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PREFACE

On behalf of the ACES Technical Program Committee, I
welcome you to "The 13th Annual Review of Progress in
Applied Computational Electromagnetics”. The Symposium
spans the five day period from Monday, March 17 through
Friday, March 21, 1997, and takes place at the Naval
Postgraduate School (NPS) in Monterey, California. The
Symposium is sponsored by the -Applied Computational
Electromagnetics Society, NPS, the University of Illinois at
Urbana-Champaign, and the University of Kentucky.

Monday, March 17 and Friday, March 21 are devoted uniquely
to Short Courses. A total of 10 Short Courses will be offered.
Technical sessions will take place Tuesday, March 18 through
Thursday, March 20, with an Interactive Session and Vendor
Exhibits scheduled for Tuesday afternoon. This year's Symposium features a total of 25 technical
sessions containing well over 220 presentations! For the first time, the ACES Symposium will
feature a Student Paper Contest.

The organization of the Symposium would not have been possible without the cooperation of my
colleagues Professor Jianming Jin, who edited the conference proceedings, and Professor Keith
Whites, who organized short courses, vendor exhibits, and conference advertising. Dr. Bob
Bevensee was the driving force behind the organization of the Student Paper Contest. 1 would
especially like to thank Professor Richard Adler for providing access to the NPS facilities and his
unending dedication to the annual ACES conferences. Pat Adler and Shirley Dipert assisted in
the compilation of the author database and the printing of the proceedings. Finally, I would like
to thank Professor Mike Jensen and Randy Haupt for their commitment to organizing next year's
Symposium.

Enjoy the 13th Annual Review, and your stay in Monterey.

Eric Michielssen
Technical Program Chair
1997 ACES Conference
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ACES PRESIDENT'S STATEMENT

Welcorme to the 13th Annual Review of Progress in Applied Computational Electromagnetics. Itis not always
easy to predict the weather in Monterey in March, but we can always predict that the ACES Conference will
be bright, warm (perhaps heated at times), and responsive to your needs. This year, for the first time, we
will feature a student paper competition. Technical Program Chairman, Eric Michielssen, and his co-
chairmen, Jianming Jin and Keith W. Whites, deserve our congratulations for organizing what should be
another outstanding conference.

We hope that you will attend one or more of our collateral events, such as a short course, and our awards
banquet. You will also want to visit some of the sites in Monterey, such as the aquarium, while you are here.

Remember that, as a society of volunteers ACES looks to you, its members, for support. If you have time
and spirit to give to ACES, please let me know. We're looking for you.

Enjoy the 13th Annual Review.

Harold A. Sabbagh
Sabbagh Associates, Inc.
4635 Morningside Drive
Bloomington, IN 47408
(812)339-8273
(812)339-8292 FAX
email: has@sabbagh.com
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MONDAY MARCH 17

0830-1630

0830-1630

0830-1630

0830-1630

MONDAY MARCH 17

0830-1200

FRIDAY MARCH 21

0830-1630

0830-1630

0830-1630

FRIDAY MARCH 21

0830-1200

1300-1630

ACES 1997 SHORT COURSES

FULL-DAY COURSES

"Finite Elements for Electromagnetics," by Dr. John Brauer and
Dr. Zoltan Cendes, Ansoft Corp.

"Ray-Tracing Techniques for the Prediction of Propagation Parameters
in Mobile Communications. Application to Microcells and Picocells."
Prof. Felipe Catedra, University of Cantabria, Spain.

“Transmission Line Matrix (TLM) Modeling of Electromagnetic Fields in
Space and Time," Prof. Wolfgang J.R. Hoefer, University of Victoria,
Canada.

"Practical EMI/EMC Design and Modeling," Prof. Todd Hubing, University
of Missouri-Rolla.

HALF-DAY COURSES
"Numerical Optimization in Electromagnetics: Genetic Algorithms,"
Dr. Randy L. Haupt, United States Air Force Academy.

FULL-DAY COURSES

"Finite Difference Time Domain Modeling and Applications,”
Prof. Stephen Gedney, University of Kentucky and Dr. James Maloney,
Georgia Tech. Research Institute.

"Introduction to RADAR via Physical Wavelets,” Dr. Gerald Kaiser,
Prof. of Mathematical Sciences at U-Mass-Lowell.

"Mathematical Software for Computational Electromagnetics.”
Dr. Jovan Lebaric, Naval Postgraduate School,

HALF-DAY COURSES
"Radiation Physics," Dr. E.K. Miller

"Introduction to FEKO: A Hybrid Method of Moments/Physical Optics
(MoM/PO) Code,"Dr. F.J.C. Meyer, EM Software and Systems, South Africa,
and Dr. U. Jakobus, Univ. of Stuttgart, Germany.
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FINAL AGENDA

The Thirteenth Annual Review of Progress in Applied Computational Electromagnetics
NAVAL POSTGRADUATE SCHOOL
17-21 MARCH 1997
Eric Michielssen, Technical Program Chairman
Jianming Jin, Conference Co-Chair
Keith Whites, Short Course and Vendor Chairman
Robert Bevensee, Assistant Conference Co-Chair
Richard W. Adler, Conference Facilitator

MONDAY MORNING 17 MARCH 1997
0730-0820 SHORT COURSE REGISTRATION Glasgow 103

0830-1630 SHORT COURSE (FULL-DAY) Glasgow 102
“Finite Elements for Electromagnetics”, John Brauer & Zoftan Cendes, Ansoft Corp.

0830-1630 “SHORT COURSE (FULL-DAY) Ingersoll 122
“Ray-Tracing Techniques for the Prediction of Propagation Parameters in Mobile Communications.
to Applications Microcells and Picocells” , Felipe Catedra, University of Cantabria

0830-1630 SHORT COURSE (FULL-DAY) Engr. Auditorium
*“Transmission Line Matrix (TLM) Modeling of Electromagnetic Fietds in Space and Time”
Wolfgang J.R. Hoefer, University of Victoria

0830-1630 SHORT COURSE (FULL-DAY) Spanage! 101A
“Practical EMI/EMC Design and Modefing”, Todd Hubing, University of Missouri-Rolla

0900-1200 CONFERENCE REGISTRATION Glasgow 103

0830-1200 SHORT COURSE (HALF-DAY) Glasgow 109
*Numerical Optimization in Electromagnetics: Genetic Algorithms”, Randy L. Haupt, USAF Academy

1200-2000 CONFERENCE REGISTRATION Glasgow 103

MONDAY EVENING

1900 PUBLICATIONS DINNER Chef Lee’s Mandarin House

TUESDAY MORNING 18 MARCH 1997

0700-0745 CONTINENTAL BREAKFAST Glasgow Courtyard
0745 WELCOME Eric Michielssen Glasgow 102
SESSION 1: VISUALIZATION  (Parallel with Sessions 2, 3, & 4) Glasgow 102
Chair Janice L. Karty (Organizer)

0840 “Visualization: A Powerful Tool for Understanding Electromagnetics” E.K. Miller
0900 “Computationa! Diagnostic Technigues for Electromagnetic Scattering K.W. Hom, N.A. Talcott, Jr.,

Analytical imaging, Near Fields, and Surface Currents™ J. Shaeffer
0920 “Interferometric 3D Imaging” C.A. Au
0840 “Modern Graphics Applications for Visualization of Electromagnetic Radiation and Scattering” C.L. Yu, R. Kipp, D.J. Andersh,
1000  BREAK SW. Lee
1020 “A Versatile Geometry Tool for Computational Electromagnetics (CEM): MrPatches™ D.D. Car & J M. Roedder
1040 “Visualisation Issues for Time Domain Integral Equation Modelling” S.J. Dodson & S.P. Walker
1100 “An Antenna Training Aid Using Electromagnetic Visualisation” A. Nott & D. Singh
1120 The Fieldinspector: A Graphic Field Representation System” P. Leuchtmann & A. Witzig
1140 “A Data Compression Techniques for Antenna Pattem Storage and Retrieval” A. Nott

1200 LUNCH
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TUESDAY MORNING 18 MARCH 1997

SESSION 2: ADVANCED TIME-DOMAIN METHODS (Parallel with Sessions 1, 3, & 4)
Chair Steve Gedney (Organizer)
0840 “Solution of Boundary Value Problems in Time Domain Using Multiresolution Analysis”
0900 “High Resolution Schemes for Maxwell Equation in the Time Domain”
0920 “FDTD M24 Dispersion and Stability in Three Dimensions”
0940 “Transparent Absorbing Boundary (TAB): Truncation of Computational Domain without
Refiections”
1000 BREAK
1020 *“The Design of Maxwellian Smart Skins”
1040 “Numerical Analysis of Periodic Structures Using the Split-Field Update Algorithm”
1100 “Modeling Dispersive Soil for FDTD Computation by Fitting Conductivity Parameters”
1120 “A Hybrid Analysis Using FDTD and FETD for Locally Arbitrary Shaped Structures”
1140 “A Simple Method for Distributed Parallel Processing with a Cartesian Coordinate System
Based Finite-Difference Time-Domain Code”
1200 LUNCH
SESSION 3: MODEL REDUCTION METHODS FOR COMPUTATIONAL ELECTROMAGNETICS
Chair Jin-Fa Lee (Organizer), Co-Chair Din-Kow Sun
(Parallel with Sessions 1, 2, & 4)
0840 “Computation of Transient Electromagnetic Wavefields in Inhomogeneous Media Using a Modified
Lanczos Algorithm”
0900 “S-Parameters of Microwave Resonators Computed by Direct Frequency and Modal
Frequency Finite Element Analysis”
0920 “Reduced-Order Modeling of Electromagnetic Systems with Pade via Lanczos
Approximations”
0940 “Integrating Data Obtained from Electromagnetic Field Analysis into Circuit Simulations”
1000 BREAK
1020 “Application of AWE Method to the Spectral Responses of 3D TVFEM Modeling of Passive
Microwave Devices”
1040 “Solution of EM Problems Using Reduced-order Models by Comptex Frequency Hopping”
1100 “Transient Analysis via Electromagnetic Fast-Sweep Methods and Gircuit Models”
SESSION 4: COMPUTER SIMULATION OF ANTENNAS
Chair Jim Breakall, Co-Chair Boris Tomasic
(Parallel with Sessions 1, 2, & 3)
0840 “Application of Computational Electromagnetics to Shipboard HFDF System Simulation”
0900 *Calculation of the Near Fields of a Large Complex Antenna Structure and Comparison
with In Situ Measurements”
0920 “Theoretical Studies on the Etfect of Waveguide Geometry on the Radiating Slot”
0940 “Computed and Measured Radiation Pattems of Antennas with Aerodynamic Radomes”
1000 BREAK
1020 “SAF Analysis Codes for Computing Shipboard Antenna Pattern Performance, Antenna
Coupling, and RADHAZ"
1040 “Far Field Patterns of Combined TE/TM Aperture Distributions”
11060 “Calculation of Equivatent Generator Voltage and Generator Internal Impedance for
Cylindrical Antennas in the Receiving Mode”
1120 “Arrays of Sleeved Monopoles - Computer Codes™
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TUESDAY MORNING 18 MARCH 1997

1145
1200

BOARD OF DIRECTORS MEETING/LUNCHEON
LUNCH

TUESDAY AFTERNOON 18 MARCH 1997
SESSION &: RADIATION PHYSICS (Parallel with Sessions 6, 7, & 8)

Chair Ed Miller (Organizer), Co-Chair Bob Bevensee

1320 “An Exploration of Radiation Physics in Electromagnetics™
1340 “Formulae for Total Energy and Time-Average Power Radiated from Charge-Current
Distributions”
1400 “An Overview of Antenna Radiation Basic Principles”
SESSION 6: COMPUTATIONAL METHODS FOR INVERSE SCATTERING
Chair Bill Weedon (Organizer), Co-Chair Gregory Newman
(Parallel with Sessions 5, 7, & 8)
1320 “Application of Kaczmarz's Method to Nonlinear Inverse Scattering”
1340 “Statistical Characteristics of Reflection and Scattering of Electromagnetic Radar Pulses
by Rough Surface and Buried Objects™
1400 “Nondestructive Materials Measurement of Electrical Parameters with Readily Made
Coaxiat Probes”
1420 “A Volume-Integral Code for Eiectromagnetic Nondestructive Evaluation”
SESSION 7: WAVELETS AND FRACTALS (Parallel with Sessions 5, 6, & 8)
Chair Randy Haupt, Co-Chair Doug Wemer (Co-Organizers)
1320 “Application of Coifman Wavelets to the Solution of Integral Equations”
1340 “Fast Array Factor Calculations for Fractal Arrays”
1400 “NEC2 Modeling of Fractal-Element Antennas (FEA)”
1420 “Genetic Antenna Optimization with Fractal Chromosomes™
SESSION 8: FDTD AND FVTD | (Parallel with Sessions 5, 6, & 7)
Chair Melinda Picket-May
1320 “An FDTD/FVTD 2D-Algorithm to Solve Maxwell's Equations for a Thinly Coated Cylinder"
1340 “Improved Computational Efficiency by Using Sub-Regions in FDTD
Simulations® STUDENT PAPER CONTEST
1400 “Finite Difference Time Domain Electromagnetic Code Validation Using an Infrared Measurement
Technigue”
1420 “PML-FDTD Simulation for Dispersive, Inhomogeneous, and Conductive Earth
1440 “Study of Absorbing Boundary Conditions in the Context of the Hybrid Ray-FDTD Moving

Window Solution”

INTERACTIVE TECHNICAL SESSION 9
1520 - 1740

VENDOR EXHIBITS

1300 -

1800

WINE AND CHEESE BUFFET
1630 - 1800

SESSION 9A: FDTD AND FVTD Il

“A Generalized Finite-Volume Time-Domain Algorithm for a Microwave Heating Problem on
Arbitrary Irregular Grids”

“A Parallel FVTD Maxwell Solver Using 3D Unstructured Meshes”

“Adapting an Algorithm of Computational Fluid Dynamics for Comptitational
Electromagnetics™

“Application of a Finite-Volume Time-Domain Technique to Three-Dimensional Objects”
“Comparison of Equations for the FDTD Solution in Anisotropic and Dispersive Media”
“A Near-Field to Near-Field Transformation for Steady-State FDTD”
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Ballroom, Herrmann Hall

Ballroom, Herrmann Hall
H. Zhao & I. Tumer

J.-P. Cioni, L. Fezoui,

L. Anne & F. Poupaud

T.E. Hodgetts & C.C. Lytton

F.G. Harmon & A.J. Terzuoli
G.J. Burke & D.J. Steich
K.A. Lysiak & D.H. Werner




SESSION 9C:

SESSION 9D:

SESSION 9E:

SESSION 9F:

SESSION 9G:

TUESDAY AFTERNOON 18 MARCH 1997
SESSION 9B:

INTEGRATED CIRCUITS AND PHOTONICS

“Transient Simulation of Breakdown Characteristics of a Miniaturized MOSFET based on
a Non-Isothermal Non-Equilibrium Transport Model”

“Numerica! Simulation of Electro-thermal Characteristics of Semiconductor Devices
“Taking Account of Chip Self-heating and In-chip Thermal interdependence”

“Applications of Photonic Band Gap Materials™

SIGNAL PROCESSING TECHNIQUES FOR CEM

“Investigating the Use of Model-Based Parameter Estimation for Electromagnetic-Data
Phase Recovery”

“Real Time Adaptive Forward Error Correction Scheme”

“A Novel Spatial Modulation Spread-Spectrum Technique”

“Time Frequency and Time Scale Analysis for Electromagnetics Spectrograms, Wavelets
and More”

ANTENNA APPLICATIONS

“Antenna Array Factors for Dipole Antennas Above an tmperfectly Conducting Half-Space’

“Energy Transter from Free Space Transient Waveforms Through HF Antennas to
Arbitrary Loads™

“A 12 Beam Cylindrical Array Antenna for AMPS and PCS Applications”
“A Hybrid-Method Synthesis of a Radiometric Antenna for Near-Field Sensing”
“An Evaluation of Software Packages Based on Moment Methods for TV Antenna Design”

SCATTERING AND DIFFRACTION

“Algorithm for Prediction of Scattering from Thin Cylindrical Conductors Using Field
Decomposition”

“Numerically Exact Algorithm for the H and E-Wave Scattering from a Resistive Flat-Strip
Periodic Grating”

NUMERICAL METHODS
“Numerical Convergence and Richardson Extrapolation”

"Povglerful Recursive Algorithm for the Exhaustive Resolution of a Nonlinear Eigenvalue
Problem”

“A Dense Out-of-Core Solver for Workstation Environments™

“Mathematical Representation of Multiport Resonator Test Data”

SIMULATION

“A Comparison of Analytical and Numerical Solutions for induction in a Sphere with
Equatorially Varying Conductivity by Low-Frequency Uniform Magnetic Fields of
Arbitrary Orientation”

“Modeling of Laminated Cores by Homogeneous Anisotropic Cores for Magnetics
Simulation”

“Barring Characteristic of an lon Shutter”

Stability Analysis of Re-Entrant Multi-Tum Toroidal/Helical Electron Orbits in
Strong-Focusing Altemating-Gradient Magnetic Fields”

TUESDAY EVENING 18 MARCH 1997

NO HOST BAR
AWARDS BANQUET

XXV

Ballroom, Herrmann Hall

W.-C. Chol, H. Kawashima,
R. Dang

H. Kawashima, C. Moglestue,
M. Schlechtweg & R. Dang

M.M. Sigalas, R. Biswas,

Q. Li, K.-M. Ho, C.M. Souloulis,
D.D. Crouch

Ballroom, Herrmann Hall

E.K. Miller

S. Veluswamy

S.A. Pradels, N. Marshall,
N. Aery, O.R. Baiocchi

C.J. McCormack

Ballroomn, Herrmann Hall
J.W. Williams
M.J. Packer

G.A. Martek & J.T. Elson
E.Di Giampaolo & F. Bardati

|.F. Anitzine, C. Jaureguibeitia,
J.A. Romo

Ballroom, Herrmann Hall

P.K. Bishop, J.R. James,
R.T. Biggs

T. Zinenko, A.l. Nosich,
Y.Okuno, & A. Matsushima

Ballroom, Herrmann Hall
R.C. Booton, Jr.

Ph. Riondet, D. Bajon,
H. Baudrand

C.E. Lee & R.M. Zazworsky
R.A. Speciale

Ballroom, Herrmann Hal!
T.W. Dawson & M.A. Stuchly

J.E. Kiwitt, A. Dietermann,
K. Reiss

B.M. Cramer & D.A. Mlynski
R.A. Speciale

Ballroom, Herrmann Hall

Ballroom, Herrmann Hall




WEDNESDAY MORNING 18 MARCH 1997

0700-0745 CONTINENTAL BREAKFAST

0730 ACES BUSINESS MEETING President Hal Sabbagh

SESSION 10: FINITE ELEMENT ANALYSIS (Paralle! with Sessions 11,12, & 13)
Chair John Brauer (Organizer), Co-Chair Zoltan Cendes

0840 “Finite-Element and Method-Of-Moments Analyses of an

Uttra-wide Bandwidth TEM Hom”

0800 “A Modified Mei Method for Solving Scattering Problems with the Finite Element Method”

0920 “Investigation of the Limitations of Perfectly-Matched Absorber Boundaries in Antenna
Applications”

03840 *“The Spectral Lanczos Decomposition Method for Solving Axisymmetric Low-Frequency
Electromagnetic Diffusion by the Finite-Element Method”

1000 BREAK

1020 “Duality Between Finite Elements and Hodge Operator in Three Dimensions”

1040 “A Generalized Method for Including Two Port Networks in Microwave Circuits Using the
Finite Element Method”

1100 “Projecting Between Complementary Vector Basis Functions” STUDENT PAPER CONTEST

SESSION 11: ADVANCES IN TRANSMISSION LINE MATRIX (TLM) MODELING |

Chair Wolfgang Hoefer (Organizer), Co-Chair Fred German
(Parallel with Sessions 10, 12, & 13)

0840 “Modelling of Ferrite Tiles as Frequency Dependent Boundaries in General Time-
Domain TLM Schemes™

0900 “The Use of Sources for TLM Modeling of Complex Materials”

0820 *Electromagnetic Fields Generated by Current Transients on Protection Structures Using
TLM - A FD-TD Comparison”

0940 “Towards a TLM Description of an Open-Boundary Condition™

1000 BREAK

1020 “A Modified 3D-TLM Variable Node for the Berenger's Perfectly Matched Layer
Implementation”

1040 “Electromagnetic Field Computations by a Generalized Network Formulation™

1100 “A Comparative Study of Dispersion Errors and Performance of Absorbing Boundary
Conditions in SCN-TLM and FDTD”

1120 “Analysis of Planar Structure on General Anisotropic Material: Unified TLM Modelin Frequency-
and Time-Domain and Experimental Verification”

1140 “A Digital Filter Technique for Electromagnetic Modelling of Thin Composite Layers in TLM”

SESSION 12: HYBRID TECHNIQUES FOR LARGE BODY PROBLEMS

Chair Donald Pflug, Co-Chair Robert Burkholder (Co-Organizers)
(Parallel with Sessions 10, 11, & 13

0840 “Hybrid MOM/SBR Method to Compute Scattering from a Slot Array Antenna in a Complex
Geometry”

0800 “Use of Near-Field Predictions in the Hybrid Approach”

0920 “A Hybrid Surface integral Equation and Partial Differential Equation Method”

0940 “Improved Hybrid Finite Element-integral Equation Methods”

1000 BREAK

1020 “A Hybrid Approach for Simutation of Log Periodic Antennas on an Aircraft”

1040 “Duct RCS Computation Using a Hybrid Finite Element Integral Equation Approach”

1100 «validation Studies of the GEMACS Computational Electromagnetics Code Using

Measurement Data from the Transformable Scale Aircraft-Like Mode! (TSAM)”

Glasgow Courtyard
Glasgow 102
Glasgow 102

M.H. Voge!

Y.Li & Z. Cendes
J.F. DeFord

M. Zunoubi, J.-M. Jin,
W.C. Chew & D. Kennedy

A. de La Bourdonnaye & S. Lala

E. Yasan, J.-F. Yook,
L.P.B. Katehi

J. Scott Savage
A.F. Peterson

Iingersoil 122

V. Trenkic, J. Paul,. i. Argyri,
C. Christopoules

J. Represa, A.C.L. Cabeceira,
|. Barba
G.P. Caixeta & J.P. Pissolato

D. de Cogan & Z. Chen

J.L. Dubard & D. Pompei
L.B. Felsen, M. Mongiardo,
P. Russer

L. De Menezes, C. Eswarappa,
W.J.R. Hoefer

K. Wu, Q. Zhang, & J. Huang
J.A. Cole, J.F. Dawson,
S.J. Porter

Engr Auditorium

A.D. Greenwood & J. Jin
J.L. Karty, J M. Putnam,
J.M. Roedder, & L. Yu

J. Putnam, M. Axe

D.5. Wang

S. Bindiganavale, J. Gong,
Y. Erdemli, & J. Volakis

B.E. Gray & J.J. Kim

Y.C. Ma, R. McClary,
M. Sancer, & G. Antilla

D.R. Pflug & T.W. Blocher



WEDNESDAY MORNING 19 MARCH 1997

SESSION12:

1120

HYBRID TECHNIQUES FOR LARGE BODY PROBLEMS (cont)

*A Combination of Current- and Ray-Based Techniques for the Efficient Analysis of
Electrically Large Scattering Problems”

1140 “Field Computation for Large Dielectric Bodies by the PPP Method”

1200 LUNCH

SESSION 13: COMPOSITE MATERIALS (Parallel with Sessions 10,11, & 12)

Chair Keith Whites (Organizer), Co-Chair Rodolfo E. Diaz

0840 “Application of the Analytic Theory of Materials to the Modeling of Composites in
Electromagnetic Engineering”

0900 “Scattering from inhomogeneous Chiral Cylindrical Composites Using Axial Beltrami
Fields and the Fast Multipole Method™

0320 “Diaz-Fitzgerald Time Domain Method Applied to Electric and Magnetic Debye Material”

0940 “Numerical Multipole Modelling of Bianisotropic and Complex Composite Materials”

1000 BREAK

1020 “Experimental Confirmation of a Numerical Constitutive Parameters Extraction
Methodology for Uniaxial Bianisotropic Chiral Materials”

1040 “A Frequency Domain Dispersion and Absorption Model for Numerically Extracting the

Constitutive Parameters of an Isotropic Chiral Slab from Measured Reflection and
Transmission Coefficients”

WEDNESDAY AFTERNOON 18 MARCH 1997

SESSION 14:

NEC AND COMPUTER CODES FOR COMPUTATIONAL ELECTROMAGNETICS
Chair Pat Foster, Co-Chair Richard Adier
{Paralle! with Sessions 15, 16, 17 & 18)

1320 “IONEC: Mesh Generation and Data Entry for NEC™

1340 “Experiments with NEC3 and NEC4 - Simulation of Helicopter MF Antennas”

1400 *Building Models for NEC2 and NEC-BSC"

1420 “Recent Enhancernents to ALDAS V3.00”

1440 “Simutation of Portable UHF Antennas in the Presence of Certain Dielectric Structures
Using the Numerical Electromagnetics Code”

1500 BREAK

1520 “*SCATTMAT: A Mcde Matching and Generalized Scattering Matrix Code for Personal
Computers in a Windows Environment”

1540 “Evaluation of Near Field Electromagnetic Scattering Codes for Airborme Application”

1600 “FASANT: Fast Computer Code for the Analysis of Antennas on Board Complex Structures”

1620 “FASPRO: Fast Computer Tool for the Analysis of Propagation in Personal Communication
Network”

SESSION 15: PML: THEORETICAL AND NUMERICAL IMPLEMENTATION ISSUES

Chair Andreas Cangellaris, Co-Chair Peter Petropoutos (Co-Organizers)
(Parallel with Sessions 14, 16, 17 & 18)

1320 “On the Construction and Analysis of Absorbing Layers in CEM”

1340 *“The Application of PML ABCs in High-Order FD-TD Schemes

1400 “Efficient Implementation of the Uniaxial PML Absorbing Media for the Finite-Difference
Time-Domain Method”

1420 *“Generalization of PML to Cylindrical Geometries”

1440 “Complex Coordinate System as a Generalized Absorbing Boundary Condition”

1500 BREAK

XXVi

U. Jakobus & F.M. Landstorfer

M.S. Abrishamian,
N.J. McEwan,
R.A. Sadeghzadeh

Glasgow 109
R.E. Diaz
B. Shanker, E. Michielssen,

W.C. Chew

F. De Flaviis, M. Noro,
R. E. Diaz, & N.G. Alexopoulos

L.R. Amaut
K.W. Whites & C.Y. Chung

M. Bingle, I.P. Theron
J.H. Cloete

Glasgow 102

S.P. Walker

S.J. Kubina, C.W. Trueman,
D. Gaudine

U. Lidvall
P.R. Foster

R.J. DeGroot, A.A. Efanov,
E. Krenz, & J.P. Phillips

A. Liberal, C. del Rio,
R. Gonzalo, & M. Sorolla

J.M. Taylor, Jr., & AJ. Terzuoli

M.P. Catedra, J. Perez,
F.S. de Adana

M.F. Catedra & J. Perez
Ingersoll 122

S. Abarbanel & D. Gottlieb
P.G. Petropoulos
S.D. Gedney

J. Maloney, M. Kesler, G. Smith

W.C. Chew, J.M. Jin,
E. Michielssen




WEDNESDAY AFTERNOON 18 MARCH 1997

SESSION 15: PML: THEORETICAL AND NUMERICAL IMPLEMENTATION ISSUES (cont)

1520 “Using PML in 3D FEM Formulations for Electromagnetic Field Problems”

1540 “The Design of Maxwellian Absorbing Materials for Numerical Absorbing Boundary
Conditions”

1600 “A New Artificial Medium Using Unsplit Anisotropic PML for Mesh Truncation in FDTD
Analysis”

1620 “On the Use of PML ABC's in Spectral Time-Domain Simulations of Electromagnetic
Scattering”

1640 “FVTD Schemes Using Conformal Hybrid Meshes and a PML Medium Technique”
1700 “PML Study of FEM Modeling of Antennas and Microwave Circuits™

FAST SOLVERS FOR ELECTROMAGNETIC SCATTERING PROBLEMS
Chair Eric Michielssen (Organizer), Co-Chair Weng Chew
(Parallel with Sessions 14, 15, 17 & 18)

SESSION 16:

1320 “Least -Squares Based Far-Field Expansion in the Adaptive Integral Method (AIM)”

1340 “Scattering of Electromagnetic Waves in Lérge-ScaIe Rough Surface Problems Based
on the Sparse-Matrix Canonical-Grid Method”

1400 “Planar Structures Analysis with the Adaptive integral Method (AIM)™

1420 “Fast lllinois Soiver Code (FISC)”
1440 *A Hybrid Fast Steepest Descent - Multipole Algorithm
for Analyzing 3-D Scattering from Rough Surfaces”

1500  BREAK
1520 “Fast Wavelet Packet Algorithm for the CombinedField Integral Equation”

1540 “Matrix Assembly in MOM/FMM Codes”

1600 “A Near-Resonance Decoupling Approach {NRDA) for Scattering Solution of Near
Resonant Structures”

1620 “Solution of Maxwell Equations Using Krylov Subspace from Inverse Powers of
Stiffness Matrix™

SESSION 17: WAVE PROPAGATION (Parallet with Sessions 14, 15, 16, & 18)

Chair Bill Weedon
1320 “Wave Propagation on Two Dimensiona! Slow-Wave Structures with Square Lattice”
1340 “Wave Propagation on Two Dimensional Slow-Wave Structures with Hexagona! Lattice”
1400 “Wave Propagation on Two-Level Twin-Stacked-Honeycomb Structures”
1420 “Adiabatic Modes of Curved EM Waveguides of Arbitrary Cross Section”
1440 “Ground Conductivity Evaluation Method based on Measurements of Radio Wave Path Loss”
1500 BREAK

1520 “Two-Scale Asymptotic Description of Radar Pulse Propagation in Lossy Subsurface
Medium® STUDENT PAPER CONTEST

SESSION 18: EMIVEMC (Parallel with Sessions 14, 15, 16, & 17)
Chair Todd Hubing (Organizer), and Co-Chair Jim Drewniak

1320 “Modeling of EMI Emissions from Microstrip Structures with Impertect Reference Planes”
1340 “Pre-Construction Modeling of Open Area Test Sites (OATS)”
1400 “Reducing EM] Through Shielding Enclosure Perforations Empioying Lossy
Materal: FOTD Modeling and Experiments”
1420 “Statistical Description of Cable Current Response Inside a Leaky Enclosure”

1440 “Coupling into Non-Rectangular Cavities: Simulation and Experiments”

J.-F. Lee, R. Dyczij-Edlinger,
G. Peng

R.W. Ziolkowski
Y. Chen, M.-s Tong,
M. Kuzuoglu, & R. Mittra

B. Yang, D. Gottlieb,
J.S. Hesthaven

F. Bonnet, J.P. Cioni
L. Fezoui & F. Poupaud

Y. Botros, J. Gong,
J.L. Volakis

Engr Auditorium

E. Bleszynski, M. Bleszynski,
T. Jaroszewicz

K. Pak, L. Tsang, C.H. Chan,
J. Johnson, & Q. Li

S.S. Bindiganavale,
H. Anastassiu, & J. Volakis

J.M. Song, C.C. Lu,
W.C. Chew, & S.W. Lee

V. Jandhyala, E. Michielssen,
W.C Chew

W. Golik, G. Welland,
D.S. Wang

E. Yip & Benjamin Dembart
C.C.Lu & W.C. Chew

V. Druskin, L. Knizhnerman,
P.Lee

Ingersoll 361

R.A. Speciale
R.A. Speciale
R.A. Speciale
V.A. Baranov & A.V. Popov
I. P. Zolotarev, A.V. Popov,
V.P. Romanuk
V.A. Vinogradov, V.A. Baranov
AV. Popov
Spanage! 117

B. Archambeault

B. Archambeault

M. Li, S. Radu, J. Nuebel,
J.L. Drewniak, T.H. Hubing,
T.P. VanDoren

R. Holland & R. St. John
J.L. Drewniak, T.H. Hubing,

J.v. Hagen, D. Lecointe,
J.-L. Lasserre & W. Tabbara




WEDNESDAY AFTERNOON 18 MARCH 1897

SESSION 18: EMVEMC (cont)

1500 BREAK

1520 g\ Simple Computational Electromagnetic Analysis Example of Electromagnetic Coupling to Pyro
ircuits”

1540 “TRAK_RF - Simulation of Electromagnetic Fields and Particle Trajectories in High-power

RF Devices”

THURSDAY MORNING 20 MARCH 1997

0700-0745 CONTINENTAL BREAKFAST
SESSION 19: CEM ANALYSIS: THE APPROACH OF THE FUTURE
Chair Kenneth Siarkiewicz (Organizer), Co-Chair Andrew Drozd
(Parallel with Sessions 20, 21, & 22)
0840 “Application of the Research and Engineering Framework (REF) to Antenna Design at

Raytheon”

0900 “An Algorithm for Solving Coupled Thermal and Electromagnetic Problems”
0920 “Computational Electromagnetics' Future Database Architecture”
0940 *An Expert System Too! to Aid CEM Model Generation”
1000 BREAK
1020 *Web-Based High Performance Computational Electromagnetics Servers”
1040 “Graphical User Interface for Computational Electromagnetic Software”
SESSION 20: FDTD APPLICATIONS (Paralle! with Sessions 19, 21, & 22)
Chair John H. Beggs (Organizer), Co-Chair Sydney Blocher
0840 “Implementation of a Two Dimensional Plane Wave FDTD Using One Dimensional FOTD
on the Lattice Edges
0900 “Numerica! Modeling of Light-Trapping in Solar Cells”
0920 “Numerical Modeling of a Clock Distribution Network for a Superconducting
Multichip Modute”
0940 “MC;)ggdlgaﬁonal Evaluation of an Optical Sensor Using the Finite Difference TimeDomain
1000 BREAK
1020 "sl:fu;:littl:lz:\g::\s of the Hybrid Dynamic-Static Finite Difference Approach on 3D-MMIC
1040 “Application of FD-TD Methods to Planetary and Geological Remote Surface Sensing”
1100 “Incorporation of Active Devices Using Digital Networks in FDTD Method”
1120 “HFl?r:;%aolgulaﬁons of Energy Absorption in an Anatomically Realistic Model of the
1200 LUNCH
SESSION 21: PLANAR ANTENNAS AND CIRCUITS (Paralle! with Sessions 10, 20, & 22)
Chair Guy Vandenbosch (Organizer), Co-Chair Niels Fache
0840 “Planar Antennas: Overview of the Modeting Efforts in Europe”
0900  “Microstrip Patch Antenna Research Activities at the Technical University of Lisbon”
0820 =A Full-Wave Electromagnetic Simulation Technology for the Analysis of Planar Circuits”
0940 “Analysis'of Metal Patches, Strips and Corrugations Inside Cylindrical Multilayer Structures by
Using G1DMULTC”
1000 BREAK
1020 “A Numerical Algorithm G1DMULT for Computing Green's Function of Multilayer Objects”
1040 “Fast Moment Method Algorithm for Electromagnetic Scattering by Finite Strip Array on

Dielectric Siab”

XXVl

Spanagel 117

R. Perez

S. Humphries, Jr. & D. Rees

Glasgow Courtyard
Glasgow 102

B. Hantman, J. LaBelle,
Y. Chang, & R. Abrams

H. Sabbagh, L.W. Woo, X.Yang
G.T. Capraro & K. Siarkiewicz
A. L.S. Drozd, T.W. Blocher,
K.R. Siarkiewicz. V.K.C. Choo

D.M. Leskiw, G.S. Ingersofl,
T.J. Vidoni, G.C. Fox, K. Dincer

B. Joseph, A. Paboojian,
S. Woolf, & E. Cohen
ingersoll 102

S.C. Winton & C.M. Rappaport

T. Marshall & M. Piket-May

P. Vichot, M. Piket-May, J. Mix,
2. Schoenbom, & J. Dunn

R.R. DeLyser

S. Lindenmeier, P. Russer
W. Heinrich

J.E. Baron, G.L. Tyler,
R.A. Simpson

C.-N. Kuo & T. ltoh
P.J Dimbylow

Engr. Auditorium

G.A.E. Vandenbosch
C. Peixeiro
N. Fache

Z. Sipus, P.-S. Kildal,
S. Raffaelli

P.-S. Kildal, M. Johansson,
Z. Sipus

B. Popovski, B. Spasenovski,
J. Bartolic




THURSDAY MORNING 20 MARCH 1997

SESSION 21: PLANAR ANTENNAS AND CIRCUITS ({Parallel with Sessions 20, 21, & 23) (cont)

1100 “Optimization of Various Printed Antennas Using Genetic Algorithm: Applications and
Examples”

1120 “Characterization of Asymmetric Microstrip Transmission Lines on Multilayers with FR-4
Composite Overlay”

SESSION 22: SCATTERING (Paraliel with Sessions 19, 20, & 21)

Chair Jianming Jin, Co-Chair Atef Eisherbeni

0840 “RCS and Antenna Modeling with MOM Using Hybrid Meshes™

0800 “Application of Moment Method Solutions to RCS Measurement Error Mitigation”

0920 “Scattering from Arbitrarily Shaped Cylindrical Objects Characteristic Modes”

0940 “A High Order Solver for Problems of Scattering by Heterogeneous Bodies™

1000 BREAK

1020 “Electromagnetic Scattering from Eccentric Cylinders at Oblique Incidence™

1040 “Iterative Technique for Scattering and Propagation Over Arbitrary Environments”

1100 ‘I'J/t) #1;‘?;1 ,{\pproach for Solving Scattering Problems in Stratified Conductive Media in Time

1120 “Effects of Multiple Scattering in Photon Correlation Spectroscopy”

1140 “Fictitious Dorain Method for Calculating the Radar Cross Section”

THURSDAY AFTERNOON 20 MARCH 1987

SESSION 23: OPTIMIZATION TECHNIQUES FOR ELECTROMAGNETICS
Chair John Volakis (Organizer), Co-Chair Eric Michielssen
(Paralle! with Sessions 24 & 25)
1320 “Optimisation of Wire Antennas Using Genetic Algorithms and Simulated Annealing”
1340 “Automated Electromagnetic Optimization of Microwave Circuits”
1400 ;‘h)e;igg Optimization of Patch Antennas Using the Sequential Quadratic Programming
ethod”
1420 '[‘;\ Novel Integration of Genetic Algorithms and Method of Moments {GAMoM) for Antenna
esign”
1440 “The Application of Novel Genetic Algorithms to Electromagnetic Problems”
1500 BREAK
1520 “Continuous Parameter vs. Binary Genetic Algorithms”
1540 “Compiex Plane Array Pattern Control Using a Genetic Algorithm”
1600 Design, Analysis and Optimisation of Quadrifilar Helix Antennas on the European Met Op
Space Craft
SESSION 24: ADVANCES IN TRANSMISSION LINE MATRIX (TLM) MODELING Il
Chair Wolfgang J.R. Hoefer (Organizer), Co-Chair Peter Russer
({Parallel with Sessions 23 & 25)
1320 “Characteristics of the Optimization Problem for Analysis of Time Series Obtained from
TLM or 2D-FDTD Homogeneous Waveguide Simulations”
1340 “Comparison of 3D TLM Meshing Techniques for Modeling Microwave Components”
1400 “A Comparison of Commercially Available Transmission Line Modeling (TLM) and Finite
Element Method (FEM) 3-D Field Solvers™
1420 “Vatidation of Transmission Line Matrix, Finite-Integration Technique, and Finite-Difference
Time-Domain Simulations of a Multi-Segment Dielectric Resonator Antenna”
1440 zy;;:ggrip Antenna Characterization Using TLM and Berenger's Perfectly Matched Layers
1500 BREAK

XXIX

M. Himdi & J.P. Danie!
M. El-Shenawee & H.-Y. Lee
Glasgow 108

J. M. Putnam & J. D. Kotulski
J. Stach

G. Amendola, G. Angiulli,
G. Di Massa

O.P. Bruno & A. Sei

H.A. Yousif & A.Z. Elsherbeni
Q.M. Conde & M.F. Catedra
M. Weber & K. Reiss

V.1. Ovod, D.W. Mackowski,
D.F. Nicoli & R. Finsy

F. Miliot & F. Collino

Glasgow 102

B. Kemp, S.J. Porter,
J.F. Dawson

J.W. Bandler, R.M. Biernacki,
8.H. Chen

Z.Li, P. Papalambros,
J. Volakis

J. M. Johnson
Y. Rahmat-Samii

D. Treyer, D.S. Weile,
E. Michielssen,

R.L. Haupt & S.E. Haupt

R.J. Mitchell, B. Chambers,
A.P. Anderson :

G.A.J. van Dooren & R. Cahill

Ingersoll 122

U. Mueller, M.M. Rodriguez,
M. Walter, & A. Beyer

J.L. Herring & W.J.R. Hoefer
F.J. German & J.A. Svigelj
N.R.S. Simons, A. Petosa,
M. Cuhaci, A. Ittipiboon,

R. Siushansian, J.Lo Vetr,
S. Gutschling

J.L. Dubard & D. Pompei




THURSDAY AFTERNOON 20 MARCH 1997

SESSION 24: ADVANCES IN TRANSMISSION LINE MATRIX (TLM) MODELING ii (cont)

1520 “Parallefization of a 3D-TLM-Algorithm on a Workstation Cluster”

1540 “A Comparison of the TLM and Finite-Difference Excitation Schemes for Diffusion-and
Wave-Equations”

1600 *Drift-Ditfusion Using Transmission Line Matrix Modelling”

1620 “Full Wave Characteristics of a Two Conductor Multilayer Microstrip Transmission Line
-Using the Method of Lines”

1640 “Sources of Error within Lattice Gas Automata Simulation of Electromagnetic Field Problems”

SESSION 25: PLANAR AND CONFORMAL ANTENNAS AND CIRCUITS)

Chair Giuseppe Vecchi (Organizer)
(Paralle! with Sessions 23 & 24

1320 “Transmission Line Approach for the Study of Planar Periodic Structures”

1340 “Analysis of Arrays of Elements over Surfaces which can be Conformed to a Body of
Revolution”

1400 “Computational Aspects of Finite and Curved Frequency Selective Surfaces”

1420 “Computationally Efficient MoM and Its Applications”

1440 “Analysis and Synthesis of Conformal Microstrip Antennas with a Fast and Accurate
Algorithm Using New Symbolic Objects”

1500 BREAK

1520 “Space/Time Adaptive Meshing Using the Multiresolution Time Domain Method (MRTDY)

1540 “Static Extraction, "Static® Basis Functions and Regularization in the Analysis of Printed
Antennas”

1600 “Wavelet-Based Modeling of Wired Antennas and Scatterers”

FRIDAY MORNING 21 MARCH 1997

C. Fuchs, P. Fischer,
A.J. Schwab

C. Kenny, R. Harvey,
D. de Cogan

A. Chakrabarti & D. de Cogan

M. El-Shenawee,
A.Z. Elsherbeni
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VISUALIZATION: A POWERFUL TOOL FOR
UNDERSTANDING ELECTROMAGNETICS

E. K. Miller
3225 Calie Celestial, Santa Fe, NM 87501-9613
505-820-7371, emiller @esa.lanl.gov

0.0 ABSTRACT

Computer-based visualization has grown remarkably in capability since the first pen and carriage plot-
ters made an appearance in the early 1960s. Scientific visualization has come to be an accepted and ex-
pected accompaniment for analysis, measurement and computation, and has even made possible new
fields of research. Indeed, such topics as fractals and chaos theory could hardly have been developed
without the possibility of displaying visual images of what their abstract mathematical descriptions ac-
tually represent. Few other physics and engineering disciplines share with electromagnetics (EM) the
combination of a complex mathematical foundation that describes physical phenomena that are for the
most part nonvisible. Both of these aspects of EM, its complex mathematics and physical non visibili-
ty, make computer-based visualization an especially powerful and useful tool for a variety of applica-
tions.

The use of visualization in EM, or visual electromagnetics (VEM), serves at least two distinct applica-
tions purposes: 1) to display a problem’s physical characteristics, and its corresponding numerical
representation or model; and 2) to display EM quantities associated with that model. In either case, the
resulting visual display provides a more understandable and interpretable way for the user to access the
underlying numerical data, vastly increasing the “bandwidth” of that interaction. VEM can alsobe a
great value in the development of computer models such as NEC, FDTD and the like. Most uses of
VEM deal with 2) since there is infinitely more variability provided by responses obtained as a function
of frequency or time, etc. than the static physical model on which such responses are based.
Nevertheless, 1) is of comparable importance, since unless a valid problem representation begins the
process, subsequent responses obtained therefrom will hardly be useful. VEM can also be invaluable
in code development, a use that may be transparent to most modelers, but which is also illustrated
below. Examples from these various perspectives are included here, emphasizing the benefits of visu-
alization from the viewpoint of its practical utility in identifying numerical errors and improving physi-
cal understanding.

1.0 INTRODUCTION

“I understand what an equation means if I have a way of figuring out the characteristics of its solution
without actually solving it,” is attributed to P. A. M. Dirac (of the Dirac delta function). Einstein is said
to have visualized the effects of relativity theory before he actually developed the mathematics to de-
scribe it. Both would certainly have been fascinated with what computers and computer visualization
are now contributing to the solution process. Computers are revolutionizing how we: (1) think about,
(2) formulate, (3) solve, and (4) interpret problems in all of science and engineering. This is especially
true of electromagnetics because of its abstract mathematical nature and the general “non visibility” of
most electromagnetic phenomenato human senses. Graphics is not new, of course, but the computer
is providing unprecedented capabilities to:

Create and acquire modeling and measurement data;
Manipulate, process and transform that data,
Present and display that data using static and dynamic formats.

To regard the computer as just a fast calculating machine really misses the point. Just as the internal
combustion engine made possible faster travel over land, it also soon led to the new dimension of con-




trolled travel through the air. That was a revolution for transportationno more profound than that for
the intellect made possible by the computer and computer visualization..

However, to be really useful, our use of visual electromagnetics (VEM) must not become so preoccu-
pied with the “pretty-picture” novelty of being able to produce color graphics and movies that we fail to
productively exploit the benefits that VEM can provide. In other words, the medium is not the mes-
sage, and while color, sound and motion can be invaluable in discovering hidden facets of electromag-
netic physics, their inappropriate use might obscure important phenomenaor otherwise mislead the ob-
server about what is being graphically displayed. The goal of achieving better solutions and improved
understanding of electromagnetic physics should be foremost in the practice of VEM.

2.0 USING VEM IN CODE DEVELOPMENT

VEM has been found invaluable over the years in the development of NEC, for which two examples
are included here, both of which deal with the Sommerfeld integrals that arise when modeling objects
located near a planar interface. As anyone who has encountered the Sommerfeld integrals has discov-
ered, their numerical evaluation is non-trivial, even when supercomputers are available. An approach
that was found invaluable in the early stages of NEC development was motivated by a dawning recog-
nition that the fields these integrals describe are much less complex than the mathematically complicated
integrals that describe them make it appear. This recognition originated from developing some plots of
the spatial variation of the Sommerfeld fields, an example of which is shown in Fig. 1. Ttcan be seen
that the fields vary relatively smoothly, showing not only the field’s spatial simplicity but suggesting
the possibility of modeling them using curve-fitting techniques This was done initially using low-order
polynomials [Miller et al. (1977)], but was later generalized to the current NEC treatment that uses
model-based parameter estimation [Burke et al. (1981)].
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Figure 1. A typical result for the field near an interface [Burke et al. {1 981)). The source in this case is a horizontal electric
Hertzian element above a half space of relative dielectric constant equal to 4 and zero conductivity (left), and 16 and 0.001
mhos/m {right). Distance R = (r+(z+ 7)2, elevation angle ©= tan"1|(z + Z)/f], with observation and source elevations above
the interface indicated by primed and unprimed coordinates, respectively, and r the radial distance between them. These fields
are smooth enough to be accurately approximated by simpie interpolation functions, thus circumventing the need to compute
Sommerfeld integrals when filing a NEC impedance matrix. The surface wave that exists along the interface for the zero-
conductivity case is seen to disappear when loss is introduced.

Also very early in NEC development, we decided to examine the impedance matrices generated by an
electric-field, integral-equation (EFIE) model by plotting them graphically. At the time, computer
graphics was in its infancy, and so we made printouts on standard 15-inch-wide, tractor-feed paper
whose entries were the numerical values of the matrix-coefficients exponents printed in a regular grid.




Even for a small structure, this required about a 8 x 8 foot square of paper, which was displayed by
tacking paper from floor to ceiling and several strips wide along a wall. Although these were crude
“plots,” patterns could be seen but little resolution was discernible. Many years later, we revisited this
exercise, but with the new hardware and software that had become available, much better results were
obtained, examples of which may be seen in Miller (1995). An unanticipated benefit of making such
plots is demonstrated in Fig. 2, where the impedance matrix for a wire near an interface is shown
[Burke (1985)]. Aproblem in the Sommerfeld-integral evaluation can be seen as a noise-like pattern in
part of this matrix, at a level several orders of magnitude below the peak. Itis extremely unlikely that
this effect would have been discovered had a visual display of the matrix not been generated.

Figure 2. A surface plot of the NEC
impedance matrix for a wire located near a
half space [Burke (1985)]. The effect of a nu-
merical problem in evaluating the Sommerteld
fields causes the “noise”seen in part of the
matrix.

3.0 USING VEM FOR CODE
VALIDATION

The potential uses of VEM in the ac-
tual process of modeling are virtually
unlimited. Current and charge, near
and far fields, shown as a function of
time, frequency, angle and space,
and in contour, surface, density and
vector plots are a few of the possibil-
ities. Two quite different applica-
tions, but by no means the only
ones, are for validation purposes and
displaying the physics of EM fields
in different ways as shown here and
in the next section.
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An example of the former is given in
Fig. 3, where a comparison is made
of two models for the Poynting’s vector of the fields propagating in a waveguide excited by a plane
wave incident at an angle of 30 deg from the waveguide axis [Ling etal. (1987)]. Although a numeri-
cal measure of their difference might provide a more quantitative indication of the ray model’s accuracy
relative to a rigorous solution, a visual comparison like this can highlight limitations the approximate
simplified approach.

4.0 USING VEM FOR ILLUSTRATING BASIC PHYSICS

An example of using VEM to illustrate EM physics is shown in Fig. 4, where far-field, space-time con-
tour plots are shown for a Gaussian-pulse- and time-harmonically-excited, center-fed dipole antenna
[Milleret al. (1981)]. For the former, the ficld contours are seen to be centered on the feed point (the
outer circle) and the ends, demonstrating that the far-field radiation originates from these two points.
Were a longer time window to be used, there would be a succession of nested radiation circles centered
on the ends as the current-charge pulses propagation back-and-forth along the dipole. The time-
harmonic case, by contrast, exhibits no clear-cut source of radiation, although we know thatits radia-
tion also is dominated by end and, depending on its length, center contributions.

Space-time contour plots of the current excited by a Gaussian voltage source at the center of a straight
dipole and a conical spiral, both 1-m in length, are presented in Fig. 5 [Millerand Landt(1980)]. The
dispersivity caused by the curvature of the spiral is readily apparent when compared with the result ob-
tained for the dipole. A “dataimage” representation of the scattered field from a long, metalrod is




shown in Fig. 6, as a different way to more effectively display a large volume of scattering data. Such
data images might provide an altemative to range-profile displays as a way to visualize a target

~
AL LU Pragiitbiiitiichitit

e
I NI LIELELCEEETE 0L E1E )b

-.m;gpmnm‘&umu‘\w ¥y

N A e
FECECEEETCLETILILE00717 0

e anig v ey
preerr ¥ e vevy i Asazys i T
prevryve >y vy
AAAASADAAAS. iR YR IYY s
v wevwevENesy e o
an wvswe:
at o~ »a -u& Fhyersvey
s e wn s
< B A AR AL AN
RN N eatel R
-4 ) SapAsSLLIIARRD BN ren e,
-~ e aani 2. v
: = SRS
£:3 e

Figure 3. Graphical comparison of the time-average Poynting's vector as a function of length in a waveguide as obtained from a
ray-optics representation (a) and a rigorous solution (b) [Ling et al. {1987)). A visual comparison of the two results provides a
semi-quantitative indication of how valid the ray approximation is for a guide only five wavelengths wide.

Figure 4. Far-field space-time contour plots for a Gaussian-pulse excitation (left) and for time-harmonic excitation (right) of a
center-fed dipole [Miller et al. (1981)]. For pulse excitation, the dipole is about 10 times as long as the space width of the
Gaussian pulse, while for the time-harmonic case, the wire is 10 wavelengths long. In each case, the time delay to the far field is
removed, and the dipole lengths are to scale. Ifs clear in the pulse-excited case that the radiation comes form the center and
ends of the dipole while this is not at all clear for the time-harmonic case.

The result of Fig. 7 was developed to determine whether a current wave propagating on a wire grid ex-
hibits any directional anisotropy in propagation speed. A vertical, wire monocone, located at the grid’s




center, was excited with a Gaussian voltage pulse and the combination modeled using the TWID
(Thin-Wire Time Domain) code [Milleret al. (1981)]. Contours of constant values of peak current
times radial distance (to remove the spreading effect) are plotted at successive time steps. This result
indicates that that the propagation speed is not direction-dependent.

| ' Figure 5. Space-time contour plots of
« the current excited by a Gaussian

E R
: /(’7\‘\\\\ ) . pulse atthe center of a straight wire

7 \\\) v - / ¢ ™ (top) and a conical spiral {bottom)
‘,/ \\O/ L. where both wires have the same
. ) fb)lLO . ) length [adapted from Miller and Landt
Z \(\\ (' {1980)]. The pulse propagating on
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X \;),J,///_/ N i\_\} L dispersion compared with the spiral,
F:f s ey ‘)\\\ <1 where it widens and decays in ampli-

: ¢ tude with distance.

SN )

/,//;//”
O -

In Fig. 8 is shown the time-
\_\ average Poynting’s vector for
. acurrent source located near a
penetrable half space. Even
though quite near the inter-
face, the power flow close to,
{.-~ and on either side of it are in
» close accord with Snell’s
Law, a possibly unexpected
result.

Figure 6. A frequency, aspect-angle contour plot (or
“data image”) of the radar cross section of a long, metal
rod as obtained from a FDTD computer model — i
[Trueman et al. (1992), Trueman (1992)). This kind of = y ¢ ¥ 3
data presentation provides an “image”different from the g " ) ;

usual range-profiie images, yet contains all the avail-
able scattering information over the frequency range
covered in the plot. Such plots could be useful in devel-
oping quantitative measures for a
“similarity/dissimilarity”index of targets for which a radar
is intended to provide a discrimination or recognition
capability.
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5.0 CONCLUDING REMARKS Lock ongle {degrees)
It should be self-evident that Visual
ElectroMagnetics (VEM) represents a tool essential for electromagnetics, in general, and for computa-
tional electromagnetics, in particular. The amount of data that can be generated by present-day models
and computers, as well as measurements, to say nothing of future expectations in this regard, can be
overwhelming. Were it not for the possibility of examining such data visually, as opposed to tabular
numerics, it’s likely that many important features of the results would be missed. However, it’s impor-
tant to emphasize that the beguiling attraction of simply developing eye-catching visual displays must
not displace the greater value of VEM for helping to validate CEM models and their results while also
providing access to the physical phenomena being displayed.




A N (f"_'}o)—’ 20
VIRV AY £; ] 2/ S
/ L~ AN 1 7 7 7 272
r f N T\\,_\’\’_,._,._._o—-)——-'
AL orTTT T
h\ ™ Z] A

S W VA VW W VU SR VS
N AV Prryyyyyay
N iy 773 S S VR U VIV
ann==Scanan BERER SRR
Figure 7. Contours of constant values of peak curent times (Y \ \ \ \, \ \, \ \
radial distance at successive time steps for a wire grid excited [ R SR \ Vo ARV

by a wire monocone antenna at the grid's center [Miller et al. -20

{1981)]. These resutts indicate that a short distance from the Figure 8. Time average Poynting's-vector plots for a vertical,

source, the current propagates at an angle-independent electric Hertzian dipole located 0.0875 wavelengths above a

speed. halfspace (vertical arrow) having a relative dielectric constant
of 9 at a frequency of 3 MHz {Lytle et al. (1976)]. Near thein-
terface, shown by the horizontal line, the vectors refract down-
wards toward the vertical axis, as would be expected, ai-
though their respective angles don't precisely satisfy Snells
Law which is rigorously applicable to plane waves only.
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ABSTRACT

This paper presents three techniques and the graphics implementations which can be used as
diagnostic aides in the design and understanding of scattering structures: Imaging, near fields, and surface
current displays. The imaging analysis is a new bistatic k space approach which has potential for much
greater information than standard experimental approaches. The near field and current analysis are
implementations of standard theory while the diagnostic graphics displays are implementations exploiting
recent computer engineering work station graphics libraries.

INTRODUCTION

The goals and motivation of this work are to provide insight and guidance into the design of
scattering structures.  Analytical/computer codes have historically been conceived only to provide
predictions of experimentally measured quantities, i.e., backscatter RCS versus angle. In principle, an
analytical code should be able to provide a much greater insight into the scattering process if we just ask
the proper questions. Our inspiration is similar to efforts in computational fluid dynamics where we are
attempting to better understand the interaction of an EM wave with a structure, the nature of the scattering
process, and ultimately better design.

BISTATIC IMAGE ANALYSIS USING k SPACE CONCEPTS

The experimental development of microwave images has been a powerful tool to understand
scattering from various geometries. Imaging may be in one dimension, i.e., down range; or in two
dimensions, i.e., down and cross range. This capability allows one to understand the scattering process in




terms of specific scattering centers and mechanisms. Image development has been mostly experimental.
‘While one could apply the same methods to predictive scattering algorithms, the computation burden has
always been considered to great. This occurs because, experimentally, down range information is
obtained by illuminating the target over a bandwidth of frequencies typically numbering 16, 32, 64, 128
or even 512. To do this with a method of moments analysis, one would have to recompute and solve the
system matrix for each frequency. This computation burden is so great that the swept frequency approach
is seldom pursued analytically.

B. A. Cooper developed a new approach that requires only one computation of induced currents
and therefore only one MOM matrix computation for down range images. A formal bistatic k space
image theory was then developed, reference 1. This formulation is not limited by the small angle focus
requirement. Cross range images are computed without smearing. The bistatic k space analytical image
technique does not require a MOM code matrix solution for each frequency. Only one current
distribution (matrix computation) is computed at the frequency of interest. The image is the Fourier
transform of the k space bistatic scattered radiation for values of k** that correspond to downrange and
cross range. The natural Fourier transform variables are wave number k and spatial position R. If we
compute a bistatic field as a function of k™ = (K?™"™"€, k™ ™) then the Fourier transform of the
scattered field is naturally a function of the transformed spatial coordinates, R* = (RI7*™78°, R0 =0&¢),
The computation of the scattered field in k space is a generalization of the standard bistatic radiation
integral. The difference is that E** is computed in term of k** for down and/or down/cross range rather
than in terms of the usual bistatic angles (8,). Body currents are computed only once at the user
specified incident angle and polarization.

Bistatic k space image technique features are: 1) Resolution up to A/2 unlimited by the usual
experimental frequency and angle extent bandwidth concerns; 2) Image focus / smear does not occur due
to the formulation of the approach; 3) Images computed at the frequency and angle of body excitation. -
The body currents are computed only for this k™. In contrast to the experimental approach, the currents
do not change with changes in the bistatic k** vector sweep; 4) One, two, or three dimensional images
may be obtained. The limiting feature for obtaining 3D images is the display of the solution since
multidimensional FFT algorithms are available; 5) The scattering body is imaged in a bistatic sense from
the same direction as the excitation, i.e., a backscatter image. However, a more general bistatic approach
is entirely possible since the center of k™ is not required to be the negative of k™; and 6) A co or cross
polarized image may be computed.

This list shows that the bistatic analytical approach to imaging can potentially yield substantially
more information than experimental images. The bistatic image approach can be applied to any
predictive algorithm for electromagnetic scattering or antenna radiation, e.g., Physical Optics or Method
of Moments.

Briefly, the theory for this analytical imaging technique can be developed as follows. A current
distribution is computed for a given angle of excitation and polarization. A scattered field is computed
using the far field radiation integral as a function of down and cross range bistatic k directions,
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where o and P are the polarization of the scattered and incident field, k™ is the direction of the incident
excitation, and k** is the k space direction for the scattered field. This equation is the usual radiation
integral as written before specifying k™ as a function of look angle (6,9). We compute E as a function of
K5 = dowmmange | gesenge The downrange k is centered on the free space absolute value of k™
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The Fourier transform of this E field, computed in down and cross range k space, is our desired image,

E™ (o) = | 4 WOE) B8 Foo) Fer® i, Vel ® i,

where W is a weight function and the square magnitude of E is our down/cross range image. It is noted
that the computational cost of this process is cheap compared to the effort in a MOM code to compute J.
NEAR FIELDS and CURRENTS
The computation of near fields must resort back to the fundamental definition for fields rather
than the simpler far field expression. The currents J are, of course, computed by a MOM code as part of

the solution. The near fields are specified in terms of the vector and scalar potentials in terms of the
current distribution:

B (5= jin [ {7~ (¥, T1+ KRYG, ~7)1 (kR)*} ¢ dS

where the integral is over the source currents and g is the Greens’ function.
The currents J and fields E are time varying vector quantities. We may choose to display the two

time quadrature values, the real and imaginary parts, which correspond to 0 and -90 degrees phase, or to
display the time animation of these vectors as

E.0 1) = R{E® Jcos(w - 3{EF) }sin(@ 1) 5




by letting @t vary from O to 27, or to compute a time average root mean square
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For the E field quantities, we can display the scattered field, or the total field (sum of incident plus
scattered), or just the incident field (not very interesting).

DIAGNOSTIC GRAPHICS DISPLAYS

Continued development of very fast engineering workstations has enabled the everyday use of
graphics to visually display the EM vector and scalar quantities for fields, currents, and images. Visual
display of the data includes color coded contour maps of the surface current magnitudes and the total and
scattered electric field magnitudes for both RMS averages and time harmonic animation. The current and
electric field vectors can be overlaid on this mapping or displayed separately to show field orientation and
direction. The graphics program presently is capable of displaying and animating up to 50 planar cuts of a
100 x 100 field point matrix either simultaneously or individually. In addition, the program can display
the triangle element mesh (up to 10,000 elements) which contains the surface current information.
FORTRAN graphics routines have been developed for Silicon Graphics series workstations.

EXAMPLE

The techniques described herein have been incorporated into the MOM code of reference 2 which
was used for the 3X aircraft like geometry shown in Figure 1. The traditional backscatter computation is
shown in Figure 2 for horizontal and vertical polarization.

Bistatic k-space images for the scattering centers when viewed nose on is shown in Figure 3 for
both polarization’s. Scattering centers at this angle are the engine pods, wing roots, and leading and
trailing edges.

Surface currents for nose on horizontal polarization illumnination is shown in Figure 4. The high
current regions are the sides of the fuselage, the leading edges of the wing and horizontal fin, and the
wing root region.

Near total electric fields about the target is shown in Figure 5 for nose on horizontal polarization
illumination.
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WHAT WE CAN LEARN

Imaging yields great insight into the scattering mechanism process, i.e., specular scattering, end
region contribution, leading and trailing edge diffraction, traveling wave, creeping wave, edge wave
scattering, etc. This new technique allows us to utilize imaging with computational MOM codes with
little additional computational cost. In addition, we have the potential to do three dimensional images,
bistatic imaging, and cross polarized imaging (even for circular polarization). Resolutions approaching
A/2 are possible. In fact, early efforts used resolutions less than A/2 so that images of the MOM code
basis functions were observed. Because the analytical approach is different from the swept frequency
experimental approach, we have seen some differences in images, particularly for traveling wave
scattering mechanisms where this new approach shows radiation as emanating from an extended region
over which a reflected surface wave is propagating.

Current display diagnostics allow us to highlight regions of high and low current flow over a
body. Low current regions could then be noted for possible addition of secondary structures such as
vents, doors, or avionics sensors such that they would have minimum impact on scattering. In addition,
one could gauge the design success of resistive treatments along edges and at tips by examining residual
current levels and the taper function.

Near field plots have potential to examine the over all influence of the body structure on the field
incident on secondary structures such as inlets and exhaust cavities. Since the main body influences the
field, the polarization incident on secondary structure may not be that of the incident free space
illumination.

As with any set of new tools, we do not fully know the potential benefit of all that is now possible.
Clearly, images are of great value. Current and field knowledge help in our understanding of the
scattering mechanisms, but we may have to be creative in how we use these diagnostics to exploit their
full potential.
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Figure 2 - Backscatter RCS plots of three wavelength aircraft geometry, horizontal
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Figure 3 - Bistatic images of three wavelength aircraft geometry, horizontal and vertical
polarization, 0° elevation, 0° azimuth.
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Mail Code S0642263
St. Louis, MO 63166

1. Introduction

Radar cross section (RCS) measurements can be displayed in three dimensions (3D) to allow more faithful
visualization of the scattering mechanisms of targets. Additionally, visualization along the vertical dimension may provide
a means to gate out undesired effects such as scattering from the target support structure.

RCS data is most commonly acquired using Inverse Synthetic Aperture Radar (ISAR) techniques. ISAR
measurements require finely sampled data along the frequency and azimuth axis to compute the down range and cross range
location of scatterers. Traditional methods of computing 3D images extend the 2D ISAR process by finely sampling along a
third elevation axis. Such measurements yield high resolution 3D RCS images. Unfortunately, the acquisition time and
memory required to collect 3D ISAR data can be prohibitively large. This is especially true when measuring aircraft-sized
targets. For example, the time and memory required to collect 3D ISAR data can easily exceed by 50 times, that required
for 2D images.

Ohio State University (OSU) has demonstrated a novel approach to 3D imaging of RCS data [1]. The technique
“interferometric” imaging provides an efficient means to visualize the scattering from a complex target in 3D. Unlike 3D
ISAR measurements, interferometric imaging requires only two images measured at slightly different elevation angles. By
comparing the down range change of an image measured at a different elevation angle, the vertical location of each scatterer
can be computed. This approach is analogous to the way the brain transforms information from the left and right eye to
perceive depth. Information about the displacement or binocular disparity of the eye required to focus on objects at
differing distances is processed by the nerve cells in the visual cortex to give an impression of distance [2].

McDonnell Douglas Corporation (MDC) has extended OSU's interferometric imaging technique to handle more
general non-point scattering mechanisms. By processing the images as a series of cross range slices, we are able, for
example, to map the vertical locations of leading and trailing edge scatterers.

2. Basic Principle
Changes to the measurement elevation angle will result in only changes to the down range location of each
scatterer in an image. Furthermore, the amount of this down range displacement is a function of the vertical height of the

scatterer. There should be no cross range displacement between elevation angle changes. This assumes that there is no
multibounce scattering mechanism present. This concept is illustrated in Figure 1.
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Figure 1. Down range Displacement of Scatterers at Differing Elevation Angles
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In Figure 1 is shown a dart target similar in shape to one we measure. As the elevation angle of the dart rotates
counterclockwise, the nose tip scatterer S moves farther from the radar. In contrast, the rear tip scatterer S; moves closer to
the radar. The amount of this down range change is a function of the height and down range location of the scatterer. By
accurately measuring this change, we can compute the scatterers vertical location. For the setup shown in Figure 1, the
height of each scatterer 2; can be computed using the geometrically derived equation:

2= Adr - dr*sin*(AB.1) (Eq. 1)
sin(A8)

where Adr; = dr; - dr; .
The expression Ay is equal to the change in elevation angle between measurements.
3. Registration of Scatterers Between Images
The most difficult part of interferometric imaging is the “registration” or identification of which scatterer in the
“reference” image corresponds to a scatterer in a “matching” image. By viewing a 2D image as a series of cross range
slices (Figure 2), what appears to be a 2D registration process can be simplified into a 1D problem. Since the changes

between the images measured at different elevation angles is strictly along the down range axis, we can dramatically
simplify the registration of the two images.

1

Nomalized Amplitude (3B}

Down Range (m} 2 “ 2
Cross Range (m)

Figure 2. Displayed are 6 of 256 Cross Range Slices from a 2D Image

The first step in registering images is to identify the scatterers of an image. Scatterers are located by examining the
cross range slices of the image. At this point in development, scatterer identification is limited to those scatterers
demonstrating a peak response. This will eventually be broadened to include scatterers demonstrating a relatively flat down
range response that is well above the noise floor. To eliminate the effects of processing sidelobes which can be as great as
-30 dB, identified scatterers must have amplitudes within 30 dB of the peak amplitude of the image. This dramatically
reduces the occurrences of misregistration of scatterers between two images.

Once all scatterers have been identified, we begin correlating the scatterers between the reference and matching
images. Ohio State University’s peak matching criteria based on the proximity and amplitude of the scatterer produces
good image registration. The first criteria is that the change in down range location of correlated scatterers, Adr;, is within a
certain distance. This distance is based on the highest and lowest vertical dimension of the target. The down range criteria
assumes that the scattering mechanism (i.e. physical optics, traveling wave, etc...) remains the same for both images.
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The second criteria is that the amplitude remains within 9 dB of each other. In order to satisfy this last criteria,
only small changes in the elevation angle between the images should be used. Figure 3 illustrates the registration process
by comparing slices from the same cross range location of two images measured at slightly different elevation angles. Itis
clear to see that two peaks are successfully matched to each other.
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Figure 3. Cross Range Slices from 1° and 5° Images

Once scatterers have been correlated between images, the height of the scatterer can be computed using Eq. 1 and
the data placed into a 3D data file. There are numerous other registration techniques using cross correlation functions that
also merit consideration.

4. Improved Resolution

By examining Eq. 1, the vertical resolution is dependent upon the down range resolution by a factor of 1/sinf,.
Since the down range location of each pixel of an ISAR image is derived from the Fast Fourier Transform (FFT) of the
measured RCS data, zero padding of the down range data can be used to improve vertical resolution [3]. Any amount of
zero padding can be applied but I have chosen sufficient padding to yield a vertical resolution equivalent to the down range
resolution.

5. Results
Interferometric imaging has been successfully demonstrated on ISAR data of a dart shaped target measured at
MDC's Near Field Test Facility. The measurement setup is illustrated in Figure 4. Two broadside images of the dart were

measured at 1° and 5° elevation angles. Broadside images were specifically chosen to highlight the interferometric
imaging technique’s ability to discriminate scatterers along the vertical dimension.
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Figure 4. Measurement Setup

To date, we have been able to display the 3D interferometric image using projected 2D images along the three
major planes (Figure 5). An overlay is superimposed on the data to illustrate how well interferometric imaging has located

scatterers in the vertical dimension. Vertical range resolutions on the order of down range resolutions have been
successfully achieved with the use of zero padding interpolation.
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Figure 5. Using 2D Projected Planes to Display of 3D Interferometric Data

‘While successfully displayed using projected 2D planes, a 3D representation of the interferometric data eliminates
the need to mentally piece together the data. To achieve this 3D representation, we have used the commercially available
Spyglass™ software. Unfortunately, a black and white 2D print out of this file shown in Figure 6 does not fully illustrate

the added dimensionality provided by color amplitude coding. Visualization in 3D is also enhanced with shading and the
ability to view the data from a variety of angles.
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6. Conclusion

We have successfully demonstrated how well interferometric imaging produces a 3D rendering of the RCS
scattering from a target. This added visualization is obtained by a time efficient technique requiring virtually no additional
measurements. Further improvements can be achieved by using a third matching image during the registration process.
This reduces the effects of misregistration of scatterers by providing additional matching criteria.
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MODERN GRAPHICS APPLICATIONS FOR VISUALIZATION OF
ELECTROMAGNETIC RADIATION AND SCATTERING

C. Long Yu*
Naval Air Warfare Center Weapons Division
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R. Kipp, D. J. Andersh and S. W. Lee
DEMACO Inc.
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ABSTRACT

As modern computer and graphics technologies continue to advance, there is a growing demand for
effective means of graphical representation of electromagnetic phenomena and their associated data
visualization. In fact, a great challenge to the test and evaluation (T&E) community of radar-guided
weapons systems is how to describe the electromagnetic scattering characteristics of complex test
targets and their associated scattering centers with graphical visualization in a total system testing
environment. This includes radar scenarios from far-field tracking to near-field end-game encounter.

The objective of this paper is to discuss various electromagnetic visualization tools developed in
modern RF digital-simulation models to characterize and simulate the radar-scattering of complex
platforms including airborne targets, terrain and urban sites. The techniques used in the visualization
tools include three dimensional computer-aided design models, ray tracing methods and terrain
rendering. EM simulation models which combine high-frequency techniques and these visualization
tools provides sophisticated, user-friendly engineering tools for predicting the radar-signature of a
complex radar target on a modern powerful workstation. The tools are especially useful in radar-
signature diagnostics study, ambiguity resolution and radar scattering "cause and effect” analysis.
Examples will be given to illustrate practical applications of these integrated tools in radar-target
characterization, mission planning, and wireless communication.

1.0 INTRODUCTION

As modern computer and graphics technologies advance, visualization of data and information
becomes a vital research and applications frontier shared by a variety of science, medical, engineering,
business, and entertainment fields. In fact, a great challenge to the test and evaluation (T&E)
community of radar-guided weapons systems is how to describe the electromagnetic (EM) scattering
characteristics of complex test targets and their associated surrounding environment with graphical
visualization in a total system testing environment. The test scenarios include radar applications from
far-field detection and tracking, mid-course guidance, to near-field end-game engagement. The
complexity of airborne weapon testing thus creates a great demand for effective means of graphical
representation of electromagnetic phenomena and their associated data visualization for radiation and
scattering problems. i

An effective way to present the high-frequency EM phenomena is via computer simulation using
computer-aided design (CAD) graphics packages and the shooting and bounce rays (SBR) method {1]
on a graphical workstation. This approach offers T&E engineers an excellent capability to interpret
and visualize complex EM radiation and radar scattering on a computer-graphics display. For example,
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the locations of radar scattering centers of a complex platform can be easily and accurately determined
via ray tracing and radar imagining techniques. Muitiple bounce phenomena and mutual shadow
problems often encountered in electromagnetic scattering testing of complex radar targets can also be
easily visualized and identified by graphical ray tracing. This paper introduces three high-frequency
electromagnetic codes and their associated graphical display capabilities as promising tools for radar-
guided weapons systems test and evaluation applications.

The three EM packages are Xpatch, a far-field radar cross section (RCS) code [2], Npatch, a near-
field RCS code [3] and Apatch, an antenna/platform radiation code [4]. These codes, developed by
DEMACO, Inc., employ the SBR method for radiation and radar scattering analysis of airborne
platforms (such as aircraft and missiles) and surface targets. With user-friendly, graphical user
interfaces (GUI) and visualization software, these packages provide sophisticated tools for effectively
pinpointing graphically the "cause and effect” of EM scattering in many diversified practical problems.
The following sections present their modeling methodologies for EM radiation and scattering analysis
and simulation. Examples of their application to practical problems such as radar-target
characterization, airborne weapon engagement, and airborne antennas are also illustrated.

2.0 EM MODELING:

In radar-guided weapon/target engagements, it is well known that electromagnetic scattering
phenomena play a critical role in determining the radar signature (far- and near-field) of the target
encountered and the fuzing of warhead detonation. In a typical encounter as shown in Fig. 1, the
missile passes from the far-field scattering zone, through the intermediate-zone and into the near-zone
of the target. Most radar scattering predictors assume that the target is in the far-field of the radar. The
far-field assumption is that the wavefront incident at the target has uniform magnitude and phase, and
the scattered wave arrives back at the radar antenna from a single direction, as seen in Figure 1. In the
end-game missile encounters, however, the missile and target are in close proximity and the
transmitting and receiving antennas on the missile are generally located in the near-field zone of the
scattered field from the target. An EM wavefront of nonuniform magnitude and phase dictates the
complete scattering phenomena in this region. So, far-field assumptions lead to gross errors under
near-field conditions. Additionally, radar return computation in the near-field is complicated by the
partial target illumination, nonuniform antenna patterns, target material coatings, and engine inlet
returns. Figure 1 illustrates the important differences between near-field and far-field missile/target
encounter situations. This is why a near-field capability is essential for end-game applications.
Consequently, Npatch was recently developed to handle the complex near-field RCS prediction of
end-game simulation while Xpatch, developed over many years already, is primarily used for far-field
RCS computation for missile guidance applications.

As discussed earlier, Xpatch, Npatch and Apatch employ the SBR method as the core computational
engine for EM modeling. SBR provides not only an excellent tool for EM analysis but also graphic
visualization via ray tracing. SBR uses geometrical optics (GO) ray tracing 3-D CAD models to
implement physical optics (PO) [3] and is suitable for missile/target end-game scenarios which include
the effects of the missile antenna pattern, multiple reflections, complex-shape shadowing, and material
coatings. The sophisticated 3-D CAD models represent realistic, complex radar targets required for
accurate EM modeling. Target CAD models are typically composed of 10,000 - 200,000 facets
(triangular surfaces), or 10,000 to 50,000 bi-cubic patches, depending on the target level of detail.
Effective SBR techniques require a fast ray tracer to track the 10,000 - 10 million rays needed to fully
interrogate complex geometries. The ray tracer currently used in these models was developed by
DEMACO, Inc. and supports CAD models described in facet (ACAD), bi-cubic (IGES-114) and
NURB (IGES-128) formats.
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Figure 1. Definition of far-zone, intermediate-zone, and near-zone for a missile encounter with a
target.

Since the EM modeling process of Xpatch and Apatch models have been well documented and can
be found in Ref. [1,2], they will not be discussed here. Instead, the near-field modeling process of the
Npatch model will be presented to illustrate the implementation of the SBR approach. Figure 2 shows
a missile/target engagement scenario where a missile located at point Rm with an instantaneous
velocity vm is engaging its target located at point Rt with velocity v¢. The missile antenna illuminates
the target, which scatters energy in all directions. Some of that energy scatters back toward the missile
and is partially absorbed by the antenna. The quantity of interest is the near-field RCS, the ratio of the
received power to the transmitted power P/Py at the antenna terminals including the phase shift, as a
function of frequency.

The SBR method is applied to compute this quantity in the following manner. The target is

illuminated by thousands of rays weighted by the radiation pattern A(6m,$m) of a mounted missile
antenna (located at Ry) as if emanating from a point source toward the target (see Fig. 2). A CAD ray-
tracer is then used to determine which target surfaces are lit and which surfaces are shadowed. The
illuminating rays are treated as ray tubes, which cast "footprints” on the target body. Using PO
principles, the induced surface currents over the domain of each footprint are computed. The
computed surface currents, which depend on the material attribute of the surface at each ray hit point,
then re-radiate EM energy in all directions. Using free-space Green's function, one computes the
scattered energy at the point Ry from each footprint. Only a fraction of this energy will be absorbed by
the missile antenna depending on the direction of arrival. Hence, in computing Py/Pt, one weights the
scattered energy at Rq by the receiving cross-section of the missile antenna at the arrival angle.

The rays which illuminate target surfaces are specularly reflected from their hit points. The ray tracer
continues to trace these rays until they escape. Some will escape after the first bounce, and they
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produce no further contributions at the receiver. This process produces the 1st-bounce contribution.
Others will become multi-bounce rays, also shown in Figure 2. These rays continue to induce further
currents on the target surface, which are then radiated back to the missile antenna in the same manner
as described above. As a result, they also contribute to the radar received power. In this sense, SBR is
a multi-bounce implementation of physical optics for complex target interactions. The advantage of
this approach is that the target can be very complicated and realistic and SBR can produce much more
accurate near-field scattering results than other available near-field predictors.

Ray Hlumination

(Missile Antenna
Pattern-Weighted Rays) “ Ray Scatter

Figure 2. End-game encounter: Antenna pattern-weighted rays are launched from missile and scatter
off of the target, leaving surface currents that radiate back to the missile.

3.0 SIMULATION RESULTS:

To demonstrate the EM analysis and visualization display capabilities of these models, the following
graphical examples of RF problems, which involve a variety of complex 3-D targets, are depicted in
Fig. 3-6. Case 1 illustrates the Xpatch results of a VFY 218 aircraft model for RCS study as a function
of frequency and aspect angle. Case 1 also presents graphical display of ray hit points on the VFY 218
model for multiple-interaction scattering effects. Case 2 presents the Apatch results of antenna pattern
analysis on a P-3 aircraft model for optimal pattern coverage and antenna installation. The antenna in
this case is a blade antenna operating in UHF frequency band. Case 3 involves a MIG-29 model shown
in Figure 5 in a missile/target end-game encounter simulation predicted by the Npatch. In this case,
Npatch is directed to trace rays up to 50 bounces for multi-bounce computation. The radar frequency
for this prediction is 10 GHz, and the antenna pattern is a 14-element array whose main beam points

109 forward of broadside. The aircraft surfaces are assumed to be perfectly conducting.

Finally, Case 4 illustrates four color frames (as seen in Fig. 6) of a missile end-game encounter against
a F-15 model in a time-sequence display. These frames were produced by Npatch in a full-motion 3-D
end-game encounter display. This full-motion display package is devoted specifically to provide visual
simulation of the encounter scenario for missile performance assessment and diagnostic analysis. This
tool shows the time-stepped end-game encounter in 3-D, with full rendering of the target and missile
from their 3-D CAD models. A unique feature is the target surfaces color-coding according to the
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strength of the target surface scattering contribution back toward the missile. The missile is displayed
flying past the target, with overlays of scattering regions sweeping across the target.

1-bounce: green
2-bounce: blue
3-bounce: white
4 or more: yellow

Figure 3. Ray hit points on a VFY 218 model from multi-bounce contributions and a 2D RCS pattern
display as a function of aspect angle and frequency.
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Figure 4. Displays of ray picture and ray hit points on a P-3 aircraft model for a wing-tip mounted
isotropic antenna; and volumetric antenna patterns and range coverage patierns of a blade antenna
mounted on top of the fuselage.
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Figure 5. Significance of multi-bounce in MIG-29 model scattering return predicted by Npatch.

Figure 6. Full-motion 3-D encounter hot-spots display of a F-15 model predicted by Npatch.

4.0 CONCLUSION:

Three visualization and diagnostic tools for test and evaluation of radar-guided weapons systems
simulation were presented. These software tools incorporated a computer-aided design (CAD) graphic
package and the shooting and bouncing ray (SBR) approach to provide both graphical visualization
and electromagnetic radiation and scattering computation of complex platforms. As shown from the
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examples presented, the SBR method provides not only the ray paths for physical insight of EM
scattering mechanisms but also the ray hit points for scattering center identification. It is well-suited
for analyzing multiple-reflection phenomena and mutual shadow problems encountered in
electromagnetic scattering on complex platforms. The graphical representation of the radar target and
ray-paths is particularly helpful in understanding the EM scattering phenomena by visually
pinpointing its "cause and effect". The unique visualization capability of these EM models is presently
adequate and significant for many antenna and radar problems. Applications of this capability have
also been extended to many areas such as mission planning, RF chamber design, wireless
communication, etc. which will be discussed in the coming oral presentation. However, further
improvements and enhancements are needed and will be continued in order to meet the challenges
imposed by the test and evaluation requirements of radar-guided weapons systems.
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A Versatile Geometry Tool for Computational Electromagnetics (CEM): MrPatches
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Abstract

High accuracy in radar cross section (RCS) simulations increasingly requires that CAD descriptions of targets
incorporate great detail and fidelity. MrPatches is an enabling tool used at McDonnell Douglas Corporation (MDC) to
achieve rapid, reliable, first time quality results for complex CEM problems. This paper describes the key elements of
the architecture of the code, its major features, the geometry/CAD protocols it supports, its platform portability, and its

link to other CEM software tools. Finally, specific examples drawn from various applications illustrate the versatility of
this code.

1. Background

By way of introduction, we begin with a brief history of MrPatches. The idea of a graphical geometry code directed at
the particular needs of the RF engineer originated with Mr. Mike Caddy (Naval Air Warfare Center - Weapon Division -
Patuxent River, MD) and Mr. Denny Elking (MDA). In 1990 Mr. Caddy was funding a Graphical User Interface (GUD)
for the CADDSCAT RCS analysis code [Ref. 1]. MrPaiches was developed with MDC funds as a companion code to
that GUL It was first used in 1991. GEOMPACK was used for the framework of MrPatches since it was the geometry
kemnel of CADDSCAT at the time. GEOMPACK had an IGES processor, a ray tracer, routines to support diffracting
edge analysis, and a gap space curve capability [Ref. 1].

The first release of MrPatches was written entirely in Silicon Graphics GL including the user interface. However, the
use of GL made portability of the code to other systems difficult. With the advent of HP workstations it became
necessary to use more portable graphics. The use of Motif and strictly X-Windows for the user interface began in 1993.

The MDC CFD (Computational Fluid Dynamics) group developed the MDGL (McDonnell Douglas Graphics Library)
package [Ref. 2] to support its graphica! tools on a wide array of graphics devices. This package allows the same
graphical subroutine calls to access ‘native’ drawing routines on many operating systems. By adopting this package for
MrPatches in 1994, it is possible to draw geometry in ‘native mode’ on the SGI, IBM RISC (also using GL), and HP
workstations. X-Window drawing capability is available on a host of systems, including the Sun Solaris and Intel
Paragon systems.

MirPatches has been used as a pre/post-processor with the method of moments based CARLOS code and the infrared
radiation analysis IRIMAGE code. Recent efforts involve support for more intuitive input features: the spaceball and
arrow keys can be used for geometry viewing in addition to translation/rotation/zoom sliders.

2. Architecture

A key component of MrPatches is GEOMPACK. The structure of GEOMPACK supports facet and curved surface
entities in an efficient manner. Curved surfaces can be rationat as well as polynomial of degree 3 or higher. Second
order IGES curved surfaces [Ref. 3] are always internally converted to parametric bi-cubic (PBC) form. GEOMPACK
has an option to convert surfaces that are higher order than cubic to PBC form for editing and ray tracing. For efficient
RCS computation of curved surfaces, CADDSCAT requires PBCs but can compute physical optics of any IGES surface
that GEOMPACK supports.
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GEOMPACK atlows support for the processing of numerous facet file formats. These facet files fall into two categories.
The first category is the MISCAT-type format which defines facet vertex information for each surface independent of
other surfaces. The other category is an ACAD-like format which first specifies the vertices for the entire model and
then defines the facets in terms of how the vertices are connected. This second format utilizes computer memory more
efficiently by allocating memory only once for a vertex common to several facets.
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Figure 1. Example GEOMPACK Component File

GEOMPACK consists of approximately 50K lines of POSIX C
code. Core routines are FORTRAN, C, and C++ callable. The C
code accommodates systems which require a trailing underscore
(ie. “_™ for function declarations in order to link with
FORTRAN, as well as those which do not. Memory for entities
is dynamically allocated. GEOMPACK has been tested with
‘Sentinel Memory Advisor’ to ensure there are no memory
leaks. When used in a ‘virtual machine’ consisting of many
workstations, such as when CADDSCAT is configured for a
multi-processor run, GEOMPACK reads geometry files on a
single processor and uses MPI (Message Passing Interface) to
communicate the geometry to other nodes. Considerable
memory savings are possible for models that are reflected about
a cardinal plane. This is accomplished by deriving a reflected
surface matrix from the ‘parent’ on the fly.

Since 1989, GEOMPACK allows processing of multiple
geometry files. Presently, GEOMPACK accommodates up to
150 files. The GEOMPACK ‘component file’ is used to
supply geometry file names and processing directives. A
keyword driven format enables file translation, rotation,
subdivision, triangulation, mirroring, etc. Figure 1 shows an

actual component file for a C17 model. The example shows mirroring (+x extension to file name), translation
(“TRANSLATE’ keyword), and comments (‘COMMENT’ keyword).

GEOMPACK supports a number of surface geometry formats. On input: IGES curved parametric entities (114, 128) as
well as finite element mesh entities (134, 136); Patran Neutral File curved surface (entity 33); ACAD, CARLOS,
IRIMAGE IAG, and MISCAT facet files; and height fields [Ref 1]. On output: IGES entity 114 and all facet formats
except ACAD. It is very easy to add other geometry formats as either inputs or outputs.

Another module of MrPatches is MDGL. This package is written in ANSIC and has been ported to most UNIX
platforms. Current implementations support HP, SG, IBM RISC, SUN, Motorola, DEC, Cray, and Paragon systems.
Preliminary versions exist for Microsoft Windows, Borland BGI, and Macintosh. Numerous hardcopy devices are
supported. Like GEOMPACK, graphics calls support C and FORTRAN.

MDGL feamres include 2D and 3D orthographic and perspective projections, viewports, double buffering, z-buffering,
and most other standard graphics calls. Double buffering provided by MDGL for X-Window devices is a unique feature
not directly supported under X. When opening a window, MDGL queries the device being used. If the system does not
support a native graphics language, the X-Window graphics protocol is used.
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3. Basic Features

MrPatches editing capabilities allow surface normal direction correction, creation or deletion of surfaces, and merging or
separation of geometry. Areas on the geometry can be flagged for wreatment schemes. By picking with the mouse,
detailed geometrical information about specific locations can be obtained. Color shading and radius of curvature plots
aid the analyst in verifying the integrity of the model prior to EM analysis. Additional capabilities exist to display the
diffracting door gaps and edges processed by CADDSCAT. To assist in understanding multi-bounce scattering
problems, MrPatches interactively performs ray tracing of the geometry.

MrPatches displays and modifies triangular grids such as used by the MDC CARLOS code. MrPatches can
automatically collapse points, adjust symmetry edges, and split long triangle edges. Output from CARLOS can be input
to MrPatches to graphically pinpoint geometry trouble spots and apply corrections. MrPaiches displays CARLOS
currents, images, and current vectors.

We now present a detailed discussion of four representative feamres of MrPatches. These are the edge abutment
display, the gap geometry modeling, the visualization of multi-bounce effects, and various editing options useful with
CARLOS.

4. Edge Abutment Display

The GEOMPACK ‘Edge Abutment Table’ (or just “Edge Table’) is used for several purposes:

- defining diffracting edges (CADDSCAT)

- tracking surface waves (Enhanced CADDSCAT, [Ref. 4])

- evaluating surfaced model quality by displaying the wedge angle between abutting surfaces.
The ‘edge table’ is automatically created by GEOMPACK using a graduated tolerance approach. The algorithm starts
with very tight tolerances, gradually loosening the tolerances as more difficult abutments are sought. The abutment
detection algorithm is sophisticated. It can find abutments of partial borders, even for curved parametric surfaces such
as in Figure 2 and Figure 3. In the most general case, the mapping of the surface parametric variables across a border is
a non-linear function. Figure 2 shows the diffracting edge configuration for fixtureS6.iges. Figure 3 zooms in on an
area of ‘non one-for-one’ patching in Fixture 56. Figure 11 of {Ref. 4] shows the surface wave tracking on another
numerical fixture.

Figure 2. Diffracting Edge Configuration for Fixture 56
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5. Gap Geometry Modeling

Because gaps can be a major scattering contributor for low observable platforms, MDC has employed a hybrid gap
analysis capability since 1989 [Ref. 1]. In practical applications, a user friendly visual interface for checking the gap
geometry is required.  For example, there are hundreds of gap segments on a typical aircraft such as the F/A-18. The
approach to RF modeling of gaps at MDA is similar 1o that for moldline geometry modeling. CADDSCAT and
CAVERN [Ref. 5] use the designer’s moldline definition exactly via IGES files (i.e. without facetization). IGES
geometry developed by the configuration designer is used directly in the RF analysis. A similar approach is used for
gaps. Thus the designer defines the door gaps as IGES space curves which are the direct input to CADDSCAT.
Allowed IGES entities are 112 (spline curve) and 126 (B-spline curve). B-spline curves are allowed to be rational. Note
that gap geometry is modelled only as space curves in the high frequency asymptotic code. The gap geometry is
analyzed in a psuedo-3D manner using CARLOS and the scattering characteristics in the gap principal plane are input to
CADDSCAT.

RF gap processing must have the moldline normal available at every point along the gap. GEOMPACK develops a
description of the surface normal parameterized as a function of the gap parameter. Any gaps not satisfying the input
gap tolerance are displayed in red in MrPatches indicating re-work is required, - i.e., the gap space curve is not close
enough to the surface. Figure 4 shows a gap layout with the sampled normal (the short lines) on fixture56.iges.

Figure 4. Gap Configuration for Fixture 56 (The ‘whiskers’ are the gap normals.)
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6. Visualization of Multi-Bounce Effects

The standard MDC practice is to compute first bounce and multi-bounce scattering effects separately to gain more
insight into subtleties of each target being analyzed. In 1994, MDA CEM analysts performed a signature analysis of the
forward swept wing configuration of Figure 5. No significant multi-bounce effects had been anticipated for this target.
However a multi-bounce condition was found at 0 elevation and 135 degree azimuth.

Figure 5. Forward Swept Wing Model

Since the usual ISAR imaging techniques do not map multi-bounce RCS directly onto the scatterer, identifying multi-
bounce scattering sources can be challenging. MrPatches is used to help resolve these nuances. To do this,
CADDSCAT provides the coherent higher-bounce RCS contributions from each surface at the aspect of interest. (Note,
a range of aspects is not used.) These outputs are displayed in MrPatches as a PATCH DATA' file. It is advisable to
utilize the GEOMPACK 'EQUALSIZE' component file keyword to subdivide the geometry into surfaces of roughly
similar size. This causes the color coding of surfaces-to be more meaningful, since the RCS of each surface is
dependent on size.

Using this technique, we obtained the plot of Figure 6 which clearly located the last bounce on the canopy. Using the
MrPatches interactive ray tracing feature, the actual ray paths were identified. MrPatches also supports the ray tracing
of 'star bursts' for visualizing near field multi-bounce situations [Ref. 6]. Figure 7 shows a ray star burst, which
hypothetically originates from an antenna illuminating a Harpoon missile.

Figure 6. Multibounce Image for Forward Swept Wing Model

Figure 7. Ray Star Burst on Harpoon Missile
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7. Editing Options and CARLOS Applications

One of the features of MrPatches is its ability to edit geometry. Options are available to translate, scale, and rotate
geometry as well as creating or deleting surfaces. When several geometry files have been read in and modified, the files
can be written back out keeping the original file groupings. This feature is used heavily where different geometry files
are assigned as treatment regions in CARLOS [Ref. 7). Modified files stored in the IGES format can be imported back
into the original CAD modeling system.

To modify specific surfaces, the user selects them by picking them with the mouse. Users can select groups of surfaces
by using a screen box, by specifying a geometry file, by picking all surfaces of a B-surface, or by keying in surface
identifiers. Each surface selected changes color. If the wrong surface was selected, picking the surface again will de-
select it. Surfaces can be selected at any time while the model is being rotated with arrow keys, dials, sliders, or
spaceball. Once the desired surfaces are selected any operation can be performed.

MrPatches is not intended for gridding an entire model from start to finish. Another MDC tool, ZONI3G is used to
perform the bulk of the gridding operations. ZONI3G creates triangular or quad meshes. MrPatches is used to make
the fine corrections in these grids. Often problems arise with the mesh that are difficult to spot due to the large quantity
of triangles. CARLOS has a feature to write a file that MrPatches uses to identify mesh problems. The problems
CARLOS detects are color coded to indicate free edges, degenerate triangles, duplicate surfaces, and multiple edge
abutment. MrPatches can display the CARLOS currents or images on the geometry model. Figure 8 shows a current
image for an F18C model.

Figure 8. F1I8C CARLOS Image at 500 MHz, 149636 Facets

Special options in MrPatches are helpful in editing CARLOS triangular facet files. After entering a user defined
tolerance, points within this tolerance can be snapped together. Points within a tolerance of a symmetry plane can be
snapped to that plane. Triangles that become degenerate are deleted and the user has the option to delete surfaces that
lie entirely in a symmetry plane. Triangles with edges greater than a specified length can be split while maintaining
one-for-one edge integrity. MrPatches can create three or four sided facets. Vertex points can be keyed in, however,
they can also be picked with the mouse. Picking options allow the mouse to select an arbitrary point, a point on an edge,
or a surface vertex. When a large gap exists, two rows of points can be chosen and zippered together to seam the gap.
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8. Conclusions

MrPatches is built on two standard MDA software packages: MDGL and GEOMPACK. The McDonnell Douglas
Graphics Library (MDGL) allows graphics applications to port seamlessly to all major workstations and employs the
native graphics language on each system. The MDA geometry package GEOMPACK, supports a variety of geometry
formats, including IGES and several facet formats. It forms the backbone of several MDA CEM codes such as
CADDSCAT. MrPatches geometry outputs can be provided in a variety of faceted or curved surface formats.
PostScript (PS), Extended PostScript (EPS), and TIFF format files are also available outputs.

MrPatches is an excellent tool for developing the geometry and providing pre/post processing for such high fidelity RCS
codes as CADDSCAT, CAVERN, and CARLOS. In addition, although not discussed here, MrPatches also supports IR
analysis at MDA [Ref. 8]. Because MrPatches supports the exact same set of geometry processing options as the RF
codes, there is a 100% compatibility of this tool with the CEM analysis engines. The use of existing code building
blocks (i.e. GEOMPACK and MDGL) has expedited the development of this computer code.

MrPatches is normally distributed to users as part of the CADDSCAT High Frequency RCS analysis/design package.
This package is available to qualified government requesters. Contact Jim Roedder at (314)232-7083.
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Visualisation issues for time domain integral equation modelling
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Abstract

The use of large, sophisticated computer aided design software is very widespread in ‘mechanical’
applications such as automotive and aerospace design. The application of such tools in electromagnetics,
and in particular high frequency electromagnetics, is much less ubiquitous.

In this paper we describe the use of the MSC/PATRAN CAD suite, developed primarily for solid
mechanics applications, as the geometry entry, meshing, post-processing and display tool for the Zeus
CEM analysis code. Difficulties which arise in such an implementation, including topics more peculiar to
scattering analysis such as near field calculation and display are discussed.

1. Introduction

Improvements in CEM techniques and the use of larger computers to solve these problems has resulted in
larger and more complex targets being analysed. This has brought the issues of geometry entry, mesh
generation and result visualisation to prominence. Big CEM problems now demand just the same
capabilities and sophistication in these areas as do say solid mechanics analyses.

The need in solid mechanics applications arose rather before that in CEM, and there now exists a
considerable body of commercially available CAD, meshing and visualisation software developed for
such purposes. The mode of use typically starts with the entry / generation of the geometry, in the form of
a 'solid model'. The volume or surface of this is then discretised, generally by its division into finite
elements, and this discretised geometry is then used in the analysis code. Results so generated are then fed
back into the CAD package for postprocessing and display. In many commercial packages the stages of
solid modelling, meshing, running of the analysis codes, post processing of results (and even data and tool
preparation for manufacture) are linked via a seamless graphical user interface.

In this paper we describe the development and operation of schemes to allow the use of such software as
the meshing and visualisation tool for a time domain integral equation CEM suite, denoted Zeus. This is an
implicit integral equation time domain code'. The basic formulation is based an the time domain MFIE for
a perfectly conducting scatterer surrounded by dielectric™.

2rH(r,t)=4nH,_ (r,)+ J'(n' xH(r',r"))x —152-+ (n' X i}—I-( z)) R 45
EA R at R

where H is the magnetic field, n’is the normal vector at I’, cis the speed of wave propagation and tis
the retarded time. The integration is carried out over the surface of the scatterer s’.

The spatial discretisation of the MFIE is achieved by dividing the surface into M disjoint, generally
curved elements. The time dependence is modelled using quadratic lagrangian basis functions (Tg) with
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nodal separation (timestep) At. Using the isoparametric approach we obtain a discrete equation for the
unknowns H , the H-field at the ith node and kth time step.

2nH} =4rH), + iﬂ ¥s.y T"(TS’ ), T"(Zgign))J[(n' x HY') x R}Jldédn

inc,i
m=1¢q @ B

In the above Jis the Jacobian. The functionsS, and Ty are the quadratic spatial and temporal shape
functions respectively, with spatial intrinsic co-ordinates (&,7) and intrinsic time 7.

The element types used correspond to surface element types available in commercial meshing packages.
Although a whole library of different element types could be employed (akin to finite elements) the code
currently supports eight or nine noded quadrilateral elements and six noded triangular elements. Any
combination of these element types can be used in meshing a solid model. Fuller details of all of this can be
found in the references cited*”.

The use of the meshing package allows for local refinement of the mesh in areas of high curvature or
complex geometry. If the time dependence is treated explicitly the timestep must be smaller than the
smallest spatial nodal separation. These methods are also prone to instabilities*®. Therefore, an implicit
treatment is employed where the timestep is based on the largest nodal separation. These packages
generally also allow use of tools to easily determine element distortion or curvature.

2, Mesh/Analysis Code Interface

This section details the methods used to create an interface between the CAD software, the meshing
package and the Zeus analysis code. The meshing package we mostly use is MSC/PATRAN although a
similar interface has been developed successfully for SDRC Ideas. Normally a solid model is created using
PATRAN's geometry modeller, although alternatively we can import solid models from other CAD
packages into PATRAN. As the analysis is 2 boundary element method, we only need to discretise the
surface of the solid model. This is achieved by meshing the surface of the solid model using the range of
meshing tools available in the package. These include for example, non-uniform seeding of the mesh in
areas of high curvature, mapped or free meshing and automatic refinement of the mesh in geometrically
complex areas, along with practical aids such as zoom and rotate.

The next stage is to convert the mesh information into a format that can be used as input to the Zeus code.
The mesh and control information required by the Zeus code is supplied in the form of an ASCII file
containing information ‘datasets’. An example of a dataset is the list of nodal co-ordinates. These datasets
have start and end delimiters and have a specified format for the data contained between the delimiters.
The mesh information required by the Zeus code is a dataset containing the nodal co-ordinates and a
dataset containing the element types and connectivities.

PATRAN and Ideas both have the facility to export an ASCII file containing the mesh information as
‘datasets’. In the case of PATRAN this file is called a ‘PATRAN neutral file’. The datasets in the neutral
file are not in the same format as the datasets in the input file to the Zeus code. Therefore, a simple
format converter code (named p_PREP) is used to create the Zeus code datasets from the PATRAN neutral
file. This procedure is summarised in figure 1.

The next step is to add to the file containing the Zeus code mesh datasets such control information datasets
as are required. These typically might consist of the incident wave data, the timestep size and the order
of quadrature to be used. The Zeus code can then be nm and will output a result file containing surface
current vatues at nodal locations and at all timesteps.

35



3. Post Processing and Display; Surface Fields

Once a result file for a particular mesh has been generated, the results can then be read into PATRAN or
Ideas. The results can then be displayed on the same representation of the body as was used to create the
mesh, and surface currents at nodal locations visualised.

PATRAN has a facility whereby the user can add additional menu options and preferences to tailor
PATRAN to the user's application. This involves writing programs in PCL (PATRAN Command Language)
which can be linked into the main PATRAN code when the user starts up PATRAN. This has provided a
method to integrate the reading of Zeus code results directly into PATRAN. A different scheme was
adopted for Ideas, which is less welcoming in this respect; the Zeus code result file was converted into an
“Ideas universal file’ using a format conversion program, and the resulting universal file imported into
Ideas.

The procedure for reading the results into PATRAN is as follows. The user opens the database containing
the mesh information supplied to the Zeus code. Using the additional PATRAN menu option created for
the Zeus code, the user can select the result file to read in. As the result file contains surface currents at all
nodes and at all timesteps it can be rather large. For example, a mesh of a NASA almond consisting of 2450
nodes (sufficient to model it as a ~6 wavelength long body), run for 200 timesteps, generates in a result file
totalling approximately 25 Mb. To circumvent this difficulty, the user can select a range of timesteps to
read in, which may be a small subset of the total.

Once the results have been read in, the wide variety of display tools available in the meshing package
can be used. The results can be displayed as a vector plot or as a scalar fringe plot, where the scalar values
are based on the magnitude of the surface field or the magnitude of a vector component. The results can also
be animated and areas of interest magnified or shown in isolation. (figure 5)

4. Post Processing and Display; Near Fields

Once the surface field is known the far field and near field values can be calculated (this procedure is
summarised in figure 2). The near field values represent the behaviour of the scattered field close to the
target. A near field value is calculated at all timesteps by integrating from the point in space where we
wish to know the near field value over the surface fields at the appropriate retarded times. Calculating
the near field values for a set of field points allows us to build up an image of how the field is scattered
close to the target.

A separate code (m_NEARFIELD) is used to calculate the near field values. Input to this code is the same
as the input to the original Zeus code with an additional dataset containing the co-ordinates of the near
field points and a dataset containing the surface field results.

Typically we are interested in the near field values on a ‘cutting plane’ through the target. We can easily
create a set of points on such a plane in PATRAN. First, we create a cutting plane surface on the solid model
geometry. This can then be meshed to create a set of nodal locations an the cutting plane. Using the same
procedure used in converting the original mesh data to Zeus code datasets, the near field locations can be
converted to a dataset for input to m_NEARFIELD.

Running m_NEARFIELD results in a result file containing the field values at all the points on the cutting
plane at all timesteps. These results can then be read into PATRAN using exactly the same method as
described section 2. The near field results can then be displayed as vectors or scalars in a same way as the
original surface results. (see figure 6)

5. Integration Issues

The above sections describe how the Zeus code is used with a commercial CAD and meshing package such
as PATRAN.

We have developed a seamless graphical interface, written in PCL, to allow all of the above
manipulations to be performed from within PATRAN. However, as described, the Zeus code is not wholly
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embedded into PATRAN. Rather, as indicated in the vaious figures, the user must create the solid model
and mesh in PATRAN, then export the mesh data before running the Zeus code externally. The result file
is then read into PATRAN for display. This method is convenient for developers as the user has a direct
interface with the code they are developing. Also, due to the size of the problems solved the Zeus code is
often run on external machines where PATRAN is not available, such as the 512 processor T3D at
Edinburgh. A degree of separation of the visualisation and analysis aspects is thus in practice convenient.

6. Conclusions

We have here described the use of a CAD suite, developed primarily for solid mechanics applications, as
the geometry entry, meshing and post-processing and display tool for a CEM analysis code. The
combination works well, allowing all the features and sophistication of the CAD suite, developed for and
at the expense of the much larger solid mechanics applications market, to be made available to the CEM
analyst.
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Figure 3: Solid Model of NASA Almond

Figure 4: 2450 Node mesh of NASA Almond
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Figure 5: 2450 NASA Almond at 7GHz. Harmonic wave, propagating in -x, VV polarisation. Main picture:
magnitude of H field. Inset: vector plot of H field at selected nodal locations.
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shown.
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Abstract.

Antenna radiation patterns can be represented as three-dimensional surfaces in space, gain being specified with
respect to two angles theta and phi, or in azimuth and elevation. Graphical methods have been the traditional
means of conveying information on the pattern shapes. Using the rendering and animation package 3D Studio®,
three dimensional images can be produced that dramatically convey pattern characteristics that would otherwise
require a multitude of graphs to convey. This paper describes in some detail a method of production of such
images and their application to a computer based aid training being developed for signals personnel of the
Australian Army.

Background.

Both the Austrafian Army and Navy make significant use of high frequency (HF) communications for a variety of
scenarios. While the prevailing ionospheric conditions play a vital part in the success or otherwise of HF
communications to locations over the horizon, without adequate knowledge of the radiation pattemns of antennas
at both ends of the transmission path, all but trivial communications may not be established. Education of the
communicator is vital - particularly when he is dropped into an unfamiliar location and expected to have his HF
link up and running within ten minutes. Some have developed an ‘antenna intuition’ from years of experience.
The less experienced have to rely on whatever training they have been given. Any improvement in the training
can be expected to provide a corresponding improvement in communications availability. For this reason the
Australian Army Technology and Engineering Agency (ATEA) is developing a series of computer based
interactive training aids to convey the nature of radiation patterns in a fast but memorable way. Up to 50000
images of antenna radiation patterns are stored on a compact disk (CD), which can be viewed with a purpose-
written viewer.

The images are created with ATEA’s AutoNEC capability (refererence 1), which was originally conceived as a
useful interface to the Lawrence Livermore Laboratory’s Numerical Electromagnetics Code (NEC). AutoCADe
was customised to provide a model creation environment for NEC, as well as a means of creating three
dimensional drawings of antenna radiation pattern data from the results of the modelling, and makes extensive
use of AutoLISP® procedures. This capability has been extended with interfaces to the rendering and animation
program 3D Studio. Still and animated 3D images of radiation patterns can be readily produced which provide a
far greater perception of radiation pattem characteristics that the muttitude of graphs that would otherwise be
needed.

Range of antennas and configurations.

The training aids are primarily designed to support the RAVEN HF single channel radio equipment in service with
the Australian Army. Apart from a range of vehicle installations and manpack configurations, each with its
specific antenna types, the RAVEN antenna suite consists of a range of wire antenna kits which can be
configured into a wide variety of tuned and untuned antennas. These can be erected at varying heights above
ground, with and without reflectors and counterpoises, and will be used over a variety of soil types ranging from
very poor sands to rich moist and highly mineralised soils. The number of generic antenna types in the RAVEN
suite is fourteen, each of which will be modelled over three soil types loosely described as poor, average and
good. The range of heights at which an antenna can be erected will depend on its type, and as a minimum,
three will be considered for each antenna.

® 3D Studio, AutoCAD and AutoLISP are registered trademarks of Autodesk Inc.

41




Description of the Training Aid.

The training aid consists of CD for each antenna type. The CD contains sets of image files for the antenna,
together with a viewer and auxiliary files. An viewer aliows the user to view the images in a meaningful order
under mouse and keyboard control, allowing interactive viewing of the effects on the pattern of frequency, ground
type, height above ground and other factors. The user can adjust his viewpoint in azimuth and elevation, thus
enhancing his perception of the three-dimensional characteristics of the pattern. The radiation pattern is
displayed over an image of the ground appropriate to the soil type. This not only reminds the user of the soil
type, but provides natural reference points for antenna and pattern orientation. Other sections of the display
show textual data such as the antenna name, configuration, height, frequency, and soil type. A line drawing of
the antenna is also shown, viewed from the same viewpoint as the antenna pattern. Viewpoint azimuth and

elevation are also shown.

Generation of antenna data.

The RAVEN broad band antennas have fixed geometry across the HF band. Models of the antennas are created
as AutoCAD line drawings and have diameter, excitation, loading, and other data appended as extended entity
data. A procedure written in AutoLISP, runs within AutoCAD to create a NEC-like geometry file, together with an
auxiliary file containing excitation, loading, network and other data. A further procedure written in TurboPascal
performs some error checking on the model, assigns wire diameters where not specified, and assigns wire
segmentation as a function of frequency. It then merges the auxiliary data file to create a series of NEC input
files, one per frequency, complete with control ‘cards’. A batch file is created to run the job. The use of separate
files for each frequency allows different segmentation for different frequencies, thus maintaining - optimum
segment lengths. It also reduces the problems associated with recovery after a power failure while running NEC,
as the data from frequencies already processed is not fost.

The tuned antennas have wire element lengths which are changed by the user to suit the particular frequency.
This information is supplied in a table supplied with the antenna kit. The antenna is drawn in AutoCAD in the
usual way and a single frequency NEC input file generated. Using this as a prototype, together with data from the
antenna geometry table, a purpose-written program is created which produces a series of NEC input files over
the required frequency range, and a batch file to run the job.

After the NEC runs are compieted successfully, the radiation pattern data across the band is extracted and
written to a single file. This file contains one table of antenna gains for each frequency, the antenna data being
for one antenna configuration, soit type and height. The file also contains an audit trail showing the processing to
that time.

Experience has shown that five degree increments in azimuth and elevation (or theta and phi) provides sufficient
angular resolution for most antennas, and this resolution has been used almost exclusively for this work. As the
antennas concemed are ground-based, antenna pattern data is only obtained for the upper hemisphere. This
gives a total antenna gain dataset of 1368 points per frequency.

Creation of antenna pattern surfaces.

Using another AutoLiSP procedure, the radiation pattern file is read into AutoCAD to create a series of three-
dimensional surfaces with their origins at (0,0,0). Each surface consists of 1368 3D Faces and is on its own
layer, corresponding to the data for one particular frequency. The sequence of layer names ‘RP02’ to ‘RP30’ has
been used to cover the HF band, corresponding for the frequencies from 2 to 30 MHz. The vertex creation order
of these faces shouid be such that they have an outwards-facing normal - i.e. the vertices are created in an anti-
clockwise order when viewed from outside the pattern. This ensures proper rendering in 3D Studio, without
having to force 2-sided rendering, which significantly increases processing time. The face creation order is
unimportant, except that it must be the same for each surface.

The same procedure then produces a .DXF (drawing exchange format) file which is used to transfer the radiation
pattern surfaces to 3D Studio. it has been found that a number of AutoCAD commands involving entity selection
have the potential to change the order of entities in the AutoCAD database and must be avoided. While having
no visual effect on the image either in AutoCAD or 3D Studio, morphing in 3D Studio breaks down dramatically
due to the different connectivity of the faces in the morphed objects. Thus although the .DXF file will be larger, it
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should be written without using entity selection, and preferably immediately after creation of the pattern surfaces.
Although Version 13 of AutoCAD can directly produce 3D Studio (.3DS) files, a procedure is being written that
will convert the NEC output files directly into a .DXF file, reducing the handling and the potential for errors.

Use of 3D Studio

Successful creation of images in 3D Studio is not a trivial task, requiring a significant amount of user interaction
and understanding of the various processes. A knowledge of iighting and camera techniques is essential,
together with the ability to think and draft in three dimensions. A sense of the theatrical is probably another
prerequisite if the dramatic potentials of this package are to be completely realised.

3D Studio consists of a number of editors which are briefly described in reference 2. Those mentioned in this
paper are the 2D Editor, the Lofter, the 3D Editor, the Keyframer, the Materials Editor and the Keyframer. A full
description of each is also availabie in the 3D Studio handbooks.

To create the images, the .DXF (or .3DS) file is loaded into 3D Studio. This will create a series of objects in the
3D editor corresponding to the gain surfaces in AutoCAD. If the AutoCAD layer names have been chosen
ending with a 2 digit numeric string, they will be transferred directly to 3D Studio. Their origins will be at (0,0,0).

Once loading is complete, all but one surface - RP02 - is hidden by the user. A suitable material is then attached
to this object. Of the 180 or more standard materials that come with 3D Studio, blue marble has proved the
most useful for depicting radiation patterns. It has dark striations, and although not having any significance in
the radiation pattern context, these enhance the perception of shape. As the material is textured, mapping must
also be applied to the object. Spherical mapping is used, with its axis passing vertically through (0,0,0).

If the patterns are to be displayed above a representation of the ground, a ground object should be added at this
time. Section of a sphere is used as its curvature enhances the perception of distance in the final images. A
sphere of appropriate size is created at (0,0,0) in the 3D Editor and excess faces deleted. It is then repositioned
with its upper surface just below the radiation pattern object RP02. Hills and valleys can be created by judicious
manipulation of the vertices of this object. An aerial photograph of the required ground is then attached to this
surface. Before this can be done a material referencing the image file must first be created in the Materials
Editor.

If an illustration of the antenna is to be included, it can be created using the tools available in the 3D editor, or
imported from AutoCAD (using another DXF or 3DS file) if a suitable drawing available. Note that AutoCAD line
drawings will not import as renderable objects in 3D Studio, and that a 3D Face drawing will have to be created.
This can be created in AutoCAD by overlaying the line drawing with 3D Faces with the Object Snap set to END.
As with the radiation patterns, vertex creation order should be consistent with outwards-pointing normals.
Showing the antenna in the same image as its radiation pattern is probably best avoided as it occasionally
invokes the question ‘ Is that as far as the signa! goes?’. :

Lights must be created in the scene to properly iluminate the radiation pattern object. Spotlights have been
found to be of most use, and up to three have been used at different angles to properly illuminate the object.
Ambient lighting and omnidirectional lights may also be needed to give proper illumination to the ground surface
object. Care should be taken in positioning the lights so that they are sufficiently far away from the largest of the
radiation pattern objects as lights unexpected buried within an object can cause some puzzling effects.

The next entity to create is a camera. Like the lights, this must be positioned sufficiently far away from any
objects. The camera has two parameters under the heading of RANGES. These control the distance/strength
relationship of certain atmospheric effects such as fog. The NEAR distance should be set approximately four
times the distance from the furthermost point of any radiation pattern object. The FAR setting should be set
about twice that distance.

To provide a suitable background to the scene an image such as 3D Studio’s SKY.JPG is used. To enhance
the impression of distance, a fog atmospher is also applied. The fog colour should be approximately the same
colour as the proposed background, with NEAR and FAR settings of 0 and 40% respectively. With the
previously set camera ranges, this should add a suitable haze to distant parts of the scene.
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Text can be created using the 2D Editor, and imported into the scene either directly or via the Lofter if some
character depth is desired. Alternatively it can be created in an image format in 3D Studio or elsewhere, and an
appropriate material created. This is then attached to an appropriate object in the scene. This method saves
the repeated processing of the large number of text vertices for every image frame and rendering is significantly
faster. Animated text can be added in a similar way using multiple objects. This has been used successfully in
other visualisation work, but was not used in the training aid images as other windows outside the antenna
pattern image area provide textual information.

Both the camera and lights need to move to set up the various viewpoints and maintain proper lighting. Thisis a
rotary motion and is determined by specifying angles with respect to object pivot points. As neither cameras nor
lights can be assigned object pivot points directly, two dummy objects (POINTERO1 and POINTERO2) are
created, the lights and camera deriving their rotational motion by linkage to these objects. As the dummy objects
will eventually be hidden, their shape is unimportant except as a visual guide to verifying their correct movement.
Long cylinders or cones have been found to be useful shapes. If they are centered at (0,0,0), this will be their
detault object pivot point.

The next step is to enter the Keyframer to create an animation. This editor allows the hierarchy of objects to be
specified, as well as the setting of the various ‘keys' which contro! the object position, rotation, scale, and
morphing, lighting and cameras at the appropriate frames of the animation. At this point the scene contains
some 32 objects, all but four of which are hidden. Those still visible are the first radiation pattern RP02, the
ground and the two pointers. Apart from the ground, animation keys must be assigned to all of these. For the
training aid, a frequency step of 1/4 MHz was used to give a smooth image transition with frequency. As the
patterns objects are created at 1 MHz increments, intermediate pattern shapes need to be created. This is done
by morphing RP02 to a successive patterns (RP03 to RP30) every four frames, 3D Studio creating the
intermediate geometries by interpotation. This gives 114 frames per frequency sweep.

Morphing is performed with reference to a fixed reference point for each shape. This will normally be the
centroid, although with a some effort it can be manually forced to other locations. However, without specifically
setting the reference point for every radiation pattern object, morphing will generally cause the pattern origin
{0,0,0) to move, the pattem centroid remaining fixed. This problem was originally corrected manually at each
morph key, by making a position adjustment (usually in each of the three dimensions) to maintain the origin of
the morphed pattern at (0,0,0). This required a significant effort to achieve a satisfactory result. Another method
was to generate a path of position keys calculated from the image shapes within AutoCAD. The current method
makes use of Keyscript, a language embedded in 3D Studio and will be mentioned later. The 114 frame key
sequence is repeated once for each viewing angle, thus repeating the morphing of RP02 through the patterns
from 2 to 30 MHz.

Control of the camera is the next concem. This should be initially set in the 3D Editor to view the pattern from 0
degrees in both azimuth and elevation. Both the camera and its target location and field of view need to be set
to accommodate the largest radiation pattern from all the proposed viewing angles.

As POINTERO1 and POINTERO2 have been created centered on (0,0,0), they can readily be rotated about this
point in each axis. At the end of every 114 frames, POINTERO1 is stepped 22.5 degrees around a vertical axis.
Each step requires 2 keys, the first a step of 0 degrees at the end of the sequence (113th frame) to hold its
position, and the second at the next frame of 22.5 degrees to cause an immediate step. POINTERO2 is linked to
POINTERO1 so that the two then move together. Any spotiights lighting the radiation pattern should also have
their targets and sources linked to POINTERO1 so that they move with it, thus maintaining proper lighting on the
radiation pattern.

POINTERO2 is stepped by 30 degrees about a horizontal axis at the end of every sequence of POINTERO1
(1824 frames), again requiring 2 keys to generate an immediate step. POINTERO2 thus steps in azimuth by
virtue of its finkage to POINTERO1, and in elevation in response to its own rotation keys.




The preceeding key sequences have created three nested loops. The inner loop controlling the morphing of the
radiation pattern object RP02 from 2 to 30 MHz, the next stepping POINTERO1 in azimuth in 22.5 degrees
increments, and the outer loop stepping POINTERO2 in elevation in 30 degree increments.

The camera target and its body are then linked to POINTERO2, thus following its motion and allowing the
radiation pattern frequency sequence to be viewed with 22.5 degree steps in azimuth and 30 degree steps in
elevation. The complete sequence spans 5537 frames. It requires the creation of over 11000 keys and presents
a formidable task if done manually. Fortunately 3D Studio now has an embedded language called Keyscript - a
BASIC-like language with Pascal record constructs. It has the ability to extract and manipulate the parameters of
3D Studio objects. The extents of the morph objects can be read and used to adjust the position of RP02 to
maintain its origin at (0,0,0) during morphing. Only 70 lines of code is needed to generate the required keys,
reducing the time needed to set up keys from over a week to less than a minute. The code can be reused
providing the structure of object names, jocations, hierarchies and linkages is maintained.

Berodzg ViU
. Reuser wesise

Fig 1: 3D Studio keyframer screen showing lights, Fig 2: showing some of the 11000 keys set up in the
camera, the radiation pattern and the ground objects. keyframer.

The images are created by invoking the Renderer. “The Renderer will produce images in a number of different
screen resolutions. A resolution of 640 X 480 pixels is used in the training aids as it gives the best compromise
between image quality and viewing speed. Images can also be created in a number of formats including a
number of the standard single-image formats such as .GIF, TGA, .TIF, .JPG and .BMP as well as the animation
format (.FLC). The Joint Photographic Experts Group (JPEG) .JPG format, provides excellent image quality for
non-textual images, and with proper choice of compression, generates a small file without materially degrading
image quality. File sizes of 10 to 30 kbyte are typical, compared with 100 to 300 kbyte for other common
formats. For these reasons .JPG was chosen for use in the training aid. When producing single images, the
Renderer generates a file name consisting of the first four characters supplied by the user, the remaining four
being the frame number.

Rendering time is a function of the complexity of the scene geometry, lighting, and materiats. For the images
created for the training aid typical times were between 20 and 50 seconds per frame with a 150 MHz Pentium
processor. Each sequence of 5537 frames takes just on three days to complete. Images for one antenna, over
three grounds and at three different heights takes about 1 month of CPU time.

Viewer

A special purpose viewer is being developed for this application. In addition to displaying the radiation pattem
images themselves, auxiliary textual parameters associated with the antenna pattern are displayed in a small
window. These include the antenna name and description, together with details of its current configuration,
frequency, height above ground, ground type, and the viewpoint azimuth and elevation. Because of the amount
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of information, this is split into three scrollable pages. To provide correct perception of the antenna orientation,
a second window displays a line drawing of the antenna viewed from the same viewpoint as the antenna pattern.
In addition a linear display indicates frequency, and other windows show viewpoint elevation and azimuth scales.
A further window displays current program status and other parameters associated with debugging. It is planned
to add a conventional plot of a horizontal cut of the radiation pattern at a nominated takeoff angle. This would be
overiaid on the azimuth scale.
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The frequency, viewpoint elevation and azimuth can be changed by the user under keyboard control. These
functions will eventually be transferred to mouse control. Selection of antenna type, ground type and height
above ground can also be user selected. These parameters are processed by the program to uniquely define a
directory and file name, the file then being displayed in the radiation pattern image window and the other displays
updated.

Radiation pattern display. .

The radiation pattern images are created in 640 X 480 pixel format, with 256 colours, requiring a SVGA display.
This mode was chosen as it provides a suitable large display space with an adequate palette range. Its wide
support across the diverse range of personal computer platforms also made it a practical choice with regard to
the issues of hardware and software support.

As previously noted, the file format is .JPG. Since .JPG is a compressed image format, a decompression
procedure had to be written. A number of the decompression parameters are not fixed and require a careful
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choice for optimum performance, particularly where the parameters interact. The choices inciude the final image
dimensions, single or double pass quantisation, a range of discrete inverse cosine transforms, the method or
absence of image dithering, and the number of colours used in the final image. For this application, single pass
quantisation is used for its timely processing of reasonable quality images. The standard (type 3) transform is
fast and provides adequate images. Floyd-Steinberg dithering was found to provide the most realistic image
quality with minimal overheads. As the generation of a new screen image takes about 0.5 second with a 150
MHz Pentium, the operation appears relatively interactive.

implementation issues.

Because of the target computing environment, the training aid had to be capable of operating with a Microsoft
DOS 6.2 operating system. This presented some interesting problems as there is little support for the required
screen resolution. Code had to be developed in full, rather than relying on such luxuries as dynamically finked
libraries to supply many of the functions. The image processing routines were adapted from those of the
independant JPEG Group (IJG). While these routines were largely successful and reliable and are easily
incorporated into the mainfine program, over-reliance on these codes may have resulted in palette control
problems.

Palette aspects.

in order to achieve the greatest flexibility, the number of colours available for image display should be as high as
possible. For SVGA, the colours available for display are stored in a palette of 256 24 bit locations. During
loading of the .JPG image, its palette information is transferred to the display palette. This was done by code
supplied by the lJG. Depending on the number of colours used in the image, this code may not always load the
full 256 colours. However, if 256 colours are ioaded, those palette locations already designated for display of the
auxiliary data will be overwritten. The radiation pattern image will display correctly but other sections of the
display will appear in unpredictable colours. To overcome this a technique had to be devised to force those
colours required for the auxiliary display to be present in all the JPG images, and to have the same palette
location. This involves the capture of palette data from a sufficient number of the images of each series, and the
creation of a new palette which includes these colours and the colours required for the auxifiary display. The
colour order is then adjusted to force the colours for the auxiliary display into the required locations. This palefte
is then used in 3D Studio to generate the complete suite of .JPG images.

Mouse problems.

Considerable difficulty has been experienced in achieving the desired program control from the mouse. Mouse
implementations which work well with a 320 X 200 screen resolution had to be rewritten to accommodate the
640 X 480 resolution. Although mouse movement can be sensed and position information extracted, the cursor
is not visible in the 640 X 480 mode. In addition the range of vertical cursor movement available is limited to the
top half of the screen. Coding at a low level will no doubt be needed and other priorities have prevented fully
addressing this problem at this time.

Memory issues.

Due to the limitations of the DOS environment, memory usage is a sensitive issue. Problems often do not
become evident immediately but occur when other unrelated programs are run, indicating over-writing of areas of
the operating system. Careful construction and checking of the code is required to prevent sporadic corruption of
critical memory areas.

Conclusions.

The training aid being developed has shown considerable potential in the conveying of the complexities of
antenna radiation patterns. Reusable procedures have been devised that greatly simplify the process of image
creation. Afthough skill in both antenna modelling and the use of 3D Studio are re-requisites, the process itself is
largely routine providing that the established procedures, structures and hierarchies are observed. Some work is
still to be done in developing a reliable and intuitive viewer for the images.
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Abstract: The paper describes the fieldinspec—
tor, a 3D system for graphical EM-field represen-
tations including animations. Conceptually the user
may interactively construct both flat end curved sur-
faces in 8D. Then, the EM-field is drawn on these al-
most arbitrarily located surfaces, using arrows, shad-
ing, coniour lines, field lines etc.

The fieldinspector needs any calculation pro-
gram being able to give the E- and H-vectors in any
particular poini. The inlerface to this external pro-
gram is described in this paper. The fieldinspec—
tor calculates all other vectors and scalar quantities
and ‘draws’them into an arbitrary number of viewers
to show the same field from different view points and
in different magnifications. In each viewer a sep-
araie animated representation may be created. For
teaching purposes the fieldinspector is currenily
installed in the students computer nelwork at the
Swiss Federal Institute of Technology.

1. Introduction

The graphic representation of EM fields is very useful
for getting a deep understanding of the field behav-
ior. In this paper we describe the fieldinspector,
a 3D system for graphical field representations in-
cluding animations. Note that the fieldinspector
is not a field calculation program but only a tool to
draw nice pictures of electromagnetic fields which are
calculated by a second program called fieldcalcu-
lator. For the examples in this paper the MMP-
package {1] was the fieldcalculator.

Figure 1 gives the principle interaction scheme
between the fieldinspector and the fieldcalcu-
lator.

In the first (and main) part of this paper we de-
scribe the fieldinspector from the users point of
view. Section 2 treats the principles of construct-
ing geometrical objects such as lines and surfaces on
which the fields are to be represented. In section
3 we discuss all the possibilities for ‘drawing’ fields,
while section 4 deals with animations. The features
for numerical field output as well as the integration
of specific field quantities is treated in section 5. Fi-
nally, in section 6 we discribe the fieldinspector
form the ’s point of view and discuss the interface
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between the two programs.

2. The Construction
of Geometrical Objects

The fields to be drawn are real 3D vector fields. Since
it is usually too complicated to look at real 3D fields
at one time the fieldinspector shows fields only on
surfaces being constructed by the user. For this pur-
pose the fieldinspectorincludes a 3D construction
tool which we briefly describe in this section.

The fieldinspector allows you to look at all
constructed object by viewers (i.e., a window on the
screen). Each viewer gives a picture of the same
situation but from a different point of view. The
mouse cursor may be used in any viewer to set points.
In the second construction step several points define
lines. Both straight lines and circular arcs are pos-
sible. The third construction step produces surfaces
from lines and/or points. E.g., three points define a
parallelogramm or, as a second example, a line to-
gether with a revolution axis and a revolution angle
define a surface of revolution.

Any point, line or surface may be both moved
along an arbitrary vector at any time and/or ro-
tated around an arbitrary axis and/or stretched or
shrinked with different factors in different directions.

Point 2,3,z >

electric field E
magnetic field H|
mat.-par g, £, 0

field~ field-

.inspector

calculator

Figure 1: Two programs are working together. The
fieldinspector asks for the field values — electric
field E and magnetic field # — and the material
properties (permittivity ¢, permeability g and con-
ductivity o) at a given location z,y, z. The field-
calculator delivers these values and then the field-
inspector draws nice pictures.



Since we want to draw fields on these geometrical
objects, there is a grid on the surfaces which may
be adjusted at any time in order to draw, e.g., more
arrows on the same surface.

Note that the (fixed) geometry of the situation is
constructed and then drawn in the same way as the
surfaces for field representations. However, for a typ-
ical fieldinspector-session the fixed model of the
particular problem is usually preloaded and drawn
in a non transparent way while the surfaces for field
representations are drawn as wire grids in order to
look through them.

3. The Representation of Fields

Points, lines or surfaces (being constructed interac-
tively as described in the previous section) may be
selected by simple mouse click. A further click on
“Compute field” makes the fieldinspector asking
the fieldcalculator for the field values on the se-
lected locations. Let us use the generic term field
surface for the geometrical object including the cal-
culated field values, even when the field is calculated
only on a line. Thus, each click on “Compute field”
creates a field surface.

Since the fieldinspector is basically written for
the representation of time harmonic fields (with an-
gular frequency w and e™*** time dependency) the
knowledge of the complex values of both the electric
field E, the magnetic field H and the possibly com-
plex material parameters € {permittivity), p (perme-
ability) and o (conductivity) are sufficient for calcu-
lating the still complex fields

=¢E displacement current density

]

b
B =upH magnetic induction (1)
]- ¢E  conduction current density

and the complex Poynting vectors

§~=E-:><§,
_ T (2)
S=FExH

Instantaneous values at the time t for these field
quantities are easily obtained by multiplying the
complex vectors by e~*' and then taking the real
part!. The fieldinspector always draws instanta-
neous values of (in general) time dependent values®.
For each field surface the fieldinspector may
execute one or more plot jobs. A plot job is specified
by
o the field to be drawn (E, H, D, B, j, § or ()

I The Poynting vector is §(t) = %3’6 (§+ .§“~e‘2‘“”).
2 The time mean value of the Poynting vector, (3) =
is also possible.
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Fiqure 2. All pictures show the instantaneous value
of the electric field. The field is evaluated on the

4 x 11 rectangle (44 field points) which is at a dis-
tance d parallel to the y-z-plare. The underlying
problem is a sending yagi antenna with the active
element on the z-axis, four directors along y > 0 and
the reflector at y < 0. The picture at the top gives
the geometry of the situation only, the second pic-
tures draws simple needles while the two pictures at
the bottom give two differently shaped arrows. Note
the grid lines which are partly in front, partly behind
the arrows/triangles. This is done for giving a more
spacial impression of the field.

Figure 3 on the next page gives more drawings of the
same field.




o the time phase angle {obsolete for (S) and for
animated representations [see below!])
o ascaling factor {depends on the field to be drawn)
o the kind of field representation (vectorial: nee-
dles, triangles, thick arrows, octagons; scalar:
shading, contour lines {flat or lifted with optional
logarithmic scaling}). See figs 2 and 3.
¢ Grid option: Turns the drawing of the geometri-
cal object on/off.
Note that the combination of different plot jobs for
the same field surface opens a wide variety of more
sophisticated representations. One can draw both E-
and H-fields at the same time, or the combination of
triangles and octagons for the same field leads to
the “thumb nail arrows” (middle of fig. 3) giving an
improved impression of the fields spatial direction.

Fiqure 8 The field of the yagi antenna shown in

fig. 2 may be drawn in different ways. While the oc-
tagons on top are less impressive the “thumb nail
arrows” — obtained as a simple ‘superposition’ of the
triangles in fig. 2 and the octagons at the top of this
figure — in the middle are much more instructive. At
the bottom contour lines of the field are shown.

More sophisticated representations as well as ra-
diation patterns are given in figs 4-6.
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Figure 4: The field around the yagi antenna shown in
figs 2 and 3 may also be shown on curved surfaces.
The picture shows the instantaneous value of the
Poynting vector using both contour lines and “thumb
nails” which makes a total of three plot jobs for the
same field (two for the thumb nails, one for the con-
tour lines).

Figure 5. This figure shows the radiation pattern of
the yagi antenna shown in previous figures. The an-
tenna is Jocated in the center of the circles. The nee-
dles on the circles represent the time mean value of

the Poynting vector.

The fieldinspector offers also field lines to
show the spacial behavior of the Poynting vectors
time mean value. (Time dependent field lines are
hardly ever useful nor are they supported by the
fieldinspector.) Starting on the n x m points of
a surface, field lines of (§) may be drawn. In many
cases true 3D field lines are more disturbing than
clearing your mind. The fieldinspector partly
overcomes this problem by drawing a grid which may
be moved along the field lines, i.e., each grid points
is shifted along its field line. The result is a mov-
ing grid regularly starting on the field surface and
later being distorted in space. See figs 7 and 8 for an
example.




Fiqure 6. The radiation pattern of the yagi antenna
(located in the center of the sphere) is shown using a
contour plot of the Poynting vector’s time mean value
on a half sphere with a radius of 15 wavelengths.

4. Animations

Picture field plots are nice to look at but it is even
nicer to see movies. First of all, time dependencies
are quite naturally shown in turn, one situation after
the other. In such a way the time behavior of fields is
easily understood. However, a second aspect of ani-
mated representation is evenly important: Since the
true 3D-fields must be mapped onto a two dimen-
sional screen, some information is lost in any case.
By moving (most preferable: rotating) a 3D static
object the human observer becomes a much better
idea of the spaciousness.

The fieldinspector offers both options: the
time film and the rotation film. A click to “Create
Film” builds up a normal time film which automat-
ically advances the time phase of all field plots by
20° resulting in 18 pictures per full cicle. A second
“Create Film” option only rotates the viewer around
an axis by a certain angle. Both the axis and the
angle may be specified by the user. Finally the mov-
ing field line grid mentioned at the end of section 3
and shown in figs 7 and 8 may also be shown in an
animated way.

Creating a film actually produces a series of
bitmaps which may be run later on, either by step-
ping forward or backward one picture a click or by
running it at a rate of about 10 pictures per sec-
ond. For time harmonic fields the film is repeated
always starting from the first picture while for rota-
tion films (with total rotation angle less than 360°)
and for moving field line grids the film may be re-
peatedly run forward and backward.
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Figure 7 The picture shows a series of dotted grids
which follow the field lines of the Poynting vectors
time mean value. See fig. 8 on the next page for the
field lines itself.

Note that the field lines start on the curved surface
which was already used in fig. 4. The distortion

of the grid towards the right hand side indicates a
stronger radiation in that direction: The finer the
distorted grid the stronger is the radiation.




Figure 8 The same as the bottom picture of fig. 7
but with added field lines of the Poynting vectors
time mean value. Most field lines are pointing to the
right which is the direction of main ration.

5. Integrals and Numerical Output

Though graphic field representations are very useful
to obtain a qualitative impression of the EM-field
behavior one may be interested in numerical values
as well. The fieldinspector offers two features for
this purpose:
o numerical field values at any location, both com-
plex amplitudes or instantaneous values of

E H D, B j Sor (§)
o integrals of fields along user definable lines or sur-
faces:
° fE - dl (voltage)
o [ H -dl (current, if closed line)
fﬁ -dA (charge)
f B -dA (magnetic flux)
f_; dA (conduction current)
—iw [ D-dA (displacement current)
f(.;— z'.'uf)) -dA {total current)
[§-da, [ §~ - dA (complex powers)
Thereby, dl is the vectorial line element and dA is

the vectorial surface element pointing normal to the
surface.

o o © 0 O ©

6. The Interface

fieldinspector — fieldcalculator

As already mentioned in the introduction the field-
inspector works together with the fieldcalcula~
tor. The latter is a second program performing the
evaluation of the EM field. The name of the field-
calculator program may be specified in a command
line option of the fieldinspector. Note that the
fieldcalcenlator is only started on request.

It is supposed that all the information needed for
one particular problem is stored in files located in
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the same directory. This information is split into
two groups: the file for the fieldinspector (with
default name MODEL) and the file(s) for the £ield-
calculator. To make things more clear we describe
the actual procedure to be performed for calculating
the field in a single point of a particular problem.
After having started the fieldinspector, you have
to

@ find the working directory in the fieldinspec-
tor’s filer and double click MODEL. This file con-
tains the geometry of the problem in fieldin-
spector format. If MODEL is empty the foi-
lowing procedure still works but you see at the
beginning only free space (i.c., nothing than the
coordinate axes) in the fieldinspector’s view-
ers. The fieldinspector automatically opens
unix-pipes and starts the fieldcalculator as a
child process using the command which has been
specified in the respective command line option
of the fieldinspector. The fieldcalculator
usually assumes the presence of some input files
containing the full information of the problem in
its own format.

Now the fieldcalculator is in a “waiting for
input” status. As soon as the fieldinspector
needs a field value the following two line string is
sent to the fieldcalculator:

102 0
1zyz

The first line contains the key sequence for sin-
gle points and the second line contains an inte-
ger key? plus the coordinates of the field point.
The fieldcalculator’s answer on this request
are the six lines

202 0

domain number

Err Ezi Eyr Eyi Exx Eui
Hyr Hei Hyr Hyi H:r H:i
waiting for input

waiting for input

The first line is the answer key sequence for single
points, the second line contains the integer num-
ber of the domain¥, the third line is for E (carte-
sian components, real and imaginary parts) and
the forth line is for H.

For a full regular m x n-array of field points, the

3 1 stands for total field. —1 for the scattered field only.

4 A list of domains and their material parameters is stored
in MODEL. If MODEL is empty, the fieldinspector uses
vacuum para.meters.




fieldinspector sends only five lines:

104 0

Te Yo 2
L ICIRE
Tz Y2 22

mno i

where the vectors 7. = (z¢, ¥e. 2c), B1 = (21,41, 21)
and ¥y = (22, y2. 22) specify a parallelogram (center
7 and sides 7; and 7)., m and n are the number of
points along 71 and ¥ respectively. The fieldcal-
culator’s answer for this request is

204 O

domain number

Ezr Ezi Eyr Eyi Ezy Eu
H:y Hyi Hyr Hy; Hyy Hyi

waiting for inmput

waiting for input

with lines 2-4 repeated m-n times. The order of
the points is ‘tow by row’ where one row contains m
fieldpoints on a line parallel to 7).

7. Closing Remarks

The fieldinspector is essentially the graphic part
of Peter Regli’s mmptool [2]. Several features have
been removed, others are new. The goal was to cre-
ate a tool being independent from a particular field
calculation program. The fieldinspector is cur-
rently installed in the students computer network at
the Swiss federal institute of technology to give stu-
dents the opportunity to look at the fields in their
way rather than in the teachers way.

The program runs on sun workstations (Solaris
2.5). It is available from the author.
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Abstract.

Antenna radiation patterns can be represented as three-dimensional surfaces in space, with gain being specified
with respect to azimuth and elevation. The data required to specify a wide band antenna pattern over its upper
hemisphere, at anguiar and frequency resolutions, sufficiently fine to capture its salient features and for its
complete frequency range, is not insignificant. Timely access to this amount of data in a fimited computing
environment can present difficulties. This paper describes some of the work being done at ATEA using data
compression techniques to reduce this problem.

Background.

The Australian Defence Force, particularly the Army and Navy make significant use of High Frequency (HF)
communications for a variety of scenarios. The effectiveness or otherwise of HF communications depends
considerably on the proper choice and use of the antennas at both ends of the communications path. Reliable
over-the-horizon (OTH) HF communications continue to present an interesting and complex challenge.

One part of the OTH communications equation is the temporal and spatial characteristics of the ionosphere.
Computer packages provide a systematic approach to working with the vagaries of the ionosphere. They exploit
the daily, yearly and 11-yearly cyclic nature of the ionosphere, refined with current measurements of ionospheric
parameters. They have met with varying degrees of success in predicting path loss, critical frequencies,
propagation mode and many other HF communications parameters.

Another vital part of the equation is the proper application of antennas. This involves a knowledge of the
radiation characteristics of antennas at both ends of the communications path. Most predictors contain some
representation of antenna pattems for a range of different antennas. This embedded data, possibly because of
data-storage limitations, generally represents either a single elevation cut of the pattern along the major
electromagnetic axis of the antenna, or at worst an omnidirectional radiator. The latter represents a trivial
solution. The former assumes that the antenna is always pointed directly towards the distant station - not always
the case, particularly when communicating with multiple locations. A further complication arises because the
radiation pattern not only changes shape with frequency, but the major axis may not necessarily remain aligned
relative to the antenna. If the predictor has access to antenna gain data across the frequency band then these
problems can be accommodated. For this reason Australia’s ATEA is developing software which incorporates an
ionospheric predictor and full circle antenna pattern data. This capability is being developed to optimise the
choice of antenna types, locations and orientations, frequencies and transmission times over wide areas and
with a variety of geographic and communications scenarios. The package has been called HAGGAI and its
‘MAP’ screen is shown in Figure 1.

Fig 1: HAGGAI in its ‘map’ mode (geographic display of data)
showing a prediction of percentage availability using a steerable
log periodic antenna. This mode is the most computationally
intensive, each screen image requiring some 5000 calls to the
antenna gain data for each transmission mode under consideration.
This is further increased for each alternate antenna which may be
considered in an optimising strategy. It is a two pass operation,
initially creating large ‘pixels’ of data with coarse steps of latitude
and longitude, followed by one tenth this resolution in, user-
designated target areas. This considerably reduces processing time,
quickly displaying the overall perspective, while still providing fine
resolution where needed.
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Compression of the antenna data in a way which will also provide fast retrieval as well as interpolation between
the original data points, is clearly desirable and is the subject of work at ATEA.

Antenna pattern datasets.

The antenna data is generated using ATEA’s AutoNEC capability. This uses a customised version of AutoCAD®
as a pre- and post- processor for the Lawrence Livermore Laboratory's Numeric Electromagnetics Code (NEC),
to create antenna model geometry. ATEA is currently running NEC-2. The outputs of multiple NEC runs over
the frequency range of interest are collated into single files of antenna gain data. !f needed, these can be read
by AutoCAD to generate three dimensional surfaces of antenna gain for visualisation purposes.

When the work was commenced, a range of antenna pattern datasets was already available from other
activities. Antenna types ranged from simple dipoles in free space, or above reaf grounds, through vehicle and
aircraft mounted antennas, to large antennas such as log periodic arrays and rhombics. Five antennas were
selected for this investigation to provide a diverse range of pattern types. These were the vertical whip,
horizontal dipole, steerable log periodic, vertical delta, and a helicopter wire antenna. Some work was also done
with a rhombic antenna. As the antennas were essentially ground-based, the datasets only contained data on
the upper hemisphere. Polarisation effects were also ignored at this stage, although they could be processed by
the same techniques.
SMHz 1@MHz 15MHzZ 28MHx 25MHz

Horizontal dirole

Fig 2: Normalised gain plots for
the horizontal dipole, bidirectional
delta, helicopter and rhombic
antennas.

Bidirect. delta

These images represent antenna
gain patterns, sampled at 5 degrees
in azimuth and elevation, and at
five frequencies across the band.
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Antenna pattern statistics.

Examination of many antenna pattemn datasets indicates that for most ‘well behaved’ antennas (those that are
not physically large or at a significant distance above the earth) antenna gain data sampled at 5 degree
increments in azimuth and elevation provides sufficient resolution. This gives 1368 points per frequency for the
upper hemisphere. To store this data as real numbers at 1 MHz steps across the HF band (perhaps an overkill),
169 kbytes is required. Larger antennas such as rhombics, or antennas significantly above the ground can have
quite complex patterns and require finer angular resolution to specify the detailed structure. Thus, the rhombic
antenna, some 600 feet in length, is undersampled at 5 degree increments. In addition, this antenna was
modelled up to 30 MHz, well above the operating frequency range. This greatly contributes to sidelobe

® AutoCAD is a registered trademark of Autodesk Inc.




development, particularly at higher frequencies. It was included in this work to investigate the limitations of the
compression techniques and was to prove difficult to compress successfully across the whole band.

Compression techniques.

The compression of any dataset is a process which extracts the essence of the data. This is generally
performed by means of transformations based on sets of orthonormal functions. The compressed data only
contains those coefficients considered ‘significant’, the discarded terms resulting in at least part of the
compression. A number of transforms could be candidates for this application. They include the Discrete
Fourier Transform (DFT), the Discrete Cosine Transform (DCT), and the Discrete Walsh (or Hadamard)
Transform (DWT). Literature abounds with references to the use of these transforms, often in relation to image
compression or enhancement. Fractal compression is another possible technique, but it was considered too
esoteric at this stage to yield a solution in the time required. In this investigation, the Fourier, Cosine and Walsh
Transforms were considered. Early work with the DWT showed some initial promise and it is well suited to fast
computer coding. However it introduced discontinuities in the recovered data which could only be reduced by
increasing the number of significant terms at the expense of compression ratio. The end application also
required interpolation of data between the original data points, and the DWT does not readily support this. Both
the DFT and DCT performed well, with the DCT providing marginally better compression in most cases. Thus
the development has concentrated on the DCT.

The Discrete Cosine Transform is given by

Ni—1 N2—1
_ 2 2x+Dur  Qy+Dvw
Fl) === 0 Q0 ZO Y ) cos s
x= y—(_.)

where:

fixy)is the input data, in this case an antenna radiation pattern dataset having N1 points in azimuth and N2 points
in elevation,

F(u,v) is a N1 by Nz set of DCT coefficients,
C(z)=1/2 if z= 0 otherwise C(z)=0 ,and

NI = the number of azimuth data points is 72, and N2 = the number of elevation points is 19 (for the upper
hemisphere of 5 degree resolution antenna patterns).

As HAGGAI uses frequencies which are integer MegaHertz, it was not considered necessary at this point to
address compression in the frequency domain. Further work may show that this is also feasible resutting in a
turther reduction of the total dataset size for any particular antenna. This will inevitably increase the
decompression time, and is not warranted in an application which does not require frequency interpolation.

The DCT is not a component by component transformation as all the output values, F(u,v), depend on all the
input values, fix,y). The transformation is also lossless (within the limits of computer rounding) and the original
values can be recovered from the full set of coefficients by applying the inverse transform:

Ni=1 N2—1

_ (2x+Dun (2)"+l)v7r
fxy)= N 20 2(’) C(u) C(v) F(u,v) cos T cos T
u=0 v=

Allowing x and y to assume non-integer values in the inverse transform permits interpolation in azimuth and
elevation between the points of the original dataset.
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Many of the DCT coefficients are at or near to zero. If those terms below a given threshold are neglected, a
compression results. A higher threshold will result in greater compression. However, if the threshold is set too
high then the decompression will become lossy and tracking between the input and output datasets will be
degraded. The choice of this threshold will depend on the nature of the input dataset, and on the required
tracking accuracy.

Compression criteria.

In order to compare different compression techniques and parameters, a set of test criteria needed to be
developed. The choice will vary depending on the nature of the end. The maximum tracking error between
input data and the decompressed data should be appropriate in the context of input data uncertainty. This in
turn will depend not only on the accuracy of the antenna pattern data computed by NEC, but also on the degree
to which the NEC mode! represents the actual antenna, and the antenna’s day-to-day variability. I the
compressed model is to be embedded in an ionospheric predictor then predictor uncertainties should also be
considered. For incorporation in the ionospheric prediction software described above, the following were
considered appropriate:

The dynamic range of the decompressed antenna pattern should not be less than 20 db.

Accuracy of the maximum antenna gain is of prime significance

Accuracy of the minimum antenna gain is of the next significance

Accuracies of antenna gains between maximum and minimum are of less significance.

Tracking of antenna gains should be better than 0.5 db at the maximum gain, increasing linearlyto 3dbat -
20 db below maximum gain.

Methodology.

The antenna pattern data generated by NEC was first converted from db to numeric gain in preparation for
compression. Numeric gain is required by HAGGAI and will be recovered by decompression without additional
conversion. For each frequency, the maximum gain Gn was extracted and the gains normalised to 1.0. It was
envisaged that the compressed data will be stored as this gain factor plus a series of coefficients, thus retaining
the same dynamic range for low and high gain antennas. This method also allows a simple comparison of the
process against both low and high gain antennas data.

The 72 X 19 array of (normalised) antenna data was then passed through a two dimensional DCT, yielding a 72
X 19 array of coefficients. In image compression, the picture space is typically subdivided, usually into groups of
8 X 8 pixels, and compression applied to these. ldeally the array size is a sub-multiple of the data space size. A
19 X 18 subdivision was considered in this application and although processing was marginally faster, the total
number of coefficients was invariable greater for the same tracking error because of the number of groups of
coefficients generated. This technique may have advantages for ‘busy’ antenna patterns such as that of the
rhombic.

In order to monitor the quality of the processing, the inverse transform was applied and the original and
decompressed datasets compared. For this purpose a special display was devised. This consisted of a 256
colour display of the original data as square blocks, colour corresponding to antenna gain. This was overlaid
with a similar display of the decompressed data using smaller circular patches centred on the original squares.
The differences in colour not only provide a very sensitive indicator of the tracking between the two datasets, but
also show where errors occur. Other sections of the display showed a plot of the ‘significant’ coefficients, a
scatter plot of input/output tracking and various other parameters associated with the processing.

At this point it became apparent that the tracking limits applied at gains less than -20 db should not simply be
linearly varying db limits as first envisaged. For this application an antenna gain of -30 db below the maximum
could be equally well represented by a gain anywhere between -20 and -1000 db. A revised set of limits were
chosen with a constant offset from the input numeric gain rather than an increasing offset from the gain in db,
viz if Gi is the normalised input numeric gain, then the upper limit is Gi+k, and the lower limit is Gi-k. By setting k
=0.1% (ﬁ —1), the upper and lower limits at maximum gain (Gi=1) are just under 0.5 db, while for 20 db below
maximum gain (Gi = 0.1), the upper limit is -17.9 db, thus approximating the limits originally envisaged for 0 and -

58




20 db. The corresponding lower limit is -24.6db. At even lower antenna gains, the upper limit asymptotes to -
27.6 db, while the lower limit falls to large negative values. This ‘exponential’ variation of tracking limits provide
a more realistic metric for comparison of compression strategies over a wide dynamic range as shown in Figure
3.

T <<{ Radiation pattern
data

98,9% compression
9.4 db > limits

<8, 8>

Coefficients used ¥racking 1I/7F  -3@4dp

Fig 3: Display for bidirectional delta antenna, showing tracking with 15 coefficients. The tracking error limits
are shown as the solid lines on the scatter plot. The grid lines represent 3 db steps from 0 to -30 db. 1/P =
original data and O/P = data after compression and decompression.

As the array pointers of each DCT term are required during decompression as the variables vand v, each DCT
coefficient was tagged with its pointers and sorted in descending order of absolute magnitude.

Tracking error variation with number of terms used in the decompression.

To determine its effect on the tracking error of the decompressed data decompression was applied to the range
of antennas and frequencies, using different numbers of terms in the expansion. The following series of plots
show the variation of worst case tracking error with the number of terms used in the decompression The resuits
indicate that, with the exception of the rhombic antenna, 100 terms is adequate to recover the original antenna
pattern within the proposed tracking error limits. A rough extrapolation suggests that 200 terms might be
sufficient for the rhombic. However, if the thombic antenna pattern were sampled at a resolution finer than 5
degrees, the number could be different.
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Fig 4: Worst case tracking errors outside proposed limits plotted against number of terms for vertical whip,
horizontal dipole, steerable log periodic, helicopter, bidirectional delta, and rhombic antennas.

Figures 5 to 9 are scatter plots showing data recovered by decompression against the original data. These are
termed ‘output - db’ and ‘input - db’ respectively. If the process is lossless - i.e. no tracking error exists, all points
will fie on a straight line with a slope of +1 and passing through (0,0). Each plot contains 1368 data points, many

of which are co-incident. With the exception of the rhombic, the plots cover a 30 db dynamic range.

4 m vertical whip @ 5§ MHz, 35 terms

4 m vertical whip @ 30 MHz, 35 terms
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Fig 5: The vertical whip was modelled in isolation above a real ground. It has no azimuthal changes in gain, the
variations in elevation being well behaved. Tracking error data is for 35 terms at 5 and 30 MHz. The whip
pattern can be recovered adequately from as low as 10 terms per frequency over much of the frequency band.

Horizontal dipole @ 10 MHz, 35 terms

Horizontal dipole @ 30 MHz, 100 terms
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Fig 6: The horizontal dipole is modelled above a real ground. Its gain varies considerably with both azimuth and elevation.
Significant changes in the character of its radiation pattern also occur with frequency and height above ground. Although
the tracking error is not as low as that of the vertical whip, 35 terms is adequate at 10 MHz, and 100 terms at 30 MHz.
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Bidirectional delta @ 30 MHz, 65 terms Bidirectional delta @ 30 MHz, 100 terms
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Fig 7: The bidirectional delta is a larger antenna and thus produces a more complex pattern. Although 65 terms
are sufficient at 10 MHz, 100 terms must be used at 30 MHz. These patterns show an unexplained ‘singularity”
type behaviour at an input of -25 db. A single input data value is recovered as a range of output values,
depending on its values of azimuth and elevation on the radiation pattern hemisphere. There is also evidence
of this at other input values, although the magnitude reduces with the number of terms in the expansion. This
behaviour has also been observed on other antennas, but fortunately it seems to be restricted to normalised
gains below -20 db, and generally lies within the proposed error limits.

Rhombic @ 10 MHz, 35 terms Rhombic @ 10 MHz, 100 terms
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Fig 8: The rhombic data, as previously noted, has very complex patterns. This may be aggravated by
undersampling in azimuth and elevation. Plots have been extended down to -60 db as a considerable number of
the data points occur below -20 db. At 10 MHz, near the upper frequency limit of the rhombic, the pattern
cannot be recovered with the required tracking error with 100 terms. However because the major tracking
errors occur at low gains, 100 terms does provide a first approximation which could be used in the coarse
resolution mode for HAGGAL One solution for such “difficult’ antennas would be to save 200 coefficients as
two records, with appropriate changes to the decompression code to handle the extra data. Although this will
approximately double processing time, it will still yield a useful result with only minor code changes. This
proposal will have to be re-examined when finer resolution rhombic data is available.
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Fig 9: A number of the antennas showed an upwards trend in the scatter plots below -20 db, particularly when
low numbers of terms are used in the decompression. Increasing the number of terms reduces this. However a
fixed offset applied to the numeric gain, together with an adjustment to the overall gain to maintain the data
passing through (0,0), the performance with only five terms can approach that with 35 or more terms. Although
not needed in HAGGAL, the addition of the single offset term could provide a dramatic reduction in the data
storage requirements in other applications.
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File structure.

The work has shown that 100 terms is adequate for all the evaluation antennas except the rhombic. Based on
this assumption a record structure for the compressed antenna data was adopted. This consisted of a single
record containing the normalising gain factor Gn, the frequency Fg, plus an array of 100 coefficient terms, with
their attached pointers. The file contains one record per frequency. Although the fixed record size of 100
coefficients will provide more terms than necessary for antennas such as the vertical whip and the steerable log
periodic, the record structure is small enough to be readily handled within the proposed computing environment,
and the complication of processing variable size records is avoided.

Performance parameters.

Both Gn and Fg are stored as single precision real numbers, each occupying 4 bytes. The dynamic range of the
DCT coefficients is too great for single byte representation, thus integer format is used. Together with their byte
array pointers each coefficient occupies 4 bytes. Thus each frequency occupies 408 bytes, compared with the
original data size of 5472 bytes (1368 real numbers). Specifying an antenna across the HF band takes 12240
bytes compared with 154 kbytes, a compression of 92%.

The 5000 antenna gain points needed to refresh the HAGGAI map screen are computed in just under six
seconds using a 150 MHz Pentium processor.  Although this is slightly longer that the processing time of the
ionospheric predictor currently employed to cover the same arez, it does not greatly increase the overall display
refresh time.

Further development.

As the coefficients are stored in descending order of magnitude, an opportunity exists to use a subset of the
DCT terms to generate an initial estimate of the antenna gain, thus reducing processing time at the expense of
accuracy. This has application to quickly determine whether a particular location is outside the footprint of the
selected antenna, so that processing is not wasted on locations that are not visible. Some work has commenced
on developing a convergence test to determine where to truncate the number of terms to achieve a given
accuracy. This will be a function of the entropy of the antenna pattern and may require an additional control
parameter to be stored for each frequency.

Another opportunity for faster decompression arises because the variation in antenna gain with azimuth at high
elevations will be less than that at low elevations, degenerating to a single gain figure at 90 degrees (vertical). It
would be reasonable to expect that the number of DCT terms required for a specific tracking error would be
considerably less for near vertical radiation and this has been demonstrated in a number of cases.

The opportunity also exists to exploit the symmetrical nature of patterns from antennas in isolation and with one
or more axes of symmetry, to achieve a corresponding increase in the number of effective terms in the
decompression. This will reduce the tracking error without materially increasing data storage requirements.

Conclusions.

The compression techniques developed around the Discrete Cosine Transform have shown significant potential
in the reduction of storage requirements for antenna gain data. The technique is simply implemented and yields
good results in reasonable processing times from minimal data. It has a built in interpolation capability for
generation of data not in the origina! dataset. It has been shown to be applicable to a wide range of different
antenna types, and although not demonstrated to satisfactorily handle the rhombic antenna data as presently
available, improvements to the data and extensions to the process should overcome these difficulties.
Opportunities exist to refine the techniques to achieve better speed and tracking performance and will be the
subject of ongoing work.

62




SESSION 2:

ADVANCED
TIME-DOMAIN
METHODS

Chair: S. Gedney

63




Solution of Boundary Value
Problems in Time Domain
Using Multiresolution Analysis

Linda P.B. Katehi, The University of Michigan

James Harvey, Army Research Office

1.0 Abstract

The application of multiresolution analysis directly to Maxwell’s equations results in new time
domain schemes with unparalleled properties. This time domain approach, MRTD (Multiresolution
Time Domain Method), allows for the development of schemes which are based on scaling functions
only or on a combination of scaling functions and wavelets for the development of a variable griding.
The dispersion of the MRTD schemes compared to the conventional FDTD Yee’s scheme shows an
excellent capability to approach the exact solution with negligible error for sampling rates which
approach the Nyquist limit. Furthermore, due to the weak-interaction properties of the wavelets,
MRTD schemes atlow for time/space-adaptive grids. These recent developments in time domain tech-
niques at the University of Michigan have strongly indicated the potential of MRTD:s in creating a
major impact to the area of computational electromagnetics (10,11}. MRTD is not a new methodol-
ogy. It is a correct and accurate generalization of the conventional discretization approaches. It pro-
vides the correct mathematical frame for solving problems in time domain and allows for the
understanding of important issues in time-domain computational electromagnetics.

2.0 Introduction to MRTD

The finite-difference time-domain method (FDTD) has proven to be a powerful numerical technique
in electromagnetic field computations [1,2]. However, despite its simplicity and modeling versatility,
the technique suffers from serious limitations due to the substantial computer resources required to
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model electromagnetic problems with medium or large computational volumes. In addition, the
FDTD method cannot provide the accuracy required for computer simulations of time-dependent
electromagnetic interactions in electricaily long regions or in regions which contain non-linear mate-
rials. Such simulations are very important for integrated device modeling, especially in relation to the
design of non-linear photonic devices. The above limitations have always made it a matter of great
interest to improve the efficiency of Yee’s FDTD scheme and have led researchers to the development
of hybrid combinations of FDTD with other propagation methods [3,4] and higher order FDTD
schemes based on Yee’s grid [5). The method of moments provides a mathematically correct approach
for the discretization of integral and partial differential equations. [6]. Its application to the discretiza-
tion of Maxwell’s partial differential equations has provided the field theoretical foundation for TLM
[7.8]. In addition, it has been shown recently [9] that Yee’s FDTD scheme can be derived from the
same approach when using pulse functions for the expansion of the unknown fields. Since the method
of moments allows for the use of any complete and orthonormal set, the choice of an appropriate
expansion set may lead to new powerful time domain schemes. The application of the methed of
moments using scaling and wavelet functions, known as multiresolution analysis (MRA), has been
applied to Maxwell’s partial differential equations and has lead to novel and powerful time domain
schemes [10] and [11].

In a MRTD scheme the electromagnetic fields are represented by a two-fold expansion in scaling and
wavelet functions with respect to space. The expansion in terms of scaling functions allows for a cor-
rect modeling of smoothly-varying electromagnetic fields. In regions characterized by strong field
variations or field singularities, additional field sampling points are introduced by incorporating
wavelets in the field expansions. These additional points are introduced only at specific locations,
thus, allowing for a variable grid capability. The use of different families of functions leads to various
time domain schemes. The exclusive use of scaling functions provides a variety of conventional
schemes including FDTD and TLM. The MRTDs which have been recently developed at Michigan
have used pulse functions as expansion and testing functions in the time domain in order to obtain a
two-step finite difference scheme with respect to time.

MRTD schemes based on cubic spline Battle-Lemarie scaling and wavelet functions have been devel-
oped and applied to a variety of problems. An extensive presentation of these derivations is presented
in [10]. This orthonormal wavelet expansion has already been applied successfully to the computation
of electromagnetic-field problems in the frequency domain and results have been presented for both
2-D and 3-D problems [17,18]. The Battle-Lemarie scaling and wavelet functions do not have com-
pact support, thus the MRTD schemes have to be truncated with respect to space (see Figure 1). How-
ever, this disadvantage is offset by the low-pass and band-pass characteristics in spectral domain,
allowing for an a priori estimate of the number of resolution levels necessary for a correct field mod-
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eling. Furthermore, for this type of scaling and wavelet functions, the evaluation of the moment
method integrals during the discretization of Maxwell’s PDEs is simplified due to the existence of
closed form expressions in spectral domain and simple representations in terms of cubic spline func-
tions in space domain. The use of non-localized basis functions cannot accommodate localized
boundary conditions and cannot allow for a localized modeling of material properties. To overcome
this difficulty, the image principle is used to model perfect electric and magnetic boundary conditions.
As for the description of material parameters, the constitutive relations are discretized accordingly
and the relationships between the electric/magpetic flux and the electric/magnetic field are given by
two matrix equations.

FIGURE 1. Battle-Lemarie Scaling and Mother Wavelet Functions and their Fourier
Transforms.
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Complete dispersion analyses of the MRTD schemes including applications to 3-D problems and
comparisons to Yee’s FDTD scheme are given in [10] and show the superiority of MRTDs to all other
existing discretization techniques. Specifically, the results show the capability of the MRTD method
to provide excellent accuracy with up two points per wavelength which is the Nyquist sampling limit.

The use of Battle Lemarie scaling and wavelet functions has provided very efficient solutions to open
and shielded circuit problems. Figure 2 shows field calculations for the even mode excited in coupled
strips operating in an open environment. The open boundaries have been accounted for by incorporat-
ing PML regions within the MRTD technique. The use of MRTD allowed for the placement of the
matching layer right at the planar lines while it provided very high accuracy and high computational
efficiency. Figure 3 shows the even-mode electric field distributions for a similar coupled strip geom-
etry operating in a shielded environment [22].

FIGURE 2. Even-Mode Electric Field Distribution in an Open Coupled Strip Line
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FIGURE 3. Even-Mode Electric Field Distribution in a Shielded Coupled Strip Line

As with Battle-Lemarie functions, the application of the Haar basis functions (see Figure 4) has led
into the development of a2 multigrid FDTD technique [23, 24] and has demonstrated the capability for
a spatially adaptive grid in 2-dimensional waveguide and transmission line problems. Figure 5 shows
the field distribution in a two-dimensional shielded stripline. On the same figure the spatially adaptive
grid utilized in this problem is shown.

3.0 Spatially Adaptive MRTD Schemes

The major advantage of the use of Multiresolution anatysis to time domain is the capability to develop
time and space adaptive schemes for an open as well as shielded space, and its application to linear
and non-linear problems. The effectiveness of the technique will be measured in terms of its accuracy
and computational efficiency in comparison to conventional time domain techniques (FDTD, TLM).
The development of a spatially and temporally adaptive MRTD method is based on the property of
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wavelet expansion functions to interact weakly and allow for a spatial sparsity that may vary with
time as needed through a thresholding process [12-19]. The availability of such an adaptive method is
extremely important for the accurate modeling of sharp field variations of the type encountered in
beam focusing in nonlinear optics, wave propagation through narrow slits and apertures etc. A brief
presentation of the fundamental steps required for such a adaptive grid is given in the following sec-
tion.

FIGURE 4. Haar Scaling Functions and Wavelets

G-

The use of multiresolution analysis for adaptive grid computations for PDEs has been suggested by
Perrier and Basdevant [20] and Liantdrat and Tchamitchian [21]. To describe the basic ideas of such
an adaptive scheme for Maxwell’s hyperbolic system, let us cast Maxwell’s equations in one spatial
dimension in the form:

2i= )
where & = (E(z 1), H(z.1))” ,and A is the operator:
190
0 -£(2) .
A= " 9z )
-1(z) % 0
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FIGURE 5. Field Distribution in a Printed Stripline Using MRTD Based on Haar Functions

e

The numerical solution of (1) subject to initial conditions and appropriate boundary conditions at the

two boundary points is sought. Following appropriate derivations, the above equation can be written
in the following form:

MU =0 3

where

M= eThd, T,D, @)
th: 'J.Z+',dr
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In equation 4, Z,, T, are half shift operators for the spatial and temporal coordinates z, ¢ respectively
and 7, %, are their Hermitian conjugates. Furthermore, d,, D_ are difference operators given by the

following equations:

d, = =TTy )
and
8 8
D. = Zl—z(z‘higg%(i)z‘%i;av(i)z"'] (6)
where
7 =7". Q)

In equation 6, o (i), o, (i) are the coefficients associated with the scalar functions or wavelet expan-
sion functions respectively. Since M is represented by block of band matrices, it can be shown that the
domain where the field coefficients of u®*! are non-negligible is at most equal to the corresponding
domain of u™ plus the width of the bands in matrix M that represent the operator A in the wavelet
basis. If N, N, are the total number of nonzero scaling and wavelet field coefficients (grid points), the
number of operations required to compute M is of the order of O(N,+ N, ). As it has been shown in
[10,11], the total number of scaling grid points can be as low as two per wavelength. However, the
resolution required in the wavelet grid points is determined by the nature of the boundaries in the
problem of interest.

We are now ready to describe the method suggested in [20,21] to adapt in space and time the wavelet
grid and thus follow the sharp features of the waves as they develop and/or move on the grid. At each
time step we keep both the wavelet field values that are larger than 2 given threshold as well as the
adjacent values. An adjacent wavelet field value is defined on the basis of the wavelet resolution
level(s) incorporated in the solution. The development of an appropriate definition can be considered.
Let G, be the wavelet field values (grid points) which are kept and represent the approximate solu-
tion at the nth time step. From these let us call fundamental the wavelet coefficients that are greater
than the threshold and adjacent the ones as defined above. From equation 3 we compute the wavelet

field coefficients of u™"D corresponding to the fundamental and adjacent coefficients that constitute
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grid G, . We then adjust G,,, by changing into “fundamental” those field coefficients that are greater

than the threshold and changing into adjacent their adjacent ones. This process creates the new grid
Gy -1y - We project u onto the space corresponding to G, ;, and we are ready for the next step update

Clearly the basic assumption behind this algorithm is that during a time At, the domain of the funda-
mental field coefficients does no spread beyond its border of adjacent coefficients. This method has
already been applied to a variety of circuit problems and results will be discussed during the presenta-
tion [25].
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Abstract

A bidiagonal compact-difference and a finite-volume procedure of fourth-order temporal and third-order spatial
accuracy have been developed for solving three-dimensional, time-dependent Maxwell equations. Solutions of a
three-dimensional waveguide and the scattering by a perfectly electrical conducting sphere and an ogive cylinder
are validated. The bidiagonal compact difference scheme applied to the waveguide shows exceptional resolution
characteristics over a wide range of wavenumber. The high resolution finite-volume scheme demonstrates improved
numerical efficiency over previous efforts in RCS calculations.

Introduction

For simulating wave diffraction and refraction phenomena, numerical resolution for high frequency spectrum is
clearly needed [1-4]. The accuracy requirement in computational electromagnetics (CEM) is so demanding that it
has become a pacing item for this technology development. In time-dependent calculations, the truncation error of
a numerical result is manifested as dissipation and dispersion. The numerical error accumulation during a sustained
period of calculations or in an extensive computational domain may lead to a situation where the wave modulation
and phase errors become unacceptable. In principle, the numerical accuracy can be improved either by refining
the mesh point density or by adopting a high resolution numerical procedure. The more fundamental approach of
devising high resolution numerical procedures has the potential to expand the application range of CEM, thus is
much more appealing.

Using exclusively the formal order of accuracy of temporal and spatial truncation errors to select an algorithm
for time dependent simulation is an over simplification [5-7]. Although the dispersive error is dominated by the
spatial discretization [5], this error can still be alleviated by more accurate time integration options. No dissipation
is also achievable by some schemes by a stencil construction that provides symmetry with respect to time [8]. Even
the perfect shift condition can be achieved under certain restrictions through temporal and spatial truncation error
cancellation [9]. An algorithm that meets the perfect shift condition at specific Courant-Friedrichs-Lewy (CFL)
numbers, can generate an exact one dimensional solution. The perfect shift property, however, is not preserved for
multi-dimensional problems. In fact, an additional error in terms of the numerical anisotropy will be present.

The numerical resolution can be quantified by the Fourier analysis in terms of normalized wavenumber. In appli-
cations the quantification is measured by the grid-point density per wavelength. However, this simple grid density
criterion is insufficient when the computational domain contains multiple media with a wide range of characteristic
impedances, because all numerical schemes have a limited wavenumber range for accurate computations. At the
present, for a high frequency CEM simulation associated with a large-scale configuration, the required number of
mesh points to meet an accuracy specification is often beyond the reach of conventional computing systems. In order
to extend the present simulation capability to higher frequency spectra, the need to develop high resolution schemes
for CEM is urgent.

Compact differencing [5,6], optimized difference [7], and spectral methods [10] are viable options to achieve high
resolution. The idea of the compact and optimized methods is closely linked. Both approaches seek algorithms that
have a small stencil dimension and yet maintain a lower level of dispersive and dissipative error than conventional
numerical schemes. Collatz [11] has pointed out that the compact difference scheme is based on the Hermite's
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generalization of the Taylor series. The accuracy gain is acquired through additional derivative data to be specified
at the boundary [5-7). Although the stencil structure for most popular compact differencing formulas is tridiagonal,
they still requires a transitional scheme from the boundary to the interior domain. The numerical boundary scheme
must transmit data from the boundary and also preserves the stability and accuracy of the interior calculations for
the global resolution. For this reason, the development of a numerical boundary scheme is emerging as a major
challenge for high resolution methods.

The need for higher order resolution is equally applicable to both temporal and spatial variables. In the present
analysis, 2 Runge-Kutta method [12] up to fourth order accuracy is used for the integration with respect to time.
This high temporal resolution procedure is implemented to a finite-volume MUSCL procedure in 2 general curvilin-
ear frame of reference [13] and several flux vector splitting finite-difference methods [14,15] including a bidiagonal
compact difference scheme. Only the bidiagonal compact difference scheme will be described in detail. All validat-
ing efforts are concentrated on three-dimensional simulations to emphasizes the focus on practical application and
on understanding multi-dimensional numerical procedure development. All numerical schemes are first evaluated
by simulating transverse electrical wave propagation in a three-dimensional rectangular guide. Then some selected
procedures are used to simulate the scattering phenomenon around a perfectly electrical conducting (PEC) scatterer.

Governing Equations
The time-dependent Maxwell equations for an electromagnetic field are [16,17}:

8B

S TVXE=0 )
aD

S -VxH=-J @
V.B=0, B=pH 3
V.D=0, D=¢E )

where € and y are the electric permittivity and the magnetic permeability which relate the electric displacement,D,
to the electric field intensity, E, and magnetic flux density, B to the magnetic field intensity,H, respectively.

The time-dependent Maxwell equations can be cast in fiux-vector form on a curvilinear frame of reference by a
coordinate transformation from the Cartesian system. The governing equations become [13-15]:
oU  OF OF, OF __
8t ' 8t 9y @ 8¢
where the dependent variable U in the present formulation is now scaled by the local cell volume, V, or the reciprocal
of the Jacobian of the coordinate transformation.

J (3)

U ={B.V,B,V,B.V,D,V,D,V,D,V}" (6)

F, F,, and F are the contravariant components of the flux vectors of the Cartesian coordinates which is the basic
frame of reference of the present analysis [13,15].

FE = &F; +EyFy + & F,
F, = e Fr +leFy+7lez (M
F( = (:Fz +CyFy+Cze

and &, 0z, Gz, &y, My, Cy» €z, Tz, and C; are the nine metrics of the coordinate transformation.

The characteristic-based finite-volume and finite-difference approximations are achieved by splitting the flux
vector according to the signs of eigenvalues of the coefficient matrix in each spatial direction {13-15]. The flux
vector in the discretized space is represented by a superposition of two components; Fg‘ B¢, Fr Fr, F<+ ,and FS
according to eigenvalue structure [15]. The formal order of accuracy for these schemes is exclusively dependent on
how either the subsequent difference quotients or the flux vectors are reconstructed. For the finite-volume scheme at
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the cell surfaces the split flux vectors are calculated by the reconstructed dependent variables on either side of the
interface according to the MUSCL scheme [18]:

Foiny = Ff (UL %) +F(UR))

i+d
Frisy =FFUL)+F (UL (8)
Feary = FE*(U,{;%) +F(‘(U,f+%)

where UL and UR denote the reconstructed dependent variables at the left and right side of the cell interface. The
split flux vectors in respective £-t, 7-t, and (-t planes are obtained by straightforward matrix multiplications and are
given in reference 15.

Initial Conditions and Boundary Values

For the present analysis, the incident wave of the waveguide and the scattering simulations consist of a linearly
polarized harmonic field propagating in the negative z-axis direction. On the media interface the transverse electrical
wave, TE(1,1), within a rectangular waveguide and the scattering simulations must satisfy the identical bounadry
conditions, therefore the boundary condition implementation can also be shared. Since the surface of the scatterer
and the waveguide are assumed to have perfect electrical conductivity, the appropriate boundary conditions at the
surfaces are [16,17];

Ax(B1-E) = 0

ﬁX(Hl——Hz) = Js (9)
'I—Z'(Bl—Bg) = 0

ﬁ'(Dl"‘DZ) = Ps

Following previous efforts [3,4], the unknown surface current and charge densities,J; and p, are treated as finite jumps
of constant value. Extrapolated numerical boundary conditions for the finite jump of properties at the surface are
introduced to replace the equations that contain unknowns. This formulation is compatible with the basic attribute
of the hyperbolic partial differential system which allows piecewise continuous data to propagate unaltered along a
characteristic.

The advantage of the characteristic-based formulation is also revealed in the implementation of the far field
boundary condition. In principle, if one of the coordinates is aligned with the direction of wave motion, the split flux
of the characteristic-based scheme is identical to the compatibility condition at the truncated far field boundary [13-
15]. An effective approximation is easily implemented by setting the incoming flux component to the null value at
the truncated far field boundary.

For the rectangular waveguide

Fg— ({1 7. (:zit) =0 (10)
For the PEC Scatterer

F (€0 () =0 (11)

Temporal and Spatial Discretization

The present approach uses Runge-Kutta schemes for time integration. This first-order derivative evaluation
procedure can be fitted into a Taylor’s series by the constraint of weighting coefficients to retain a prescribed order
of accuracy [12]. Only the four-stage or the fourth-order accurate Kutta method is presented here.

yrtt = yUr4 (At/8) - (U + 2Us 2+ 2Us 3 + Us g)
Uy = U8, U™)
Ug‘z = Ug(t+At/2,U"+At/2‘Ug,1) (12)
U¢,3 = Ug(t+At/2,U"+At/2 - Ut2)
Us = Uit + AL U™ + At-Uy3)

The four-stage procedure needs twice as many arithmetic operations to advance the solution one time step as the
two-stage scheme. An additional array of dynamic memory for the derivatives, U; is also needed for completing a
time sweep. However, the allowable CFL number nearly doubles from the two-stage to the four-stage procedure.
The CFL number increases from 0.876 for the two-stage to 1.740 for the four-stage procedure.
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The accuracy gain by compact differencing methods over conventional methods is obtained not by increasing mesh
point stencil, but rather by incorporating adjacent derivatives of the function [11]. Since the formulation is based on
the Taylor series expansion, the compact differencing formulation is valid only in the domain where the dependent
variables are continuous and differentiable. The most general compact difference or the Hermitian formula can be
written to include first- and second-order derivatives [14]. For CEM in the time domain, the formula containing only
the first derivatives is sufficient. The general spatial formula can be written as:

aU,f_l + ﬂU; + ’)‘U;_H =C U3+ ColUs—o + C3Ui1 + CaU; + CsUi-H + CsU,‘+2 + C7U.‘+3 (13)

The present scheme incorpoates a third-order accurate compact formula which was developed by Adam [19]. This
formula has a bidiagonal structure for the first-order derivatives.

For the forward biased differencing

a=4,ﬁ=2,’y=0,Cl =0,Cz=-1,03=—4,04=5,Cs=0,Cs=O,C7=0‘
For the backward difference

a=0,=2v=4C,=0,0:=0,03=0,C4=-5C5=4,Cs =1,Cr =0.

It is immediately recognizable that the third-order compact difference has a smaller stencil dimension than its
explicit counterpart [6,9]. The compact stencil consists of three points, and the associated first derivatives have
a bidiagonal-diagonal structure. From the Fourier analysis of this algorithm when applied to the one-dimensional
model wave equation, the maximum allowable CFL number has a value of 0.696 and exhibits a characteristic of lower
dispersive error. The bidiagonal compact difference procedure even outperforms fourth-order compact difference
schemes of the same family {5].

For numerical solutions of initial-value problem, the issues of consistency, well-posedness, and stability are
paramount. Unfortunately, most known numerical stability analyses lack the ability to take the boundary con-
dition into consideration. For high-order methods, the effects of boundary formulations are also no longer masked by
the built-in dissipation of the lower-order schemes. Numerical stability is a critical concern for high-order compact
difference method, which must include a stable transitional boundary scheme to preserve the formal accuracy [20,21].
The Adam’s bidiagonal compact difference algorithm has been demonstrated to be a stable and compatible transition
boundary scheme to a fourth-order accurate method [4].

Numerical Results

All results are processed on the Cray C916/16256 computing system. The presentation of numerical results is
separated into three groups. The first group addresses the dispersion and dissipation of the adopted finite-difference
numerical algorithms when applied to the one-dimensional model wave equation. The second group summarizes
the performance of the present characteristic-based codes [13-15] applied to a three-dimensional transverse electric
wave in a rectangular waveguide. The wave speed and the time elapsed during the computation are fixed for all
simulations to permit the wave to transverse the entire length of the waveguide twice. At the highest frequency, the
transmitted wave travels a total distance of 36.6 wavelengths. The last group details computations of a PEC sphere
and an ogive cylinder over a wavenumber range from 1.06 to 20.0 by the finite-volume procedure using the two-stage
and the four-stage Runga-Kutta temporal integration.

The dissipative error of the mid-point leapfrog, the upwind, and the bidiagonal compact-difference algorithm
are presented in Figure 1. The mid-point leapfrog scheme is included as a reference point for comparison [1]. All
numerical results are obtained by solving the one-dimensional model wave equation. In spite of the fact that, the
mid-point leapfrog is a second-order scheme, the one-dimensional solution does not contain any dissipative error. The
upwind scheme of Warming and Beam [8] possesses the same feature at the CFL value of 1 and 2 but exhibits error
when CFL differs from the aforementioned values. The bidiagonal compact-differencing and the windward scheme
reveals numerical diffusion.

Figure 2 depicts the corresponding dispersive error of all schemes examined. The bidiagonal compact-difference
scheme shows the least dispersion. This compact difference scheme even outperforms a fourth-order compact scheme
of the same family [5,7]. The dispersive error expressed in terms of the normalized wave number, spans a usable range
from 0.0 to 2.4. However the one-dimensional result should be used only as a general guide for numerical procedure
development, because the additional numerical error such as anisotropy will be present in multi-dimensional problems.
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In Figure 3, the y-component of electric displacements in the waveguide are depicted at three different frequencies.
All numerical solutions are generated by the second-order accurate upwind scheme of Warming and Beam [8] on a
uniformly spaced grid (25 x 24 x 96). The instantaneous D, distributions along the entire length of the waveguide
are accompanied by the theoretical values for validation [16,17]. The comparison with the theory for frequency
spectra from 37 to 57 corresponds to a grid-point density of 18.3 to 9.15 per wavelength. For the lowest frequency
simulation, the dissipation error is confined to less than one percent. As the wavenumber increases and the grid-point
density decreases accordingly, the numerical error becomes unacceptable.

Figure 4 displays the resolution characteristics for the four-stage Runge-Kutta and spatially third-order compact
difference method, RK4S3CD in the waveguide simulation. These results of the RK453CD method are far superior
in the higher frequency range than the upwind method given in Figure 3. The numerical results obtained on mesh
systems with the grid-point density of 18.3 and 13.7 per wavelength are accurate. As the grid-point density is further
decreased to the value of 9.15 (w = 57), the numerical resolution starts to degrade and yields a maximum error of
0.331 percent near the middle point of the waveguide. The third-order accurate compact differencing method has
also been use to generate waveguide solutions for the angular frequencies of 6r and 7w, which correspond to the
grid-point densities of 8.34 and 7.25 points per wavelength. Under these circumstances, the maximum dissipative
errors have values of 1.60 and 9.72 percent respectively.

The horizontal polarized bi-static RCS distributions of the PEC sphere, ¢(6,0.0) at a wavenumber of 20 by the
third-order finite-volume, two-stage (RK2583) and four-stage Runge-Kutta (RK4S3) methods are given in Figure 5.
Although these solutions are obtained by different time steps for data sampling, the maximum difference between the
two numerical results is negligible. The maximum discrepancy of numerical results from the theoretical value occurs
at the viewing angle of 114.5 degree with an absolute value of 0.1308. For these simulations, the far-field boundary
is placed at 2.86 wavelengths away from the sphere. On the (73 x 60 x 96) grid system, the grid-point density along
the circumferential coordinate is now reduced to a value of 9.6. In comparing with an earlier calculation at the same
wavenumber [3], the present calculations require fewer number of grid points by a factor of 4.25.

The finite-volume result (RK4S3) for bi-static RCS of the ogive cylinder in horizontal polarization is presented in
Figure 6. The calculations simulate the scattering phenomena when the ogive cylinder is illuminated by a head-on
incident wave at 2 Giga hertz. The wavenumber at this frequency is scaled by the scatterer length of 54.6 cm to yield
2 value of 1.065. The numerical simulation is performed using a two-block grid system with the respective dimensions
of (143 x 109 x 43) and (53 x 109 x 75). The agreement with the calculation of a method of moment [23] is excellent.
A nearly identical result was also produced by the two-stage Runge-Kutta time integration scheme, (RK2S3) but at
a cost of 11.2 % more CPU seconds.

Concluding Remarks

The bidiagonal, compact-difference scheme when applied to the simple wave model exhibits the lowest dispersive
error among all the algorithms considered. The compact-difference approximations shows promising potential for
extending the frequency spectra simulations by solving the three-dimensional, time-dependent Maxwell equations.

The temporally fourth-order and spatially third-order windward biased finite-volume method exhibits a numerical
efficiency gain over the lower order temporal accuracy method. The improved accuracy in time enhances the stability
of this method permitting a doubling of the CFL number from 0.876 to 1.740.
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FD-TD M24 Dispersion and Stability in Three Dimensions

G. Haussmann and M. Piket-May
Department of Electrical and Computing Engineering
University of Colorado at Boulder
Boulder CO 80309-0425

1 Introduction

The original Finite-Difference Time-Domain electromagnetic simulation method, first proposed
by Yee [1] in 1966, has spawned numerous variants in an attempt to emphasize desirable char-
acteristics, suck: as simplicity and stability. This paper examines the dispersion and stability
properties of some of these variants.

The dispersion relation for a given method or variant expresses the error in propagation
speed. This error, a phenomenon resulting from grid discretization, varies with propagation
angle and grid resolution. Switching to different FD-TD variants can reduce or aggravate the
overall dispersion error.

Stability must also be examined since the explicit nature of the FD-TD method exerts a
stability condition {2]. The stability requirements restrict the possible time and space resolution
used in FD-TD simulations.

2 General Forms of Dispersion and Stability Equations

In this section the dispersion relation and stability requirements are examined using a general
difference operator D. After these general equations are derived, they later can be used to examine
FD-TD methods by substituting in specific difference operators.

2.1 Dispersion

The dispersion relation is derived via the wave equation

L 8\~
vV — (Et—) V=0 (1)
which is expressed using difference operators as
D?-D2-D2-D2=0 (2)

A special requirement, which only shows up in a more detailed derivation, is that the dif-
ference operators must be linear. Certain methods satisfy this requirement for two dimensional
simulations only, and must be modified for use in three dimensions.
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2.2 Stability

The stability analysis of an FD-TD simulation is traditionally performed in two stages. The
simulation is examined as a large discrete linear system, and restrictions are placed on this
system’s eigenvalues to provide stability. First, the temporal eigenvalues are examined to find
the allowed range of stable eigenvalues. Then the spatial operators are used to produce a criteria

which only allows propagation of the stable eigenvalues found in the first step.

While this process is normally done with a specific FD-TD method, (second or fourth order)
it is possible to derive a stability criteria up to a certain point using only generic difference

operators, as was done with the dispersion relation.

2.2.1 Temporal Eigenvalues
The temporal eigenvalues are found by analyzing the difference equation

VIijk = Viie + OtDV [

and defining a time shift operator Q such that Q?V[7;, =V

n+1

ijk- This leads to

szizj,k = ‘712j,k+AtQDt‘7l:j,k
QQ‘-’:I?,]‘,I: = (1+AtQDy) V{z]k
QP = 1+4LtQD,
0 = Q*-AtQD, -1

_ DAt 2 \*
0 = 22 [rx1- (%)

To enforce stability we must limit the growth factor of Vlfjk over time, meaning that

et .
VI | Pl | @ <1
)VIZM 1 VI -

Substituting (4) into (5) produces a limit on the temporal operator D, such that

DAt

2 \?
_ <
1+ 1+<Dt t) 1

which requires that D, be imaginary and bounded by

2
|Dy| = i

The corresponding eigenvalue equation

n

DV = AV

tells us that D, = A, and so A is restricted in the same manner as D;.
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2.2.2 Spatial Eigenvalues
Derivation of the possible spatial eigenvalues starts with
VIV = AV (9)
which, in difference form, becomes
(D?+ D2+ DAVI7; = AV (10)
Solving for A produces the eigenvalues

A=%/D2+ D2+ D? (1

which, when combined with the restriction found for the temporal equations, gives the stability

restriction 5
2 24 D2 < 2. 12
D2+ D+ D2 < A (12)

2.3 Difference Operators for Specific FD-TD methods

In this section the difference operators used for various FD-TD methods are defined. After
these operators are defined, they are then applied to the general dispersion equations to find the
dispersion relation and stability criterion for each method.

2.3.1 The Second Order Difference

The difference operator D most commonly used is the second order difference, defined in FD-TD
as

- Vijoin = VI,
D:V[:'tj,k - I +1/2,5.k N | 1/2,5.k (13)

where 17|zj.k represents an Electric or Magnetic vector field. When ‘7IZM is in the plane wave
form

vl:jk - ‘70 ej(k,(i)Az+ky(j)Ay+k:(k)Az—u(n)At) (14)
we can rewrite the difference as a constant term, independent of the field it operates on:
27 . [(k.Qz
D, = —sin|—— 15
’ Az n ( 2 (15)

The second order difference is then extended to the other spatial axes (y and z) and the time
axis t. The complete array of second order difference equations is given by

2 (kDe
D, = AIsm( 3 > (16)
2 . (kDY
D, = Aysm( 5 (17
2 . (kD2
D, = AZsm( 3 > (18)
27 . fwdt
Dt = —A-Esm (—2—"> (19)
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2.3.2 The Basic Fourth Order Difference

There are many types of fourth order difference operators. The simplest fourth order operator is
a simple extension of the second order operator, given by

1 rr cr T 9 7N Crn
D:=-51% [V sz = V|i-3/2,j,k] YN [V|i+1/2,j,k - Vli—1/2,j,k] (20)
With a plane wave excitation this operator, like the second order difference, becomes a linear
term
125 . (3k Oz 925 . (kAx
=——— —_— - —_— 21
D. 24Azsm( 2 )+8Azsm( ) (21)

2.3.3 The Modified Fourth Order operator

One fourth order method (herein referred to as ‘M24’) 3] augments the basic fourth order differ-
ence operator with additional terms, and allows for some varying of coefficients in the operator.
By varying the coefficient values, one can produce operators which have a very low dispersion
error. The full equation is of the form

DIVyIZj,k = k1D1‘/3/|:j,k + kzDﬂ’;lzj,k + ksDSVymj,k (22)

which combines both second and fourth order differences. The three parts of the difference are
defined to be

~n Vilty2im — Vilizjan
DV Ii,j,k = = A = (23)
- 1 /4 -
DV = 3IA (V a2,k — V|?—3/2J,k)
‘rin 1 1 7 3
D3V[i,j,k = 3 [3—A (V |?+3/2,j+1,k -V |?—3/2,j+1,k) +
1

VN (VI?+3/2,j—1,k - Vl?—3/2,j—1,k)}

For a plane wave excitation the difference operator becomes a simple coefficient, just as the
second and basic fourth order operators did. '

w1, 2% [(kbs 2 . (3kslaz
D V,liie = [kl A sm( 5 ) +k2Az sin 2 + (24)
2] . 3]€ZAZ It -
k:;zz sin (—2——> cos (kyAy)]"y,i,j,k (25)

At this point the operators cannot be substituted into the general dispersion and stability equa-
tions, due to the fact that the operators change depending on what field component they are
applied to. As an example, consider applying the same D, operator to Vzlzj’,:. This produces

__— 2§ . [k:Dz 2j . (3k:Dz
DVl = [kl'E sm( 5 ) + k2 sin ( 5 ) + (26)
2] . 3]61&15 n
k3E sin (—2——) cos (k,Az) ] Vilise @7)
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which differs from the original D, operator (applied to V;|7;) by a single cosine term.

The difference operators for M24 are not linear operators; the operators change form when
applied to different components. Identities such as DV |, + D:Valiju = D2 (Vyltse + Valise)
are not true, and one cannot use the dispersion and stability equations derived using generalized
difference operators. Instead separate operators for different fields must be defined, for example
DYV, [7;x and DiV,[7 -

The M24 method was originally proposed and examined in two dimensions, which in some
part explains the problems encountered when applying it to three dimensional problems. This
method can be slightly modified to produce linear operators in three dimensions. Define the
difference components as

i Viltyoge = Vilicyz ik
Dlvylilj’k A (28)
DoVyliix 3_A— (1 eearzin — V|?—3/2,j,k)
1171 /=m -
DsVyli ik 1 [3—5 (‘” liva/2 i1k = V |?—3/2,j4,k) +

1
-‘A‘ ‘/11+3/2] Zlk_l |z 3/2,5— lk)

(
(" i+3/2,4.k+1 1% |z 3/23k+1) -+

1 s n ~n
EYN (V lis/2 k-1 — Vli—3/2,j,k—l)]

When VIZj,k is expressed as a plane wave, the difference operator becomes

_ 25 . [kAzx 25 . [3k:Dx
D, = {kle&n( 5 ) kagA—sin < : >+ (29)
23 3k, Az )
ky—— Tois SB (—————2 ) (cos (kyAy) + cos (szz)]

for both the V,[7;, and V;|7;x components, making D; a linear operator.

3 Specific Dispersion and Stability Equations

3.1 Dispersion for Various Methods

The difference operators for specific update methods can be substituted into the general dispersion
equation (2) to produce a dispersion relation for that specific scheme. The relations produced
here are normalized, with ¢ = 1.

3.1.1 Dispersion Relation For The Second Order Difference

()] - () [ -
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1 . (kA= 2
ESH’I 5
3.1.2 Dispersion Relation For The Fourth Order Difference
1 . (wnt\]? 1\219 . (kAz\ 1 . [3kAz\12
[Esm (—-—2 )} = (E) [—gsm (——2 —-2—4—51n 3 J + (31)
2
1 9 . (kADy 1 . (3k,ADy r
(—A_y> [-8' SIn ( D) ) 21 s ( ) +
1 2[9 (kDz) 1 (3D ]2
4z) 137\ 72 2 2

3.1.3 Dispersion Relation For The Three Dimensional Modified (2,4) Scheme

To preserve space, only a third of the equation is displayed, with the understanding that this
equation holds to the same form as the second order and fourth order dispersion equations.

z .o [ 3k
ﬁsinz (w—2A2> = iﬁz—)z[l@lkf sin® (Eél_z) + 16k2 sin® (Tx) + (32)

el . kz
96k, k; sin kO sin Sk, Az +
2 2
k3 sin® <3k12A$) (cos (kyDy) + cos (szz)) +
. (kD . 3k, Ox . (k. Az
2(12k151n( 3 ) +4kgsm( 5 >)k3sm( 5

sin (?’_kzﬂ) (cos (kyDy) + cos (k. Az) )] +

N’

3.2 Stability for Various Schemes
3.2.1 Stability for the Second Order Difference

Substituting the second order operators into the stability requirement ( 12) produces
2 (ko) (2 . (kAp\)
(E sin ( 3 )) + (A—y sin (—2-— -+ (33)
2 (kD2 P (2Y
Az M\ 72 = \&t

This equation can be simplified by assuming equal grid spacing in all three dimensions, and
also renormalizing the equations to include the propagation speed (c). This is expressed more
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succinctly by Az = Ay = Az = £. With the knowledge that |sin(z)| < 1, these simplifications
give

23 2
S & (34)
A -

3.2.2 Stability for the Fourth Order Difference

Substituting the fourth order operators into the stability requirement (12), in the same way we
looked at the second order stability equation, produces

2\ 19 . (kOz\ 1 . (3k.Az\7?

(Z) [g sin ( ) ) - ﬁsm (_'2‘—> J + (36)
2\’19 . (kDY 1 . (3kAy\12

(Z) [g sin (———2 ) - Zl-sm ( 5 } +

2\° [9 gn (E:D2) 1 (3kAz r < 2

A 8 2 24 2 - At
Making the same assumptions that we made for the second order operator, we can simplify this
equation into

2c2282  2c228%  2¢2282 2\’
- == o= = -2 <« =
A2 AU tTAn S (At> (37)
28¢ 2
3I— < =
124 — At
PLYAN 6A
Ot < =—
T 28¢v3  7eV3
3.2.3 Stability for the Three Dimensional Modified (2,4) Scheme
The spatial eigenvalues are of the form
1 k. Az 3k Az
y 2 = 44 2 .2 x 1.2 3.2 T
A Ta4(Aa)? [1 ki sin 5 )+ 16k sin 5 -+ (38)
kI . z
96k, ko sin ( ;lx) sin (3k QAI) +

k2 sin? (31512[31:) (cos (kyAy) + cos (szz)) +

kI -I . x
2(12k1 sin ( ?I) -+ 4k, sin <3k QAI) )k3 sin (k 2Ax> .

sin <3kIAI) (cos (kyAy) + cos (szz))] +

2
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which, using the same assumptions as for the second order difference, produces
2 \? 5 \2
4412 .2 -
3. <m> [144K2 + 1682 + 96Kk + V2ks (K3 + 2(12k1 + 4ky))] < ( At) (39)

and, solving for the same stability form as the other difference methods, produces
A

< (40)
c\/;[144k'f + 16k + 96k1k; + v/2ks (k3 + 2(12k; + 4k2))]

AN

where is it also assumed that the largest value for (cos(kyAy) + cos(k.Az)) is V2.
For the case where k; = 1, kp = k3 = 0, the difference operators collapse to second order and
the stability requirement reduces to the second order stability equation

A
At < — 41
T e/3 1)
and in the case where k; = 9/8, ko = —1/9, k3 = 0, the difference operators reduce to the
standard fourth order case producing
JAN A
Ot < 6 (42)

4 Conclusions and Future Work

The dispersion and stability relations become more complex as one progresses from the original
second-order method to the three dimensional M24 method. However, since the relations for
dispersion and stability can be expressed in terms of general difference operators, analysis of
any specific difference method consists of straightforward substitution into the general equations.
Care must taken to avoid occurrences such as the non-linear difference operators that appear in
the modified (2.4) method (section 2.3.3).

We are currently constructing a three dimensional electromagnetic simulator using the M24
method, with the global dispersion error minimized using the dispersion equations derived in this
paper. Using the generalized equations, the M24 method and other variations - such as a proposed
“compact” M24 version - can be easily analyzed for dispersion and stability characteristics.
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Abstract

A pew approach to truncate computational domains without reflection is proposed for finite meth-
ods, such as finite difference and finite element. By a trensparent amplitude modulation. the
open-space Maxwell equations, along with boundary conditions, are transformed to an equiva-
lent hyperbolic system with a homogeneous closed boundary. Like the popular Perfectly Matched
Layer (PML), the TAB is independent of frequency and incident angle. The unique feature of this
method is that it does not need the absorption region of the PML, and the physical fields can be
found from the attenuated ones through an inverse transformation.

1 Introduction

An important issue in computational electromagnetics is to simulate an unbounded space in a fi-
nite domain with a minimal computational space. Figure 1 shows a diagram of a traditional finite
computational domain. The subject domain contains the system under investigation within which
field components are of interest. Surrounding it is a transition domain which is used to truncate
the unbounded space. A variety of techniques have been proposed [1]-[6] to represent the fields with
some prescribed conditions either at the exterior boundary of the computational domain or at the
interfaces between the subject domain and the transition domain. The Perfectly Matched Layer
(PML), proposed by Berenger [6], is presently the state-of-art of truncation techniques. It is in-
dependent of frequency and incident angle, and is virtually reflection free. Its shortcoming is the
storage-intensiveness because of the split formulation. A variety of alternative approaches have since
been proposed to avoid splitting fields [7, 8]. However, the transition region is still used to absorb the
outgoing waves in these techniques. Besides, the Berenger’s approach is easy to implement in time
domain, while the others are suitable in frequency domain.

The truncation technique we propose here is an analytical approach that can be directly applied to
various finite methods, such as finite difference and finite element, in either time or frequency domain.
Without introducing reflections, the transparent absorbing boundary (TAB) forces the magnitudes of
the field components to decay inside the subject domain and to become exactly zero at the domain’s
boundary. Thus, the transition domain used in most of the existing truncation methods is no longer
needed. In this paper, we will present the idea of the technique, along with some examples to
demonstrate its characteristics.

*This work was sponsored by NASA Langley Research Center Grant NAG1-1082 and the Advanced Helicopter
Electromagnetics (AHE) Industrial Associates Program.

90



Subject Domain

2D

X

2L '
Subject of Study

| Transition Domain

2L
2D

Figure 1: Configuration of a traditional computational domain.

2 Transparent Absorbing Boundary

The proposed transparent absorbing boundary (TAB) method begins with the introduction of auxiliary
fields. Governing equations for the auxiliary system are then derived from Maxwell’s equations. Let
E,(t,7) and H,(¢,r) be the electric and magnetic fields of a physical problem in an unbounded space,
satisfying Maxwell’s equations and the boundary conditions of the problem. Assume that F(r)is a
scalar amplitude modulation function, defined in the sub ject domain whose boundary is indicated by
7o- Then, the auxiliary fields E(t,r) and H(t,r) are defined as:

E(t,7) = F(r)Eo(t,7) (1a)
H(t,r) = F(r)H,(t,1) (1b)
If F(r) # Oforr < r,, one can express (E,, H,) in terms of (E, H) and substitute them into Maxwell's

equations. Then, the governing equations that the auxiliary fields must satisfy are, for interior points
< T,

dE 1 1 c F . »
E‘;(VXH"FVFXH>_:E_:J1' (2&)
oH 1 1 L F
?)-;~—;(VXE-?VFXE)—-;H—;TRi (2b)
V-Esz+%VF-E (2¢)
1

V-H=Fp + = .

P +FVF H (2d)

where 0, 0%, j;, m;, p and p" tetain their meanings of the physical problem [9]; and for boundary
points 7 = 7,

E = F(r,)E, (3a)
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H = F(r,)H, (3b)

Apparently, homogeneous boundary conditions can be obtained for the auxiliary system if F is cho-
sen to decay outwardly and to become zero at the boundary r,. The most important feature of (2a)
and (2b) is the introduction of #VF x E and VF x H. According to the theory of hyperbolic
partial differential equations {10, 11], it is these terms that make the field attenuate and result in
the homogeneous boundary conditions, regardless of the physical interpretations of the loss mecha-
nism. Therefore, the effect of the outwardly-decaying F on the auxiliary system is equivalent to the
absorption of the fields by these lossy terms.

In addition to the governing equations, all the boundary conditions of the physical problem are also
transformed properly to establish an equivalence between the physical and auxiliary systems. Hence,
instead of solving Maxwell’s equations in the unbounded space, one can first solve the auxiliary
svstem (2) with homogeneous boundary conditions. The physical fields interior to boundary 7, are
then found using (1a) and (1b). It is important to ensure that no additional reflection is created
during the transformation of boundary conditions.

Thus, the critical part of the transparent absorbing boundary is to impose constraints upon the
amplitude modulation function F(r) so that the artificial loss mechanism creates no reflections. It is
well-known that there will be no reflection from a medium discontinuity if both the phase velocities
and wave impedances are identical across it. Furthermore, the physical reflection at the medium
discontinuity will not be affected by an artificial loss mechanism if the boundary conditions [BC],
the phase velocities v, and the wave impedances 7 are unchanged across the interface by the loss
mechanism; i.e.,

[BCla = [BCl,, Tg = T, and T =15 (4)

where subscript ¢ indicates the auxiliary system while o stands for the original one. Such a charac-
teristics of zero reflection is independent of frequency, incident angle, and material properties. Note
that, in {6], it is indicated that the PML satisfies these conditions, which explains mathematically
why the PML is a reflection-free loss mechanism.

Since F(r) # 0 in the interior domain r < 7,, the auxiliary system has the same wave impedance
as that of the physical system, i.e., n,(r) = T%%—rrﬂ = LEP—-(%:—))‘ = 7o(r). Meanwhile, a real and
continuous F makes the boundary condmons and phase terms identical in the two systems. Thus,
no additional reflection is created at the discontinuities. In other words, the artificial loss seems
transparent. Consequently. the proposed method is referred to as the Transparent Absorbing Boundary
(TAB). In addition to being non-zero, real, continuous, and outwardly-decaying, F should have at
least first-order differentiability so that it does not introduce discontinuity to cause reflection. For
simplicity, it is also preferred that the function is single-valued and independent of field information.
These conditions are quite easy to satisfy; and the following

rien = 1= (E) Tl (9) ] - ()T >
rtey = [ () oo [5 () ] o [5 (4

are two examples of F in Cartesian coordinates, if m,n,p,q,% and v are greater than zero. L, L,
and L, are the lengths of attenuation paths in the z ,y and z directions, respectively.

and
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Figure 2: TE (horizontal) polarized plane wave incident at an oblique angle on an interface.

3 Reflection Coefficient

The following analytical example is intended to demonstrate that the physical reflection at a2 medium
discontinuity will not be affected if (4) is satisfied. The derivation is similar to the plane wave case
in [9]. Assume that a TE (perpendicular) polarized plane wave is incident obliquely on the interface
of medium 1 and medium 2, as shown in Figure 2. The auxiliary incident fields can be expressed as:

B = 4| (s, e (mnos o) (62)
H' = (-a, cosb; + &, sin 6;)|H'(z, z)|e_jf;_(“in itz cosi) (6b)

where v; is the phase velocity of the auxiliary fields in region 1, and ¢ indicates the incident fields.
The reflected and transmitted fields of the auxiliary system can be expressed accordingly.

Under (4), the tangential components of the auxiliary fields are continuous, like the physical fields.
Substituting the incident, reflected and transmitted field expressions into the continuity equations
leads to Snell’s laws of reflection and transmission:

6, =6, (7a)
-l—sinG,- = —l—sin6‘t ' {7b)
v k)

as well as the reflection and transmission coefficients I' and T':
_ B (z.z=0) _ macosb; — meosh,
T |ENz,z=0)] ~ macosb; + meosb;
_|EY(z,2=0)] _ 2m; cos §;
T |Ei(z,2=0)] ~ 72c088; + mcosh;

(9
where m;; = % = % is the wave impedance of the auxiliary waves in medium 1, and 7, = 'I[%L‘IL
represents that in medium 2. Since the phase velocities and wave impedances are identical in the
physical and auxiliary systems, the propagation directions, dictated by Snell’s laws, are maintained
and the coefficients given in (8) and (9) are equal to those of the physical case given in [9]. There-
fore, the transparent absorbing boundary does not introduce additional reflections, regardless of the
frequency and incident angle of the waves.
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Figure 3: Local reflection errors that are due to the TAB absorption.

4 Numerical Reflections

To show the TAB’s characteristics numerically, the reflection errors of a two-dimensional TM polarized
cylindrical wave are computed, using the methodology suggested by Moore [12]. The computational
domain is shown in Figure 1, with the source in the center of the subject domain that is free space
now. The dimensions of the domains are 2L = 4 m and 2D = 8 m. The amplitude modulation
function is given as below:

|- 4 — 4 . « e -
Flz.y) = [1 - (I—D—lf) ] [1 - ('—;%) ] if (z,y) in the transition domain (10)
1 otherwise

The transition region is still used to measure the reflections caused by the TAB’s loss mechanism.
Yee’s algorithm [13, 14] is used to approximate (2a) and (2b). The cells are 0.05 m x 0.05 m in
dimension, which makes the transition domain 40 cells thick. The Courant number v = %“ is taken
to be 0.7, and the time duration is 100 steps. The computations were made with double precision.

Figure 3 shows the distributions of local reflection errors. They are lower than 1078 (i.e., -160
dB); in other words, the TAB is reflection-free, as expected. The data shown on the left are the errors
at 300 MHz, collected along two horizontal lines off the symmetry line by some distances. Since the
distributions are along the different observation lines, the low reflections in the two cases indicates
that the TAB is independent of the incident angles of the source. The data shown on the right were
computed at- 150 MHz and 300 MHz, and collected along the horizontal line that is 1 m off the
symmetry line. It is clear that the operating frequency has little effects on the low reflection of the
TAB; i.e., the loss mechanism is independent of frequency.

It should be pointed out that the reflection errors shown in Figure 3 are solely due to the artificial
loss mechanism. It is this kind of reflection that limits the applications of most absorption-based
truncation methods. Like the PML, the TAB is virtually reflection-free and independent of frequency
and incident angle at the interface between the free space and the artificial lossy media. The other
type of reflection into the free space region is caused by the numerical implementation at the exterior
boundary, such as the perfect electric conducing (PEC) termination used in the PML. Such a reflec-
tion is not intrinsic to the analytical absorbing mechanism and may vary with different numerical
implementations. Therefore, it is eliminated during the computations by stopping the computation
before such a reflected wave reaches the subject domain.
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Figure 4: The numerical solutions of the E, of a plane wave traveling outwardly in both directions.

5 Domain Truncation for Finite Difference Methods

It is mentioned in the previous section that the imperfection due to the numerical implementation
near the exterior boundary may cause some reflections. They are not intrinsic to the analytical
reflection-free loss mechanism. In this section, we use two one-dimensional examples to show that
that kind of reflections are indeed caused by the finite difference schemes, instead of the analyvtical
absorbing method.

Assume that a plane wave source is located in the middle of an one-dimensional free-space domain,
and the wave propagates in both directions. The entire domain amplitude modulation function

l=]\* ;

s =1-(H), el < L (1)
is used to truncate the computational domain of 2L = 4 m. Both Yee's algorithm and the Lax-
Wendroff scheme [15} are applied to find the auxiliary E field. The results are then converted back
to E,, and compared with the exact solution. In the computations, the Courant number is equal to
1, the cell size is 0.025), and the time duration is 400 steps which is sufficiently long for the reflected
waves to bounce back and forth a few times in the domain. The numerical results are shown in
Figure 4, along with the exact solution of the problem.

The computed results on the left-hand side were obtained using the Lax-Wendroff scheme in which
the £ and H fields are collocated. The numerical solution agrees excellently with the exact solution.
Those on the right-hand side were computed with Yee’s algorithm where the E and H grids are
staggered. Without modifications, the result is contaminated by the reflections generated near the
two boundary ends, as shown by the dashed line. The reflections are caused by the staggered finite
difference approximation, which can be illustrated with the help of Figure 5. At the last H grid (a
half cell away from the boundary), the Yee equation for the magnetic field is

2fN-0s Mo fN—0s5

because of fy = 0. If the initial value is zero, H|y_1 will be always close to zero, which is equivalent
to a magnetic conducting wall at the grid point. An identical wall occurs at the other end of the

n+l -1 ¥ Afp_o. in n-l v fx n-i
Hiy s =Hly s+ = (1 + s Effa~Hix 5+ "—LE'R'-l =H|y5%s (12)

95




HN-S.S HN-Z.S HN'LS HN-05
o——J 1=} i © B o— X

Eys Exa E Ex

=/

Figure 5: The one-dimensional illustration of a staggered grid, such as the Yee's.

domain. Modifications, such as the following,

A T -y A

Bhe= g (s B + 2 (14 55000 oy (13)
are needed to avoid the problem. With (13), the formation of the magnetic walls are prevented; and
the computed result, shown as the dot, agrees well with the exact solution. Thus, such reflections
are associated with the particular numerical scheme, instead of the artificial loss mechanism. It is
noticed that the effectiveness of (13) depends upon the values of the Courant number 5, and varies
with the dimensions of the problems. Further research is necessary in order to prevent the numerical
reflection walls associated with the staggered scheme.

6 Conclusion

A new analytical approach, the Transparent Absorbing Boundary (TAB), has been proposed. The
TAB introduces an artificial loss mechanism that can be mathematically identified. With the TAB
method, a physical problem in an unbounded space can be solved in a closed domain, with the aid of
the auxiliary fields.

Like the popular PML method, the TAB is reflection-free, independent of frequency, and uncon-
strained by the incident angle. The uniqueness of the TAB is that it does not need the additional
transitional domain. Besides, it can be directly applied to time- and frequency-domain finite methods,
such as the Finite Difference Time Domain (FDTD) and the Finite Element Method (FEM). Poten-
tially, it is suitable to truncate an arbitrary convex domain by defining the amplitude modulation
function F according to the shape of the domain.

Analytical and numerical examples showed that the TAB itself does not create reflections. The
method has been successfully implemented to truncate the collocated Lax-Wendroff scheme. However,
when used along with the popular Yee staggered algorithm, an artificial magnetic conducting wall is
formed near the exterior boundary. It should be noted that this is associated only with staggered
schemes and is presented as a future challenge. Hopefully, the strengths and challenging issues of
the TAB will stimulate new ideas and further research to improve the computational efficiency and
accuracy of finite methods.
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1 - INTRODUCTION

Electromagnetic absorbers have many practical usages and demand for them is increasing. These include
the now famous stealth technologies and practical EMI/EMC countermeasures for personnel communications and
computers, as well as the more traditional cone absorbing materials for anechoic chambers. The immense interest
in complex media such as artificial chiral materials [1-4] has arisen from such needs. The artificial chiral materials
such as the helix-loaded substrates [3] are worthy of particular note since they represent a very nice example of
our current ability to engineer absorbers which have strong magnetic, as well as electric, properties designed into
them. In contrast, artificial dielectrics have been known for many years [5-7] and have found uses, for example, as
light-weight lenses and currently as photonic band-gaps [8].

Absorbers have also attracted much attention recently in the computational electromagnetics community. The
need to truncate the simulation domain in any finite difference or finite element approach is well-known. Many
approaches have been developed to achieve this truncation; they are generally classified now simply as absorbing
boundary conditions (ABCs). Like with any real-life absorber, the perfect ABC would absorb perfectly any
frequency of electromagnetic radiation incident upon it from any angle of incidence. The Berenger perfectly
matched layer (PML) ABC [9] comes quite close to this goal. However, the PML ABC is implemented in a non-
Maxwellian fashion through the field equation splitting introduced by Berenger [9]. This is not a serious drawback
numerically, but it does mean that a PML region can not be realized physically.

A broad bandwidth absorbing material that is Maxwellian has been introduced in {10]. It is based upon a
generalization of the Lorentz model for the polarization and magnetization fields that includes the time derivative
of the driving fields as a source term. The physical basis for this time-derivative Lorentz material (TD-LM) model
has been discussed [11]. Suggestions have been made [10] for potential realizations of this TD-LM material with
a proper engineering of artificial materials. This paper represents a more detailed look at the use of electrically
small radiating elements combined with a proper selection of circuits to achieve a perfect absorber. Because they
are small, these artificial molecules can be integrated into the surfaces of an object and can be designed to cause
active or passive variations in the responses (active or passive components in the circuits) from the electromagnetic
field interactions with these structures. Potential applications include novel sensors and detectors as well as smart
RCS surfaces and absorbers.

The electrically small antennas we have considered to date are discussed in Sections 2 and 3. The corresponding
artificial electric and magnetic molecules are detailed in Sections 4 and 5. The results from modeling these smart
structures with the finite difference time domain approach are discussed in Section 6. Conclusions are drawn in
Section 7.

2 - DIPOLE ANTENNA
We consider an electrically small dipole antenna (i.e. kly < 1, where 2[g is the physical length of the antenna
and k is the free space wavenumber) as shown in figure 1-a.

lo
— aq . To
—= &:_—::.:! a
(a) dipole . (b) loop
figure 1
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For an induced current law on the dipole of the triangular form

1) =11 - )
0

the effective length k of the antenna is k = Iy sin# s and the induced open circuit voltage at the dipole terminals
is

Voc = E.h
Using Thévenin’s equivalent circuit for the dipole and its load, we find the current at the terminals to be
Voc
L, = = = ————
= le=0=

where Z;,, is the input impedance of the antenna and Zy, is the impedance of the load.
The equivalent polarization of the resulting ‘electric molecule’, i.e., the small dipole antenna coupled to the
load, is thus given by

_ Linlo _
P= jwV = eoer
where K
- —t
Xe = —ijd(w) (l)

is the equivalent electric susceptibility of the composite material,
2

{ R
K, = 59‘7 €os 1), sin §

is a positive constant, ¥, is the polarization angle between the dipole and the incident electric field, V is the
effective volume in which the composite permittivity is constant, Zs(w) = Z;i, + Z1 is the total impedance, and ¢
is the permittivity of vacuum.

The input impedance of an electrically short dipole antenna is approximately

)=

where Cy = meolo /S is the equivalent capacitance of the dipole, and Q = In(2l, /a4) is the antenna thickness factor.
The load is defined by passive elements. Various combinations are considered in Section 4.

3 - LOOP ANTENNA
For an electrically small loop antenna (i.e. krg < 1, where o is the loop’s radius) as shown in figure 1-b, the
induced current is a constant I;. Using Norton’s equivalent circuit for the loop and its load, we find the current
at the terminals to be
Ih=2reH=1,+1

where I, is the current flowing through the antenna impedance and I; is the current through the load. The voltage
at the load is
Vi=I121 =1,Z;,

so we derive the expression for the current I,
.
L=0L/1+ 7'3)
L
The input impedance of an electrically small loop antenna is approximately
Zin(w) = —july

where L; = poro(ln 5:1,9- ~ 2) is the equivalent inductance of the loop.
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The equivalent magnetization of the resulting “magnetic molecule”, i.e., the small loop antenna coupled to the
load, is thus given by
arg
= "‘—/"Ia = xmH
where
Xom =k
T 14 Zin/Zs

is the equivalent magnetic susceptibility of the composite material,

@

2rrd .
Kn ==L cosypsinf
|4
with similar notations as before.

4 - EXAMPLES OF LOADS
4.1 - Global EM properties of the composite material

Due to the fact that the electric molecule produces only dielectric properties, and the magnetic molecule only
magnetic properties, we can have different and unrelated behaviors on the ‘dielectric side’ and on the ‘magnetic
side’. Furthermore, if every dipole (or loop) is oriented in the same direction (under the action of an electric field
for example) we obtain a dielectrically (or magnetically) anisotropic material.

Also, it appears possible to design a matched material based upon the dipole and the loop, i.e. a material
with €, = p, on a large frequency band, because of the apparent duality between the dielectric molecule and the
magnetic molecule.

Assuming that the load has only passive components, the impedance Z; can be written as the fraction of two
polynomials of —jw

n
Y TR L
_ Pa(-jw) _ 'Z%P;( jw)
ZL(W) - Q (___ -w) - m j (3)
mJ }:0 gi(—jwy
3=

where the p; and g; are positive real numbers.

4.2 - Resistor load
The simplest load is a single resistor . When connected to the dipole, the total impedanceis Zg = R—1/(jCaw)

and the electric susceptibility is given by
K.Cy

Xe = 1 jwRCq
which is similar to the Debye model.
When connected to the loop, the load impedance is Zz = R and the magnetic susceptibility is given by
- Kh
_ Xm = T jwLi/R
which is a magnetic Debye model.
In each case, the material has positive losses, since the components are passive.

4.3 - LRC loads
When connected to the dipole, an LRC series load gives the following electric susceptibility

Ye = Kectalwg
7 wi—w?—jwR/L

where Ciot = C4C/(Cq+C) is the resultant capacitance and wo = 1/+/ICio is the resonant frequency of the total
circuit. This results in the well known Lorentz dispersion model. Note that w = 1/LCj, is the resonant frequency
of the total circuit, including the antenna. '
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When connected to the loop, the LRC parallel load gives the following magnetic susceptibility

Xom = wiKy,
™7 W —w? - jw/RC

where Lyot = LiL/(Li + L) is the resultant inductance and wo = 1/v/LsotC is the resonant frequency of the total
circuit. ‘This results in the magnetic Lorentz dispersion model.

4.4 - Other loads
When a parallel RC circuit is connected to the dipole, or by duality a series LR is connected to the loop, we
obtain a time derivative Debye dielectric or magnetic model, caracterized by

_ 1—jRC: _ R—jL
Xe = CeK i rlc e xm = Knmoiteine

When a parallel LR circuit is connected to the dipole, or by duality a series RC is connected to the loop, we
obtain a time derivative Lorentz dielectric (presented in {10] and [11]) or magnetic model (TD-LM), characterized

by
_ 2—jw/RC. - 3—jwR/L
xe = KCapticfelBo xm = Kol
It is also possible to derive a double time derivative Debye or Lorentz Material by changing the loads. For
example, the 2TD-LM dielectric material is obtained for a parallel LRC load, while the 2TD-LM magnetic material
is for the series LRC load.

In each of the cases described above, the possibility of having a matched material (i.e. ¢, = pr) is subject to

the condition .
jlw

- S = +27) @
L

1

Y. LY
R, iCw

5 - FDTD IMPLEMENTATION

The FDTD implementation is made by using an algorithm analogous to the Auxiliary Differential Equation
Method. The electric (resp. magnetic) susceptibility is explicitly written employing equation 1 (resp. 2), where
the load impedance Z, is written as a fraction, employing relation 3. Then, after reduction of the denominators,
the equation obtained is transformed into a partial differential equation, assuming a time derivative 9" /6t™ for
each term (—jw)™. We show hereafter some examples of these partial differential equations.

5.1 - Resistor load : Debye models
Thus the simple resistor load leads to the following equations, relating P and E, M and H

P 1 _ _ coK.
% TRC,, - R ©

8M R, _KiR

a7y

5.2 - LRC loads : Lorentz models
A series LRC load, connected to the dipole and a parallel LRC to the loop lead to the following equations

8?P ROP 1 oK.
I A roweia

a2M 1 oM 1 Ky

o VRO B T TG T TG
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5.3 - Time Derivative Lorentz Materials
The parallel LR load connected to the dipole and the series RC connected to the loop lead to the following
differential equations

.(22_P.+_]_'._6_P+_1_ —eoK‘_a.E_'_fi{i
&> " RC;ot  LCs; T R B L
M ROM 1 _ KyROH &H

L TLeM T e VI

E

6 - NUMERICAL RESULTS
6.1 - Matched Debye material
In order to have a reflectionless material, equation 4 leads to

K.Ci= Ky RiIRiCy=L;

The first equation enables us to choose the dimensions of the antennas, while the second provides their respective
loads. We designed a matched absorbing multilayer material, with a taper on the loads. The following picture
shows that, for an incident wave of unit amplitude, the reflected wave is less than 2.10~*V/m, and the transmitted
wave is attenuated in its propagation through the material.
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0.02 - Source Free space Debye material 1
0015 | o
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o z -

-0.005 DA
001 ¢ Reflected ]
-0.015 : Field -
002 F D

-0.025 — : . - : . Lo
0 7 8

2 3 4 5 6
E-field at t=18ns vs. distance (m)

6.2 - Matched Lorentz and TD-LM materials
In order to have a reflectionless material, equation 4 leads to the two previous equations plus

LaCy = LiCy

This leads essentially to the same analytical and numerical results as was obtained with the matched Debye material
for normally incident electromagnetic (i.e., 1D plane) waves.

7 - CONCLUSIONS

The possibility of constructing artificial molecules from loaded elementary electric and magnetic dipole antennas
has been examined. The design of the loads of these molecules allows one to achieve particular polarization and
magnetization properties. The resultant characteristics of these artificial molecules lead to lossy electric and
magnetic material designs. For instance, since the polarization and magnetization properties can be properly
proportioned, one can realize extremely interesting reflectionless electromagnetic absorbers. These “smart skins”
have many potential uses. ’
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Several basic cases were discussed. They have been tested numerically with FDTD implementations in 1D.
Many more parameter studies must be made and are currently under investigation. The response of the matched
materials to various incident pulse shapes are being considered as well as their behavior when their thickness and
loss parameters are varied significantly. Obliquely incident plane waves cases are also being considered. Future
studies will include the use of active molecules achieved with nonlinear loads and their reponse to broad bandwidth
incident pulses.
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1. Introduction

The numerical modeling of periodic structures, such as photonic band gap (PBG) structures and
frequency selective surfaces (FSS), is important in the design of antennas and other devices [1]. Cur-
rently, most available techniques are based in the frequency domain and thus can analyze periodic
structures for only one frequency at a time. This can be a severe limitation for analyzing periodic
structures which operate over a broad frequency band. An alternative approach is to employ time-
domain techniques such as the finite-difference time-domain algorithm. A primary consideration with
using a time-domain approach for a periodic structure, however, has been the implementation of an
efficient technique for modeling the periodic boundary condition for plane waves at arbitrary angles of
incidence. Recently, progress has been made in this area with the development of a simple two-
dimensional technique called the split-field update (SFU) method that incorporates a periodic bound-
ary condition in the time-domain and maintains the capacity to compute wide bandwidth responses [2].
In this work, this methodology is extended to three dimensions, and the resultant algorithm is em-
ployed to analyze a PBG structure and a thick FSS. Comparisons of the results of the method are
made with data from measurements and other numerical methods.

2. Formulation

The periodic boundary condition is taken into consideration through a Floquet related trans-
formation of Maxwell’s equations which is presented in [3] and [4] and briefly described below. Since
these equations are unstable when the traditional leap-frog approach of the finite-difference time-
domain algorithm is employed, and the approach given in [4] is complex to implement, a split-field
update (SFU) technique was developed [2]. The SFU technique uses field splitting in discretizing the
transformed field equations. The fields are staggered in space, but for stability some of the split elec-
tric and magnetic fields are updated with the leap frog method at each half time step, and the rest of the
split fields are computed with additional equations. For the problems under consideration, the propa-
gation direction of the incident wave is in the x-z plane only, but the structure is periodic in both X
and y. The three dimensional formulation for an incident plane wave approaching the origin as shown
in Fig. 1 is given by the equation
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E'"C(x,y,z,t)=E(’,"‘f(xsme.;.l.(. cos +,) (1)
[+ 4 c

where c is the velocity of light in free space, and 8 is the angle of incidence. Using the frequency do-

main transform given by
P EY _,
= e—'}k’x (2)
o H

where k, = k,sin8 the Floquet condition in the time domain simplifies to
P(x+T,.y+T,)= P(x,y) ©)

for P and similarly for Q [3, 4]. After transforming Maxwell’s equations in the frequency domain with
(2), they are converted back to the time domain, and the field splitting approach is employed to discre-
tize them. For example, P, is given by

oP, i
&y e QQL_.‘?&,L__SIH(Q)QQ_:. (4)
o g \ 0z Ox c o

which is expressed in the split field form as

% _ _%(a_gx_g_g_) )
or g, \ 0z O«
and
7, sin(6)
P,=PF, +_8—_Q: (6)

where 7, is the free space wave impedance, and ¢ is the velocity of light in free space. Following the
procedure given in [2], the SFU equations for the three dimensional case can be expressed as

n+1/2 ne12  CO! " !
x =Qx +.l’_"'7n_0(a:};' -6YP3 ) (7)
nili2 _ pn-l2_ CAM, 4 "

P = P _T—(azgy _aYQ=) @
et g2 +_"_A_t_(ax Pr-a, Px") ©)
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nei2 _ pn-li2 _ CAM, 4 “

Pya = Pya _g_(aXQ: -0.0; ) a0

r
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Equations (7) - (12) are the finite difference updates, and (13) - (16) account for the periodicity. In
(13) - (16) the fields are averaged in space where appropriate to maintain second-order accuracy.

The stability condition was derived for this formulation using 2 Von Neuman eigenvalue analysis [2]
(including the spatial averaging) and is given by
2
cos O an

Al = ————
c|sm9|51Ar;§cos§ +edD

where

_ sin? £ cos? Esin’@ + sin®£cos? 6 + cos* 0 . cos? & cos Osin’ 0 + cos? @
Ax? Ax? AZ? Az? »’

g:«w‘(%ﬂ) 19)

D 18)

R Ay*Ax sy + AP Az (ng + 1) FAA ALY ST + AP AY A ] (l + cg)
T 0P + 0P (1453 ) + A0 AZ ST + 205 AP A
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(20)
Ay axiclsy + AyZAz4(l +s3 ) +4AX Az ST +2Ax Ay AP st

Sp =sin@, and ¢, = cosH.

At normal incidence (6 = 0), the stability criterion given by (17) - (20) reduces to the standard FDTD
stability relation. As the angle of incidence increases, the required time step decreases, and as 6 ap-
proaches grazing incidence (90°), the time step becomes very small which results in an impractical
number of iterations. Due to this limitation, the SFU approach becomes computationally intensive for
incident angles above approximately 80° degrees (at which point the time-step has been reduced by
approximately a factor of 20). For the larger angles, other methods can be used, see for example [3, 6,
7, 10].

3. Boundary Conditions

The mesh is truncated with periodic boundary conditions (PBCs) at the surfaces normal to the
% and ¥ directions and a radiation or absorbing boundary condition in the +% coordinate directions.
The PBC is implemented by setting the transformed magnetic fields one-half cell outside of the peri-
odic cell boundaries to those fields one periodic cell away but within the periodic boundaries using (3).

The anisotropic perfectly matched layer (PML) boundary condition is employed to absorb ra-
diation from the periodic structure that impinges upon the mesh truncation boundaries in +2 [9]. Note
that the conductivity in the PML needs to be increased for larger angles of incidence to provide better
absorption.

4. Analysis of a Woodpile Photonic Band Gap Geometry and a Thick, Double,
Concentric Square Loop

The SFU method is used to analyze a wood pile PBG structure and a thick, double, concentric
square loop FSS. The SFU results for the PBG are compared with results from a frequency domain
multi-mode matching (MMM) method and measurements [7]. The woodpile and its dimensions are
shown in Figure 1. Each stick forming the woodpile is the same size and has the same permittivity.
The structure is doubly periodic in X and §. The results are given for normal incidence in Figure 2
and for an incident angle of 30 degrees in Figure 3. The numerical results from the SFU agree well
with the data from the MMM technique, and the results are similar to the measured data. Note that the
measurements at the high frequencies are more inaccurate.

A top view of one cell of the doubly-periodic, thick FSS is shown in Figure 4 [6, 8]. Thick
conductors with square cross sections form the loops. The percentage of power reflected is computed
for this case, and the results of the SFU calculations are compared with method of moments (MM) and -
the single-frequency finite difference time domain (SF-FDTD) results given in [6, 8]. F igure 5 shows
the analysis for a plane wave at an incident angle of 0 degrees, and Figure 6 shows the results for a TM
plane wave (H,) at an incident angle of 60 degrees. For the 0 degrees incident angle, the SFU results
agree best with the SF-FDTD results. For the 60 degrees case shown in Figure 6, the SFU results are
slightly shifted from the other results, but good general agreement is observed.
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5. Conclusions

The two-dimensional SFU method was extended to three dimensions where the propagation di-
rection of the incident plane wave was limited to the x-z plane, but the periodic structures were doubly
periodic in X and §. Comparison of the numerical results with those from measurements and other
methods showed the technique modeled both geometries well over a band of frequencies. This ap-
proach is being extended to the general three dimensional case for a plane wave at an arbitrary angle of

incidence.
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Figure 1. Side view of wood pile doubly-periedic in x and y. (Each stick has dimensions of W=1/8in, L
= 0.4375 in and dielectric constant of £, =8.0. The periodic cell is LxL. The diagonally shaded sticks
along X are offset from each other in the same fashion as the sticks along D)
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Figure 2. Comparison of results for the transmission through a woodpile PBG with normal incidence.
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Figure 3. Comparison of results for the transmission through the woodpile PBG for an incident angle of
30 degrees.
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Figure 4. Top view of thick, double, concentric square loop doubly periodic in X and ¥. The conductors
forming the loops have a square cross section of T/16 x T/16 where T is the periodic cell dimension, d =
T/16. W1/T = 0.875 and W2/T = 0.6875 where W1 and W2 are measured from the centers of the conduc-

tor widths.
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Figure 5. Percentage of power reflected for the thick, double, concentric square loop for a plane wave at
an incident angle of 0 Degrees.

120
100 E |
3 80}
[3]
[+]
T 60
o
S 40
(] [
o. b
® 20t
0
0.0 0.2 0.4 0.6
T

Figure 6. Percentage of power reflected for the thick, double, concentric square loop for a plane wave at
an incident angle of 60 Degrees.
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Modeling Dispersive Soil for FDTD Computation
By Fitting Conductivity Parameters

Carey M. Rappaport and Scott C. Winton
Center for Electromagnetics Research
Northeastern University
Boston. MA 02115

Abstract The electrical parameters of soils
are strongly dependent on their type, physical
characteristics, and electromagnetic excitation fre-
quency. When numerically modeling soil for sub-
surface sensing simulation, it is particularly im-
portant to account for this dispersion. When
computations are done in the time domain, this
dispersion becomes problematic. Using a differ-
ence equation relation—and its corresponding Z-
transform—to model dispersion between electric
field and current leads to an approximation of
complex conductivity in the form of a ratio of
polynomials in Z~* (where Z = /).

It is shown that if the real dielectric constant
is held constant at an average value and conduc-
tivity only is matched with a single (2,2) Padé
approximant o(f) = (bo+ 01271 + 8.27%)/(1 +
ayZ~' 4+ a2Z"?). then the resulting propagation
number 3(f) and decay rate a(f) will both closely
match those corresponding to real soil measure-
ments. In particular, a simple relation governing
the frequency behavior of conductivity as a func-
tion of soil moisture and density is presented.
allowing for the efficient numerical prediction of
wave propagation in soils of varying environmen-
tal characteristics. Computed FDTD results for
scattering in soil-—with the computational lat-
tice terminated with a “soil-tuned”™ PML absorb-
ing boundary condition—clearly show the signif-
icance of media dispersion

I. INTRODUCTION

Recent interest in ground penetrating radar for
locating and identifving buried waste, land mines,
and excavation obstacles has motivated the develop-
ment of advanced computational tools to simulate
wave propagation in soil. In particular, the need ex-
ists to analyze ultra-wideband signals which might
balance the trade-off between penetration depth and
target resolution. Soilis a difficult medium to model
since it is inhomogeneous, lossy, dispersive, and has
an irregular surface boundary. For flexibility in pre-
dicting radar scattering from both metal and plas-
tic targets buried in soil with rock inclusions and
topped with vegetation, the Finite Difference Time
Domain offers significant advantages over other stan-
dard computational techniques.

To include the effects of frequency-dependent
conductivity and dielectric constant. a dispersive
variant of the FDTD algorithm must be employed.
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This variant is nontrivial, since unlike with the fre-
quency domain constituitive relation, electric flux
and field are related by convolution in the time do-
main: D = exE. The electric current is also a more
complicated function of electric field in the time do-
main, since conductivity cannot merely be included
as part of a complex permittivity.

The standard approaches to modeling disper-
sion in the FDTD method involve either recursively
computing the convolution (as cleverly developed
by Luebbers, et. al. [1]); or by approximating the
frequency domain dispersive complex dielectric con-
stant with a series of simple rational functions (De-
bye or Lorentz models) of jw [2,3], and then by mul-
tiplying the constituitive relation by the denomina-
tor and inverse Fourier transforming the result into
the time domain. While these methods are effective,
they are suffer from the limitations of numerical
computation. Namely, that for good dispersive me-
dia modeling, higher-order, multiple-pole dielectric
constant functions are necessary; but as the order
of the function increases, so does the required stor-
age of previous time field values for the entire grid,
along with the sensitivity and numerical instability
of the algorithm. In particular, to suit the concep-
tual elegance and simplicity of the FDTD method,
it is important to keep the media model to at worst
second-order. This presents a problem for the con-
ventional complex dielectric constant models. which
must accurately approximate both real and imagi-
nary frequency dependencies simultaneously, using
at most two poles.

For certain types of media, however, it is pos-
sible to separate the modeling of real dielectric con-
stant and conductivity. In both biological tissue and
soil, for instance, the lossy dispersive wave propa-
gation is governed almost entirely by the frequency-
dependent conductivity. For these media, the real
dielectric constant, though frequency-dependent, does
not significantly affect either the real propagation
constant (3, nor the decay rate o [4]l As such. their
electrical characteristics can be well-modeled with
a constant relative permittivity ¢/, and a second-
order-in-frequency conductivity ¢. Further, by mod-
eling o in terms of powers of the Z-transform vari-
able Z=! (which readily transform to time delays),
the conversion of the generalized dispersive Ohm’s
Law J(Z) = 0(Z)E(Z) to the time domain is partic-
ularly straightforward [3]. The problem addressed
with this report is the specific selection of modeling
parameters for a typical, well-studied soil, that sim-
ply and efficiently accounts for variations in density
and moisture content.




MODELING PUERTO Rican Cray Loam
UsING SECOND-ORDER CONDUCTIVITY

Arguably the most widely-cited soil measure-
ment study is that of Hipp [6], which provides con-
ductivity and real permittivity of San Antonio and
Puerto Rican clay loam as a function of moisture ga.s
a percent of dry weight) m, and density (g/cc) d, for
the frequency range 30 to 3840 MHz. The method
for developing the general second-order conductiv-
ity soil model is based on this experimental data set.
While other soils will have different electrical char-
acteristics, it is expected that general trends will be
similar to that of Puerto Rican clay loam. Also,
because of the wide variety of soils, and the diffi-
culty in obtaining carefully generated soil measure-
ments. every attempt was made to keep the model
parameters as simple as possible, with mostly linear
dependence on their physical characteristics.

. Eirst, to maintain easy conversion to time dp-
main it is essential that the conductivity for all mois-
ture and density cases have the form:

o(Z)=

J(Z) bu+b1Z—l+bQZ—2
2 - )

E( )_ 1+a1Z2-1+a22-2

The b; and a; coefficients will each be independent
functions of m and d. The actual measured val-
ues of conductivity correspond to the real part of
o(Z2), with Z = &>"/At, for FDTD time step At.
The imaginary part, divided by j2w feo adds to the
frequency-independent dielectric constant ¢'. In the
time domain, Eqn. (1) becomes:

J" + 01-]"—1 -+ aan_g = bE" + blEn_l + ng"-z
2
and Ampere’s Law, as usual, is given by:

IEn+1 - E® Jn+1 +Jn
4+

v n+1/2
x H €o€ yxl 5

3

In a previous publication [7}, the best coeffi-
cients for Puerto Rican clay loam were determined
for each separate sample of moisture and density.
Although useful from a numerical view, these coef-
ficients are not very helpful for the practical problem
of determining wave propagation for an intermedi-
ate soil condition. To address this difficulty, a more
unified approach is developed.

For the various moisture and density cases mea-
sured in [6], the best modeling coefficient values of
Equn. (1) vary considerably. However, the denom-
inator coefficients: a; and g@». only differ at most
by about 15%. Choosing fixed values a; = —1.6
and a; = .64 and allowing variation of the b co-
efficients gives up a little accuracy but provides a
more simple model. Instead of finding the values
of b; which minimize a non-linear cost function for
each moisture/density case, the current modeling

method simply solves for by, ba. and b3 by setting
the real parts of o(Z) in Eqn. (1) to the measure
values, at three particular frequencies: 120, 960. and
3840 MHz. While this method arbitrarily empha-
sizes the fit at these frequencies, it avoids justifving
what type of cost function to use. A least-squares
cost function for normalized error in ¢ and ¢'. for
example, is not as precise as for normalized error
in the rea] and imaginary parts of the wave num-
ber k = B ~ jo; and neither appropriately weighs
the error on decaying wave amplitude across the Tre-
quency range.

The b; coefficients for constant density and mois-
ture levels m = 2.5, 5, 10, and 20 are first de-
termined, and then fit to simple functions of m:
b; & bio + b;; logm. It was found that while a very
%ood fit is possible for each b;, the numerator of

qn. (1) is small for low frequencies (where Z x 1),
so that small errors in the b; approximations lead
to large errors in o(f). To avoid this cancellation
problem, approximations are determined for by. ba.
and the sum bs = bg + b7 + bo, with the sum having
the form bs & bsg+bsym-+bsam>. The resulting co-
efficients for d = 1.2, 1.4, and 1.6 are given in Table
1. The average dielectric constant chosen for these
models is simply the measured value at 960 MHz.
A quadratic least-squares fit to these data for each
density, e(m) = eq +e1m+ €am? is given in Table 2.

Table 1: Conductivity Numerator Coefficients

Density (g/cc)

Coeft. 1.2 1.4 1.6

0.0540739 | 0.0160977
-0.162553 | —0.188476

b1o 0.0484917
b1y —0.136191

by | —0.0125623 | —0.220495 | —0.0004839
boy 0.0574154 | 0.0722359 | 0.0808164

bso | 1.14562E—4 | 7.06024E-5| 1.1323E-3
bs; | —3.9964E—6| —4.218E—6 | —1.2685E—5
bss | 1.01241E—-6 | 1.92513E~6 | 3.54086E—-6

Table 2: Dielectric Constant Coefficients

Density (g/cc)

Coeff. 1.2 14 1.6
€ 2.8 2.817 3.95
€1 0.14 0.171 0.0632
€2 0.012 0.181 0.0318

Figure 1 shows the accuracy of the approxima-
tion for d = 1.4, and the extreme moisture cases,
m = 2.5 and 20%. Plotted in this figure are the mag-
nitude of the propagation constant 3 and decay rate
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« of the model and the measured values of Puerto
Rican clay loam as a function of frequency for the
entire measured frequency range 30 to 3840 MHz.
Also shown in the inserts are the fractional errors
AB/8 and Aafa. The agreement is surprisingly
good for such a simple model across two decades of
frequency. It should be noted that the fit is even
better for the intermediate moisture values 5 and
10%, and similar for the other density cases.

So1L-TuNep PML ABC

With all FDTD scattering problems, it is neces-
sary to minimize reflections from the lattice bound-
aries with absorbing boundary conditions (ABC).
A novel ABC, the “soil-tuned” Perfectly Matched
Layer (PML), has been developed. The soil-tuned
PML is 2 modified version of the Berenger ABC [8,9]
which specifically absorbs waves incident from dis-
persive media. Since the efficiency of transmission
of waves into the PML is dependent on the closeness
of match of the transverse wave impedance on both
sides of the layer, it is essential to select the electri-
cal parameters of the PML appropriately. For soil
parameters €., Tsoil, M. the desired impedance
match condition is:

Thsoit = S B—
(eéoi] - ja'soil/“"eo)fo

= Hontto(l — jop /weo) 4
(€l — JTsoil fweo)eo(1 — jop /wea)

=NPML

where op is the usual increasing conductivity profile
of the PML layer. While the relations of Egn. 54)
correspond to the transverse impedance only for
normal incidence on the PML layer, the split-field or

auxiliary equation PML formulation ensure impedance

match for all incidence angles, provided a match oc-
curs for normal incidence.

Eqn. (4) therefore specifies the effective dielec-
tric constant and conductivity in the PML layer,

’ -

EPML = soil

’ —
BPML = Hsoil ()
OPML = Osoil + €40) 0P

oPMmL = oPpo/€o

where the double conductivity term —osoi0p/(weo)?
is neglected as negligible compared to €, for all
but the largest PML conductivity layers. If owoil
were frequency independent, Eqn. (5) would pro-
vide constant constituitive parameters for the PML
equations which could be used directly in the time
domain. Since o5, is dispersive, however, the PML
equations must make use of the auxiliary difference

Eqn. (2), with b; coefficients in Eqn. (1) adjusted to
account for the new conductivity values of Eqn. (5c).
The soil-tuned PML can be thought of a modifica-
tion of the dispersive media calculation with split
fields and magnetic loss.

NUMERICAL TEST CASE

Using the formula derived in the above section
to specify the electrical characteristics of Puerto Ri-
can clay loam with density 1. g/cc, and 10% mois-
ture, a 2-dimensional FDTD calculation simulating
plane wave scattering from a buried one wavelength
diameter circular metal cylinder was performed. The
geometry of the scattering lattice is shown in Fig-
ure 2. The lattice is oversized in width, 500 grid
points, to prevent reflections from the sides, and is
terminated with an 8-cell soil-tuned PML, to pre-
vent reflections from the back lattice boundary. A
0.96 GHz modulated, gaussian envelope plane wave
is initiated along the front grid boundary. One-
dimensional FDTD calculations on the left and right
edges ensure that the plane wave propagates from
front to back without distortion. The time and
space steps used are At = 20 ps and Az = 4.6 mm,
the nominal phase velocity is v = ¢/Ve = .383c,
and the Courant number is held at 0.5.

lm-.n-u—»,

Figure 2 Geometry of the scattering problem

The four surface plots of Figure 3 show the elec-
tric field distribution across the central 200 by 200
grid point section of the computational grid (indi-
cated in Figure 2) at various times. The upper left
and right plots show the total and scattered field
as the incident wave begins scattering from the cir-
cular cylinder. The lower two plots show scattered
field 100 and 300 time steps later. The scattering is
symmetric, as expected. For the 11004t plot, the
residual reflections from the PML ABC, at z = 100,
are visible. The amplitude of these reflections are
of the order of 10~2, which is about 3% of the field
amplitude incident on the back boundary. Although
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still rather significant, the soil-tuned PML gener-
ates about one-half the reflections of generated by a
conventional PML used to terminate this dispersive
medium.

Figure 4 compares frequency independent and
dispersive propagation, by showing the received sig-
nals at a single point (Rl in Figure 2} 150 grid
points, directly in front of the circular scatterer.
For the frequency independent case (left plots), the
conductivity is kept constant at the measured value
at 960 MHz, 0.032 S/m. The upper plots give the
total field for the two cases, indicating only minor
differences in the modulated plane wave propaga-
tion. It is interesting to note the much more signif-
jcant differences in the lower, scattered field plots.
In particular, the wave amplitude of the dispersive
medium is twice that of the uniform conductivity
case, the propagation speed is slightly different, and
the higher frequencies have been attenuated—with
only nine discernible maxima compared to ten in
the uniform case.

CONCLUSIONS

A model of dispersive soil—with simple func-
tional dependence on moisture and density—that
can easily be adapted into the FDTD method has
been developed. Based on a (2,2) Padé approxi-
mant in transform variable Z~1, the model requires
storing at most four additional arrays per time cal-
culation. For simplicity, the model maintains con-
stant denominator coefficients, with numerator co-
efficients being limited to a worst second order in
moisture.

Also presented is a soil-tuned PML absorbing
boundary condition, which is a modified variant of
the PML used to terminate dispersive media lat-
tices. In this new formulation, the PML constitu-
itive parameters are adjusted to ensure transverse
impedance matching with the dispersive medium.
Its performance for soil is twice as good as the con-
ventional PML.

Clearly, dispersion is important, and may have
a greater effect in two or three dimensional scatter-
ing applications. Neglecting to model the frequency
dependence of soil in wave propagation simulation
can lead to significant errors. The current model
simply and effectively approximates the dispersion
for Puerto Rican clay loam through the entire 30 to
3840 MHz band.
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A Hybrid Analysis Using FDTD and FETD
for Locally Arbitrarily Shaped Structures
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ABSTRACT

A hybrid analysis incorporating the FETD(Finite Element Time Domain) method
into the FDTD(Finite Difference Time Domain) method has been developed to
analyze locally detailed and arbitrary structures. This method has been applied to
rectangular waveguides with an iris of finite thickness. The comparison of calculated
results and the method of moments solutions verifies this analysis.

I. Introduction

The FDTD method has been extensively used for the full-wave analyses of three-
dimensional microwave structures due to its simplicity and numerical efficiency.
However, modeling structures using box-shaped uniform meshes in the conventional
FDTD algorithm gives difficulty in dealing with locally detailed and curved struc-
tures. Typically, curved structures are modeled using stair-casing, which requires
finer meshes and dramatic increase in memory size. The locally detailed structures
demand globally fine meshes as well.

The FETD algorithm is suitable for analyzing arbitrarily shaped structures
because of its flexibility. However, the FETD method is not so efficient as the FDTD
method because it requires solving a system of simultaneous equations in each time
step. When the arbitrarily shaped parts are located locally in the analyzed struc-
ture, combining the FDTD algorithm and the FETD algorithm can give salient
features which have both the efficiency and the flexibility [1].

The hybrid method applies the standard FDTD algorithm and the edge-based
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FETD algorithm. The rectangular waveguide with an iris of finite thickness has been
characterized using this hybrid method by applying the FETD to the iris region and
the FDTD elsewhere. When the iris thickness is zero, the calculated results are com-
pared with the published method of moments solutions.

II. Hybrid method

This method hybridizes the FDTD method with Super absorbing Mur’s 1st
order ABC(absorbing boundary condition) and the FETD method with the regular
brick element.

The FETD method formulation starts from the vector wave equation in a
linear isotropic region,

- OE
VxVxE+uea—tQ—= . (1)
The weak form formulation of (1) gives
O*E

/(VXE)-(VxZ\‘)dv+/peI\'-~87dv=/l\'-(VxExn)ds, @)

where N is the testing function based on the regular brick element. The electric
field can be interpolated using the same regular brick element as

4 4 4
E(r) =3 Naiailt) + 53 Nyiblt) + 23 Nai€au(t), (3)
=1 i=1 =1
where N,i, Ny, and N;; are defined in Fig. 1 [2].
The unconditionally stable backward difference has been used for the finite
differencing of (2) in time (3], which gives:

NY . N £ IRN n
[/(Vx]\) (Vx]\)dv+6t2/1\ Ndu]s
=& [R-(Vx N xa)ds

+£5 [25"-1 [ § Fdv—g2 [ 5. N’dv] : (4)
where £” represents the electric field at the time step n.

In order to calculate £7, the electric field values for one and two time steps
ahead are required. In addition, the boundary values at the present time step which

are obtained from the the FDTD computation will play a vital role to communicate
the FDTD field and the FETD field.
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At the interface, the FDTD region and the FETD region share one layer.
When calculating the FETD electric field, the FETD boundary electric field up-
dated by FDTD will make the Dirichlet boundary condition for the FETD electric
field calculation. The FDTD boundary electric field will be interpolated from the
calculated FETD electric fleld.

Since the electric field inside the regular brick element can be interpolated
from the edge elements through (3), the FDTD cells and the FETD meshes do not
have to be matched at the interface. However, this work makes use of the matched
FDTD cells and FETD meshes at the interface.

III. Numerical results

The Hybrid method has been applied to the waveguide with an iris as shown
in Fig. 2. The iris region is analyzed by FETD so that the iris thickness can be
considered regardless of the FDTD Az size, while both outsides of the iris region
are characterized by FDTD. For simulation, the standard WR90 waveguide (0.9
inches x 0.4 inches) was chosen. The FETD volume corresponds to 14 x 32 x 4
computational domain of FDTD.

Fig. 3 depicts the normalized inductive iris susceptance versus the iris width
when the iris thickness is zero. The normalized iris susceptance can be calculated

from Sp; using ‘
Y _ 25'11612[”‘ (5)
Go - 1 + Suejzﬁl”

where L is the distance from the iris to the reference plane for S1; [4]. The calculated
results by the hybrid method show very good agreement with the Marcuvitz’s curve
[5], the method of moments solutions [5], and the FDTD data.

When the iris has a finite thickness, the flexible FETD method can be effec-
tively employed, while the FDTD Az size is not affected. Fig. 4 shows the |S11] of
the waveguide with an iris of different thickness. The waveguide of an iris of 20 mil
thickness has been analyzed while the Az size of the FDTD domains is 28 mil.

IV. Conclusion

A hybrid analysis using the FDTD method and the FETD method has been
developed to analyze microwave structures of locally arbitrary shape. This method
has been successfully applied to analyze the waveguide with an iris of a finite thick-
ness. This study shows that this hybrid method can be effectively employed to
analyze the three dimensional locally arbitrary or detailed structures.
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A Simple Method for Distributed Parallel Processing with a Cartesian
Coordinate System Based Finite-Difference Time-Domain Code
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Abstract

A simple and very easily implemented method for parallel processing with a Cartesian
coordinate system based Finite-Difference Time-Domain (FDTD) algorithm using two or
more networked computers is discussed. The algorithm consists of less than 30 lines of
standard FORTRAN code which is easily inserted into an existing serial FDTD code used on
computers having an operating system which allows the computers to access a common
file. The method is useful when sophisticated distributed parallelization software is either
unavailable or when the time and cost of obtaining and using such software is undesirable.

1. Overview

The computational problem space is subdivided into roughly equal-sized subdomains
with each allocated to a separate computer memory. The serial FDTD software is modified
to allow for the proper calculation of the individual subdomains and a simple algorithm which
allows communication between the computers is installed into the software located on each
machine. The communication algorithm provides for the controlled exchange of the neces-
sary E and/or H field values at the boundary of adjacent subdomains via hard disk data files,
whose access is controlled by flag files. The resulting run time is reduced due to the multi-
ple processors and is equal to the run time of the slowest computer. The run time inciudes
overhead incurred by the exchange of boundary data. For certain volumes of several million
cells, the efficiency of the method is greater than 91% when used on computers of similar
speed and with subdomains appropriately sized to balance the load. (The efficiency
referred to here is the ratio of the run time using a single computer with the run time of the
slowest computer using multiple computers.) In addition to reduced run times, the total
memory space available to store a problem volume is increased to the sum of the core
memory of the computers, thus allowing computation of very large problems. For instance,
calculations requiring up to about 2 GBytes of memory can be easily performed using four
fully loaded SUN SPARC workstations.

2. Algorithm implementation
The following explicit update equation for E,,
t+Al/2 H t+AL/2 t+AL/2 -H t+At/2

1 -
= AE_vLyz"’B Fley,z442/2  Flxyz-A2/2  FlxsAr/2,y,z Elx-Ax/2,3.2)0
. Az Ax

Al
Eylt+ t

X, ¥,z
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derived from Maxwell's curl equation for the total E field, shows that only the previous time
E, value and the nearest neighbor H, and H, values are needed in the calculation. Further-
more, the needed H components specified by the curl equation are perpendicular to the E
component. The same is true for all other field components. This property allows a volume
to be easily divided into several subvolumes for calculation purposes.

Two methods for dividing the volume are depicted in Figs. 1 and 2 where it is seen that
the basic computational volume is easily divided along cell boundaries. For these methods,
calcuiation of transverse field components on the boundary in each subvolume requires
transverse field components from both subvolumes while the field components normal to the
boundary are calculated with component information present within their respective subvol-
umes. For the first approach, depicted in Fig. 1, it is seen that the first subvolume needs
transverse E field components on the boundary of the second subvolume for calculation of
its boundary transverse H field components while the second subvolume needs transverse
H fields for its E fields. The second method involves a 1/2 cell overlap of the two subvol-
umes. As seen in Fig. 2, the transverse E data at the boundary is exchanged to calculate
the boundary transverse H fields in each subvolume. This approach involves a redundant
calculation of the H fields on the boundary but allows for fewer modifications to the serial
FDTD code resulting in a faster implementation as well as some speed advantages for a two
subvolume problem. The action of the two methods with respect to the field update algo-
rithms in the software is illustrated in Figure 3. With the first method, transfer of field data
takes place after both E and H field updates. This requires transfer of data at four separate
intervals. However, in the second method, data transfer happens only after the E field
updates. This allows for the possibility of some data transfer in paralle! if transferred data is
written to the local hard disk and read across the network.

Modifications to the serial FDTD code for use on multiple machines depends on the type
of absorbing boundary condition (ABC) utilized and choice of the volume subdividing
method. A boundary condition algorithm such as the Liao ABC uses E field information inte-
rior to the face for transverse E field components on the boundary. Thus, in order to apply
the first method discussed above, adjustment of the Liao ABC loop parameters and nullifica-
tion of the BCs on adjacent faces is necessary. In addition, adjustment of field, material ID,
and Liao ABC array dimensions is required for storage of transferred boundary data. If the
second method is used with the Liao ABC, no modification of the boundary condition is
needed since adjacent face E field data is overwritten if the data exchange is performed
after the boundary values are calculated. However, for increased efficiency, nullification of
the BCs on adjacent faces and adjustment of the Liao loop parameters is easily accom-
plished. In addition, no adjustment of the field and material ID array dimensions is required
since storage is already present due to the cell overlap.

The data exchange between subvolumes is performed via data files with access con-
trolled by flag files to insure that information is sent or received only when necessary. Data
and flag files reside on the hard disk of each computer. It was discovered that the i/o time is
substantially reduced if each computer writes field data needed by the other computers to its
own hard disk and reads needed data across the network from the other computers hard
disks. Fig. 4 has a general logic flow chart for both received and transmitted data illustrating
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the simplicity of the data exchange algorithm. A self-adapting delay is used to reduce net-
work traffic and improve computational efficiency.

3. Numerical Results

Code runs for several differing volumes were performed to check the utility and
efficiency of the technique. The computations were done utilizing four networked SUN
workstations on volumes ranging from 140,000 cells to 12,635,000 celis. Each volume was
computed on a single workstation and then sub-divided along its length and computed on all
four workstation for comparison. Minor variations in computational speed between the
computers exist due to differences in the respective hardware configurations. Also, the two
outer subvolumes have more boundary value calculations than the inner subvolumes.
Therefore, minor adjustments were made to the relative size of each volume in order to
balance the load across the computers. Since dynamic load balancing was not
incorporated, small variations in individual machine run times occurred and a small
computational overhead resulted due to the slightly unbalanced volume distribution. It is
important to note that static load balancing is not time consuming unless one is determined
to obtain the last few percent of efficiency. The efficiency of the process was calculated as
1/4 the run time on the single machine divided by the run time of the slowest of the four
machines. The problem specification, computation time, and efficiency of four different
sized volumes are listed in Table 1. The efficiency for the small 140,000 celi problem is only
38%. However, the efficiency quickly grows for volume sizes more representative of
practical problems and is better than 91% for the 12,636,000 cell calculation. The favorable
trend is due in part to the fact that the hard disk access and write times are not significant
compared to volume computation for large volumes.

4. Conclusion

The utility of this distributed parallelization approach rests in its simplicity, high
efficiency, and ease of implementation. Data transfer across the network between computer
main memories rather than through the hard disks requires much less time and is done with
a variety of sophisticated software. But costs and time associated with obtaining, installing,
integrating, and debugging such software are often considerable. The algorithm presented
above, together with the second method of dividing into subvolumes was installed into an
existing serial FDTD code and validated in one day. Since this hard disk method is better
than 91% efficient for large problems and is easily installed and used, it may be more
desirable (at least initially) than other more sophisticated parallelization software tor the
scientist or engineer with limited time and resources. It turned out to be a great benefit to
our group.
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A computational volume is divided in a manner that allows a 1/2 cell overlap.
Nearest transverse E, and E, components are used in adjacent subvolumes for
calculation of boundary H, and H, components. The H, and Hy fields on the
boundary are therefore common fo both subvolumes.
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Figure 4. Logic flow charts for the data exchange algorithm at one interface. The flag files
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allow controlled access to the data files. An adaptable delay minimizes bus
activity in between data transfer and increases overall efficiency.
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Figure 3. lllustration of the each method for a two subvolume computation. The first
method involves transfer of boundary data at the end of E field updates in volume
1 and at the end of H updates in volume 2. The second method involves transfer
of boundary data at the end of E field updates in both subvolumes.

Problem Computational time (sec) Efiro;

Size (cells) (%)
#1 only #1 #2 #3 #4
20x20x350
140,000 95 63 63 6 63 38

40x40x350
110x110x350

4,235,000 2997 839 840 840 840 89
190x190x350

12635000 | 8945 | 2443 | 2445 | 2447 | 2447 91

Table 1. Results from several problem sizes run on four computers. The efficiency is
determined as 1 /4 the time of the single machine run divided by the time of the
slowest of the four computers.
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Computation of Transient Electromagnetic Wavefields in
Inhomogeneous Media Using a Modified Lanczos Algorithm

R.F. Remis and P.M. van den Berg
Laboratory of Electromagnetic Research, Faculty of Electrical Engineering,
Centre for Technical Geoscience, Delft University of Technology,
P.O. Boz 5031, 2600 GA Delft, The Netherlands

1. Introduction

The Finite-Difference Time-Domain method (FDTD method) is one of the methods commonly
used to compute transient electromagnetic wavefields in inhomogeneous media. The method
employs finite-differences for the derivatives with respect to the space and time variables that
oceur in Maxwell’s equations. It is well known that, in order to get a stable result, the time-step
in this method is limited by the Courant-Friedrichs-Lewy stability condition. In case one is dealing
with diffusive electromagnetic fields (neglecting the displacement currents) the stability condition
in explicit time-stepping methods puts an even stricter limitation on the time-step compared to
the wavefield case.

Recently, Druskin and Knizhnerman (1] have proposed a much more efficient approach to
solving Maxwell’s equations in the diffusive regime. Their method, called the Spectral Lanczos
Decomposition Method (SLDM), is based on a second-order differential equation for either the
electric field strength or the magnetic field strength and utilizes a Lanczos algorithm via which
one can compute the transient diffusive field without having to discretize the time variable, i.e.
their method is not an explicit time-stepping method.

We present a non-explicit time-stepping method for computing transient electromagnetic wave-
fields in inhomogeneous media based on Maxwell's equations as a system of first-order differential
equations. Our method utilizes a modified Lanczos algorithm and via this algorithm a so-called
reduced model can be constructed that gives an accurate representation of the electromagnetic
wavefield on 2 certain bounded interval in time. Constructing a reduced model via the modified
Lanczos algorithm makes the discretization of the time-variable superfluous.

2. Basic Equations

Maxwell’s equations governing the electromagnetic field in a domain in which an inhomogeneous,
anisotropic and lossy medium is present are written in the form

(D + M+ M8)F =0Q, 1

where D is a symmetric spatial differential operator matrix given by

0 0 0 & -0
0 0 -8 0 o
0 0 & -0, 0
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and the time-independent matrices M; and M, are medium matrices given by

o3 012 013 0 0 0

021 O22 023 0 0 0

| 031 032 033 000
Mi=1 0" ¢ 0 000 (3)

0 0 0 000

0 0 0 00O

and
£11 €12 €13 O 0 0
€21 €22 €23 0 0 0
€31 €32 €3 0 0 0
M,y = ’ ‘ y . 4
g 0 0 0 pmy 2 M3 @)
0 0 0 oy o2 po3
0 0 0 p3y Ha2 HM33
Using energy considerations it can be shown that both medium matrices are symmetric and
that matrix M, is positive semidefinite, while matrix M, is positive definite. The field vector
F = F{z,t) consists of the components of the electric field strength E and the magnetic field
strength H and is given by
F = [E17E27E37H17H27H3]T1 (5)

while the source vector @ = Q'(z,t) is composed of the components of the external electric-
current source J* and the external magnetic-current source K° as

Q’= —[Jleﬂ];: §7K1eaK§7K§]T' (6)
Further, the signature matrix §~ is introduced as
6~ = diag(1,1,1, -1, -1,-1) (7)

and we observe that this signature matrix anti-commutes with matrix D, i.e.

D6~ =-6"D : (8)
and that it commutes with the medium matrices M; and My, i.e.
M6~ =6"M, 9
and
Mod™ ="M, (10)

Now, consider source vectors of the form Q'(z,t) = w(t) Q(x), where w(t) is the source wavelet
that vanishes for ¢t < 0 and Q is a time-independent vector. Then, because of causality, the field
vector F must vanish everywhere for ¢ < 0. Applying a one-sided Laplace tranformation to Eq. (1)
with respect to time results in the equation .

(D + My + sMy) F(z, s) = 9(s)Q(z), (11)

with Re(s)> 0. In our further analysis we take s real and positive. Then, Lerch’s theorem (see
Widder [2]) ensures that there is a one-to-one correspondence between a causal time function
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and its Laplace-transform-domain counterpart, provided that the time function is continuous and
is, at most, of exponential growth as ¢ —» co and that equality in the definition of the Laplace
transform is invoked at the real set of points {s, = so+nh;n =0,1,2,-- -}, where s is sufficiently
large and positive and A is positive.

As a next step, we discretize in space using standard spatial finite-differences (cf. Yee [3]) with
a Dirichlet boundary condition. The use of more sophisticated boundary conditions is not studied
in this paper. In practice, the boundary of the computational domain is taken such that reflections
that occur due to the Dirichlet boundary condition, are not observed in the observation points on
the time-interval of interest. The discrete counterparts of D, M;, M,, F and Q are denoted by
D, M,, M,, F and @, respectively, while the discrete counterpart of matrix 6~ is denoted by the
same symbol. The matrices obtained after discretization satisfy the following equations

D6~ = —6-D, (12)
M5~ = 6~ M,, (13)
My6— = 6~ Mo, (14)
and .
(D + M, + sMp)E(s) = w(s)Q, (13)

with s € R*. All the matrices occuring in Eq. (15) are square N x N matrices. Matrix D is
real and anti-symmetric, matrix M, is real, symmetric and positive semidefinite and matrix M,
is real, symmetric and positive definite.

Solving F(s) from Eq. (13), we end up with
F(s)=w(s)M; (A + sE)™Q, (16)
with s € R*. In this equation, F is the identity matrix and matrix A is defined as
A= (D+ MM a7
Via inspection and by Lerch’s theorem the unique and causal time-domain counterpart of F(s) is

obtained as
F(t) = w(t) * x(t)M7 " exp(~At)Q, (18)
where x(t) denotes the Heaviside unit step function and * denotes convolution in time.
3. A Modified Lanczos Algorithm
First of all, let us define the bilinear form
(': ')b = <A12_16—'7 .>3 (19)
where (-,-) denotes the standard inner product of two real vectors of the appropriate size. It is

easily seen that matrix A is symmetric with respect to this bilinear form. This enables us to carry
out the following Lanczos algorithm

Bivi=Q
w; = Av;— B
. 20
Q; = ('Ui,'w,‘)b Z=1127"'7 ( )
Birrviy1 = Wi — oy
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Figure 1. A picture of Eq. (21) for m < N.

with v = 0. In each step, 3 is determined from the condition that (v;, v}, =1 for i > 1. After
m steps of this algorithm we have the summarizing equation
AV, = VoI + ,Bm+1vm+le£7 (21)

where the N x m matrix V,, has the column partitioning Vi, = (v1,v2,- - ,Um); Im is a complex
svmmetric tridiagonal m x m matrix given by T, = tridiag(B;. ¢, Bi+1) and e, is the m-th column
of the m x m identity matrix E,,. We are interested in situations where m is much smaller than
N, the order of matrix A (see Figure 1).

4. The Reduced-model Approximation

After carrying out m steps of the modified Lanczos algorithm, one can prove the following result

AJQ=ﬁ1VmTh7161, ]=0=172am'—1 (22)
The proof is by induction over j and uses Eq. (21). Now, consider the vector (A + sE)~'Q with
s > sp and sg defined by :
so = max{||All, | T=!}, (23)
where || - || denotes the matrix 2-norm. Using the result of Eq. (22) we can write this vector as
- 122001, 1&, 1,4
(A+3E)'Q = BiVm= D (—=Tm) er + = S (—=A)FQ, (24)
S k=0 § S k=m s
with s > 5. Equation (24) is rewritten as
(A+$E)'Q = B1Vin(Trn + $Em) "'e1 + Bn(s), (25)
with s > so and where R, (s) is given by
. 1 1
B(s) = (~A)" 2(A + SE)Q = BiVin(~T) " (T + 5Em) . (26)

Again, via inspection and relying on Lerch’s theorem, the time-domain counterpart of Eq. (25) is

obtained as
x(t) exp(— At)Q = x(2) 81 Vi exp(~Tmt)er + R(t), (27)
where the vector Ry, (t) is given by

Ra(t) = x(t){(—gn:f)—r)! /;Oexp[—A(t—T)]Tm-ldTQ
W LED [
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Substitution of Eq. (27) into Eq. (18) gives
F(t) = Fr(t) +w(t) * My R (2), (29)
where we have defined the reduced model as
Fn(t) = w(t) * x(t) 81 M5 'Vin exp(—Tmt)er. (30)

[} 20 40 60 80 100 120 140 160

N
-,

8

o 20 40 60 80 100 120 140 160

(b)

) 20 40 60 80 100 120 140 160
(e)

time [ns] —
Figure 2. Electric field strength as measured by the receiver. Solid line is the exact result. Dashed line

is the reduced-model approximation after 100 Lanczos steps (a), after 200 Lanczos steps (b) and after
300 Lanczos steps (c).
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This reduced model is now taken as an approximation to the vector F'(t) on a certain bounded
interval (0, tmax)- It can be shown that ||R,(t)|| becomes negligible for all ¢ € (0, tmax] as soon as
™M > tmax € S0, Where s is defined in Eq. (23).

5. Numerical Examples

The reduced-model technique has been implemented for two-dimensional E- or H-polarized waves
in inhomogeneous, isotropic and lossy media. The configuration is invariant in the zo-direction
and the zs-direction is chosen downwardly. The source wavelet is taken to be a Ricker wavelet
and is given by

w(t) = X(t)c\/% % exp[—(t — t0)7], (31)

where C is a normalization constant. The parameter t; allows us to shift the non-zero part of
the wavelet and by varying the parameter # we can vary the peak frequency of this wavelet. The
parameter 6 is chosen such that this peak frequency is 40 MHz. The spatial discretization is such
that we have about 34 points/), where ) is the free-space wavelength corresponding to the peak
frequency of 40 MHz.

As a first example, we consider E-polarized waves (electric field strength parallel to the in-
variance direction) generated by the external electric-current source J§(z1, z3,t) = w(t)d(z1, z3).
For this particular example, the electric field strength E; is known in closed form as

0, t<T,
Ey(z1,23,t) = _ Ko ¢ atw(t_T)dT, t>T,

o s VT2

where T = (22 + 12)!/2/cy is the arrival time for the wave to travel from the source location to
the observation point, ¢, is the electromagnetic wave speed in vacuum and pg is the permeability
of vacuum. In our finite-difference approximation, the delta function is approximated by a two-
dimensional triangular distribution and the expression for the electric field strength as given by
Eq. (32) is therefore weighted over this distribution.

For an observation point located 4.84 m from the source, we then obtain the result as given by
the solid line in Figure 2. The dashed line is the reduced-model approximation after 100 Lanczos
steps (Figure 2a), after 200 Lanczos steps (Figure 2b) and after 300 Lanczos steps (Figure 2c).
We observe that increasing the number of Lanczos steps extends the interval in which the solution
is correct.

(32)

As a second example, we consider the two-dimensional configuration of Figure 3 in which
E-polarized waves are excited by the same source as in the previous example.

e =1
source receiver o=0
& =5
o = 0.0035/m
e =20
o =0.003S/m

Figure 3. Source and receiver located 4.84 m apart at the interface of a lossy halfspace. The buried
object of 0.88 m x 1.98 m is located 1.98 m below the interface.
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Figure 4. Electric field strength as measured by the receiver. Solid line is the reduced-model approxima-
tion after 650 Lanczos steps. Dashed line is the reduced-model approximation after 200 Lanczos steps
(a), after 400 Lanczos step (b) and after 600 Lanczos steps (c).

Figure 4 shows the electric field strength as measured by the receiver. The solid line in Figure 4
is the reduced-model approximation after 630 Lanczos steps. The dashed line in Figure 4a is the
reduced-model approximation after 200 Lanczos steps (note the scale), in Figure 4b after 400
Lanczos steps and in Figure 4c after 600 Lanczos steps. Again, we observe that increasing the
number of Lanczos steps, extends the length of the interval in which the solution is correct.
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We have also compared the reduced-model approximation after 650 Lanczos steps with the
result obtained via the FDTD method using the same spatial discretization as in the reduced-
model technique on the time interval of Figure 4. The results show a good overall agreement if
the time-step in the FDTD method is chosen sufficiently small. In fact, our numerical experiments
show that by decreasing the time-step in the FDTD method, the FDTD result converges to the
reduced-model approximation.

6. Conclusions

A new method for computing transient electromagnetic wavefields in inhomogeneous media is
presented. The method is based on a modified Lanczos algorithm and via this algorithm so-
called reduced models can be constructed. A reduced model gives an accurate representation of
the electromagnetic wavefield on a certain bounded interval in time. The length of this interval
can be extended by performing more steps of the Lanczos algorithm. The numerical results
indicate that the present method leads to a powerful technique for the computation of time-
domain electromagnetic wavefields without discretization of the time variable.

The method can also be applied to the case of diffusive electromagnetic fields (neglecting
the displacement currents). The stability condition in an explicit time-stepping method puts an
even sticter limitation on the time-step than the one for wave propagation problems. As far as
computation time is concerned, our present approach will lead to a superior technique for the
computation of diffusive fields.

The Lanczos algorithm is a Krylov subspace iterative method. The convergence of such sub-
space methods can be accelerated by using suitable preconditioning techniques. For our type of
problem, we can use techniques similar to the ones presented by Druskin and Knizhnerman [4].
These techniques are based on Padé approximations to the matrix exponential. Although the
reduced-model technique is a reasonable efficient method in itself, it is to be expected that these
preconditioning techniques will considerably speed up the convergence of the method.
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Abstract— S—parameters of microwave resonator filters are computed using two types of finite element analysis.
The first method is the conventional direct frequency method, in which the number of unknowns is equal to the num-
ber of edge degrees of freedom. The second method is the new medal frequency method, which first computes the
3D modes and then uses them as basis fanctions, thereby greatly reducing the number of degrees of freedom. The
two methods are applied to the ACES/TEAM]1 filter and a variation of the Microwave Engineering Europe bench-
mark filter. For a large number of analyzed frequencies, the modal method is shown to obtain good results with
speedup factors ranging up to 23.

INTRODUCTION

Microwave resonators often are used to make filters. If the coupling coefficients are small and the Q s high, then
narrow passbands or stopbands may require analysis at a large number of frequencies. In conventional direct fre-
quency finite element analysis (FEA) [1], total solution time is directly proportional to the number of frequencies
analyzed. To reduce computer time, asymptotic waveform analysis (AWE) has recently been successfully combined
with FEA [2], but AWE may have limitations when there are many resonances.

In a new technique called modal frequency FEA (3], a 3D eigenvalue analysis is first performed to reliably find
all resonances of low loss devices. The resulting eigenvectors are used as basis functions for solutions over a range
of frequencies, thereby possibly saving computer time if S—parameters are needed for a large number of frequencies.

A 1997 paper [3] describes the theory of modal frequency FEA and applies it to computing S—parameters of two
filters. One filter is a cutoff—coupled rectangular dielectric resonator filter, and the other is a coax—fed rectangular
box containing cylindrical dielectric resonators. Modal frequency results obtained are similar to those of direct fre-
quency, and speedup factors obtained range from 1.4 to 4.

After a brief review of theory, this paper compares modal frequency FEA with direct frequency FEA for analyzing
two new resonator filters. The first new example is the one—port ACES/TEAM Workshop problem 19 [4]. The next
example is a variation of a benchmark problem from the magazine Microwave Engineering Europe and is a two—port
cylindrical six—cavity filter with iris coupling to rectangular waveguides.

BRIEF THEORY OF MODAL FREQUENCY FEA
Direct frequency FEA consists of solving the matrix equation {1], [5] with angular frequency w:

[ - w?[M] + jo[C] + [K] }{u} = {P} )]

where [M] is the permittance matrix (proportional to permittivity), {C] is the conductance matrix (proportional to
conductivity), and [K] is the reluctance matrix (inversely proportional to permeability). For the edge finite elements
used here, the unknown vector {u} consists of edge magnetic vector potentials A. Electric field is then —jwA. {P}
is the excitation vector, which for §—parameter computations is located at the ports. The {u} vector has as many
degrees of freedom as there are finite element edge unknowns, which usually number in the tens of thousands. Note
that the left hand matrix changes with frequency and thus solution time is proportional to the number of frequencies
analyzed.
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Instead of solving (1) directly, we can first solve for the 3D eigenvalues and eigenvectors, denoted by {¢;}. Then
a modal frequency solution is assumed to be a linear combination of the eigenvectors, expressed as [3]:

{u} = [¢H{q} )

where the matrix [$] is made up of m columns of individual orthogonal eigenvectors {¢;}, and the vector {q} contains
all of the coefficients. If there are n direct degrees of freedom in a problem (the length of the column vector {u}),
then {¢] is an (o x m) matrix. This transformation can be highly accurate when all n eigenvectors of the system are
used. In many cases only a small approximation is introduced if a limited number of eigenvectors in a specified fre-
quency range is used.

The frequency range of the eigensolution should include all modes that are expected to be excited. All of the real
modes over any finite frequency range are rigorously computed in Ansoft’s MicroWaveLabT™™ [3] using a Sturm se-
quenced Lanczos algorithm. Then the final solution is obtained by substituting (2) into (1):

- W*MI[¢]{a} + jo[Cli¢Ha} + [Kli$l{a} = {P} @)

Premultiplying both sides by [¢]T results in:

- @*[o]'IMI[oHa} + jole]"[CII¢}{a} + [¢1'IKII¢l{a} = [4]'{P} @

which can be rewritten as the modal frequency equation [3]:

(= w’lm] + julc] + [k] {a} = {p} )

where the three new modal matrices are:

Im] = [¢]"M]i$] [e] = [¢]"[CI¢] , k] = [9]"[KII4] ©)

Note that the modal frequency equation (5) has only as many unknowns as the selected number of modes. This
reduction in the number of unknowns can often lead to a substantial computational speedup compared with direct
frequency FEA.

Because real modes are assumed in MicroWavelab, the modal frequency method is applicable only to low loss
problems. While material losses can be analyzed, wall losses can only be analyzed indirectly using equivalent lossy
air or other filler material. Other important limitations and assumptions are detailed in [3]. Recently, Professor Jin—
Fa Lee has formulated a rigorous method that avoids the approximate port boundary conditions assumed by us.

ACES/TEAM PROBLEM 19

The first example analyzed here is the ACES/TEAM Workshop problem 19 [4]. Fig. 1 shows the geometry and
finite element mesh developed for one—quarter of the problem, which is a cylindrical cavity coupled through an iris
to a feed waveguide. Measurements are available [4] for |S;;] versus frequency. Here |S;1| is computed both by
direct frequency FEA and modal frequency FEA using the software MicroWaveLab from Ansoft.

The cases analyzed here are for a 15 mm iris width with or without a concentric 9 mm diameter dielectric rod in
the cavity. MicroWaveLab direct frequency results from 2.4 to 2.6 GHz have been presented elsewhere [6], using
lossy 3D air finite elements instead of lossy 2D wall finite elements. There are 680 hexahedral and pentahedral
H1—curl edge elements in the model of Fig. 1.

The modal frequency method applied to the empty cavity computed four modes up to the selected top frequency
of 4 GHz. One of the modes, at 2.5315 GHz, is the cavity mode. The other three computed modes, at 1.9158, 2.3696,
and 2.9846 GHz, are standing modes in the waveguide feed. These frequencies depend on the length of the wave-
guide section.
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Fig 1. Geometry, finite element model, and electric field computed at 2.5315 GHz for the empty cavity case
of ACES/TEAM19.

Fig. 2 compares the |S11| for the empty cavity case over the frequency range of interest (2.5 to 2.6 GHz) computed
by MicroWaveLab’s direct frequency and modal frequency techniques. Note that the two results are very similar.
However, modal frequency FEA for 41 frequencies takes only 0.25 minutes per frequency, compared with 5 minutes
per frequency for the standard direct frequency FEA. This speedup factor of 20 is further increased if more frequen-

cies are analyzed.
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Fig. 2. Comparison of direct frequency and modal frequency reflection coefficients for the empty ACES/
TEAM]19 filter with lossy air.
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Fig. 3 compares the results of the two methods when the cavity contains a dielectric rod made of plexiglass. The
assumed plexiglass relative permittivity is 2.7 —j0.01. Note again that the modal frequency |S11| plot agrees well
with that computed by the standard direct frequency method.
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Fig. 3. Comparison of direct frequency and modal frequency reflection coefficients for the ACES/TEAM19
filter with a lossy plexiglass rod.

The final case analyzed was for the dielectric rod made of PVC, which has an assumed relative permittivity of 4.0
—j0.05. Table 1 lists its resonant frequency along with those of the other cases. The table shows that while the other
two cases agree well with measurements, the PVC case does not. Computations by others [7], [8] agree closely with
ours. Thus the assumed PVC material properties evidently are incorrect. The overall conclusion from Table 1 is that
the modal frequency method of MicroWaveLab gives good results for the ACES/TEAM19 problem.

Table 1.
Resonant frequency (GHz) of ACES/TEAM19 cavity for an iris width of 15mm and rod diameter of 9 mm.

METHOD Empty cavity Plexiglassrod |PVCrod
Experiment 2.5446 2.4645 2.4494
Real modes FEA 2.5315 2.4621 2.4146
Direct frequency FEA 2.545 2.470 -

Modal frequency FEA 2.545 2.469 2.411
Computed by others [7] 2.5448 2.4650 2.4003
Computed by others [8] 2.545 2.4647 2.4020
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VARIANT OF MICROWAVE ENGINEERING EUROPE FILTER

12 GHz filter benchmark problem

The final example analyzed in this paper is a variation of the dual mode 10—

ical cavities fed by

from the magazine Microwave Engineering Europe [9]. Fig. 4 shows the geometry of its six cylindri

two rectangular waveguide ports. The filter is assumed lossless.

Fig. 4. Exterior geometry of two—port six—cavity filter from Microwave Engineering Europe magazine.

The interior of the filter of Fig. 4 is assumed here to be as shown in Fig. 5. Note that the cavity apertures are large

and small ellipses. Fig. 6 shows that the assumed major axes of the ellipses are at 0, 45, and 90 degrees.
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Fig. 5. Assumed interior geometry of two—port six—cavity filter of Fig. 4.
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Fig. 6. Cross section of Fig. 5, showing elliptical cavity apertures.

The apertures assumed in Figs. 5 and 6 are not those of the measured filter [9] because they do not progress as
needed for an ideal dual—mode filter [10]. One of the two large elliptical major axes at +45 degrees should have
been rotated to —45 degrees. With both major axes at +45 degrees, the assumed filter of Fig. 5 possesses mirror
symmetry about a plane midway between its 3rd and 4th cavities, which may not be true in practice.

Due to the assumed symmetry in Fig. 5, only a one—half model containing three cavities is required. The half mod-
el must, however, be analyzed twice. One analysis has an electric wall (PEC) boundary condition at the symmetry
plane, which obtains the odd solution. The second analysis has a magnetic wall (PMC) boundary condition at the
symmetry plane and obtains the even solution. These one—port lossless models both obtain reflection coefficients
of magnitude equal to 1. The phase of these two reflection coefficients determines the overall S—parameters of the
two—port filter. Denoting the phase of the even solution by Yeven and the phase of the odd solution by Yodd » the
overall two—port S—parameters are computed by:

|84:| = cos[0.5@even — Yoad)] » [Sa] = sIN[0.5even — Wosa)] @)

Fig. 7 shows the finite element model developed for the MicroWaveLab direct frequency and modal frequency
computations of the S—parameters of (7). The two different boundary conditions are applied to the right—hand
boundary plane. The model contains 5,772 tetrahedral H1—curl finite elements with 33,626 degrees of freedom.
Note that bécause of the finite thickness irises, the elements shown in Fig. 7 need not match up from waveguide to
adjacent cavity and between adjacent cavities.

The modal frequency analysis used all modes between 0.1 and 14.9 GHz. Fig. 8 compares direct frequency and
modal frequency results for |S11|; they agree well except near 11.24 GHz where the dips differ in magnitude by about
6 dB. Fig. 9 compares direct frequency and modal frequency computations for |Sz1|. In general, the modal frequen-
cy S—parameters agree well with those computed by the standard direct frequency FEA.

On an HP 735/125 computer, time for each run (even or odd) at 201 frequencies is reduced from 41,535 seconds
for direct frequency FEA to 1,775 seconds for modal frequency FEA. Thus the speedup factor is greater than 23.
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Fig. 7. Finite element model of one-half of two-port six-cavity filter of Fig. S.
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Fig. 8. Comparison of direct frequency and modal frequency reflection coefficients computed for the six-
cavity filter of Fig. 5.
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Fig. 9. Comparison of direct frequency and modal frequency transmission coefficients computed for the six-
cavity filter of Fig. 5.

CONCLUSION

The new modal frequency method of FEA has been compared with conventional direct frequency FEA. Modal
FEA S—parameters for the ACES/TEAM 19 single—cavity filter compare well with those of direct FEA and with
measurements. Modal and direct S—parameters also compare well for a variation of a six—cavity dual—mode filter.
The modal frequency method yields computer time speedups of 20 and 23, respectively, for the two filters.
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Abstract. This paper discusses the extension of a class of model order reduction techniques based
on the Lanczos algorithm to distributed, vectorial electromagnetic systems. The reduced-order
model generated by this approach can be used for the efficient broadband response calculation of
the system. The proposed technique is more robust than the asymptotic waveform evaluation-
based methodology used recently in conjunction with finite element electromagnetic modeling in
the frequency domain. Numerical examples from wave propagation in waveguides are used to
validate the proposed methodology and demonstrate its capabilities.

1. Introduction

Except for very simple systems, distributed clectromagnetic analysis is hindered by the large
number of degrees of freedom involved in the mathematical model. This suggests that in addition
to the development of more efficient techniques for the solution of the large matrices resulting
from the numerical approximation, the development of reduced-order modeling techniques, which
allow the replacement of most of the mathematical model of the electromagnetic system with a
substantially smaller model that approximates sufficiently its behavior, is of equal importance to
advances in efficiency and modeling capability of electromagnetic simulators.

Reduced-order modeling of physical systems is a common practice in engineering. In particular,
in the discipline of electrical engineering several examples of physical model order reduction come
to mind. Perhaps the most important is the reduction of Maxwell’s equations to Kirchhoff’s laws
for the mathematical description of the electrical behavior of circuits for frequencies such that
the physical dimensions of the circuits are only a fraction of the wavelength. The impact that
Kirchhoff’s laws have had on the advancement of electronic technology is indeed profound. Other
applications of physical model order reduction that have contributed significantly to the analysis
of electromagnetic wave interactions in complex environments include: a) the development of
telegrapher’s equations for the description of one-dimensional wave propagation in two- and multi-
conductor transmission lines; b) the concept of impedance boundary condition; ¢) the geometric
theory of diffraction.

In parallel to the aforementioned physical model order reduction procedures, model order re-
duction can be effected in a purely mathematical way. The objective of the mathematical approach
to reduced-order modeling of a linear electromagnetic system may be stated in a generic form as
follows. Given a linear system, construct a sufficiently accurate approximation of its transfer func-
tion H(s) using only a relatively small number of dominant poles and zeros. This approximation
is capable of capturing with satisfactory accuracy the behavior of the system on some desirable
temporal (and/or spatial) scale.

This mathematical model order reduction has been explored and used significantly over the
years for efficient modeling of large-scale dynamical systems in a variety of engineering disci-
plines. In the area of elctromagnetic modeling, some of the earlier efforts include the application
of model-based parameter estimation for the rapid generation of broadband electromagnetic re-
sponses using integral equation techniques [1]. More recently, the asymptotic waveform evaluation
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(AWE) method, which has been used with great success in the efficient simulation of large cir-
cuits including both lumped elements and transmission lines [2]-[6], was used in conjunction with
the finite element method for the broadband characterization of waveguide and planar microwave
passive components. Several examples of such applications can be found in these proceedings.

Despite its success, the AWE algorithm has inherent numerical limitations which restrict its
applicability to systems that can be modeled accurately using only a relatively small number of
poles. Clearly, this is an issue of concern when the approximation of distributed electromagnetic
systems is of interest. Earlier efforts in conjunction with modeling of wave propagation in transmis-
sion lines have led to enhancements which, however, come at the cost of increased computational
complexity. The most successful of these is the so-called complex frequency hopping (CFH) 6],
and is the one used currently in conjunction with the aforementioned finite element modeling of
electromagnetic systems.

Recently, a robust alternative to the AWE algorithm was proposed by Feldmann and Freund
[7]. The algorithm they proposed was called Padé approximation via Lanczos (PVL). PVL uses
a numerically robust Lanczos-type process to compute Padé approximations of linear network
transfer functions, up to any order, as required by the desired level of accuracy. The successful
extension of this algorithm to the modeling of circuits with transmission line systems was presented
in [8].

In this paper, the PVL algorithm is used for the efficient broadband simulation of three-
dimensional electromagnetic systems. The presentation includes the underlying mathematical
framework used in conjunction with model order reduction. Examples from the application of
this methodology to the simulation of wave propagation in metallic waveguides with discontinu-
ities are presented in order to ellaborate on its numerical implementation and demonstrate its
numerical efficiency.

2. The Mathematical Framework for PVL

The mathematical framework for the development of Padé approximations using Lanczos and
Arnoldi-type algorithms is discussed next in a general fashion considering a linear time-invariant
system. For distributed electromagnetic problems, such a system results from the numerical ap-
proximation of spatial derivatives in Maxwell’s time-dependent equations. A development of such
an approximation using the Yee’s lattice will be discussed in Section 3. Let M be the total number
of state variables in the system, and let m be the number of outputs of interest. The state-space
representation of the system may be cast in the form ’

Cgt-x(t) = —Gx(t) + u(t) @)
y(t) = 27x(2) (2)

where x = [y, x;n]T is the vector of the state variables of the system with x;, the vector of internal
variables and y the vector of the m state variables that constitute the outputs of interest. u is a
vector associated with the forcing function, while Z = [I,,,0]7 is the matrix that selects y from x.
I, denotes the identity matrix of dimension m and the superscript T denotes matrix transposition.
C and G are constant matrices.

In Laplace domain (1),(2) become

sCx(s) = —Gx(s) + u(s) 3)
¥(s) = 27x(s) )

149




from which, the transfer-function matrix for the circuit is easily obtained as
H(s) = ZT (G + sC)™ %)
With the change of variables s = sp + o (5) may be cast in the form
H(so+0)=2T(I-0A)"'R (6)
where A = —(G + 5C) !Cand R = (G + 5C) 1.
Without loss of generality let us consider the simple case of a system with one output (m = 1).

Then H is a scalar function. With the assumption that A is diagonalizable, we have

A =QAQ7!
A =diag {A], Ag, .- .,AM}

With the definitions f7 = z7Q, g = Q~!r, and after some matrix manipulations, the transfer
function of the single-output system may be cast in the form

H(so+0)=27Q(I-0A)" Q7'r %)
or M
H(so+0)= Tf—%\' ®)
i=1 4

The difficulty with this pole-residue representation of the system response is that the calculation of
all the poles becomes prohibitively expensive as M becomes large. It is the goal of reduced-order
modeling to approximate (8) with a pole-residue representation that includes only the poles needed
for sufficient accuracy in the temporal scale of interest.

More specifically, the fundamental idea behind reduced-order modeling is the following. In-
stead of calculating exactly the transfer function, H(s), of the linear system, seek an approximation
of it that describes adequately its properties. One of the possible approaches is Padé approxima-
tion. The gth Padé approximation to H(so + o) is the rational function

by +bio+ -+ bgy0??
H = . 9

(30 +0) 1T a0+t ago’ 9
the Taylor series of which about sq agrees with the Taylor series of H(sp + ¢) in at least the first
2q terms:.

Hy(so +0) = H(so +0) + O (%)

The coefficients a;,az,--.,8q, bosd1,...,bg-1, are uniquely determined by matching the first 2¢
Taylor coefficients (moments), my, of the exact transfer function with those of the approximate
transfer function,

n 4
ld Hq 1 H=mna n=0a11"'a2q_1 (10)

n! ds®  nl ds”
Considering the general case of a system witk m outputs, the specific form of (6) leads to the
following Taylor series for the transfer-function matrix H(sp + o),

o«
H(so+0)=27 (1+0A +0?A’+. )R = Myo" 1)

n=0
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where the matrices, My, My = ZTA™R, n = 0,1,2,..., are the moments of the system response.

It is clear from this last expression that the moments can be generated in a computationally
efficient, recursive manner once the matrix A has been computed. This moment generation phase
is then followed by the moment matching process described by (10), which eventually leads to a
pole-residue representation of the elements of the transfer function matrix H. What is achieved
by the AWE algorithm is the solution of the approximated problem over a range of frequencies at
the cost of a single matrix inversion at a properly selected frequency (sg). However, as already
mentioned earlier, the moment-matching phase of the AWE algorithm has inherent limitations
which limit its applicability -to systems with small number of poles only. As an alternative Padé
approximations for systems with large numbers of significant poles can be generated up to any
order, as required by the desired level of accuracy, in a more robust way using Krylov subspace
iteration techniques.

For the purposes of this paper we concentrate on the use of the Lanczos algorithm for the
development of Padé approximations, as proposed by Feldmann and Freund [7] and Gallivan,
Grimme and Doren [9]. At this point it is appropriate to recall that, given an N x N matrix A
which, in general, is non-Hermitian, the Lanczos algorithm generates a sequence of nx» tridiagonal
matrices, Ty, n = 1,2,..., which, in a certain sense, approximate A [10]. More specifically, under
the assumption of exact arithmetic and no breakdowns, the Lanczos algorithm terminates after at
most Q steps, where Q < N, and the tridiagonal matrix T represents the restriction of A or AT
to an A-invariant or A7-invariant subspace of CV, respectively. All eigenvalues of Tg are also
eigenvalues of A and the algorithm generates basis vectors for the resulting A-invariant or A7Z-
invariant subspaces. Clearly, it is the spectrum of the tridiagonal matrices T,, that is of immediate
relevance to reduced-order modeling. Typically, the spectrum of T, offers good approximations to
some of the eigenvalues of A even for n « N. To summarize, the tridiagonal matrix T,, resulting
from the gth iteratjon (¢ € N), is a good approximation to the matrix A. Furthermore, Feldmann
and Freund demonstrated that

Hy(s) = (27r) -, 71 - 6Ty) ey (12)

where e; = [1,0,...,0}]7. Hence, the tridiagonal matrix T, leads directly to the gth order Padé
approximation of H(s). A pole-residue representation is obtained from (12) in a straightforward
fashion as follows. Rewriting (12) in terms of the eigendecomposition of the matrix T,

Ty = S,A,S;! (13)
where A, = diag(A1, Az, -+, Aq), and defining the vectors p = Sgel and v = S;lel one obtains

& z%r- Hivi

Hy(s) = (27r) - pT(I-oAg) v = 1o

(14)

Clearly, PVL generates the Padé approximation of A directly; thus the ill-conditioned moment
matching phase of AWE is avoided. The computational procedure of the PVL algorithm can be
found in [7]. We only comment here on the selection of the expansion point sp. If the frequency
range of interest is fuin < f < fmax, Where fmin < fimax and fmax > 0, o is selected to be

Sg = (fmax - fmin)” + j(fmax + fmin)ﬂ' (15)

For the special case where the frequency range of interest is 0 < f < finax, the property that the
impulse responses of the systems of interest are real, i.e. H*(j2x f) = H(—j27f), is used to define
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the equivalent frequency range — fmax < f < fmax- Thus, from (15), the expansion point is found
to be sg = 27 frmax-

In general, the matrix A = —(G+so C)~1C is nonsymmetric. It is well known that the Lanczos
algorithm may break down for nonsymmetric matrices. This breakdown is well understood and
several look-zhead implementations have been proposed to overcome it (when possible) [11]. It is
pointed out that the dominating cost of the algorithm is the computation of the LU factorization
of the matrix G + sgC, which is dore only once.

3. State-Space Representation of the Discrete Electromagnetic System

Before we proceed with the development of the state-space representation of the Maxwell’s
time-dependent curl equations, it is important to recall that numerical approximations of electro-
magnetic boundary value problems using finite methods result in discrete models of finite order.
Thus, the approximate response of the system is bandlimited, with cutoff frequency dependent on
the grid size and the order of the approximation. Consequently, the pole-residue representation of
the transfer function of the approximated electromagnetic system will be of finite order.

For the purposes of this paper, the spatial approximation of the curl terms in Maxwell’s time-
dependent equations is effected using the Yee’s lattice. The two curl equations can be written in
a compact form as follows

-P%x(i‘, {) = Lx + Dx + f(7,t) (16)

where x = [Eg, Ey, Bz, Hzy Hy, H .JT; D is the spatial differential operator matrix representa-
tion of the curl operators; P and L are time-independent matrices that include the permittivi-
ties/permeabilities and conductivities, respectively, at the specific point in space; f is the vector
of source current densities. Assuming a causal system with sources that turn on at ¢ = 0 and zero
initial conditions, the results in {12] are used to develop the Laplace-domain form of the discrete
approximation of (16) on a Yee’s lattice over the volume of interest

~[sP + (L + D)J&(s) = bu(s) (17)

where the symbol P is used to denote the discrete form of the matrix operator P with similar
notation for the other matrices and vectors. The source currents are assumed to be of the form
£(7,1) = u(t)b(7). Clearly, the discrete model is of the form in (3), with C = PandG=L+D.

For radiation and scattering problems, absorbing boundary conditions need to be used for
reflectionless grid truncation. The grid truncation scheme based on Berenger’s perfectly matched
layer (PML) [13] appears to be most suitable for our purposes since the splitting of the fields
preserves the linearity in s of the discrete problem. The performance of Berenger’s PML in con-
junction with the development of Padé approximations for unbounded problems using the Lanczos
algorithm is currently under investigation. An alternative implementation of PMLs using the gen-
eralized theory for PML (GT-PML) [14] is possible also, and its performance in conjunction with
the PVL model order reduction process is also under investigation. The results from these studies
will be published in a future paper.

4. Numerical Experiments

The first example deals with the simple problem of wave propagation inside an air-filled
rectangular waveguide. The cross section of the guide is on the z — y plane; its width along z
is 7.62 cm and its height along y is 3.81 cm. An electric current sheet source placed at the center
of a finite segment of the guide is used to excite the TE;p mode. The guide is terminated at
both ends using four-cell thick PMLs designed for a 107 reflection coefficient at normal incidence.
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The desired output is the amplitude of the y component of the electric field along the axis of the
waveguide. The expansion point for the PVL approximation is taken to be so = 27 fo, where
fo = 6 GHz. In Fig. 1 the magnitude of the field calculated from a PVL approximation of order
40 is compared with the analytic result over the frequency range from cutoff to 5 GHz. Excellent
agreement is observed. Fig. 2 depicts the comparison of the analytic result with that obtained
from the PVL for the real part of E, for the TEjo mode along the axis of the guide at f = 3
GHz. The agreement is very good for both approximations of orders 20 and 40, generated using
the expansion point fo = 6 GHz.

The second example deals with the calculation of the return loss for a dielectric post inside a
WR90 waveguide. The post is placed at the center of the guide as shown in Fig. 3. Its width, ¢, is
12 mm, its length, d, is 6 mm, and its its dielectric constant is 8.2. Measured results for the return
loss for this structure are available in [15]. Figure 4 depicts the comparison of the measured data
with those generated using PVL approximations of order 40 and 60 and expansion point so = 27 fo
with fo = 13 GHz. Very good agreement is observed.

5. Concluding Remarks

As electromagnetic CAD technology continues to mature, a new computer modeling and sim-
ulation environment is expected to emerge, capable of supporting design iteration and prototyping
of high-speed, high-frequency electronic components and systems. Since the accurate resolution of
the electromagnetic interactions in such components and systems result in numerical approxima-
tions with a very large number of degrees of freedom, model order reduction is anticipated to play
an important role in the development of efficient electromagnetic CAD tools.

The process of model order reduction was discussed in this paper from both a physical and
a mathematical point of view. It was shown that robust model order reduction techniques, used
currently for simulation of very large Jumped circuits, can be extended to handle distributed electro-
magnetic systems. In particular, it was demonstrated how the Padé via Lanczos (PVL) algorithm
can be used effectively for the generation of very accurate single-point Padé approximations for
the broadband electromagnetic response of waveguiding structures.

In addition to facilitating the broadband response calculation from, essentially, a single fre-
quency solution of the the boundary value problem, the pole-tesidue form of the Padé approxima-
tion of the transfer function can be used to generate in a very efficient and accurate fashion the
transient response of the system for a given excitation. Indeed, even for those cases that the inverse
Laplace tranform cannot be carried out analytically, the exponential character of the time-domain
form of the PVL approximation of the transfer function permits the use of efficient, recursive time-
domain convolutions of O(A) complexity (where N is the number of steps in the time integration).
Finally, the generated reduced-order models for the port responses of a “multiport” linear electro-
magnetic system result in the development of broadband macromodels of the multiport, which can
be used subsequently for the rapid simulation of more complicated linear/nonlinear systems that
contain the specific multiport as a subsystem.
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Abstract-In this paper, a new approach to integrate data obtained from electromagnetic field
analysis into circuit simulations is presented. The method is based on a robust rational approximation of
the multiport scattering parameters that characterize the electromagnetic system and a recursive convolu-
tion to convert the rational functions into macromodels of multiterminal networks. The multiport repre-
sentations of the scattering parameters (measured or simulated) are incorporated into traditional circuit
simulation as Norton equivalent circuits with conductances and dependent current sources. This allows
the accurate simulations of electromagnetic systems with nonlinear terminal networks. The method
avoids numerical transforms, band-limiting windowing, and explicit convolution of a large number of
points that are required in conventional methods. Examples of transient simulations of linear and nonlin-
ear networks are given to illustrate the method.

L. INTRODUCTION

HE transient simulation of microwave devices, and high-speed analog and digital integrated circuits
Trequires electromagnetic analysis of the distributed systems. The microstrip structures such as fil-

ters, couplers, and impedance transformers have to be represented in detail to determine the per-
formance of the systems. The microstrip discontinuities, dispersions and dielectric losses can be accu-
rately represented by data from field solutions than by equivalent circuits. In order to provide a means of
rigorous simulation of such distributed components, an efficient method of integrating data obtained
from electromagnetic field analysis into circuit simulations is indispensable.

Recently, research has been directed to combine the electromagnetic and circuit simulations into one plat-
form. The approaches can be categorized in two groups. The first approach is to extend the existing
electromagnetic techniques by introducing the concept of a lumped device mode! to handle circuit com-
ponents that represent passive and active devices {1]-[4]. Resistors and capacitors are implemented as
three-dimensional block resistors and parallel-plate capacitors selecting the conductance and the permit-
tivity of the regions. The semiconductor devices are implemented either as analytical grid models or us-
ing the concepts of voltage-variable resistors and capacitors. The second approach concentrates on inte-
grating the fundamental parameters of the electromagnetic systems into a circuit simulation environment.
" The fundamental parameters, such as impedance, admittance or scatiering parameters, are directly used
in circuit simulation to solve the terminal voltages and currents of an arbitrary network using convolution
[5], [6]. An alternative approach is to extract equivalent circuit representations directly from simulated or
measured time- or frequency-domain data [7]. The time-domain approximation of impulse response in-
volves costly optimization and the method does not guarantee physically meaningful (positive) values for
the circuit elements. Often the automatic extraction fails to give useful information for complex problems

[8].

In this paper, a new approach is presented to integrate data obtained from electromagnetic field analysis
into circuit simulations. The scattering parameters of a multiport network are extracted from electromag-
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netic simulations, and measurements. The equation describing the electromagnetic (EM) system is for-
mulated using the scattering matrix, terminal voltages and currents, reference impedances and virtual de-
pendent sources. The scattering matrix is approximated using a rational function and recursive convolu-
tion is applied to convert the rational functions into macromodels of multiterminat networks that can be
used as system matrix stamps. The approach bypasses explicit convolution, inverse Fourier transforms,
and low-pass filtering of a large number of points in order to avoid aliasing and time-domain ripples as-
sociated with the transformation of data between the frequency and time domains. The circuit representa-
tions of an EM system using Norton equivalent circuits with a conductance and a time-dependent current
source is compatible with those of conventional time-domain simulators such as SPICE [9] and ASTAP
[10] or with methods based on reduced-order techniques such as asymptotic waveform evaluation
(AWE) [11], complex frequency hopping (CFH) [12], and Padé via Lanczos (PVL) [13].

In Section II, the method of implementing the scattering parameter formulation of a multiport network in
conventional circuit simulators is described. Then, the rational approximation technique of a network
function is presented in Section III. The use of recursive convolution for efficient calculation of the sys-
tem response of an arbitrary input is described in Section IV. Examples of linear and nonlinear networks
are given in Section V. The conclusion is given in Section VL

II. SCATTERING PARAMETER

A general network can be partitioned into a number of subnetworks. The EM subsystems, such as mi-
crostrip structures and interconnect geometries, can be represented as a multiport subnetwork that can be
characterized by scattering parameters. The N-port scattering parameters of complex structures can be
calculated using full-wave analysis techniques. For example, one FDTD simulation can generate the
time-domain scattering matrix and eliminate the adverse effects from the imperfect boundary conditions.
The cormresponding frequency-domain scattering parameters are defined in terms of the Fourier trans-
forms of the time signatures of the incident, reflected and transmitted voltages.

It is possible to obtain scattering parameters of an EM system from frequency-domain measurements
with high accuracy using one of the commercially available network analyzers. They are easier to meas-
ure over a wider frequency range using careful calibration techniques. The N-port time-domain impulse
response can also be obtained from reflection and transmission measurements using a high-speed oscil-
loscope with TDR and TDT options.

The analysis of the EM system characterized by scattering parameters is done using the following inci-
dent and reflected voltage wave definitions:

. 1 . .
AGjoy = V(o) + Z (o))
M
. 1 . .
B(jo)= E(Vow) -Z,l(jo))

The impedance matrix Z,, describes the reference impedance of an N-port network and is used to de-
scribe the scattering parameters in the calculation or measurement of the scattering parameters. The scat-

tering matrix S(jo) relates the incident wave A(j) to the reflected wave B(jw) as
B(jw)=S(jo) A(jo) @
In order to express the terminal voltages and currents at each port, instead of dealing with voltage waves,
we terminate the system by the reference impedance, Z,,. Then the terminal relation can be represented

by the equation

[SGio)=1V(jo)+ Z  [SGo)+1] I(j@) =0 3)
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where V(jw) and I(jw) are the terminal voltages and the currents flowing into the electromagnetic sys-
tem, and / is the identity matrix. To obtain the response of the EM system connected to an arbitrary net-
work, the system is separated into an EM system and arbitrary networks as shown in Figure 1. The
ports of the EM system are terminated by a reference system, Z,‘/, and virtual source, e(z) , determined
from the nonlinear terminal networks.

Vi

B
IV v,

8, ¢
Arbitrary = v, = Z et EM

Network - System

E;

5

§VZN

Figure 1. EM system and arbitrary network partitions with overlapping reference systems.

The voltage at the ports of the EM system and the virtual voltage, e(t) , are related by
e(®)=v()+Z,, i(t) 4)

where i(1) is the current flowing out of the arbitrary network. By overlapping the EM system and the ar-
bitrary network partitions, the currents flowing out of the arbitrary networks are equated with the current
flowing into the EM system. In [6]. a negative impedance system, -Z,,, , is inserted in order to remove
the effect of the reference impedance. Thus, the stamp of the MNA, a matrix formulation used by circuit
simulation [14], corresponding to the EM system is given by

E .
-z, Zy 1 1% 3)
0 (5-1) Z,6S+n\I

where S, Z, . and I are the scattering, the reference impedance, and the identity matrices, respectively.
This scattering matrix formulation uses terminal voltages and currents and can directly be implemented
in conventional simulators. In [15], the convolution relation in (2) is used to derive the time-dependent
relationships between the terminal voltages and currents. Although this approach does not introduce ad-
ditional variables to the MNA matrix, the method requires special subroutines to generate the wave vec-
tors and matrix inversions to calculate the time-dependent conductances.

III. RATIONAL APPROXIMATION

Although the time-domain impulse response of an EM system can be approximated by a polynomial of
exponential functions using such methods as Prony’s or Pencil-of-function, the approximation proce-
dures involve costly nonlinear optimization. Since linear electromagnetic systems are well characterized
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in the frequency-domain, a frequency-domain approximation is more efficient and can give better re-
sults.

The transfer functions of EM systems can be approximated by the Jeast maximum error by rational func-
tions rather than that by polynomial functions of comparable order. The computational procedures of ra-
tional approximations are numerically sensitive and limited by the precision of the computer. The ap-
proximation matrices are ill-conditioned. In [16], optimal conditioning and Householder orthogonal tri-
angularization are used to guarantee the existence of a stable rational approximation of a complex system
over a wide approximation domain.

The scattering parameters, S, j) , of a linear system can be approximated by a rational function of de-
gree (£,9) as
Q. (s) _ +g,5+4,5° +...+q§s§
P,(s;) 1+ps+p,s’+..+p,s’
with p, normalized to unity. Equation (6) contains n=&+0+] free coefficients, hence, at most » inde-
pendent parameters. The coefficients are determined so that the approximating function evaluated at the
same frequency points gives close approximations to the function S(s). For specified finite functional
values y=5(s,), (=0, ...k-I) and k specified distinct points, s,, the resulting equations give

0, (s;)

————y,=0 )

Py(s;)
By canceling the denominators in (7), one obtains the linear homogenous system of k equations in z un-
knowns:

H,,(s)= ®)

9o
U
2 £ 2 ® 1% 5
I s s % =500 ~S0)o ~50Xo : Yo
2 2 ] : N
i 5:1 5 st SN =5 —5 ¥ g |= }'1 (8)
’ P
L oS S S S ~Siadi =S¥t Vi1
J 2 S
14 : Y
\.pﬂ_
St
X

The columns of Ve R™" form independent vectors and often k 27, and (8) is a full-rank overdetermined
system. When k>n Equation (8) can be reformulated as a square consistent system that has a unique so-

lution X = V'Y for any YeR", where V € R™is the reformulated V.

For higher-order approximations over a wider approximation range, the system in (8) is highly ill-
conditioned and nearly singular because of the large difference between the maximum and minirum fre-
quencies raised to the order of approximation. The condition number can be improved by normalizing
the maximum frequency to unity and shifting the domain variable.

Due to numerical difficulties, solving the consistent equation obtained from (8) using the direct method
may give inaccurate results. The problem can be transformed into a more numerically robust equivalent
one, yet still produce the solution. The Householder OR orthogonalization can be used to solve Equa-
tion (8). The total computational complexity of the approximation method is one polynomial factoriza-
tion, two Householder OR transformations, and two backsubstitutions.
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The approximation algorithm can be made more efficient and accurate by utilizing the special properties
of the EM system fundamental parameters. The functions are analytic functions of a complex variable;
hence, their real and imaginary parts are related by Cauchy-Riemann equations. The consequence of this
property is that only the real part, imaginary part, angle, or magnitude of the network function have to be
approximated and the network function itself can be found from the resulting approximation. Details of
the approximation can be found in [16]. The scattering parameters are approximated by stable partial
fraction expansion given as

H(s)=k +i & ©)

T S stp

This partial fraction expansion is used to characterize the EM system. In the next section, the partial

fraction expansion is used to perform convolution efficiently to obtain system response for an arbitrary
input.

IV. RECURSIVE CONVOLUTION

We established the fact that the transient response of an electromagnetic system can be approximated by
the exponential functions in the time domain or rational function in the frequency domain. In the pre-
ceding sections, we have successively derived a robust frequency-domain rational approximation method
for the transfer functions of electromagnetic systems. The response of the system for an arbjtrary input is
obtained in the form

k4 k
Y(s)= (k,, +y E] X(s) (10)
i=1 i

H(s)
where X(s), Y(s) and H(s) are the Laplace domain input, output and transfer function of the system, re-
spectively. The time-domain response is obtained by calculating the convolution integral given as

¥(t)= J:x(f) h(t—1)dT (1n

where x(7) and y(7) are the input and output to the linear system, respectively, A(7) is the impulse-
response or the kernel function of the system. The convolution integral in (11) becomes progressively
more expensive as the simulation time increases. Since the transfer function of the electromagnetic sys-
tem is expressed as a sum of partial fraction expansions (9), the time for the numerical convolution in
(11) can greatly be reduced by taking advantage of the recursive convolution.

The advantage of a récursive convolution for calculating the switching response of frequency-dependent
transmission lines was first recognized in the early 70°s by power and systems experts. In 1975, Sem-
lyen and Dabuleanu developed the recursive convolution and showed its computational efficiency and
usefulness {17]. The time-domain response can be written in terms of the last response and a single time-
step convolution as

g ig
() =k, x(1) + 2 (e P&yt -8+ j: k;e” x(t-1) dr) 12)

=]
Knowledge of the values of x(z) at a discrete number of points is not sufficient to specify y(t) uniquely
by the above equation. It is necessary to make assumptions about the nature of x(z) such that its values at
a discrete set of the points suffice to specify y(z) uniquely. If the excitation is assumed to be piecewise
constant, x(¢)=c, where ¢, ,< ¢t <t,, Equation in (12) reduces to

g
¥, =kox(t,)+ Y 5,(2,) 13)

i=]
where 3,(1,)=k(1—e"®)x(t, - &,)+ e %52, - &,))
and &, =1-1.,.
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The recursive convolution gives exact results if the assumption made about x(#) is valid. The stability of
the convolution method depends on the nature of the system impulse response function, h(?).

Each entry in the submatrix of the scattering parameters of the electromagnetic system is approximated
by a rational function, and the inverse Laplace transform of the pole-residue model, is found symboli-
cally. This corresponds to the macromodel stencils of the MNA matrix. Equation (13) is implemented as

a Norton equivalent circuit consisting of a conductance of constant value, k_, and a current source,

g
—Z ¥:(¢,), which is updated at each time iteration based on the pole-residue pairs and the voltage at a
i=t
previous time point. Since the number of pole-residue pairs is much smaller than the number of time
points in the total simulation time, the integration routine is linear in time.

V. NUMERICAL RESULTS

An interconnect with a V-shaped cross-section is characterized using a scattering matrix. The scattering
parameters are measured in the frequency range 45 MHz-10 GHz with a HP8510B vector network ana-
lyzer. The measured scattering parameters of the interconnect are approximated over a frequency range
using a rational function. Although the method is able to generate a stable, very high-order rational ap-
proximation, a 24th- and a 27th- order rational function is used to approximate S,, and §,,, respectively.
The measured and approximated scattering parameters are shown in Figures 2 to 5. The magnitude and
phase plots of §,, and S, are almost indistinguishable.

: —  Measurement 150 ~—  Measurement
0.95 —-  Approximation 100 —- _ Approximation
0.9 s \
0.85 0 \
0.8 ~50
0.75 -100
0.7 -150
oz 4 6 & 10 0o 2 4 6 s 10

Frequency, GHz

Figure 2. Magnitude plots of §,,, the measured
data and the 24th-order rational approximation.

Frequency, GHz

Figure 3. Phase plots of S,,, the measured data
and the 24th-order rational approximation.

0.4 150 L - Measurement
— Approximation
03 100

50 |
0.2 0 N
-50 \ \I
01 -100
— Measurement
ol . —  Approximation - 150 ’\
0 2 4 6 8 10 0 2 4 6 8 10

Frequency, GHz Frequency, GHz

Figure 4. Magnitude plots of §,,, the measured
data and the 27zh-order rational approximation.

Figure 5. Phase plots of §,,, the measured data
and the 27th-order rational approximation.
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The proposed method is used to study resistive and diode terminations. The network in Figure 6 consists
of a measured subnetwork, a diode-pair termination and a resistive termination. For the measured sub-
network, the rational function approximations of the scattering parameters of the V-shaped interconnect
are used. First, the measured S-parameters are extrapolated to low frequencies for the dc solution.
Then, the scattering parameters are incorporated into the MNA matrix using Equation (5). The network
is exited by a pulse with rise and fall times of 0.3 ns and pulse magnitude and width of 5 Vand 7 ns, re-

spectively. The network is simulated with the diode-pair termination and with the 5 k{2 resistor replac-
ing the diodes shown in Figure 6.

+5
10Q 2nH 10Q 1nH X v
Measured
Subnetwork 5K Q
o Iz pF 1 pF]: J: 1

Figure 6. The diode-pair terminated network. (The 5 kQ resistor replaces the diode-pair.)

The transient responses of the diode-pair termination at nodes x and y are compared to those of a 5 k€2

resistor termination. At the far end, node y, the voltage response of the 5 k€ resistor, shows voltage
overshoots and undershoots while the diode-pair termination squelch the voltage overshoots as shown in
Figure 7. The voltage waveforms at the near-end, node x, for the two cases are almost identical as
shown in Figure 8. Thus, the time-domain analysis of a nonlinear network can be performed efficiently
using the proposed method. -

6 T - Diode-pair 5 - Diode-pair
== Resistor / == Resistor
4 4
3
V. \Y
2 2
TANEN ! [\
0 a
— 0 A .
L VoSN T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time, ns Time, ns
Figure 9. The transient response at node y. Figure 8. The transient response at node x.

V1. CONCLUSIONS

An efficient method of integrating data obtained from electromagnetic analysis into circuit simulations is
presented. The frequency-dependent scattering matrix characterizing the EM system is approximated by
rational function, and recursive convolution is used to construct the macromodels and to incorporate
them into time-domain nonlinear solvers. The MNA stamps corresponding to the EM systems are con-
structed as Norton equivalent circuits with conductances of constant values and time-dependent current
sources that are compatible with the formulations of conventional circuit simulators. The method s effi-
ciency over traditional methods is obtained by avoiding the use of time-consuming IFFT, low-pass fil-
tering and convolution that are required in traditional methods.
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Spectral responses of electromagnetic devices in a range of frequency are often of great
value for analysis and design purpose. Among various approaches for solid modeling of
microwave devices, finite element methods (FEM), especially tangential vector finite
element method (TVFEM), has been demonstrated to be very successful. The TVFEM
formulation of EM problems usually leads to a matrix equation of high dimension. And in
order to obtain the system responses within a certain frequency band, this equation used to
be solved directly at a set of discrete frequency points and the results are interpolated to
form a continuous curve. However with the increasing size of the system, solving this
system equation at many discrete frequency points can be very time consuming. Especially
when the system posses a complex spectral behavior, the points that this approach needs
can be 50 or even more.

This paper describes an efficient approach for evaluating the spectral responses of the
passive microwave devices. This method is based on the TVFEM formulation of the EM
problems and the AWE technique. Through choosing the expansion point from the entire
frequency plane as well as with selective orthogonalization in the Lanczos process, the
spectral responses of the system can always be obtained by the expansion at a single
frequency point. An adaptive algorithm based on this approach is developed and applied to
several practical problems.
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Abstract

niques.

L. INTRODUCTION

based on reduced-order models using CFH [5] - [7] has been developed.

as follows:
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This paper describes an efficient method for both spectral- and time-domain solution of general
EM problems using reduced-order models. In this technique, EM problems described by generalized
FEM formulation (both homogeneous and inhomogeneous cases) which usually result in large sets of
algebraic equations are reduced to lower-order models using complex frequency hopping. Proposed
technique can also handle formulations consisting of hybrid finite element - boundary integral sys-
tems. Several electromagnetic problems have been studied using the proposed technique and a speed
up of one to three orders of magnitude is achieved for a comparable accuracy with conventional tech-

Efficient solution of electromagnetic field formulations are important for accurate and guick analy-
sis/design of high-speed circuits and systems. Most common approach used for the solution of EM
problems is the finite element method (FEM) [1] - [3] and the formulation can be in space/frequency
or space/time domain. The formulations in the spectral-domain lead to a set of algebraic equations
which have to be solved repeatedly at many frequency points, while the one in the latter domain leads
to a set of ordinary differential equations which have to be solved in time-domain. Generally, the size
of the resulting equations is large and the conventional solution algorithms are restricted by computing
time and stability conditions [4]. Also in most applications both frequency- and time-domain results
are required to be computed. In order to address the above issues efficiently, a new solution method

Complex Frequency Hopping (CFH) is a moment-matching technique that has been recently devel-
oped in the circuit simulation area which yields a speed-up factor of 10-1000 over conventional circuit
simulators. It has been extended to solution of static fields in VLSI interconnects, in ground/power
planes and thermal equations [5] - [9]. CFH uses the concept of moment-matching [6], [10] to obtain
both frequency- and time-domain responses of large linear networks through a lower-order multipoint
Padé approximation. It extracts a relatively small set of dominant poles to represent a large network
that may contain hundreds to thousands of actual poles. CFH is particularly suitable for solving large
set of ordinary differential equations which makes it a logical candidate for solving general class of
EM eguations. The main advantages of the proposed model-reduction technique can be summarized




+ 10-1000 times faster than the conventional FEM solution techniques
+ Produces simultaneously both the frequency- and time-domain results.
« Can handle general case of EM problems: both homogeneous and inhomogeneous formulations.

« Solution algorithm does not suffer from instability problems associated with the conventional
methods.

« Problems consisting of Dirichlet, Neumann and combined boundary conditions can be solved and
the proposed model-reduction technique can be easily integrated with conventional EM simulators.

Integration of CFH with nodal-based FEM for solution of homogeneous EM problems is described
in [11]. This paper presents formulation/solution of general case of EM problems (both homogeneous
and inhomogeneous) based on the proposed model-reduction algorithm. Also, presented is the exten-
sion of the proposed model-reduction technique for the more involved case of hybrid finite element -
boundary integral systems.

Rest of the paper is organized as follows: A brief discussion of general EM formulations is given in
section II. Section I gives a brief outline of the CFH algorithm. Section IV presents the proposed
model-reduction algorithm. Numerical examples and conclusions are presented in section V and VI,
respectively.

I1. FORMULATION

For general time-harmonic case, starting from Maxwell’s equations an expression in terms of elec-
tric field E can be derived as [2]

Vx (ﬁl.v x E) _K%,E = -jk,Zod o))

The boundary conditions often encountered are those to be applied at the electrically and magneti-
cally conducting surfaces and are given by,

axE = 0; AxVxE = 0, —;—(ﬁxVxE)wyexizxisz:O )
r
respectively. The continuity conditions at the interfaces separating two different media are

axE" = axE )]
where # is the unit vector normal to the interface. J represents the excitation source current.
€, = £/€q and L, = W/, denote the relative permittivity and permeability, respectively. kq = JHo€q
and Z, = o/, are the wave number and intrinsic impedance of the free space, respectively.

In accordance to the variational principle, the solution to the electric field governed by (1) - (3) can
be obtained by seeking the stationary point of the functional

F(E) = %”Jz[(il-VxE)~V><E—kie,E-E:ldQ +[[[2AxE-axE]ds + jkozof{[E-Jdo “)
r 5 Q
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where Q represents the finite element domain. A similar functional can also be derived in terms of
magnetic field. Alternatively, above Kind of functional can also be obtained in terms of magnetic vec-
tor potential [2]. By minimizing the functional of the problem and applying associated Dirichlet and
Neumann boundary conditions, a system of ordinary differential equations in Laplace-domain can be
obtained as

(Cs* + Bs+ A)X(s) = R(s) 6]
or
Y(5)X(s) = R(s) (6)

where A, B, C are NxN symmetric, positive definite matrices assembled from [S], and [T],

and N is the total number of nodes. R(s) is a vector of dimension N, assembled from” (G, whlcfl
contains the forced terms attributed to space or time excitation. X(s) is a vector containing discretized
unknown field components. [S], , [T), are real square elemental matrices and [G], is a column
vector, defined as 7 F P
[S,-J»Lp = [ Vo -vof 4, ; Ty, = Qj afafdﬂep; G, = Qj of HOLE )]

‘p ‘p ‘p

where Q, represents the domain of finite elements. Here p refers to either 1, 2 or 3 corresponding to
one-, two- ‘or three-dimensional FEM formulation with finite elements e, and shape functions of.

III. COMPLEX FREQUENCY HOPPING

Complex frequency hopping(CFH) [5] - [7] is a recently developed model-reduction algorithm in
the circuit simulation area. It has been successfully and efficiently applied for obtaining the solution of
large set of ordinary differential equations and it uses the moment-matching for obtaining reduced-or-
der description of a linear system. In general, moment matching technique approximates the frequen-
cy response of a Taylor series expansion in the complex s plane. The cost of an expansion is
approximately one frequency point analysis. The moments (coefficients of the expansion) are matched
to a lower-order transfer function using a rational Padé approximation. This transfer function can be
used to obtain the output response. Single Padé approximations are accurate near the point of expan-
sion in the complex s plane and decrease in accuracy with increased distance from the point of expan-
sion. CFH overcomes this problem by performing muitiple Taylor expansions in the complex plane
using a binary search algorithm. With a minimized number of frequency point expansions, enough in-
formation is obtained to enable the generation of an approximate transfer function that matches the
original function up to a pre-defined highest frequency. The transfer function or set of transfer func-
tions then acts much as the entire network up to that frequency, both in time and frequency-domains.

Expanding X(s) in (5) about the complex frequency point s = a yields,
X(5) = TM(s— o' . ®)

where M, is the n™ vector of coefficients (moments) of the Taylor expansion. A recursive relation for
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the evaluation of moments can be obtained in the form

n Y(S)(r)l —uM""’
(Y(o)IM, = -y ——=¢ —

r=1

®

r!

The transfer function of the system is then found by matching a Padé approximation to the mo-
ments of the system in (8). The reduced-order model which is obtained in terms of approximate domi-
nant poles p; and residues k; of the system can be represented as

. Lk
H(s)=H(s)=¢+ 3 —= 10

~

i=05~-p;

where # is the direct coupling constant between the input and the output and L is the total number of
dominant poles extracted. Corresponding approximate time-domain impulse response is given by

L -
h(t)=h(t) = e61+ Y ke an
i=0

In order to compute moments in (9), we need the derivatives Y(')(s) . Computation of Y(')(s) has
been discussed extensively in circuit simulation area where in the ¥ matrix comprises of circuit ele-
ments such as inductors/capacitors and quasi-TEM interconnect models. However, computation of
these moments in case of EM formulations has not been addressed previously in the literature. In the
following section we propose an efficient method to compute these derivatives for EM formulations.

IV. MOMENTS-GENERATION.

To obtain the derivatives of ¥(s) in (9), a recursive relationship has been developed and is summa-
rized below:

[Co? + Bo+ AIM, = R(Q) 12)
[Cozz +Bo+ AJM| = -[B +20C]M,+ R'(ct) 13
[Co? + B+ AM, -~ BM, - C[20M, _;+M, _,] +5;1(-!9‘l 14)

for nz2. Here (12), (13) and (14) give the system moments recursively at a given expansion point
s = . In case of hybrid finite element boundary systems, moments-generation gets little complicat-
ed as the matrices involved here, A, B and C are frequency dependent [2]. In this case also the mo-
ments can be recursively computed as

(M, = 3, 6, . M., as)

r=1

where I'(¢t) and (p(')(a) are functions of the derivatives of A(a), B(e) and C(a).

168




V. COMPUTATIONAL RESULTS

Numerical examples involving formulations for the case of homogeneous EM problems are pre-
sented in [11]. In this paper two numerical examples are given to demonstrate the applicability and the
speed-up achieved in case of inhomogeneous EM problems. Problems chosen here are the extraction
of resonance frequencies of inhomogeneous dielectric resonators. For these examples, formulations
indicated in section II were carried out in cylindrical co-ordinates and the resulting Y(s) represented
by (6) has the form ¥(s) = Cs° + A.

Example 1:

In this example resonant frequencies of an inhomogeneous dielectric resonator shown in Fig. 1 are
evaluated using the proposed model-reduction technique. This example is reported in [12] with FEM
formulation containing 325 nodes. Using a similar kind of discretization and equations (12) - (14), re-
quired moments are generated and the resonant frequencies are extracted using the CFH algorithm. In
Table 1, accuracy comparison of resonant frequencies obtained using the proposed model-reduction
technique and the conventional FEM frequency-domain (FEMFD) approaches are given and as seen
they match accurately. Also, the accuracy of resonant frequencies obtained using the proposed tech-
nique are compared with one reported in [12] and they agree reasonably. Speed-up achieved using the
proposed technique compared to FEMFD is given in Table 2.

L=5mm R, =15mm Table 1. Accuracy comparison of

R =5mm R=065mm Tesonant frequencies (325 nodes)
€p =100 & =96 H Proposed FEMFD
. n ethod-f,(Ghz) | f,(GHz)
Normalized parameters: - i (
H € =&/t = 0.09 0.20 1.2427 1.2427
. n = FsTER TS 0.30 1.2199 1.2199
: t, = t/R = 0.127 0.40 1.2069 1.2069
L __3 . R,=R/R=15 0.50 1.1983 1.1988
_ L =L/R=15 0.60 1.1939 1.1539
1 " 0.75 1.1890 1.1890
| H, = H/R 1.00 11874 11874
! —p
: R, fn = 2Rf o ioEots 1.50 1.1857 1.1857
) : I 2.00 1.1857 1.1857
Fig. 1. Cross-section of an inhomogeneous dielectric resonator[™"330 1.1857 1.1857
Table 2. CPU comparison (SUN Sparc 10)
Matrix H Proposed FEMFD Speed-up | No. of
Size n method (secs) (secs) Ratio hops
293 x 293 0.20 2.35 423.8 180 2
292 x 292 0.30 2.61 426.7 163 2
304 x 304 0.40 273 564.3 206 2
301 x 301 0.50 2.65 597.3 225 2
304 x 304 0.60 2.37 498.4 210 2
313x 313 0.75 2.58 454.0 176 2
313x313 1.00 3.28 578.9 176 2
326 x 326 1.50 3.35 706.7 211 2

169




Example 2:

This example consisting of an inhomogeneous dielectric resonator (Fig. 2) [13] is chosen for the
purpose of demonstrating the accuracy and CPU speed-up of the proposed model-reduction technique.
The configuration consists of a cylindrical high-dielectric constant material (region 3) positioned be-
tween three layers of different dielectrics. The structure is analyzed using the proposed technique and
the resonant frequencies are evaluated. Table 3 and Fig. 3 give the CPU/accuracy comparison of the
proposed technique with the conventional FEMFD approach. As seen the results match accurately
while the proposed technique yields a very high-speed up (approximately 200). Also accuracy of the
results from the proposed technique are compared with the results reported in [13] and they agree rea-

sonably.

mi
i
bn

Fig. 2. Cross-section of the resonator for example 2  Fig. 3. Resonant frequencies for various &y

:._lR_z_,l

hy = 0.0635cm
hy = 0.48cm 52
R, = 0.635cm 51
= L4R,
= 10g,
= 37¢,
= l4g, o

54

53

—— Proposed Technique
‘xx FEMFD

o1 02 03 04 05 06 07 08 03 1
P4 (em)

Table 3. CPU comparison (SUN Sparc 10)

Matrix h Proposed FEMFD Speed- No. of
Size 4 | method (secs) (secs) up Ratio hops
367x367 | 0.1 5.01 943.1 188 3
385x385 | 02 5.25 1075.2 204 3
405x405 | 03 5.07 1284.6 253 3
398x398 | 04 5.38 1099.0 204 3
397x397 | 05 5.05 11713 231 3
386x 386 | 0.6 5.95 1216.0 204 3
398x398 | 0.7 5.70 1436.5 252 3
383x383 | 08 5.10 1220.5 239 3
404 x404 | 09 5.70 1106.6 194 3
402x402 | 1.0 5.45 13142 241 3
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VI. CONCLUSIONS

An efficient model-reduction technique based on CFH and FEM for solution of both homogeneous
and inhomogeneous EM problems is presented in this paper. Several electromagnetic problems in-
cluding inhomogeneous dielectric resonators were analyzed using the proposed technique and a
speed-up of two orders of magnitude is achieved compared to conventional techniques. Proposed
model-reduction technique yields both frequency- and time-responses and can be easily integrated
with conventional EM simulators.
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Abstract—This paper presents an efficient method for the computation of electromagnetic transients.
We employ fast frequency-sweep methods, such as Asymptotic Waveform Evaluation (AWE) or the
Lanczos-based ALPS procedure, to determine the frequency response of an electromagnetic system
over a broad frequency band. Using a rational function fitting procedure, we compute a reduced-order
model of the system’s port parameters. Next, an equivalent circuit model is formed. A circuit simulator
such as SPICE or SPECTRE can then be used to compute the transient response of the system in con-
junction with nonlinear driver and load devices. We provide examples to demonstrate the accuracy and
efficiency of this technique.

1 Introduction

Electromagnetic transients are often computed by using time-stepping methods in the space domain
using the FDTD or similar algorithms[1]. In this approach, the geometry of the structure is represented
by thousands of grid points and the electromagnetic field at each point is computed at thousands of tiny
(e.g. picoseconds) time steps directly from Maxwell’s equations.

This paper presents a efficient alternative to this computation-intensive approach. We use fast-sweep
methods such as AWE[2]{3] or ALPS[4] to determine the frequency response of an electromagnetic
system over a broad bandwidth. This information is used to compute a reduced-order model of the
wransfer function of.the system; then an equivalent circuit is derived from this reduced-order model.
This equivalent circuit is subsequently used in circuit analysis to determine the transient response of the
system using circuit simulators such as SPICE[5][6] or SPECTRE [7].

There are several advantages to the new approach. First, the electromagnetic field is computed only
once. Electromagnetic fields in many systems are linear and are completely characterized by a few
dozen parameters derived by using linear analysis. Second, the electromagnetic analysis may be per-
formed by using either differential or integral equation methods. In this paper, we employ both finite
element analysis and boundary element analysis to perform the frequency domain electromagnetic field
computation. Third, the time-domain solution is computed in the circuit domain. This means that the
transient simulation is very fast and memory efficient since it is based on reduced-order models involv-
ing only a few dozen parameters. Fourth, the resulting electromagnetic model is readily combined with
external sources and loads. Since both the electromagnetic fields and the external sources and loads are
represented by circuit elements, they are analyzed simultaneously in the circuit simulator. And fifth, it
is very easy to use these reduced-order models in what-if design variations. Since the electromagnetics
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is done once and for all, it is possible to pass these detailed models on to design groups working at the
system level. The new transient/fast sweep procedure has been implemented in Ansoft’s High-Fre-
quency Structure Simulator (HFSS). This paper will illustrate the theory with solutions from micro-
wave circuit design obtained by using this technique.

2 Fast Frequency Sweep Techniques for Electromagnetics

Numerical solutions of Maxwell’s equations typically involve a discretization process which reduces
the field problem to a matrix equation of the form

A(S)x(s) = b(s). 1

Here, x(s) is a vector consisting of the desired solution quantities (for example, electric fields or current
densities), b(s) is a vector containing the contributions of applied sources, and A(s) is a square matrix

formed by stamping in the various finite element or integral equation contributions. Since A and b are
frequency-dependent quantities, it is necessary to repeat the solution of (1) for every frequency point
desired. This process is obviously expensive if a large number of frequency points is required.

Fast frequency sweep methods attempt to accelerate the procedure by breaking apart the operator A(s)
into more manageable pieces. In the simplest lossless cases, it is possible to rewrite A(s) as

A(s) = Ay + 524, 2

where A, and A, are frequency-independent matrices. In this case, it is possible to solve (1) using a

series expansion technique; we represent x(s) and b(s) by their Taylor series, and then use (2) to deter-
mine the coefficients of the series for x(s). For a direct-method equation solver, it is possible to show
that only a single computation-intensive LU factorization is required to determine all of the series coef-
ficients, as opposed to one per frequency point in the conventional approach. This is the core idea
behind the asymptotic waveform evaluation (AWE) technique[3].

Once the Taylor series’ coefficients have been found, it is possible to derive a low-order model] for the
response using Padé approximation techniques{8]. A Padé approximation represents the desired

response f(s) as a rational function:

- Bo+Bis+PBys?+ ..+ quq

2 q
O+ 0Ly S+ 0lps? 4+ .. + 0 s

F(s) 3

An approximation accurate over a broad frequency band can often be determined with just 10-20 terms
of the Taylor series expansion. Once we have a formula such as (3), characterized in terms of just a few
parameters ¢ and $, it is a simple matter to evaluate the frequency response by substituting a particular

value of 5.
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A more numerically stable procedure than AWE is the Padé-via-Lanczos, or PVL procedure[9]. With
either AWE or PVL, the fast sweep procedure may easily be 10-1000 times faster than the conventional
“discrete” frequency sweep technique. The amount of speed-up depends upon the desired number of
frequency points.

In the more general case of lossy problems, a splitting such as (2) is still possible, but unfortunately the
matrices A, and A, depend upon frequency. The Padé approximation can still be computed in the
vicinity of a particular frequency point, but the band of validity is more limited. In this case, it is neces-

sary to use a few (perhaps 5) frequency expansion peints and to merge the results using an adaptive pro-
cedure such as the ALPS algorithm[4].

To summarize, various computationally efficient procedures exist to compute rational function models
such as (3) which are valid in a piece-wise fashion over different sections of the frequency band of
interest. When taken together, these models will cover the entire band and permit the rapid evaluation of
the frequency response at any point within the band.

3 Reduced Order Modeling

Given a frequency response f(s), it is desirable to create a single rational function model valid over the
entire frequency band of interest. If this can be achieved, then it is a simple matter to determine the time
domain response of the system. The first step is to determine the g poles of the rational function, and
then represent the frequency response in pole-residue form as

ko k k
k_+ + +o o+ —1 4)
§—-p; S=p;y S—Pg

It is then trivial to carry out the inverse Laplace transform of the function to find the time response. In
order to compute a model such as (4), we use a procedure based upon rational function interpolation,
pole pruning and least squares fitting. The initial “unconstrained” rational function interpolation proce-
dure[10] is carried out in order to find a model that passes through the computed data at a set of equally
spaced points along the line s = jc. To choose the interpolant’s order, we start with a small number of
interpolation points and then increase the number of points until an acceptably accurate fit is achieved
between the interpolation points.

The unconstrained interpolation procedure may produce nonphysical, unstable right half-plane poles. In

the pole pruning stage, these poles are eliminated from the model. This makes the model stable, but
introduces additional approximation errors. To minimize these errors, a final least squares fitting proce-

dure is used to adjust the residues {;} of the remaining poles. Typically, we find that a maximum error
of about 1% is achievable with 5-30 poles.

4 Modeling Electromagnetic Structures in a Circuit Simulator

In order to carry out simulation of complete digital or microwave circuits, it is desirable to include both
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the electromagnetic effects of interconnects as well as the nonlinear effects of transistors and diodes.
Thus, we wish to incorporate the reduced-order models we derive within circuit simulation packages
such as SPICE and Spectre. The main challenge in doing this is translating between the scattering
parameter models of high-frequency electromagnetics and the circuit models of SPICE. The problem is

illustrated in Figure 1.
i —»

v Yier (Y gy + 1)

Figure 1.  Three-dimensional “black box” fed by Figure 2. A circuit interpretation of the current
two triaxial cables. scattering relationship in (8).

This figure depicts a three-dimensional structure (contained inside a “black box™) which we wish to
characterize via electromagnetic analysis. The structure has two “feeds.” each consisting of a pair of
wires within a shield. Each feed will support two quasi-TEM modes of propagation, as well as higher-
order modes. Microwave circuit theory conventionally defines each mode as a “port” into the structure;
scattering parameter matrices represent the relationship between the incident and reflected powers of
these modes. In order to communicate with a circuit simulator, we must develop a relationship between
the modal fields and certain “voltage™ and “current” signals. In circuit theory, the voltages are typically
defined as potential differences between each signal conductor and a “ground” conductor.

Formally, a voltage v,, is the integral of the transverse electric field E\I over an open path C,,.
=N -
v, = = [E(xy)-dl. ©)
C..

If the transverse electric field can be represented in terms of incident and reflected modes, with intensi-
ties a,, and b,,, respectively, then we have

E, = Xa.2,06 0+ 2 b2, )
n n

Therefore, in terms of modal intensities, the voltage v, becomes

Vm = Zantmn + zbntmn
n n
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where 7., = —J E:(x, »- dl is an integral of the modal electric field.
¢

m

Collecting all of the voltages and wave intensities together as vectors, the relationship becomes
v =T(a+b) ©)

where T = [z,,,] is a square matrix (4x4 for Figure 1) defining the transformation from mode intensi-

ties to port voltages. We need another such transformation to compute the port currents; this can be
derived from (6) by enforcing energy conservation between the circuit and electromagnetic models.
Then it is possible to derive a “pseudo-scattering” matrix S, relating incident and refiected pseudo-

waves. We define the pseudo-wave intensities in terms of circuit quantities:

1, ~172 172,
a,= §(Zref v+Zo i)
. . @)
-1/2 172,
bp= E(Zref V_Zref i)
Then we have a simple relationship: b P = Sya,.
5 Implementation of Reduced Order Models in a Circuit Simulator
Using (7), we can rewrite the relationship b p = S »9p in terms of voltages and currents:
Y v—i = §,(Yuy+i) where S; = Zt S, Z0s - ®

We introduce Y ¢ = ZzL as well as the current-scattering matrix S,. The advantage of (8) is that it

lends itself to direct implementation in a circuit simulator. An equivalent circuit model for this relation-
ship is shown in Figure 2. The overall procedure for producing the equivalent circuit is now summa-
rized:

1. Run an electromagnetic analysis on the structure of interest, using fast-sweep methods to find the
modal scattering parameter matrix § over a broad frequency band.

Determine the transformation matrix T from the modal field patterns at the ports.
Compute the pseudo-scattering matrix S » and then convert it into a current-scattering matrix ;.

Perform reduced-order modeling on the entries of the current-scattering matrix.

et o g

Write out the reduced-order models as frequency-dependent controlled sources in the form of a cir-
cuit deck for SPICE or Spectre.
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6 Examples

The first example is a low-pass filter (Figure 3a). This was analyzed using Strata™, a full-wave bound-
ary element code with ALPS-based fast frequency sweep. The computed scattering parameters were

modeled with rational functions of 16-18 poles. A comparison of the sweep results with the reduced-

Comparison: Magnitude of S,,
Svata™ vs. Reduced-Order Mode!

I

/{’l =0
— g i
|
s .
S S /4 00l 1
T ! —— S
T ——~- Reduces-Orcer
%% 20 4.0 60 8.0 10.0

- ' Frequency (GHz}
Figure 3.  (a) Chebyshev 3rd-order low-pass filter structure; and (b) comparison of Strata’s fre-
quency response (computed by fast sweep) and the reduced-order model.

order model is shown in Figure 3(b).
A 2-port equivalent circuit model for the structure was then generated; this was connected to a nonlin-

ear MOS inverter driver. The transmitted and reflected pulses from a transient simulation are shown
below in Figure 4.

MOS Inverter Driving Low—Pass Filter
Near ang Far Eng Wavelorms.

filter

<7 15Q

Voliage (V)

MOS
inverter

00 20 40 60 8.0 100
Time (ns)

Figure 4. Transient simulation results from HSPICE analysis of the combined MOS driver and
reduced order model.

The second example (Figure 5a) is taken from printed circuit board design. It consists of two symmetri-
cal wires used in a differential signalling scheme; the wires make a 90° bend, which includes a transi-
tion from an x-routing layer to a y-layer through a pair of vias. There are ground planes above and

below the structure. We wish to investigate the crosstalk between the undesired common mode (even
mode) of propagation and the signal-carrying differential mode (odd mode). The structure was analyzed
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in Ansoft HFSS using both a standard discrete frequency sweep and fast frequency sweep techniques;
the modal S-parameters were converted into circuit-based parameters for even and odd modes and then

Crosstalk Responses for 90° Bend
Odd moge to even mode

|
i
! Far enc

Magnitude (dB}

400 } 7
|7
/
7
/
I/
I 1
60,
%0 3.0 20 30 40 5.0

Fregquency (GHz)
Figure 5.  (a) 3-d printed circuit board structure including vias and 90-degree bend: and (b) the sim-
ulated far-end crosstalk response between odd and even modes.

fitted by reduced order models. The point-by-point frequency sweep (100 points) took 2.5 hours of
CPU time on a DEC Alpha 3000/800 workstation, while the fast frequency sweep took less than 0.2
CPU-hours. Plots of the near and far end crosstalk magnitudes are shown as a function of frequency in
Figure 5b. In addition, we have computed the time-domain crosstalk waveforms for the structure,
assumning that input pulses with 0.1ns rise times drive the even and odd modes. Plots of these wave-
forms are given in Figure 6a. This information could be used to create “design rules” for the maximum
number of right-angle bends allowed for a certain maximum crosstalk.

Near and Far End Crosstatk Waveforms

Near and Far End Differential Signal Voltages
Input putse with 0.10s nse tme

0.10 15— )
Near H : X
[ - | :
0.00 it e : ! Nearend |
Y 2 , 10 ;
\ H E !
1
s 010 ,,‘ = 2 !
Y ! = ! i
- N g os- Farond i
k3 3 / end 3 . N
3 02 - \ / 3 i )
| v | ! Y I
! i 3 gelay = 0.1nS ;
i 0.0 -
-0.30 ! :
t i
-0.40 05 _ |
00 02 0.4 g 08 10 0.0 02 04 06 08 10
Time (ns} Tiroe (ns)
Figure 6.

(a) Time-domain crosstalk waveforms at the input (near) and output (far) ports; and (b)
time-domain differential signal waveforms at the near and far ends.

Also shown (Figure 6b) are the signal waveforms at the near and far ends. Notice that the waveforms
predict a delay of approximately 0.1ns from input to output. This is consistent with the relative dielec-

tric constant (& = 4, leading to a velocity of 1.5><108 m/s) and the total distance travelled (about
16mm.)
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7 Conclusions

Fast frequency sweep methods provide a powerful tool for characterizing the electromagnetic behavior
of structures that are intended to operate over a broad frequency band, or whose time-domain character-
istics are important. Reduced-order models can be generated with a low additional cost. These models
are very useful for circuit simulation, which can be used to explore the time-domain behavior of a sys-
tem that includes both electromagnetic structures and nonlinear device models. We have presented sev-
eral examples to demonstrate the usefulness of this technique.
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TO SHIPBOARD HFDF SYSTEM SIMULATION

Jeffrey B. Knorr
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Abstract

This paper describes a computer simulation of a shipboard high
frequency direction finding system which was developed to study the
effect of ship topside reconfiguration on DF system accuracy.
Numerical models of DD963 Spruance Class destroyers in two different
configurations were developed. The numerical models were then
calibrated by computing the responses of the DF antennas as a function
of azimuth. The numerical calibration data were used to study the
effect of topside changes on the performance of the direction finding
systen. Numerical results were validated using experimental
calibration data. The overall objective of the investigation was to
determine the feasibility of using a computer simulation as a ship
recalibration decision support system.

1. Introduction

A computer simulation of a shipboard correlation interferometry
direction finding (CIDF) system for the high frequency (HF) band has
been developed as shown in Figure 1. The simulation utilizes a module
which implements the CIDF algorithm [1] and will correlate DF antenna
responses for a signal of interest (SOI) with calibration data to
derive an estimate of the angle of arrival of the SOI. As illustrated
in Figure 1, this can be accomplished using data obtained from
numerical ship models, scale ship models, or real ships. The use of
numerical models to compute DF antenna responses as well as the
comparison of numerical data with data from measurements on scale
models was presented previously [2], [3]. It was shown that numerical
and experimental DF antenna responses were in good agreement at 1.85,
6.34, and 9.25 MHz.

Two configurations of the DD963 were investigated; one in which
the ship was configured with an anti-submarine rocket (ASROC) launcher
as shown in Figure 2a, and one in which the ASROC launcher was removed
and replaced with a vertical launch system (VLS) as shown in Figure 2b.
The VLS has a much lower profile than the ASROC launcher and it can be
anticipated that the difference in coupling to the DF antennas will
affect their responses, and therefore the performance of the DF system.
Experimental data for validation of numerical results was obtained
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using the 1/48th scale brass model ship shown in Figure 3.

Recently, DF antenna responses were computed at a fourth
frequency, 20.075 MHz. Also, both numerical and experimental data for
the VLS configuration of the DD963 were cross-correlated with data for
the ASROC configuration and bearing error was computed at all four
frequencies. This cross-correlation simulated the effect of
calibrating the ship in the ASROC configuration, and then using the
calibration data to estimate arrival angles for signals received in the
VLS configuration. The primary purpose of this paper is to present
these correlation and bearing error results. .

II. DF Antenna Responses

DF antenna responses for 1.85, 6.34, and 9.25 MHz were previously
reported [2]. Numerical and experimental data for these freguencies
were in good agreement, although results for 9.25 MHz were not as
satisfying as those at 1.85 and 6.34 MHz. Figure 4a shows the
numerical patterns for DF antennas P-3 and S~3 at 20.075 MHz. These
antennas are mounted on the deckhouse and angled about 20 degrees to
port and starboard, respectively. Figure 4b shows the experimental
patterns for these same antennas. The experimental patterns were
obtained using the 1/48th scale brass model of the ship which is shown
in Figure 3. Both the numerical and experimental patterns show these
antennas have maximum response about 40 degrees off the bow (bow is 0
degrees) . The experimental results, however, show a much lower
response in the opposite direction than predicted numerically. It
should be noted that experimentally, azimuth is plotted clockwise from
the bow according to nautical convention (Figure 4b) while numerically,
azimuth is plotted counter-clockwise from the bow according to
mathematical convention (Figure 4a).

Numerical and experimental results for antennas P-12 and S-12 are
shown in Figures S5Sa and 5b, respectively. These antennas are mounted
on the stern of the ship, 1looking aft. Figure 5b shows that
experimentally, the maximum response is aft, as would be expected at
20.075 MHz. Response in the bow sector is down 10-30 dB. Figure 5a
shows the numerical patterns are in poor agreement.

Computations of DF antenna response at 20.075 MHz using the
existing numerical models have not yielded satisfactory results. The
existing models have several openings in the side of the hull, between
the deck and the waterline, which are on the order of 1 wavelength in
width and 1/2 wavelength in height at 20 MHz. Also, the space inside
the hull (excluding bow) is about 1/2 x 1 wavelength at 20 MHz and is
therefore capable of supporting waveguide modes. . It appears.that the
openings in the hull permit incident plane waves to excite fields
inside the hull, and that these fields corrupt the DF antenna responses
at the higher frequencies. Current plans are to upgrade the numerical
models.
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III. Correlation and Bearing Error

DF antenna responses for the VLS configuration were cross-
correlated with the DF antenna responses for the ASROC configuration
to determine the error in bearing estimate caused by the change in
configuration. Figures 6a and 6b show the cross-correlation surfaces
obtained using 1.85 MHz numerical and experimental data, respectively.
In these figures, the vertical axis gives the magnitude of the complex
correlation coefficient (0-1). The axis receeding into the figure
gives the angle of arrival (0-360, or bow-stern-bow) for the signal of
interest received in the VLS configuration. The remaining axis gives
the difference (-180 - +180) between the angle of arrival of the SOI
and the arrival angle of the signal from the database for the ASROC
configuration. It can be seen that the numerical and eXperimental
surfaces are very nearly the same. Both show a well defined central
ridge and low sidelobes, indicating that bearing estimates should be
reasonably accurate.

A cut through the cross correlation surface gives the cross-
correlation curve for a specific angle of arrival. This curve gives
the response of the DF array, and when plotted in a polar format, looks
much like an antenna pattern. Figures 7a and 7b show such a plot for
1.85 MHz signal with an arrival angle of 232 degrees, as indicated by
the cursor. The numerical and experimental results are in good
agreement.

Lastly, Figures 8a and 8b show the bearing error (bearing estimate
- actual bearing) as a function of azimuth at 1.85 MHz. Again,
numerical and experimental results are in reasonable agreement.

Another measure of DF system performance is RMS bearing error
(root mean squared bearing error averaged over all azimuths) at a given
frequency. Table 1 shows the numerical and experimental RMS bearing
error predicted by the simulation at all four frequencies investigated.
It is interesting that this integrated performance measure show good
agreement between numerical and experimental data even though the
agreement between the numerical and experimental DF antenna responses
deteriorates with increasing frequency.

Table 1. RMS Bearing Error
Predicted by Simulation

Frequency (MHz) 1.85 6.34 9.25 20.075

Numerical Bearing 1.11 0.86 2.80 7.38
Error in Degrees

Exp'tal Bearing 1.20 0.39 1.51 6.20
Error in Degrees
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IV. Conclusions

Comparison of results predicted by this simulation using numerical
and experimental data show that DF antenna responses (amplitude and
phase) are in good agreement at the low end of the HF band but do not
agree well at the high end of the band. The same statement is true for
cross—correlation and bearing error curves. Numerical and experimental
values of RMS bearing error agree quite well at all four frequencies
investigated, however. Tt is believed that the degradataion of
numerical results, particularly above 10 MHz, is due to the fact that
the numerical models do not meet modeling guidelines at the higher
frequencies. It is anticipated that additional work on the numerical
models would correct this problem.

This simulation, in which computational electromagnetics plays a
key role, has yielded results which show that such an approach could
eventually be used to construct a ship recalibration decision support
system. It has also highlighted areas which require additional work
if such a simulation were to be cost effective and used routinely.
These include (1) generation of numerical models from ship CAD files,
(2) parallelization of CEM codes to decrease computation time, (3)
comparison of the performance of CEM codes (NEC and PATCH, for
example), (4) development of CEM code pre/post processors with
capabilities which simplify editing, visualization and display of
results for large files.
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Figure 1. Block diagram for computer simulation of shipboard

correlation interferometery direction finding (CIDF) system.
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Figure 2a. Visualization of numerical model of DD963 Spruance Class
destroyer with ASROC launcher located forward from the deckhouse.
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Figure 2b. Visualization of bow area of DD963 Spruance Class destroyer
configured with vertical launch system (VLS). DF loop antenna pairs
P-1, 8-1, through P-5, S-5 (fore-aft) can be seen.

Figure 3. Photograph of brass model of DD963 Spruance Class destroyer,
VLS configuration. Scale is 1/48th.
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LEGENDS
Antenna P3 ASROC  ——— VLS Antenna $3

Figure 4a. Numerical patterns for antennas P-3 and S-3 for ASROC and
VLS configurations of DD963. Elevation angle is 5 degrees, frequency
is 20.075 MHz.

LEGENDS
Antenna P3 ASROC — VLS Antenna S3

Figure 4b. Experimental patterns for antennas P-3 and S-3 for ASROC
and VLS configurations of DD963. Elevation angle is 5 degrees, scaled
frequency is 20.075 MHz.
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LEGENDS
Antenna P12 — ASROC —— VLS

Antenna $12

Figure Sa. Numerical patterns for antennas P-12 and S-12 for ASROC and
VLS configurations of DD963. Elevation angle is 5 degrees, frequency
is 20.075 MHz.

LEGENDS
Antenna P12 ASROC ——— VLS Antenna $12

Figure 5b. Experimental patterns for antennas P-12 and S-12 for ASROC
and VLS configurations of DD963. Elevation angle is 5 degrees, scaled
frequency is 20.075 MHz.
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190




|
I

Figure 7a.

340 Fount it

300
280
260
240
Lmmen
0
200
180

160

140 LI
120

100

80

&

40

20

[

Outer radis [RI=1.0

Numerical curve of correlation vs. azimuth, VLS vs. ASROC

configuration of DD963.
frequencv ie 1 2% wus

Figure 7b.

ASROC configuration of DD963.

360 ‘Argle i5:232
340 Fount 2°

300

20

260

24¢
Cmmmm

pz.e}

200

5

Outer radis IRi=1.0

Signal arrival angle is 232 degrees, signal

Experimental curve of correlation vs.

signal frequency is 1.85 MHz.

191

azimuth, VLS vs.

Signal arrival angle is 232 degrees,




-5

XY
3

18C 360
Argle of s.".'i'f‘.a.: (degs)

Figure 8a. Numerical curve of bearing error vs. azimuth, VLS vs. ASROC
configuration of DD963. Frequency is 1.85 MHz.
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Figure 8b. Experimental curve of bearing error vs. azimuth, VLS vs.
ASROC configuration of DD963. Frequency is 1.85 MHz.
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Abstract

The near electric and magnetic fields of the High Frequency Active Auroral Research Program
(HAARP) Developmental Prototype (DP) were calculated using the Numerical Electromagnetics Code
(NEC4). The DP, at its present stage of development, consists of 18 active antenna elements arranged
into a three by six array. Each element is composed of both a high band and a low band crossed
dipole. The entire currently active array was modeled, including both the high and low band dipoles, the
towers used to support the antenna structure, a gridded aluminum ground screen located below the
dipoles and raised fifteen feet above the earth, aswell as the effects of an imperfectly conducting earth.
Segmentation model analysis on the ground screen component will be described, the results of which
indicated that the use of a ground screen consisting of a larger cell size than the actual screen
introduced only small errors into the calculation and led to a significant reduction in the number of
segments included in the model. This permitted the modeling of this large complex structure using
fewer than 7000 segments. Features of the calculated near fields, including those introduced by
modeling the full three by six array in place of a previous model which consisted of a wo by two array,
will be reviewed and will be compared to electric field values measured at several locations at the
HAARP site. Preliminary measurements at the site have indicated good agreement with NEC4
computations. The calculated and measured RMS near fields, scaled to the maximum transmitter
power, are shown to satisfy the IEEE safety standards for maximum permissible exposure to RF
electromagnetic fields as specified in IEEE C 95.1-1991

Introduction

A high performance scientific observatory is being constructed in Alaska under the High
Frequency Active Auroral Research Program (HAARP). The primary purpose of this facility is to study
and investigate the fundamental physical processes occurring within the earth's ionosphere. The HAARP
facility will consist of a high power radio frequency transmitter and antenna array, operating in the High
Frequency (HF) band, which will be used to perturb or heat a small, localized region of the ionosphere
above the HAARP facility. A diverse suite of sensitive monitoring instruments located at or near the site
will be used to observe ionospheric processes occurring either both natural conditions and when
influenced by the HAARP HF transmitter.

Based of research experience at other ionospheric research facilities, the HAARP HF transmitter
and antenna array has been designed to be capable of generating a power density of approximately 1 -3
microwatts per square centimeter (UW/cm?) in the jonospheric layers above the site. This power density
will be obtained through a combination of transmitter power and antenna gain producing an effective
radiated power (ERP) ranging from about 86 dBW at 2.8 MHz to 95 dBW at 10 MHz. Rather than use
very high power sources and a small number of antennas, the adopted design approach distributes
transmitter power among 180 aniennas constructed as a planar, phased array. This approach has several
advantages including (1) the ability to form a narow beam that can be tailored in shape and steered in
azimuth and elevation angle, (2) the ability to divide the array to produce independent beams, and (3)
reduced cost associated with using lower power radio frequency (RF) power components.

* Work performed under the HAARP project jointly managed by the Office of Naval Research
and the Air Force Phillips Laboratory.
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One of the major concerns for any high power transmitting facility is the generation of high
electromagnetic (EM) field strengths in the vicinity of the antenna array. The HAARP antenna system
architecture minimizes electromagnetic fields on the ground while achieving the scientific goals for ERP,
through the use of a large array of relatively low power transmitters. Even though the aggregate power
produced by the HAARP array is large, at any given point on the ground near the antenna array, the net
electric (or magnetic) field is dominated only by the closest antenna elements.

At its current phase of completion, the Developmental Prototype (DP) HAARP antenna array
consists of 48 antenna elements arranged as eight rows by six columns. Transmitters are connected to a
smaller portion of this array consisting of six rows by three columns for a total of 18 active elements. The
purpose of the DP is to validate the engineering design of the array at a scale that is both realistic from a
performance perspective while small enough that changes can be made to the design at relatively low cost.

This report describes studies that have been completed using the Numerical Electromagnetic Code
(NEC) [LLNL, 1992] to predict the electromagnetic fields around and under the HAARP DP antenna
array. The crossed dipole antenna elements employed in the HAARP array achieve a broad frequency
response through a wire frame, polyhedral shape. Additional metallic elements in the array including
supporting towers, a segmented ground screen and supporting piles has led to the development of a
sophisticated numerical model.

The DP array represents the first opportunity to compare predicted array performance with
measurements. The NEC predictions have been verified during recent testing periods at the site of the
HAARP observatory in Alaska and results have not only confirmed the accuracy of the antenna model
but have also shown that the aray will be capable of meeting scientific research requirements while
maintaining a safe level of field in the areas around the site.

NEC Modeling
Model Description

The NEC model used in most of the calculations described here consisted of eighteen crossed
dipole elements radiating 10 kW each suspended thirty feet above a ground screen which was in tum
located fifteen feet above an imperfect earth. The earth was modeled as a infinite half-space through the
use of the Sommerfeld ground option included in NEC, using values of conductivity and permitivity
measured in the Gulkana and Tok region. Since the interest in this study is in terms of worst-case
conditions, wet earth values were used. The ground screen consisted of an interlocking series of
horizontal wires, with an inter-wire spacing of 120 inches. Two sets of towers were also included in the
model. The full height towers were centered on each dipole, with electrically shorted gaps to
accommodate the sources, while stub towers were used on the perimeter of the ground screen. All towers
were wired into the ground screen, and extend twenty feet below the surface of the earth. This model was
excited by driving balanced currents on source segments for each element which were connected through
a manifold to each dipole structure. This precluded any even mode currents on the full height towers. For
this reason, and to conserve computer memory, the full height towers were not electrically connected to
the dipoles. Any deviation from this baseline DP model will be noted. All calculations were performed
on a Hughes Data Systems TAC-3 model 755 99 MHz computer capable of 40 MFLOPS with 448
Megabytes of RAM.

Segmentation Analysis

The DP model described above requires between 6400 and 6800 wire segments, depending on the
frequency of interest. Well over one half of these segments are part of the ground screen and tower
structure rather than the elements themselves. Previous models exhibited an even greater disparity
between segments (and therefore computer memory and execution time) consumed in modeling the
ground screen and those used to model the antenna structure. Because of this, it had previously only been
possible to model a two-by-two version of the DP.
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The two-by-two HAARP models used a spacing of forty inches between the ground screen
wires. However, it was found that the field strengths under the screen were not very sensitive to variations
of the ground screen spacing. The table below shows a comparison of the maximum and mean electric
fields under the screen using four-clement models with spacings of 40 and 120 inches, for cases of
broadside excitation and 30 degree pointing angle.

Table 1

" Spacing 120"
pacini
ase ax [Mean ax Pean

roadside 167.5 68.5 139.5 71.5
anned 227.3 60 2202 62.6

It was determined that the small errors introduced by the increased screen spacing were
acceptable, since enough segments were now free to allow the modeling of the entire DP at its current
stage of development. This allowed for the study of array effects on the near field, such as the location
and structure of field nulls.

Calculated Near Field Features

Using the baseline model, electric fields strengths were calculated in the near field region of the
array, at frequencies spanning the HAARP transmission band. In all cases, the vertical electric field is the
predominate field component that exists underneath the ground screen. This is due in part to the
reduction of the horizontal field components by the ground screen and the earth. The vertical field is not
reduced as strongly in this manner, and so dominates the total electric field.

Figures 1 and 2 are raster plots of the calculated total electric field strength in the region beneath
the ground screen and surrounding the HAARP site. Two of the salient features which can be observed in
the plot are the variation in the azimuthal gain due to array effects, and the fact that at no point does the
field exceed the Maximum Permissible Exposures (MPE) levels discussed in the next section, and is in
fact several orders of magnitude less than the MPE throughout the vast majority of the region.

Figures 3 and 4 are line plots of the calculated total electric field along a Bureau of Land
Management (BLM) trail and the Tok cut-off highway which runs past the HAARP site. As expected, all
electric field values are well below the MPE. The Tok cut-off highway plot is interesting in that it clearly
demonstrates the transition from the near-field to the far-field.

Electromagnetic Safety Standards

One of the primary purposes of the modeling analysis is to be able to predict the electromagnetic fields
not only in the main beam of the antenna pattern but also at points on the ground near the array to ensure
that the HAARP facility can be operated in a safe manner. Two organizations have developed standards
for safe levels of electromagnetic field and power density, C 95.1-1991 [IEEE, 1992-1] developed by the
Institute of Electrical and Electronic Engineers (IEEE) and the American National Standards Institute
(ANSI) and Report No. 86 [NCRP, 1995], developed by the National Council on Radiation Protection
and Measurements. In the frequency range where the HAARP array operates, both of these standards
define the safe level of power density for public environments (where there is no attempt made to restrict

access) as Pg = 180/1:2, where Py is the power density in milliwatts per square centimeter (mw/cm? and
F is the frequency in MHz.
The maximum safe level of Py for the frequency range 2.8 - 10 MHz ranges from 22.9 mw/cm?

to 1.8 mw/cm? respectively. Safe levels of electric and magnetic field are also defined in both standards
and are derived from the fevel of power density under the assurmption that the field can be described as a
plane wave and that the electric and magnetic fields are related by the intrinsic impedance of free space.
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Measurements Conducted on the HAARP antenna array

Beginning in December 1994, measurements have been made of fields around the HAARP array
whenever transmitting tests were conducted. Early measurements identified the need for improvements to
the antenna feed network (primarily the balun) and served as motivation for developing the current,
comprehensive NEC model. Field strength levels observed during those measurements are no longer
descriptive of the current array. Early predictions based on a simple mode! including only the antenna
elements did not accurately describe the electromagnetic field strength that was observed. The
predominate vertical electric field at all points away from the array indicates the existence of vertical
currents within the antenna structure, and independent measurements have shown the existence of antenna
currents on the supporting towers.

During November 1996, following completion of antenna modification work, measurements were
again conducted of field strength at several points around the DP array. At each geographic point,
measurements were conducted at three frequencies, 3.155 MHz, 5.95 MHz and 9.1 MHz. At each
frequency, measurements were obtained for three beam pointing angles: 0° (straight up), 30° North and
30° South (along the major axis of the DP array).

For each of the frequency-pointing angle conditions, measurements were made using calibrated
electric and magnetic field probes. The field strength receiver was calibrated prior to each measurement
and the calibration source was checked at the end of the test against a standard signal generator. Electric
field strengths were then calculated for each of the probes using calibration charts supplied with the
instrument. The measured field strengths were then converted to equivalent plane wave power density,
P4 [IEEE, 1992-2], using the relation Pq = E¢-Em / 377, where E¢ and Ey, are the electric field strengths
measured using the electric and magnetic probes respectively.

Measurement results for each of the frequencies are shown in Table 2 for the case of antenna
main beam pointed vertically. The table also shows predicted NEC field strengths for each of the
geographic points and the ratio between the measured field strength and the NEC prediction. In addition,
Table 2 shows the predicted power density at each of the geographic points and the ratio of the measured
power density, Pg (as calculated above) and the NEC prediction.

With the a few exceptions, the agreement between measured and predicted field strengths is good.
Measured power density is always well below the MPE at all geographic points studied. At geographic
point 4, located at a distance of 16.8 km from the HAARP site, the field strength measured using the
magnetic probe exhibited deep fading at both 3.155 MHz and 5.95 MHz, indicating either contamination
of the measurement by a skywave component of nearly equal magnitude to the weak ground wave
component, or multimode skywave fading without a ground wave. At this geographic point, the electric
field probe exhibited no fading but was much weaker than the field measured with the magnetic field
probe (this probe would have no response to a downward propagating skywave component).

Figure 4 is a plot of the field variation expected along the closest public access road to the
HAARP site. The variation of field exhibits a minimum associated with the pattern null off the southeast
comer of the array as shown in Figure 2. This pattern null, labeled point 1 in Table 2, was obtained
experimentally by driving along the Tok highway to find a local minimum. Its position coincides
geographically with the NEC prediction.

Measurements made at the Tok road entrance to the facility are much lower than predicted using
NEC. We believe the inaccuracy at this point only, is due to the proximity of a large metallic building
lying between the measurement position and the antenna array leading to either shadowing or destructive
interference from scattered energy. Further numeric investigation is planned to evaluate this case.

Conclusions
The work described in this paper was motivated by the need to develop an accurate model of the
HAARP antenna array that could be used to confirm that desired scientific performance would be

obtained simultaneously with safe levels of electromagnetic field at all points along the ground in the
vicinity of the facility. To realize a reasonably accurate model, it was found necessary to model all
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metallic structures in the vicinity of the antenna. A tractable numerical model was achieved through a
careful study of ground screen grid spacing and by using symmetry procedures in the NEC specification
statements describing the complete structure.

Calculations of the field strength under the antenna (in the area described by Figure 1) indicate
the power density will be close to but below the MPE for all operating frequencies. Spot measurements
that have been made of field strengths under the array have confirmed this. The field strength measured at
points near the array and in the near field are highly variable within a short distance but are in general
agreement with NEC predictions and remain below the MPE for all points measured.

Measurements at considerable distance from the array along the Tok highway, taking into account
possible skywave contamination or scattering components, are in good agreement with NEC predictions
and show a field strength many orders of magnitude below the safe level of electromagnetic field as
established by TEEE/ANSI C 95.1-1991.
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Figure 1: Near electric fields underneath ground screen at a height of 1.5 meters
Broadside o-mode excitation at 3.155 MHz with 360 kW radiated power
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Figure 2: Near electric fields in vicinity of HAARP site at a height of 1.5 meters
Broadside o-mode excitation at 3.155 MHz with 360 kW radiated power
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Figure 3: Near electric fields along BLM trail at a height of 1.5 meters
Broadside o-mode excitation at 3.155 MHz with 360 kW radiated power
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Figure 4: Near electric fields along Tok Cutoff Highway at a height of 1.5 meters
Broadside o-mode excitation at 3.155 MHz with 360 kW radiated power
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THEORETICAL STUDIES ON THE EFFECT OF WAVEGUIDE GEOMETRY ON THE
RADIATING SLOT

PRAKASH VVS, BALAKRISHNAN N* and CHRISTOPHER S

ELECTRONICS AND RADAR DEVELOPMENT ESTABLISHMENT
* INDIAN INSTITUTE OF SCIENCE
BANGALORE, INDIA

ABSTRACT :- The longitudinal offset radiating slot in the broadwall of rectangular waveguide has
been analyzed using a spectrum of 2-dimensional solutions. All the fields and the sources are Fourier
transformed with respect to the longitudinal axis of the waveguide and the resulting 2D problem has
been solved using two different approaches namely, Finite difference method (FDM) wherein the grid
truncation is with Measured Equation of Invariance (MEI) and the Moment method(MoM). This
analysis accurately models the effect of finite waveguide outer geometry on the radiating slot.
Comparative studies have been made on the spectral solutions of the MEI and the MoM. Effect of the
waveguide geometry on the slot characteristics has been presented.

1. INTRODUCTION

Longitudinal offset slots cut on the broadwall of rectangular waveguide are widely used as
radiating elements in high performance slotted array applications. One of its advantages is the control
over the radiated power by means of changing the offset of the slot from the center line of the
waveguide. To achieve the required aperture distribution precisely, it is essential that the behavior of
the slot, as a function of length, offset, width, etc., be analyzed as accurately as possible. One of the
assumptions made in the slot characterization is that the slots are radiating into an infinite ground
plane for computing the external radiated fields[1-3]. Since the waveguide outer cross-section is
rectangular in shape, this assumption is not valid for large offsets.

This paper attempts o solve the problem of a longitudinal offset slot radiating into a

.rectangular outer geometry. Using equivalence principle, the slot is covered by a perfect electric

conductor and a magnetic current of +M, on the exterior side and a -M, on the interior side of the slot
to ensure the continuity of tangential electric fields. The continuity of the tangential magnetic fields on
either side of the slot is enforced at the slot aperture. The unknown magnetic current is obtained by the
solving the resulting integral equation using Galerkin method. The finite wall thickness of the
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waveguide also can be considered in the same way. The internal scattered fields are computed using
Stevenson’s Greens functions[1]. To find the external radiated fields, all the fields and the sources are
Fourier transformed along the waveguide axis, thereby converting the original 3D problem into a 2D
problem[4]. Two approaches have been used to solve the resulting 2D problem in spectral domain,
namely the Finite difference method coupled with Measured Equation of Invariance(MEI) and the
other is Moment method coupled with electric field integral equation (EFIE). The solutions of these
two methods have been compared in terms of accuracy and convergence behavior.

The dominant element of external admittance matrix has been computed using the above
mentioned two methods and is compared with that of the Half space Green’s function approach. The
admittance properties of the radiating slot have been computed using these two methods and are
compared with that available in the literature[2].

2. THEORY

The geometry of broadwall longitudinal offset radiating slot is shown in Fig.la. The slot is
assumed to be narrow so that the only significant component of the slot aperture electric field is in the
x-direction. Using the Schelkunoff’s equivalence principle, the domain of the radiating slot is divided
in to two regions; the waveguide interior and exterior regions. The continuity of tangential electric
fields is ensured by placing suitable magnetic current sheet at the location of slot. A coupled integral
equation is obtained by enforcing the continuity of tangential magnetic fields at the slot location as

M) + BMM) = HY A1)
The unknown slot magnetic current is expanded in to a set of N basis functions as
N pn N
M, = Do, sinc—(z+1) = Yoy M, w(2)
n=1 p=l

and following the Galerkin’s method, the coupled integral Eq.1 is converted in to a set of linear
algebraic equations as

Y™ + Y™ v = ") -(3)

where Y™ and Y™™ are the external and internal admittance matrices respectively and V is the matrix
composed of the ‘expansion coefficients of the magnetic current. Computation of Y™ is straight
forward and is done using Stevenson’s internal waveguide Green’s function[1].

For computing the Y™, the method of 2D spectral solutions is used. Here all the sources and
the fields are Fourier transformed with respect to the longitudinal axis of the waveguide i.e. z-axis,
thereby reducing a 3D problem to a 2D one. The 2D problem is solved using two different approaches
as follows.
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(1) Computation of exterior magnetic field by MEI :
The wave equation for the magnetic vector potential, F, is solved using MEI and the external

tangential magnetic field is obtained from it. The magnetic vector potential which is due to p” basis
function excitation at the slot aperture is obtained by solving

ViFP + a2 -kDHFP = 0 (4

under the boundary condition that the electric field tangential to the waveguide surface is zero e)écept
at the slot region where it is equal to the slot aperture electric field, i.e.

8Fp =p ”
3 = - g, E} atthe position of slot.
oFP .
3 = 0 on the rest of the waveguide surface. .(5)
n

where ‘n’ is the normal direction away from the waveguide surface in to the exterior region and E, is
the Fourier transformed slot apetture electric field corresponding to pth expansion function. Finite
difference method is used to solve Eq.4 in the exterior region of the 2D problem(Fig.1b). The finite
difference grid is truncated using MEI, after a few buffer layers from the waveguide surface[4]. A 5-
point MEI is employed and the coefficients of MEI are extracted using

(a) linearly independent set of metrons on the surface of the waveguide as

nnl
Yy COST fornevenorn=0

...(6)

i

sin-n—_?—1 for n odd

where n = 0,1,...4, T = total circumference of waveguide =2 a + 2 b and 1 is a parameter along the
cross-section of the waveguide.

(b) plane waves at the point of application of MEI as

v = eJkp(cosd; x + sing; y) ) A7)

where ¢; is the angle of incidence of plane wave and (x,y) are the coordinates of the point under
consideration. For each of the expansion coefficients I\7Ip, Eq.4 is solved subjected to the boundary

conditions of Eq.5. The tangential magnetic field at the slot aperture is given in terms of EP as
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1 . -
Y = — FP(k,) k2 edkzZ gk -(8)

(2)_Computation of exterior magnetic field by Moment method:
Using physical equivalence, the waveguide surface is replaced by unknown surface electric

currents. The surface electric currents are computed for each spectral wavenumber by solving the
electric field integral equation given by ’

ET®).55) = jkano | 3P).5() T(F) GF.5) ds

s

koo @ ¢ 8 X(P) e = au
+ — G(p, d ..(9
= j S GE.p) & O

where EM® s the transverse incident electric field due to the magnetic current M,(k,),

k% = kg - k% and G(p,p’) is the 2D free space Green's function[5]. The unknown surface

electric currents are expanded in to piecewise constant pulses and using collocation method, the Eq.9
is solved for each spectral wavenumber k,.

The tangential magnetic field at the slot aperture is then calculated as

AxHE™ = J = 1§ +7,2 .10
Once the exterior magnetic field is computed by one of the methods described above, the
elements of exterior admittance matrix Y*** are given by,

et o = 1
Yo = [JERGD . MaG2) ds = o [ Rulkp) iy .(1D)
s k;
where Rpo(ky) = [ HO'(5,k,) . My(P.k,) ds and mn=12,...N.

s

3. RESULTS

The proposed method has been applied to a longitudinal offset radiating slot on the broadwall
of a standard S-band rectangular waveguide of a = 7.214cm and b = 3.404cm. For simplicity, the wall
thickness is taken to be zero and the slot width is 0.3cm. For a slot offset of 0.75cm and a length of
4.6cm, the dominant element of the external admittance matrix (Y{}') has been computed as a
function of spectral wave number and is plotted in Fig.2. As can be seen, the solution obtained using
MEI is found to be exhibiting irregular behavior with k, where as the MoM solution is smooth. It is
found that the using surface currents as metrons does not give any marked advantage over the use of
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planewave functions, as far as accuracy is concerned in this case. The use of plane wave functions for
extracting the MEI coefficients leads to unacceptable errors in the spectral solution. For large K, all the
solutions approach that of the infinite half space method.

The reflection coefficient of the radiating slot is computed as a function of slot length and is
presented in Fig.3. The phase of the reflection coefficient is shifted by 180° and is plotted in Fig.3. For
the FDM+MEI approach, five buffer layers are used between the MEI boundary and the waveguide
surface. The grid spacing is taken to be A/50 leading to a large system of linear equations to be solved
for each spectral wavenumber. Moreover, the convergence of the spectral solution of FDM is found to
be poor over the range of practicable grid spacings. Even though pulse expansion and point matching
is used with MoM, good convergence is obtained with 118 unknowns.

For a typical slot length of 4.25cm, the slot reflection coefficient has been computed as a
function of slot offset using Moment method and is presented in Fig.4. Also presented are the results
of Half space Green’s function approach. It is found that the effect of waveguide outer geometry is
negligible for small offsets. As the offset of the slot increases, it comes close to the waveguide comer
which effects the reflection coefficient and the present method has to be used for an accurate
computation of slot reflection coefficient.

CONCLUSION:- The admittance properties of longitudinal offset radiating slot on the broadwall of
rectangular waveguide have been studied using a method of spectrum of 2D solutions. Both the Finite
difference + MEI and the MoM approaches have been studied. It has been shown that the use of FDM
leads to unacceptable errors in the admittance computations with normally used set of metrons. It
might be possible to find an optimum set of metrons which will reduce the error in MEI boundary
truncation. It should be noted that the excitation is not a plane wave but a sheet of magnetic current on
the waveguide surface. The moment method is relatively free of oscillations leading to an accurate
solution. The half space Green’s function approach has been found to be applicable for small slot
offsets. For a more accurate solution, the finite outer cross-section of the waveguide has to be
considered.
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COMPUTED AND MEASURED RADIATION PATTERNS OF ANTENNAS
WITH AERODYNAMIC RADOMES

David Jenn and Scott Herzog
Naval Postgraduate School
Monterey, CA 93943

I. INTRODUCTION

Radomes are a crucial component of communications and radar systems deployed on aircraft. The
electrical characteristics of the radome must not significantly degrade the antenna performance, yet
aerodynamic, structural, and thermal requirements must also be satisfied. Tradeoffs in the design process
are facilitated by an accurate analytical model of the antenna and radome. A rigorous model that includes
the effects of multiple reflections, attenuation by the radome walls. and surface waves favors the method
of moments over ray tracing techniques.

A previous solution {1} used the method of moments with basis functions limited to bodies of revolu-
tion. The antenna is modeled as an aperture with a specified field distribution. The method of moments
excitation vector is computed using the complete expressions for the radiated field from the aperture. All
powers of 1/R (R being the distance from an aperture point to an observation point on the radome) and
all vector components are included in the calculation. Therefore, the model can accommodate geometries
where the radome is in the near-field of the antenna.

A shortcoming of the model in [1] is that no antenna surfaces are included in the antenna representa-
tion; it is simply an equivalent current distribution suspended in free space. Thus the antenna aperture
is transparent to reflections from the radome that would either return to the antenna port and affect
its VSWR or be scattered a second time around. Consequently there is a limit to the accuracy of the
model’s data because the interactions between the radome and antenna are neglected.

The model presented here and described in detail in [2] utilizes a voltage source representation avail-
able in the computer code PATCH [3]. The antenna aperture is represented by an array of thin short
slots that are weighted in amplitude and phase to reproduce the radiation pattern of the actual antenna.
The plate resistivity can be specified so that any desired aperture transparency, and hence reflection
coefficient, can be achieved. Computed and measured data are presented for HARM and AIM-9 radomes.

II. COMPUTER MODEL

PATCH is a FORTRAXN code that computes electromagnetic scattering and radiation based on a
method of moments (MM) solution of the E-field integral equation (EFIE). Triangular facets (subdo-
mains) and overlapping basis functions of the type developed by Wilton and Rao [4} are used in PATCH.
The method of moments reduces the EFIE to a set of linear equations that can be solved using standard
matrix methods. The number of unknowns, and hence the size of the matrix equation that must be
solved, depends on the number of triangular patches are used to represent the antenna and radome.
Therefore the application of MM is usually limited by the size of the computer available.

Faceted models of the HARM and AIM-9 radomes along with the antenna apertures are shown in
Figure 1. Both radomes are axially symmetric. The HARM is ogive-shaped in the forward section with
the straight line segments near the back, while the AIM-9 radome is hemispherical. A general rule of
thumb for convergence of the far-field radiation pattern is that triangle edge lengths should not exceed
0.1, where X is the wavelength. The models in Figure 1 are accurate up to about 12 GHz.

PATCH allows the user to define impressed voltage sources at an edge. An approximate aperture
model for a Microline 36X1 horn is shown in Figure 2. The dots denote edges that are excited simul-
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Figure 2: Horn aperture approximation by a plate with excited slots.

taneously using voltage sources. The amplitude and phase of each source is chosen so that the far-field
pattern of the aperture approximates the measured far-field pattern of the horn. The required distribu-
tion is close to that of the TEjp mode with a quadratic phase error in both principal planes. Typical
antenna patterns in the absence of a2 radome are shown in Figure 3 for PATCH, RADOME (the code
described in [1]), and measured data. All data presented is for a frequency of 10 GHz.

III. RADOME WALL MODEL

The radome walls are represented by thin dielectric shells [5]. The equivalent surface impedance
is determined using a transmission line representation. Two radome walls were modeled: (1) HARM
three-layer sandwich and, (2) AIM-9 single-layer wall. The surface impedance of an infinite flat panel
of the HARM radome is shown in Figure 4. The surface impedance used by PATCH must be indepen-
dent of angle; the value for normal incidence (Z; = 234-35166 Q) is a good approximation up to about 60°.

IV. COMPARISON OF COMPUTED AND MEASURED DATA

The radome and antenna configuration is depicted in Figure 5. In the calculation the antenna aperture
was placed so that it was coincident with the phase center of the measurement horn. The resistivity of
the aperture plate was adjusted by trial and error to obtain the best agreement with measured data.

Comparisons of the E- and H-plane patterns for the two radomes are given in Figures 6 and 7. The
measured patterns contain some error due to an asymmetrical chamber configuration (as evidenced by
the asymmetrical patterns). On the measured HARM radome there is a hard plastic rim with mounting
holes and a metal tip that are not included in the facet model. The AIM-9 radome has a 3 inch metal
base that is not modeled in PATCH. In spite of these differences the measured and computed patterns
have the same essential features.
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SAF Analysis Codes for Computing Shipboard Antenna Pattern
Performance, Antenna Coupling, and RADHAZ*

Barry J. Cown' and John P. Estrada’

(1) GEMTECH Microwaves, Inc. 1318 Chandler Court, Acworth, GA 30102
(2) Georgia Tech Research Institute, ATDD/SEAL, Atlanta, GA 30332

A. INTRODUCTION

This paper describes computer codes based on the near-field (NF) spectral analysis method
known as the Spherical Angular Function (SAF) technique for predicting antenna pattern performance,
antenna coupling, and RADHAZ for shipboard antennas operating in the presence of nearby scattering
obstacles and other antennas [1-11]. Emphasis is given to the application of the SAF codes to the
mostly-metallic topsides of present surface vessels. However, the progression to composite topsides is
also indicated herein.

The complexity of the scattering environments encountered by topside antennas can be
appreciated by considering, for example, the topside of the DDG shown in Figure 1. The shipboard
directive antennas must operate in close proximity to other antennas and various topside structures
including round masts, open masts, platforms, yardarms, equipment, stacks, decks, and deckhouses.
Frequently, the entire ship topside is well within the radiating near-field region of a directive
transmitting antenna at microwave/millimeter wave frequencies. In addition, two or more ship structures
may be simultaneously illuminated by the transmitting antenna. The fields scattered from these multiple
obstacles can combine with the directly-transmitted antenna fields to produce far-field pattern
distortions and to produce local "hot-spots” and relative nulls that can significantly impact both
RADHAZ near-field power density profiles and equipment interference levels.

Computer codes based on the Spherical Angular Function (SAF) near-field analysis technique
has been developed to expedite the analysis and design of shipboard antenna arrangements to achieve
maximum electromagnetic effectiveness for current topsides [1-11]. The FORTRAN 77-compliant SAF
codes have proven to be accurate engineering tools for predicting pattern performance, coupling, and
RADHAZ levels for antennas operating in the presence of metallic structures, and they are readily
extended to handle integrated antenna/composite mast topsides. The SAF analysis technique and
validation results are succinctly described in the following paragraphs. More detailed expositions of the
SAF analysis can be found in References 1, 3, 4, and 11. Extensive applications of the SAF codes to
modern ship topside antennas are contained in References 4 through 7.

* Sponsored by the Naval Sea Systems Command (NAVSEA), Code SEA-03K24.
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The progression toward antennas that are increasingly integrated with composite structures to
both increase antenna performance and control topside RCS is illustrated by Figures 2 through 5. Figure
2 shows the concept for the ATD (Advanced Technology Development) hexagonal composite mast that
encloses two existing widely-used topside microwave antennas, namely the TAS antenna and the SPS-
40 antenna. Figure 3 illustrates the MERS (Multifunction Electromagnetic Radiating System) concept
where UHF communication antennas, JTIDS, combat DF, and IFF antennas are embedded in a single
composite structure. Figure 4 also illustrates the embedded sensor concept. Figures 2, 3, and 4 illustrate
mixed topsides involving both composite structures and traditional topside structures. In the longer
term, it is envisioned that the unified composite superstructure concept shown in Figure 5 will be
realized.

B. SAF MATHEMATICAL MODELS

The radiating near-field of an antenna or scattering obstacle may be represented as a vectorial
angular spectrum of outwardly propagating plane waves. This vectorial angular spectrum of plane
waves is completely described by the Spherical Angular Function (SAF) for the antenna, and it is
denoted as F(0,¢), where (G,d)) are the elevation and azimuth angles, respectively, in a standard
vertically-oriented system of spherical coordinates. F(6,4) may be expressed directly in terms of the
vectorial complex far-field electric field E ﬁ.(e,cb) as F(0,¢) = r {exp[jkr]}E ¢ ©.9), where k = 2% ,

) is the free-space wavelength, and r is the distance to the far-field pattern point.

Consider the case depicted in Figure 2 involving 3 scattering obstacles. The resultant total SAF
for the antenna operating in the presence of the multiple obstacles is computed via the "Marching In
Range Method", or MIRM for short. In the MIRM, the antenna SAF is propagated to the first obstacle,
the scattered SAF is computed and added to the incident antenna SAF to obtain the total SAF. This
total SAF is just the distorted SAF for the antenna operating in the presence of the first obstacle. This
total SAF after this first step is then allowed to be incident on the second obstacle, the scattered' SAF
from the second obstacle is computed and added to the total SAF for the first obstacle to obtain the
distorted total SAF for the antenna operating in the presence of the two obstacles. Obviously, this
process is repeated N times if there are N obstacles blocking the antenna. This process can be
expressed mathematically as

Fo(g,¢) = o F (6.016".0"R )« F3(8",0") : )
N\ n\" ? n >

where the SAF integral operator I="n (e,¢|e',¢'|Rn) is defined as
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where §n(6,¢|9’,¢’) is the plane-wave (PW) scattering dyad for the nth obstacle, ﬁn is the vector

distance from the antenna to the nth- obstacle, as indicated in Figure 6, and where k(6,¢) and k(8",¢’)

are the wave vectors for the scattered and incident fields, respectively. Iis the identity dyad. The SAF
antenna pattern performance code GMULT and the antenna gain loss code GLOSS utilize finite circular
and elliptical cylinders, circular cone frusta, flat rectangular plates, and flat triangular plates to model the
ship topside structural elements.

The voltage induced at the terminals of a nearby receiving antenna, as per Figure 7, is expressed
in terms of the resultant SAF, F}E"t, for the transmitting antenna operating in the presence of the N

muitiple obstacles and the clear-site SAF I-’,l,’ec. for the receiving antenna:

V(ﬁab

B.alg,m) =

— — _ ~ 3
[1{FE, (0-B.6- 00+ B 0-5.4 - noexp[ -ik(e.6) s k(6. ) sin(e)docts,

where (B,a) are the elevation and azimuth pointing angles of the receiving antenna, and (£,m) are the

elevation and azimuth pointing angles of the transmitting antenna referenced to the (Go,d)o) angular

coordinates of the receiving antenna rotation center, and R® is the vector from the transmitting
antenna to the receiving antenna. This near-field coupling analysis is implemented in the antenna
coupling code GCUPL.

C. VALIDATIONS WITH MEASURED DATA

Figure 8 shows measured and computed antenna patterns for a 4-foot diameter parabolic
antenna blocked by a quadrapod open-mast obstacle for the operating frequency of 5.5 GHz for
horizontal polarization [6,8]. Only the 14 cylindrical elements shown in the inset of Figure 4 were used
to obtain the computed curve; additional elements cause only small changes in the sidelobe details.
Figure 10 shows measured and computed azimuth antenna patterns for the TAS antenna installed
aboard the U. S. S. Kennedy, as depicted in Figure 9, for a case involving severe blockage by the ship
topside structures [6,8]. The TAS antenna is operating vertically-polarized at an L-band frequency.
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Figure 11 shows the measured and GCUPL-computed coupling curves for two 4-foot diameter
C-band antennas blocked by an intervening round mast. Figure 12 compares RADHAZ power density
curves computed via GCUPL from the measured blocked SAF and from the GMULT-computed
blocked SAF, for the 4-foot diameter C-band antenna operating in the presence of the quadrapod open-
mast obstacle for the blockage geometry shown in Figure 13.

D. APPLICATION TO INTEGRATED ANTENNA/COMPOSITE TOPSIDES

The pattern performance, coupling, and RADHAZ of antennas located either in the interior or
the exterior regions of composite structures may be computed via Equations (1), (2) and (3), as
appropriate, once the PW scattering dyad is specified. PW scattering dyads for basic canonical shapes
such as flat polygonal panels composed of multilayer dielectric and/or frequency selective surfaces
(FSS) are readily derived by combining a) Physical Optics (PO) formulas for opaque polygonal plates
and b) the Periodic Moment Method (PMM) code [12,13]. The PO formulas account for the shape of
the panels and the PMM code is used to compute the PW transmission and reflection coefficients for the
panels as a function of the PW incidence angles. Exact PW scattering dyads are, of course, known for
transversely-infinite multilayer dielectric panels and for multilayer dielectric circular cylinders and
spheres [13,14]. The PW scattering dyad for general curved multilayer composite structures that have
electrically-large radii of curvature can be modeled as the superposition of an ensemble of polygonal
facets that are chosen to closely approximate the shape of the actual structure; this first-order
approximation can be improved by accounting for the propagation of circumferential modes in the
multilayer structure. The resultant RCS for the enclosed antenna and the enclosing composite structure
may be computed via Equations 1 and 2 by straightforward adaptation of the MIRM method for the
externally-incident PW. The SAFs and RCS for antennas embedded in flat multilayer dielectric and/or
FSS panels can be computed with the aid of moment method codes adapted for these purposes [15].

E. CONCLUDING REMARKS

Good agreement between computed and measured results is achieved for the near-field scenarios
presented in Part C and for other validation scenarios [4-7]. It is concluded that the SAF technique is
well-suited for analysis of directive antenna far-field and near-field radiation characteristics and near-
field antenna coupling in complex near-field scattering environments such as ship topsides, space
stations, and congested terrestrial antenna sites. The SAF analysis technique combined with the
Marching In Range Method (MIRM) is applicable to micro/millimeter wave antennas operating in close
proximity to arbitrary metallic and/or composite structures for which the individual SAFs of the
constituent scattering structures are known or can be derived.
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FAR FIELD PATTERNS OF COMBINED TE/TM APERTURE DISTRIBUTIONS

Ross A. Speciale
Redondo Beach, California

polytope@msn.com

A recent paper [1] has shown the quite unique properties of a very specific planar aperture
distribution, obtained by linearly combining a TE , and a TM cylindrical mode, both having the
same amplitude, the same phase, and the same m =1 cylindrical symmetry index.

The two modes are defined in Reference [1] in closed form, on both the z = 0 aperture plane,
and on the whole z > 0 half-space above the aperture, using only Bessel functions J, of the first
kind for the radial dependence. .

For a unitary value m = 1 of the cylindrical symmetry index, a rigorous expression of the
complex Poynting vector shows a) a high concentration of axially radiated power density in an
electrically small region of the circular aperture, close to its center, b) a relatively small power
density in alternate azimuth directions, around the z-axis, and c) an identically-zero radial power-
flow density, everywhere in the z > 0 half-space.

This quite unique aperture distribution has now been combined with the well-known
Hansen's One Parameter Aperture Distribution for Circular Apertures {2], in order to introduce
a controlled amount of radial amplitude decay, and a controlled amount of edge-taper, thus
obtaining a smooth aperture truncation.

The particular choice of the Hansen's One Parameter Aperture Distribution for Circular
Apertures appears most appropriate, as it uses the Bessel function I, of the second kind, a
circumstance that is expected to lead to the existence of a closed-form expression for the far-field
pattern.

The closed-form -integration of the resulting, truncated aperture distribution is being
performed, by using the very enhanced formal-integration capabilities of Mathematica 3.0 .

The paper presented in session will report both the formal, as well as the quantitative results
of this investigation.
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Calculation of Equivalent Generator Voltage and
Generator Internal Impedance for
Cylindrical Antennas in the Receiving Mode

Ching-Chuan Su
Department of Electrical Engineering
National Tsinghua University
Hsinchu, TAIWAN

Abstract— The power absorbed at the load connected to a receiving antenna can
be modeled by an equivalent circuit composed of an equivalent generator voltage and an
generator internal impedance. In many of the literature the equivalent generator voltage
is taken to be the open-circuit voltage and the generator internal impedance is taken
to be the input impedance in the transmitting mode. If these are correct, the generator
voltage will be uncoupled from the load impedance and the internal impedance uncoupled
from both the load impedance and the angle of incidence. In this investigation, these
voltages and impedances are computed numerically for cylindrical antennas. From the
numerical results, it is found that the aforementioned uncoupling is not correct. While, it
is found that the uncoupled-circuit model, where the open-circuit voltage and the input
impedance are taken as the generator voltage and the internal impedance, can yield valid
results of the load current. The validness of the uncoupled-circuit formula of the load
current can be proved by using the reciprocity theorem. Thereby, it is concluded that the
uncoupled-circuit model can yield the exactly correct result of the load current, but the
open-circuit voltage and the input impedance are not at all identical to the equivalent
generator voltage and the generator internal impedance, respectively.

I. Introduction

The complex power P absorbed at a load connected to the terminals of a receiving
antenna can be modeled by constructing an equivalent circuit, which consists of an
equivalent generator with output voltage V,, an internal impedance Z, of the equiva-
lent generator, and the load of impedance Zr. In many of popular antenna books [1]-[4]
the Thevenin theorem is used to derive the equivalent generator voltage V,. Thereby, the
equivalent generator voltage V; is taken to be the open-circuit voltage V,., the voltage
induced between the two terminals of the receiving antenna when the load is removed.
Further, the generator internal impedance Z, is taken to be the input impedance Z;, of
the same antenna in the transmitting mode. If these two replacements are correct, the
equivalent generator voltage will be independent of the load impedance and the generator
internal impedance independent of both the load impedance and the angle of incidence.
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In this investigation we compute the equivalent generator voltage V, and the generator
internal voltage Z, numerically for cylindrical antennas in the receiving mode. Then,
the dependences of V, and Z, on the load impedance and the angle of incidence are
examined. From the results, the open-circuit voltage V,. can be determined immediately,
since it corresponds to the voltage across the load as the load impedance Z; approaches
infinity. The input impedance Z;, of the same antenna in the transmitting mode will
also be computed. Then, a direct comparison between V, and V,. and that between Z,
and Z:, can be made. Thereafter, the load current determined in terms of V; and Z; is
compared with that of V. and Zin.

II. Equivalent Generator Voltage and Generator Internal Impedance

Under the illumination of an incident electric field E{, an electric current will be induced
over the surface of a receiving antenna and in the load connected to the terminals of the
antenna. The induced current will re-radiate a scattered electric field E® into the space.
It is well-known that the total field E is equal to the sum of the incident field E‘ and the
scattered field E*. For a lossless antenna the magnitude of the tangential component of
the total field is given as

0 on Sant
EH = VAR
“'—g ,

where the subscript || denotes the field component tangential to the surfaces S,n; and
Sgaps Sant is the surface of the antenna. Sy is the surface of the load, I; is the current

1)

on Sgap

induced at the load. and g is the terminal separation. Thus, the complex power Py

absorbed at the load is given as

1 1
P = - I 2 - ﬁ A J* ’ !
L= 5 1LP 2= [[ B@)- 36, (@)
where surface S = Synt+ Sgep and J, is the surface current density induced on the surface

5 of the receiving antenna and the load.

Since, for an arbitrary but lossless antenna the power delivered to the antenna is equal to
the sum of the power absorbed at the load and the re-radiated power. Thus, the complex
power P, delivered from an incident electric field E' to the antenna in the receiving mode
should be given as

1 )
Pa — __[/ T PAN LT ESAY) /‘
3 sE (') - J3(x)ds (3)
And, the complex re-radiated power P, should be given as

P, = —%//S E(r') - 33 (r')ds’. (4)

where the scattered electric field E* is originated from J,. Note that the powers F, P,
and Py are associated with the surface integrals of the inner products of the induced
surface current density J* with the incident field Ei, the scattered field E*, and the total
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field E, respectively. And the power conservation P, = Pp + P; is a direct consequence
of the relation Ef = E — E*.

In terms of the power P, delivered to the antenna and the re-radiated power F;, the
equivalent generator voltage V; and the 1nterna1 impedance Z, of the equivalent generator
can be defined as

Y

7 / B(r') - 33()ds' (5)

Z = -m // ) ¥:(r')d 6) -

Then. according to the equivalent circuit or the power conservation relation, the load
current [y is given as

Ve

I, = .
L Z,+ 7y

(M)

II1I. Formulations and Numerical Procedure

For a z-directed cylindrical antenna of circular shape with radius a and of length £,
the z-directed surface current density J, induced on the receiving antenna under the
illumination of an incident electric field E is governed by the integral equation:

2

£/2 27 .
—jkomoa ] g [ + T OUR) | (o) #)d6'ds’ ~ 2mal.(0,2)Rel) = ~BL(6.).
(8)

where Green’s function
emikoR
4z R’ (9)

distance R = \[2asml(¢ ]2 + (2 — 212, field Ef = 2-E¢, and Ro(z), associated with
the load impedance per unit length, is given as

G(R) =

0 on Sgat

" on Sgap
If the antenna is thin enough, such that the incident field and the induced current can be

deemed as circumferentially uniform, that is, their variations over the azimuthal angle ¢
can be ignored. one has

2 por 2
]konozﬂ' /l/ /0 [G(R) + kg—aa;G(R)] d¢'I(2"}dz' + Ro(2)I(z) = Ei(z). (11)

Here R = \/(2asin%<;$’)2 + (2 — 2')? and I(z) = 2raJ,(z). In the transmitting mode, the
governing equation becomes '
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£/2

sronase [ [ 60+ 560 d6rieas = o) (12)

where

0 on Sgn:
= Vi
s(z) _¥ on Syap (13)
If the distance R in (12) is approximated as R = (/a? + (z — 2/)2, the integration over
&' just contributes to a factor of 2r. Then, (12) reduces to the well-known Pocklington
equation.

To solve the above two integral equations, the antenna cylinder (including the gap)
is divided equally into N segments. Then. N pulse functions are used to expand the
unknown current distribution I(z) and the point-matching technique is used to render
the integral equation into the N x N matrix equation: '

Ax =b, (14)

where A is a matrix, X is a vector whose elements are the induced current to be solved,
and b is also a vector corresponding to the incident field or the impressed voltage. In
the transmitting mode, the elements b, of vector b are given as

0 on Sgnt
b, = V. . (13a)
—j; on Sgap

and in the receiving mode the elements are given as

bm = Ei(;m)v m"_‘l-,2s"'rjv (156)
where z,, = (m — })Az — 1, and Az = £/N. In (14) the matrix elements [Al,. are
given as

. 1
[A]mn =Jk0770 [P(Im_n])"i"ﬁp::”m_n[) +§RO(Zm)6mm (16)
0
where
1 m=n -
m={ 5 men an)
and in the transmitting mode Ro(z,,) = 0 for all z,,. In (16), P and P;. are given as
o 1 21 pilz4+ADz[2 . Vo
P@) = o [ [, GIR(, 249 | (18)
P.(i) = —1-/2"‘{0 [R(&,ilsz + S A2)] = GLR(8.ilz — 24 }d" 19
zz ar Jo z @, z B z z @, 1 2—2 Z)] . ( )
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where

- E%J = G(R) (ko - 712-) § (20)

and R(¢',z') = \/(2asinl#’)2 + 22. Numerical integration was used to evaluate the
P(z) and P,.(i) by dividing each cylinder segment into even smaller subdivisions in
both ¢ and z directions. For the self-term P(0), singularity was encountered. However,
this singularity is integrable. In the numerical integration of the self-term P(0) over
the subdivisions in ¢ and z, the subdivision containing the singular term is removed.,
Accordingly, its contribution & to the integral is evaluated analytically by approximating
the subdivision by a planar circular disk of radius £, where 7£? is equal to the area of
the subdivision. Thereby, it can be shown that

G:[R(¢',2")]

1 1— eIkt

T %a  j2%ky

Numerical results indicate that subdivision of an elongated shape may lead to poorer

accuracy. Thus, the subdivision is chosen to be close to a square. The proposed numerical

procedure can be generalized to a lossy cylindrical antenna in both the transmitting and

the receiving modes. For this the values of Ro(zm) on S,n: in (16) are replaced with the
resistance per unit length along the antenna.

(21)

IV. Numerical Demonstration
The component of incident electric field tangential to the antenna is given as

Ei(zy,) = sin §efkocosbizm (22)

where §; denotes the angle of incidence as measured from the z axis. Based on the com-
puted distributions of current induced on the receiving antenna, the equivalent generator
voltage V; is calculated according to (5) by numerical integration. And the generator
internal impedance Z, defined by (6) is calculated simply by Z, = V, /I, — Z;.

A. Generator Voltage and Internal Impedance

The dependences of V, (amplitude and phase angle) and Z, (real and imaginary parts) on
the incident angle §; and the load impedance Z;, are shown on Tables I and II, respectively.
It is seen definitely that V; and Z, do depend on §; and Z;. When the load impedance
is high enough, V, and Z, grow linearly and quadratically with Z;., respectively. This is
due to that the load current decreases inversely with a high load impedance.

To compare the internal impedance with the input impedance, the Z,, of the same
antenna in the transmitting mode was also computed. The result of input impedance is
Zin = (104.3 + 742.90) 2. It is seen that the result of Z;, disagrees with all the results
of the generator internal impedance Z, listed on Tables I and I1.

The open-circuit voltage V,. can be replaced by the voltage V;, (= Z,I1) across the load
when the load impedance is high enough. In this investigation. the impedance is chosen to
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be as high as 10° Q2. For higher load resistances, no substantial variation in the calculated
value of V;, was observed. The calculated results of V,. for various incident angle 8; are
listed in Table I11. Again, all the calculated results of the open-circuit voltage V;. disagree
with those of the corresponding equivalent generator voltage V, listed on Table .

B. Load Current

The results of the load current I for various loading conditions are listed on Table
IV. These results of I, are just picked up from the solutions of induced current at the
loading point. While, the current I} determined by the uncoupled-circuit model, where
the generator voltage V; in (7) is taken to be the open-circuit voltage V,. and the internal
impedance Z, to be the input impedance Zi, in the transmitting mode, is calculated
according to

Ve
- Zi‘n + ZL '
The results of this current are listed on the last column in Table IV. By comparing the

results of current I} with those of the load current I, it is seen that. except for some
small discrepancies,

I (23)

=1 (24)

over various loading conditions. The above equality can be shown to be true {5] and
hence the small discrepancies are just numerical errors. Thus, the current determined by
using the uncoupled-circuit model is actually identical to the load current, although V,
and Z, are not identical to V,. and Z;,, respectively.

V. Conclusion

From the numerical results, it is apparently seen that the equivalent generator voltage
V, and the generator internal impedance Z, do depend on the incident angle #; and the
load impedance Zr. Qualitatively speaking, V, and Z, suffer a loading effect, that is,
their values depend on the load impedance. Whereas, V,. corresponds to an infinite load
impedance and Z;, has nothing to do with the load impedance. Further, Z;, has nothing
to do with the incident angle. Thus, V, and Z; can not be V,. and Zi,, respectively. In
other words, the open-circuit voltage V,, does not correspond to the power delivered to
a receiving antenna and the input impedance Z;, does not correspond to the re-radiated
power from that receiving antenna.

However, the numerical results indicate that the uncoupled-circuit model, where V, is
replaced with V. and Z, with Z;,, can yield correct result of load current. The validness
of the uncoupled-circuit formula of load current cab be proved rigorously by using the
reciprocity theorem. Based on these, we can state that the two replacements in the
uncoupled-circuit model together can yield the exactly correct result of the load current,
but each individual replacement itself is not correct, physically or quantitatively.
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Table I The Equivalent Generator Voltage V; and the Generator Internal Impedance Z,
as Functions of the Incident Angle 6; in Degree for a Center-Loaded Cylindrical
Antenna of Length £ = 0.5) and Radius a = 0.005\. The Load Impedance Z; =
100 Q.

0; V, (in V) Z, (in Q)

10 0.0456 £ —22.02° 88.03+7 5.34
20 0.0921 £ —21.08° 87.84+ 7 8.74
30 0.1399 £—19.75° 87.56 + j13.63
40 0.1886 £ —18.24° 87.24 +719.14
30 0.2364 £ —16.79° 86.91 -+ j24.49
60 0.2802 £/ —15.56° 86.62 + 729.08
70 0.3158 / — 14.64° 86.39 + j32.54
80 0.3393 £~ 14.08° 86.25+ j34.67
90 0.3475 £ —13.89° 86.20 + 535.39
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Table I1 The Equivalent Generator Voltage V; and the Generator Internal Impedance Z, as
Functions of the Load Impedance Z;, for the Cylindrical Antenna in Table I. The
Incident Angle §; = 90°.

Z; (in Q) v, Z,
1 0.3376 - 0.32° 81.50 + 757.01
10 0.3377 £~ 1.58° 81.55 + 756.75
100 0.3475 £ — 13.89° 86.20 + 735.39
1000 0.8903 £ — 67.89°  0.5519 x 10° — j0.2050 x 10*
10000 8.245 £ — 87.83°  0.4712 x 10° — j0.2101 x 10°
100000 82.38 £ —89.94°  0.4703 x 107 — j0.2101 x 108

Table III The Open-Circuit Voltage V,. as a Function of the Incident Angle §; for the Cylin-

drical Antenna in Table I.

Table IV The Load Currents I; and I as Functions of the Load Impedance Z; for the

; Ve (in V)

10 0.0506 £ - 11.7%°
20 0.1022 £ - 11.89°
30 0.1553 £ — 12.0¢°
40 0.2092 £ - 12.2%
50 0.2618 ¢ — 12.40°
60 0.3096 £ — 12.56°
70 0.3484 £ — 12.6%
80 0.3738 £ — 12.77°
90 0.3826 £ — 12.80°

Cylindrical Antenna in Table 1. The Incident Angle 6; = 90°.

Zy, (in Q)

Ip (in A)

1

1

10

100
1000
10000
100000

0.3366 x 102 £ — 34.96°
0.3135 x 1072 £ — 33.37°
0.1833 x 1072 £ ~ 24.65°
0.3463 x 1072 £ — 15.02°
0.3787 x 10~ £ —13.04°
0.3823 x 1075 £ — 12.82°

0.3367 x 102 £ — 34.96°
0.3135 x 1072 £ — 33.37°
0.1833 x 1072 £ — 24.65°
0.3463 x 1073 £ — 15.01°
0.3787 x 10™* £ — 13.03°
0.3823 x 107° £ — 12.81°
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ABSTRACT

Arrays of sleeved monopoles have very good off-broadside characteristics and so they can be
used for such applications as the Over-The-Horizon (OTH) Radar. We developed an accurate
analysis and computer codes for arrays of arbitrarily spaced sleeved monopole elements. The
analysis treats the sleeved monopoles in an array environment and takes into account the
actual feed configuration. With such codes, a high performance array can be designed by
simulation, thereby avoiding a costly iterative experimental procedure.

INTRODUCTION

The analysis of the array of sleeved monopoles and the array design tradeoffs were dis-
cussed and reported in [1]. In this paper, after a brief overview of the analysis, emphasis will
be placed on computational techniques used, along with a description of the user-friendly
computer codes.

Three versions of code were developed from a Galerkin solution procedure for monopole
currents: 1) a dense matrix code based on cosine expansion and test functions; 2) a dense
matrix code based on roof-top basis and test functions; and 3) a sparse matrix code specif-
ically tailored to very large arrays. Both 1) and 2) are for small and medium size arrays.
Version 3) employs a sparse matrix approximation that yields results which are virtually
indistinguishable from the full matrix codes, but requires sugnificantly less matrix fill and
solve times. The computer code architectures and block diagrams are also presented.

The theory and codes were validated against a simple experiment consisting of a 3-element
array. Typical simulated results for active admittance, element patterns and scattering
{coupling) coefficients are compared with measured data and given in [2]. In this paper we
present some typical results for 31-element and 101-element linear arrays.
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ANALYSIS - AN OVERVIEW

Fig. 1 shows the array element under consideration. It consists of a vertically extended
inner conductor (probe) of height L and radius ¢, and an outer conductor (sleeve) of height £
with inner and outer radii b and ¢, respectively. The identical feed lines have the characteristic
admittance Y, and are filled with a dielectric material of relative permittivity .. The top
view of the array is shown in Fig. 2. The total number of array elements is N, with m
denoting the reference element.

Since @ << A and ¢ << A, it is assumed that the probe and sleeve currents have
only an axial component and no angular variation. Furthermore, it is assumed that the
field distribution in each coaxial aperture is that of the coaxial feed-line TEM mode. An
integral equation is formulated for the unknown probe and sleeve current distributions by
requiring that the total tangential electric field vanishes on the reference monopole surface.
The tangential field is produced by currents on the m-th reference element (self term) and
currents on the rest of the array elements {coupling terms). The procedure is carried out in
the following steps:

1. All elements are excited with aperture voltages V7, =] V; | ez‘i)(jofn)< n=12,...,m,...,N.

2. In view of the equivalence principle, we close the coaxial aperture with a perfect conductor.
The problem is now divided into two parts, one for the internal and the other for the external
region. In the external region, at z = £, the coaxial T EM aperture electric fields are replaced
by magnetic current frills Mg,.

3. Expressions are obtained for E%(p,z), E%{(p,z) and HJ(p,z) due to a probe current
JP(a, z), sleeve current J(c. z), annulus current J?(p, z = £) and magnetic frill My(p,z = {)
of a single (isolated) monopole.

4. The total EZ_ on the probe of the reference element is then obtained by summing the
contributions from the element itself and the rest of the array elements, and can be written
as

N
Eem(a.2) = Ep (a.2))+ Y. En(lpn—p.+alz) (1)
n=1
n#m

5. In order to apply the boundary conditions on the reference probe, the Addition Theorem
for Hankel functions is used,

HP (K | = P + 2 1) = Jo(ka) HE (5 Ron), (2a)

Ron =! Pm — Pn It (Qb)

the field E2_ is expanded about a cylindrical axis at the reference element. Following the
procedure indicated in steps 3 and 4, total fields E.m(c, z) on the sleeve and E,n(p, 2z = £)
in the annulus are obtained.
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6. To determine the external currents J, we impose the boundary conditions that the total
tangential electric field vanishes on the surface of the reference monopole, i.e.,

EJM)=0, on § (3)
where m = 1,2,..., N and M are the known magnetic frill currents. This can be written as:
N N
E?m(Jm) + Z E?’n(‘]‘ﬂ) = _Eg’m(ﬂldsm) - Z E?n(Mdm) (4)
n=1 n=1
n#m . on#Em

which is an integral equation for the determination of the electric currents J, and J,.

7. Eq. (4) is now solved by the method of moments (MoM). To that end, the monopole
electric current on the n-th element is expanded in the following series:

I
I.=Ydvw; n=12...,m...,N. (3)

Two different expansion functions, (¢9;), for the unknown currents are used: the entire
domain cosine functions and the roof top functions.

8. Substituting (5) into (4), and using the Galerkin procedure yields a set of linear inho-
mogeneous equations for the determination of the expansion coefficients, ¢, of the unknown
probe and sleeve currents. The system of equations can be conveniently written in a block
matrix form as follows:

[Amn] [Cn] = Bm]V (8a)
where
Amn = [a7,] (8b)
Cn= [CZJ (8c)
B = (b)) (8d)
v = (5¢)

where [Amp] is an N x N block matrix (each block or submatrix contains I x I elements)
representing the interaction between elements m and n, [Cp] is block column vector (each
block of size I) representing the unknown expansion coefficients, By, is also a block column
matrix whose elements (blocks) are the J x N submatrices, and V is the excitation vector.

9. Once the probe and sleeve currents have been found, the total magnetic field Hy(p, z = 0%)
in the aperture of the reference element is determined following the procedure indicated in
steps 3 and 4.

10. Imposing continuity of Hy(p,z = 0) across the coaxial aperture of the reference element,
we obtained expressions for active admittance, active reflection coefficient, array scattering
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parameters (coupling coefficients), element gain, radiation pattern, and other array charac-
teristics. The details of the derivation are given in [2].

NUMERICAL ANALYSIS

The core of the numerical analysis work involved the evaluation of matrix element inte-
grals in (8a). As already mentioned. two types of basis and test functions were (separately)
used, cosine (entire domain) functions and roof-top functions. In both cases, the k.-integrals
defining the matrix elements were evaluated along the same path in the complex plane. and
in the same manner using both real-axis and arc integrations around the same singularities.
By having programs based on two different solution methods, one could also expect to dis-
cern any glaring discrepancy between their calculated final results and also point the way
for correction of any analysis or programming errors. Both programs produced practically
identical results. We noticed that the 30 term roof function program calculated the current
at the feed point (z = £) slightly more accurately than the equivalent cosine expansion. Al-
though both codes produced very accurate results, the computational time, for large arrays,
was very high. For example for a 30-element array, using 10 current terms, the computa-
tional time on Sun SPARC station 10 was obout one day. Because of that, for the study of
large arrays, we developed a more efficient method for creating the left- and right-hand side
Galerkin matrices, A, and B, respectively. Only cosine basis and test functions were used
in this code development. The method is based on matrix sparsification procedure, and is
described below.

To that end, it is important to note that the coupling between the two elements spaced
farthest apart, say element m and n in a large array, is relatively small (-50 dB for example).
Because of that, interaction between current modes on element m and current modes on
element n can be approximated by the interaction between their dominant modes only. In
other words, all elements in submatrix A, are set to zero except the first one, a