85 
ACCEPT 20 1000 
FACTOR 2 3 
GAMP 
POP 30 40 
GENS 75 1500 
XOVER .85 .80 
MUTATE .05 .05 

same cost factor used in the CFLP problems based on Khuen and Hamburger 

(1963). 

6.7 Representation Selection 
We conducted an experiment in order to determine which of the two problem 

representations would be most appropriate for MP-FLP. In this experiment, each 

of the three general heuristics was used to solve each of the 20 benchmark 

problems described above using each of the problem representations, resulting 

in an experiment with 120 cells. Due to the number of cells, we only completed 

five replications per cell. The parameters used for each of the six heuristic- 

representation combinations are shown in Table 22. 

In order to determine which representation would be most appropriate, we 

first ranked the performance of each representation on each problem by 

heuristics (with respect to solution quality and computation time). The results of 

these rankings are shown in Table 23.   The raw results from which these 
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Table 23. Represental tion Performance Ranks (MP-FLP) 

TS SA GA TS SA GA 
Solution Ranks Solution Ranks Solution Ranks Time Ranks Time Ranks Time Ranks 

V T V T V T V T V T V          T 
2 1 2 1 2 1 2 2 1            2 
1 2 1 2 2 1 2 2 1            2 
2 2 1 2 1 2 2 1            2 
2 1 2 2 1 2 2 1            2 
2 1 2 1 2 2 2 2           1 
2 1 2 1 2 2 2 2           1 
2 1 2 1 2 2 2 1            2 
2 2 1 2 1 2 2 1            2 
2 1 2 2 1 2 2 1            2 
2 1 2 2 1 2 2 1            2 
2 1 2 2 1 2 2 1            2 
2 1 2 2 1 2 2 1            2 
2 1 2 2 1 2 2 2           1 
2 1 2 2 1 2 2 2           1 
2 1 2 2 1 2 2 1            2 
2 1 2 2 1 2 2 1            2 
2 1 2 1 2 2 2 1            2 
2 1 2 1 2 2 2 1            2 
2 1 2 1 2 2 2 1            2 
2 1 2 2 1 2 2 1            2 

rankings come are shown in Tables 98, 99, and 100 at Appendix A. The 

rankings show the matrix representation (T) performs best for the tabu search 

and genetic algorithm heuristics, while the 0-1 vector (V) representation performs 

best for simulated annealing. The time performance ranks clearly indicate the 

matrix representation is preferred for tabu search and simulated annealing. 

We computed Friedman's Fr test statistic for a randomized block design for 

the solution ranks without regard for heuristic. This results in an experiment with 

60 blocks and 2 treatments. The null hypothesis states there is no difference 

between the treatments.   The Fr statistic is 1447.2 which is larger than x2 = 

3.84146 (p=.05, 1df) and we thus reject the null hypothesis.   Since the matrix 
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representation has the smaller sum of ranks and its time performance is 

preferred, we select the matrix representation as most appropriate for MP-FLP. 

6.8 Parameter Effects 
As we did for CFLP in Chapter 5, we conducted an experiment to get a clear 

picture of how various parameter settings affect solution quality and computation 

time. We also use the results from these experiments to select the parameter 

settings that we use for benchmarking and comparative runs. 

For tabu search, we experimented with the same parameter levels as we did 

for CFLP. These were three levels for long-term memory (LTM), five levels for 

short-term memory (STM), and three levels of maximum tabu list size (TLSIZE). 

The experimental levels are summarized in Table 24. 

Table 24. TS Parameters Experimental Levels (MP-FLP) 

Parameter Experimental Levels 
LTM 1 5           10 
STM 1000 1500      2000      2500 3000 
TLSIZE 5 7           12 

For simulated annealing, we also experimented with the same levels as for 

CFLP. These were five levels for the RATE parameter, four levels for the 

ACCEPT parameter, and three levels for the FACTOR parameter. The 

experimental levels are summarized in Table 25. 

Table 25. SA Parameters Experimental Levels (MP-FLP) 

Parameter Experimental Levels 
RATE 0.75 0.80       0.85       0.90       0.95 
ACCEPT 1000 1500      2000      2500 
FACTOR                1 2 3 
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For genetic algorithms, we experimented with three levels for the POP, 

GENS, and XOVER parameters, and two levels for the MUTATE parameter. The 

experimental levels are summarized in Table 26. 

Table 26. GA Parameters 
Experimental Levels (MP-FLP) 

Parameter Experimental Levels 
POP 20 30 40 
GENS 1000      1500     2000 
XOVER 0.80       0.85       0.95 
MUTATE 0.05       0.10 

To conduct these experiments, we selected one of the benchmark test 

problems as a test bed. Since the results from the parameter experiment would 

lead to the selection of parameters to be used in solving the set of larger 

problems, we selected one of the largest benchmark problems, MP219, which 

was also apparently the most difficult to solve of the four problems of this size. 

The tabu search experiment has 45 cells, the simulated annealing 

experiment has 60 cells, and the genetic algorithm experiment has 54 cells. 

Considering the number of experimental cells, we limited each cell to 10 

replications. 

To determine if there is a statistically significant difference among the 

experimental levels for each parameter with respect to solution quality and 

computation time, we computed the Kruskal-Wallis (K-W) statistic. To determine 

the general direction of the effect and its significance, we also computed 

Spearman's rank correlation coefficient for each parameter effects. The results 

of these statistical tests are summarized in Tables 27, 28, 29, and 30 and are 
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Table 27. Kruskal-Wallis H Test of Heuristic 
Parameters Effect on Solution Quality (MP-FLP) 

Parameter Chi-Square D.F. Significance 
LTM 138.6224 2 .0000 
STM 12.4791 4 .0141 
TLSIZE 0.1422 2 .9314 
RATE 233.9177 4 .0000 
ACCEPT 80.8984 3 .0000 
FACTOR 154.1628 2 .0000 
POP 0.4648 2 .7926 
GENS 420.0246 2 .0000 
XOVER 0.4089 2 .8151 
MUTATE 53.7330 1 .0000 

Table 28. Kruskal-Wallis H Test of Heuristic 
Parameters Effect on Computation Time (MP-FLP) 
Parameters Chi-Square D.F. Significance 
LTM 369.3040 2 .0000 
STM 73.7951 4 .0000 
TLSIZE 0.0145 2 .9928 
RATE 353.7137 4 .0000 
ACCEPT 115.5075 3 .0000 
FACTOR 109.6259 2 .0000 
POP 265.7146 2 .0000 
GENS 243.7994 2 .0000 
XOVER 0.2734 2 .8722 
MUTATE 6.3019 1 .0121 

discussed in the following sections. The raw results tables can be found in 

Appendix B. Boxplots of the effects can be found at Appendix D. 

6.8.1 Tabu Search LTM Parameter 
The effects of the LTM parameter on solution quality are evident from Figure 

25. There is a significant improvement in solution quality going from one long- 

term memory pass to five passes. The improvement going from five to ten 

passes, however, is not as dramatic. The K-W statistic of 138.6224 (p = .000) 

indicates a significant difference and the Spearman's correlation coefficient of 

-.5427 (p = .000) confirms the trend. 
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Table 29. Spearman Correlation Coefficients 
of Heuristic Parameters vs Solution Quality 
Parameter Coefficient Significance 
LTM -.5427 .000 
STM -.1500 .001 
TLSIZE -.0047 .921 
RATE -.6114 .000 
ACCEPT -.3668 .000 
FACTOR -.5021 .000 
POP .0102 .814 
GENS -.8754 .000 
XOVER -.0275 .524 
MUTATE .3157 .000 

rable 30. Spearman Correlation Coefficient of 
Heuristic Parameters vs Computation Time 
Parameter Coefficient Significance 
LTM .9045 .000 
STM .4039 .000 
TLSIZE .0052 .912 
RATE .7595 .000 
ACCEPT .4363 .000 
FACTOR .4208 .000 
POP .6987 .000 
GENS .6632 .000 
XOVER .0112 .796 
MUTATE .1081 .012 

Figure 26 shows the impact of LTM on computation time. As expected, more 

long-term memory passes take significantly more time, especially as the STM 

parameter itself is increased. 

6.8.2 Tabu Search STM Parameter 
As the STM parameter is increased, one would expect each line in Figure 25 

to slope downwards indicating an improvement in solution quality due to the 

higher number of solutions evaluated. Although such a downward slope is 

present, it is not a very strong effect as evidenced by a correlation coefficient of 

-.1500 (p = .001). The K-W test, however, does indicate a significant effect with 

a statistic of 12.4791 (p = .0141). 
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Figure 26 clearly shows the significant effect the STM parameter has on 

computation time. One would expect to see an upward sloping line indicating 

longer computation time due to the increase in the number of solutions 

evaluated. Although the effect is not very strong for the case when LTM = 1, it is 

very strong for the other two levels of the LTM parameter since it has a 

multiplicative effect. The correlation coefficient of .4039 (p = .000) and K-W 

statistic of 73.7951 (p = .0000) confirm these observations. 

6.8.3 Tabu Search TLSIZE Parameter 
Figure 25 indicates that there is not much of a consistent pattern to the effect 

of TLSIZE on solution quality. For each line representing a level of the LTM 

parameter, the effects of the TLSIZE parameter can be seen by examining the 

individual points in groups of three corresponding to a single level of the STM 

parameter an indicated on the x-axis. For the case where LTM = 1, there seems 

to be a consistent improvement for the middle point corresponding to TLSIZE = 

7. However, for the other two levels of LTM, the pattern changes as the levels of 

the STM parameter change. There is not a significant correlation between this 

parameter and solution quality as evidenced by the correlation statistic of -.0047 

(p = .921). Similarly, the K-W test finds no significant difference between the 

levels of TLSIZE, with a statistic of .1422 (p = .9314). 

TLSIZE does not have a significant effect on computation as can be seen in 

Figure 26. Each of the three-point groupings for the three levels of TLSIZE 

consists of a flat line indicating no impact on computation time. Accordingly, the 
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SAMP Parameter Effects on Cost 
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Figure 27. SA Parameters Effect on Cost (MP-FLP) 

correlation coefficient is .0052 (p = .912) and the K-W statistic is .0145 (p = 

.9928). 

6.8.4 Tabu Search Selected Parameters 
Based on the preceding results, we selected the following parameter settings 

for all future experiments: LTM = 5, STM = 3000, and TLSIZE = 7. Although a 

setting of LTM = 10 gives slightly better results (0.4% savings), the extra 

computation time is not justified (107% increase). 

6.8.5 Simulated Annealing RATE Parameter 
The effects of the RATE parameter are shown in Figure 27.    Each line 

represents a level of RATE. Although there seems to be some overlap for RATE 

= 0.80 and RATE = 0.85, it is clear that as the RATE parameter increases, 

solution quality improves. In particular, the best results are achieved by RATE = 
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SAMP Parameter Effects on Time 
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0.95.   The correlation coefficient is -.6114 (p = .000) and the K-W statistic is 

233.9177 (p = .0000). 

The effects of RATE on computation time are shown in Figure 28. As 

expected, as the RATE parameter is increased, more time is required to 

complete each run of the algorithm due to the increase in solutions evaluated 

resulting from a slower cooling schedule. Note that the effect is most dramatic 

for RATE = 0.95 and less so for the other levels. The correlation coefficient is 

.7595 (p = .000) and the K-W statistic is 353.7137 (p = .0000). 

6.8.6 Simulated Annealing ACCEPT Parameter 
The effect of the ACCEPT parameter on solution cost is represented by the 

slope of the lines in Figure 27.   As expected, as the ACCEPT parameter is 

increased requiring more solutions to be evaluated, the solution quality improves. 
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This effect is confirmed by a Spearman's correlation coefficient of -.3668 (p = 

.000) and a K-W statistic of 80.8984 (p = .0000). 

The effects of the ACCEPT parameter on computation time are represented 

in Figure 28 by the slope of each line. As expected, there is an upward slope 

indicating the need for more time as the ACCEPT parameter is increased. 

Again, this is confirmed by the correlation coefficient of .4363 (p = .000) and the 

K-W statistic of 115.5075 (p = .0000). 

6.8.7 Simulated Annealing FACTOR Parameter 
The effects of the FACTOR parameter on solution quality are shown in 

Figure 27. Looking at the three points corresponding to each grouping of the 

ACCEPT parameter on the x-axis, it is clear that as the FACTOR parameter is 

increased, solution quality improves. This pattern is consistent for all levels of 

RATE and ACCEPT parameters. The correlation coefficient is -.5021 (p = .000) 

and the K-W statistic is 154.1628 (p = .000) 

The effects of the FACTOR parameter on computation time are also clearly 

evident in Figure 28. Looking at the same three-point groupings, each group 

shows a clear upward slope indicating the need for more computation time as the 

FACTOR parameter increases allowing more solutions to be evaluated. The 

correlation coefficient of .4208 (p = .000) and K-W statistic of 109.6259 (p = 

.0000) confirm these observations. 
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6.8.8 Simulated Annealing Selected Parameters 
Based on the preceding results, we selected the following parameter settings 

for future experiments: RATE = 0.90, ACCEPT = 2500, and FACTOR = 3. These 

parameter settings give good results within reasonable computation times. 

6.8.9 Genetic Algorithm POP Parameter 
Looking at Figure 29, it would appear that the POP parameter does not have 

a great impact on solution quality, especially when the number of generations is 

greater than 1000. Each line represents a combination of the POP and MUTATE 

parameters (POP = 20A indicates a population of 20 and a MUTATE parameter 

of 0.05). The lines are split into two groups according to the MUTATE parameter 

setting. For each level of the MUTATE parameter, however, the lines are tightly 

grouped showing a lack of impact for the level of POP. Accordingly, neither the 

correlation coefficient of .0102 (p = .814) nor the K-W statistic of 0.4648 (p = 

.7926) show a statistically significant impact or difference. 

With respect to computation time, Figure 30 clearly shows the impact of 

increasing the POP parameter. Each two-line grouping in Figure 30 indicates a 

level of the POP parameter. The lowest two lines are for POP = 20 and the top 

two lines are for POP = 40. Clearly, a larger population requires longer 

computation time. The correlation coefficient is .6987 (p = .000) and the K-W 

statistic is 265.7146 (p = .0000). 

6.8.10 Genetic Algorithm GENS Parameter 
The effect of increasing the GENS parameter is clearly shown in Figure 29. 

The downward sloping lines indicate the improvement on solution quality as more 
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Figure 29. GA Parameters Effect on Time (MP-FLP) 

generations are allowed. This is an expected result confirmed by a correlation 

coefficeint of -.8754 (p = .000) and a K-W statistic of 420.0246 (p = .0000). 

The effect of GENS on computation time is also clearly visible in Figure 30. 

As more generations are allowed, more time is required to solve the increased 

number of solutions. A correlation coefficient of .6632 (p = .000) and a K-W 

statistic of 243.7994 (p = .0000) confirm these observations. 

6.8.11 Genetic Algorithm XOVER Parameter 
The effects of the XOVER parameter on solution quality can be seen in 

Figure 29. Each line consists of nine points, where each group of three points is 

a level of the GENS parameter, and each point in these groupings is a level of 

the XOVER parameter. The flat lines indicate that the XOVER parameter does 

not have a significant impact on solution quality.   This is confirmed by the 
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correlation coefficient of -.0275 (p = .524) and a K-W statistic of .4089 (p = 

.8151). 

Looking at the same point groupings in Figure 30, it can be seen that the 

XOVER parameter also does not have a significant impact on computation time. 

A correlation coefficient of .0112 (p = .796) and K-W statistic of .2734 (p = .8722) 

confirm the lack of significant impact. 

6.8.12 Genetic Algorithm MUTATE Parameter 
The effects of the MUTATE parameter on solution quality are shown in 

Figure 29. Although the effect is not quite clear for the GENS level of 1000, it is 

very clear for the other two levels. The top group of lines, identified on the 

legend by a "B," correspond to the MUTATE = .1 rate. The lower group of lines, 

identified on the legend by an "A," correspond to the MUTATE = .05 rate. 
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Clearly, the .05 mutation rate results in superior performance. This is confirmed 

by a correlation coefficient of .3157 (p = .000) and a K-W statistic of 53.7330 (p = 

.0000). 

With respect to time, Figure 30 indicates that the MUTATE parameter does 

not have a strong impact on computation time. Each pair of lines in Figure 30 

corresponds to a level of the POP parameter. For each of these pairs, each line 

corresponds to a level of the MUTATE parameter. Visually, each pair of lines is 

almost a single line. Surprisingly, the K-W statistic of 6.3019 (p = .0121) shows 

there is in fact a significant difference between the two levels. The correlation 

coefficient of .1081 (p = .012) shows the larger mutation rate requires slightly 

more computation time. 

6.8.13 Genetic Algorithm Selected Parameters 
Based on the preceding results, we selected the following parameter settings 

for all future experiments: POP = 30, GENS = 2000, XOVER = 0.80, and 

MUTATE = 0.05. Although a POP = 40 setting gives a light improvement (0.2%), 

a 34% increase in computation time is not justified. 

6.9 Benchmark Test Results 
In this section we report the results from benchmarking experiments.   We 

used the 20 benchmark test problems described earlier in Table 21. Each of 

these problems was first solved to optimality using an algorithm based on the 

work of Sweeney and Tatham (1976) and Hormozi and Khumawala (1996). We 

then solved each problem using each of the general heuristics with the matrix 

representation. Parameter settings were selected based on the results from the 
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previous parameter experiments and are summarized in Table 31. For each 

problem we completed ten replications using each heuristic. The average results 

and resulting gaps from optimality are reported in Table 32. 

Table 31. Parameter Settings for Benchmark Experiments (MP-FLP) 

TS Parameters SA Parameters GA Parameters 
LTM                   5           RATE                0.90      POP 30 
STM                  3000     ACCEPT           2500     GENS 2000 
TLSIZE             7           FACTOR           3           XOVER 0.80 
 MUTATE 0.05 

The results of the benchmark experiments show that tabu search has an 

average gap from optimality of 6.85%, simulated annealing has an average gap 

from optimality of 3.36%, and the genetic algorithm has an average gap from 

optimality of 15.23%. Clearly, the genetic algorithm did not perform well in most 

of the test cases. If we look at the time it took each algorithm to solve a problem, 

we see that both tabu search and genetic algorithm take longer as the size of the 

problem increases, whereas the time for simulated annealing remains rather 

constant. Also, all of the heuristics do best for problems with high capacity and 

low fixed costs (MP204, MP208, MP212, MP216, and MP220). 

6.10 Computation Time vs. Solution Quality 
To determine what kind of relationship exists between computation time and 

solution quality we again use the data collected during the parameter selection 

experiments. Tables 28 and 30 indicate that most parameters have a significant 

impact on computation time. The immediate by-product of these experiments is 

a set of data points with a range of computation times for the same problem with 
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Table 32. MP-FLP Benchmark Results 

Problem 
Tabu Search 

Solution Opt Gap  Time 
Simulated Annealing 
Solution        Opt Gap Time 

Genetic Algorithm 
Solution Opt Gap  Time 

MP201 
MP202 

MP203 
MP204 

MP205 
MP206 
MP207 

MP208 

MP209 

MP210 
MP211 
MP212 
MP213 
MP214 
MP215 
MP216 
MP217 

MP218 
MP219 
MP220 

$1,508,492.40 

$1,206,264.50 
$1,341,270.40 
$1,070,359.80 
$1,196,251.30 
$ 885,670.80 
$1,185,676.80 
$ 883,612.10 

$2,542,588.60 

$2,007,475.00 
$2,303,861.90 
$1,827,691.70 
$2,755,949.40 
$2,103,823.50 
$2,387,461.00 
$1,818,745.20 
$2,714,527.40 
$2,190,317.30 
$2,640,209.90 

$2,141,757.90 

10.57% 
7.56% 
6.04% 
1.92% 

10.99% 
1.95% 

11.12% 
2.23% 

10.83% 
5.90% 
6.93% 
2.34% 

12.62% 
10.48% 
9.49% 
2.44% 
8.29% 
4.06% 
7.95% 

3.20% 

325 
329 
342 
341 
464 
465 
473 
468 
495 
494 
509 
509 
677 
670 
700 
703 
671 
664 
681 
676 

$1,430,813.70 
$1,141,657.80 
$1,283,184.00 
$1,057,780.40 
$1,149,933.40 
$ 881,667.50 
$1,122,445.10 
$ 874,819.10 
$2,448,582.90 
$1,943,085.00 
$2,218,006.70 
$1,815,193.90 
$2,614,394.80 
$2,006,435.80 
$2,294,093.50 
$1,800,462.30 
$2,591,823.60 
$2,151,288.80 
$2,535,707.10 
$2,113,810.70 

4.87% 327 
1.80% 333 
1.45% 268 
0.72% 278 
6.69% 281 
1.49% 279 
5.19% 254 
1.22% 
6.74% 
2.51% 272 
2.94% 253 
1.64% 256 
6.84% 
5.37% 
5.20% 
1.41% 274 
3.40% 274 
2.20% 
3.68% 283 
1.85% 283 

263 
292 

372 
380 
271 

$1,638,614.60 
$1,286,019.50 
$1,425,114.20 
$1,112,377.50 
$1,295,901.50 
$ 937,243.20 
$1,252,594.00 
$ 920,307.10 
$2,815,695.90 
$2,214,988.40 
$2,466,739.60 
$1,922,802.80 
$3,090,503.70 
$2,367,430.30 
$2,630,672.40 
$1,940,847.90 
$2,989,322.90 
$2,351,930.70 
$2,856,778.20 
$2,264,084.00 

20.11% 
14.67% 
12.67% 
5.92% 

20.24% 
7.88% 

17.39% 
6.48% 

22.74% 
16.85% 
14.49% 
7.66% 

26.30% 
24.32% 
20.64% 

9.32% 
19.25% 
11.74% 
16.81% 
9.09% 

308 
308 
308 
308 
434 
434 
434 

433 

458 

458 
457 
459 
649 
650 
649 
649 
612 

610 
608 
609 

each heuristic.   Thus, we can use Spearman's rank correlation coefficient to 

determine if there is a relationship between solution time and solution quality. 

The correlation coefficients summarized in Table 33 below indicate that there 

is a significant negative correlation between computation time and solution 

quality for all heuristics. 

Table 33. Spearman's Rank Correlation Coefficients 
for Computation Time vs. Solution Quality (MP-FLP) 
Heuristic Spearman's     Significance 
Tabu Search                      -.5625 .000 
Simulated Annealing          -.8678 .000 
Genetic Algorithm -.5430 .000 

In order to appreciate how these heuristics perform over time, we recorded 

the time at which each improvement is made as a heuristic solves the problem. 
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Figure 31. Heuristics Time Performance (MP-FLP) 

In Figure 31 we show the time performance of each heuristic for benchmark 

problem MP219, the same problem used for the parameter experiments. The 

parameter settings for each heuristic are the same as for the benchmark 

experiments shown in Table 31. 

Figure 31 shows that tabu search is the most efficient in finding good 

solutions with respect to time (i.e., it reaches good solutions rapidly). Simulated 

annealing and the genetic algorithm are more deliberate and slow in their search, 

although for this problem they eventually come close to the tabu search solution. 

Therefore, when computation time is limited, tabu search is clearly the preferred 

choice. 
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Figure 32. Boxplot of TS Computation Time by Problem (MP-FLP) 

If we compare the heuristics' time performance for MP-FLP with that for 

CFLP (see Figure 21 in Chapter 5), we see that for MP-FLP the genetic algorithm 

is not as efficient and its performance resembles that of simulated annealing for 

CFLP. We will consider further the time performance of this heuristics in 

subsequent chapters as we evaluate the heuristics performance when time is 

limited. 

6.11 Problem Size vs. Computation Time 
To examine the relationship between problem size and computation time we 

use the data collected during the benchmarking experiments. These data was 

collected from four problems for each of five sizes as described in Table 21. We 

coded each problem size with a number from one through five according to the 

number of cells in the problem (the product of periods, locations, and customers). 
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Problems MP201-MP204 (2500 cells) were coded as 1; problems MP205-MP208 

(3600 cells) were coded as 2; problems MP209-MP212 (3750 cells) were coded 

as 3; problems MP217-MP220 (5000 cells) were coded as 4; and, problems 

MP213-MP216 (5400 cells) were coded as 5. Note that the coding does not 

follow the problem numbering sequentially. 

As expected, the results indicate that larger problems require more 

computation time. Tabu search and genetic algorithms had very high correlation 

coefficients of .9556 and .9799 respectively (p = .000 for both). Simulated 

annealing had a much lower coefficient of .1664 (p = .019). We can get a better 

picture of these effects by looking at the boxplots shown in Figures 32, 33, and 

34. Looking at Figure 32, we can clearly see the effect of problem size on the 

computation time required by tabu search. We can also see that there is little 

variability in computation time as a result of using different random number 

streams. 

In the case of simulated annealing (Figure 33), we get a much different 

picture. First we note that some problems have considerable computation time 

variability as a result of using different random number streams. Second, we 

note that we do not see a step change in computation times as we saw for tabu 

search. Third, there are four problems, MP201, MP202, MP213, and MP214, 

which require much more computation time than the other problems. The only 

factor these problems share in common is that they have a tight capacity 

constraint level. Finally, genetic algorithms show an effect nearly identical to that 

of tabu search, with noticeable step changes and very little variability (Figure 34). 
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6.12 Chapter Summary 
In this chapter we presented the implementation of three general heuristics 

for the multiple-period facilities location problem. We reported experimental 

results for selecting an appropriate problem representation. Our experiments 

indicated that a matrix representation gave the best results in terms of solution 

quality and time performance for tabu search and genetic algorithms, with mixed 

results for simulated annealing. Using the matrix representation, we reported 

results of a parameter search experiment for each heuristic. Results indicate that 

most parameters have a significant impact on solution quality and computation 

time requiring careful selection for best results. We then reported the results of a 

benchmark experiment with 20 mid-sized problems that were first solved to 

optimality. Results showed simulated annealing had the lowest average 

optimality gap at 3.36%, followed by tabu search at 6.85%, with the genetic 

algorithm trailing far behind with an average optimality gap of 15.23%. We 

conclude the chapter with some observations about the effect of computation 

time on solution quality and the effect of problem size on computation time. All 

results are as expected, with longer computation resulting in better results, and 

larger problems requiring more computation time. Results of statistical tests are 

reported. 

In the following chapter, we will address the multiple-commodity facilities 

location problem. In Chapter 8 we report our principal results comparing the 

general performance of these heuristics based on larger test problems. 



Chapter 7 

HEURISTICS FOR MULTIPLE-COMMODITIES FACILITIES LOCATION 
PROBLEMS 

In the previous two chapters, we presented general heuristics for the 

capacitated facilities location problem (CLFP) and the multiple-periods facilities 

location problem (MP-FLP). This chapter parallels the previous two chapters in 

presenting tabu search, simulated annealing, and genetic algorithm heuristics for 

the multiple-commodities facilities location problem (MC-FLP). In the first section 

we introduce the MC-FLP, present a formulation, and mention some of the 

relevant literature. In the following sections, we present the heuristic algorithms. 

For each one we specify our particular implementation and parameters. Since 

much of this work similar to the work done for CFLP, we make references to 

section in Chapter 5 whenever it is appropriate. After all three heuristics have 

been explained, we report the results from the first three stages of 

experimentation: selection of appropriate representation, parameter 

experimentation, and benchmarking. 

7.1 The Multiple-Commodities Facilities Location Problem 
For MC-FLP, M customers have demand for one or more W commodities. 

Our objective is to determine which of N capacity-constrained potential locations 

should supply which commodities, such that each location supplies only one kind 
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of commodity while minimizing the overall sum of fixed and variable costs. 

Warszawski (1973) proposed a branch and bound solution for this problem when 

locations have no capacity limitations. Neebe and Khumawala (1981) present an 

improved branch and bound algorithm with stronger bounds, but also for the 

uncapacitated version. Geoffrion and Graves (1974) solved a capacitated 

version using Bender's decomposition. Their formulation, however, allows each 

location to provide multiple commodities, while limiting each customer to a single 

source of supply. Our formulation is a capacitated version of the Warszawski 

problem: 

W    N    M W    N 

min Z = 2 2 £ Cryxr(j + X Z ^n 
r=\   i=\  j=\ /•=!   ;=1 

subject to 

IX =Drj        7=1,2,. ..,M;r = l2,...,W 
;=1 

W 

£>rt=l i = l,2,...,N 
r=\ 

M 

J>,tf <S,yrt    i = 1,2,..„Nir = 1,2,...,W 
7=1 

^e{0,l} 

^^0 

i = l,2,...,N;   r = l,2,...,W 

i = l,2,...N;   j = l,2,...,M;   r = \,2,...,W 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 
where 

Si 
C 

customer f s demand for commodity r 
location z"s capacity 
unit cost to satisfy customery"s demand for commodity r from location /' 
fixed cost of supplying commodity r from location i 
quantity of commodity r for customer^ shipped from location i 
{0,1} indicator where yri=l implies commodity r is supplied from location /' 
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Specifically, fixed costs (Ft), variable costs (CriJ), location capacities (St), and 

customer demands (Drj) are the given input data for the problem and the demand 

allocations (xriJ) and facility locations {yriJ) are the decision variables. 

7.2 Solution Representations 
As previously discussed, tabu search, simulated annealing, and genetic 

algorithms require an abstract representation of the problem's solution in order to 

define "moves" and "operators." Unlike CFLP and MP-FLP where we were able 

to propose alternate representations, MC-FLP can best be represented by a 

vector representation. Attempts to define an alternate matrix oriented 

representation failed due to the special constraint that each location may only 

supply a single commodity. This particular constraint makes defining 

neighborhood moves impractical for a matrix representation. Accordingly, we 

now describe our implementation of the vector representation. 

The vector representation is indirectly linked to the yrt's in the problem 

formulation. A particular solution is represented by a vector s = {y,, y2,...,yN}, 

where ^ e {0, l,...,W} indicating what commodity, if any, is supplied by location i 

(a zero value indicates the location is not in operation). Using this vector 

solution, the problem is partitioned into W single-commodity location problems. 

The Xrij's are determined by solving the corresponding transportation problems 

for each single-commodity problem. The total cost is then easily computed using 

(18) above. 
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7.3 A Tabu Search Heuristic for MC-FLP 
Previously, we defined a tabu search heuristic as the following set of 

elements: 

TS = {M,M/ w, MW&\ 
Where 

3% is the solution representation structure 
jVfJ is the neighborhood structure; 
W/y is the cost function 
j&fj is the aspiration criterion function 
37J is the terminating condition function 
& is the set of control parameters 

In the previous section we discussed the solution  representation and 

associated cost function. The aspiration criteria, terminating condition function, 

and control parameters are the same as for CFLP, which are described in §5.3.2, 

§5.3.3, and §5.3.4. It only remains to describe the neighborhood structure. 

Given a vector representation, a neighbor solution is defined as a solution 

where the commodity assignment of one of the vector elements is changed to 

some other commodity or to a closed status (no commodity assigned). The 

complete neighborhood for an incumbent solution then is the set of all solutions 

resulting from changing the commodity assignment of each potential location 

from its current assignment to one of the other commodities in turn or to no 

commodity assignment. For a problem with w commodities and n potential 

locations, the neighborhood size is wn. Although this is not a very large 

neighborhood, having to solve transportation problems for each neighbor is a 

slow process, especially as the problems grow in size. Therefore, we only 

evaluate a portion of this neighborhood. At each iteration, we only evaluate the n 

neighbor solutions resulting from changing the current assignment of each 
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potential location in turn to some other commodity (or no commodity). The new 

commodity assignment is selected at random. In some cases, this operation will 

result in neighbor solutions that are not feasible due to insufficient capacity 

assigned to a particular commodity to meet all demand. In such cases, the 

resulting neighbor solution is ignored (i.e., no attempt is made to evaluate n 

feasible solutions, just n neighbor solutions, feasible or not). 

7.4 A Simulated Annealing Heuristic for MC-FLP 
In Chapter 2, we defined a simulated annealing algorithm as the following set 

of elements: 

where 
M is the solution representation structure 
JPZJ is the neighborhood structure; 
WfJ is the cost function 
3fJ is the cooling schedule 
WJ is the terminating condition function 
& is the set of control parameters 

Solution representation and the cost function were described in §7.2.  The 

cooling schedule, terminating condition function, and control parameters are the 

same as for CFLP and are described in §5.4.2, §5.4.3, and §5.4.4.   We now 

describe the neighborhood structure. 

As for CFLP and  MP-FLP, the  neighborhood structure for simulated 

annealing is the same as for tabu search described in the previous section.   In 

simulated annealing, given an incumbent solution, we randomly select one of the 

wn neighboring solutions to evaluate next. The neighbor solution is selected by 

randomly choosing one of the potential locations and changing its current 

commodity assignment to some other, randomly selected commodity (or no 
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commodity). If the resulting neighbor solution is not feasible, we simply try 

another one. Although neighbor solutions that are not feasible are ignored, they 

do count toward the total number of solutions considered with respect to the 

FACTOR parameter. This is a necessary condition to avoid lengthy searches for 

feasible solutions in highly constrained problems, especially toward the end of 

the simulated annealing algorithm, when the probability of accepting solutions is 

very small and the FACTOR parameter starts to take effect. 

7.5 A Genetic Algorithm Heuristic for MC-FLP 
In Chapter 2, we defined a genetic algorithm as the following set of elements: 

GA = {M, W/WJ. J&f/W/&\ 
Where 

M       is a solution representation 
WJ    is the fitness function 
J?//7    is the crossover operation function 
J&fJ   is the mutation operation function 
WJ     is the terminating condition function 
&       is the set of control parameters 

The solution representation is discussed in §7.2.    The fitness function, 

terminating condition, parameters are the same as for CFLP and are discussed 

in §5.5.1, §5.5.4, and §5.5.5.   We now describe the crossover and mutation 

operators. 

7.5.1 Crossover Operator 
We implement a single-point crossover operator on the solution vector 

representation. Recall that for the vector representation, each element 

represents a potential location, and the element's value represents the location's 

current commodity assignment. Given two parent chromosomes and a single 

crossover point (i.e., a position in the vector), an offspring solution receives the 
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commodity assignments from the first parent for locations below the crossover 

point and the commodity assignments from the second parent for locations at the 

crossover point and above. Since this operation may result in solutions that are 

not feasible, a repair operation is implemented. 

Following the application of crossover and mutation operations, each new 

offspring is put through the repair operation. The repair operation iterates 

through each commodity, and checks the solution for sufficient capacity to meet 

demand. When this procedure finds a commodity with insufficient capacity 

assigned in the current solution, it goes into repair mode. At first, the repair 

operation consists of randomly selecting elements in the solution vector, looking 

for one with no commodity assignment. If one is found, then it is assigned the 

commodity that requires more capacity. This procedure continues until enough 

capacity has been added to the current commodity or a fixed number of attempts 

have elapsed without success (the number of attempts is equal to the number of 

potential locations). If the above procedure failed to assign enough capacity to 

the commodity with a capacity deficiency, the repair operation continues by 

randomly selecting elements of the solution vector, and determining if changing 

its current commodity assignment would reduce the total capacity assigned to 

this commodity below its required minimum. If not, then the commodity 

assignment for this element is changed to the one we are trying to repair. This 

process continues until enough capacity has been reassigned to the commodity 

we are trying to repair and until all commodities have enough capacity assigned 

to them. Although this repair operation can drastically change the structure of an 
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offspring solution, it is needed to ensure all parent chromosomes in a new 

generation are feasible. However, in early tests we discovered that this 

operation is not often performed. 

7.5.2 Mutation Operator 
The mutation operator is applied probabilistically to an entire chromosome. 

The mutation consists of randomly selecting an element in the solution vector, 

and changing its current commodity assignment to some other, randomly 

selected commodity (or no commodity). This operation may result in solutions 

that are not feasible. As a result, the repair operation described above is applied 

after both the crossover and mutation operators are applied. 

7.6 Benchmark Test Problems 
A set of 20 medium-sized test problems was created for the purposes of 

parameter effects experimentation and benchmarking. The data for the test 

problems were obtained from a database of 250 U.S. cities with their inter-city 

distances and 1990 Census population (see Appendix C). The problem sizes 

selected were based on the problem sizes used by Neebe and Khumawala 

(1981). The set of 20 benchmark problems is summarized in Table 34. We now 

describe each of the test problem attributes: 

Size: Neebe and Khumawala used some problems from Warszaski with 2 

commodities x 6 locations x 10 customers, 3x6x12, 3x7x12, and 3x9x38. They 

also used larger problems based on the data of Khuen and Hamburger: 3x20x50, 

3x21x50, 3x25x50, 3x26x50, 4x10x50, 4x11x15, 4x15x50, and 4x16x50.    Of 
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Table 34. Benchmark Test Problems (MC-FLP) 

Problem Size Capacity Fixed Costs 
MC201 3x15x25 20000 7500 
MC202 3x15x25 20000 15000 
MC203 3x15x25 40000 7500 
MC204 3x15x25 40000 15000 
MC205 3x20x50 35000 7500 
MC206 3x20x50 35000 15000 
MC207 3x20x50 70000 7500 
MC208 3x20x50 70000 15000 
MC209 3x25x50 30000 7500 
MC210 3x25x50 30000 15000 
MC211 3x25x50 60000 7500 
MC212 3x25x50 60000 15000 
MC213 4x10x50 100000 7500 
MC214 4x10x50 100000 15000 
MC215 4x10x50 200000 7500 
MC216 4x10x50 200000 15000 
MC217 4x15x50 65000 7500 
MC218 4x15x50 65000 15000 
MC219 4x15x50 130000 7500 
MC220 4x15x50 130000 15000 

these, we selected the following five sizes: 3x20x50, 3x25x50, 4x10x50, 

4x15x50, and we also added a smaller 3x15x25. 

Capacity, as for MP-FLP, we set capacity at two levels. A low level assigns 

enough capacity to each potential location such that the total capacity of all 

locations is twice the total demand for all customers for all commodities. A high 

level doubles this capacity assignment. Note that for a given problem, all 

locations receive the same capacity assignment. 

Demand: the demand for the first commodity is a fraction of the customer 

city's 1990 Census population. The demands for the remaining commodities are 

a random factor of the first commodity's demand. However, instead of selecting 

a single factor for each commodity which would result in each commodity having 

the same distribution of demand over all customers, each commodity-customer 

combination gets a separate random factor, thereby changing the distribution of 
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demand for each commodity across customers. The random factor is a number 

ranging from 0.5 to 1.5. 

Fixed Costs: Two levels of fixed costs were assigned, 7500 and 15000. For 

a given problem, all locations receive the same fixed cost. The fixed cost does 

not change based on the commodity assigned to a location. 

Variable Costs: a base variable cost is assigned to each source-destination 

combination based on the distance between the two cities and charged at 2.5 

cents per mile. The actual variable cost used in computing solution costs is 

based on a factor randomly assigned to each commodity. The factor is a number 

between 0.5 and 1.5. The effective variable cost for a particular commodity's 

source-destination cell is then the product of the base variable cost and the 

appropriate factor. 

7.7 Parameter Effects 
As we did for CFLP and MP-FLP, we conducted an experiment to get a clear 

picture of how various parameter settings affect solution quality and computation 

time. We also use the results from these experiments to select the parameter 

settings that we use for benchmarking and comparative runs. 

For tabu search, we experimented with three levels of the LTM parameter, 

four levels of the STM parameter, and three levels for the TLSIZE parameter. 

Compared with the levels used for CFLP and MP-FLP, the experimental levels 

for MC-FLP are considerably more conservative due first to the fact that the 

vector representation requires solving transportation problems and is thus much 
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slower per iteration, but also because the solution space is much smaller than for 

a matrix representation. The experimental levels are summarized in Table 35. 

Table 35. TS Parameters Experimental Levels (MC-FLP) 

Parameter Experimental Levels 
LTM 13 5 
STM 25 50 75 100 
TLSIZE 1 2 5 

For simulated annealing, we experimented with five levels for the RATE 

parameter, three levels for the ACCEPT parameter, and three levels for the 

FACTOR parameter. The experimental levels are summarized in Table 36. 

Table 36. SA Parameters Experimental Levels (MC-FLP) 

Parameter Experimental Levels 
RATE 0.75 0.80       0.85       0.90       0.95 
ACCEPT 25 50 75 
FACTOR 1 2 3 

For genetic algorithm we experimented with three levels for the POP 

parameter, three levels for the GENS parameter, three levels for the XOVER 

parameter, and two levels for the MUTATE parameter. The experimental levels 

are summarized in Table 37. 

Table 37. GA Parameters 
Experimental Levels (MC-FLP) 

Parameter Experimental Levels 
POP 20          30          40 
GENS 50         100        150 
XOVER 0.80       0.85       0.95 
MUTATE 0.05       0.10 

To conduct these experiments, we selected one of the benchmark test 

problems as a test bed. Since the results from the parameter experiments lead 
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to a selection of parameters for solving the set of larger problems, we selected 

one of the largest benchmark problems, MC209. Although this problem only had 

three commodities, early experiments indicated that the speed at which the 

heuristics perform is more closely linked to the number of locations and 

customers than to the number of commodities. This is a direct result of having to 

solve transportation problems. With 25 locations and 50 customers, MC209 is 

one of the largest problems, which also has a tight capacity constraint, a factor 

we have observed makes the problems more difficult to solve. 

The tabu search experiment has 36 cells, the simulated annealing 

experiment has 45 cells, and the genetic algorithm experiment has 54 cells. As 

we have done for CFLP and MP-FLP, we limited each experimental cell to 10 

replications. 

To determine if there is a statistically significant difference among the 

experimental levels for each parameter with respect to solution quality and 

computation time, we computed the Kruskal-Wallis (K-W) statistic. To determine 

the general direction of the effect and its statistical significance, we also 

computed Spearman's rank correlation coefficient for each parameter effect. The 

results of these statistical tests are summarized in Tables 38, 39, 40, and 41 and 

are discussed in the following sections. The raw result tables can be found in 

Appendix B. Boxplots showing the effects can be found in Appendix D. 

7.7.1 Tabu Search LTM Parameter 
The effects of the LTM parameter on solution quality are evident from Figure 

35.  The effect is the same as for CFLP and MP-FLP as expected.  There is a 
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Table 38. Kruskal-Wallis H Test of Heuristic 
Parameters Effect on Solution Quality (MC-FLP) 

Parameter Chi-Square D.F. Significance 
LTM 124.5743 2 .0000 
STM 0.8703 3 .8326 
TLSIZE 0.4673 2 .7916 
RATE 0.4767 4 .9757 
ACCEPT 0.5258 2 .7688 
FACTOR 0.4509 2 .7982 
POP 13.2454 2 .0013 
GENS 269.2745 2 .0000 
XOVER 1.9637 2 .3746 
MUTATE 40.5796 1 .0000 

Table 39. Kruskal-Wallis H Test of Heuristic 
Parameters Effect on Computation Time (MC-FLP) 
Parameters     Chi-Square       D.F.    Significance 
LTM 214.9260 2 .0000 
STM 132.6687 3 .0000 
TLSIZE 0.0179 2 .9911 
RATE 205.3205 4 .0000 
ACCEPT 149.5801 2 .0000 
FACTOR 75.8593 2 .0000 
POP 99.7461 2 .0000 
GENS 423.5083 2 .0000 
XOVER 0.0959 2 .9532 
MUTATE 2.0482 1 .1524 

significant improvement on solution quality as the number of long-term memory 

passes is increased, particularly going from a single pass, to multiple passes. A 

K-W statistic of 124.5743 (p = .0000) confirms the significant improvement, and a 

correlation coefficient of -.5790 (p = .000) confirms the direction of this effect. 

With respect to computation time, the effects of the LTM parameter are also 

clear and as expected (Figure 36). More passes of the long-term memory 

require longer computation time. The K-W statistic of 214.9260 (p = .0000) and 

correlation coefficient of .7657 (p = .000) confirm these observations. 
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Table 40. Spearman's Correlation Coefficients 
of Heuristic Parameters vs Solution Quality 
Parameter       Coefficient      Significance 

.000 

.467 

.795 

.493 

.488 

.504 

.000 

.000 

.0024 

.000 

Table 41. Spearman's Correlation Coefficient 
of Heuristic Parameters vs Computation Time 

Parameter       Coefficient      Significance 

LTM -.5790 
STM -.0385 
TLSIZE -.0138 
RATE -.0324 
ACCEPT -.0328 
FACTOR -.0315 
POP -.1509 
GENS -.6931 
XOVER -.0342 
MUTATE -.2744 

LTM .7657 .000 
STM .6009 .000 
TLSIZE -.0029 .956 
RATE .6644 .000 
ACCEPT .5705 .000 
FACTOR .3999 .000 
POP .4300 .000 
GENS .8805 .000 
XOVER .0024 .955 
MUTATE .0616 .153 

7.7.2 Tabu Search STM Parameter 
As the STM parameter is increased, one would expect a downward slope on 

each line in Figure 35. Surprisingly, such a slope is not present. More 

importantly, the K-W test statistic of .8703 (p = .8326) indicates there is no 

significant difference in solution quality as a result of increasing the STM 

parameter and the correlation coefficient of -.0385 (p = .467) indicates no 

correlation between STM and solution cost. These results are a departure from 

what we have seen for CFLP and MP-FLP where the STM parameter had a 

significant effect. 



165 

TSMC Parameter Effects on Cost 
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The slope of each line in Figure 36 represents the effects of the STM 

parameter on computation time. The effects in this case are conventional and as 

expected. The K-W statistic of 132.6687 (p = .0000) and correlation coefficient of 

.6009 (p = .000) indicate a significant effect: more STM iterations require more 

computation time. 

7.7.3 Tabu Search TLSIZE Parameter 
The effects of TLSIZE can be seen in Figure 35 by looking at each of the 

lines, three points at a time, corresponding to the three levels of TLSIZE. For the 

line with a single long-term memory pass, TLSIZE has no effect on solution 

quality. For the other two lines the effect is mixed. A K-W statistic of .4673 (p = 

.7619) and a correlation coefficient of -.0138 (p = .795) indicate there is no 

significant impact on solution quality due to the TLSIZE parameter. 

Looking at each line in Figure 36, it is obvious that each of the three point 

groupings on each line representing the three levels of the TLSIZE parameter do 

not have a significant impact on computation time. This is confirmed by a 

correlation coefficient of -.0029 (p = .956) and a K-W statistic of .0179 (p = 

.9911). 

7.7.4 Tabu Search Parameters Selected 
Based on the preceding results, we selected the following parameter settings 

for future experiments: LTM = 5, STM = 50, and TLSIZE = 2. A setting of STM = 

100 improves the solution quality by 1.7%, but requires a 108% increase in 

computation time which cannot be justified. 
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Figure 37. SA Parameters Effect on Cost (MC-FLP) 

7.7.5 Simulated Annealing RATE Parameter 
Looking at each line in Figure 37, the effects of the RATE parameter are not 

visibly clear. There is some degree of overlap among various levels of the RATE 

parameter. The statistical tests suggest that this parameter does not have a 

significant impact on solution quality (correlation coefficient of -.0324, p = .493 

and K-W statistic of .4767, p = 9757) although it would seem that the 0.95 level 

gives the best results except for the first and last two points where there is some 

overlap with the 0.90 level. 

If the RATE parameter does not have a significant effect on solution quality, 

its effect on computation time is quite clear from Figure 38. The higher RATE 

levels require more time due to a greater number of solutions evaluated.  The 
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statistical tests confirm this observation with a K-W statistic of 205.3205 (p = 

.0000) and a correlation coefficient of .6644 (p = .000). 

7.7.6 Simulated Annealing ACCEPT Parameter 
The expected effect of the ACCEPT parameter would be represented in 

Figure 37 as a downward slope for each line in the graph. As a whole, the lines 

do seem to have an overall downward slope, but individually, the effect is not 

consistent. The statistical tests indicate no significant effect by the ACCEPT 

parameter on solution quality. The correlation coefficient is -.0328 (p = 488) and 

the K-W test statistic is .5258 (p = .7688). 

With respect to computation time, however, the effect of the ACCEPT 

parameter are conventional. The consistent upward slope of each line in Figure 

38 indicates as expected that a higher level of the ACCEPT parameter requires 
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more computation time. A correlation coefficient of .5705 (p = .000) and K-W 

statistic of 149.5801 (p - .0000) confirm these observations. 

7.7.7 Simulated Annealing FACTOR parameter 
Trying to visualize the effects of the FACTOR parameter on solution quality 

by looking at Figure 37 is rather difficult. However, if we try to isolate the three 

point groupings for each line, we can see there is no consistent pattern across 

lines, and in some cases even within each line. This would suggest a mixed 

effect of the FACTOR parameter on solution quality. The statistical tests indicate 

the FACTOR parameter does not have a significant effect. The correlation 

coefficient is -.0315 (p = .504) and the K-W statistic is .4509 (p = 7982). 

In the case of computation time, the effect of the FACTOR parameter is 

again quite clear from Figure 38. For each line, the three point groupings clearly 

show a consistent upward pattern suggesting the expected result that higher 

levels of the FACTOR parameter require more computation time. A correlation 

coefficient of .3999 (p = .000) and K-W statistic of 75.8593 (p = .0000) confirm 

this effect. 

7.7.8 Simulated Annealing Selected Parameters 
Based on the preceding results, we selected the following parameter settings 

for the remaining experiments: RATE = 0.90, ACCEPT = 50, and FACTOR = 3. 

Other settings improve solution quality by no more than 0.3% with a minimum 

increase in computation time of 26% and as much as 213%. 
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7.7.9 Genetic Algorithm POP parameter 
Unfortunately, Figure 39 is difficult to interpret when trying to determine the 

effects of the POP parameter on solution quality. For the effect to be obvious, 

each of the lines in Figure 39 would have to show a consistent separation. While 

there is some separation at most points, there is also some overlap at others. 

The statistical tests, however, indicate there is in fact a significant effect. The 

correlation coefficient -.1509 (p = .000) shows the expected negative correlation 

and the K-W statistic of 13.2454 (.0013) indicates there is some significant 

difference among the experimental levels. 

Figure 40 shows the expected effects of the POP parameter on computation 

time. Each pair of lines on this graph represents a level of the POP parameter, 

with the higher levels requiring more computation time. A correlation coefficient 

of .4300 (p = .000) and K-W statistic of 99.7461 (p = .0000) indicate a significant 

effect. 

7.7.10 Genetic Algorithm GENS Parameter 
The effect of the GENS parameter is evident in Figure 39 by the slope of 

each line. As expected, more generations result in improved solution quality. A 

correlation coefficient of -.6931 (p = .000) indicates a strong negative correlation 

as expected. A K-W statistic of 269.2745 (p = .0000) indicates a significant 

difference among the experimental levels. 
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With respect to computation time, the effect of the GENS parameter is as 

expected as seen in Figure 40. More generations require more computation time 

resulting from more solutions being evaluated. A correlation coefficient of .8805 

(p = .000) and K-W statistic of 423.5083 (p = .0000) confirm this observation. 

7.7.11 Genetic Algorithm XOVER Parameter 
Again, the effects of the XOVER parameter are difficult to interpret from 

Figure 39. However, if we isolate the three point groupings for each line on this 

graph, we can see that there is no consistent pattern to the groupings suggesting 

a mixed effect tied to the settings of the other parameters. The statistical tests 

give the same results as for CFLP and MP-FLP: no significant effect on solution 

quality from the XOVER parameter. The correlation coefficient is -.0342 (p = 

.427) and the K-W statistic is 1.9637 (p = .3746). 

Figure 40 shows the effects of the XOVER parameter on computation time. 

Looking at the three point groupings for each line in the graph, we see there is 

not much impact, if any, on time. The correlation coefficient of .0024 (p = .955) 

and K-W statistic of .0959 (p = .9532) indicate there is no significant effect. 

7.7.12 Genetic Algorithm MUTATE Parameter 
Whereas the effects of the MUTATE parameter were easily visible on a 

graph for CFLP and MP-FLP, it takes a little more effort to visualize this effect in 

Figure 39. If we isolate the two groups of lines corresponding to the two levels of 

the MUTATE parameter (marked "A" and "B" in the legend), we can see that in 

general, the lines marked with "A" in the legend are above the lines marked with 

"B" in the legend. This is a remarkable result since it is a complete reversal of 
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the results we have seen for CFLP and MP-FLP. The better performing lines 

marked "B" represent a 10% mutation rate. This is the level of MUTATE that did 

not perform well for CFLP and MP-FLP. Clearly, the change in representation 

from a matrix to a vector must be correlated to the effect of the MUTATE 

parameter. Furthermore, the effects of the MUTATE parameter are significant 

with a correlation coefficient of -.2744 (p = .000) and K-W statistic of 40.5796 (p = 

.0000). 

The effect of the MUTATE parameter on computation time can be seen in 

Figure 40. Each pair of lines represents a level of the POP parameter, and each 

line in a pair represents one of the two levels of the MUTATE parameter. A 

visual inspection would seem to indicate there is a slight separation between 

each line in a pair. The statistical tests do not show a significant effect, however. 

The correlation coefficient is .0616 (p = .153) and the K-W statistic is 2.0482 (p = 

.1524). 

7.7.13 Genetic Algorithm Selected Parameters 
Based on the preceding results, we selected the following parameter settings 

for the remaining experiments: POP = 40, GENS = 150, XOVER = 0.95, and 

MUTATE = 0.10. If we look at Table 109 in Appendix B, we can see that these 

settings give the best results. 

7.8 Benchmark Test Results 
In this section we report the results from benchmarking experiments.   We 

used the 20 benchmark test problems described earlier in Table 34. As before, 

we tried to use an optimal algorithm to solve each of these problems to 
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optimality. Unfortunately, the branch and bound algorithm we developed based 

on the work of Warszawski (1973) and Neebe and Khumawala (1981) failed to 

solve these problems to optimality. This is probably due to the fact the earlier 

algorithms were developed for uncapacitated problems, while ours is for 

capacitated problems and we were unable to use most of their "bound" 

arguments. Accordingly, we allowed the algorithm to run for over six hours, and 

used their best upper bound as an alternate benchmark. For two of the problems 

noted in Table 43, the algorithm failed to find an upper bound after six hours. 

Table 42. Parameter Settings for Benchmark Experiments (MC-FLP) 

TS Parameters SA Parameters GA Parameters 
LTM                   5           RATE                 0.90      POP 40 
STM                   50         ACCEPT           50         GENS 150 
TLSIZE              2           FACTOR           3           XOVER              0.95 
 MUTATE           0.10 

Following our attempt to solve each problem to optimality, we solved each 

problem using each of the general heuristics described in this chapter. 

Parameter settings were selected based on the results from the previous 

parameter experiments and are summarized in Table 42. For each problem, we 

completed ten replications with each heuristic. The average results and resulting 

optimality gaps are reported in Table 43. Note that in some cases, our heuristic 

solutions are much better than the best upper bound found by branch and bound 

after six hours. 
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Table 43. MC-FLP Benchmark Results 

Tabu Search Simulated Annealing            Genetic Algorithm 
Problem      Solution Opt Gap Time     Solution Opt Gap Time     Solution Opt Gap Time 

MC201 $2,513,218 6.3% 60 $2,790,880 18.0% 138 $2,374,076 0.4%    121 
MC202 $2,593,172 3.0% 52 $2,882,918 14.5% 112 $2,471,121 -1.9%    113 
MC203 $2,707,595 15.3% 56 $3,405,018 44.9% 135 $2,487,104 5.9%    104 
MC204 $2,705,663 8.3% 52 $3,489,782 39.7% 101 $2,597,730 4.0%      94 
MC205 $3,282,077 -32.7% 481 $3,709,011 -23.9% 826 $3,075,611 -36.9%    676 
MC206 $3,399,064 -31.5% 469 $3,852,876 -22.4% 804 $3,214,873 -35.2%    626 
MC207 $3,356,728 -29.3% 377 $3,916,968 -17.5% 623 $3,114,623 -34.4%    469 
MC208 $3,453,437 -28.6% 360 $4,065,350 -15.9% 669 $3,504,498 -27.5%    456 
MC209 $1,877,646 * 713 $2,696,057 * 935 $1,779,199 838 
MC210 $2,203,418 * 663 $2,861,598 * 902 $1,982,141 807 
MC211 $2,002,265 -46.7% 578 $3,305,282 -12.0% 769 $1,873,846 -50.1%    597 
MC212 $2,418,451 -37.3% 539 $3,460,361 -10.2% 741 $2,053,826 -46.7%    558 
MC213 $7,528,714 2.7% 53 $7,825,085 6.7% 182 $7,411,905 1.1%    293 
MC214 $7,592,804 2.5% 53 $7,904,456 6.7% 193 $7,461,155 0.7%    294 
MC215 $7,848,437 7.8% 80 $9,902,772 36.1% 239 $7,803,713 7.2%    214 
MC216 $7,883,850 7.2% 79 $9,978,080 35.7% 268 $7,871,203 7.0%    223 
MC217 $5,561,852 -3.6% 227 $6,201,022 7.5% 495 $5,537,150 -4.0%    430 
MC218 $5,718,910 -2.2% 226 $6,302,366 7.7% 500 $5,651,483 -3.4%    432 
MC219 $5,702,113 -0.3% 205 $6,509,843 13.8% 430 $5,712,703 -0.1%    331 
MC220 $5,806,138 0.6% 204 $6,631,819 14.9% 452 $5,792,986 0.4%    337 

* Branch and bound algorithm failed to find an upper bound for these problems 

For the benchmark experiments in Table 43, we did not compute the average 

optimality gap as we have done for CFLP and MP-FLP as we have some missing 

values and some cases where the heuristics performed better than the branch 

and bound upper bound. However, unlike CFLP and MP-FLP, the genetic 

algorithm is clearly the best performer, while the simulated annealing heuristic is 

a distant third for MC-FLP. This preliminary observation may lead to some 

interesting findings as we experiment with larger test problems and measure the 

heuristics' performances. 

7.9 Computation Time vs. Solution Quality 
To determine what kind of relationship exists between computation time and 

solution quality we again use the data collected during the parameter selection 
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experiments. Tables 39 and 41 indicate that most parameters have a significant 

impact on computation time. The immediate by-product of these experiments is 

a set of data points with a range of computation times for the same problem with 

each heuristic. Thus, we can use Spearman's rank correlation coefficient to 

determine if there is a relationship between solution time and solution quality. 

The correlation coefficients summarized in Table 44 below indicate that for 

tabu search and genetic algorithm there is a significant negative correlation. In 

the case of simulated annealing, no significant correlation is detected. This result 

for simulated annealing parallels the results in Tables 38 and 40 indicating no 

significant parameter effects on solution quality. 

Table 44. Spearman's Rank Correlation Coefficients 
for Computation Time vs. Solution Quality (MC-FLP) 

Heuristic 
Tabu Search 
Simulated Annealing 
Genetic Algorithm 

Spearman's 
-.4996 
-.0255 
-.7329 

Significance 
.000 
.589 
.000 

In order to appreciate how these heuristics perform over time, we again show 

a time performance graph in Figure 41. The time performance of the heuristics is 

for problem MC209, the problem used for parameter experimentation, with 

parameters set as for the benchmark experiments shown in Table 42. 

Figure 41 shows that with a vector representation, the time performance of 

these general heuristics changes drastically from what we have seen in Figures 

21 and 31 for CFLP and MP-FLP. First, since fewer solutions are evaluated by 

each heuristic, there are fewer opportunities for improvements. This is 

evidenced in Figure 41 by the fewer number of points plotted in comparison to 
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MC-FLP Time Performance (MC209) 
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Figure 41. Heuristics Time Performance (MC-FLP) 

the other two earlier figures. Second, we see that the genetic algorithm is now 

the one that finds better solutions faster. As we experiment with larger problems 

in the next chapter, we will address this finding further. 

7.10 Problem Size vs. Computation Time 
To examine the relationship between problem size and computation time we 

use the data collected during the benchmarking experiments. These data were 

collected from four problems for each of five sizes as described in Table 34. We 

coded each problem size with a number from one through five according to the 

number of locations and customers (because of the need to solve transportation 

problems, the number of locations and customers are the principal factors in 

computation time).    Problems MC201-MC204 were coded as 1; problems 
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Boxplot of TS Computation Time by Problem 
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Figure 42. Boxplot of TS Computation Time by Problem (MC-FLP) 

MC205-MC208 were coded as 4; problems MC209-MC212 were coded as 5; 

problems MC213-MC216 were coded as 2; and, problems MC217-MC220 were 

coded as 3. The rationale for this coding is obvious from the boxplot charts in 

Figures 42, 43, and 44. 

As expected, the results indicate that problems with more locations and 

customers require more computation time. Tabu search had a correlation 

coefficient of .9476, simulated annealing had a coefficient of .9505, and the 

genetic algorithm had a coefficient of .9557. All had p = .000. 

Looking at Figure 42, we notice that tabu search has little computation time 

variability due to different random number streams. Further, we notice that the 

problems that took the longest to compute are in fact the ones with more 
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Boxplot of SA Computation Time by Problem 
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Figure 43. Boxplot of SA Computation Time by Problem (MC-FLP) 

locations and customers, the second and third sets with 3x20x25 and 3x25x50 

dimensions. 

Figure 43 shows that simulated annealing exhibits more computation time 

variability, but also has the same type of distribution as tabu search. Again, the 

second and third sets of problems are the ones that take the longest. 

Finally, Figure 44 shows that the computation time requirements have the 

same distribution along problem sizes as for the other two heuristics. It also 

shows for the second and third set the effect of the capacity constraint on 

computation time. Problems MC209, MC210, MC213, and MC214 have a tight 

capacity constraint and require more time than the other four problems in these 

two sets, which have double the capacity. This effect is also evident in the other 

two figures, though not as clearly. 
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Boxplot of GA Computation Time by Problem 
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Figure 44. Boxplot of GA Computation Time by Problem (MC-FLP) 

7.11 Chapter Summary 
In this chapter we presented the development of three general heuristics for 

the multiple-commodity facilities location problem. We reported results of a 

parameter search experiment using a vector problem solution representation. 

Results indicate that for tabu search and genetic algorithm, most parameters 

have a significant effect on solution quality. This was not the case for simulated 

annealing. With respect to computation time, most parameters for all three 

heuristics showed a significant effect. We then reported results of a benchmark 

experiment. Our branch and bound optimal algorithm failed to find the optimal 

solution for our benchmark test problems, so we made use of the best upper 

bound found after six hours of computation. Results showed the genetic 

algorithm gave the best results for this group of problems, with simulated 
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annealing a distant third. We concluded the chapter with some observations and 

statistical results about the effects of computation time on solution quality and 

problem size on computation time. All results were as expected, except that for 

simulated annealing, no correlation was found between computation time and 

solution quality. 

In the following chapter, we conduct experiments using all three heuristics for 

CFLP, MP-FLP, and MC-FLP on a set of larger problems. Specifically, we 

compare  the   performance  of  these   heuristics   along  two  dimensions  of 
i 

comparability: computation time allowed and solutions evaluated. We also report 

on the general performance without any constraints except for the parameters 

selected. 



Chapter 8 

EMPIRICAL COMPARISON RESULTS 

In the last three chapters we discussed the implementation of general 

heuristics for solving three versions of the facilities location problem: capacitated 

facility location problem (CLFP), multiple-period facilities location problem (MP- 

FLP), and multiple commodities facilities location problem (MC-FLP). In each 

chapter, we then addressed the first three stages of experimentation described in 

our experimental design in Chapter 4 and answered the first four of seven 

investigative questions. In this chapter we now report the results from the fourth 

stage of experimentation and answer the remaining three investigative questions. 

In the first three sections of this chapter we report results of the comparisons of 

the three heuristics for each of the three FLP problem types. In the fourth section 

we report results of the comparisons of the three heuristics overall. 

In each of the first three sections below we first describe the set of test 

problems use in the experiments and then report the comparative results along 

three dimensions which we term: 'lime", "information", and "unrestricted." The 

time dimension limits the amount of computation time each heuristic is allowed in 

order to arrive at its solution. All heuristics are allowed the same amount of 

computation time. The information dimension limits the number of candidate 

solutions each heuristic is allowed to evaluate such that all heuristics report a 

182 
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result after the same number of candidate solutions evaluated. The unrestricted 

dimension allows each heuristic to report a result based on a complete run with 

the given parameter settings. The parameter settings for each of the heuristics 

are the same as those used for the benchmarking experiments. These 

parameter settings are used for the data collection runs along each of the three 

dimensions. Our original intent was to select different parameters for each of the 

three dimensions, but early experimentation showed this approach to be 

impractical for the following reasons: in the case of tabu search, a set of 

parameters cannot be selected for the information limited runs since the number 

of solutions evaluated given a set of parameters depends on the size of the FLP 

at hand; in the case of simulated annealing, variability in computation time makes 

it difficult to select a set of parameters that will result in a run length of any given 

time. 

Given these difficulties, we chose an alternate approach. Using a single set 

of parameters that were identified to give good results, we adjusted the software 

so we could input run limitations along the time and information dimensions. The 

parameter settings used are the same as those used in the benchmark 

experiments. 

8.1 CFLP Experiments 
In this section we report the results of comparing the performance of the tabu 

search, simulated annealing, and genetic algorithm heuristics we developed in 

Chapter 5 for CFLP. The test problems used have larger dimensions than the 

test problems used for benchmark experiments.    We first describe the test 
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problems and then provide the details of the comparisons along each of the three 

dimensions. 

8.1.1 Test Problems 
We created a new set of 20 test problems using our database of 250 U.S. 

cities with their inter-city distances and the 1990 census population. For a given 

NxM problem, the locations consist of the largest N cities, and the first M cities 

arranged alphabetically. The cities used in our database are listed in Appendix 

B. The characteristics of our test problems are shown in Table 45. 

Table 45. CFLP Test Problems 

Problem Size Capacity Fixed Cost 
CAP301 25x200 50,000 7,500 
CAP302 25x200 50,000 17,500 
CAP303 25x200 100,000 7,500 
CAP304 25x200 100,000 17,500 
CAP305 25x250 50,000 7,500 
CAP306 25x250 50,000 17,500 
CAP307 25x250 100,000 7,500 
CAP308 25x250 100,000 17,500 
CAP309 50x200 25,000 7,500 
CAP310 50x200 25,000 17,500 
CAP311 50x200 50,000 7,500 
CAP312 50x200 50,000 17,500 
CAP313 50x250 25,000 7,500 
CAP314 50x250 25,000 17,500 
CAP315 50x250 50,000 7,500 
CAP316 50x250 50,000 17,500 
CAP317 100x250 12,500 7,500 
CAP318 100x250 12,500 17,500 
CAP319 100x250 25,000 7,500 
CAP320 100x250 25,000 17,500 

For the test problems shown in Table 45, five sizes were selected: 25 

locations x 200 customers, 25x250, 50x200, 50x250, and 100x250. For each 

problem size, four problems were generated using two levels of capacity and two 

levels of fixed costs. The lower capacity levels represent a capacity per potential 
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location such that the sum of capacities for all potential locations is approximately 

twice the total demand of all the customers. The higher capacity level is twice 

the value of the lower level. The two levels of fixed cost are $7,500 and $17,500 

consistent with the fixed cost levels used by several researchers, including the 

original Kuehn and Hamburger data. 

8.1.2 Comparative Results Along Unrestricted Dimension 
As discussed in Chapter 4, we use the method of Dudewicz and Dalai (1975) 

as described in Law and Kelton (1982) to rank the performance of the three 

heuristics on each test problem. Following the recommendations from Law and 

Kelton, we first select a P* = .90 (probability of being correct) and an n0 = 20 

(number of initial replications per problem for each heuristic). Following this 

initial set of replications, the procedure calls for selecting a d* (indifference 

parameter) to determine an additional number of replications based on the 

variability of the initial set of replications. Due to the large computing 

requirements for the overall study, we reversed the procedure and computed the 

d* required to make the decision based on the initial set of 20 replications. The 

next three tables provide a summary of the results for each heuristic. Included in 

these tables are the average solution value from the 20 replications, the 

associated standard deviation, the average time required by each heuristic for 

each problem, the average number of candidate solutions evaluated, and the 

computed d*. Several desktop computers equipped with Pentium processors 

running at 120MHz were used to obtain these results. 
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Table 46. CFLP Tabu Search Unrestricted Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) Solutions d* 
CAP301 $ 542,030.85 875 770 6000000 458 
CAP302 $ 756,806.10 7103 826 6000000 3720 
CAP303 $ 569,522.70 3099 761 6000000 1623 
CAP304 $ 692,958.85 7627 763 6000000 3994 
CAP305 $1,681,249.85 2414 977 7500000 1264 
CAP306 $1,921,238.30 2279 984 7500000 1193 
CAP307 $1,591,298.00 0 1008 7500000 0 
CAP308 $1,825,926.50 3777 979 7500000 1978 
CAP309 $1,043,108.90 5838 1439 6000000 3057 
CAP310 $1,454,205.50 6875 1344 6000000 3600 
CAP311 $ 815,260.10 1111 1500 6000000 582 
CAP312 $1,188,763.90 5272 1503 6000000 2761 
CAP313 $1,282,612.70 20453 1756 7500000 10711 
CAP314 $1,703,729.85 16390 1783 7500000 8583 
CAP315 $ 971,058.25 2059 1881 7500000 1078 
CAP316 $1,374,561.50 5923 1967 7500000 3102 
CAP317 $1,165,915.50 13749 3408 7500000 7200 
CAP318 $1,899,205.05 18591 3163 7500000 9736 
CAP319 $ 804,823.65 2672 3602 7500000 1399 
CAP320 $1,380,652.85 14141 3556 7500000 7405 
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Table 47. CFLP Simulated Annealing Unrestricted Runs Results 

Average Standard Average Avg # of 
Problem Cost         I Deviation Time (sec) ! Solutions d* 

CAP301 $   548,536.50 3351 307 455117 1755 
CAP302 $   763,404.95 12631 438 485080 6615 
CAP303 $   572,060.00 4147 315 457079 2172 
CAP304 $   685,108.00 10215 408 601283 5350 
CAP305 $1,681,177.00 2766 314 442987 1448 
CAP306 $1,923,305.75 4719 300 438429 2471 
CAP307 $1,592,800.55 1366 260 377184 715 
CAP308 $1,830,591.25 3170 268 373659 1660 
CAP309 $1,083,778.40 24600 446 536139 12883 
CAP310 $1,510,732.10 30258 422 536406 15846 
CAP311 $   829,537.75 4685 309 362361 2454 
CAP312 $1,229,490.10 17689 329 369735 9263 
CAP313 $1,349,036.00 30511 471 544823 15978 
CAP314 $1,784,472.45 29984 466 544974 15702 
CAP315 $   982,842.60 8448 345 384416 4424 
CAP316 $1,404,225.35 14507 345 381256 7597 
CAP317 $1,265,269.60 40051 755 555484 20974 
CAP318 $2,090,964.05 27092 743 555420 14188 
CAP319 $   856,311.55 32914 527 409765 17236 
CAP320 $1,486,803.45 26806 516 401916 14038 
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Table 48. CFLP Genetic Algorithm Unrestricted Runs Results 

Average Standard Average Avg # of 
Problem Cost   I Deviation Time (sec) ! Solutions d* 

CAP301 $ 680,070.85 11664 1389 84000 5949 
CAP302 $ 956,609.50 16967 1638 84000 8939 

CAP303 $ 709,289.70 12166 1329 84000 6034 

CAP304 $ 874,224.65 12314 1332 84000 6058 
CAP305 $2,763,472.10 118663 1666 86000 63724 

CAP306 $3,068,314.35 114972 1631 86000 60676 

CAP307 $2,537,009.70 95235 1648 86000 50784 

CAP308 $2,786,853.95 101743 1635 86000 54643 

CAP309 $2,204,682.40 188696 2480 84000 100483 
CAP310 $2,678,116.40 155351 2489 84000 83150 

CAP311 $1,529,476.90 77072 2516 84000 41189 

CAP312 $1,980,293.00 84276 2518 84000 45157 

CAP313 $2,930,542.75 191276 3100 86000 102749 
CAP314 $3,352,771.00 171758 3086 86000 87579 
CAP315 $2,018,586.75 80668 3131 86000 43336 
CAP316 $2,521,051.80 122071 3128 86000 64468 
CAP317 $2,920,002.60 135845 5921 86000 72890 

CAP318 $3,978,389.90 163982 5929 86000 84662 

CAP319 $1,897,052.85 149502 6038 85526 79518 
CAP320 $2,770,106.25 138100 6038 86000 73632 
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Subsequently we used Friedman's Fr test for a randomized block design to 

test the significance of the three heuristics across all problems. Using the data in 

the previous three tables, we assign each heuristic a rank between one and three 

for each of the problems based on their average performance. However, we 

must first check if the difference in average performance between the heuristics 

is in fact significantly different. We use the computed d* parameter to make this 

decision for pairwise comparisons. Namely, the average performance between 

tabu search and simulated annealing is significantly different if the difference 

between the two average values exceeds the largest of the corresponding two 

d*'s.   We do the same for the tabu search/genetic algorithm and simulated 

annealing/genetic algorithm pairs. If any pairwise comparison is not significant, 

then we assign each heuristic the average of the appropriate ranks. The results 

of these tests of significance and rankings are shown in Table 49, where the test 

of significance columns indicate which of the two heuristics in a pairwise 

comparison is best. An asterisks indicates no significant difference. 

Using the rankings from Table 49, the computed Friedman statistic Fr = 

35.625 (p = .0000) indicates that the performance distribution of at least two of 

the heuristics are in fact different from each other. To determine which 

distributions are different from each other, we use Wicoxon's signed rank test for 

paired differences. The rankings for this test are based on the absolute value of 

the normalized difference and are shown in Table 50. It can be seen that tabu 

search ranks best, followed by simulated annealing and the genetic algorithm 

ranks last. 
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Table 49. CFLP Unrestricted Runs Performance Rankings 

Test of Significance Rankings 
Problem TS-SA TS-GA SA-GA TS SA GA 

CAP301 TS TS SA 1 2 3 
CAP302 * TS SA 1.5 1.5 3 
CAP303 TS TS SA 1 2 3 
CAP304 SA TS SA 2 1 3 
CAP305 * TS SA 1.5 1.5 3 
CAP306 * TS SA 1.5 1.5 3 
CAP307 TS TS SA 2 3 
CAP308 TS TS SA 2 3 
CAP309 TS TS SA 2 3 
CAP310 TS TS SA 2 3 
CAP311 TS TS SA 2 3 
CAP312 TS TS SA 2 3 
CAP313 TS TS SA 2 3 
CAP314 TS TS SA 2 3 
CAP315 TS TS SA 2 3 
CAP316 TS TS SA 2 3 
CAP317 TS TS SA 2 3 
CAP318 TS TS SA 2 3 
CAP319 TS TS SA 2 3 
CAP320 TS TS SA 2 3 

Sum of Ranks: 22.5 37.5 60 
Average Rank: 1.13 1.88 3.00 

* No significant difference detected 
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Table 50. Wilcoxon Tests for CFLP Unrestricted Runs Performance 

Wilcoxon for TS-SA 
Diff       Absolute Rank 

Wilcoxon for TS-GA 
Diff       Absolute Rank 

Wilcoxon for SA-GA 
Diff        Absolute Rank 

-6,506 0.0120 13 -138,040 0.2547 19 -131,534 0.2398 20 
0 0.0000 18 -199,803 0.2640 17 -193,205 0.2531 18 

-2,537 0.0045 15 -139,767 0.2454 20 -137,230 0.2399 19 
7,851 0.0113 14 -181,266 0.2616 18 -189,117 0.2760 17 

0 0.0000 18 -1,082,222 0.6437 13 -1,082,295 0.6438 12 
0 0.0000 18 -1,147,076 0.5971 14 -1,145,009 0.5953 14 

-1,503 0.0009 17 -945,712 0.5943 15 -944,209 0.5928 15 
-4,665 0.0026 16 -960,927 0.5263 16 -956,263 0.5224 16 

-40,669 0.0390 7 -1,161,574 1.1136 4 -1,120,904 1.0343 5 
-56,527 0.0389 8 -1,223,911 0.8416 10 -1,167,384 0.7727 11 
-14,278 0.0175 11 -714,217 0.8761 9 -699,939 0.8438 9 
-40,726 0.0343 9 -791,529 0.6658 12 -750,803 0.6107 13 
-66,423 0.0518 5 -1,647,930 1.2848 3 -1,581,507 1.1723 3 
-80,743 0.0474 6 -1,649,041 0.9679 8 -1,568,299 0.8789 7 
-11,784 0.0121 12 -1,047,529 1.0787 6 -1,035,744 1.0538 4 
-29,664 0.0216 10 -1,146,490 0.8341 11 -1,116,826 0.7953 10 
-99,354 0.0852 2 -1,754,087 1.5045 1 -1,654,733 1.3078 1 

-191,759 0.1010 1 -2,079,185 1.0948 5 -1,887,426 0.9027 6 
-51,488 0.0640 4 -1,092,229 1.3571 2 -1,040,741 1.2154 2 

-106,151 0.0769 3 -1,389,453 1.0064 7 -1,283,303 0.8631 8 

Sum of positive Ranks: 14 Sum of positive Ranks: 0 Sum of positive Ranks: 0 
Sum of negative Ranks: 139 Sum of negative Ranks 210 Sum of negative Ranks: 210 

T= 14 T=0 T=0 
a= 0.05 a= 0.05 a= 0.05 
n= 17 n=20 n=2C ) 

T0= 35 T0=52 T0=5S > 

Reject H0 Reject H0 Reject H 0 
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CFLP Unconstrained Runs 
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Figure 45. CFLP Unrestricted Runs Performance 

Figure 45 above depicts the average performance for unrestricted runs for 

each heuristic. The poor performance of the genetic algorithm is obvious. The 

performances of tabu search and simulated annealing are quite close reflecting 

the lack of significant difference along some points. Nonetheless, the statistical 

tests have shown that tabu search does perform statistically better than 

simulated annealing on the average. 

8.1.3 Comparative Results Along Time Constrained Dimension 
For the time limited runs, we completed 20 replications of each problem 

using each heuristic. The same sets of parameters were used as for the 

unrestricted runs and the computation time was arbitrarily limited to 300 seconds 

(5 minutes). Results are summarized on the next three tables. 
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Table 51. CFLP Tabu Search Time Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost    I Deviation Time (sec) ! Solutions d* 

CAP301 $ 542,974.35 2479 300 2285000 1298 

CAP302 $ 764,663.65 10769 300 2284610 5640 

CAP303 $ 571,808.55 4961 300 2261630 2598 

CAP304 $ 702,629.30 11588 300 2278060 6069 

CAP305 $1,683,834.05 2972 300 2315988 1556 

CAP306 $1,926,602.05 4112 300 2244150 2154 

CAP307 $1,591,298.00 0 300 2295275 0 
CAP308 $1,827,281.00 2142 300 2301425 1122 

CAP309 $1,067,053.10 21589 300 1270530 11306 

CAP310 $1,486,406.95 40905 300 1270920 21421 

CAP311 $ 817,788.95 2197 300 1212890 1151 
CAP312 $1,199,450.70 10151 300 1212210 5316 

CAP313 $1,330,451.85 44227 300 1270138 23161 
CAP314 $1,765,091.20 56085 300 1280563 29371 

CAP315 $ 975,749.00 3995 300 1208925 2092 

CAP316 $1,383,505.40 11904 300 1200700 6234 

CAP317 $1,209,198.95 29604 300 641213 15503 

CAP318 $1,963,164.50 32622 300 642313 17084 

CAP319 $ 815,921.70 4334 300 577538 2270 

CAP320 $1,438,045.90 26734 300 621500 14000 
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Table 52. CFLP Simulated Annealing Time Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) ! Solutions d* 
CAP301 $ 553,339.90 4311 300 338190 2258 
CAP302 $ 775,511.35 14062 300 349938 7364 

CAP303 $ 579,580.35 6081 300 334355 3184 
CAP304 $ 701,363.00 13611 300 333155 7128 
CAP305 $1,693,872.95 3583 300 340619 1876 
CAP306 $1,944,007.30 7049 300 336781 3692 
CAP307 $1,606,831.70 5163 300 333933 2704 
CAP308 $1,843,888.80 7417 300 335681 3884 
CAP309 $1,311,874.45 38522 300 280762 20173 
CAP310 $1,691,904.35 39119 300 297760 20486 
CAP311 $1,000,152.40 37925 300 280231 19861 
CAP312 $1,468,460.60 47618 300 270427 24937 

CAP313 $1,693,333.55 70267 300 274881 36798 
CAP314 $2,151,809.10 54514 300 277114 28548 
CAP315 $1,230,670.55 55691 300 275983 29165 
CAP316 $1,699,370.40 57722 300 270276 30228 
CAP317 $3,386,022.05 125912 300 210658 65939 
CAP318 $4,503,614.95 138308 300 206676 72430 
CAP319 $2,752,322.95 219698 300 204746 115053 
CAP320 $3,365,316.05 185389 300 209684 97086 
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Table 53. CFLP Genetic Algorithm Time Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) Solutions d* 

CAP301 $ 780,834.60 21852 301 24965 11443 
CAP302 $1,059,982.30 23649 300 24948 12385 
CAP303 $ 811,370.65 23434 300 24950 12272 
CAP304 $ 965,816.10 22930 300 24895 12008 
CAP305 $3,742,680.05 215261 300 23319 112730 
CAP306 $3,979,663.70 200611 301 23416 105057 
CAP307 $3,409,585.35 171335 301 23315 89726 
CAP308 $3,690,485.65 186350 301 23152 97589 
CAP309 $3,560,788.65 170644 301 16541 89364 

CAP310 $4,088,888.60 336675 301 16596 176313 
CAP311 $2,521,916.15 212293 301 16696 111175 
CAP312 $2,977,596.30 177897 301 16499 93163 
CAP313 $5,068,200.90 310184 301 16530 162440 
CAP314 $5,584,239.45 366694 301 16601 192033 
CAP315 $3,325,414.00 217485 301 16574 113894 
CAP316 $3,993,516.45 225865 301 16606 118283 
CAP317 $8,212,998.90 444479 301 12909 232768 
CAP318 $9,036,484.55 557401 301 12922 291904 

CAP319 $4,712,056.15 408105 302 12856 213719 
CAP320 $5,422,999.35 394072 300 12318 206370 
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We used Friedman's Fr to determine if the distribution of any of the heuristics 

is different from the others. We ranked the performance of each heuristic from 

one to three. If the difference in performance between any two heuristics was 

not statistically significant according to the d* parameter, the heuristic was 

assigned the average of their corresponding ranks. The results of these tests of 

significance and the rankings are summarized in Table 54. 

Using the rankings from Table 54, the computed Friedman's statistic Fr = 

39.025 (p = .0000) indicates that the performance distributions of at least two of 

the heuristics are in fact different from each other. To determine which 

distributions are in fact different, we used Wilcoxon's signed rank test for paired 

differences. The results of these tests, shown in Table 55, indicate the 

performance distributions of all three heuristics are in fact different from each 

other. Looking at the rankings in Table 54, this is not a surprising result. The 

performance of tabu search is consistently better than the performance of the 

other two with the genetic algorithm consistently performing poorly. 

Figure 46 shows that the performance of tabu search and simulated 

annealing is close for the smaller sized problems, but diverges for the larger 

sized problems. To more clearly understand the effect of limiting time, we also 

plotted the performance for each heuristic over time. Figure 47 shows this effect 

for problem CAP301. Similar charts for all problems can be found in Appendix E. 

Clearly, tabu search is very efficient within the first few seconds, whereas the 

other two heuristics are slower and the genetic algorithm levels off too early. 
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Table 54. CFLP Time Limited Runs Performance Rankings 

Test of Significance Rankings 
Problem TS-SA TS-GA      SA-GA TS     SA GA 

CAP301 TS TS SA 1         2 3 
CAP302 TS TS SA 1         2 3 
CAP303 TS TS SA 1         2 3 
CAP304 * TS SA 1.5      1.5 3 
CAP305 TS TS SA 1         2 3 
CAP306 TS TS SA 1         2 3 
CAP307 TS TS SA 1         2 3 
CAP308 TS TS SA 1         2 3 
CAP309 TS TS SA 1         2 3 
CAP310 TS TS SA 1         2 3 
CAP311 TS TS SA 1         2 3 
CAP312 TS TS SA 1         2 3 
CAP313 TS TS SA 1         2 3 
CAP314 TS TS SA 1         2 3 
CAP315 TS TS SA 1         2 3 
CAP316 TS TS SA 1         2 3 
CAP317 TS TS SA 1         2 3 
CAP318 TS TS SA 1         2 3 
CAP319 TS TS SA 1         2 3 
CAP320 TS TS SA 1         2 3 

Sum of Ranks: 20.5   39.5 60 
Average Rank: 1.03   1.98 3.00 

* No significant difference detected 
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Table 55. Wilcoxon Tests for CFLP Time Limited Runs Performance 

Wilcoxon for TS-SA 
Diff        Absolute Rank 

Wilcoxon for TS-GA 
Diff        Absolute Rank 

Wilcoxon for SA-GA 
Diff       Absolute Rank 

-10,366 0.0191 13 -237,860 0.4381 17 -227,495 0.4111 17 
-10,848 0.0142 14 -295,319 0.3862 19 -284,471 0.3668 20 

-7,772 0.0136 15 -239,562 0.4190 18 -231,790 0.3999 18 
0 0.0000 20 -263,187 0.3746 20 -264,453 0.3771 19 

-10,039 0.0060 19 -2,058,846 1.2227 13 -2,048,807 1.2095 9 
-17,405 0.0090 18 -2,053,062 1.0656 15 -2,035,656 1.0471 11 
-15,534 0.0098 16 -1,818,287 1.1426 14 -1,802,754 1.1219 10 
-16,608 0.0091 17 -1,863,205 1.0197 16 -1,846,597 1.0015 14 

-244,821 0.2294 7 -2,493,736 2.3370 7 -2,248,914 1.7143 2 
-205,497 0.1383 12 -2,602,482 1.7509 11 -2,396,984 1.4167 7 
-182,363 0.2230 10 -1,704,127 2.0838 9 -1,521,764 1.5215 5 
-269,010 0.2243 9 -1,778,146 1.4825 12 -1,509,136 1.0277 12 
-362,882 0.2728 5 -3,737,749 2.8094 4 -3,374,867 1.9930 1 
-386,718 0.2191 11 -3,819,148 2.1637 8 -3,432,430 1.5951 4 
-254,922 0.2613 6 -2,349,665 2.4081 6 -2,094,743 1.7021 3 
-315,865 0.2283 8 -2,610,011 1.8865 10 -2,294,146 1.3500 8 

-2,176,823 1.8002 2 -7,003,800 5.7921 1 -4,826,977 1.4256 6 
-2,540,450 1.2941 4 -7,073,320 3.6030 3 -4,532,870 1.0065 13 
-1,936,401 2.3733 1 -3,896,134 4.7751 2 -1,959,733 0.7120 15 
-1,927,270 1.3402 3 -3,984,953 2.7711 5 -2,057,683 0.6114 16 

Sum of positive Ranks: 0 Sum of positive Ranks: 0 Sum of positive Ranks: 0 
Sum of negative Ranks: 190 Sum of negative Ranks: 210 Sum of negative Ranks: 210 

T=0 T=0 T=0 
ot= 0.05 cc= 0.05 oc= 0.05 
n=19 n=20 n=20 

T0=46 T0=52 T0=52 
Reject H 0 Reject H 0 Reject H 0 
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Figure 46. CFLP Time Limited Runs Performance 
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Figure 47. CFLP Heuristics Performance Over Time 
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8.1.4 Comparative Results Along Solutions Dimension 
For the comparison along the solutions dimension, each heuristic applied 

was limited to a maximum number of candidate solutions it could evaluate. Of 

the three heuristics, the genetic algorithm evaluates the fewest solutions for the 

given parameters. We therefore limited tabu search and simulated annealing to 

the 76,040 candidate solutions the genetic algorithm evaluated for the 

unrestricted run. Tabu search actually evaluated a few more solutions due to the 

software implementation. This is because for each iteration, tabu search 

evaluates a number of solutions equal to the neighborhood size or a subset 

thereof. Since the algorithm can only be stopped between iterations, it usually 

exceeds the limit. In the case of simulated annealing, since the algorithm 

evaluates one solution at a time, it was stopped at the prescribed limit. However, 

simulated annealing could complete its run before reaching the prescribed limit. 

As before, 20 replications were completed for each problem. Parameters for 

tabu search and genetic algorithm were kept the same as those for the 

unrestricted runs. However, the parameters for simulated annealing were 

modified to improve its performance (RATE = .80, ACCEPT = 1000, and 

FACTOR = 2). The results are provided in tables 56, 57, and 58. 

As before, we used the d* value to test for significant differences in average 

performance and then ranked each heuristic using a block design. The results 

are shown in Table 59.   The computed Friedman's Fr = 33.075 (p = .0000) 

indicates the performance distribution of at least one of the heuristics is different 

from the others.  In Table 60 we show the results of using the Wilcoxon signed 
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rank test. This test indicates the performances of all three heuristics are 

significantly different from each other. Interestingly, simulated annealing turn out 

to be the best performer followed by tabu search and then the genetic algorithm. 

Figure 48 shows the average performance of each heuristic for each of the 

test problems. The figure shows that even when the limit for the number of 

solutions allowed is drastically reduced, tabu search and simulated annealing still 

do much better than the genetic algorithm. However, if we look at Figure 49, we 

notice that for a fewer number of solutions, the genetic algorithm is superior to 

the other two heuristics. Its deficiency appears only after it begins to level off, 

whereas the other two heuristics continue to improve. If we had made the 

solutions cutoff smaller, then the performance of the genetic algorithm would 

have been relatively better. In essence, the genetic algorithm apparently is able 

to extract more information from a fewer number of solutions, although it also 

appears to reach and stay near local optima. We have included a solutions 

performance chart like the one in Figure 49 for each of the test problems. These 

can be found in Appendix F. 
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Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) ! Solutions d* 

CAP301 $ 566,076.30 8587 12 76200 4497 
CAP302 $ 818,214.20 14129 12 76200 7399 
CAP303 $ 592,989.95 5362 12 76200 2808 
CAP304 $ 751,143.00 18478 12 76200 9677 

CAP305 $1,914,184.95 48849 12 76250 25581 
CAP306 $2,164,626.70 48722 12 76250 25515 
CAP307 $1,753,821.30 27323 12 76250 14309 
CAP308 $2,003,821.30 27323 12 76250 14309 
CAP309 $1,244,407.10 55873 23 76200 29260 
CAP310 $1,703,818.05 71367 23 76200 37374 
CAP311 $ 916,942.95 26901 23 76200 14088 
CAP312 $1,356,138.50 44104 23 76200 23097 

CAP313 $2,082,093.40 77865 23 76250 40777 
CAP314 $2,575,829.00 93552 23 76250 48992 
CAP315 $1,510,727.65 67231 23 76250 35208 
CAP316 $2,005,419.90 61740 24 76250 32332 
CAP317 $2,656,106.95 101685 44 76250 53251 
CAP318 $3,564,357.70 124452 44 76250 65174 

CAP319 $1,846,287.00 107972 45 76250 56544 
CAP320 $2,605,835.70 105331 45 76250 55160 
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Table 57. CFLP Simulated Annealing Solutions Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) Solutions d* 
CAP301 $ 563,073.65 5063 56 76041 2652 
CAP302 $ 795,292.35 15224 57 76041 7972 
CAP303 $ 585,768.25 3952 58 75998 2069 
CAP304 $ 725,858.65 14603 58 75986 7647 
CAP305 $1,713,277.80 18402 61 75737 9637 
CAP306 $1,964,911.95 19394 63 75737 10157 
CAP307 $1,599,798.10 5310 61 74617 2781 
CAP308 $1,843,579.20 5200 60 74821 2723 
CAP309 $1,324,595.80 65872 82 76041 34497 
CAP310 $1,795,437.25 74342 86 76041 38932 
CAP311 $ 921,769.95 44180 79 73717 23136 
CAP312 $1,358,912.30 53188 76 72388 27854 
CAP313 $1,743,930.80 116671 96 76041 61099 
CAP314 $2,227,589.10 106465 99 76041 55754 
CAP315 $1,130,032.10 52502 87 74371 27495 
CAP316 $1,583,606.35 76626 86 74048 40128 
CAP317 $2,449,426.00 152632 186 76041 79931 
CAP318 $3,464,948.50 152103 189 76041 79655 
CAP319 $1,429,489.25 82018 147 76041 42952 
CAP320 $2,181,267.75 156990 141 75328 82213 
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Table 58. CFLP Genetic Algorithm Solutions Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) i Solutions d* 

CAP301 $ 680,070.85 11360 1392 76040 5949 

CAP302 $ 956,609.50 17069 1654 76040 8939 

CAP303 $ 709,289.70 11523 1328 76040 6034 
CAP304 $ 874,224.65 11569 1332 76040 6058 

CAP305 $2,763,472.10 121683 1666 76040 63724 

CAP306 $3,068,314.35 115862 1630 76040 60676 

CAP307 $2,537,009.70 96974 1647 76040 50784 

CAP308 $2,786,853.95 104344 1634 76040 54643 

CAP309 $2,204,682.40 191875 2478 76040 100483 
CAP310 $2,678,116.40 158779 2487 76040 83150 
CAP311 $1,529,476.90 78652 2515 76040 41189 
CAP312 $1,980,293.00 86229 2517 76040 45157 

CAP313 $2,930,542.75 196204 3098 76040 102749 

CAP314 $3,352,771.00 167235 3087 76040 87579 

CAP315 $2,018,586.75 82751 3130 76040 43336 

CAP316 $2,521,051.80 123104 3130 76040 64468 

CAP317 $2,920,002.60 139187 5919 76040 72890 

CAP318 $3,978,389.90 161666 5926 76040 84662 

CAP319 $1,897,052.85 151842 6040 76040 79518 

CAP320 $2,770,106.25 140603 6038 76040 73632 
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Table 59. CFLP Solutions Limited Runs Performance Rankings 

Test of Significance Rankings 
Problem TS-SA TS-GA SA-GA TS SA GA 

CAP301 * TS SA 1.5 1.5 3 
CAP302 SA TS SA 2 3 
CAP303 SA TS SA 2 3 
CAP304 SA TS SA 2 3 
CAP305 SA TS SA 2 3 
CAP306 SA TS SA 2 3 
CAP307 SA TS SA 2 3 
CAP308 SA TS SA 2 3 
CAP309 TS TS SA 1 2 3 
CAP310 TS TS SA 1 2 3 
CAP311 * TS SA 1.5 1.5 3 
CAP312 * TS SA 1.5 1.5 3 
CAP313 SA TS SA 2 3 
CAP314 SA TS SA 2 3 
CAP315 SA TS SA 2 3 
CAP316 SA TS SA 2 3 
CAP317 SA TS SA 2 3 
CAP318 SA TS SA 2 3 
CAP319 SA * SA 2.5 2.5 
CAP320 SA TS SA 2 3 

Sum of Ranks: 37 23.5 59.5 
Average Rank: 1.85 1.18 2.98 

* No Significant difference detected 
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Table 60. Wilcoxon Tests for CFLP Solutions Limited Runs Performance 

Wilcoxon for TS-SA 
Diff      Absolute   Rank 

Wilcoxon for TS-GA 
Diff      Absolute   Rank 

Wilcoxon for SA-GA 
Diff        Absolute   Rank 

0 0.0000 18 -113,995 0.2014 13 -116,997 0.2078 16 
22,922 0.0280 15 -138,395 0.1691 15 -161,317 0.2028 18 

7,222 0.0122 17 -116,300 0.1961 14 -123,521 0.2109 15 
25,284 0.0337 14 -123,082 0.1639 16 -148,366 0.2044 17 

200,907 0.1050 7 -849,287 0.4437 6 -1,050,194 0.6130 5 
199,715 0.0923 8 -903,688 0.4175 7 -1,103,402 0.5616 8 
154,023 0.0878 9 -783,188 0.4466 5 -937,212 0.5858 7 
160,242 0.0800 10 -783,033 0.3908 9 -943,275 0.5117 9 
-80,189 0.0644 12 -960,275 0.7717 1 -880,087 0.6644 3 
-91,619 0.0538 13 -974,298 0.5718 3 -882,679 0.4916 11 

0 0.0000 18 -612,534 0.6680 2 -607,707 0.6593 4 
0 0.0000 18 -624,155 0.4602 4 -621,381 0.4573 12 

338,163 0.1624 5 -848,449 0.4075 8 -1,186,612 0.6804 2 
348,240 0.1352 6 -776,942 0.3016 11 -1,125,182 0.5051 10 
380,696 0.2520 1 -507,859 0.3362 10 -888,555 0.7863 1 
421,814 0.2103 3 -515,632 0.2571 12 -937,445 0.5920 6 
206,681 0.0778 11 -263,896 0.0994 18 -470,577 0.1921 19 

99,409 0.0279 16 -414,032 0.1162 17 -513,441 0.1482 20 
416,798 0.2257 2 0 0.0000 20 -467,564 0.3271 13 
424,568 0.1629 4 -164,271 0.0630 19 -588,839 0.2700 14 

Sum of positive Ranks: 128 Sum of positive Ranks: 0 Sum of positive Ranks: 0 
Sum of negative Ranks: 25 Sum of negative Ranks: 190 Sum of negative Ranks: 210 

T=25 T=0 T=0 
oc= 0.05 a= 0.05 cc= 0.05 
n=17 n=19 n=20 

T0=35 T0=46 T0=52 
Reject H0 Reject H0 Reject H 0 



207 

CFLP Solutions Limited Runs Performance 

A"    A?    <f&    A?    <&    A?    A$    A?    A?    A?    A?    A?    A?    A?    A?    A?    A?    A?   AT    A9~ 
cr <r <f <r <r <r <r <r <r <f <r <r <r <r  cr <r <r <r <r  cr 

-TS -B-SA -*-GA 

Figure 48. CFLP Solutions Limited Runs Performance 

CFLP Solutions Performance (CAP301) 

8 1000000 
o 

0     20000    40000    60000    80000   100000   120000   140000   160000   180000   200000 

Solutions Evaluated 

-TS -B-SA -*-GA 

Figure 49. CFLP Heuristics Performance Over Solutions Evaluated 
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8.2 MP-FLP Experiments 
In this section we report the results of comparing the performance of the tabu 

search, simulated annealing, and genetic algorithm heuristics that were 

discussed in Chapter 6 for MP-FLP. We used a set of larger sized test problems 

than our original benchmark test problems. The test problems are first described 

followed by the comparison results. 

8.2.1 Test Problems 
We created a new set of 20 test problems using our database of 250 U.S. 

cities. The structure of the problems is the same as was used for the benchmark 

problems described in §6.6 except that we increased the size dimensions. The 

20 problems are described in the table below. 

Table 61. MP-FLP Test Problems 

Problem Size Capacity Demand Open Close 

MP301 20x15x38 2500 Increasing 4937 3702 
MP302 20x15x38 2500 Increasing 2370 1777 
MP303 20x15x38 5000 Increasing 4937 3702 
MP304 20x15x38 5000 Increasing 2370 1777 
MP305 25x10x25 2500 Decreasing 3113 2335 
MP306 25x10x25 2500 Decreasing 1494 1121 
MP307 25x10x25 5000 Decreasing 3113 2335 
MP308 25x10x25 5000 Decreasing 1494 1121 
MP309 25x15x38 5000 Concave 7646 5734 
MP310 25x15x38 5000 Concave 3670 2752 
MP311 25x15x38 10000 Concave 7646 5734 
MP312 25x15x38 10000 Concave 3670 2752 
MP313 30x10x25 2500 Convex 1660 1245 
MP314 30x10x25 2500 Convex 797 598 
MP315 30x10x25 5000 Convex 1660 1245 
MP316 30x10x25 5000 Convex 797 598 
MP317 30x15x38 2500 Seasonal 3777 2832 
MP318 30x15x38 2500 Seasonal 1813 1360 
MP319 30x15x38 5000 Seasonal 3777 2832 
MP320 30x15x38 5000 Seasonal 1813 1360 
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8.2.2 Comparative Results Along Unrestricted Dimension 
Following the same testing methodology described in §8.1.2, we obtained 

the average performance of each heuristic for each of the test problems. These 

results are given in Tables 62, 63, and 64. In Table 65 we summarize the test of 

significant differences and the resulting performance ranks for each problem in 

our block design. A Friedman's statistic of 39.025 (p = .0000) indicates the 

existence of some significant differences in the distributions of performance. The 

Wilcoxon tests, summarized in Table 66, indicate all distributions are different 

from each other. This is readily seen from the rankings in Table 65, which clearly 

shows simulated annealing turns out to be the best performer for all but one of 

the problems. Tabu search is a close second with the genetic algorithm lagging 

behind. 

Figure 50 shows a graphical representation of the heuristics performance 

over the test problems. A visual inspection indicates that tabu search performs 

almost as well as simulated annealing whereas the performance of the genetic 

algorithm is quite distant from the other two. Also, note that the performance of 

the genetic algorithm worsens as the size of the problem increases. For the 

problems with 15 locations and 38 customers the gap between the performance 

of the genetic algorithm is much wider than for problems with 10 locations and 25 

customers. 
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Table 62. MP-FLP Tabu Serach Unrestricted Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) Solutions d* 

MP301 $ 6,324,356.75 38907 1307 11400000 20375 

MP302 $ 5,153,172.15 19023 1321 11400000 9962 

MP303 $ 5,472,505.55 30108 1365 11400000 15767 

MP304 $ 4,402,258.45 8064 1359 11400000 4223 

MP305 $ 3,745,909.80 26912 824 9375000 14094 

MP306 $ 3,248,490.00 11141 799 9375000 5834 

MP307 $ 3,678,300.70 23274 809 9375000 12188 

MP308 $ 3,204,592.05 9242 809 9375000 4840 

MP309 $12,832,359.50 66841 1678 14250000 35004 

MP310 $10,636,326.70 28810 1745 14250000 15087 

MP311 $11,849,066.60 39154 1713 14250000 20505 

MP312 $ 9,691,844.60 16977 1709 14250000 8891 

MP313 $ 2,582,253.00 11797 971 11250000 6178 

MP314 $ 2,248,362.10 4869 970 11250000 2550 

MP315 $ 2,567,689.35 13827 973 11250000 7241 

MP316 $ 2,231,245.40 3808 980 11250000 1994 

MP317 $ 7,779,605.55 24999 2025 17100000 13092 

MP318 $ 6,428,051.15 14399 2027 17100000 7540 

MP319 $ 7,382,018.10 23354 2062 17100000 12230 

MP320 $ 6,063,820.00 12338 2074 17100000 6461 
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Table 63. MP-FLP Simulated Annealing Unrestricted Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) ! Solutions d* 

MP301 $ 6,172,111.90 43210 507 634170 22629 
MP302 $ 5,034,320.75 29396 490 623957 15394 

MP303 $ 5,306,477.60 32352 313 423249 16942 

MP304 $ 4,368,017.55 18345 321 430556 9607 

MP305 $ 3,719,155.85 23735 289 451583 12430 

MP306 $ 3,223,417.00 8505 290 469536 4454 

MP307 $ 3,634,531.35 25837 252 415356 13530 
MP308 $ 3,183,554.95 8343 277 440477 4369 
MP309 $12,488,940.70 67691 517 594176 35449 
MP310 $10,453,490.90 34117 513 593476 17867 

MP311 $11,465,702.70 65494 351 426807 34299 
MP312 $ 9,622,515.90 31980 352 429916 16747 

MP313 $ 2,550,036.15 11196 290 438582 5863 
MP314 $ 2,236,467.10 4515 300 452907 2365 
MP315 $ 2,538,118.55 10426 288 442426 5460 
MP316 $ 2,222,564.55 6952 294 453741 3641 

MP317 $ 7,641,224.45 44264 521 520805 23181 
MP318 $ 6,399,649.50 23320 506 512582 12212 

MP319 $ 7,215,888.65 38824 399 436246 20332 
MP320 $ 6,060,087.40 12887 396 439888 6749 
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Table 64. MP-FLP Genetic Algorithm Unrestricted Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) , Solutions d* 

MP301 $ 7,651,626.95 88431 1339 56030 46310 
MP302 $ 6,220,335.15 82987 1335 56030 43459 
MP303 $ 6,489,592.65 55207 1332 56030 28911 
MP304 $ 5,129,294.60 41141 1334 56030 21545 
MP305 $ 4,222,607.60 28901 761 56030 15135 
MP306 $ 3,510,343.65 19648 763 56030 10290 
MP307 $ 4,108,556.90 21504 760 56030 11261 
MP308 $ 3,407,403.05 16312 763 56030 8542 
MP309 $16,161,072.40 155468 1724 56030 81417 
MP310 $13,364,279.00 179667 1692 56030 94089 
MP311 $14,439,577.20 129748 1723 56030 67947 
MP312 $11,630,847.20 100626 1745 56030 52697 
MP313 $ 2,926,339.45 22621 916 56030 11847 
MP314 $ 2,452,184.60 11919 917 56030 6242 
MP315 $ 2,889,338.75 15725 907 56030 8235 
MP316 $ 2,422,764.85 10429 905 56030 5462 
MP317 $10,300,987.70 100285 2173 56030 52518 
MP318 $ 8,620,074.95 139602 2162 56030 73108 
MP319 $ 9,287,877.15 51756 2024 56030 27104 
MP320 $ 7,568,532.50 65973 2028 56030 34549 
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Table 65. MP-FLP Unrestricted Runs Performance Rankings 

Test of Significance Rankings 
Problem TS-SA TS-GA SA-GA TS SA GA 
MP301 SA TS SA 2 3 
MP302 SA TS SA 2 3 
MP303 SA TS SA 2 3 
MP304 SA TS SA 2 3 
MP305 SA TS SA 2 3 
MP306 SA TS SA 2 3 
MP307 SA TS SA 2 3 
MP308 SA TS SA 2 3 
MP309 SA TS SA 2 3 
MP310 SA TS SA 2 3 
MP311 SA TS SA 2 3 
MP312 SA TS SA 2 3 
MP313 SA TS SA 2 3 
MP314 SA TS SA 2 3 
MP315 SA TS SA 2 3 
MP316 SA TS SA 2 3 
MP317 SA TS SA 2 3 
MP318 SA TS SA 2 3 
MP319 SA TS SA 2 3 
MP320 * TS SA 1.5 1.5 3 

Sum of Ranks: 39.5 20.5 60 
Average Rank: 1.98 1.03 3.00 

* No significant difference detected 
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Table 66. Wilcoxon Tests for MP-FLP Unrestricted Runs Performance 

Wilcoxon for TS-SA 
Diff      Absolute   Rank 

Wilcoxon for TS-GA 
Diff        Absolute   Rank 

Wilcoxon for SA-GA 
Diff        Absolute   Rank 

152,245 0.0241 4 -1,327,270 0.2099 8 -1,479,515 0.2397 8 
118,851 0.0231 5 -1,067,163 0.2071 9 -1,186,014 0.2356 9 
166,028 0.0303 2 -1,017,087 0.1859 11 -1,183,115 0.2230 10 
34,241 0.0078 12 -727,036 0.1652 12 -761,277 0.1743 12 
26,754 0.0071 15 -476,698 0.1273 14 -503,452 0.1354 15 
25,073 0.0077 13 -261,854 0.0806 19 -286,927 0.0890 19 
43,769 0.0119 10 -430,256 0.1170 16 -474,026 0.1304 16 
21,037 0.0066 16 -202,811 0.0633 20 -223,848 0.0703 20 

343,419 0.0268 3 -3,328,713 0.2594 3 -3,672,132 0.2940 3 
182,836 0.0172 8 -2,727,952 0.2565 5 -2,910,788 0.2785 5 
383,364 0.0324 1 -2,590,511 0.2186 7 -2,973,875 0.2594 6 

69,329 0.0072 14 -1,939,003 0.2001 10 -2,008,331 0.2087 11 
32,217 0.0125 9 -344,086 0.1333 13 -376,303 0.1476 13 
11,895 0.0053 17 -203,823 0.0907 17 -215,718 0.0965 17 
29,571 0.0115 11 -321,649 0.1253 15 -351,220 0.1384 14 

8,681 0.0039 19 -191,519 0.0858 18 -200,200 0.0901 18 
138,381 0.0178 7 -2,521,382 0.3241 2 -2,659,763 0.3481 1 
28,402 0.0044 18 -2,192,024 0.3410 1 -2,220,425 0.3470 2 

166,129 0.0225 6 -1,905,859 0.2582 4 -2,071,989 0.2871 4 
0 0.0000 20 -1,504,713 0.2481 6 -1,508,445 0.2489 7 

Sum of positive Ranks: 190 Sum of positive Ranks: 0 Sum of positive Ranks: 0 
Sum of negati ve Ranks 0 Sum of negative Ranks: 210 Sum of negative Ranks: 210 

T=0 T=0 T=0 
a= 0.05 a= 0.05 cc= 0.05 
n=19 n=20 n=20 

T0=46 T0=52 T0=52 
Reject H0 Reject H 0 Reject H 0 
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Figure 50. MP-FLP Unrestricted Runs Performance 
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8.2.3 Comparative Results Along Time Dimension 
Consistent with the earlier experiments, we limited each replication with each 

heuristic to 300 seconds (5 minutes). As can be seen from the computation time, 

this was a considerable limitation especially for tabu search and the genetic 

algorithm. The results from these runs are summarized in Tables 67, 68, and 69. 

Table 70 provides the summarized results from testing for significant differences 

and the performance rankings as previously described. Note that all pairwise 

comparisons were found to be significant. Also note that some performance 

rankings have shifted from those with no time limitations. In particular, the 

genetic algorithm continues to be a distant third for all problems, and tabu search 

ranks better for several more problems than simulated annealing. The Friedman 

statistic of 30.4 (p = .0000) indicates a significant difference among the three 

heuristics. The Wilcoxon tests summarized in Table 71, however, indicates that 

only the performance distribution of the genetic algorithm is different. The 

performance distributions of tabu search and simulated annealing are not 

significantly different. 

Figure 51 presents a visual representation of these results. Notice the 

overlaps between tabu search and simulated annealing which result in the lack of 

significant difference between them. Also, Figure 52 clarifies how these 

heuristics perform over computation time. Note that it is only at approximately 

300 seconds that simulated annealing approaches the performance of tabu 

search. A tighter time limit would have prevented simulated annealing from 

being competitive. Additional plots like Figure 52 can be found in Appendix G. 
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Table 67. MP-FLP Tabu Serach Time Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) Solutions d* 
MP301 $ 6,412,017.50 67895 300 2408326 35556 
MP302 $ 5,183,946.00 33265 300 2389136 17420 
MP303 $ 5,534,867.00 46310 300 2367362 24252 
MP304 $ 4,416,786.95 18238 300 2372112 9551 
MP305 $ 3,769,283.05 35590 300 3429063 18638 
MP306 $ 3,258,720.90 12069 300 3224625 6321 
MP307 $ 3,703,002.50 32074 300 3384375 16797 
MP308 $ 3,214,193.40 12018 300 3401938 6294 
MP309 $12,947,719.85 95939 300 2302610 50242 
MP310 $10,684,304.00 43486 300 2293823 22773 
MP311 $11,897,133.60 81998 300 2292398 42941 
MP312 $ 9,737,895.60 36936 300 2286080 19343 
MP313 $ 2,609,377.95 15554 300 3191025 8145 
MP314 $ 2,256,592.80 10082 300 3371663 5280 
MP315 $ 2,581,966.40 20916 300 3165825 10954 
MP316 $ 2,238,971.05 4519 300 3371325 2366 
MP317 $ 7,842,931.70 39191 300 2159958 20524 
MP318 $ 6,462,526.95 20068 300 2056902 10509 
MP319 $ 7,449,919.60 36820 300 1971402 19282 
MP320 $ 6,087,348.30 17995 300 2169990 9424 
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Table 68. MP-FLP Simulated Annealing Time Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) Solutions d* 
MP301 $ 6,917,943.35 68715 300 278181 35985 
MP302 $ 5,714,941.40 61169 300 279153 32033 
MP303 $ 5,665,557.20 60085 300 312706 31466 
MP304 $ 4,722,668.30 47478 300 313119 24863 
MP305 $ 3,719,155.85 23735 289 451583 12430 
MP306 $ 3,223,417.00 8505 290 469536 4454 
MP307 $ 3,634,531.35 25837 252 415356 13530 
MP308 $ 3,183,554.95 8343 277 440477 4369 
MP309 $14,936,867.25 166344 300 254308 87112 
MP310 $12,680,310.80 98853 300 257674 51768 
MP311 $12,881,783.95 158665 300 283961 83091 
MP312 $10,907,744.20 132624 300 287307 69453 
MP313 $ 2,550,036.15 11196 290 438582 5863 
MP314 $ 2,236,467.10 4515 300 452907 2365 
MP315 $ 2,538,118.55 10426 288 442426 5460 
MP316 $ 2,222,564.55 6952 294 453741 3641 
MP317 $10,283,323.45 112224 300 227201 58770 
MP318 $ 8,774,914.15 124473 300 229071 65185 
MP319 $ 8,970,455.55 112514 300 256940 58922 
MP320 $ 7,550,471.70 93164 300 260682 48789 
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Table 69. MP-FLP Genetic Algorithm Time Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) Solutions d* 
MP301 $14,793,284.35 553798 300 12529 290017 
MP302 $13,124,836.90 345168 300 12529 180760 
MP303 $12,874,367.90 360787 300 12532 188940 
MP304 $11,179,814.55 383475 300 12512 200821 
MP305 $ 5,057,156.60 72103 300 21586 37759 
MP306 $ 4,322,811.75 64963 300 21289 34020 
MP307 $ 4,853,551.20 65462 300 21421 34282 
MP308 $ 4,058,463.15 64416 300 21726 33734 
MP309 $38,519,941.30 1328533 301 9696 695736 
MP310 $35,192,103.75 1200063 300 9918 628458 
MP311 $34,681,266.80 940257 300 9850 492400 
MP312 $31,704,886.20 708200 300 9887 370875 
MP313 $ 3,851,929.10 44100 300 18346 23095 
MP314 $ 3,362,102.30 62417 300 18378 32687 
MP315 $ 3,813,116.75 58901 300 18341 30846 
MP316 $ 3,342,181.25 62909 300 18006 32945 
MP317 $28,557,098.00 686920 301 8217 359731 
MP318 $26,735,282.00 678667 301 8286 355409 
MP319 $26,373,727.25 973598 300 8242 509861 
MP320 $24,595,610.60 800262 301 8230 419087 
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Table 70. MP-FLP Time Limited Runs Performance Rankings 

Test of Significance Rankings 
Problem TS-SA TS-GA SA-GA TS SA GA 
MP301 TS TS SA 1 2 3 
MP302 TS TS SA 1 2 3 
MP303 TS TS SA 1 2 3 
MP304 TS TS SA 1 2 3 
MP305 SA TS SA 2 1 3 
MP306 SA TS SA 2 1 3 
MP307 SA TS SA 2 1 3 
MP308 SA TS SA 2 1 3 
MP309 TS TS SA 1 2 3 
MP310 TS TS SA 1 2 3 
MP311 TS TS SA 1 2 3 
MP312 TS TS SA 1 2 3 
MP313 SA TS SA 2 1 3 
MP314 SA TS SA 2 1 3 
MP315 SA TS SA 2 1 3 
MP316 SA TS SA 2 1 3 
MP317 TS TS SA 1 2 3 
MP318 TS TS SA 1 2 3 
MP319 TS TS SA 1 2 3 
MP320 TS TS SA 1 2 3 

Sum of Ranks: 28 32 60 
Average Rank: 1.40 1.60 3.00 
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Table 71. Wilcoxon Tests for MP-FLP Time Limited Runs Performance 

Wilcoxon for TS-SA 
Diff        Absolute   Rank 

Wilcoxon for TS-GA 
Diff        Absolute   Rank 

Wilcoxon for SA-GA 
Diff        Absolute   Rank 

-505,926 0.0789 10 -5,807,969 0.9058 13 -7,875,341 1.1384 12 
-530,995 0.1024 8 -5,555,308 1.0716 10 -7,409,896 1.2966 10 
-130,690 0.0236 12 -5,645,813 1.0200 11 -7,208,811 1.2724 11 
-305,881 0.0693 11 -5,207,870 1.1791 9 -6,457,146 1.3673 9 

50,127 0.0133 16 -3,325,460 0.8823 15 -1,338,001 0.3598 17 
35,304 0.0108 17 -3,115,420 0.9560 12 -1,099,395 0.3411 18 
68,471 0.0185 14 -2,619,415 0.7074 20 -1,219,020 0.3354 19 
30,638 0.0095 18 -2,300,600 0.7158 18 -874,908 0.2748 20 

-1,989,147 0.1536 6 -9,647,706 0.7451 17 -23,583,074 1.5789 8 
-1,996,007 0.1868 5 -7,619,764 0.7132 19 -22,511,793 1.7753 6 

-984,650 0.0828 9 -9,277,078 0.7798 16 -21,799,483 1.6923 7 
-1,169,849 0.1201 7 -8,762,966 0.8999 14 -20,797,142 1.9066 4 

59,342 0.0227 13 -7,266,256 2.7847 6 -1,301,893 0.5105 13 
20,126 0.0089 19 -7,097,125 3.1451 4 -1,125,635 0.5033 15 
43,848 0.0170 15 -6,012,301 2.3286 8 -1,274,998 0.5023 16 
16,407 0.0073 20 -5,868,276 2.6210 7 -1,119,617 0.5037 14 

-2,440,392 0.3112 2 -24,789,248 3.1607 3 -18,273,775 1.7770 5 
-2,312,387 0.3578 1 -24,238,726 3.7507 1 -17,960,368 2.0468 2 
-1,520,536 0.2041 4 -22,113,876 2.9683 5 -17,403,272 1.9401 3 
-1,463,123 0.2404 3 -21,795,769 3.5805 2 -17,045,139 2.2575 1 

Sum of positive Ranks: 132 Sum of positive Ranks: 0 Sum of positive Ranks: 0 
Sum of negative Ranks: 78 Sum of negative Ranks: 210 Sum of negative Ranks: 210 

T=78 T=0 T=0 
<x= 0.05 a= 0.05 oc= 0.05 
n=20 n=20 n=20 

T0=52 T0=52 T0=52 
Failed to Reject H0 Reject H 0 Reject H 0 
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Figure 51. MP-FLP Time Limited Runs Performance 
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8.2.4 Comparative Results Along Solutions Dimension 
As was done for CFLP, we limited the number of solutions that tabu search 

and simulated annealing could evaluate to the number of solutions evaluated by 

the genetic algorithm without any restrictions (56,030 solutions). This procedure 

allows comparisons based on the ability of the heuristics to make the most out of 

the same amount of information. Tables 72, 73, and 74 summarize the average 

performance for each test problem for 20 replications. Table 75 summarizes the 

test of significance and rankings of average performance. Once again, the 

performance rankings have shifted. Here, the genetic algorithm is the clear 

winner. The Friedman statistic of 30.1 (p = .0000) indicates a significant 

difference among the three distributions. The Wilcoxon tests, summarized in 

Table 76, indicate the performance distribution for the genetic algorithm to be 

significantly different from the other two, but the distributions for tabu search and 

simulated annealing are not significantly different from each other. 

Figure 53 illustrates how the heuristics perform. Note that for problems with 

more locations and customers, tabu search and simulated annealing will need to 

examine many more solutions to overcome the performance of the genetic 

algorithm. Figure 54 nicely illustrates why the genetic algorithm performs well. 

Basically, it extracts more information from the limited number of solutions. The 

other two heuristics require approximately 600,000 solutions to achieve the same 

results. Additional charts like the one in Figure 54 for the other test problems can 

be found in Appendix H. 
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Table 72. MP-FLP Tabu Search Solutions Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) Solutions d* 
MP301 $26,927,397.55 986101 8 56240 516408 
MP302 $25,392,672.50 964549 8 56240 505122 
MP303 $25,085,378.95 871869 8 56240 456586 
MP304 $23,539,623.85 854635 8 56240 447561 
MP305 $12,762,244.05 447365 6 56250 234279 
MP306 $11,965,699.05 439772 6 56250 230303 
MP307 $12,499,188.45 447425 6 56250 234311 
MP308 $11,713,784.40 445937 6 56250 233532 
MP309 $64,189,738.35 2129644 8 56050 1115267 
MP310 $61,225,093.30 2110790 8 56050 1105393 
MP311 $61,165,848.20 2609754 8 56050 1366695 
MP312 $58,187,361.95 2610438 8 56050 1367053 
MP313 $ 9,736,645.90 383082 6 56250 200615 
MP314 $ 9,225,565.20 386212 6 56250 202254 
MP315 $ 9,797,406.45 306634 6 56250 160580 
MP316 $ 9,287,526.15 304738 6 56250 159587 
MP317 $45,576,411.00 1436299 8 57000 752171 
MP318 $43,818,993.70 1436510 9 57000 752282 
MP319 $43,796,043.60 1424067 9 57000 745765 
MP320 $42,034,252.25 1409747 8 57000 738266 
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Table 73. MP-FLP Simulated Annealing Solutions Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) Solutions d* 
MP301 $30,238,750.85 1775177 41 56031 929637 
MP302 $28,814,739.15 1484589 39 56031 777460 
MP303 $26,035,721.25 1292132 40 56031 676673 
MP304 $24,039,100.20 1223499 41 56031 640731 
MP305 $14,795,259.20 328082 35 56031 171812 
MP306 $14,204,179.25 537160 34 56031 281304 
MP307 $14,057,868.75 572933 34 56031 300037 
MP308 $13,170,704.40 540790 35 56031 283205 
MP309 $62,689,977.90 2055697 45 56031 1076542 
MP310 $58,717,876.50 2735133 46 56031 1432354 
MP311 $54,342,493.85 3109249 45 56031 1628274 
MP312 $51,671,612.05 3283682 45 56031 1719622 
MP313 $10,232,890.95 442329 37 56031 231642 
MP314 $ 9,743,948.10 414338 37 56031 216984 
MP315 $10,024,072.10 606997 37 56031 317876 
MP316 $ 9,546,714.15 488534 37 56031 255839 
MP317 $41,036,641.15 1937222 51 56031 1014498 
MP318 $39,487,266.75 2077995 50 56031 1088219 
MP319 $37,232,352.95 2214808 49 56031 1159867 
MP320 $35,670,292.20 2216977 48 56031 1161003 
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Table 74. MC-FLP Genetic Algorithm Solutions Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost    I Deviation Time (sec) ! Solutions d* 

MP301 $ 7,651,626.95 88431 1339 56030 46310 
MP302 $ 6,220,335.15 82987 1335 56030 43459 
MP303 $ 6,489,592.65 55207 1332 56030 28911 
MP304 $ 5,129,294.60 41141 1334 56030 21545 
MP305 $ 4,222,607.60 28901 761 56030 15135 
MP306 $ 3,510,343.65 19648 763 56030 10290 
MP307 $ 4,108,556.90 21504 760 56030 11261 
MP308 $ 3,407,403.05 16312 763 56030 8542 
MP309 $16,161,072.40 155468 1724 56030 81417 
MP310 $13,364,279.00 179667 1692 56030 94089 
MP311 $14,439,577.20 129748 1723 56030 67947 
MP312 $11,630,847.20 100626 1745 56030 52697 
MP313 $ 2,926,339.45 22621 916 56030 11847 
MP314 $ 2,452,184.60 11919 917 56030 6242 
MP315 $ 2,889,338.75 15725 907 56030 8235 
MP316 $ 2,422,764.85 10429 905 56030 5462 
MP317 $10,300,987.70 100285 2173 56030 52518 
MP318 $ 8,620,074.95 139602 2162 56030 73108 
MP319 $ 9,287,877.15 51756 2024 56030 27104 
MP320 $ 7,568,532.50 65973 2028 56030 34549 
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Table 75. MP-FLP Solutions Limited Runs Performance Rankings 

Test of Significance Rankings 
Problem TS-SA TS-GA SA-GA TS SA            GA 
MP301 TS GA GA 2 3 
MP302 TS GA GA 2 3 
MP303 TS GA GA 2 3 
MP304 * GA GA 2.5 2.5 
MP305 TS GA GA 2 3 
MP306 TS GA GA 2 3 
MP307 TS GA GA 2 3 
MP308 TS GA GA 2 3 
MP309 SA GA GA 3 2 
MP310 SA GA GA 3 2 
MP311 SA GA GA 3 2 
MP312 SA GA GA 3 2 
MP313 TS GA GA 2 3 
MP314 TS GA GA 2 3 
MP315 * GA GA 2.5 2.5 
MP316 TS GA GA 2 3 
MP317 SA GA GA 3 2 
MP318 SA GA GA 3 2 
MP319 SA GA GA 3 2 
MP320 SA GA GA 3 2 

Sum of Ranks: 49 51 20 
Average Rank: 2.45 2.55 1.00 

* No significant difference detected 
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Table 76. Wilcoxon Tests for MP-FLP Solutions Limited Runs Performance 

Wilcoxon for TS-SA Wilcoxon for TS-GA Wilcoxon for SA-GA 
Diff Absolute   Rank Diff        Absolute   Rank Diff        Absolute   Rank 

-3,311,353 0.1230 8 19,275,771 0.7158 14 22,587,124 0.7470 12 
-3,422,067 0.1348 5 19,172,337 0.7550 9 22,594,404 0.7841 3 

-950,342 0.0379 16 18,595,786 0.7413 11 19,546,129 0.7507 8 
0 0.0000 19 18,410,329 0.7821 5 18,909,806 0.7866 2 

-2,033,015 0.1593 2 8,539,636 0.6691 20 10,572,652 0.7146 17 
-2,238,480 0.1871 1 8,455,355 0.7066 16 10,693,836 0.7529 7 
-1,558,680 0.1247 6 8,390,632 0.6713 19 9,949,312 0.7077 20 
-1,456,920 0.1244 7 8,306,381 0.7091 15 9,763,301 0.7413 15 
1,499,760 0.0234 18 48,028,666 0.7482 10 46,528,906 0.7422 14 
2,507,217 0.0410 15 47,860,814 0.7817 6 45,353,598 0.7724 6 
6,823,354 0.1116 10 46,726,271 0.7639 8 39,902,917 0.7343 16 
6,515,750 0.1120 9 46,556,515 0.8001 3 40,040,765 0.7749 5 
-496,245 0.0510 14 6,810,306 0.6995 18 7,306,552 0.7140 18 
-518,383 0.0562 13 6,773,381 0.7342 13 7,291,764 0.7483 11 

0 0.0000 19 6,908,068 0.7051 17 7,134,733 0.7118 19 
-259,188 0.0279 17 6,864,761 0.7391 12 7,123,949 0.7462 13 

4,539,770 0.0996 11 35,275,423 0.7740 7 30,735,653 0.7490 10 
4,331,727 0.0989 12 35,198,919 0.8033 2 30,867,192 0.7817 4 
6,563,691 0.1499 4 34,508,166 0.7879 4 27,944,476 0.7505 9 
6,363,960 0.1514 3 34,465,720 0.8199 1 28,101,760 0.7878 1 

Sum of positive Ranks: 82 Sum of positive Ranks: 210 Sum of positive Ranks: 210 
Sum of negative Ranks: 89 Sum of negative Ranks: 0 Sum of negative Ranks: 0 

T= 82 T=0 T=0 
a= 0.05 oc= 0.05 a= 0.05 
n= 18 n=20 n=20 

T0= 40 T0=52 T0=52 
Failed to Reject H0 Reject h 0 Reject H 0 
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Figure 53. MP-FLP Solutions Limited Runs Performance 
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Figure 54. MP-FLP Heuristics Performance Over Solutions Evaluated 
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8.3 MC-FLP Experiments 
In this section we report the results of comparing the performance of the tabu 

search, simulated annealing, and genetic algorithm heuristics we developed in 

Chapter 7 for MC-FLP using a set of larger test problems than our original 

benchmark test problems. We first describe our set of test problems and then we 

report our empirical comparison results along each of the three dimensions of 

comparability. 

8.3.1 Test Problems 
We created a new set of 20 test problems using our database of 250 U.S. 

cities (see Appendix C). The structure of the test problems is the same as for the 

benchmark problems in §7.6 except for their size. The set of test problems is 

summarized in Table 77 below. 

Table 77. MC-FLP Test Problems 

Problem Size Capacity Fixed Costs 

MC201 5x10x50 120000 90000 
MC202 5x10x50 120000 180000 
MC203 5x10x50 240000 90000 
MC204 5x10x50 240000 180000 
MC205 5x30x100 80000 90000 
MC206 5x30x100 80000 180000 
MC207 5x30x100 160000 90000 
MC208 5x30x100 160000 180000 
MC209 7x15x50 110000 90000 
MC210 7x15x50 110000 180000 
MC211 7x15x50 220000 90000 
MC212 7x15x50 220000 180000 
MC213 7x20x100 160000 90000 
MC214 7x20x100 160000 180000 
MC215 7x20x100 320000 90000 
MC216 7x20x100 320000 180000 
MC217 10x30x100 150000 90000 
MC218 10x30x100 150000 180000 
MC219 10x30x100 300000 90000 
MC220 10x30x100 300000 180000 
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8.3.2 Comparative Results Along Unrestricted Dimension 
For the unrestricted runs, we used the same set of parameters as was used 

in the benchmarking experiments. For each of the test problems, 20 replications 

were completed with each heuristic. The results of these runs are summarized in 

Tables 78, 79, and 80. Note the high variability exhibited by the simulated 

annealing heuristic. The results of tests of significance and rankings are shown 

in Table 81 and unlike the results we have seen for CFLP and MP-FLP, we did 

get several pairwise comparisons that were not significantly different based on 

the value of the d* parameter. Fortunately, the computed Friedman statistic of 

16.525 (p = .0003) indicates there are in fact some differences among these 

distributions. Surprisingly, the Wilcoxon tests (given in Table 81) indicate all of 

the distributions are different from each other, with tabu search on top, followed 

by the genetic algorithm and simulated annealing. 

Figure 55 gives the average performance of the heuristics graphically for all 

test problems. Notice that whereas previously tabu search and simulated 

annealing were the two heuristics with nearly identical performance, we now 

have the genetic algorithm taking over the place of simulated annealing with a 

very strong performance. We attribute this improvement in performance to the 

vector representation used for MC-FLP. As we have noted, genetic algorithms 

appear to do well when information is limited. As the vector representation 

requires parameters that result in few solutions evaluated, the genetic algorithm 

appears to do well in this environment. 
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Table 78. MC-FLP Tabu Search Unrestricted Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) i Solutions d* 

MC301 $14,095,151.15 138563 57 1730 72564 
MC302 $15,002,136.55 135185 56 1708 70795 
MC303 $14,081,001.00 86833 64 2007 45473 
MC304 $14,976,593.40 130720 63 2000 68456 

MC305 $14,088,806.25 397428 3576 6570 208128 
MC306 $16,175,033.00 383609 3117 6564 200891 
MC307 $14,243,894.50 361380 2988 6887 189250 
MC308 $16,097,081.40 381692 2474 6886 199887 
MC309 $14,113,095.35 174444 135 2345 91354 
MC310 $15,485,974.35 146163 133 2325 76544 

MC311 $14,102,713.15 126014 175 3319 65992 
MC312 $15,429,135.15 138033 174 3315 72286 
MC313 $26,895,713.75 1247763 1388 3745 653438 
MC314 $28,781,745.55 1226114 1363 3713 642100 
MC315 $31,524,222.90 619503 1389 4620 324426 
MC316 $33,164,949.90 497703 1361 4616 260641 
MC317 $31,120,429.30 1047083 3382 6169 548344 
MC318 $33,631,364.55 516423 3337 6134 270444 
MC319 $33,076,416.35 810557 2928 6990 424478 
MC320 $35,445,683.85 415686 2860 6988 217689 
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Table 79. MC-FLP Simulated Annealing Unrestricted Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) i Solutions d* 

MC301 $18,581,745.55 6014034 190 8302 3149472 

MC302 $19,474,305.55 6007237 207 9100 3145913 

MC303 $16,004,439.40 4529823 216 8536 2372210 

MC304 $16,899,881.55 4523339 213 8537 2368814 

MC305 $17,646,814.45 4317371 4042 7608 2260952 

MC306 $19,727,446.05 4347758 3472 7095 2276865 

MC307 $18,067,033.10 6779497 3385 7253 3550335 

MC308 $19,937,463.10 6818670 2829 6686 3570849 

MC309 $16,088,440.70 2730865 298 8377 1430119 

MC310 $17,409,654.35 2726607 296 8611 1427889 

MC311 $15,926,562.85 2640893 353 7473 1383002 

MC312 $17,287,271.65 2600868 364 7849 1362041 

MC313 $31,474,542.30 7206433 2058 7813 3773916 

MC314 $33,430,733.40 7239322 2059 7885 3791140 

MC315 $35,732,779.90 8310348 2554 8603 4352022 

MC316 $37,427,017.15 8365056 2238 7738 4380672 

MC317 $33,679,124.40 5388768 3160 7304 2822029 

MC318 $36,521,290.20 5404743 3129 7278 2830394 

MC319 $41,847,906.45 10486887 3797 8179 5491848 
MC320 $44,340,476.95 10486143 3484 7641 5491458 
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Table 80. MC-FLP Genetic Algorithm Unrestricted Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) . Solutions d* 

MC301 $14,069,464.75 97084 196 5740 50842 

MC302 $14,991,984.65 102476 194 5740 53665 
MC303 $14,086,375.00 117016 184 5740 61280 
MC304 $14,968,820.20 108331 188 5740 56732 

MC305 $13,926,111.35 339812 3041 5740 177955 
MC306 $16,040,817.60 288395 2837 5740 151029 

MC307 $14,240,287.40 312442 2398 5740 163622 

MC308 $16,109,400.80 197083 2125 5740 103210 
MC309 $14,143,111.55 195940 333 5740 102611 

MC310 $15,582,864.15 205238 319 5740 107480 
MC311 $14,292,292.95 194883 292 5740 102058 
MC312 $15,641,925.85 162569 286 5740 85135 
MC313 $26,827,787.05 709287 2217 5740 371445 
MC314 $28,187,711.95 743211 2211 5740 389210 
MC315 $32,138,397.30 599932 1534 5740 314176 
MC316 $33,564,295.00 505821 1518 5740 264892 
MC317 $31,720,113.90 910159 3140 5740 476639 
MC318 $34,882,085.70 703516 3125 5740 368422 
MC319 $35,034,888.00 750397 1960 5740 392973 
MC320 $37,550,354.90 665839 1951 5740 348691 
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Table 81. MC-FLP Unrestricted Runs Performance Rankings 

Test of Significance Rankings 
Problem TS-SA TS-GA SA-GA TS SA GA 

MC301 TS * GA 1.5 3 1.5 
MC302 TS * GA 1.5 3 1.5 
MC303 * * * 2 2 2 
MC304 * * * 2 2 2 
MC305 TS * GA 1.5 3 1.5 
MC306 TS * GA 1.5 3 1.5 
MC307 TS * GA 1.5 3 1.5 
MC308 TS * GA 1.5 3 1.5 
MC309 TS * GA 1.5 3 1.5 
MC310 TS * GA 1.5 3 1.5 
MC311 TS TS GA 1 3 2 
MC312 TS TS GA 1 3 2 
MC313 TS * GA 1.5 3 1.5 
MC314 TS * GA 1.5 3 1.5 
MC315 * TS * 2 2 2 
MC316 * TS * 2 2 2 
MC317 * * * 2 2 2 
MC318 TS TS * 1 2.5 2.5 
MC319 TS TS GA 1 3 2 
MC320 TS TS GA 1 3 2 

Sum of Ranks: 30 54.5 35.5 
Average Rank: 1.50 2.73 1.78 

* No significant difference detected 
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Table 82. Wilcoxon Tests for MC-FLP Unrestricted Runs Performance 

Wilcoxon for TS-SA 
Diff       Absolute   Rank 

Wilcoxon for TS-GA 
Diff        Absolute   Rank 

Wilcoxon for SA-GA 
Diff        Absolute   Rank 

-4,486,594 0.3183 1 0 0.0000 8 4,512,281 0.2428 1 
-4,472,169 0.2981 2 0 0.0000 8 4,482,321 0.2302 2 

0 0.0000 16 0 0.0000 8 0 0.0000 15 
0 0.0000 16 0 0.0000 8 0 0.0000 15 

-3,558,008 0.2525 5 0 0.0000 8 3,720,703 0.2108 4 
-3,552,413 0.2196 8 0 0.0000 8 3,686,628 0.1869 6 
-3,823,139 0.2684 3 0 0.0000 8 3,826,746 0.2118 3 
-3,840,382 0.2386 7 0 0.0000 8 3,828,062 0.1920 5 
-1,975,345 0.1400 11 0 0.0000 8 1,945,329 0.1209 11 
-1,923,680 0.1242 13 0 0.0000 8 1,826,790 0.1049 12 
-1,823,850 0.1293 12 -189,580 0.0134 6 1,634,270 0.1026 13 
-1,858,137 0.1204 14 -212,791 0.0138 5 1,645,346 0.0952 14 
-4,578,829 0.1702 9 0 0.0000 8 4,646,755 0.1476 10 
-4,648,988 0.1615 10 0 0.0000 8 5,243,021 0.1568 8 

0 0.0000 16 -614,174 0.0195 4 0 0.0000 15 
0 0.0000 16 -399,345 0.0120 7 0 0.0000 15 
0 0.0000 16 0 0.0000 8 0 0.0000 15 

-2,889,926 0.0859 15 -1,415,389 0.0421 3 0 0.0000 15 
-8,771,490 0.2652 4 -1,958,472 0.0592 2 6,813,018 0.1628 7 
-8,894,793 0.2509 6 -2,104,671 0.0594 1 6,790,122 0.1531 9 

Sum of positive Ranks: 0 Sum of positive Ranks: 0 Sum of positive Ranks: 105 
Sum of negative Ranks: 12C Sum of negative Ranks: 28 Sum of negative Ranks: 0 

T=0 T=0 T=0 
oc= 0.05 cc= 0.05 oc= 0.05 
n=15 n=7 n=14 

T0=25 T0=2 T0=21 
Reject H 0 Reject \- <o Reject H 0 
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Figure 55. MC-FLP Unrestricted Runs Performance 
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8.3.3 Comparative Results Along Time Dimension 
Tables 83, 84, and 85 summarize the results from the time limited runs for 

tabu search, simulated annealing, and genetic algorithm on our set of MC-FLP 

test problems. Each run consists of 20 replications limited to 300 seconds. Note 

that some of the tabu search runs finished well before this time limit for the given 

set of parameters. Table 86, summarizes the tests of significance and resulting 

rankings. Note that partly due to high variability in the results, most of the 

pairwise comparisons between tabu search and the genetic algorithm do not 

show a significant difference (the high variability results in a large d* forcing the 

difference in average performances into statistical indifference). However, a 

Friedman statistic of 6.825 (p = .0330) still shows a significant difference among 

performance distributions. Table 87 gives the results of Wilcoxon's tests. Note 

that for the test between tabu search and the genetic algorithm, we do not have 

enough points with a significant difference to make a decision. The other two 

comparisons, however, show that the performance of simulated annealing is 

significantly poorer than for the other two heuristics. 

Figure 56 is a plot of the heuristic's performances over all test problems. It 

clearly shows that simulated annealing does not do well, whereas tabu search 

and the genetic algorithm are close together at most points. Figure 57 shows 

some significant information. Here we notice that early on, the genetic algorithm 

appears to be very efficient. We see this effect for MC-FLP because the vector 

representation was used, which means that all three heuristics take 

approximately the same amount of time to evaluate each of the evaluated 
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solutions.   Additional charts are found in Appendix I.   These additional charts 

show that the efficiency of genetic algorithms is not universal. 

Table 83. MC-FLP Tabu Search Time Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) Solutions d* 

MC301 $14,095,151.15 138563 57 1730 72564 

MC302 $15,002,136.55 135185 56 1708 70795 

MC303 $14,081,001.00 86833 64 2007 45473 

MC304 $14,976,593.40 130720 63 2000 68456 

MC305 $17,828,469.40 4289339 306 597 2246272 

MC306 $19,915,916.15 4323504 307 657 2264163 

MC307 $18,159,314.30 6819341 308 774 3571201 

MC308 $20,055,230.90 6821190 304 877 3572170 

MC309 $14,113,095.35 174444 135 2345 91354 

MC310 $15,485,974.35 146163 133 2325 76544 

MC311 $14,102,713.15 126014 175 3319 65992 

MC312 $15,429,135.15 138033 174 3315 72286 

MC313 $30,761,558.05 5987057 302 827 3135344 

MC314 $32,399,614.55 5839301 303 832 3057967 

MC315 $35,075,857.00 7398693 303 1087 3874600 

MC316 $36,188,725.05 6118609 303 1112 3204237 

MC317 $35,001,046.75 5320748 308 588 2786407 

MC318 $37,547,222.10 5224130 307 590 2735810 

MC319 $42,277,496.00 10455231 307 843 5475270 

MC320 $44,742,387.60 10464408 307 854 5480076 
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Table 84. MC-FLP Simulated Annealing Time Limited Runs Results 

Problem 
Average 

Cost 
Standard 
Deviation 

Average 
Time (sec) 

Avg # of 
Solutions 

MC301 $18,581,745.55 6014034 
MC302 $19,474,305.55 6007237 

MC303 $16,004,439.40 4529823 
MC304 $16,899,881.55 4523339 
MC305 $18,862,834.90 4292429 
MC306 $21,094,962.15 4317501 
MC307 $19,126,916.30 6789131 
MC308 $21,346,045.40 6856703 
MC309 $16,088,440.70 2730865 
MC310 $17,409,654.35 2726607 

MC311 $15,926,562.85 2640893 
MC312 $17,287,271.65 2600868 
MC313 $35,579,711.40 7162875 
MC314 $37,367,999.40 6728212 

MC315 $39,019,980.95 8547282 

MC316 $40,379,881.60 8330661 
MC317 $41,691,240.35 5791264 
MC318 $45,216,528.80 5703583 
MC319 $48,715,013.05 11266213 
MC320 $51,378,941.10 11032461 

190 8302 3149472 
207 9100 3145913 
216 8536 2372210 
213 8537 2368814 

300 636 2247890 
300 624 2261020 
300 679 3555381 
300 677 3590767 

298 8377 1430119 

296 8611 1427889 
353 7473 1383002 
364 7849 1362041 
300 1454 3751105 
300 1454 3523478 
300 1197 4476102 

300 1186 4362660 
300 875 3032810 
300 872 2986893 
300 758 5899971 
300 761 5777558 
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Table 85. MC-FLP Genetic Algorithm Time Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) ! Solutions d* 

MC301 $14,069,464.75 97084 196 5740 50842 

MC302 $14,991,984.65 102476 194 5740 53665 

MC303 $14,086,375.00 117016 184 5740 61280 
MC304 $14,968,820.20 108331 188 5740 56732 

MC305 $16,815,229.70 1051111 308 882 550453 
MC306 $18,635,894.65 1141052 308 882 597554 

MC307 $16,467,301.75 603645 306 1209 316121 

MC308 $17,875,720.50 635277 307 1226 332686 

MC309 $14,143,111.55 195940 333 5740 102611 

MC310 $15,582,864.15 205238 319 5740 107480 
MC311 $14,292,292.95 194883 292 5740 102058 
MC312 $15,641,925.85 162569 286 5740 85135 

MC313 $31,480,178.15 1963862 307 1034 1028449 
MC314 $33,153,071.50 2361332 307 1041 1236599 
MC315 $35,782,141.85 1287664 305 2033 674333 
MC316 $37,604,137.00 1484578 305 2007 777454 
MC317 $43,009,338.85 2488603 309 819 1303249 

MC318 $46,685,740.85 3013792 308 825 1578284 

MC319 $46,176,449.05 3189693 305 1870 1670401 

MC320 $49,053,608.75 2935819 305 1872 1537450 
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Table 86. MC-FLP Time Limited Runs Performance Rankings 

Test of Significance Rankings 
Problem TS-SA TS-GA SA-GA TS SA GA 
MC301 TS * GA 2 3 1 
MC302 TS * GA 2 3 1 
MC303 * * * 2 2 2 
MC304 * * * 2 2 2 
MC305 * * * 2 2 2 
MC306 * * GA 2.5 2.5 1 
MC307 * * * 2 2 2 
MC308 * * * 2 2 2 
MC309 TS * GA 1.5 3 1.5 
MC310 TS * GA 1.5 3 1.5 
MC311 TS TS GA 1 3 2 
MC312 TS TS GA 1 3 2 
MC313 TS * GA 1.5 3 1.5 
MC314 TS * GA 1.5 3 1.5 
MC315 * * * 2 2 2 
MC316 * * * 2 2 2 
MC317 TS TS * 1 2.5 2.5 
MC318 TS TS * 1 2.5 2.5 
MC319 TS * * 2 2 2 
MC320 TS * * 2 2 2 

Sum of Ranks: 34.5 49.5 36 
Average Rank: 1.73 2.48 1.80 

* No significant difference detected 
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Table 87. Wilcoxon Tests for MC-FLP Time Limited Runs Performance 

Wilcoxon for TS-SA 
Diff        Absolute   Rank 

Wilcoxon for TS-GA 
Diff        Absolute   Rank 

Wilcoxon for SA-GA 
Diff Absolute    Rank 

-4,486,594 0.3183 1 0 0.0000 5 4,512,281 0.2428 1 
-4,472,169 0.2981 2 0 0.0000 5 4,482,321 0.2302 2 

0 0.0000 13 0 0.0000 5 0 0.0000 10 
0 0.0000 13 0 0.0000 5 0 0.0000 10 
0 0.0000 13 0 0.0000 5 0 0.0000 10 
0 0.0000 13 0 0.0000 5 2,459,068 0.1166 4 
0 0.0000 13 0 0.0000 5 0 0.0000 10 
0 0.0000 13 0 0.0000 5 0 0.0000 10 

-1,975,345 0.1400 9 0 0.0000 5 1,945,329 0.1209 3 
-1,923,680 0.1242 11 0 0.0000 5 1,826,790 0.1049 7 
-1,823,850 0.1293 10 -189,580 0.0134 4 1,634,270 0.1026 8 
-1,858,137 0.1204 12 -212,791 0.0138 3 1,645,346 0.0952 9 
-4,818,153 0.1566 5 0 0.0000 5 4,099,533 0.1152 5 
-4,968,385 0.1533 6 0 0.0000 5 4,214,928 0.1128 6 

0 0.0000 13 0 0.0000 5 0 0.0000 10 
0 0.0000 13 0 0.0000 5 0 0.0000 10 

-6,690,194 0.1911 4 -8,008,292 0.2288 2 0 0.0000 10 
-7,669,307 0.2043 3 -9,138,519 0.2434 1 0 0.0000 10 
-6,437,517 0.1523 7 0 0.0000 5 0 0.0000 10 
-6,636,554 0.1483 8 0 0.0000 5 0 0.0000 10 

Sum of positive Ranks: 0 Sum of positive Ranks: 0 Sum of positive Ranks: 45 
Sum of negative Ranks: 78 Sum of negative Ranks: 10 Sum of negative Ranks: 0 

T=0 T=0 T=0 
a= 0.05 <x= 0.05 a= 0.0E 
n=12 n=4 n=9 

T0=14 T0=0 T0=6 
Reject H 0 n is too small Reject H D 
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8.3.4 Comparative Results Along Solutions Dimension 
In the previous solutions limited runs, we have used the number of solutions 

evaluated by the genetic algorithm to limit the other two heuristics since it was 

the heuristic with the fewest solutions evaluated. However, for MC-FLP, the use 

of a vector representation means the genetic algorithm is no longer the heuristic 

with the fewest solutions explored. Accordingly, to determine this limit we looked 

at the number of solutions evaluated by each heuristic during the unrestricted 

runs. Then, for each group of four problems representing a specific size, we 

picked a lower bound. For example, for the first four problems, tabu search 

evaluated the fewest solutions, between 1700 and 2000. Therefore, we set the 

solutions limit for all the heuristics to 1500 for problems MC301-MC304. We 

established the limits similarly for the remaining four size groups. 

The results of these runs are summarized in Tables 88, 89, and 90. The 

tests of significance and rankings are summarized in Table 91. A Friedman 

statistic of 19.075 (p = .0001) indicates there are differences among the 

performance distributions. The Wilcoxon tests, shown in Table 92 indicate all 

three heuristics perform significantly different from each other, with tabu search 

doing best, followed by the genetic algorithm and simulated annealing. Figure 58 

illustrates the heuristics' performances over all test problems. 

Figure 59 again shows how the genetic algorithm initially is much more 

efficient than the other two heuristics. However, tabu search is able to catch up 

soon enough to improve the performance over the genetic algorithm. Additional 

charts are found in Appendix J. 



246 

Table 88. MC-FLP Tabu Search Solutions Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) ! Solutions d* 

MC301 $14,110,182.45 189737 49 1504 99363 
MC302 $15,007,430.05 132167 49 1503 69214 
MC303 $14,104,842.35 105165 48 1504 55074 
MC304 $15,011,689.65 144747 48 1504 75802 
MC305 $14,096,002.35 400886 3106 5755 209939 
MC306 $15,879,179.35 825511 2753 5755 432309 
MC307 $14,298,066.05 415998 2469 5758 217853 
MC308 $16,158,675.05 349574 2051 5756 183068 
MC309 $14,132,325.75 179391 115 2006 93945 
MC310 $15,522,989.45 175167 115 2005 91733 
MC311 $14,207,825.85 175107 105 2006 91701 
MC312 $15,494,112.20 193382 104 2006 101272 
MC313 $26,955,372.70 1246575 1300 3508 652815 
MC314 $28,796,617.10 1226044 1288 3508 642063 
MC315 $31,755,377.90 924663 1049 3510 484234 
MC316 $34,156,301.40 4019760 1031 3510 2105097 
MC317 $31,170,350.00 1034045 3159 5752 541516 
MC318 $33,635,539.30 518493 3129 5755 271528 
MC319 $33,271,758.40 891626 2369 5753 466933 
MC320 $35,642,943.45 598020 2306 5756 313175 
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Table 89. MC-FLP Simulated Annealing Solutions Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) ! Solutions d* 

MC301 $18,813,931.35 5997642 29 1501 3140888 
MC302 $19,741,495.30 6001728 29 1501 3143028 
MC303 $16,369,109.85 4640156 31 1501 2429990 
MC304 $17,220,178.70 4499524 31 1501 2356343 
MC305 $17,737,324.40 4356620 3021 5741 2281506 
MC306 $19,824,453.90 4331522 2878 5741 2268362 
MC307 $18,100,649.20 6769090 2713 5741 3544885 
MC308 $19,951,311.20 6821272 2467 5712 3572212 
MC309 $16,832,137.95 2769132 64 2001 1450159 
MC310 $18,035,654.25 2750340 64 2001 1440317 
MC311 $16,761,036.50 2564322 78 2001 1342902 
MC312 $18,130,998.20 2501231 79 2001 1309862 
MC313 $32,992,887.75 7168650 767 3501 3754130 
MC314 $35,078,856.30 7285360 764 3501 3815249 
MC315 $36,497,576.85 8398182 951 3501 4398020 
MC316 $38,229,245.55 8289005 958 3501 4340845 
MC317 $33,880,960.55 5410194 2366 5741 2833249 
MC318 $36,837,111.70 5354020 2354 5741 2803831 
MC319 $42,169,763.60 10508766 2600 5741 5503305 
MC320 $44,746,523.90 10534895 2593 5741 5516989 
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Table 90. MC-FLP Genetic Algorithm Solutions Limited Runs Results 

Average Standard Average Avg # of 
Problem Cost Deviation Time (sec) Solutions d* 

MC301 $14,354,803.80 379784 41 1522 198888 
MC302 $15,324,972.70 473233 40 1522 247826 
MC303 $14,673,585.95 636023 33 1522 333077 
MC304 $15,412,020.80 372119 34 1522 194874 
MC305 $13,926,111.35 339812 3041 5740 177955 
MC306 $16,040,817.60 288395 2837 5740 151029 
MC307 $14,240,287.40 312442 2398 5740 163622 
MC308 $16,109,400.80 197083 2125 5740 103210 
MC309 $14,630,879.75 296712 102 2016 155385 
MC310 $15,944,906.80 422201 98 2016 221101 
MC311 $15,357,958.65 688777 69 2016 360703 
MC312 $16,840,485.15 663519 67 2016 347477 
MC313 $27,354,994.20 903154 1309 3536 472970 
MC314 $29,119,404.15 1065014 1304 3536 557734 
MC315 $32,866,805.55 560292 762 3536 293418 
MC316 $34,323,333.05 716810 769 3536 375384 
MC317 $31,720,113.90 910159 3140 5740 476639 
MC318 $34,882,085.70 703516 3125 5740 368422 
MC319 $35,034,888.00 750397 1960 5740 392973 
MC320 $37,550,354.90 665839 1951 5740 348691 
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Table 91. MC-FLP Solutions Limited Runs Performance Rankings 

Test of Significance Rankings 
Problem TS-SA TS-GA SA-GA TS SA GA 

MC301 TS TS GA 1 3 2 
MC302 TS TS GA 1 3 2 
MC303 * TS * 2 2 2 
MC304 * TS * 2 2 2 
MC305 TS * GA 1.5 3 1.5 
MC306 TS * GA 1.5 3 1.5 
MC307 TS * GA 1.5 3 1.5 
MC308 TS * GA 1.5 3 1.5 
MC309 TS TS GA 1 3 2 
MC310 TS TS GA 1 3 2 
MC311 TS TS GA 1 3 2 
MC312 TS TS * 1 2.5 2.5 
MC313 TS * GA 1.5 3 1.5 
MC314 TS * GA 1.5 3 1.5 
MC315 TS TS * 1 2.5 2.5 
MC316 * * * 2 2 2 
MC317 * TS * 2 2 2 
MC318 TS TS * 1 2.5 2.5 
MC319 TS TS GA 1 3 2 
MC320 TS TS GA 1 3 2 

Sum of Ranks: 27 54.5 38.5 
Average Rank: 1.35 2.73 1.93 

* No significant difference detected 
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Table 92. Wilcoxon Tests for MC-FLP Solutions Limited Runs Performance 

Wilcoxon for TS-SA 
Diff        Absolute   Rank 

Wilcoxon for TS-GA 
Diff        Absolute   Rank 

Wilcoxon for SA-GA 
Diff        Absolute   Rank 

-4,703,749 0.3334 1 -244,621 0.0173 13 4,459,128 0.2370 1 
-4,734,065 0.3154 2 -317,543 0.0212 11 4,416,523 0.2237 2 

0 0.0000 17 -568,744 0.0403 5 0 0.0000 14 
0 0.0000 17 -400,331 0.0267 10 0 0.0000 14 

-3,641,322 0.2583 5 0 0.0000 14 3,811,213 0.2149 3 
-3,945,275 0.2485 7 0 0.0000 14 3,783,636 0.1909 6 
-3,802,583 0.2660 4 0 0.0000 14 3,860,362 0.2133 4 
-3,792,636 0.2347 8 0 0.0000 14 3,841,910 0.1926 5 
-2,699,812 0.1910 11 -498,554 0.0353 7 2,201,258 0.1308 11 
-2,512,665 0.1619 14 -421,917 0.0272 9 2,090,747 0.1159 12 
-2,553,211 0.1797 12 -1,150,133 0.0810 2 1,403,078 0.0837 13 
-2,636,886 0.1702 13 -1,346,373 0.0869 1 0 0.0000 14 
-6,037,515 0.2240 9 0 0.0000 14 5,637,894 0.1709 7 
-6,282,239 0.2182 10 0 0.0000 14 5,959,452 0.1699 8 
-4,742,199 0.1493 15 -1,111,428 0.0350 8 0 0.0000 14 

0 0.0000 17 0 0.0000 14 0 0.0000 14 
0 0.0000 17 -549,764 0.0176 12 0 0.0000 14 

-3,201,572 0.0952 16 -1,246,546 0.0371 6 0 0.0000 14 
-8,898,005 0.2674 3 -1,763,130 0.0530 4 7,134,876 0.1692 9 
-9,103,580 0.2554 6 -1,907,411 0.0535 3 7,196,169 0.1608 10 

Sum of positive Ranks: 0 Sum of positive Ranks: 0 Sum of positive Ranks: 91 
Sum of negative Ranks: 136 Sum of negative Ranks: 91 Sum of negative Ranks: 0 

T=0 T=0 T=0 
a= 0.05 oc= 0.05 oc= 0.05 
n=16 n=13 n=13 

T0=30 T0=17 T0=17 
Reject H 0 Reject H 0 Reject H 0 
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8.4 Overall Evaluation 
To determine if any of the three heuristics is in fact better than the others 

without regard to the type of problem being solved, we pooled the results from 

each of the CFLP, MP-FLP, and MC-FLP experiments for each of the three 

comparative dimensions. For each of these dimensions, we first computed 

Friedman's Fr statistic to determine if there were any significant differences 

among the performance distributions of the three heuristics. The results in Table 

93 indicate some differences for the unrestricted and time limited dimensions. 

However, the heuristic performance distributions for the solutions limited 

dimension do not show any significant difference. This is not surprising since for 

each problem type, a different heuristic performs best. 

Table 93. Overall Comparison Results 

Comparative 
Dimension Fr 

Unrestricted 35.0083     0.000000 
Time Limited 44.4333     0.000000 
Solutions Limited 2.2333      0.327369 

To continue this analysis, we again used Wilcoxon's ranked sum test to 

determine which of the distributions are in fact different from each other for the 

two comparative dimensions with significant differences. Table 94 summarizes 

these results. The letter groupings indicate where significant differences exists 

(controlling comparisonwise error at a = .05). These results indicate that there is 

not a significant difference between the two best performing heuristics, tabu 

search and simulated annealing, for the unrestricted dimension. However when 

time is limited, tabu search is significantly better than the other two heuristics. 
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Table 94. Overall Wilcoxon's Tests 

Unrestricted 
Dimension 

A TS 
AB SA 

B GA 

Time 
Dimension 

A TS 
B SA 
C GA 

8.5 Chapter Summary 
In this chapter we presented the principal  results from our empirical 

comparison experiments. For each of the three problem types, CFLP, MP-FLP, 

and MC-FLP, we reported on a new set of test problems followed by 

experimental results of using each of the three general heuristics on these 

problems.     We  conducted  statistical  tests   using   Friedman's  Fr test for 

randomized block designs and Wilcoxon's signed rank test for paired differences 

to detect statistically significant differences in performance among and between 

the heuristics. Finally we conducted the same statistical tests on all results 

without regard to problem type. In general, the computational results showed 

varying performances of the heuristics depending on the problem type and the 

dimension of comparability. 

In the next chapter we present our conclusions based on the results 

presented on this and previous chapters. Specifically, we will address each of 

the investigative questions posed in Chapter 3. We will also present suggestions 

for further research. 



Chapter 9 

CONCLUSIONS AND RECOMMENDED RESEARCH 

In the previous chapter we presented the numerical results and provided a 

commentary on those results. In this chapter, we put all results into perspective 

and draw some conclusions. We proceed by first answering each of the 

investigative questions that were raised in this dissertation. This is followed by a 

summary of the principal contributions of this research. Finally, we address the 

limitations of this study and some ideas for future research in this area. 

9.1 Answering the Investigative Questions 
The data presented in the previous four chapters essentially answer in detail 

each of the investigative questions raised for this dissertation study. It seems 

appropriate that we now summarize our findings in one place and draw the 

conclusions. Accordingly, the following sections summarize the overall findings 

along each of the investigative questions. 

9.1.1 Problem Representations 
The first investigative question was pertaining to finding appropriate problem 

solution representations. For the capacitated facility location problems (CFLP), 

we considered three representations: a 0-1 vector, a permutation vector, and a 

matrix representation. Our first observation was that the permutation vector was 

not appropriate because of poor solutions. We found that the 0-1 vector gave the 
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best solution quality, but suffered from exponential growth in computation time as 

the size of problems grew larger. The matrix representation achieved reasonable 

solution quality with only a slight linear growth in computation time for larger 

problems. Thus, for CFLP we found the matrix representation most appropriate. 

For the multiple-periods facilities location problems (MP-FLP), we again tried 

a 0-1 vector and matrix representations. Our results indicated that with respect 

to solution quality, the matrix representation was best for tabu search and the 

genetic algorithm whereas the 0-1 vector representation was best for simulated 

annealing. With respect to computation time, the matrix representation was 

faster for tabu search and simulated annealing. Given these results, we again 

found the matrix representation most appropriate for MP-FLP. 

In the case of multiple-commodities facilities location problems (MC-FLP), we 

found that only a vector representation worked for this highly constrained 

problem type. The disadvantage of this kind of representation is the need to 

solve transportation problems to translate the solution representation into an 

objective function cost. Nonetheless, this was the only alternative available. 

9.1.2 Parameter Effects 
Once the problem solutions representations were selected, we conducted a 

parameter experiment so we could observe the effects of various parameter 

levels on solution quality and computation time. Below we summarize the 

findings for each of the heuristics. 

For tabu search we explored the effects of three parameters: long-term 

memory passes (LTM), short-term memory iterations (STM), and the size of the 
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tabu list (TLSIZE). Our results indicate the LTM parameter has a significant 

impact on both solution quality and computation time for all three forms of the 

location problem. The STM parameter has a significant impact on solution 

quality for CFLP and MP-FLP, but not for MC-FLP. It does have a significant 

impact on computation time for all three forms of the location problem. The 

statistical tests showed that the TLSIZE parameter does not have a significant 

impact on solution quality nor computation time for any of the three versions of 

the location problem. Thus, for tabu search we conclude that to get the best 

results, both the LTM and STM parameters should be set as high as possible 

within the constraints of computing resources. Once these parameters are 

determined, an appropriate TLSIZE can be selected which works well with the 

other two parameters. 

For simulated annealing we also explored three parameters: the cooling rate 

(RATE), the minimum number of solutions accepted per epoch (ACCEPT), and 

the maximum number of solutions evaluated per epoch expressed as a factor of 

ACCEPT (FACTOR). With respect to computation time, all three parameters 

have a significant impact in all cases, with the RATE parameter having the 

highest correlation between the parameter level and computation time. With 

respect to solution quality, all three parameters have a significant impact for 

CFLP and MP-FLP. For MC-FLP, none of the parameters were significant and 

the solution quality was consistently poor. Thus, we conclude that when 

simulated annealing is a useful heuristic, a parameter search is a prerequisite to 

gauge parameter impact on solution quality and computation time.   This is the 
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only way to select a good set of parameters. Furthermore, since these 

parameters do not adjust themselves to the size of the problem, this procedure 

may have to be repeated for problems with significantly different size dimensions. 

For genetic algorithms we explored the effects of four parameters: population 

size (POP), number of generations (GENS), crossover rate (XOVER), and 

mutation rate (MUTATE). With respect to solution quality, the two most 

significant factors are the number of generations and the mutation rate. The 

POP parameter was not significant for CFLP and MP-FLP and the XOVER 

parameter was not significant for any of the location problems. With respect to 

computation time, the POP and GENS parameters were significant as expected. 

The MUTATE parameter was significant for CFLP and MP-FLP, but not for MC- 

FLP. The XOVER parameter was not significant for any of the location problems. 

We conclude that selection of the MUTATE parameter is critical. The GENS 

parameter, which affects both solution quality and computation time, should be 

set as high as computing resources will allow, although higher levels of the 

GENS parameter achieve only marginally smaller improvements. The POP and 

XOVER parameters should be set after the other two are selected. 

9.1.3 Benchmark Results 
For CFLP and MP-FLP we were able to compare the heuristic solutions 

against the optimal solutions for the test problems. For MC-FLP we were not 

able to obtain optimal solutions to our set of benchmark problems and had to limit 

the comparisons against the best upper bound obtained from a branch and 

bound algorithm. For CFLP and MP-FLP the tabu search results had an average 
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gaps from the optimum of 2.32% and 6.85% respectively. Simulated annealing 

results had average gaps from the optimum of 3.17% and 3.36%. Genetic 

algorithm results were the worst as they had average gaps from the optimum of 

21.28% and 15.23%. For MC-FLP, we measured the distance from the heuristic 

solution to the best upper bound obtained. On the average, tabu search and the 

genetic algorithm did better than the branch and bound upper bound with an 

average distance of -8.81% and -11.87% respectively. Simulated annealing did 

not do well with an average distance of 8.02%. From these results we conclude 

that tabu search and simulated annealing give reasonable results for CFLP and 

MP-FLP and that tabu search and genetic algorithms give reasonable results for 

MC-FLP. 

9.1.4 Computation Time vs. Solution Quality 
In general one would expect that the longer a heuristic is given to work on a 

certain problem, the better solutions it should obtain. Our results indicate that 

this is true when the heuristic is well suited (i.e., reasonable benchmark results) 

for the problem in the first place. Since tabu search was generally well suited for 

all three versions of the location problem, we found a significant correlation 

between time and quality in all cases. For simulated annealing, this correlation 

was only significant for CFLP and MP-FLP, the two versions for which it was well 

suited. For the genetic algorithm, the correlation was only significant for MP-FLP 

and CFLP, the two versions of the location problem for which it was well suited. 

The natural conclusion is that if the heuristic is well suited for a problem, it will 

achieve better results given more computation time.  Conversely, heuristics not 
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well suited for a problem do not improve their performance given additional 

computation time. 

9.1.5 Problem Size vs. Computation Time 
As expected, our results indicate that all three heuristics require more time to 

solve larger sized problems (i.e., more customers, locations, periods, or 

commodities) for the same set of parameters. For CFLP and MP-FLP with the 

matrix representation, simulated annealing had the lower correlation coefficient, 

followed by tabu search and the genetic algorithm. Tabu search takes longer 

with larger problems because the size of the neighborhood it evaluates is tied to 

the size of the problem. The genetic algorithm takes longer with larger problems 

because for each solution, it must compute the resulting objective function value 

from scratch, which takes longer for larger problems. Tabu search and simulated 

annealing can compute the change in cost for each solution without having to 

re-compute the objective function value from scratch. Finally, the lower 

correlation for simulated annealing is probably due to the fact that its 

performance is not closely tied to the size of the problem. 

For MC-FLP with the vector representation, all heuristics had a very high 

correlation between problem size and computation time. This is directly tied to 

the problem solution representation, which requires solving transportation 

problems. 

Hence, the general conclusion is that tabu search and genetic algorithms will 

take more time to solve larger problems with the same set of parameters. 
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Furthermore, the problem representation plays a role in the magnitude of this 

effect. 

9.1.6 Heuristics Performance for Each Problem Type 
For CFLP, results show that when all heuristics were limited to the same 

amount of computation time (300 seconds), tabu search gave the best results. 

However, when all heuristics were limited to the same maximum number of 

candidate solutions they could evaluate, simulated annealing gave the best 

results. When no restrictions were placed on the heuristics, tabu search gave 

the best results. 

For MP-FLP, results show that when all heuristics were limited to the same 

amount of computation time (300 seconds), tabu search and simulated annealing 

gave the best performance with no statistical difference between them. 

However, when all heuristics were limited to the same maximum number of 

candidate solutions they could evaluate, the genetic algorithm gave the best 

results. When no restrictions were placed on the heuristics simulated annealing 

performed best with tabu search a close second. MP-FLP presents an 

interesting situation because which heuristic does best depends on the basis of 

comparison. Of the three problem types, MP-FLP is the one that best illustrates 

the salient characteristics between the three heuristics: tabu search and 

simulated annealing are very fast, but the genetic algorithm can extract more 

information from fewer solutions. 

For MC-FLP, results show that when all heuristics were limited to the same 

amount of computation time (300 seconds), tabu search and the genetic 



261 

algorithm gave the best results with no statistical difference between them. 

When all heuristics were limited to the same maximum number of candidate 

solutions evaluated, tabu search gave the best results. When the heuristics were 

not restricted, tabu search also gave the best results. MC-FLP is another 

interesting case because it is the only one where all heuristics are on an equal 

footing with respect to the problem solution representation (i.e., obtaining the 

objective function value for each solution evaluated requires the same amount of 

computation for all heuristics). Unlike CFLP where the genetic algorithm was not 

a viable heuristic, MC-FLP shows that there may be circumstances where the 

genetic algorithm's ability to extract much information from few solutions is the 

best. However, it also shows that tabu search has the same ability for some 

problems. 

9.1.7 Overall Performance of Heuristics 
Our overall results were obtained by pooling the results from the problem 

specific experiments. These results show that when the heuristics were given 

the same amount of computation time, tabu search gave the best results, 

followed by simulated annealing, and the genetic algorithm ranks last. When the 

heuristics were limited to the same maximum number of candidate solutions 

evaluated, the distributions of heuristic performance were not significantly 

different from each other. When the heuristics are not restricted, tabu search 

and simulated annealing performed best, with no significant difference between 

their performance. 
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9.2 Overall Conclusions 
The object of this research was to determine if any of the three general 

heuristics studied was better than the other two. In general, we can conclude 

that their performance is situational principally based on two factors: problem 

solutions representation and measure of comparability. The problem solution 

representation is important because it impacts the speed at which the 

neighborhood-oriented heuristics can evaluate solutions. A representation which 

allows computing the change in cost for a "move" is very fast and favors tabu 

search and simulated annealing over genetic algorithms to the extent that they 

can evaluate more solutions in the same amount of time. However, in general it 

appears that genetic algorithms can extract more information from fewer 

solutions than the other two heuristics. Thus, the extent of the advantage tabu 

search and simulated annealing have depends on the differential of the number 

of candidate solutions they can evaluate and on the information they can extract 

from those solutions for a given problem type. The situation is different when the 

representation does not allow the neighborhood-oriented heuristics to compute 

the change in cost for a "move." In this case the three heuristics are in more 

equal footing. 

The second situational factor is the measure of comparability, which has a 

greater impact when the problem representation favors the neighborhood- 

oriented heuristics. In this case, limiting computation time further limits the ability 

of genetic algorithms to compete with tabu search and simulated annealing. 

However, limiting the number of solutions evaluated, limits the ability of tabu 
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search and simulated annealing to compete with genetic algorithm. It should be 

noted that these are only general conclusions, as the experiments did not show a 

consistent effect throughout problem types. 

Taking into consideration all of the results, we can conclude that if the 

problem can be represented such that a neighborhood oriented heuristic can 

compute the change in cost due to a "move," then tabu search will give the most 

robust results. If the problem cannot be represented in this manner, then tabu 

search and a genetic algorithm are good candidates. Furthermore, if the number 

of solutions to be evaluated will need to be limited, the genetic algorithm may 

provide a better alternative. Thus, in general we may conclude that tabu search 

should be tried first to the extent that it gives robust results and is easy to 

develop and implement. 

9.3 Significant Contributions of this Study 
This research has made the following significant contributions: 

(1) It is the first known study to compare tabu search, simulated annealing 

and genetic algorithms using more than one problem type. 

(2) It is the first known research to compare these algorithms that 

emphasizes the use of statistical methods to measure the statistical significance 

of their average performance. 

(3) It is the first known work to consider the impact of problem solution 

representation on the performance of tabu search, simulated annealing, and 

genetic algorithms. 
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(4) It is the first known attempt to apply tabu search, simulated annealing, 

and genetic algorithms to several classical facility location problems and 

compare them with optimal algorithms for solution quality. 

9.4 Limitations of this Study 
As with any large-scale research, our conclusions must be tempered by the 

limitations of the method employed. In this study, the following limitations are of 

importance: 

(1) In this study, all comparative experiments were conducted using the 

same set of parameters. Although these parameters were in fact selected for 

their good results, it is possible that other results could be obtained if the 

parameters were selected for each problem individually. However, this would not 

be practical beyond the research environment. 

(2) In making comparisons, we limited both the computation time allowed and 

the number of solutions that each heuristic could evaluate. It is not difficult to see 

from our own results, that where these points are selected (amount of time, 

number of solutions) can significantly affect the results. The importance of our 

results is to clarify the general behavior of the heuristics and how their 

performance may be affected faced with some restriction. 

(3) Although using several forms of the facilities location problem gives 

significant breadth to our conclusions, we must be careful not too over- 

generalize. By themselves, the conclusions reached in this study are limited to 

the problem domain we chose.  However, further generalization is possible due 
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to our method as well as the congruence of our findings and those of preceding 

studies. 

9.5 Future Research 
What is certain is that this research adds more clarity to what we already 

know about the relative performance of tabu search, simulated annealing, and 

genetic algorithms. However, as with any large study, the findings always lead to 

new and significant avenues for future research. 

1. Although the need for an effective problem solution representation is 

understood, the rationale is not well documented in the literature. This research 

has shown that the relative performance of these heuristics can vary depending 

on problem representation. However, our findings are indirect since the different 

representations occurred for different problems types. A focused study with the 

precise objective to explore the impact of solution representations may clarify 

how the heuristics will behave relative to each other. 

2. In this research we explored the performance of the three heuristics with 

location problems whose size dimensions are larger than what has been 

published in previous location studies. However, we did not explore the impact 

of size on the relative performance of the heuristics. It is possible that as 

problems get very large, a genetic algorithm may do better than tabu search or 

simulated annealing due to its cutting approach. Although our current research 

does not seem to support this conjecture, it remains an open question. 

3. On the practical side, our implementations of tabu search, simulated 

annealing and genetic algorithm were based on common approaches found in 
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the literature. However, except for tabu search, implementation is not a 

straightforward activity. In the case of simulated annealing, algorithm 

development is easy, but parameter selection is deceptively difficult. More 

importantly, parameters that may be good for one problem may not do well for 

similar problems with different dimensions. In the case of genetic algorithms, the 

basic algorithm is simple, but developing crossover and mutation operators can 

be a difficult task. Taking these observations into consideration, much more 

research is needed to take simulated annealing and genetic algorithm from the 

analysts desk to the managers toolbox, primarily because their operation and 

control are not intuitive. Tabu search on the other hand, can be easily 

implemented and explained. More importantly, the effect of the control 

parameters is intuitive and predictable. With this in mind, it may be time for some 

research that takes tabu search from the research environment to the industrial 

applications environment. 

4. With respect to the facilities location problem, the current research can be 

expanded to develop a heuristic approach for solving the unified multiple-periods, 

multiple-commodities, capacitated facilities location problem. A natural approach 

for this problem would be to combine two of the heuristics studied in this 

research. An outer heuristic such as genetic algorithm could handle solutions to 

the periods and commodities decision variables while an inner neighborhood 

search could handle solutions to the corresponding static location problems. 

Similar approaches are found in the literature for other problems, but solutions to 

the unified facilities location problem have not been attempted. 
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TABLES OF REPRESENTATION SELECTION RESULTS 
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Table 95. TSCAP Representation Selection Results 

TABU SEARCH FOR CFLP i 

Prob. Optimal V P T 
# Solution Solution     Opt Gap Solution     Opt Gap Solution     Opt Gap 

1 $530,210.08 $530,210.08 0.00% $559,882.62 5.60% $550,088.63 3.75% 
2 $484,258.50 $484,829.45 0.12% $495,015.26 2.22% $492,625.11 1.73% 
3 $444,706.05 $445,260.14 0.12% $453,052.67 1.88% $451,244.33 1.47% 
4 $393,220.20 $393,220.20 0.00% $395,677.62 0.62% $396,902.34 0.94% 
5 $564,035.53 $564,035.52 0.00% $582,575.65 3.29% $584,805.37 3.68% 
6 $510,583.95 $510,774.26 0.04% $518,794.41 1.61% $515,912.65 1.04% 
7 $467,787.45 $468,341.54 0.12% $472,178.16 0.94% $473,205.79 1.16% 
8 $416,301.60 $416,301.60 0.00% $418,219.60 0.46% $421,926.13 1.35% 
9 $397,311.83 $398,119.76 0.20% $444,198.53 11.80% $433,172.83 9.03% 
10 $336,284.03 $336,637.23 0.11% $356,782.19 6.10% $345,088.73 2.62% 
11 $281,659.63 $282,616.98 0.34% $291,204.90 3.39% $291,329.35 3.43% 
12 $205,723.05 $206,103.12 0.18% $207,121.84 0.68% $207,376.80 0.80% 
13 $396,962.85 $399,386.67 0.61% $429,662.59 8.24% $414,856.74 4.51% 
14 $328,687.20 $328,997.46 0.09% $345,352.87 5.07% $337,504.52 2.68% 
15 $273,406.35 $273,808.57 0.15% $277,960.84 1.67% $276,789.84 1.24% 
16 $199,141.70 $199,260.73 0.06% $199,593.97 0.23% $200,065.55 0.46% 
17 $497,604.00 $497,604.00 0.00% $555,796.02 11.69% $553,977.66 11.33% 
18 $403,928.45 $403,930.27 0.00% $428,396.77 6.06% $424,845.20 5.18% 
19 $332,355.33 $332,355.32 0.00% $350,815.39 5.55% $343,544.77 3.37% 
20 $251,227.63 $251,227.62 0.00% $254,217.51 1.19% $253,657.63 0.97% 
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Table 96. SACAP Representation Selection Results 

SIMULATED ANNEALING FOR CFLP 
Prob. Optimal V P T 

# Solution Solution     Opt Gap Solution     Opt Gap Solution     Opt Gap 

1 $530,210.08 $532,331.05 0.40% $553,411.42 4.38% $540,571.88 1.95% 
2 $484,258.50 $484,770.01 0.11% $501,504.84 3.56% $495,476.42 2.32% 
3 $444,706.05 $444,732.93 0.01% $455,581.93 2.45% $452,655.43 1.79% 
4 $393,220.20 $393,220.20 0.00% $394,703.67 0.38% $396,828.41 0.92% 
5 $564,035.53 $566,258.45 0.39% $585,654.22 3.83% $583,146.40 3.39% 
6 $510,583.95 $511,285.77 0.14% $521,499.67 2.14% $520,679.93 1.98% 
7 $467,787.45 $469,449.72 0.36% $474,468.45 1.43% $478,931.01 2.38% 
8 $416,301.60 $416,410.44 0.03% $418,476.47 0.52% $428,925.45 3.03% 
9 $397,311.83 $402,318.60 1.26% $434,781.58 9.43% $432,073.99 8.75% 
10 $336,284.03 $337,146.96 0.26% $366,837.23 9.09% $356,464.30 6.00% 
11 $281,659.63 $282,594.21 0.33% $295,531.62 4.93% $291,616.68 3.54% 
12 $205,723.05 $205,733.76 0.01% $209,750.26 1.96% $206,897.96 0.57% 
13 $396,962.85 $404,864.99 1.99% $432,567.70 8.97% $422,950.41 6.55% 
14 $328,687.20 $331,382.08 0.82% $353,651.29 7.60% $349,297.37 6.27% 
15 $273,406.35 $275,383.94 0.72% $283,501.69 3.69% $275,641.00 0.82% 
16 $199,141.70 $199,390.99 0.13% $202,976.28 1.93% $200,733.97 0.80% 
17 $497,604.00 $504,815.27 1.45% $540,961.01 8.71% $568,871.57 14.32% 
18 $403,928.45 $406,415.42 0.62% $434,472.14 7.56% $438,558.64 8.57% 
19 $332,355.33 $333,295.37 0.28% $355,867.39 7.07% $356,898.76 7.38% 
20 $251,227.63 $251,347.17 0.05% $267,983.59 6.67% $269,721.64 7.36% 
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Table 97. GACAP Representation Selection Results 

Prob. 
# 

Optimal 
Solution Solution 

GENETIC ALGORITHM FOR CFLP 
P T 

Opt Gap     Solution     Opt Gap     Solution     Opt Gap 

1 $530,210.08    $533,771.61      0.67%    $702,543.16   32.50%    $633,843.51    19.55% 
2 $484,258.50 $490,091.08 1.20% $665,031.09   37.33% $548,576.37 13.28% 
3 $444,706.05 $448,209.16 0.79% $728,295.78   63.77% $484,101.19 8.86% 
4 $393,220.20 $394,779.41 0.40% $577,876.73    46.96% $416,398.48 5.89% 
5 $564,035.53 $575,283.35 1.99% $783,429.03    38.90% $658,515.37 16.75% 
6 $510,583.95 $517,368.33 1.33% $709,494.66    38.96% $580,974.88 13.79% 
7 $467,787.45 $473,162.07 1.15% $623,755.16   33.34% $513,990.10 9.88% 
8 $416,301.60 $418,593.77 0.55% $557,397.81    33.89% $442,146.65 6.21% 
9 $397,311.83 $415,580.43 4.60% $750,654.86   88.93% $582,718.59 46.67% 
10 $336,284.03 $347,082.29 3.21% $609,350.76   81.20% $351,307.56 4.47% 
11 $281,659.63 $290,500.91 3.14% $599,287.26 112.77% $447,373.09 58.83% 
12 $205,723.05 $210,929.82 2.53% $454,374.07 120.87% $242,865.36 18.05% 
13 $396,962.85 $417,401.18 5.15% $837,945.84 111.09% $564,820.35 42.29% 
14 $328,687.20 $339,333.34 3.24% $611,782.75    86.13% $431,381.46 31.24% 
15 $273,406.35 $280,778.75 2.70% $525,028.56    92.03% $340,528.94 24.55% 
16 $199,141.70 $204,378.07 2.63% $420,277.42 111.04% $233,253.51 17.13% 
17 $497,604.00 $515,929.64 3.68% $852,725.50    71.37% $658,283.49 32.29% 
18 $403,928.45 $414,608.59 2.64% $747,702.38    85.11% $512,329.58 26.84% 
19 $332,355.33 $343,059.24 3.22% $593,851.54   78.68% $426,144.03 28.22% 
20 $251,227.63 $256,812.36 2.22% $558,977.37 122.50% $295,081.49 17.46% 
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Table 98. TSMP Representation Selection Results 

TABU SEARCH FOR MP-FLP 
Optimal V T 

Problem Solution Solution Opt Gap Solution Opt Gap 

MP201 $1,364,304.00 $1,520,830.00 11.47% $1,504,853.00 10.30% 
MP202 $1,121,451.00 $1,205,967.00 7.54% $1,216,306.00 8.46% 
MP203 $1,264,892.00 $1,432,679.00 13.26% $1,341,846.00 6.08% 
MP204 $1,050,167.00 $1,179,943.00 12.36% $1,065,173.00 1.43% 
MP205 $1,077,792.00 $1,290,432.00 19.73% $1,183,870.00 9.84% 
MP206 $   868,758.00 $   988,762.00 13.81% $   890,532.00 2.51% 
MP207 $1,067,015.00 $1,276,608.00 19.64% $1,177,362.00 10.34% 
MP208 $   864,308.00 $1,045,617.00 20.98% $   881,095.00 1.94% 
MP209 $2,294,052.00 $2,787,258.00 21.50% $2,558,720.00 11.54% 
MP210 $1,895,597.00 $2,184,731.00 15.25% $2,021,767.00 6.66% 
MP211 $2,154,639.00 $2,717,300.00 26.11% $2,326,190.00 7.96% 
MP212 $1,785,983.00 $2,285,417.00 27.96% $1,826,457.00 2.27% 
MP213 $2,447,014.00 $2,997,698.00 22.50% $2,762,418.00 12.89% 
MP214 $1,904,261.00 $2,305,392.00 21.06% $2,118,203.00 11.23% 
MP215 $2,180,598.00 $2,789,815.00 27.94% $2,395,865.00 9.87% 
MP216 $1,775,420.00 $2,304,041.00 29.77% $1,820,100.00 2.52% 
MP217 $2,506,690.00 $3,418,983.00 36.39% $2,727,886.00 8.82% 
MP218 $2,104,885.00 $2,914,903.00 38.48% $2,188,090.00 3.95% 
MP219 $2,445,718.00 $3,739,642.00 52.91% $2,666,343.00 9.02% 
MP220 $2,075,443.00 $3,385,835.00 63.14% $2,146,739.00 3.44% 
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Table 99. SAMP Representation Selection Results 

SIMULATED ANNEALING FOR MP-FLP 
Optimal V T 

Problem Solution Solution Opt Gap Solution Opt Gap 
MP201 $1,364,304.00 $1,456,807.00 6.78% $1,453,614.00 6.55% 
MP202 $1,121,451.00 $1,139,913.00 1.65% $1,168,867.00 4.23% 
MP203 $1,264,892.00 $1,347,241.00 6.51% $1,305,626.00 3.22% 
MP204 $1,050,167.00 $1,061,882.00 1.12% $1,065,273.00 1.44% 
MP205 $1,077,792.00 $1,108,773.00 2.87% $1,183,879.00 9.84% 
MP206 $   868,758.00 $   882,398.00 1.57% $   887,064.00 2.11% 
MP207 $1,067,015.00 $1,146,729.00 7.47% $1,165,215.00 9.20% 
MP208 $   864,308.00 $   882,326.00 2.08% $   880,544.00 1.88% 
MP209 $2,294,052.00 $2,422,286.00 5.59% $2,532,350.00 10.39% 
MP210 $1,895,597.00 $1,921,796.00 1.38% $2,020,787.00 6.60% 
MP211 $2,154,639.00 $2,249,995.00 4.43% $2,305,354.00 6.99% 
MP212 $1,785,983.00 $1,839,017.00 2.97% $1,841,307.00 3.10% 
MP213 $2,447,014.00 $2,570,473.00 5.05% $2,794,558.00 14.20% 
MP214 $1,904,261.00 $1,954,981.00 2.66% $2,104,446.00 10.51% 
MP215 $2,180,598.00 $2,288,135.00 4.93% $2,409,272.00 10.49% 
MP216 $1,775,420.00 $1,820,694.00 2.55% $1,825,663.00 2.83% 
MP217 $2,506,690.00 $2,623,874.00 4.67% $2,670,119.00 6.52% 
MP218 $2,104,885.00 $2,157,559.00 2.50% $2,185,748.00 3.84% 
MP219 $2,445,718.00 $2,576,975.00 5.37% $2,612,418.00 6.82% 
MP220 $2,075,443.00 $2,116,860.00 2.00% $2,136,009.00 2.92% 
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Table 100. GAMP Representation Selection Results 

GENETIC ALGORITHM FOR MP-FLP 
Optimal V T 

Problem Solution Solution Opt Gap Solution Opt Gap 
MP201 $1,364,304.00 $1,541,517.00 12.99% $1,498,688.00 9.85% 
MP202 $1,121,451.00 $1,215,905.00 8.42% $1,158,197.00 3.28% 
MP203 $1,264,892.00 $1,469,712.00 16.19% $1,358,722.00 7.42% 
MP204 $1,050,167.00 $1,187,904.00 13.12% $1,053,315.00 0.30% 
MP205 $1,077,792.00 $1,289,167.00 19.61% $1,409,935.00 30.82% 
MP206 $   868,758.00 $   972,387.00 11.93% $1,064,059.00 22.48% 
MP207 $1,067,015.00 $1,287,760.00 20.69% $1,315,040.00 23.24% 
MP208 $   864,308.00 $1,035,655.00 19.82% $   985,746.00 14.05% 
MP209 $2,294,052.00 $2,631,467.00 14.71% $2,522,621.00 9.96% 
MP210 $1,895,597.00 $2,106,340.00 11.12% $1,912,630.00 0.90% 
MP211 $2,154,639.00 $2,591,323.00 20.27% $2,354,664.00 9.28% 
MP212 $1,785,983.00 $2,114,844.00 18.41% $1,796,661.00 0.60% 
MP213 $2,447,014.00 $2,871,571.00 17.35% $2,689,198.00 9.90% 
MP214 $1,904,261.00 $2,218,480.00 16.50% $1,982,294.00 4.10% 
MP215 $2,180,598.00 $2,737,183.00 25.52% $2,503,094.00 14.79% 
MP216 $1,775,420.00 $2,136,103.00 20.32% $1,804,090.00 1.61% 
MP217 $2,506,690.00 $3,065,915.00 22.31% $3,287,554.00 31.15% 
MP218 $2,104,885.00 $2,545,313.00 20.92% $2,619,108.00 24.43% 
MP219 $2,445,718.00 $3,089,294.00 26.31% $3,157,236.00 29.09% 
MP220 $2,075,443.00 $2,539,420.00 22.36% $2,522,234.00 21.53% 
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Table 101. Tabu Search Parameter Experiment Results (CFLP) 

Average Variance of Average Variance of Average 
LTM STM TLSIZE Cost Cost   Time (sec) Time Solutions 

1000 5 $580,607.24 634736294 8.8 0.12 50000 
1000 7 $588,960.88 573699825 8.6 0.06 50000 
1000 12 $579,384.75 447593634 8.7 0.05 50000 
1500 5 $579,574.54 656852604 12.9 0.15 75000 
1500 7 $588,048.86 582916071 12.6 0.11 75000 
1500 12 $576,937.09 491492763 12.6 0.12 75000 
2000 5 $578,657.53 678149548 16.6 0.17 100000 
2000 7 $585,896.01 605668905 16.6 0.19 100000 
2000 12 $574,868.06 482965879 16.6 0.24 100000 
2500 5 $572,483.01 517523459 20.5 0.30 125000 
2500 7 $584,294.11 668244700 20.6 0.33 125000 
2500 12 $574,023.82 471781921 20.4 0.37 125000 
3000 5 $572,342.81 518650256 25.1 0.55 150000 
3000 7 $584,086.59 670095080 24.4 0.85 150000 
3000 12 $572,224.24 466441558 24.4 0.93 150000 

5 1000 5 $553,297.61 305661594 41.3 0.63 250000 
5 1000 7 $550,002.04 117333569 41.4 0.13 250000 
5 1000 12 $554,167.12 242141784 41.8 0.19 250000 
5 1500 5 $551,576.62 168218373 61.7 0.93 375000 
5 1500 7 $547,652.96 70458178 62.3 4.22 375000 
5 1500 12 $549,203.95 201225103 61.0 2.04 375000 
5 2000 5 $560,597.58 272048257 81.9 1.55 500000 
5 2000 7 $551,387.80 194075971 82.4 1.04 500000 
5 2000 12 $546,373.43 297487233 79.9 2.16 500000 
5 2500 5 $549,043.54 178318288 102.2 5.64 625000 
5 2500 7 $549,699.81 216568260 101.5 5.56 625000 
5 2500 12 $554,591.28 300308257 100.0 3.83 625000 
5 3000 5 $546,291.78 201368154 123.4 2.69 750000 
5 3000 7 $543,332.89 92475995 121.2 4.51 750000 
5 3000 12 $542,460.52 282033474 121.3 5.76 750000 
10 1000 5 $543,735.14 98072051 82.4 1.86 500000 
10 1000 7 $540,161.05 97118788 84.0 1.40 500000 
10 1000 12 $544,786.88 94129687 81.6 1.45 500000 
10 1500 5 $545,097.53 138572493 123.8 3.65 750000 
10 1500 7 $542,856.64 60607071 122.3 3.53 750000 
10 1500 12 $541,714.26 215812028 121.5 1.67 750000 
10 2000 5 $550,600.07 61805530 162.7 6.55 1000000 
10 2000 7 $549,014.51 141295961 162.4 7.95 1000000 
10 2000 12 $539,089.27 87577231 160.9 3.92 1000000 
10 2500 5 $540,948.72 225418390 202.9 6.77 1250000 
10 2500 7 $541,896.60 101570616 203.2 9.93 1250000 
10 2500 12 $536,073.76 46378153 199.0 6.11 1250000 

10 3000 5 $533,817.99 142882533 246.6 25.17 1500000 
10 3000 7 $537,844.85 61050630 247.6 46.93 1500000 
10 3000 12 $534,139.20 72358892 243.9 40.14 1500000 
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Table 102. Simulated Annealing Parameter Experiment Results (CFLP) 

Average Variance of Average Variance Average 
RATE ACCEPT FACTOR Cost Cost Time Of Time Solutions 

0.75 1000 1 $584,715.10 438819600 32.8 15 35200 
0.75 1000 2 $574,347.73 155701061 51.6 61 56255 
0.75 1000 3 $579,427.61 65475672 70.8 20 78421 
0.75 1500 1 $569,442.47 64411950 49.5 20 54900 
0.75 1500 2 $574,270.69 320663836 82.1 43 92350 
0.75 1500 3 $561,489.96 289547496 98.0 195 110966 
0.75 2000 1 $569,118.75 245762858 63.7 24 71200 
0.75 2000 2 $567,621.90 134823565 106.5 166 121055 
0.75 2000 3 $563,359.70 172605278 134.7 419 153285 
0.75 2500 1 $565,015.06 324102337 86.3 11 96000 
0.75 2500 2 $564,369.34 322837936 132.9 88 151202 
0.75 2500 3 $559,840.24 192295669 168.2 542 193881 
0.80 1000 1 $572,916.32 265230412 39.1 18 43200 
0.80 1000 2 $566,103.07 384883056 67.7 75 75869 
0.80 1000 3 $563,249.52 196666076 88.0 136 99647 
0.80 1500 1 $584,906.76 376524118 60.3 31 67650 
0.80 1500 2 $558,312.31 87045251 107.5 80 108904 
0.80 1500 3 $564,940.68 313906304 133.7 149 152557 
0.80 2000 1 $573,217.91 266189472 82.2 30 93000 
0.80 2000 2 $563,604.66 149010303 127.8 225 146212 
0.80 2000 3 $558,483.42 410217537 174.8 249 200368 
0.80 2500 1 $567,669.10 336079275 103.7 100 118500 
0.80 2500 2 $553,520.73 117391829 163.0 249 188194 
0.80 2500 3 $553,500.13 201485705 209.2 707 241599 
0.85 1000 1 $566,045.86 374746056 58.5 21 65300 
0.85 1000 2 $564,288.37 498344117 97.5 54 110326 
0.85 1000 3 $564,626.91 215873267 110.8 141 126789 
0.85 1500 1 $576,335.41 727908059 84.1 36 95250 
0.85 1500 2 $566,811.86 178765455 135.5 100 155175 
0.85 1500 3 $564,773.70 202118740 185.2 94 212933 
0.85 2000 1 $563,907.10 357868025 111.6 38 127200 
0.85 2000 2 $554,866.25 115908753 174.6 470 200785 
0.85 2000 3 $556,680.25 183590800 237.8 953 274704 
0.85 2500 1 $573,093.67 315534178 135.1 168 155500 
0.85 2500 2 $556,603.20 240242531 226.1 345 262816 
0.85 2500 3 $554,603.75 188465284 300.4 382 349073 
0.90 1000 1 $566,236.77 386696869 86.8 14 98500 
0.90 1000 2 $562,688.63 356340184 143.4 64 164448 
0.90 1000 3 $558,437.88 121159617 177.4 447 204087 
0.90 1500 1 $568,844.97 255232737 126.8 109 145950 
0.90 1500 2 $560,708.22 279469904 196.6 307 225908 
0.90 1500 3 $553,317.84 106127717 263.9 135 305478 
0.90 2000 1 $552,388.18 368681348 163.3 226 188200 
0.90 2000 2 $555,283.26 188802721 276.5 851 319653 
0.90 2000 3 $555,231.07 199527562 341.7 1605 396142 
0.90 2500 1 $560,442.90 178366591 208.1 96 242000 
0.90 2500 2 $547,332.16 125284932 324.3 1054 379211 
0.90 2500 3 $547,878.04 120502377 440.7 773 516715 
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Table 102. Continued 

Average Variance of Average Variance Average 
RATE ACCEPT FACTOR Cost Cost Time Of Time Solutions 
0.95 1000 1 $568,193.96 451501614 171.4 320 192900 
0.95 1000 2 $546,426.57 204339868 293.5 394 333059 
0.95 1000 3 $550,525.17 136335379 381.9 683 434199 
0.95 1500 1 $556,627.24 56438115 248.3 499 279750 
0.95 1500 2 $556,216.84 213233033 409.0 1160 466287 
0.95 1500 3 $553,189.86 347079342 533.1 3140 608967 
0.95 2000 1 $552,110.59 280588127 332.0 607 377000 
0.95 2000 2 $554,617.69 252131323 652.4 40466 593637 
0.95 2000 3 $546,429.14 364579587 675.9 5451 773925 
0.95 2500 1 $554,743.72 158715950 413.6 711 471250 
0.95 2500 2 $538,967.57 101579443 652.9 3443 745593 
0.95 2500 3 $546,870.62 106631994 877.6 15740 988528 



278 

Table 103. Genetic Algorithm Parameter Experiment Results (CFLP) 

Average Variance of Average Variance Average 
POP GENS XOVER MUTATE Cost Cost Time Of Time Solutions 

20 1000 0.85 0.05 $673,657.93 369757105 94.3 327.9 21000 
20 1000 0.95 0.05 $670,615.83 224766285 84.8 0.5 21000 
20 1000 1.00 0.05 $678,163.28 297737946 85.5 3.1 21000 
20 1500 0.85 0.05 $668,553.15 338047001 159.4 2875.9 31000 
20 1500 0.95 0.05 $665,512.60 146763771 127.1 2.8 31000 
20 1500 1.00 0.05 $662,378.96 174943259 141.7 278.0 31000 
20 2000 0.85 0.05 $663,215.33 359049169 171.3 0.6 41000 
20 2000 0.95 0.05 $658,802.55 285566936 171.7 0.8 41000 
20 2000 1.00 0.05 $660,967.40 152892984 169.9 1.5 41000 
30 1000 0.85 0.05 $674,403.08 383112022 133.7 271.7 31500 
30 1000 0.95 0.05 $669,116.47 399097940 129.9 16.5 31500 
30 1000 1.00 0.05 $674,653.97 421990300 128.9 4.2 31500 
30 1500 0.85 0.05 $665,106.65 383594906 189.6 0.6 46500 
30 1500 0.95 0.05 $659,293.14 256810448 193.5 4.0 46500 
30 1500 1.00 0.05 $662,738.36 255890824 194.7 55.5 46500 
30 2000 0.85 0.05 $656,682.90 392913547 258.1 4.0 61500 
30 2000 0.95 0.05 $654,699.61 239779160 260.4 13.1 61500 
30 2000 1.00 0.05 $657,380.87 144522550 252.6 2.1 61500 
40 1000 0.85 0.05 $676,625.32 767567268 170.4 11.6 42000 
40 1000 0.95 0.05 $665,826.25 217441518 186.5 615.0 42000 
40 1000 1.00 0.05 $671,268.13 256786747 169.4 0.4 42000 
40 1500 0.85 0.05 $659,729.69 471523541 251.0 0.3 62000 
40 1500 0.95 0.05 $655,430.66 134267945 258.2 0.2 62000 
40 1500 1.00 0.05 $660,420.46 206088834 255.9 0.8 62000 
40 2000 0.85 0.05 $649,614.69 528334690 334.2 0.5 82000 
40 2000 0.95 0.05 $653,954.00 74823597 344.1 0.4 82000 
40 2000 1.00 0.05 $653,773.29 167413065 336.2 0.9 82000 
20 1000 0.85 0.10 $731,348.27 384532535 103.7 387.6 21000 
20 1000 0.95 0.10 $735,015.90 573927980 95.9 0.3 21000 
20 1000 1.00 0.10 $736,742.62 866214939 96.0 0.5 21000 
20 1500 0.85 0.10 $723,928.25 331951161 153.2 512.8 31000 
20 1500 0.95 0.10 $723,489.30 170558619 161.3 639.7 31000 
20 1500 1.00 0.10 $725,027.18 616853471 170.7 946.9 31000 
20 2000 0.85 0.10 $722,166.34 250727322 193.2 0.7 41000 
20 2000 0.95 0.10 $718,875.32 195987763 193.4 0.4 41000 
20 2000 1.00 0.10 $720,080.70 589743323 191.1 0.7 41000 
30 1000 0.85 0.10 $728,994.03 460932352 145.6 1.1 31500 
30 1000 0.95 0.10 $727,900.85 299351585 150.2 227.6 31500 
30 1000 1.00 0.10 $732,091.41 895079430 145.2 0.9 31500 
30 1500 0.85 0.10 $723,164.59 364958647 218.4 36.1 46500 
30 1500 0.95 0.10 $720,018.84 163853813 217.6 1.8 46500 
30 1500 1.00 0.10 $720,594.58 997008850 221.9 195.1 46500 
30 2000 0.85 0.10 $709,328.61 180999945 296.5 4.1 61500 
30 2000 0.95 0.10 $716,019.47 163035281 295.5 0.6 61500 
30 2000 1.00 0.10 $716,838.89 812753492 287.4 1.4 61500 
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Table 103. Continued 

Average Variance of Average Variance Average 
POP GENS XOVER MUTATE Cost Cost Time Of Time Solutions 
40 1000 0.85 0.10 $735,080.66 680289888 190.5 0.5 42000 
40 1000 0.95 0.10 $724,013.24 816675918 190.6 0.8 42000 
40 1000 1.00 0.10 $742,376.98 223708936 204.1 570.7 42000 
40 1500 0.85 0.10 $720,819.19 222843956 284.6 2.8 62000 
40 1500 0.95 0.10 $716,802.98 474199785 292.2 3.3 62000 
40 1500 1.00 0.10 $729,904.16 103364248 287.5 0.5 62000 
40 2000 0.85 0.10 $712,936.41 348412910 379.4 5.2 82000 
40 2000 0.95 0.10 $716,701.17 464220433 388.8 10.5 82000 
40 2000 1.00 0.10 $722,662.29 375688383 382.7 0.8 82000 
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Table 104. Tabu Search Parameter Experiment Results (MP-FLP) 

Average Variance of Average Variance Average 
LTW I STM TLSIZE Cost Cost rime (sec) Of Time Solutions 

1 1000 5 $2,689,656.20 953159582 67.6 2 500000 
1 1000 7 $2,687,730.10 929182331 67.3 0 500000 
1 1000 12 $2,692,391.90 1054872669 67.1 0 500000 
1 1500 5 $2,689,290.90 923808173 96.6 0 750000 
1 1500 7 $2,684,331.30 773595180 97.1 0 750000 
1 1500 12 $2,687,529.60 996207884 96.9 0 750000 
1 2000 5 $2,688,961.30 958318831 126.4 0 1000000 
1 2000 7 $2,683,899.40 808516075 126.6 0 1000000 
1 2000 12 $2,685,261.30 986749137 126.7 0 1000000 
1 2500 5 $2,688,305.00 947705220 156.5 0 1250000 
1 2500 7 $2,683,317.30 801899344 156.4 0 1250000 
1 2500 12 $2,684,274.50 953735934 156.3 0 1250000 
1 3000 5 $2,686,318.80 832108425 185.9 0 1500000 
1 3000 7 $2,682,962.10 779312334 186.0 0 1500000 
1 3000 12 $2,683,326.30 931516125 185.8 0 1500000 
5 1000 5 $2,669,238.00 556406868 305.6 1 2500000 
5 1000 7 $2,660,110.30 569546331 305.3 0 2500000 
5 1000 12 $2,660,723.50 408941617 305.8 0 2500000 
5 1500 5 $2,657,142.60 178930543 455.4 3 3750000 
5 1500 7 $2,662,039.00 329498372 454.6 2 3750000 
5 1500 12 $2,659,664.20 165058189 455.2 3 3750000 
5 2000 5 $2,647,724.20 775921966 602.9 0 5000000 
5 2000 7 $2,662,198.30 297758084 603.5 0 5000000 
5 2000 12 $2,652,665.60 536286024 603.9 1 5000000 
5 2500 5 $2,652,991.40 165721081 753.7 7 6250000 
5 2500 7 $2,661,085.80 238117306 750.5 2 6250000 
5 2500 12 $2,652,607.40 266396349 752.1 2 6250000 
5 3000 5 $2,647,957.40 315991818 900.1 2 7500000 
5 3000 7 $2,640,209.90 993884527 900.9 3 7500000 
5 3000 12 $2,642,064.40 298625370 920.8 1756 7500000 
10 1000 5 $2,650,281.60 218171719 609.2 2 5000000 
10 1000 7 $2,652,297.70 267377770 607.9 1 5000000 
10 1000 12 $2,654,375.30 428991386 608.6 3 5000000 
10 1500 5 $2,650,135.60 162639722 909.4 6 7500000 
10 1500 7 $2,650,034.70 272066359 909.3 6 7500000 
10 1500 12 $2,649,805.00 44002201 908.4 4 7500000 
10 2000 5 $2,638,553.10 347375504 1198.4 5 10000000 
10 2000 7 $2,645,994.20 256382801 1196.6 2 10000000 
10 2000 12 $2,637,317.60 320640895 1200.3 4 10000000 
10 2500 5 $2,645,926.40 149577554 1493.1 9 12500000 
10 2500 7 $2,648,617.00 310371745 1492.8 5 12500000 
10 2500 12 $2,646,851.60 70224088 1496.4 0 12500000 
10 3000 5 $2,641,990.60 143113622 1794.3 0 15000000 
10 3000 7 $2,630,409.60 752689576 1864.9 1 15000000 
10 3000 12 $2,637,154.90 267433168 1795.3 3 15000000 
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Table 105. Simulated Annealing Parameter Experiment Results (MP-FLP) 

Average  } Variance of Average Variance Average 
RATE ACCEPT FACTOR Cost Cost  Time (sec) Of Time Solutions 

0.75 1000 1 $2,743,301.60 2248365246 50.3 8 37400 
0.75 1000 2 $2,651,235.40 871325881 70.6 6 60744 
0.75 1000 3 $2,634,034.20 381396150 84.7 15 77238 
0.75 1500 1 $2,684,845.20 1112734978 64.7 6 54450 
0.75 1500 2 $2,640,291.50 667996283 92.1 11 86740 
0.75 1500 3 $2,596,559.00 595634814 114.5 13 112942 
0.75 2000 1 $2,654,448.10 821394161 78.1 2 70000 
0.75 2000 2 $2,618,753.60 440842860 115.3 6 114094 
0.75 2000 3 $2,595,898.40 581161381 143.0 14 147708 
0.75 2500 1 $2,635,911.30 496126318 92.8 11 87500 
0.75 2500 2 $2,605,652.50 685280760 139.4 14 143669 
0.75 2500 3 $2,582,664.70 321122474 170.7 16 181799 
0.8 1000 1 $2,717,325.80 953949876 57.7 2 46100 
0.8 1000 2 $2,643,000.50 608321762 83.0 4 75160 
0.8 1000 3 $2,607,132.50 731974532 100.1 8 95566 
0.8 1500 1 $2,664,895.70 887525278 75.6 10 67050 
0.8 1500 2 $2,607,326.10 1004728402 111.6 6 109858 
0.8 1500 3 $2,590,485.70 455826310 139.2 14 143177 
0.8 2000 1 $2,647,808.90 656535079 92.5 6 87400 
0.8 2000 2 $2,600,885.60 496022504 139.3 25 143206 
0.8 2000 3 $2,576,414.30 191951698 175.8 50 187249 
0.8 2500 1 $2,634,470.50 638747165 112.1 11 110500 
0.8 2500 2 $2,582,131.10 741621909 167.8 12 178538 
0.8 2500 3 $2,558,100.00 608948570 210.1 33 229788 
0.85 1000 1 $2,678,514.90 420723637 91.7 111 60000 
0.85 1000 2 $2,617,621.30 1009070118 101.7 12 97647 
0.85 1000 3 $2,608,119.00 637101035 125.8 7 127436 
0.85 1500 1 $2,654,300.40 980519532 92.7 6 87450 
0.85 1500 2 $2,597,636.90 346500713 141.2 14 146564 
0.85 1500 3 $2,588,538.50 525984280 176.0 32 189120 
0.85 2000 1 $2,625,367.70 313507607 117.9 7 118000 
0.85 2000 2 $2,584,013.40 216833832 178.4 14 192097 
0.85 2000 3 $2,564,482.60 835518578 224.1 57 248597 
0.85 2500 1 $2,620,338.70 449266793 139.9 18 145250 
0.85 2500 2 $2,566,307.00 680225624 227.1 687 236390 
0.85 2500 3 $2,548,291.70 143335891 270.6 72 305747 
0.9 1000 1 $2,639,148.70 522420903 93.5 8 87200 
0.9 1000 2 $2,612,918.20 602314090 143.6 7 146765 
0.9 1000 3 $2,566,201.70 267011503 179.1 16 189257 
0.9 1500 1 $2,612,715.80 427025922 131.4 21 132300 
0.9 1500 2 $2,579,739.20 159656418 204.4 19 219728 
0.9 1500 3 $2,560,128.10 484893829 258.2 46 284300 
0.9 2000 1 $2,600,432.10 490174967 165.3 10 173200 
0.9 2000 2 $2,567,205.30 501091931 268.1 78 296660 
0.9 2000 3 $2,538,557.20 345305299 331.6 65 373248 
0.9 2500 1 $2,587,648.80 368643527 201.1 25 215750 

0.9 2500 2 $2,550,907.20 203736991 321.6 72 361315 

0.9 2500 3 $2,535,707.10 165251077 407.5 104 465027 
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Table 105. Continued 

Average Variance of Average Variance Average 
RATE ACCEPT FACTOR Cost Cost rime (sec) Of Time Solutions 
0.95 1000 1 $2,591,426.10 468311605 162.7 25 170300 
0.95 1000 2 $2,556,468.20 279613538 261.7 45 289452 
0.95 1000 3 $2,545,407.50 376702523 328.6 113 370259 
0.95 1500 1 $2,576,283.50 183454622 235.6 23 258150 
0.95 1500 2 $2,557,959.80 734671387 380.6 23 432941 
0.95 1500 3 $2,540,453.40 209124976 489.2 69 564749 
0.95 2000 1 $2,560,206.10 365580138 310.8 62 348600 
0.95 2000 2 $2,536,430.80 179890935 498.1 31 575078 
0.95 2000 3 $2,525,710.00 397681137 626.7 319 731124 
0.95 2500 1 $2,551,920.80 213500059 376.2 48 428000 
0.95 2500 2 $2,524,155.60 134162224 611.5 69 712471 
0.95 2500 3 $2,499,668.90 174981449 775.8 155 911122 
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Table 106. Genetic Algorithm Parameter Experiment Results (MP-FLP; 

Average     Variance of Average Variance Average 
POP GENS XOVER MUTATE Cost             Cost          Time Of Time Solutions 
20 1000 0.80 0.05 $3,232,619     578117377     208 2.3 18020 
20 1000 0.85 0.05 $3,245,770   3027169458     209 2.0 18020 
20 1000 0.95 0.05 $3,228,012   2064199771      207 2.2 18020 
20 1500 0.80 0.05 $2,967,841    1012390933     317 2.1 27020 
20 1500 0.85 0.05 $2,972,513   1467582983      309 6.0 27020 
20 1500 0.95 0.05 $2,973,628   1119396645      311 4.9 27020 
20 2000 0.80 0.05 $2,859,617   1141305642      409 10.2 36020 
20 2000 0.85 0.05 $2,861,498     598305973     409 5.2 36020 
20 2000 0.95 0.05 $2,869,377     928857653     410 9.7 36020 
30 1000 0.80 0.05 $3,233,953   2598211786      308 0.5 28030 
30 1000 0.85 0.05 $3,220,733   1330011718      308 2.4 28030 
30 1000 0.95 0.05 $3,211,496   1822860761      309 0.4 28030 
30 1500 0.80 0.05 $2,970,380     778327549      463 1.2 42030 
30 1500 0.85 0.05 $2,975,501      894947800      461 1.1 42030 
30 1500 0.95 0.05 $2,979,679     981189044      466 6.1 42030 
30 2000 0.80 0.05 $2,856,778     805514932     614 11.2 56030 
30 2000 0.85 0.05 $2,873,624   1054606524      613 13.0 56030 
30 2000 0.95 0.05 $2,879,959     166769566      614 15.7 56030 
40 1000 0.80 0.05 $3,215,423     982939817     412 1.9 38040 
40 1000 0.85 0.05 $3,194,845   1922156731      414 3.1 38040 
40 1000 0.95 0.05 $3,171,852   2242594477      416 50.3 38040 
40 1500 0.80 0.05 $2,982,460     832197559      612 1.2 57040 
40 1500 0.85 0.05 $2,983,578     505746231      612 2.1 57040 
40 1500 0.95 0.05 $2,940,615   1049269754      616 0.4 57040 
40 2000 0.80 0.05 $2,888,219     727430883      815 1.0 76040 
40 2000 0.85 0.05 $2,877,486   1119599640      822 1.2 76040 
40 2000 0.95 0.05 $2,850,135   1532001055      823 3.1 76040 
20 1000 0.80 0.10 $3,276,601    2603965932      209 1.8 18020 
20 1000 0.85 0.10 $3,242,772   2740490348      211 2.4 18020 
20 1000 0.95 0.10 $3,226,137   1750499418      209 1.7 18020 
20 1500 0.80 0.10 $3,071,168   1546219449      319 2.1 27020 
20 1500 0.85 0.10 $3,049,118   2332904556      313 11.9 27020 
20 1500 0.95 0.10 $3,039,553   1196184611      313 3.6 27020 
20 2000 0.80 0.10 $2,965,226   1562503212      413 14.3 36020 
20 2000 0.85 0.10 $2,952,160   1001035487      412 2.5 36020 
20 2000 0.95 0.10 $2,950,261    1666382596     412 8.7 36020 
30 1000 0.80 0.10 $3,275,489   1843485238      311 0.4 28030 
30 1000 0.85 0.10 $3,241,267   1126397875      311 0.7 28030 
30 1000 0.95 0.10 $3,240,682     696093810     312 0.4 28030 
30 1500 0.80 0.10 $3,083,701   2812656267      467 1.7 42030 
30 1500 0.85 0.10 $3,053,420     778719640     466 1.1 42030 
30 1500 0.95 0.10 $3,071,568     717422860     470 7.5 42030 
30 2000 0.80 0.10 $2,980,739   1947004452      621 12.4 56030 
30 2000 0.85 0.10 $2,971,632     527987509      619 9.7 56030 
30 2000 0.95 0.10 $2,985,438   1235808570     621 17.6 56030 
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Table 106. Continued 

Average Variance of Average Variance Average 
POP GENS XOVER MUTATE Cost Cost Time Of Time Solutions 
40 1000 0.80 0.10 $3,228,536 2149915082 416 4.4 38040 
40 1000 0.85 0.10 $3,245,007 1680126786 417 3.6 38040 
40 1000 0.95 0.10 $3,242,197 931791686 417 17.3 38040 
40 1500 0.80 0.10 $3,052,240 1240341367 617 0.1 57040 
40 1500 0.85 0.10 $3,073,512 942090114 617 0.6 57040 
40 1500 0.95 0.10 $3,073,290 1279806716 622 0.8 57040 
40 2000 0.80 0.10 $2,976,248 806766101 825 0.4 76040 
40 2000 0.85 0.10 $2,986,423 835252960 832 1.0 76040 
40 2000 0.95 0.10 $2,988,599 1259665420 834 13.1 76040 
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Table 107. Tabu Search Parameter Experiment Results (MC-FLP) 

Average   Variance of Average Variance Average 
LTM STM TLSIZE Cost      Cost rime (sec) Of Time Solutions 

25 1 $2,718,055.60 394993076788 88.9 43 481 
25 2 $2,715,572.20 393352131516 88.6 32 480 
25 5 $2,716,897.40 394693381798 88.3 37 480 
50 1 $2,715,432.20 394108663965 191.7 253 981 
50 2 $2,712,790.60 390052008103 193.3 209 980 
50 5 $2,711,178.70 388423936656 190.8 178 980 
75 1 $2,714,574.50 395272854197 292.7 655 1481 
75 2 $2,711,996.60 389003584548 296.7 490 1480 
75 5 $2,711,150.10 388462658730 293.1 457 1480 
100 1 $2,713,387.50 393327466708 395.4 1212 1980 
100 2 $2,711,182.30 390102295924 399.6 846 1980 
100 5 $2,705,674.60 385171494282 394.8 833 1980 

3 25 1 $1,957,825.80 13467084275 272.7 154 1449 
3 25 2 $2,206,649.30 232808380507 271.2 141 1448 
3 25 5 $2,180,993.00 234182581947 264.5 59 1448 
3 50 1 $2,069,268.90 133868246306 576.0 704 2946 
3 50 2 $2,079,745.70 139156919336 583.9 591 2949 
3 50 5 $2,201,197.40 141918528286 571.3 399 2945 
3 75 1 $2,298,626.00 288599102004 889.4 1312 4452 
3 75 2 $2,042,154.60 121144298046 879.4 745 4450 
3 75 5 $2,271,966.00 259294494745 890.1 784 4449 
3 100 1 $2,049,598.70 149115226974 1170.6 1949 5950 
3 100 2 $2,160,553.20 222835245687 1215.2 2283 5949 
3 100 5 $2,126,992.90 268713734339 1193.4 1544 5950 
5 25 1 $1,886,119.50 11182800371 450.7 240 2420 
5 25 2 $2,080,064.90 137554718838 451.8 219 2417 
5 25 5 $1,900,044.90 10554348630 448.0 159 2416 
5 50 1 $1,962,688.30 47004949590 962.2 771 4911 
5 50 2 $1,877,646.30 12613949678 968.6 470 4916 
5 50 5 $2,005,743.00 113899703010 963.8 550 4914 
5 75 1 $2,007,560.30 75157849438 1490.2 990 7413 
5 75 2 $1,888,053.30  6064224750 1480.6 634 7421 
5 75 5 $1,944,790.40 116889633183 1492.2 942 7420 
5 100 1 $1,877,393.70  7656274956 2014.5 9169 9922 
5 100 2 $2,052,390.90 126834009181 2019.6 4198 9917 
5 100 5 $1,845,173.30  8301716283 2016.6 3004 9922 
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Table 108. Simulated Annealing Parameter Experiment Results (MC-FLP) 

RATE ACCEPT  FACTOR 
Average 
Cost 

Variance of 
Cost 

Average 
Time (sec) 

Variance 
Of Time 

Average 
Solutions 

0.75 25 1 
0.75 25 2 
0.75 25 3 
0.75 50 1 
0.75 50 2 
0.75 50 3 
0.75 75 1 
0.75 75 2 
0.75 75 3 
0.8 25 1 
0.8 25 2 
0.8 25 3 
0.8 50 1 
0.8 50 2 
0.8 50 3 
0.8 75 1 
0.8 75 2 
0.8 75 3 
0.85 25 1 
0.85 25 2 
0.85 25 3 
0.85 50 1 
0.85 50 2 
0.85 50 3 
0.85 75 1 
0.85 75 2 
0.85 75 3 
0.9 25 1 
0.9 25 2 
0.9 25 3 
0.9 50 1 
0.9 50 2 
0.9 50 3 
0.9 75 1 
0.9 75 2 
0.9 75 3 
0.95 25 1 
0.95 25 2 
0.95 25 3 
0.95 50 1 
0.95 50 2 
0.95 50 3 
0.95 75 1 
0.95 75 2 
0.95 75 3 

$2,714,217.60 
$2,713,679.70 
$2,709,277.00 
$2,699,935.10 
$2,703,539.60 

$2,706,974.30 
$2,700,989.90 
$2,700,791.90 
$2,696,195.50 
$2,708,313.40 
$2,714,691.30 
$2,709,167.50 
$2,714,258.20 
$2,702,145.00 
$2,703,657.40 
$2,705,628.10 
$2,696,050.60 
$2,696,346.50 
$2,712,095.40 
$2,704,726.90 
$2,702,873.50 
$2,702,008.20 
$2,703,315.00 
$2,696,661.80 
$2,702,831.00 
$2,699,766.00 
$2,697,139.90 
$2,704,685.70 
$2,712,438.00 
$2,702,678.70 
$2,702,781.90 
$2,702,544.70 
$2,696,056.60 
$2,704,922.00 
$2,689,265.10 
$2,688,925.70 
$2,705,616.90 
$2,694,720.50 
$2,694,154.10 
$2,700,987.30 
$2,691,272.90 
$2,693,115.30 
$2,696,688.50 
$2,690,430.40 
$2,688,180.00 

397870021480 
393295489123 
386898981293 
399886655458 
397144480569 
395270255426 
390234705053 
394978872731 
395602379007 
400640220526 
398248261275 
390518894343 
404436632189 
396003911013 
391850196738 
391449346630 
395197781134 
393764217007 
404432176216 
395217649694 
398892659872 
402020310204 
406015948104 
400947976774 
393712699120 
397613748198 
400262228090 
392708986614 
388199649494 
402003039640 
393576218774 
397867707671 
399359073882 
393498099523 
397352652912 
400115745384 
400083698529 
391029689967 
392975877636 
386604853237 
395051163064 

390849371765 
389246338251 
398562977292 
395832348443 

82.7 
151.1 
195.6 
175.0 
302.6 
367.9 
267.9 
446.9 
580.1 
104.4 
183.9 
231.3 
207.9 
373.3 
490.7 
314.9 
587.4 
726.3 
131.5 
252.2 
319.0 
286.2 
494.7 
642.9 
435.3 
768.8 
963.4 
200.6 
365.4 
456.4 
417.4 
760.1 
932.4 
650.8 

1177.2 
1438.6 
378.6 
722.9 
914.6 
831.9 

1461.0 
1850.5 
1293.9 
2257.8 
2926.7 

52 
67 

337 
396 
1679 
1163 
2198 
1963 
4669 

99 
112 

1407 
126 
793 

4550 
1905 
2442 
8123 
279 
562 
1276 
308 
966 

2673 
1419 

10102 
11810 
200 
775 
1595 
866 
1536 
2921 
2424 
7670 
18987 
727 
701 

14943 
1044 
7934 

25106 
5275 
9522 

52011 

783 
1413 
1765 
1635 
2773 
3333 
2490 
4093 
5181 
988 
1712 

2101 
1950 
3422 
4439 
2970 
5388 
6530 
1253 
2326 
2913 
2665 
4539 
5819 
4028 
7078 
8654 
1910 
3399 
4143 
3920 
6929 
8448 
6098 
10850 
12977 
3640 
6768 
8373 
7840 
13573 
16836 
12083 
20931 
26600 
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Table 109. Genetic Algorithm Parameter Experiment Results (MC-FLP) 

Average Variance of Average Variance Average 
POP GENS XOVER MUTATE Cost Cost Time Of Time Solutions 
20 50 0.80 0.05 $2,174,957.40 23948035886 104 38.1 920 
20 50 0.85 0.05 $2,196,908.80 8311521603 103 38.0 920 
20 50 0.95 0.05 $2,315,908.50 102444343361 103 22.1 920 
20 100 0.80 0.05 $1,981,202.60 11625621810 249 214.0 1820 
20 100 0.85 0.05 $1,937,109.00 4243067099 250 221.5 1820 
20 100 0.95 0.05 $1,954,617.50 8371165081 244 115.0 1820 
20 150 0.80 0.05 $1,873,157.40 4127853222 408 333.0 2720 
20 150 0.85 0.05 $1,893,309.10 4387466710 408 701.0 2720 
20 150 0.95 0.05 $1,824,466.40 4269614035 406 228.8 2720 
30 50 0.80 0.05 $2,125,382.70 10459530317 161 121.5 1430 
30 50 0.85 0.05 $2,108,950.10 7715275793 157 45.9 1430 
30 50 0.95 0.05 $2,099,763.70 8960922987 156 42.8 1430 
30 100 0.80 0.05 $1,903,301.90 5818789231 375 1180.7 2830 
30 100 0.85 0.05 $1,885,550.70 5961597176 370 327.1 2830 
30 100 0.95 0.05 $1,877,819.70 6875785186 371 391.8 2830 
30 150 0.80 0.05 $1,845,335.90 4835958053 609 2907.7 4230 
30 150 0.85 0.05 $1,840,309.30 5543624656 609 1335.4 4230 
30 150 0.95 0.05 $1,820,773.40 5196735514 607 694.4 4230 
40 50 0.80 0.05 $2,030,628.90 14035346965 208 97.4 1940 
40 50 0.85 0.05 $2,075,180.50 16372468700 202 82.1 1940 
40 50 0.95 0.05 $2,026,939.50 10669993187 211 116.4 1940 
40 100 0.80 0.05 $1,899,681.10 4989726288 487 847.7 3840 
40 100 0.85 0.05 $1,870,159.40 8441749222 478 652.2 3840 
40 100 0.95 0.05 $1,853,945.10 3197391043 494 1167.6 3840 
40 150 0.80 0.05 $1,838,477.90 4082903267 802 2244.5 5740 
40 150 0.85 0.05 $1,801,685.60 6146428738 785 1411.6 5740 
40 150 0.95 0.05 $1,802,761.60 2354821426 805 3866.4 5740 
20 50 0.80 0.10 $1,979,709.20 12040756201 111 39.2 920 
20 50 0.85 0.10 $2,006,990.50 9985173069 111 55.8 920 
20 50 0.95 0.10 $1,956,368.20 6593559836 116 89.5 920 
20 100 0.80 0.10 $1,834,156.30 5059227981 259 219.0 1820 
20 100 0.85 0.10 $1,837,010.90 4674762152 264 129.1 1820 
20 100 0.95 0.10 $1,828,914.60 4231305612 275 415.9 1820 
20 150 0.80 0.10 $1,794,110.20 3516937542 418 532.9 2720 
20 150 0.85 0.10 $1,796,442.70 2917865229 422 216.9 2720 
20 150 0.95 0.10 $1,801,375.20 2994060159 439 601.1 2720 
30 50 0.80 0.10 $1,963,066.10 7169053812 170 223.3 1430 
30 50 0.85 0.10 $2,005,921.30 10906716460 167 103.1 1430 
30 50 0.95 0.10 $2,159,415.40 116169883847 171 64.4 1430 
30 100 0.80 0.10 $1,826,936.40 4253714398 390 720.8 2830 
30 100 0.85 0.10 $1,851,729.30 3005811954 388 485.3 2830 
30 100 0.95 0.10 $1,873,957.00 3282560296 395 322.2 2830 
30 150 0.80 0.10 $1,795,509.10 1874218209 627 1143.3 4230 
30 150 0.85 0.10 $1,823,633.40 1801401543 625 1210.3 4230 
30 150 0.95 0.10 $1,813,255.00 2796754313 634 862.0 4230 
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Table 109. Continued 

Average Variance of Average Variance Average 
POP GENS XOVER MUTATE Cost Cost Time Of Time Solutions 
40 50 0.80 0.10 $1,951,525.40 9266085136 225 156.9 1940 
40 50 0.85 0.10 $1,991,455.60 5556420765 217 130.3 1940 
40 50 0.95 0.10 $1,890,418.40 5239644294 225 378.4 1940 
40 100 0.80 0.10 $1,827,258.30 3130696592 535 1207.6 3840 
40 100 0.85 0.10 $1,847,441.50 2336746112 512 773.9 3840 
40 100 0.95 0.10 $1,809,680.30 2249412933 523 766.1 3840 
40 150 0.80 0.10 $1,788,680.80 2320875949 859 2320.7 5740 
40 150 0.85 0.10 $1,801,082.90 1622034169 829 1310.8 5740 
40 150 0.95 0.10 $1,779,198.90 1630572981 830 1269.5 5740 



APPENDIX C 

U.S. CITIES DATABASE FOR TEST PROBLEMS 
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The table on the next page contains a list of 250 cities in the United States 

that were selected to form a database for generating a new set of test problems 

for this research. The city locations, latitude and longitude were obtained from 

The World Almanac and Book of Facts. The estimated 1996 population for these 

cities was obtained from the Rand McNally Commercial Atlas & Marketing Guide 

1997. 

In order to build our database, it was necessary to obtain the distance 

between any two of these cities. Since there was no readily available source 

with this information, we used the latitude and longitude information to compute 

the line-of-sight distance. This distance was computed using a piece of software 

freely available from the U.S. Geological Survey. Given the latitude and 

longitude of two points on the earth, the software computes the distance in statue 

miles taking into account the curvature of the globe. Although this is not as 

accurate as the true driving distance, it is a good estimate of the relative 

distances between the cities. 
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Table 110. 250 U.S. Cities Database 

City 1996 POP Latitude Longitude 

Abilene.TX 110100 032:027:005N 099:043:051 W 
Akron,OH 221300 041:005:000N 081:030:044W 
Albany.NY 107000 042:039:001 N 073:045:001 W 
Albuquerque.NM 419300 035:005:001 N 106:039:005W 
Allentown.PA 130900 040:036:011N 075:028:006W 
Amarillo.TX 174400 035:012:027N 101:050:004W 
Anchorage.AK 257600 061:010:000N 149:059:000W 
AnnArbor.MI 109300 042:016:059N 083:044:052W 
Ashland.KY 24400 038:028:036N 082:038:023W 
Atlanta, G A 402000 033:045:01 ON 084:023:037W 
AtlanticCity.NJ 35400 039:021:032N 074:025:053W 
Augusta.GA 42300 033:028:020N 081:058:000W 
Austin.TX 529000 030:016:009N 097:044:037W 
Bakersfield.CA 196500 035:022:031 N 119:001:018W 
Baltimore.MD 686900 039:017:026N 076:036:045W 
Bangor.ME 32200 044:048:013N 068:046:018W 
BatonRouge.LA 228300 030:026:058N 091:011:000W 
BattleCreek,MI 55300 042:018:058N 085:010:048W 
Beaumont.TX 114800 030:005:020N 094:006:009W 
Berkeley,CA 101200 037:052:109N 122:016:017W 
Bethlehem.PA 73200 040:037:016N 075:022:034W 
Billings.MT 87800 045:047:000N 108:030:004W 
Biloxi,MS 48900 030:023:048N 088:053:000W 
Birmingham.AL 263800 033:031:001N 086:048:036W 
Bismarck,ND 53900 046:048:023N 100:047:017W 
Bloomington,IL 56500 040:028:058N 088:059:036W 
Boise, ID 153400 043:037:007N 116:011:058W 
Boston,MA 546000 042:021:024N 071:003:025W 
BowlingGreen.KY 46600 036:059:041 N 086:026:033W 
Bridgeport,CT 130500 041:010:049N 073:011:022W 
Brownsville.TX 121500 025:054:007N 097:029:058W 
Buffalo.NY 304200 042:052:052N 078:052:021W 
Burlington.VT 38500 044:028:034N 073:012:046W 
Butte.MN 34400 046:001:006N 112:032:011W 
Cambridge,MA 101500 042:022:001 N 071:006:022W 
Camden.NJ 80000 039:056:041 N 075:007:014W 
Canton.OH 84100 040:047:050N 081:022:037W 
CarsonCity.NV 47100 039:010:000N 119:046:000W 
CedarRapidsJA 115000 041:058:001N 091:039:053W 
Champaign,IL 68300 040:007:005N 088:014:048W 
Charleston.SC 80900 032:046:035N 079:055:053W 
Charleston.WV 56000 038:021:001N 081:037:052W 
Charlotte, NC 456700 035:013:044N 080:050:045W 
Chattanooga,TN 151600 035:002:041 N 085:018:032W 
Cheyenne.WY 54400 041:008:009N 104:049:007W 
Chicago.IL 2708000 041:052:028N 087:038:022W 
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Cincinnati,OH 352800 039:006:007N 084:030:035W 
Cleveland.OH 485600 041:029:051N 081:041:050W 
ColoradoSprings.CO 330300 038:050:007N 104:049:016W 
Columbia, MO 75700 038:057:003N 092:019:046W 
Columbia.SC 107200 034:000:002N 081:002:000W 
Columbus,GA 186800 032:028:007N 084:059:024W 
Columbus.OH 633200 039:057:047N 083:000:017W 
Concord, NH 36600 043:012:022N 071:032:025W 
CorpusChristi.TX 281300 027:047:051 N 097:023:045W 
Dallas.TX 1033600 032:047:009N 096:047:037W 
Davenport,! A 96900 041:031:019N 090:034:033W 
Dayton, OH 176300 039:045:032N 084:011:043W 
DaytonaBeach,FL 64300 029:012:044N 081:001:010W 
DecaturJL 81900 039:050:042N 088:056:047W 
Denver.CO 499700 039:044:058N 104:059:022W 
DesMoinesJA 194300 041:035:014N 093:037:000W 
Detroit,MI 979900 042:019:048N 083:002:057W 
DodgeCity,KS 22800 037:045:017N 100:001:009W 
Duluth.MN 83100 046:046:056N 092:006:024W 
Durham,NC 145800 036:000:000N 078:054:045W 
EIPaso.TX 601700 031:045:036N 106:029:011W 
Enid.OK 46300 036:023:040N 097:052:035W 
Erie,PA 108400 042:007:015N 080:004:057W 
Eugene.OR 118700 044:003:016N 123:005:030W 
Eureka.CA 28000 040:048:008N 124:009:046W 
Evansville.lN 130200 037:058:020N 087:034:021W 
Fairbanks,AK 35000 064:048:000N 147:051:000W 
FallRiver.MA 88500 041:042:006N 071:009:018W 
Fargo, ND 81600 046:052:030N 096:047:018W 
Flagstaff.AZ 52900 035:011:036N 111:039:006W 
Flint.MI 137000 043:000:050N 083:041:033W 
FortWayne.lN 186600 041:004:021N 085:008:026W 
FortWorth,TX 462000 032:044:055N 097:019:044W 
Fresno.CA 408000 036:044:012N 119:047:011W 
FtSmith.AR 74700 035:023:01 ON 094:025:036W 
Gainesville.FL 89500 029:038:056N 082:019:019W 
Gallup.NM 20100 035:031:030N 108:044:030W 
Galveston,TX 58700 029:018:01 ON 094:047:043W 
Gary.lN 112300 041:036:012N 087:020:019W 
GrandJunction.CO 37000 039:004:006N 108:033:054W 
GrandRapids.MI 190100 042:058:003N 085:040:013W 
GreatFalls.MN 59100 047:029:033N 111:018:023W 
GreenBay,WI 103800 044:030:048N 088:000:050W 
Greensboro.NC 199800 036:004:017N 079:047:025W 
Greenville,SC 60100 034:050:050N 082:024:001 W 
Gulfport.MS 78600 030:022:004N 089:005:036W 
Harrisburg,PA 55000 040:015:043N 076:052:059W 
Hartford.CT 118400 041:046:012N 072:040:049W 
Helena,MN 26500 046:035:033N 112:002:024W 
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Hilo.HI 43400 019:043:030N 155:005:024W 
Honolulu,HI 385600 021:018:022N 157:051:035W 
Houston,TX 1710600 029:045:026N 095:021:037W 
Huntington.WV 53200 038:025:012N 082:026:033W 
Huntsville.AL 159900 034:044:018N 086:035:019W 
Indianapolis,IN 759200 039:046:007N 086:009:046W 
lowaCity.lA 61300 041:039:037N 091:031:053W 
Jackson,Ml 38700 042:014:043N 084:024:022W 
Jackson,MS 191900 032:017:056N 090:011:006W 
Jacksonville, FL 681400 030:019:044N 081:039:042W 
JerseyCity,NJ 225900 040:043:050N 074:003:056W 
Johnstown,PA 27200 040:019:035N 078:055:003W 
Joplin.MO 43900 037:005:026N 094:030:000W 
Juneau.AK 28600 058:018:012N 134:024:030W 
Kalamazoo.MI 81400 042:017:029N 085:035:014W 
KansasCity.KS 447200 039:007:004N 094:038:024W 
KansasCity,MO 85800 039:004:056N 094:035:020W 
Kenosha, Wl 24000 042:035:043N 087:050:011W 
Key West, FL 174500 024:033:030N 081:048:012W 
Knoxville,TN 47300 035:057:039N 083:055:007W 
Lafayette, IN 58300 040:025:011N 086:053:039W 
Lancaster, PA 116000 040:002:025N 076:018:029W 
Lansing,Ml 159400 042:044:001 N 084:033:015W 
Laredo.TX 366400 027:030:022N 099:030:030W 
Las Vegas, NV 242400 036:010:020N 115:008:037W 
Lexington, KY 43900 038:002:050N 084:029:046W 
Lima.OH 207700 040:044:035N 084:006:020W 
Lincoln,NE 177800 040:048:059N 096:042:015W 
LittleRock.AR 432500 034:044:042N 092:016:037W 
Long Beach, C A 3420500 033:046:014N 118:011:018W 
LosAngeles.CA 268100 034:003:015N 118:014:028W 
Louisville.KY 94100 038:014:047N 085:045:049W 
Lowell,MA 197600 042:038:025N 071:019:014W 
Lubbock.TX 109500 033:035:005N 101:050:033W 
Macon.GA 195600 032:050:012N 083:037:036W 
Madison.WI 96600 043:004:023N 089:022:055W 
Manchester.NH 23300 042:059:028N 071:027:041W 
Marshall.TX 613400 032:033:000N 094:023:000W 
Memphis.TN 376000 035:008:046N 090:003:013W 
Miami.FL 613300 025:046:037N 080:011:032W 
Milwaukee.WI 350800 043:002:019N 087:054:015W 
Mineapolis,MN 36100 044:058:057N 093:015:043W 
Minot.ND 206900 048:014:009N 101:017:038W 
Mobile.AL 71200 030:041:036N 888:002:033W 
Muncie.lN 513100 040:011:028N 085:023:016W 
Nashville.TN 257200 036:009:033N 086:046:055W 
Newark, NJ 93200 040:044:014N 074:010:019W 
NewBedford.MA 116300 041:038:013N 070:055:041 W 
NewHaven.CT 481000 041:018:025N 072:055:030W 
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NewOrleans.LA 7313800 029:056:053N 090:004:010W 
NewYork,NY 59400 040:045:006N 073:059:039W 
NiagaraFalls.NY 3500 043:005:034N 079:003:026W 
Nome.AK 237300 064:030:000N 165:025:000W 
Norfolk,VA 373100 036:051:01 ON 076:017:021 W 
Oakland.CA 68600 037:048:003N 122:015:054W 
Ogden.UT 467600 041:013:031 N 111:058:021 W 
OklahomaCity.OK 349700 035:028:026N 097:031:004W 
Omaha.NE 183200 041:015:042N 095:056:014W 
Orlando,FL 26800 028:032:042N 081:022:038W 
Paducah.KY 136500 037:005:013N 088:035:056W 
Pasadena.CA 136400 034:008:044N 118:008:041 W 
Paterson.NJ 61300 040:055:001 N 074:010:021 W 
Pensacola.FL 111500 030:024:051 N 087:012:056W 
Peoria.lL 1503000 040:041:042N 089:035:033W 
Philadelphia.PA 1088200 039:056:058N 075:009:021 W 
Phoenix.AZ 351500 033:027:012N 112:004:028W 
Pittsburgh,PA 58300 040:026:019N 080:000:000W 
PortArthur.TX 61700 029:052:030N 093:056:015W 
Portland.ME 457400 043:039:033N 070:015:019W 
Portland.OR 19100 045:031:006N 122:040:035W 
Portsmouth, NH 102600 043:004:030N 070:045:024W 
Portsmouth.VA 147700 036:050:007N 076:018:014W 
Providence, Rl 86900 041:049:032N 071:024:041W 
Provo.UT 101300 040:014:006N 111:039:024W 
Pueblo.CO 85800 048:016:017N 104:036:033W 
Racine,WI 247200 042:043:049N 087:047:012W 
Raleigh.NC 58000 035:046:038N 078:038:021W 
RapidCity.SD 77500 044:004:052N 103:013:011W 
Reading, PA 150100 040:020:009N 075:055:040W 
Reno,NV 200700 039:031:027N 119:048:040W 
Richmond,VA 96600 037:032:015N 077:026:009W 
Roanoke.VA 77100 037:016:013N 079:056:044W 
Rochester,MN 228500 044:001:021N 092:028:003W 
Rochester, NY 144900 043:009:041 N 077:036:021 W 
Rockford.IL 383600 042:016:007N 089:005:048W 
Sacramento.CA 147900 038:034:057N 121:029:041W 
Saginaw,MI 118000 043:025:052N 083:056:005W 
Salem.OR 44400 044:056:024N 123:001:059W 
Salina.KN 175000 038:050:036N 097:036:046W 
SaltLakeCity.UT 91000 040:045:023N 111:053:026W 
SanAngelo.TX 1025300 031:027:039N 100:026:003W 
SanAntonio.TX 198200 029:025:037N 098:029:006W 
SanBernardino.CA 1181900 034:006:030N 117:017:028W 
SanDiego.CA 749100 032:042:053N 117:009:021 W 
SanFrancisco.CA 841300 037:046:039N 122:024:040W 
SanJose.CA 443372 037:020:016N 121:053:024W 
San Juan, PR 89300 018:027:000N 066:004:015W 
SantaBarbara.CA 48600 034:025:018N 119:041:055W 
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SantaCruz.CA 64300 036:058:018N 122:001:018W 
SantaFe,NM 140700 035:041:011N 105:056:010W 
Savannah.GA 63200 032:004:042N 081:005:037W 
Schenectady.NY 76500 042:048:042N 073:055:042W 
Scranton.PA 522500 041:024:032N 075:039:046W 
Seattle.WA 50700 047:036:032N 122:020:012W 
Sheboygan.WI 15300 043:045:003N 087:042:052W 
Sheridan.WY 196600 044:047:055N 106:057:010W 
Shreveport.LA 83300 032:030:046N 093:044:058W 
SiouxCity.lA 111500 042:029:046N 096:024:030W 
SiouxFalls.SD 67500 043:032:035N 096:043:035W 
Somerville.MA 104400 042:023:015N 071:006:007W 
SouthBend.lN 45700 041:040:033N 086:015:001 W 
Spartanburg.SC 196400 034:057:003N 081:056:006W 
Spokane.WA 105400 047:039:032N 117:025:033W 
Springfield,IL 154600 039:047:058N 089:038:051 W 
Springfield, MO 70100 037:013:003N 093:017:032W 
Springfield.OH 107500 039:055:038N 083:048:029W 
Stamford,CT 355600 041:003:009N 073:032:024W 
Stl_ouis,MO 229500 038:037:045N 090:012:022W 
Stockton.CA 257000 037:057:030N 121:017:016W 
StPaul.MN 239500 044:057:019N 093:006:007W 
StPetersburgh.FL 27400 027:046:018N 082:038:019W 
Superior.WI 156700 046:043:014N 092:006:007W 
Syracuse, NY 182900 043:003:004N 076:009:014W 
Tacoma.WA 137000 047:014:059N 122:026:015W 
Tallahassee, FL 286800 030:026:030N 084:016:056W 
Tampa, FL 61600 027:056:058N 082:027:025W 
TerreHaute.lN 33300 039:028:003N 087:024:026W 
Texarkana,TX 319100 033:025:048N 094:002:030W 
Toledo.OH 120200 041:039:014N 083:032:039W 
Topeka.KS 82400 039:003:016N 095:040:023W 
Trenton,NJ 5100 040:013:014N 074:046:013W 
Troy, NY 451500 042:043:045N 073:040:058W 
Tucson, AZ 372600 032:013:015N 110:058:008W 
Tulsa,OK 38000 036:009:012N 095:059:034W 
Urbana.lL 62300 040:006:042N 088:012:006W 
Utica.NY 107200 043:006:012N 075:013:033W 
Waco.TX 29400 031:033:012N 097:008:000W 
WallaWalla,WA 547900 046:004:008N 118:020:024W 
Washington,DC 100900 038:053:051 N 077:000:033W 
Waterbury.CT 65800 041:033:013N 073:002:031 W 
Waterloo,! A 78100 041:029:040N 092:020:020W 
WestPalmBeach.FL 33500 026:042:036N 080:003:007W 
Wheeling,WV 49600 040:004:003N 080:043:020W 
WhitePlains.NY 307500 041:002:000N 073:045:048W 
Wichita,KS 97700 037:041:030N 097:020:016W 
WichitaFalls.TX 72600 033:054:034N 098:029:028W 
Wilmington,DE 64900 039:044:046N 075:032:051 W 
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Wilmington,NC 156000 034:014:014N 077:056:058W 
WinstonSalem.NC 165700 036:005:052N 080:014:042W 
Worcester, MA 67500 042:015:037N 071:048:017W 
Yakima,WA 180700 046:036:009N 120:030:039W 
Yonkers.NY 46800 040:055:055N 073:053:054W 
York, PA 89500 039:057:035N 076:043:036W 
Youngstown.OH 71300 041:005:057N 080:039:002W 
Yuma.AZ 27700 032:042:054N 114:037:024W 



APPENDIX D 

BOXPLOT CHARTS OF PARAMETER EFFECTS 
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TSCAP Boxplot of Cost by LTM 
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Figure 60. TSCAP Boxplot of Cost by LTM 

TSCAP Boxplot of Cost by STM 
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Figure 61. TSCAP Boxplot of Cost by STM 
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TSCAP Boxplot of Cost by TLSIZE 
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Figure 62. TSCAP Boxplot of Cost by TLSIZE 

Figure 63. TSCAP Boxplot of Time by LTM 
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TSCAP Boxplot of Time by STM 
300 

200 

100 

LU 

90 

1000.00 
90 90 90 90 

1500.00 2000.00 2500.00 3000.00 

STM 

Figure 64. TSCAP Boxplot of Time by STM 

Figure 65. TSCAP Boxplot of Time by TLSIZE 
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SACAP Boxplot of Cost by ACCEPT 
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Figure 66. SACAP Boxplot of Cost by ACCEPT 

SACAP Boxplot of Cost by FACTOR 
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Figure 67. SACAP Boxplot of Cost by FACTOR 
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SACAP Boxplot of Cost by RATE 
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Figure 68. SACAP Boxplot of Cost by RATE 

SACAP Boxplot of Time by ACCEPT 
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Figure 69. SACAP Boxplot of Time by ACCEPT 



303 

SACAP Boxplot of Time by FACTOR 
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Figure 70. SACAP Boxplot of Time by FACTOR 

Figure 71. SACAP Boxplot of Time by RATE 
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GACAP Boxplot of Cost by POP 
800000 

700000 

600000 

CO o 
O   500000 

N = 180 

20.00 
180 

30.00 

180 

40.00 

POP 

Figure 72. GACAP Boxplot of Cost by POP 

GACAP Boxplot of Cost by GENS 
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Figure 73. GACAP Boxplot of Cost by GENS 
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GACAP Boxplot of Cost by XOVER 
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Figure 74. GACAP Boxplot of Cost by XOVER 

GACAP Boxplot of Cost by MUTATE 
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Figure 75. GACAP Boxplot of Cost by MUTATE 
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Figure 76. GACAP Boxplot of Time by POP 
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Figure 77. GACAP Boxplot of Time by GENS 
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GACAP Boxplot of Time by XOVER 
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Figure 78. GACAP Boxplot of Time by XOVER 

GACAP Boxplot of Time by MUTATE 
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Figure 79. GACAP Boxplot of Time by MUTATE 
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TSMP Boxplot of Cost by LTM 
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Figure 80. TSMP Boxplot of Cost by LTM 

TSMP Boxplot of Cost by STM 
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Figure 81. TSMP Boxplot of Cost by STM 
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TSMP Boxplot of Cost by TLSIZE 
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Figure 82. TSMP Boxplot of Cost by TLSIZE 

Figure 83. TSMP Boxplot of Time by LTM 



310 

TSMP Boxplot of Time by STM 
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Figure 84. TSMP Boxplot of Time by STM 

Figure 85. TSMP Boxplot of Time by TLSIZE 
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SAMP Boxplot of Cost by ACCEPT 
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Figure 86. SAMP Boxplot of Cost by ACCEPT 
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Figure 87. SAMP Boxplot of Cost by FACTOR 
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Figure 88. SAMP Boxplot of Cost by RATE 
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Figure 89. SAMP Boxplot of Time by ACCEPT 
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Figure 90. SAMP Boxplot of Time by FACTOR 

Figure 91. SAMP Boxplot of Time by RATE 
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Figure 92. GAMP Boxplot of Cost by POP 

GAMP Boxplot of Cost by GENS 
3400000 T 

3300000 

3200000 

3100000 

3000000 

2900000 

l_ 2800000 
CO o 
O 2700000 

0365 

180 

1000.00 

180 

1500.00 

180 

2000.00 

GENS 

Figure 93. GAMP Boxplot of Cost by GENS 
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GAMP Boxplot of Cost by XOVER 
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Figure 94. GAMP Boxplot of Cost by XOVER 
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Figure 95. GAMP Boxplot of Cost by MUTATE 
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Figure 96. GAMP Boxplot of Time by POP 
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Figure 97. GAMP Boxplot of Time by GENS 
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Figure 98. GAMP Boxplot of Time by XOVER 
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Figure 99. GAMP Boxplot of Time by MUTATE 



318 

TSMC Boxplot of Cost by LTM 
4000000 

3000000 

2000000 

CO 
o 
O   1000000 

120 

1.00 
120 

3.00 

«325 

m 

120 

5.00 

LTM 

Figure 100. TSMC Boxplot of Cost by LTM 
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Figure 101. TSMC Boxplot of Cost by STM 
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TSMC Boxplot of Cost by TLSIZE 
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Figure 102. TSMC Boxplot of Cost by TLSIZE 

TSMC Boxplot of Time by LTM 
3000 

2000 

1000 

III 

1-   -1000 
120 

1.00 
120 

3.00 
120 

5.00 

LTM 

Figure 103. TSMC Boxplot of Time by LTM 
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Figure 104. TSMC Boxplot of Time by STM 

Figure 105. TSMC Boxplot of Time by TLSIZE 
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Figure 106. SAMC Boxplot of Cost by ACCEPT 

SAMC Boxplot of Cost by FACTOR 
4000000 

3000000 

2000000 

CO 
o 
O   1000000. 

150 

1.00 
150 

2.00 
150 

3.00 

FACTOR 

Figure 107. SAMC Boxplot of Cost by FACTOR 
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SAMC Boxplot of Cost by RATE 
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Figure 108. SAMC Boxplot of Cost by RATE 

Figure 109. SAMC Boxplot of Time by ACCEPT 



323 

SAMC Boxplot of Time by FACTOR 
4000 

3000 

2000 

1000 

UJ 

-1000 J 
N 

mi 

150 

1.00 
150 

2.00 
150 

3.00 

FACTOR 

Figure 110. SAMC Boxplot of Time by FACTOR 

Figure 111. SAMC Boxplot of Time by RATE 
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Figure 112. GAMC Boxplot of Cost by POP 
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Figure 113. GAMC Boxplot of Cost by GENS 
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Figure 114. GAMC Boxplot of Cost by XOVER 
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Figure 115. GAMC Boxplot of Cost by MUTATE 
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Figure 116. GAMC Boxplot of Time by POP 

GAMC Boxplot of Time by GENS 
1000 

800 

600 

400 

200 

111 

0J 
180 

50.00 
180 

100.00 
180 

150.00 

GENS 

Figure 117. GAMC Boxplot of Time by GENS 
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Figure 118. GAMC Boxplot of Time by XOVER 
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Figure 119. GAMC Boxplot of Time by MUTATE 
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Figure 120. CFLP Time Performance (CAP301) 
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Figure 121. CFLP Time Performance Close-up (CAP301) 
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C-FLP Time Performance (CAP302) 
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Figure 122. CFLP Time Performance (CAP302) 
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Figure 123. CFLP Time Performance Close-up (CAP302) 
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C-FLP Time Performance (CAP303) 
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Figure 124. CFLP Time Performance (CAP303) 
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Figure 125. CFLP Time Performance Close-up (CAP303) 
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C-FLP Time Performance (CAP304) 
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Figure 126. CFLP Time Performance (CAP304) 
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Figure 127. CFLP Time Performance Close-up (CAP304) 
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Figure 128. CFLP Time Performance (CAP305) 
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Figure 129. CFLP Time Performance Close-up (CAP305) 
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C-FLP Time Performance (CAP306) 
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Figure 130. CFLP Time Performance (CAP306) 
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Figure 131. CFLP Time Performance Close-up (CAP306) 



335 

30000000 

25000000 

15000000 

10000000 

5000000 

C-FLP Time Performance (CAP307) 

* **- Hk—*—*-* A—t-i, «A * A 

0 200 400 600 800 1000 1200 1400 1600 1800 

Time (Seconds) 

-TS -«-SA -A-GA 

Figure 132. CFLP Time Performance (CAP307) 
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Figure 133. CFLP Time Performance Close-up (CAP307) 
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C-FLP Time Performance (CAP308) 
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Figure 134. CFLP Time Performance (CAP308) 
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Figure 135. CFLP Time Performance Close-up (CAP308) 



337 

C-FLP Time Performance (CAP309) 
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Figure 136. CFLP Time Performance (CAP309) 
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Figure 137. CFLP Time Performance Close-up (CAP309) 
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C-FLP Time Performance (CAP310) 
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Figure 138. CFLP Time Performance (CAP310) 
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Figure 139. CFLP Time Performance Close-up (CAP310) 
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C-FLP Time Performance (CAP311) 
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Figure 140. CFLP Time Performance (CAP311) 
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Figure 141. CFLP Time Performance Close-up (CAP311) 
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C-FLP Time Performance (CAP312) 
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Figure 142. CFLP Time Performance (CAP312) 

5000000 

4500000 

1000000 

C-FLP Time Performance (CAP312) 

*   *       t-*j 
-** *- 

200 300 400 500 600 

Time (Seconds) 

700 800 900 1000 

-TS -B-SA -A-GA 

Figure 143. CFLP Time Performance Close-up (CAP312) 
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Figure 144. CFLP Time Performance (CAP313) 
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Figure 145. CFLP Time Performance Close-up (CAP313) 
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Figure 146. CFLP Time Performance (CAP314) 
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Figure 147. CFLP Time Performance Close-up (CAP314) 
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C-FLP Time Performance (CAP315) 
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Figure 148. CFLP Time Performance (CAP315) 
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Figure 149. CFLP Time Performance Close-up (CAP315) 
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C-FLP Time Performance (CAP316) 
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Figure 150. CFLP Time Performance (CAP316) 
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Figure 151. CFLP Time Performance Close-up (CAP316) 
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Figure 152. CFLP Time Performance (CAP317) 
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Figure 153. CFLP Time Performance Close-up (CAP317) 
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Figure 154. CFLP Time Performance (CAP318) 
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Figure 155. CFLP Time Performance Close-up (CAP318) 
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Figure 156. CFLP Time Performance (CAP319) 
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Figure 157. CFLP Time Performance Close-up (CAP319) 
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Figure 158. CFLP Time Performance (CAP320) 
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Figure 159. CFLP Time Performance Close-up (CAP320) 



APPENDIX F 

SOLUTIONS PERFORMANCE CHARTS FOR CFLP 



6000000 

4000000 i 

ö   3000000 j 

1000000 

350 

CFLP Solutions Performance (CAP301) 

0 200000        400000        600000        800000        1000000       1200000       1400000       1600000       1800000      2000000 

Solutions Evaluated 

-TS -»-SA -*-GA 

Figure 160. CFLP Solutions Performance (CAP301) 
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Figure 161. CFLP Solutions Performance Close-up (CAP301) 
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Figure 162. CFLP Solutions Performance (CAP302) 
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Figure 163. CFLP Solutions Performance Close-up (CAP302) 
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Figure 164. CFLP Solutions Performance (CAP303) 
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Figure 165. CFLP Solutions Performance Close-up (CAP303) 
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Figure 166. CFLP Solutions Performance (CAP304) 
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Figure 167. CFLP Solutions Performance Close-up (CAP304) 
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Figure 168. CFLP Solutions Performance (CAP305) 
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Figure 169. CFLP Solutions Performance Close-up (CAP305) 
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CFLP Solutions Performance (CAP306) 
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Figure 170. CFLP Solutions Performance (CAP306) 
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Figure 171. CFLP Solutions Performance Close-up (CAP306) 
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Figure 172. CFLP Solutions Performance (CAP307) 
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Figure 173. CFLP Solutions Performance Close-up (CAP307) 
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Figure 174. CFLP Solutions Performance (CAP308) 
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Figure 175. CFLP Solutions Performance Close-up (CAP308) 
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Figure 176. CFLP Solutions Performance (CAP309) 
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Figure 177. CFLP Solutions Performance Close-up (CAP309) 
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Figure 178. CFLP Solutions Performance (CAP310) 
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Figure 179. CFLP Solutions Performance Close-up (CAP310) 
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Figure 180. CFLP Solutions Performance (CAP311) 
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Figure 181. CFLP Solutions Performance Close-up (CAP311) 
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Figure 182. CFLP Solutions Performance (CAP312) 

4500000 

o   2500000 
o 

2000000 

1000000 

500000 

CFLP Solutions Performance (CAP312) 

■ ■Ml« II« 

0     20000    40000    60000    80000   100000   120000   140000   160000   180000   200000 

Solutions Evaluated 

-TS -B-SA -*-GA 

Figure 183. CFLP Solutions Performance Close-up (CAP312) 
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Figure 184. CFLP Solutions Performance (CAP313) 
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Figure 185. CFLP Solutions Performance Close-up (CAP313) 
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Figure 186. CFLP Solutions Performance (CAP314) 
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Figure 187. CFLP Solutions Performance Close-up (CAP314) 
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Figure 188. CFLP Solutions Performance (CAP315) 
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Figure 189. CFLP Solutions Performance Close-up (CAP315) 
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Figure 190. CFLP Solutions Performance (CAP316) 
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Figure 191. CFLP Solutions Performance Close-up (CAP316) 
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Figure 192. CFLP Solutions Performance (CAP317) 
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Figure 193. CFLP Solutions Performance Close-up (CAP317) 
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Figure 194. CFLP Solutions Performance (CAP318) 
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Figure 195. CFLP Solutions Performance Close-up (CAP318) 
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Figure 196. CFLP Solutions Performance (CAP319) 
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Figure 197. CFLP Solutions Performance Close-up (CAP319) 
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Figure 198. CFLP Solutions Performance (CAP320) 
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Figure 199. CFLP Solutions Performance Close-up (CAP320) 
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Figure 200. MP-FLP Time Performance (MP301) 
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Figure 201. MP-FLP Time Performance Close-up (MP301) 
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Figure 202. MP-FLP Time Performance (MP302) 
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Figure 203. MP-FLP Time Performance Close-up (MP302) 
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Figure 204. MP-FLP Time Performance (MP303) 
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Figure 205. MP-FLP Time Performance Close-up (MP303) 
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Figure 206. MP-FLP Time Performance (MP304) 
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Figure 207. MP-FLP Time Performance Close-up (MP304) 
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Figure 208. MP-FLP Time Performance (MP305) 
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Figure 209. MP-FLP Time Performance Close-up (MP305) 
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Figure 210. MP-FLP Time Performance (MP306) 
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Figure 211. MP-FLP Time Performance Close-up (MP306) 
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Figure 212. MP-FLP Time Performance (MP307) 
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Figure 213. MP-FLP Time Performance Close-up (MP307) 
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Figure 214. MP-FLP Time Performance (MP308) 
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Figure 215. MP-FLP Time Performance Close-up (MP308) 
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Figure 216. MP-FLP Time Performance (MP309) 
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Figure 217. MP-FLP Time Performance Close-up (MP309) 
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Figure 218. MP-FLP Time Performance (MP310) 
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Figure 219. MP-FLP Time Performance Close-up (MP310) 
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Figure 220. MP-FLP Time Performance (MP311) 
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Figure 221. MP-FLP Time Performance Close-up (MP311) 
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Figure 222. MP-FLP Time Performance (MP312) 
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Figure 223. MP-FLP Time Performance Close-up (MP312) 
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Figure 224. MP-FLP Time Performance (MP313) 
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Figure 225. MP-FLP Time Performance Close-up (MP313) 
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Figure 226. MP-FLP Time Performance (MP314) 
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Figure 227. MP-FLP Time Performance Close-up (MP314) 
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Figure 228. MP-FLP Time Performance (MP315) 
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Figure 229. MP-FLP Time Performance Close-up (MP315) 
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Figure 230. MP-FLP Time Performance (MP316) 
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Figure 231. MP-FLP Time Performance Close-up (MP316) 



70000000 

50000000 

40000000 

30000000 

10000000 

387 

MP-FLP Time Performance (MP317) 

500 2000 2500 

Time 

-TS -«-SA -A-GA 

Figure 232. MP-FLP Time Performance (MP317) 
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Figure 233. MP-FLP Time Performance Close-up (MP317) 
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Figure 234. MP-FLP Time Performance (MP3018) 
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Figure 235. MP-FLP Time Performance Close-up (MP318) 



389 

MP-FLP Time Performance (MP319) 

70000000 

60000000 

50000000 

40000000 

20000000 

1000 1500 

Time 

2000 2500 

-TS -»-SA-A-GA 

Figure 236. MP-FLP Time Performance (MP329) 
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Figure 237. MP-FLP Time Performance Close-up (MP319) 
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Figure 238. MP-FLP Time Performance (MP320) 
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Figure 239. MP-FLP Time Performance Close-up (MP320) 
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Figure 240. MP-FLP Solutions Performance (MP301) 

11000000 

o     7000000 
O 

5000000 

3000000 

-1000000 

MP-FLP Solutions Performance (MP301) 

100000        200000        300000        400000        500000        600000        700000        800000        900000       100(p000 

Solutions Evaluated 

-TS-»-SA-*-GA 

Figure 241. MP-FLP Solutions Performance Close-up (MP301) 
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Figure 242. MP-FLP Solutions Performance (MP302) 
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Figure 243. MP-FLP Solutions Performance Close-up (MP302) 
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Figure 244. MP-FLP Solutions Performance (MP303) 
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Figure 245. MP-FLP Solutions Performance Close-up (MP303) 
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Figure 246. MP-FLP Solutions Performance (MP304) 
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Figure 247. MP-FLP Solutions Performance Close-up (MP304) 
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Figure 248. MP-FLP Solutions Performance (MP305) 
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Figure 249. MP-FLP Solutions Performance Close-up (MP305) 
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Figure 250. MP-FLP Solutions Performance (MP306) 
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Figure 251. MP-FLP Solutions Performance Close-up (MP306) 
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Figure 252. MP-FLP Solutions Performance (MP307) 
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Figure 253. MP-FLP Solutions Performance Close-up (MP307) 
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Figure 254. MP-FLP Solutions Performance (MP308) 
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Figure 255. MP-FLP Solutions Performance Close-up (MP308) 
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Figure 256. MP-FLP Solutions Performance (MP309) 
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Figure 257. MP-FLP Solutions Performance Close-up (MP309) 



90000000 

60000000 

40000000 

20000000 

10000000 

0 + 

401 

MP-FLP Solutions Performance (MP310) 

■ m* * m »» » 

0 SOOOOO 1000000 1500000 2000000 2500000 3000000 

Solutions Evaluated 

-TS -»-SA -A-GA 

Figure 258. MP-FLP Solutions Performance (MP310) 
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Figure 259. MP-FLP Solutions Performance Close-up (MP310) 
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Figure 260. MP-FLP Solutions Performance (MP311) 
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Figure 261. MP-FLP Solutions Performance Close-up (MP311) 
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Figure 262. MP-FLP Solutions Performance (MP312) 
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Figure 263. MP-FLP Solutions Performance Close-up (MP312) 
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Figure 264. MP-FLP Solutions Performance (MP313) 
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Figure 265. MP-FLP Solutions Performance Close-up (MP313) 
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Figure 266. MP-FLP Solutions Performance (MP314) 
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Figure 267. MP-FLP Solutions Performance Close-up (MP314) 
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Figure 268. MP-FLP Solutions Performance (MP315) 
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Figure 269. MP-FLP Solutions Performance Close-up (MP315) 
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Figure 270. MP-FLP Solutions Performance (MP316) 
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Figure 271. MP-FLP Solutions Performance Close-up (MP316) 
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Figure 272. MP-FLP Solutions Performance (MP317) 
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Figure 273. MP-FLP Solutions Performance Close-up (MP317) 
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Figure 274. MP-FLP Solutions Performance (MP318) 
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Figure 275. MP-FLP Solutions Performance Close-up (MP318) 
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Figure 276. MP-FLP Solutions Performance (MP319) 
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Figure 277. MP-FLP Solutions Performance Close-up (MP319) 
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Figure 278. MP-FLP Solutions Performance (MP320) 
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Figure 279. MP-FLP Solutions Performance Close-up (MP320) 
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Figure 280. MC-FLP Time Performance (MC301) 
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Figure 281. MC-FLP Time Performance (MC302) 
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Figure 282. MC-FLP Time Performance (MC303) 
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Figure 283. MC-FLP Time Performance (MC304) 
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Figure 284. MC-FLP Time Performance (MC305) 
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Figure 285. MC-FLP Time Performance (MC306) 
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Figure 286. MC-FLP Time Performance (MC307) 
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Figure 287. MC-FLP Time Performance (MC308) 
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Figure 288. MC-FLP Time Performance (MC309) 
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Figure 289. MC-FLP Time Performance (MC310) 
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Figure 290. MC-FLP Time Performance (MC311) 
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Figure 291. MC-FLP Time Performance (MC312) 
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Figure 292. MC-FLP Time Performance (MC313) 
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Figure 293. MC-FLP Time Performance (MC314) 
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Figure 294. MC-FLP Time Performance (MC315) 
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Figure 295. MC-FLP Time Performance (MC316) 
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Figure 296. MC-FLP Time Performance (MC317) 
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Figure 297. MC-FLP Time Performance (MC318) 
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Figure 298. MC-FLP Time Performance (MC319) 
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Figure 299. MC-FLP Time Performance (MC320) 
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Figure 301. MC-FLP Solutions Performance (MC302) 
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Figure 302. MC-FLP Solutions Performance (MC303) 
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Figure 303. MC-FLP Solutions Performance (MC304) 
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Figure 304. MC-FLP Solutions Performance (MC305) 
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Figure 305. MC-FLP Solutions Performance (MC306) 
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Figure 306. MC-FLP Solutions Performance (MC307) 
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Figure 307. MC-FLP Solutions Performance (MC308) 
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Figure 308. MC-FLP Solutions Performance (MC309) 
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Figure 309. MC-FLP Solutions Performance (MC310) 
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Figure 310. MC-FLP Solutions Performance (MC311) 
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Figure 311. MC-FLP Solutions Performance (MC312) 
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Figure 312. MC-FLP Solutions Performance (MC313) 
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Figure 313. MC-FLP Solutions Performance (MC314) 
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Figure 314. MC-FLP Solutions Performance (MC315) 
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Figure 315. MC-FLP Solutions Performance (MC316) 
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Figure 316. MC-FLP Solutions Performance (MC317) 
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Figure 317. MC-FLP Solutions Performance (MC318) 
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Figure 318. MC-FLP Solutions Performance (MC319) 
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Figure 319. MC-FLP Solutions Performance (MC320) 



APPENDIX K 

COMPUTER SOFTWARE 

For the purposes of this dissertation, twelve computer programs were 

developed. The following is a list of the nine heuristic programs and three 

optimal programs: 

TSCAP Tabu Search for CFLP 

SACAP Simulated Annealing for CFLP 

GACAP        Genetic Algorithm for CFLP 

TSMP Tabu Search for MP-FLP 

SAMP Simulated Annealing for MP-FLP 

GAMP Genetic Algorithm for MP-FLP 

TSMC Tabu Search for MC-FLP 

SAMC Simulated Annealing for MC-FLP 

GAMC Genetic Algorithm for MC-FLP 

BBCAP Branch and Bound for CFLP (Optimal) 

DPMP Dynamic Programming for MP-FLP (Optimal) 

BBMC Branch and Bound for MC-FLP (Optimal) 

All of the programs listed above were written in Microsoft's Visual C++ 

(v1.52). All of the programs are functional Windows software and run under 

Window 3.1 and Windows 95.   Unfortunately, due to the large size of each 
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program (approximately 60 printed pages each), it was not feasible to include the 

source code as appendices. However, all materials are readily available from the 

author including the source code, executables, and test cases files. The author 

may be contacted via e-mail at marostegui@worldnet.att.net. 



REFERENCES 

Adenso-Diaz, Belarmino (1996) An SA/TS Mixture Algorithm for the Scheduling 
Tardiness Problem. European Journal of Operational Research, 88, 516- 
524. 

Akinc, Umit (1973) A Branch And Bound Procedure for Solving Warehouse 
Location Problems with Capacity Constraints. Unpublished Ph.D. 
Dissertation, University of Houston. 

Akinc, Umit and B.M. Khumawala (1977) An Efficient Branch and Bound 
Algorithm for the Capacitated Warehouse Location Problem. Management 
Science, 23(6), 585-594. 

Balakrishnan, P. V. and Varghese S. Jacob (1996) Genetic Algorithms for 
Product Design. Management Science, 42(8), 1105-1117. 

Barnes, J. Wesley and Manuel Laguna (1993) Solving the Multiple-Machine 
Weighted Flow Time Problem Using Tabu Search. HE Transactions, 
25(2), 121-128. 

Barnes, J. Wesley and John B. Chambers (1995) Solving the Job Shop 
Scheduling Problem with Tabu Search. HE Transactions, 27, 257-263. 

Ben-Daya, M., and M. Al-Fawzan (1996) A Simulated Annealing Appraoch for 
the One-Machine Mean Tardiness Scheduling Problem. European 
Journal of Operational Research, 93, 61 -67. 

Bulgak, A. A., P. D. Diwan, and B. Inozu (1995) Buffer Size Optimization in 
Asynchronous Assembly Systems Using Genetic Algorithms. Computers 
and Industrial Engineering, 28(2), 309-322. 

Cerny, V. (1985) Thermodynamical Approach to the Traveling Salesman 
Problem: An Efficient Simulation Algorithm. Journal of Optimization 
Theory and Applications, 45, 41 -51. 

Chan, K. C. and H. Tansri (1994) A Study of Genetic Crossover Operations on 
the Facilities Layout Problem. Computers and Industrial Engineering, 
26(3), 537-550. 

436 



437 

Cheh, K. M., J. B. Goldberg and R. G. Askin (1991) A Note on the Effect of 
Neighborhood Structure in Simulated Annealing. Computers and 
Operations Research, 18, 537-547. 

Chen, W.-H., and B. Srivastava (1994) Simulated Annealing Procedures for 
Forming Machine Cells in Group Technology. European Journal of 
Operational Research, 75,100-111. 

Cheng, Runwei, Mitsuo Gen, and Yasuhiro Tsujimura (1996) A Tutorial Survey of 
Job-Shop Scheduling Problems Using Genetic Algorithms—I. 
Representation. Computers and Industrial Engineering, 30(4), 983-997. 

Collins, N. E., R. W. Eglese and B. L. Golden (1988) Simulated Annealing—An 
Annotated Bibliography. American Journal of Mathematical Management 
Science, 3(3), 209-307. 

Connolly D. (1992) General Purpose Simulated Annealing. Journal of the 
Operational Research Society, 43, 495-505. 

Crainic, Teodor G., Michel Gendreau, Patrick Soriano, and Michel Toulouse 
(1993) A Tabu Search Procedure for Multi-commodity Location/Allocation 
with Balancing Requirements. Annals of Operations Research, 41, 359- 
383. 

Davis P.S. and T.L. Ray (1969) A Branch-Bound Algorithm for the Capacitated 
Facilities Location Problem. Naval Research Logistics Quarterly. 16, 331- 
344. 

Dowsland, Kathryn A. (1996) Genetic Algorithms—a Tool for OR? Journal of the 
Operational Research Society, 47, 550-561. 

Dowsland, Kathryn A. (1993) Some Experiments with Simulated Annealing 
Techniques for Packing Problems. European Journal of Operational 
Research, 68, 389-399. 

Dudewicz, E.J. and S.R. Dalai (1975) Allocation of Observations in Ranking and 
Selection with unequal Variances. Sankhya, B37, 28-78. 

Eglese, R. W. (1990) Simulated Annealing: A Tool for Operational Research. 
European Journal of Operational Research, 46, 271 -281. 

Ellwein, L.B. and P. Gray (1971) Solving Fixed Charge Location-Allocation 
Problems with Capacity and Configuration Constraints. AIIE Transactions, 3, 
290-299. 



438 

Franca, Paulo M., Michel Gendreau, Gilbert Laporte, and Felipe M. Müller (1996) 
A Tabu Search Heuristic for the Multiprocessor Scheduling Problem With 
Sequence Dependent Setup Times. International Journal of Production 
Economics, 43, 79-89. 

Garavelli, A.C., O.G. Okogbaa, and V. Nicola (1996) Global Manufacturing 
Systems: A Model Supported by Genetic Algorithms to Optimize 
Production Planning. Computers & Industrial Engineering, 31,193-196. 

Gendreau, Michel, Alain Hertz, and Gilbert Laporte (1994) A Tabu Search 
Heuristic for the Vehicle Routing Problem. Management Science, 40(10), 
1276-1290. 

Geoffrion, A.M. and G.W. Graves (1974) Multi-commodity Distribution Systems 
Design. Management Science, 20, 822-844. 

Glover, F. (1977) Heuristic for Integer Programming Using Surrogate Constraints. 
Decision Sciences, 8,156-166. 

Glover, F. (1989) Tabu search—Part I. ORSA Journal on Computing, 1(3), 190- 
206. 

Glover, F. (1990a) Tabu Search—Part II. ORSA Journal on Computing, 2(1), 4- 
32. 

Glover, F. (1990b) Tabu Search: A Tutorial. Interfaces, 20(4), 74-94. 

Glover, F. (1993) A User's Guide to Tabu Search. Annals of Operations 
Research. 

Glover, Fred and Harvey J. Greenberg (1989) New Approaches for Heuristic 
Search: A Bilateral Linkage with Artificial Intlligence. European Journal of 
Operational Research, 39,119-130. 

Goldberg, David E. (1989) Genetic Algorithms in Search, Optimization, and 
Machine Learning. Reading, Massachusetts: Addison Wesley Publishing 
Company, Inc. 

Golden, B.L. and W.R. Stewart (1985) Empirical Analysis of Heuristics. In The 
Travelling Salesman Problem, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy 
Kan, and D.B. Shmoys, eds., Chichester: John Wiley & Sons, 207-249. 

Hajek, B. (1988) Cooling Schedules for Optimal Annealing. Mathematics and 
Operations Research, 13(2), 311-329. 



439 

Hao, Qi, Zihou Yang, Dingwei Wang, and Zheng Li (1996) Common Due-Date 
Determination and Sequencing Using Tabu Search. Computers and 
Operations Research, 23(5), 409-417. 

He, Zesheng, Taeyong Yang, and Andy Tiger (1996) An Exchange Heuristic 
Imbedded with Simulated Annealing for Due-Dates Job-Shop Scheduling. 
European Journal of Operational Research, 91, 99-117. 

Hindi, K. S. (1995) Solving the Single-Item, Capacitated Dynamic Lot-Sizing 
Problem with Startup and Reservation Costs by Tabu Search. Computers 
and Industrial Engineering, 28(4), 701-707. 

Holland, John H. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor: 
The university of Michigan Press. 

Hormozi, A.M. (1987) An Improved Multi-Period Facility Location Problem. 
Unpublished Ph.D. Dissertation, University of Houston. 

Hormozi, A.M. and B.M. Khumawala (1996) An Improved Multi-Period Facility 
Location Problem. HE Transactions, 28, 105-114. 

Houck, Christopher R., Jeffrey A. Joines and Michael G. Kay (1996) Comparison 
of Genetic Algorithms, Random Restart and Two-Opt Switching for 
Solving Large Location-Allocation Problems. Computers and Operations 
Research, 23(6) 587-596. 

Icmeli, Oya and S. Selcuk Erenguc (1994) A Tabu Search Procedure for the 
Resource Constrained Project Scheduling Problem With Discounted Cash 
Flows. Computers and Operations Research, 21 (8), 841 -853. 

Ishibuchi, Hisao, Shinta Misaki, and Hideo Tanaka (1995) Modified Simulated 
Annealing Algorithms for the Flow Show Sequencing Problem. European 
Journal of Operational Research, 81, 388-398. 

Joines, Jeffrey A., C. Thomas Culbreth, and Russell E. King (1996) 
Manufacturing Cell Design: An Integer Programming Model Employing 
Genetic Algorithms. HE Transactions, 28, 69-85. 

Khumawala, B.M. (1974) An Efficient Heuristic Procedure for the Capacitated 
Warehouse Location Problem. Naval Research Logistics Quarterly, 21(4), 
609-623. 

Kim, Jung-Ug and Yeong-Dae Kim (1996) Simulated Annealing and Genetic 
Algorithms for Scheduling Products With Multi-Level Product Structure. 
Computers and Operations Research, 23(9), 857-868. 



440 

Kim, Yeo Keun, Yong Ju Kim, and Yeongho Kim (1996) Genetic Algorithms for 
Assembly Line Balancing With Various Objectives. Computers and 
Industrial Engineering, 30(3), 397-409. 

Kim, Yeong-Dae, Hyeong-Gyu Lim, and Moon_Won Park (1996) Search 
Heuristics for a Flowshop Scheduling Problem in a Printed Circuit Board 
Assembly Process. European Journal of Operational Research, 91,124- 
143. 

Kincaid, Rex K. (1992) Good Solutions to Discrete Noxious Location Problems 
Via Metaheuristics. Annals of Operations Research, 40, 265-281. 

Kirkpatrick S., C. Gelatt, and P. Vecchi (1983) Optimization by Simulated 
Annealing. Science, 220, 671-679. 

Koulamas, C, S. R. Antony, and R. Jaen (1994) A Survey of Simulated 
Annealing Applications to Operations Research Problems. Omega, 
International Journal of Management Science, 22(1), 41 -56. 

Kuehn Alfred A. and Michael J. Hamburger (1963) A Heuristic Program for 
Locating Warehouses. Management Science, 9(4), 643-666. 

Kuik, Roelof, Marc Salomon, Luk N. Van Wassenhove, and Johan Maes (1993) 
Linear Programming, Simulated Annealing and Tabu Search Heuristics for 
Lotsizing in Bottleneck Assembly Systems. HE Transactions, 25(1), 62- 
72. 

Laguna, Manuel, James P. Kelly, Jose Luis Gonzalez-Velarde, and Fred Glover 
(1995) Tabu Search for the Multilevel Generalized Assignment Problem. 
European Journal of Operational Research, 82,176-189. 

Law, Averill M. and W. David Kelton (1991) Simulation Modeling & Analysis, 2nd 

ed., McGraw-Hill, Inc. 

Lee, Jae-Kwan and Yeong-Dae Kim (1996) Search Heuristics for Resource 
Constrained Project Scheduling. Journal of the Operational Research 
Society, 47, 678-689. 

Leu Yow-Yuh, Lance A. Matheson, and Loren Paul Rees (1994) Assembly Line 
Balancing Using Genetic Algorithms With Heuristic-Generated Initial 
Populations and Multiple Evaluation Criteria. Decision Sciences, 25(4), 
581-606. 



441 

Leu, Yow-Yuh, Lance A. Matheson, and Loren Paul Rees (1996) Sequencing 
Mixed-Model Assembly Lines With Genetic Algorithms. Computers and 
Industrial Engineering, 30(4), 1027-1036. 

Liu, Chin-Ming, Ruey-Li Kao, and An-Hsiang Wang (1994) Solving Location- 
Allocation Problems with Rectilinear Distances by Simulated Annealing. 
Journal of the Operational Research Society, 45(11), 1304-1315. 

Lundy, M. and A. Mees (1986) Convergence of an Annealing Algorithm. 
Mathematical Programming, 34,111 -124. 

Malmborg, Charles J. (1996) A Genetic Algorithm for Service Level Based 
Vehicle Scheduling. European Journal of Operational Research, 93,191 - 
134. 

Marett, Richard and Mike Wright (1996) A Comparison of Neighborhood Search 
Techniques for Multi-Objective Combinatorial Problems. Computers and 
Operations Research, 23(5), 465-483. 

Metropolis, N. A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller 
(1953) Equations of State Calculations by Fast Computing Machines. 
Journal of Chemical Physics, 21,1087-1091. 

Murata, Tadahiko, Hisao Ishibuchi, and Hideo Tanaka (1996) Genetic 
Algorithms for Flowshop Scheduling Problems. Computers and Industrial 
Engineering, 30(4), 1061-1071. 

Neebe, A.W. and B.M. Khumawala (1981) An Improved Algorithm for the Multi- 
Commodity Location Problem. Journal of Operational Research Society, 32, 
143-149. 

Nowicki, Eugeniusz, and Czeslaw Smutnicki (1996) A Fast Tabu Search 
Algorithm for the Permutation Flow Shop Problem. European Journal of 
Operational Research, 91,160-175. 

Nowicki, E. and S. Zdrazalka (1996) Single Machine Scheduling With Major and 
Minor Setup Times: A Tabu Search Approach. Journal of the Operational 
Research Society, 47,1054-1064. 

Osman, I. H. and C. N. Potts (1989) Simulated Annealing for Permutation Flow- 
Shop Scheduling. Omega, International Journal of Management Science, 
17(6), 551-557. 

Reeves, Colin R., ed. (1993) Modern Heuristic Techniques for Combinatorial 
Problems. New York: John Wiley & Sons. 



442 

Renaud, Jacques, Gilbert Laporte, and Gayez F. Boctor (1996) A Tabu Search 
Heuristic for the Multi-Depot Vehicle Routing Problem. Computers and 
Operations Research, 23(3), 229-235. 

Roach, Anthony and Rakesh Nagi (1996) A Hybrid GA-SA Algorithm for Just-In- 
Time Scheduling of Multi-Level Assemblies. Computers and Industrial 
Engineering, 30(4), 1047-1060. 

Rolland, Erik, David A. Schilling, and John R. Current (1996) An Efficient Tabu 
Search Procedure for the p-Median Problem. European Journal of 
Operational Research, 96, 329-342. 

Roodman, G.M. and L.B. Schwarz (1975) Optimal and Heuristic Facility Phase- 
out Strategies. AIEE Transactions, 7,177-184. 

Roodman, G.M. and L.B. Schwarz (1977) Extension of the Multi-Period Facility 
Phase-Out Model; New Procedures and Applications to a Phase-in/Phase- 
out Problem. AIEE Transactions, 9,103-107. 

Sä., G. (1969) Branch and Bound and Approximate Solutions to the Capacitated 
Plant Location Problem. Operations Research, 17,1005-1016. 

Sakawa, Masatoshi, Kosuke Kato, and Tetsuya Mori (1996) Flexible Scheduling 
in a Machining Center Through Genetic Algorithms. Computers and 
Industrial Engineering, 30(4), 931-940. 

Schmidt, Linda C and John Jackman (1995) Evaluating Assembly Sequences for 
Automatic Assembly Systems. HE Transactions, 27, 23-31. 

Sinclair, Marius (1993) Comparison of the Performance of Modern Heuristics for 
Combinatorial Optimization on Real Data. Computers and Operations 
Research, 20(7), 687-695. 

Skorin-Kapov, Darko and Jadranka Skorin-Kapov (1994) On Tabu Search for the 
Location of Interacting Hub Facilities. European Journal of Operational 
Research, 73, 502-509. 

Sweeney, D.J. and Ronald L. Tatham (1976) An Improved Long Run Model for 
Multiple Warehouse Location. Management Science, 22(7), 748-758. 

Taillard, E. (1991) Robust Taboo Search for the Quadratic Assignment Problem. 
Parallel Computing, 17, 433-455. 



443 

Taillard, Eric D., Gilbert Laporte, and Michel Gendreau (1996) Vehicle Routeing 
with Multiple Use of Vehicles. Journal of the Operational Research 
Society, 47, 1065-1070. 

Thompson, Gary M. (1996) A Simulated Annealing Heuristic for Shift Scheduling 
Using Non-Continuously Available Employees. Computers and 
Operations Research, 23(3), 275-288. 

Van Laarhoven, Peter J. M., and E. H. L. Aarts (1987) Simulated Annealing: 
Theory and Applications. Reidel, Dordrecht. 

Van Laarhoven, Peter J. M., Emile H. L. Aarts, and Jan Karel Lenstra (1992) Job 
Shop Scheduling by Simulated Annealing. Operations Research, 40(1), 
113-125. 

Vignaux, G. A., and Z. Michalewicz (1991) A Genetic Algorithm for the Linear 
Transportation Problem. IEEE Transactions on Systems, Man, and 
Cybernetics, 21(2), 445-452. 

Warszawski, A. (1987) Multi-Dimensional Location Problems. Operational 
Research Quarterly, 24,165-179. 

Wilhelm, Mickey R. and Thomas L. Ward (1987) Solving Quadratic Assignment 
Problems by Simulated Annealing. HE Transactions, 107, 107-119. 


