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CONFERENCE CHAIRMAN-S SUMMARY 

I extend to you my warmest welcome to the beauty of Monterey and the 9th Annual 
Review of Progress in Applied Computational Electromagnetics Symposium. The ACES 
Symposium has become a highly influential outlet for promoting awareness of recent 
technical contributions to the advancement of computational electromagnetics (CEM). 
The Symposium's technical papers and slate of short courses address the needs of 
newcomers to the field of computational electromagnetics as well as the needs of 
experienced practitioners, so the CEM community now eagerly anticipates Monterey in 
March of each year. 

My special thanks go to Dick and Pat Adler for their invaluable assistance and 
advice throughout. Dr. John Rockway has coordinated an outstanding lineup of timely and 
applicable short courses for ACES93, and we are all grateful for his efforts on this 
extremely important component of the Symposium. Both Frank Walker and Pat Foster 
generously shared their experiences as Symposium Chair in 1991 and 1992, respectively, 
and their positive influence is evident in ACES93; Frank Walker, furthermore, maintained 
oversight responsibility for exhibits and industry liaison again this year. David Lizius and 
Robert Paknys provided publicity for ACES93 in Europe and North America, respectively, 
and their contribution to the success of ACES93 is greatly appreciated. 

While some ACES members will view the parallel sessions at ACES93 with mixed 
emotions, I believe that, overall, the necessity for parallel sessions to accommodate the 
record number of papers is a good sign for ACES. It appears that many organizations and 
institutions will fall by the wayside in the 1990's, so I am encouraged by the growth and 
increased activity we have been fortunate enough to achieve with ACES93. 

Several new session topics are conspicuous in ACES93. While the emphasis is 
retained on ACES traditional strengths such as software performance analysis and 
validation, canonical problems, and general purpose code applications, the new topics 
provide valuable enrichment for the ACES membership. External financial support was 
solicited, and obtained, for the Bioelectromagnetic Computations session; appreciation is 
expressed to Dr. Harold Sabbagh, ACES President, and Dr. Imre Gyuk, Session Chair, for 
their initiatives in connection with this special session. 

The ACES93 Technical Program is fortunate to have a group of exceptional session 
chairs and co-chairs. They have contributed extensively to the number and quality of 
papers, the involvement of new participants, and interest in the Symposium. We are all 
thankful for their time and achievements. 

The support of the Department of Electrical Engineering and the College of 
Engineering at The University of Alabama is gratefully acknowledged. Completion of my 
duties as Symposium Chairman would not have been possible without their active support 
and encouragement. 

Finally, ACES commits to make your visit to Monterey and participation in 
ACES93 informative and enjoyable. As you take these Proceedings home with you, we 
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RCS of High Permittivity Cubes by FDTD and by Measurement 
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Abstract-This paper compares the measured radar cross-section(RCS) of dielectric cubes of 
relative permittivity 37.84 and 79.46 with calculations using the finite-difference time-domain 
method(FDTD). Such cubes ring for a very long time, and the effect of computing the RCS from 
a truncated time response is explored. The dependence of the RCS on the number of free-space 
cells separating the cube from the Mur absorbing boundary is investigated, and it is demonstrated 
that there is considerable interaction with the boundary. This paper shows that Yee's FDTD 
algorithm computes the RCS of a cube which is larger than the number of dielectric cells times 
the cell size. By adjusting the cell size to allow an extra half-cell of dielectric material on all 
faces of the cube, the computed RCS is brought into reasonable alignment with the measured 
data. 

Introduction 
The "finite difference time domain"(FDTD) method solves Maxwell's Equations by 

approximating the space derivatives and time derivatives with central difference formulasfl]. 
Thus space is subdivided into cells of size At by Ay by Az and material properties are assigned 
to each cell. A finite volume of space consisting of Nz by Ny by N, cells must contain both the 
scattering object and a sufficiently thick layer of free-space or "whitespace" separating the 
boundaries of the object on all sides from the outer boundary of the cell space. The outer bound- 
ary is designed to absorb any energy incident upon it, by imposing the Mur second-order bound- 
ary condition on the electric field[2]. 

Previous papers[3,4] used FDTD to model perfectly-conducting(PEC) targets, and obtain- 
ed remarkably good agreement with measured RCS data over a frequency range as wide as 20 to 
1[4]. "Guidelines" for choosing the cell size, the thickness of the whitespace and the number of 
time steps were proposed for PEC targets. Ref. [5] used FDTD to model dielectric cubes and 
rods made of plexiglas, of Z, ~ 2.35, and showed that both more whitespace and more time steps 
were needed for such low-permittivity targets compared to PEC targets. This paper extends the 
study to high permittivity dielectric cubes having e, = 37.84 and 79.46 using measured data from 
3.5 to 8 GHz. Modelling such cubes reveals that Yee's FDTD algorithm makes a systematic 
error in the size of the dielectric target, and hence in its resonant frequencies. 

This paper uses the Penn State FDTD Code[6,7] which splits the total field into the inci- 
dent field, which analytically satisfies Maxwell's Equations, plus the scattered field, which is 
found using the Yee FDTD update equations[l]. The outer boundary of the cell space uses the 
Mur second-order boundary condition[2]. The incident field is a Gaussian pulse, of width cho- 
sen to limit its energy content to frequencies where the cell size in the dielectric is less than a 
tenth of a wavelength. The field components in the FDTD cell space are used to find the far- 
zone scattered field with the near- to far-zone transformation described in Ref. [8]. 

High Permittivity Dielectric Material 
The dielectric materials used for the measurements in this paper are high permittivity, low 

loss ceramics manufactured by Trans-Tech, Inc., for dielectric resonator applications. It comes 
in the form of discs roughly 1 cm thick and 2 cm in diameter. The manufacturer provides a mea- 
sured permittivity for each individual sample showing that the permittivity is nearly constant 
over the frequency range from 0.5 GHz to 5 GHz for which data is given. A type D-8811 disc of 
diameter 1.99 cm and thickness 0.90 cm having £„ = 37.84 and loss tangent less than 1/6000 was 



used to make a cube 8.97 mm on each side. A type D-8623 disc of diameter 1.71 cm and thick- 
ness 0.77 cm of ^ = 79.46 and loss tangent less than 1/3000 had sufficient material for a 7.72 
mm cube. 

Measuring the RCS 
The RCS of each dielectric cube was measured with the electric field vector parallel to an 

edge of the cube and normally incident on one face. The cube was mounted in a 6 by 6 by 6 m 
anechoic chamber on a slim, tapered styrofoam column 1.2 m from a pair of horns, for a bistatic 
angle of about 8 degrees. The amplitude and phase was measured at each frequency for three 
configurations: the cube on the column, a reference sphere on the column, and the column alone. 
Then the room is calibrated as follows. The measured target response is the difference at each 
frequency between the response of the target on the column and the response of the column 
alone; and the sphere response is the difference between the response of the sphere on the col- 
umn and the response of the column alone. Hence the scattered field of the target is the target 
response divided by the sphere response, times the exact scattered field of the sphere evaluated 
using the Mie series[9] with the appropriate bistatic angle. The scattered field of the target was 
obtained in this way from 3.5 to 8 GHz. For perfectly-conducting(PEC) targets[3,10], the Fouri- 
er transform was used to obtain the time response of the target in the chamber, and then time- 
gating was used to remove the direct coupling between the horns and also the reflections from 
the room after the target response subsides. However, it was found that the high-permittivity 
cubes "ring" for such a long time that a satisfactory setting for the length of the time gate could 
not be found, and so no time gating was used. The 3.5 to 8 GHz measurement obtains the RCS 
of the dielectric cube to a cube size of about 0.24X0 for the E, = 37.84 cube, where \0 is the free- 
space wavelength. 

FDTD Model of a Dielectric Cube 
FDTD models are usually based on the guideline that the cell size should be smaller than a 

tenth of a wavelength. IfNbyNbyN cells are used to model a cube of side length a, this 
rule-of-thumb limits the frequency such that the cell size Ax = a/N is smaller than kd/W, where 
%d is the wavelength in the dielectric. For the e, = 37.84 cube, the measured data extends to a 
maximum cube size of 1.476^, hence 14.76=15 cells must be used to represent the cube. 

The user must choose the number of cells of free-space or"whitespace" separating the 
cube surfaces from the Mur absorbing boundary. In modelling PEC targets[3,4], it was found 
that separating the target surfaces from the Mur boundary by 20 cells is adequate to reduce inter- 
actions of the target and the boundary to acceptable levels. For low-permittivity dielectric 
cubes [5], it was found that 30 cells of whitespace were required. In the following, 20 cells of 
whitespace will be used to determine the time period over which the solution must be run, then 
the effect of larger whitespace will be explored. 

Time Interval Requirement 
To complete the model, the user must specify the total number of time steps for which the 

solution will be run. For highly-conducting targets, it was found[3] that sufficient time must be 
allowed for propagation at the free-space speed of light along a distance of 10 times the longest 
diagonal dimension of the target, D. Thus for PEC targets the time interval was chosen to be 
T = 1023 Ic. Using the Courant Limit time step ofAt = Ax/(y3c), the number of time steps for a 
PEC cube with diagonal D =/W3~Ax is N, = 307V, or 450 steps for a 15 cell cube. For a dielec- 
tric cube, the same time step is used as for a PEC cube[5]. In the dielectric case, the user might 
expect that sufficient time for 10 trips of distance D at the speed of propagation in the dielectric 
would be enough, thus N, = 30y£^N. Indeed, this is more than enough steps for a dielectric cube 
of low permittivity such as e, = 2.35[5]. But with E, =37.84 and TV = 15, N, = 2770 steps proves 
to be totally inadequate. 



Fig. 1 shows the time response of the 15x15x15 cell model of cube having e, = 37.84, 
using 20 cells of whitespace. The cell size is 8.97/15=0.598 mm. Very early in the time 
response there are large positive and negative excursions, likely due to reflection of the incident 
field from the front face of the cube. The transient sustains its amplitude fully to about 16000 
time steps, then gradually attenuates. The calculation was terminated after 65,536 steps. The 
solution could be continued further: it would be of interest to determine whether the oscillation 
eventually subsides. 

RCS With Increasing Numbers of Time Steps 
The data of Fig. 1 was used to compute the RCS shown in Fig. 2(a) to (c) with "time win- 

dows" of 16,384, 32,768, and 65,536 time steps, respectively. The figure plots the cube RCS in 
dB relative to the free-space square wavelength as a function of the cube size expressed in wave- 
lengths in the dielectric, a/V Thus the horizontal axis is proportional to the frequency, 
afkd = (a/u)f, where u is the speed of propagation in the dielectric. As discussed in Ref. [11], 
when the time response is truncated to the period from zero to T, then the true spectrum is con- 
volved with the function sm(nTf)/(2nf). This broadens the peaks in the RCS curve and intro- 
duces the series of closely spaced maxima and minima which are seen, for instance, at the left 
side of Fig. 2(a). The spacing of these spurious minima is A/= 1/T, becoming closer and closer 
as the time window is broadened. If T = N,At, then the minima are spaced by A(a/Xd) - 

■^3e^.N/N,. The 65,536 step window is sufficiently wide that the windowing effect is seen only 
as a spreading of the width of the curve between cube sizes of 1.18 and 1.22 wavelengths. 

Figs. 2(a) to (c) show that the frequencies of the resonance peaks do not change as the 
number of time steps in the time window increases. Only the sharpness of these features 
changes. Thus computation of the response with 16,384 steps is sufficient to allow a quick com- 
parison of the alignment of the computed resonant behavior with the measured RCS curve. Ref. 
[11] points out that Prony's method could be used to extract the resonant frequencies and Q fac- 
tors using a very narrow time window. 

Whitespace Thickness 
Figs. 2(a), 3(a) and 3(b) show the RCS of the cube as the whitespace thickness is increased 

from 20 to 30 to 40 cells, substantially increasing the computation time. These curves were 
obtained using 16,384 time steps. Comparing Fig. 2(a) and 3(a) shows that the peak at cube size 
0.77^ changes from 7.4 dB to -2.6 dB as the whitespace is increased from 20 to 30 cells, but the 
frequency or cube size at which the peak falls is unchanged. When the whitespace is increased 
to 40 cells, Fig. 3(b), the resonance peak changes to -3.33 dB, still at cube size Q.llXd. The reso- 
nance peak at cube size l.05\d changes from -0.1 dB to -0.2 dB to -2.4 dB as the whitespace 
increases from 20 to 30 to 40 cells, respectively. The "windowing" peaks are substantially 
reduced in Fig. 3(a) compared to Fig. 2(a), but change little as the whitespace is increased to 40 
cells in Fig. 3(b). Thus in Fig. 2(a) the "close" Mur boundary only 20 cells away interacts 
strongly with the cube surface. Comparing Fig. 3(a) and (b) suggests that 30 cells is sufficient 
whitespace for the cube having er = 37.84. 

Comparison With The Measured RCS 
Comparing the computed and measured RCS curves in Fig. 3(a) shows remarkable similar- 

ity. The two curves correspond very well on a feature-by-feature basis, with every peak and 
every minimum in the measured curve clearly seen in the computation. But there is a systematic 
shift in frequency of the computed data towards lower frequencies. Thus the lowest resonance 
peak falls at 0.77^ cube side length in the computation compared to 0.83^ side length in the 
measurement. It appears that the Yee FDTD algorithm computes the RCS of a larger cube than 
that specified by setting the cell size to be the cube side length of 8.97 mm divided by 15 cells. 



Half-Cell Margin Model 
In Ref. [4] it was noted that, for perfectly-conducting rod targets, the RCS computed with 

Yee's FDTD algorithm is that of a larger rod titan would be expected by multiplying the size of 
the cell by the number of PEC cells. Ref. [4] shows that the effective size of a PEC rod is larger 
than its size in cells by about one-quarter cell on all boundaries. For a high-permittivity dielec- 
tric cube, the size increase is more like one-half a cell. Thus a dielectric cube should be mod- 
elled by choosing the cell size allowing a half-cell margin all around the cube, so that the effect- 
ive size of an N cell cube is (N +1/2 + l/2)Ax = a. For the e, = 37.84 cube of side length 
a = 8.97 mm, with N = 15 cells the cell size is Ax = 8.97/(15 + 1) = 0.5606 mm.   Fig. 4 compares 
the RCS of the cube having this cell size with the measured RCS, using 16,384 time steps and 30 
cells of whitespace. Comparing Figs. 3(a) and 4 shows that computing the cube's RCS allowing 
a half-cell margin on all sides dramatically improves the agreement between the measurement 
and the computation. Thus the resonance peak at 0.7Tkd in Fig. 3(a) falls at Q.%2"kd in Fig. 4, in 
much better agreement with the measured position at 0.83V The second resonance peak falls at 
1.05Ä.J in Fig. 3(a), and at \.\2Xd in Fig. 4, compared to 1.12A.rf in the measurement. Note that 
the half-cell margin adjustment is not perfect, and indeed better alignment of the sharp minima 
might be had using a size adjustment of 0.6 cell. 

Cube Withe, = 79.46 
To compute the RCS in Fig. 5(a), the 7.72 mm cube having e, = 79.46 was modelled with 

15x15x15 cells and 40 cells of whitespace. The cell size was initially chosen with no margin 
adjustment, Ax = 7.72/15 = 0.5147 mm, and the computation carried out with 16,384 time steps. 
Note that the windowing effect in Fig. 5(a) is much more noticeable than in Fig. 3(b), even 
though the thickness of the whitespace is the same. Evidently, more time steps are required to 
control the windowing effect, and more whitespace might be needed for the higher permittivity 
cube. 

Comparing the measured and computed curves for the RCS in Fig. 5(a) shows that there is 
again good correspondence of the peaks and minima in the measurement and the calculation, 
although the comparison tends to be obscured by the windowing problem. The first resonance 
peak of -3.5 dB falls at 0.78^ cube size, compared to a peak of -2.1 dB at 0.836?^ in the meas- 
urement, and the second resonance of-4.8 dB at l.0Tkd, compared to -2.2 dB at \A5lXd in the 
measurement. Thus once again the Yee FDTD algorithm computes the RCS of a larger cube 
than expected. 

To test the half-cell margin hypothesis, the cell size was reset to Ax = 7.72/(15 +1)=0.4825 
mm, and the calculation was repeated to obtain Fig. 5(b). However, only 30 cells of whitespace 
could be used, and so more interaction with the Mur boundary is expected than in Fig. 5(a). Fig. 
5(b) compares the measured and computed RCS. The fundamental resonance falls at 0.828^ 
cube size and agrees much better with the measured peak at 0.8361,* than it did in Fig. 5(a). The 
peak height of 0.4 dB is larger than in Fig. 5(a), likely due to boundary interaction, as was the 
case between Fig. 2(a) and 3(a). The second resonance peak of -5.3 dB at 1.146X.^ aligns better 
with the measured peak at -2.2 dB at 1.157^ in Fig. 5(b) than it did in Fig. 5(a). The "doublet" 
in the measurement, with a sharp peak at -4.2 dB at 1.259^ cube size and a sharp minimum of 
-35.0 dB at 1.263\; size, is smeared by windowing in the computation. The computed minimum 
falls at 1.25 Ykd cube size. 



Conclusion 
This paper has compared the measured RCS of high-permittivity cubes having er = 37.84 

and 79.46 with the RCS computed using FDTD. This paper has clearly demonstrated that when 
the RCS of a high-permittivity dielectric cube is computed using Yee's FDTD algorithm, the 
peaks and minima occur at lower frequencies than those in the measurement. Evidently, FDTD 
computes the RCS of a larger cube than is expected by choosing the cell size to be the cube size 
divided by the number of dielectric cells. If the cell size is adjusted by considering the effective 
size of the cube to be one-half cell larger on all faces than its size in cells, then the computed 
RCS is in much better alignment with the measurement, although the correction is imperfect. 

In doing extensive computations for this paper, problems were occasionally encountered 
with growing oscillations. Thus if the RCS of the e, = 79.46 cube is computed with a 20 cell 
model surrounded by 40 cells of whitespace, then the oscillation in the transient response grows 
steadily beyond 32,768 time steps. It is not clear whether the problem is entirely due to the Mur 
absorbing boundary. 

It is of interest to note that there are no peaks or minima in the RCS as a function of fre- 
quency in that do not appear in the measurement. Thus the frequencies present in the long sus- 
tained oscillation in the transient response of Fig. 1 are likely to have a physical basis and not 
simply be an artefact of the computation. It has been suggested that the Gaussian pulse excit- 
ation is unsuitable for this type of FDTD computation because of its energy content at zero fre- 
quency. The computations were repeated using a double Gaussian pulse excitation, having zero 
D.C. energy and being bandlimited to frequencies where the cell size in the dielectric is less than 
one-tenth wavelength. This excitation did not at all change the computed resonant frequencies of 
the cube. However, problems were encountered with additional sharp narrow resonance peaks 
introduced into the response by this excitation, not corresponding to any peaks seen in the meas- 
urement. 

Further work on high-permittivity dielectric cube RCS will include tests with the Liao 
absorbing boundary condition[12], and results for cubes of permittivity approximately 10 and 20, 
as well as for the two permittivity values discussed here. 
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Fig. 1 The transient response of the cube with e, = 37.84, computed with 20 cells 
of "whitespace" and 65,536 time steps. 
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School of Engineering • Air Force Institute of Technology 

Wright-Patterson AFB, Ohio 45433 

1 Abstract 

Software implementation of asymptotic prediction methods requires validation against target ge- 
ometries exhibiting both specular and non-specular scattering mechanisms. Additional, use of 
precise Computer Aided Design (CAD) target models are essential for adequate prediction model 
accuracy. Validation of radar signature predictions using measured signature data requires thai 
accurate test target dimensions and proper test range calibration data is available. 

This paper1 compares CADDSCATfl] synthetic predictions to monostatic RADAR signature mea- 
surements for a 'standard' set of primitive and complex targets. Prediction accuracy is compared 
for temporal, spatial and spectral signature accuracy. The limitations of the asymptotic predictions 
are validated based on the measured data. The full thesis report on the CADDSCAT validation can 
be found in, "Validation of CADDSCAT Radar Signature Predictions Using Measured Data"[S]. 

2 Introduction 

Validation of asymptotic prediction methods is required to determine the frequency and geometry range over 
which accurate predictions are obtainable. This paper presents validation results of a radar signature predic- 
tion code called CADDSCAT. The CADDSCAT code was developed by McDonnell Douglas Corporation2. 
CADDSCAT implements the Physical Optics (PO) and Incremental Length Diffraction Coefficient (ILDC) 
asymptotic methods for prediction of surface specular fields and edge diifracted fields. Multi-bounce field 
contributions are incorporated via the Shooting and Bouncing Rays (SBR) Method. All three theories re- 
quire electrically large smooth targets. CADDSCAT radar signature predictions are implemented through 
the use of Computer Aided Design (CAD) based target models. 

The collection of measured signature data and the creation of Advanced Computer Aided Design (ACAD)3 

[3] models was the primary effort in this study. The validation used measured radar signature data and is 
thus limited by the accuracy of the measurements. The validation method will be discussed in terms of 
target choices, CAD modeling and measurement used for the CADDSCAT validation. 

3 Test Targets and Validation Methodology 

The first step in the validation process was to choose appropriate test targets. Initially 25 appropriate test 
objects were considered for this validation. Targets were chosen so as to have five wavelengths along their 
surfaces when possible as suggested by Knott.[4, 113] The next criteria was to ensure that the target set as a 
whole exhibited scattering due to specular reflection, edge diffraction and multi-bounce scattering. Specifi- 
cally, simple targets exhibiting well defined scattering features (edge diffraction, specular reflection, cavities, 

1 This research was sponsored by the US Air Force Wright Laboratory, Avionics Directorate, Target Recognition Branch 
2 Jim Roedder, from McDonnell Douglas, was the key consultant concerning the CADDSCAT prediction code. 
3ACAD ver. 7.3k solid modeling software was use for all IGES format target models in this study 
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EXCC UnjygantricBl  Double Ojiv«,      PEC 18 CM: 

(a) Vertical Polarization 
(b) Horizontal Polarization 

Figure 1- Unsymmetric Ogive Predictions, Elevation = 0°, Length: 
curves are measured data, DASHED curves are synthetic data 

: 7.5 inches, Radius= 1 inch, SOLID 

etc.) were essential to isoiate major code problems. In addition objects ^\d°^™fjl^ZZZ 
also required to test the CAD geometry modeling accuracy. Complex target s tested the codes P^0™anc^ 
m nredlc ng combined effects. A missile model was chosen as the complex test targe exhibiting sea tenng 
centers from curbed surfaces, edges, cavities, and surface shadowing features. Accurate accounting of shad- 
wtg between surfaces of a complex geometry is needed to obtain a correct radar signature predic o^ Both 

Perfect Electrical Conductor (PEC) and dielectric test targets were used for the CADDSCAT vahdat„» 
This study used measured data from the Naval Weapons Center at China Lake<. [S\ TfeChina Lake data 

provided low radar signature target measurements of conespheres opves, and an almondgarget. M asure 
ments were completed for the missile target at The «Wo State Unwers.tyanechoic chamber Th,-W » 
process was completed using the measurement data. The methodology of building accurate ACAD models 
frornknln target dimensions and then comparing to CADDSCAT predictions allowed for several aspects 

of the code to be validated. 

4    Validation Results 
CADDSCAT 's use of bi-cubic spline models allows for accurate radar signature predictions The results 
presented austräte the prediction'accuracy obtained when using ACAD target models. The following results 
also show the deficiencies of high frequency methods in predicting traveling wave effects. 

4.1    Unsymmetric Ogive 
Fibres lfal and Kb) show the PO predictions for an unsymmetric ogive target that is illustrated infigure 
la) No a ibration al was available for the ogive measurements. The data was shifted down by 10 dBsm 
2 accounttr the 14 inch calibration sphere data that was not available. Lack of proper target configuration 

«Data measurements for the Electromagnetic Code Consortium(EMCC) were completed by personnel from the Ames Re- 

search Center and The China Lake Naval Weapons Center. 
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(a) Vertical Polarization (b) Horizontal Polarization 

Figure 2: RAM Coated Unsyrametric Ogive Predictions, Elevation = 0°, Length= 7.5 inches, Radius= 1 
inch, SOLID curves are measured data, DASHED curves are synthetic data 

data adds some uncertainty to the measured data. Additional Predictions shown in Figures 2(a) and 2(b) are 
for an identical size dielectric coated ogive at 18 gigahertz(GHz) using constitutive parameters measured at 
10 GHz. Nonavailablity of constitutive parameters over the frequency band contributes to further uncertainty 
when validating the ogive prediction accuracy. The ogive predictions show that a PO only prediction does 
well at predicting this simple target, except for the traveling wave effects near 0° and 180°. The higher order 
effects are the primary limitation for high frequency asymptotic predictions. 

4.2 Conesphere 

The next low signature target analyzed was a 7° half-angle conesphere at 9 GHz. The conesphere geometry 
file contained 711 bi-cubic patch surfaces and is shown in Figure 3(b). Since no edges exist on the conesphere, 
a PO prediction was analyzed. The PEC conesphere predictions are similar to the ogive results. The results 
have been shifted so that the radar signature value of both the predicted and measured data match at the 
0° point. The PO prediction matches both measurement polarizations of Figures 3(c) and 3(d) very well. 

4.3 Trihedral 

The measurements of a 6 inch triangular corner reflector, and a 12 inch by 3 inch cylindrical cavity with aflat 
plate termination were used to validate the multi-bounce predictions from CADDSCAT. These targets test 
significantly different aspects of the CADDSCAT multi-bounce calculation method. For the trihedral target, 
no divergence is required due to its flat surfaces. The trihedral prediction tests that CADDSCAT's bounce 
point calculation provides an accurate result over the aperture of the trihedral and that the shadowing effects 
are properly predicted over the rear of the trihedral. Figure 4(a) shows that a reasonably accurate results is 
obtained. The effect of shadowing in this prediction is seen by comparing Figures 4(a) and 4(b). These figures 
clearly show the effects of the various shadowing options available in CADDSCAT. Without any shadowing 
the trihedral prediction tends to over predict the radar signature where a null in the pattern should be. A 
Slightly less over prediction is obtained when using the centroid shadowing option. Note in Figure 4(b) the 
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(a) Unsymmetric Ogive ACAD Model (b) Conesphere ACAD Model 
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(c) Vertical Polarization (d) Vertical Polarization 

Figure 3:   Conesphere  Predictions.  Elevation= 0 degrees,   9 GHz,  SOLID  curves are measured  data, 
DASHED curves are the synthetic data 
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Figure 4: Trihedral Measurement Compared to CADDSCAT Predictions, Elevation= 0 degrees (Trihedral 
measured and predicted with one side horizontal during azimuth scan.), SOLID curves are measured data, 
DASHED curves are the synthetic data 

drastic discontinuity caused by the centroid shadowing analysis. The trihedral model contained only one 
facet per side and so the fine shadowing option was required in order to obtain a good prediction. Typically, 
a CADDSCAT user must decide on whether to use centroid shadowing to save time or to use fine shadowing 
to get a more accurate prediction. This can be decided based on the facet (or bi-cubic patch) sizes used in 
the target model. 

4.4 Cylindrical Cavity 

A cylinder geometry provides a more rigorous test of the CADDSCAT multi-bounce capability. CADDSCAT 
[1] provides three important runtime parameters of LIMBC, NSAMPR, and IDIV for control of the multi- 
bounce accuracy. LIMBNC controls the number of multi-bounce calculations completed for each Geometric 
Optic (GO) ray tube. NSAMPR controls the density of GO ray tubes that are initially shot at the target. 
Finally, IDIV determines whether the multi-bounce contribution is calculated with or without the GO ray 
tube divergence being calculated. Changing these parameters will drastically change the radar signature 
predicted for a cavity structure. For the prediction of Figure 5 the divergence factor was turned off. Run- 
time parameters of LIMBNC=15, NSAMPR =20, and IDIV=0 (no divergence) were used. The prediction 
accuracy is not very good over the open end of the cavity. In general, the SBR method is not expected to 
provide very good results for this electrically small cavity as is discussed by Ling.[6] This illustrates how the 
SBR method is limited to large cavities on the order of 10 or 20A in diameter. 

4.5 Missile Target 

For a more complex target a validation can look at both time domain (or impulse response) signatures as well 
as frequency domain (azimuth scan) data in order to access a prediction codes accuracy. Impulse response 
predictions were obtained by an inverse Fourier transform of the frequency domain data. Impulse response 
analysis is used to validate a prediction's accuracy through comparison of scattering center location and 

15 



Cavity,No Divergence,   NSAMPR=2C,   LIMBNC=15,   18.2 Ghs,HH 

50 100 150 200 250 300 
Azimuth(degrees 1 

Figure 5:   Circular Cavity Multi-bounce Prediction, No Divergence, HH, Dimensions(inches):   1= 12.26, 
r(inner)=1.37, r(outer)=1.5, SOLID curve is measured data, DASHED curve is synthetic data 

le  Rang*  Profile,27-36  GHz  Az=l  E1 = C.S,   W 1«  Range  Prolile,27-36 GHz Ai=179 El=0.5,   W 

(a) Nose-on Impulse Response (b) Tail-on Impulse Response 

Figure 6:  Time Domain Missile Data versus Predictions, SOLID curves are measured data, DASHED 
curves are synthetic data 
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Measured Radar Signature 
90deg- 

180 

CADDSCAT Prediction,   Physical  Optics 
9 0deg- 

180 

270deg- 270deg- 

(a) Measured Data (b) PO Prediction 

CADDSCAT Prediction, No Divergence 
90deg-; 

CADDSCAT Prediction, With Divergence 
90deg-: 

270deg- 270deg- 

(c) Multi-bounce Prediction, No Divergence (d) Multi-bounce Prediction, With Divergence 

Figure 7: Measured Missile Data Compared to Predictions, 36 GHz, 0.15° Granularity, Elevation= 0 degrees, 
Vertical Polarization (W), (Identical Scale used for all plots ) 
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amplitudes. This was difficult to do because of measurement alignment uncertainties. Small changes in the 
missile alignment caused variations in the missile's impulse response amplitudes. For illumination of the 
missile's nose CADDSCAT accurately predicts two major scattering center locations at the trailing edges of 
the fins (see Figure 6(a)). Alignment uncertainties of ±0.5° in elevation and ±1° in azimuth and elevation 
constitute a significant error source when comparing time domain predictions. Similar results are noted in 
Figure 6(b) for a tail-on prediction. In general, these impulse responses indicate that both the asymptotic 
predictions and possible small alignment errors prevent anything other than major scattering centers from 
being predicted. 

The physical model's radar signature is not as symmetric as the ACAD model's predicted radar signature. 
The model's asymmetries are easily seen, in Figure 7(a), above and below the 0° line marker as well as at 
180°. Not all of these asymmetries are due to the physical model. Pedestal alignment errors of ±0.5° in 
elevations and ±2° in azimuth also played a factor in the skewing of the measured radar signature. Comparing 
Figure 7(a) to the prediction of Figure 7(d) shows that CADDSCAT adequately predicts the radar signature. 
The most noticeable discrepancy is the additional lobes predicted near ±45° off of the tail sector due to 
the divergence calculations of CADDSCAT. The missile prediction was repeated with the multi-bounce 
divergence factor turned off. The no divergence result plotted in figure 7(c), shows better agreement to the 
measured data overall. Finally, Figure 7(b) illustrates a CADDSCAT physical optics result for comparison. 
The PO prediction provides an extremely gross error near the tail-on sector and at broadside due to no 
calculation of the multi-bounce contribution. These predictions show how the PO prediction doesn't provide 
sufficient accuracy to for a complex target. Also, the addition of multi-bounce predictions and GO ray tube 
divergence calculations can provide erroneous predictions for electrically small targets. 

5    Conclusions 

CADDSCAT's implementation of the PO, ILDC and the SBR prediction methods provides excellent first- 
order radar signature predictions for complex, electrically large targets. The target measurements used 
have highlighted the limitation of PO only predictions. The extension of the PO predictions for specular 
predictions of dielectric coated targets was validated. The validation targets used are a candidate set for use 
in future code validation efforts. 
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TLM Computation of an Iris-Coupled Waveguide Cavity 
- A Canonical Problem 

Qi Zhang and WJ.R. Hoefer 

NSERC/MPR Teltech Research Chair in RF Engineering 
Department of Electrical and Computer Engineering 

University of Victoria 
Victoria, British Columbia, Canada V8W 3P6 

Abstract 

In this paper, a canonical problem is solved with the TLM method. The TE101 
resonant frequency and Q-factor of an iris-coupled rectangular waveguide cavity are 
determined. The sources of errors affecting the numerical results are discussed, and 
methods for minimizing or eliminating them are pointed out. 

1 Introduction 

The purpose of this study is to provide reference data obtained with the TLM 
method for the canonical problem in Fig. 1. Shown is a square waveguide cavity coupled 
to a rectangular waveguide of equal width and height by a symmetrical inductive iris. 
Computed are the TEioi resonant frequency and the loaded Q-factor. These were 
determined for three iris openings (d/a = 1/3,1/2 and 2/3) and the following cases: 
1. Lossless case: Walls are perfectly conducting (<7 = ~), t = 0 and t = a/12 
2. Lossy case: Walls are made of coin silver ( <? = 4.7 x 107 s/m), t = a/12, size WR(28) 

It was assumed that in the lossy case the thickness of the iris was much larger than 
the skin depth, and the waveguide size was WR(28). 

Fig.l A square cavity coupled to a rectangular waveguide through a centered inductive 
iris. The inner height of the structure is b. The waveguide is air-filled, and the iris 
has thicknesses t = 0 and t = a /12. The distance D between the absorbing boundary 
and the iris wall is 2a. The normalized widths of the iris are : d/a = 1/3,1/2 and 2/3. 
The waveguide size is WR(28) with a = 7.112 mm and b = 3.556 mm. 
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node inside the cavity, with an amplitude distribution corresponding to the TE101 mode. 
The system is then left to itself, and the cavity oscillation decays exponentially. 

•a 
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O) 
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125 250 
Time in Delta t 

375 500 

Fig. 4 Exponential decay of the TEioi mode field in the center of the cavity 

The time domain response picked up at the output point in the center of the cavity 
is shown in Fig. 4. The resonant frequency is obtained by computing the discrete Fourier 
Transform (DFT) of the time response and determining the location of the maximum of 
the resulting resonance curve. The loaded Q can be extracted either from the decay time 
by the following equation [5]: 

fcy — b,0e 2ß 

or from the frequency domain response by the following formula: 

:      fc Q = ^± 

(1) 

(2) 

where fc is the resonant frequency, fi and f2 are frequencies corresponding to the 3dB 
points. In the lossless case, the Q-factor is equal to the external Q. Since we can directly 
compute the decay in the time domain, we use Eq. (1) to determine the Q-factor. 

The frequency dispersive absorbing boundary is modeled by a single mode Johns 
Matrix [4], which is the impulse response of an infinitely long waveguide, computed for 
1000 time steps and convolved with the impulses incident upon it. 

2.2 Lossless Case: 3D-TLM Analysis 

In order to compare the 2D-TLM results with 3D-TLM computations we have 
also modeled the lossless case with a uniform cubic 3D mesh being only 1 A/ high in the 
third dimension.   The structure was excited in the same manner as the 2D mesh. 
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However, the absorbing boundary was represented by a single impulse reflection 
coefficient rather than a Johns Matrix. This reflection coefficient was computed for the 
resonant frequencies obtained with 2D computations. Data extraction was the same as in 
2D. 

2.3 Lossy Case: 3D-TLM Analysis 

When wall losses due to finite conductivity are taken into account, the absolute 
dimensions of the structure must be given, and the entire structure must be discretized 
fully in all three dimensions. We have chosen the standard WR(28) dimensions and 
assumed a finite thickness t = a/12 of the iris. Since the situation is a narrow-band 
problem, the wall losses have been included by evaluating the surface impedance of coin 
silver at the resonant frequency of the cavity, yielding a wall reflection coefficient of 
about -0.9997. Surface roughness and screening effects are not included in that value, so 
that the computed losses represent a lower bound. All other aspects of the lossy 
simulation are the same as in the lossless 3D case discussed in section 2.2. The results do 
not differ significantly because coin silver is a good conductor. 

3 Results 

Numerical results obtained from the above simulations are summarized in the 
following tables. These contain all data necessary to reproduce and verify these results. 

Tables 1 and 2 show the resonant frequencies and Q-factors obtained with a 2D- 
TLM Electromagnetic Simulator [2],[4] for zero and finite thickness of the iris, assuming 
perfectly conducting walls everywhere. The TEioi normalized resonant frequency MIX 
is computed for three iris openings and using three mesh densities. The number of 
computation steps (often called "Number of Iterations" in the literature) must be 
increased proportionally with the mesh density. In all cases the number of computations 
was sufficient to reach a stable value of the resonant frequency. The results are then 
extrapolated for A/ = 0 and denormalized for WR(90) and WR(28) waveguide sizes. The 
Q-factor is determined from the decay time of the resonance using Eq. (1). It can be seen 
that the resonant frequency is only slightly affected by the thickness of the iris, while the 
Q-factor depends very strongly upon it. 

Tables 3 and 4 show results for identical geometries obtained with a 3D- 
Electromagnetic Simulator, assuming that the structure is one mesh parameter high. 

Table 5 presents resonant frequencies and Q-factors for the lossy case, assuming 
that the walls are made from coin silver, and using standard WR(28) dimensions where 
a=7.112 mm, b=3.556 mm. The thickness of the iris is 0.593 mm. Only two mesh 
densities (A//a = 1/12 and 1/24) were chosen, and frequency values were extrapolated 
linearly for A//a = 0. 

4 Errors and their Correction 

The most important error in the TLM simulation is the coarseness error which is 
due to imperfect resolution of the fields in the vicinity of sharp edges. This error has 
been reduced by at least one order of magnitude by computing each structure with two or 
three different discretization steps and linearly extrapolating the results for A1=0. The 
systematic error after extrapolation is estimated to be less than ±0.1 percent of the 
resonant frequency. Velocity error due to the finite discretization is eliminated by the 
extrapolation process and thus negligible. 
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Table 1 
2D-TLM simulation of TEioi mode. Lossless walls. Iris thickness t = 0 

Number of Norm. Reso- Extrapolated 
d/a Al/a Computation Al (mm) nant Frequ. Resonant Loaded 

Steps MIX Frequ. (GHz) Q-factor 

1/48 4000 0.25 0.01431 WR(90): 
9.0367 

1/3 1/24 2000 0.50 0.02854 
WR(28): 

85.4 

1/12 1000 1.00 0.05675 29.0466 

1/48 4000 0.25 0.01378 WR(90): 
8.7086 

1/2 1/24 2000 0.50 0.02744 
WR(28): 

16.7 

1/12 1000 1.00 0.05445 27.9921 

1/48 4000 0.25 0.01305 WR(90): 
8.2246 

2/3 1/24 2000 0.50 0.02599 
WR(28): 

5.6 

1/12 1000 1.00 0.05190 26.4364 

Table 2 
2D-TLM simulation of TEioi mode. Lossless walls. Iris thickness t = a/12 

Number of Norm. Reso- Extrapolated 
d/a Al/a Computation Al (mm) nant Frequ. Resonant Loaded 

Steps MIX Frequ. (GHz) Q-factor 

1/48 4000 0.25 0.01441 WR(90): 
9.0944 

1/3 1/24 2000 0.50 0.02879 
WR(28): 

472.8 

1/12 1000 1.00 0.05734 29.2322 

1/48 4000 0.25 0.01395 WR(90): 
8.8136 

1/2 1/24 2000 0.50 0.02785 
WR(28): 

46.9 

1/12 1000 1.00 0.05538 283295 

1/48 4000 0.25 0.01337 WR(90): 
8.4583 

2/3 1/24 2000 0.50 0.02664 
WR(28): 

10.8 

1/12 1000 1.00 0.05283 27.1873 
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Table 3 
3D-TLM simulation of TEioi mode. Lossless walls. Iris thickness t 
(Percentage values indicate deviation from 2D-TLM results in Table 1) 

Number of Reflect. Norm.Res. Extrapol.. 
d/a Al/a ComputaL Al (mm) Coeff. of Frequency Res. Frequ. Loaded 

Steps Abs. Wall MIX (GHz) Q-factor 

WR(90) 
1/48 4000 0.25 0.1859492 0.01432 9.0383 

91.0 
1/3 1/24 2000 0.50 0.1871245 0.02859 WR(28) 

29.0517 (+ 6.5 %) 
1/12 1000 1.00 0.1897106 0.05690 

(+ 0.02 %) 
WR(90) 

1/48 4000 0.25 0.2069948 0.01380 8.7160 
18.7 

1/2 1/24 2000 0.50 0.2093416 0.02751 WR(28) 
28.0157 (+11 %) 

1/12 1000 1.00 0.2135141 0.05468 
(+ 0.08 %) 

WR(90) 
1/48 4000 0.25 0.2337197 0.012997 8.2325 

5.0 
2/3 1/24 2000 0.50 0.2322035 0.025829 WR(28) 

26.4618 

(+ 0.1 %) 

(-11%) 

Table 4 
3D-TLM simulation of TElOl mode. Lossless walls. Iris thickness t = a/12 

(Percentage values indicate deviation from 2D-TLM results in Table 2) 

Number of Reflect Norm.Res. Extrapol.. 
d/a Al/a ComputaL Al (mm) Coeff. of Frequency Res. Frequ. Loaded 

Steps Abs. Wall MIX (GHz) Q-factor 
WR(90) 

1/48 4000 0.25 0.182135 0.01442 9.0918 
450.5 

1/3 1/24 2000 0.50 0.182837 0.02881 WR(28) 
29.2238 (-4.7%) 

1/12 1000 1.00 0.184542 0.05744 
(- 0.03 %) 
WR(90) 

1/48 4000 0.25 0.199111 0.01397 8.8162 
50.1 

1/2 1/24 2000 0.50 0.201042 0.02790 WR(28) 
283380 (+ 6.8 %) 

1/12 1000 1.00 0.203544 0.05553 
(+ 0.03 %) 

WR(90) 
1/48 4000 0.25 0.227341 0.01341 8.4650 

13.6 
2/3 1/24 2000 0.50 0.232152 0.02663 WR(28) 

27.2092 (+ 26 %) 
1/12 1000 1.00 0.235718 0.05299 

(+0.08%) 
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Table 5 
3D-TLM simulation of TEioi mode. Lossy walls made of coin silver. WR(28) 

waveguide size. Iris thickness t = a/12 
(Percentage values indicate deviation from lossless 3D-TLM results in Table 4) 

d/a Al/a 

No. of 
Compu- 

tation 
Steps 

Al (mm) t/Al 

Impulse 
Reflect. 
Coef. of 
Absorb. 
Boundar 

Impulse 
Reflect. 
Coeff. 
of coin 
silver 

TEioi 
Reson. 
Freq. 

in GHz 

Extrapo- 
lated 

Reson. 
Freq. 

in GHz 

Loaded 
Q-factor 

1/3 
1/24 

1/12 

2000 

1000 

0.29633 

0.58267 

2 

1 

0.18280 

0.18449 

-0.9997 

-0.9997 

29.1533 

29.0605 

29246 

(+.08%) 

410.5 

(-9%) 

1/2 
1/24 

1/12 

2000 

1000 

0.29633 

0.58267 

2 

1 

0.20111 

0.22291 

-0.9997 

-0.9997 

28.2246 

28.1105 

28339 

(+.004 

463 

(-8%) 

2/3 
1/24 

1/12 

2000 

1000 

0.29633 

0.58267 

2 

1 

0.23262 

0.23604 

-0.9997 

•0.9997 

26.9397 

26.8102 

27.054 

(-0.5 %) 

11.6 

(-15 %) 

The number of computation steps was chosen in eachcase such that no change in 
resonant frequency could be detected when increasing it any further. The only other 
error of consequence is due to the finite return loss of the absorbing boundaries used in 
the simulation. This error has been determined to be less than ±0.15 percent of the 
resonant frequency by placing the absorbing boundary at different distances from the iris 
and measuring the corresponding variations in the resonant frequency. This is the 
equivalent of the sliding load measurements used in S-parameter measurements. The 
overall estimated error in the computation of the resonant frequencies is thus less 
than ± 0.25 percent. 

The deviations in percent among resonant frequencies for the lossless cases as 
obtained with 2D-TLM and 3D-TLM are included in tables 3 and 4. All results agree 
well indeed within the estimated maximum error of ± 0.25 percent. The wider the 
opening, the more sensitive the resonant frequency value is to the return loss of the 
absorbing boundary. The accuracy of the Q-factor is much worse, (typically ± 10 
percent), and deteriorates when the iris becomes very wide and the loaded Q drops to 
extremely low values. 

Resonant frequencies for the 3D lossy case are compared with the 3D lossless 
case in Table 5. As expected, the losses are so small that they do not sensibly affect the 
resonant frequency at narrow iris openings. For d/a = 2/3 the resonant frequency of the 
lossy system is 0.5 percent lower than that for the lossless case, and thus exceeds the error 
margin mentioned above. This is attributed to the strong coupling between the cavity and 
the absorbing boundary which is no longer perfectly matched to the lossy waveguide 
section. The Q-factor in the lossy case is typically 10 percent lower than in the lossless 
case. Since the same procedure has been used to compute these two sets of values, the 
reduction of Q with increasing d/a is quite consistent 
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5 Conclusion 

A canonical problem has been solved with the TLM method. The TE101 resonant 
frequency and loaded Q-factor of a square cavity coupled to a commensurate waveguide 
through a symmetrical inductive iris are computed. Numerical errors are reduced to less 
than 0.25 percent using extrapolation with successive mesh refinement. Numerical results 
for the resonant frequency computed both with 2D-TLM and 3D-TLM Electromagnetic 
Simulators agree well within that error margin. The Q-factor is more difficult to compute 
with high accuracy, particularly in the cases of strong coupling between the cavity and 
the waveguide. An accuracy of about 10 percent is the best that can be achieved with the 
time decay method. The method based on the 3 dB bandwidth is even less accurate, 
particularly when the Q-factor is very low. The consistency of the results obtained with 
different TLM models indicates that the values obtained are reliable and accurate within 
about 0.1 percent for the resonant frequencies, and about 10 percent for the loaded Q. 
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ABSTRACT 

A study of the determination of non-integer eigenvalues for ordinary differential equations 

with transcendental solutions is presented. An algorithm based on expansion in terms of 

Chebyshev polynomials and collocation is presented. The method is applied to the problem of 

computing the modal fields external to a biconical radiating structure and to the computation of 

the modal fields in a curved section of rectangular waveguide. Eigenfunction solutions for both 

problems are presented. 

I.  INTRODUCTION 

Canonical analysis of boundary value problems commonly produce series solutions of 

transcendental functions, [1-3] where the index of summation is a set of eigenvalues (v) 

determined by the boundary conditions of the problem. When considering perfectly conducting 

boundaries, the eigenvalues are those values such that the transcendental function of order v, or 

its derivative, is equal to zero at the boundaries. Unfortunately, the determination of the 

eigenvalues that provide such results is usually limited to special cases, often when v is an 

integer. Difficulty in determining the correct values for v, when v is not an integer, has limited 

the use of canonical analysis for these problems. 

This paper presents a generalized numerical approach for determining the eigenvalues of 

transcendental functions subject to the Dirichlet and Neumann boundary conditions. The method 

proposed is based upon expanding the unknown function in a series of Chebyshev polynomials 

[4] and using the method of collocation [3] to obtain a well conditioned system of linear 

homogeneous equations. The eigenvalues (y) are then found by using a bracketing and bisection 

technique [5]. 
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H.   MATHEMATICAL FORMULATION 

Assume that the physical problem under consideration is described by the function y,(x), 

which is defined on the closed region [a,b], and satisfies a second order ordinary differential 

equation (ODE) of the following form: 

d\(x) dy(x) 
A{x) -^ + B(x) -^- * C(x,v) y(x) = 0 

dx7- dx 
(2.1) 

The functions A(x), B(x), and C(x,p) are taken to be continuous on the open region (a,b). The 

sought solutions are subject to boundary conditions which can be separated into different types 

according to the physical problem under consideration.  Typical boundary conditions are: 

y,(a) = y,(b) = 0 
y,'(a) = y,'(b) = 0 
y,(a) = y,'(b) = 0 
y,'(a) = y,(b) = 0      . 

Let y,(x) be expressed by the following Chebyshev polynomial expansion: 

(2.2) 
(2.3) 
(2.4) 
(2.5) 

n=0 
azxzb (2.6) 

where Tn(z) is the n* Chebyshev polynomial of the first kind, and I(x) is a linear mapping which 

maps the interval [a,b] to [-1,1] 

T„(z) = cos(n cos_1(z)) 

l(r) 
(.b-a) 

2a 
(Jb-a) 

-1 

-\<.Z<L\ 

a<.x<.b 

(2.7) 

(2.8) 

Since the set of Chebyshev polynomials are continuous on [-1,1], the first and second derivatives 

of y,(x) may be expressed as follows: 

dx        ,=0 dx 
(2.9) 

dKx) 
dx 

(2.10) 
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T» [*(*)] m^ TB[t(x)] are the first and second derivatives of Tn[{(x)] with respect to ((x), and are 

given by: 

T„fe) = -J-r f-w T„(z) + n T„_,(z)l (2.11) 
(1-z2) 

d-z2): 

[-« T„(z) + n T..!®] 

• [ T„(z) ((nz)2 - nz2-n) 

T,_,(«)(-2»»E + 3II?) + T„.2(z)(«2-n) ] (2.12) 

Substituting Eqs. (2.9) and (2.10) in Eq. (2.1) and approximating the series expansion for y„(x) 

by the first N terms, yields the following linear homogeneous equation for the expansion 

coefficients (ct„): 

where, 
n-0 

M:(X)=A(X)T![KX)] 
dm 
dx 

(2.13) 

HBWT„[{(X)]-^ + C(X,V)T„[{W]       .      (2.14) 

Enforcing Eq. (2.14) at N points, {x;, i=l, N}, on the interval [a,b] leads to a system of N 

linear homogeneous equations, which may be written as the following matrix equation: 

Mfa)  Mfrj  . . . M^fa) 

M0>2)  MiQcJ  . . . A^x,) 

(2.15) 

Mo(xN) Mi(xN) M
N-I(

X
N)    «tf-1        0. 

Note that the matrix M is solely a function of v, the desired eigenvalues of the given 

ODE. Since Eq. (2.13) is a homogeneous equation, it will have non-trivial solutions if and only 

if the determinant of the matrix M is zero. However, taking the determinant of the matrix M 

in its present form yields zero for any value of v. This is because solutions exist for any given 
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value of v due to the fact that the boundary conditions have not yet been imposed. Hence, it is 

necessary to first impose the boundary conditions in order to obtain the desired values for v. 

Boundary conditions are imposed by replacing the first and last rows of the matrix M 

with the series representation for the boundary conditions. Thus if, y,(a) = y,(b) = 0 the first 

row of the matrix M is replaced by 

£  < T.[K«)] = 0 (2.16) 

and the last row is replaced by 

£   al Tjm] = 0       . (2.17) 
11=0 

The new matrix obtained will be denoted by Ü. Because the boundary conditions require the 

function, or the derivative of the function, to be zero at the boundaries, the matrix equation 

remains homogeneous; thus, non-trivial solutions still exist if and only if the determinant of the 

matrix M is zero. Hence, the permissible values of v, subject to the given boundary conditions, 

are obtained by requiring det(A/) = 0. 

m.    COMPUTER IMPLEMENTATION 

Numerical estimation of the eigenvalues vp (j> = l,...Jt), is based on the fact that the 

det(Af) is an oscillatory function of v, with the det(Mv") = 0 (p = 1,...^P). Hence, over any 

interval containing a single eigenvalue, det(M) will change sign. This behavior allows the 
eigenvalues (vp) to be determined using a bracketing and bisection technique [5]. Scanning 

det(AO for changes in sign over a given interval on the v axis, provides the bracketing intervals 

for the eigenvalues. Care must be taken in selecting a maximum scan distance which is less than 

the minimum distance between any two adjacent roots. Scan distances which are too large may 

cause roots to be missed. Once the roots are bracketed the bisection technique may be 

implemented to compute the particular eigenvalue to the desired degree of accuracy. Since the 

bisection method requires only the computation of the sign of the determinant, the common 

problem of numerical overflow, associated with determinant calculations, is avoided. 
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IV.    BICONICAL RADIATING STRUCTURE 

Under radiation conditions, the electric field external to the biconical radiating structure 

has series solution of the following form: 

Er = E c» nZy&r) Iv(cos6) (4.1) 

where ü^v1/2(kr) is a modified Hankel function of the second kind, and L,(cos0) is an odd 

Legendre polynomial [6]. Boundary conditions require that L, (cos0,) = L, (cosflj = 0. Thus, 

it is necessary to determine the eigenvalues whose eigenfunctions satisfy the given boundary 

conditions. For Legendre's differential equation, A(x) = 1-x2, B(x) = -2x and C(x,x) = 

v(v+\). 

Figure 4.1   Geometry of the biconical radiating structure 

Two different biconical radiating structures were chosen for analysis: Structure 1, 0j = 

30° and 82 = 150°; Structure 2, 0, = 10° and $2 = 170°. Tables I and II provide the first 

four eigenvalues for each structure and compares the calculated eigenvalues with the eigenvalues 

estimated by Grimes using an asymptotic expansion technique [7]. Graphs of the corresponding 

eigenfunctions are shown in figures 4.2 and 4.3. For both radiating structures under study, 

convergence of the calculated eigenvalues occurred for matrix sizes on the order of N = 50 to 

60. 
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TABLE I 

Structure 1 0, = 30°, 02 = 150° 

Eigenvalue Calculated Value Grimes' Result 

nu-1 2.439212 2.439211 

nu-2 5.466996 5.466996 

nu-3 8.477510 8.477309 

nu-4 11.482985 - 

TABLE H 

Structure 2   0, = 10°, 02 = 170° 

Eigenvalue Calculated Value Grimes' Result 
nu-1 1.621407 1.620624 

nu-2 3.916836 3.915488 

nu-3 6.188799 6.187171 

nu-4 8.451585 8.450112 

70 90 110 130 

THETA IN  DEGREES 

Figure 4.2 First four Legendre functions (eigenfunctions) for 10° biconical structure 
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Figure 4.3 First four Legendre functions (eigenfunctions) for 30° biconical structure 

V.  CURVED RECTANGULAR WAVEGUIDE 

The radial variation of the LM modal fields in a curved section of rectangular waveguide 

may be expressed as a superposition of Bessel functions: 

y.W-q/^ + qj^,/) (5.i) 

where C„ Q, and v are determined by 

•MVi) MW - -MV2) -MVi) - o (5-2) 

y*M = y,(krr2) = o    • (5-3) 

Thus, it is necessary to determine the eigenvalues whose eigenfunctions satisfy Eqs. (5.2) 

and (5.3). For Bessel's differential equation: A{x) =■ x2, B(x) = x and C(x,\) = x2 -v2, in 

Eq. (2.1). 
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Figure 5.1     Geometry of curved rectangular waveguide 

A curved section of rectangular waveguide with k^ = 3 and k^r = 9 was chosen for 

analysis.   Table m shows the first five eigenvalues and figure 5.2 shows the corresponding 

eigenvalues,  it should be noted that for this particular waveguide there is only one propagating 

mode (nu-1) and all the remaining modes a evanescent. 

TABLE m 

Eigenvalues (p) 

nu-1 5.1793 

nu-2 1.5893i * 

nu-3 6.5009/ * 

nu-4 9.9471/ * 

nu-5 13.1245/* 

1 non-propagating modes 
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Figure 5.2     First five eigenfunctions for given waveguide 

VI.    CONCLUSIONS 

This paper presents a generalized technique for determining non-integer eigenvalues for 

ordinary differential equations with transcendental solutions. The method was applied to a 

biconical radiating structure and to a section of a curved waveguide of rectangular cross section. 

To verify the technique the computed eigenvalues for the biconical structure were compared with 

results obtained by Grimes [7] using an asymptotic method. Excellent agreement was established 

between the two methods. The method proposed here is completely general and has the 

advantages that only the sign of the determinant needs to be computed and that the matrix size 

needed for convergence is small. 
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ABSTRACT 

The progress in the development of two advanced computer programs for 
antenna modeling is evaluated. Both codes use the method of moments to solve the 
appropriate surface and wire integral equations. The performance of the JUNCTION 
code, under development at the University of Houston, is compared to the performance 
of the Numerical Electromagnetic Code - Version 4 (NEC4), developed by the 
Lawrence Livermore National Laboratory. JUNCTION uses the electric field integral 
equation (EFIE) for both wires and surfaces, while NEC4 models bodies either as a 
wire mesh, or as a surface of magnetic field integral equation (MFIE) patches. Results 
are presented comparing the convergence and stability of NEC4 and JUNCTION for 
both wire antennas and wire antennas mounted on simple structures. These results 
contribute to a user's perception of the "value" of both codes. 

1. INTRODUCTION 
Electromagnetic (EM) modeling codes are an important tool in the Navy's 

analysis of shipboard antennas. As modeling costs increase and new composite 
materials come into service on board ships, the ability to quickly and accurately model 
the performance of shipboard EM systems becomes increasingly important. EM 
modeling codes provide a means to do this efficiently and cost effectively. A 
comparison is presented for two of these codes, the Numerical Electromagnetic Code - 
Version 4 (NEC4), developed at the Lawrence Livermore National Laboratory (LLNL) 
[1,2]; and JUNCTION, developed at the University of Houston [3,4,5]. Both codes use 
the method of moments (MOM) [6] to solve the appropriate surface and wire integral 
equations. A brief introduction is presented for both programs. Results are computed 
for a series of canonical problems to illustrate code performance. Where available, 
the computed results are compared with measurements. 
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1.1 Numerical Electromagnetic Code - Version 4 (NEC4) 
Representing over twenty years of Department of Defense investment, the 

method of moments NEC4 is a fairly mature program. It is probably the best 
documented and most powerful wire antenna code available. NEC4 is user-oriented 
code, offering a comprehensive capability to analyze interactions of electromagnetic 
waves with conducting structures. To model complex structures, NEC4 uses an 
electric-field integral equation (EFIE) for wires and a magnetic-field integral equation 
(MFIE) for surfaces. The EFIE is well suited for thin wires, while the MFIE is attractive 
for modeling smooth surfaces which bound closed volumes. The EFIE wire grid is 
preferred for surfaces that are not smooth and not closed. 

Principal advantages of the wire grid approach are that the geometry is easily 
specified for computer input and only one-dimensional integrals need to be evaluated. 
The wire grid modeling approach, however, often proves unsatisfactory where near 
field quantities such as surface currents or input impedance are desired. One obvious 
difficulty is in interpreting computed wire currents as equivalent surface currents. Also, 
the storage of energy in the neighborhood of a wire mesh is not completely equivalent 
to that of a continuous surface. As a result, computed resonant frequencies and 
reactive components of computed impedances are often shifted from their correct 
values. Modeling using the MFIE patch is limited to surfaces that are closed and 
smooth and, therefore, lacks application to many "real world" problems. 

1.2 JUNCTION 
JUNCTION, recently developed at the University of Houston, also attempts to improve 
modeling complex geometries. The JUNCTION computer code invokes the method of 
moments to solve a coupled electric field integral equation (EFIE) for the currents 
induced on an arbitrary configuration of perfectly conducting bodies and wires. There 
are three principal advantages to the JUNCTION formulation. First, the EFIE 
formulation for the surfaces of bodies, in contrast to the magnetic field integral equation 
(MFIE), applies to open bodies as well as closed bodies. Second, JUNCTION allows 
voltage and load conditions to be easily specified at terminals defined on the structure. 
Third, the triangular patches of JUNCTION are the simplest planar surfaces which can 
be used to model arbitrary surfaces and boundaries, and triangular patches permit 
patch densities to be varied locally so as to model a rapidly varying current distribution. 

2. EVALUATION 
An evaluation is performed to contribute to a user's perception of the validity for 

an electromagnetic modeling code. A perception of validity implies that the user has 
confidence that "within his or her modeling experience" he or she can produce 
"credible" analysis with a given electromagnetic code. The validity of an 
electromagnetic computer code is measured, in part, by its ability to replicate the 
results or solutions of known canonical problems with some degree of accuracy. There 
is, however a difference between the "actual" validity of a code and a user's perception 
of the validity. 
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2.1 Wire antennas 
An evaluation of wire antennas usually begins with studies of dipole antennas of 

different lengths. These studies include both measured and theoretical data. 
Convergence tests for various lengths of dipoles demonstrate the accuracy that can be 
expected. A convergence test also provides the rationale for selection of segmentation 
density (i.e., the number of unknowns per wavelength of wire). The accuracy of the 
method of moments depends on meeting the thin wire criteria. Next, a study is made of 
the variation of conductance and susceptance as a function of dipole radius and 
changes in radius (i.e. stepped radius junction). Finally, convergence tests are made 
for antenna structures of multiple wires. 

Both JUNCTION and NEC4 were tested for these various wire antenna 
problems. Both JUNCTION and NEC4 showed definite convergence and stability for 
short dipoles, and dipoles near resonance and anti-resonance. NEC4 converged 
somewhat faster. NEC4 reaches a stable answer with fewer unknowns than 
JUNCTION, as the number of unknowns is increased. For either code, however, the 
accuracy with respect to measurements is acceptable, if a sufficient number of 
unknowns is used. NEC4 performs satisfactorily for dipoles with both thin and thick 
wires, but JUNCTION produces an unacceptable anomaly in the transition from thin to 
thicker wires. This anomaly in JUNCTION has since been resolved. Both codes 
perform well for antennas with stepped wire radii. For short segments, NEC4 gives the 
appropriate dipole behavior for segments at least as short as 10"8 wavelengths. 
JUNCTION will provide proper dipole behavior for segments down to only about 10"4 

segments. This limitation in JUNCTION can be resolved, but has not been coded at 
this time. The performance for multiple wire junctions was tested against 
measurements for TEE antennas. Both JUNCTION and NEC4 show similar behavior 
as the number of unknowns is increased. JUNCTION showed somewhat faster 
convergence and somewhat better accuracy than NEC4 for the problems chosen. 
Finally, both codes were tested for small loop behavior using a 22-sided wire polygon 
with one unknown per side as a model of a circular loop. NEC4 showed appropriate 
admittance behavior for loops as small as .005 wavelength in circumference, while 
JUNCTION was correct down to a circumference of .05 wavelength. 

2.2 Wire antennas on structures 
Three canonical problems were used to compare the structure modeling 

capabilities of the two codes. The first two problems consider the impedance over a 
range of frequency for a monopole mounted on a square plate. The plate measures 
0.914 square meters, while the monopole is 0.421 meters long with a radius of 0.008 
meters. Fifteen unknowns were used to model the monopole in both JUNCTION and 
NEC4. For the JUNCTION calculation, the surface is modeled by the EFIE triangular 
patch, while in NEC4, the plate is modeled as a wire grid equivalent. In the first 
problem, the input impedance is calculated for the monopole centered on the plate. 
Figure 1 compares the results of both programs with measurements [7]. The graphs 
present the data parametrically for the number of patches or segments used along a 
side of the plate.     Table 1 gives the total number of unknowns for each calculation. 
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Figures 1 (a) and (b) show good agreement between JUNCTION and the 
measurements for both conductance and susceptance. Note that all the models are 
converged and stable over the given frequency band. Figures 1 (c) and (d) also show 
reasonable agreement between NEC4 and the measurements when the plate has at 
least six segments per side (99 unknowns). However, for all NEC4 models, the 
conductance diverges from the measurement after the first resonance. JUNCTION 
appears to converge more quickly (55 unknowns) and is more stable. 
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Figure 1. Input admittance of a 0.42 m. monopole centered on a square plate, (a),(b) 
JUNCTION; (c),(d) NEC4. 

For the second problem the monopole is mounted vertically at the plate corner. 
The number of unknowns used for each case are the same as in the first problem. 
Figure 2 presents the calculated results for this model. Measurements were not 
available for comparison. Although no comparative measurements were available, 
some qualitative statements can be made. As in the first problem, figures 2 (a) and (b) 
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JUNCTION NEC4 

Patches Per Side Total Unknowns Segments Per Side Total Unknowns 

4 55 4 55 

6 111 6 99 

8 191 8 159 

10 295 10 235 

Table 1. Number of unknowns used for monopole on a square plate calculation. 
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Figure 2. Input admittance of a 0.42 m. monopole at the comer of a square plate, 
(a),(b) JUNCTION; (c),(d) NEC4 
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show that JUNCTION converges quickly and is stable. Results for the models with six 
(111 unknowns) to ten patches per side are close to each other. In the case of NEC4 
however, figures 2 (c) and (d) show that the results do not converge until the eight 
segment per side model (159 unknowns). Also, similar to the first problem, the 
conductance calculation diverges after the first resonance. 

For the last problem, the impedance is calculated over a range of frequency for 
a monopole centered on a 0.1 square meter box. It is 0.06 meters high, with a radius of 
0.008 meters, and it is modeled with fifteen unknowns. As with the plate, the NEC4 
model of the box is a wire grid, while the JUNCTION model uses EFIE surface patches. 
Table 2 presents the total number of unknowns for each calculation. 

Figure 3 presents the JUNCTION and NEC4 calculations compared with 
measurements found in [8], The results are presented parametrically for the number of 

FREQUENCY (GHr) FREQUENCY (QHi) 

(a) 

 '■ """■   \ i   f t(an 

 r—if*:   • •   f ~mMK» 

 1-jfir:   : i   T imten 

 : -.   f ■ 

 Jjl \.__. 

Ji \       j     j 
 \ \   } I i-  

i i ■ i i i —i—i—i—i—i— i i i i i i i—i— 

(b) 

-] |  30. 

23 ■ 

20 1 

tf ■ 

i i i h IT™ 

--; I  f ] -I f- ■ 

9. | \ \ r 
■— 

•1 

—H—t- 

ii^js* SS*Ä-f—• 

-10. 

.« . 
-SO - 

-v-"--i  
i i i i i I i i . i . i . i . i I 

FREQUENCY (GHi) FREQUENCY (QHi) 

(c) (d) 

Figure 3.   Input admittance of a 0.06 m. monopole centered on a square box, (a),(b) 
JUNCTION; (c),(d) NEC4. 
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JUNCTION NEC4 

Patches Per Side Total Unknowns Segments Per Side Total Unknowns 

2 

4 

6 

79 

263 

567 

2 

4 

6 

51 

167 

364 

Table 2. Number of unknowns used for monopole on a square box calculation. 

patches or segments on a side of the box. The graphs show that both codes converge 
quickly - JUNCTION with 79 unknowns and NEC4 with 51 unknowns. Note that at 
resonance, both the conductance and susceptance calculations of JUNCTION 
approach the measurements better than the NEC4 calculations. This is especially true 
for the conductance (figures 3 (a) and (c)). It appears that JUNCTION would provide a 
slightly more accurate answer, but at the cost of more unknowns. 

3. SUMMARY 
The performance of JUNCTION and NEC4 has been explored. As expected, 

NEC4 is a mature wire antenna modeling code, that out performs JUNCTION in most 
respects for wire configurations. On the other hand, JUNCTION shows improved 
performance over NEC4 for wires mounted on simple structures (e.g., flat plates and 
boxes). At this stage in the development of JUNCTION, there is much improvement to 
be done to be competitive with NEC4. Improvements are necessary to make 
JUNCTION a viable competitor to NEC4 for general wire type problems. Many of these 
improvements have been identified. In addition the computational efficiency for wires 
and patches must be addressed. JUNCTION'S performance for structures is 
encouraging. The JUNCTION approach also shows promise for modeling dielectric 
and magnetic surfaces. In summary, JUNCTION shows much promise for a future 
improved capability to model shipboard antenna configurations. 
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Lance Koyama 
NCCOSC RDTE DIV 

Code 824 
SAN DIEGO, CA 92152-7304 

Abstract 

A methodology was desired for optimizing the Numerical Electromagnetics Code (NEC) 
on a given platform. The platform chosen was the Convex mini-supercomputer. The matrix 
fill and factor times were the gauges of optimizing for speed. The software tool for choosing 
where to optimize was the profiler that comes with the FORTRAN compiler. 

NEC2, NEC3, and NEC4 were evaluated. The test cases were models of 44, 300, 722, 
and 2286 segments. Three levels of built-in compiler optimizations were used. Additional 
optimizations were sought. The greatest speedup in runtime came with the use of UNPACK 
library routines specifically optimized for the Convex. 

INTRODUCTION 

This study gives a methodology for optimizing the NEC codes (or any method of 
moments code) for a given platform, in this case, a Convex mini-supercomputer. 

The Convex Computer Corporation mini-supercomputers have become very popular 
because of their high power for the dollar. The model used for this study was the Convex C240 
which is commonly classified as a mini-supercomputer. Its vector architecture makes it a 
supercomputer and it is smaller than a Cray, making it a mini. Its cogent features are as 
follows: 

• 4 processors - 50 MegaFLOPS each 
• Each processor includes scalar and vector processing units 
• Peak performance - 200 MegaFLOPS 
• LINPACK1000 benchmark: 162 MegaFLOPS 

(Cray Y-MP): 305 MegaFLOPS 
• Whetstone benchmark: 38 MIPS 

(Cray Y-MP): 26 MIPS 
• MULTIunits benchmark: 4900 

(Cray Y-MP): 6000 

Each processor has 
• 8 vector registers of 128 elements each 
• Each element (word) consists of 64 bits 
• There are 3 independent functional unit controllers: 

• Load and Store 
• Multiply and Divide 
• Add and Logical 
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SCOPE 

NEC runs were made on various combinations of the following parameters: 

Codes 
Name Number of Lines Number of Routines 
NEC2 8,734 81 
NEC3 9,780 99 
NEC4 16,039 207 

NEC2 was chosen for its complete documentation; NEC4, for being the latest and greatest and 
NEC3 to round out the family. 

Compiler Optimizations - None, Scalar, Vector, Parallel - 
There are three types of automatic optimizations that come with the FORTRAN compiler. 

The scalar optimization performs a great many types of both machine dependent and machine 
independent optimizations on the scalar level. The vector optimization seeks loops that are 
actually dealing with arrays. As much as possible, the entire loop is converted to vector 
operations. The parallel optimization operates only within individual routines. It tries to spread 
the processing among the four processors if it would be more efficient. 

In the following discussion, the optimizations are labeled as follows. 
Optimization  Types 
0 None 
1 Scalar 
2 Scalar + Vector 
3 Scalar + Vector + Parallel 

Models - 44 segment, 300 segment, 722 segment, 2286 segment - 
The 44 segment model is a one wavelength loop. The 300 segment model is a monopole 

on a ground plane. The 722 segment model is the US Navy's Spruance (DD-963) class 
destroyer segmented for up to 6 MHz problems. The 2286 segment model is the same ship 
segmented for 30 MHz problems. 

Information Gathered 

For each run, the following information was gathered: 
• Matrix fill, matrix factor, and total run-time 
• A profile of the run listing each routine and operation used and for each: 

• Percentage of total run-time used in calls to the routine or operation 
• The number of calls to the routine or operation 
• The time used in a call to the routine or operation 

For some of the runs, some additional information was gathered: the percent used of all 
the processors, the amount of memory used, the physical reads and writes, the number of page 
faults, and the number of page faults paged out to disk. 
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Manual Optimization 

Looking at the profiles of the runs, routines were chosen to be optimized beyond the 
automatic optimizations of the quite intelligent compiler. 

RESULTS 

Verification 
The impedance of an antenna on each of the models was used to verify that a run was 

valid. 

Profiles 
To gauge the performance of each run, the profiler that comes with the FORTRAN 

compiler was used. There is some overhead in its use as it performs its counts and timings as 
seen in the examples below for a 722 segment model. 

NEC3, optim.2, w/o profiler 
with profiler 

Fill 
106.943 
120.596 

Factor 
37.999 
32.316 

Total 
148.343 
157.349 

NEC4, optim.3, w/o profiler 
with profiler 

128.441 
155.841 

49.368 
45.500 

187.582 
213.442 

All times in the following data and discussion presume the use of the profiler.  You will see in 
the following profiles an item called "mcount".  This is one of the profiler overhead items. 

The following series of profiles shows the differences between NEC2, NEC3, and NEC4 
for a 722 segment model using compiler optimization 2 in all cases. The routines or functions 
that take up more than 5% of the total runtime are shown. 

NEC2 Fill Factor Total 
177.541 32.436 213.422 

%time cumsecs #call ms/call name 
15.7 34.84 521284 0.07 efld 
15.4 69.07 1021498 0.03 eksc 
15.2 102.82 1 33750.00 f actr 
14.7 135.38 4901342 0.01 gf 
9.8 157.13 21750ms mcount 
9.1 177.24 1021498 0.02 intx 
7.5 194.00 2042996 0.01 gx 
6.5 208.49 722 20.07 cmww 

NEC3 Fill Factor Total 
120.596 32.316 157.349 

%time cumsecs   #call ms/call name 
20.5 33.62       1 33620.00 factr 
17.1 61.58  887915 0.03 eksclr 
15.7 87.28   521284 0.05 efld 
11.5 106.19 18910ms mcount 
10.6 123.57     722 24.07 cmww 
5.5 132.50  1351794 0.01 mth$c exp 
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NEC4 Fill Factor Total 
146.313 32 .366    190.199 

%time cumsecs #call ms/call name 
17.1 33.82 286 118.25 factr 
14.9 63.24 887913 0.03 eksclr 
13.5 89.95 26710ms mcount 
10.8 111.23 1042568 0.02 efldsg 
8.6 128.22 722 23.53 cmww 

The following show the differences in profiles as the size of the model changes. (NEC4 
is used with optimization 3). 

300 segments Fill Factor Total 
23.873 4.436 30.287 

%time cumsecs #call ms/call name 
21.0 6.00 177310 0.03 eksclr 
20.9 11.96 596Sms mcount 
10.4 14.95 180000 0.02 efldsg 
9.0 17.52 300 8.60 cmww 
6.3 19.32 1 1800.00 factr 
5.8 20.98 544795 0.00 mth?c_div 

722 segments Fill Factor Total 
155.841 45.500 213.442 

%time  cumsecs #call ms/call name 
19.8    38.00 38000ms mcount 
15.5    67.62 887913 0.03 eksclr 
9.7    86.29 1042568 0.02 efldsg 
9.2   103.96 286 61.78 factr 
9.2   121.52 722 24.32 cmww 
5.0   131.03 3178604 0.00 mth$c_div 

2286 segments Fill Factor Total 
1437.447 5678.125 7220.752 

%time cumsecs #call ms/call name 
52.3 1747.24 756 2311.16 factr 
10.0 2082.34 335105ms mcount 
9.8 2410.93 9918973 0.03 eksclr 
5.6 2596.86 10451592 0.02 efldsg 
5.4 2776.95 2286 78.78 cmww 

2286 segments LINPACK routines 
Fill Factor Total 

1451.863 700.771 2304.245 

%time cumsecs #call ms/call name 
18.4 334.04 334040ms mcount 
18.3 665.41 9918973 0.03 eksclr 
10.6 858.13 10451592 0.02 efldsg 
10.4 1046.93 188800ms cgefa 
9.7 1223.06 2286 77.05 cmww 
5.3 1319.97 10451592 0.01 ekscsz 
5.0 1410.89 31597174 0.00 mth$c_div 

The last profile was of a run using LINPACK routines, discussed next. 
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Manual Optimization 
A widely available set of routines for solving linear equations, called UNPACK, was 

available specifically optimized for the Convex hardware. Two routines were chosen to replace 
the matrix factor and solve portions of the NEC codes. 

Function NEC routine  LINPACK routine 
Factor matrix factr cgefa 
Solve matrix solve cgesl 

In both cases, because of the way NEC stores matrices, the interaction matrix had to be 
transposed before and after the LINPACK routines were used. 

Next, routines high in the profile list were sought that could benefit from manipulation 
so that the compiler could vectorize them. In NEC2: efld, eksc, gf, intx, and test all had no 
loops. In NEC4: eksclr, efldsg, and ekscsz all had no loops. In both: cmww was already 
automatically 70% vectorized by the compiler. All other routines consumed less than 5% of the 
total runtime.  It was not considered worthwhile to continue the optimization effort. 

Runtimes 
The following lists the impedances and runtimes of the significant runs. 

Impedance Times   (seconds) 
Seaments NEC 

2 
ODtim 

2 
LinPack R 

100.6 
X 

-139.1 
FILL 

0.36 
FACTOR 

0.02 
TOTAL 

0.47 44 
44 4 3 100.3 -140.6 0.47 0.05 0.69 
44 4 3 yes 100.3 -140.6 0.47 0.01 0.66 

300 2 0 232.3 -36.4 9.54 19.28 29.86 
300 2 1 232.3 -36.4 9.20 12.97 22.98 
300 2 2 232.3 -36.4 10.23 2.36 13.30 
300 2 3 232.3 -36.4 10.63 4.39 15.80 
300 4 3 240.3 -37.1 23.87 4.44 30.29 
300 4 3 yes 240.3 -37.1 24.12 1.71 27.86 
722 2 0 20.3 -0.5 168.27 268.14 441.56 
722 2 1 20.3 -0.5 176.80 180.83 361.73 
722 2 2 20.3 -0.4 177.54 32.44 213.42 
722 2 2 yes 20.3 -0.4 176.06 22.08 202.21 
722 2 3 20.3 -0.4 179.58 45.46 228.81 
722 3 2 19.7 -2 120.60 32.32 157.35 
722 4 2 23 0.5 146.31 32.37 190.20 
722 4 3 23 0.5 155.84 45.50 213.44 
722 4 3 yes 23 0.5 157.37 22.18 193.51 

2286 4 3 34 20.8 1437.45 5678.13 7220.75 
2286 4 3 yes 34 20.8 1451.86 700.77 2304.25 

In matrix format 
FILL RUNTIMES (sec) 

Segments NEC Op tin 
0 

nizatio 
1 

1 

2 LinP 3 LinP 

44 2 
4 

0.36 
0.47 0.47 

300 2 
4 

10 9 10 11 
24 24 

722 2 
3 
4 

168 177 178                             176 
121 

146 

180 

156 1S7 

2286 4 1437 1452 
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FACTOR RUNTIMES (sec) 

Segments NEC Optir 
0 

nizatio 
1 2                       LinP 3                      LinP 

44 2 
4 

0.02 
0.05      0.01 

300 2 
4 

19 13 2 4 
4            2 

722 2 . 
3 
4 

268 181 32                      22 
32 

32 

45 

46          22 

2286 4 5678       701 

TOTAL RUNTIMES (sec) 
Segments NEC Optir 

0 
nizatio 

1 
n 

2                                 UnP 3                        UnP 

44 2 
4 

0.47 
0.69      0.66 

300 2 
4 

30 23 13 16 
30          28 

722 2 
3 
4 

442 362 213                             202 
157 

190 

229 

213        194 

2286 4 7221      2304 

Figures 1, 2, 3, 4, and 5 graphically show the trends in the data. 

CONCLUSIONS 

Just as important as the speed of the machine is the way the software utilizes its 
resources. For the case of the Convex computer used in this study, the automatic optimizations 
supplied with its FORTRAN compiler cut the time for a NEC run in half for a 722 segment 
model. 

Library routines optimized for a machine's hardware should be used whenever possible 
to replace existing code. Two routines especially appropriate for a method of moments code are 
the matrix factor and matrix solve routines from the LINPACK library. These had been 
optimized for the Convex hardware. For a 2,286 segment model, they cut the factor time by 
a factor of 8 resulting in an overall runtime improvement of a factor of 3. 
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722 Segment Model - (Optim. 2) 

Figure 

NEC Version 

1.  Runtime Variation with NEC Version Number 

722 Segment Model - NEC2 

Optimization 

Figure 2.  Runtime Variation with Optimization Level 

NEC4, Optimization 3 
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Figure 3.  Runtime Variation with Number of Segments 
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NEC4, Optimization 3 
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Figure 4.  Percentage of Time in Fill and Factor for Different Model Sizes 
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Figure 5.   Improvement by Using LINPACK Routines 

52 



SESSION 2 - "CANONICAL PROBLEMS WORKSHOP" 
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DEVELOPMENT OF A BANDLIMITED BASIS SET FOR THIN WIRE 
METHOD OF MOMENTS SCATTERING PROBLEMS 
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ABSTRACT: A method of moments formulation based on the cardinal series 
expansion for bandlimited signals is described. It is demonstrated that the induced 
current on wire scatterers tends to be spatially bandlimited. A thin wire code is 
described and results are presented which demonstrate that the code requires 
significantly fewer unknowns than an equivalent code with triangle basis functions 
to achieve similar accuracy. Extension of the approach to surface scattering is 
discussed. 

1.0 INTRODUCTION 

In applying the Method of Moments (MOM) solution to scattering problems, the primary 

limitation is the often excessive computation required for the solution of the resulting matrix 

equations. In order to reduce the matrix size in the MOM solution, one must find an efficient 

representation for the unknown function (usually the induced current) so that fewer unknowns are 

required to achieve sufficient accuracy. 

Recent work by Bucci and Franceschetti [1] has suggested that the scattered fields in the 

near zone are nearly spatially bandlimited ("quasibandlimited") and, therefore, may be efficiently 

represented according to the concepts of sampling theory. We claim that the induced currents on 

many targets share similar quasibandlimited properties. In this paper, we numerically demonstrate 

that the induced currents on finite wire scatterers are, in fact, quasibandlimited. We, furthermore, 

describe the use of a bandlimited current expansion basis set that provides an accurate current 

representation and tends to minimize the effect of residual representation error on the MOM 

solution. 

A similar approach has been applied recently by Herrmann [2] on 2-dimensional cylinder 

scattering problems. We will present the results of a 3-dimensional thin wire code. This code is 

shown to provide a 50% or better savings in matrix dimension for a given accuracy when compared 

to other traditional (e.g., pulse, triangle) implementations over a variety of wire geometries. 

The cost of this reduction in unknowns is an increase in matrix fill time per unknown due 

to the increased complexity of the basis set. However, the ultimate motivation for this approach 

is to reduce the computational cost of large 3-dimensional surface problems. On a surface, a factor 

of 2 savings in unknowns per wavelength translates to a factor of 4 savings in unknowns, a factor 
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of 16 in matrix elements to be filled, and a factor of 64 in matrix factor time (LU decomposition). 

Therefore, the potential computational savings are quite large, easily offsetting the increased fill 

time per unknown. 

2.0  SPATIAL BANDWIDTH OF INDUCED CURRENTS 

The spectrum of the current on an arbitrarily shaped wire scatterer cannot be determined 

analytically. We have empirically examined the spectrum (the Fourier transform of 1(1), where / 

represents distance along the wire) of the computed current for a variety of wire geometries. These 

results were computed using an "exact" (converged) MOM solution using the thin-wire formulation 

(current expanded on a filament, tested on a wire surface) [3] with linear (triangle) basis functions. 

The current spatial frequency spectrum versus incident angle of a finite straight wire is 

shown in Figure 1. As expected, at each angle of the spectrum consists primarily of three peaks 

centered at spatial radian frequencies k, -k, and -k cos 8, where k is the wavenumber of the 

incident plane wave and 8 is the incident angle. The width of the peaks is inversely proportional 

to the length of the wire. Almost all of the spectral energy is confined to a lowpass band slightly 

larger than k; the current is said to be "quasibandlimited". 

The quasibandlimited spectral characteristic is not limited to straight wires. For curved 

and bent wires of moderate to large electrical size, we have observed that the spectrum is 

essentially limited to a band slightly larger than k as in the straight wire case. Examples of 

currents and resulting spectra for a bent wire and a circular wire loop are shown in Figures 2 and 

3, respectively. 

One may observe that the spectral distribution for the straight wire lends itself to a 

"physical" expansion of the form 

I(z) = e,^005* + c2e-lb + c,eik \z\<LI2. 

This form may be utilized directly in MOM by using the three exponential terms as full-domain 

expansion functions and solving for the unknowns cl,c2,c3 [4]. However, such an approach is not 

readily generalized to arbitrary curved wires or surfaces. A robust approach relying only on the 

bandwidth properties and not the specific form is described in the next section. 
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3.0  SAMPLING THEORY AND EXPANSION FUNCTIONS 

In Section 2, we demonstrated that the current on a wire scatterer is essentially spatially 

bandlimited to a lowpass band, B, where B is only slightly larger than the frequency of the incident 

plane wave. Sampling theory states that a function whose spectrum is limited to the frequency 

band [-B,B] may be exactly represented by the cardinal series expansion 

sin(-^ (x-iAf)) , 

Assuming that the current is a quasibandlimited function, a good choice for the current expansion 

on a thin wire is seen to be 

AT                                                                                   I       sin(;r—) 
J(r) = Yj(kM)b(l-kM)      with basis function   £>(/) = sinc(—) = p- 

bl 

where Al is the sample increment along the wire length. Because the current is limited to a 

frequency only slightly higher than that of the illuminating field, we should be able to achieve a 

very good current representation and, consequently, an accurate MOM solution with marginally 

more than 2 basis functions per wavelength. This is contrary to the widely held belief that 6 to 

10 basis functions per wavelength are required for an accurate MOM solution. 

The sine basis functions have a number of advantageous properties in addition to 

representation accuracy. They are "quasilocalized" in that a basis function has a large impact 

mainly on the fields in its vicinity. This property, which is shared by subdomain basis functions 

such as pulses and triangles, tends to lead to well-conditioned impedance matrices. The nulls of 

the basis function occur at the neighboring sample points (nodes). Therefore, the current is easily 

forced to zero at the wire ends by omitting the basis functions that would be associated with the 

end nodes. To reduce matrix fill time, the sine functions may be truncated to a finite domain with 

small loss in accuracy, as described in Section 4. 
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4.0 MOM IMPLEMENTATION AND RESULTS 

The bandlimited (sine) basis function was incorporated into a thin wire code. Galerkin's 

approach is used for testing. The potential and testing integrals are performed numerically using 

5 rectangular rule integration points per subsection for the potentials and 3 points for testing. 

This integration procedure was found empirically to provide low error levels. The basis function 

is a truncated sine function that spans 2M subsections including the sine mainlobe and M-l 

sidelobes on each side. Typically M=2 is adequate, although the error due to truncation is 

somewhat reduced for larger M. Other sampling-theoretic basis functions with reduced truncation 

error could be used at the cost of a slight increase in sampling rate. Truncation error in the 

context of interpolating antenna fields is discussed in [5]. The results from the bandlimited basis 

function are compared to those from a triangle basis function code with all other relevant 

parameters constant. 

A comparison of 5X wire current solutions for linear (triangle) and truncated sine basis 

functions is shown in Figure 4. The resulting bistatic RCS comparison is shown in Figure 5. An 

RCS comparison for a 10X wire is shown in Figure 6. In this case, it is seen that the bandlimited 

basis functions with 2.5 samples per wavelength (M=4) perform approximately as well as the 

triangles with 7 samples per wavelength. Similar results have been obtained over a variety of 

incident angles and wire lengths. 

The current spectrum of a 5X circumference wire loop was shown previously in Figure 3 and 

seen to be quasibandlimited. The corresponding RCS results are displayed in Figure 7. Similar 

results were obtained at various aspects and for other bent and curved wires as well. 

5.0  CONCLUSIONS AND FUTURE INVESTIGATION 

The truncated sine basis functions have been shown to have the desirable properties of 

subdomain basis functions and to be more efficient than the triangle (linear) functions on wire 

scatterers in terms of unknowns required for a desired accuracy. We are currently developing a 

3-dimensional surface scattering code using bandlimited basis functions. Our preliminary results 

indicate that surface currents on smooth objects are quasibandlimited and that, even on objects 

with surface discontinuities, the bandlimited functions are more efficient than the widely used 

Rao-Wilton-Glisson (RWG) basis functions. Implementation issues being addressed include current 

expansion in parameter«: space, the bandwidth characteristics of typical target geometries, the use 

of non-uniform sampling, and fast algorithms for matrix filling. 
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Figure 1.  Current Spectrum versus Incident Angle for 3X Wire 
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Abstract 

A Moment Method (MM) code has been developed for the prediction of radiation and scattering 
from composite bodies of revolution. A composite body of revolution (BOR) is one composed of 
different homogeneous dielectric regions as well as, but not necessarily including, a conducting 
region. The various regions can be arranged in such a way that the BOR is inhomogeneous in 
both the radial and axial dimensions. The dielectric regions may be lossy, but the conducting 
regions are perfect electrical conductors. Radiation is from apertures mounted in a conducting 
region of the BOR. The integral equation formulation and the particular MM used is described 
briefly. Numerical results for scattering from a composite cylinder, compared to measurements, 
are presented. A practical antenna configuration consisting of a monopole mounted on a disc is 
described. The antenna is modeled with and without a radome. Numerical results of the antenna's 
input reflection and radiation pattern are compared to measurements. 

1    Introduction 

A Moment Method (MM) code has been developed for the prediction of radiation and scattering from 
composite bodies of revolution. A body of revolution (BOR) is a body obtained by rotating a two 
dimensional curve, referred to here as the generatrix, around an axis. In this paper a composite BOR 
is one composed of different homogeneous dielectric regions as well as, but not necessarily including, 
a conducting region. The dielectric regions may be lossy. The various regions can be arranged in such 
a way that the BOR is inhomogeneous in both the radial and axial dimensions. A generic example of 
such a BOR is shown in figure 1. 

The code is based on the formulation presented in [1], which is for plane wave scattering. The 
formulation has been extended to predict radiation from rotationally asymmetrical apertures (as well as 
rotationally symmetric apertures which is a special case) mounted in a conducting portion of the BOR. 
The code was partly described in a previous paper [2]. It could then only handle problems consisting 
of layered geometries but has since been extended to cope with problems involving intersections of 
three regions, as occur in figure 1. 

The code has been developed to investigate the suitability of the formulation to predicting radiation 
from antennas mounted on bodies that are penetrable by electromagnetic fields. Analytical solutions 
of such problems are in many cases impossible, thus a numerical approach is necessary. Examples 
of such problems are antennas covered by dielectric radomes, dielectrically clad low profile antennas, 
antennas mounted on composite vehicles and medical applications of electromagnetics. As the code 
was intended merely to demonstrate the suitability of the formulation it was specialized to problems 
involving BOR's to limit complexity and computational costs. The formulation does not carry this 
restriction, however, and a code based on it could be developed for more general bodies. 

In [2] numerical results were presented for problems involving spherical layered geometries which 
compared favorably with solutions obtained using spherical wave function expansions (SWFE). Results 
are presented here for problems involving region intersections. 
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free  spoce 

Figure 1: Cross section through the axis of rotation of a generic composite body of revo- 
lution. 

2    Formulation and Moment Method solution 

The formulation of the problem and the MM solution is summarized here, details are given in [1] and 
[2]. The latter reference also discusses the equivalence principle on which the formulation is based. 

In the formulation of the problem the boundary enclosing each dielectric region, including free 
space, is replaced by equivalent electric and magnetic surface currents. The electric and magnetic 
fields within each region are then expressed as a sum of excitation fields, that may exist within that 
region, and integro-differential operators of the equivalent surface currents. The equations for all of 
the regions are then coupled via the boundary conditions on each of the interfaces between the regions. 
On a dielectric-dielectric interface the tangential components of the fields are continuous, while on a 
dielectric-conductor interface the tangential electric field is zero (thus the magnetic surface currents 
are also zero). The resultant equations constitute a set of coupled Fredholm equations which can be 
solved for the equivalent surface currents. 

The MM solution is specialized for BOR's. The equivalent surface currents are expanded in terms 
of coefficients and expansion functions. Overlapping triangular expansion functions are used along 
the generatrix (in the plane of the generatrix) while modal expansion functions are used around the 
BOR. 

The generatrix of the BOR is approximated by a finite set of points. Each triangle function spans 
five of these points. The number of points used to describe the generatrix depends on the frequency 
of the excitation - the spacing of the points should be such that the distances between apexes of the 
triangle functions are less than or equal to a tenth of the wavelength. 

The modes of the modal expansion, which is a Fourier series expansion are orthogonal and thus 
uncoupled. Each mode can thus be solved independently from all the other modes. The number of 
modes, i. e. the number of terms in the Fourier series, required for a converged solution depends on 
the electrical size of the problem. However, a rotationally symmetric excitation, such as a rotationally 
symmetric aperture, only couples with the zero mode, thus only this mode need be solved in such a 
case; and an axially incident plane wave only couples with modes ±1, thus only these modes need be 
solved in this case. 

The Galerkin form of the MM solution is used, thus the testing functions are the complex conju- 
gate of the expansion functions (the symmetric inner product is used). The current expansions are 
substituted into the integral equations and the inner products are formed with the testing functions. 
This results in a set of matrix equations, one for each mode, which are then solved to yield the expan- 
sion coefficients. Computationally tractable formulas for the elements of the interaction matrix (often 
referred to as the impedance matrix) are given in [1]. The interaction matrix is symmetric thus only 
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Figure 2: Cross section through a aluminium-plexiglas cylinder. Dimensions are in mm. 

the lower triangle matrix need be computed and stored. 
For scattering problems plane wave excitations are used, while for radiation problems the excitation 

is an aperture in a conducting surface of the BOR. The algorithms used for incorporating apertures in 
the geometry and for computing the excitation array were taken from [3] and the theory is described 
in [4]. 

3 Scattering by a composite cylinder 

Several results for scattering by composite BOR's are given in [1] which have been successfully repeated 
by our code. One of these results, which we present here, is scattering by a conductor-dielectric 
cylinder. The geometry of the problem is shown in which figure 2. The dielectric is plexiglas and the 
conductor is aluminium. 

The backscatter cross section of the cylinder was computed at 3 GHz at which plexiglas has a 
relative permittivity of iT = 2.6-j'0.015 [5, Appendix B]. The computations required 4 circumferential 
modes with 68 unknown coefficients per mode. Results computed by our code are compared to 
measurements in figure 3. The measurements were taken from figure 8 of [1] where the measurement 
set up is also described. There is also good agreement between our result and the computed result in 
[1] although the latter computation ignored the loss. It appears that if the imaginary part of tr is less 
than a hundredth of the real part, it can be safely ignored in this case. 

The number of triangle functions used on the dielectric surface was such that the segment length 
is less than or equal to one tenth of the free space wavelength. It was found that if the segment 
length was reduced to one tenth or less of the wavelength in the dielectric, the computed result is 
unchanged. Thus, at least for a relative permittivity of this magnitude and this geometry, the free 
space wavelength can be used in determining the number of triangle functions required. 

4 Radiation from a monopole on a disc 

In order to verify the capabilities of the code in predicting radiation, a practical antenna configuration 
was designed. The configuration is shown in figure 4. It consists of a monopole mounted on a disc 
which is mounted on a larger disc. The monopole is merely the centre conductor of an SMA connector. 
To include a dielectric region the configuration was designed so that a radome can be press-fitted over 
the smaller disc. The radome used here is a 40 mm polyvinyl chloride (PVC) end cap. The discs are 
made of aluminium. 
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Figure 3: Computed and measured backscatter cross sections at 3 GHz for the conducting- 
dielectric cylinder. 
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Figure 5: Generatrix of the disc mounted monopole without the radome. 

The input reflection coefficient (5n) of the monopole was measured from 2 to 18 GHz with and 
without the radome. The radiation pattern was measured at 5.52 GHz, the first resonance of the 
monopole, for the two cases. 

Computations were first done without the radome. The generatrix for this case is shown in figure 5. 
The excitation is modeled as an aperture with a TEM field distribution corresponding to the coaxial 
feed. The input impedance at the aperture is computed by dividing the voltage across the aperture 
by the equivalent electric current on the aperture (the surface current is integrated around the BOR). 
The input reflection is computed using the input impedance in a 50 fl system. As the aperture is 
rotationally symmetric, only mode zero needs to be solved. 

For the Su computation the configuration was modeled with a discretization sufficiently fine for 
18 GHz. The result is compared with the measurement in figure 6. The curve labelled "MM/BOR(l)" 
computed with 1 triangle function on the aperture which resulted in 156 unknowns. The curve 
labeDed "MM/BOR(3)" was done with 3 triangle functions on the aperture, in order to model the \/p 
dependence of the aperture field more accurately, which resulted in 160 unknowns. 

The computed results predict the behavior of 5n quite well up to about 15 GHz. Using 3 triangle 
functions on the aperture gives only a slightly better result. The anomalies in the computed results 
at about 5.5, 7.7, 13.7 and 17 GHz are due to internal resonances supported by the closed conducting 
surface. For a conducting surface (on which there are no magnetic currents) the formulation is purely 

68 



-25H 1 H- 
ZOO       4.00 8.00    10:00   1200   14.00   iaoo   iaoo 

frequency [GH^ 

Figure 6: Input reflection coefficient of the disc mounted monopole. The computations 
were done with 1 and 3 triangle functions on the aperture. The minima in the measured 
result at 16.4 GHz is -43.42 dB. 

the EFIE. At frequencies at which internal resonances can occur the total current flowing on the 
surface of the structure is not uniquely determined by the EFIE and the excitation. The surface 
current due to the internal resonance influences the solution for the external problem. This is due to 
the discretization error - the error introduced when reducing the integral equations to a finite matrix 
equation. As an example one can consider the smaller disc on which the monopole is mounted. This 
disc has a radius of 20 mm and a length of 5 mm. The frequency of the dominant mode of a circular 
cavity with these dimensions can be calculated using equations in [5, pages 213-214] and is found to be 
5.74 GHz. This disc forms a slightly longer cavity with the larger disc which will reduce the resonance 
frequency of the dominant mode, thus explaining the anomaly at 5.5 GHz. The susceptibility of the 
MM solution of the EFIE is well documented in the literature [6, 7, 8]. 

The radiation pattern of the monopole without the radome at 5.52 GHz is compared to the mea- 
surement in figure 7. The computation was first done using the generatrix as in figure 5 using 88 
unknowns (sufficient discretization for up to 10 GHz). This result, the curve labelled "MM/BOR" in 
figure 7, agrees reasonably with the measurement in the range —80° <9< 80° but deviates somewhat 
outside of this. However, the position of the peak at ±170° was successfully predicted. Some of the 
deviation was believed to be due to interaction with the feed cable which was then modeled by adding 
a 4.1 mm diameter (the outside diameter of SMA cable) cylinder to the base of the model. The curve 
labelled "MM/BOR(c30)" in figure 7 is the computation for when this cylinder is 30 mm long. This 
computation required 56 triangle functions, resulting in 112 unknowns. It agrees very well with the 
measurement in the range —80° < 0 < 80° indicating that the cable influences the currents above 
the discs quite strongly. There is also an improvement in the computed result in the ranges ±80° 
to ±110°. The remaining deviations are probably due to interference with obstacles in the anechoic 
chamber, such as the antenna support. The addition of the cable to the numerical model does not 
influence the input reflection results. 

The input reflection coefficient of the monopole with the PVC radome was computed using two 
values for the relative permittivity of PVC. The first value was obtained from a table in [9, Appendix 
E] which is «r = 2.84 —J0.016 at 3 GHz (and 20° centigrade). However, it is uncertain whether this is 
the correct value to use foT the particular PVC used here. PVC comes in a variety of colours and the 
authors are not sure how this effects the dielectric properties. It was decided thus to measure a sample 
of the PVC using a waveguide measurement technique. The setup used is reliable in the frequency 
range of 8 to 12 GHz. At 10 GHz the value was measured as (T = 2.7. The measured magnitude of the 
imaginary part was of the order of the measurement error that can be expected using this technique 
- the technique is more suited to dielectrics with higher loss - it was thus ignored. 

The S11 computations using the two relative permittivity values are compared with the mea- 
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Figure 7: Normalized far field of the disc mounted monopole at 5.52 GHz. 
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Figure 8: Input reflection coefficient of the disc mounted monopole with radome.   The 
minima in the measured result at 16.64 GHz is -37.60 dB. 

surement in figure 8. The configuration was modeled using a sufficiently fine discretization for 
18 GHz which resulted in 430 unknowns. The curve labelled "MM/BOR(t)" is the result using 
€r = 2.84-j'0.016 and that marked "MM/BOR(m)" used eT = 2.7. The difference between the two er 

values has little effect on the result except at the higher frequencies. A loss of this small magnitude can 
also be neglected. Both computed curves predict the behavior of Su well below 14 GHz except for the 
minima at 7.5 GHz which is shifted slightly. The tT values used here are valid at the lower frequencies 
thus the deviation from the measured result at the higher frequencies can partly be explained by this. 
The anomalies due to internal resonances in the conductor are suppressed which is probably due to 
the antenna interacting with three different dielectric regions. 

The radiation pattern was computed using €r = 2.7 with and without the cable at 5.52 GHz. The 
results are compared to the measurement in figure 9. The improvement with the cable added is not 
as dramatic as the result for the monopole without the radome. 

5    Conclusions 

A MM code has been described which predicts radiation and scattering from composite BOR's. It has 
been demonstrated that the code can successfully predict scattering from composite BOR's. Further, 
the capability of the code to predicting radiation from practical antenna configurations has been 
demonstrated. 
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Figure 9: Normalized far field of the disc mounted monopole with radome at 5.52 GHz. 

To date, the code has only been applied to relatively lossless dielectrics with low relative per- 

mittivity. Problems involving materials with higher loss and higher relative permittivities are to be 

investigated. 
The formulation suffers from numerical problems at frequencies near to internal resonances sup- 

ported by a conducting region. Methods of avoiding this problem are being investigated. 
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Abstract- This paper describes the calculation of the time domain field scattered from a 
two-dimensional body due to an incident transient plane wave. The incident wave is band- 
limited with bandwidth Af and has a center frequency f0. The scattering body has 
dimensions on the order of a few wavelengths at the frequency f0. Return from bodies of 
this size is interesting because it can exhibit both strong local scattering (specular and edge 
diffraction) as well as strong resonant behavior. Scattering bodies considered here include 
a circular cylinder, a flat strip, and a rectangular cavity. The inverse fast Fourier transform 
is used to calculate the transient scattered field at discrete times from the steady state 
scattered field at discrete frequencies. The steady state scattered field is determined using 
the moment method. 

Introduction 
Engineers are often interested in calculating the transient received signal in radar 

systems. This interest may be due to a need to analyze the response of the radar system to 
a particular target (scattering object) or the interest may be in studying the transient 
scattering characteristics of a particular class of targets. This work was motivated by a 
desire to study the ability of a scattering center representation to model the transient 
return from structures with local as well as resonant scattering behavior. For this study, 
two-dimensional (2-D) conducting bodies in the upper resonance region were chosen 
because they are the simplest targets that demonstrate all of the desired scattering 
behavior. In this paper, calculation of the time domain field scattered from a two- 
dimensional body is described. A frequency domain moment method (MM) and inverse 
Fourier transform technique was chosen for these calculations because of its ability to treat 
arbitrary shaped targets and because of its accuracy. The disadvantages of this method are 
the long execution time required and the possibility of aliasing in the time domain. 

This paper begins with a section that outlines the calculation of the received signal 
for the general three-dimensional (3-D) target case. In this section the target impulse 
response, equivalent transmitted signal, and radar profile are defined. Although similar 
expressions are given in other places (references [1] and [2] for example) they are 
repeated here for clarity. The next section specializes the general expressions for the two- 
dimensional target case. This section also briefly describes the MM solution of the time- 

1 This work was supported by the MICOM Research, Development, and Engineering Center (Dr. C. Ray 
Smith) under the auspices of the U.S. Army Research Office Scientific Services Program administered by 
Battelle (Delivery Order 0182, Contract No. DAAL03-91-C-0034). 
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harmonic scattered fields and the use of the inverse Fourier transform to determine the 
envelope of the returned signal. The final section gives calculated results for a circular 
cylinder, a flat strip, and a rectangular cavity. 

The Radar Profile 
For a particular target the received signal is here referred to as the target 

signature. The target signature, g(t), represents some field, voltage, or current quantity in 
the radar receiver. If the target is stationary and has no moving parts the target signature is 
described by the following equation in which convolution is denoted by an asterisk (*): 

g(t) = aR(t)*ap(t)*h(t)*aP(t)*aT(t)*f(t). (1) 

In the expression above, h(t) is the target impulse response function, aT(t) is the impulse 
response of the transmitter and transmit antenna, aR (t) is the impulse response of the 
receiver and receive antenna, and f(t) is the transmitted signal. The signal f(t) represents 
some field, voltage, or current quantity in the radar transmitter. In (1), ap(t) accounts for 
propagation of the signal between the radar and the target and is taken to be 

S(t-R/c) 
R 

ap(t) = ^^ (2) 

where R is the range from the radar to the target, c is the speed of light and 8 is the Dirac 
delta function. Equation (2) can be rewritten using the commutative property of 
convolution to obtain the following: 

8(t) = |aT(t)*aR(trf(t-2R/c)|,h(t) p) 

where the total time delay is accounted for in f(t). The quantities in the curly brackets in 
(3) are assumed known and so it is convenient to combine them and define them as a 
single quantity. This quantity is here referred to as the equivalent transmitted signal, f (t). 

aT(t)*aR(t)*f(t-2R/c) 
R2 

f (t\ _ aTW    aRW    U1-     *^'W „■> 

Using the equivalent transmitted signal the target signature can be expressed as 

g(t) = f(t)*h(t). (5) 

The form of (3) above is useful because f (t) includes the effect of the receive antenna and 
receiver, the transmit antenna and transmitter, and the range to the target; while the target 
impulse response h(t) isolates the scattering characteristics of the target (note however 
that h(t) is also a function of the transmit and receive polarization). 
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The target impulse is easiest to define in terms of its Fourier transform, H(f), the 
target transfer function. 

H(f)= Jh(t)e-iMldt. (6) 

The value of H(f) at a particular frequency f can be determined by considering a time- 
harmonic plane-wave incident on the target and traveling in the direction of the unit vector 
k. The incident electric and magnetic fields written in phasor form (with e^** time 
variation assumed and suppressed) are 

Ei(r) = E0pe-j2,rfr£'c (7) 

and 
H,(r) = (E0/Ti0)(kxp)e-j2rfri;" (8) 

where E0 is the constant amplitude of the incident electric field, p in the unit polarization 
vector (here linear polarization is assumed for simplicity) and r|0 is the characteristic 
impedance of free space. The origin of the coordinate system used to define r is picked at 
a convenient point close to, inside, or on the target. For a monostatic radar system, the 
Fourier transform of the target impulse response is given by the expression 

H(f) = ES(-
Rk)-P[Re(***">] (9) 

where it is assumed that the polarization of the received antenna is matched to the 
polarization of the incident wave. The distance R from the origin to the receiving antenna 
is assumed to be electrically large so that the scattered electric field due to the target, Es, 
can be calculated using the standard far-field approximations. 

Because the Fourier transform of the equivalent transmitted signal is band-limited, 
it is only necessary to determine H(f) for frequencies in the pass band of F(f) in order to 
calculate g(t). To investigate the target signature any suitable band-limited function can be 
chosen for the equivalent transmitted signal. Here the Blackman window function [3] is 
used so that: 

F(f) = rect[(f-f0)/Af]jl+^cos[27t(f-f0)/Af]+^coS[43t(f-f0)/Af]j 
A2 A2 (10) 

+rect[(f + f0) / Af H1+—cos[27t (f+fc)/Af ]+—cos[4n: (f + f0 )/Af ] I 

where 
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f 1 for |xl < X 
rect(x) = |        ' '   /2 (11) 

[0 otherwise 

In (10), f0 is the center frequency and Af is the bandwidth. Because it is a band-limited 
function g(t) can be expressed in the form 

g(t) = i(t) cos(2itf0t) + q(t) sin(2jtf0t) (12) 

where i(t) and q(t) are the in-phase and quadrature portions of g(t). Papoulis [4] gives 
expressions for calculating i(t) and q(t). If the positive frequency portion of F(f) is 
symmetric about f0, these expressions can be manipulated into the following form: 

Af/2 

i(t) + jq(t)=   jF(f+f0)H-(f0-f)ej2,Iftdf (13) 
-Af/2 

where H*is the complex conjugate of H. 
Equation (12) can also be written in envelope and phase form. 

g(t) = p(t)cos{27if0t + tan-'[q(t)/i(t)]}. (14) 

Because it is a lowpass function, the envelope of g(t) is used to display the return signal 
rather than g(t) itself. The envelope of the target signature is here referred to as the radar 
profile and is denoted p(t). The radar profile is the magnitude of (13) and can be 
determined from the in-phase and quadrature portions of g(t) using the expression 

p(t) = Vi2(t) + q2(t). (15) 

In summary, the radar profile is calculated using equations (9), (10), (13), and (15). 

Two-Dimensional Targets 

A two-dimensional target is infinite in the axial direction (here considered to be the 
z direction) and has the same physical cross section in any plane cut which is orthogonal to 
the axis (any plane cut parallel to the x-y plane). The incoming wave in the 2-D case 
always travels on a ray that is orthogonal to the axis of the body, hence the direction of 
propagation is given by the expression k = p where p is the p directed unit vector (p is 
the distance from the z-axis in the cylindrical coordinate system). In the 2-D case, an 
incoming wave of arbitrary polarization can always be written as the sum of waves that are 
transverse electric (TE) and transverse magnetic (TM) to the axis of the target. For TM 
polarization the polarization vector is given by the expression p = z and for TE 
polarization by the expression p = zxp where z is the z directed unit vector. 

The equations outlining the calculation of the radar profile in the previous section 
are for the three-dimensional target case. Only the equation of the target transfer function 
must be modified for the 2-D case. For the 2-D case 

75 



H(f)=^[^«]. (16) 

The 2-D radar profile is calculated using Equations (10), (13), (15), and (16). Here 
the time harmonic far scattered electric field is calculated at discrete frequencies using a 2- 
D moment method code [5]. The MM program solves the combined field integral equation 
for closed bodies and the electric field integral equation for open bodies using pulse basis 
functions and point matching. The inverse Fourier transform in (13) is calculated using the 
fast inverse Fourier transform [6]. 

Results 
Figure 1 illustrates the envelope of the equivalent transmitted signal f (t). For this 

illustration and the calculations in this section the center frequency, f0, is 10 GHz and the 
bandwidth, Af, is 4 GHz. The center frequency was chosen arbitrarily; however, the 
bandwidth was chosen so that a time resolution of approximately 1 ns is achieved. 

The idea of a reference plane is useful in interpreting the radar profile. The 
reference plane passes through the origin and is orthogonal to k, the unit normal pointing 
in the direction of the incident wave. A local scatterer on the target will result in a peak in 
the radar profile at a time corresponding to twice the distance from the reference plane to 
the scatterer along a k directed path. 

Figure 2a illustrates a 1 m wide perfect electric conductor (PEC) strip with a TE 
polarized incident wave. The strip is at a 45 degree angle to the direction of the incident 
wave and the origin is 1 m from the center of the strip. The Figure 2b illustrates the radar 
profile of the PEC strip. The first two return pulses in Figure 2b are due to edge 
diffraction from the lower and upper edges of the strip. The latter pulses are due to waves 
traveling up and down the strip that are then diffracted at the upper or lower edge. 

Figure 3 a illustrates a 24 cm diameter PEC cylinder with a TE polarized incident 
wave. The center of the cylinder lies on the x = 0 plane and the origin is 1 m from the 
center of the cylinder. Figure 3b illustrates the radar profile of the PEC cylinder. The first 
return pulses in Figure 3b is due to the specular point on the front of the cylinder. The 
second return pulse is due to the creeping wave. 

Figure 4a illustrates a 45 cm by 10 cm rectangular cavity with a TM polarized 
incident wave. The center of the open face of the cavity is 1 m from the origin. Figure 4b 
illustrates the radar profile of the rectangular cavity. The calculations for Figure 4b were 
set up to achieve a 64 ns period to limit aliasing; however, only the first 32 ns are plotted. 
The first return pulse in Figure 4b is due to edge diffraction from the front edge of the 
cavity. The second return pulse is due to the wave which travels down the parallel-plate 
waveguide in the lowest order TM mode and is reflected from the back inside face of the 
cavity. The third return pulse appears to be due to a wave which travels down the 
waveguide in a higher order mode and is reflected from the back face of the cavity. The 
return after the third pulse cannot be classified as separate return pulses. This portion of 
the radar profile is the resonant response of the cavity. 
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Figure 1. Envelope of the equivalent transmitted signal versus time. 
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Figure 2a.       Illustration of a PEC strip with a TE polarized incident wave. 
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Figure 2b.       Radar profile of the PEC strip. 
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Figure 3b.       Radar profile of the PEC cylinder. 
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Figure 4a.       Illustration of a rectangular PEC cavity with a TM incident wave. 
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Figure 4b.       Radar profile of the rectangular cavity. 
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ABSTRACT 

This paper concerns the calculation and measurement of the radar cross-section 
(RCS) of conducting cylindrical structures with slots and circular apertures. The 
calculations are made using a moment method (MM) solution of the electric-field integral 
equation (EFIE). The measurements are made on 1/6 (approx.) scale models. Good 
agreement is shown between the measurements and the calculations. 

INTRODUCTION 

Many structures, such as airplanes, helicopters, and missiles, have some apertures 
and slots through which electromagnetic fields may leak in. The radar cross-section 
(RCS) of such structures is affected by these openings, and its study is of practical 
importance. 

Pathak and Burkholder [1] have analyzed the electromagnetic scattering of open- 
ended waveguide cavities using a hybrid combination of asymptotic and modal 
techniques. Ling, Lee, and Chou [2] have also done RCS analysis of open-ended 
waveguides using the waveguide modal approach and the shooting and bouncing ray 
(SBR) approach. In this paper, the RCS of conducting cylinders with various apertures 
and slots is computed by using a moment method (MM) solution of the electric-field 
integral equation (EFIE). The calculations are compared with results of measurements 
made on 1 /6 (approx.) scale models in the range 2-18 GHz. At the highest frequency the 
cylinders are about 5 wavelengths long and thus are not electrically small targets. 

Various modelling and measurement issues such as discretization, resonances, 
and gating are discussed. 

PROCEDURE 

Figure 1 shows schematically a generic cylinder used in this study. It is a perfectly 
conducting cylinder with a zero-thickness wall, and has one circular aperture on one end 
and three slots on the cylindrical wall. Note the overall dimensions of 0.25m in diameter 
and 0.50m in length. The frequency range of interest is 300 MHz to 3 GHz. 
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Figure 1.    The generic cylinder. 

Five cylinders with various combinations of aperture and slots (Figure 2) are 
studied. A plane wave (at different frequencies, orientations, and polarizations) is incident 
on the cylinder and the RCS is computed. 

Reference [3] describes a simple and efficient procedure for scattering by arbitrarily 
shaped bodies, using the moment method to solve the electric field integral equation. 
The object surface is modelled by using planar triangular patches. In JUNCTION [4], the 
EFIE approach is extended to analyze an arbitrary configuration of conducting wires and 
bodies. A modified version of JUNCTION is used here for the calculations. The 
mathematical model of the cylinders in our study is a triangulation of the wall into roughly 

iwt> 

Figure 2.    The five cylinders under study. 

Figure 3.    The triangulated patch model 
of the generic cylinder. 

82 



1500 patches with about 2500 edges. The triangulated-patch model of the generic 
cylinder of Figure 1 is shown in Figure 3. The core of the moment method solution is the 
creation and factorization of a 2500 x 2500 complex matrix. On a VAX 6420 equipped with 
a vector processor, the JUNCTION run takes about 2.5 hours per frequency. 

Because of the limitations of the measuring apparatus, the actual physical model 
on which the measurements are done is a scaled-down version, with the approximate 
dimensions of 43mm in diameter and 86mm in length, and a wall thickness of 0.89mm. 
A few of the JUNCTION runs were done on the full-size cylinder, while the rest were done 
on the scaled-down versions. For a proper comparison of RCS values of similar bodies 
differing by a scaling factor s , one must note that the corresponding frequencies are 
scaled by 1/s , and the RCS values are scaled by s2 , which in dBsm terms translates 
to ftCS(dBsm)2 = flCS(dBsm), + 20 log s . 

WALL THICKNESS 

While in the idealized mathematical model of the cylinder it is possible to have zero- 
thickness walls, in the physical model one must deal with the effect of the wall thickness. 
Although the metal sheet from which the model cylinders are made is only 0.89mm thick, 
the effect is still significant when compared to a slot width of 1.7mm in the scaled-down 
cylinders. The physical models actually have the following dimensions: 

external diameter = 44.45mm 
internal diameter = 42.67mm 
external length = 87.12mm 
internal length = 85.34mm. 

For the case of the closed cylinder, the dimensions to take are clearly the external 
ones. But for the case of the cylinders with apertures, the only reasonable choice is to 
take the average of the external and internal diameters as the diameter, and the average 
of the external and internal lengths as the length. In most of our simulations we actually 
use cylinders with the average diameter = VS>x (44.45+42.67) = 43.56mm, and the 
average length = V£x (87.12+85.34) = 86.23mm. Note that the "aspect ratio" of 
diameter::length is no longer exactly 1::2 as in the full-size 0.25m::0.50m cylinder, and a 
further averaging to adjust this minor discrepancy is necessary. Thus the scaling factor 
s is an overall average, taking wall thickness and aspect ratio into account. Henceforth 
we present the results in terms of the scaled-down cylinders. 

MEASUREMENTS 

The measurements presented in this paper are done in a 6m x 6m x 6m cubic 
anechoic chamber. Each of the target cylinders is mounted, in turn, on a slim, tapered 
styrofoam column on a Scientific Atlanta turntable at the centre of the chamber. The 
procedure of aligning the cylinders is a combination of the use of laser beam reflections 
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from the cylinders and visual sighting techniques, depending on the target orientation. 
The measurement set-up has a range of about 1.25m: see Figure 4a. A set of two Dalmo 
Victor dual-polarized quadridged horns, model A6100, is used: one to illuminate the 
targets and the other to receive the scattered field. This introduces a bistatic angle of 
about 8°, hence an error in the RCS. The error incurred, however, was assessed using 
the Numerical Electromagnetic Code (NEC) [5] by comparing the monostatic and the 
bistatic RCS on a wide variety of metallic and dielectric targets, and was found to be 
negligible for small metallic targets. 

Figure 4b illustrates the fully-automated RCS measurement set-up. An HP Series 
9000 Model 320 Instrument Controller is used for process control, data acquisition, and 

Transmit Horn 

-8° Target 
;sF=~l 

-125cm 

Figure 4a.    The geometry of the measurement set-up as seen from above. 

LASER 

Figure 4b.     Block diagram of the RCS measurement system. 
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processing. An HP 8510 or 8530 Network Analyzer System, with an HP 8511A Frequency 
Converter as the receiver front end, is used to determine the scattered field amplitude and 
phase in the 2-18 GHz frequency range. Time-gating, with a gate span of several 
nanoseconds, isolates the target response. The response of a reference sphere is 
measured as the difference at each frequency between the response of the sphere with 
the column and chamber together, and the response of the column and chamber alone. 
The response of the target (i.e. our cylinders) is measured in a similar way. The exact 
Mie series for the back-scattered field of the sphere [6], evaluated with the appropriate 
bistatic angle, is used to find a calibration factor for the system at each frequency. 

The scattered field values (amplitude and phase) are collected at 801 frequencies 
generated by an HP 83631A Synthesizer, and averaged over at least 32 measurements 
at each frequency. A Fourier transform gives the time response of the scattered field. 
A time-gate is then used to eliminate direct coupling between the horns at early times and 
unwanted room reflections at late times. The gate starts about 1.5 ns before the main 
time response. A proper choice of the "gate stop" ensures that the full target response 
is obtained, while excluding unwanted reflections. 

The range, bistatic angle, and gate stop relative to the target location were 1.28m, 
7.8°, and 4.5 ns, respectively, for the measurements of Figures 5, 6, and 9, and 1.20m, 
8.3°, and 6.5 ns for those of Figures 7 and 8. 

RESULTS 

Figure 5 shows the RCS versus frequency for a closed cylinder, the simplest of the 
five, when a plane wave is incident on it axially and transversally.   The average length 
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Figure 5.       RCS of a solid cylinder. 
Dashed curve = Measurement. Circles = JUNCTION. 
Vertical dashed line = A/5 simulation limit. 
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of the edges of the triangles in the mathematical model is about 5mm, whence by the 
one-fifth wavelength rule in EFIE/MM simulations, the results are reliable up to about 12 
GHz. This is what the vertical dashed lines in the graphs signify. The comparison 
between measurement (the dashed curves) and simulation (the circles) is very good. The 
one-fifth wavelength rule is a guideline for obtaining reliable currents at specific surface 

locations. For 'integrated quantities" 
over the whole structure, such as 
RCS and near-field, the guideline is 
sometimes more stringent than 
necessary, and that is why the comp- 
arison is also not bad above 12 GHz. 
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Figure 6 shows the RCS 
versus frequency for a cylinder with a 
circular aperture of diameter 17.02mm 
at one end, on which a y-polarized 
plane wave is incident. Again the 
match between simulation and 
measurement is very good, except on 
a small interval around 7 GHz. 

Figure 6.   RCS return of a cylinder with a 
circular aperture at one end. 
Dashed curve = Measurement. 
Circles = JUNCTION. 
Vertical dashed line = A/5 simulation limit 

Figure 7 shows the compar- 
ison for a cylinder with the same end- 
cap circular aperture and an equa- 
torial slot of width 1.57mm. The only 
discrepancies in the otherwise good 

match occur in the case of the axial pulse between 5.0 and 6.0 GHz and between 6.5 and 
7.5 GHz. We will discuss some possible causes of the mismatch in the next section. 
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Figure 7.        RCS of a cylinder with aperture and equatorial slot. 
Dashed curve = Measurement. Circles = JUNCTION. 
Vertical dashed line = A/5 simulation limit. 
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Figure 8 shows the comparison for a cylinder with a circular aperture and a 
longitudinal slot of width 1.78mm. Note the different polarization of the incident pulses 
for this cylinder. Again the only discrepancies (although to a lesser extent than in Figure 
7) occur between 5.0 and 6.0 GHz and between 6.5 and 7.5 GHz. 
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Figure 8.        RCS of a cylinder with aperture and longitudinal slot. 
Dashed curve = Measurement. Circles = JUNCTION. 
Vertical dashed line = A/5 simulation limit. 
[Note the different polarization of the incident pulses for this cylinder.] 

Figure 9 shows the comparison of the calculated and measured RCS for the 
(scaled-down) generic cylinder of Figure 1. Mismatches occur for the axial pulse between 
6.5 and 7.5 GHz, and for the transverse pulse between 6.5 and 8.5 GHz. 
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Figure 9.       RCS of the generic cylinder: with aperture and three slots. 
Dashed curve = Measurement. Circles = JUNCTION. 
Vertical dashed line = A/5 simulation limit. 
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DISCUSSION AND CONCLUSIONS 

We have made a comparison of the computed and measured RCS of conducting 
cylinders with aperture and slots and have shown the degree of agreement that we have 
been able to obtain. It is very good except for minor discrepancies at some frequencies. 

There are several possible causes of these discrepancies. The mismatch may be 
due to an inadequate "gating window" in the measurement process. It could be from 
problems with the EFIE-method near the internal resonant frequencies of the cylinders. 
A third reason could be the averaging of the cylindrical dimensions we use in 
approximating the 0.89mm-thick walls by ones with zero thickness. Another contribution 
to the mismatch may be that computations assume the mathematical models of the 
bodies to have infinite conductivity, while the metallic physical models have a large but 
nonetheless finite conductivity. The agreement may improve when some or all of these 
factors are taken into account. 
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Abstract 

This paper presents theoretical techniques and capabilities of the current 
OSU Reflector Antenna Computer Code. The previous OSU NEC-Reflector 
Antenna Code has been widely used in analysis of reflector antennas. It has 
the capability for both near-field and far-field computation for reflector anten- 
nas with paraboloidal surfaces. A key feature of the code is its capability for a 
general reflector rim shape. The theoretical approach for computing the fields 
of the reflector is based on a combination of Geometrical Theory of Diffraction 
(GTD) and Aperture Integration (AI) techniques. The advantages of using AI 
and GTD are discussed in this paper. Other capabilities of the code include 
modeling commonly used feed horn antennas, feed blockage and strut scatter- 
ing analysis. Recently, a different version of the code which contains many new 
options, such as Cassegrain and Gregorian dual reflectors and surface distor- 
tion analysis, have been developed internally at OSU. The overview of major 
techniques used in this computer code are presented in this paper. 

Introduction 
The NEC Reflector Antenna Code (NEC-REF) [1] which was developed under 

the support of the Navy has been widely used by government agencies, universities 
and industries for reflector antenna pattern analysis. It has the capability for both 
near-field and far-field computation for reflector antennas with paraboloidal surfaces. 
Subsequently, subreflectors with hyperbolic and elliptic surfaces were implemented 
in a different version of the computer code [2]. A key feature of the code is its 
capability for treating reflectors with general rim shapes. The theoretical approach 
used in the NEC Reflector Antenna Code for computing the fields of the reflector 
antenna is based on a combination of Geometrical Theory of Diffraction (GTD) and 
Aperture Integration (AI). Typically, AI is used to compute the main beam and 
near sidelobes for parabolic reflector and GTD is used to compute the wide-angle 
sidelobes. For subreflectors, GTD is used to compute the complete patterns. For 
near field calculations, GTD is sometimes used for the whole region. 

The computer code also provides options for calculating patterns of several com- 
monly used feed horn antennas.   With calculated feed patterns, or user input feed 
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patterns, the code can be used to compute complete 360° patterns for the subreflec- 
tor for a dual-reflector and then the main reflector. In addition, scattering due to 
blockage by the feed and its supporting struts can also be included in the analysis. 
In the following sections, the basic theoretical techniques for pattern analysis will be 
discussed. 

Aperture Integration 
The Aperture Integration method has been used for many years to compute the 

radiation patterns of reflector antennas. By this method the radiated field of a large 
aperture antenna can be determined from the aperture field distribution. Two effi- 
cient techniques have been employed in the NEC-REF Code to carry out the aperture 
integration which is performed over the portion of the aperture plane inside the re- 
flector rim. One is the large subaperture method and the other is the rotating grid 
method [3]. The subaperture can be electrically large, thus minimizing the computer 
storage and also the amount of numerical integration required. The major feature of 
the rotating grid method is that it reduces the two-dimensional aperture integration 
into two one-dimensional integrations [3]. Computational advantages on the order of 
10 to 100 in computer time ratios are frequently encountered because of the rotating 
grid feature. 

Geometrical Theory of Diffraction 
The GTD approach is used to analyze the wide-angle sidelobes and near field 

patterns for reflector antennas. A "segmented-rim GTD" method is implemented in 
the original NEC-REF Code. This method is similar to that of the diffraction by 
a flat plate in that the reflector rim is subdivided into segments and each segment 
is treated as an edge of a fiat plate which is tangent to the reflector surface. Edge 
diffracted field and corner diffracted field for each rim segment are then calculated. 
Consequently, general reflector rim shapes with corners and edges can be analyzed. 
Smooth rim shapes can also be modeled by segmentation. Accurate results can be 
obtained if the rim segments are sufficient small. However, for a large reflector, the 
segmented-rim GTD may require significant computation time since contributions 
from all the rim segments and corners have to be calculated. 

A different method, called multi-point GTD [4], has been implemented in the lat- 
est code. This approach applies numerical techniques to find the diffraction points 
and caustic distances. The edge diffracted field from each "true" diffraction point is 
then calculated numerically with the edge as part of the curved surface, instead of flat 
plate. Corner diffraction is added only if there is a "true corner" in the reflector rim. 
This method is much more efficient than the segmented-rim GTD approach. The dis- 
advantage of multi-point GTD is that it cannot be used when the field point is near 
or at the caustic of the reflector, because a very large number of diffraction points 
will be found. In this case, the multi-point GTD method must be supplemented by 
the segmented-rim GTD method. 
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Feed Pattern Calculation 
It is necessary to have feed pattern data in order to compute the reflector pat- 

terns. There are several ways to input feed pattern data in the code. One can 
input piece-wise feed pattern data (from either measured or calculated), or specify 
the feed pattern analytically, or specify the input feed horn geometry. Many types 
of feed antennas can be treated, such as circular waveguides, rectangular waveguides, 
rectangular pyramidal horns, and circular symmetric horns. For waveguide feeds, 
aperture integration is used to determine the feed patterns. For pyramidal horns, the 
GTD approach is used to calculate full 360° patterns. For circularly symmetric horns, 
the Aperture Integration (only for forward region) or Moment Method (for full 360°) 

is used. 

Feed/Subreflector Blockage Calculation 
The blockage effects caused by the feed or subreflector will reduce the gain and 

raise the sidelobe level of the reflector antenna. Blockage effects are analyzed by 
finding the incident fields on the blockage aperture and then calculating the forward 
scattered fields from this aperture by aperture integration of physical optics. The 
scattered fields are then subtracted from the main reflector pattern to determine the 
total fields. For a blockage aperture located within the projected geometrical optics 
(GO) region of the main reflector, only the geometrical optics field is necessary to 
be used as the incident field. On the other hand, if the blockage aperture is close to 
the edge of the projected GO region, or even outside the GO region, such as in offset 
reflector case, then the GO field is not sufficient and the edge diffracted field from 
the main reflector has to be included as the incident field [5]. 

Strut Scattering Calculation 
Similar to feed/subreflector blockage, feed supporting struts can also reduce the 

antenna gain and raise the sidelobe level. Perfectly conducting struts with circular or 
general cross sections can be calculated in the computer code. By the input locations 
of the struts, the scattered fields from the struts are calculated by multiplying the 
incident field on the strut with a strut diffraction coefficient. The diffraction coeffi- 
cients are determined from eigenfunction solutions of the scattering from a circular 
cylinder for struts with circular cross sections [6] and moment method solutions for 
struts with general cross sections [7]. 

Numerical Example 
In this section, calculated and measured results for a 8 ft diameter prime focus 

fed reflector antenna at 11.0 GHz are presented. The antenna geometry is shown 
in Figure 1. The measured and calculated (AI and Moment method) patterns of 
the conical horn feed for the reflector are shown in Figure 2.  Very good agreement 
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between the measured and moment method calculated patterns have been obtained. 
The AI result is not as accurate because the aperture of the horn antenna is only 
about 1.2 A in diameter where AI does not work as well. From these feed patterns, 
the main reflector patterns can be determined. The measured and calculated reflector 
E-plane patterns are shown in Figure 3. Note that both the feed and strut scattered 
fields have been included in the calculation. As can be seen good agreement has been 
obtained. Note that the two distinct lobes at 8 ~ ±75° are caused by the four struts 
which appear in both the measured and calculated patterns. 

Summary 
The basic techniques used in the OSU Reflector Antenna Code have been pre- 

sented in this paper. An example of an 8 ft diameter prime focus fed reflector an- 
tenna has been shown to validate the computer code. The agreement between the 
measured and calculated patterns indicates the accuracy of the code. The code also 
has the capabilities for analyzing reflector with array feeds [4], reflectors with imper- 
fect surface profiles [8], and also reflectors with flat plates present in their vicinity. 
However, higher order terms such as multiple bounces between the reflector and the 
feed/subreflector and its supporting structure are not included. These higher order 
terms may not be important in some cases but they can affect the performance of 
the reflector in other situations. Consequently, it may be necessary to consider these 
higher order interaction terms in the analysis in order to obtain more accurate results. 
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Figure 1. A prime focus fed reflector antenna. 
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Figure 2. Measured and calculated feed patterns. 
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Abstract 

The ability of SSF Uitrahigh Frequency (UHF) antennas to communicate with an Extravehicular 
Activity (EVA) astronaut one meter behind SSF major structures is analyzed. The two UHF antenna 

booms should be mounted separately so that one boom is on the port side and the other boom is on 
the starboard side - one above the truss and one below the truss. 

The scattering effects of the SSF structural elements on the Assembly/Contingency Subsystem 
(ACS) high gain steerable antenna patterns are analyzed. If a ± 15 degree cone is used to protect 

the ACS antenna boresight pattern, up to 1 dB of link budget will be required to compensate for the 
gain degradation in the ±4 degree boresight region. 

The scattering effects of a solar panel on the SSF Space-to-Ground Subsystem (SGS) steerable 
reflector antenna when the antenna is operated in the tracking (difference) mode are analyzed. It 

was shown that the solar panel scattering interference causes a shift in null position, a decrease in 
the depth of the null, as well as a decrease in the gain on the antenna difference mode patterns. 

The electric field strength around the S-band and Ku-band high gain antennas was computed. 
The regions in which the electric fields exceed the specified maximum permitted Radio Frequency 
(RF) exposure to the Extravehicular Mobility Unit (EMU) electronic equipment are identified. 

I. Introduction 

It is important to be able to predict antenna performance in the SSF environment since the antenna 
patterns will be distorted due to electromagnetic reflection and diffraction by SSF obstructions. To 
ensure the antennas can meet design requirements, the system design must take into account such 
antenna pattern distortions. The system should be able to compensate for the distortion of the 
antenna patterns, but the antennas must provide reasonable gain throughout their assigned areas of 
coverage for the systems to function effectively. 

Formerly, conventional antenna pattern prediction was based on full-scale mockup measurements. 
The large dimensions of a full-scale SSF mockup requires a large quiet zone for the illuminating field, 
which leads to high towers and, in conjunction with the far-field condition requirements, to a very 
large test range. 

Another approach in solving the measurement problem is using an electromagnetic modeling 
technique capable of computing both near-field and far-field patterns. A reliable analytical tool 
provides for the early detection of problems and helps to find the best solutions. Modern high-speed 
computers with large storage capacity have made possible the theoretical calculation of the radiation 
pattern of antennas mounted on complex structures such as space vehicles. The main advantage of 
this mathematical method is that, once the shape of the vehicle has been represented in the computer, 
the influence of different positions of the individual antennas can be easily evaluated. If the position 
of an antenna has been selected on the basis of a computer evaluation, the number of measurements 
can be cut down to a minimum. 

'This work was supported by NASA/Johnson Space Center under contract NAS9-17900. 
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Since the SSF is large in terms of wavelength, the Geometrical Theory of Diffraction (GTD) is the 

best candiate for the task. The scattering effects of the SSF structural elements on the SSF antenna 

patterns are analyzed using the GTD. 

II. Ultrahigh Frequency (UHF) Antenna 

The SSF UHF antennas are designed to provide a UHF communications link between the SSF, 

Extravehicular Activity (EVA) astronauts, and the Space Shuttle Orbiter (SSO). The ability of two 
UHF antennas to communicate with an EVA immediately behind SSF major structures is a concern. 

The purpose of this study is to determine the signal strength behind SSF major structures (solar 
panels, thermal radiators, trusses and modules). These regions are expected to have the most sig- 
nificant shadowing effects due to the large electrical size of the structures. The EVA directly behind 
these structures may be blocked from both antennas. The only signal present in these regions is 
due to the diffracted fields from edges and corners, which are usually very small compared to the 
direct and reflected fields. Since diffracted fields are the dominant terms in these regions, accurate 
computations are required. 

The computed signal strength in terms of the electric field behind SSF major structures is presented 
and compared to the signal strength corresponding to the 0 dB link margin. Based on the results 
obtained, in order to increase the signal strength and to minimize the major structure near field 
shadowing effects when the EVA is working behind SSF major structures, the two UHF antenna 
booms should be mounted separately so that one boom is on the port side and the other boom is on 
the starboard side - one above the truss and one below the truss. 

Analysis 

The Permanently Manned Configuration (PMC) phase at the Local Vertical Local Horizontal (LVLH) 
flight mode is considered for the SSF. In all cases, the solar panels are oriented at a — 0° and ß = 90° 
and the thermal radiators are at 0° (vertical in the X-Z plane). The antennas are pointed in the ±X 
axis direction. The Space Station structural elements are modeled as perfect electrical conductors. 

The SSF UHF antenna is a 1/2-turn quadrifilar helical antenna with a beamwidth of ±90° from 
boresight at -4 dBic. A frequency of 415 MHz was used in this analysis. The locations of the 
UHF antennas examined are referenced to the origin of the SSF coordinate system. Antenna boom 
locations, at (1.44, ± 15.15, ± 3.26) meters, are shown in Fig. 1. Three combinations for two 
antennas operating simultaneously were analyzed as follows : 

1. Case 1: Ant. 3+ pointed at +X and Ant. 3- pointed at -X 

2. Case 2: Ant. 3+ pointed at +X and Ant. 4- pointed at -X 

3. Case 3: Ant. 3+ pointed at +X and Ant. 2- pointed at -X 

In the near field, there are three orthogonal components of the electric field with arbitrary relative 
amplitudes and phases. The tip of the electric vector traces out an ellipse lying in an arbitrary plane. 
The average value of the square of the instantaneous electric field vector is 

\E(volts/meter)\2 = i (El + E2
y + £?) . 

The results presented in the following section are in dBV/M which is defined as 

E(dBV/M) = 101og[|£(t>o/is/meier)|2]. 

Based on the SSF UHF system to EVA link margin data, there is a 17.4 dB link margin for the 
UHF antenna with a -18 dBW EIRP at 100 M range. This corresponds to an electric field of-40.22 
dBV/M. The 0 dB link margin corresponds to an electric field of -57.62 dBV/M. 

Results 
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Fig. 1 shows the front view of the SSF and the antenna locations. Fig. 2 shows a top view of the 

SSF. Signal strength along the dashed lines was computed and presented in the Figs. 3-6. 
The critical regions where signal strengths fall below the 0 dB margin were identified as behind 

the solar panel, behind the thermal radiator and under the truss. 
The most critical regions, where the UHF communications link to the EVA may not be maintained 

for all three antenna combinations examined, are the regions immediately behind the solar panels. 

These significant shadow regions are due to the large electrical size of the solar panels and the long 

path of travel between the UHF antennas and the solar panels. 
In order to increase the signal strength and to minimize the major structure near field shadowing 

effects when the EVA astronaut is working behind SSF major structures, the two UHF antenna booms 
should be mounted separately so that one boom is on the port side and the other boom is on the 

starboard side - one above the truss and one below the truss (Ant. 3+ & 2-). 
Placement of the two antennas on opposite sides of the SSF reduces shadow regions and gives a 

more uniform distribution of radiated energy for both port and starboard sides of the SSF. 
In the near field, the polarization ellipse is not necessarily within the 6 — <j> plane of the outward 

traveling direction as in the far field case. In order to obtain the major component and to avoid the 
minor component of the polarization ellipse, EVA astronaut maneuvering may be required. 

III. ACS High Gain Steerable Antenna 

The S-band subsystem, also known as the ACS subsystem, is a bi-directional Radio Frequency (RF) 
link utilizing the Tracking and Data Relay Satellite System (TDRSS) S-band Single Access (SSA) 
service to receive audio, software uploads, and commands from the ground station, and to transmit 
audio and core element telemetry to the ground station. In addition, the S-band subsystem is utilized 

to support ground based tracking services for station orbit determination. 
The scattering effects of the SSF structural elements on the ACS high gain antenna patterns are 

analysized. The predicted antenna patterns were computed using the GTD technique. Based on the 
results accomplished, if a ± 15 degree cone is used to protect the ACS high gain antenna boresight 
pattern, up to 1 dB of link budget will be required to compensate for the gain degradation in the ±4 
degree boresight region due to multtpath interference from SSF structure. 

Analysis 

The ACS inboard antenna is located at x, y, z — —0.2, 20.72, —3.99 meters and the outboard antenna 

is located at x,y, z = 0.38,22.68,-3.99 meters referenced to the origin of the SSF coordinate system, 
as shown in Fig. 7. A frequency of 2.175 GHz was used. 

The major structure elements causing interference to the ACS high gain antenna patterns were 
identified as the RCS module, the starboard side thermal radiator and the starboard side solar panel. 

There are four different flight orientation modes that have been considered for SSF operation. 

These are the Local Vertical Local Horizontal (LVLH), Arrow, Gravity Gradient (GG), and Inverted 
Gravity Gradient (IGG) flight modes. 

Since the ACS high gain antenna has a directive pattern, it is not necessary to include all structural 
elements of the SSF in the model. Instead, only major components such as solar panels, RCS modules, 

and thermal radiators are modeled in this analysis. The SSF structure elements are modeled as perfect 
electrical conductors. 

The ACS antenna patterns with various antenna orientations for each major interfering structure 
are computed using the GTD technique. 

Results 

Fig. 8 shows a summary of the maximum antenna gain degradation in the ±4° antenna boresight 
region due to each major interfering structure. Also, shown in Table 1, is the maximum antenna gain 

degradation in the antenna ±4° boresight region with various size cone protection. 
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The results indicate that, if significant interference (more than 1 dB antenna gain loss) with ACS 
antenna patterns is to be avoided, the ACS steerable antenna 3 dB beamwidth must be kept clear of 

SSF structural blockage. This means that the ACS high gain antennas should not be pointed within 
15 degrees of obstructions. 

IV. SGS Steerable Reflector Antenna 

The Ku-band SGS subsystem is a single direction RF link utilizing the TDRSS Ku-band Single Access 

(KSA) service to transmit payload data and video to the ground station. 
The SSF is very large in terms of physical and electrical size and is a complex structure. The solar 

panels and the thermal radiators are rotated to maintain a preferential orientation with respect to 
the sun. The SGS antenna must track signals in the upper hemisphere and will encounter scattering 
interference from the SSF structure, especially the solar panels. 

The scattering effects of a solar panel on the SGS steerable reflector antenna when the antenna 
is operated in the tracking (difference) mode are analyzed. To verify the analytical model, measure- 
ments were performed on the far-field antenna test facility. Good agreement between computed and 
measured results was obtained. It was shown from computation and experiment that the solar panel 
scattering interference causes a shift in null position, a decrease in the depth of the null, as well as a 
decrease in the gain on the antenna difference mode patterns. 

Analysis 

A 4-foot reflector antenna operated at 13.5 GHz was used to simulate the SGS antenna. 
The solar panel is a very complex structure which consists of many small solar cells and connected 

copper wires. Such detailed modeling will require large amounts of computer resources in storage 
memory and computing time. 

To characterize the electromagnetic property of the solar array, two electromagnetic measurements 
of the solar array sample have been performed at Ku-band frequencies. 

The measured results from the backscattering measurements indicate that the solar array sample 
exhibited about 1 to 2 dB less signal return than a flat metal plate of the same area. The results 
from the insertion loss measurements show the transmission loss of the solar array sample to be 
approximately 20 dB. Both measurements indicate that the solar array is highly reflective at Ku-band. 
A conducting plate is assumed to be a reasonable electromagnetic model for the solar panel. 

To verify the analytical model, measurements were performed on the far-field antenna test facility. 

Results 

As shown in Figs. 9-12, the computed and measured antenna difference mode patterns show that 

the tracking lobes of the 4-foot reflector antenna operated at 13.5 GHz were significantly affected 
due to the blockage by the solar panel. It was illustrated by both computed and measured antenna 
difference mode patterns that the scattering effects from the solar panel significantly affect not only 
the near-in sidelobes but also the main lobes. 

When the antenna was blocked by the solar panel, the strong reflection from the solar panel 
increases the backlobes to a very high level. These backlobes raise Electromagnetic Compatibil- 
ity/Electromagnetic Interference (EMC/EMI) concerns to nearby equipment EVA. 

The conclusion observed and supported by both computed and measured results was that a gain 
loss in the main lobes and a shift in null position, as well as a decrease in the depth of the null, were 
observed for the antenna difference mode patterns with the solar panel penetrating into the projected 
antenna aperture cylinder. 

In order to avoid significant scattering interference, the SGS antenna projected aperture cylinder 
must be kept clear from any SSF structural blockage. This means that the SGS antenna projected 
aperture cylinder should not be pointed onto any SSF structure, otherwise significant antenna pattern 
degradation will occur. 
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V. Radiation Hazard Analysis 

Predicting the near field intensities (strengths) around an antenna and structures is important in 
assessing personnel and electronic equipment RF exposure hazards. 

There are serious concerns about the possible high levels of electric field strength produced by the 
SSF ACS S-band conical horn antenna and the SGS Ku-band reflector antenna. 

The regions in which the electric fields exceed the specified maximum permitted RF exposure 

to the Extravehicular Mobility Unit (EMU) electronic equipment and Extravehicular Activity (EVA) 
astronaut are identified for the SSF ACS antenna and the SGS antenna. 

ACS High Gain Steerable Antenna 

The near-field intensity levels around the SSF produced by the ACS high gain antenna are a concern 
because of the high radiated power. The electric field strength levels that an astronaut or sensitive 
electronic equipment might experience due to S-band antenna system operation are required to comply 
with specified RF radiation protection criterion. 

A maximum of 40 watts (16 dBW) radiated power at the antenna aperture was estimated for 
the S-band high gain steerable horn antenna. These estimates are based on the maximum estimated 
Effective Isotropie Radiated Power EIRP (29 dBW) and the specified minimum antenna gain (13 

dBic): 

RADIATED POWERmax(16 dBW)+ GAINantenna(13 dBic) = EIRPmax (29 dBW) 

The transmit frequency for the ACS antenna is 2.265 GHz. The maximum permitted RF exposure 

to the EMU has recently been recertified to 106 V/m peak at the S-band frequencies from a previous 

20 V/m peak. The regions in which the electric fields are greater than the maximum permitted RF 
exposure are identified in Fig. 13. Based on the results obtained, a cylindrical region of 1 meter 
diameter and 2.3 meters in length, extending outward from the antenna and centered about the 
boresight axis, should be avoided to reduce the risk associated with excessive S-band antenna RF 
exposure to the EMU electronic equipment. 

SGS Steerable Reflector Antenna 

A maximum of 10 watts (10 dBW) radiated power at the antenna aperture was estimated for the 

Ku-band SGS reflector antenna. These estimates are based on the maximum allowable EIRP (56 
dBW) and the specified minimum antenna gain (46 dBic): 

RADIATED POWERmax(10 dBW)+ GAII\lantenna(46 dBic) = EIRPmax (56 dBW) 

The transmit frequency for the Ku-band antenna is 15 GHz. The maximum permitted RF exposure 
to the EMU is 20 V/m peak (or 14.14 V/m rms) at the Ku-band frequencies. The regions in which 
the electric fields are greater than the maximum permitted RF exposure are identified in Fig. 14. 
Based on the results obtained, a cylindrical region of 2.5 meters diameter and 230 meters in length, 
extending outward from the antenna and centered about the boresight axis, should be avoided to 

protect the EMU electronic equipment and reduce the risk associated with the Ku-band antenna RF 
exposure. 
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Table 1: Maximum gain degradation in the an- 
tenna ±4° boresight region with various size cone 
protection. 

Cone RCS Module Thermal Radiator Solar Panel 
±0° 13.9 dB 10.1 dB 15.3 dB 
±5° 4.11 dB 4.3 dB 3.31 dB 
±10° 1.13 dB 1.13 dB 0.58 dB 
±15° 0.73 dB 0.81 dB 0.36 dB 
±20° 0.33 dB 0.35 dB 0.26 dB 
±25° 0.11 dB 0.21 dB 0.06 dB    ■ 
±30° 0.07 dB 0.09 dB 0.06 dB 

Starboard Solar Pane Port Solar Panel 
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Figure 1:    Front view of the Space Station.     Signal 
strength along the dashed lines was computed. 
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Figure 2: Top view of the Space Station. Signal strength 
along the dashed lines was computed. 

Figure 3: Signal strength along a line (x=0 m y=41 m 

-40 m < z < 40 m) at 1 meter behind the starboard side 
solar panel, outboard of panel. 
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Figure 4: Signal strength along a line (x=0 m, 
7 m < y < 27 m, z=3 m) at 1 meter below the 
starboard side truss. 
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Figure 5:   Signal strength along a line (-25 m 
< x < -5 m, y=15.6 m, z=0 m) at 1 meter from 
the starboard side thermal radiator along line (A), 

outboard of the radiator. 
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Figure 6: Signal strength along a line (-20 m < x 
< 10 m, y=6.5 m, z=4.5 m) at 1 meter from the 
starboard side module, outboard of the module. 
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Figure 7: The proposed ACS antenna locations. 

Figure 8: Maximum antenna gain degradation 
in the ±4° antenna boresight region due to each 

major interfering structure. 
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Figure 9: Computed difference pattern for the 4- 

foot reflector with the solar panel penetrating 1 
foot into the projected aperture cylinder. 
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Figure 11: Computed difference pattern for the 
4-foot reflector with the solar panel penetrating 2 
feet into the projected aperture cylinder. 
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Figure 10: Measured difference pattern for the 
4-foot reflector with the solar panel penetrating 1 
foot into the projected aperture cylinder. 
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Figure 12: Measured difference pattern for the 
4-foot reflector with the solar panel penetrating 2 
feet into the projected aperture cylinder. 

Figure 13: The electric field intensities produced 
by the ACS high gain antenna with a maximum 
of 40 watts radiated power. 

Figure 14: The electric field intensity produced 
by the SGS reflector antenna with a maximum of 
10 watts radiated power. 
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Abstract 

The NEC Reflector Antenna Code incorporate a rather flexible approach 
called segmented rim GTD for calculating the wide-angle sidelobes and near 
zone patterns of reflector with general rim shapes. One purpose of this paper 
is to describe an approach called multi-point GTD which has almost as much 
flexibility as the segmented rim GTD approach but is typically 10-20 times 
more efficient. Another purpose is to describe an approach called the extended 
aperture integration (AIE). The AIE method adds the diffracted fields from 
the reflector rim to the Geometrical Optics fields in the aperture plane. The 
AIE is more accurate than conventional aperture integration, especially for 
offset reflectors. More importantly, the AIE is useful for modeling scattering 
by structures within or near the projected aperture of the reflector. 

Introduction 
The NEC Reflector Antenna Code incorporates a rather flexible approach which 

uses GTD or what has become known as UTD (Uniform Geometrical Theory of 
Diffraction) [1] for calculating the wide-angle sidelobes and near zone patterns of 
reflectors with general rim shapes. By this approach, which we call segmented rim 
GTD, the reflector rim is subdivided into many straight segments and corner diffrac- 
tion is used to calculate the contributions from each of the rim segments. One purpose 
of this paper is to describe a new approach called multi-point GTD which has almost 
as much flexibility as the segmented rim GTD approach but is typically 10-20 times 
more efficient. 

Another purpose is to describe an approach called the Extended Aperture In- 
tegration (AIE). The AIE is more accurate than conventional aperture integration, 
especially for offset reflectors. More importantly, the AIE is useful for modeling scat- 
tering by structures within or near the projected aperture of the reflector. 
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The validity of the AIE methods are demonstrated by comparing results with 
those from the segmented rim GTD method. The capability of the AIE method for 
modeling scatterers is illustrated by an example of an offset reflector in which the 
feed support structures is located outside of the projected aperture of the reflector. 

Segmented Rim GTD 
The advantage of the segmented rim GTD which is used in the NEC-REF Code 

[2, 3] is that it can treat rather general rim shapes. An example of a reflector with a 
projected rim shape which is rectangular is shown in Figure 1. Note that the result- 
ing rim is curved in three-dimensions. Since the corner diffraction solution [4] for a 
straight edge is used, the curved rim needs to be subdivided into many segments to 
achieve a good piece-wise fit to the 3-D rim. Similarly, many segments are needed to 
model a circular rim shape, at least 36, even for small reflector diameters. Thus, the 
segmented rim GTD is rather time-consuming because of the large number of corner 
diffraction contributions. 

Multi-Point GTD 
This approach, which we have designated multi-point GTD, combines the flexi- 

bility of the segmented rim GTD with the high efficiency of the basic analytic GTD 
approach. With the latter approach, the diffracted field contributions are determined 
for reflector rim shapes that can be specified analytically. In the frequent case of 
circular rim shapes, the locations of the two diffraction points are easily determined. 

With the multi-point GTD approach [5], the reflector rim geometry is specified 
in the same way as with the segmented rim GTD approach. However, instead of 
summing the corner diffraction contribution from each segment, the edge diffraction 
points and true corner points, if any, are determined by a numerical search. Numerical 
approaches are also used to calculate the caustic distance used in the GTD calculation 
by determining the "spreading" or angle between two closely spaced diffracted rays. 
Then the contributions from the edge diffraction rays and the corner diffraction rays 
are summed as indicated by Figure 2a. In some cases, these will be more than two 
edge diffracted rays as in the near zone case of a circular reflector shown in Figure 
2b. 

The multi-point GTD was tested for both far zone and near zone calculations and 
for circular, elliptical and rectangular rim shapes. The multi-point GTD and the seg- 
mented rim GTD gave essentially the same results. The multi-point GTD was found 
to be typically 10-20 times faster. This improvement in computational efficiency per- 
mits practical computations with the AIE method described in the following section. 

Extended Aperture Integration 
The Extended Aperture Integration (AIE) method is based on adding the diffracted 

fields from the reflector rim to the aperture fields as shown in Figure 3a. The multi- 

106 



point GTD is used to improve the efficiency of the near field calculations. Since 
the diffracted fields contribute significantly outside the projected aperture, the inte- 
grating aperture must be extended as shown in Figure 3b. In theory, the aperture 
integration should extend to infinity. However, it was found that the aperture fields 
beyond the stationary phase point do not contribute much to the integral. The addi- 
tion of the diffracted fields yields more accurate aperture fields although they are still 
not the true fields because multiple diffraction terms are not included. Note that the 
extended aperture plane should be located a few wavelengths in front of the original 
reflector aperture plane in order to reduce the double diffraction effect. This distance 
(DZ) should not be too long; otherwise, the new aperture needs to be extended a lot 
to cover the stationary phase point. 

The offset reflector example used by Chu and Turrin [6] was chosen to demonstrate 
the AIE technique. The position and size of the extended aperture used for the AIE 
are shown in Figure 4. The far zone pattern in the (f> — 0° (horizontal) and 90° 
(vertical) planes as calculated by the AIE, GTD and AIC are shown in Figure 5. The 
AIC and GTD sidelobes overlap well for the <j> = 0° pattern but do not overlap for 
tj> = 90° pattern. It can be seen that the AIC is not adequate for the <ß = 90° plane in 
this case. On the other hand, the AIE results agree well with AIC in the main beam 
region and with GTD in the wider angle sidelobes. 

The AIE approach provides good insight into the limitation of conventional aper- 
ture integration. However, the well-known approach of integrating the currents on the 
reflector surface or surface current method overcomes this limitation. Consequently, 
the AIE method is more useful for modeling obstacles in or near the reflector aperture 
as discussed in the next section. 

Modeling of Aperture Blockage 
One of the most common types of aperture blockage is caused by the feed in 

a center-fed reflector. In this case the feed blockage area is usually small and its 
illumination can be treated as uniform. Consequently, the forward scattering by a 
typical feed can be approximated as that of a flat plate with either a circular or 
rectangular shape. The scattered field can then be determined by simple analytic 
formula. The scattered field is then subtracted from the reflector fields, as is done in 
the NEC Reflector Code [2]. 

This simple feed blockage model cannot be used for offset reflectors because the 
feed and its supporting structure is usually outside or near the edge of the projected 
geometrical optics (GO) aperture of the reflector. Thus, the feed structure is il- 
luminated by a non-uniform aperture field which includes a strong diffracted field 
component. The aperture field illumination of the feed structure consists entirely of 
diffracted fields for structures located entirely outside the projected aperture. In this 
case the simple feed blockage model predicts zero scattering, when, in fact, there will 
be some. 
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The AIE method provides an approach for modeling the feed scattering effects 
in offset reflectors, as well as other obstacles near reflector apertures. One example 
is the pie-shaped reflector shown in Figure 6a. The feed and its support mast are 
located outside of the projected GO aperture. With the AIE approach, we model 
the feed and mast by a flat plate located on the aperture plane. The rim of the flat 
plate is determined by the outline of the feed and mast projected onto the aperture 
plane as shown in Figure 6b. The fields incident on this equivalent plate area are 
calculated by using the multi-point GTD. These incident fields are integrated by the 
AIE approach to determine the forward scattered fields as shown in Figure 7a. The 
scattered fields are then subtracted from the reflector fields, given in Figure 7b, to 
determine the total reflector pattern as shown in Figure 7c. The measured pattern is 
shown in Figure 7d. Comparing Figures 7b, 7c and 7d, it is found that the agreement 
between calculated and measured patterns for —10° < 8 < 0° is improved after the 
feed scattering effect is included. The differences for 0° < 8 < 10° are probably due 
to the fact that reflections from the feed mast are not modeled in the calculation. 
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Introduction 
For more than twenty years Government and commercial agencies have been using a small 

number of generally available, general purpose computer programs to characterize the 
electromagnetic (EM) phenomena associated with radiating and scattering systems. These include 
the Numerical Electromagnetic Code (NEC), the Basic Scattering Code (BSC), and the General 
Electromagnetic Model for the Analysis of Complex Systems (GEMACS). Each of these codes 
has undergone evolution and revolution during its life in order to incorporate theoretical 
developments in electromagnetics sciences and to provide some measure of capability to treat new 
technology being incorporated into the DoD's inventory (e.g., composite materials, high 
performance phased arrays). 

Nonetheless, in spite of the continued enhancements of these tools each of them is 
hampered by one common characteristic which precludes the possibility of endless evolution—an 
initial development that occurred at a time when hardware, software, and computational 
electromagnetics (CEM) technologies were just beginning to develop into the powerful forms that 
exist today. This is not an indictment of the utility of the codes or a criticism of their developers. 
It is simply a conclusion based on reflection of the genesis, history, and foreseeable future of 
CEM. 

This paper briefly examines the limitations of the more commonly available tools and just 
as briefly discusses the driving forces which determine the requirements of future CEM tools. The 
majority of the paper is devoted to a description of a CEM environment which will provide EM 
analysts and system designers with an integrated set of tools and procedures to design and develop 
the complex systems and C3I platforms of the 21st century. 

Necessary Characteristics 
An example C3I system of the future is a surveillance system whose function is to detect, 

track, and identify a target with an extremely small radar cross section flying in a high clutter 
environment. The antenna is a high performance, adaptive phased array whose far-field pattern 
has a narrow main beam, ultralow sidelobe levels, and is well behaved as a function of scan angle. 
While the technology exists to design such an antenna, the difficult task is its fabrication to the 
tolerances required to maintain precise phase relationships. The nearly impossible task is to 
maintain the desired far-field beam pattern when the phased array is mounted on the airframe, 
which is a complex structure in terms of shape and material make-up. Other factors of 
surveillance system design will also impact the design of the antenna. In addition, the mission 
and theater of operations will also be driving forces which influence the required performance and 
characteristics of the antenna. 

This example and many others like it provide the foundation for the principal factors 
which underlie the design and development of the next generation EM modeling and simulation 
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environment for systems (EMSES). Insight and direction for EMSES will also be derived from 
the body of experience gained in the development, use, maintenance, and enhancement of the 
current widely used system-level CEM codes. These include as a minimum the following: 

• Ability to specify geometrical detail to a high degree of resolution 
• Efficient interface with commonly used geometry databases 
• Ability to analyze thousands of radiating elements with complex excitation schemes 
• Hybridization of numerous CEM formulations 
• Extensive graphical visualization options for data input and data output 
• Numerous opportunities and flexibility for user intervention, as well as the computer 

generation of a system-level analysis scheme which can be selectively modified by 
the analyst 

• "Low noise" computational processes (i.e., 70 dB dynamic calculation range) 
• Well documented computer programs which are highly transportable across classes 

of computer platforms (e.g., massively parallel processors, workstations and networks 
of workstations) 

• Extreme modularity to facilitate the maintenance of the code and the incorporation of 
new EM and computational technology advances 

• Flexible database structures and query schemes to generate, maintain, and access the 
numerous geometric and EM profiles of the system 

The CEM tools of today possess few of these characteristics. They each began their initial 
development during the 1970-1975 time period. It is to their credit that they have been able to 
undergo numerous major revisions and enhancements during the past twenty years without serious 
impact to the long-time users of the codes. However, close examination will show that despite 
the best efforts to reduce and avoid them there still exist numerous twistings and turnings in the 
program flow, extraneous lines of code and unused variables, and other signs of code revisions 
which increase the effort required for maintenance, debug, and enhancement, increase the 
opportunity for error in calculations, and inhibit transportability. 

Hybridization schemes are limited, as are the resolution of the modeling elements and the 
ability to characterize the electrical properties of the platform and antenna geometry and materials. 
Some graphics-based geometry generation and data input tools exist, and there is a move to 
interface these processors with one or more airframe database languages (e.g., IGES). However, 
these are generally neither extensive enough nor widespread in a consistent, standardized format. 

Similar comments, both positive and negative, can be made regarding each of the 
characteristics specified in the preceding list. It is significant that each of these is recognized as 
an element which must be addressed when one considers CEM technology development. What 
must be also recognized and addressed is the lack of coherence and consistency with which the 
work in CEM tool development is being pursued. 

The tools that are now being extensively used are powerful and have been adequate to 
characterize systems to the level required in the past. However, recent experience with the codes 
has shown them to be inadequate and inefficient to accomplish the types of analysis required by 
the high performance systems now in the concept stage or in the early design stages of their life 
cycles. These tools are also powerful from one other perspective. They and the experience 
associated with their life cycles provide vital data which can inform the community in the design 
and development of the next generation of tools and the broader, over-arching concepts of the EM 
modeling and simulation environment. 
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It is the opinion of this author and the underlying thesis of this paper that it is now time 
and necessary to design and develop a new generation of CEM tools which together form an 
integrated and consistent environment in which the EM analyst and system designer can operate 
with efficiency, effectiveness, accuracy, and flexibility. 

The Electromagnetic Modeling and Simulations Environment for Systems (EMSES) 
A first fundamental division of the environment based on functions or types of operations 

results in three major, interrelated categories: 
• Input processing; such as model development and specification of ranges of 

parameters (e.g., frequencies, scan angles) 
• The computational engine 
• Output processing; such as data reduction and interpretation, and database generation 

and modification 

Input Processing 
The input processing phase is critical to the accomplishment of the analysis. It must be 

carefully designed to provide a great deal of flexibility and visualization for the analyst, interface 
with numerous geometrical and EM databases, encompass all the modeling elements associated 
with the various CEM formulations available within the computational engine, and incorporate 
knowledge-based rules to support the analyst's effort to efficiently develop an accurate model. 

The primary function of the input processor is EM model development. Its input is the 
physical and electrical parameters associated with the system being analyzed. It must account for 
the shape of the structure; the various materials out of which the structure is fabricated; and the 
location, shape, and constitutive parameters of the apertures which exist on the surface of the 
structure. 

The most efficient and accurate method of obtaining the required data is for the input 
processor to access the CAD/CAM database that is used in the manufacture of the system. Since 
each manufacturer has its own way of storing the data, the input processor will need to have 
available several distinct translators, each of which can interface with a particular database. The 
translator will then transform the data into the proper format, units, and sequence which the input 
processor expects to see. The user will control which part or parts of the structure are to be 
accessed and treated by the input processor. 

One preliminary task that must be pursued is to query each manufacturer to determine the 
characteristics of the databases in use. What types of data are collected? In what format is the 
data stored? What are the units of the various physical and electrical quantities associated with 
the system? These and many other questions need to be answered. 

Another early task is the initial design of the input processor. How will the system data 
be stored in order to expedite the processing that will be performed by later stages of the input 
processor? How will geometry characteristics affect this storage? What CEM formulations will 
be incorporated into the computational engine, and what are the modeling requirements for each 
formulation? 

Upon completion of these two tasks, one a data collection and collation and the other a 
program design process, the individual translators can be designed, developed, and tested. They 
each need to be flexible so that they can be easily transported across platforms and easily modified 
to accommodate changes in the manufacturer database and/or the input processor program. Since 
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it is not anticipated that the translation processes will be time-intensive, the design of the 
translators can tuned for flexibility at the sacrifice of computational speed. 

A logical platform for execution of the input processing function is the UNIX-based high 
performance workstation, using X-Windows. This choice is based on the growing proliferation 
of such machines, their ever-increasing power, and the transportability of code across 
manufacturers and models. In addition, these machines can execute the expert/knowledge-based 
systems, such as Prolog, CLEPS, and the Gensym G2. The initial stages of the input processor 
will obtain data from the appropriate translator. They will execute any final data preparation 
which is necessary before being operated on by the knowledge-based program. 

The heart of the input processor, the knowledge-based engine, will accept the data from 
the initial stages of the input processor, display it in a format chosen by the analyst, and develop 
an initial EM model for the system. The design of the processor must provide several tools in 
order to facilitate analyst visualization. Obvious options include extensive use of color to 
emphasize or separate elements of the geometry depending on some chosen parameter (e.g., 
conductivity, aperture); the use of layers (e.g., to separate and manipulate antenna position on an 
aircraft); and the use of zoom boxes to provide an expanded view of selected areas of the model. 

Another option that must be incorporated into the visualization capability is the ability to 
make notations on the screen. These will aid identification at a later date, or be useful to analysts 
other than the person originally working with the model. The analyst would have the opportunity 
to display or hide these notations. Furthermore, they would be stored with the model, although 
they would not become part of the input data stream for the computational engine. 

A versatile print capability must also be available to the analyst. Various levels of 
resolution would be selectable (e.g., draft mode, screen print, 300 dots per inch). The user will 
have the ability to select blocks, layers, or colors of the model to print. The screen notations 
would be printed or suppressed as requested by the analyst. 

An extensive capability for dialogue with the analyst is an essential element of the design 
of the input processor. It will make use of menus and allow for both textual and graphical 
responses from the user. Information required by the knowledge-based processor includes the 
specification of the system to be analyzed (the processor will determine the database format), 
frequency or frequencies of interest, excitations (both incident and antenna), scan angles with 
respect to the array boresight, and observables of interest and parameters regarding their collection 
(e.g., far-field patterns over some ranges of theta and phi spatial angles, or field distribution over 
some volume within the structure). 

Using the database and user-provided data the processor will then develop an initial EM 
model of the system. The model will generally be made up of numerous types of modeling 
elements, each of which is associated with one of the many CEM formulations available in the 
computational engine. Typical element types include: 

• MOM wires, patches, loads, excitations 
• UTD cylinders, endcaps, plates, cone frustums, apertures, materials, excitations 
• FD cells, loads, wires, apertures, excitations 
• PO and PTD flat and curved triangular facets 

The EM model derived by the knowledge-based input processor will be graphically 
displayed for review and modification by the analyst. Through the use of the various tools 
available (e.g., zoom boxes, colons) the user may focus on individual sections of the model and 
modify the model to include a finer grid structure in an area of interest or the use of a more 
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coarse modeling construct in areas where there is either a lack of detail or which are far removed 
from sources of excitation or EM scattering phenomena. 

After the analyst has completed the "fine-tuning" process, the input processor will then 
generate one or more input records for the system database, which can then be retrieved and 
modified as necessary for future analysis runs. The processor will also generate an input data 
stream for use by the computational engine. This stream will specify which CEM formulations 
will be used in the analysis (by virtue of the modeling elements used in various parts of the EM 
model), what the excitations are, what the observables are and where they are to be computed, and 
the many global parameters needed by the formulations (e.g., frequency of analysis). 

Since this part of the input processing function will not be a time-intensive computer 
process, execution speed will be sacrificed in favor of user flexibility and platform transportability. 
In addition, the expert system core of the input processor must also be designed and developed 
such that its growth potential is maximized. Growth (or modification) may be required in 
expanding the database definition or modifying the characteristics of particular records and fields 
within records. New physics formulations may be incorporated into the computation engine to 
handle a very limited, but very common, geometry structure (e.g., engine nacelles). These 
formulations will bring with them new modeling elements and rules for modeling, both of which 
will need to be incorporated into the knowledge-based input processor. Finally, graphics-based 
techniques for visualization are continually evolving. Therefore, sections of the input processor 
code that implement these functions will be continually updated to reflect the state-of-the-art in 
these areas. 

The Computational Engine 
The workhorse of EMSES is the computational engine. It is in this section of the 

fundamental division that the various and numerous CEM formulations reside in a hybridized 
schema. Several considerations must be adequately addressed in the design and development of 
this element of EMSES. 

One fundamental decision that must be made is the determination of the class of platform 
on which the engine will perform. At the present time there are two viable alternatives, each of 
which has its own advantages and disadvantages. The first is a distributed system of high- 
performance sequential mainframes or workstations, and the second is the massively parallel 
processor. It is beyond the scope of this paper to argue for one or the other class. It may very 
well turn out that implementations of the engine for both platform classes may be possible with 
minimum development costs. 

Regardless of the platform type the code itself must have at least the following 
characteristics: 

• Be modular to facilitate maintenance, enhancement, upgrade 
• Be transportable across manufacturers and models within a manufacturer 
• Be well documented to facilitate maintenance, transportability, and enhancement 
• Possess a robust hybridization scheme to enable the incorporation of new CEM 

formulations as they become available or as modeling and simulation requirements 
demand their incorporation 

• Minimized and quantified sources of computational error in order to maximize the 
dynamic range of the computations (critical for the analysis of structures incorporating 
ultralow sidelobe antennas and/or low observable materials) 
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• Computational processes which minimize execution time, consistent with the 
requirements imposed by the characteristics of transportability, modularity, and 
minimization of computational error 

Table 1 contains a list of techniques and capabilities which should be implemented as a 
minimum set within the computational engine. 

Output Processing 
The output processor must be as flexible and user-friendly as the input processor described 

previously. Its user-intensive functions are data reduction and data presentation (or at least data 
preparation via translators for input to standard commercial-off-the-shelf graphics packages). 

The types of data that are to be made available from the execution of the computational 
engine include as a minimum: 

• Electric and magnetic fields at specified points or ranges of points 
• Monostatic and bistatic radar cross section 
• Current density on the surfaces of the platform and the elements of antennas 
• Antenna on-platform far-field patterns 
• Antenna-to-antenna coupling 
• Field-to-aperture coupling 
• Interior field distributions 
• Field-to-wire coupling 
• Antenna terminal parameters 
• System critical frequencies 
• Types and locations of EM interaction (e.g., edge diffraction, wing surface reflection) 

The types of presentation include as a minimum the following: 
• Polar plots (electric and/or magnetic field as a function of angle) 
• Rectangular plots (electric and/or magnetic field as a function of position or angle) 
• Current density maps drawn on the surface of the structure 
• Antenna-to-antenna coupling as a function of frequency 
• Antenna-to-antenna coupling as a function of separation distance 
• Aperture field distribution as a function of position in the aperture 
• Parameterized interaction characterization as specified by the user (may require user- 

generated data reduction and plotting routines) 

Other functions of the output processor include as a minimum: 
• Data handling, storage, retrieval, and maintenance: This involves the generation and 

support of any number of input and output files associated with the EM 
characterization of the system under assessment. The EM database must maintain its 
currency with respect to the life cycle and configuration of the system. 

• Preparation of the output of the analysis for use as input to related system analyses: 
One of the output options that will be invoked from the EM analysis is the coupling 
of external fields to wires and cable bundles located within the system. The coupled 
energy can then be translated into an open-circuit voltage and short-circuit current at 
the input to sensitive circuitry within the system. These data can be used by circuit 
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I. Hybridized CEM formulations 
A. Interior 

1. Finite differences 
2. Finite elements 
3. Characteristic modes 
4. Wires and cable bundles 
5. Conductivity, complex permittivity, complex permeability of the interior structures 

B. Exterior 
1. Ray tracing 

a. Physical optics 
b. Uniform theory of diffraction 
c. Physical theory of diffraction 

2. Materials characterization 
a. Conductivity, complex permittivity, complex permeability 
b. Options for layered materials 

(1) Calculation by layer 
(2) Equivalent surface wave impedance 

3. Method of moments 
a. High resolution models 

(1) Wire segments and grids 
(2) Patch areas 

b. Excitation 
(1) Antenna elements 
(2) Arrays 
(3) Incident field 

c. Loading 
(1) Terminations 
(2) Materials characterization using complex constitutive parameters 

4. Radomes 
C. Apertures 

1. Empty 
2. Filled, specifying complex constitutive parameters 

D. Domains 
1. Time 
2. Frequency 

II. Solution techniques 
A. Full matrix solution 

1. Lower/Upper decomposition 
2. Use of rotational or planar symmetry 

B. Iterative matrix solution techniques 
1. Conjugate gradient 
2. Banded Matrix Iteration (BMI) 

C. Model order reduction 

Table 1.  Computational Engine Considerations 
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analysis programs to calculate the response of the circuit, heat build-up and 
propagation within the circuitry, and probability of circuit failure due to environmental 
circumstances.fd 

The output processor, like the input processor, is to be installed and executed on a high 
performance workstation, which may interface to the platform on which the computational engine 
is executed. It is to run under the UNIX operating system and X-Windows to maximize 
performance and transportability. As is the case with the input processor, flexibility and user 
interface capabilities are the major considerations over execution times, memory requirements, and 
data storage requirements. 

Summary 
This paper has presented the need for the development of unified and integrated EM 

modeling and simulation environment for system-level analyses of the RF performance of a 
radiating and/or scattering platform. Although the author's perspective is focused on Air Force 
C3I aircraft, it is obvious that the principles and concepts presented here are also applicable to 
ground-, sea-, and space-based platforms. In addition, the system need not consist of transmitters, 
receivers, antennas, and equipment bays. The geometry can just as easily be the interior of an 
automobile engine compartment or the case in which is located a high-performance workstation. 
The scale and the shape of the geometrical elements and the nature of the sources of radiation and 
reception may be different, but the concepts and needs are very similar regarding the environment 
which facilitates the EM analysis and characterization. 

The next step is the development of an initial, albeit recognizably incomplete, specification 
for that environment, which can be used to maintain a perspective for EM researchers and CEM 
tool developers. There will never be a "final" specification, but there must be a continually and 
rationally evolving document which can be used as a metric for the development of a national 
CEM asset supporting the design and analysis of government and civilian radiating and scattering 
systems. 

121 
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ABSTRACT 
Computations have become a tool coequal with mathematics and measurements as a means of 
performing electromagnetic analysis and design. This is demonstrated by the volume of articles 
and meeting presentations in which computational electromagnetics (OEM) is routinely employed 
to address an increasing variety of problems. Yet, in spite of the substantial resources invested in 
CEM software over the past three decades, little real progress seems to have been made towards 
providing the EM engineer software tools having a functionality equivalent to that expected of 
hardware instrumentation. Furthermore, the bulk of CEM software now available is generally of 
limited applicability to large, complex problems because most modeling codes employ a single field 
propagator, or analytical form, of Maxwell's Equations. The acknowledged advantages of hybrid 
models, i.e., those which employ different propagators in differing regions of a problem, are 
relatively unexploited. 

The thrust of this discussion is to propose a new approach designed to address both problems 
outlined above, integrating advances being made in both software and hardware development. 
After briefly reviewing the evolution of modeling CEM software to date and pointing out the 
deficiencies thereof, we describe an approach for making CEM tools more truly "user friendly" 
called EMSES (Electromagnetic Modeling and Simulation Environment for Systems, named 
selected in collaboration with Kenneth Siarkiewicz of RADC). This will be achieved through two 
main avenues. One is developing a common problem-description language implemented in a visual 
programming environment working together with a translator that produces the specific model 
description needed by various numerical treatments, in order to optimize user efficiency. The other 
is to employ a new modeling paradigm based on the idea of field propagators to expedite the 
development of the hybrid models that are needed to optimize computation efficiency. By nature of 
its design, EMSES will be highly modular, hence more portable, and will exploit progress being 
made in "scalable" libraries to maximize performance in advanced parallel computational 
environments. 

COMPUTATIONAL ELECTROMAGNETICS 
The analysis and design of new materials, subsystems, and systems with specific electromagnetic 
requirements has led to research into the use of electromagnetic modeling codes on parallel 
processors. This research has been conducted for several years with the apparent conclusion that 
electromagnetic codes generally map well onto a wide range on machine architectures [Calalo 
(1987), Perlik and Moraites (1992), Rüssel and Rockway (1991), Davidson (1991)]. Both 
integral-equation (IE) and differential-equation (DE) methods map with high parallel efficiency 
onto such machines as the CM2 connection machine, the JPL hypercube, and the Cray YMP8. 
While no limitation of parallel architectures or parallel EM algorithms has been observed, several 
impediments to full exploitation of new machines have arisen. 

A major limiting factor or impediment in achieving more useful and productive CEM CAD 
(Computer-Aided Design) tools remains the computation resource required, as parallel architectures 
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at best offer quantitative speedups only in proportion to their increased throughput as opposed to 
qualitative speedups that alternate formulations might be hoped to provide. Or, as observed by 
Wandzura (1992) in a recent talk, the former is "evolutionary" while the latter would be 
"revolutionary." To illustrate both qualitatively and quantitatively the computation-resource 
problem, Fig. 1 shows how the computational requirements increase with modeling accuracy and 
the frequency of interest 
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Figure 1: Illustrated here is the effect of frequency on the computational requirements [Miller 
(1991)]. In electromagnetics, an object size is measured in wavelengths, which is inversely 
proportional to frequency. Increasing frequency is equivalent to increasing the size of an object. 
A linear increase in either can cause a much larger rate of increase in the number of operations 
required to achieve a solution. The operation count for present and anticipated future models 
increases from the 2nd to as much as the 9th power of the frequency for three-dimensional 
problems, depending on the specific analysis method used. Note that the operation count for LU 
decomposition of an IE matrix increases as the 6th power ot frequency for a surface-sampled 
object. 

Another impediment to furthering large-scale CEM is that of preparing the input for a problem 
worthy of a teraflop computer and subsequently making use of the resultant massive amounts of 
data. Still a third impediment arises as a result of the improved performance of CEM tools where 
high-accuracy EM solutions for more complex problems such as low-observable targets might be 
nullified by effects of structural and thermal stress. The CEM software which is genuinely useful 
today must interface to at least thermal and structural analysis software for many applications. 
Finally, one of the most critical impediments to progress in CEM is multifaceted but is based 
primarily on the very rudimentary, one-of-a-kind, user interface that pervades present day CEM 
software. Rectifying this problem requires development of a standardized interface that provides a 
modeler access to all of the most widely used CEM tools. Overall, mitigating the impact of these 
impediments is best met by developing the integrated modeling infrastructure EMSES as illustrated 
generically in Fig. 2. A system such as EMSES is needed to not only open access to advanced 
CEM software to geographically remote users but also to permit continual and future additions, 
modifications, and program control while also providing other capabilities in such areas as 
verification and validation as is discussed further below. 

EMSES would be best developed as the scalable software of the future in CEM for grand-challenge 
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Computing utiliziing two complementary and parallel approaches. One approach will be to improve 
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Figure 2: Conceptual block diagram for EMSES to illustrate its modularity with respect to using a 
field-propagator paradigm and its key components. 

CEM software with respect to modeling performance and capabilities, and the other will be to 
better exploit continuing advances in computer hardware, especially in parallel, scalable and 
disttributed computing. Each area is discussed in turn below. 

ADVANCES IN CEM MODELING SOFTWARE 
Progress (i.e., solving bigger, more complex problems) in CEM is predicated on advances in 
solution speed and accuracy commensurate with advances in computing hardware on the one hand 
and user effort on the other. Driving user effort is the fact that the typical electromagnetics 
engineer, most often someone who has not written any of the software being used, must become 
familar enough with several different software packages that each can be used with some minimum 
facility. Unfortunately, existing software usually has a limited interface and is generally incapable 
of incorporating improvements made to other functionally similar software. TTiis situation might 
be unfavorably compared with the status of hardware instrumentation development. In the latter 
case, even the most complex instrumentation can be reliably used by someone familiar only with its 
functionality and application, i.e., the user is not required to know how to design an instrument in 
order ot use it. We suggest that an equivalent approach is needed in designing the next generation 
of CEM modeling software, and that this might proceed by beginning with developing a model of 
the modeling process itself, for which the structure shown in Fig. 2 might provide a starting point. 

Reducing Comptuational Complexity and Exploiting Special Hardware 
Work to date on reducing model complexity (the number of operations required to achieve 

acceptable accuracy) spans the spectrum from being either primarily analytical to primarily 
numerical, or some intermediate combination thereof [Miller (1988) (1991)]. Among the more 
analytical approaches are the Fast Multipole Method [Engheta et. al. (1992)] and the various high- 
frequency, asymptotic techniques [Stone (1990)]. In the former, the number of mutual 
interactions, M, needed to be included in an IE like model is reduced from of order Nz to of order 
NlogN by representing the "faraway" interactions using multipole expansions together with a fast- 
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Four transform (FFT). Asymptotic techniques such as the Geometrical Theory of Diffraction and a 
number of other variations reduce problem complexity by avoiding the need to solve for the current 
on an object. They instead deal only with the fields caused by specular reflection, refraction at 
edges, energy shedding on curved surfaces, or diffraction at dielectric interfaces. 

Additional numerical approaches include those based on impedance-matrix localization [Canning 
(1990)]; spatial decomposition [Umashankar et al. (1990)]; space segmentation [Wang and Ling 
(1991)]; diakoptics [Butler (1990)]; fast-propagation solutions [Miller and Gilbert (1991)]; various 
FFT-based procedures [Sarkar et. al. (1986)]; and multigrid methods [Kalbasi (1991)]. Almost all 
of these also use iterative matrix-solution techniques to reduce solution of a general matrix from 
being proporational to N-^ to of order IM, where I is the number of iterations required for an 
acceptably converged solution. All such techniques share the goal of reducing a model's 
complexity by altering the problem's description through using special basis and testing functions. 
This divides the problem into parts that are more easily solved by taking advantage of special 
features the problem might possess to thereby develop a more efficient matrix solution. Other 
numerically oriented approaches for reducing complexity include the various time-domain DE 
models [Taflove (1988)] whose primary advantage is that, in their explicit formulation, they are 
solvable without matrix inversion. 

As designing and building special computers for solving certain kinds of problems are becoming 
more practical, we are beginning to see a blurring between software and hardware design. This 
development might be typified by computers such as the WaveTracer computer [Miller (1990)] 
which was designed with particular kinds of DE models in mind. Upon noting the close analogy 
between signal processing and filtering and such DE models, new hardware paradigms are being 
developed, one example of which is represented by the "Wave Digital Filter," [Kuo and Levy 
(1990), Fettwis and Nitsche (1991)]. 

A Field-Propagator Paradigm for Electromagnetic Modeling 
We note that at some point in the process, all electromagnetic modeling involves evaluating 

the fields caused by specified sources. When the sources are known, the problem is more 
straightforward, an example being to find the radiation pattern of an antenna. Most often the 
sources are unknown and are found as the solution of a boundary-value problem with boundary 
conditions imposed on the fields due to these sources. The source-field relationship, or field 
propagator, that is employed in this process may be based on: 

1) the Maxwell curl equations written in differential or integral form to yield what 
are called finite-difference and finite-element models; 

2) a Green's function and source integral to produce an IE or boundary-element 
formulation; 

3) a mode-based description which leads to techniques such as the T-Matrix and 
Generalized Multipole Techniques or, 

4) rays and diffraction coefficients which lead to an optics model. 

The vast majority of present CEM modeling software is based wholly on using only one of these 
approaches for a particular problem. However, it is well known that the applicability of each is 
limited, and that models for more general problems should employ that field propagator which it is 
best suited to each subset of the overall problem. Effective implementation of such a hybrid model 
requires that a new modeling paradigm be employed that recognizes this need, since hybridization 
offers the only means by which larger and more complex problems can be successfully sovled. 

We suggest that CEM modeling-software development be reoriented so that field propagators are 
explicitly incorporated as its most basic ingredient. This means that, whatever the kind of 
modeling code is under consideration, the building blocks needed for its development and 
application are formulated and employed as field propagators. These propagators will be written as 
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modular, scalable, software-library elements that can be easily linked together in a systematic, 
dataflow oriented, and visual manner. This will greatly simplify developing the source-field 
relationship of a problem that is geometrically or electrically complex. The input to each 
propagator will be an appropriate source while its output will be a transformed field produced by a 
combination of source and propagator. The spatially (and possibly temporally) discrete set of field 
and source samples that result will generate sets of equations by imposing needed field continuity 
at common boundaries or in common regions of the separate propagators. Modeling a complex 
problem thus becomes a process of identifying the propagator types to be assigned to each region 
of the problem and the boundaries across, or volumes within, of propagator interaction. The 
computation then proceeds by assembling a set of equations for each spatial region. The collection 
of all such regions produces the final matrix, generally a combination of dense and sparse matrices 
because of using different propagators in different regions, that will model the entire problem. 

We also suggest that this new approach should permit variations in the numerical treatment by 
expressing the propagators in a uniform and predefined way. Among the varitions to be included 
would be basis and testing functions employed, model adaptation, and matrix-solution procedures. 
Allowable variations for a particular problem would depend on the resources available to the 
modeler on the distributed computational network. Thus, as we expand the computational network 
resources, the modeling algorithm can also grow and provide, for example, user choices to be 
made concerning numerical accuracy, spatial resolution, or the density of frequency and angle 
sampling. 

The propagator paradigm approach proposed for EMSES is an inherently modular one. 
Propagator modules would provide the electric and/or magnetic fields or potentials needed for 
various single-propagator or multiple-propagator (hybrid) models. For example, one set of 
libraries would model the frequency-domain electric fields for filamentary, surficial and volumetric 
electric currents. Other library modules would employ differential, modal, and high-frequency 
propagators. These propagator modules can also be designed to provide the fields for various 
kinds of basis and testing functions as selected by the modeler using interactive decision aids. 

As a specific example, the integration required to obtain a field involves summing weighted values 
of the IE kernel function. The subsequent integration required for the field testing involves another 
weighted summation of similar nature. Thus, the propagator evalution for integral equations 
ultimately requires only weighted sums of kernel-function samples. Furthermore, the field 
samples required for the impedance matrix involve sampling a relatively well-defined parameter 
space. This provides the opportunity for pre-computing and storing fields in some suitable way so 
that much of the one-time computering cost of certain problem classes can be subsequently 
avoided. This approach is know as "function approximation" and "model-based parameter 
estimation" and is instrumental in reducing the cost of evaluting the Sommerfeld integrals needed 
for modeling an object near a planar interface by a factor of up to a thousand [Burke and Miller 
(1984)]. 

The process of computing fields in an IE context provides the coefficients for an interaction 
(impedance) matrix. We call this the "system" matrix for, depending on the formulation used, the 
coefficients will not all have the units of impedance, as they do for the electric-field IE. The 
system matrix is "assembled" by evaluatting the fields of the various propagators that might be 
employed. Each row of the matrix arises from imposing some boundary condition or continuity 
condition at various points in the problem space. We note that this kind of modeling-code 
decomposition is well-suited for interfacing with a user decision aid. 

Developing Hybrid Models Using Field Propagators 
After the modeler has developed a physical problem description for the application of 

interest, a decision aid will be used to analyze that description and provide a suggested list of 
propagators for each different portion of the problem. It will also help in selecting from among the 
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set of available options, the modeling details that are best suited for each particular spatial region. 
For example, a large, smooth, conducting segment would best use an IE model that employs 
entire-domain bases, whereas a region of spatially varying dielectric would best employ a finite- 
element DE model. An illustration of this type of problem decomposition is shown in Fig. 3. A 
simplified example of the value of using such a method for a simple problem is shown in Fig. 4 
where all curves show the speedup of the proposed type of algorithm under various conditions 
compared to an IE modeled using LU decomposition. 

Wire Antenna- 
Wire Integral Eq. 

Flat Plates- 
GTD Model • 

Penetrable Dielectric- 
PDE Model. 

Dielectric Surface. 
Combined-Field 
Integral Eq. 

Dielectric Interior- 
PDE Model 

Open Conducting Surface- 
Electric Field Integral Eq. 

Aperture Coupled to 
Interior-Modal 
Expansion 

Figure 3. Example of generic problem for a propagator-based, hybrid approach could provide a 
more efficient model than would one based on a single field propagator. 
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Figure 4b: Some results for a simple problem to illustrate the potential operation-count advantage 
of hybrid models. For the problem geometry depicted in Fig. 4a, the result for curve (a) applies 
where t = 0 (i.e., then Is no sheath), and for (b) and (c) where an Inhomogeneous sheath is 
present. Curve (a) demonstrates the relative speedup [given by (1+P/B^] achieving using a 
hybrid model [IE (IE) forthe object with geometrical-theory of diffraction (GTD) for the plate-object 
interaction] over an IE model for both, when solving the Impedance matrix using LU 
decomposition. Curve (b) shows the speedup [given by (10t+1+P/B2] achieved by a hybrid IE- 
GTD-PDE (partial-differential equation) model over an all-IE model using an iterative solution for 
both, when an inhomogeneous sheath covers the object. Finally, In curve (c) we demonstrate the 
speedup [given by {10B(IOt+l+P/B)2}/t} achieved by a hybrid Modal-GTD-PDE model over an all- 
IE, again solved using Iteration. In the latter case, we sample only those surface fields whose 
mode numbers extend from 0.9 to 1.1 ka, where a is the effective sheath radius. We assme that 
the sampling density is 10 per wavelength In linen dimension (i.e., 100 per square wavelength 
and 1000 per cubic wavelength), that the object area Is stx square wavelengths, and for (b) and (c) 
that the integrated sheath thickness Is one wavelength. 

The properties of the system matrix for a problem will depend on whether the modeling is done in 
the time domain or frequency domain, and the kinds of propagators chosen. Therefore, the 
subsequent numerical solution of this matrix must reflect these differences. It is envisioned that 
EMSES will include LU decomposition, iterative, and various sparse-matnx solution procedures 
which will provide solution options appropriate for given applications. For example, when an 
antenna problem is modeled, only one excitation or "right-hand side" is needed, so that an iterative 
solution would almost always be more efficient than LU decomposition. When a radar-cross 
section (RCS) is needed for many angles of incidence on the other hand, LU decomposition could 
be more efficient since an iterative solution may need approximately the same number of iterations 
for each new incidence angle. There may be some potential in this latter application, however to 
use the most recent solution as the starting point for a new angle of incidence and thus potentially 
reduce the number of iterations needed for convergence, which could make iteration more 
appropriate then. These kinds of options will be provided in EMSES to give the user a convenient, 
easily exercised menu of choices. 
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Model Adaption for Error Control 
Another potentially important means of improving computation efficiency is provided by 

adaptive methods. Almost all modeling in CEM currently employs predefined models where the 
number of unknowns is selected based on experience and modeling guidelines. Not until the 
computation is finished does the user normally obtain any quantitative indicator of how accurate or 
numerically converged are the results. If we determine that more spatial unknowns are needed to 
achieve the accuracy desired, the entire problem nomally needs to be redone using a more refined 
model description. 

Model adaptation in EMSES might be achieved by including a capability for checking model 
performance as the computations are being performed. A field propagator that is especially well- 
suited to making this feasible is one based on modal expansions of a field due to multipole sources. 
Present implementations of modal propagators do not require the usual surface-source 
discretization. They require only that the fields be sampled on boundary surfaces. Consequently, 
it is numerically efficient to solve a problem using a modal propagator for a given number of 
unknowns and then check boundary-field errors. If they are too large, new unknowns can be 
added and more field samples used in regions where the boundary errors are largest. This can be 
accomplished in a recursive fashion without discarding the first solution which serves as a starting 
point for the updated solution. Since there is no source-discretized approximation of the problem 
to be refined, the problem of using more sources and fields is greatly simplified. An IE model that 
employs entire domain (e.g., a Fourier series) over all or part of a problem boundary can be made 
adaptive in a similar fashion. The benefit of reducing the boundary error, which is normally the 
controlling factor in determining the overall solution accuracy, only enough to achieve the needed 
observable accuracy, will be substantial. This idea is illustrated conceptually in Fig. 5. 

Boundary Error in Tangential Electric Field for 
Initial Source Placement and Field Samples 

Add More Field Samples Where 
Error Exceeds Threshold 

Figure 5: Conceptual example of using field sampling for model adaptation. Key 
ingredients for efficient adaptation are having available an appropriate error-evaluation 
procedure and a way of adding more unknown and field samples to the model. 

Verification and Validation 
Aside from the work required by a user to prepare the input needed to exercise a computer 

model and access the output it produces, perhaps the greatest integrated effort associated with CEM 
is that of verifying code operation and validating the results produced. Verification is associated 
with determining that a modeling code produces results consistent with its design. Validation is 
concerned with establishing how well its results conform to physical reality. Both are ingredients 
essential to performing reliable modeling computations.   The former is a necessary, but not 

129 



sufficient, condition for acceptable code performance, while the latter determines how reliably a 
given code can be applied to physically meaningful problems. 

Thus, computational checks would be advantageous at various points to establish quantitative 
measures of code performance with respect to both verificaiton and validation. These checks will 
address the issues of: 

1) moving codes between computers; 
2) confirming continued valid operation of the code over time on a given computer, 

and; 
3) giving guidance to the user concerning the validity of the computed results. 

Computational models would ideally also include features that support "dialable" accuracy to 
permit an explicit trade-off between the cost of the computation and the accuracy of the results. 

The first step in assessing computational accuracy stems from the two sources of error in any 
modeling exercise. These are the physical modeling error (E_) which arises from approximating 
the physical problem of interest with some idealized mathematical representation, and the numerical 
modeling error (EJJ) which occurs because only an approximate numerical solution is obtained to 
that idealized mode. Determining E_ will require access to measured data since few problems are 
modeled without employing some physical approximation such as representing a smoothly curved 
object by plane, triangular facets.  Given adequate computational resources, En can always be 
made smaller than Ep. The essence of the verification and validation approach outlined here is to 
develop a protocol for systematically and consistently estimating EJJ in response to the three points 
above. 

There are a number of options that could be considered for this purpose but that are rarely utilized 
in the modeling codes now available. In connection with (1) and (2) above, for example, it would 
be advantageious to include a set of precomputed test cases, including the model input, results at 
various stages of the computation, and the final observables such as radar cross sections and/or 
thermal emissions. EMSES would then allow the user to automatically compare the results of 
running these test cases with their precomputed results using appropriate error norms to determine 
where any significant differences exist Concerning (3), EMSES could also include a user option 
to exercise various validation checks that might range from checking far-field reciprocity, to 
evaluating boundary errors, or even comparing results from two different numerical models. 
Finally, EMSES could offer the modeler a quantitative "figure of merit" (FoM) which indicates 
how reliable the computed results might be. 

It can be seen that verification and validation options range from being quite easily implemented to 
posing a research challenge. However, these issues will become increasingly essential as problem 
complexity and the associated total FLOP count continue to increase with faster computers. 

Developing Problem Input 
A useful metric in CEM is how large a problem measured in wavelengths or how many 

unknowns can be solved on a given computer architecture in a given amount of time. A measure 
like this is informative because it indicates for which size of problem the user might need to 
consider changing to a different computer platform. It also clearly demonstrates the state-of-the-art 
of present mainframe or supercomputers in terms of defining what a "large" but possibly solvable a 
problem actually is. For the present discussion, we will consider the number of unknowns 
solvable in one hour as the relevant measure. 

This number is closely related to the effort needed to prepare the input data required for a computer 
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solution. When the one-hour problem size involved only a few hundred unknowns, the effort 
needed to prepare the input manually was feasible. On current supercomputers, the one-hour IE 
problem size has passed 10,000 unknowns. The input effort has grown commensurately larger, 
reaching the point where manual data preparation becomes unfeasible. The need for computer- 
assisted data preparation is even greater for DE equation models, where the number of spatial 
unknowns is proportionately larger because the model samples represent a volume of space rather 
than an enclosing surface. 

Problem description for OEM actually occurs at two levels on the input side. The more elementary 
one is where the problem being modeled is described electrically and geometrically in the way 
required by the specific modeling code being used. For example, for a wire code the model 
description might include the two endpoints of each wire segment, its diameter, impedance 
loading, and connection information about wire segments attached to either end. A more advanced 
level, but one employed by few if any EM models today, is where the problem is described in 
engineering-oriented terms such as might be associated with engineering drawings. Translation of 
the latter, physical problem description (PPD) to a numerical model description (NMD) like the 
former, is then done by the user interface software. Implementing an approach like this for 
EMSES would have three distinct advantages: 

1) The PPD would need to be developed only once; 
2) The NMD can be developed interactively using an appropriate "translator" that 

follows guidelines needed by a particular modeling approach/library permitting human 
inspection and intervention where needed; and 

3) The single PPD can be used to drive any modeling library component to make 
intermodel comparisons and solution presentation more consistent and accurate. 

Visualizing the Model and the Results 
Electromagnetics is one of the more mathematical and abstract sciences. There is little 

opportunity to view field and wave phenomena that are relevant to CEM. While it is true that we 
live in a visible-light world, we can directly observe none of the phenomena that are important at 
the size-to-wavelength ratios that are of concern in CEM modeling. Yet visualization of the 
solutions that are obtained using CEM techniques is becoming more and more important. 

One reason visual electromagnetics is needed is the growing complexity and size (number of 
unknowns, size-to- wavelength ratio) of problems being modeled. As already noted, it is relatively 
simple to confirm the correctness of the data needed to describe a problem consisting of an array of 
dipoles such as a logperiodic antenna. However, the physical behavior of even this simple 
problem, when the observables of interest are the antenna currents as a function of frequency or 
time or the angle-dependent near and far fields, can be challenging to interpret without a graphical 
presentation. We believe that graphical presentation of results will become much more important 
for more complex problems where there is an even greater variety of parameters and variables to be 
observed. This need has led to an increased emphasis on scientific visualization in 
electromagnetics, [Miller et. al. (1981) (1988), Cole et. al. (1990)], to provide access to, and 
understanding of, the results of CEM modeling. 

Visualization is also needed to ensure the correctness of problem-description and model-description 
data. Finding errors manually in numerical data that describes the complex interconnection of 
triangular facets used to represent a moderately complex conducting body is intimidating and error 
prone. Visual presentation of the model is the only effective way to inspect the input data. 
Visualizing the intervening steps in the computation process can also provide insight into the 
correctness of the numerical results and interpreting the physics being described. For example, in 
one application involving modeling an antenna near the earth-air interface, we found that a 
graphical plot of the impedance matrix showed a numerical "noise" on the smaller values of matrix 
coefficients. This demonstrated that 32-bit accuracy on our VAX computer was inadequate. Only 
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when 64-bit computations were performed did this noise vanish. Plots of the inverse or admittance 
matrix for wires have similarly exhibited the problem's physics in ways not otherwise observable 
[Miller et. al. (1981)]. The EMSES environment would provide easy and convenient 
visualization of all aspects of modeling and results presentation as part of its computing 
infrastructure. 

Combining CEM in a Multidisciplinary Library Interface 
The kinds of structures whose electromagnetic properties are the result of tight 

specifications and advanced requirements cannot be analyzed without regard to other physical 
factors that affect shape, size, and material properties. Certain RCS reduction methods degrade 
severely when structures bend and deform. High gain antenna performance behaves similarly. 
Thus, as CEM capability progresses to the point where numerical design is feasible for the most 
advanced structures, a connection must be made to other disciplines such as thermal analysis and 
structural analysis in order to assess the design in the real world, which includes structural and 
thermal effects. 

EXPLOITING ADVANCES IN HARDWARE ARCHITECTURES AND 
ASSOCIATED SOFTWARE IN CEM MODEL DESIGN 

Rationale for Emulating Hardware Design in Software Development 
The present state of CEM may be compared with the situation that prevailed during the 

initial phases of the industrial revolution. Until machinery made it possible to produce more output 
per worker, there was little incentive to make interchangeable parts. Each craftsman produced a 
complete version of a given product. Its various parts though fulfilling the same function as the 
same part made by another worker, were not required to be interchangeable. However, when the 
economies of larger-scale production were fast becoming a possibility, it was soon recognized that 
continuing this kind of arrangement would largely offset the advantages that could otherwise be 
achieved. It was necessary, in the interest of production efficiency, that the creative control of 
individual workers be made subordinate to the benefits of standardization and interchangeability. 
This is a lesson that needs to be applied to software development. 

The motivation for software scaleability is similar. While the production of analysis software in 
CEM continues unabated, designers are confronted by a bewildering array of modeling choices. 
Perhaps the most telling characteristic of the large majority of this software is the fact that each 
package requires the user to leam a new interface in spite of the fact that all these modeling tools 
involve a small number of the same basic steps. A major thrust of EMSES will be developing and 
implementing an integrated user interface to permit a designer to access and use it effectively. 

Designing Software for Distributed and Parallel Architectures 
Traditional multicomputing has relied on the close coupling of large numbers of 

homogeneous processors in hypercube distributed memory and shared-memory, bus-based 
interconnections. Recently, shared, distributed-memory architectures like the Kendal Square with 
interlocking rings of processors has extended the paradigm of closely coupled multicomputing that 
is a hybrid of the two earlier architectural types. Within this paradigm, machines have been 
developed that are either single instruction multiple data (SIMD) or Multiple instruction multiple 
data (MIMD). The recently announced CM-5 from Thinking Machines Inc., has confirmed the 
generality of the MIMD distributed memory approach as the dominant approach for the future of 
sealable closely coupled multiprocessors. 

Closely coupled multicomputers have been made possible because of the high speed buses, rings, 
or hypercube communications mechanisms internal to these machines. These internal 
communications mechanisms have facilitated low-latency, high-bandwidth communications 
between processors which has made these machines efficient parallel processing computers. The 
recent development of very-high bandwidth (800Mb/s) low latency crossbar switches which serve 
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as local-area-network interconnects, and the promise of wide-area-network extensions of this 
technology, will enable the multicomputing paradigm to be extended to a much higher level of 
processor granulanty and heterogeneity. Thus, in the near future, heterogeneous networks of 
architecturally diverse machines will be closely coupled over great physical distances. 

Previous research at LANL, and elsewhere, has consistently shown that algorithm performance 
can be optimized when it is mapped to the hardware and software environment for which it is best 
suited. Thus, different algorithms map best to distinct architectures. Until the advent of HTPPI- 
based, high-speed crossbars, it was still often expedient to develop, test, and deliver a multiple- 
algorithm software system on a single parallel architecture fronted by a workstation network used 
as the user interfaces, even though the mapping of diverse algorithms to a single architecture was 
markedly suboptimal. The present and future potential of high-bandwidth, low-latency, crossbar 
networks, and their wide-area extensions will alleviate this restriction and make overall application- 
level optimization practical. As a result, high-performance, network-based multicomputing will be 
extended to include workstations, massively parallel machines, workstations with embedded 
accelerators, and conventional supercomputers as nodal processors on the network. The network 
will exploit both message passing and shared-memory capabilities and represents a hardware 
realization of a "virtual metacomputer". 

It is recognized that the EMSES concept encompasses a wide spectrum of applications that will 
push the computational ability of existing computers. Because of this, it is clear that EMSES 
system will be designed from a very broad perspective. It will include mechanisms for distributed 
and parallel computing and interactive visualization. Furthermore, it must provide a working 
environment that encourages joint development by a geographically dispersed design and 
development groups. It must also support the rapid prototyping of new applications and enable the 
easy re-use of previously developed library software. 

The key to the successful use of this virtual metacomputer will be the software-based programming 
environment and its underlying application level communications and control infrastructure which 
will permit the user to conveniently and seamlessly utilize this resource. EMSES would include 
this application-level software infrastructure to address the requirements of both the 
electromagnetic library software developer and the designer/user of this software. This would be 
accomplished both by integrating existing public-domain, visual-language, network, CAD, mesh- 
definition software, etc., and by enhancing these existing components to meet both the 
requirements of the electromagnetic library developer and the eventual designer/user. EMSES 
would also include scalealable and portable electromagnetics software which can be used by 
electromagnetics designers from a high level visual programming environment that shields these 
designers from the details needed to execute complex analyses over this networked virtual 
metacomputer. 

It is no longer reasonable to expect each design and development team to write sophisticated 
network infrastructure software. EMSES would provide developers with a more abstract and 
powerful environment that links together existing sealable libraries of application software and 
"hides" the infrastructure details of this linkage from the user and would also provide the 
application level user with powerful CASE (Computer Aided Software Engineering) tools that 
facilitate the creation, compilation, and debugging of new library software. EMSES 
implementation would include a distributed and parallel software network infrastructure that can be 
programmed, monitored, and debugged as if it were contained within a single multicomputer. 

Using the KHOROS System as a Basis for EMSES 
One approach to realizing the distributed and parallel software development infrastructure 

for EMSES could be based on a public-domain system such as KHOROS whose design is 
illustrated in Fig. 6 [see Miller (1992)], which would satisfy the following seven design criteria: 
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1. Produce optimal and balanced computational performance on a heterogeneous 
computer network while transparently providing a software development CASE-tool 
environment that enables investigators to develop and test new library components while 
continuing to utilize a wide variety of existing software written in several high level 
languages. 

2. Provide transparent access to and use of data and electromagnetic libraries over a 
network of different machine architectures. 

3. Support an extended data-flow model of computation that is important for 
electromagnetic modeling. 

4. Provide for network level control, communication, load balancing, fault-tolerant 
execution, and debugging. 

5. Provide 3-dimensional object modeling and mesh generation capability using 
government owned BRLCAD system and its extensions or commercial solutions when 
applicable. 

6. Provide a convenient means to interact with users who are not electromagnetic 
experts or programmers through a modern visual programming environment 

7. Be built using public-domain, government-owned, and/or easily affordable 
commercial software components based on open system principles. 

preview or composer 

\ 

DESIGNERS 
UIS 

APPLICATION 
DEVELOPERS VifcW VIEW 

PS / 
V \ 

\ 
1 

ghostwriter/reader conductor 

prosrftxn libraries x Applications 

cantata visual language 

Figure 6: Block diagram of the KHOROS system and CASE tools. 

KHOROS is built with the philosophy of being an open and extensible parallel and distributed 
system. It is the only open scientific computing environment that provides CASE tools for the 
creation, maintenance, and distribution of user contributed programs. These integrated tools are 
utilized by a developer to create KHOROS-compatible libraries. KHOROS provides three levels of 
compatibility: 

1) Process interface: This minimal level of compatibility allows the developer to 
integrate in an existing set of executable programs. The developer only needs to 
edit/configure the user interface of the visual language and to interactively create a graphical 
user interface for each program. No software development or compiling is required for this 
level of integration. 
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2) Procedure interface: This level of compatibility allows the developer to integrate 
or develop a library of procedures of functions. The developer interactively creates a 
specification file for each procedure that is used as input to a code generator. The code 
generator acts as a programmers apprentice to automate the creation of all user interface 
code. This level of integration allows the developer to utilize the source configuration and 
maintenance tools provided in KHOROS. 

3) Procedure interface and data structure: This highest level of compatibility also 
allows the developer to utilize the reusable libraries of the KHOROS system. 

Application developers work from top to bottom in Fig. 6. They use the various tools provided by 
the KHOROS environment to extend the capabilities of the system, add new routines to be 
accessed by the visual language, or create interactive graphical applications. End users/designers 
(shown at the bottom of the Figure) use the visual language to create custom solutions to their 
CEM problems. 

Preview, composer, ghostwriter and conductor represent specific User Interface Development tools 
that are provided within the KHOROS software structure. The library of data processing 
algorithms and the X applications are supported by utility and development libraries. The User 
Interfaces Specification (UIS) and Program Specification (PS), along with the libraries, act as 
input to the KHOROS tools which then generate programs. These programs include many of the 
KHOROS tools themselves, in addition to programs created by application developers using the 
KHOROS system. All applications developed using KHOROS may be referenced from within 
Cantata, the visual language programming environment. 

"Distributed processing" in KHOROS is currently supported by the ability to manually specify 
remote machines upon which to execute individual KHOROS programs. The capability to do 
distributed processing is implemented via employment of remote data transport mechanisms and 
automatic process scheduling. With distributed processing, one needs a method to execute jobs 
remotely, as well as a mechanism to transport data back and forth from the remote machine. 

KHOROS uses various data-transport mechanisms for local and remote communication. Local- 
transport mechanisms include shared memory, files, pipes, and streams; remote-transport 
mechanisms include Sockets and TLI (System V Transport Layer Interface). Custom data 
transport mechanisms such as HIPPI protocols to support high-speed CM-2-to-Cray 
communication have been implemented. With the use of remote data transport, the ability to get 
input from and output to remote machines is implemented. The data transport and distributed 
processing capability can be taken advantage of either from the cantata visual language, or from 
individual command line executions of KHOROS programs. 

In operation, KHROS provides various kinds of visualization, including windows that display 
input and output data sets and the computational modules themselves which are shown as 
"glphys." Each glyph represents either a process or a data source. The glyphs are connected by 
lines representing data transport between the different processes, and can be arranged by the user 
into different data-flow configurations to accomplish various kinds of computations. The modeler 
thus works in a mode similar to that of a hardware designer who, beginning at the gate, circuit, and 
chip level, constructs larger circuits and boards from elementary modules to achieve specified 
design goals. By storing commonly used combinations of modules, some computational "circuits" 
can be used over and over again to avoid duplicating past effort. Furthermore, by adhering to 
well-defined design rules, the modeler need not be bother with most of the minutia that 
characterizes most modeling now. Instead, the modeler can concentrate on conducting 
electromagnetic experiments on the computer by connecting together the required software 
components in much the same way that an experimentalist performs various experiments by using 
available hardware components. 
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COMPARISON WITH OTHER ONGOING CEM RESEARCH 
The preponderance of CEM software developed to date consists of research programs intended to 
accomplish specific goals. A much smaller set of modeling codes has been developed in industry 
and at government laboratories for sponsors. A few of the codes originating in this fashion have 
become widely distributed because they have been well documented and supported and are 
available at a small cost and with few restrictions. A short, but representative, list of examples 
include: 

NEC [Breakall, Burke, and Miller (1985)] 
EM-TRANAIR [Bussoletti, et. al. (1988)] 
ESP [Newman and Pozar (1978)] 
EMPAC [Wilton, et. al. (1989)] 
FERM [Lee, Shnidman, andLichauco (1987)] 
GEMACS [Siarkiewicz (1988)] 
JUNCTION [Wilton andHwu (1989)] 
MININEC [Rockway, et. al. (1988)] 
PATCH [Johnson, Wilton, and Sharp (1988)] 
RCS BSC V2 [Marhefka and Brinkley (1988)] 
SPEX [Ludwig (1986)] 
TSAR [Ray (1991)] 

A still smaller set of codes have been developed in the commercial arena. These are usually 
available without restriction, but can be quite expensive. Most work to date has concentrated on 
traditional code design where a single computational model is developed for application to a limited 
set of suitable problems. 

One exception to this rule is GEMACS (Generalized Electromagnetic Model for the Analysis of 
Complex Systems). This software represents an early effort to develop an integrated modeling 
environment that was expected to evolve eventually into a package that offers a variety of modeling 
options. GE1MACS was originally developed at BDM Corporation with continuing support 
provided from Rome Air Development Center. It contains several different kinds of models, 
including frequency-domain integral equations and time-domain differential equations, but seems 
not to have gained as wide acceptance in the CEM community as, for example, the NEC package. 
One reason for this may be that GEMACS is a large (approaching 150,000 lines of code) package 
with limited modularity and portability. It was also developed prior to the advent of distributed and 
parallel computing, so that porting it to these new computing environments would require major 
changes. While GEMACS offers some capability for hybrid modeling, it now seems relatively 
limited in scope compared with evolving requirements. However, GEMACS provides a number 
of valuable lessons learned which will be valuable in designing a package like EMSES. 

Another, more recent, modeling package is EMPACK. It is being developed by a Wilton and his 
students at the University of Houston. Their goal is to develop modular CEM tools suitable for a 
wide variety of applications. Although some of the concepts behind EMPACK are attractive, its 
eventual realization as a solid, user-friendly package is not assured. In addition, EMPACK 
addresses only the CEM part of the problem and does not address the scaling of this software to a 
distributed highly parallel computing environment. 

Much of the current work in CEM is devoted to adapting existing models to parallel machines. A 
typical example is Davidson (1991), in which NEC (Numerical Electromagnetics Code) was ported 
to a 32-transputer PC-based system. Other work is targeted at reducing the operation count of 
modeling by developing new techniques [for example, Gurel and Chew (1990), Kalbasi (1991)] or 
refining or approximating existing models [Butler (1990), Canning (1990)]. There are no efforts 
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we are aware of that develop the field-propagator approach proposed for EMSES. While a fair 
amount of work has been done on developing more convenient and automatic procedures for 
preparing the computer-model descriptions, there also are no comprehensive efforts that target the 
problem-model-description approach we propose. Verification and validation has also recently 
received increasing attention recently [Miller (1989)]. 

Concluding Comments 
Taken as a whole, we believe that it is absolutely essential to develop as a next-generation 

CEM software package an integrated system such as EMSES. This is necessary both to better 
exploit evolving computer hardware and systems, and to provide the more productive environment 
for analysts and designers which will permit them to concentrate on electromagnetics issues rather 
than computer and numerical issues as is now so often the case. We envision that, following an 
approach such as proposed here in the form of EMSES, next-generation CEM tools should provide 
a computational capability to electromagnetics designers and analysts that is functionally equivalent 
to the measurement capability now expected by elelctromagnetics experimentalists. 
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Abstract 
Internal and scattered time-dependent intensities are calculated for a dielectric sphere illumi- 

nated with a pulsed Gaussian beam. The center frequency of the pulse spectrum is chosen to be 
on or near a resonant frequency of the sphere. The center of the beam is positioned insider on 
the edge, or outside the sphere. The electric field at a point, at each frequency of the incident 
pulse spectrum, is calculated using the plane-wave spectrum technique and the 7'-matrix method. 
The frequency spectrum of the field at a point is calculated using the incident field spectrum and the 
transfer function at that point. The time-dependence of the electric field at a point inside or outside 
the sphere is obtained by inverse Fourier tratisforming the frequency spectrum. Two different decay 
rates in the internal and scattered time-dependent intensity are observed: a decay rate that depends 
on the incident pulse spectrum and a rate which depends on the lineshape of the resonant mode of 
the sphere. 

1. Introduction 
Transient scattered fields are of interest in areas such as characterizing targets using radar. 

Internal transient fields are also of interest in areas such as bioelectromagnetics, and electromag- 
netic hyperthermia.[l] In the visible frequency range, small dielectric objects, e.g., liquid spherical 
droplets, are often of interest. Both the transient internal intensity and the transient scattered field 
are important for dielectric spheres. The term "intensity" refers to E • E*, which is proportional 
to the electric energy density, where E is the complex amplitude of the electric field. When the 
frequency of the incident wave is on a resonant frequency of the sphere the internal energy density 
can be very large [2]. Spheres are often illuminated with beams or pulses which have a Gaussian 
spatial dependence. 

Many techniques have been used to compute the transient far-fields scattered by conducting or 
dielectric objects for plane-wave fflumination. The forward and backward scattering by perfectly 
conducting spheres was computed using Laplace transformation [3]. The singularity expansion 
method was used to selectively excite the transient response corresponding to a single pole of the 
transfer function for a perfectly conducting sphere [4]. The backscatter by a sphere illuminated 
with a short pulse was calculated using a Fourier series expansion [5]. The transient scattering by a 
conducting sphere was calculated using the integral equation method [6j. The transient responses 
of dielectric cylinders and spheres for a source located at the center were computed [7]. All of these 
computations were for far-field transients and for spherical size parameters (circumference/incident 
wavelength) less than 10. Internal transient fields inside spherical models of dispersive biological 
materials were computed using Fourier transform techniques, [l] 
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The time-dependence of the internal intensity of a large sphere illuminated with a plane-wave 
pulse was calculated [8] where Fourier transformation was used to calculate the internal time- 
dependent intensity. The transient behavior at different positions inside the sphere was calculated 
for different detunings. The detuning is the difference in frequency between the center of the 
incident pulse spectrum and the center of a particular resonant frequency of the sphere. 

In this paper the transient build-up and decay of the internal and scattered intensities of a 
dielectric sphere on and near resonance are calculated and illustrated. The sphere is illuminated 
with a pulse that has both a Gaussian time dependence, and a Gaussian spatial dependence. The 
spatial dependence is modeled using the angular spectrum of plane waves. To obtain the transfer 
function at each frequency of the incident pulse spectrum, the internal and scattered fields are 
computed using the T-matrix method. Then at each point of interest the internal or the scattered 
frequency spectrum is computed as the product of the incident field spectrum and the transfer 
function at that point. The time-dependent fields are computed by inverse-Fourier transforming 
the field spectrum. 

The primary factors determining the time dependence of the intensity inside or outside a 
sphere are the spatial position and width of the incident Gaussian pulse, the pulse width (in time) 
of the incident pulse intensity, the lifetime of the nearest high-<5 mode, and the detuning of the 
center frequency of the pulse from the resonant frequency of the mode. 

The method of calculation is given in Section 2. The calculated results and a discussion of 
the internal and scattered transient intensities for a sphere illuminated with different pulses are 
presented in Section 3. The conclusions are summarized in Section 4. 

2. Theoretical Analysis 
Figure 1 shows the geometry of the problem. A sphere of radius a is located at the center of a 

right-handed Cartesian coordinate system (x, y, z). A spherical coordinate system (r, 6, <j>) is also 
shown. The sphere is illuminated with a pulse that is a Gaussian function in time. The incident 
pulse propagates in the z-direction. The cross-section of the incident pulse, in space, is either a 
plane wave or a Gaussian function. The pulsed Gaussian beam is polarized in the x-z plane and 
the minimum spot size of the beam is u0. The focal point is located at an arbitrary point relative 
to the sphere's center. The amplitude of the field at the beam's focal point is chosen in such a way 
that the total power carried by the beam is constant for various cases. 

For a plane wave, the incident pulse amplitude, polarized in the sc-direction, has an electric 
field given by 

~E\z, t) = E\t - z/c) exp[-ift0(* - z/c)]ix (1) 

where E'{t — z/c) is the envelope of the field, which is real, and c is the velocity of light in free 
space. The angular frequency is fio = 2ir/o, where /o is the frequency and i — y/—1. The real 
electric field is the real part of (1) and is given by 

Ei(z,t) = Ei(r)cos(n0T)ix (2) 

where T is the shifted time t — z/c. 
To compute the time-dependent electric field at an arbitrary point inside or outside the sphere, 

we compute the Fourier transform of the incident field amplitude and multiply by the Fourier 
transform of the impulse response function (the transfer function for the linear system) at that 
particular point. We then take the inverse Fourier transform of the individual field components to 
obtain the total time-dependent field, i.e., 

B(r,r) = ^-1{£i(n)B((n)r)}, (3) 

141 



where E(r, r) is either the internal field Einf (r, r) or the scattered field E5
(T, r), E'(Cl) is the Fourier 

transform of the incident field, and E*(ft, r) is the Fourier transform of the impulse response function 
at P(r, 6, (f>). Note that point P in Fig. 1 can be chosen inside or outside the sphere for the internal 
or the scattered field calculation, respectively. The Fourier transform, E'(ü), of the incident pulse 

£s(fi) = F{E\T)) = F{E'(T)exp[-in0T}}, (4) 

where E'(T) is the envelope of the incident field. Rewriting (4) using the translation theorem for 
the Fourier transform [9] we obtain 

El(Ü) = &(& + fi0). (5) 

Combining (3) and (5), the time-dependent field is 

E(r, r) = T^ {-E"'(n + ft„)E5(n, r)} . (6) 

The Fourier transform of the impulse response function, E*(fi,r), at the position P is obtained 
by evaluating the electric field amplitude at P over the frequencies of the incident pulse spectrum. 
Since there are many optical oscillations within the time period of a pulse, we are interested 
only in the time development of the pulse envelope. Rewriting the internal or scattered field as 
E(r, r) = E(T,r)exp(-ifior), where E(r,r) is the envelope of the internal or scattered field, and 
using the translation theorem again, we obtain the expression for the envelope of the field in (6) as 

±(T,r) = r-1{Ei(tl)&(n-no,T)}. (7) 

For Gaussian beam illumination, the above analysis is used with the exception that E*(fl,r) 
is the internal or scattered field resulting from Gaussian beam illumination. For an incident pulsed 
Gaussian beam the expression for an arbitrary incident field is given (at any incident frequency) in 
terms of vector spherical harmonics [10] by 

E!(*r)    =    ir£5>mB[aL»ML„(M + «L»Mi»„(*r) 
m    n 

+»L»Ni„B(*p) + 6Sm»NL»(fe)] . (») 

For a unit amplitude incident plane wave, H is unity and the azimuthal mode index m = 1. The 
expression for the internal fields excited in a sphere by an arbitrary incident beam is given [10] by 

E**(n,r)   =   ff^^[4„ML(^r) + 4„ML(io*r) 
m    n 

+ <4nnNe
1
mn(m^) + d'OTnnNL„(mfcr)] , (9) 

where H is a constant that depends on the incident beam. Note that m in Roman type indicates 
the refractive index and m in italics is the azimuthal mode index. The expression for the scattered 
electric field [10] is 

Es(n,r)   =   H^2J2D^[fLr,Mll„(kr) + fomnM
3

ornn(kr) 
m     n 

+sL„NLn(*r) + ffL„Nim(*r)]  . (10) 

All the parameters are given previously [10]. 
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3. Results and Discussion 
Transient intensities inside and outside a micrometer-sized dielectric sphere illuminated by a 

pulsed beam that is Gaussian in space and time are calculated for different incident pulse durations 
and detunings. The detuning is the shift in frequency of the center of the incident pulse spectrum 
from the resonant frequency. The results for illumination with Gaussian beams are normalized 
relative to the total power carried by the incident beam 

P, = ±&0<*l (11) 

where c is the speed of light in free space, E0 is the electric field amplitude at the beam's focal 
point and ua is the beam's minimum spot size. For plane wave pulses Pt would be infinite. The 
results for plane wave illumination are normalized by assuming that it carries the same power as a 
Gaussian beam of width u>0 = 10a, where a is the sphere radius. When the minimum beam width 
is much larger than the droplet diameter the computed results show very close agreement with the 
computed results for plane wave illumination. 

The resonant mode investigated here in detail is the TE53ji resonance, which has a resonant 
size-parameter xr(= 2-Ka/X) = 47.3094299, a dimensionless resonance linewidth Ax = 0.66 x 10-4, 
and Q = x/Ax = 0.72 X 106 in a sphere having a refractive index of m = 1.36. The resonant 
lifetime, rr, is 0.2052 ns. The spot size of the incident Gaussian pulse at its focal point is u>0 = 1 
pm. Although the beam focal point can be shifted along the x and/or y and/or z axes, the results 
here are shown for x0 — 0 and ZQ = 0, i.e., the beam's focal point is shifted along the y-axis 
only. At the resonant size parameter of the TE5iii resonance the radius of the sphere is a « 4 /im 
at X = 0.532 /im. The demonstrations of the calculated results are given in two groups. In the 
first group the time-dependent internal intensity is shown at a point Pi (0.9a, 0°, 0°) for different 
incident beam positions and detuning. The results in this category are illustrated in Figs. 2 - 5. In 
the second group the time-dependent scattered intensity is shown at a point P2 (500a, 180", 0°). 
The results are shown in Figs. 6 and 7. 

3.1. Time-dependence of the internal intensity- 
Figure 2 shows the time-dependence of the internal intensity at point Px. The incident pulse 

is also shown. The time t = 0 is chosen to be at the peak of the incident pulse intensity. The 
width of the input pulse T0 = 0.5239 ns (full width at half maximum of intensity) is larger than 
the resonance lifetime, rT = 0.2052 ns, of TEss,i- When the pulse is focused at y0 = 1.232a, the 
internal intensity is greater than that when the pulse is focused at yQ = a or yo = 1.5a. For steady 
state Gaussian beam illumination, the maximum electric energy is coupled to the T£58|i mode at 
the illumination position y0 = 1.232a. The time delay between the peak of the incident pulse and 
the peak of the internal intensity is somewhat longer for y0 = 1.232a than for the other two pulsed 
beam positions. For all three cases the internal intensity eventually decays exponentially with a 
decay rate determined by the resonant lifetime. 

Figure 3 shows the time dependent internal intensity as in Fig. 2, but in this case the width 
of the incident pulse is T0 = 0.1746 ns which is shorter than the resonant lifetime (rr = 0.2052 ns), 
i.e., the incident frequency spectrum is broader than linewidth of the resonant mode. There are two 
differences between the results in Figs. 2 and 3. First, the peaks are higher in Fig. 2 (T0 > rr) than 
in the corresponding cases in Fig. 3 (T0 < Tr). When r0 > Tr the spectrum of the incident pulse 
overlaps well with the spectrum of the resonant mode. As the time duration of the incident pulse 
becomes wider the internal intensity has time to build to a higher value. Second, the time delay 
between the internal intensity peaks and the peak of the incident pulse is larger in Fig. 2, than 
in Fig. 3. In the cases shown in Fig. 2 and 3, when the Gaussian pulse is focused at the optimal 
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position to couple maximum energy to the TEss,i mode (yo/a = 1.232), the internal intensity is 
higher than with the other illumination positions (yo/a = 1.0 and yo/a = 1.5). 

The effects of detuning from resonance on the transient internal intensity for different incident 
pulse illuminations are shown in Fig. 4. The center frequency of the input pulse is 

fio = fir + iVAflr (12) 

where Af!r is the resonance linewidth in frequency and JV is the number of linewidths. Figure 4 
shows the transient internal intensity at the point Pi when JV = 5 and the incident pulse width is 
0.5239 ns. For all beam positions, the transient internal intensity decreases much faster than when 
JV = 0 (compare with Fig. 2(b) ). When JV = 5, the overlap of the incident field spectrum with the 
resonant linewidth spectra is relatively small. To show the behavior of the transient intensity for a 
detuned narrow incident pulse, TQ < rT, the same calculations as in the case of Fig. 4 are repeated 
with an incident pulse width of r0 = 0.1746 ns. The incident pulse is detuned by JV = 5 linewidth 
and all other parameters are the same as in the case of Fig. 3. The calculated results are presented 
in Fig. 5. The exponential tail is observed in the plots because the incident pulse spectrum is broad 
enough that the detuned (shifted) part of the incident spectrum overlaps the resonant spectrum. 
Since only a part of the incident spectrum overlaps significantly with the resonant lineshape, the 
internal intensity does not build to a value similar to that of a resonant incidence. Also, in the 
temporal profile of the internal intensity a kink is shown when the incident pulse is detuned. There 
are two different spectral peaks in the internal field spectrum associated with two different decay 
rates (a fast decay depends on the incident pulse and an exponential decay depends on the life-time 
of the resonant mode). One of the peaks is caused by the resonance and the other by the peak 
of the incident spectrum. In the case of a detuned incident pulse these two peaks are separated 
causing the kink in the calculated results as shown in Fig. 5. In the internal field spectrum the 
energy near the peak due to the incident spectrum is responsible for the rapid decay rate while the 
energy near the peak due to the resonance is responsible for the slower decay rate. 

3.2. Time-dependence of the scattered intensity 
Figures 6 and 7 show the time-dependent scattered intensity of a sphere illuminated with a 

Gaussian pulse focused at different positions. Results for plane wave illumination are also included. 
Figure 7 shows the results of the scattered intensity when the width of the incident pulse To = 0.1746 
ns, is less than the resonant lifetime (rT = 0.2052 ns). The scattered intensity for all Gaussian pulse 
illumination positions follows the input pulse during the time the intensity is rising. The scattered 
intensity then decays exponentially and smoothly when the input pulsed Gaussian beam is focused 
at yo/a = 1.232 or 1.5. When the beam is focused at y0 = 1.0 the decay-time consists of two 
parts: (1) a relatively faster decaying part; and (2) a part that decays with a rate determined 
by the resonant lifetime. The reason for the two decay rates in Fig. 6(a) for y0/a = 1 is that 
the resonant mode does not completely dominate the internal (and hence the scattered) energy. 
Other modes share the energy distribution with the resonant mode and contribute to the time 
dependence of the decay. As the pulse is focused away from the surface of the sphere the resonant 
(high-Q) mode becomes more dominant and the exponential decay associated with that mode 
becomes more pronounced. To clarify this, the time-dependence of the backscattered intensity at 
two more illumination positions y0/a = 0.5 and y0/a = 0.75 are calculated and shown in Fig. 6(b). 
As the incident pulse is focused near to the center of the sphere the resonant mode (TJESS.I) is less 
dominant and the exponential decay starts later. 

Figure 7 shows the results of the transient scattered intensity for the same input Gaussian pulse 
as in the case of Fig. 6, i.e., T0 = 0.1746 ns. However the incident pulse is detuned by 5 linewidths 
from the resonance location of the TE58yi MDR, i.e., JV = 5.   AH the other parameters are the 
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same as in the case of Fig. 6. The kinks in the scattered intensity and the two different decay rates 
are similar to the case of Fig. 5. There is a difference in temporal behavior between the transient 
internal, Fig. 5, and scattered, Fig. 7, intensity for different detuned incident beam positions. In 
Fig. 7, before the exponentially decaying tail starts, the scattered intensity is progressively lower 
as the beam is focused farther from the sphere. In the transient internal field distribution for the 
same detuning (Fig. 5), the case for the beam focused at y0/a = 1.232 gave the highest internal 
intensity for all times. For the scattered intensity in Fig. 7 the beam position y0/a = 1 gave 
the largest scattered intensity over the duration time before the exponential decay starts. This 
maximum occurs because of the relatively large contribution of the other modes. After the incident 
pulse intensity decreases to negligible values, the largest transient scattered intensity is for the 
beam position y0/a = 1.232, the position for best coupling into the resonant mode. 

4.  Conclusions 
The internal and scattered transient intensities of a dielectric sphere ilhrrninated with a pulse 

that is Gaussian in space and time are computed. In a sphere, both the internal spectrum and the 
associated time-dependence vary with spatial location, particularly when the incident frequency is 
near a resonant mode. The time dependence of the intensity at an internal location at resonance 
has an exponential tail with a time constant of 1/Aftr, where Aftr is the resonant linewidth of 
the resonant mode. This exponential tail is more prominent when the incident spectrum overlaps 
significantly with the mode, i.e., when Aft < Aft„ and Aft0 > Aft,., where Afi0 is the width of the 
incident pulse spectrum, and Aft is the detuning. The pulse duration and its illumination position 
relative to the center of the sphere, the lifetime of the nearest high-Q resonant mode, the detuning, 
and the position of the point inside or outside the sphere at which the field is calculated are the 
primary factors determining the time dependence of the internal or the scattered intensity. 

The calculations presented here show that there are different peak intensities and delay times 
for different focal positions of the incident pulsed Gaussian beam. The results also show that with 
a slightly detuned incident pulse, the optimal beam position for coupling energy into the resonant 
mode gives the largest scattered intensity. 
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Figure 1. A spherical particle of radius a 
centered at the origin of a right-handed Carte- 
sian co-ordinate system (x, y, z) along with a 
spherical coordinate system (r, 6, ^). The inci- 
dent pulse is a Gaussian function in time prop- 
agating along the z direction. The pulsed Gaus- 
sian beam has a spot size of wo = 1-0 /im 
and the focal point is arbitrarily located at 
(xo,yoi*o) hi 'he Cartesian coordinate system. 
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Figure 2. Time-dependence of the internal intensity at Pi(0.9a, 0°,0°) of a sphere. 
The incident pulse is either a plane wave or a Gaussian pulse focused at different locations. 
The incident frequency is on resonance with the T.Ess,i mode. The width of the incident 
pulse is To = 0.5239 ns and the resonant lifetime is T, = 0.2052 ns, m = 1.36 and a s» 4 /im 
for an incident wavelength of 0.532 /im. Beam position along the y axis is shown relative to 
the sphere radius a. (a) Linear scale. (b)Log scale 
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Figure 3. Time-dependence of the inter- 
nal intensity at Pi(0.9a, 0', 0°) of a sphere as 
in Fig. 2 except that the incident pulse width 
is T0 = 0.1746 ns, i.e., T0 <rr. 
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Figure 4.Time-dependence of the inter- 
nal intensity of a sphere where the incident 
pulse is either a plane wave or a Gaussian pulse 
focused at different locations. The incident 
field frequency is detuned by 5 linewidths from 
the resonant mode TS8s,i. All the other pa- 
rameters are the same as in Fig. 2. 
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Figure S.Time-dependence of the inter- 
nal intensity at P^O.90, 0°, 0") of a sphere as 
in Fig. 4 except that the incident pulse width 
U r0 = 0.1746 ns. 
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Figure T.Time-dependence of the backscat- 
teied intensity at P3(S00a, 180°, 0°) of a sphere 
as in Fig. 6 except that the incident frequency 
is detuned by 5 linewidth away from the 2\E68,i 
resonance location. 
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1.    INTRODUCTION 

In radar cross section (RCS) applications, it is often desirable to generate the inverse 
synthetic aperture radar (ISAR) image of a target. The ISAR image can be used: (i) as a 
visualization tool by displaying the microwave image of the target, (ii) as a diagnostic tool 
to pinpoint the key scattering centers on the target, and (iii) as an identification tool to 
distinguish and classify the target from a collection of possible targets. ISAR image 
formation is typically achieved by utilizing the monostatic scattered field data, obtained 
through either measurement or numerical simulation, over a finite range of look angles and 
frequencies. In this work, we investigate the feasibility of utilizing bistatic scattered field 
data to obtain the ISAR image of a target (Fig. 1). 

Our work is motivated by the recent development of a general-purpose high-frequency 
electromagnetic scattering code, XPATCH [1], which can predict the scattering from 
complex, realistic targets. XPATCH is based on the shooting and bouncing ray (SBR) 
technique [2],[3]. The major computation time for the XPATCH code can be attributed to 
two parts: geometrical ray tracing and electromagnetic computation. The latter includes the 
computation of the geometrical optics field associated with each ray and the ray tube 
integration algorithm. As the complexity and size of the target increases the ray tracing time 
can become a dominant portion of the total computation time. In the usual practice where 
monostatic data are utilized to generate ISAR images, the ray tracing portion of the code is 
executed for every look angle. Bistatic scattered field data, on the other hand, is cheaper to 
acquire, since ray tracing is performed once for the incident direction and only the 
electromagnetics calculation is needed for every look angle. Hence microwave image 
formation using XPATCH in the bistatic arrangement can result in time savings. 

2. FORMULATION 

The equivalence between the monostatic and bistatic RCS data under the physical 
optics approximation is not new and has been discussed earlier by Kell [4]. However, this 
equivalence has not been fully evaluated for image formation applications. Farhat et al. [5] 
utilized measured far field data collected under a fixed bistatic angle for image formation. 
In this section we will derive the relationship between the bistatic scattered far field data 
and the microwave image of the scatterer. Our derivation will parallel closely with the 
formulation found in [6]. Consider a perfectly conducting object illuminated by a plane 
wave with exp(jcot) time dependence and an incident wave vector k'. The incident electric 
field is E'(r) = £ Eo exp^jk'-r) where Eo and £ are respectively the magnitude and direction 
of the incident electric field and Ik'l = ko. The scattered far field at the observation point r 
due to the physical optics current Js = 2 n xH' on the target is then given by 
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•// 
E'(r) = -jco^o     Js(r') G

ff( |r-r| )d2r' 0) 

where Gff(lr-r'l) = [exp(-jkor)/47cr] exp(+jkobT') is the free space scalar far-field Green's 
function with kob = kor and the integration is over the illuminated object surface SU1. We 
will now assume that the component of the scattered field in the p direction will be 
observed and define a scalar object shape function O(r') as 

O(r) = p ■ [ln(x') x (k; x t)] 5(S(r')) (2> 

where 5(S(r')) is the Dirac delta function with its argument S(r') defined as zero when r' 
e Sm. The observed component of the scattered field in the p direction, by making use of 
(2) can thus be written as 

+=° 

p-Es(r) = -jkoEo-^-j IJ 0(0 etKk**V dV 0) 

Note that equation (3) relates the scattered far field to the three-dimensional Fourier 
transform of the object function, or more explicitly, 

pEs(r) = CO(kob-ki) (4) 

where C = -jkoEo e'J or /4jtr and the tilde denotes Fourier transform. 

In ISAR image formation, we are primarily interested in a two-dimensional projected 
image of the three-dimensional target. This two-dimensional microwave image is the 
projection of the object shape function onto a plane. It can be easily shown that the 
projected object function Oproj(x,z) and a central slice of the three-dimensional Fourier 

space data Ö(kx,0,kz) form a two-dimensional Fourier transform pair: 

h O(kx,0,kz) = | | Oproj(x,z) ei"**** dxdz (5) 

This is the well-known projection-slice theorem. Therefore, the scattered field data 
collected under the ky=0 condition can be used to form the two-dimensional ISAR image 
Oproj of the target. To acquire sufficient data in the Fourier domain for image formation, 
we can make use of angular and frequency diversity. For a given incident and observation 
direction in the xz-plane, the scattered field data corresponds to a point k = kxx + k2z = kob 

- k' in the Fourier transform domain of the projected object function, as derived in (4). By 
varying the observation angle while keeping the incident direction fixed, the locus of points 

(kx + kx)2+(kz + kz)
2 = £ (6) 
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is traced out in k-space. Equation (6) defines a circle in the kx-kz plane with radius ko and 
its center is at -k1 (see Fig. 2). By collecting the scattered field data over various 
frequencies, a set of circles with different radii ko can be traced out. Fig. 3(a) shows the 
region of kx-kz plane which can be accessed for a finite range of observation angles and 
frequencies for the case when k' = koz. Proper inversion of this sector of data then leads 
to the two-dimensional microwave image of the target. 

3. NUMERICAL RESULTS AND DISCUSSIONS 

By using computed data from XPATCH, the performance of the bistatic imaging 
algorithm will now be illustrated. Shown in Fig. 4 is the results for the NASA almond. 
The geometry of the target is shown in Figs. 4(a) and 4(b). The monostatic and bistatic 
images are shown in Figs. 4(c) and 4(d), respectively. These images bear very good 
resemblance to each other. In both the images we can see the outline of the lit side of the 
almond. Shown in Fig. 5 is the results for a rhombic cube. The geometry of the target is 
shown in Figs. 5(a) and 5(b). The monostatic and bistatic images are shown in Figs. 5(c) 
and 5(d), respectively. The principal scattering centers corresponding to the three corners 
are distinctly captured by both the images. In the monostatic image, the fourth backside 
corner is also weakly visible. It is absent in the bistatic image since the comer is in the 
deep shadow of the incident illumination. Shown in Fig. 6 is the results for a dihedral 
corner reflector. The geometry of the target is shown in Figs. 6(a) and 6(b). The 
monostatic and bistatic images are shown in Figs. 6(c) and 6(d), respectively. While the 
three scattering centers corresponding to the three edges are clearly visible in both images, 
there are additional ghost artifacts in the two images. In the monostatic image the ghost 
artifact appears just above the right edge of the bottom plate whereas in the bistatic image it 
appears in the middle of the bottom plate. Since both the monostatic and bistatic imaging 
algorithms have been derived based on the physical optics approximation, multiple 
scattering effect results in ghost artifacts in the images. Furthermore, these ghost artifacts 
appear at different positions in the monostatic and bistatic images because the path lengths 
of the multiple scattering effects are strongly dependent on the incident angle and are 
different for the two arrangements. 

The time savings to simulate the bistatic scattered field data over the monostatic data 
generation using the SBR technique is the main motivation for our investigation into bistatic 
image formation. If we define T as the time it takes to perform ray tracing for one look 
angle and E as the electromagnetic computation time, then the total time to simulate 
monostatic scattered field data for N look angles is tjn = NT + E. The time to simulate the 
bistatic far-field data for N bistatic angles, on the other hand, is tß = T + E. The time 
savings is At = tM - tß = (N-l)T. It increases linearly with the number of look angles N, 
and the ray trace time T. 

To conclude, there exists a tradeoff between image fidelity and time savings for the 
bistatic imaging scheme. The time savings depends on the ray trace time. The ray trace 
time for a target is large whenever multiple scattering effect is dominant or the electrical size 
of the target is large. On the other hand, whenever multiple scattering exists the ghost 
artifacts in the bistatic image do not agree with those in the monostatic image. This tradeoff 
is clearly brought out by the dihedral where the time savings for the IS AR generation using 
the bistatic scheme is a factor of 5 over the monostatic scheme but the image fidelity to that 
of the monostatic scheme is not as good. Hence bistatic imaging scheme is a preferred way 
for ISAR image generation if the image degradation due to movement of ghost artifacts is 
not an important consideration. 
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Fig. 1. ISAR image formation using bistatic instead of monostatic 
scattered field data. 
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Fig. 2. The locus of points traced out in the plane by varying the 
observation angles for a fixed incident direction. 

Bistatic 
Scattered 
Field Data 

Fig. 3. Fourier space data collected under the bistatic arrangement. 
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(a) NASA almond 
(b)  Projection of the NASA almond 

on the x-z plane 

(c)  Monostatic image 

Freq. scan : 3 - 9 GHz 

Angle scan : (-45°, 45°) 

(d) Bistatic image 
Freq. scan : 3 - 9 GHz 

Incident angle:  0° 
Ob. angle scan: (-90°, 90°) 

Fig. 4. Monostatic and bistatic 1SAR images for the NASA 
almond. 
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0.4 m 

(a) Rhombic cube (b) Projection of the rhombic 
cube on the x-z plane 

(c)  Monostatic image 
Freq.scan :6-10GHz 
Angle scan: (-45°, 45°) 

(d) Bistatic image 
Freq.scan :6-10GHz 
Incident angle:    0° 
Ob. angle scan : (-90°, 90°) 

Fig. 5.  Monostatic and bistatic ISAR images for the 
rhombic cube. 
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(a) Dihedral 
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(b)   Projection of the dihedral 
on the x-z plane 

(c)   Monostatic image 
Freq.scan : 4-10 GHz 
Angle scan : (17.5°, 62.5°) 

(d) Bistatic image 
Freq. scan : 4 -10 GHz 
Incident angle:   350 

Ob. angle scan : (0°, 90°) 

Fig. 6. Monostatic and bistatic ISAR images for the 
dihedral. 
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Time Domain Smyth-Kirchhoff Approximation to Aperture Coupling 

K.S. Kunz and S.A. Blocher 

Penn State and Phillips Laboratory 

Introduction 

Modeling the interior coupling to complex aerospace systems 

poises a formidable challenge to the computational 

electromagnetics community.  Resources on the order of Teraflop 

computers will be needed for complete solutions using technigues 

such as the Finite Difference Time Domain method. A desirable 

alternative is to develop computationally efficient 

approximations, particularly at high frequencies, to complement 

the more exact but more expensive solutions. 

Coupling across an aperture into a cavity can be treated in 

this fashion using a combination of a time domain Smyth-Kirchhoff 

approximation to aperture coupling and the method of images to 

account for the many internal reflections of the transmitted 

aperture field.  The formulation of the time domain Smyth- 

Kirchhoff approximation to aperture coupling is critical to the 

technique and will be addressed here. 

Formulation 

The frequency domain Smyth-Kirchhoff expression for aperture 

coupling (1) is 

(1) 
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Figure 1 describes the geometry and the attendant parameters. 

J, (ox) 
The —  (where x = a/c? and u = kc) can be expanded (2) as 

J'1(wx)   i 
tax    2 

1 _ -x2"2 + *
4<">4 

192   9,216   1,474,560 
(2) 

Then a time domain Gaussian pulse, Ae~lat)1 •   is assumed 

incident on the aperture.  The corresponding frequency domain 

content of this pulse is Be"<Qm'2 where B and n can be related to 

A and a.    Each frequency component is assumed to obey the 

frequency domain Smyth-Kirchhoff approximation, an assumption 

only good above aperture cutoff but applied at all frequencies 

here.  Making the substitution yields 

E(r,a)  = -=2f  a2cosa(£xi2J — -i- _ x2a2  + Se-(Qu)
2    (3) 

k' 

To obtain the time domain Smyth-Kirchhoff approximation we 

take the inverse Fourier transform of the above expression. A 

critical step is to observe that terms of the form (£,nBe'la")2 

transform into l-^r) Ae~lat)Z.    The derivatives in the time domain 

terms can be readily evaluated so as to obtain the time domain 
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Smyth-Kirchhoff approximation.  Ignoring phase shifts of _^0
J~cI 

it is 

E{f,t)  =  -ä(cosa) (£xuk) (^)A(_2a2) 
x *     c    2 

t  + JL-(-6o2t  + 4a4fc3) 
8 

+ -^2"(60a4t - 80o6t3 + 16a8t5) 

+     *       (-840o6t+1680a8t3-692a10fcs+64a12t7) Ae-<«>2      (4) 

Evaluation 

The time domain Smyth-Kirchhoff approximation behaves as 

expected.  The case of £ = 1, boresight field across the aperture 

is presented here. The aperture acts as a high pass filter and 

the resulting signal (Figure 2) for £*£* = 9  or boresight 

scattering and r = 1, oscillates at about the aperture "cutoff 

frequency" given by f = c/X = c/(27ra).  The figure shows the 

effect of including more and more of the terms in equation 4 up 

to the last term in the approximation.  As more terms are 

included the oscillations approach an asymptotic limit in their 

period. 

J, (cox) 
The —  term of equation 1 yields a nearly identical 

Ci>X 

behavior in the frequency domain (Figure 3) as the frequency 

domain expression on the right-hand side of equation 2 used to 
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obtain the time domain Smyth-Kirchhoff approximation with the 

largest number of terms.  It is important to note that taking an 

inverse Fourier transform of the frequency domain expression with 

—  does not yield an analytically expressible result that 

may be readily used in the time domain. 

An example is using the method of images to formulate an 

internal cavity field distribution arising from aperture coupling 

into the cavity.  Here the time domain Smyth-Kirchhoff 

approximation in the form of a single series expansion is time 

shifted, scaled by distance and for FDTD applications lumped into 

time domain bins to form a time history of the fields at desired 

locations.  If greater accuracy is needed an approach such as 

this will accommodate additional terms in the approximation at 

not too high a computational cost. 

Conclusions 

With the increasing popularity of time domain computational 

electromagnetics codes such as FDTD [3], it is useful to have 

time domain expressions for fields incident on the interior of a 

cavity.  The development of the time domain Smyth-Kirchhoff 

approximation is one of the important steps in achieving this 

goal. 
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Figure 1. Cavity with aperture model 
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A Hybrid Approach 
to Trailing Edges and Trailing Ends 

David R. Ingham 

A procedure has been developed for combining asymptotic and numerical methods. It 
handles near field effects numerically and far field effects in high frequency approximation. It 
was reported in [Ingham 1990] and was justified in terms of scattering theory in [Ingham 
1992]. The emphasis here is on implementation. This method eliminates the difficulty 
encountered by other semi-numerical methods near trailing edge grazing angle. It is a way of 
connecting a numerical calculation of the edge region to an analytic calculation of the 
scattering by a large smooth surface. The error can be given a physical interpretation and 
controlled. 

Half plane based calculations have been done and can have broad application in high 
frequency electromagnetics. Other Applications require further work. The variety, accuracy 
and generality of numerical programs has increased as computers have become common. 
There is also a large literature of analytical and asymptotic methods. These are less well 
known to us, because many of them were developed at times or in places where powerful 
computers were not available. Since the distorted wave approach provides a relatively simple 
interface between the two parts, the greatest difficulty in extending it will be matching 
applications with analytic methods. 

INTRODUCTION 

T'HE direct scattering by a leading edge is sometimes calculated by modeling the edge 
numerically and neglecting smooth parts of the body that significantly contribute to the 

scattering only in the specular direction. A multiple scattering term that involves scattering by an 
edge and a smooth surface can be treated by a combination of diffraction and geometric optics if the 
two are well separated. When the edge terminates the surface, the solution turns out to be a 
numerical integration, which for a half plane is called the Physical Optics near field. 

included in far field 
integrals only 

variables for near 
field calculation 

Some of the work discussed here was done while D. Ingham was with the Lockheed Missiles & Space Company, 
3251 Hanover Street, Palo Alto, CA 94304-1191. 
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Diffraction coefficients for edges of arbitrary shape and composition can be obtained by 
numerical calculation of a narrow strip at the edge [Herrmann]. One must use special care when a ray 
coming to or from a part of a body that he treats numerically grazes a part that he treats in a high 
frequency approximation. The specular reflection point spreads out at grazing angle. 

The method discussed deals with this difficulty. One substitutes the Physical Optics near 
fields (or generalizations of them for curved surfaces) called distorted waves for the incoming and 
outgoing plane wave fields of a purely numerical calculation. These plane wave fields usually can 
be identified explicitly in general purpose numerical computer programs. The main difficulty is 
calculating the distorted waves. 

A high frequency approximation that gives an accurate current function far from the edge 
can account for a large smooth region of a scatterer in the field incident on a small edge region, 
where the current is calculated numerically [Sahalos]> [Mitschangl. Applying reciprocity to exchange 
the incident and scattered fields accounts for the effect of the smooth region on the wave as it goes 
away from the edge toward the receiver. In the distorted wave method one takes the latter case and 
then uses the high frequency approximation again to account for the effect of the large smooth part 
on the incident wave. 

RELATION TO THE METHOD OF IMAGES 

The far field effect of a large smooth surface near a form that can be calculated numerically 
is handled by using geometric optics to generate distorted waves. A well known example is the far 
field treatment of the ground in antenna programs. In problems involving a half plane or a plane 
with different properties on its two halves, the Physical Optics near field is needed for the distorted 
waves. This same method can be used for truncations of other smooth or simple shapes. An 
accurate treatment requires a solution for an extended geometry, which can be truncated to match 
the physical geometry outside the numerical region. For example a solution for an infinite cylinder 
can be used in the calculation of scattering by a semi-infinite cylinder. 

For a perfectly conducting full plane, the method of images is geometric optics. The 
general green's function is: 

GjT(?,r1 = G(?,?) + GF(r,P), 

where Gj (r,r') =-Ir-G (r,Ir-r') 

and Ir = xx+yy-zz .[Burke] 

[For a full plane that is not a perfect conductor, the above expression needs only to be 
multiplied by a reflection coefficient for the far field, but the near field requires, at least, a separate 

integral to be evaluated for each r-r'.] 
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If parts of the total system are far away, and relatively small, they can be handled by plane 
waves. For scattering, the excitation looks like this: 

The scatterer is illuminated by the reflection of the source as well as by the physical source. 
There are two equivalent ways to think about the reflection by the ground on its way from 

the scatterer to the receiver. One is to include the reflected currents in the integral over the scatterer 
according to the green's function expressions above: 

The other is to apply reciprocity to the way we think about the excitation: 

The integral extends only over the physical scatterer, but the excitation of the reflection of the 
receiver is included. 

In complicated scattering problems, the second point of view has the great advantage that 
one need think only once. For example, with an imperfect ground the reflected scatterer is not so 
obvious because it does not apply for the near field, but the reflected receiver approach must be 
valid when its reciprocal case is valid. 

The term "incoming distorted wave" describes the wave coming from the transmitter and its 
reflection. The "outgoing distorted wave" is the wave shown above, including the reflection. It is 
pointed toward the receiver, as shown by the arrow, if an overlap integral convention is used. It 
points away from the receiver in the reaction integral convention. Formulas given in [Ingham 
1990] and [Ingham 1992] are in the reaction integral form. 
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EXAMPLES 

Consider the far field radiation of a transmitting antenna on a large lossy sphere: 

variables for near 
field calculation 

included in far field 
integral only 

One approach to this problem is to solve the shaded part of the problem numerically, and then 
include the effect of the lower part of the sphere by using a Mie series or asymptotic treatment to 
calculate the outgoing distorted wave.f^6] 

The same method will work if the bottom of the sphere is missing, provided the interaction 
between the hole and the antenna can be ignored. If the left half of the sphere is missing, specular 
reflection must be included in a way that accounts for the asymmetry. 

variables for near 
field calculation 

included in far field 

Suppose there is an electrically large thin half sphere with an electrically small antenna at its 
edge. The field radiated to the left is difficult to calculate because of the concave surface, but if the 
surface is sufficiently large and lossy, the largest contributions are the direct term and its specular 
reflection. The direct term can be calculated by numerically including the part of the half sphere 
near to the antenna, as above. Its reflection can be included by geometric optics. 

This approach breaks down for the field radiated to the right when rays coming from the 
antenna graze a region of the half sphere's surface that is too large to calculate numerically. Optics 
does not apply at the edge. The exact distorted wave field for the full sphere will not work for the 
same reason. The calculation can be done, with a distorted wave obtained by integrating the full 
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sphere solution over the half sphere surface. This is not trivial, but it is much more tractable than 
solving for currents on the same large surface. 

Another type of problem that requires this approach near grazing angle is the radiation or 
scattering by the ends of long cylinders: 

variables for near field 
calculation 

included in far field 
integrals only 

If the transmitter or receiver is close to the cylinder axis, one must find a solution to the two 
dimensional infinite cylinder problem. 

THE METHOD 

The method given in [Ingham 1992] is: 

1) Select a simplified system S1 that approximates the physical system on the side that is closest to 
the incident ray. 

2) Find an analytic expression or approximation for the field on Sj that is valid at large distances, 
in the direction nearest to the incident ray. When Sj is flat, this is geometric optics. 

3) Repeat steps 1) and 2) for the part of the system near to the outgoing ray, if necessary. These 
fields now include all that one needs to describe the contribution to the scattering from 
outside a finite region S2. 

4) Truncate these fields (currents) on Sj somewhere inside S,. (Sometimes, better accuracy will 
be obtained if this truncation is not done at a sharp edge, but by a smooth window function 
that forces the current to fade away gradually.) 

5) Add, to the incident plane wave, the field on S9 given by the Stratton Chu integral over the 
above approximate field on Sj. This new incident field is the incoming distorted wave. 
For a half plane, this is the Physical Optics near field. Repeat this step to obtain the 
outgoing distorted wave. If only one ray is near to grazing angle, a plane wave will do for 
the other one. For monostatic scattering, the two distorted waves are identical. (They have 
opposite propagation directions in the overlap integral convention.) 

6) By some standard numerical method, calculate the field (current) induced on S2 by this incident 
distorted wave. 
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7) Calculate the scattered field, not directly by the Stratton Chu integral, but as the reaction of the 
outgoing distorted wave with the field on 5>2- The explicit formula is: 

. r 

DCQ(?')XH2(?') -£(?•) xXQm(?')]-dS' 

s2 

where Q is shorthand for the angular coordinates of r, (9,<|>) and specifies the polarization 

|f|-»   |r|E2(f)-£ = 
in direction Q 

E. 
8) Add the field scattered by Si to obtain the total far scattered field. 

IMPLEMENTATION 

In practice, one has two computer programs (or procedures). One is something like NEC 

or Trimom[Wilton] that can handle the small part numerically. The other may come out of an old 
book on separating Maxwell's equations or on high frequency approximations. 

For a half plane, even if composed of many layers, the hardest part has been performing 
the integral in step 5). Various tricks are used, but this integration still dominates the accuracy and 
the computer time. Physical Optics has been around a long time. It is likely that a much better 
method has been reported, but it may or may not work for more complicated shapes. Most of the 
tricks reported in [Ingham 1992] will work for more complicated shapes, so this problem should 
not deter one unless very high accuracy is required. 

One attaches the high frequency and numerical integration procedures to make a distorted 
wave subroutine. Electric and/or magnetic fields are required according the forms in which the 
incident and outgoing plane waves appear in the numerical program. 

It is not necessary to understand a numerical program to use it in this way. One finds two 

expressions that look like e'-J^0 • f), one in the excitation and the other in the far field integration. 
In some Galerkin's method programs (such as ciCERO[putnaml) these are the same subroutine, 
because the symmetry of the problem is reflected in the computer code. More commonly the 
outgoing plane wave is viewed as a Stratton Chu integral by the author. In this case, the same 
program could have been written from a reaction integral point of view, and one can still identify 
the outgoing plane wave and replace it by a distorted wave. The normalization of each distorted 
wave is the same as that of the plane wave it replaces. 

If the program is worn and incompletely documented, it is essential to run several simple 
test cases. This was the case with the MM2D[Tavlor] based calculations. 

ADDITIONAL REMARKS 

Since ACES invites negative results, I mention that this method has not been successful for 
smoothly curved trailing edges. Though arbitrary accuracy is possible, the method used so far to 
calculate the Physical Optics near field has too much numerical error to handle the very small back 
scatter from a smoothly rolled trailing edge. Calculations for sharp edges composed of 
combinations of materials have shown the advantages expected. 

Generating the distorted waves has been the limiting step even for half planes and has not 
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been attempted, in this context, for other surfaces. These problems are reduced, however, from an 
integral equation on a large surface to an integral over that surface. 

In principle, it is very important to be able to handle the coupling between two features on 
the same large smooth surface, because this is needed for higher order GTD terms. For a large 
perfect conductor, the far field expression is good at the surface, but it gives zero on lossy 
surfaces. This difficulty, also, is manageable. It requires a quasi-far field expressionJHurs,l 
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High Frequency Approximations to the Physical Optics 
Scattering Integral for Curved Edged Surfaces 

William B. Gordon 

Radar Division 

Naval Research Laboratory 

Code 5311 

Washington,   D.C.   20375 

ABSTRACT 

Two high frequency (HF) approximations are obtained for the Physical Optics (PO) scattering integral 

for a general curved edged reflecting surface. In the first, the PO scattering integral is approximated as 

the sum of a specular effect and an edge effect, where the latter is represented as a line integral 

evaluated over the boundary edge of the reflector. A closed form result is then obtained by applying the 

Principle of Stationary Phase to the line integral. These approximations are compared with known 

closed form results in special cases, with numerically calculated mathematically "exact" results, and 

with a result from the Geometrical Theory of Diffraction. The approximations are found to work well 

for surfaces which satisfy certain smoothness and convexity conditions, but they break down for curved 

surfaces which have flat parts with zero curvature. There are also numerical glitches that can occur at 

caustics or when the specular point falls on or near the boundary edge. 

1.  BACKGROUND- THE POLYGON FORMULA 

In this paper we consider HF approximations to the PO 

scattering integral for the radar backscatter from a general 

curved edged surface viewed at arbitrary aspect. The PO 

scattering integral for backscatter from a reflecting surface S 

is the double integral given by 
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(1)       Jpo    = (1/A) j        ei2ks"x  (s-i,) dA 

where A is the radar wavelength, S0 is the illuminated portion 

of S, k = 2i/A, s is the unit scatter vector (pointing from S 

to the radar), X is the position vector of a general point on 

S, Tj is the unit normal vector to §, and dA is the 

infinitesimal element of area on S. The scattering integral is 

normalized so that the radar cross section a   is given by 

(2)     <r   =   An  | Jpo | ' 

It is known that (1) can be reduced to a closed form result 

when S is a flat polygonal plate [Gordon]. Specifically, if S 

is a polygon with vertices {ax , a2 , . . . , aN}, then (1) reduces to 

N (                                                                                   a n + a n+1 "\ 
(i\       i i cos 0      V^ r,   ^ A   , sin( ks-Aa„)  i 2 k s •  5  (3)  Jp° = i?» £([('**>■*'"'   (k,.A.n)e }■ 

where 6 is the off-normal angle defined by cosO = (s-)j), Aan 

= an+l ~~ an > and we set aN+1 = aj. When 6 = 0, (3) becomes 

indeterminate, but (1) reduces to 

. \        i 2 k s ■ X0 ,„, ■   ■ 
Jpo      —      ~~r~    e • {flat plate, normal incidence) 

where A is the area of S and X0 is the position vector of any 

point on S. The area A and unit normal >j of a flat polygonal 

plate can be calculated according to 

2 A T)        —        a! x  a2 + a2 x a3  + ... +  a N x a: . 

In the next section, the polygon formula (3) will be used to 

obtain a HF approximation for curved surfaces. 
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2.   HF APPROXIMATIONS FOR CURVED SURFACES 

Suppose now that S is a smooth curved convex surface, or 

portion thereof, with boundary edge öS. From the Fermat 

Principle, one would expect a HF approximation of the form 

(4) Jpo      RS       Jspec +    ^edge       ' 

where the first and second terms on the right hand side 

correspond respectively to specular and edge effects. The 

standard Geometrical Optics formula for Jspec is given by 

[Born & Wolf] 

,_, , _ e
i2kS"Xo (i*74)[2 -2ind(p0)] 

(5) JSP6C       - 2j|K(p0)| 
e 

where X0 is the position vector of the specular point p0 , 

K(p0) is the Gaussian curvature of S at p0, and the "index" of 

the specular point is defined by 

2    if s - X   is a local maximum at  X = X0 , 

ind( p0)    =    <    0    if s • X   is a local minimum  at  X = X0 , 

1    if s • X   is a      saddle at  X = X0 . 

To obtain the corresponding result for Jedge , we approximate S 

with a collection of a large number M of small non-overlapping 

rectangular tiles, as indicated in Figure 1. We then apply (3) 

to each of the tiles, and sum the results. According to (3), 

each of the rectangular tiles gives rise to 4 edge terms, so 

that the scattering integral (1) will be approximated as the 

sum of 4M edge terms. It is anticipated that, in the HF limit, 

the edge effect Je(jQe will be accurately approximated as the sum 

of  the  all  contributions from the  edges Aan  lying on dS. 
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Referring to (3), we see "that the sinx/x factors are equal to 

unity in the limit as the vector differentials Aan become 

infinitely small.  Hence, from (3) we get the result 

(6)     Jedge  =  TV /   t _7S,,)2  *
i2kS-"  <■*,).dx 

as 

In this derivation it was assumed that the entire boundary OS 

is illumniated; if such is not the case, the integral (6) is 

only taken over the portion of dS   which is illuminated. 

Substituting (5) and (6) into (4), one obtains a HF 

approximation to Jpo which is much easier to calculate 

(numerically) than the double integral (1). Moreover, a closed 

form result can be obtained by applying the Principle of 

Stationary Phase to (6). When this is done, one obtains the 

result 

(7)      Jedge   *    £ -Up) 
P 

where p varies over the set of bright points of dS (the points on öS 

at which s-X is a local maximum or minimum) , and at each such 

point 

(8) J0(p     =       ±f—    e p e x- —'- -j-   (sxV)-X'p 

where the ± sign is chosen to make the quantity inside the 

square root positive, and Xp , X'p , and Xp are the position, 

velocity, and acceleration vectors at p. There are certain 

obvious breakdowns when either of the denominators is zero, one 

of them (the case S-T; = 1) occuring when the specular point 
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falls on öS.  Also,  in the sum (7), one only includes those 

bright points occurring on the illuminated portion of öS. 

3. TEST CASES 

Let (x,y,z) denote standard rectangular coordinates, and 

set r = -Jx2+y2 . Our first test case is a surface of revolution 

z=z(r) viewed at axial incidence for which the vertex is at 

the origin, and the boundary edge is at a height h above the 

vertex. Then (6) reduces to 

J edge        2z'(r0) 

where r0 is the radius of circular edge. This result agrees 

with previously published results on surfaces of revolution 

viewed at axial incidence [Gordon k Bilow]. Specializing to 

the case of a paraboloid z = r!/2R, and combining this result 

with the specular effect, one obtains 

T    _    i R Jspec —     2    ' 

"edge 

Hence, from (4) 

i R   — i 2kh 

Jpo „ -if- (_l+e-i2kh), 

and from (2) , 

a  as 4JT R2  sin2(kh)   , 

which happens to be the exact PO result.  (The paraboloid is a 
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special  case for which the HF limit  is equal to the actual 

value of Jpo.) 

To test the result (8) , we compared the corresponding 

value of radar cross section with the GTD result obtained by 

Raybin for the case of a surface of revolution with a circular 

boundary edge viewed at arbitrary incidence [Raybin] . Letting 

o-pQ and CQTD denote the values of the edge effects as calculated 

from (8) and Raybin's formulas, respectively, it turns out that 

,  ±1 _ / 1 — cos tp   \ 
~    V 1 + cos i>   I 

where V is the grazing angle between the radar 1 ine-of-sight 

and the surface at the bright point, and the sign in the 

exponent depends on polarization. This result is a confirmation 

of (8) since it is generally accepted that the agreement 

between the PO and GTD calculated edge effects is good when the 

grazing angle is large, and bad when the grazing angle is 

smal1. 

In another test, the HF approximations were compared to 

exact results for paraboloids of revolution viewed at arbitrary 

(non-axial) incidence. Closed form formulas do not exist in 

this case, and therefore a 2 dimensional quadrature had to be 

used to calculate Jpo ■ A typical example is shown in Figure 2. 

The dashed line was obtained by using (6) for calculating the 

edge effect, whereas the solid line was obtained from the 

stationary phase approximation (7) . The angle 6 is the 

co-latitude, which is zero for nose-on incidence, and the blow- 

up in the stationary phase result at 0 = 0 is due to the 

vanishing of the quantity s-Xp that occurs in the denominator 

of (8). The glitch occurring at $ « 20° corresponds to the 

case when the specular point falls on the edge. 
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FIGURE 1 
A General Edged Surface 

FIGURE 2 
Calculated RCS for a Paraboloid 

Other calculations have been performed, some of which were 

designed to push the HF approximations to the limit. As 

expected, the HF results failed -for surfaces with flat parts. 

The results of these tests will be reported elsewhere in more 

detai1 . 
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Numerical Imaging of Finite Element Frequency Domain Solutions 

R. Craig Baucke, GE Aircraft Engines 
John D'Angelo, GE Corporate Research & Development 

Abstract:     A numerical bistatic imaging technique is applied to two 
dimensional finite element frequency domain solutions.    The numerical 
imaging process efficiently provides information about the location and 
magnitude of scattering centers at a single frequency.   Example images are 
provided for some EMCC benchmarks and a resistive/conductive strip. 

I. INTRODUCTION 

The finite element frequency domain (FEFD) method efficiently 
computes the near fields of antennas or scatterers [1,2]. In many applications, 
the near field solutions are transformed to the far field to provide radar cross 
section (RCS) or antenna gain results.  However, far field information does 
not indicate the location or strength of scattering centers on the scatterer, as 
images generated from compact range measurements do [3]. In order to 
provide scattering center information, an efficient numerical bistatic imaging 
algorithm has been developed and implemented by Shaeffer in a three 
dimensional method of moments code [4].  In this work, this imaging 
technique is applied to FEFD analysis. 

A brief description of the numerical bistatic imaging (NBI) technique 
and its incorporation into the FEFD analysis is provided. Example images 
illustrate the capability of this technique to identify and evaluate the 
magnitude of scattering centers. 

II. DESCRIPTION OF BISTATIC IMAGING ALGORITHM 

In a compact range, ISAR images can be created by measuring the target 
at a large number of discrete frequencies to gather down range data, and by 
sweeping angle for cross range information [3]. Since a large number of 
frequencies are required to generate an image with good resolution, this 
technique is very time consuming when applied to frequency domain 
analysis.  The numerical bistatic imaging technique developed by Shaeffer 
alleviates this problem.  The NBI technique produces images from frequency 
domain analysis performed at a single frequency by gathering far field bistatic 
data. Little additional computational effort is required due to the simplicity of 
gathering bistatic scattering data. 

The NBI technique is developed from the following Fourier transform, 

(1) 
Ea'ß(rr/re,r$) = JJJ WO^E^O^Ä^ dk* dk* dk! 
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where a,ß indicates polarization, k' is the incident field propagation vector, 
ks is the scattered field propagation vector, Ea'P(k»,ks) is the computed 
scattered field, E<x'P(rr,re,r(j)) is the transformed scattered field in (TT,TQ,T^) space, 
and W(ks) is an FFT window ftmction such as Hanning.  The transform 
variable ks is given by 

(2) ks=k^f + k|9 + k^. 

In two dimensions, (2) becomes 

(3) k  =krf+ ke9 = kxx + kxy = kdowne(jown+kcrossecross 

where the down range and cross range vectors, e,jown and §cross, are defined 
parallel and perpendicular to k'.  When implemented, the far field transform 
computes the scattered fields for each ks value.  The FFT transforms these 
field values using (1) to produce an array which is the image. 

The resolution of the image is given by 

_   231 

(4) r~Aks 

and theoretically has no lower limit.  However, the discrete nature of 
frequency domain analysis limits the resolution.  If the resolution is too 
small, the imaging technique identifies the individual basis functions as 
scattering centers. In practice, a minimum resolution of X/2 preserves the 
true scattering centers in the image. 

III. IMPLEMENTATION OF NUMERICAL BlSTATIC IMAGING WITH FEFD 

The finite element problem is discretized and solved at a single 
frequency, as described in detail in [1]. The range resolution and window size 
of the image are defined and the order of the FFT is computed. A two- 
dimensional array of ks values are calculated, centered around the ks of the 
backscattered field (-k4). The far fields are computed for each ks using a near 
field/far field transform. 

Common methods of computing the far fields from FEFD analysis are 
the harmonic expansion (HE) and Green's theorem integral (GTI) [1,2,6]. The 
harmonic expansion is not an integral method and is difficult to use with this 
imaging technique.  However, the Green's theorem integral and the newly- 
developed volume source integral (VSI) can be easily modified in order to 
compute images using NBI. A description and comparison of these near 
field/far field transforms is found in [5]. 
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After the array of far field results is computed using GTI or VSI, the 
they are transformed by the FFT in (1). The resulting array of data is the 
image of the scatterer, from which the scattering centers can be observed. 

IV. EXAMPLE IMAGES 

Several example images are computed using NBI with the VSI 
transform. Figures 1-3 are images of Electromagnetic Code Consortium 2D 
benchmarks, and the details of each scatterer are described in [7]. 
Computation of these images required less than 5 minutes in all cases on a 
VAX 6510. 

Range resolution = 0.5" 
NFFT=42 
max dB = 0.0 
min dB = -30.0 
5 dB/div 
Hanning window, 1st order 
Zero-padded to 64 
H-polarization 
15020 2nd Order nodes 

0 degrees 

x=-14.5dBA. 

30 degrees 

max=-8.2 dB X 

Figure 1. EMCC 2D Benchmark Example 1, Coated Ogive, Images at 0 and 30 
degrees Incidence Angles 

In figure 1, the image of a coated ogival shape is shown. The incident 
field impinges on the scatterer from the right side in all of the images. The 
image is slightly offset from the geometry overlay due to a software problem. 
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^—fSb^ 
Range resolution = 0.5" 
NFFT=42 
max dB = 20.0 
min dB = -20.0 
5 dB/div 
Hanning window, 1st order 
Zero-padded to 64 
H-polarization 
14500 2nd Order nodes 

^^—~~^___     Wf^gQ^?^' 

180 degrees 
max dB = +7.9 

l§2lä?k 
30 degrees 
max dB = +15.1 

Figure 2. EMCC 2D Benchmark Example 4, Multi-Layer Ogive, Images at 180 
and 210 degrees Incidence Angles 

0 degrees 
Range resolution = 0.5" 
NFFT=42 
max dB = 0.0 
min dB = -40.0 
5 dB/div 
Hanning window, 1st order 
Zero-padded to 64 
H-polarization 
13800 2nd Order nodes 

max dB = -20.3 

30 degrees 
max dB = -20.4 

Figure 3. EMCC 2D benchmark Example 5, Thin-Shell Ogive, Images at 0 and 
30 degrees Incidence Angle. 
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Figure 4 illustrates a resistive strip/perfect conductor geometry that is 
imaged in figure 5. Tapered resistive strips B and C are two wavelengths wide 
and the perfect conductor A is one wavelength wide. The levels at E- 
polarization converge slowly when perfect conductor is present and the VSI is 
used for the far field transform, since the current on the PEC is not directly 
solved and must be computed from the normal derivative of the electric field 
near the surface.  Increasing the mesh density near a discontinuity in the 
surface of the PEC improves the image significantly. In figure 4, a much 
higher mesh density is used around each edge of the PEC strip. 

A goodpec 
B 3000- 0 C\BA 

C 0 -3E00quzl 

Figure 4.  Resistive Strip/PEC configuration for Imaging 

Range resolution = 0.5" 
NFFT=22 
max dB = 0.0 
min dB = -50.0 
5 dB/div 
Hanning window, 1st order 
Zero-padded to 64 
0 degrees 
E-polarization 
7589 2nd Order nodes 

30 degrees 
max=-37.1 db X 

30 degrees 
max=-33.9 db X 

Figure 5. Resistive Strip/PEC Image 
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V. VALIDATION OF IMAGE RESULTS 

Exact validation of this type of image is difficult to define. In practice, 
images produced by the NBI approach have been compared to ISAR images 
for geometries which are somewhat "two-dimensional".   Agreement on the 
magnitude and location of most types of scattering centers is fairly good, 
although no data is available for inclusion in this paper. However, because of 
the fundamental differences between ISAR and NBI images, some difference 
should be expected. For instance, dispersive materials will affect scattering 
centers differently in a single-frequency image (NBI), as compared to an ISAR 
image that requires a certain bandwidth of data which may average the effects 
of the dispersion. 

A quick check of the accuracy of the image magnitudes can be made by 
comparing the maximum scattering center magnitude of the NBI image to 
the magnitude of the echo width pattern at the angle of incidence 
corresponding to the image. This is shown below for the example cases in 
this paper. 

Figure Angle 

0 

NBI max level 

-14.5 

Pattern level 

1 -19.3 
30 -8.2 -9.5 

2 180 +7.9 +4.7 
210 +15.1 +6.0 

3 0 -20.3 -20.0 
30 -20.4 -32.1 

5 0 -37.1 -39.9 
30 -33.9 -28.5 

Table 1.  Comparison of maximum NBI image magnitudes to scattering 
pattern magnitudes. 

Table 1 illustrates that while this check is by no means conclusive, it 
does indicate that the scattering center magnitudes on the image are 
following the same trends as the scattering patterns, and the levels are in 
general the same order of magnitude. 

VI. CONCLUSIONS 

The application of the numerical bistatic imaging technique to finite 
element frequency domain solutions provides an efficient method of 
identifying scattering centers on computer-generated models. This process is 
very efficient when used in conjunction with FEFD far field transforms, and 

187 



the images provide information which is very useful to the electromagnetic 
design community. 
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1 Introduction 

The computing and graphics performance of engineering workstations today are at the 
point where visualization tools are becoming an important aid in research and education hi 
the scientific and engineering disciplines. With scientific visualization tools, researchers in 
electromagnetics can enhance their understanding of scattering, radiation and penetration 
problems. Creating visualization tools will also have a tremendous impact in undergraduate 
and graduate education by giving students a deeper understanding of both fundamental and 
more advanced electromagnetic concepts. 

As a result of our research using the Finite Difference Time Domain (FDTD) method, 
we have found a need to have visualization tools which cover three major areas: object 
generation/definition, object viewing and geometry analysis, and electromagnetic field vi- 
sualization. Under the object generation/definition category, several programs currently 
exist that permit a user to generate an object by manipulating canonical objects in three 
dimensions and then write a geometry file to be translated into an FDTD format. There- 
fore, we concentrated on the remaining two areas and have developed a software program 
that permits a user to view objects as defined for the Pemi State FDTD code and another 
program to display electric or magnetic fields, current or Poynting vector, or electric or 
magnetic field lines in real time. 

Previous work in this area include videotape demonstrations of real-time field compu- 
tation using FDTD during conference presentations [1] and a software package for the Cray 
family of supercomputers. A paper by Kunz [2] describes a software package designed for 
educational purposes (i.e. courseware). This paper presents a description of two software 
programs that were developed at Perm State as research aids hi FDTD analyses of elec- 
tromagnetic problems. This work was done independently and without knowledge of the 
capabilities of other existing software packages. 

2 VIEWOB Program 

The VIEWOB program was developed because of the need for a method to verify objects 
as they are constructed for the Perm State FDTD code. Previous verification methods in- 
cluded line printouts of material types at cell locations and point plots for different material 
types. These methods were time consuming and some geometry errors often went unde- 
tected. With the use of this three-dimensional visualization program, the time required to 
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construct a correct geometry is substantially lower than what was previously required and 
geometry errors are readily apparent. The VIEWOB program has saved countless hours of 
geometry construction, verification and debug time since it has been used on a regular basis 
at Penn State. 

The VIEWOB program is designed to view an object as constructed for the Penn State 
FDTD code in three-dimensions. VIEWOB reads a geometry file containing the size of the 
solution space and the material types present at each cell location. This geometry file is 
written as a binary file and is stored on disk in compressed form. When VIEWOB retrieves 
a geometry file, it uncompresses the file, reads the data and then recompresses the file on 
the disk. The different material types are indicated by a colored line that is drawn one cell 
length long corresponding to a cell edge that has a specific permittivity or conductivity. 
The outline of the problem space is also drawn and the coordinate axes are labeled. An 
option box on the right side of the screen displays the size of the problem space and the 
location of the slice plane (if the slice mode is enabled). Figure 1 shows the main menu of 
the VIEWOB program and the arrow (—») denotes that menu selection has a stibmenu. A 
brief description of each of the menu selections will now be presented. 

Retrieve Wire Grid 

Shell Solid 

Rotate —»- Slice —»■ 

Translate —^ Reset View 

Scale —»- Grid ON/OFF 

Zoom —>- Help —*• 

Exit Cancel 

Figure 1: Main menu for VIEWOB FDTD object visualization program. 

The Retrieve option is used to retrieve (or load) the geometry files. When Retrieve is 
selected, the user can fist the files and select one with the mouse, or the user can type in the 
file name manually. The Shell option produces a UNDC shell without leaving the VIEWOB 
program so that the user can execute standard UNIX commands if necessary. The Rotate 
option permits the user to rotate the object in the clockwise or counterclockwise direction 
around the x, y or z axis. A + and - box are provided in the Rotate submenu for controlling 
the rotation. The Translate option permits the user to translate the object along the x, 
y or z axis and a + and - box are provided in the submenu for controlling the translation. 
The Scale option permits the user to scale the object along the x, y or z axis and a + and 
- box are provided in the submenu for controlling the scaling. The Zoom option provides 
the capability to zoom in and out on the object to examine details more closely. The Wire 
Grid option displays the object in wire grid mode: lines are drawn along cell edges that 
have nonzero conductivity and/or permittivity that differs from free space or for perfectly 
conducting cell edges. The Solid option displays the object in solid form: squares are drawn 
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if four cell edges in a plane have nonzero conductivity and/or non-free space permittivity. 
The Slice option allows the user to examine details more closely by displaying the object 
in two-dimensional slice planes. The Slice submenu lets the user choose xy, xz or yz planes 
and up or down to move the slice plane through the third dimension. The location of the 
slice plane along with the problem space size is displayed in the option box on the right side 
of the screen. The Slice option provides the opportunity to view object, details that may 
otherwise be obscured in a three-dimensional perspective view. The Reset View option 
resets the view from the slice mode back to the original three-dimensional view when the 
object was first loaded into VIEWOB. The Grid On/Off option turns off the outline of 
the problem space in three-dimensions and turns off the grid in the slice mode. The Help 
option provides a submenu with choices for help information on all main menu selections 
along with some general information about VIEWOB. The Exit option exits the user from 
the VIEWOB program and is in the same location for all submenus also. The Cancel 
option cancels a menu selection and takes the user back to the main menu if a submenu is 
active. The Cancel option is also used to dismiss help screens. 

Even though the VIEWOB program is an extremely useful visual aid, it does have some 
limitations. One limitation is that it is currently set up to display only material types 
corresponding to perfect conductors, lossy dielectrics or dispersive dielectric materials. The 
capability to display lossy magnetic and dispersive magnetic materials will certainly be a 
part of a future version of VIEWOB. Another limitation is that the default size of the 
largest problem space that is displayable by VIEWOB is 140 by 140 by 140 cells. This limit 
is set so that the VIEWOB program can use the maximum amount of RAM available and 
still remain in core. If the user has a geometry where one of the problem space dimensions 
is larger than the default maximum (provided the other two dimensions are smaller than 
the default maximum), the VIEWOB source code can easily be modified and recompiled 
to display that particular geometry. The main advantage with the VIEWOB program is 
that it is generalized because it reads geometry files containing different problem space sizes 
without the need to modify the VIEWOB source code and recompile. Another advantage 
is that VIEWOB does not depend on the cell size or any other parameter to display the 
geometry. With the capabilities and advantages described above, VIEWOB is an important 
research tool because it displays FDTD geometries for verification and allows the user to 
examine every cell edge within the problem space. 

3    FIELDS3D Program 

The FIELDS3D program was developed to visualize electromagnetic field interaction 
with objects in real time. Such a capability would permit users to easily identify scattering 
centers and analyze field behavior and structure inside and outside of the object. This type 
of program could even be used to help design electromagnetic shielding enclosures, devices 
and circuits. 

FIELDS3D is designed to visualize electromagnetic field interaction with objects in real 
time by displaying color-coded field amplitudes in two-dimensional slice planes. The object 
is displayed in the same manner as in the slice mode of the VIEWOB program. The Perm 
State FDTD code performs real-time computations and a separate graphics routine displays 
the fields, object, option box and menu system. FIELDS3D is completely generalized be- 
cause it reads a configuration file for each problem that contains all of the relevant analysis 
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parameters. Many options are available to the user to change the analysis parameters and 
these options will now be desribed. 

Figure 2 shows the FIELDS3D main menu box with all of the available menu selections. 

Retrieve Magnetic —^ 

Shell Current 

Start FDTD Poynting 

Reset Options 1 —*• 

Slice —*■ Options2 —*■ 

Electric —*■ Options3 —*• 

Exit Cancel 

Figure 2: Main menu for FIELDS3D FDTD real-time field visualization program. 

Note again that the arrow (->) denotes that menu selection has a submenu. FIELDS3D 
displays an option box on the upper right portion of the screen which contains all of the 
analysis parameters. These parameters are: problem space size, slice plane (e.g. xy, xz or 
yz), slice plane location, grid on/off, cell sizes, time step, source type (plane wave or point 
source), $ and <f> incidence angles, incident plane wave polarization (6 or (/>), field display 
type, scattered or total field, color scale factor, geometry on/off, and square root on/off. 
The Retrieve option functions the same as for VIEWOB and instructs FIELDS3D to read 
the selected configuration file. The configuration file contains the name of the geometry 
file (used by VIEWOB) and several parameters to instruct FIELDS3D how to set up the 
initial excitation and field display. The Shell option functions the same as for VIEWOB. 
The Start FDTD option starts (and pauses) the FDTD computations. Thus, the user can 
pause the computations, change the slice plane view and then restart the computations. 
The Reset option resets the field computations to zero and reinitializes the problem but 
the geometry being analyzed still remains current. The Slice option functions the same 
as for VIEWOB, and the user can move the slice plane dynamically (while computations 
are taking place) or while the computations are halted. The Electric option provides a 
choice of electric field components for display including electric field lines. The electric field 
lines are displayed as a vector with the length and direction of the vector dependent on the 
magnitude and sign of the appropriate electric field components for the active slice plane 
view. Thus for an xy slice plane view, the electric field fines depend on the magnitude of the 
x and y components of electric field. The Magnetic option provides a choice of magnetic 
field components for display including magnetic field fines. The magnetic field lines are 
displayed in the same manner as the electric field lines. The Current option displays the 
conduction current for dielectric materials and displays the line integral of magnetic field for 
perfectly conducting objects. The Poynting option displays the instantaneous Poynting 
vector in the same manner as the electric and magnetic field lines. 

The Optionsl menu selection allows the user to change some of the analysis parame- 
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ters of the problem. The parameters available in the Options!, submenu are: turn the grid 
on/off, display scattered or total field, use plane wave excitation, use point source excitation, 
select one of four time dependencies for initial excitation (Gaussian, Gaussian derivative, 
ramped sine wave, and hyperbolic secant), change the frequency for the ramped sine wave, 
and change the rise time of the ramped sine wave. A + and - button are provided in the 
submenu for changing the sine wave frequency and rise time. 

The Options2 menu selection allows the user to change more of the analysis parameters 
of the problem. The parameters available in the Options2 submenu are: change the pulse 
width for Gaussian, Gaussian derivative and hyperbolic secant pulses, change the <j> and 9 
incidence angles, change the i, j or k location of the point source, change the point source 
type to feed Ex, Ey or E- component. A + and - button are provided in the submenu for 
changing these parameters. 

The Options3 menu selection allows the user to change some of the display charac- 
teristics for displaying the geometry and color-coding the field intensities. The parameters 
available in the Options3 submenu are: scale the color intensity up or down, turn the geom- 
etry on/off, display the square root of the field intensity instead of the actual field intensity 
(sqrt on/off), help and information about FIELDS3D (info). The Sqrt On/ Off option lev- 
els out the field intensities and makes some of the lower level fields more visible. The Help 
submenu option provides help information on all the main menu selections and provides a 
list of the submenu selections for each main menu selection. The Info submenu selection 
provides general information about FIELDS3D and also provides a section describing how 
to construct the configuration file and what each parameter in the configuration file means. 

When changing analysis parameters, an error messsage will be displayed if that param- 
eter cannot be changed under the current settings. The analysis parameters cannot be 
changed while the field computations are taking place, otherwise instabilities may occur. 
Although FIELDS3D is a generalized program for real time FDTD analysis of electromag- 
netic problems, it also has some limitations. The maximum problem space size that can 
be accommodated is 140 by 140 by 140 cells and the cell sizes and time step cannot be 
changed by the user unless a separate configuration file is loaded. The default problem 
space maximum is again set so that the FIELDS3D program can use the maximum amount 

■ of RAM available while still remaining in core. For large problem space sizes, the the field 
display screen updates may take several seconds or minutes. Only free space, dielectric, 
magnetic and perfectly conducting objects can be analyzed with the present version and 
dispersive material capability will undoubtedly be part, of a future version of FIELDS3D. 
Also, FIELDS3D does not perform any far-field computations at the present time; therefore 
far-field or Radar Cross Section (RCS) data are unavailable. Additional capabilities are be- 
ing examined for future versions of FIELDS3D in the form of suggestions and comments 
provided by users. 

4    Conclusion 

This paper has described two electromagnetic visualization programs based upon the 
FDTD method: VIEWOB and FIELDS3D. The VIEWOB program displays objects as de- 
fined for the Pemi State FDTD code and the FIELDS3D program displays real-time field 
interaction with objects calculated using the Penn State FDTD code. The programs were 
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designed for the Silicon Graphics family of workstations and should work on other work- 
stations that have the Silicon Graphics graphics library. The primary advantages of these 
two programs is that they run on workstations and do not require the use of a supercom- 
puter and they are general enough to not require modifications for each new problem. Even 
though these programs have some basic limitations, they provide a solid foundation for 
visualizing objects and electromagnetic fields using the FDTD method and have proven 
useful in research work at Perm State. 
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Abstract-This paper presents an overview of the software system used at Concordia's EMC Lab 
to construct wire grid models, to display and analyse the resulting current distributions and 
fields, and to prepare presentation graphics. The "life-cycle" of a wire-grid modelling problem is 
traced starting with the initial preparation of the input data set, the calculation of the wire radius, 
and the verification of the model for gross errors and integrity. NEC is often executed at many, 
many frequencies. Model validation is done by comparing computed and measured radiation 
patterns on the basis of equal radiation power, at many frequencies. The display and analysis of 
the current flow on the grid and of the radiated fields at each frequency helps in comprehending 
their intimate relationship near resonances of the antenna and wire-grid structure. Each software 
module can produce a drawing file for the preparation of diagrams for publication or Vugraphs 
or color slides for oral presentations. 

Introduction . 
The EMC Laboratory at Concordia University has been engaged for some time in Compu- 

tational Electromagnetics directed at the radiation and scattering analysis of complex structures, 
using wire-grid modelling and the Numerical Electromagnetics Code(NEC)[l,2]. The need to 
improve upon the error-prone and tedious process of preparing grids representing aircraft and 
ships had led to the development of the computer-aided modelling software system of Fig. 1, 
which aids in visualizing the wires of the model, in finding and understanding both gross and 
subtle errors in grid construction, and in calculating a wire radius for each wire. After solving 
for the current flow and radiated fields with the NEC program, software modules support the dis- 
play of wire-grid currents and fields in a variety of formats. This paper describes the EMC soft- 
ware system and its use in developing a model for the analysis of the performance of the HF wire 
antennas on the aircraft of Fig. 2, as a typical application. The key factors in each step of the 
problem are discussed: model creation and integrity checking; comprehending and correcting 
integrity errors with aid of computer graphics; validation relative to measured radiation patterns; 
the association of currents and patterns as a function of frequency to heighten the understanding 
of results. 

Model Creation and Visualization 
The design of a wire-grid model such as the aircraft of Fig. 2 begins by choosing a "nomi- 

nal" segment length such that the model covers the desired frequency range. Thus to keep the 
segments in the 32 m aircraft of Fig. 2 shorter than 0.14A. up to 30 MHz, the "nominal" segment 
length is set to 1.4 m, requiring 22 segments axially. The fuselage diameter of 3.6 m requires 8 
segments circumferentially. Hence the wire grid model will have 8 axial wires and 21 cross- 
sections. The surface of the aircraft must then be covered with wires following the principles for 
wire placement called "wire-grid modelling guidelines"[3,4].   The basic rule is that the aircraft 
surface be covered with square "mesh cells" of side length equal to the nominal segment length. 
Where the cross-section tapers, triangular cells are to be used to change the number of squares 
around the fuselage periphery. In critical regions such as near antenna feed points, smaller mesh 
cells and shorter segments are used. Often, the initial design of the wire-grid is sketched with a 
pencil onto a plastic model, as an aide to three-dimensional visualization. 
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To construct the wire-grid model of Fig. 2 the (x,y,z) coordinates of each "vertex" or wire 
end-point are "digitized" from three-view drawings with a tablet using program DIDEC(DIgitize, 
Display, Edit and Convert)[5,6] in the chart of Fig. 1. DIDEC displays each vertex point as it is 
acquired. Complex models are built up in sections, such as forward fuselage, center fuselage, aft 
fuselage, wings, and tail planes, and each section is drawn with DIDEC and examined for errors 
as it is constructed. Only one side of symmetrical sections need be digitized. The complete 
model is assembled by concatenating the individual sections. Sometimes it is convenient to digi- 
tize many, many points on an aircraft surface and then derive the wire endpoints by interpolation. 
DIDEC has been supplemented by Computer-Aided Drafting(CAD) programs which provide an 
efficient means of approximating cross-sections of the aircraft with smooth interpolation curves 
to derive the actual wire endpoints. 

The wire-grid model is completed by specifying the radius of each wire in the grid. A gen- 
eralization of the "equal-area rule" [7,8] is used. Thus the wire in Fig. 3 is a member of a four- 
wire mesh of area Al and periphery L,, and of a three-wire mesh of area A2 and periphery L?. The 
wire radius a is calculated according to[9] 

ü      -     Hi     +     ^ -(1) 

To implement this rule for complex grids, program MESHES[9] is used to search the grid for its 
mesh content: for each wire of the grid, the wires forming meshes with that wire are determined. 
Then program FNDRAD(FiND RADius)[9] uses the areas and peripheries of the meshes in Eqn. 
(1) to find an individual radius for each wire of the grid. (Program names originated when six 
characters was the maximum in a file name!) DIDEC provides an overview of the wire lengths 
and wire radii contained in a given wire-grid, by color-coding the wires either by length or 
radius. 

Integrity Checking, Visualization and Gross Errors 
The "integrity" of the wire-grid refers to its freedom from gross errors such as missing 

wires, duplicated wires, wires which cross one another but do not form a junction in the NEC 
code, and of utmost importance, conformity to NEC's geometry restrictions[l,2], called "NEC 
modelling guidelines", which are discussed in detail in Ref. [4]. "Integrity checking" is the sys- 
tematic verification of the grid, both for gross errors and for conformance to the NEC modelling 
guidelines. 

The most basic integrity check is a visual inspection of the grid drawn by program DIDEC 
or program MODEL, in the format of Fig. 2. Each wire is represented by its centerline. For a 
complex, three-dimensional grid such as the aircraft, such a drawing is very confusing. Program 
HDNMOD(HrDden MODel) draws the wires as if they were located on the surface of an 
opaque solid, as shown in Fig. 4. The display is much simpler, and the grid can be inspected to 
see whether it is an accurate implementation of the original design. Experience has shown that a 
variety of gross errors are easily missed by visual inspection, but are efficiently found with the 
mesh search, as described in the following. 

Program MESHES [9] is run to identify meshes in the wire-grid representing the aircraft 
surface. MESHES checks each wire against every other wire to identify duplicated wires. 
MESHES then carries the mesh search, and produces lists of wires that are members of various 
kinds of meshes: wires that are part of 3 wire meshes, that are part of 4 wire meshes, of 5 wire 
meshes,..., of 8 wire meshes; wires that are members of no meshes at all, that are members of 
only one mesh, and of more than two meshes. When these lists are displayed with MODEL 
gross errors are often clearly seen. For example, Fig. 5 shows the forward part of the aircraft 
grid, with wires that are members of six wire meshes highlighted. The figure illustrates two 
errors and how they are identified by the mesh search. In one case a wire has been omitted from 
the grid, creating a six-wire mesh cell, which outlines the location of a missing grid wire. The 
other error is more subtle. One wire of the grid is not actually connected to the grid at one end: 
the (x,y,z) coordinates of the wire's endpoint are too different from the (x, y,z) coordinates of 
the nearby junction. MESHES treats the wire as open-circuited, and thus it is encircled by a six- 
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wire mesh. The wire would also appear in the list of wires which are not members of any mesh, 
and again could be seen clearly on the graphics display. The first step in "integrity checking" is 
the correction of gross errors such as these. 

Radius Calculation and Integrity Verification with CHECK 
When the grid is first assembled, the radius of every wire in the grid is set to a very thin 

value. Many of the NEC modelling guidelines involve the wire radius[2,4]. For example, 
restrictions are placed on the ratio of the segment length to the wire radius; on the ratio of the 
fattest to the thinnest radius at a wire junction; and on the spacing of wires in terms of wire 
radius. Full integrity checking cannot go ahead until the "equal-area" radius has been evaluated 
for each wire, using program FNDRAD to evaluate Eqn. (1) for each wire, given the mesh list 
compiled by MESHES. 

Program MODEL aids in visualizing relationships among wires involving the wire radius 
by drawing each wire as a cylinder of appropriate radius, in the format seen in Fig. 6 for the full 
aircraft grid. Most wires are members of two "square" mesh cells of side length equal to the 
"nominal" segment length. Eqn. (1) implies that, for square mesh cells of side length A, the wire 
radius is A/(2it), hence for most wires, the ratio of the wire length to its diameter is about 3. For 
wing edge wires, systematic application of Eqn. (1) results in wire radii of about half this value, 
because edge wires are members of only one mesh. Critical regions of the model which have 
been subdivided into small mesh cells have thinner wire radii. This is clearly seen at the top of 
the dorsal fin in Fig. 6. 

Program CHECK[4] systematically verifies the grid against the NEC modelling guidelines 
for individual wires, for wires making up junctions, and for every pair of wires in the model, to 
ensure adequate spacing. CHECK produces lists of wires which violate each of the modelling 
guidelines, for display with MODEL. For example, Fig. 7(a) illustrates a geometry in which a 
"match point error" exists: the center of a segment lies within the volume of another segment. 
Thus, eight radial wires have been included at the feed point for the starboard wire antenna in the 
aircraft grid, and short segments have been used adjacent to the feed point. But the "equal-area" 
wire radius is so fat that the center point of the highlighted feed radial lies within the volume of 
an adjacent wire: a match point error. Drawing the wires as cylinders in MODEL aids in visual- 
izing the problem and in comprehending how it arises. The solution is illustrated in Fig. 7(b). 
The radius of each segment connected to the feed point has been reduced by a factor of two. 

Model development is an interactive, iterative process. A wire grid is designed, and is 
constructed with DIDEC. MESHES identifies gross errors, which are corrected. FNDRAD cal- 
culates radii, then CHECK identifies a variety of transgressions of the NEC modelling guide- 
lines, which are displayed with MODEL. Minor problems are often fixed simply by editing the 
model: moving vertices slightly, or adding a few wires to break large meshes into smaller ones to 
reduce the radii of the associated wires. Severe problems are often the result of a poorly- 
conceived wire-grid, and can only be fixed with extensive rethinking of the grid design in critical 
regions. Few wire-grids are ever completed without several iterations of model editing, radius 
recalculation, then integrity verification with CHECK Rapidly accessible computer graphics 
highlighting the errors found by CHECK, showing the wire radius explicitly, aids enormously in 
understanding and correcting such problems efficiently. 

Executing NEC at Many Frequencies 
Once a satisfactory wire-grid model has been developed, the NEC code can be run to 

obtain the desired results. Typically in an antenna performance study, the volumetric distri- 
bution of the radiated electric field strength must be studied over a range of frequencies, such as 
2 to 30 MHz for the HF wire antennas on the aircraft of Fig. 2. With the aircraft oriented to "fly" 
along the x-axis toward positive x, at each frequency the "conical cut" radiation patterns[10] 
£e(6,<]>) and £<,(0,<|>) are computed to cover the radiation sphere:9 =0, 25, 37, 45,53, 60, 66,72, 
78, 84, 90,96,102,108, 114,120, 127,135,143,150 and 180, each for 0 < $ < 360. Also, to 
provide standard "principal plane" patterns, two "elevation cuts" are added: <]> =0 and 90 degrees, 
each for -180 < 6 < 180. With the power of modem workstation computers, all these patterns 
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can computed with a "fine" frequency step, such as 0.1 MHz, from 2 to 30 MHz to trace out 
sharp resonance peaks and sharp deep troughs associated with antenna and airframe resonance in 
the HF band. 

NEC's rather extensive output file is greatly reduced in size by program STRIP in Fig. 1, 
which generates a "SOLutioN" file. The SOLN file consists of a copy of the input file for that 
run of NEC, which provides full documentation of the "run", and is handy for recycling if further 
frequencies need to be computed for that model. Then the SOLN file contains, at each fre- 
quency, the port impedances, followed by the segment currents, the radiation patterns, and any 
near fields that were computed, all written using as few ASCII characters as possible. Binary 
files are not used because they cannot be examined easily with an editor and they are usually 
incompatible between different computer systems. 

For a typical problem, several wire-grid models are usually studied, and each will be "run" 
at many, many frequencies. Currently we manually keep track of what "runs" have been done 
for each wire-grid topology, at what frequencies, what the file names are, and where the file for 
each "run" is stored, using hard-covered "log books". Keeping track of runs is a problem in data- 
base management. We recognize the need for a computer-based archiving and retrieval system 
for this "data base", so that, over a period of years, wire-grid models and "runs" are accumulated 
and stored in an organized system, logs of runs are accumulated and can be inspected, and spe- 
cific "runs" efficiently retrieved. 

Calculating the Radiated Power 
Comparisons of the fields of two different HF antennas, or of fields computed with two 

different wire-grid models, or of fields obtained by wire-grid calculation and by measurement is 
usually done on a basis of equal radiated power. The radiated power is obtained by program 
ISOLEV(ISOtropic LEVel) by integrating the fields over the radiation sphere according to 

p'« = J i^rsinBddd* -(2) 
0       0 ' 

This is more reliable than calculating the power based on the input impedance. The "isotropic 
level" is the field strength which, if radiated uniformly over the radiation sphere, obtains the 
same total radiated power, and is given by 

-(3) 

This isotropic level field strength is routinely plotted as a reference level for comparing mea- 
sured and computed radiation patterns, or two sets of calculations. In HF antenna performance 
assessment, both the relative field strength in each polarization and pattern shape factor are 
important 

Visualization of the Radiated Fields 
The most basic visualization and comparison tool is the polar plot of radiation patterns, on 

a basis of equal radiated power. Program PATCMP(PATtern CoMParison) displays individual 
conical or elevation cuts in the format of Fig. 8. PATCMP is often used in "validating" a wire- 
grid model by comparing a scale-model measurement of the radiation patterns with wire-grid 
calculations, pattern-by-pattern and frequency-by-frequency. Thus Fig. 8 shows that although 
the Ee polarization agrees well at 10 MHz, except in the aft direction, there is a significant differ- 
ence in the shape, level and orientation of the E^ polarization for the port antenna at this fre- 
quency. Such differences are usually investigated by comparing the radiated field over the full 
radiation sphere between the computation and the measurement, and by correlating the fields to 
the current distribution over the wires of the grid. Once the model is "validated", it can be used 
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to study the performance of different HF antenna configurations, to evaluate antenna-to-antenna 
coupling, both in-band and out-of-band provided the wire-grid spans a sufficient frequency 
range. 

The comparison of individual radiation patterns quickly becomes tedious, and a summary 
format of the performance of the antenna at each frequency is desirable. Figs. 9(a) and (b) show 
the field components E9 and E$ drawn with CPLOT(Oontour PLOTter) as contour maps on the 
(9, <])) plane, providing a complete description of the distribution of the radiated field in three- 
dimensional space at a single frequency. Program CPLOT is a general-purpose contouring pro- 
gram, which produces both line drawing contour maps such as Fig. 9 for publication and false- 
color contour plots. The "hot scale" uses blue for the weakest fields, through green, yellow and 
orange to red for the most intense fields. CPLOT can draw cuts of constant 9 or $ through the 
surface, and can export individual cuts to RPLOT(Rectangular PLOTter) or PPLOT(Polar 
PLOTter) for comparison with measured data or other wire-grid calculations. A variety of spe- 
cialized tools has been developed for displaying the three-dimensional distribution of field 
strength. Program FLDMAP(FieLD MAP) produces a color-contour map of both £e and E^ on a 
single page that can be printed on a color printer for inclusion in a report Figs. 10(a) and (b) 
show Es and Et represented as surfaces above the (9, <]>) plane by program SURPAT(SURface 
PATtern). On a color workstation, SURPAT codes the contours in the same colors as CPLOT or 
FLDMAP, and the hidden-surface drawing and the contour map can be shown side-by-side in 
two windows. Figs. 11(a) and (b) show £e and £<, as functions of direction in three-dimensional 
space drawn with program TDPAT(Three-Dimensional PATtern). The aircraft wire-grid is 
shown in the same orientation as the field strength drawing. The aircraft can be rotated to 
examine the field strength from various viewing angles.  This is a considerable aid to evaluating 
the directions in which the energy in each field component is radiated. Once again, TOP AT can 
use the same color scale as other programs to enhance the interpretation of the field strengths. 
Together, PATCMP, SURPAT, TDPAT, FLDMAP and CPLOT provide an array of tools for 
visualizing the three-dimensional distribution of field strength surrounding a radiating antenna, 
and comparing the radiated fields of different antennas or comparing computed and measured 
results calibrated to the same power level. 

Visualizing the Segment Currents 
The intimate relationship between the current flow on the antenna and aircraft wire-grid 

and the radiated fields is of particular interest near frequencies of resonance of the antenna or 
airframe. Programs SPECTRM(SPECTRuM) and IDIS(I DISplay) were developed to allow the 
user to display currents on the wire grid. Both SPECTRM and IDIS show current magnitude on 
the blue-green-yellow-red "hot scale" and phase on a "color-circle" scale, representing phase of 
-180 degrees with red, through violet and blue to cyan for 0 degrees, then through green and yel- 
low back to red for a phase of 180 degrees. SPECTRM is oriented toward multi-window display 
of the current flow on the structure seen from different view angles, whereas IDIS provides a 
variety of display formats and is oriented toward examining the current flow on subsets of wires, 
as well as the whole structure. IDIS maintains lists of tag numbers and displays the current on 
the wires named in a given list. The default list is the whole set of wires. Fig. 11 shows the 
current on the port antenna when it is excited with 1 volt at its base, and the induced current on 
the starboard antenna, drawn in the "perpendicular line" format with IDIS. The same current can 
be shown with IDIS as a rectangular plot of magnitude and phase as a function of distance along 
the wire. But the perpendicular line format is very confusing when used to show the currents 
over the aircraft wire-grid, and so grid currents are usually shown on the color "hot-scale". 
Because grid currents usually vary enormously in magnitude, a decibel scale for current flow is 
often attractive. IDIS can drive a color printer to reproduce current distribution displays for 
inclusion in reports or as Vugraphs. The contact with and appreciation of the current distribution 
on the grid is a vital element in building confidence in a wire-grid model and understanding its 
behavior as a function of frequency. 
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High Resolution Spectral Analysis 
The performance of an HF antenna on an aircraft changes enormously with frequency, and 

the antenna design is usually a compromise.   A summary parameter that is used to assess the 
antenna's performance across the HF band is the percentage of the power radiated into the Ee 

component of the field, because ground stations are usually designed to transmit and receive that 
field component. The "percent £e" parameter is defined as 

%ER M j /=>*««♦ x    100 -(4) 

A parameter such as percent £e 
must be calculated at each frequency from the set of conical-cut 

radiation patterns. Its value at many frequencies is then collected into a data file for graphing 
with RPLOT. Fig. 13 shows percent £e as a function of frequency with the port antenna excited 
with one volt and the starboard antenna shorted to the aircraft skin. The figure shows a compari- 
son of two wire-grid calculations, using a wire-grid model with 6 axial wires, "model 4GP", and 
one with 8-axial wires, "model 7", both compared with a set of 10 measured data points. At 2 
MHz, most of the power is radiated into Ee. As the frequency rises toward the quarter-wave res- 
onant frequency of the port antenna, 3.7 MHz, the fraction of the power in Ea drops rapidly, to a 
minimum approximately coinciding with the resonant frequency. Percent £e has a sharp mini- 
mum closely followed by a sharp, tall peak at the resonant frequency of the starboard antenna, 
5.8 MHz, which is shorted to the aircraft skin. The figure illustrates that the resonance assoc- 
iated with the passive antenna is completely missed in the measured data, which is derived from 
sets of conical cut radiation patterns taken at 2, 6,10,15,20, 22, 24, 26, 28 and 30 MHz. Initial 
calculations at 2,3,4,..., 30 MHz showed significant differences from the measurement, and were 
only understood when sufficiently dense frequency sampling was used to trace out the sharp res- 
onance trough and peak seen at 5.7 MHz. The alignment of the resonance peak between the two 
wire-grid models, and with the measurement, is extremely sensitive to the length of the wire 
antennas. Thus the wires are slightly different in length in the two models, and the precise length 
of the wire in the measurement model is not known. 

Presentation Graphics 
A large part of any engineering activity is the production of the report and its associated 

drawings and graphs, and so the EMC Lab software system has been engineered to provide solid 
support for the preparation of presentation graphics.  Most programs can "write" a "LABLNG" 
file, which is an ASCII file containing a line-by-line description of the drawing. Program 
LABLNG(LABeLliNG) began as a means of adding a few arrows and character strings to dress 
up a drawing shown in a TEK 613 storage graphics screen, and gradually evolved into a mini- 
CAD program for manipulating EMC Lab graphics displays. LABLNG is used to specialize the 
format of standard display "templates" such as the displays produced by PATCMP, RPLOT or 
CPLOT. Unwanted text can be removed, new text added, Greek letters added, the size and posi- 
tion of text can be changed. Thus once a drawing has been created with any of the graphics pro- 
grams as a LABLNG file, it is not cast in stone, but instead any part of it can be changed or 
specialized to a particular purpose. At present sharp, clean paper copies are obtained by translat- 
ing the LABLNG file into Postscript format with MAKEPS(MAKE PostScript), and copying it 
to a laser printer. The Postscript file can be imported directly into a word processor, which 
scales the drawing and places it in the desired location on the printed page. The LABLNG for- 
mat file is extremely simple, and would be easily adapted to the HP graphics language, for exam- 
ple, to drive a pen plotter or an HP compatible laser printer. 
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Color displays such as color contour maps or current distributions on a color scale are a 
challenge for hard-copy reproduction. Currently the EMC Lab uses HP PaintJet printers to pro- 
duce color hard-copies. If a graphics program is to drive the color printer directly, then it must 
maintain a pixel-map in memory into which is stored the color of each pixel on the drawing. 
This makes most programs too large for the 640 k memory available on the MS-DOS computers, 
but is not a problem on UNIX workstations. Program LABLNG is small enough to allow the 
pixel-map on MSDOS machines, and so graphics programs can write a color version of the 
LABLNG file, then LABLNG can drive the color printer. This has the advantage of allowing 
color drawings to be manipulated in the same way as any other drawing.   Color laser printers are 
becoming affordable and the next step is the adaptation of our software system to support such 
printers. 

Conclusions 
This paper has described the software system used at Concordia's EMC Lab to prepare and 

visualize wire-grid models, check them for errors and "integrity", and to examine and visualize 
the radiated fields and current distributions at each frequency. The software system is an evolv- 
ing tool, that was initially developed on 64 kilobyte PDP-11 computers using storage CRT 
graphics and later 16 color graphics, that was subsequently adapted to 8088 machines running 
MSDOS with monochrome graphics, to 80386 machines with 256 color VGA graphics, and most 
recently to fast UNK machines running X-Windows. We have chosen to maintain MSDOS 
compatibility to keep most graphics software available to lab members on inexpensive but fast 
MSDOS platforms. Many of our graduate students own suitable MSDOS machines. The 640 
kilobyte memory limitation has be largely avoided in most programs by using binary disk files 
for temporary storage, thus reserving most of the machine's memory for code rather than data. 

The program set was recently ported to UNIX and X-Windows. An "X interface" in the C 
language was written in such a way that the FORTRAN source files for a given graphics pro- 
gram for MSDOS are simply re-compiled under UNIX and linked with the X interface to create 
the UNIX version of the program, which is virtually identical to the MSDOS version. This mini- 
mizes the inconvenience to users in switching platforms in the course of the day. The 
X-windows environment offers significant advantages in speed of execution, and in the display 
of multiple windows. For example, MODEL can be run in one window to show the wire-grid, 
IDIS in a second to show the current distribution and SURPAT in a third to show the radiated 
fields. Additional windows can be opened to show currents and fields at nearby frequencies, 
allowing the user to form strong associations between changes in current flow and the associated 
changes in radiated field strength. 

Our software system has developed as in Fig. 1, with a separate, medium-scale program 
implementing each individual function. This has kept the maintenance problem manageable, 
made it possible to add new features and functions to one module without changing others, and 
allowed all programs to be implemented in the limited space available on MSDOS machines. 
From the user point of view, most of the programs of Fig. 1 "look and feel" similar, and learning 
one program in the set smooths the way to learn others. For instance, in all programs the princi- 
pal parameters such as look angles are entered into boxes in the main menu, "F3" draws the 
graphics display, "F4" draws the display with automatic scaling, "F2" zooms using the mouse, 
and "F10" then "Fl" exits. This integration into a single system involves no small amount of 
effort on the programmer's part: it is terribly difficult to be perfectly consistent across a large set 
of programs. Further, it is even more difficult to maintain consistency at the sub-menu level in 
all programs. From the user's point of view, as much commonality of function as possible is an 
enormous advantage. 

The user interface is an especially vexing issue. Our user interface puts most user choices 
on the function keys, which has in recent years become unfashionable. New users precondi- 
tioned to expect a "Graphical User Interface"(GUI) using the mouse find our function key inter- 
face a stumbling block! The essential features of the user interface are these. The novice user 
should be able to obtain a reasonably well-formatted graphics display by doing little more than 
naming the data file and pressing "draw". Menus should be largely self-explanatory, reducing 
the need for a "help file" or a printed manual, allowing the user to build up knowledge of the 
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program by trying its various functions over a period of time. Hidden within such an apparently- 
simple program must be the full functionality demanded by the expert user, with each function 
reasonably well explained by a simple menu. 

There may be a significant advantage in integrating the software system into two or three 
major blocks. The "model creation" block would include: DIDEC for entering and modifying 
wire endpoints, the MESHES and FNDRAD functions for radius calculation, the MODEL pro- 
gram with its radius-drawing capability, the HIDNMOD program, and the CHECK program for 
integrity verification. This becomes a large-scale program, comparable in size and complexity to 
commercial CAD or word-processing programs. The data-base manager would systematically 
archive files to tape cartridges, maintaining a log of what and where, making for easy retrieval. 
The display-and-visualization block would include MODEL, HIDNMOD, IDIS, PATCMP, 
SURPAT, FLDMAP, and TDPAT, providing the capability of opening "windows" for each of 
these functions. Further, such a program should be able to have several "SOLN" files open at 
once, and show data at several frequencies, in multiple windows. The RPLOT, PPLOT and 
CPLOT set should become a single, general-purpose graphing tool. In the past, our graphics pro- 
grams have been developed as needed in our projects but without explicit funding. It is unlikely 
that this scale of programming effort can be undertaken without support. 

The developer of such graphics visualization programs can never be satisfied, because a 
little imagination rapidly provides exciting new ideas for functionality, hence no program is ever 
finished. New projects bring new demands for graphics software, most recently for near-field 
visualization. Intensive use of any program by its developer and others soon reveals weaknesses 
or points to a better way to implement some function. Consequently, programs are continually 
evolving toward more convenience and simplicity, better defaults and fewer choices for the inex- 
perienced user, but fuller functionality for the expert. 
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Fig. 1 The EMC Lab software model creation and visualization software system. 
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PORT WIRE RNTENNR 

Fig. 2 An aircraft wire-grid model displayed with program MODEL, repre- 
senting wires with their centerlrnes. 

Fig. 3 A wire which is a member of two meshes, of areas Al and A2, and 
peripheral lengths Lx and L^. 
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Fig. 4 The aircraft grid drawn by program HTNDMOD, as if the wires cover 
the surface of an opaque solid. 

'not   connected 
.missing 

Fig. 5 The aircraft grid with 6-wire meshes highlighted, showing two "gross" 
errors in the grid. 
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Fig. 6 The full aircraft grid showing the "equal-area" radius for all the wires. 

206 



,wire  antenna match   point   error 

Fig. 7(a) The feed point of the starboard wire antenna, drawn showing the 
wire radius. The highlighted wire has a "match point error" with its 
neighbor. 

fo.dl.lob 
Fig. 7(b) The feed region of the starboard wire, with the match point error cor- 

rected. 
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Fig. 8 The radiation patterns for £e and E+ in the 0 = 90 degree plane, with the 

port wire excited at 10 MHz. 
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Fig. 9 Contour maps of £8 and £+ at 10 MHz, with the port wire excited, nor- 
malized to a radiated power of 1 watt. 
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Rurora  Rircraft 

Port  wire  antenna  excited 

10  MHz 

Fig. 10 

SB 
THETH 1SB 

Surface plots of Ee and E^ at 10 MHz, with the port wire excited with 1 
volt. 
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Aurora Aircraft 
Port wire antenna excited at 10 MHz 
E-theta radiation patterns 
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Aurora Aircraft 
Port wire antenna excited at 10 MHz 
E-phi radiation patterns 
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Fig. 11 Three-dimensional representations of Ee and E+ at 10 MHz, with the 
port wire excited with 1 volt. 
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Fig. 12 The current flow on the port and starboard wires at 10 MHz, with the 
port antenna excited with 1 volt. 
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Abstract - Aircraft designers, threat analysts, mission planners, and pilots require 
a Radar Cross Section (RCS) central tendency with its associated distribution about 
a specified aspect and its relation to a known threat. Historically, RCS data sets 
have been statically analyzed to evaluate a design or mission profile. However, 
Scientific Visualization, the application of computer graphics techniques to produce 
pictures of complex physical phenomena [1], appears to be a more promising tool to 
interpret this data. We describe a visualization tool to depict RCS distributions in 
3D. The tool may be useful for synthesis, design, and analysis of complex targets. 

1    INTRODUCTION 

Numerous techniques are used to generate RCS data, both predicted (model-based) 
and measured. Once collected, the data must be analyzed to meet a specific de- 
sign objective. For example, new military air vehicles require a reduced radar cross 
section to improve mission effectiveness by decreasing the probability of detection. 
For operational aircraft, mission planners, threat analysts, and pilots require de- 
tailed knowledge of the air vehicle's RCS and its relation to known threats to 
successfully plan a survivable mission route. Historically, RCS data is collected for 
a constant elevation angle, typically 0°, with an angular resolution of 0.1° - 1.0°. 
The data is then displayed on a 2D polar plot as shown in Figure 1. With the 
current emphasis on design of low observable air vehicles and increased capability 
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of computers, however, designers are now collecting data at finer degrees of eleva- 
tion. Designers must then mentally piece together the additional polar plots of the 
data set to obtain a 3D representation of the complete RCS. Our approach uses a 
high-power graphics workstation to render the data set. In this paper we present 
our methodology and the results of implementing a RCS visualization system. We 
first describe the input and output data set, then explain the algorithm used to 
create the complex polyhedron that models the 3D RCS. Finally, we present our 
results. 

Figure 1: RCS of B-26 at 10 GHz 

2    METHODOLOGY 

2.1    Data Generation 

To visualize a 3D RCS data set of a complex target, sufficient data must be col- 
lected. We selected Radar Cross Section-Basic Scattering Code (RCS-BSC), de- 
veloped at the Ohio State University, ElectroScience Laboratory, to create the 
data set.   RCS-BSC is a fast, simple code based on the Geometrical Theory of 
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Diffraction (GTD) and provides an accurate first-look of the vehicle's RCS. For a 
complete description of RCS-BSC, see Marhefka [2]. 

The input data contained a finite plate, perfectly conducting geometrical de- 
scription of a modern conventional fighter. We assumed perfect symmetry about 
the vertical plane and selected a resolution of 0.5° in elevation and varied the az- 
imuthal resolution proportional to the cos of the elevation angle. The data was 
calculated at a single frequency of 1.0 GHz. This format provided us with sufficient 
data to create a representative 3D model of the RCS. 

The results of RCS-BSC is a series of RCS conical slices. Each slice describes 
the RCS for a fixed elevation angle and a varying azimuthal angle. Each descrip- 
tion, at a particular aspect angle, contains magnitude (<LB,m) and phase informa- 
tion for H-pole, V-pole, and cross-pole returns. 

2.2    RCS Construction 

Since RCS prediction or measurement is a potentially time-consuming process, 
our tool is designed as a post-processor to create a model of the RCS. The overall 
approach in constructing the model is to form triangular patches between adjacent 
slices of data. Many triangulation algorithms fail, however, because they are based 
on connecting a data point on one contour to the closest point(s) on a contour 
of an adjacent slice [3]. If the data is completely convex and well-behaved, this 
approach works well; however, concave contours, such as slices of RCS data, present 
a problem because the closest-point strategy often fails. 

Ekoule [4] proposed using the convex hull of the contour to solve this problem. 
Thalman [5] states that a set of points is convex if a line segment joining any 
two pairs of its points is entirely contained within the set. Foley [6] provides a 
more intuitive definition by describing the convex hull as the polygon created by 
stretching a rubberband around the data points. All data points are projected onto 
the convex hull and the hull is used for all closest point calculations as described 
by Christiansen and Sederberg [7]. The original list of points is used to provide 
the vertices of the triangles. This triangulation process is then performed over the 
entire data set. In traditional polar plot methods of RCS data, concentric circles 
are used to show relative magnitude with the radial distance indicating strength 
of the RCS for a particular aspect angle. We needed a similar technique to display 
relative magnitude in 3D. It is well known that color provides an additional visual 
cue for data comprehension [8] [9]. We chose a monotonically varying color scale 
[9] and implemented color interpolation between vertices. 
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3    RESULTS 

The computer program was written using AT&T C++, Version 2.1, and imple- 
mented on a Silicon Graphics Iris-4D 440/VGXT. The RCS data is converted into 
a 3D triangle mesh and displayed on the workstation using scan-line conversion 
techniques [6]. Hidden surface removal is accomplished by the native z-buffer algo- 
rithm [10]. Several features were added to improve data comprehension. First, we 
added a target icon to orient the user with the data set. Second, we added a color 
scale to help the user identify potential areas of concern. Finally, we added the 
capability to translate, scale, or rotate the object to easily locate areas of interest. 

Figures 2, 3, 4, 5, and 6 show the five views of the raw RCS data set. The 
radial distance shows the relative magnitude of the RCS for a particular aspect 
angle and provides a high degree of perceptual data comprehension. Interpolated 
color is added to reinforce visualization of the data. The designer could display this 
image and immediately recognize aspect angles of large RCS returns. Notice the 
small, noisy RCS values at the nose and tail of the air vehicle and the large RCS 
values as the viewer approaches broad-side. Notice the small lobe at approximately 
(0,60) most likely caused by the shaping of the canopy. 

216 



Figure 2: God's-eye view of raw data. 

4    CONCLUSIONS 
In this article we presented a tool that exploits the high bandwidth of the human 
visual system by casting 3D RCS data into a visual format. A designer can combine 
our tool with a CAD-based electromagnetic scattering code during the early stages 
of air vehicle design to easily detect potential areas of concern. The user can then 
make changes to the CAD model, recalculate the RCS, and redisplay the RCS in 
near real-time. 

5    ACKNOWLEDGMENTS 
Thanks to Ron Marhefka of The Ohio State University for providing the data 
set for this project and Dave Pond of the Air Force Institute of Technology for 
designing and providing the initial set of rendering tools. 
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Figure 3: Devil's-eye view of raw data. 

Figure 4: Broad-side view of raw data 
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Figure 5: Nose-on view of raw data set. 

Figure 6: Tail-on view of raw data set. 
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EM Visualization on a SGI 4D Workstation 

L.C. Russell, J. W. Rockway 
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Abstract 
The value of high performance visualization techniques for Method of Moments 

modeling of electromagnetic (EM) field radiation and scattering for antennas in a complex 
environment is demonstrated. EM visualization was performed on a Silicon Graphics IRIS 
4D/320GTX workstation. This application of high performance visualization is demonstrated for 
the problem definition, computation and solution description phases of the method of moments 
technique. 

1.0 NEED FOR VISUALIZATION 

Computational electromagnetics can be thought of as a three step process: problem 
definition, computation, and solution description. The drawback to using a computational 
electromagnetics code such as NEC-MoM (Burke and Pogio, 1981) is in the effort required at 
each of the three steps. Preparing the input model for NEC-MoM and evaluating the output can 
be an overwhelming task. Performing calculations can be exceedingly time consuming for all 
but the most simple structures. 

To conserve computing resources, input models must be extensively validated before 
calculations are performed. Enormous quantities of output data are generated including currents 
and charges on all the wire segments, near field contours, and far fields. The goal of this effort 
was to demonstrate how advanced visualization techniques could be used to assist in input 
validation and rapid interpretation of output data. 

2.0 VISUALIZATION TECHNIQUES 
Decisions have to be made regarding how to effectively visualize the data of interest. In 

many cases, there were found to be several options. Often it was difficult to decide which 
display method would have the most utility for the final user. The products of this effort are 
now being used in support of ship EM design projects. This application of these tools will 
quantify utility. 

One of the main problems encountered was in deciding how to assign color codes. Color 
coding is an art unto itself. It was often difficult to decide whether color coding should be done 
using a continuous range of colors or using a discrete set of colors. 

There are three components to color. The RGB color model interprets these components 
as the three colors (red, green, blue) used by the CRT. By varying the amount of each color 
component the full range of screen colors can be achieved. The Silicon Graphics workstation 
has 24-bit color, with 8 bits for each component. Each component is an integer value between 0 
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and 255.  In this manner the console is capable of displaying over 16 million different colors. 
Of course, it is doubtful that the human eye can distinguish all these. 

Humans do not perceive colors in the same manner that the console displays them. To 
humans it is more intuitive to use the HSV color model (hue, saturation, and value). The HSV 
model is based on the intuitive appeal of the artist's tint, shade, and tone. Hue has a value 
between 0 and 360. Saturation and value range between 0 and 1. Algorithms exist for 
translating between the different color models (Foley, 1990). 

At one point during this effort it was proposed that various data components could be 
encoded into the different components of the HSV color model. For example, for complex data 
the magnitude could be encoded in the hue and the phase could be encoded in the value. This 
idea was found to not be feasible for two reasons. First, the user becomes overwhelmed by the 
amount of information contained in slight variations in displayed color. Second, the color 
printer was totally incapable of reproducing anything but major variations in color, so one could 
not obtain a hard copy output of the visualization display. 

For most data sets a discrete color key coding system was found to provide the most 
useful visualization of the data. Seven bins were chosen and the data is linearly or 
logarithmically assigned to the bins. The color key assignments were changed several times. A 
final decision was made to use colors that gave the best contrast when printed out on the color 
printer. Phase is displayed as a continuous range of hue, with saturation and value set to unity. 

In most cases, it was found that trying to display both components (real and imaginary or 
magnitude and phase) of a complex data set in one image confused the user unnecessarily. A 
decision was made to allow the user to display complex data in side by side windows if both 
components needed to be viewed simultaneously. 

Current data, charge data and field data are vectors. A straightforward method for 
displaying a vector's orientation was never developed. The current and charge vectors are 
defined relative to the wire's direction. User interaction indicates that the current's direction does 
not have as much value as the magnitude and phase of the current. 

3.0 APPROACH 

To perform advanced visualization decisions had to be made regarding hardware and 
software. The authors were fortunate to have access to a Silicon Graphics Incorporated (SGI) 
4D/320GTXB. The SGI 4D/320GTXB is one of the SGI POWER Series™ line of computers. 
It can be configured with up to eight CPUs; the one used for this project has two 33MHz CPUs. 
It has the following performance ratings (SGI, 1991): 59 MIPs (VAX Dhrystone MIPS), 20 
MFLOPS (DP Linpack 1000x1000), 41 SPECmarks. The GTXB has 48 bits color and 24 bits 
Z buffer. Its graphics performance is rated as 400K Vectors/sec, 150K Triangles/sec, and 100K 
Polygons/sec. The system used for this effort is configured with 64MB memory and a 19 inch 
console monitor. 

Several graphics software packages were available on this SGI workstation, including 
PV-Wave, apE, Explorer and the SGI GL (Graphics Library). The available high level 
languages included C and Fortran. The Graphics Library (GL) provided the greatest flexibility 
in the development of the required visualization techniques. GL is a set of graphics and utility 
routines that provide high- and low-level support for graphics. The routines can be called from 
either C code or Fortran code.   GL is quite primitive and yet allows one to access all the 
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powerful visualization capabilities of the SGIs including 3D drawing, Gouraud shading, device 
polling, double buffering, coordinate transformations, hidden surface removal (z-buffering), 
lighting, pick correlation, and texturing, depending on the hardware's capabilities. SGI provides 
an enormous number of demo programs that can be easily modified. GL provides a 
straightforward approach to developing the proposed visualization tools. 

The NEC-MoM input data set is created by a program called NEEDS (Li, et al., 1988). 
The data set is an ASCII file in which each line represents a "card". The first two characters on 
each line refer to an alphabetic code that determines what the data on that line represents. For 
example, "CM" is a comment line and "GW is a wire description line. The output from 
NEC-MoM is an enormous ASCII text file in a format that is very difficult to read from within 
another computer program. For that reason a parser program is needed to extract the data of 
interest and put it in a software readable format. A preprocessing filtering program, filter, was 
written in Fortran to put the input and output data in a form that would allow easy display of the 
data of interest. 

4.0 VISUALIZATION PROGRAM STRUCTURE 

The visualization programs were written in the ANSI C language using the SGI Graphics 
Library (GL) to access the visualization tools. The program to visualize the problem definition 
and solution description is named viewjiec. The program evolved as feedback was received 
from users. However, the basic structure using multiple windows, pull-down menus, and 
transformations was determined from the beginning. 

4.1 Windows 
The beauty of working in an X-windows type environment, such as that on the SGI 

machines, is the flexibility it affords the user. That flexibility was retained in the development 
of viewjiec. Each data component is displayed using 3D imagery in its own window. At any 
given moment during the running of the program the user has complete control over how many 
data windows are displayed as well as their sizes and locations. In addition, multiple copies of 
viewjiec can be launched to do side by side comparisons of different NEC-MoM runs. 

4.2 Menus 
Pressing the right mouse button while the mouse cursor is within any viewjiec window 

brings up a "pull-down" menu. This pull-down menu allows the user to select which data 
windows to open/close, which transformation is active, and whether a coordinate axis is 
displayed. Once a selection has been made, the affected windows are updated. 

4.3 Transformations 
The available transformations include rotation, translation, and zooming. Each 3D 

transformation is represented internally in the workstation by a 4 x 4 matrix. The IRIS 
Geometry Engines transform all geometric data (vertices of points, lines, and polygons) by 
multiplying each vertex by the accumulated matrices. In viewjiec the transformations are 
actuated with the left mouse button held down and the cursor dragged across the screen. 

There are three basic classes of transformations that can be carried out by the Graphics 
Library: projection transformations, viewing transformations, and modeling transformations. A 
good analogy is to a camera with a versatile lens. Projection transformations describe the type 
of lens on the camera. Viewing transformations determine where the camera is positioned and in 
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which direction it is pointed. Finally, modeling transformations affect the location, orientation, 
and size of the 3D geometric models in the scene. 

There is often more than one way to carry out a transformation of a scene. For instance, 
instead of moving the camera toward the object, the object could be moved closer to the camera. 
However, there may be subtle differences. The transformation methods used in viewnec were 
chosen by selecting demo programs that gave the desired effect. 

The zoom feature allows the user to expand a selected portion of the model for more 
detailed display. Zooming is achieved internally by using a projection transformation. The field 
of view in the y dimension is modified. This has the effect of making the scene appear closer or 
farther away. The aspect ratio between the field of view in x and the field of view in y, and the 
distances to the near and far clipping planes are kept constant. 

The rotate feature allows the user to rapidly change the orientation of the model. This 
permits a better feeling for the three dimensional nature of the model and often allows various 
features of the data to become more apparent. Rotation of the scene is carried out internally 
using a viewing transformation to move the viewpoint. The distance from the origin is kept 
constant while the azimuthal angle in the x-y plane and the incidence angle in the y-z plane are 
modified. This is akin to moving the camera over a spherical surface surrounding the scene. 

Translate allows the user to move the model up/down or left/right in the plane of the 
screen. This shifts the origin and is useful before zooming in on a selected portion of the model. 
Translation of the scene is carried out internally using a modeling transformation. The program 
is set up to only allow translation of the object in the plane of the screen. The size of the object 
is preserved. 

4.4 Pick Correlation 
It quickly became apparent that a method was needed to selectively choose a single 

element, such as a wire segment, from the 3D wire object display.    This was needed for 
troubleshooting as well as linking the display back to the NEC-MoM input data set. The middle 
mouse button was chosen for this purpose. The technique used is known as pick correlation. 
The Graphics Library provides this capability. 

Pick correlation identifies objects on the screen that appear near the mouse cursor. 
Information about these objects is stored in a buffer, viewjiec uses this information to allow the 
user to select a single wire segment from the object displayed and list all information about it. A 
sample wire parameters window is shown below. 
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Model contains 458 Hires, with 744 segnents. 
You haue selected wire 86, segnent 141 

(this is segnent 1 of 2 on THG niinber 86). 
Uire endpoints are: (9.62, 0.04, 2.05), 

(11.38, 0.04, 2.05). 
Segnent endpoints are: (9.62, 0.04, 2.05), 

(10.50, 0.04, 2.05). 
Segnent Length = 0.88 neters 
Segnent Radius = 0.159 Meters 
Segnent to Radius Ratio = 5.53 
Both ends of segnent are connected. 
Frequency (MHz): 30.00 
Current on segnent (real.inag): (0.0290, 0.0146) 
Current on segnent (nag,phase): (0.0325, 26.6482) 

Wire Parameters Window 

5.0 VISUALIZATION OF METHOD OF MOMENTS 

5.1 Problem Definition 
The NEC-MoM input file describes the modeled object (such as a ship) as a collection of 

wires. At this time viewjiec does not recognize patches. The description of each wire includes: 
a tag number (for identification purposes), the number of segments on the wire, the (x,y,z) 
coordinates for both the beginning and end points, and the radius of the wire. Some wires are 
tapered and so extra information is given for these wires to describe the tapering. 

There are four windows that can be opened up to display the model's input geometry. 
The windows each display one of the following: Wire Segmentation (segment length in meters), 
Wire Radius (in meters), Segment to Radius Ratio, or Wire Connectivity (none, one, or both 
ends connected). All of these windows display the model as a 3D wire object. The data is 
encoded in the color of each wire segment using a linear or logarithmic color assignment 
scheme. A color key is displayed in the lower left corner of the window. 

5.2 Computation Visualization 
There has been some speculation that visualizing the method of moments matrix that has 

been extracted from NEC-MoM might give some insight into the validity of the wire model 
being used. A Graphics Library program, viewjnom, was developed to allow display of almost 
any size method of moments matrix. Its structure is similar to that of viewjiec, but it is quite a 
bit simpler. 

viewjnom allows the user to bring up two different windows. The first window has the 
data displayed as a 3D surface with the vertical offset and color proportional to the logarithm of 
the magnitude of the data. The second window is similar except it has the color proportional to 
the phase of the data. Each window allows the surface to be rotated, translated, and zoomed just 
as in viewjiec. The right mouse button brings up the menu. The left mouse button performs the 
transformations. The middle mouse button performs a pick correlation that allows the user to 
select a point on the matrix.   After a matrix point has been picked an information window 
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appears in the lower left comer of the console screen. This information window describes the 
matrix and gives information about the selected point. Included in this information are the row 
and column number of the point. 

5.3 Solution Description Visualization 
Many different solution description products are available for display. The visualization 

products include currents and charges on the wires (real component, imaginary component, 
magnitude, or phase), total near field, z-component of near field, theta component of far field, 
and phi component of far field. 

5.3.1 Currents and Charges 

Currents and charges on the wires are displayed using the same technique as was used for 
the geometry description products: current and charge are color coded on a 3D wire display of 
the model. Again, both linear and logarithmic color codes are available. Since currents and 
charges are complex, each has four different data windows that can be displayed: real 
component, imaginary component, magnitude, and phase. Most users have found the magnitude 
window to be most useful. 

5.3.2 Near Fields 

NEC-MoM allows the user to calculate the near field at selected locations around the 
model. These locations are usually defined by a 3D grid surrounding the model. The near field 
is a complex vector. Of most interest is the z-component since this will be the component that is 
most closely associated with hazards. 

Several techniques were evaluated for displaying the near field data points. The most 
popular was the "fog" technique, viewjiec displays near fields using a "fog" technique in which 
the density of activated pixels in the image is linearly proportional to the field intensity at the 
nearest calculation point. Since the calculation points usually form a 3D grid the image contains 
square blocks of fog varying in density with the field intensity. The fog is also color coded in a 
manner similar to that used for the geometry description products. The 3D wire model is drawn 
using a dark gray color so as not to detract from the near field display. 

The near field windows have a thresholding capability. By clicking in the window with 
the middle mouse button the user is able to selectively change the threshold at which the fields 
are displayed. This allows the user to quickly determine what areas surrounding the model have 
fields above a particular cutoff level. The user can select any of the color key bin levels, HERP 
(Hazardous Electromagnetic Radiation for Personnel), or HERO (Hazardous Electromagnetic 
Radiation for Ordnance) for the threshold. HERP and HERO are functions of the radiation 
frequency. The near field windows display the value of this frequency. 
5.3.3 Far Fields 

There are two windows available for the display of far fields. These windows allow the 
user to display either the theta component or the phi component of the far electric field. The far 
field is complex data. This makes display of it somewhat complicated. A method of displaying 
both the magnitude and phase simultaneously was sought. The selected method involves 
displaying the fields as a three-dimensional surface. The distance from a point on the surface to 
the origin is proportional to the field magnitude at that point. The color at the point is 
determined by the phase of the field at that point. Gouraud shading is used between points to 
transition the color. 
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6.0 OBSERVATIONS 

During this project the authors learned a great deal about visualization techniques and 
limitations. One observation is that as more and more features are added to a piece of software, 
the user interface becomes the limiting factor in the utility of the program. Present efforts are 
directed toward providing a graphical user interface into viewjiec and viewjnom. Another 
observation is of the limits of hard copy devices such as the color printer that was attached to the 
SGI. Although it was a very high quality printer, it was extremely limited in its ability to 
faithfully reproduce the hue, saturation, and brightness displayed on the console. Subtle 
differences in hue could not be discerned, and saturation variations were washed out. Finally, 
without viewing the actual SGI display it is difficult to provide an understanding of the power of 
the EM visualization on a SGI 4D workstation. However, video making capability is available 
with the SGI. This is the only way to properly demonstrate the utility of the visualization 
products that were developed. 
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Introduction 

This paper describes the new Microsoft Windows based graphical interface program for 
GEMACS, WinGAUGE. WinGAUGE provides an intuitive menu and toolbar design for an 
analyst to use in building electromagnetic models. 

WinGAUGE (Graphical Aids for the Users of GEMACS for Windows') is a Microsoft 
Windows *B application that provides the electromagnetic (EM) analyst a tool for building, 
modifying and displaying complex electromagnetic models (Method of Moments (MOM), and 
Geometric Theory of Diffraction (GTD)) for use by the General Electromagnetic Model for the 
Analysis of Complex Systems (GEMACS). WinGAUGE also provides a method for displaying 
currents induced on the wire segments of the geometry. WinGAUGE produces GEMACS ready 
geometry files and is compatible with GEMACS Versions 4.0 and up. 

The standard features of WinGAUGE include: 
0    Standard Windows Menus 
0   Mouse and Keyboard Interfaces 
0   Multiple Views of the Geometry 
0   Hidden Surface display 
0   GEMACS File Formats 

0 True 3-Dimensional Geometry Displays 
0 Hybrid Model Generation 
0 On-Line Help for all Commands 
0 Easy Installation 
0 Full Documentation and Tutorial 

User Interface 

The WinGAUGE user interface 
follows the IBM Common User Access 
(CUA) Advance Interface Design Guide 
specifications for Window applications. 
WinGAUGE follows the specification as 
closely as possible, particularly in the 
design and function of the menu system, 
dialog boxes, and keyboard control. Figure 
1 shows WinGAUGE as it appears on the 
Windows screen. 

Title Bar 

The WinGAUGE title bar shows 
the name of the application, WinGAUGE. 

Geometry Etement ToolBar 

Figure 1 WinGAUGE Interface 
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It will also display the name, if any, of the current geometry file being used/edited. 

Main Menu Bar 

The WinGAUGE menu has been designed to allow a logical progression through the steps 
necessary to generate and display GEMACS geometries. Each menu and menu item has an appropriate 
keyboard shortcut defined. 

Macro TooIBar 

The WinGAUGE macro toolbar is just below the main menu and is used to perform global 
operations on the geometry. Each macro command has an appropriate keyboard shortcut defined. 

Geometry Element TooIBar 

The WinGAUGE geometry element toolbar is a floating dialog box. This toolbar allows the user 
to add, edit or delete GEMACS geometry elements. The user can also use the scroll bars at the bottom of 
the toolbar to rotate the model on the screen. Each geometry command has an appropriate keyboard 
shortcut defined. 

Application Workspace 

The Application Workspace is a background where the graphics display is generated with titles 
and legends. The workspace is normally divided into 4 drawing windows and a rotation bar window in 
the lower left hand corner. The main window dominates the workspace and is the view that is used in all 
editing operations. The three smaller drawing windows on the left side of the workspace are the planar 
projections of the geometry. They include X-Y plane on the top, X-Z in the middle and Y-Z on the 
bottom. They are always labeled for reference. 

The scroll bars in the rotation bar window are used to dynamically change the viewing angle for 
the main drawing window. Each of the three scroll bars controls one of the three viewing axes. 

Main Menu 

This section describes the functions performed by each menu item in the WinGAUGE menu bar. 
Menu items leading to a dialog box are followed by an ellipsis (...). Basic functional operation of the 
dialog boxes follows CUA. A detailed description of Dialog box operation can be found in the Windows 
Manuals. Every menu item can be invoked by a keyboard shortcut consisting of two keystrokes: one to 
select the menu and the second to select the menu item. The first keystroke is modified with the Alt key; 
the second is not. The keystrokes required to execute the keyboard shortcut are specified in this document 
and in the software with an underscore. For instance, File Open is invoked with the key sequence Alt-FO. 
In addition to keyboard shortcuts, some menu items may be invoked with a single keystroke called an 
accelerator. Keyboard accelerators are specified in parentheses after each menu item that has one. 

File 

The File menu of WinGAUGE , Figure 2, provides items to start a new 
editing session, read in an existing model, merge a model from disk with the one 
in memory, save the geometry in memory to disk, printing the main drawing 
window and printer setup. The exit menu item also appears in this menu. 

Open... CW.F12 
Uerge... 
Save ShHI.F12 
Save As-. F12 

Print   CtrKShllhFI? 
Printer Setup... 

Figure 2 File Menu 
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WinGAUGE uses the common dialog boxes for file open and file saveas provided by the 
Microsoft Windows Software Development Toolkit. This reduces the need to remember drastically 
different commands from one Windows application to another. 

Edit 

The Edit menu ,Figure 3, gives the user options for copying 
portions of the geometry display to the Windows clipboard.  Selecting 
the copy menu item places a bitmap copy of the main drawing window 
into the Windows clipboard. This bitmap can then be copied into any     Figure 3 Edit Menu 
other application that supports bitmap graphics.  Selecting the copy-4 
menu item will place a bitmap copy of all 4 drawing windows, and the rotation bar widow if active, into 
the Windows clipboard for further use. As an example all of the geometry graphics in this paper were 
created in this manner. 

Ea£ I.TBJW 

Zoom In Shi(1*F2 
7.*vm Ostf siiisirs 

Isometric stinuF« 
X-Y Shifl»FB 
X-Z Shl*>FB 
Y-Z SM1UF7 
Uier Deflnad ShllHFS 

•/ Rotation Bart 
PnWYaw 

Figure 4 View Menu 

View 

The View menu shown in Figure 4 gives the user options for 
changing the display of the geometry. It allows the user to set controls to 
specify exactly how a model is viewed on screen. The 4-view menuitem 
is a toggle to turn the 3 planar views off or on. A check mark signifies 
they are being displayed. The Zoom-In and Zoom-Out menu items give 
the user a chance to select a portion of the geometry in the main drawing 
window to view more closely or go back to a full display of the geometry. 
The next 4 menu items set how the geometry will be displayed in the 
main drawing window. The Rotation Bars menu item is a toggle to 
remove the rotation bar window from the display to give more room for 
geometry display. For those who are comfortable with pitch and yaw rotations the last menu item 
provides a vertical scroll bar (pitch) and a horizontal scroll bar (yaw) in the main drawing window to 
change the viewing angles of the display. 

Show 

"Show/no-show" can be used to partition the model in various ways. 
Each geometric entity can be in either 'show' or 'no-show' status. Only that 
portion of the model which is in show status is displayed on the screen. Some 
other options — skeleton, translate/rotate, reflect, save - act only on the 
geometry in show status. 

The different ways of selecting a portion of the model under control of 
the "show/no-show" option are indicated in the show menu, Figure 5. Each 
menu item is explained individually under separate subsections. When some 
of these options are chosen, a further dialog box is presented to determine the 
status of the selected geometry. 

Colors 

Cylinders... 
EndCaps... 
fipertures... 
bylype.- 
bygox 

Restore 
Swap 
Recently Added 
Radius-. 
Conductivity... 

Sftwr £3iBt; 
MoShow Points 

Figures Show Menu 

ID... 
ßepth 
loyert 
Color fift 
Iype 
Eadiut... 
Conductivity... 
Location in Memory 

Read Current*-. 
fey Cyrr£*t 

■ <MM.Ml!lTH.^.^KmiUIIJHLIUIJUUIIIILIM 

Legend ? f-;-m CuiT-:ais 
ßead Contour Data... 

WinGAUGE is capable of color coding the elements in 
several ways as shown in the menu below, and display the color 
plot on the screen. The Colors menu, Figure 6, gives the user 
options for setting different color schemes in which to plot the 
geometry. 

Figure 6 Colors Menu 
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Modelstati... 
gutotave... 
Ioolt 
Find Dixtanca... 

Calculator... 

Options 

The Options menu, shown in Figure 7, gives the user various 
global options for working with WinGAUGE. The parameters option is 
identical to the DOS GAUGE and provides plate and polygon labeling, 
hidden surface display, shrink plots, etc. The Modelstats option shows 
the contents of the model database. Autosave is used to set a frequency 
for automatically saving the model in memory. The time is user 
selectable. The tools option turns on and off the Geometry toolbar which 

is described later in the paper. The find distance option gives the user a dialog box to find the distance 
between any two points in the geometry. Lastly the calculator option pops up the Windows Calculator for 
manual calculations when building a model. 

Figure 7 Options Menu 

Help 

WinGAUGE help is provided via the help menu, Figure 8, 
using the standard Windows help system. When help is displayed, a 
help window is created with help navigation commands available at 
the top, with navigation icons immediately below. The main body of 
the window contains the help text itself. 

Keyboard 

Utlng Help 

About GAUGE 

Figure 8 Help Menu 

Geometry ToolBar 

The WinGAUGE geometry toolbar is a set of custom push 
buttons in a floating dialog box that can be turned on or off via the 
options menu. These buttons are used for adding, editing or deleting 
GEMACS geometry elements during an editing session. Figure 10 
shows the geometry toolbar. 

From the top left corner of the tool bar going left to right and 
then down the buttons correspond top the GEMACS point card (FT), 
connect point (CP), patch (PA), plate (PL), cylinder and endcaps 
(CY), radius card (RA), conductivity card (CO), coordinate system 
cards (CS), and finally the bottom two buttons provide the four 
different types of aperture cards: aperture on a cylinder, aperture on 
an endcap; aperture on a plate and; aperture defined by points. 

LJWP 

■to 
[PWCP 

P 
a*»"*? 

Vt w 
mm ■^*isL' 

m & 
ifipim 
ina&n 
Mode           | 

P"    Ml 

Figure 9 Geometry 
ToolBar The mode drop down list box at the bottom of the toolbar 

show the editing mode the program is in. In the add mode dialog 
boxes will be displayed for a user to enter data for a given geometry 
element to add it to the model being built. In the delete mode a list of elements of the type selected from 
the buttons will be displayed in a dialog box along with an empty deletion list. The user then selects 
elements from the data list to build a deletion list once complete the user accepts the list and those 
elements are deleted. The edit mode allows the user to change point coordinates, plate normals and 
conductivities and wire radius values. 

Figure 10 shows an example of the add point dialog box 
that is presented to the user from the geometry tool bar. The user 
enters the id number and the coordinates and selects OK to enter 
the point and exit the dialog or Apply to enter the point and 

Figure 10 Add Point Dialog Box 
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remain in the dialog to enter another or selects Cancel to exit the dialog without entering the point. 

Macro ToolBar 

This section briefly describes the functions performed by items in the WinGAUGE macro toolbar. 
Figure 11 shows the buttons that are available on the toolbar. The operations are considered macro items 
because they operate on sections of the geometry rather than generating single geometry items as the 
geometry toolbar does. The operations/buttons include: Reflect (RF); Translate/Rotate (TR); Convert 
(CV); Renumber (RN); Delete by Volume (DV); Integrity Checking (IT); Lines and Curves (LC); Bezier 
Curves (BZ); and the Model Editing (ME). 

Figure 11 Macro ToolBar 

The following set of figures show an example of the reflect macro dialog box and the result 
of a reflection operation on one half of a truck geometry. 

S\, by reflectior 

Figure 12 Reflect Macro Dialog Box Figure 13 Reflected Truck 

The next five figures show examples of other macro operations that are available in 
WinGAUGE. Each of the macros has many different options available to give it as much power as 
possible to reduce the workload of the analyst that is building or modifying the geometry. 

-I U-J Lh 

<ää 

^mm 

Figure 14 Translated Cubes and Translated and 
Scaled Plates 

Figure 15 Converting Geometry elements, 
Wires to Plates 
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Figure 16 Renumbering Wires 
Figure 17 Lines and Curves 

Figure 18 Bezier Curve 

In addition to the original DOS GAUGE macro functions two macro operations were 
incorporated into WinGAUGE from the program MODELED. These are the integrity checking capability 
and the mesh refinement/generation capability. The dialog boxes for these two macro options are given 
below.   

• WlCfrWreAnqlBl 

OwlrfrVflre Length 

OwireLtngth4tad«ii 

0&«ftaceArea 

OumWngWIrelt) 

O Raoltplay 

|  cancel 

I    He» 

Figure 19 Integrity Checking Dialog Box 
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Figure 20 Model Editing Dialog Box 

The integrity checking dialog box gives the user a chance to ensure that various aspects of his 
model fall within electromagnetic modeling guidelines. The ModelEd dialog box allows the user to take 
an existing MOM model and regrid it via a ratio or frequency based method. Other options include 
ensure wire radius values are valid and scaling the geometry by a user entered value. 

GEMACS Commands Interpreted bv WinGAUGE 

WinGAUGE can read a subset of the GEMACS geometry command set. These 
commands are summarized in the following list. Additions and changes to the list over the DOS 
based GAUGE include adding the multiple point (MP), and wire (WR) cards of GEMACS and 
allowing multiple segments on any of the wire cards. 
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PT ID   x   y   z 

COND    CT1    O2    ...    an 

RA   rl    r2   r3    ...    rn 

CP p1    P2    NSEG    ID    MRAD 

MP # of points(n)    p^    pj    ...    pn 

WR x1    yi    Zi     Xj    y2    Z2    NSEG    ID 
PL ID   # of corners(n)    p1    p2    ... 
PA # of corners(n) p1 p2 ... pn ID 

CS NCS    xc   yc    ze    rx    ry   rz 
CT ID 
EC ID 
AP ID 
AP ID 

AP  ID 

xr    yr    len   NCS 
±cyl_ID    6    $ 

CY    cyMD    dl    g 
EC    endcap_ID    dl 

z1    z2 
b    rl 

NSEG    ID 

NRAD 

pn    c_ID 

4>1    <|>2 
r2    fl    *2 

PL    plate_ID    dl    g    b   # of corners(n)    p1    p2 

AP ID   PT   area   g   b element_ID   # of_points(n)   pi    p2 

Figure 21 GEMACS Card Formats Read by WinGAUGE 

Differences between WinGAUGE and DOS GAUGE-GP 

The following table summarizes some of the key differences between the Windows version of 
GAUGE and the original DOS based version. 

WinGAUGE DOS GAUGE-GP 
variable up to 3000 Points and Polygons fixed at 1500 Points and Polygons 
Automatically updated 4-View drawings Single updated view 

Hardcopy via any Windows Printing Device Dot Matrix and Laserjet Screendump 
Copy image to Windows Clipboard to paste to 

other applications 
N/A 

Run Simultaneously with other programs N/A 
Dynamic Allocation of memory N/A 

GEMACS MP and WR cards interpreted Not implemented 
Automatic mesh generation and integrity 

checking built in to the program 
Separate module for mesh generation and 

integrity checking (MODELED) 
Able to directly export models to other CAD 

data formats 
Export of data not supported. 

Another key difference between WinGAUGE and the DOS GAUGE is the speed of WinGAUGE 
reading, saving, hidden surface calculations, etc. is extremely faster. This is due to the use of optimized C 
functions for sorting, graphics and file handling. The user then is not wasting time waiting for a screen 
refresh or file operation from WinGAUGE. 

Availability 

WinGAUGE was developed by Decision-Science Applications, Inc and is being distributed 
commercially. Anyone interested in ordering a copy of the code can contact the author. 
Government approval is still required for receiving the code. 
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NECDRAW for 3-D Images of NEC Wire Grid Models 

Ron Bardarson and Robert Just 
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ronb@ antlab.esl.com 

Summary 

IBM PC program NECDRAW provides a three dimensional image of a NEC 
wire grid model which is rotatable and scalable under user control. 
Individual segments and wire junctions are identifiable. The NEC validity 
tests of program CHECK have been included, with test failures shown as 
colorized segments for easy identification. NECDRAW is available under 
the shareware concept for IBM DOS programs. 

Introduction 

The usefulness of graphical aids while constructing NEC [1] wire grid 
models has been shown in recent ACES Symposiums and publications. 
With few exceptions, most of these aids have existed on computer platforms 
other than the ubiquitous IBM PC. We created a version for our UNIX 
system some years ago. Due to a recent completion of a 3 dimensional 
graphics library for the IBM similar to our UNIX package, an opportunity 
existed to port the NECDRAW concepts to the IBM and simultaneously 
expand it. An IBM PC has two major advantages over mainframes for this 
application, very fast graphical displays and a larger palette of colors. 

Using the NEC Output File 

Previous programs similar to NECDRAW have used a NEC input file to 
generate their displayed geometry. NECDRAW uses the NEC output file for 
one reason. Unless NEC code has been bodily moved into a graphics 
program, the validity of the graphics program geometry engine is open to 
question, especially when the duplication and rotation/translation cards are 
considered. With geometry code in two programs, code maintenance or 
updating is more complex and costly. By simply inserting a segment 
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loading card that references a non-existent segment, NEC will abort further 
computations and provide the user with the full geometry of the wire grid 
model in the output file. NECDRAW users utilize this trick in initial model 
checks. Since segment current plotting is planned for NECDRAW, the NEC 
output file must be read at some point after the geometry has been settled. 

CHECK tests 

Program CHECK [2] tests a NEC wire grid for computational validity. 
Since that is part of the model generation process, the CHECK wire and 
junction tests have been incorporated into NECDRAW. Failures of these 
tests are displayed to the user and in an optional error logging file. The 
tests only occur when the user issues a command for the desired test. 

NECDRAW Commands 

A command listing from the help file follows the parameter definitions. 
The reference axes for translation or rotation are fixed with respect to the 
view, not the displayed wire grid model. The user can display the models 
axis reference with the gr command. Toggles implies the alternation 
between an on and off state. 

Axis is x, y, z, or a for all axes (used in scaling). 
Angle is a numeric quantity in degrees. 
Scale_factor is a numeric quantity. 
Trans_factor is a numeric quantity in meters. 
Frequency is a numeric quantity in Megahertz. 

TRANSLATION. ROTATION AND SCALING COMMANDS 

tr Axis Trans_factor 
ro Axis Angle 
sc Axis Scale_factor 
<CR> 
re 
un 

Moves model along axis by Trans_factor. 
Rotates model around Axis by Angle. 
Scales model along Axis by Scale_factor. 
Repeat last tr, sc or ro command. 
Returns model to initial view. 
Undo last tr, sc or ro command. 
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MISCELLANEOUS COMMANDS 

3d Toggle 3 dimensional segments. 
cl Clears command history listing. 
cu Frequency Toggle frequency's segment current colors. 
ep Segment_Number Displays the segment endpoint coordinates 

gr Toggles model reference grid. 
he Command reference help. 
ma Toggle markers at segment ends. 
nu Toggle segment numbers. 
qu Quit. 
if Refresh screen. 
ta Toggle tag numbers. 

WTRF. MODEL VALIDITY TOGGLES 

si Segment length check. 
sr Segment radius check. 
IT Segment length to radius ratio check. 
sa All of the above segment checks. 
jc Unconnected segment junction check. 
jl Segment junction length ratio check. 
jr Segment junction radius ratio check. 
js Segment junction length to radius ratio. 
ja All of the above junction checks. 

Examples 

Figures 1 through 4 are simple examples of NECDRAW with a helical 
antenna. The NEC output file was edited to cause the radius changes shown 
in figures 2 and 3 in order to verify the segment and junction tests. Figures 
1 through 3 are snapshots of a single command stream, while figure 4 is a 
second command stream. These plots are printed from screen captures on 
an ink jet printer, the video display has higher resolution. 

Availability 

NECDRAW will be released as shareware. This is a 'try-before-you-buy' 
concept used by single programmers to distribute their efforts at low cost. 
If you decide that the program has value for you, then you are expected to 
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contribute a nominal sum. The IBM version of NECDRAW has, been 
produced solely from unsupported efforts at home. Updates are expected 
based on user feedback, but as with all shareware, cannot occur in a rapid 
fashion. At this writing in January, NECDRAW is still in beta test but a 
version is expected to be available at the 93 ACES Symposium Interactive 
Forum Session. Afterwards, NECDRAW will be available through one of 
the large FTP file servers (SIMTEL20 or it's mirrors) and the IBM BBS 
network. 
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GRAPHICAL SHELL FOR NUMERICAL ELECTROMAGNETICS CODE 

by M.J. Packer, R.A. Powers, A.P. Tsitsopoulos 

Science Applications International Corporation 
Communication Engineering Laboratory 

300 Nickerson Road, Marlborough, MA 01752 
(508) 460-9500 

Abstract 

SAIC is currently developing a Windows™-based graphical shell for Numerical 
Electromagnetics Code, (NEC). The shell, designed for the USAF's Foreign 
Aerospace Science and Technology Center under a contract with Rome 
Laboratory, provides a graphical NEC Pre-processor, an unmodified version of 
NEC, and a data post-processor. The pre-processor is a custom-tailored wire 
definition/drawing package with the look and feel of a typical Windows™ vector- 
based drawing package. It enables the user to create, view, and edit a 3-D 
representation of the antenna structure, as well as control antenna excitation. 
Extensive error checking is performed before NEC execution, identifying most 
model definition errors. Data post-processing capabilities presently include 
color coded current intensities superimposed on the model's geometry, and user 
specified radiation patterns in polar format. This package is fully compatible with 
existing NEC-compatible antenna models and NEC-generated output files for 
NEC versions 2, 3, and 3i. 

The package runs on the 80386/486 PC architecture with Windows™ 3.0 or 
higher running in enhanced mode. This platform configuration allows multi- 
tasking, so NEC can be executed in a background mode while other Windows™ 
applications are also running. In addition, all of the typical Windows™ features 
are available. This includes the ability to view several 3-D antenna structures 
and/or output plots concurrently within one instance of the shell. The ability to 
print is also provided. 

Introduction 

Advances in applied electromagnetic algorithms over the last few decades have 
made it possible to predict the performance of virtually any type of antenna 
structure. These rigorous, time-intensive, algorithms have, however, traditionally 
required the speed and processing power of main-frame computers. As a result, 
personal computers (PCs) have been restricted to simpler, less-accurate, 
closed-form solutions. Now, due primarily to recent technological advances in 
computer architectures, rigorous algorithms can realistically be solved on a PC 
as well. 

One example of a resource intensive electromagnetic (EM) algorithm that has 
recently been ported over to the PC is The Numerical Electromagnetics Code 
(NEC) [1,2]. NEC is recognized as a gold-standard in moment method (MM) [3] 
codes and is used for predicting the performance of antennas less than a few 
wavelengths in size. Its core computation is the current distribution on a 
segmented wire/patch model.    Computational time is directly related to the 
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electrical size and segmentation of the antenna model. NEC, like most text- 
based engineering tools, is user unfriendly and requires extensive knowledge 
and experience to be used correctly and effectively. 

In the past, several government and commercial agencies have produced 
user-friendly interfaces for NEC. SAIC developed its first DOS-based NEC pre- 
and post-processors in 1982, each having extensive use and continuous 
improvement. In 1991, SAIC started development of a Windows™-based 
graphical shell for NEC under a contract with Rome Laboratory for the USAF's 
Foreign Aerospace Science and Technology Center. The shell consists of a 
customized antenna definition/drawing processor and a data post-processor. It 
is intended to be used for antenna analysis targeted at both novice and 
experienced EM engineers. Because of the anticipated broad range of user 
experience, the shell was designed to support all of NEC's sophisticated 
antenna analysis features while also being intuitive enough to mitigate the most 
common deficiency of NEC, i.e., user error. 

Errors in antenna modeling can result from computer limitations, algorithms and 
implementation of algorithms, and defining the antenna model. While PCs may 
not have the processing power of main frame computers, advances in the PC 
architecture and programming techniques support large matrix inversions 
required for MM solution. The MM algorithm and its implementation in NEC 
have been independently validated by many organizations and found to provide 
accurate antenna predictions. The one remaining error source is due to the user 
and his/her ability to create error free antenna models which are compatible with 
NEC. Therefore, SAIC's NEC graphical shell includes a 3D antenna drawing 
package to help the user visualize the model, error checking, and user-friendly 
dialog boxes to accurately specify NEC control parameters. These features 
allow an inexperienced user to climb the NEC learning curve at an accelerated 
rate. 

Graphical Shell 

The graphical shell runs on an 80386/486 PC with Windows™ 3.0 or higher in 
the enhanced mode. The shell is a Windows™ Graphical User Interface (GUI) 
consisting of a main menu, an antenna definition pre-processor, a NEC 
execution interface, and a data post-processor. 

The graphical shell provides the capability for complete antenna analysis. Using 
the menu bar as shown in Figure 1, the user can perform file management 
operations, execute NEC, view output plots, manipulate windows, and access 
help. The File menu item allows a user to open one or more antenna 
definition/drawing windows. These windows read numerical data stored in NEC 
input files and display the data as 3D images. Creating, viewing, editing, and 
printing antenna models are easily performed. The Run menu item is used to 
execute NEC in a manner that is transparent to the user. During NEC execution, 
a rotating dial is displayed to signify that an analysis is being performed, The 
user is unaware that a separate DOS-based code is being run. Output plotting 
capability is provided via the Plot menu item. Both polar radiation plots and 
current intensity diagrams are available. The Window menu item provides 
conventional window manipulation functions such as Cascade, Tile, Arrange 
Icons, and Close All Windows. The Help menu item provides assistance for 
using SAIC's graphical shell. 
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Antenna Model Definition 

A key feature of SAIC's NEC graphical shell is the antenna definition window. 
The window was designed to have the look and feel of a typical Windows™ 
vector-based drawing package with additional features for drawing in 3D. This 
3D drawing package automates the tedious work of defining and typing wire 
coordinates in a DOS text file. As shown in Figure 1, the antenna drawing 
window contains a window title, drawing area, wire and view manipulation tools, 
scroll bars, and drawing information. Figure 2 illustrates the graphical shell's 
ability to display multiple orientations and outputs concurrently. Some of the 
antenna definition window's key features include: 

User-defined defaults 
Wire tag definition 
Three dimensions 
Zoom up/down 

Wire stretch/shrink ability Wire statistics 
Find wire ends Find wire segment ends 
3-D Cursor position data Variable orientation (6 , <i>) 
Snap-to-grid Multiple images (varying 9 ,40 

m Graphical Shell for NFC Analysis 
File. Bun    Plot    Window    Help 

Drawing Plane    Cursor Postion     AsPectAn9le 
Scroll Bars 

Graphical Shell with a Single Antenna Definition Window Open 
Figure 1  

Mouse movement 

The norm for today's drawing utilities is to perform most drawing functions with a 
mouse. However, when drawing in 3D, it is mathematically impossible (without 
fixing other variables) to convert a 2D mouse cursor location to a single 3D 
coordinate. SAIC's antenna definition window overcomes this reality by limiting 
mouse movement to orthogonal planes. The plane of mouse movement can be 
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shifted between x-y, y-z, and z-x by clicking the right-hand mouse button.  The 
model viewing 
angle remains 
unaffected. 
Movement along a 
single axes is 
accomplished by 
holding the shift 
button down while 
moving the mouse. 
Keyboard support is 
also provided. The 
cursor position is 
incremented or 
decremented in any 
3D direction by 
depressing the x, y, 
or z and Ctrl x, Ctrl 
y, or Ctrl z keys, 
respectively. 
These features 
allow for quick, 
easy development 
of 3D models. 

Multiple Windows Showing Model Geometry and Output 
 Figure 2 

Wire Drawing/Definition 

A major advantage of using SAIC's graphical shell is wire definition. Defining a 
wire using SAIC's antenna definition window is similar to drawing a line in a 
typical drawing packages. Upon selecting the wire tool, a wire can be drawn in 
three easy steps. First, the user moves the mouse to the desired wire start 
coordinate and clicks the left-mouse button. He/She then "rubber bands" the 
wire, moving to the wire end coordinate. Third, the user releases the mouse 
button. The wire is displayed on the screen and its end-point coordinates are 
stored in memory for subsequent creation of a NEC input file. During the 
"rubber banding" process, a display of the wire's length is continuously updated 
as the mouse is moved. An existing wire can be edited by using the arrow tool 
to stretch or shrink the wire from either of its ends in a similar fashion. After a 
wire is created or edited, it becomes the "selected" wire. When selected, its two 
endpoints are marked with dissimilar sized black squares to distinguish the start 
node from the end node. 

Connecting two wires requires that the connecting ends have identical 3D 
floating point coordinate values. This is not easily accomplished when 
converting mouse cursor locations to 3D coordinates since the distance between 
screen pixels is much larger than the resolution of a floating point number. 
SAIC's antenna drawing window provides three features to ensure precise wire 
connections: Snap-to-Grid, Wire-Segment Find, and Wire-End Find. Snap-to- 
grid restricts the cursor movement to a user-defined 3D grid resolution. Wire- 
Segment Find, activated with the "F' key, sets the 3D cursor coordinates to that 
of the closest wire segment. Wire-End Find, activated with the " Shift F' keys, 
sets the 3D cursor coordinates to that of the closest wire end. 
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Entire Model Segment Display 
Figure 3   

When constructing an antenna model with many wires, it is often desirable to 
display wire segments. This can be accomplished on a selected wire by 
depressing the S key, or for the entire model by depressing the shift S keys as 

   shown   in  Figure 3. 
Proper segmentation 
is extremely 
important for 
obtaining accurate 
NEC predictions with 
reasonable run- 
times. For example, 
a UHF antenna 
placed on a large 
platform requires 
stringent 
segmentation near 
the antenna. 
However, 
segmentation 
requirements can be 
reduced    on    other 
parts of the platform. 

Model Viewing 

It is necessary to view antenna models in 3D space using a 2D screen. In actual 
3D space, items are viewed from an isometrics view point, so all parallel edges 
appear to converge or diverge. This is important for the correct simulation of 
infinite space but is impractical for this application. For finite antenna modeling, 
the model must be able to be viewed from any spherical coordinate (p,6,<j>). This 
is accomplished using scroll bars, zoom buttons, and orientation buttons. Scroll 
bars are used to change the location of the 3D origin on the screen. Zoom 
buttons allow a user enlarge a portion of a model to show more detail, or shrink 
the display to show more area. Orientation buttons allow a user to view a model 
from any aspect angle (0, <|>). Each time a button is pressed, 9 or $ is 
incremented or decremented by a user-defined amount. 

Control Line Specification. 

After completion of the model's geometry, the model's control lines, excitation, 
frequency, and desired output need to be specified. SAIC's graphical shell 
includes a control line editor that simplifies specification of NEC's control and 
system parameters. As shown in Figure 4, each available control line is listed in 
the left section of the editor. Nearly all NEC control lines are listed. The 
miscellaneous line allows the use of control lines not recognized by the line 
editor, such as, upper medium, dielectric sheath, and print control. The 
miscellaneous line can be used by the experienced user for the creation of any 
line. 

The control line editor's right-hand section shows the control lines that have 
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j^^^^^^^gggggoirgW^ 
Control Line Options Control Lines Used 

End geometry (GE) 
Frequency (FRJ 
E «citation fi Üä, 
Transmission Line (TL| 
Impedance Loadmg (LD) 
Two-Port Network (NT) 
Neat Electric Field (NE) 
Neat Magnetic Field (NH) 
Ccupang ICPJ 
Ground Parameters (GN) 
Addition Gnd Perm (GDI 
Green Function [W6J 
Nest Structure (NX) 
Thin-Wire Keine) (EK) 
Interaction Range (KH) 
Mrscelaneous card 

1 

End geometry (GE) 
Frequency (FRJ 
Excitation (EX) 

Control Line Editor 
 Figure 4  

jg^^^^M^P^iMiM^i^i^ 
' Excitation type 

® Voltage souice (applied E-field] 

O Incident plane wave (inear polarization) 

O Incident plane wave (RH elliptic) 

O Incident plane wave (LH elliptic) 

O Elementary current source 

O VoJtage souice f cunent-slope-ducontinuity) 

Tag number           h                       1 

Segnentnumber ll                     1 

Voltage (real)       |l.DOO             j 

Voltage (inag)      10.000             | 

Unused 

Unused 

Unused 

Unused 

Excitation Dialog Window 
 Figure 5  

been selected by the user to 
be used with the model. 
When creating a NEC input 
file the traditional way with 
an ASCII editor, each 
control line requires 
specification of four integer 
variables and six floating 
point     variables. The 
definition of each variable is 
dependent on the particular 
control line being used. 
Using the control line editor, 
the method for specifying 
each variable is greatly 
simplified. For example, 
editing the geometry end 
(GE) line will open a dialog 
box with three options: no 
ground plane, ground plane 
with an image, or ground 
plane without an image. 
The user simply clicks the 
mouse on the desired 
option. A more complex 
example is the excitation 
line's dialog box (shown in 
Figure 5). The dialog box is 
divided into two sections: 
excitations type and 
definition fields. The titles 
of the eight definition fields, 
vary to correspond to the 
particular excitation type 
that is selected. In the 
figure a voltage excitation is 
selected, therefore four 
definition fields are 
necessary. These features 
provide a simple and 
intuitive method for control 
line specification, minimizing 
the user's dependence on 
the NEC manual. 

NEC Execution 

Execution of NEC is accomplished by selecting the Run menu item. NEC will 
automatically create and save an input file for the active drawing window, and 
then execute NEC.   Once an analysis has begun, the cursor changes to a 
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rotating wheel, signifying execution is in process. At this time, the user can take 
advantage of Windows™' multi-tasking abilities and switch to another Windows™ 
application. SAIC's NEC graphical shell will run both an unmodified NEC-2 
FORTRAN from the NEEDS package and NEC-3i compiled for a personal 
computer running DOS. SAIC will distribute NEC-2 with the graphical shell, 
however, NEC-3 or NEC-3i must be obtained from its owners. SAIC also has 
compiled a version of NEC to run under Windows™. If desired, SAIC will 
distribute NEC-2WIN with the graphical shell. 

NEC Data Storage and Graphical Display 

NEC generates extremely large output files. These files include input 
information, segment positions, and other redundant data traditionally used to 
check the input structures. When using SAIC's shell, most of this information is 
not required since the model is checked for errors before NEC execution. SAIC 
contemplated NEC output file reduction by removing redundant data or by using 
binary storage, but it was decided that interoperability with previous NEC runs is 
more important. Therefore, the graphical shell does not perform any 
reformatting of NEC output files. It reads the NEC-generated files for desired 
information and plots the data in the form of polar radiation plots and color- 
coded current intensity diagrams. The graphical shell can graphically display 
data obtained from existing NEC output files as well as output files generated on 
a main-frame computer. Huge NEC models can be created with the graphical 
shell, transferred to a main frame computer for fast execution, and then the 
output file can be transferred back to the PC for graphical display. 

Figure 2 displays the graphical shell's polar radiation plots. Both elevation and 
azimuth patterns can be displayed alone or simultaneously on a single polar 
plot. The two patterns are distinguished by both line color and thickness. The 
elevation pattern is red and has two pixels' widths while the azimuth pattern is 
blue and is one pixel wide. Selection of a specific <|> (6) angle for the elevation 
(azimuth) pattern is performed from the Plot-Options menu item. 

Mj   -            -  -- Graphical Shell lorNEC Analysis 
Elle   ft"   Bot   Window   Help  

g\necwin\lpa3pg.out ^^ c^hccwiriVpa3pg80.iiut 

Colored Intensity Output of LPA at Different Frequencies 
Figure 6 

Color-coded current 
intensity diagrams 
graphically display 
NEC's output current 
intensities superimposed 
with color on the model's 
geometry (shown in 
Figure 6). Red (hot) is 
used for segments with 
the highest current, while 
blue (cold) indicates low 
current. The value 
associated with each 
color can be determined 
automatically or can be 
defined by the user. 
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Summary 

SAIC is developing a graphical shell for NEC that can be used both by novice 
and experienced EM engineers and analysts. A user with only a basic 
understanding of PCs and Windows™ will be able to use the shell to predict the 
performance of any antenna structure that can be modeled with NEC. The shell 
automates the otherwise tedious and confusing methods required to specify 
inputs and to view results. It includes three dimensional drawing capabilities, 
easy-to-understand output plots, error checking, and help. Presently, the 
graphical shell is in development; however, a working prototype is available 
(Version 1.1). 

SAIC has three other Windows™-based graphical tools use for electromagnetics 
and propagation analyses. One uses closed form and simple MM solutions to 
perform quick parametric studies of twenty standing wave, traveling wave, and 
aperture antenna types. Since computationally simple solutions are used, 
predictions for each of the twenty antenna types can be obtained in under ten 
seconds. Another Windows™-based software package provides a graphical 
shell for Basic Scattering Code (BSC) [4]. BSC uses UTD algorithms to model 
large antenna structures that are more than a few wavelengths in size. The 
graphical shell is similar to that for NEC except that it uses solid geometric 
shapes for model construction. SAIC's last graphical shell simplifies the use of 
IONCAP [5], a High Frequency (HF) skywave propagation code. The shell 
provides input windows, map windows, and plot windows. Input windows 
provide user-friendly dialog boxes with error checking for defining IONCAP input 
parameters. Map windows use the Defense Mapping Agency's Digital Chart of 
the World to display node locations and signal-strength contours on high- 
resolution maps. Plot windows are used to display lONCAP's numerical output 
data in the form of nine types of Cartesian and polar plot types. Interoperability 
is built into all of SAIC's Windows™-based antenna, propagation, and map 
software. As a result, complete end-to-end communication system performance 
can be determined quickly, easily, and accurately. 
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Field Matching Analysis of Complex 
Waveguides with Anisotropie Materials 

M. OKONIEWSKI 

Dept. Of Electrical and Computer Engng, University of Victoria 
P.O.Box 3055, Victoria, BC, Canada V8W 3P6 

1 Introduction 
Many structures, such as ferrite phase shifters, magnetron resonators, fin waveguides 
have geometries that are difficult to analyze. The mode matching technique [1] has 
been modified to allow for an accurate analysis of complex shape waveguides loaded 
with anisotropic materials. The method has been implemented on a PC-386 computer 
equipped with a Microway i860 board. The method was used for the computations 
of the properties of a waveguide used to construct a novel polarization rotator for a 
domestic satellite TV receiver operating in a 10.95-12.75GHz frequency range. The 
parameters of a model of the device are presented. 

2 Analysis 
Consider a waveguide of a cross-sectional geometry sketched in fig.l. To facilitate 
the analysis, the cross-section of the structure is sectioned so that a cylindrical inner 
guide (CIG), and attached guides (AG) are distinguished (fig.l). The geometry of 
both CIG and AGs makes it simple to find the general solutions of Maxwell equations 

in their respective regions. 
To solve the boundary problem, the fields - general solutions in the distinguished 

regions — have to be matched across the common interfaces. To achieve this, conti- 
nuity conditions for fields components tangential to the interfaces are employed. 

2.1     Fields in IG region 

The CIG can be inhomogeneous (radially heterogeneous but axially symmetrical). 
It can be build of an arbitrary number of concentric cylinders made of dielectric or 
longitudinally magnetized ferrite materials. Fields in the outermost layer of the CIG 
have to be known to carry out the matching procedure [1]. Transfer matrix concept 
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Figure 1: Structure under analysis 

[4, 1] adopted for cylindrical ferrite media is used to solve Maxwell equation in the 
CIG. 

In a given, say /-th, ferrite cylinder of IG, the electromagnetic fields are governed 
by a pair of coupled equations [3]: 

(1) 

where: D is an electric flux and H is proportional to magnetic field — H = ^/tößöH, 
while pa„ Pi denote the relative off-diagonal and diagonal elements of the permeabil- 
ity tensor, respectively, fica, stands for the relative effective permeability, and £/ is 
the relative permittivity and k0=u)^jtöjlö- 

We seek the solution to (1) in terms of series of eigenfunctions: 

D°J =   £  D&-"*       H°J =   £  i&e-"* 
fc=-oc fc=-co 

Each eigenfunction consists of coupled partial waves Vx and Tix: 

D"xl=V"xl + R,K,       j£, = S,P*, + W*( 

(2) 

(3) 

defined as: 

Vxl   =    [A^hixiiP)* A'lVkixi.p)}^ 
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Hk
xl   =   [B'MXHP) + Bk

2lYk(XhP)} e><°> (4) 

where: k is an integer number, the eigenvalues Xh 2 can be f°und from the following 
expression:   

Xh., = sj\ [{a + c) T ^/(a + c)*-4(ac-M)] (5) 

a   =   kld/icft, - ß2 b   =   jßk0e,^ 
c   =   k2t,-j;ß2 d   =   jßkoü* 

and Jfc(-), Yjt(-) are Bessel and Neumann or modified Bessel and McDonald functions, 
depending on the sign of k\ — ß2. 

Note that the coupling coefficients Ri and Sf. 

where: 

"2   - n V2 

S, = Xt> ~a       R, - Xh ~ C 

vanish when infinite bias magnetization Hi is applied. Once the longitudinal fields 
are known, transverse field components can also be determined [5]. A sequential 
application of continuity conditions between subsequent layers leads to a relation 
between amplitudes of the fields of the innermost and outermost layers of CIG [5]: 

Ah
L=KlAi (6) 

where XTT is a global transfer matrix which is dependent on the electromagnetic and 
geometric parameters of CIG only, and is defined in [5]. In the innermost cylinder 
of the CIG amplitudes A^ and Bhj vanish, therefore k-th mode in the CIG has only 
two amplitudes Ak and Bk. 

2.2    Fields in AGs 

The AGs can have a variety of cross-sectional shapes, ranging from open at one side 
rectangular waveguides to sectorial guides and parallel plate guides with magnetic or 
electric walls. It is required however, that the Helmholtz equation formulated in AG 
region is separable. 

The solution of Maxwell equation is postulated as a series of type E and H modes, 
complete in an AG region: 

Dti=T.<^       K = HKHt (7) 
n n 

where: i denotes i-th AG, n - n-th eigenfunction, and ej,, h'n stand for unknown 
amplitudes. Superscript _L indicates quantities defined in AGs. 
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Figure 2: Types of AG implemented: rectangular - a, sectorial - 6. 

The eigenfunctions D^ and H^ are assumed in the following form: 

D$k   =   e-^Kili)^) (8) 

where: <ft, q2 are transverse coordinates of a system in which AG is denned, (y and 
z in case of fig.l). 

Currently two types of AG are implemented: rectangular AG and sectorial AG 
(Fig.2. For rectangular AG functions TJ,(<?2) and ü'n(q2) are defined as: 

Tn(zi) = sinfe^-a;)] 
ifn(zi) = coslkUzi - a.-)] 
*i(y,-) = sinh(^J6,-- y; 

K(Vi) = cosh(fc;n)6,-y; 

where: fc'„= f 
whereas for sectrorial AG we have: 

n»(vi) = cos[fc;(e;-^)] 

«too = Jtv(*;/»'') + «i»Y*j (*>■') 

where: 4=-J*. (fcjrtJ/Ytj,(*><), 4-=-J'*i(*ipi)/Yijp(*jri), *»d *i=3* 

2.3    Field matching 

To obtain the solution of the boundary problem the fields are enforced to fulfill the 
continuity conditions at the interfaces between distinguished regions. These interfaces 
are denoted with Cand £ lines — £ circumferences the CIG region, while f marks the 
limits of the AGs. 
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In general, AGs and CIG can overlap, as it is the case for rectangular AGs. 
The continuity conditions for E and H field can be then formulated at different 
interfaces, e.g. H fields can be matched on £ and E on £ [5]. With sectorial AG 
however, the both lines become identical, which facilitates the analysis allowing for 
analytical calculations of inner products that follow (using symbolic math packages, 
MATHEMATICA in this case). 

Let us consider the continuity conditions for E fields on £ and for the H fields on 

K 
El 

(10) 

(11) 

C 

where: B is a function selecting i-th AG region. 
To transform equation (10) into an algebraic system the inner products are taken 

of its both sides with every function from the set of IG eigenfunctions, {eJ'*v}, with 
the definition of the inner product ensuring orthogonality 

(f\9)( = ff9*d{ = Jo
2Tf9*Rädip 

As a result a matrix formula is obtained: 

A 
B 

= A _e 
h 

(12) 

(13) 

where: X. is build of diagonal submatrices, A. is dense and [A B\T and [e h]T are 
vectors storing amplitudes of eigenfunctions of IG and AGs, respectively. 

A similar procedure is applied to (11). This time however, an inner product 
is taken of its both sides with every eigenfunction of AGs. The appropriate inner 
product for this operation is defined as follows: 

</ l<?x')c = / HgxiTBiM dC = £' f(guT d*,- 

This operation yields the following matrix relation: 

V 
A 
B 

= A 

(14) 

(15) 

where: A is build of diagonal matrices and Y_ is dense [5]. 
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Figure 3:   Cross-section of a waveguide used in a polarization rotator.    CIG ra- 

dius=4.mmm, fc,-=14.5mm, Ms=3000Gs, e=12. 

In both eq. (13) and eq. (15) the same two vectors of unknown amplitudes are 
present. By the elimination of one of them a homogeneous system of algebraic equa- 
tions, is obtained, which, after setting its determinant to zero, provides the dispersion 

equation: 

A-VI = 0 (16) 

3    Verification and results 

The program has been written in Fortran, and implemented on a PC-386 computer 
equipped with a Microway i860 NumberSmusher board. To compute ß-f character- 
istics the root finding subroutine proposed in [6] was used and found very efficient. 

A proper behavior of the method applied to compute structures where only rect- 
angular AG were present was verified both numerically and experimentally [1]. Since 
the core of the algorithm remains unchanged when sectorial AG are also allowed, only 
few tests were performed - in particular the program was used to compute character- 
istics of ferrite and dielectric loaded circularly-cylindrical waveguide. The theoretical 
and computed results compared well. Tests involving more complex structures were 
not possible however, since no adequate data in the literature were found. Therefore 
the version of the method involving sectorial AGs was validated experimentally in 
the design of a waveguiding structure for a novel polarization rotator for a domestic 
satellite TV receiver operating in 10.95-12.75 GHz frequency band. 

The cross-section of the waveguide is shown in Fig.3, and Fig.4 illustrates values of 
computed phase shift. The measurements of the prototype of the device are shown in 
Fig.5. Although the two figures do not correspond directly, it may be notice that the 
measurement results for an actual device were in good agreement with the estimated 

behavior. 
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Figure 4: Polarization rotation of a section of a vaweguide in Fig.3 Section length 
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Figure 5: Reflectio - curve 1, and transmission losses -curve 2 of a ferrite polarization 
rotator, I=186mA. 
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4    Conclusions 

The mode matching method of analysis of waveguides of complex cross-sectional 
geometry has been modified to allow for analysis of structures containing sectorial 
AGs. Results of numerical computations of a polarization rotation introduced by 
a section of complex waveguide were presented. A model of polarization rotator 
comprising this waveguide was built, and its measured parameters are included. 
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Abstract 

Integral Equation Techniques (IET) like Spectral Domain Analysis (SDA) or Mixed Po- 

tential Integral Equation (MPIE) are prefered methods for the analysis of passive planar 

radiating structures. Arbitrarily shaped geometries are investigated by the subsectional 

basis function approach to the Method of Moments and the resulting system matrices are 

computed with Conjugate Gradient Methods (CGM). The complexity of planar structures 

that can be modeled is limited by storage space and computation time. These limitations 

can be overcome by the application of a mapping procedure. This way one can not only 

save the maximum of computational storage but also minimize the required computation 

time. Cray computers yield the fastest performance for these highly vectorized algorithms. 

Summary 

Among the mathematical models for the analysis of passive planar radiating structures, 

integral equation techniques stand out as one of the most common and popular approa- 

ches [1,2]. They can be generally separated into the two numerical methods, the Spectral 

Domain Analysis (SDA) and the Mixed Potential Integral Equation (MPIE). They pro- 

vide a different rigorous treatment of printed microwave circuits but yield to the same 

impedance matrices. Among their principal features, these models are able to handle pat- 

ches of arbitrary shapes where no suitable first guess of the surface-current distribution is 

possible. Also there are no limitations in frequency and substrate thickness. The models 

automatically take into account mutual coupling between elements and can predict the 

performance of a patch embedded in an array environment. Electromagnetic radiation is 

fully considered and surface waves are included as well as dielectric and ohmic losses. 
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The integral equations, the Electrical Field Integral Equation (EFIE) and the Mixed 
Potential Integral Equation (MPIE) will be treated numerically with the Method of Mo- 
ments (MoM) [3]. By this way the integral equation is transformed into a matrix algebraic 
equation 

C 

c" c' 
v« 

jZ0 \ VW (1) 

which can be solved on a computer. The subsectional basis function approach is succes- 
fully applied to arbitrarily shaped geometries [4,5,6]. Concerning the physical size of the 
structure to be analysed the method is valid from DC to infinity. However, most nume- 
rical implementations work at their best with structures whose size is comparable to the 
wavelength. 

Discretization usually requires the solution of large systems of linear equations that maybe 
exceed the storage of a computer. Because of numerical instabilities Gaussian elimination 
becomes inattractable for higher frequency problems. To overcome these drawbacks we 
use conjugate gradient methods for the numerical solution of the matrices and apply a 
mapping procedure to the matrix elements that allows a reduction in computational sto- 
rage by about one dimension. Hence, these highly vectorized algorithms are very suited 
to run on vector computers and extend the range of discretization drastically. There are 
no more barriers to examine passive planar radiating structures with ten thousand and 
more subsections. 

The conjugate gradient algorithm for solving the matrix equation Ax = b in its ge- 
neral form is shown in Table 1: 

Initialization: Po = r0 = b - Ax 

For k = 0,1,2,3... 

End do 

until convergence do 

Xfc+i = Xfc + akPk 

rfc+i = Tk - akApk 

Pk+i = rjb+i + ßkPk 

where: ak = rfra/pfAp* 

A = r?+1 Wrfr* 

Table 1: 
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It provides a viable algorithm for application to indefinite problems [7,8]. The matrix A 

of order Ar is complex symmetric and implicitly formed by two storage vectors of order 

27V". One matrix-vector multiplication operation per iteration is necessary. The algorithm 

theoretically terminates in exact arithmetic in at most N iterations with r/t+i = 0 and 

ßk = 0. However it has been observed that for every solved system of equations, satis- 

factory convergence occurs in much fewer than N iterations. The number N of iterations 

strongly depends on the proper choice of basis- and testfunctions in the subsectional basis 

function approach to the Method of Moments. For arbitrarily shaped structures we chose 

rooftop-type and unidimensional pulse functions defined above equivalent rectangles. 

The application of the subsectional basis function approach to the Electrical Field In- 

tegral Equation in Eq.(2) as well as to the Mixed Potential Integral Equation in Eq.(3) 

yields a very simple algorithm which reduces the computational storage of the MoM- 

matrix to a minimum. 

ez x Ee = -e_. x / SEJS dS' + Zs Js (2) 
Js0 

ez x Ee = e, x (ju f WA3sdS' + V /  GvqsdS') + ZS3S (3) 
JSc JSa 

The algorithm represents a simple law of mapping and allows a reduction in the required 

computational storage by several orders of magnitude. Taking advantage of the rotational 

and translational symmetry of the Green's functions in the transverse directions, one can 

map the whole MoM-matrix onto two rows of the matrix. Only as few matrix elements 

as absolutely necessary, i.e., only the non-redundant, have to be addressed and thus the 

information of the N x N matrix can be stored in the computational memory of a 2 x N 

matrix. Following [9] we get the required law of mapping: 

ciA^is) <—> A"m<n(t)) h—* CoS * a{(\m - i\ + 6y) * < + \n - j\ + 1 + 6X)        (4) 

Eq.(4) maps all the correspondences c that depend on the mean value of the distance 

between two weighted subsections Afj(s) and AJ, n(t) onto an one-dimensional array a1. 

The superscripts p and q denote the orientation of the specific subsection in p-direction 

and «/-direction, respectively. The symmetric or antisymmetric functions which weight the 

subsections, are characterized by the indices s and t. Even functions are represented by 

(e), odd functions by (o). In connection with the application of the MoM to the MPIE 

the function AJj, „, for example, represents the cartesian component of the surface charge 

generated by a i-directed surface current Ix. The subsections Afj refer to the so-called 

razor test functions. 

We have implemented the mapping law to the MPIE [10] and studied the performance of 

the CG-algorithm. Independent of the CG-convergence rate we plotted for various com- 

puters the average time per iteration cycle versus the order TV of the system matrix. Fig.l 

compares the 33MHz PCs 386 and 486 with the workstation HP720 and the Cray compu- 

ter Y-MP4/464 of the Leibniz Rechenzentrum München. The available storage space for 

a matrix (explicitly formed) is limited by the 60 Megawords RAM of the Cray. For the 
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1000   2000   3000   4000   5000 

Matrix of Order N 
  PC3S6 33MHz 

  PC4S6 33MHz 

  Workstation HP720 

 . Cray Y-MP4 (motrix not stored) 

  Cray Y-MP4 (matrix stored) 

Figure 1: Reference Plot for Various Computers 

explicit set up of a complex matrix of order N — 5000, for example, we require about 50 
Megawords RAM. Supposed that we form the impedance matrix implicitly by our map- 
ping procedure we can reduce computational storage to 60 Kilowords RAM, however. The 
increase in the computation time amounts to about a factor ten and the Cray computer 
spends 4.64 CPU seconds for one iteration cycle. The average computation time multiplier 
for the respective machines listed in Fig.l is shown in the table below: 

Matrix explicitly formed (60Mwords Cray-RAM) 

PC386 33MHz Factor 1011 

PC486 33MHz Factor 360 

HP720 Factor 140 

Cray Y-MP4 Factor 10 (with mapping) 

Cray Y-MP4 Factor 1 (without mapping) 
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To become independent of the large memory requirements of more complex printed struc- 

tures the presented CG-algorithm is in connection with the mapping procedure the fa- 

vourite candidate for the simulation of passive planar millimeter wave circuits. In Fig.2 

we show the appropriate reference. The average computation time for one iteration cycle 

100 56.2 Million Floating                / 

Point Operations                    / 

per Second                            / 

80 Cray Y-MP4/464              / 

60 / 

40 / 

20 y 
5000     10000    15000    20000 

Matrix of Order N 
Cray Y-MP4 (matrix not stored) 

Figure 2: Reference Plot for Cray Y-MP4 with the Matrix Implicitly Formed 

is again plotted versus the size of the calculated matrices. But for matrices larger than 

order fifteen thousand the exponential behaviour in the plots of Fig.l ends in the strictly 

linear dependency shown in Fig.2. Therefore the required computation time per iteration 

cycle of matrices of order N can be easily estimated by linear extrapolation. 

Conclusion 

The use of the subsectional basis function approach to the Method of Moments and the 

Conjugate Gradient Method, the iterative procedure for the solution of system matrices, 

result in a stable numerical algorithm. This way not only the maximum of computational 

storage is saved but also the demand for computation time is kept within applicable limits. 

The implementation of the proposed numerical procedure to integral equation techniques, 

the EFIE and the MPIE, respectively, expands the capabilities of simulation of passive 

planar radiating structures forwards. Application of the described techniques to these 

structures provides a means for modeling more complex shaped geometries discretized by 

ten thousand and more eqivalent subsections. Considering the complexity of the passive 
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planar radiating structures to be analysed an optimal compromise between computational 

storage on the one hand and computation time on the other hand was found. 
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Abstract 

This paper has introduced a rigorous analysis of a variety of 
transmission line transition discontinuities and module interconnect 
assemblies in MMIC and MHMIC circuits using the frequency-domain 
TLM method. Numerical results of frequency-dependent s-parameters 
have been presented which include the effect of finite thickness and 
conductivity of metallization as well as mode interaction between 
cascaded discontinuities. The effect of inserting an intermediate section 
of transmission line between two different transmission media has 
been analysed and it was found that CPW transitions can be made 
more broadband. The effects of the bonding wire for module 
assemblies is investigated. It is found that the properties of the 
interconnect are largely depended on the total length of the wire and 
are quite insensitive to the shape of the wire. This is in a good 
agreement with the experimental observations. 

l.Introduction 
Typical MMIC and MHMIC circuits are composed of a variety of different 

types of planar transmission lines including microstrip, coplanar waveguide and 
coplanar stripline as well as slotlines on a single or multiple chips. Low loss 
transmission of energy between these different transmission media as well as the 
interconnect between different modules is a frequently encountered problem in the 
design of MMIC and MHMIC circuits. This problem is not easily solved since the 
structures present a truly 3-D discontinuity with small circuit dimensions. 
Furthermore, discontinuities are closely spaced which leads to interactions between 
circuit parts and makes the use of quasi-static analysis methods unreliable. More 
sophisticated full-wave techniques which are capable of simulating all aspects of 3-D 
field interaction at and between discontinuities are usually very CPU-time 
consuming or memory space intensive which is the reason why they are not in 
widespread use. On the other hand, design data for discontinuities as shown in 
Fig.l, as an example, are quite useful for practical applications but are not available 
from the literature. In this paper we will investigate these transmission line 
transitions and module interconnections in more detail with a very powerful and 
flexible new numerical technique, the frequency-domain TLM method, which was 
published only recently by Jin and Vahldieck [1]. The objectives of this investigation 
is to simulate such structures and to extract useful information for optimum 
transition design. 

266 



2. Method 
The numerical analysis is carried out utilizing the frequency-domain TLM 

(FDTLM) method. A detailed description of this method has been presented in [2]. 
Therefore, only some highlights are given here. In the FDTLM method, the space to 
be analysed is discretized by a transmission line network, as in the conventional 
time domain TLM (TDTLM) method. A hybrid symmetric condensed node is used 
which is represented by a 15-port symbolic scattering matrix [4]. However, instead of 
exciting the network with a single impulse, an impulse train of sinusoidally 
modulated magnitude is assumed. This impulse train is only used to build a bridge 
between the time- and the frequency-domain. By chosing the modulation frequency 
subsequent pulses are related by a factor of eJ^A* and therefore the entire algorithm 
is transformed into the frequency-domain and is significantly simplified. Hence the 
practical implementation of the algortihm does not require an actual impulse 
excitation of the network. Frequency-domain techniques, such as the diakoptics, can 
be readily implemented in this new method in order to enhance its computational 
efficiency. Hence, the FDTLM method has both the flexibility of the conventional 
TDTLM and the computational efficiency of frequency-domain techniques, and is 
particularly suitable for structures with complicated geometries such as the 
transmission line transitions and interconnect assemblies shown in Fig.l. 

The general calculation procedure of the frequency-dependent s-parameters 
with the FDTLM method consist of the following steps. For a given structure we 
first perform a two dimensional propagation analysis for the attached waveguides, 
which, in the present cases, are microstrip, CPW or slotline. From this analysis we 
find the fundamental modal field distribution. Then the discontinuity region is 
excited from one of the waveguides by an incident wave, which is its fundamental 
propagation mode obtained from the previous two dimensional analysis. The 
reflected and transmitted waves are calculated and the s-parameters are obtained. 
Since the field components for different modes can be separated in the FDTLM 
method, the reference plane for the s-parameter calculation may be located right in 
the discontinuity plane. This property allows to minimize the volume of 
discontinuity area between the reference planes that need to be discretized by the 
transmission line network. 

3. Numerical Results 
Fig.la shows a CPW to slotline transition. While the slotline mode will be 

totally reflected at the CPW section of the discontinuity if only the odd CPW mode is 
considered, we have investigated the even CPW mode only (Fig.2). Such a 
transition is of interest in multiplier, mixer and oscillator applications [5]. Varying 
the gap g between the CPW and the slotline, it was found that the curves for two 
different gaps ( g=0.1mm and g=3.0mm) are almost identical, indicating that the 
properties of this kind of CPW-slotline transition are not sensitive with respect to 
the distance between the CPW and the slotline. This can be explained by the fact 
that the centre strip of the CPW has a very narrow width, wi, in comparison with 
the distance between the groundplanes (2si+wi). A slotline mode is supported by 
the two uniplanar groundplanes and its field configuration is not significantly 
disturbed by introducing a narrow metal strip within the central plane, because this 
strip acts essentially as an electric wall.  Therefore, the reflection from the transition 
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is mainly due to the slot line step junction. This effect increases with frequency as 
shown in Fig.2. Fig.3 illustrates the s-parameters as a function of the gap g for two 
different frequencies f=10 GHz and f=40 GHz. The flat behaviour of the curves only 
confirms that the effect of the gap width g is quite marginal. 

To reduce the reflection coefficient of the slotline step junction, a quarter 
wave transformer section with gap wm= 1 mm and length di=1.5 mm is inserted 
(Fig.lb). The s-parameters for this cascaded transition are plotted in Fig.4. The peak 
in the Sn curve occurs at about 26 GHz where the propagation constant of the 
intermediate sloüine is ß =1.1 (mnr1) and the quarter wavelength is about A.g=2jt/4ß 
= 1.43, which is very close to the physical length of the added section (di= 1.5 mm). 

Fig.5 shows a CPW-microstrip transition (Fig.lc) with an odd mode excitation. 
Although this transition can be viewed as a CPW to CPW transition, the slot width 
(s2) becomes so wide that the field changes from a CPW field to a microstrip field, 
because the distance to the metallization on the backside is much smaller than to 
the uniplanar groundplanes (s2). Due to the additional substrate layer (air er=1.0) 
between the back metallization and the GaAs substrate (er=9.6), there are no higher 
order modes up to 40 GHz. As expected, the reflection coefficient increases with 
frequency because the transition behaves like a transmission line junction with a 
parasitic shunt capacitor.Also here the reflection coefficient can be reduced by 
introducing a quarter wavelength transformer between the CPW and microstrip 
(Fig.ld). The numerical results for this arrangement are shown in Fig.6. The quarter 
wavelength transformer is a section of CPW with a relatively wide gap sm=0.4mm. 
Comparing Fig.5 and Fig.6, it is found that the reflection coefficient is reduced by 
50% at the low end (f=5 GHz) and 70% at the high end (f=40GHz) of the frequency 
spectrum. The peak in the Sn curve occurs at about 29 GHz which corresponds to 
ß=1.5 (mm-1) or a quarter wavelength Xg ~ 1.05mm, which is again approximately 
the physical length of the intermediate section (d=lmm). 

Fig.7 shows the frequency-dependent s-parameters of the interconection 
between a microstrip on AL2O3 with £r=9.6 and that of the CPW on GaAs substrate 
(Er=12.9) It is found that the reflection of the interconnect increases significantly 
with the frequency, suggesting that the interconnect assembly of Fig.le may be 
considered as a shunt capacitor (open-ended microstrip and CPW), series inductor 
(wire bond), in a low pass filter p-network. The shunt capacitances are due to the 
fringing fields at the open ends of the microstrip and the CPW and the series 
inductance comes from the bonding wire connecting the microstrip and CPW. The 
inductance is approximately proportional to the length of the bonding wire. Fig.8 
shows the s-parameters as a function of the gap g for two different frequencies f=5 
GHz and f=25 GHz. It is obvious that the reflection increases with increasing gap g. 
This is quite plausible because a wider gap means longer bonding wire and hence 
larger inductance value with large reflection coefficient. Fig.9 illustrates s- 
parameters as a function of the bonding wire height am(=ac). Also here, the 
reflection increases with increasing height because this results in longer bonding 
wire lengths. 
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It has been observed that the properties of the interconnect assembly of 
Fig. 1(e) are largely determined by the length of the bonding wire and are quite 
insensitive to the shape of the bonding wire. This can be confirmed in the following 
investigation. For a given wire length, we change both the wire height am, a<; and 
the gap g simultaneously in such a way that the length of the wire L=am+ac+g is 
kept unchanged. The results of the s-parameters with different am, ac and g are 
shown in Fig. 10. The curves are quite flat over a large range of dimensions. In 
other words, when the bond wire changes from one extreme shape (g=0.3, 
am=ac=0.1, Fig. 10) to another (g=0, am=ac=0.25, Fig.10) the s-parameters change only 
by a few percent. This simulation results are in a good agreement with 
experimental observations [3]. 

4. Conclusions 
This paper has introduced a rigorous analysis of a variety of transmission line 

transition discontinuities and module interconnect assemblies in MMIC and 
MHMIC circuits using the frequency-domain TLM method. Numerical results of 
frequency-dependent s-parameters have been presented which include the effect of 
finite thickness and conductivity of metallization as well as mode interaction 
between cascaded discontinuities. The effect of inserting an intermediate section of 
transmission line between two different transmission media has been analysed and 
it was found that CPW transitions can be made more broadband. The effects of the 
bonding wire for module assemblies is investigated. It is found that the properties 
of the interconnect are largely depended on the total length of the wire and are quite 
insensitive to the shape of the wire. This is in a good agreement with the 
experimental observations. 
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Abstract 

A method is presented to theoretically characterize "planar" microshield transmission line 
circuits which may have dual-plane discontinuities. The technique involves a space domain 
integral equation (SDIE), derived from the application of equivalent magnetic currents in more 
than one plane, which is solved with the method of moments (Galerkin's method). Microshield 
is a relatively new type of monolithic transmission line, formed by replacing the substrate of 
a coplanar waveguide (CPW) with an air-filled metallized cavity connecting the upper ground 
planes. This line does not require via-holes or air bridges for ground equalization, radiates less 
than CPW, and can provide a wide range of impedance levels. An accurate and efficient method 
for computing the free-space admittance matrix will be discussed along with numerical results 
for some typical discontinuities. 

1    INTRODUCTION 

This paper presents a method to theoretically characterize "planar" microshield transmission 
line circuits which may have dual-plane discontinuities. The technique involves a space domain 
integral equation (SDIE), derived from the application of equivalent magnetic currents in more 
than one plane, which is solved with the method of moments (Galerkin's method). 

Microshield is a relatively new type of monolithic transmission line, formed by replacing the 
substrate of a coplanar waveguide (CPW) with an air-filled metallized cavity connecting the upper 
ground planes. As discussed in previous publications [1, 2] microshield does not require via-holes 
or air bridges for ground equalization, radiates less than CPW, and can provide a wide range of 
impedance levels. It has been shown [3] that CPW discontinuities can be very accurately modeled 
using the SDIE technique with equivalent magnetic currents. In this approach the slots (apertures) 
in the metal are replaced with equivalent currents, and field continuity is enforced in order to 
generate the integral relations. Because of the similarity between microshield and CPW on the 
upper metallization plane, the same approach may be used in the analysis of microshield. 

A representative microshield circuit is shown in Figure 1. Typical discontinuities in the upper 
metallization layer consist of step changes in the width of the center conductor, tuning stub geome- 
tries, and coupled short-end or open-end lines. In addition to discontinuities in the upper signal 
lines and ground, however, the microshield line may also possess geometrical or material changes in 
the lower shielding cavity. These would be in the form of step changes in the cavity height or width, 
an additional port in the sidewall of a cavity for stubs or a T-junction, or possibly changes in the 
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dielectric filling material along the length of a circuit. In order to model these effects additional 
planes of equivalent currents are required. 

This paper will present a theoretical analysis for open microshield circuits with dual-plane 
discontinuities using the SDIE technique and piecewise sinusoidal (rooftop) expansion functions. 
An accurate and efficient method for computing the free-space admittance matrix will be discussed 
along with numerical results for some typical discontinuities. 

2    FORMULATION 

The formulation is a rigorous full-wave analysis which involves a space-domain integral equa- 
tion (SDIE) that is generated through the application of equivalent magnetic currents. This ap- 
proach has previously been applied in a variety of electromagnetic problems, such as the analysis 
of waveguide junctions [4], scattering from microstrip patches [5], and characterization of planar 
transmission lines such as coplanar waveguide [3]. The distinction, in this case, is the utilization 
of equivalent current planes both parallel and perpendicular to the direction of signal propagation, 
which is essentially a combination of the solutions to waveguide and planar line problems. The 
method is particularly well-suited to the study of microshield transmission lines, however, as it 
provides a powerful and relatively simple means of studying the broad array of different circuit 
geometries mentioned above. Furthermore, as will be shown later, a number of steps may be taken 
to enhance the efficiency of the numerical computation. 

The first step in the analysis is the simplification of the circuit geometry, which is obtained 
through the application of the equivalence principle. This step is illustrated in Figure 1. Here 
fictitious metal surfaces are introduced which transform each region of the circuit into either a 
closed metallic cavity or free space, and upon each side of these surfaces magnetic currents have 
been imposed which act as equivalent sources in each region. To determine the strength of these 
unknown currents the condition of continuous tangential electric and magnetic fields is then enforced 
over each of the fictitious planes. Since M = E x re, where re is the outward unit normal in each 
region, continuity of Etan is strictly satisfied by setting Mlower = -Mupper = M. The continuity of 
Htan is expressed in terms of the following integral equation: 

n x J [Gext(r, ?) + Gi„,(f, ?)] ■ Ms(P)ds' = Js (1) 

where <?ex!,tnt are the magnetic field dyadic Green's functions external and internal to the metallic 
cavities, respectively, and Js is the ideal current source assumed with the gap generator model. The 
solution is obtained by first dividing each surface into subsections and expanding the unknown mag- 
netic currents using localized rooftop basis functions. These functions have a piecewise sinusoidal 
variation in the longitudinal direction, and are constant in the transverse direction. Equation 1 is 
then enforced in an average sense over each of the subsections, and is solved by using the method 
of moments (Galerkin's method) to generate a system of linear equations based on the mutual cou- 
pling, or admittance, between each of the currents. The solution of this system yields the complex 
coefficients of these basis functions, which is equivalent to finding the electric field in the slots. 
Standard transmission line theory may then be used to analyze the fields in the feedlines since they 
are in the form of pure standing waves. The details of this analysis may be found in [3]. 

The implementation of this formulation has been structured to take advantage of the inherent 
symmetry in typical microshield circuit geometries. An example of this is the manner in which the 
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magnetic current surfaces are discretized. By selectively creating separate mesh regions on these 
surfaces, and using additional connecting current nodes, the symmetry of the coupling between 
different regions can easily be exploited to reduce the necessary computations, typically by a factor 
of 2.5 to 3. In terms of numerical considerations, regions with a uniform discretization are advan- 
tageous since the internal Green's function expansions may be written in terms of the sum and 
difference of the source and observation points, as opposed to the absolute position of each, using 
the following trigonometric identity: 

sin(a)sin(b) = -[cos(a — b) — cos(a + &)] (2) 

This will reduce the required computations for a region by a factor of y, where N is the number of 
basis functions in a given direction [6]. A further consideration is the necessary current sampling 
rate, i.e. subsection size, required to accurately analyze a circuit. Since the current will vary 
most rapidly in localized areas near a discontinuity, mesh regions with high sampling rates (e.g. 60 
samples per X0) are used here and regions with low sampling rates (e.g. 30 samples per A0) are used 
in slowly varying areas such as the feeding lines. This technique does not preclude the use of the two 
previous optimizations and can significantly reduce the required number of unknowns. Finally, the 
use of vertically oriented equivalent current surfaces may be used to internally couple the elements 
on the feedlines to elements in other parts of a circuit. Since the cavity heights for microshield 
circuits are typically on the order of a few hundred pm, a small number of nodes are required on 
the vertical walls, and thus the coupling is accomplished through fewer element interactions. 

2.1 Internal Admittance Evaluation 

Evaluation of the internal admittance elements requires the use of dyadic Green's functions for 
magnetic current sources inside a homogeneously-filled metallic box. The derivation of these ex- 
pressions is straightforward, and will not be given here. It is worth mentioning, however, that a 
discreet choice in the way these functions are written can greatly simplify the evaluation of the 
resulting analytic integrals. As shown in Figure 1, the lower shielding structure is a truncated 
cavity, rather than a semi-infinite line that extends beyond the source. Due to its location beyond 
the gap generator, which acts as a fixed boundary condition, this termination will not influence the 
characteristics of the circuit under analysis. In treating this type of cavity, one has the option of 

^JE^ ^X        —1J^ ^V ~ Z^i "^Z 

writing Green's functions which are separated in either x, y, or z, i.e. G ,G'     , or G 
Since each form is equivalent, they may be interchanged as needed to simplify the analysis, the 
optimum orientation being with the separation direction always normal to the plane of the source 

currents, i.e. G ' is used for currents in the y-z plane and GT ' for currents in the x-y 
plane. In this way, the observation coordinates can be kept either above or below the source coor- 
dinates, thereby avoiding the complicated integrals that result when two subsections overlap. With 
a semi-infinite waveguide in the z direction, however, the continuous nature of the corresponding 

eigenfunction forces the use of ff ' for all current elements. This in turn leads to relatively 
tedious expressions for the mutual coupling between currents which overlap in the z direction, and 
will severely complicate an attempt to implement variable discretization on the mesh regions. 

2.2 External Admittance Evaluation 

An efficient technique has been utilized for the evaluation of the external admittance values which 
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represent the mutual coupling between current elements on the free-space (upper) side of the 
microshield geometry. This approach follows the basic structure of the method outlined in [5]. The 
admittance is expressed as 

-yext   -jk0Y0 f ds f ds'[2f(?) ■ f0(r, ?)] ■ w(r) (3) 

where S and S' denote the observation and source subsections, / is the current expansion function, 
w is the rooftop weighting function, and f 0 is the free space dyadic Green's function 

f>>')    =    {/+-lvv}(?0(r>') 

<?0(r>')    =    e—r-~r 
4jr|r — T'\ 

If-»3!   =   yj{y - y')2 + (z - z'Y = R (4) 

where f and r' represent the observation and source points, respectively. The factor of two was 
introduced to account for the presence of the assumed infinite ground plane. Equation 3 may 
be simplified by using successive integration-by-parts to transfer the derivatives from the Green's 
function onto the expansion and testing functions. Letting the expansion function for current in 
the C direction be written as /J(C', 6') = Cr(C')P(0'), where T is a piecewise sinusoid and P is a 
pulse, the expressions for the like- and cross-polarization admittance are then given by 

Yct  =   4^[fc^(C0,C'0')--B(C0,C'0')] (5) 

k„ 
Yef =  2J^B{H,Ce') (6) 

A(C«,C*')   =   jsdsP{9)T{0Jsds'P{e')T(C')Ga{r,?) 

B{CB,C'e')   =    f dsP(6)T\C) I' ds'P(e')T'(C)Go(f,r>) 
Js Js 

For the sake of brevity, only the evaluation of the like-polarization element, Y/f1, will be covered 
here, as the cross-polarization term may be handled in a like manner. Furthermore, in order to 
easily accommodate variable subsection sizes, each admittance element is broken down into four 
similar interactions which result from the coupling between the two halves of the rooftop functions. 
By choosing the scaling parameter of the expansion functions (refer to [3]) to be the free space 
wavenumber, k0, and separating the exponent of G„ into real and imaginary parts, the coupling 
between the first two halves of a source and observation subsection can be expressed as 

nr-11 = „•„( 4g^,} £ «£ «£ *£ *w*.(c+o - MG+Q) 
co${k0R) - 1     jsin{k0R)       1   | 
_      R R        +  R (7) 
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where sin(k0l()sin(kj(i) is the normalization factor of the expansion functions. Notice that the s 

term has been added and subtracted from the equation, allowing the singularity at the source to be 
extracted and treated analytically. In the following, the first and second terms in the underbrackets 
in 7 will be denoted as FT and ST, respectively. For FT, 

lim FT = -jk0 (8) 

The second term in the underbrackets may be evaluated using an analytic expression for the inte- 
gration over 0 and 6', since the cosine is a function of only f and (,' 

=   I» I de' 
v/(C-CT + (0- 

n\(=(l  = \e-e'\{i-in\e-e'\} 

/ilc«'   =   R - (8 - 8')ln(9 - 6'+ R) 

-Ti|<=<;'A=0;,fl2=0;    =   ° (Q) 

Equations 8 and 9 are then implemented in a Gauss-Legendre numerical integration routine. For 
nonoverlapping cells, the ratio, 7V, of the distance between cell centroids and the maximum cell 
dimension is computed to determine the order of the integration. If Td > 10, a 1-point, 2 sample 
scheme is sufficient, where the number of samples refers to the number of testing points per cell 
in each direction. If r<j < 10, a 2-point scheme is required with the number of samples ranging 
from two to four. For the case of overlapping cells, the imaginary part of FT may be computed 
in the same fashion as for nonoverlapping cells, while the real part requires an 8- or 12-sample 
2-point integration for cell sizes which are > ^ or < ^, respectively. The integration of ST over 
C, C' is the most critical contribution, and this is handled using a subroutine based on a 10-point 
Gauss-Legendre,21-point Kronrod formula. 

The guidelines stated above were determined using a criterion of« 0.5% relative error, and have 
been tested for cell sizes from jf to ^fo. Utilizing the Toeplitz nature of the external admittance 
matrix, the time required to compute 500x500 elements on a 1A0 x .15AD mesh is 20 cpu seconds 
on an IBM RS/6000 workstation. 

3    NUMERICAL RESULTS 
In order to demonstrate the formulation, a comparison is made for two variations of the circuit 
shown in Figure 1. The parameters held constant in both designs are: Pi = 250/Jm, P2 = 500/im, 
C\ = 1500/jm, and C-i = 1900/im. In Figure 2, the center cavity section is air-filled and the length 
of the coupling section is Cz = 5000/JTO. The response is relatively narrowband and the maximum 
coupling is limited to -2.35 dB, due to the power lost to radiation. In Figure 3, the center cavity 
section is filled with silicon (er = 11.7) and the coupling length is correspondingly reduced to 
Cs — 1400/^m. In this case the response is more broadband, and the coupling increases to -0.33 
dB. The reduction in the radiated power is due to higher field concentration in the dielectric, and 
could be further improved by reducing the width of the coupling section cavity. It is noted that no 
optimization of either circuit has been performed. 

Each of the data points shown in these figures required s» 280 basis functions and approximately 
20 cpu minutes to compute using an IBM RS/6000 workstation. 
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Figure 1: Example of a microshield gap-coupled circuit with dual-plane discontinuities, consisting 
of the upper metal layer and the lower shielding cavity. The feedlines and gap generators are 
shown on either side of the slot coupling section. The lower shielding cavity narrows in the center 
of the circuit and may also have a dielectric material change. All planes where equivalent magnetic 
currents are used to model the structure are indicated. 
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Figure 2: Scattering parameters and radiation loss, (1 — ISnl2 - |i>2i|2)> f°r tne gap-coupled circuit 
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SYMMETRY ANALYSIS OF LARGE TWO-DIMENSIONAL 

CLUSTERS OF COUPLED CAVITY RESONATORS 
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Hughes Missile System Company 
Pomona, California 91769-2507 

ABSTRACT 

Electrically large, two-dimensional clusters of directly-coupled cavity resonators, ordered in a square or in an hexagonal lattice, 
perform and can be used as doubly-periodic wave-guiding structures. The considered two-dimensional clusters may extend 
hundreds of free-space wavelengths in length and width, and can be designed to exhibit wide relative transmission bandwidths. 
The transmission losses within such large passbands are very low if high-Q cavity resonators are used as 'unit-cells' of such 
clusters. 

Large relative transmission bandwidths are obtained by using resonant-iris coupling between resonators. Further, because of the 
intrinsic 'multiport image impedance match' between mutually-identical multiport resonators, guided traveling electromagnetic 
waves propagate without reflection through such structures in every arbitrary direction. 

Such two-dimensional clusters of coupled cavity resonators can be excited by any arbitrary topological distribution of multiple, 
mutually-coherent signal sources. Practical cluster-structures of finite physical extent can be excited by sets of signal sources 
properly aligned around the structure perimeter. Numerous, and very complex two-dimensional patterns of guided, traveling- 
wave fields can be obtained, by properly controlling the relative amplitudes and phases of the coherent driving sources. 

A comprehensive symmetry analysis of such two-dimensional clusters, with either a square or an hexagonal lattice, is being per- 
formed, to determine the dependence of the wave-impedance and of the propagation constant upon the frequency and the 
azimuthal direction of wave-propagatioa Further, the boundary conditions for reflection-free, multiport impedance matching 
around the perimeter of finite clusters are being formally defined. 

Generalized matrix-algorithms have been derived that formally express the open-circuit impedance matrix of a cluster of finite 
extent, as seen from the 'external' ports, aligned around the structure perimeter. The derived generalized matrix-algorithms use a 
multi-level diakoptic approach, by tearing the cluster into progressively smaller subdivisions, while maintaining geometrical 
similarity, and conserving the translation-, rotation-, and reflection-symmetry of the whole system. Finally, formal expressions 
are obtained for the two-dimensional traveling-wave amplitude and phase patterns, generated by any given distribution of 
mutually-coherent excitation sources. 

1 - BASIC ASSUMPTIONS. 
The considered square-lattice clusters are composed of N2 circular-cylindrical cavity resonators, that are regularly spaced (side by 
side and with parallel axes) along the N rows and N columns of a square lattice. The resonators are assumed to be all mutually 
identical, and directly coupled by way of common-wall resonant irises. Each resonator has four coupling irises, all equally 
oriented and symmetrically located, at the mid-point between the top and bottom shorting planes of the resonators, and spaced 
azimuthally (around the cylinder axis) by equal 90° angles. 

The considered square-lattice clusters have, therefore, a square perimeter, with N cavity resonators along each side, with a total of 
4 (N-l) resonators along the whole perimeter. 

Each of the 4 (N-2) resonators along the sides has one 'external' coupling iris, but the four resonators on the corners have two 
external irises. There are therefore 4 (N-2) + 8 = 4 N 'external' coupling irises along the perimeter of the cluster, and these irises 
constitute the interface between the square cluster and the external loads and sources. 

2 - EDGE-FEEDING OF A COUPLED-CAVTTY CLUSTER. 
Each of the mutually coherent amplitude-, and phase-controlled microwave signals, injected into the cluster through any or all of 
the 'external' irises, fills all the N2 cavity resonator with TMoio resonant fields. The amplitude and phase of the TMoio resonant 
fields, generated by each of the edge-injected signals in any of the N2 cavity resonators of the cluster, is determined by: a) the 
amplitude and phase of the injected signal, b) the position (along a specified cluster side) of the signal-injection point, and c) the 
specific (i j) position of the considered cavity resonator, along the rows and columns of the cluster lattice. 

Further, as a consequence of the linearity of the cluster, the injection of multiple edge-feeding signals, through a set of external 
irises, results in a vectorial linear superposition of TMoio resonant-field contributions within each of the N2 cavity resonators. The 
resulting, two-dimensional, TMoio-field amplitude and phase distribution, generated by tins type of 'complex wave spectrum' 
cluster-excitation, can be electronically controlled, by controlling the relative amplitudes and phases of the edge-injected signals. 
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2.1 - PROBLEM DEFINITION. 

The objective of the performed analysis, is the determination of a mathematical description of the physical process of two- 
dimensional gvrided-wave propagation, from the cluster external irises to each of the N2 cavity resonators, the process that 
provides the fundamental mechanism by which the amplitudes and phases of the edge-injected signals are correlated to the 
amplitudes and phases of the TMoio resonant fields within the cavity resonators of the cluster. 

The obtained mathematical description is in terms of both symbolic algorithms and numerical-computation procedures. 

3 - ANALYSIS STRATEGY. 

3.1 - COMPLEXITY OF THE NETWORK REPRESENTATION. 

The above defined two-dimensional, guided-wave-propagation problem can be solved by applying some rather advanced, uncon- 
ventional and sophisticated (but nevertheless clearly understood) methods of linear network analysis. 

The substantially advanced character of the required analysis is a consequence of the complexity of the linear-network representa- 
tion of the cavity-resonator cluster. Indeed, this representation is in terms of an electrically-large cluster of interconnected, multi- 
port 'unit-cell' network-elements, physically extending tens or even hundreds of free-space wavelengths in both width and length. 
Further, the required analysis must be based on the availability of experimentally-determined electrical-performance parameters, 
obtained by performing calibrated measurements upon precision-machined physical models of the 'unit cell' cavity resonator. 

3.2 - THE POWER OF SYMMETRY ANALYSIS. 

Fortunately, the considered cluster of cavity resonators is known to be reciprocal, and to exhibit: a) translational symmetry in two 
mutually orthogonal dimensions, b) rotational symmetry around at least two mutually-orthogonal axes, and c) reflection- 
symmetry with respect to at least five mutually-intersecting planes. Farther, the linear, and reciprocal four-port networks, that 
represent the unit-cell cavity resonators, also exhibit the same rotational-, and reflection-symmetries as the whole cluster. This 
combination of reciprocity, rotational-, and reflection-symmetry leads to a very substantial reduction of the dimensionality of the 
defined network-analysis problem, a reduction of such proportions as to make the solution of an almost intractable, and daunting 
problem feasible. 

33 - SYMMETRIES OF THE PARAMETER MATRICES. 

Indeed, the identification of the reciprocity and of the intrinsic symmetries of both the four-port unit-cell networks, and of the 
whole cluster immediately specifies the intrinsic symmetry-structure of the corresponding scattering (S), impedance (Z), and 
admittance (Y) matrices. 

All these matrices are known to be both symmetric and 'circulant'1>2, already for the four-port unit-cell network that represents the 
cavity resonators, and further to be both symmetric and 'block-circulant' for the whole cluster of N rows and N columns. 

3.4 - THE SYMMETRIES OF THE UNIT-CELL NETWORK. 

The symmetry-structure of the scattering matrix S4 of the four-port unit-cell network is known to have the symmetric and circulant 
form: 

S< 

S]j   S12 Sß SJJ 

Sj2  Sn Sj2 Su 

s13 s12 sn S12 

S12 S13 S12 sn 

a b c b 
babe 
c b a b 
b     c      b     a 

0) 

and to have, therefore, only three (rather than 16) different elements (S11 = a, S12=b, and S13=c). The same symmetry structure is 
shared by the corresponding impedance matrix Z4, that is known to have the similar symmetric and circulant form: 

Z4   = 

Zn Z12 Z13 Z12 

Z12 Zn ZI2 Z13 

Z13 ZJ2 Zlt Z]2 
Z12 Z13 Z12 ZJI 

(2) 

The impedance matrix Z4 of the unit-cell network also has, therefore, only three different elements (Zn = a, Z12 = b, and Z13 = c, 
with a, b, and c representing here impedance-matrix elements rather than scattering parameters). 

3.S - THE SYMMETRIES OF THE N x N CLUSTER. 

Similarly, the 4 N x 4 N scattering matrix S« of the whole array cluster of N rows and N columns is known to have the symmetric 
and block-circulant form: 
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A B C BT 

BT A B C 
C BT A B 
B C BT A 

(3) 

and to have, therefore, essentially only three (ratherthan 16) different Nx Nmatrix-blocks (identified by the symbols A, B, and C, 
with the fourth block BT of the first block-row being just the transpose of the second blockB, and as such not intrinsically different 
from block B, in the values of its elements). Further, at least the two matrix-blocks A and C are expected to be symmetric with 
respect to both the main diagonal and the cross-diagonal, with consequent very substantial reduction in the total number of differ- 
ent elements across the 4 N x 4 N scattering matrix S4N. 

Finally, the symmetry-structure of the 4 N x 4 N impedance matrix Z<N of the whole cluster is known to also be symmetric and 
block-circulant as that of the scattering matrix So,'- 

A B C BT 

BT A B C 
C BT A B 
B C BT A 

(4) 

Again, in the expression (4) of the impedance matrix Zm of a whole N xN cluster of directly coupled cavity resonators the symbols 
A,B,andCstandforNxNimr«dance-matrixblo<fa,ratbertbanNxNscarteimg-mat^ 
is a convenient artifice to evidence the symmetry-structure of the considered matrices!). 

3.6 - THE MASSIVE MUTUAL INTERDEPENDENCE OF MATRIX ELEMENTS. 

Clearly, the intrinsic physical symmetries of awholeNxNcluster of directly coupled cavity resonators results ina very substantial 
reduction of the number of matrix elements that truly have different values. The total number of elements of the scattering (S)N) 
and impedance (Z,K) matrices is, however, 16 N2, and the residual number of different matrix element may still be rather large. 
But, if the unit-cell networks are mutually identical (or even only approximately so), as assumed in Section 1, the three different 
unit-cell parameters a, b, and c of expression (1) or (2) will control and characterize the guided-wave propagation process, from 
resonator to resonator, through the whole N xN cluster. This means that, regardless of how large or small the number Erj of differ- 
ent elements of the S4N, and Z,s matrices is relative to the 16 N2 total, only three (any three!) of these matrix elements will be truly 
independent, while the remaining ED - 3 elements can be expressed as functions thereof. 

In conclusion, the 16N2 elements of the Sin, andZ«, matrices are mutually related by 16 N2 -3 mutual functional relations, and this 
massive mutual interdependence of matrix elements surely constitutes a unique character, not just forthe S«N, and Z«, matrices, but 
for all the mutually-equivalent matrix-representations of the electromagnetic-wave propagation properties of the generalized N x 
N cavity resonator cluster (other useful matrix representations are provided by the 4 N x 4 N ABCD-matrix K»N, and by the 2 N x 2 
N image-impedance matrix Zi, and image-transfer-function matrix Tjv). 

3.7 - DIAKOPTIC NETWORK ANALYSIS. 

Diakoptics is apiecewise approach to the solution of large-scale interconnected systems. The diakoptic method was conceived by 
G. Kron in the 1950's and developed by H. H. Happ and others. The motivation came from electric power system problems. 

Kron and Happ developed a theory of diakoptics for power systems represented by linear networks, for which the diakoptic 
approach gives exact solutions. The basic idea, introduced by Kron is to solve large-scale network problems in at least two steps: 
a) the subnetwork level, and b) the interconnection level. The advantage of the diakoptic approach is that the smaller subnetworks 
are easier to solve. 

Kron's derivation is rather obscure, and based on concepts of tensor analysis. Happ has expanded the theory and the applications 
along the same lines. 

3.8 - APPLICATION OF DIAKOPTICS TO CLUSTER ANALYSIS. 
We assume here that the integer number N of rows and column of the considered N x N cluster is not prime, and can therefore be 
expressed as a product of many integer factors. The application of a multi-level diakoptic approach to the analysis of a cavity 
resonator cluster becomes then possible, with a very substantial reduction of the required mathematical effort 

The steps of the diakoptic cluster analysis are: 

a)    The subdivision (or 'tearing') of the considered clusterinto a hierarchical system of progressively smaller sub-divisions, 
with each sub-division of any given level being further subdivided into smaller subdivisions. 
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b)    Solving the smallest sub-division first, then use the obtained solution to solve the next-higher level sub-division by 
network interconnection. 

This approach becomes very clear, obvious, and advantageous if the numberN of rows and columns in the cluster is apower of two 
(N=2° with a being an integer). In this case the considered cluster can be first subdivided in four equal parts, each having 2<a_1) 
rows and columns. Each of the resulting four parts can be further subdivided into four sub-sub-divisions of 2(a_2' rows and 
columns, and the subdivision process can be continued down to the level of the single unit-cell cavity resonator, which is a known 
cluster-component characterized by the three different a, b, and c elements of its S4 scattering matrix. 

3.9 - THE GENERALIZED INTERCONNECTION ALGORITHM. 

A generalized diakoptic interconnection matrix-algorithm has been derived, that solves the linear-network analysis problem of 
interconnecting four square n x n clusters, to form a single 2n x 2n cluster (Figure 1). The derivedmatrix-algorithm, operates on the 
three different blocks A, B, and C of the impedance matrix Z4n of each n x n cluster, by simply enforcing Kirchoff's laws along the 
four common interfaces between the four component clusters, and is completely general in the sense that it is valid, rigorous, and 
applicable to any size cluster with any arbitrary number n of rows and columns. The derived matrix-algorithm becomes simply 
scalar in the case n = 1, which represents the interconnection of four-port cavity resonators into a minimal 2x2 cluster (Figure 2). 
The minimal 2x2 cluster of cavity resonators is characterized by its 8 x 8 impedance matrix Zs, which has been expressed in closed 
form in section 3.10. 

Most importantly, the derived diakoptic interconnection matrix-algorithm includes formal expressions of the complex voltages, 
currents, and voltage-waves at the ports of the four n x n component-clusters, that are aligned along the interconnection interfaces. 

These electrical quantities are 'internal' to the 2n x 2n cluster, resulting from the interconnection, and are expressed as functions of 
the 'external' voltages, or currents, or voltage-waves, present at the 'external' ports of the cluster. As a consequence, all the 
'internal' quantities, present along any interconnection interface between component-clusters of any level of subdivision, can be 
determined in terms of both amplitude and phase, if the boundary conditions around the perimeter of the whole N x N cluster are 
known. The boundary conditions must include the electrical characterization of both the external loads and the external sources of 
the edge-injected signals. 

3.10 - THE IMPEDANCE MATRIX OF THE 2x2 CLUSTER. 

The elements of the 8 x 8 impedance matrix Zg of the basic, minimal 2x2 cluster of cavity resonators (Figure 2) have already been 
expressed in closed form as functions of the different element a, b, and c of the impedance matrix Z4 of a single unit-cell resonator. 
The formal, analytical expressions of the elements of the 8 x 8 impedance matrix Zg have been obtained by applying the developed, 
generalized diakoptic matrix algorithm to the special case 'n = 1, N = 2', where the four component-cluster, resulting from the 
subdivision of the considered 2x2 cluster, simply reduce to four, four-port unit-cell resonators. In this case, The generalized, 
diakoptic matrix algorithm reduces to a set of simple scalar expressions. 

The 8x8 impedance matrix Zg only has seven different elements, rather man 64, all being functions of the same three complex 
impedance values a, b, and c that characterize any of the unit-cell resonators. The symmetry-structure of the impedance matrix Zg 
and the formal expressions of its seven different elements are given by the following eight equations: 

Z8 = 

A, 

A, 

B, 

B5 

A2 

 A, I .  

B,   B3 , A, 
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A]    —   Zu    —   Z22   —   Z33   —   Zw   — 

~   Z«   =   Z77   =   ZgB   = 

2ab2c - (2a2 - b2)(b2  +  c2) 

—   Z55   —   Z«   —   Z77   —   ZgB   — ,- 

=  a + 
4a(a2 - b2) 

A2   —   Z12   —   Z2i   —   Z34   —   Z<3   — 

—   Z56   =   Zö   =   Z78   —   Z87   = 

f        (b2  +  c2) a - (2a2 - b2) 2c 1 
=  b- j1 + 4a(a2 - b2) | 

Bi   —   Z]3   =   Z3]   =   Z17   =   Z7J   = 

=     Z24     —     Z42      =     Z28      —     Z82      = 

=   Z35   =   ZJS   =   Z^   —   ZM   = .„. 

=   Z57   =   Z75   =   Z«   —   Z86   = 

2ac - (b2   +  c2) 
4(a2 - b2) 

B 2   =   Z>u   =   Z41    =   Z27   t=   Z72   — 

=     Z36     =     ZS     =     Z58     =     Z85     = ... 

(2a2 - b2)c2 - (2ac - b2)b2 

4a(a2 - b2) 

B3   =   Z]8   
=   Z8i    =   Z23   =   Z32   = 

=   Za   =   Z54   =   ZCT   =   ZJJ   = 

(2a2 - b2) - (2a - c)c 
4a(a2 - b2) =  b2 

Ci      —     Z]5     —     Z31      —     Z2fi     —     Zg2     — 

=   Z37   =   Z73   =   Z«   =   ZM   = 

2ac - (b2  +  c2) 
(11) 

=  b2 

4a(a2 - b2) 

C2   —  Z16   —  Z61   —  Z25   —  Z52   — 

=     Z38     —     Zg3      =     Z47     =    Z74     = 

(b2   +  c2)a - 2b2c 
4a(a2 - b2) 

3.11 - THE IMPEDANCE MATRIX OF THE 2 n x 2 n CLUSTER. 
3.11.1 - ANALYTICAL STRUCTURE OF THE GENERALIZED ALGORITHM. 
The formal expressions (5) of the 8 x 8 impedance matrix Z%, and the expressions (6) - (12) of the seven different elements of its 
three different 2x2 blocks A, B, and C, given in the previous Section 3.10, completely characterize the electrical performance of 
the minimum 2x2 square-lattice cluster of cavity resonators (Figure 2). 

Further, the given expressions also represent the first step in the already described process of multi-level diakoptic network 
analysis. Indeed, the already anticipated generalized sub-array interconnection matrix-algorithm expresses the 4 N x 4 N imped- 
ance matrix Z,N of a 2 n x 2 n cluster of cavity resonators as function of the 4 n x 4 n impedance matrix Z4n of each of the fournxn 
component sub-arrays (N = 2 n). 
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The generalized sub-anay interconnection matrix-algorithm is formulated as a relatively large set of matrix-functions. The given 
set of matrix-functions expresses the 64 'n xn blocks' Zjj of the 8 n x 8 nimpedance matrix Z,N of the N x N square-lattice cluster, as 
functions of the three different n x n blocks A, B, and C of the impedance matrix Z4„ of the four sub-arrays. 

3.113. - PORT-NUMBERING CONVENTIONS. 

Very specific and carefully selected port-numbering sequences must be established, by convention, to firmly identify the relevant 
sets of port-voltages and of port-currents present at the ports of each of the four n x n sub-arrays. Indeed, first the 4 n ports of each 
sub-array (n ports being aligned along each of four sides) must be sequentially numbered (clockwise or counter-clockwise), in a 
continuous full cycle through all four sides, in order to preserve the symmetric and block-circulant structure of its impedance 
matrix Z<N. 

Further, it is convenient to have matching port-numbering sequences on either side of each of the four sub-array interconnection- 
interfaces (Figure 1). Matching sequences can be used if the cyclic port-numbering sequences of the sub-arrays alternate from 
clockwise to counter-clockwise at each of the four interconnection-interfaces. 

Similarly, the 4 N 'external' ports of the resulting N x N square-lattice cluster must also be sequentially numbered (clockwise or 
counter-clockwise), in a continuous full cycle through all four sides, in order to preserve the symmetric and block-circulant struc- 
ture of its impedance matrix Z«,. As a consequence, me cyclic numbering sequence of its 'external' ports can only match the cyclic 
numbering sense of only two of the four sub-arrays (along two 'external' sides of each), but is necessarily reversed relative to the 
cyclic numbering sequence of the other two sub-arrays. 

Indeed, the developed generalized diakoptic sub-array interconnection matrix-algorithm uses, as a convenient convention, 
counter-clockwise port-numbering sequences for sub-arrays A, and C, and clockwise port-numbering sequences for sub-arrays B, 
and D (Figure 1). The sequential port-numbering of each sub-array starts at the external port closest to the vertical 'a-a' intercon- 
nection interface (Figures 1 and 5: on top for sub-arrays A and B, and at the bottom for sub-arrays C and D). 

Four different port counters i, j, h, and k are used (in the appropriate cyclic sequence around each sub-array) to identify the four sets 
vXy of port-voltages and the four sets Ixy of port currents, present at the external ports of each of the four sub-arrays (where X 
stands for either A,B,C,orD,andy stands for either i,j,h, or k, where i = l,2..n,j=n+l,n+2...2n,h=2n+l,2n+2...3n,andk = 
3n+l, 3n+2... 4n). The cyclic port-numbering sequence for the whole 2 n x 2 n cluster, resulting from the interconnection of the 
four sub-arrays, starts at port 1 of sub-array A and runs counter-clockwise, thus matching the cyclic port-numbering sequences of 
sub-arrays A, and C, while running reverse to the sequences of sub-arrays B, and D. 

Two different port counters I = l,2...4n, and J=4n+l, 4n+2...8n, are used to identify the eight sets Vuv of external-port voltages, 
and the four sets luv of external-port currents, present at the 8n external ports of the whole N x N cluster, the ports that are aligned 
around its four sides (where U stands for either I or J, and v stands for either a, b, c, or d). 

3.113 - VOLTAGE AND CURRENT VECTOR RELATIONS. 

As a consequence of the above established port-numbering conventions and symbolism, eight vector-matrix relations hold be- 
tween four sets of external-port voltages and the corresponding four sets of external-port currents of the whole 2 n x 2 n cluster on 
one hand, and corresponding sets of external-port voltages and of external-port currents of the four sub-arrays on the other. 

3.11.4- THE KIRCHOFF'S LAW INTERFACE RELATIONS. 

Eight vector identities express Kirchoff 's voltage and current laws along the two mutually-orthogonal interconnection interface 
planes 'a-a' and 'ß-ß' (Figure 1). Theseratherobviousvectoridentitiesarefundamentalfortheformulationof the generalized 
diakoptic sub-array interconnection matrix-algorithm, where the identities are used (in combination with the four voltage/current 
matrix equations V(i) = Z4n • I(j) of each sub-array) to express the four unknown sets of interconnection-interface currents IAIC> 
Ißh. Ick> and fch. as functions of eight sets of external-port currents Iuv» present at the 8n external ports of the 2 n x 2 n cluster. An 
explicit formal expression of the sets of interconnection-interface currents IAI„ Ißh. Ick. and Ioh has been analytically obtained. 

3.11.5 - EXPRESSION OF THE IMPEDANCE MATRIX Z4N. 

A formal expression of the 8 n x 8 n impedance matrix Z.N of the whole 2 n x 2 n cluster is obtained by substituting the just found 
expressions of the interconnection-interface currents IAIC, Ißh. Ick. and IDhin the four V(i)=Z4n • l(j) voltage/current matrix equa- 
tions of each sub-array. A single matrix equation is obtained, thatexpresses the 8n-ordervectorof the Vuvexternal-portvoltagesas 
a linear transformation of the 8n-order vector of the Iov external-port currents. 

The expression of the impedance matrix Z,N is given by the 64 matrix functions, each of which defines one of the 64 nx nblocks of 
the matrix Z,N. The expression of the 64 blocks of the matrix Z,H are selectively collected in groups of either eight or sixteen at a 
time, where the blocks in each group are defined by mutually-equivalent expressions, with each group corresponding to one of the 
seven different n x n blocks Ai, A2, Bi, B2, B3, Ci, and C2 of the matrix Z<N. 
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3.11.6 - THE MULTI-LEVEL DIAKOPTIC PROCESS. 
The obtained expressions define the four basic steps of the mathematical procedure that performs the diafcoptic interconnection of 
four n x n sub-arrays into a single 2 n x 2 n cluster: 

a) First the six auxiliary matrices di, eg, ßt Yl> Y2. and 5 are expressed as functions of the blocks A, and B of the impedance 
matrix Z4n of an n x n sub-array. 

b) Second, eight auxiliary matrices qij are expressed as functions of the blocks B, and C of the matrixZ4n, and as functions of 
the a's, ß, the y's, and 5. 

c) Third, the fourunknown sets of interconnection-interface currents IAIC, iBh. Ick. and iDh are expressed as functions of the 
eight sets of external-port currents Iijv, by means of a linear transformation. 

d) Finally, the just found expressions of the interconnection-interface currents IAIC. Ißh. !ck.3nä foh are substituted in the 
linear matrix-vector expression of the external port voltages VIJV. 

By performing the implied matrix product and addition, the expression ofthe8nx8n impedance matrix Z,N is obtained, with all its 
64 n x n matrix-blocks listed as the already mentioned above. 
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Abstract: 

A millimeter-wave bandpass filter has been analyzed independently by frequency domain Mode 
Matching and time domain Transmission Line Modeling. The numerical results are compared 
with measurements. The features and computer expenditures associated with the different meth- 
ods are presented, and error sources are discussed. 

1. Introduction 

The object of this study is a waveguide bandpass filter for the Ka-band at 35 GHz and a band- 
width of 1 GHz. It was designed, fabricated and measured at the University of Ulm, and subse- 
quently analyzed independendy at the Universities of Perugia and Victoria with substantially 
different numerical techniques, namely the mode-matching and the TLM methods. The purpose 
was to compare the results and computational requirements of these methods and to test them 
against measurements. 

It appears that both numerical methods yield the Scattering Parameters of the filter within the 
manufacturing and measurement tolerances. In the following the techniques for the design and 
tuning of the filter will be described briefly, followed by a summary of the mode matching and 
TLM analyses of the filter. The computed and measured results will then be compared and dis- 
cussed. This includes sources of error and possible corrections. 

2. Design, Fabrication and Tuning of the Filter 

The methods for designing, fabricating and tuning the filter have been described already in [1] and 
will, therefore, only be summarized here. 

The design procedure was based on a mode matching formulation which involved higher order 
modes for the characterization of the irises separating the resonators, and the dominant mode only 
for the interaction between them. Irises and resonators were considered to be of perfectly rectan- 
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gular shape (Fig. la). The filter was then milled out of a brass block and covered by a 0.1 mm 
thick bronze sheet. Its dimensions were measured at the top side of the filter and are given in Fig. 
lb. Note that all inner comers are rounded due to the finite radius (1 mm) of the milling tool, and 
that the measured dimensions of the filter differ from the specifications due to manufacturing tol- 
erances. The S-parameters were subsequently optimized by tuning. To this end, steel balls were 
pressed against the top plate (see Fig. 2). Fig. 3 compares the measured characteristics of the fil- 
ter before and after tuning. 

3.     Mode Matching Analysis of the Filter 

The two filter geometries were analyzed using two different formulations of the mode matching 
(MM) technique, as briefly described below. In both cases, however, the inner corners were 
assumed to be rectangular, and losses were neglected. 

In the conventional MM technique each discontinuity is modelled as a multiport network (usually 
represented by its Generalized Scattering Matrix, GSM) and then cascaded to the subsequent dis- 
continuity through the connecting waveguide section. The algorithm is repeated till the end of 
the filter. For the filters of Fig. 1, eight discontinuities (when symmetry is not considered), thus 8 
multiports are to be analyzed. A more efficient MM procedure was adopted here, based on the 
segmentation of the structure into volume cells (Cellular Segmentation, CS [2]). Each cell, occu- 
pying the volume between two irises, is modelled by a Generalized Admittance Matrix (GAM), 
while each iris corresponds to a waveguide section of reduced width. In this manner the analysis 
of the filter involves only three multiports for the cells plus two additional multiports for the 
remaining discontinuities located at both ends of the filter. To improve the computational effi- 
ciency of the conventional MM technique, a modified MM (MMM) technique can also be adopted 
[3, 4] as an alternative to CS. The field behavior at the metal edges is incorporated into the field 
expansions using Gegenbauer polynomials. In this manner, a very accurate representation of the 
field at each step is obtained with only two terms, and a substantial reduction of the number of 
unknowns in the final system of equations is obtained. Moreover, no relative convergence phe- 
nomenon is observed. These advantages are obtained at the price of some additional effort to 
evaluate series of inner products (coupling integrals) between the waveguide modes and the aper- 
ture field basis functions. In the numerical simulation, however, this is done only at the initial 
spot frequency, since frequency dependence extraction is adopted. 

In both cases, namely with the CS and with the MMM, multimode interaction between disconti- 
nuities is fully accounted for using a maximum of 3 modes. The field representation at the discon- 
tinuities (apertures of the irises) requires 6 to 7 modes using CS and only 2 Gegenbauer 
polynomials using MMM. The MMM has the advantage of a better field representation at the dis- 
continuities, but requires 8 discontinuities to be analyzed. The CS, on the contrary, involves a 
reduced number of multiports. As a consequence, both techniques exhibit about the same compu- 
tational efficiency. To give an idea of the required computation time, the analysis of the filter on a 
486 PC/33 MHz requires 87 seconds for 100 spot frequencies. 

The results of the above computations are shown in Fig. 4. The difference in dimensions pro- 
duces a marked difference in the return loss curve, but only a small shift of the filter characteris- 
tics. The differences between the two mode matching techniques are also very small (about 50 
MHz or 0.15 percent of the mid-band frequency). Since both sets of curves have been computed 
with the same number of modes assumed in the various filter subsections, the potential systemati- 
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cerror is the same for all curves, and Fig. 4 can thus be regarded as representing the effect of the 
differences between specified and actual dimensions of the filter structure, but not including the 
effect of the rounding of the inner corners. 
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Fig. la : Filter Geometry with Design Dimensions (in mms) 
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Fig. lb : Filter Geometry with Manufactured Dimensions (in mms) 
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Fig. 3 : Measured Scattering Parameters of the Filters in Figs. 1 a and 1 b 
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Fig. 4 : Scattering Parameters of the Filters in Figs. 1 a and 1 b Computed 
with Mode Matching Techniques 

4.     TLM Analysis of the Filter 

The filter was analyzed using 2D TLM [5]. First, the structure given in Fig. la was modeled. 
Taking advantage of symmetry about the longitudinal axis, only one half of the structure was dis- 
cretized using a mesh parameter A/ = 0.05 mm, resulting in a two-dimensional mesh of size 564 x 
73. The maximum difference between the TLM and actual filter dimensions was 0.02 mm. The 
input and output waveguide were terminated with wideband absorbing boundary conditions, the 
excitation was a Gaussian pulse with a half-sinusoidal amplitude distribution in the cross-section 
(TEJO mode). The time response in the input and output ports was Fourier transformed and pro- 
cessed to yield the return loss and the insertion loss characteristics. 

Then the mesh parameter was reduced to 0.025 mm. For this case, the discretized mesh size was 
1126 x 143. With this mesh size, nominal dimensions of the filter were described with a tolerance 
of less than 0.01 mm, which is equal to the manufacturing tolerance. From these results, data 
were extrapolated linearly for A/ = 0. Fig. 5 shows the mode matching and the extrapolated 
TLM data for identical dimensions of the filter in Fig. 1 a. The agreement is excellent, given the 
fundamentally different approaches used to generate them. Fig. 6 shows the characteristics 
obtained with both methods for the dimensions of the actual filter (Fig. lb), but assuming rectan- 
gular inner corners. Agreement is close. The slight difference is attributed to the deviations in 
TLM dimensions from those given in Fig. 1 b due to the finite resolution of the TLM mesh ( 
±0.01 mm). Finally, Fig. 7 shows the data measured at the University of Ulm, together with mode 
matching data for the dimensions in Fig. lb (assuming rectangular inner comers) and TLM results 
which, this time, account for the finite radius of the inner comer by means of a stepped contour 
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approximation. Both the measured and TLM data are shifted upwards in frequency with respect 
to the mode matching results, which can partly be attributed to the effect of the rounded inner cor- 
ners. The shift due to the rounding was determined by a separate TLM analysis to be 60 MHz or 
0.17 percent of the midband frequency. 
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Fig. 5 : Scattering Parameters of the Filter in Fig. la Computed with TLM 
and Mode Matching Techniques. 

5.     Errors and their Compensation 

5.1 Errors affecting the Mode Matching Analysis 

Since the mode matching program allows for the entry of exact dimensions, the error esti- 
mated is of the order of the difference between regular and modified mode matching computa- 
tions, i.e. +50 MHz. 

5.2 Errors affecting the TLM Analysis 

The most important error in TLM simulations is the coarseness error which is due to imperfect 
resolution of the fields in the vicinity of sharp edges. This error has been reduced by at least one 
order of magnitude by computing the structure with two different discretization steps ( A1=0.05 

and 0.025 mm) and linearly extrapolating the results for al = 0. The systematic error after extrap- 
olation is estimated to be ±10 MHz (0.03 percent of the mid-band frequency). Velocity error due 
to the finite discretization is negligible. 25,000 computation steps were used, yielding a negligi- 
ble truncation error less than 0.00025 percent. Another error of consequence is due to the finite 
return loss of the absorbing boundaries used in the simulation, which is estimated to be less than 
0.15 percent of the midband frequency, or +50 MHz. 
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The error due to the slight differences between the actual dimensions and those of the TLM model 
(less than 0.01 mm for Al = 0.025 mm) introduces an additional uncertainty in frequency of 
about 140 MHz. This is equivalent to the uncertainties due to the machining tolerances. In the 
worst case these uncertainties add together, so that the TLM computations are estimated to be 
accurate within ±200 MHz or 0.6 percent of the midband frequency. Execution time on an IBM 
360 RISC workstation was about 4 hours for the finest mesh, but it took only 30 minutes to enter 
the structure into a general-purpose TLM program, yielding a total solution time of less than 5 
hours. 

5.3    Errors Affecting the Measurements 

There are, of course, errors in the experimental verification as well, accounting for the differences 
between experimental and numerical results. The measurements of the mechanical dimensions are 
accurate only within 0.01 mm. Additionally, these measurements were done at the surface of the 
filter mount, and additional variations of the dimensions occur due to the slightly trapezoidal form 
of the waveguide cross-section and due to imperfectly rectangular outer edges of the irises. The 
RF measurements are partly affected by reflections at the flanges due to improper electrical con- 
tacts to the thin cover plate; this may influence especially return loss values below -15 dB. Fur- 
thermore, conductor losses, not included in the TLM data, are responsible for slightly higher 
insertion loss in the measurements. 

6.     Conclusion 

A millimeter-wave bandpass filter has been analyzed independently by frequency domain Mode 
Matching and time domain Transmission Line Modeling. The numerical results agree with mea- 
surements within the error bounds and manufacturing tolerances. While the computation time for 
the mode matching programs is shorter by several orders of magnitude, the TLM program is more 
general and can account for details such as rounded inner corners without additional expenditure 
and effort. 
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Abstract - The coupling-of-modes (COM) formalism is applied to the analysis of surface- 
-acoustic-wave (SAW) multistrip couplers (MSC's). The COM apporach delivers closed- 
-form expressions. To determine the pertinent COM-parameters, the COM-differential 
equations are solved and the solution is compared with analytically derived expressions 
from the transmission-matrix approach. By doing this, the most important physical effects 
such as energy storage, propagation loss and mechanical and electrical loading are fully 
taken into account. As an example, a 100% SAW energy transfer MSC on YZ-LiNb03 
with 100 regular electrodes and 10 ^m pitch will be discussed. 

I. INTRODUCTION 

A SAW multistrip coupler is a planar acoustic directional coupler with high efficiency and 
wide bandwidth [1,2]. It is based on the principle that a set of metal strips in the path of a 
SAW can be used to generate a secondary SAW, which may be displaced laterally with 
respect to the input wave. The MSC has a variety of forms as well as many different appli- 
cations among which the improvement of the rejection and the selectivity of SAW filters 
are the most common ones. In practice, the MSC technique is restricted to substrates with 
high electromechanical coupling coefficients (high-k2 substrates) such as lithium niobate 
(LiNbOs). 

The COM formalism is based on a set of differential equations relating two variables, 
namely forward and backward wave amplitudes. This differential coupled—mode model is 
phenomenological and enables the study of perturbations and excitations in a material. In 
1985, a very cogent paper was written by Chen and Haus, which demonstrated the feasibili- 
ty of using the COM theory for analyzing metal-strip SAW gratings [3]. The many sub- 
sequent publications on COM modeling of SAW devices confirmed the effectiveness of the 
COM formulation [4-6]. 

In the following, we will regard the SAW grating as a periodic array composed of elemen- 
tary unit cells which are subdivided into concentrated electrical and mechanical reflection 
centers and distributed delay lines. Thus, we can take into account several physical effects 
including mechanical and electrical loading, energy storage, and acoustic propagation 
attenuation. We will relate the COM coefficients to the parameters obtained by transmis- 
sion-matrix theory. Term by term comparison of the closed-form COM equations with the 
expressions delivered by the transmission—matrix model enables us to determine the 
COM parameters. 

The MSC behavior will be analyzed by superimposing a symmetric and an antisymmetric 
mode. The MSC will be regarded as composed of two parallel tracks. In each of these tracks 
the wave propagation is modeled as a superposition of a forward wave and a backward 
wave. By doing this, we describe the MSC in terms of open-circuited and short-circuited 
gratings with distributed internal reflections. 
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H. MULTISTRIP COUPLER COM MODEL 

The MSC in its simplest form is a periodic array of disconnected electrodes spanning two 
parallel equal aperture physical tracks 1 and 2 schematically shown in Fig. 1. We describe 
the behavior of the MSC from a wave amplitude point of view and in terms of a symmetric 
and an antisymmetric mode which are superimposed [7]. Any uniform wave incident on one 
track can be decomposed into these modes. From an analysis of an infinite grating it can be 
derived that the solutions for open—circuited and for short-circuited gratings give the 
symmetric and antisymmetric modes. The symmetric mode has the velocity of the wave 
propagating in an open-circuited grating, and the antisymmetric mode has the velocity of 
the wave propagating in short-circuited grating. In most practical MSC's the number of 
electrodes is large and so the results for a periodic structure may be applied directly to an 
MSC of finite length. The usefullness of COM theory for the description of codirectional 
coupling occuring in an MSC has already been proven [8]. In addition to conventional 
MSC theory, which neglects electrode reflections, we include in each of the two tracks the 
backward propagating waves. 

input 
L    L 

r 

a ,oc 

1 

lfV 

U2V 

3 

^ 

n 
Fig. 1 Multistrip coupler with excitation   resolved into symmetric mode s and anti- 

symmetric mode a (superscript "oc" denotes "open—circuited"; superscript "sc" 
denotes "short—circuited") 

At first, let us suppose an array of n regular electrodes with pitch p, width a, and metaliza- 
tion ratio 77 = a/p as shown in Fig. 2. 
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Fig. 2 SAW grating unit cell 
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The electrode length is assumed to be large, so that all field quantities do not depend on 
the length-coordinate. We assume time—harmonic forward and backward travelling surface 
waves a(z) and b(z) with slowly varying complex amplitudes R(z) and S(z), 

a(z) = R(z) exp(-jkgz/2) exp(jwt) (1) 

b(z) = S(z) exp(+jkgz/2) exp(jwt) (2) 

having sufficient phase synchronism to allow significant interchange of energy. Here, 
kg = 27r/p is the wavenumber of the grating and the factor exp(jwt) wUl be dropped in the 
following. An accurate description of the field distributions would require an infinite num- 
ber of space harmonic components, but only the two lowest order ones which are dominant 
were taken into account. We write the field in the form of wave amplitudes and approxi- 
mate the local amplitude u(z) by the superposition 

u(z) = R(z) exp(-jkgz/2) + S(z) exp(+jkgz/2) . (3) 

The solution of the problem is well known and the reciprocal COM equations in the deriva- 
tive form are written as [3] 

dR |f=(-JMR + J«S (4) 
dS dS = -JK*R + (j£+a)S. (5) 

we have 

Here, and throughout the paper, the asterisk denotes the conjugate complex value. The 
parameters S, a, and a are the detuning parameter, the coupling coefficient, and the at- 
tenuation coefficient, respectively. The solution of the COM equations is straightforward, 
and after introducing 

72= |K2| _(^_ja)2 (6) 

R(z) = h, exp(-Tz) + ^_h
(

2%+7) exp(+7z) (7) 

s(«) = H&7) exp(~^ + h2exP(+^)' W 

The unknown constants hi and h2 can be derived from the boundary conditions that are 
imposed on the incident wave at the beginning of the grating and on the backward wave at 
the end of the grating, 

a(0) = 1 (9) 

b(np) = 0 . (10) 

We get 

h2 = (H1ep-H2?ep)H1ep 
(12) 

with 
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ep = exp(-ynp) (13) 

Hi = H("+7) (14) 

H2 = H(a^r) • (15) 

Thus, we obtain the scattering matrix of the grating 

S-[aö)$?] W 
with the elements 

t ,„•, _ j«*sinh(,ynp) /,--, 
*■ ' ~ 7COsh( -yiip) +j (b-\ a) sinh( Tap) ^    ' 

a(np) = (-l)n 7COsh(7np)+J(^_ja)sinh(7np) (18) 

Now, let us refer again to Fig. 1 and represent the MSC by short—circuited and open—cir- 
cuited gratings as was mentioned before. In each of the tracks 1 and 2, we assume forward 
and backward travelling waves a(z) and b(z) with slowly varying amplitudes R(z) and S(z), 

ai = [R»c(a) + R«c(«)] exp(-jkgz/2) (19) 

a2 = [Roc(z) - Rsc(z)] exp(-jkgz/2) (20) 

bi = [Soc(z) + Ssc(z)] exp(+jkgz/2) (21) 

b2 = [Soc(z) - Ssc(z)] exp(+jkgz/2) (22) 

where the superscripts oc and sc denote an open—circuited and a short—circuited grating, 
respectively. In track 1 the symmetric and antisymmetric modes add in phase, whereas in 
track 2 these modes are totally out of phase. With the boundary conditions 

ai(0) = 1 (23) 

a2(0) = bi(np) = b2(np) = 0 (24) 

equations (19) to (22) yield directly the following scattering parameters of the MSC: 

2SC„ = Soc(0)+Ssc(0) (25) 

2Sc2i = [R°c(np)+Rsc(np)] exp(-jkgnp/2) (26) 

2SC3i = S°c(0)-Ssc(0) (27) 
2SC4i = [R°c(np)-Rsc(np)] exp(-jkgnp/2) . (28) 

Thus, due to symmetry and reciprocity of the problem the complete scattering matrix Sc of 
the MSC is evaluated, and we can write the scattering parameters of the MSC in terms of 
the scattering parameters of open-circuited and short-circuited gratings, S°c and Sj>c: 

2Scn = Sg?1 + S«fc (29) 

2SC2i = SgSl + SgSi (30) 

2Sc31 = So?1-S^ (31) 

2Sc« = Sgs1-SS51. (32) 
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m. GRATING NETWORK MODEL 

Now, let the array of electrodes which is shown in Fig. 2 be infinite, and let the unit cell 
consist of one metal strip and two transmission lines of length L = (1—7?)p/2. The symme- 
try plane of the unit cell is defined to be the center of the reflector strip. The discontinui- 
ties at the two strip edges generate the mechanical reflections. The electrical reflection 
center is located at the strip center. We describe the mechanical reflection from the front 
edge of the strip by the scattering matrix 

Sn = exp(-j^m) f £ *•] , (33) 

and the mechanical reflection of the back edge of the strip by interchanging Smn and Sm22 
in equation (33). Taking into consideration the properties of symmetry, reciprocity and 
non-dissipation, the scattering matrix for the electrical reflection centers can be written as 

Sei
: jlel tel 1 

tel   jlelj 
(34) 

Equation (34) holds for open-circuited as well as for short-circuited gratings, if rei is 
substituted by the correct reflection coefficients r°{ or r|j. The transmission coefficients t°f 

or t|f follow in both cases from power conservation: t|j = 1—rjj. The delay lines in the 

grating gaps are characterized by 

Sail = exp[-j(2rf/vf(f)-jttf)L] [ } J ] , (35) 

and those for the metalized surfaces by 

Sdl2 = exp[-j(27rf/vm(f)-jam)a] [ J J J . (36) 

The coefficients occuring in equations (33) to (36) describe various physical phenomena 
which are taken into account. They are derived in detail in [9] and are as follows: 

(1) Pm, tu, and tpm depend on the metalization height hm, the acoustic free—surface 
wavelength Af, and the metalization ratio r\. They take into account the mechanical 
loading effect (mass loading and stress loading) and the energy storage effect which 
is due to the excitation of evanescent modes that are stored reactively near the strip 
edges. The mechanical transmission coefficient is a purely real value. 

(2) rei and tei are real quantities having differing values for open—circuited and short- 
—circuited gratings. They depend on the electromechanical coupling coefficient k2, 
the wavenumber kf = 2x/Af, the metalization ratio rj, and pitch p. 

(3) v and a are the dispersive velocity and the attenuation coefficient due to air loading 
and viscosity, respectively. They depend on hm, Af, k2, and 77. The subscripts f and 
m denote the free-surface or the metalized—surface values. 

The functional dependencies of all these coefficients are formulated using a number of 
material constants which were obtained by direct—field theoretical analysis and/or experi- 
mental investigations. 

Neglecting multiple reflections within one metal strip, equations (33) to (36) yield the 
complete scattering matrix for the unit cell 
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Sp = exp[-j(v>p-jap)] 
f. Jip V l-*g 

./i= rl JrpJ 

with 

rp = 2Re{pm}sm(Atp) + 2Im{pm}cos(A<p) + rei 

Vp = [kf+77(km-akf)+ke]p 

ap = [af+?;(am-af)]p . 

(37) 

(38) 

(39) 

(40) 

.ai. 
= Tpn Tpi2 

Tp21 Tp22 
aui" 
bj+1 

In equation (38) Atp is Aip=rjkmf+ipm- The wavenumbers kra and ke are km=27rf/vm and 
ke=2ipm/p, respectively. 

The scattering matrix of the unit cell, Sp, is easily converted to the corresponding trans- 
mission matrix, Tp, 

(41) 

with aj and bj as the incident and reflected wave amplitudes of the ith unit cell, respective- 
ly. From basic wave analysis of periodic structures (being slow—wave structures) [10], the 
dispersion relation 

2cos(kp) = Tp„+Tp22 = trace(Tp) (42) 

can easily be derived. For small rp, the trace of Tp can be approximated by 

trace(Tp) = 2(l+r2/2)cos(^p-jap). (43) 

Let us define 6p=tpp—-a. Then near the first stop band, where Sp is much less than unity, 
and for small rp and ap, we can simplify the dispersion relation to 

kp = TT+J/T^ 

with 

7| = r|-((5p-ja;p)2 • 

The transmission matrix for n-cascaded sections, T„, is given by [11] 

T„ = Pn(y)Tp-Pn.1(y)E 

(44) 

(45) 

(46) 

where Pn, Pn-i are Chebychev polynomials of the second kind, E is the unit matrix, and y 
is the trace of Tp. The Chebychev polynomials may be obtained from a recurrence relation 
and may be written in closed form as [12] 

w=i$pf (47) 

Then Tn can be obtained by substitution of equation (44) into (47), and the scattering 
matrix for the complete grating, Sn, can be easily derived to 
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«5   - * bn-JJ 
-jr?sinh(n7p) (-l)"7p 1 /4g) 
(-l)nTP -jrpsinh(n7p)J 

where the denominator D is given by 

D = 7pCOsh(n7p)+j(£p-jap)sinh(n7p) . (49) 

Equation (48) enables us to compute the reflection and transmission behavior of both 
short—circuited and open—circuited gratings. 

Term by term comparison of equations (17), (18), and (48) yields 7P=7p. <%>=^p> ap=<*p, 
and K*p=—rp. Thus, we obtain the COM parameters 

5=kf+7?(km-kf)+ke-kg/2 (50) 

a = ctf+ri(am-af) (51) 

K* = |/c|exp(-j^) = -rp/p . (52) 

Note, that rp may be positive or negative. The phase factor i> depends on the location of 
the origin of the coordinate system relative to the location of the reflection maximum. 
Without loss of generality, ij) can be chosen to be 0 or T, so that K is a real quantity. 

IV. NUMERICAL EXAMPLE 

The general characteristics of the scattering parameters of an MSC on YZ—LiNbÜ3 with 
n = 100, p = 10 /an, 77 = 50 %, and hm = 0.1 fim are shown in Fig. 3 in a linear scale. The 
value n = 100 has been derived from the formula [13] 

ntotal = p^c_goc) • (53) 

Using this (smallest permissible) value for ntotai one obtains full energy transfer between 
the two MSC tracks. The value ntotai varies slowly with frequency, and has a minimum at 
f0 = vf/(2p). However, this frequency corresponds to a stop band. To operate well away 
from this stop band, the separation between MSC strips typically places the operating 
frequency about 1.3 times above f0. As is seen in Fig. 3, the MSC stop band is predicted 
and the back scattered power is at maximum. 

V. CONCLUSION 

A combination of the COM formalism and the transmission matrix approach has been 
worked out for analysis of multistrip couplers including internal reflection effects. The 
analysis is based on the traditional onedimensional symmetric/antisymmetric mode de- 
scription of the MSC. The corresponding computer program is incorporated into a standard 
microwave network analysis program thus enabling MSC optimization. This work demon- 
strates the usefullness of the COM model (which has originally been developed for the 
analysis of microwave and optical structures) for the theoretical investigation of SAW 
devices with small distributed reflections. 
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Abstract 

The influence of conductor loss on the propagation characteristics of planar transmission-lines is 
investigated. Both a rigorous full-wave method and a simplified model are applied. The results 
are validated by comparison to measurements. The paper discusses the principal effects induced 
by conductor loss and provides data for typical coplanar waveguide and coplanar strip geometries 
found in mm-wave monolithic circuits. Also, the case of high-Tc superconducting materials is 
discussed. 

1 Introduction 

Today, planar transmission lines represent key elements for many high-frequency applications, 
especially with regard to monolithic integration of analog and digital circuits. With increas- 
ing packaging density and frequency of operation, the line geometries have become smaller and 
smaller. In mm-wave monolithic integrated circuits (MMIC's), for instance, metallization thick- 
nesses t below 3ixm and strip widths in the range of 10/im are in use (e.g. [1,2]). 

When scaling down the cross-sectional dimensions of planar transmission lines, however, the 
conductor-loss phenomena gain importance and need to be included in circuit design. It is nec- 
essary, therefore, to provide computational methods that account accurately for those effects. 
A particular difficulty arises from the fact that most of the common approaches are based on 
skin-effect approximations. This requires metallization thickness f to be larger than the skin 
depth 6, which, however, is not fulfilled for most of the MMIC structures. A similar situation is 
encountered when modelling state-of-the-art high-Tc superconductive films. 

Consequently, a rigorous analysis of conductor loss is required that does rely neither on skin- 
effect assumptions nor on perturbation techniques. Two different types of such an approach are 
outlined briefly in the following section. 

2 Simulation Approaches 

2.1     Pull-Wave Mode-Matching Technique 

The formulation starts from the general planar structure shown in Fig. 1. All subregions are 
described by their complex permittivity e. Thus, conductivity K and dielectric loss tangent can be 
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Pig. 2: The two steps of the mode-matching procedure 

included in a general way and the formulation holds for arbitrary values of conductor dimensions 
and skin depth [3]. Superconductor penetration depth \s can be accounted for equally [4]. 

Regarding the mode-matching technique itself, two steps can be separated as illustrated by 
Fig. 2. First, the lateral separation constants kxm are determined. In analogy to the well-known 
case of a layered rectangular waveguide, the kxm depend only on the z-layer characteristics. This 
step, however, is a critical one because it involves problems due to the metallic conductivity 
values. 

The second step corresponds to the common field-matching procedures. Using the kxm values 
from step 1 and the j/-layer data one yields the complex propagation constant kz = ß — ja and 
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all other field quantities. 

Due to the rigorous loss description, the numerical expenses are relatively high. This type of 
analysis, therefore, is ideally suited for generating reference results. But the efforts involved are 
too high for practical MMIC circuit design. For that purpose, a simplified CPW description was 
developed which is presented in the following subsection. 

2.2     Simplified Quasi-TEM Modelling of CPW 

Because of the miniaturized transversal line dimensions, the waves are of the quasi-TEM type. 
Hence a distributed equivalent-circuit model as shown in Fig. 3 can be employed. Using the full- 

s 
Fig. 3: The distributed equivalent-circuit model (all elements denned per unit length). 

wave results as a reference and exploiting physical simplifications, closed-form approximations are 
derived [5]. Altogether, this leads to a very efficient formulation suitable for the practical design 
process. 

3    Results 

3.1     Principal Effects 

Generally, conductor loss influences the propagation behaviour of planar quasi-TEM lines in two 
ways: 

(i) Naturally, finite conductivity K < oo causes attenuation, i.e., a non-zero line resistance R in 
Fig. 3. Regarding the frequency dependence R follows a \f] rule in the skin-effect regime 
and approaches a constant in the DC limit. Between these two cases an intermediate range 
occurs that may extend over a considerable portion of the frequency range of operation (as 
is the case with respect to MMIC CPW structures). 

(ii) But conductor loss also affects the phase constant ß and £„// = (ß/ßo) ■ This is true 
particularly for line geometries that show inherently two-dimensional field characteristics 
(e.g. coplanar waveguide (CPW), coplanar strips (CPS), and slot line). In that case, the 
magnetic fields both inside and outside the conductors change when the skin depth.5 falls 
short of Zt (t denotes metallization thickness). As a consequence, the line inductance L 
and thus £re// become frequency dependent to a significant amount. Fig. 4 illustrates the 
corresponding ere// curve with the characteristic negative slope. The plot also includes 
results obtained by the quasi-TEM model (Section 2.2) and measurement data [6,7]. 
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Fig. 4: CPW effective dielectric constant ere// = (ß/ß0)2 as a function of frequency / - com- 

parison of measurement results [6] (solid line) with full-wave analysis [3] (dashed) and 
quasi-TEM modelling [5] (symbols). 
CPW geometry: 71^m wide center strip, slot width s = 49//m, metallization t = 
1.6/rai thick with conductivity n = 3.6 • 107 S/m, GaAs substrate (er = 12.9, tan<5£ = 
3 • 10-"). 

3.2     Coplanar Waveguide (CPW) 

Fig. 5 presents the frequency dependence of eTeff and a for a typical MMIC CPW geometry. Both 
the results of the full-wave approach (Section 2.1) and those of the quasi-TEM model (Section 2.2) 
are plotted. 

As observed already in Fig. 4 the dispersion caused by finite metallization conductivity dom- 
inates the behaviour of £re//- Non-TEM effects, on the other hand, remain small and appear 
only around 100 GHz. Regarding the attenuation a one finds two frequency ranges that can be 
distinguished clearly: The skin-effect regime at high frequencies and the 'intermediate' range for 
lower frequencies where the a curve again follows a straight line in the log-log scale but with 
different slope. In general, the attenuation values reach a relatively high level because of the 
miniaturized line dimensions. 

3.3     Coplanar Strips (CPS) 

The CPS behaviour is similar to that of the CPW. Fig. 6 provides the relevant data. As in the 
CPW case, the negative slope of eTejf reflects the influence of conductor loss. Also, the inter- 
mediate frequency range becomes visible in the a curve. The attenuation values are comparable 
to those of the CPW. Hence the CPS line represents an interesting complement to the CPW in 
MMIC's where anti-symmetric properties are required. 
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Fig. 5: CPW effective permittivity ere// and attenuation a against frequency / with metallization 
thickness t as parameter - comparison of quasi-TEM model (solid and dashed lines) with 
full-wave analysis [3] (symbols). 
CPW geometry:  20/im wide center strip, slot width s = 15/tm, conductivity K = 3 • 
107 S/m, 600/im thick GaAs substrate. 
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Fig. 6: CPS effective permittivity eTeff and attenuation a against frequency / with metallization 
width w and thickness t as parameter; 
CPS geometry: 20/im wide slot, conductivity K = 3-107 S/m, 600/im thick GaAs substrate. 
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3.4    Superconducting CPW 

Finally, the potential of high-Tc superconducting films with regard to MMIC CPW structures is 
to be highlighted. Fig. 7 compares a superconducting line with its metallic counterpart, both on 
LaA103 substrate. 
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Fig. 7: Effective permittivity £re// and attenuation a against frequency / for superconducting 
CPW (t = 0.3/jm) with substrate loss tangent tan Se = 0 (solid) and tan 6e = 3 • 10~4 

(dotted), respectively. The dashed curves refer to the case of metallic conductors (t = 
3/jm) with K = 3.0-107 S/m. For line geometry see Fig. 5, substrate: LaAlOa with er = 24, 
superconductor [8]: As = 0.3/rai, K = 8.2 • 105 S/m. 

As could be expected, attenuation a decreases when introducing superconductors, although 
this reduction amounts only about one order of magnitude. The changes in the phase constant 
are significant as well. For the superconducting case, ercff shows excellently low dispersion. This 
can be attributed to the fact that the penetration depth Xs is constant with frequency / whereas 
the metallic skin depth 6 depends on /. 
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4    Conclusions 

• Whenever the performance of analog and digital IC's aims at high frequencies, bit rates, or 
packaging densities, miniaturized structures have to be used. The transmission lines in such 
IC's show a distinct influence of non-ideal conductivity. Apart from the growing attenuation 
values, also the phase constant and thus dispersion is affected. This holds particularly for 
lines with inherently two-dimensional field patterns such as CPW and CPS. 

• Suitable modelling tools have to be developed that describe the conductor-loss effects with 
sufficient accuracy. Two examples of opposite type are treated in this paper: An accurate 
but numerically expensive full-wave analysis and an highly efficient quasi-TEM model based 
on closed-form expressions for the line elements. 
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Abstract 
In this paper we consider the dynamic modeling of microwave discontinuities realised on lossy 

multilayer structures. We take into account the real nature of dielectrics (tan 8) and/or semiconductor 
(conductivity) by the use of the complex frequency concept. The classical Spectral Domain Technique in 
which we introduced this concept allows the calculation of complex resonant frequencies of lossy cavities. 
The proposed method is applied to gap discontinuities on lossy microstrip line. The physical behavior 
confirms well the obtained results. 

Introduction 
The Dynamic modeling of planar transmission lines and discontinuities is a topic of 

great interest, especially for monolithic microwave and millimeterwave circuits. The 
existing electric models for planar transmission lines include the losses phenomena due to 
substrate [1], ground plane[2] and strip thickness[3]. However, when considering the 
discontinuities on lossy substrate no equivalent models are found in the literature. The 
aim of this paper is a contribution to fill this gap by the development of a modeling 
technique which can include the real nature of dielectric or semiconductor substrates, that 
is to say losses. Very efficient for the analysis of uniform planar transmission lines, the 
well-known Spectral Domain Approach has been extended to the study of discontinuities 
on planar transmission lines [4] too. Up to now, the method could only treat the case of 
lossless lines. However, new applications appear that cannot be realistically modeled 
without taking losses into consideration. In this paper, we propose thus an extension of 
the SDA to the study of discontinuities on lossy structures. As an example of this 
technique, we will apply it for the modeling of a gap on a lossy microstrip structure. 

General principle of the 3D SDA on lossless structures 
Coupled to a type of Transverse Resonance Technique, the classical SDA may be 

very efficient at determining the electrical equivalent circuits of planar discontinuities [4]. 
We call this method the 3D Spectral Domain Approach. Consider first the case of 
discontinuities on lossless multilayer substrate. The 3D SDA mainly consists in putting the 
discontinuity in a resonant cavity with either electric or magnetic walls (Fig. 1). 

Let      n      12    be the equivalent Z-matrix of the considered discontinuity, the 
. Z21   Z22 J 

resonance condition reads, when the cavity is made of electric walls : 

[Zu + j Zci tan(ß! lJJ [Z22 + j Zc2tan(ß21| - Z12Z21 = 0 

In the case of magnetic walls, it reads : 

Z11    jfcl J [Z22 - J^J - z12z21 = 0 
tan(ßi ljj L        tan(ß2l2)_ 
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electric or magnetic walls 

Figure 1: Discontinuity in a resonant cavity. 

The classical 2D SDA gives the values of the respective characteristic impedances of the 

two considered propagation lines Zd and ZC2, and their respective phase constants ßi and 

ß2. The calculation of 4 couples of lengths (h, I2) which make the cavity resonate, at the 
same frequency, allows the determination of the equivalent Z-matrix of the discontinuity. 

Zcl, n Cg Zc2, T2 

HI . cz 

Figure 2 : Electric equivalent circuit of a gap on a lossless microstrip line. 

In the case of a gap on a microstrip line, the electric equivalent circuit is given on 
figure 2.  The resonance condition of the cavity in the presence of electric walls reads : 

C„ = Cg + Ci Cg + C2- 
Zclcotan(ß:l])]|  

8      " Zc2C0tan(ß2lj) 

In the case of magnetic walls for the cavity, we have: 

-2=1 Cg + Ci + 
tan (ßili) 

Zcl CO 
Cg + C2+ 

tan (ß2lj 
ZC2Ü) 

This means that, in the case of a gap on a microstrip line, only 3 couples of lengths 
(li, 12) are required. 

The 3D SDA allows the determination of the resonance lengths. The basic principle is 
the same as that of the classical 2D SDA. However, as metallisations are no longer uniform 
in the propagation direction Oz, we have a Fourier development in this direction too 
(added to the development in the y-direction). As in the 2D SDA, we obtain a relation 
between the tangential electric field and the tangential current density, in the Fourier 
domain: 

JEy(U'n)Ucoen(gll(u'n)gl*U'n) 

E2(u,n)  I       ^lg2i(u,n)g22(u,n] 

' Jy{u,n) 
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where u is the Fourier variable related to the open direction Oy and n is the Fourier 
variable related to the z-direction. To solve it, we use Galerkin's moment method, which 
consists in splitting the current density on a function basis according to the y- and the z- 
directions. We get then a system of linear equations which depends on one hand on the 
frequency and on the other hand on the lengths (h, I2). We thus solve the problem by 
calculating the lengths (li, I2) which put the determinant of the system of linear equations 
to zero, at a given frequency. 

Extension to lossy structures: complex frequency concept 
To treat the case of discontinuities on lossy structures, we make use of the complex 

frequency concept. It consists in the fact that the resonance frequency of a lossy resonator 

is complex. Indeed, on a lossy propagation line, the fields vary as exp(-rz} exp(jort); in the 

case of a lossy resonator, the variation is exp(-jßz) exp(jcoct). Comparing the two 

expressions, it comes coc = ca + jco" = co + ja"®. The complex frequency concept is valid 
dß 

whatever the losses level is. However, in our case, we make use of it through a 
perturbation method added to the previous theory. The hypothesis of low losses allows to 
consider that, between the lossless structure and the lossy one, the equivalent circuit only 
changes by the addition of resistive elements as shown in Fig. 3. 

Rg 

zci,n        r-WW-i 

Figure 3 : Electric equivalent circuit of a gap on a lossy microstrip line. 

We can show an application of this method to a symmetric gap on a microstrip line, 
which can be modeled through a microstrip resonator (Fig. 4). The electric equivalent 
circuit of that resonator is given on figure 5, in the case of a lossless structure. Adding low 
losses to the previous structure, we only add resistive elements to the electric equivalent 
circuit (Fig. 6). The calculations of the resonant complex frequencies fi =f'i + j f\ and 

f2 =f 2 + i f'2 / where f'1 =    *     and f'% = *    —-       and the quality factors : 
' VTA YLitCi+2C2) 

lead to: 

Q,=-^J_ = 2nRiC1fi andQ2 = -4?- = 2n   RlR2 (Ci+2C2)f'2 
2R1+R2 

A  ;x=iJ4nc1f"2^-J- 
411 f^Q R2    2\ f2   Rj 

where C2 has been previously determined by the 3D SDA. 
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u 
Figure 4: Microstrip resonator. Figure 5: Equivalent circuit 

of a lossless resonator. 

R
2  Cjx^a ^Ri ^ ^ 

Figure 6: Equivalent circuit of a lossy resonator. 

We have applied our method to a microstrip structure previously studied by Koster 
and Jansen [5] (Fig. 7). At the frequency f = 1 GHz, we have varied the gap width g from 0 
to 4 mm. The values of C and Cg obtained by the 3D SDA are presented on figure 8. The 
series capacitance Cg decreases as g increases, contrary to the parallel capacitance C. The 
limit where g = 0, which entails theoretically Cg = ~ and C = 0, and the limit where g = ~ 
which leads to Cg = 0 , are respected, as can be seen on figure 8. 

S 

w = 0.635 mm 

v  V hs = 0.635 mm-er =10.4 

h 
V hi = 0.635 mm 

Figure 7: Studied microstrip structure. 

1.0 
g/2 (mm) 

Figure 8 : Capacitances as functions of the gap width. 
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We added losses to the previous structure through tan 8S = 104. Figure 9 gives, at 
f = 1 GHz, the variation of the resistances R and Rg as functions of the gap width, obtained 
by means of the complex frequency concept. We can draw here the same conclusions as 
for the capacitances variations, as concern the limits g = 0 and g = ~. 

lv 

.1 
0.0 

R (Megohms) 
Rg (Megohms) 

i 1 1 1 ■ 1 ■  

0.5 1.0 15 2.0 
g/2 (mm) 

Figure 9 : Resistances as functions of the gap width - tan 5S = 10   . 

We then added losses to the same basic structure through os = 5.10"4 S/m . At 

f = 1 GHz, this conductivity gives less losses than tan 8S = 10"4. As the ideal lossless case 
gives R = Rg = oo increasing losses must increase the values of R and Rg, which is verified 

on figure 10. 

1000 

R (Megohms) 
Rg (Megohms) 

—I— 

1.5 2.0 

Figure 10: Resistances as functions of the gap width - os = 5.10"4 S/m. 

For the same basic structure (Fig. 7), we have varied the frequency from 1 to 15 GHz, 
for a fixed gap width g = 1.27 mm. Figure 11 shows the variations of C and Cg, which can 
be explained by the fact that the electric fields Ex and Ez increase with the frequency. As C 
is bound to B„ and Cg to Ev the increase of the frequency leads thus to an increase of both 

capacitances C and Cg. 
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Figure 11: Capacitances as functions of the frequency. 

To this basic structure, we have added first losses through tan 5S = 10"4. Using the 
complex frequency concept, we have calculated the resistive elements R andRg (Fig. 12). 
We can notice that R and Rg decrease as the frequency increases, indicating that losses 
increase with the frequency (in fact, with the electric fields Ex and Ez). 
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Figure 12: Resistances as functions of the frequency - tan Ss = 10"4. 

We have then added losses through os = 5.1CT4 S/m, which is equivalent to 

tan 8S = 8.65 10"4 at f = 1 GHz and tan 8S = 5.76 10"5 at f = 15 GHz. The resistance R 
decreases as the frequency increases (Fig. 13). On the contrary, the resistance Rg decreases 
for weak frequencies and then increases. In fact, we have two opposite variations : on one 

hand, the equivalent tan 8S decreases with the increasing frequency, on the other hand and 
at the same time, the field increases in the dielectrical substrate, which entails increasing 
losses. 
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Figure 13: Resistances as functions of the frequency -os = 5.10"4 S/m. 

Conclusion 
The monolithic microwave and millimeterwave circuits are usually based on planar 

transmission lines and discontinuities. For most classical microwave applications, only the 
losses on transmission lines are calculated and taking losses into consideration in the 
modeling of discontinuities is useless. However, some particular applications, where for 
example the semiconductor conductivity plays an important role, require a modeling 
method where losses are taken into consideration. In this paper, for the first time, we 
study the modeling of lossy discontinuities. The developped technique is based on the 
well-known and very efficient Spectral Domain Approach. To introduce the substrate 
losses we make benefit of the complex frequency concept, which allows to get electrical 
equivalent circuits with resistive elements representing the losses. This technique does not 
depend on the losses level. However in the case of low losses it is advantageous to couple 
it to a perturbation method. As an example we have applied it to gaps on low lossy 
microstrip lines. The obtained results have been explained and agree well with the 
expected physical behaviour of the structure. 
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ABSTRACT 

An absorbing boundary condition is presented in this paper for simulation of wave 
propagation by the finite-difference time-domain method. Unlike previously developed 
absorbing boundary conditions, which can only absorb outgoing propagating waves, this 
boundary condition can also reduce the reflection of evanescent waves significantly. The 
boundary condition presented in this paper is found very effective in modeling wave propagation 
in passive components of microwave integrated-circuits. With this boundary condition, some 
of the outer surfaces of computation domains can be placed much closer to modeled objects, 
resulting in savings in computer memory space and computation time. The application of this 
boundary condition is demonstrated by modeling a pulse propagation along an open microstrip 
line. 

Introduction 

In numerical modeling of wave propagation in an infinite large space by the finite- 
difference time-domain method, the finite-difference mesh has to be truncated at a finite distance 
to modeled objects due to limited computer memory space. Various absorbing boundary 
conditions have been developed to prevent outgoing waves being reflected back into the 
computation domain. These boundary conditions include the space-time extrapolation method 
[1-2], the impedance boundary condition [3], Engquist & Majda's [4], Liao et. al.'s [5], 
Higdon's [6], etc. The super-absorption technique [7-8] can be applied together with absorbing 
boundary conditions to improve the absorption property of boundary conditions. Although these 
boundary conditions have been used successfully in many applications, it has been found (see 
reference [2] ), as will also be shown in examples presented later in this paper, that on some 
outer surfaces of computation domains, previously developed absorbing boundary conditions all 
appear to be totally ineffective. 

The place where previously developed absorbing boundary conditions fail is when fields 
near outer boundaries are mostly evanescent waves instead of outgoing propagating waves. As 
a result of this fact, in numerical modeling of microwave passive components, an open 
microstrip line as an example, outer boundaries parallel to the microstrip line have to be placed 
far away from the metal strip in order to minimize the influence of reflection waves from these 
boundaries. It has been observed that even a modest amount of error in transient solutions, 
caused by the reflection from outer boundaries, can severely deteriorate the accuracy of 
frequency-dependent circuit parameters obtained through Fourier transform of transient solutions 
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[2,9]. To ensure accurate numerical results without resorting to use excessive computer 
resources, all the outer boundaries of computation domains need to be treated carefully. The 
absorbing boundary condition presented in this paper is found effective for absorbing both 
outgoing propagating and evanescent waves. 

Proposed Absorbing Boundary Condition 

Previously used absorbing boundary conditions were developed for the absorption of 
outgoing waves incident normally or at certain angles at outer boundaries [1-8]. Therefore, they 
work well only for outgoing propagating waves. The absorbing boundary condition which can 
be accommodated to both propagating and evanescent waves can be expressed as 

n — + — — +«, fi lax    v at     '. 
(i) 

where a; and p; are parameters, v is the speed of light. The outer boundary surface considered 
in equation (1) is at the far end in the x direction of the computation domain. The boundary 
condition expressed in equation (1) is an Nrfi order boundary condition which is composed of 
the product of N first order boundary conditions. 

Consider the boundary condition in equation (1) in its first order form, that is, 

J. + *± + .U.o. (2) 
dx      v   dt       V 

The reflection coefficient Rj of this boundary condition can be found by substituting 
E = e i (■<" - *-* - V - *# + /{ e i < <" * M - V - *«*> (3) 

into equation (2), then Rt can be obtained as 

= _  -*.+Jft* + «i (4) 

jkx + ;>!* + «! 

where k = S)/v, k,, ky and k^ are the wavenumbers in the x, y and z directions respectively. The 
wavenumber k^ in general can be expressed as 

K-K-J**- (5) 

Substituting kj expressed in equation (5) into equation (4), R: can be rewritten as 

R = J (ß*-Pi*) * K-»i) (6) 
1        j (P^Pi*)   + («x+flCl) 

From equation (6), it is clear to see the general principle in selecting parameters a, and 
p, to minimize the reflection coefficient Rt. For outgoing propagating waves, which correspond 
to ax = 0, at can be set to zero, and p! is selected according to the estimated propagation speed 
and the incident angle of outgoing waves. For evanescent waves, which correspond to ßx = 0, 
p, can be set to zero, c^ is chosen to be the estimated attenuation rate of fields near the outer 
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boundary.   For attenuating-propagating waves, both a, and px can be chosen to be some non- 
zero numbers. 

In numerical modeling of wave propagations, exact values of the propagation constant 
ßx and the attenuation constant ax of outgoing waves are usually not known. Furthermore, the 
propagation and the attenuation constants of outgoing waves at a boundary surface can change 
with position and time. Therefore, the first order boundary condition is found not good enough 
for many applications. The boundary condition (1) can be applied in its high order form if good 
absorption property of the boundary condition is required. The reflection coefficient of the Nth 
order boundary condition can be found by substituting equation (3) into equation (1), that is, 

R = - A -*+w«. (7) 
i-i   JK + jpfi + <x, 

Equation (7) shows that the reflection coefficient of an Nth order boundary condition is 
equal to the product of the reflection coefficients of N first order boundary conditions. Since 
the reflection coefficients of first order boundary conditions are all less than or equal to one, 
their product can become a sufficiently small number. Parameters CKJ'S and p's in an Nth order 
boundary condition can be selected in the way that each boundary operator is designated to 
absorb one particular type of outgoing wave, so the whole boundary condition can absorb 
outgoing waves of a wide range of propagation and attenuation constants. 

Numerical Examples 

Consider an open microstrip line shown in figure 1. The dielectric substrate of the 
microstrip line is of er = 4 and has a thickness H = 500 jtm. The metal strip is of a width W 
= 1000 um and zero thickness. Let us model a Gaussian pulse propagation along this 
microstrip line by the finite-difference time-domain method. The pulse is excited by a current 
source under the metal strip. The space-step dh of the finite-difference mesh is chosen to be 125 
tim. The time-step dt = 0.5 dh/v, where v is the speed of light in air. 

Fields around the near and far end surfaces in the x direction are dominantly propagating 
waves ( ax = 0). All the previously developed absorbing boundary conditions can be applied 
at these surfaces. Liao et. al. 's and Higdon's boundary conditions are especially effective; a 2nd 
or 3rd order Liao et. al.'s or Higdon's boundary condition is usually good enough to obtain 
accurate solutions of the effective dielectric constant ercff and the characteristic impedance ZQ 

[10]. If cnj's in equation (1) are all set to zero, the boundary condition (1) has actually the same 
form as that of Higdon's boundary condition. It can be shown that, by adding some small value 
of a;'s in the boundary condition, it is helpful to maintain the stability of the boundary condition 
[11]. 

Problems arise at the far end surfaces in the y and z directions, where fields are 
dominantly evanescent waves. Let us examine the situation at the far end surface in the y 
direction as an example. Suppose the far end surface in the y direction is terminated at y = 
2500 jttm. Let us consider the first order Engquist & Majda's boundary condition which is the 
same as the first order Higdon's boundary condition expressed as follows 
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i. + ?i 1 
dx       v   dt ) 

E = 0 . (8) 

The parameter pt is usually selected according to the estimated propagation speed of outgoing 
wave. Percentage errors, due to the reflection wave from the boundary, in the voltage of the 
microstrip line as a function of frequency for various values of Pi are displayed in figure 2. The 
percentage errors in voltage displayed in figure 2 are obtained by comparing voltages with the 
reference solution computed with the outer surface in the y direction being placed very far away 
from the metal strip. Figure 2 shows that reflections from the boundary can not be substantially 
reduced no matter what value of p! is chosen. The corresponding effective dielectric constants 
ereff(f) are shown in figure 3. 

Next let us consider the second order boundary condition expressed in equation (1), but 
keep (*! = a2 

= 0- This boundary condition becomes the same as the second order Higdon's 
boundary condition, and comparable to the second order Liao et. al.'s boundary condition. 

Percentage errors in the voltage when p! = <JÄS) and p2 chosen to be different values are 
displayed in figure 4. It can be seen that the second order absorbing boundary conditions can 
not provide much improvement on the first order ones. 

Consider the first order absorbing boundary condition in equation (2) again, but this time 
let p! = 0 and o^ to be different values. Percentage errors in the voltage for different values 
of <*[ are shown in figure 5. It can be seen that reflection waves from the boundary can be 
substantially reduced by choosing ax properly. This result further confirms that the fields at this 
boundary can not be treated as outgoing propagating waves. The parameter a, can be selected 
according to the estimated attenuation rate of fields near the boundary; and the attenuation rate 
of fields can be estimated through some pre-computations to find field patterns near boundary 
surfaces [10]. 

The attenuation rate of fields near outer boundaries usually varies with position. After 
applying the first order absorbing boundary condition with a constant au a large portion of 
reflection wave can be removed, but a significant fraction of the reflection wave may still 
remain. Higher than the first order absorbing boundary conditions are needed to further reduce 
the reflection. Figure 6 shows the percentage errors in the voltage with the first to fourth order 
boundary conditions, and the corresponding effective dielectric constants e^f) are shown in 
figure 7. From figures 6 and 7, we can see that boundary operators for evanescent waves play 
a very important role in reducing the reflection error; and the boundary conditions of the most 
effectiveness are the ones with a combination of boundary operators for evanescent and 
propagating waves. 

For the outer boundary surface in the z direction, similar results as above have been 
observed [10]. 
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Conclusion 

This paper presents an absorbing boundary condition which can be easily adjusted for 
either outgoing propagating or evanescent waves. This boundary condition has been verified to 
be very effective in reducing reflection errors in the modeling of wave propagation in microwave 
integrated-circuits. The generality of this boundary condition allows it to be applicable to other 
applications such as optical waveguides, interconnections in electronic packaging, etc. 
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Figure 1. Structure of an open microstrip line. 
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Figure 6. Percentage error in the voltage for different boundary conditions applied at the far 
end boundary in the y direction.   Curve 1: electric wall boundary;   Curve 2: 1st 
order ABC, atdh = 0.06;  Curve 3: 2nd order ABC, a,dh = 0.06, a2dh = 0.04; 

Curve 4: 3rd order ABC, a,dh = 0.06, a2dh = 0.04, p, = fi; Curve 5: 4th order 

ABC, «!dh = 0.06, a,dh = 0.04, p, = fi, a4dh = 0.12. 
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Figure 7. Effective dielectric constant e^f) computed with different boundary conditions 
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Introduction 

The problem of electromagnetic scattering from an open-ended cavity structure is 
an important problem in the area of radar scattering. Among other things, it models 
the radar scattering from a jet engine inlet. There has been considerable work devoted 
to computing the high frequency scattering from the interior of an arbitrarily shaped 
cavity. Two ray based techniques, the Shooting and Bouncing Rays (SBR) method [1] 
and the Generalized Ray Expansion Method (GRE) [2], have recently been developed 
to analyze cavity scattering. Both methods in principle can be used to accurately 
predict the scattering from the interior of practically any three-dimensional cavity 
within the high frequency restrictions, including the effects of material coating on 

the interior cavity walls. In practice, though, SBR and GRE have generally been 
restricted to cavities with planar or other simple terminations. The terminations 
of cavities of practical interest are often fairly complex. The complexities of the 

terminations are such that high frequency ray techniques are usually unable to provide 

an accurate solution. It should be possible, however, to analyze the scattering from a 
cavity with a complex termination using a hybrid technique. A hybrid modal-moment 
method has previously been implemented and proven to be successful at modeling 
perfectly conducting, arbitrarily-shaped terminations [3]. 

In this paper, we propose another hybrid method which combines GRE with the 
finite difference time domain (FDTD) method [4, 5]. GRE has been chosen over SBR 
because the former has proven to be more accurate [6]. The coupling between FDTD 
and GRE is first described. This is followed by a discussion on the advantages of 
the hybrid method. Finally, two numerical results are presented for two-dimensional 
cavities. 
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II.      Coupling FDTD to GRE 

The GRE method has been well described in [2] and therefore is not presented 

here. Similarly, the FDTD method, which has become a standard method in elec- 

tromagnetics, is not derived in this paper. However, the coupling between GRE and 
FDTD requires some explanation. Let us consider the cavity in Figure 1. The cavity 
has been divided into three regions. GRE is used to compute the solutions in Region 
1 and Region 3, while FDTD is applied to Region 2. In Regions 1 and 3, the cavity 
geometry is assumed to be simple enough for high frequency approximations to be 
valid, i.e., smoothly varying cavity cross-sections. In Region 1, the rays are traced 
from the aperture of the cavity to the surface Sri- The field solution associated with 
all the rays are summed together to produce a high frequency solution on STI- The 

solution on STI can be used as the excitation for the FDTD computation in Region 

2. 
Since the GRE method is a frequency domain method, it is necessary to choose a 

suitable time variation for the excitation. One possible choice would be a sinusoidal 
steady-state time variation. For this case, the GRE computation is performed only 
at the frequency of interest. Another possible choice would be a Gaussian pulse 
excitation. In this instance, a GRE solution must be determined over a range of 
frequencies which properly accounts for the frequency content in the Gaussian pulse. 
Then the inverse Fourier transform of the product of the GRE solution with the 
Fourier transform of the Gaussian pulse can be used as the excitation for the FDTD 

computation. Actually, any desired time variation can be substituted in place of the 

Gaussian pulse in the above description. 
The excitation at STI produces a wave which propagates toward the termination 

and eventually interacts with it. In general, part of the wave is transmitted through 

5x2 into Region 3, and the remainder is reflected back toward Sri- If we assume 
that the waves which exit Region 2 through STI and ST2 do not return, then an 
absorbing boundary condition such as the ones introduced by Higdon [7] or Mur [8] 
can be applied to the FDTD calculations in Region 2. This assumption is usually 
valid because most jet engine inlets are shaped in such a way that there is very little 
energy which returns to Region 2 once it has exited it. For those engine inlets where 
the assumption is not true, we can convert the waves leaving Region 2 back into rays 
by applying the GRE method at Sri and ST2- The rays which return to Region 2 act 

as additional excitation. 
To determine the radar scattering of the cavity, we must use the appropriate 

information from the field solution in Region 2. One way to do this is to use the 
FDTD solution at STI to launch rays into Region 1. These rays can then be tracked 
out of the cavity and used to determine the scattered field. Unfortunately, this method 
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requires that rays be traced both into the cavity for the initial excitation of Region 

2 and out of the cavity for the scattered field calculation. To eliminate the need to 
trace the rays out of the cavity, we can use the reciprocity formulation developed in 
[9] to find the scattered electric field exterior to the cavity. In this formulation only 

the tangential electric and magnetic fields at Sri are needed to compute the scattered 

field. 

III.      Advantages of the Hybrid Ray/FDTD Method 

A hybrid method is the only feasible way that the cavity problem can be solved 
in the near future. High frequency techniques do not provide a solution that is 
accurate enough for many applications, while low frequency methods such as FDTD 
are incapable of modeling electrically large structures because of the tremendous 

computational costs. For example, a rectangular cavity of cross-section 30A x 40A 
and a depth of 100A, requires 5.76 billion unknowns for FDTD with a mesh density 

of 20 nodes/A. 
The hybrid method seems to be ideal for the engine cavity. A high frequency 

method is applied to the region where it is best suited, and a low frequency method 
is used where it is needed. Currently, hybrid methods have been employed to solve 
the cavity problem in the frequency domain. In some cases, an integral equation 
technique such as the method of moments is used to handle the termination in the 
cavity. Because the termination can have dimensions which are many wavelengths 
long, the majority of the computation time is spent in the solution of the integral 
equation. More specifically, the computation time is spent in the solution of a large 
matrix equation. The number of floating point operations needed to solve a matrix 
equation is approximately n3/6 where n is the number of unknowns in the matrix 
equation. In addition, the n2 elements of the matrix must be stored. For a three 
dimensional penetrable termination, the number of unknowns can become so large 

that the solution of the matrix equation is infeasible in terms of both memory storage 

and computation time. 
A frequency domain finite element method may be more efficient than integral 

equation methods because the resulting matrices are sparse. However, the compu- 
tation time necessary to solve the matrix equation is still very expensive for large 
problems. Time domain methods such as FDTD overcomes many of the difficulties 
associated with a frequency domain solution. This method evaluates the solution 
directly in the time domain by stepping the solution in time. Although the solution 
must be obtained for a multiple number of time steps, it is still very efficient since it 
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does not require the solution of a matrix equation. Instead, the field at a given posi- 
tion in space is computed in terms of the field values in neighboring positions at the 
previous time step; therefore, the number of floating point operations is proportional 
to the number of unknowns n. In addition, the memory storage is proportional to n. 

There are several major disadvantages with FDTD: (1) it cannot easily handle 
non-conforming geometries, (2) the solution must be rerun for every incident angle, 
and (3) for pulsed excitations, dispersive materials are difficult to model. At this 
time, research is continuing to improve upon this hybrid method to eliminate these 

disadvantages. 

IV.      Numerical Results 

To test the validity of the hybrid GRE-FDTD method, a two-dimensional steady- 
state time variation code has been written for a parallel-plate waveguide cavity with a 
variety of terminations. We will provide numerical results here for two cavities. The 
first cavity has a planar termination. The second cavity has an additional wedge- 

shaped plug attached to its planar termination. The height of the wedge-shaped plug 
is 2A and its base width is 4A. Both cavities are 30A long with apertures of 9.6A. 
The walls of the cavity and the termination are assumed to be perfectly conducting. 

Region 2 is 4A long while Region 3 is absent in our examples. 
Figure 2 shows the radar cross-section (RCS) patterns of the first cavity using 

the modal-method of moment (Modal-MM) [3] and the hybrid GRE-FDTD method 
for the TE case. The pattern obtained via the former method is used as a reference 

solution. 1 From Figure 2, the RCS pattern obtained via the hybrid GRE-FDTD 
method agrees very well with the reference solution. 

The RCS patterns of the second cavity is shown in Fig. 3 using the two hybrid 
methods for the TE case. The pattern obtained by the hybrid GRE-FDTD method 

is again in good agreement with the reference pattern of the modal-MM, except for 6 
greater than 54°. The difference between the two patterns at these large angles could 
be due to the higher order modes excited by the wedge-plane termination through 
diffraction of fields from its edges and multiple reflections of fields from its surfaces. 
These higher order modes have large modal angles which the second-order Mur [8] 
absorbing boundary condition used in our FDTD scheme does not absorb as well as 
it does the lower order modes with smaller modal angles. If these higher order modes 
are significant, then their non-physical reflections from ST\ back to the termination 

will ultimately affect the fields transmitted through Sri- 

'The contribution to the scattered field from the fields diffracted from the edges of the aperture 
has been removed from the original modal-MM code in [3] for comparison with our results. 
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V.      Summary 

A hybrid ray/FDTD method has been introduced. This method allows for the 
modeling of complex terminations to the order of the FDTD cells. From the numerical 

results, we have shown that this method is very accurate. 

VI.      References 

[1] R.-C. Chou, Reduction of the radar cross section of arbitrarily shaped cavity struc- 

tures. Ph.D. dissertation, University of Illinois, Urbana-Champaign, IL, 1987. 

[2] R. J. Burkholder, High-Frequency asymptotic methods for analyzing the EM scat- 
tering by open-ended waveguide cavities. Ph.D. dissertation, The Ohio State Uni- 
versity, Columbus, OH, 1989. 

[3] C. W. Chuang, P. H. Pathak and R. J. Burkholder, A hybrid asymptotic modal- 
moment method analysis of the EM scattering by 2-D open-ended linearly tapered 

waveguide cavities. The Ohio State University ElectroScience Laboratory Techni- 

cal Report No. 312436-1, prepared for McDonnel Douglas Corporation, St. Louis, 
MO, December, 1988. 

[4] K. S. Yee, "Numerical solution of initial boundary value problems involv- 
ing Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., 
vol. AP-14, pp. 302-307, May 1966. 

[5] A. Taflove and M. E. Brodwin, "Numerical solution of steady-state electromag- 
netic scattering problems using the time-dependent Maxwell's equations," IEEE 

Trans. Microwave Theory Tech., vol. MTT-23, pp. 623-630, August 1975. 

[6] R.-C. Chou, T. T. Chia and R. Lee, "The energy flow inside a waveguide cavity 
using the SBR and GRE methods", presented at the IEEE APS International 

Symposium, URSI Radio Science Meeting and Nuclear EMP Meeting, July 18-25, 
1992, Chicago, IL. 

[7] R. L. Higdon, "Numerical absorbing boundary conditions for the wave equation", 
Math. Comp., vol. 49, no. 179, pp. 65-90, July 1987. 

[8] G. Mur, "Absorbing boundary conditions for the finite-difference approximation 
of the time-domain electromagnetic-field equations", IEEE Trans. Electromagn. 
Compat., vol. EMC-23, pp. 377-382, November 1981. 

334 



[9] P. H. Pathak and R. J. Burkholder, "A reciprocity formulation for the EM scat- 
tering by an obstacle within a large open cavity," to appear in IEEE Trans. 
Microwave Theory Tech. 

termination 

Region 1      lS\\l^\      \   ,'ST2* 

\     ' * V     -' 4 s   , Region 3 

Region 2 

Figure 1: Geometry of cavity with termination. 

»00 

335 



VI 
O 
OS. 

Figure 2: Radar cross-section patterns of parallel-plate cavity with planar PEC ter- 
mination using the hybrid Modal-MM k the hybrid GRE-FDTD methods, a = 9.6A, 
/ = 30A, d = 4A; TE: — Modal-MM, + GRE-FDTD (3 subapertures). 
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Figure 3: Radar cross-section patterns of parallel-plate cavity with a wedge-shaped 
PEC plug termination using the hybrid Modal-MM & the hybrid GRE-FDTD meth- 
ods, a = 9.6A, I = 30A, d = 4A, h = 2A, w = 4A; TE: — Modal-MM, +: GRE-FDTD 
(3 subapertures). 
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Abstract 

As part of an effort to characterize radiation from computer enclosures, the 
resonant behavior of closed and partially closed, finitely-conducting 
structures has been studied using closed-form solutions, FDTD, and 
measurements. Finitely-conducting materials are modeled in FDTD by a 
perfect conductor backed by a one-cell-thick , conducting layer with very 
low conductivity. Lossy seams are modeled by lossy magnetic regions 
near the seams. This paper presents measured and modeled data 
comparisons as well as a discussion of practical considerations such as 
model parameters, geometry, computer running time and measurement 
techniques. 

Introduction 

FDTD has been used to model perfect electric conductors (PEC) and slightly lossy 
dielectric and magnetic materials for some time and has been shown to produce 
satisfactory results. In contrast, FDTD modeling of finitely-conducting metals generally 
estimates much lower loss than would be expected. For instance, one work[l] in which 
an attempt was made to include the finite conductivity of the walls of a ported cavity 
mentioned in passing that "the inclusion of aluminum's conductivity had only a 
negligible effect", and that the conductivity had to be increased 4 orders of magnitude 
before conductivity losses equalled the radiation losses of even a small aperture. 

FDTD does not accurately model losses in realistic conductors for practical applications 
because the skin depth is generally much smaller than the cell size; linear interpolation 
is used in the algorithm, and there may be considerable truncation error, particularly 
when using single precision computation techniques. For example, in the work 
presented here, computer running time and storage constraints mandated the use of a 
cell size of around one-half inch. This cell dimension is considerably larger than the skin 
depth for aluminum, which is less than 3 micrometers at 1 GHz. The standard FDTD 
approach, as defined by Yee, employs an explicit central differencing scheme that retains 
only first-order terms[2]. A direct consequence of this simplification is that field values 
between grid points are determined by linear interpolation. To demonstrate how linear 
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interpolation affects the estimation of loss in a conductor, consider an illuminated metal 
plate represented by a one-cell thick region where the conductivity is equal to the 
conductivity of the metal. If the cell thickness is much greater than the skin depth, 
FDTD will correctly estimate a near-zero field on the unilluminated side of the 
conductor. On the illuminated side, FDTD will calculate a small, non-zero tangential E- 
field on the conductor surface. Intermediate values of E within the cell are interpolated 
linearly, rather than exponentially, which causes an unrealistic estimate of the boundary 
value parameters as seen at the illuminated conductor surface. The resultant error may 
be several orders of magnitude for good conductors. When combined with word-length 
truncation errors, conductivity effects may not be estimated correctly, if at all. 

In an actual conductor, the current density decays exponentially and the skin depth is 
the point at which the current density has decayed to 36.8% of its value at the surface. 
If the curve of current density versus distance is integrated, and then divided by the 
value of the current density at the surface, the resulting value is the skin depth[3]. If the 
current decays linearly, as it will when linear interpolation is used, applying the former 
definition results in a skin depth of at least .632 cell. Applying the latter definition 
results in a skin depth of at least Vi cell. Restating, linear interpolation FDTD programs 
cannot model an a greater than two divided by the cell size in meters, and will lose 
accuracy for values of a approaching that limit 

Solutions to achieving a more accurate estimate of loss in good conductors are: 1) using 
cell sizes much smaller than the skin depth (obviously, not a practical solution), 2) 
employing an exponential interpolation technique at conductor boundaries (an idea 
worth pursuing), 3) retaining some of the second-order, central-difference terms at the 
conductor-dielectric interface (also, worth pursuing) or, 4) using a heuristic approach 
such as the one described in this paper. 

Heuristic Approach to Modeling Realistic Conductors 

In the approach presented here, realistic conductors are represented by an infinitesimal- 
ly-thin perfect electric conductor (PEC) backed by a very-slightly-lossy material one cell 
thick, with the PEC at the location of the conductor boundary. The one-cell thickness 
has proven convenient in this work, although the approach should work equally well 
for greater thicknesses. The lossy material used may be either electric or magnet, or 
combinations of both. 

Using the above approach, losses due to imperfect reflection at a finite-conductor 
boundary are approximated by dissipation in the lossy medium. For modeling good 
conductors, the conductivity of that lossy medium will generally be such that reflection 
from the surface of that medium, as well as refraction, will be negligible. An exception 
to this is when the angle of incidence for a wave is near to or greater than the real part 
of the complex critical angle, although this will not be a problem for most practical 
geometries. It is recognized that some of the dependencies for the lossy material will be 
different than the dependencies for a metal conductor (viz, dependency on frequency, 
polarization, and angle of incidence). However, as indicated by the agreement between 
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measured and modeled data ob- 
tained in this work, those de- 
pendencies do not prevent this 
approximation from providing 
good results over a broad range 
of frequencies. 

To approximate the conductivity 
of the lossy material, consider 
Figure 1, which shows a funda- 
mental mode ray trajectory in- 
side a 2-dimensional square box. 
The objective in selecting the 
conductivity for the lossy materi- 
al is to have the loss incurred by 
propagating through that region 
equal to the loss that would oc- 
cur due to imperfect reflection at 
the real metal boundary, which is 
given by the reflection coefficient 
at the assumed angle of inci- 
dence. For the values presented 
here, the angle of incidence has 
been determined based upon the fundamental mode ray trajectory, as shown in the fig- 
ure. The loss due to propagating in the lossy material is e"*"1, where d is the optical path 
length traveled in the lossy material. An example of these types of calculations are 
given in [4]. Clearly, values of conductivity are dependent upon aspect ratio, the 
thickness of the lossy material, and frequency. 

There are other factors that need to be considered when using this technique relating to 
the way in which FDTD deals with dielectric and magnetic materials. When a dielectric 
material is backed by a PEC, four of the E-field elements in each cell will define the 
PEC, and the remaining eight may be used to define the dielectric. Because elements are 
shared by adjacent cells, there is an average of one Ex, Ev , and Ez field element available 
in each cell to describe the dielectric, except at the edges of the slab. On the PEC, the 
normal component of the E-field terminates and the tangential components vanish. 
However, total E-field values of all three components in the dielectric may be significant 
It should be recognized that the parallel E-field components are required to present a 
true dielectric boundary at the side of the lossy dielectric layer bounded by the original 
dielectric material [5] [6]. 

When using lossy magnetic materials for this approach, the lossy material region will 
be Vi or more cells thick on one or both sides of a PEC, due to the spacial offset between 
the electric and magnetic fields. When using magnetic materials, only H-field 
components parallel to the PEC are used to model the lossy magnetic material, since 
these are sufficient to produce an acceptable magnetic surface 
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Validation 

Comparison of FDTD with closed-form solution. A rectangular PEC cavity of 31 x 21 
x 11 cm was modeled in FDTD using 1 cm3 cells, and was lined with a one-cell-thick, 
lossy dielectric layer. The wall material of the cavity to be modeled was selected to have 
a conductivity of 9 x 106 seimens/meter (lead). This very lossy conductor was selected 
in order to reduce the number of time steps required to accurately evaluate the cavity 
Q. The modeled cavity was excited with a 1 element E-field placed vertically on the 
31x21 cm side, one cell away from a corner. The E-field was monitored at the opposite 
end of the cavity at the center of the 21x11 cm side. The theoretical TE101 frequency of 
this cavity is 862.16 mHz, with a theoretical Q of 9917. It should be noted that the 
theoretical value of Q was derived using the assumption that the field distribution in the 
finitely-conducting cavity is identical to the field distribution in a lossless cavity. In the 
case of a lead cavity, this assumption may be only marginally true. 

Using a ray path expansion of the TE10I mode for a cavity[7], the wave reflects from the 
mid points of the 31 x 21 cm cavity sides, and has parallel polarization. An average 
angle of incidence of 45° was assumed to determine the path length in the lossy 
dielectric as described above. These calculations yielded a a of 1.935xl0"5 S/m for the 
lossy dielectric. The FDTD model was run on a VAXstation 3540 using 3 parallel 
processors and executed for 1,050,000 time steps in 61 hours of CPU time. The FFT of 
the time domain response revealed a TE101 frequency of 861.7 MHz and a Q of 11020. 

Thus, the FDTD estimate of the TE101 mode resonance was in error by .46 MHz. or .053% 
in frequency, and 11% in the Q.  Results for other modes were similar. 

Comparison of FDTD with measured data. The theoretical cavity, as modeled above, 
has continuous conductivity through all of the seams comprising the cavity. However, 
practical enclosures, which are the topic of interest in this study, typically have seams 
that are not bonded, a factor that significantly affects Q. To determine whether the 
approach for modeling real conductors described here could be modified to account for 
lossy seams, an effort was undertaken to measure and model the resonances of a real 
enclosure with lossy seams. 

That cavity was constructed by lining the inside of a commercially-produced box with 
six copper plates that were held to the inside of the box and each other with screws 
spaced several inches apart A % inch overlap was used on eight of the edges, while 
the other four were butted; none of these edges were brazed. This produced a rather 
lossy cavity in which the losses of the seams were unknown and probably varied 
considerably from seam to seam, and along the length of the seams. It was intended to 
be typical of a practical equipment enclosure rather than a high-Q microwave cavity. 
The internal dimensions of this enclosure are 42.4x13x32.4 cm. 

Measured resonance data were collected using a Hewlett-Packard 8753 network analyzer. 
The signal was radiated within the enclosure by a 1.08 mm long monopole, which was 
located in the center of the 42.4x13 cm side, and an identical receiving antenna was on 
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the facing side. The measured result was received signal strength as a function of 
frequency for a constant transmitted signal strength. 

This cavity was modeled in FDTD by a 40x30x12 cell PEC cavity with cell dimensions 
slightly over 1 cm. The cavity was lined with a 1 cell thick dielectric to model the 
conductivity loss of the copper. The loss associated with the cavity seams was modeled 
with a 1 x 1 cell block of lossy magnetic material running the length of the seams with 
a Vz cell spacing from the PEC. It should be noted that the dielectric material was 
present in the same space where the magnetic material was used, and conductivity 
losses from both materials were present in these regions. 

The modeled signal was injected into the cavity by a one-cell E-field at the cell location 
corresponding to the transmitting antenna location in the actual box. An infinitesimally- 
thin PEC wire was used to model the receive antenna. The modeled E field was 
monitored at the co-linear E-field element at the end of the receive antenna. The ray 
optics method was used to calculate a value of 8.68xl0"6 for the dielectric. The value of 
magnetic conductivity was adjusted by trial and error to give a TEU0 Q value close to 
that measured in the actual box. The FDTD data were normalized by the gaussian pulse 
as actually propagated by the one-element E field. A normalization for the receive 
antenna in the model was not included. Two FDTD model runs were made for this 
configuration: one using a lossy dielectric layer, and the other using a lossy magnetic 
layer.  The results for these two cases were nearly identical. 

Plots of measured and modeled data are shown in Figure 2. As can be seen from the 
figure, the measured and modeled TE110 and TE1U Q's are well matched. In most cases, 
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the remaining Q's are lower in the FDTD model than in the measured box. It is possible 
that improved modeling of the receive antenna and its loading effects on the cavity 
response would improve the modeled Q's. It is probable however that much of the 
difference between the modeled and measured Q's is the result of the nonuniformity of 
the effective conductivity in the seams. Four hours of CPU time were required to 
generate the modeled data of Figure 2. 
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ABSTRACT 

This study investigates a simple method for reducing the run-times of 
Finite-Difference Time-Domain (FDTD) models that are larger than a computer's 
main memory.  To operate on the entire model, portions of the problem must be 
swapped (paged) to and from disk. This method reduces the amount of swapping 
(input/output) that is required by advancing time more than just one step for 
certain portions of the problem in main memory. This time advance can take 
place in one, two, or three dimensions, with corresponding software control 
complexity.   Actual results are obtained and compared to in-core, single step 
swapping, and predicted times. Whereas a standard swapping technique with 
single step time advance can increase run-time by a factor of ten, a one- 
dimensional time advance technique applied to the same problem increases run- 
time by a factor of less than 1.1. 

I. Study Definition 

The objective of this study was to speed up FDTD run-times for large 
problems where the problem space is larger than the core memory of the computer 
solving the problem. This paper presents a method for slicing up an FDTD 
problem and operating on these slices in such a way that time is advanced for 
more than just a single time step while the slices reside in memory. This method 
is referred to as a time advance or slicing method. Results are based on 
predictions and FDTD code run-time measurements.  For the purposes of this 
study, run-time is defined as total clock time to run a FDTD problem for a 
specified number of time steps, Input/Output (I/O) time is the clock time spent 
reading and/or writing to disk for the same problem, and calculation time is that 
part of run-time that is not I/O time. 
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II. Problem Background 

The memory storage required for the FDTD method scales on the order of 
the cube of the electrical length (in terms of the shortest wavelength present in 
the problem) of the object to be modeled. For electrically large problems, one 
cannot fit the data arrays of the entire problem in main memory and must resort 
to storing some portion of them on mass storage. In the FDTD method, one might 
typically swap into main memory a portion of the problem that is on disk, advance 
its fields by a time step, then swap it back out and bring in the next portionfl]. 
The time to move data to and from disk, however, is often much more than that 
required for the computations alone. A FDTD problem which must swap to disk 
may run from 5-10 times longer than one that does not. 

The basis of the time advance algorithm is the computational concept called 
principle of locality[2]. The principle of locality simply states that all programs 
tend to use certain portions of memory more than others.  Computer architects 
attempt to take advantage of this principle by designing computers with a 
hierarchy of memory.  Small amounts of fast (expensive) memory are available for 
data the program requires the most, and large amounts of slower (cheap) memory 
are available for the rest. This hierarchy runs the spectrum from CPU registers 
and high-speed cache to hard disk and tape archive. The time advance algorithm 
takes advantage of the principle of locality and the hierarchy of memory by 
advancing FDTD several time steps while data is in main memory, before 
swapping it to disk. 

HI. The Method 

As stated earlier, the time advance method iterates on cell data residing in 
core for more than just one time step before writing the data to disk.  This method 
makes use of the fact that information in the FDTD method travels no faster than 
one cell per time step and that the speed of light is the information speed divided 
by root 3. Since we retreat from the boundary at the information speed, no 
information is lost, and causality is not violated. This comes about from the 
stability criterion which states (for square cells) [3]: 

cAtsA^ (1) 

This equation is used to select At for computations. It also shows that for any 
time step At, light can, at most, travel only lA/"3 of a cell. Therefore, by retreating 
by a cell every time step, the time boundary moves faster than the speed of light. 
This, however, is not enough. The coupled, explicit E and H equations show that 
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numerical information can travel one-half 
cell every one-half time step. Fortunately, 
by retreating one-half cell every one-half 
time step, the method keeps pace with 
this numerical speed as well. 

CORE MEMORY DISK 
/■-r-rv-JT' 

till... 
Figure 1 

DISK CORE MEMORY DISK 

Initially, as much of the mesh is 
read into core as is possible. Note that 
the problem extent is truncated in only 
one dimension, whereas the other two are 
preserved.  That is, if one wishes to slice 
in z, the x and y dimensions of the 
problem are the same as the x and y 
dimensions of the data in core.  Since we 
are starting with H at time step .5 and E 
at time step 0, we update all of the E 
values.  This brings them all to time step 
1. All interior H's are updated to 1.5. 
Next we retreat in the z direction one cell 
and all E's except the first layer on the 
slice boundary are updated. All H's 
interior to these updated E's are updated. 
We retreat again in the z direction and 
calculate as before. This continues until 
we have retreated back to the z=0 
boundary. What is left is a staircase in 
time of all the slices, as shown in 
Figure 1.   (Only E field times are shown.) 
If n is the number of slices, the first slice 
of E is at time step 1 and the last slice of 
E is at time step n.  (In the case of a Mur 
radiation boundary at z=0, the last 2 
slices are at time step n-1 since the 
boundary cannot advance ahead of the 
slice of cells interior to it.[4]) The z=0 
slice is written to disk and the z=n+l slice 
is read from the disk (Figure 2). Even though the slice written is on the opposite 
side as the slice read, with some extra coding we contain and keep track of all of 
the slices in a single data structure that uses the entire core.  The read slice is 
updated to time step one.  The next slice (at time step one) is advanced to time 
step two. This continues until the last slice is advanced to time step n (Figure 3). 
This slice is written to disk and a new slice is read (Figure 4).  The new slice is 
update to 1, the next to 2, the next to 3, ... and the last to n.  Therefore, as the 
problem moves though this window of core slice by slice, it enters at time step 0 
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and exits at time step n. When the end of 
the problem is reached, the entire 
problem in core is brought to time step n. 
Therefore with one pass through the 
entire mesh, the method requires less 
than one full read and one full write of 
the mesh to bring the problem to time 
step n.  The process is started again, this 
time progressing in the reverse direction 
(because we already have the last core- 
load of the problem in memory). Note 
that during this entire process, every slice 
is within one time step of its neighbors. 

Contrast to this is the traditional 
out-of-core technique which reads in a 
core-load of the problem, updates the core 
part by one time step, writes this to disk 
and then reads in the next core-load.   As 
the problem passes though this window of 
core, it enters at one time step and exits 
at the next time step [1]. This new time 
advance method advances time a factor of 
n-1 more than the traditional technique 
for each pass of the problem through core. 
This manifests itself as a n-1 factor of 
reduction of the amount of Input/Output 
(I/O) to and from disk. This method has 
no substantial effect on the actual 
computation time, but can reduce the I/O 
time significantly, perhaps to the point 
that it is cheaper to run some problems 
out-of-core on existing machines, rather 
than purchase larger computers to 
perform the computation. 

DISK CORE MEMORY DISK 

LU-k'.... 

Figure 3 

DISK CORE MEMORY DISK 

Figure 4 

IV. Results 

A prediction code was written to estimate the run times of very large out-of- 
core problems using the one-dimensional and two-dimensional time advance 
methods. The code was developed to predict how much time savings could be 
achieved by implementing the time advance methods. The code uses the computer 
FLOPS (Floating Point Operations per Second) rating, number of cells, number of 

347 



time steps desired, and number of 
operations per cell to predict the 
computation time.  It then employs the 
mesh dimensions and core memory size to 
determine how many slices can fit into 
the core memory and thus how many time 
steps the mesh can be advanced for one 
mesh pass.   Once the number of mesh 
passes for solving the problem is 
determined, the code calculates the I/O 
time by considering the computer I/O 
speed (obtained experimentally) and 
number of bytes to swap between the 
hard disk and core memory.  The 
prediction time code also makes coarse 
run-time estimates for massively parallel 
computers, but the accuracy of this 
feature has not been verified. 

Constant Memory Times 
45 Megabytes RAM 

Seconds per Time-Step 

* Time Advance       + Swap 

«■Predicted Advance * All In Core 

100        150        200        250        300 

Linear Cell Dimension of Cubic Problem 

Figure 5 

The results using the standard swap method, the one-dimensional time 
advance method, and the prediction time advance code are shown in Figure 5 and 
Figure 6. The problem tested was an existing Transverse Electric (TE) perfectly 
conducting cylinder problem (a brief note on this later). The two dimensions are 
the orthogonal radii of the cylinder (x and y), the third dimension being the axis 
(z) of the cylinder. The core memory size was simulated by controlling the number 
of slices in main memory. All times were obtained on Sun SPARC II and SPARC 
IPX workstations (each with 64-96 Mbytes of RAM) storing data on external SCSI 
hard drives. All cases were compiled with the "-fast" option of the Sun FORTRAN 
compiler and real numbers were calculated with single precision.  Calculated field 
results for the various methods for each problem size agreed to within the limits of 
the accuracy of the computer.  Some of the variances in the data may be 
attributable to times obtained on different machines. 

In Figure 5, the core memory size is held constant while the mesh size is 
increased. The last five sets of points show predicted times, slice times and swap 
times. (Corresponding number of slices is 100, 56, 36, 25, 18).  The swap times 
are consistently an order of magnitude greater that the slice times for this range 
of problem size.  The accuracy of the predictions is revealed in this figure, as well. 
Surprisingly, the first slice point and the last in-core point (150 cells) nearly 
coincide.  (The slice time is about 11% greater, showing that, for this case, the I/O 
time has been reduced from a dominant run-time contributor to a relatively minor 
one).  The swap technique was not optimized, otherwise its curve would eventually 
join the slice/in-core curve at the lower mesh sizes.  (Our results appear to show 
this downward trend.) Although not tested, we would expect the in-core curve to 
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Figure 6 

continue on below the slice curve as the 
mesh size increases. We would also 
expect the slicing curve to eventually join 
to the swap curve at the large mesh slices 
(i.e., the number of slices in the core 
approaches one). 

In Figure 6, the mesh size is held 
constant while the core memory (slices) is 
increased.  Corresponding memory sizes 
are 5, 10, 20, 40, 60, and 80 Mbytes. This 
results in a gradual speedup since more 
slices can be stored in main memory. 
Note that, as the number of slices 
approaches one, the slice technique 
reduces to a standard swap technique. 
But just sixteen slices offers a factor of 
ten reduction in run-time. The upward 
trend toward larger memory sizes was unexpected (note the predictions) and 
affects both cases. (We suspect that this may be due to the approaching physical 
main memory limit on our workstations. As the limit is approached, the operating 
system may start swapping out pages of memory and increasing run-times, 
something we were specifically trying to avoid!) The greatest speedup is sixteen 
times faster than the standard swapping method (the fifth point in Figure 6). In 
this case a user would wait roughly ten hours for a wave to travel across the 
length of the mesh as opposed to more than one week days using standard 
swapping. 

The time advance method works almost as if the hard disk were merely an 
extension of the main memory. In many cases, the I/O time for out of core 
problems is much less than the computation time.  (NOTE: these results 
underestimate the total run-time of a general problem since the problem solved a 
pure TE cylinder inscribed in the problem space. The interior fields are in free 
space, there is no axial E field component, the walls are perfectly conducting, and 
the fields are updated in the inside only. Therefore, calculation time is lower than 
in a full featured FDTD code. However, the amount of I/O time is the same. This 
means that the percentage increase in total time for a slice versus in-core 
technique will be reduced from that reported here. This is the important result.) 

V. Future Work 

As problems grow much larger than core memory, the one dimensional time 
advance technique becomes more ineffective at reducing the run-time over 
swapping, since fewer slices can be accommodated and I/O time savings decrease. 
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Current work involves two and three dimensional time advance techniques, which 
advance time in two and three dimensions respectively. These techniques allow 
for a greater number of time advances for a given amount of memory (for the 
three dimensional case, the number of advances increases as the cube root of 
memory size, i.e. it is problem size and geometry independent). Preliminary 
results show that although they live up to predictions, usefulness may be an issue. 
Computers can typically be obtained with enough RAM to keep them busy for 
hours on a full core FDTD problem. Just the computations alone for problems 
that are much greater than the core memory size tend to push run-times beyond 
the reasonable range.  The algorithms themselves are also much more 
complicated.  Therefore, it may be possible that a need for these higher dimension 
time advance algorithms (especially the 3D method) may never materialize. 

Work is also progressing on implementing this method on an out-of-core 
large object FDTD solver for a parallel supercomputer.  Given the fact that 
massively parallel supercomputers tend to have a higher ratio of (reported) 
computational power to I/O bandwidth than workstations, as well as less memory 
per CPU, we believe that this method will be useful for computations on these 
architectures.  The 1-D method appears to map well to mesh connected 
architectures , while the 2-D method seems best suited for a linearly connected 
architecture. With these geometries, the nodes are uniformly load balanced. 

The simplicity of this method suggests that it might be easily applied to other 
computational modeling problems besides FDTD, especially those which are 
traditional finite-difference type problems (particle-in-cell, seismic modeling, heat 
transfer in solids, etc). 

VI.  Conclusions 

This paper demonstrates that a one-dimensional time advance technique for 
FDTD problem can reduce run-times for out-of-core problems by a factor of three 
(with four slices) to ten (with more than eighteen slices) depending on problem 
size and computer resources. Run-times for out-of-core problems increase as little 
as 10% over the same in core problem. 
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Abstract 

As simulations become more geometrically complex, defining a grid around the individual 
surfaces becomes a problem. Complex geometries can be gridded using either a structured 
or unstructured approach. While creating an unstructured grid is relatively simple, there is 
a large increase in both memory storage and computing efficiency compared to the 
structured approach. Structured grids tend to be more difficult to generate for either 
complex geometries or multiple bodies and can have problems with monotonicity in the 
grid mapping. One way to alleviate this problem is to use the Chimera approach. With 
Chimera, complex geometries are broken up into simpler geometries and overlapping or 
overset grids are generated with information being interpolated from one grid to another. 
Overset grids are grids which lie completely within another grid. These underlying grids 
must have a hole cut in the grid so that information may be interpolated from the overset 
grid back to the underlying grid. 

The application of Chimera techniques to the problem of solving Maxwell's Equations 
using a finite difference-time domain method is investigated. The scheme used is the Ni 
scheme, first proposed by Ron Ho Ni as a finite volume scheme but which can also be 
viewed as a finite difference scheme ä la Lax-Wendroff. Errors caused by applying 
Chimera to the situation of waves propagating on two rectangular meshes with the smaller 
of the two overset on the larger and having translational and rotational freedom are 
considered. The convergence of the scheme is found to be second order with grid 
refinement if the analytical (exact theoretical) function and its first derivative are 
continuous. If the first derivative of the analytical function is not continuous, it is found 
that second order accuracy is not insured. The next case of a scatterer is presented using 
Chimera and comparing to a single uniform grid. All results are for the case of 2-D 
transverse magnetic (TM) waves. 

Introduction 

Recently, CFD methods are being increasingly applied to solving Maxwell's Equations 
with complex geometries in which a uniform Cartesian mesh becomes undesirable [i.e. 
1,2]. One often wishes to use body-fitted coordinate systems which is fine if there is a 
single body. For multiple bodies, the grids must either be manipulated so that the two 
grids match or data must be interpolated back and forth on overset grids (Chimera). The 

• Funds for the support of this study have been allocated by the NASA-Ames Research Center, Moffett 
Field, California, under Interchange No. NCA2-572. 
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issues behind applying this method to Maxwell's Equations has recently been introduced 
for both the Yee scheme[3] by K. S. Yee, et. al. [4] and with a finite-volume / finite- 
difference scheme (the Ni Scheme [5,6]) by the present authors[7]. The effect that overset 
grids has on the propagation of electromagnetic waves will be discussed with a simple 
application. 

The first problem investigated here consists of two rectangular grids, one overset on the 
other, and a TM wave passing through the domain. The computational plane is divided 
into a total field zone (TFZ) and a scattered field zone (SFZ). The TFZ formulation was 
chosen for the comparison of Chimera results. The second problem is a comparison of the 
scattering of a circular cylinder using a body fitted mesh around the cylinder and a 
Cartesian mesh in the far field. 

Maxwell's Equations: 

Maxwell's equations are given by: 

Et = V x H - J,     Ht = - V x E     and      V • E = p,       V • H = 0 

with the normalization of jxo=EO=c=l. and B = R)H and D = eoE. For the TM case the 
vectors are E = (0,0,EZ) and H = (Hx,Hy,0) and in free space J=0 and p=0. The latter 
situation allows the two divergence conditions to be derived from the time dependent 
equations. 

Computational Scheme 

The scheme developed by Ni [5], solves the derivatives inside cells surrounded by four 
nodes and then distributes those values to the nodes. While Ni developed this scheme as a 
finite volume scheme, it is identical to solving an explicit box scheme, with higher 
derivatives summed up in the method of Lax-Wendroff[6]. 

£»+> = £» + AtidEldt)* + At2/2(d2E/dt2)n. +... 

The derivatives in a cell are obtained by assuming that the nodal functions vary linearly 
along the sides and that the derivatives are constant in the cells. Thus: 

ll{dE/dx)dxdy~(dE/dx)Jdxdy /    Xc    / 

\\{dEldy)dxdy = {dEldy)c\\dxdy 
E varies linearly along 
the side of the cell 
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and applying the divergence theorem, one obtains: 

jj{dE/9x)dxdy = j{E,0)-n   dl 

Jl(dE/dy)dxdy = j{0,E)-n   dl 

{dE/dx\=j(E,0)-n   dl/ljdxdy 

{dE/dy)c =j(0,E)-n   dl/jj dxdy 

The line integrals around the perimeter of the cell are obtained by determining the outward 
normal of the control cell sides and using the trapezoidal rule to evaluate the line integrals. 
Now the first derivatives are distributed to the nodes based on the fraction of the area of 
the control volume intersecting the area of the control cell (see fig. 1). Thus: 

Exj,k = ~7{Exceui + ExceU2 + ExcelB + ExcelM). 

To cancel the second time derivative contribution, the first time derivatives are differenced 
in the same manner as before and is distributed to the node surrounded by the first time 
derivatives. Thus, for example for the E field: 

'dEj\ JdfP) JOT) »        (d*E*) _f(^Hl     ({M'fal) 
dt 

dHy 

dx 

dHz 

dy 
d2Ez 

dt2 dx dy 
Jn      \ Jn 

where the subscript c indicates that the quantity is evaluated at the center of a cell as 
mentioned previously, and the subscript n indicated that the quantity is evaluated at the 
nodes surrounded by the four centers of the neighboring cells. 

In generalized coordinates the cells are mapped onto local coordinates of the cell volume 
and the derivatives are determined using the chain rule; 

and then distributed to the nodes as before. The stability of the scheme is found by Ni to 
have a CFL condition of At = min (Ax.Ay) [5]. 

j-U+1 

j-U 

control cell centered at j-1/2, k+1/2 
(cell 2) 

control volume 
for node j,k 

Figure 1: Distribution of derivatives from the center of the control cell to the surrounding 
nodes. 

354 



Chimera 

Chimera typically consists of two or more grids either overlapping or one grid wholly on 
another[8]. In the latter case, a hole must be cut in the primary grid to allow the 
information to travel between both grids[8]. The interpolation used was second order and 
achieved by assuming a bilinear variation of the values in a given cell volume. Thus, for a 
given field variable, it is assumed that in the cell: 

with the four field values at the nodal points of the cell, Fi(£,T|), forming a unit square. It 
is sometimes necessary to determine the precise values of % and T). In this case %, t\ are 
found using Newton's method in two dimensions (with the initial guess in the middle of 
the cell: £,T| = 0.5,0.5) which becomes: 

where 

r,=r+(^.-^.ir))[fJ+(i'l^-y(r.»r))lf 

r1=ir+(*,„., -*(«".*■))(§ J+(w< -r(«".»r)J 

\dr\l3x.   dn/dy)   Det(-dy/d^    dx/d£ J- 

This method usually converges in one or two iterations. 

The first set of test cases for applying Chimera were simple ones consisting of two grids 
overset on top of one another with no scatterer (figure 2a). The reason that these test cases 
were chosen was to provide the simplest possible case in which a wave is propagated to see 
what the effect of the interfaces is. 

The first test case consisted of two rectangular grids with a lower (primary) grid of 31x31 
points having a hole that was 9x9 points and a secondary, overset grid with 11x11 points. 
The errors in propagation were determined for the two grids and the norm 1 errors were 
recorded as both grids were refined by a factor of two. The error involved in both the 
discretization and the interpolation is formally second order accurate by Taylor series 
expansions. In verifying this, the three tests from the second test case were rerun 
calculating the norm 1 error each time as the grid was refined by a factor of two. The norm 
1 error is defined as: 

Wlerr=—Z|";;-*W| 
N  ij 

A plot of In (err) verses In (A) where A = Axi = Ay i will result in a slope that is roughly 
equal to the order of accuracy. 
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At first, the wave (sin k(x-t)) was propagated halfway into the domain and the slopes were 
determined. The results showed a wide range of slopes ranging from just over one to 
around two. If the wave was allowed to pass clear through the field, however, the slopes 
were consistently around two (with the exception of the 45° case on grid two which has a 
slope around 1.2 for the Hx field). These results were confusing as the Taylor series 
expansions showed that the convergence should be second order regardless of how far in 
the wave had propagated. It was believed that the culprit might be the fact that while the 
incoming wave was continuous everywhere, its first derivative was discontinuous at the 
leading edge (i.e. E = Eosin k(x-t) if x<t and E = 0 if x>t). To check this, the incoming 
wave was given a bias so that both the function and the first derivative would be 
continuous everywhere (i.e. E = [EQCOS k(x-t) - 1] if x<t and E = 0 if x>t). This wave was 
then allowed to propagate halfway into the domain and indeed the slopes all showed that 
the solution was converging quadratically (see figure 3). 

Based on these results we ran the case of the circular cylinder with a body-fitted mesh in a 
uniform Cartesian grid and compared the solution to the same case with a single body fitted 
mesh. In both cases, the cylinder had a diameter of 1. and 150 points around the body. 
The initial Ar was calculated from .5*sin(A9) (~ 0.021) and was stretched by 2% in the 
radial direction. The single mesh case had 75 points in the radial direction and its outer 
boundary was just beyond a radius of 2 from the center of the cylinder. The total field zone 
(TFZ) was located seven points from the body. The Chimera test had the same parameters 
for the body fitted mesh but only 6 points in the radial direction (with the seventh being 
interpolated from the Cartesian mesh) and the TFZ was on the Cartesian mesh more than 20 
points from the body. The primary grid in the Chimera run had 191 x 191 points in a 
domain of ±2 in both X and Y. This roughly corresponds to the 75 points in the radial 
direction in the previous case and gives a CFL condition on the Cartesian grid of = 0.995. 
All points on the lower mesh with a radius less than the 4th radial point were initially 
blanked out but a few were added back in based on the number and position of nodes 
around them. The surface current and scattered field contour plots are given in figures 4 
and 5 respectively. Both cases match well with the exact solution of the surface current. 
Looking at the contour plots it is difficult to tell where the Chimera overlap is. 

Conclusions 

These preliminary results show that application of Chimera to solving Maxwell's Equations 
is promising. A second order interpolation seems to be enough to ensure second order 
convergence, and even when there is excess error from a discontinuous derivative in the 
wave front, that error tends to propagate out of the domain. The solution of the cylindrical 
scatterer shows that good results can be obtained without too much effort;   however, 
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errors involved with the interpolation coupled with small CFL conditions, grid stretching or 
large difference in CFL numbers between grids still need to be examined more thoroughly. 

Acknowledgments: The authors would like to acknowledge the help of the late Joseph L. 
Steger, whose discussions and insight into the workings of Chimera and grid generation 
made the work so much easier. 
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Figure 2: (a) Mesh for wave passing through two grids, (b) Cylindrical mesh overset 
on a Cartesian mesh for the circular scatterer. 
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HX field, Norm 1 error vs. Grid Refinement 
(Biased E.H fields: Prop. 1/2 thru domain) 

HY field, Norm 1 error vs. Grid Refinement 
(Biased E.H fields: Prop. 1/2 thru domain) 
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Figure 3: Convergence plots for a (cosine - 1) wave when passed half-way into the 
domain. 

Figure 4: Surface current of a circular cylinder (diameter = 1) with a incident plane wave 
with wavelength = n / 7. 
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Figure 5: Scattered field contours from the cylinder: (a), (b), (c) are Hx field, HV field, 
and Ez field, single grid; (d), (e), (f) are H* field, HY field, and Ez field, 
Chimera; respectively. 
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ABSTRACT 

The use of finite-difference methods to analyze the aerodynamic efficiency and observability of two- 
dimensional configurations is described and several examples are presented to demonstrate the capability of these 
numerical analysis techniques. 

INTRODUCTION 

Since the early days of aviation, shaping for good aerodynamic characteristics has been an integral part of 
aircraft design. However, with the introduction of aircraft such as the F-117A and the B-2, it is clear that low 
observability is also rapidly becoming an important criterion in the design of new aircraft Thus, today the designer 
is not only faced with shaping for maximum aerodynamic efficiency but also with shaping for low radar cross 
section (RCS) which is most influenced by the shape of the aircraft. This type of multidisciplinary design requires 
accurate analysis of the aerodynamic and RCS characteristics of the entire aircraft In this paper, the use of finite- 
difference methods to analyze the aerodynamic and RCS characteristics of two-dimensional configurations is 
described. The RCS of a configuration is determined from the Computational Electromagnetics (CEM) solution of 
the time-domain Maxwell's equations while its lift and drag are found from the Computational Fluid Dynamics 
(CFD) solution of the full-potential equations. The two sets of governing equations are transformed to generalized 
curvilinear coordinates and solved on body-conforming grids using proven finite-difference methods. The resulting 
RCS and lift/drag characteristics determine the observability and aerodynamic efficiency of a given configuration. A 
selection between several different configurations can then be made or the shape of the configuration can be modified 
accordingly to obtain the desired aerodynamic and RCS characteristics. The aerodynamic and RCS analysis methods 
described in the following sections provide the basic elements of a multidisciplinary design technique for 
aerodynamic configurations being developed at UC Davis. 

AERODYNAMIC ANALYSIS 

The aerodynamic analysis is based on the finite-difference solution of the inviscid, irrotaüonal, full-potential 
equations. The full-potential formulation is chosen over the more general Euler formulation because the full- 
potential equations give accurate prediction of wave drag at low transonic Mach number [1] and, more importantly, 
methods based on the full-potential equations are much faster in terms of CPU time required to obtain a fully 
converged solution than methods based on the Euler equations [2]. Numerous numerical methods have been 
developed for solving the full-potential equations. Since these methods are described extensively in the literature, 
only a general description of one of the methods is presented here. 

In two dimensions, the full-potential equations in Cartesian coordinates can be written in conservation 
form: 

(PMX    + (P(t>y)y = 0 (1) 

pJl-I^-MV + v2-!)]^ (2) 

* Research Assistant 
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where 
u = <t>*     and     v = < 

Here $ is the velocity potential, p is the fluid density, u and v are the respective x and y velocity components, and y 
is the specific heat ratio. In this formulation, the density and the velocity components are nondimensionalized by 
the freestream values. Equations (1) and (2) are solved subject to the tangency condition <t>n = 0 at the body. In the 
present algorithm, Eqs. (1) and (2) are transformed to the generalized curvilinear coordinate system and discretized 
using second-order accurate central differences. The resulting system of equations is solved iteratively using the 
conventional successive-line-over-relaxation (SLOR) method [3]. Artificial viscosity is added in the supersonic 
region by upwinding the density as suggested by Hoist and Ballhaus [4]. The pressure distribution across the 
aerodynamic configuration is computed using the isentropic-flow equations. The lift and drag are calculated by 
integrating the surface pressure. 

RCS ANALYSIS 

The RCS analysis is based on the time-domain solution of the Maxwell's equations obtained using the Lax- 
Wendroff scheme which was developed for CFD and is now being applied to CEM [5, 6, 7]. The time-domain 
Maxwell's equations governing the propagation of electromagnetic wave in free space are: 

1. Gauss' electric law: 
2. Gauss' magnetic law: 

3. Ampere's law: 

4. Faraday's law: 

VE = 0 

VH = 0 

E„E!-VxH = 0 

HoH, + V x E = 0 

(3) 

(4) 

(5) 
(6) 

where E and H are the electric and magnetic field intensities, respectively, and Eo and \lo are the respective 
permittivity and permeability coefficients in free space. For the purpose of simulating electromagnetic scattering, 
the last two equations representing Ampere's and Faraday's laws are solved. These two equations are transformed to 
the generalized curvilinear coordinate system and solved on body-conforming grids. 

In two dimensions, the Maxwell's equations decouple into the transverse-magnetic (TM) and transverse- 
electric (TE) modes. In this paper only the TM mode is considered. The corresponding Maxwell's equations in 
Cartesian coordinates can be written in conservation form: 

where 

Q = 

Q.+ Fx + G, = 0 

£„EZ' " -Hy" '  Hx" 

HoH* F = 0 G = Er 

HoHyJ L -Ez J .   0   - 

<7) 

Equation (7) comprises a system of hyperbolic equations which can be marched in time. As a result of the 
transformation from the Cartesian coordinate system to the generalized curvilinear coordinate system where 
% = £(x, y) and Ti = T|(x, y), Eq. (7) takes the following form: 

where 

Q.i 

Q, + F$ + G,, = 0 

EoE2" 

UoH" 

HoH". 

F = I 
J 

G=l 
J 

il)H
,,-r|xHy" 

(8) 

Here J = !;*% - ^ytl» is the Jacobian of the coordinate transformation.  The vectors F and G in Eq. [8] can be 
expressed as functions of Q: 
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where 

F = AQ 
G = BQ 

(9) 
(10) 

0    *L 
Ho 

,h.~ 
Ho 0   Hz. 

Ho 
-Ik 

Ho 

^    0 
to 

0 and          B = 3i    o 
6o 

0 

Si     0 
to 

0 
-Hi.    0 

.     to 
0 

Equation (8) is solved numerically using the Lax-Wendroff scheme [8]. This explicit scheme is 
computationally efficient and is generally less dispersive than implicit schemes. In addition, it is easily extendable 
to multidimensions. 

Lax-Wendroff scheme 

The Lax-Wendroff scheme is an explicit scheme widely used in CFD. It is second-order accurate in both 
time and space. For the one-dimensional form of Eq. (7): 

where 
Q. + P \ =0 

6oEz 

HoHy 
F = AQ = 

' -Hy" 

.  -E\ 
A = 

0 
Ho 

0 

(11) 

the Lax-Wendroff scheme is derived starting from the Taylor series expansion: 

Qi°+1 = Q? + AtQ, + At! Qtt + O (At3) 
2 

Using Eq. (11), the time derivatives in Eq. [12] are replaced with spatial derivatives: 

(12) 

_Qt=_-Fx 

Qa = -F„ = -AQ„ = AFIl, 
(13) 
(14) 

which upon substituting into Eq. (12) give: 

Qr'=Qr-AiF,+Ai!ÄF„ 
2 

(15) 

Finally, the Lax-Wendroff algorithm for the one-dimensional Maxwell's equations is obtained by replacing the 
spatial derivatives in Eq. (15) with central differences: 

Qr'=Qr-AtF»'-F" + 
2Ax 2 

AliX FM-2Fr+FM 
Ax2 (16) 

In one dimension, the Lax-Wendroff scheme is numerically stable for CFL < 1 where CFL is the Courant- 
Friedrichs-Lewy number [8] defined as CFL = CoAt/Ax where Co = l/^poeö" is the wave velocity. In 
multidimensions, Ax is defined as the smallest grid spacing in the computational grid. Therefore, the maximum 
allowable time step for the Lax-Wendroff scheme, and all explicit schemes in general, is directly dependent on the 
resolution of the computational grid. In addition, the Lax-Wendroff scheme is both dissipative and dispersive but 
these numerical errors tend to be small near the stability limit 
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In general, the derivation of the Lax-Wendroff scheme for the one-dimensional Maxwell's equations 
presented here can be extended directly to multidimensions. 

Boundary conditions 

For perfectly-conducting scatterers, the reflecting boundary condition for the electric and magnetic fields at 
the body are: 

ii x E' = 0 (17) 

nrf = 0 (18) 

where n is the unit vector normal to the body, E' is the total electric field, and Hl is the total magnetic field. Here 
the total field represents the sum of the incident and the scattered fields. These boundary conditions are enforced 
using the scattered-field formulation in which the incident field is propagated analytically and only the scattered field 
is computed. 

At the outer boundary, the approximate absorbing boundary condition derived by Mur [9] is imposed to 
allow the scattered wave to propagate out of the computational domain: 

<t>t + Co<^ = 0 (19) 

where 
Ez 

H" 

Hy 

Here T) represents the coordinate normal to the outer boundary. Since this is only an approximation of a perfectly 
absorbing boundary, the outer boundary is placed far away from the scatterer to minimize the effects of any wave 
reflection. 

RESULTS 

Code validation 

The aerodynamic and RCS analysis algorithms were validated using standard test cases. The test case for 
the aerodynamic analysis involves transonic flow over the NACA-0012 airfoil at M» = 0.82 and a = 0° where M„ is 
the freestream Mach number and a is the angle of attack. Figure 1 shows the partial grid used in the calculation. 
The grid is relatively coarse with 140x30 points. Figure 2 shows the computed Mach contours and Fig. 3 shows the 
corresponding pressure coefficient, Cp, on the airfoil surface along with the lift and drag coefficients, CL and CD, of 
the airfoil. These aerodynamic coefficients are defined as: 

Cp = ^lM CL = -2L^ CD = -2V 
YP-M- yP-Mic yPJAic 

where P is the local static pressure, P« is the ambient static pressure, y = 1.4 is the specific heat ratio, c is airfoil 
chord length normalized to 1, L is the lift force per unit width, and D is the drag force per unit width. Both the lift 
and the drag coefficients are in good agreement with the Euler results presented in Ref. [3]. Note that the full- 
potential equations apply to inviscid flow only and, therefore, the computed drag coefficient represents only the wave 
drag generated by shock waves on the airfoil surface. 

The test case for the RCS analysis involves a right-propagating TM plane wave striking a perfectly- 
conducting, infinite circular cylinder. The cylinder has an electrical size of ka = 10 where a is the radius of the 
cylinder and k is the wave number defined as k = 2icA with X representing the nondimensionalized wavelength of the 
incident wave. Figure 4 shows the partial grid used in the calculation. The grid contains 150x75 points with the 
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outer boundary located at 5X from the cylinder surface. The corresponding scattered electric field contours are shown 
in Fig. 5. The computed bistatic RCS of the cylinder is shown in Fig. 6 along with the exact solution [10]. 
Overall, the numerical results are in excellent agreement with the exact solution. 

Effects of airfoil thickness on the aerodynamic efficiency and observability 

The first example of airfoil analysis using the CEM and CFD algorithms involves a simple study of the 
effects of airfoil thickness on the aerodynamic and RCS characteristics of an airfoil. The study was conducted using 
two NACA-OOXX series airfoils where XX represents the ratio of the airfoil maximum thickness to its chord length, 
t/c. The two airfoils, NACA-0012 and NACA-0024 [11], are shown in Fig. 7. For simplicity, the aerodynamic 
analysis was done for nonlifting flow, i.e. a = 0° since the airfoils are symmetrical. Therefore, the only variable 
needed to be examined when comparing the aerodynamic characteristics of the two airfoils is the wave drag. The 
computational grids used in this part of the analysis all contain 140x30 points. The RCS analysis was done for a 
right-propagating TM plane wave with a wavelength of X = 0.25c. Both airfoils are perfect conductors. The 
computational grids used in this part of the analysis all contain 120x60 points with the outer boundary located at 
approximately AX from the airfoil. 

The computed drag coefficients of the two airfoils are shown in Fig. 8 as a function of the freestream Mach 
number. The wave drag of each airfoil is zero or near zero up to the drag-divergent Mach number where it begins to 
increase rapidly due to shock waves forming on the airfoil surface. Figure 8 shows that the drag-divergent Mach 
number increases as the maximum thickness of the airfoil is decreased. Therefore, aircraft employing the thinner 
airfoil can cruise at a higher Mach number without having to overcome a large amount of wave drag than those 
employing the thicker airfoil. 

The computed bistatic RCS of the two airfoils are shown in Fig. 9. As expected, the bistatic RCS in the 
back-scattering region near the 180° viewing angle, which is often the most important threat sector for combat 
aircraft, increases as the maximum thickness of the airfoil is increased. Therefore, together with the result of the 
aerodynamic analysis, it can be concluded that the thinner airfoil has better aerodynamic efficiency and lower 
observability than the thicker airfoil. 

Effects of leading-edge radius on the aerodynamic efficiency and observability 

The second example of airfoil analysis using the CEM and CFD algorithms involves a study of the 
aerodynamic efficiency and observability of the NACA-0012 and NACA-0012-34 airfoils. The two airfoils are 
shown in Fig. 10 [11]. Both airfoils have a maximum thickness of 0.12c. However, the NACA-0012-34 airfoil has 
a leading-edge radius of 0.00391c compared to 0.0158c for the NACA-0012 airfoil and, consequently, the location of 
the maximum thickness of the NACA-0012-34 airfoil is at 0.4c as opposed to 0.3c for the NACA-0012 airfoil. 
Both the aerodynamic and RCS analysis were performed for the same conditions as those described in the previous 
section. 

The computed drag coefficients of the two airfoils are shown in Fig. 11 as a function of the freestream 
Mach number. The NACA-0012-34 airfoil has a slighdy higher drag-divergence Mach number than the NACA-0012 
airfoil. However, the biggest difference between the two airfoils is in their bistatic RCS shown in Fig. 12. The 
bistatic RCS of the NACA-0012-34 airfoil is significantly lower than that of the NACA-0012 airfoil in the back- 
scattering region near the 180° viewing angle. This is expected since the leading edge of the NACA-0012-34 airfoil 
is much smaller than the leading edge of the NACA-0012 airfoil. Note that the bistatic RCS in the forward- 
scattering region near the 07360° viewing angle is the same for both airfoils since they have the same maximum 
thickness. 

CONCLUSION 

The use of finite-difference methods to analyze the aerodynamic efficiency and observability of two- 
dimensional configurations was described. Using these numerical methods, a configuration such as an airfoil can be 
designed to be both aerodynamically efficient and low observable. Example analyses showed that the aerodynamic 
efficiency and observability of an airfoil can be improved by simply reducing its maximum thickness and/or leading- 
edge radius. 

Future plans include improving the computational efficiency of the CFD method by introducing a direct 
solution algorithm to solve the governing equations. The present iterative solution algorithm tends to be 
computationally inefficient at higher Mach numbers when strong shocks occur. In addition, the capabilities of the 
present methods will be expanded by the addition of a numerical optimizer. The optimizer will modify the design 
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variables (i.e. variables which describe the shape of the airfoil) to minimize the objective function (i.e. the 
aerodynamic drag of the airfoil) at given flow conditions while satisfying certain constraints such as RCS < RCSmix 
and t/c > W/c Last but not least, the CFD and CEM methods will be expanded to allow the analysis of three- 
dimensional configurations. These additions to the present analysis methods will significantly reduce the 
computational cost and/or enhance the usefulness of the CFD and CEM methods in the developmental phase of an 
aerodynamic configuration. 

ACKNOWLEDGMENT 

This research is supported by the NASA Ames Research Center under Joint Research Interchange 
Agreement No. NCA2-568. 

REFERENCES 

[I] J. W. Slooff, "Computational Drag Analysis and Minimization; Mission Impossible?" in Aircraft Drag 
Prediction and Reduction, AGARD R-723, Addendum 1,1986. 

[2]        J. Flores, J. Barton, T. Hoist, and T. Pulliam, "Comparison of the Full-Potential and Euler Formulations 
for Computing Transonic Airfoil Flows," NASA TM 85983, June 1984. 

[3] C. Hirsch, Numerical Computation of Internal and External Flows. Vol. 2, Wiley & Sons, 1990, pp. 77- 
81, p. 106. 

[4] T. L. Hoist and W. F. Ballhaus, "Fast Conservative Schemes for the Full Potential Equation Applied to 
Transonic Flows," AIAA Journal. Vol. 17, 1979, pp. 145-152. 

[5]        H. Vinh, "An Investigation of the Numerical Characteristics of Finite-Difference Methods as Applied to the 
Time-Domain Maxwell's Equations," Master's Thesis, University of California, Davis, 1991. 

[6] H. Vinh, H. A. Dwyer, and C. P. van Dam, "Finite-Difference Methods for Computational 
Electromagnetics (CEM)," IEEE Antennas and Propagation Society International Symposium, July 1992, 
Chicago, 1992 Digest, Vol. ni, pp. 1682-1685. 

U]        H. Vinh, H. A. Dwyer, and C. P. van Dam, "Finite-Difference Algorithms for the Time-Domain Maxwell's 
Equations - A Numerical Approach to RCS Analysis," AIAA paper 92-2989, July 1992. 

[8] D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer. 
Hemisphere Publishing, 1984, pp. 101-102, p. 75. 

[9] G. Mur, "Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain 
Electromagnetic-Field Equations," IEEE Transactions on Electromagnetic Compatibility, Vol. EMC-23, 
No. 4, Nov. 1981, pp. 377-382. 

[10]      G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook.  Vol. 1, 
Plenum Press, 1970, p. 212. 

[II] I. H. Abbott and A. E. van Doenhoff, Theory of Wing Sections. Dover, 1959. 

365 



Figure 1: Computational grid 
for the NACA-0012 airfoil. 

Figure 4: Computational grid 
for the circular cylinder (ka = 10). 

Figure 2: Mach contours 
of the NACA-0012 airfoil. 

Figure 5: Scattered Ez contours 
of the circular cylinder (ka = 10). 
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Figure 3: Cp distribution 
on the NACA-0012 airfoil. 
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Figure 6: Bistatic RCS of the 
circular cylinder (ka = 10). 
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Figure 12: Bistatic RCS of the 
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I. Introduction 

In rough surface scattering numerous methods are known dealing with scattering at 
nearly normal incidence. If the incident or scattering angle is near grazing most of the 
known methods fail. The best known theory for calculating the scattered field from 
two-dimensional random rough surfaces with large radii of curvature compared to the 
wavelength is the Kirchhoff approach. This approximation method gives the statistical 
properties of the scattered field in dependence of the statistical properties (standard de- 
viation a, autocorrelation length lc) of the considered rough surface [1]. In this approach 
shadowing effects, which are important near grazing incidence, were taken into account 
by using the well known shadowing functions of Smith [4]. Because measurements in 
this angle range are difficult and have not been published until now the shadow-corrected 
Kirchhoff approach was never validated. One possibility for verification, already investi- 
gated in the case of monostatic scattering [7], is a Monte-Carlo simulation based on the 
PO approach, in which shadowing effects are taken into account using an hidden surface 
algorithm (HSA). 

II. Generation of random rough surfaces 

Fung has already investigated the scattering from a one-dimensional random height dis- 
tribution [2]. In this contribution we calculate the scattering from a rough surface with 
two-dimensional random height distribution. The height coordinates Ck,i at the points 
(k, I) of the discretized random height profiles are given by 

Ck,i = E    E   wtJ uk+w (i) 
.•=-/.    j=-L 

where the [/,• are uncorrelated random variates with Gaussian density function and W:J' 
is a two-dimensional weighting function, to take the correlation of neighbouring values in 
the surface profile into account. The weighting coefficients are then given by 

(2) 
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Figure 1: comparison of the density func- 

tions of surface B 

Figure 2:   comparison of the correlation 

functions of surface B 

Several two-dimensional profiles were generated using these weighting coefficients; surface 
A with standard deviation a = 5 mm (= 1A) and surface B with a = 50 mm (= 10A). The 
sum parameter L has to be chosen depending on the correlation length of the surface (here: 
L = 60). The results for the probability density function and autocorrelation function for 
surface B are given in figs.1-3. Figs. 1 and 2 compare the simulated probability density 
and correlation functions with the ideal ones. In both cases very good agreement can be 
seen. Fig. 3 shows a two-dimensional plot of the surface height. As expected there are 
no edges or discontinuities though only every 10th point was plotted. 

III. Monte-Carlo Simulation of Scattering 

Modelling complex scatterers by flat plates, it is a relatively simple procedure to compute 
the backscattered field with the physical optics (PO) method.   Here we discretized the 

Figure 3: two-dimensional plot of the sur- 
face height 

Figure 4: geometry of vectors for surface 
integrals 
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rough surface, with dimensions 500 x 500 cm2, using about 5000 triangles. The simulation 
frequency was 60 GHz, so that all sides of the triangles were at least 20A long. On each 
triangle the surface current is given by 

7 _ )  '2n x Hi   for illuminated parts . . 
s     1  0 for non-illuminated parts 

where n is the surface unity normal vector and Hi the incident field vector. The scattered 
field far from the induced sources is given by the following integral [5] (according to fig. 4). 

^ jwiiaexpi-jkR) I     pt_(Jt.&R)!iR]expUkr.aR)dS (4) 

Near grazing incidence shadowing plays a dominant role. Removing parts, which are not 
seen by the incident raj' is necessary. This is done using a hidden-surface algorithm. It is 
now possible to calculate the scattered field realization-by-realization, to find the mean 
scattered intensity and its statistical properties. The mean field indicated by < ... > is 
given by 

<E.>=4 ££...- (5) 
and the variance by 

It follows: 

and 

var(£s)   =   < ESTS > -<ES><E]> (6) 

=   </»>-< Es >< El > (7) 
i     JV j      JV _       N 

= jvE^-TTjE^EK..- (8) 
JV i=i JV   i=i        ;=i 

Icok = \<ES>\2 (9) 

hiff = var(£s) (10) 

where Icok is the coherent and /&•// is the diffuse scattered intensity. 
In the Kirchhoff approach shadowing effects which are important near grazing incidence 
are taken into account using shadowing functions S(6) [4]. 

[l-lerfcWV2uQ] 
() [AW + 1] (U) 

with 

Mf) = §{/—«*( V/2u>2) - ertcWy/2*,)} (12) 

and 
ft = cot8,    w=V2y. (13) 

*c 

Using this function we get the following expressions for the coherent scattered intensity 

Icoh = S(8,) ■ S(6S) ■ exp(-4E2) • /„,„,„ (14) 
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where Ipiate is the scattered intensity of the equivalent flat plate and E is the well known 
Rayleigh roughness parameter and given by 

E = 2TTYCOS0 (15) 
A 

Using the same shadowing function in the case of diffuse scattering we get 

/*// = S(e{) ■ S(6S) • var(£s) (16) 

IV. Numerical Results 

As seen from eq. 14 coherent scattering depends on the Rayleigh roughness parameter. 
This parameter given in eq. 15 can be varied by changing the roughness of the surface or 
by changing the angle of incidence. In fig. 5 we can see the results varying the roughness of 
the surface. The incident angle was constant (8 = 0; = 6S) and chosen that no shadowing 
takes place. As you can see the agreement between the Kirchhoff approach results and the 
results of the Monte Carlo simulation is very close up to E = 1.5. For values of E > 1.5 
there is a significant deviation which was already seen in experimental results given by 
Desanto and Brown in [6]. 
Fig. 6 shows the same ratio by varying the incident angle from 75° to 90°. The roughness 
of the surface was constant (a = 2A). In this case shadowing plays a dominant role and 
dominates the curves at E —> 0. But again up to E = 1.5 agreement between the shadow 
corrected Kirchhoff approach and the Monte Carlo Simulation is very close. We also 
made diffuse scattering simulation in the monostatic and bistatic case and found good 
agreement. Fig. 7 shows the diffusely scattered intensity for an angle of incidence of 30°. 
This means that shadowing is negligible in the given angle range. The convergence of 
our Monte Carlo simulation is given in fig. 8. The sums in eq. 8 can be truncated after 
averaging over SO independent surface realizations.   If the transmitter/receiver systems 
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Rayleigh Parameter 

  Monte Carlo 

 Kirchhoff approach 

.S 1.0 1.S 2.0 2.5 3.0 
Rayleigh Parameter 

   Monte Carlo 
 Kirchhoff approach 

Figure 5: Ratio of Icokl Ipiate in depen- 
dence of the Rayleigh parameter, incident 
angle Ö,- = constant 

Figure 6: Ratio of hohllpuu in depen- 
dence of the Rayleigh parameter, rough- 
ness a = constant 
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are on the earth incident and scattering angle are near grazing. Fig. 9 compares the 
shadow corrected Kirchhoff results with the Monte Carlo results where the incident angle 
was chosen to 89°. This means that shadowing dominates the scattering process. Again 
the Kirchoff approach is an acceptable approximation. 
Fig. 10 shows the comparison of the monostatic RCS results calculated with the Kirchhoff 
approach and the numerical results of the Monte Carlo simulation with different roughness 
of the surface (surface A: a/X = 1, surface B: a/X = 10, both surfaces: lc/X ;» 1). As 
you can see the agreement in the main beam near normal incidence is very good. 

V. Conclusion 

We have shown new results in scattering of electromagnetic waves from two-dimensional 
random rough surfaces using a shadow including Monte Carlo technique. We've seen 
that the shadow corrected Kirchhoff approach gives good results in the main beam. The 
shadowing functions well known from the literature describe shadowing very well as it 
was seen in the case of diffuse and coherent scattering. Outside the main beam there is 
a significant deviation between our results and the results of the Kirchhoff approach, but 
we think that our results are much more realistic. Future work will be measurements of 
scattering from rough surfaces. 
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Abstract A numerical study of the polarimetric thermal emission from ocean surfaces 

randomly rough in one dimension using a Monte Carlo technique is presented. In this 

study, a set of finite length surface profiles with desired statistics was generated using 

a spectral method. Each surface was extended periodically to create an infinite rough 

surface, and the thermal emission was computed using the extended boundary condition 

method (EBC) and the method of moments (MOM). The results from the set of surfaces 

were then averaged to obtain the Monte Carlo estimate of polarimetric thermal emission. 

The surface statistics chosen were intended to model a wind perturbed ocean surface in 

the X to Ku band microwave region. The results of the study show that the third Stokes 

parameter, UB, is sensitive to the azimuthal angle between the surface periodicity and the 

looking angle, the rms height of the surface, and the surface power law spectrum slope, 

and that this parameter is insensitive to variations in polar angle, permittivity, and surface 

spectrum high frequency content as an indicator of the azimuthal asymmetry of the surface. 

1     Introduction 

Recent theoretical works have suggested the potential of passive polarimetry in the remote 

sensing of geophysical media [1-5]. It has been shown that the brightness temperature in 

the third Stokes parameter, UB, may become large for azimuthally asymmetric fields of 

observation. In references [4] and [5], values of UB as high as 30 K were measured from 

sinusoidal water surfaces at 10 and 14.6 GHz. In order to investigate the potential appli- 

cability of passive polarimetry to the remote sensing of rough ocean surfaces, a numerical 

study of the polarimetric thermal emission from ocean surfaces randomly rough in one 

dimension was performed. A Monte Carlo technique utilizing an exact integral equation 

method for calculating thermal emission was chosen for the study. 

The next section presents a brief background on the theory of polarimetry and describes 

the passive polarimetric brightness vector. The method of calculation for the numerical 

experiment is discussed in Section 3 and the numerical results are presented in Section 4. 
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2    Theory of Polarimetry 

In passive polarimetry, brightness temperatures corresponding to all of the four modified 

Stokes parameters are measured. The brightness temperature Stokes vector is defined as 

TB
 
=
 C

I=
C 

[41 
I, 1 
U rjC 

[v\ 

(EhE'h) 

2Re(EvEZ) 
2Im(EvE'h) 

(1) 

where Eh and Ev are the emitted electric fields received from the horizontal and vertical 

polarization channels of the radiometer, 77 is the characteristic impedance, and C = Kj\ 

with K denoting Boltzmann's constant, A the wavelength. The first two parameters of the 

brightness temperature Stokes vector correspond to the powers received in the horizontal 

and vertical polarization channels, respectively. The third and fourth parameters corre- 

spond to the complex correlation between the electric fields received by the horizontal and 

vertical channels. We will label the four parameters Tah, TB„, UB, and VB respectively in 

this paper. It is shown in [3] that the third and fourth Stokes parameters may be related 

to the brightness temperature in a 45 degree linearly polarized measurement (TBI) and a 

right hand circularly polarized measurement (2B,.) as follows: 

UB   =   22B; — Tsh — 2s„ 

VB   =   2TBT — TBH — TBV 

(2) 

(3) 

Thus, to calculate all four parameters of the brightness temperature Stokes vector, the 

brightness temperatures in horizontal, vertical, 45 degree linear, and right hand circular 

polarizations are first calculated, and the above equations are used to obtain UB and VB- 

In the passive remote sensing of rough surfaces, the parameter that is actually of 

interest is the emissivity, which relates the brightness temperature emitted by an object 

to its actual physical temperature, under the assumption that the object is at a constant 

physical temperature and that the emission from the object is the only source of brightness: 

Tßa — ea{8,4>)Tphy, (4) 

In the above equation, the subscript a refers to the polarization of the brightness tempera- 

ture, 9 to the polar observation angle, and <f> to the azimuthal observation angle. Through 
the principles of energy conservation and reciprocity, Kirchhoff 's law relates this emissivity 

to the reflectivity of the surface [6]: 

ea{e,<j>) = l-ra{6,4>) (5) 

The reflectivity ra(6, <j>) for the given incident polarization a is defined as the fraction 

of the power incident from direction {0, <j>) that is rescattered and can be evaluated by 
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integrating the bistatic scattering coefficient jb<i{&, 4>; 6', 4>') over all scattering angles in the 

upper hemisphere and summing the results of both orthogonal scattering polarizations. 

1  —.  W r2lr 

ra(S,4>) = —J2jo    dO'smO1 Jo   #'7ia(<^;0',^') (6) 

In the above expression, (9, <f>) and (Ö', <f>') represent the incident and the scattered direc- 

tions, respectively, and the subscripts a and b represent the polarizations of the incident 

and the scattered waves, respectively. 

Thus, to calculate the fully polarimetric emission vector, the bistatic scattering co- 

efficient for each of four polarizations is first calculated and integrated over the upper 

hemisphere to obtain the reflectivity for that particular polarization. Multiplication of the 

corresponding emissivity by the physical temperature of the object under view yields the 

brightness temperature for this polarization. The fully polarimetric brightness vector is 

then calculated as described previously. A physical temperature of 300 K was assumed for 
the surfaces in this experiment. 

3    Method of Calculation 

Scattering from randomly rough surfaces has been studied extensively by a number of 

researchers. Numerous approximate techniques, such as the Kirchhoff approximation and 

the small perturbation method, exist and work well under certain restrictions for providing 

the statistically expected values of scattered fields and power [6]. However, it was found 

in [2] that in order to measure large UB values from a sinusoidal surface, a large height 

to period ratio was required. The large slopes of such a surface fall into the regions of 

non-applicability for the above methods, so a Monte Carlo method was chosen for the 
study. 

In this Monte Carlo method, a set of surface profiles with given statistics was generated, 

and the fully polarimetric brightness vector from each surface was calculated using an 

exact integral equation approach. The results for the set were then averaged to obtain the 

final Monte Carlo estimate of the average brightness vector for those particular surface 

parameters. The surface generation and analysis procedure are described in more detail 
in the next section. 

3.1     Random Surface Generation 

A spectral method, described in [7-8], was used to generate a finite sample of a rough 

surface with desired statistics. In this method, a set of normally distributed (both real and 

imaginary part) Fourier coefficients is generated and then weighted by a spectral density 

function in the frequency domain. The resulting Fourier coefficients are then transformed 

back into the space domain using an inverse FFT algorithm to obtain a surface profile 
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sampled in space. The surface profiles were linearly interpolated between the specified 

points. 
Since only a finite surface profile could be generated, an infinite surface was created by 

extending this finite surface periodically. The Floquet modes obtained from the periodic 

surface are thus a discrete approximation to the continuous spectrum of a truly infinite 

random rough surface. The effect of this periodic extension on the polarimetric brightness 

temperature was investigated by comparing the results from a set of surfaces with a given 

period with the results from a set of surfaces a longer period and the same frequency 

spectrum. A period of 20 wavelengths was found to be sufficient to provide convergence 

of the UB results to within 0.3 K for longer period surfaces. The surfaces were continuous 

when made periodic due to the periodic properties of the FFT series from which they were 

generated. 
The surface profiles generated were rough in one dimension only due to the complexity 

of the calculations for surfaces rough in two spatial directions. The rough profile along the 

x direction was extended infinitely along the y direction in the calculations (see Figure 1). 

Three dimensional angles of incidence were allowed, however, so that polarimetric effects 

could be observed from the resulting 'conical diffraction' problem. While this model is 

extremely simple when compared to an actual wind perturbed ocean surface, its results 

should give some indication as to the properties of UB for general rough surfaces. 

The surface statistics chosen for the calculations were intended to model ocean surfaces 

in the microwave frequency range. For this purpose, a dielectric constant of 50 + i30 was 

chosen for the medium and a power-law spectral density function for the surfaces was used. 

This function, 4>(k) is described by: 

where k is the spatial wavenumber of the surface in rads/m, s is the slope of the power law 

spectrum, and kc is the cutoff wavenumber of the surface set. The effects of varying the 

slope of the spectrum and its high frequency cutoff were investigated in the experiment. 

The surface in Figure 1 is one of the surfaces generated with -3 slope power law spectrum 

and a high frequency cutoff of kc = 47r/A. 
Each surface was normalized independently of the others to a specified rms surface 

height; rms heights of A/20, A/25 and A/30 were chosen to investigate the effect of varying 

the surface height on the polarimetric brightness temperature. The 20A requirement for 

the surface period prevents larger rms heights from being studied due to computational 

limitations. Each generated surface consisted of 400 points within this period, so that the 

surface profile was sampled every A/20 along the x direction. This sampling frequency 

is well above all of the Nyquist frequencies of the power spectral density functions used 

in the experiment. The surface statistics calculated from the generated surface sets were 

compared to their desired theoretical values and found to be in good agreement. 

The results from ten surface profiles were averaged for all of the points in the exper- 
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iment. The convergence of the results with the number of surface profiles averaged was 

investigated by comparing the results from independent groups of ten surfaces. The results 

for UB were found to be within 0.2 K. 

3.2    Integral Equation Method 

Numerous studies have been made of scattering from a periodic surface. The Extended 

Boundary Condition (EBC) method [9] is one of the most efficient methods, but has been 

found to become ill conditioned for steep surfaces. The Method of Moments (MOM) 

for a periodic surface, described in [2], is another solution of the problem that does not 

have the steep surface problems of the EBC, but is more computationally intensive. The 

calculations from these two methods were compared for a sample surface for each case 

in the experiment and found to give similar results in all of the cases. This agreement 

indicates that the surface slope limitations of the EBC were not exceeded, and this more 

efficient method of calculation was used for the larger surface sets of the experiment. 

4    Results of Calculations 

Figure 2 is a plot of the average UB value for the A/20 ,A/25, and A/30 rms height surfaces 

as a function of azimuthal angle for a polar angle of 20 degrees. A power law slope of —3, 

cutoff wavenumber of kc = 4TT/A, and dielectric constant of 50 + i30 were used. Points 

were calculated every 15deg in azimuthal angle, so that the interpolating lines shown 

should not be taken to be exact. It is seen that the 17B value is small for viewing angles 

parallel or perpendicular to the direction of periodicity of the surface, and that the highest 

values of UB are obtained at azimuthal angles of approximately 45 or 135 degrees. The 

magnitude of UB is determined by the rms height of the surface, with rougher surfaces 

giving higher values. The small values of UB obtained in these results (2 K) are due to 

the convergence requirements for the Monte Carlo technique: larger UB values could be 

obtained by analyzing rougher surfaces, but would require more computer time than was 

available for this study. Also, data collected from the SSM/I and reported by Wentz [10] 

indicates that the azimuthal variation in Tah and TBV for real wind perturbed ocean surfaces 

at both 37 and 19 GHz is typically less than 3 K, as is obtained for these rms heights. The 

UB channel is seen to indicate the azimuthal direction of the surface in all cases where it is 

observable. Note that negative values for UB are possible, as this parameter corresponds 

only to a correlation between real observables. Also, the symmetry about <j> = 90deg seen 

in Figure 2 and the following figures is due only to the statistical symmetry of the surface 

set about this angle; individual surfaces are not symmetric about <j> = 90 deg. This gives 

an indication that the average of the ten surface profiles is converging to the true statistical 
average. 

Figure 3 investigates the effects of polar angle on the UB-   Plotted are the results 

at polar angles of 20 ,40, and 50 degrees for the A/20 rms height, —3 slope, kc = 47r/A, 
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50 + i30 dielectric constant surfaces. The results are surprising similar, demonstrating that 

this parameter is relatively insensitive to polar angle as an indicator of surface azimuthal 

direction. These larger polar angles are important due to the need for large polar angles 

in satellite borne sensor applications. 

Figure 4 illustrates the effect of permittivity on UB- Results for polar angle 20 degrees, 

rms height A/20 , —3 slope, kc = 47r/A, and dielectric constants of 40 + i25, 50 + i30, and 

60 + £35 are plotted. The results again indicate that the UB channel is insensitive to a 

change in the dielectric constant around 50 + i30. 

Figure 5 displays the variation in UB with the slope of the power law spectrum, s. The 

results for A/20 rms height surfaces with power law slopes of-3,-2.5, and -4.5 are compared 

for a polar angle of 20 degree, cutoff wavenumber kc = 47r/A, and dielectric constant of 

50 + i30. The results show that the UB parameter is larger for the -2.5 slope surface, 

which has more high frequency content and hence larger slopes, and that UB is smaller for 

the smoother -4.5 slope surface. However, UB exists for all three cases and indicates the 

direction of surface periodicity in each case. 

Finally, Figure 6 investigates the effect of the high frequency cutoff wavenumber, kc on 

UB- Plotted are the results from A/20 rms height —3 slope surfaces for a polar angle of 20 

degrees and dielectric constant 50 + £30. Cutoff wavenumbers of 47r/A, 87r/A, and 16ir/X 

are shown. This change in the cutoff wavenumber is seen to have little effect on the UB 

results. 

5     Conclusions 

A numerical study of polarimetric thermal emission from randomly rough ocean surfaces 

using a Monte Carlo method has been carried out. This study indicates that polarimetric 

information can be useful in the remote sensing of anisotropic rough ocean surfaces. One 

proposed application is the remote sensing of wind direction over the ocean, as the rough 

surface created on the ocean has an anisotropic structure. Since the UB parameter is 

shown to be relatively insensitive to the polar angle, the permittivity of the medium, and 

the cutoff wavenumber of the surface spectral density function as an indicator of surface 

azimuthal direction, a wind direction sensor could feasibly operate under a wide variety of 

these conditions. Further research into this area and into the use of a more realistic ocean 

surface model will continue. 
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Introduction 

The study of wave scattering by random rough surfaces is a topic of continuing 
interest [1-3]. The classical analytic approaches of Kirchhoff approximation and small 
perturbation method [1-3] have been used to solve these problems, however, both are 
restricted in domain validity. With the advent of modern computers, the Monte Carlo 
simulations of one-dimensional rough surfaces can be calculated. The standard method is 
the method of moments [4]. An integral equation method in the space domain is formed 
and then converted to a matrix equation with a full matrix inversion[5-7]. However, the 
full matrix inversion requires 0(N3) number of operations where N is the number of 
unknowns. The typical number of unknowns used is between 300-400 with 5 to 10 
unknowns per wavelength. However, for large-scale rough surface problems, a much 
larger surface length is required. Large-scale problems include cases of large rms heights, 
large correlation lengths, large incidence angles, composite rough surfaces with small-scale 
roughness superimposed on large-scale roughness, etc. Thus recently, increasing effort 
has been invested in finding a more computationally efficient method than the integral 
equation method of full matrix inversion. 

In this paper, a banded matrix iterative approach (BMIA) [8] is applied to study 
scattering of a TE incident wave from a perfectly conducting one-dimensional random 
rough surface. The original full matrix equation is decomposed into a banded matrix which 
represents strong interaction and the remainder of the full matrix represents the weak 
interaction part. This is based on the physical interpretation that in random rough surface 
scattering only points in the vicinity of each other will interact strongly in scattering. Points 
that are outside the neighborhood interact weakly due to both the decay of amplitude with 
distance and the random phase fluctuation which is a characteristic of random media 
scattering. An iterative approach is then adopted. A key feature of BMIA is that very few 
iteration steps (typically no more than ten) are required to give solutions of sufficient 
accuracy. The size of the neighborhood varies depending on the rough surface statistics 
and the incidence angle. However, it is always much less than the required surface length 
and is also much less than the tapering g parameter. Thus the method is much faster than 
the full matrix inversion approach (EMI) or the conjugate gradient method (CGM). 
Because very few iterations are required, the memory requirement can be reduced by 
storing only the strong interaction matrix for problems of very large surface length. BMIA 
includes coherent wave interactions among all parts of the rough surface within the entire 
surface length. Numerical results are illustrated for a variety of rough surface parameters 
with particular application to large-scale problems. 
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Formulation 

Consider a tapered plane wave \|Ainc(x, z) with time dependence exp(-icot) 
impinging upon a 1-D rough surface with a random height profile z=f(x). It is tapered [6] 
so that the illuminated rough surface can be confined to surface length L. 

ync(r) = eik-ril + W(r)l ^(x + ztanB^/g2 (1) 

where 

W(r) = [2(x + z tan Qmc)2/ g2 - 1] / (kg cosO«,,.)2 ; k = k(x sin 9^ - z cos 9^) 

and g is the parameter that controls the tapering of the incident wave. In (1), bold face 
represents a vector quantity. The boundary condition is the wave function \|/ equal to zero 
on the random surface. This is the Dirichlet problem that corresponds to a TE 
electromagnetic wave impinging upon a perfect electric conductor. A Fredholm integral 
equation of the first kind can be formed [4] for a point r = x x + z f (x) on the rough surface 
such that 

where G= i Hn^A* is the two-dimensional free space Green's function and HQ^) is a 
Hankel function of the first kind. The BMIA approach can be directly applied to the 
Fredholm integral equation of the first kind. Equation (2) can be cast into a matrix 
equation by discretizing in the space domain with the points labeled consecutively in the 1- 
D rough surface profile 

ZX = C (3) 

with the column vector X of dimension N denoting the unknown values on the rough 

surface and the column vector C corresponding to the first term on the right-hand side of 
(2). Zmn is the mn element of the NxN matrix and represents the interaction between two 
points on the rough surface as represented by the Kernel of Eq. (2) and is calculated by the 
method of moments [4]. The matrix Zmn is symmetric. The number of points is N where 
usually N=NpL and Np is the number of points per wavelength and L the surface length in 
wavelengths. To ensure numerical accuracy, we have used Np equal to 8 or 10. When the 
matrix equation is solved directly, it is known as the exact matrix inversion. In the banded 

matrix iterative approach, the Z matrix is decomposed into a banded part Z s consisting of 
= (w) 

strong interactions and the remainder into the weak interaction part Z 

Z = Z(s)+Z(w) (4) 
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For the 1-D case, since the points are labeled consecutively, we have Zmn^ = Zmn for Im- 

nl < b and = 0 otherwise. Thus for the 1-D case,Z(s) is banded. We have used the half 
bandwidth b=Np rd, where rd is the maximum distance in wavelength of strong 
interaction. Then the iteration procedure is for the first-order solution, 

Z(s)X(1)=C (5) 

and higher order solution is 

Z(s)X(n+1)=C-Z(w)XW (6) 

The choice of r<i varies depending on the rough surface characteristics and the incidence 
angle. As indicated by the numerical results, it is generally much smaller than the surface 
length L and tapering g parameter. In order to take full advantage of the banded matrix, a 
direct sparse matrix solver (LU decomposition and backsubstitution) [9] is used to solve 
(6). The LU decomposition requires 0(b2N/2) operations while the backsubstitution only 
requires 0(2bN) operations. The matrix multiplication Z(w)X(n) requires CKN2) steps. 
Thus computing the solution up to the nth order requires 0(b2N) + CKnN2). One key 
feature of this approach is that very few orders are required (5 or 10 orders are required for 
all the calculations presented in this paper). The valid test of convergence of this approach 
is how well it agrees with the exact full matrix inversion and the conjugate gradient method. 
For a large-scale problem with a large N, the memory requirement can be reduced (at the 
expense of CPU) by storing only the banded matrix Z(s) and calculating the full matrix Z(w) 
each time it is needed. Note that no approximation has been made and the iterated solution 
represents the result for a surface length L with all coherent wave interactions over the 
entire surface length included. In all our calculations, the symmetric property of the matrix 
is exploited to reduce CPU time and memory storage. Contrary to the TE case, asymmetric 
banded matrix solutions are required for the TM case [8]. 

Results and Discussions 

In the implementation of BMIA, the order of solutions is fixed at 5 to 10, and then 
b=Ndrd is increased until the solution converges. The result converges for rd much less 
than the surface length L and the tapering parameter g. The results are illustrated for 
different order of solutions and different bandwidths. Comparisons are made for one 
realization as well as for averaged results over many realizations. All the calculations 
presented in this section are performed on a VAX-6000-440 computer. The tapering 
parameter g is set at L/4. 

Figure 1 shows the bistatic radar cross section of a random surface with surface 
length L = 100X, rms height h = 0.575X and correlation length 1 = 1.05A. at an incident 
angle of 20° for one realization. With a discretization of 8 points per wavelength, the total 
number of unknowns is 800. Three different combinations of order of solutions (n) and 
half bandwidth (b) of BMIA are compared with EMI. The CPU times for the EMI, BMIA 
with n = 10 and b = 50, n = 20 and b = 50, and n = 10 and b = 60 are 415.41, 28.28, 
51.46, and 29.75 seconds, respectively. Except for the case of n = 10 and b = 50, the 
results completely overlie those of EMI for all scattering angles 9S including the 
backscattering direction at 6S = -20°. For n = 10 and b = 50, there is a slight difference 
between BMIA and EMI at es close to 90°.   It is evident that by increasing the half 
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bandwidth, we can reduce the order of solutions required to achieve the same accuracy 
without sacrificing computational efficiency as the total CPU time is proportional to 
0(b2N) + OCnN2). The choice of b, however, also depends on the angle of incidence. 

Figure 2 shows the bistatic radar cross section of the same rough surface at 80° 
incidence for one realization. The region of focus is in the vicinity of the backscattering 
direction at 8S =-80° while the results overlie those of EMI for the remaining scattering 
angles similar to Figure 1. A larger b (=90) is required when the angle of incidence is close 
to grazing. The number of iterations is set at 10. Numerical experiments show that the 
larger half bandwidth required for the large incident angle does not significantly affect the 
computational efficiency of BMIA. A reduction in CPU time by a factor of 12 can still be 
achieved when compared to EMI. 

After the accuracy and convergence of BMIA have been established, we apply this 
new method to studying large-scale rough surfaces that have not been previously 
attempted. Two different examples are shown here. The first example is a large-scale 
rough surface with h = 3X and 1 = 10X. The second example is a composite rough surface 
which has a small-scale roughness superimposed on the first large-scale surface. In this 
composite surface case, f(x) = fi(x) + f2(x) where fi(x) and f2(x) are independent gaussian 
random processes with a zero mean and the rms heights and correlation lengths are equal to 
(hi = 3X, h = 10X) and (I12 = 0.3X, I2 = 0.6V) respectively, The incident angle is set at 
30°. We use L = 400X. A discretization of 8 points per wavelength is employed for both 
surfaces and hence, the total number of unknowns is 3200. The matrix size is prohibitively 
large for the exact matrix inversion to be performed on the VAX-6000-440 computer. 
Comparison for this case is made with the CGM method. 

Monte Carlo simulations are performed for both large-scale surfaces using BMIA. 
The bistatic radar cross sections after 100 realizations are shown in Figure 3. For the first 
large-scale rough surface, the radar cross section peaks at the forward scattering direction at 
9S = 30° and there is no backscattering enhancement at 8S = -30°. In contrast, the bistatic 
radar cross section of the composite rough surface peaks at the backscattering direction. 
These results suggested that the small-scale roughness, because of its larger slope, 
contributes to and may dominate the backscattering. 

To validate our calculation, we compare the bistatic radar cross section for one 
realization of the first large-scale surface with the conjugate gradient method. In CGM, we 
also compute the matrix each time it is needed in the iteration. The maximum normalized 
residual norm of CGM is set at 1% [10] and the number of iterations required is 47. 
Perfect agreement between CGM and BMIA is shown in Figure 4, however, the CPU 
seconds required by CGM for this 3200 unknown problem is 77500 versus 3968 seconds 
of BMIA. The symmetric property of the matrix is exploited in both methods. When 
computers with larger RAM are available to store all the matrix elements, we can avoid 
calculating the matrix anew for each new order of solution for BMIA and for each iteration 
of CGM. However, the relative speed between BMIA and CGM will remain unchanged. 

Conclusions 

A banded matrix iterative approach is presented for the scattering of a TE incident 
wave from a perfectly conducting one-dimensional random rough surface. The accuracy 
and convergence of the method are shown numerically for various surface statistics, 
surface lengths, and incident angles. This method is much faster than the exact matrix 
inversion or the conjugate gradient method for all surface lengths. This method is applied 
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to large-scale problems that have not been previously attempted with all the coherent wave 
interactions for the entire surface length included. It is shown that backscattering can be 
dominated by the small roughness that is superimposed on the large scale roughness. 
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Figure 1 Convergence of BMIA with various order of solutions at 20° incidence with 
surface length L = 100X, rms height h = 0.575>., correlation length 1 = 1.05X 
and 800 unknowns for one realization, (i) n = 10, b = 50; (ii) n = 20, b = 50; 
(iii) n = 10, b = 60. 
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Figure 2. Comparison of bistatic radar cross sections using BMIA and EMI at 80° 
incidence. The surface length L = 100X, rms height h = 0.575X, correlation 
length 1 = 1.05X, b = 90, n =10 and 800 unknowns for one realization. 
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Introduction 

Monte Carlo simulation of one-dimensional penetrable rough surfaces has been a 
topic of continued study for many years because of its broad applications. The most 
common method used in solving random rough surface scattering problems is the integral 
equation method [1-4] with a Gaussian tapered incident wave. A large surface is required 
to include many correlation lengths. Unlike the perfectly conducting random rough surface 
case in which the unknowns are the field values sampled on the surface, two unknowns are 
required for each sample point on the penetrable surface, namely, the field on the surface 
(¥) and its normal derivative (d*¥/dn). In the actual implementation, the discretized 9^r'/3n 
can be related to those of ¥ through a matrix inversion followed by two matrix 
multiplications. Therefore, the memory and CPU time required for the penetrable case is 
about twice that of the perfect conducting case for the same surface length. Consequently, 
the application of the integral equation method to a large scale penetrable surface is limited 
by the available computer memory and CPU time. Furthermore, for the Monte Carlo 
simulation, the scattered field intensity is averaged over many realizations and, hence, it is 
important to minimize the computation time for each realization. 

In this paper, we discuss the implementation of a banded matrix iterative approach 
(BMLA) [5] which allows us to perform Monte Carlo simulations of random penetrable 
rough surfaces of much larger surface length than otherwise can be studied. Numerical 
studies show that BMIA is faster than the conventional matrix inversion method as well as 
other iterative schemes such as the conjugate gradient method (CGM). 

Integral Equation Formulation 

The scattered field from a penetrable rough surface shown in Fig. 1 can be solved 
using the coupled integral equation. If the fields on either side of the surface S are denoted 
by W\ and ¥2» respectively, for medium 1 and medium 2, they satisfy the following 
equation [3]: 

r[          3G;(r, r') dVXr')! 
ni W-Sr) = h2 ^(r) + js [Yi(r') —^ G;(r, r')-^-\ dr'    (1) 

hj = 0.5 and h2 = 1 when i = 1; hj = -0.5 and h2 = 0 when i = 2, 

where I denotes a Cauchy integral and G; is the Green's function ith medium. *i and ¥2 
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are related through the boundary conditions on the surface S, namely, 

cra»,(r)     i  d*F2(r) 
Yi<r) = ^Wand- te) dn        p     dn 

where p equals m / H2 and ei / e2 for TE and TM polarizations, respectively. Applying the 
boundary conditions in conjunction with the point-matching method, we arrive at a matrix 
equation 

n=l n=l 
N N 

0      = XCmn Fl(xn) " ZjP^rcm F2(x„) 

(3) 

(4) 
n=l n=l 

where Fi(x) = >Pi(x) and F2(x) = V1 + fW 3iy8n , respectively, and xm = (m-0.5) Ax 
- L/2. amn and cmn are functions of f (xn), f(xm)-f(xn) and Hi(1)(klrm -rnl). bmn and 
dmn, on the other hand, are functions of Ho^)(klrm -rnl). k is equal to ki for amn and 
bmn and is equal to k2 for cmn and dmn. Note that when the dielectric is lossy, cmn and 
dmn involve evaluations of Hankel functions with complex argument 

In the conventional matrix solution, F2 is eliminated in Eq. (3) through the relation 
in Eq. (4). However, such elimination is not possible for an iterative solution. 

Banded Matrix Iterative Approach for the Penetrable Case 

To apply BMIA, the two sets of unknowns Fi and F2 are labeled alternatively along 
the one-dimensional surface discretized with N sample points resulting in the matrix 
equation as follows: 

(5) 

an bn a12 b12 

Cll -Pdn 
c12 -P<*12 

a21 b21 a21 b21 

or 

C
NI -pdNi 

ZF=C 

alN       D1N [FiOci)] "^in(xi)" 

C1N ~PdlN 
a2N       b2N 

F2(Xl) 

Fi(x2) = 

0 

0 

CNN ~PdNN. _F2(xN)_ 
_^i„(xN)_ 

(6) 
(s). In BMIA, the matrix Z is divided into a banded matrix Z    representing strong interactions 

and the remainder of the matrix Z     representing weak interactions 

Z=Z(s)+   Z(w) (7) 
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It is evident that the matrix Z is asymmetric. The iterative solution is given as 

Z(s)F(1) = C (8) 

7 (s) p~ (in-1) _ 77 _ 5 (w) 'JT (n) _ 77 _ 77 (n) /Q\ 

To determine the convergence of the BMIA, we can define a residual as 

RW = C-ZFW (10) 

It is not difficult to see that 

and 
R(1) = -D(1) (11) 

R(n)=D(n-l)_   D(n) (12) 

There truncation criterion of the iterative procedure is then defined as 

<R(n),R(n)> 
x 100 % < e (13) 

<C,C> 

For solving a large problem, only the banded matrix Z    is stored and the remainder of the 

matrix Z w is recomputed for every iteration.   To eliminate the need of repetitive 
calculations of Hankel functions with complex arguments for the lossy penetrable surface, 

we create a look-up table which allows efficient evaluation of Z     through interpolations. 

Numerical Results 

All the numerical results shown in this section are computed on a Vax-6000-440 
computer. Medium 1 in Fig. 1 is assumed to be free space and medium 2 has a dielectric 
constant of (5 + i2). The incident angle is fixed at 10° and the tapering factor [3] of the 
incident field is equal to 4. Ax is set at 0.1 X where X is the free-space wavelength. 

Figure 2 shows the comparison of bistatic normalized cross sections calculated by 
the exact matrix inversion method (EMI) and BMIA for one realization. The incident wave 
is TM polarized. The surface length L is 100 X, the root-mean-square height h is 0.575 X 
and the correlation length 1 is 1.05 X. The number of unknowns in this example is 2000. 
While BMIA solves for a 2000x2000 matrix, EMI only inverts matrices of 1000x1000. 
BMIA with 3 iterations completely overlies EMI. The half-bandwidth is 13 X. Figure 3 
shows the comparisons of CPU between EMI and BMIA for various half-bandwidths. 
BMIA with a look-up table and interpolations is six times faster than EMI at the optimal 
half-bandwidth of 13 X. 

Figure 4 shows the comparison of normalized scattering sections using BMIA and 
CGM for one realization. The incident wave is TE polarized. The surface length and 
statistics of the surface are: L = 150 X, h = 2.875 X and 1 = 5.25 X. The number of sample 
points on the surface is 1500 which is too big for EMI. We compare the normalized cross 
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sections calculated by BMIA with the half-bandwidth equal to 17 X and CGM. In the 
CGM, the banded portion of the matrix is stored while the remainder of the matrix elements 
are recomputed for each iteration. Excellent agreement between results obtained by BMIA 
and CGM is achieved. Figure 5 shows the convergence of BMIA and CGM. For each 
iteration, the CPU time for CGM is about 9.5 minutes. For BMIA, the first iteration which 
only involves a banded matrix (strong interaction) solution is 6.33 minutes. For the 
subsequent iteration which involves one banded matrix solution and a weak interaction 
matrix multiplication takes 8.5 and 15.5 minutes with and without look-up table 
interpolations, respectively. To truncate the iterative process for the same percentage error, 
CGM requires as many as 100 iterations while BMIA only requires 3. BMIA is definitely 
more efficient than CGM. 

Figures 6a and 6b show the Monte Carlo simulation of 200 realizations of the 
surface used in Fig. 4 for L = 150 and 75 X, respectively. The presence of the third peak 
around -50° in Fig. 6b indicates that the surface length 75 X is not long enough for the large 
correlation length of 5.25 X. 

Conclusions 

In this paper, we have employed the banded matrix iterative approach to perform 
Monte Carlo simulations of random penetrable surfaces. BMIA is much faster than both 
the exact matrix inversion method and the conjugate gradient method. BMIA only stores 
the banded portion of the matrix and hence, it allows one to solve a larger problem than the 
conventional method. 
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BIO-ELECTROMAGNETIC COMPUTATION IN THE LOW FREQUENCY RANGE: AN INTRODUCTION 

Imre Gyuk, EMF Program Manager, U. S. Department of Energy 

Biological Effects of Electric and Magnetic Fields 

In recent years it has become increasingly clear that electric and magnetic 
fields (EMF) of low frequency (<150 Hz) and fairly low intensity (<1 Gauss) can 
have biological effects - usually under carefully controlled laboratory 
conditions. Correspondingly, there has also been increasing concern that these 
biological effects might result in health effects. 

Although the energy involved in electric and magnetic fields (EMF) of extremely 
low frequency is quite small, there is a common consensus that there are indeed 
biological effects due to these fields. The locus of cell-field interaction is 
apparently the cell membrane. In particular, it is the flux of calcium ions and 
other biologically important messengers which appears to be altered by the 
presence of EMF. Following changes at the cell surface, the subsequent cascade 
of intracellular processes, can be altered as well. Although there is not enough 
energy for direct interaction with DNA, gene expression and protein synthesis are 
apparently affected. Melatonin represents an important hormone linked to diurnal 
rhythms of the body and regulating most other hormone systems. Even short 
exposure of rodents to EMF may affect the nightly rise of production of this 
hormone. Sheep, baboons and humans may be more resistant. There is also some 
indication that EMF may influence the immune system. Although experimentation 
with humans must proceed with extreme caution, it has been shown that human heart 
rate is slightly lowered by mixed EMF. Human reaction time is apparently also 
decreased. 

Unlike ionizing radiation or most other chemical factors, the effect of EMF at 
low frequencies appears to be highly non-linear. In fact, there seem to be 
'windows' in intensity range and possibly even resonance like phenomena. 
Intermittency, transients, and, perhaps, the geomagnetic field may play a 
role. The dose effect relationship is little known thus far. 

Observed effects are to be considered as biological effects only - they do not 
constitute actual health effects. Nonetheless, concern is focused by these 
studies on potential risks of abnormal cell growth, reproductive issues and 
neurophysiology. Epidemiological studies have not yielded conclusive evidence of 
health hazards. Instead, there appears to be a linkage of diseases such as 
childhood leukemia with exposure surrogates such as wiring codes. Risk factors 
appear to have a value of 2.0 approximately, barely out of the noise level. 

Interest and attention of potential health effects of EMF have largely been 
focused on power transmission lines. However, more recently, concern has widened 
to distribution lines, electrical transportation modes and electrical appliances. 
In particular, concern over potential health effects of EMF may well result in 
serious impediments to the introduction of novel technologies such as 
magnetically levitated trains (maglev), superconducting magnetic energy storage 
(SMES), electric cars, robotics and a host of other applications. 
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Calculation of Fields from Complex Sources 

Maxwell's equations, particularly in their covariant form, have an ineffably 
beautiful simplicity, unrivalled by any other relation in the physical 
universe. But unfortunately, gross reality soon disturbs this elegance and forces 
us into more and more elaborate schemes of calculation and evaluation. Certainly, 
the tangle of wires represented by a substation is a far cry from vacuum 
electrodynamics. Yet, with increasing public concern about possible health 
effects from EMF, it becomes important to calculate fields due to fairly complex 
geometries. Facilities impinging electrically on our daily lives from substations 
to the distribution network and house wiring, from the subway to office 
equipment, not forgetting toasters and telephones, electric shavers, blankets and 
hairdriers, suddenly become worthwhile objects of calculational virtuosity. 

Appropriate codes must be developed to allow generic evaluation of fields due to 
a wide variety of facility or equipment. As field considerations become criteria 
of design, such codes must be made interactive, so that the engineer can develop 
design solutions minimizing external fields. Graphic display may give 
considerable help in this task. 

Exposure Studies 

Although accurate evaluation of fields from specific sources is important, this 
does not yet give us the field as experienced by a person. To determine the 
'exposure', the pattern of movement among various sources or the method of 
utilizing an electrical appliance must be taken into account. Some measurements 
have been taken by attaching portable field meters to individuals. Time analysis 
of such measurements indicates rather spiky, almost fractal, fluctuations in 
value. Very little theory is yet available to connect measured or calculated 
field values with this empirical exposure. A statistical approach would appear 
to be indicated - something reminiscent of a probabilistic Greens function to 
relate sources to human exposure. 

Epidemiology underscores both the difficulty and the importance of the exposure 
issue. Residential epidemiological EMF studies attempt to relate the incidence 
of rare diseases like childhood leukemia to residences divided into a number of 
exposure classes. Although statistically significant correlations have been found 
between disease and exposure class, no direct relation to actual measurements has 
been proven. Most occupational studies attempt to relate disease incidence to job 
classifications such as 'electrical transport worker'. Here too, some significant 
correlations have been found. Obviously a much better connection with source 
fields is essential, particularly since people, except very young children, spend 
about a third of their time at home and a third at school or work. 

Dosimetry 

Given the external fields, it yet remains to be determined what the actual dosage 
received by a human or animal will be. In the case of most environmental toxins 
one is dealing with a single parameter, such as parts per billion in the ambient 
air. One then has to determine what percentage will be deposited in the lungs of 
a person. For electric and magnetic fields this problem is much more 
complicated. One deals with many more parameters: field strengths for both 
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electric and magnetic fields, angles and phases between them, frequency 
distribution, intermittency and transients - even the angle with the earth 
magnetic field may be of importance. At this time we do not know which of the 
parameters are biologically relevant. It is not even clear whether cells interact 
with induced currents or with the fields directly. 

Dosimetry, the calculation of current and field distributions inside the body of 
an animal or a human becomes an important, and by no means trivial 
task. Originally, estimates were made considering a mouse as half of a prolate 
spheroid. Later, the body was subdivided into biological zones with more detailed 
boundary conditions. Actually, matters are rather more complicated, because 
biological organisms are not only inhomogeneous, but they are so in a minutely 
organized fashion. Tissues, bones, blood vessels, and nerves, each with quite 
different electrical properties, do not occur at random. Instead they are 
organized into extensive structures. 

The situation becomes even more complex, because the creatures just won't sit 
still ! As a human walks under a transmission line, a baboon sits down in his 
metal cage or rats shield each other from electric fields by huddling. Field 
values, let alone the induced currents vary wildly. Moreover, transients, which 
may be biologically very important, will be occurring throughout. 

Biophysics of Interaction 

Once an adequate evaluation of fields and currents inside the body has been 
obtained, one still has to find a mechanism of interaction with the cell 
surface. At 60 Hz, a wavelength stretches from Washington to Monterey. The energy 
available for interaction is, therefore, truly minute. Moreover the applied 
fields have to compete with substantial endogenous fields on the one hand and 
random thermal motion on the other. One can imagine that collective phenomena 
involving integration over time and space are at work. The structure of the cell 
membrane has to take relatively minute differences and compound them into 
qualitative, localized phenomena (the Ising model comes to mind). Alternatively, 
to avoid the limit of random noise, superfast non-equilibrium processes, such as 
free radical formation, may be occurring. In either case, the relationship 
between field and effect will certainly be non-linear. Numerical evaluations may 
well have to deal with the realm of chaotic phenomena. Indications from the 
biology seem to support this. 

Conclusion 

Obviously, the increasing concern for electric and magnetic fields in our 
environment and their potential health effects, presents a considerable challenge 
to the mathematician, engineer or physicist. Fields due to a variety of sources 
need to be calculated with a view to field management through design. Actual 
exposure must be determined to interface with epidemiology. Dosimetry must 
calculate the changing field and current distribution throughout the 
body. Finally, on a microscopic and very fundamental level, the interactions 
between field and cell need to be determined. 
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CALCULATION OF ELECTRIC AND MAGNETIC FIELDS 
NEAR GROUND LEVEL IN 187KV AC SUBSTATION 

by 

K. Isaka, N. Hayashi, and Y. Yokoi 

Department of Electrical and Electronic Engineering, Faculty of 
Engineering, The University of Tokushima, Tokushima, Japan 770 

In order to calculate electric fields, the complex electrode 
systems are approximated by cylindrical conductor segments each of which 
has uniform charge on its outer surface. In addition, the charge 
simulation method is applied to predict the shielding effect by a tree. 
As for the magnetic fields, the current-carrying conductors are 
approximated by straight line segments, to each of which the Biot-Savart 
law is applied. The predictions are compared with the measured results. 

1. INTRODUCTION 

In 1770's the characterization of electric fields near ground level 
in electric power substations came to be needed for the evaluation of 
possible occupational health problems of substation workers. The analog 
(reduced scale) modeling was used to determine the electric field 
distributions in a 345 kV substation in the late 1970's (Sebo and 
Caldecott, 1979). Due to the increased interest in magnetic field 
effects since 1979, a number of studies have been made regarding the 
characterization of magnetic fields from power systems and at homes as 
well. However, only a small number of papers dealing with substation 
magnetic field characteristics are found in the literature. In The Ohio 
State University the extensive research on 345kV substation magnetic 
fields is being performed using both the analog and digital modeling 
techniques ( Sebo et al., 1989 ; Kasten et al., 1989 ; Caldecott et al., 
1991 ; Kasten et al., 1991 ; Sebo, 1991 ). 

We made the studies on magnetic field distributions in a 187kV 
substation by using the digital modeling! Hayashi et al., 1989 and 
1992). In parallel with those studies, the analysis of the electric 
field characteristics was made. Although the calculations of electric 
fields in substations cannot be easily handled because of complex 
physical systems of electrical wirings, the computer modeling technique 
was applied to make a trial calculation of electric fields. So far there 
is little literature on substation electric field calculations. 

This paper describes the calculated results of electric and 
magnetic fields and their comparisons with the experimental ones. All 
calculations and measurements have been related to one meter height 
above ground level. 
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2. LAYOUT OF 187KV SUBSTATION 

Figure 1 shows the layout plan of the 187 kV switchyard of a 187/66 
kV substation as well as the location of calculations and measurement 
traverses (broken lines denoted by #1, #2, #3, and #4). The one-line 
diagram of the two-bus arrangement examined is shown in Figure 2. The 
current distribution on the bus and line conductors, as indicated in 
Figure 2, was numerically determined and partly estimated using the 
substation operation data during the experiments. It is assumed in the 
calculations that the current distribution is constant throughout the 
experiments. Actually the variations of current magnitudes were several 
percent for the measurement period. 

The bus, line conductors to 6.6 kV transformers, and ground wires 
are located at heights of 9, 13, and 18 m, respectively. The height of 
terminals of circuit breakers, and lightning arresters is 5 m, that of 
current transformers being 4.5m. There are a metal fence and a row of 
trees between the switchyard and the transformer site. 

To Overhead Transmission Lines (187 kV) 
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Figure 1. Layout plan of 187kV substation. 
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Figure 2. Distribution of currents on the bus and lines. 
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3. CALCULATION OF ELECTRIC FIELDS 

The following assumptions are employed in the calculations: (1) 

Metallic structures are neglected, (2)No free charges exist in the air, 
(3) The earth is a perfect conductor, (4)The substation apparatuses and 
line conductors can he approximated by cylindrical conductor segments, 
(5)The effect of the bus can be ignored when calculating electric fields 

in the areas remote from the bus. 
The elevation of the current transformer (CT), gas-insulated 

circuit breaker (GCB), lightning arrester (LA), and the line conductors 
is shown in Figure 3. As the first approximation, each apparatus is 
replaced by a cylindrical conductor having the uniform distribution of 
surface charge on its outer surface (Zahn, 1979). The calculation method 
employed in this study is the same as used for the analysis of 
transmission line electric field shielding by objects (Deno et al., 
1987) except that the distribution of charge density on each segment is 
assumed to be constant instead of being linearly varying from one end to 

the other. 

I  I I I I I I I I I I I I I I I I I I I  I I I 

a =0.0 9 

b=O.I4 

d-0.0 2 8 
( m ) 

Figure 3. Elevation of apparatuses and lines approximated by cylindrical 
conductor segments. The apparatuses are placed at a height of 
2.5 m above ground level ( CT: current transformer, GCB: gas- 
insulated circut breaker, LA: lightning arrester). 
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Figure 4 shows the electric field profile along the path #1 
together with the experimental results. The disagreement between the 
calculated and experimental results is partly due to the electrostatic 
shielding effects by the trees and the metallic fence. In order to 
calculate the electric field profile along the path #2 having a tree at 
its ending position, the effect by a tree is taken into consideration. 
The tree examined is cone-shaped as shown in Figure 5, which is 4.0 m in 
height, and approximately axisymmetrical. The method presented here uses 
the approximation of the tree as the grounded object. The charge 
simulation method (Singer et al., 1974) is employed, in which the 
fictitious ring charges are distributed so that the potentials of the 
tree's surface contour points become all zero. Figure 6 shows how 8 ring 
charges are placed on a horizontal cross-section of the tree. It is 
found from Figure 7 that the calculated results agree well with the 
experimental ones. 

Since the effects of the bus and the metallic structures supporting 
the apparatuses on field calculations are neglected, the field profiles 
along the paths #3 and #4, which are closer to the bus and apparatuses, 
cannot be discussed here. 
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Figure 4. Profile of electric fields along the path #1. 
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4. CALCULATION OF MAGNETIC FIELDS 

The following assumptions are employed in the calculations of power 
frequency magnetic flux density: (1) Metallic structures are neglected, 
(2)The three-phase currents are balanced, (3)The current path can be 
approximated by straight line segments, and the current on each segment 
is constant, (4)The earth is non-magnetic, (5)No image current is taken 
into account, and (6)Currents induced in counterpoise wires and ground 
wires are ignored. 

A closed form solution of the Biot-Savart law developed for a 
straight line segment is used (IEEE Magnetic Fields Task Force, 1988). 
All current-carrying conductors are approximated by 450 straight line 
segments. Figures 7 and 8 show the results calculated along the paths #1 
and #4, respectively, together with the experimental ones. It is found 
that a reasonably good agreement has been obtained between the 
predictions and experiments. The digital modeling technique has also 
been used (Sebo, 1991), and a user-friendly computer program is being 
developed (Pappa and Ben-Yaacov, 1992). 
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Figure 8. Profiles of magnetic fields along the path #1. 
(solid line: calculated, circle: measured) 
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Figure 9. Profiles of magnetic fields along the path #4. 
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5. CONCLUSIONS 

The substation electric and magnetic fields have been calculated. 
It is shown that the electric fields at locations remote from the bus 
can be predicted with roughly approximated electrode systems. It is 
found from this study that the Biot-Savart law is applicable to the 
prediction of substation magnetic fields once the current paths are 
exactly identified. 

Generally, both the energized and grounded objects affect the 
characteristics of electric fields to a greater extent than those of 
magnetic fields. Even the trees provide a remarkable effect of electro- 
static shielding. The calculated results described in this paper are 
very limited. More research is still needed for the precise computer 
modeling of substation electric fields. 
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NUMERICAL METHODS FOR DOSIMETRIC CALCULATIONS: 
ELF TO MICROWAVE FREQUENCIES 

Om P. Gandhi 
Department of Electrical Engineering 

University of Utah 
Salt Lake City, Utah 84112 

We will review some of the efficient numerical methods that have been used for 
calculations of internal E- and H-fields, induced currents, and specific absorption rates 
(S ARs) in anatomically based models of the human body. The methods to be discussed are 
the impedance method and the finite-difference time-domain (FDTD) method. In the 
impedance method, usable for low-frequency exposures where quasi-static approximation 
may be made (< 30 MHz for the human body), the biological body or the exposed parts 
thereof may be represented by a three-dimensional network of impedances whose 
individual values are obtained from the complex conductivities O" + j CO EQ Ej for the various 
locations of the body. This method is capable of allowing for anisotropic properties (a, e,.) 
for various tissues that are important in the ELF region. The impedance method has, in the 
past, been used for a number of exposure situations, such as spatially variable vector- 
magnetic fields of an RF induction heater (450 kHz), linearly or circularly polarized H- 
fields of an MRI machine, or for hyperthermia applicators such as RF needles, capacitor 
plates, etc. Recently, the method has been used to calculate currents induced in the human 
body due to power-frequency magnetic fields of overhead transmission lines, electric hand 
drills, hair dryers, etc., for average tissue properties specified for cubic cells of dimensions 
1.31 cm for each of the sides. 

Using time-dependent Maxwell's curl equations, the FDTD method is usable at any 
frequency where the model has been discretized into cells of dimensions less than or equal 
to 3l£/10 where Xz is the wavelength within the tissues with the highest complex 
dielectric constant e* (= £,- -j o/co e0). For bioelectromagnetic problems, the FDTD 
method has been found to be extremely versatile and has been used for induced current and 
SAR calculations for whole-body or partial-body exposures due to spatially uniform or 
nonuniform incident fields (far-field or near-field) that may be sinusoidally varying 
continuous-wave (CW) or transient, such as those for an electromagnetic pulse. Recently, 
the FDTD method has also been adapted for exposure of biological bodies to EMFs at 
power frequencies that may be sinusoidally varying or transient in nature. The method has 
also been modified to include frequency-dependent properties of the tissues and used to 
calculate time-dependent induced currents for exposure to nanosecond pulses with wide 
bandwidths in excess of 1 GHz. 

In addition to describing some of the recent applications of these numerical methods 
from ELF to microwave frequencies, we will also show video displays of some of the 
calculated results. 
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A MATRIX FORMULATION OF DIELECTRIC IMAGING, DOSIMETRY AND 
COMPUTATION OF VECTOR ELECTROMAGNETIC FIELDS 

Wendy W. Guo and Theodore C. Guo 
Potomac Research, Inc., Potomac, Maryland 20854 

Abstract 

A matrix technique for dosimetry, scattering, and imaging of arbitrary three-dimensional objects is presented. 
An integral equation for the vector electric field is first derived from Maxwell equations, then converted to a sum 
of integrals over small cells (voxels). The unknown quantities are separated from the integrand and the remaining 
integral may be integrated analytically with some approximation or integrated digitally. The final formulation 
involves two matrix equations, one for fields inside (dosimetry) the target and another for fields outside 
(scattering). The scattering matrix equation may be inverted to yield an imaging equation, which gives the target's 
quantitative dielectric profile, both real and imaginary parts, in terms of the measured scattering fields; the matrix 
inversion is performed by a singular-value decomposition technique. Both scattering and dosimetry matrices are 
independent of the target and may be computed off-line once and for all. In this paper, the dosimetry and 
scattering results for homogeneous spheres are compared to those from Mie formula and are found to be accurate 
to the order of 10s or better for spheres discretized to 179 cells, and for a wide range of frequencies, with 
wavelength ranging from order of the target's size to 10s times the target's size. The imaging results for various 
highly inhomogeneous targets are shown to have a 3-D resolution of 1/35 of the wavelength. Indeed, resolution 
as high as 1/165 of the wavelength has been obtained and is found to depend only on signal-to-noise ratio, and 
independent of wavelength. 

1. Introduction 

Due to recent renewed interests in electromagnetic field environment and its biological effects,1 there is 
increasing demand for an accurate and effective method for dosimetry and scattering computation. Analytic 
solution of vector electromagnetic fields may be obtained only in simple cases, such as Mie scattering from a 
uniform dielectric sphere or concentric spheres,23. Still, as we shall show, Mie formula does not provide a good 
solution for long wavelengths (comparing to the sphere size) due to slow convergence of the series expansion of 
exp(jkr-cosd) in spherical Bessel functions. For arbitrary objects, there are several numerical approaches, mostly 
for one-dimensional or two-dimensional objects. Bom approximation by iteration may be used for weak 
scatterers, including three-dimensional objects, if it converges.4 The moment method developed by Richmond 
applies to scalar fields, viz. TE waves or TM waves, in two-dimensional objects with cylindrical symmetry.5,6 

The moment method has been used on three-dimensional dielectric body," but it was found that the numerical 
solutions tend to diverge with respect to degree of discretization;' a testing procedure was developed to analyze 
the numerical stability and reduce the computation time.10 These approaches approximate the field inside the 
scatterer by a linear combination of some basis functions and then numerically solve the linear coefficients. The 
finite element (FE) method has developed for bodies of revolution and for waveguide problems.11,12 Recently, 
it has been shown that the finite-difference time-domain (FDTD) method, originated by Yee13 and extended by 
Taflove and Brodwin,14 appears to be quite promising for two-dimensional geometry and time-dependent 
problems;15 though it has been applied to three-dimensional problems as well,16 it is still limited to simple 3D 
geometries and a homogeneous dielectric medium. The shortcoming of the FDTD method is that, due to the 
nature of the finite-difference algorithm which essentially solves Maxwell equations and fits boundary conditions 
from cell to cell, a field discontinuity between neighboring cells will artificially introduce fallacious dielectric dis- 
continuities. Furthermore, the solution is sometimes unstable with respect to the truncation function which must 
be introduced to terminate the computation.14,15 

Here we present a matrix formulation for dielectric imaging and for computation of vector electromagnetic 
fields inside (dosimetry) and outside (scattering) arbitrary three-dimensional dielectric objects. It is based on 
discretization of the integral equation for the field.17,18 An integral equation for the vector electric field is first 
derived from Maxwell equations, then converted to a sum of integrals over small cells (voxels). The unknown 
quantities are separated from the integrand and the remaining integral may be integrated analytically with some 
approximation or integrated digitally. The final formulation involves two matrix equations, one for dosimetry and 
another for scattering. The scattering matrix equation may be inverted to yield an imaging equation, which gives 
the target's quantitative dielectric profile, both real and imaginary parts, in terms of the measured scattering fields; 
the matrix inversion is performed by a singular-value decomposition technique.18,19 Both dosimetry and scattering 
matrices are independent of the targets and may be computed off-line once and for all. 
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The difference between the matrix method presented here and other discretization method, such as the FE 
or FDTD methods, is that the matrix method discretizes the integral equation whereas FE and FDTD discretizes 
the differential equation. As a discretized integral equation, the fields in all cells are essentially solved 
simultaneously, where all boundary conditions between neighboring cells are included in the dosimetry and 
scattering matrices, denoted by G„ and Gv, respectively, and in the algorithm that they operate on the fields. On 
the other hand, in discretized differential equations, fields are matched from cell to cell by boundary conditions, 
therefore field discontinuities between neighboring cells may introduce fallacious dielectric discontinuities. As 
to the external boundary conditions, for example, boundary conditions with respect to surrounding apparatus, they 
are embedded in the incident field, which is defined as the field without the scatterer. One distinctive advantage 
of the matrix method is that, once the dosimetry and scattering matrices and their inversions are computed, field 
computation and imaging become trivial and take little computation tune, even if the target is changed. 

The matrix formulas provide a fast and accurate method for dosimetry and near- or far-field computation 
anywhere inside or outside a three-dimensional object with any distribution of dielectric permittivity and electric 
conductivity, both of which may be complex numbers, and for any form of incident field. To demonstrate the 
accuracy of the matrix technique, vector fields are computed inside and outside a uniform dielectric sphere for 
which fields from the analytic Mie formula are used for comparison. It is found that the matrix method provides 
a 99.9% accuracy for all three components of the fields for a sphere discretized to 179 cells. Furthermore, it is 
found that the small differences are mostly due to the fact that the two methods provide fields for two different 
objects, viz., discretized sphere and perfect sphere. 

On dielectric imaging, since the matrix method does not rely on any Fourier transform relationship, such as 
that used in Fräunhoffer or Fresnel diffraction method of imaging, the resolution is not limited by wavelength, 
though it will still be subject to limitation of signal-to-noise ratio. Many highly inhomogeneous target models 
have also been performed, and 3-D resolution of as high as 1/165 of the wavelength has been obtained. Some 
of the imaging results are presented here; input scattering fields are computed by Mie formula when possible, and 
by the matrix method when the target is highly inhomogeneous. The results also show that, for targets much 
smaller than the cell size, such as a collection of small bubbles, the reconstructed image provides an accurate 
description of average dielectric permittivities within the cells. Dielectric imaging by RF or microwave inverse 
scattering may be applied to non-destructive evaluation, remote target identification, and medical 
imaging.20'24 

2. The Integral Equation 

Consider that an electromagnetic wave is incident upon a target As we are interested in the field inside as 
well as outside the target, we shall denote by V„ the region occupied by the target, and by V a region outside 
where fields may be of interest. Either inside or outside the target, the term "scattering field" is to be defined 
as the difference between the total field and the incident field. The target is assumed to be electrically linear so 
that its response to a pulsing field may be Fourier transformed to a superposition of frequency components. Thus, 
for some frequency component of the incident field CO, let £„ and £(x) denote, respectively, the dielectric permittiv- 
ity of the background medium and that of the target; both £„ and e(x) may have real and imaginary parts. Thus 
the quantity eCx)-^ vanishes outside V„. We shall limit the target to non-conductive and non-magnetic objects, 
though the formulation may be easily extended to include conductivities a„ and a(x), as well as magnetic 
permeability u„ and n(x). Using Dirac's bra-ket notation for a linear space, with the space elements denoted by 
kets l...> and their conjugate elements denoted by bras <...l, it can be shown that Maxwell's equations of the 
system may be written in the form: Mlf> = 0, where M represents Maxwell's differential operators and f the field 
quantities. Here lf> can be any combination of electric and magnetic fields or any of their derivatives, such as 
Üie one-dimensional scalar potential kp>, or the four-dimensional potential 1A> = l(p,A>, etc.22,23 Specific 
expression of M depends on die definition of lf>. In this paper we shall define f as the three-dimensional electric 
field E; the expression of M for f being the four-dimensional potential has also been derived previously.22 The 
total field may be expressed as the sum of the scattering field and the incident field: f = f"' + f\ We also 
separate the operator M into two parts: M = Mn-S, with M. representing Maxwell's operator in a homogeneous 
background and -S the operator due to the excess dielectric permittivity, e(x)-e„. Then Maxwell's equation may 
be written as MJf8^ + Mjtf*> = Slf>. Since MJf5^ = 0, the equation becomes: MJf'b. = Slf>. We shall 
restrict our function space to scattering fields only, so that M„ has an inverse, denoted by G„; in the x- 
representation, G„(x,x') is the well known Green's function. Operating both sides by G», one then gets: 

lf,!>   =   GmS lf>. (1) 

In the x-representation, the above equation is the integral equation: 
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f"(x)   =   Jdx' Jdx" Gm(x,xO S(x',x") f(x"). (2) 

Thus the dosimetry and scattering problem has been reduced to a source-field problem in a homogeneous 
medium, with the source being Slf>. Adding If^ to both sides of (1) and rearranging terms, the equation gives 
(1 - G„S)lf> = If5^, or, 

lf> = (1 - G„S)-*lf b. (3) 

Equation (3) gives the total field in terms of the incident field; the scattering field may be easily computed from 
the total field: f*' = f - f. Note that f* may be any wave such that MJf"> = 0, viz., it may be any eigenwave 
of the electromagnetic environment in the absence of the target. 

To compute the total field from (3), one must first establish the integral operators Gm and S, which, like M, 
depend on the definition of lf> and are derivable from Maxwell's equations. Noting that (1) defines only the 
product GmS, once (1) is obtained, the product may be re-factorized to any pair of operators, (Gm',S0, such that 
Gm'S' = G„S. So, for the case lf> being the electric field IE>, we first write Maxwell's equations in the form: 
M/lf*'^ = S'lf>, where, in the Gaussian system of electromagnetic unit, the operators MJand S' are as follows: 

M_' = [V1 + k„*J-X (4) 

S'Cx.x')    =    - [ VV- + kj-1 ]   E(X^~ ^ -5(x - x0 (5) 

where a time-dependency of e^°" has been assumed, k„ = 2jrAi, is the wave number in the background medium, 
and «-> denotes a 3x3 dyadic; I represents the identity dyadic. From (4) one obtains the x-representation of the 
inverse of M„': 

n Vw'i   -       1 exp(ikjx - x'l)   » 

Since [VV- + k„2-I] commutes with MJ, it commutes with its inverse, G„'. Therefore, from (5), 
Gm'S' = [VV + k^-TjG,,,'- [-(e - ej/ej. Defining Gm as [VV- + kJ'-TjG,,', we may re-factorize G„'S' to the 
product of the following pair of (G„,S): 

G„(x,x0     =     -i-EW.+C-T]   ~™~~~'J (7) 
1 - 

4^tW- + C-T] 
exp(flc„lx - 

lx-x' 

xl) 

-^[e(x) -e*]%: t-xO-T SCxjcO    =    -^[8(x)-e„Jo(x-x0-I (8) 

The operator S vanishes outside the target and is diagonal in the sense that Sfa.x') = S(x)8(x-x0. The diagonal 
elements of S are exactly the negative of the fractional variations of the target's dielectric permittivity with respect 
to the background medium. 

With the operators G„ and S derived as above, one may compute the scattering field, as well as the total 
field, from (3). The next task is to discretize these two operators and convert the equation into matrix form. 

3. The Dosimetry and Scattering Matrix Equations 

We shall now convert (3) to a matrix form by discretization. Since we are only concerned in the regions 
V„ (the target) and V (the scattering region), we shall project all operators and fields onto these two regions. To 
this end, we use x to denote a point in V, and y a point in V„ and denote by fv and f„, respectively, the projection 
of a field onto V and V„. Also, we denote by Gv the projection of Gm onto V on the left and onto V„ on the right, 
and by G0 the projection of G„ onto V„ from both sides: 

Gv   =   VGmV0 (9) 

G„   =   V0GBV0 (10) 
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Similarly, S„ denotes the projection of S onto V„ from both sides: 

S„   =   V0SV0 " (11) 

Note that S0 is effectively equal to S because S vanishes outside the target V„; so Slf> = S„lf„> for any field f. 
Thus, in the integral form, Gv is G(x,yO, Gv"' is G'^y.xO, and G0 is G0(y,yO- With the above notation, (1) then 
decomposes into a V part and a V„ part: 

l£<*>   =   GvS0u> (12) 

lf„">>   =   G„S„lr> (13) 

Following the same procedure in deriving (3) from (1), one derives, from (13), the equivalence of (3) for f„: 

lf> = (1 - G0S0)-,lf0
ti,> (14) 

To get the scattering field both outside and inside the target, one substitutes (14) into, respectively, (12) and (13). 
With some simple manipulation, it gives: 

lf»>   =   G^S;1 - G^'lf ®> (15) 

lf„c">>   =   G.(S.-'- GJ'If.6^ (16) 

Equations (15) and (16) are, respectively, the basic scattering and dosimetry equations, both given in terms of the 
incident field inside the target and the distribution of the target's dielectric permittivity; the total field deposition 
inside the target may be obtained by adding f„(i> to the right hand side of (16). For a pulsing field, the field for 
each frequency component may be computed by replacing f„a) by the corresponding frequency component of the 
incident field, and replacing S„ by the dielectric permittivity profile of the target for that frequency; the matrices 
G„ and Gv will also be changed accordingly based on the matrix expressions to be established below (see (20)- 
(22)). 

After having developed the dosimetry and scattering formulas, (15) and (16) respectively, the rest of the 
problem is to establish the two matrices, G„ and G„ and the matrix S„. G0 and Gv are referred to as the Green's 
matrices or the scattering matrices, while S„ is a diagonal matrix with its elements representing the distribution 
of the target's dielectric permittivity. To this end, we divide V„ into a number of small cells. Label the cells by 
xt and their centers by y;. Each cell T, must be small enough that the field inside may be approximated by its 
value at y,. This means that the dimension of the cells must be smaller than a fraction, say 1/4 or smaller, of the 
electromagnetic wavelength inside the target Then integration over V„ may be converted into summation of 
integrals over cells x, as below: 

}}J G(x,y0 fo(y0 d/     =    l[      HI    G(x,y0dy]fo(y/) (17) 
V„ '•      y'et^V, J 

Let (Xj) represent the set of points where scattering fields are to be computed, and denote by G,j the integral 
inside the bracket for x = x<: 

Gtj   = HI    GfeyO dy' (18) 
y'e ij cV„ 

where G(x,yO is given by (7). We shall refer to Gtj as the Green's matrix. With the above definition, (17) may 
be written in the matrix form: 

Hl G(x;,yO «yO dy'    =    EG,?f„(y,) (19) 

Equation (18) defines the matrix elements of Gv if x, is outside the target, and that of G0 if it is inside the target. 
By approximating the cell with a sphere of equal volume, the integral may be evaluated analytically. Denoting 
by a the radius of the spherical cell, the matrix elements of the Green's matrices G„ and Gv are:1718 
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(ßäa =    IIH^3^)] <2°> dav       a 

<Gi> = «T •[ ""^ ■ £ • "-ft-rt] (2D 
11      *Jy-y,i    ISjyTJF; " ly.-j/i to-tf u " *Jy,-y,J    (*Jy-y,02' J 

(G,)«/  =   a- (22) 
,^^>.[cos(M)-^-sin(k^)] 

rtfi        '      i       l      }    MM(i.J_t_i_)i 11        !kjx.-y;l      (&Jvy,D2 '      lx,-yyJ \x,-y} (      ikjx.-yß      (ikjxrjtf > i 

Note that the off-diagonal matrix elements of G„ and Gv are of identical form; (G^ may be obtained by replacing 
x, in (Gv)j,- by y,. As to the S0 operator, (8) gives: 

(SJ,j   =    ^ [ety) - £j 8rT      (j^^cV.) (23) 

So S„ is diagonal with the diagonal element (SX being the negative of the fractional variation of the dielectric 
permittivity of the i* cell in the target with respect to the background medium. 

With the above analytic expressions for the matrix elements of G0, Gv, and S„, one may calculate both phase 
and amplitude of the field anywhere, using (15)-(16). It can be shown that the scattering field computed from 
the matrix formula converges." Note that, since each element of the column vectors f,'*' and f,w represents an 
electric field, which is a vector field, each element of the matrices, G„ G0, and S„, is itself a 3x3 submatrix. 
Although (15)-(16) involve the inversion of the matrix (SJ - G„), we have found that this matrix is very stable 
for inversion. The fields f„ and f, may also be solved without matrix inversion: One first solves (13) for f„ by 
Gauss reduction or by iteration, then uses (12) to obtain f,. Note also that the scattering matrices GY and G„ 
depend only on the geometry of V„ and V, and the geometrical arrangement of the cells inside them, and are inde- 
pendent, of the target S„. Therefore these matrices, as well as (S,"1 - G0)"', may be computed off-line once and for 
all. This increases the speed of dosimetry and scattering prediction greatly. 

4. The Dielectric Imaging Equation 

In our matrix formulation, the target is represented by S„. Therefore dielectric imaging is to obtain S„ in 
terms of incident field and measured fields outside the target Since S„ is a diagonal matrix, its diagonal elements 
are equal to the ratio of the corresponding elements of SJf^ and lf0>. From (12), one gets: 

SJf„>   =   G,-1 lfv<">. (24) 

Substituting this into the right hand side of (13) and add f/° to both sides, (13) gives: 

lf>   =   lf®> + G.G,-1 lfW>. (25) 

Dividing the ith element S„lf> by the corresponding element of lf„>, one gets, from the above two equations: 

-1 Z(GV-Vv
(*(x;) 

iSX - =«*>-*= f^:E(GWW 

Equation (26) is the dielectric imaging equation. It gives the scatterer's dielectric permittivity (S„)fi in the ith cell 
in terms of the scattering field f,'*^) outside the scatterer, and the incident field fJ'Xyi) inside the scatterer, which 
is a known quantity. The computation of the inverse Gv"' may be very time-consuming, however, as mentioned 
earlier, G,'1, as well as Gv and G„ may be computed off-line once and for all, since they are independent of the 
scatterer S„. In the next two sections, we present results for dosimetry and scattering field computation and for 
imaging of highly inhomogeneous objects. 
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S. Results - Dosimetry and Scattering Computation 

To analyze the accuracy of the dosimetry and scattering matrices, we perform some computation for 
scattering of a plane wave from a dielectric sphere in a homogeneous background, and compare the results with 
Mie's scattering formula.3 All quantities relating to length, such as wavelength, distance, etc., are measured with 
respect to the size of an arbitrary cube and thereby treated as dimensionless. So, consider a unit cube with its 
center located at (.5, .5, .5), and a dielectric sphere of radius .25 centered at (.501, .501, .501) and complex 
permittivity E in a background medium of permittivity e„=l; the slight displacement of the sphere from the cube's 
center is to avoid divergence when the coordinate origin is moved to that point for computing the Mie field. The 
incident wave travels in the z-direction with its electric field polarized in die x-direction with unit amplitude: Eö) 

= x-exptikJz-0.5)], where k„ = (oVc)Vi^. 

The unit cube is discretized with a (N+l)x(N+l)x(N+l) mesh, yielding (N+l)3 lattice points (nodes), each 
of which is the center of a cell; all border cells are halfway outside the target region. From (23), S„ is diagonal 
and its elements take only two values, 0 or S = (8-eJ/e^,, depending on whether its corresponding cell is inside 
or outside the dielectric sphere. A cell is considered inside the dielectric sphere if the distance from its center 
to that of the sphere is less than the sphere's radius, otherwise it is considered to be outside the sphere. As to 
the matrix elements of G0 and Gv, they are computed from (20)-(22). To save computation time, the dimensions 
of S„ and G0 are reduced to the number of non-vanishing elements in S0, i.e., the target region V„ is taken to be 
the space occupied by the discretized sphere. Though the number of matrix elements in the G matrices is propor- 
tional to N6, only ~N3 of them are independent because the value of each matrix element depends only on the 
relative position of the corresponding pairs of cells. In order to save memory, these independent elements are 
computed and stored as an array, and a mapping scheme is devised to find each matrix element from the array. 

Though the fields outside and inside the target may be computed from, respectively, (15) or (16), we find 
that it takes less time to first solve f„ from (13) by iteration, and then compute f,'1' and f0

(,) from (12)-(13). 
Adding f® to both sides of (13), one gets: 

lf„>   =   f/° + G0S„lfo> (27) 

Solved by iteration, the above equation provides a rapidly converging solution for f„; 15 iterations suffice to 
converge to an error of 10"4. Once f„ is solved for, computing t,® is trivial and takes very little computer time; 
computing operations needed for each field point is of the order of 4-3-N, where the factor of 4 is for complex 
number multiplication and 3 for the three components of a vector field. 

The results of the matrix method are compared to the Mie formula in the contour plots of scattering field 
IEWI in Figure 1 - Figure 6 for three different wavelengths, dielectric contrasts, and discretizations. In each figure, 
fields from the matrix method are shown on the left and that from Mie formula on the right The model parame- 
ters in these figures are: For Figure 1 and Figure 2, wavelength Ä* = 5, sphere's permittivity e = 2+0.2J, 
discretization N = 30; for Figure 3 and Figure 4, wavelength X^ = 106, sphere's permittivity £ = 2, discretization 
N = 30; for Figure 5 and Figure 6, wavelength X^ = 104, sphere's permittivity e = 60+60J, discretization N = 20. 
Figure 1, Figure 3, and Figure 5 show the fields in the planes y=.5, x=.4, and x=.5, respectively, all of which cut 
through the target sphere. Figure 2, Figure 4, and Figure 6 show the fields in the planes 2=1, y=l, and z=0, 
respectively, all of which are separated from the target sphere by radius distance. Figure 3 shows that the Mie 
fields are distorted inside the target sphere, which is due to slow convergence of the series expansion of 
exp(ikrcos-ö) in spherical Bessel functions; it is found that the 14-term expansion has a 10"3 error for kr = 10"* 
and only 10" error for kr = 10"3. Therefore, it is difficult to compare the matrix formula with the Mie formula 
for long wavelengths. Nevertheless, from the fact that the field pattern from the matrix formula is much more 
consistent with the symmetry of the target, the matrix formula possibly provides more accurate result. Other than 
that, the results show a near perfect fit for a wide range of wavelengths and dielectric contrasts; the slight devia- 
tions for fields on the target's surface are due to the fact that the matrix method provides fields for a discretized 
sphere, which has a zigzag surface. 

Discrepancy of the fields between the matrix method and the Mie formula may be due to the geometric 
difference between the discretized target and the spherical target, as well as the approximations employed in 
discretizing the integral equation. With this in mind, we analyze the field discrepancies by examining their depen- 
dency on various parameters. Since the incident wave is polarized in the x-direction, we consider only discrepan- 
cies in E„ which dominates the discrepancies in 1EI. The discrepancy AE, is defined as the maximum value of 
the percentage differences between E, computed from the matrix method and F^ from the Mie formula over all 
six faces of the unit cube that encloses the target sphere: 
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Figure I. Field contours in y=0.5 plane for X„=5 from a e=2+.2i sphere 
computed from N=30 discretization (left) and Mie formula (right). 

Figure 2. Field contours in z=1.0 plane for 3^=5 from a e=2+2i sphere 
computed from N=30 discretization (left) and Mie formula (right). 

Figure 3. Field contours in x=0.4 plane for XjsVf from a e=2 sphere 
computed from N=30 discretization (left) and Mie formula (right). 

Figure 4. Field contours in z=1.0 plane for Ä^sdO* from a e=2 sphere 
computed from N=30 discretization fleft) and Mie formula (right). 

Figure S. Field contours in x=0.5 plane for ^=10* from a e=60+60i 
sphere computed from N=20 discretization (left) and Mie formula (right). 

Figure 6. Field contours in z=0 plane for Ä^=10* from a £=6O+60i 
sphere computed from N=20 discretization (left) and Mie formula (right). 

AE,    =    Max 
IE*1* -E*"*! 

1Efl } (28) 

Figure 7 shows the dependency of AE, on wavelength for £ = 2 and discretization of N = 14, plotted against XJAs 
where As = 1/14 is the cell size; the target sphere is represented by 179 cells. It shows that the discrepancy is 
less than 10% for A* > 5As, less than 1% for A» > 15As, and less than 0.1% for A* > 42As. It also shows that 
the discrepancy stays flat at slightly less than .1% even when X^ increases to 140As. This asymptotic discrepancy 
possibly is due to die finite discretization of N = 14; finer discretization may be needed to render a sphere with 
higher precision. Figure 8 shows the field discrepancy as a function of target's dielectric permittivity for N = 16 
and X„ = 5. One sees that the discrepancy is not very sensitive to the target's dielectric permittivity. Also it 
shows that the discrepancy peaks at about 0.5% for £ around 4 and decreases for small £ as well as large £. This 
is rather unexpected since one would expect AE, to increase as £ increases. It is possible that at about £ = 4 there 
is a resonance between wavelength inside the sphere and the sphere's geometry, which produces strong scattering 
and thereby gives higher discrepancy. This hypothesis may be tested by plotting AE, versus £ while keeping 
(R/A)2 = (RAJ2£ constant; it shall show a flat curve if the hypothesis is valid. One may also make a similar plot 
for various values of N and the over-all feature of the curve shall not depend on N. 
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on wavelength for e=2 and N=14 discretization (As=l/14). / uVl J on target's permittivity for \,=5 and N=16 discretization. 

Ali interesting behavior of the field discrepancy 
against grade of discretization is shown in Figure 9 for 7^ 
= 5 and e = 2, which shows an oscillatory behavior as N 
increases. Also plotted is the volume mismatch between 
the discretized target and the real target, which is defined 
as the difference between the volume of the dielectric 
sphere and that of the collection of all cells representing 
the sphere: 

a 10- 

AV  = 4ic , 
IF*, (29) 

D Maximum Field Discrepancy AE, 

o Volume Mismatch AY 

Figure 9. Dependency of field discrepancy on number of discretiza- 
tion and its correlation to mismatch in volume of discretized target, 
for X^=5 and £=2. 

where R is the radius of the dielectric sphere and N,,^ is 
the number of cells that collectively represent the sphere; 
each cell is yet represented by a small sphere of volume 
10. Field discrepancy may be caused by volume mis- 
match as well as shape mismatch between the discretized 
sphere and the real target sphere.   Simply a problem of 
geometric configuration, the degrees of these mismatchings do not vary monotonously with N, as certain sizes 
of cells may pack more uniformly in a sphere. This leads to the oscillatory behavior of the dependency of field 
discrepancy AE, on N. 

6. Results - Inverse Scattering and Dielectric Imaging 

Equation (26) provides the formula for dielectric imaging. To use this formula, the scattering matrix Gy must 
first be inverted. We have found that, while inversion of the dosimetry matrix G„ is easy, Gv may be unstable 
for inversion. If so, some stabilizing technique must be employed. To this end, we employ the singular value 
decomposition technique.25,2' To further stabilize the inversion, the number of scattering fields are almost 
doubled so as to make it an over-determined problem. In essence, we seek the best-fit solution (as opposed to 
exact solution) for almost twice as many equations as the number of unknowns. 

Computer simulation of many highly inhomogeneous models have been performed, four of them are 
presented below. As in field computations, all quantities relating to length, such as wavelength, distance, etc., 
are measured with respect to the size of a cubic target region and thereby treated as dimensionless. The target 
region is discretized into 7x7x7 cells, yielding 8x8x8 lattice points (nodes), with the centers of the cells located 
at x,y,z = 0,1/7,..., 1; thus there are 8x8x8 cells in the target region, with border cells being halfway outside the 
target region. The matrices G„, GY, and G."1 are computed and stored, the same matrices are then used for all 
target models. Scattering fields on the surface of the cube or at about 1/14 distance away from the surface are 
used as input fields. In all cases, the incident field propagates in z-direction and is polarized in x: E° = 
xExp(ikmz), and the wavelength is X^ = 2ir/k„ = 5.  Input and imaged dielectric distributions are shown using 
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a gray scale for each of the slices  z = 0, 1/7, 2/7, ..., 1.  With ^=5, the 7x7x7 discretization yields a 3-D 
resolution of XJ35; images with resolution as high as 1/165 have been obtained. 

In the first model, three small spheres are placed in three different cells in the z=4/7 section. Each sphere 
has a permittivity of e = 10+3i and radius r=.05, and the background medium is E„ = 80+3i, giving a volume- 
averaged permittivity of 67+3(. Scattering fields approximated by first order linear superposition of the Mie 
fields from each of the three spheres are used as "measured" fields; errors in this approximation represent possible 
errors when actual measurements are taken. Figure 10 shows the eight slices of reconstructed real part of the 
dielectric permittivity of the target region, with z = 0,1/7,2/7 and 3/7 (left to right) in the first row of the figure 
and the rest in the second row. In the second model, of which similar image slices are shown in Figure 11, the 
same three spheres are placed in different planes. In both cases, the reconstructed image data consistently give 
e = 64+3; in the cells that contain a sphere, which is within 4% of the average value, and (80±.l)+(3±.03)! in 
cells that do not contain a sphere. Note that, for cells that do not contain a sphere, the gray-scale figures appear 
to show more contrast than the actual image data because e=80 is used as a dividing point of gray levels; reading 
from the image data, cells with lighter shade generally have permittivity in the range of 79.7-80.0, and those with 
darker shade are in the range of 80.0-80.3. 

E 

'*.   *     __   L ._ 
Figure 10. Image of Re(e) of three spheres in z=4/7 plane with radius 
0.05 and permittivity e=10+3i in a background medium of C=80+3J. 
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Figur« 11.   Lnage of Re(e) of three spheres in three different z-slices 
with radius 0.05 and permittivity e=10f3i in a background of e«=80+3/. 

In the third model, each cell in the target is given a randomly generated Teal value of S = (1 - e/ej. The 
scattering fields are computed using the iteration method described in Section 5. Figure 12 shows both input and 
imaged S for the eight slices. The first row of the figure gives the z = 0 (left pair) and 1/7 (right pair) slices, and 
so forth; for each pair, the input S is on the left and imaged S on the right In the fourth model, the target region 
is given a discretized double Gaussian distribution for both real and imaginary parts of S, peaks at a = (.5 5 S) 
and b = (.7.7.7): 

S; = -(l+O-tExpMOIyj-al2) + Exp(-10lyrbl2)] (30) 

where y,- is the center of the /th cell. Scattering fields are computed in the same way as the third model. 
Figure 13 shows both input and imaged Re(S) and Im(S) for the eight slices, with the left half of figure giving 
Re(S) and the right half giving Im(S); the slice arrangement for each half is the same as in Figure 12 described 
above. Both models show exceptional image quality. 

Figure 12. The z-slices of input and imaged 
S = (1-e/O of a random dielectric distribution. 

Figure 13.  The z-slices of input and imaged Re(S) (left half) and Im(S) (right half) of a double 
Gaussian dielectric distribution; in each slice, input (left) and image (right) are paired side-by-side. 
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7. Discussion and Conclusion 

In the matrix formulation, the field in each cell is a 3-D vector and S^, is a 3x3 diagonal sub-matrix, of which 
each element is the relative permittivity in the corresponding polarization. Therefore the imaging formula gives 
not only real and imaginary parts of dielectric permittivity, but also its anisotropic components. Owing to its 
quantitative nature, imaging of objects much smaller than the discretized cells is possible, as it is demonstrated 
in the imaging results (see discussion on Figure 10 and Figure 12 in Section 6.) Note also that the formulation 
is scalable with respect to $/£„, and XJL, where L is the characteristic length of the target region. Thus, given 
a fixed discretization and fixed locations of measurements, the image quality is unchanged as long as £/£„, and 
XJL are unchanged. As to computation time, for 8x8x8 cells, it takes about 900 CPU seconds on a Cray C-90, 
most of which is for inverting Gv. However, only one set of matrices is needed for all target models, and each 
image reconstruction time takes less than a second. 

On dosimetry and scattering computation, we like to discuss further the field discrepancy between matrix 
method and the Mie formula, keeping in mind that most part of the discrepancy is due to different target rather 
than errors in the matrix formula. From the strong correlation between field discrepancy and volume mismatch 
as shown in Figure 9, it appears that volume mismatch may contribute substantially to field discrepancy. We have 
analyzed this subject by inspecting the geometry of the 
discretized sphere as represented by a collection of cells, 
for the cases of N = 14 (179 cells) and N = 16 (257 cells), 
as shown in Figure 14. N = 16 has higher volume mis- 
match, with AV = 0.003384 as compared to 0.000831 for 
N = 14. It gives higher field discrepancy in spite of hav- 
ing finer discretization and being more spherically shaped. 
We thus conclude that the field discrepancies are mostly 
due to the geometric difference between the discretized 
sphere and the perfect sphere, and that volume mismatch 
has more effect on field accuracy than shape mismatch 
does, and, to some extent, also has more effect on field     Kgure 14.  Collection of spherical cells th« represent the discretized 
flcrnrarv than the riporpi> nf rfiwTPtiyarinn r1m>« sPhere °f fe2s for N=14 O1*) "°li N~ls ("S1*-   'n,e »ohime accuracy man me degree oi tuscrenzation aoes. mismatch »v is .000831 for N=M and .003384 for N=I«. 

One may then expect that the field discrepancy may be reduced by renormalizing the volume of the 
discretized sphere. In deriving (20)-(22) for the G matrices, each cubic cell is replaced by a spherical cell of 
equal volume. The volume renormalization process is to readjust the volume of the spherical cells so that the 
collection of cells that represent the discretized sphere has the same volume as the real sphere. We have 
performed volume renormalization and found that it does reduce field discrepancy, but eliminates neither the 
discrepancy completely nor the oscillatory behavior; furthermore, the locations of maxima and minima in the AE, 
versus N plot are changed by volume renormalization. This implies that both shape mismatching and volume 
mismatching contribute to the oscillatory behavior. The change in the locations of maxima and minima following 
volume renormalization is due to the fact that volume and shape mismatching are not synchronous in terms of 
N. For the cases of N = 14 and N = 16, the latter gives higher AE, in spite of finer discretization and less shape 
mismatching, because it has higher volume mismatch. Upon volume renormalization in both cases, N = 16 yields 
lower AE, owing to its better shape matching as well as finer discretization. 

Another approach to reduce field discrepancy may be to smooth the border of the discretized sphere. 
Without a method of border smoothing, we have performed a dielectric-border smoothing by half the permittivity 
for border cells, but it failed to reduce the oscillatory dependency of AE, on N. It appears that, to reduce shape 
mismatching, geometric smoothing instead of dielectric smoothing is needed. 

We have developed a matrix formulation for three-dimensional quantitative dielectric imaging and for compu- 
tation of vector fields inside and outside any arbitrary three-dimensional dielectric object. The formulation pro- 
vides accurate fields with a viable degree of discretization and for a wide range of frequencies and dielectric con- 
trasts. It also makes possible high resolution quantitative dielectric imaging, which will find many applications, 
particularly medical applications.20,21-2* 

422 



Acknowledgement 

Computer simulations were performed by Dr. Hasan Oguz of Potomac Research, Inc. Computer time for 
this work has been provided by the Department of Energy Office of Energy Management through NERSC at Law- 
rence Livermore Laboratory, and by NASA through the Center for Computational Sciences at Goddard Space 
Flight Center. The authors also wish to express their appreciation to NERSC Consultant Group for their support. 

References 

1. C. Polk and E. Postow, eds., CRC Handbook of Biological Effects of Electromagnetic Fields, CRC Press, 1986. 
2. M. Bom and E. Wolf, Principles of Optics, pp. 633-656, Macmillan, 1964. 
3. E. Argence and T. Kahan, Theory of Waveguides and Cavity Resonators, pp. 181-187, Hart Publishing, 1967. 
4. J. B. Keller, "Accuracy and validity of the Bom and Rytov approximations," /. Opt. Soc. Am. 59,1003-1004 (1969). 
5. J. H. Richmond, "Scattering by a Dielectric Cylinder of Arbitrary Cross-Section," IEEE Trans. Ant. Prop. 13, 

pp. 334-341 (1965). 
6. J. H. Richmond, "TE-Wave Scattering by a Dielectric Cylinder of Arbitrary Cross Section Shape," IEEE Trans. Ant. 

Prop. 14, pp. 460-464 (1966). 
7. R. H. Harrington, Field Computations by Moments Methods, McGraw-Hill, New York, 1968. 
8. D. E. Livesay and K.-M Chen, "Electromagnetic Fields Induced Inside Arbitrarily Shaped Biological Bodies," IEEE 

Trans. Micr. Th. Tech. 22, pp. 1273-1280 (1974). 
9. H. Massoudi, C. H. Durney, and M F. Iskander, "Limitations of the Cubical Block Model of Men in Calculating SAR 

Distributions," IEEE Trans. Micr. Th. Tech. 32, pp. 746-752 (1984). 
10. C. T. Tsai, H Massoudi, C. H Dumey, and M F. Iskander, "A Procedure for Calculating Fields Inside Arbitrarily 

Shaped, Inhomogeneous Dielectric Bodies Using Linear Basis Functions with the Moment Method," IEEE Trans. Micr. 
Th. Tech. 34, pp. 1131-1139 (1986). 

11. M. A. Morgan and K. K. Mei, "Finite-Element Computation of Scattering by Inhomogeneous Penetrable Bodies of 
Revolution," TKRK Trans. Antenna and Propagation AP-27, pp. 202-214 (1979). 

12. S. Ratnajeevan H Hoole, "An Integrated System for the Synthesis of Coated Waveguides from Specified Attenuation," 
IEEE Trans. Microwave Theory Tech. MTT-40, pp. 1564-1571 (1992). 

13. K. S. Yee, "Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropie 
Media," IEEE Trans. Ant. Prop. 14, pp. 302-307 (1966). 

14. A. Taflove and M. E. Brodwin, "Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the 
Time-Dependent Maxwell's Equations," IEEE Trans. Micr. Th. Tech. 23, pp.623-630 (1975). 

15. D. T. Borup, Dennis M Sullivan, and O. P. Gandhi, "Comparison of the EFT Conjugate Gradient Method and the 
Finite-Difference Time-Domain Method for the 2-D Absorption Problem," IEEE Trans. Micr. Th. Tech. 35, pp.383-395 
(1987). 

16. P. C. Cherry and M. F. Iskander, "FDTD Analysis of Power Deposition Patterns of an Array of Interstitial Antennas 
for Use in Microwave Hyperthermia," IEEE Trans. Micr. Th. Tech. 40, pp. 1692-1700 (1992). 

17. T. C. Guo and W. W. Guo, "Scattering of Vector Waves by Arbitrary Three-Dimensional Dielectric Objects," 
Proceedings of the 1987 International Microwave Symposium, pp. 307-312, Rio de Janeiro, Brazil, July 1987, JEEE 
Publication 87TH0183-4, Library of Congress No. 87-80089. 

18. T. C. Guo and W. W. Guo, "Computation of Electromagnetic Wave Scattering from an Arbitrary Three-Dimensional 
Inhomogeneous Dielectric Object," IEEE Trans. Magn. 25, pp. 2872-2874 (1989), and Proceedings of the Third 
Biennial IEEE Conf. Electromagnetic Field Computation, Washington, DC, Dec. 1988. 

19. T. C. Guo and W. W. Guo, "Three-Dimensional Dielectric Imaging by Inverse Scattering with Resolution Unlimited 
by Wavelength," Annual Report of the Conf. on Electrical Insulation and Dielectric Phenomena, pp. 65-74, Leesburg, 
Virginia, October 1989, IEEE Publication 89CH2773-0, Library of Congress No. 79-649806. 

20. L. E. Larsen, J. H Jacobi, W. W. Guo, T. C. Guo, and A. C. Kak, "Microwave Imaging Systems for Medical 
Diagnostic Applications," Proc. 6th Annual Conf. IEEE Eng. in Medicine and Biology Soc. - Frontiers Eng. and Comp. 
in Health Care, pp. 532-539, ed. John L. Semmlow and Walter Welkowitz, Los Angeles, September 1984, IEEE 
Publication 84CH2058-6, Library of Congress No. 84-81384. 

21. L. E. Larsen and J. H Jacobi, eds., Medical Applications of Microwave Imaging, IEEE Press, New York, 1986. 
22. T. C. Guo and W. W. Guo, "Physics of Image Formation by Microwave Scattering," SPIE Proceedings 767, pp. 30-39, 

SPIE Press, Bellingham, WA, February 1987. 
23. T. C. Guo, W. W. Guo, and L. E. Larsen, "Recent Development in Microwave Medical Imagery - Phase and 

Amplitude Conjugations and the Inverse Scattering Theorem," in Medical Applications of Microwave Imaging, ed. 
L. E. Larsen and J. H Jacobi, pp. 167-183, IEEE Press, 1986. 

24. J.-C. Bolomey, "Recent European Developments in Active Microwave Imaging for Industrial, Scientific, and Medical 
Applications," IEEE Trans. Micr. Th. Tech. 37, pp. 2109-2117 (1989). 

25. G. H. Golub and C. F. Van Loan, Matrix Computations, Ch. 6, The Johns Hopkins University Press, Baltimore, 1983. 
26. G. E. Forsythe, M. A. Malcolm, and C. D. Moler, Computer Methods for Mathematical Computation, p. 41, Prentice- 

Hall, 1977. 

423 



Explanation of Biological Effects of 
Low-intensity Electric, Magnetic and 
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This paper proposes concepts to explain biological effects created by interactions of low-intensity 

electromagnetic fields with cellular systems. Based on externally driven nonlinear oscillations, 

frequency and intensity dependent responses of the perturbed systems are analyzed with the 

methods of nonlinear dynamics. A recently developed model for cytoplasmic Ca2+-oscillations 

is presented and results for a combined chemical and electromagnetic stimulus interacting with 

the signal transduction pathway are discussed. 

1. Introduction 

Oscillating phenomena play a dominant role in the creation, stabilization and 
maintenance of special biological order and function. The systems involved range 
from the molecular to the macroscopic level, the corresponding periods are from 
below the sub-//sec level to hours, days and even years. Oscillation dynamics 
define biological clock functions and are of essential importance in inter- and 
intracellular signal transmission and in cellular differentiation. The functional 
complexity of biological systems and subsystems necessitates the application of 
macroscopic theories for their description. Under certain far from equilibrium 
conditions living systems can achieve multiple steady states, quasiperiodic states 
and irregular states, in addition to the regularly oscillating states. Nonlinearity 
and cooperativity are necessary prerequisites for these states to occur. 

Nonlinear dynamics impose both, spatio-temporal structures and spatio- 
temporal constraints on the system. Nonlinear equations govern the spatio- 
temporal configurations. Thus the control of and the response to a certain 
internal or external stimulus are a manifestation of the cooperative dynamics 
within the system. Well-known examples are: (1) cyclic AMP and glycolytic 
oscillations, (2) the occurrence of cytosolic Ca2+-oscillations after the onset of 
a certain signal transduction mechanism by a chemical and/or an electromagne- 
tic stimulus, (3) the onset of trains of action potentials ("nerve pulses") and of 
oscillations of the electromagnetic potential in the brain ("brain waves", EEG). 

The interaction of electric and magnetic fields (e.g. ELF) and of electromagne- 
tic fields (e.g. microwaves) with biological systems leads to responses or effects, 
which are directly related to (1) absorption of field energy (thermal effects), (2) 
classical effects (e.g. field- induced forces) and (3) quantum effects (e.g. breaking 
of intermolecular bonds or intramolecular changes). In addition interaction me- 
chanisms of fields with cooperative or coherent states (i.e. nonequilibrium states) 
have to be considered. 
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In the present contribution only those interaction mechanisms are discussed, 
where (1) changes of the temperature are not significant, (2) no thermal thresholds 
exist and (3) no direct processes determine the whole sequence of events. Only 
those specific processes where nonlinear dynamics dominate, are considered. 

Since many years internally and externally perturbed oscillating states on 
a cellular and macroscopic level have been investigated. The combined inter- 
action of both the internal frequencies and amplitudes of the active oscillators 
with the frequencies and amplitudes of the stimuli offers a great variability of 
the system's response. Frequency regulated processes and amplitude dependent 
processes compete and cooperate with one another. To get an insight into the 
fundamental differences exhibited by nonlinear systems in relation to the conven- 
tional linear ones, a series of different nonlinear oscillators is discussed. When 
perturbed from the outside, sub- and superharmonic resonances, complex peri- 
odic, quasiperiodic and chaotic states result. This inherent nonlinear behaviour 
leads to an extreme frequency and intensity sensitivity, including extreme low 
thresholds and windows. Frequency and amplitude modulations create additio- 
nal oscillatory specificities in the nonlinear system [1,2]. 

Meanwhile experimental results exist which show that in certain situations 
nonthermal interactions of electromagnetic fields with cellular systems occur (see 
refs. [3,4] for a review). Important experimental examples are (1) frequency- and 
intensity-dependent cellular response to microwave radiation [5], (2) extremely- 
low-frequency magnetic field effects on Ca2+-mediated signal transduction events 
in lymphocytes [6]. In the first part some results for externally driven nonli- 
near self-excited oscillators are presented. In the second part a detailed and 
complicated model is discussed which describes a signal pathway for a concrete 
biological situation: onset of cytoplasmic Ca2+-oscillations. The whole pathway 
is discussed, i.e. from the external signal to the cellular response via transduc- 
tion, amplification and expresson. Special emphasis is given to those steps in the 
pathway, where extremely weak electric, magnetic or electromagnetic fields can 
interact. 

2. Nonlinear Oscillations 

Oscillating nonlinear systems are either of passive or active type. Whereas passive 
nonlinear systems are in a stable, nonoscillating steady state when no external 
drive is present, an active system is oscillating even without any external or 
internal stimulus. 

This oscillation of limit cycle type results from competing internal processes 
of energy input and energy dissipation, where at least one of these processes 
has to be nonlinear. The limit cycle oscillation represents a specific state of 
order and function; a necessary requirement for their creation, stabilization and 
maintenance are nonlinear dynamic processes. If such an oscillation exists, e.g. 
as a certain, biological oscillation or rhythmic state, no fast dissipation of energy 
into nonoscillating degrees of freedom occurs. Thus a specific state gets stabilized 
far from equilibrium, consequently no thermalization destroys this state within 
a relevant period of time.   In addition, the structurally stable nonlinear states 
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are influenced by internal and external fluctuations (stochastic forces). In this 
contribution, main emphasis lies on the influence of external static and periodic 
signals (deterministic forces). 

The combined interaction of stochastic and regular signals with nonlinear 
oscillations or rhythmic states will not be discussed. However, it is well-known 
that weak, noisy internal or external signals can significantly amplify very weak 
external periodic signals. These regular signals extract a coherent component 
from the noisy or fluctuating background. Such a situation is exhibited by bi- and 
multistable systems (lasers, nonlinear optics) for both, additive and multiplicative 
noise. 

Periodically driven limit cycles offer a rich variety of behaviour. One has the 
interaction of at least two frequencies, the internal limit cycle frequency and the 
frequency of the external stimulus. Depending on both, the frequency and the 
amplitude of the external drive, complex periodic, quasiperiodic and chaotic, i.e. 
irregular states are exhibited. Some of these results are briefly presented. Fig. 1 
shows the possible stable states (attractors) of nonlinear systems: static attractors 
(fixed points), periodic attractors (limit cycles), quasiperiodic attractors (motion 
on a torus) and strange attractors (chaotic motion). 
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Fig. 1: stable states (attractors). Oscillation diagrams (amplitude x versus time 
t) and phase plane diagrams (x versus x) for fixed point, periodic, quasi- 
periodic and chaotic states. 

The stable steady state responses of limit cycles are given in Figs. 2 and 
3, where the nonlinear resonances for different external field parameters are dis- 
played. The first model is a generalized von der Pol oscillator. Its equation of 
motion reads: 

X + n{-\ + aX2 - ßX4 + jX6)X + X = Ft cos(o;i) (1) 

In Fig. 2 the superharmonic (lhs) and the subharmonic (rhs) resonances exhibit 
a rich periodic behaviour.   Between the resonance horns the driven oscillation 
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is quasiperiodic.   In regions where the periodic states start to overlap, chaotic 
oscillations can occur. 
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Fig. 2: resonances as a function of the external field parameters (u: frequency, Fi: 
field strength), m/n is a specific type of a winding number, it gives the ratio 
of internal to external oscillations per period n. 

From a biological point of view the combined interaction of static and peri- 
odic fields is important. This can be demonstrated with the following nonlinear 
oscillator, the coherent oscillation model [1]. The equations read: 

X = 7X + aAXY + (cV2*2 - <P)X + F0 + F1 cos(u;i) (2) 

Y = -ßY - aAXY (3) 

Some nonlinear resonances are shown in Fig. 3 for F0 = 0. 

o   fTl'i.c    6        "        Ä       20     " 

Fig. 3: resonances as a function of the external parameters w and Fi for model 
eqns. (2)-(3). On the rhs the main resonances (1/1) are given for different 
F0 values, F0 increases from F0 = 0 to Fa = 200 (circled numbers 1 -> 5). 
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Some Fo-values offer types of motion, which are completely new and unex- 
pected [8]. Fig. 4 gives an example. For F0 = -40 (depolarizing case) the 1/1, 
1/2 and 1/3-resonance (vid. Fig. 3) exhibit "side resonances", which overlap and 
proceed like "channels" to smaller Fx and UJ values. Contrary to what one would 
expect, the amplitudes of the oscillations increase strongly towards the end of 
the "channels" i.e. for decreasing stimulus. A detailed analysis is required to 
understand the bifurcations related to these additional "side resonances". Fig. 
4 shows the dependence of the subharmonic 1/3-resonance as a function of FQ. 
With decreasing F0, the closed resonance horn gets bigger, the overlapping zone 
with the 1/1-resonance increases. 

Fig. 4: resonances with "side channels" for model eqns. (2)-(3). Ihs: F0 = —40; 
rhs: 1/3-resonance for 8 different F0-values (straight and broken line: lower 
boundary of the 1/1 resonances including quasiperiodic-periodic coexisting 
regions). 

Eqns. (l)-(3) and Fig. (2)-(4) are typical examples of externally driven limit 
cycle oscillators. Sharp resonances and quasiperiodic and chaotic states allow for 
an extreme sensitivity to external influences. The response includes frequency 
and intensity windows and very large transients (for details see [1,2,7]). From the 
point of view of nonlinear dynamics low-intensity field effects with an extreme 
frequency dependence are conclusive. In addition, responses with increasing or 
decreasing strength (positive or negative effects) can occur for nearly the same 
situation. This is completely impossible for linear dynamics and for thermally 
stimulated effects. 

From the point of view of irradiated biological systems, the above results 
are very exciting. But important questions remain: 1. location and type of 
the relevant biological oscillator, 2. what are possible interaction mechnisms 
between oscillating states in the active biosystem and external electromagnetic 
fields; these problems are discussed in the next chapter, first results are given. 
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3. Model for Receptor-controlled Cytosolic Calcium Oscillations 

The model describes the signal pathway which leads to cytosolic calcium oscil- 
lations. These oscillations are induced by a single positive feedback loop on the 
basis of inositol (1,4)5) triphosphate. In this contribution only the resulting set 
of equations is given (vid. ref. [8] for details). It should be stressed that Ca2+- 
oscillations (intra-and intercellular) play a dominant role on the cellular level. 
Starting from an external signal (chemical/hormonal and/or electromagnetical) 
as a first messenger a whole sequence of reception, transduction and amplifica- 
tion prosesses leads to the cellular response. The following scheme displays the 
essential steps: 

S external signal, R receptor, G G-protein, PLC phospholipase C, PIP2 and IP3 

inositolphosphates, DG diacylglycerol. Intracellular concentrations for IP3, Ca2+ 

and Ca2+ in Ca-store are Q,Z, Y; V{ are nonlinear fluxes. 
For this conceptual model the following set of equations can be derived [8]: 

dt T K'H + ß< Kr + 1 - T 
— KJ r 

dt 
= o- $ (r, z) - KQ Q 

dY 
dt 

v2{Z) -vz{Q,Y) - kFY 

dZ^ 
dt 

= -v2(Z) -r P3{Q,Y) + kFY + u0 + Vl(Q) - kZ 

(4) 

(5) 

(6) 

(7) 

<r$(r,Z) = a 
IHKP

C + (MI +P)Z> 
fi2Kl + (ti2 + P)Zr 

(8) 

429 



MQ) = VMI 

MZ) = VM2 

u3{Q,Y) = VM 

Q9 

(KM + <?)« 
Zn 

K£ + Zn 

Qm 

(9) 

(10) 

(11) (KR + Q)m 

When the cell is stimulated, different oscillations result, depending on the 
specific choice of the parameters determining the internal calcium fluxes. Fig. 5a 
shows four different forms, all of which have been found in experiments. If in 
addition to the chemical stimulus, a periodic external field is applied, a variety 
of responses is possible. In Fig. 5b an example is given. In this case the set 
of equations has been modified to allow for certain interaction processes of the 
external field with ion channels in the membrane. The modification is based on 
the additional interaction of a coherent membrane oscillator with the calcium 
oscillation and the stimulus. 
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Fig. 5: oscillation diagrams. Internal Ca2+-oscillation Z as a function of time, 
Lhs: stimulus after 10 sec., no field; rhs: modified model, no field (top), 
field (bottom). 

For certain parameter regions, bistable situations occur, leading to switching 
processes between low- and high-amplitude oscillations. In the coexistence or 
hysteresis region the system can be influenced by small fluctuations. An inve- 
stigation with multiplicative noise has shown that the oscillations are much less 
sensitive to noise than one would expect, only small shifts in the bifurcations are 
created. 

The question where electric, magnetic or electromagnetic fields can interact is 
open. Typical examples of possible processes are [4] (1) changes in the G-protein 
and ion-channel conformation by the E-component of ELF-fields, (2) changes in 
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free radical reactions, triplet-singulet interchanges and Zeemansplitting by the 
ELF- and static B-field component, (3) changes in reaction rates and reaction 
kinetics and paramagnetic resonances in the RW- and MW region. 

A detailed experimental and theoretical investigation is required to find the 
relevant interaction mechanisms. Besides the conformational, ion- and spin- 
mediated electromagnetic effects coherent macroscopic nonthermal states have 
to be considered. Finally, the temporal dynamics offer no complete descrip- 
tion. The spatio-temporal behaviour and related structures, e.g. the formation 
of calcium waves, have to be included. 

4. Conclusions 

Since neither the primary nor the consequental steps are known for a specific cel- 
lular system by which low level, electric, magnetic and electromagnetic fields can 
interact with biological systems all possible primary interaction mechanisms have 
to be investigated. The models have to take into account the possibility of cellu- 
lar transduction and amplification mechanisms and their alterations by external 
additional stimuli. Nonthermal states and nonlinear dynamics are indispensable 
for an understanding of the observed specific cellular effects. 

The results of both the general concept and detailed model calculations and a 
series of highly sophisticated experiments lead to the conclusions: (1) for specific 
nonlinear processes in biosystems the kT-argument is meaningless, nonthermal 
effects can exist, (2) no contradiction to physical laws results, since nonlinear 
effects can - under certain conditions and restrictions - occur below the thresholds 
of linear theory. 
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Calculation of absorbed power density in the human arm due to induced 
currents at 1-30 MHz 

PR Wainwright, National Radiological Protection Board, Chilton, Didcot, 
Oxfordshire 0X11 ORQ, UK. 

Abstract 

An anatomically realistic numerical model of the lower 
human arm has been constructed for the computation of current 
density and specific absorption rate (SAR) which result from a 
given current received by contact with a metal object in a 
radiofrequency electromagnetic field. 

This study treats frequencies in the range 1-30 MHz. Current 
density and SAR distributions were obtained using a finite-element 
solution of the quasistatic field equation. The distribution of SAR 
is presented for each of the major tissues in the arm to illustrate the 
nature of the 'hot-spot' which occurs at the wrist. 

I. Introduction 

Previous work by several authors [1,2,3,4] has highlighted the 
possibility of high local current densities occurring in the ankle when the human 
body acts as an antenna in a vertically polarized £-field near its resonance 
frequency (about 40 MHz for a well-grounded person). 

A similarly high absorption rate will be expected in the wrist if current 
is received by the hand, for example by contact with a metal object acting as an 
antenna in a radiofrequency electromagnetic field. In this paper an anatomically 
realistic mathematical model of the arm is used to calculate the distribution of 
current and SAR to be expected in the wrist under these conditions. 

II. The Mathematical Model 

In order to calculate the current density and absorbed power distributions 
in the lower arm the quasistatic approximation to Maxwell's equations has been 
used. It is known [2] that the resonant frequency for a grounded man in a 
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vertical E-field is about 40 MHz, at which point the vertical extent of the body 
contains one quarter-wavelength; even at this frequency the length of the lower 
arm is considerably smaller than the wavelength of the radiation, and under 
these circumstances the quasistatic approximation is known to be valid. This 
means that the electric field can be derived from an electrostatic potential (j) 
satisfying the partial differential equation 

V.{(o+iooe)V<|>} = 0 d) 

where c is the conductivity of the tissue, e is the permittivity, and co the circular 
frequency of the current. The current density / is related to the gradient of the 
potential by 

J = (c+iax)E = -(o+i(oe)V<t> (2) 

and its normal component is required to be continuous at tissue interfaces. The 
specific absorption rate is then given by 

lv<j>.aV<]) (3) 
P 

The area of the hand which is in contact with the metallic object will be at a 
uniform potential, so the homogeneous Dirichlet condition § = 0 is applied on 
that portion of the boundary. Near the proximal boundary of the modelled region 
(just below the elbow) the cross-sectional configuration of the arm changes quite 
slowly with height, and therefore the equipotential surfaces are approximately 
flat and oriented at right angles to the bones of the arm. Using this property the 
known current input to the model can distributed over the proximal boundary 
of the model to provide a Cauchy condition on the current density J. On the 
remaining parts of the boundary there is no normal current flow, so the normal 
derivative of <]> vanishes. 

In order to solve the above equations and boundary conditions, the 
Galerkin finite element (FE) method has been used. By expanding the 

433 



approximate solution <|) in terms of elementary basis functions at(x,y,z) 

N 

§(x,y,z) = Y, §P-{x,y,z) (4) 

and demanding that the residual of the partial differential equation (1) be 
orthogonal in L -norm to each of the basis functions oc;, the linear system 

EM = 6i (5) 

is obtained, where the coefficient matrix A and the vector right hand side b are 
given by 

Aj; = fVa,-.oVa.dV 
J (6) 

bi = ~fa dS 

In this project, linear tetrahedral elements were used. The spatial region under 
consideration is approximated by a mesh of tetrahedral elements (not necessarily 
regular in shape), whose vertices are called nodes. To the node numbered i there 
corresponds a basis function a;- with the properties: 

(1) a,- is a linear function of the coordinates on each element; 
(2) cc, is continuous at the interface of any two adjacent elements; 
(3) a,- = 1 at the node numbered i; 
(4) cc; vanishes at all other nodes. 

Using this basis, the unknown fy is just the electrostatic potential at the node i. 

The Cauchy boundary conditions are already incorporated in the right- 
hand side of the linear system (5). The Dirichlet condition at the earthed part of 
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the surface is imposed subsequently by the following device: the diagonal matrix 
element A^ corresponding to the node i to be earthed is multiplied by a large 
scale factor (1010) and the corresponding right-hand side element bi is replaced 
by zero. When solving the linear system this will ensure that fy = 0. 

III. Construction of the Mesh 

The region of interest was bounded by the surface of the arm together 
with cutting planes at the metacarpophalangeal joint (upper joint of the thumb), 
and at about one centimetre below the elbow. The remainder of the hand was 
not modelled, since the current distribution there depends critically on the 
geometry of the contact area. 

The finite element mesh contains 6784 nodes and 33637 tetrahedral 
elements. The model contains four kinds of tissue: 

(1) a composite skin/fat outer layer 
(2) other fat and connective tissue 
(3) muscle 
(4) bone 

In the region considered there is no current flow through the external surfaces 
of the model, and therefore the current will be very nearly parallel to the skin/fat 
interface. It is therefore appropriate to treat the skin and subcutaneous fat as a 
pair of parallel resistances, and an effective conductivity for the composite outer 
layer can be calculated on this basis. 

IV. Results 

Calculations of SAR and current density have been performed for a 
current of 100 mA at frequencies 1, 10, 20 and 30 MHz. Several averaging 
procedures have been employed to present the data. Figures 1 to 3 present the 
SAR for 10 MHz radiation, averaged over the elements of skin, muscle and 
bone in each layer of the model. The layer position is measured from the distal 
end of the model (metacarpophalangeal joint). In the neighbourhood of the wrist 
muscles from the hand and of the arm both terminate, and near their ends the 
current is therefore channelled into a narrowing region surrounded by relatively 
insulating connective tissue. The graphs clearly show the effects of current 
concentration at the wrist in all tissues, but particularly so in the muscle. In a 
few slices of the wrist the amount of muscle present was so low that it could not 
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be accurately modelled; therefore here (at about the 6.0 cm level) no results 
were obtained. However, the amount of tissue in the affected layers is so small 
(no more than a few grams) that excessive power deposited here will rapidly and 
efficiently be removed by thermal conduction and blood perfusion, so this 
omission is not significant in thermal terms. Figure 4 shows the SAR averaged 
over all tissues in each layer. 

The two prominent peaks which occur in the bone SAR (Figure 3) seem 
to be associated with the points at which major muscles terminate, depositing 
their current in the bone and connective tissues. The higher peak (2.5 W/kg) 
occurs at the terminus of the pronator quadratus muscle; the lower peak 
(2 W/kg) is located at the point where in the model the bones of the hand have 
been fused together, terminating the first dorsal interosseous muscle. 

V. Outlook 

Future work is planned to integrate the electromagnetic model with a 
thermal model of the arm and to calculate the resultant temperature distributions. 
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ABSTRACT 

The transmission line modeling (TLM) method and the 

marching-on-in-time (MOT) technique are used to predict transient 

current densities on scattering bodies due to an incident Gaussian plane 

wave. The results from these two methods are compared and analyzed. 

Example calculations are presented for two-dimensional and 

three-dimensional geometries. 

I. INTRODUCTION 

Direct time-domain analysis of various scattering bodies is 

accomplished using the transmission line modeling (TLM) method and the 

marching-on-in-time (MOT) method. A simulated Gaussian plane wave is 

used to induce currents on the scattering bodies, and the TLM and MOM 

results are compared. The TLM method is an iterative numerical 

time-domain technique based on the differential form of Maxwell's 

equations, while the MOT is based on the integral equation solution and 

uses the well known method of moments (MOM). A comparison between these 

two techniques will help point out the relative strengths and weaknesses 

of each method. 

In the next section, a brief overview of the TLM method is 

provided. In section III, an outline of MOT is provided. In section IV, 

transient current densities, as predicted by TLM and MOT, are compared 

and analyzed. Finally, in section V, appropriate conclusions are 

summarized. 
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II. TRANSMISSION LINE MODELING (TLM) METHOD 

The TLM method, an iterative numerical time-domain technique, is 

based on the equivalence between voltages, currents, and lumped circuit 

elements, and electric fields, magnetic fields, and constitutive 

material parameters, respectively, in some region of space [1]. These 

equivalencies are obtained by relating the differential equations 

describing a small length of transmission line to the differential 

Maxwell's equations describing a block of space. 

Three dimensional formulations of TLM include the expanded 

node [2], the condensed node [3], and the symmetrical condensed 

node [4]. For this work, the code GTEC (which utilizes the symmetrical 

condensed node) developed by German [5] is used. The theory behind the 

symmetrical condensed TLM method is presented in [4]. 

III. MARCHING-ON-IN-TIME (MOT) METHOD 

The marching-on-in-time (MOT) technique is an iterative technique 

based on the method of moments (MOM). In this work, the MOT equation is 

obtained by solving the electric field integral equation (EFIE) directly 

in the time domain and approximating the conducting body with planar 

triangular patches. Crucial to the development of an accurate solution 

is the usage of specially developed basis functions in the MOM solution. 

One disadvantage of the MOT technique is the occurrence of 

late-time oscillations. However, by employing specially designed 

averaging techniques [7,8] one can effectively eliminate this problem. 

For more details refer [6-8]. 

IV. NUMERICAL RESULTS 

In this work, an incident Gaussian plane wave was used and of the 

form 

2 
Elnc(r,t) = E   e"T 

o 

where 
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[t - t - (r-k)/cl o 

Note that E is the incident field, E is the polarization vector 

with unit magnitude, k is the unit vector in the direction of 

propagation of the incident field, <r is the standard deviation, 

E • k = 0, r is a position vector relative to the origin, c is the 

velocity of propagation in the external medium, and t is a time delay 

which represents the time at which the pulse peaks at the origin. The 

scattering bodies include a two-dimensional strip and a square cylinder 

(infinite in the z-direction), and a three-dimensional cube, plate, and 

parallel plate structure. A Sparc-2 SUN Workstation was used for all 

numerical calculations. 

Figure 1 shows the induced transient current on an infinitely long 

1.0m width strip illuminated by a transverse magnetic (TM) Gaussian 

plane wave (<r = 1.25ns, t = 7.50ns) as predicted by TLM and MOT. To 

generate the transient currents, the TLM method (with one symmetry 

boundary) uses a problem space of 30 x 35 x 1 nodes, and implements 800 

time steps (iterations). For the MOT, the strip was divided into 9 equal 

segments. The cpu time for both cases is similar. As is evident from the 

figure, we see good early time agreement, which, however, deviates in 

the late time. The currents predicted by the TLM method decay much 

faster than the MOT. Also, since the MOT has been validated using 

inverse discrete Fourier transform techniques, it is assumed that it's 

solution is more accurate. Using a larger problem space, the TLM results 

appear to approach the MOT results but the improvements are not 

substantial. 

Figure 2 shows the transient current on an infinite (in the 

z-direction) square cylinder, 1.0m to a side, illuminated by a TM 

Gaussian plane wave (cr = 1.25 x 10" , t = 7.5ns) as predicted by TLM 

and MOT. To generate the transient currents, the TLM method (with one 

symmetry boundary) uses a problem space of 60 x 40 x 1 nodes, implements 

1000 iterations, and requires 2min 31sec of cpu time. For the MOT 

solution, the cylinder was approximated by 76 linear segments, and the 

cpu  run  time  was   approximately  45min.   Again  in  Figure  2,   both  results 
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exhibit  good early time  agreement  but  a faster  decay  in  the  late time  by 

the TLM method. 

Next, we consider the three-dimensional problems. For all cases, 

the incident wave is assumed to be x-polarized and travelling along the 

z-direction. 

Figure 3 shows the x-directed transient current at the center of a 

2.0m x 2.0m plate located in the xy plane illuminated by a Gaussian 

plane wave (o- = 2.5ns, t = 15ns) as predicted by TLM and MOT. The TLM 

method (with two symmetry boundaries) uses a problem space of 

40 x 40 x 30 nodes, implements 800 iterations and requires 58min 40sec 

of cpu time. For the MOT problem the plate is approximated by 20 

triangular patches and requires a cpu time of approximately 5min. In 

Figure 3 we see good overall agreement between the TLM and MOT predicted 

transient currents, both in the early time and late time. In fact, by 

increasing the TLM problem space, the TLM results approach those 

predicted by the MOT technique. 

Figure 4 shows the x-directed transient current at the center of 

the front face of a cube, 1.0m to a side, illuminated by a Gaussian 

plane wave (<r = 5.0ns, t = 30.0ns) as predicted by TLM and MOT. The TLM 

method (with two symmetry boundaries) uses a problem space of 

60 x 30 x 30 nodes, implements 1000 iterations and requires 53min 26sec 

of cpu time. For the MOT problem, the cube is approximated by 136 

triangular patches and requires 20min of cpu time. In Figure 4, we see 

good overall agreement between the TLM and MOT predicted transient 

currents. Again, as the TLM problem space is increased, the TLM solution 

approaches the MOT solution. 

Figure 5a and 5b shows the x-directed transient current at the 

center of the top and bottom plate, respectively, of a parallel plate 

structure illuminated by a Gaussian plane wave (a = 5.0ns, t = 30.0ns) 

as predicted by TLM and MOT. The plates (2.0m to a side and separated by 

2.333m) are each oriented parallel to the xy plane. The TLM method (with 

two symmetry boundaries) uses a problem space of 65 x 35 x 35 nodes, 

implements 1000  iterations and requires Ihr  8min 20sec of cpu time.  For 
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the MOT problem, the two plates are approximated by 40 triangular 

patches and requires approximately 10min cpu time. Again, as seen in 

Figures 3 and 4, Figure 5 shows good overall agreement. 

V. CONCLUSIONS 

In three dimensions, the TLM method is capable of accurately 

predicting the transient current densities on scattering bodies. 

However, the TLM method applied to two-dimensional scattering bodies 

exhibits accuracy problems in the late time. These inaccuracies can be 

improved upon, but not totally eliminated, by increasing the TLM problem 

space. Further investigation of this problem is underway. 
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Figure 1. The induced transient current at the center of an infinite 1.0m 
strip illuminated by a normally incident TM Gaussian plane wave 
with <r = 1.25ns and to = 7.5ns. 
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Figure 2. The induced transient current at the center of the front side of 
an infinite square cylinder, l.Om to a side, illuminated by a 
normally incident TM Gaussian plane wave with <r = 1.25ns and 
to = 7.5ns. 
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Figure 3. 
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The x-directed transient current at the center of a 2.0m > 
plate, located in the xy plane, illuminated by a Gaussian 
wave with <r = 2.5ns and to = 15.0ns. 
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Figure 4. The x-directed transient current at the center of the front face 
of a cube, 1.0m to a side, illuminated by a Gaussian plane wave 
with cr = 5.0ns and to = 30.0ns. 
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Figure 5. The x-directed transient current at the center of a.) the tope 
plate and b.) the bottom plate of a parallel plate structure 
illuminated by a Gaussian plane wave with <r = 5.0ns and 
to = 30.0ns.The plates, 2.0m x 2.0m, are separated by 2.333m. 
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Abstract 

The TLM in conjunction with a wideband absorbing boundary method based on a 
time domain diakoptics (Johns Matrix) approach is used to compute the VSWR, 
isolation, axial ratio, and tilt angle of a stepped-septum, square-waveguide 
polarizer. 

Introduction 

This paper presents a transmission line matrix (TLM) investigation of a 
stepped-septum square waveguide polarizer. The design investigation is in support 
of the dual frequency low gain antenna for NASA's Cassini Spacecraft emergency 
command and low data rate link. NASA also has a general interest in creating an 
analytic tool capable of assessing and optimizing polarizer designs based on 
various mission requirements (typically 7-9 GHz). 

Operation of the Polarizer 

Figure 1. shows a simple schematic of a stepped-septum square-waveguide 
polarizer and its equivalent network. According to Chen and Tsandoulas [II, even 
mode excitation of the rectangular waveguide region (i.e. aj= a3= 1, a3= a4 = 0) 
results in propagation of an even mode wave which will be unaffected by the septum 
and will transfer its total energy into the TE10 mode in the square waveguide. 
Furthermore, they point out that for odd mode excitation (i.e. at= 1, a2= -1, 
a3= a4 =0) there will be no coupling to the TEi0 mode and the odd-mode energy will 
be partially transferred to the TEoi mode in the square waveguide and partially 
reflected. When only port one is excited, which is equivalent to a superposition of 
the even and odd mode cases just described, the polarizer is in operation and some 
of the incident energy will be transferred to the TE10 mode and some to the TEgj 
mode. In Figure 1, bj is the power reflected back to the input port, which 
determines the VSWR of the device, and b2 represents the power coupled to the 
nonexcited   input,   which   determines   the   isolation.   The   relative   amplitude   and   phase 
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of    b3    and    b4    determine the    axial    ratio    and    major-axis    tilt    angle of    the 
elliptically-polarized    wave. The    design    objective    is    to    obtain    perfect circular 
polarization  and  under  this condition  b3  and  b4 will  be equal  in  magnitude and  90 
out of phase. 

The TLM Method 

The TLM method is ideally suited to the analysis of the stepped-septum 
polarizer first proposed in [1] for several reasons. First, the geometry of the 
structure can be very easily specified using only rectangular primitives, which 
allows the basic and efficient TLM algorithm in the cartesian coordinate system to 
be utilized. Since the characteristics of the device over the 7.1 to 8.5 GHz 
frequency band is desired, the TLM simulation can be used, in conjunction with 
techniques recently developed by Hoefer et. al. [2H5] for simulating wideband 
absorbing boundaries, to yield the required results at all frequencies within the 
desired bandwidth in a single run of the program. This gives the TLM a significant 
advantage over the integral equation based method of moments (MOM) which would 
require a large set of simultaneous equations to be resolved at each frequency of 
interest. Because of the ease with which the geometry is specified and the ability 
to obtain wide band data in a single run, the TLM method is a very attractive 
technique to use for optimization of the polarizer. 

The Symmetrical Condensed Node 

The symmetrical condensed TLM node developed by Johns [6] and shown in Figure 2 
will be used to analyze the polarizer. The condensed node has six branches and each 
branch consist of two uncoupled two-wire transmission lines. A three-dimensional 
grid of these elements is used to model the polarizer as described in greater detail 
subsequently. Excitation of the grid (or mesh) is accomplished by forcing ideal 
impulses to propagate on selected transmission line branches. Impulses propagating 
along a transmission line encounter an impedance discontinuity upon arriving at the 
center of the node and consequently are scattered according to the following 
scattering matrix originally derived by Johns [6], 
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where the "i" and "r" superscripts correspond to incident and reflected voltage 
pulses respectively and the subscript "k" identifies the iteration number (i.e. TLM 
is a time domain method). Pulses scattered at one node are connected to (become 
incident upon) adjacent nodes whereupon the process is repeated and so on until 
eventually pulses have propagated throughout the mesh. Repeated application of the 
scattering-connection process results in an output function at some chosen 
observation position (output node) which consist of a train of pulses in time. 
Typically, output in the frequency domain is desired which can be obtained by 
Fourier transforming the output time domain sequence. 

From [6], the cartesian field components at any given node are related to the 
incident voltage pulses at that node by 

E = 1/2  (V1   + V1 + V1 + V1  ) (2a) 
x 1 2 9 12 

E = 1/2  (V1   + V1 + V1 +  V1  ) (2b) 
y 3 4 8 11 

E = 1/2  (V1   + V1 + V1 +  V'  ) (2c) ,„. 
z 5 6 7 10 (2) 

H = 1/2Z (   V1-  V'+ V1- V1) (2d) 
x o 4 5        7 8 

H = 1/2Z (-V'+  V'+ V1- V1   ) (2e) 
y o 2 6        9 10 

H = 1/2Z (-v'+  v'+ V1  - V'  ) (2f) 
z o 3 1 11 12 

where Z0 is the characteristic impedance of the individual transmission lines. 

Boundaries 

Figure 2 presents the critical dimensions and the TLM discretization scheme for 
the polarizer of reference til. A symmetrical condensed node is contained within 
each square in Figure 2A so that a total of 24 X 24 X 120 = 69,120 nodes will be 
used in the TLM model. The waveguide walls and septum are easily modeled by 
inverting and reversing the direction of propagation (multiplying by -1) all 
voltages pulses incident upon perfectly conducting boundaries. It is necessary to 
match the input and output ports of the polarizer in order to compute the desired 
scattering parameters. A narrow band match is easily achieved by multiplying 
voltages pulses incident on the input and output plane by the reflection coefficient 

T= -^—r^F— 

2 J/2 
where    Zg=    Z0/[l-(fc/f) i is    the    frequency    dependant    fundamental    waveguide 
impedance (fc is the waveguide cutoff frequency and f is the operating frequency). 
Since, in general, we wish to compute scattering parameters over a band of 
frequencies the use of (3) to match the input and output ports will require that a 
new time domain response be computed and Fourier transformed at each frequency of 
interest. Alternatively, a much more efficient means of achieving a wide band 
absorbing boundary has been presented by Hoefer et. al. [2]-[5]. There method 
represents a refinement of a time domain diakoptics approach first presented by 
Johns and Akhtarzad  [7].  Because the  input and output ports of the polarizer support 
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only the fundamental waveguide mode (orthogonal fundamental modes in the square 
waveguide section) a particularly simple method can be used to create a wide band 
match. First, we excite only the nodes across the front face of a long section of 
waveguide making sure that the amplitude of the excitation pulses follow the half 
sine wave distribution of the fundamental mode. This excitation will cause a stream 
of impulses to flow out of the nodes across the face of the waveguide and since this 
output stream also has a half sine distribution one need only store the impulse 
train associated with the condensed node at the center of the guide. (Note that the 
condensed nodes along the input face must be match terminated during this process.) 
The stored impulse train constitutes what has been termed [5] a one-dimensional 
Johns Matrix. The Johns Matrix will be used, as described next, to match terminate 
the input and output ports of the polarizer. When the input plane of the polarizer 
is excited in the half-sine distribution just described, voltage pulses will flow 
out of the nodes located at the input and output plane. According to the procedure 
outlined in detail in [3], pulses injected back into the input and output plane 
nodes are found by convolving these reflected pulses with the one-dimensional Johns 
Matrix. This convolution process can be written as 

k 
Vr(k) = £ J(k') V^(k-k') (4) 

2        k'=0 

Vr(k) = £ J(k') v'U-k') (5) 
9 , 9 

k   =0 

Vr(k) = £ J(k') v'(k-k') (6) 
8 , 8 

k'=0 

where (4) pertains to the front face where only the TE10 mode is excited and (5) and 
(6) pertain to the square waveguide section of the polarizer where both the TEjo and 
TEQI modes are excited. It should also be pointed out that (4) (5) and (6) 
explicitly apply only to the condensed node at the center of the front and back 
faces. Reflected pulses at the other nodes on the input and output planes are found 
by scaling (4), (5) and (6), whichever is appropriate, by the half-sinusoidal 
distribution. Other methods may be used to compute the Johns Matrix. For example, as 
demonstrated by Chen et al. [4], one can compute the Johns Matrix by inverse Fourier 
transforming (3). Eswarappa et al. [3] have also demonstrated that a better 
absorbing termination can be generated by exponentially tapering the Johns Matrix. A 
Johns Matrix computed from a long section of waveguide (no exponential taper) was 
used to generate the results presented here. 

Results and Conclusions 

In order to compute the VSWR and isolation of the polarizer we first excite Ex 

on port 1, or equivalently excite V2 on all the condensed nodes at the input plane, 
with the half-sinusoidal distribution previously described. Next, the total 
x-directed field, EJ, (incident plus reflected) is computed at the center and 10 
nodes within the excitation port using (4a). Subtracting the incident field, Ex, 
(which is computed using a long section of empty waveguide) from the total field 
yields the scattered or reflected field, Ex, at input port 1 (EX)i= tx,i

- tx). The 
reflection coefficient is found by dividing the reflected and incident fields, r = 
Ex !/F:x   ,   and   the   VSWR   =   (l+|r|)/(l-|r|),   "|    |"   indicates   magnitude.   Isolation   is 
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computed by dividing the x-directed field at port 2 by the incident field or 
Isolation = 20*log(EX)2/Ex). Finally, the axial ratio is computed from the magnitude 
of the ratio of the x- and y- directed fields in the square waveguide section 
AR(dB)=20 log (|Ej|/|Ey|)Tand Ey is found using (2b). The tilt angle is computed by 
subtracting the angle of EY from Ex. Figure 3 shows the VSWR, isolation, axial ratio 
and tilt angle for the polarizer of Figure 2 computed using the method outlined 
above. The oscillations observed in Figure 3A and 3B might be due to imperfect 
absorbing boundaries used to terminate the input and output planes of the polarizer. 
It is probable that these oscillations could be reduced my using the exponentially 
tapered Johns Matrix discussed above. This issue is currently under investigation 
and will be reported on during the oral presentation of this work. 
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Abstract 

Based on the Hubert space representation of the TLM method for time domain 
computation of electromagnetic fields, a method for the algebraic computation of three- 
dimensional discrete Green's functions describing spatial domains in TLM is presented. 
The Green's function is nonlocal with respect to space and time and allows an exact 
formulation of the absorbing boundary conditions in TLM. 

I    Introduction 

In the TLM-method, the electromagnetic field is modelled by wave pulses propagating on a 

mesh of transmission lines [1,2,3]. We use the three-dimensional symmetric condensed TLM 

node of Johns [4J. In this case, the mesh node is modelled by a twelve port. The Hubert space 

representation of the TLM method allows the algebraic description of the time evolution of 

the electromagnetic field [5]. In the Hubert space representation, the complete field state 
is mapped into a point in Hubert space. Spatial domains and boundary conditions may be 
specified by projection operators. 

In the TLM-model, the field is described by wave amplitudes instead of field quantities. The 

reaction to a wave pulse incident on a boundary of a spacial domain is nonlocal with respect 
to space and time. It may be represented by discrete Green's function [6]. In this paper, the 

discrete Green's functions for the three-dimensional half-space are calculated algebraically. 

The boundary of the halfspace is intersected by two ports of the TLM condensed node twelve- 

ports representing horizontal and vertical polarization, respectively. Therefore, there exist 

four Green's functions relating the two incident wave polarizations to the two reflected wave 

polarizations. The consequence of the rotational invariance of the problem is that only two 

out of the four Green's functions have to be calculated algebraically. These two Green's 
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functions are calculated from a system of partial difference equations which can be solved by 

transforming it to frequency- and momentum-space. 

II    The Discrete Field State Space 

In the three-dimensional TLM-method, in each of the three spatial directions, two lines repre- 

sent the two possible directions of polarization. Using the the three-dimensional symmetric 

condensed TLM node of Johns (Fig. (1)), the mesh node is modelled by a twelve port with 

the scattering matrix S given by 

0 T TT1 
TT 0 T 
T TT 0 

with T = 

0 0 
0 0 
1 1 
2 2 
1 1 
2 2 

1 1   "] 
2 2 
1 1 
2 2 

0 0 

0 0 

(1) 

The wave amplitude vector is given by a = [01,02,. ..011,012] and b = [61,62,. ..611,612] • 

The incident wave pulses *a at t = fcAi and the scattered wave pulses *,+ib at t = (k + 1) At 

are related by 

(2) jb+ib = S  ka 

In the TLM model, the field state at a given discrete time is described completely by specifying 
the amplitudes of the twelve incident or reflected wave pulses per mesh node. According to [5], 

all incident and reflected voltage waves are represented by 

+00      +00 

|o>=   £      £    *C>,n \k;l,m,n) 
k——oo l,m,n=—oo 

+00 +00 

and        |6}=   £      £     k\%m>n \k;l,m,n) 
k=— 00 i,m,n=—00 

(3) 
in the Hubert space H. The bra-ket notation introduced by Dirac [7] is used. The basis vectors 

\k;l,m,n) fulfill the orthogonality relations 

(ky,li,mi,ni\k2;l2,m2,n2) = S^M ^hh ftni.mj 6„1>rJ2 (4) 

We define the shift operator X and its Hermitian conjugate X^ by 

X\k;l,m,n)   =   \k;l + l,m,n)        and       X*\k;l,m,n)   =   \k;l-l,m,n)        (5) 

and in an analogous way ( [5]) the shift operators Y, Y\ Z, Z* and T for the spatial 

coordinates m, n, and the time coordinate k respectively. 
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Figure 1: Three—dimensional symmetric condensed TLM node. 

We introduce the connection operator JH given by 

r   =   X(Ah3 + A2A) + X\A3il + Aii2) +y(^5,7 + ^6,8) 

+   Y\A7,S + A8fi) + Z{AW + ^10,12) + Z\An,% + ^12,10) (6) 

with the 12 x 12 (m,n)-matrix {Aij)mn = 6i,m 6j,n . The propagation of the wave pulses 

between adjacent condensed node ports is described by 

The equation 

\a) = r\b) 

\b) = TS\a) 

(7) 

(8) 

describes the simultaneous scattering within all the mesh node twelve-ports according to 

Fig. 1. The scattering by a mesh node causes the unit time delay At. 
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Using the discrete Green's function for TLM [6] and proceeding in the same way as [5] we 

obtain the boundary state evolution equation 

\b)B = G\a)B (9) 

The subscripts / and B denote the projection of Hubert space vectors on the boundary and 
the inner part of a spatial domain, respectively. Hubert Space operators are projected from 

the left and from the right and therefore, they exhibit two subscripts. The discrete Green's 

operator G is given by 

TSBB + sBI (^TW (rsn)') rsIB (10) 

The boundary state evolution equation relates the states of the wave pulses propagating into 

the boundary \a)B to the states \b)B reflected from the boundary. It is the general formu- 

lation of the boundary element problem in the Hilbert space. Since the Green's operator is 

represented by a Neumann series in the operators T, T and Sn, it is nonlocal with respect 

to space and time. 

Ill    The Discrete Three-dimensional Green's Function 

As an example, we derive the discrete Green's functions for the half-space by mapping equa- 

tion (9) onto configuration space for a point-like initial state \a)B. The solution of the resulting 

system of difference equations provides algebraic expressions for the Green's functions. 

The half-space is defined by the domain projection operator PD given by 

PD= £  E|fc;l,m,n)<k;l,m,n| (») 
k,l,m n=0 

The boundary of the halfspace is intersected by the ports 1 and 3 of the TLM condensed 

node twelve-ports in the y-z-plane at x = 0, representing horizontal and vertical polarization, 

respectively (Figure 1). Therefore, there are four Green's functions: The Green's function G11 

describes the impulse response at port 1 to an incident unit impulse into port 1. We define 

the Green's function G13 as the impulse response in port 3 of an incident unit impulse in port 

1. In the same way, we define the Green's functions G33 and G31. 

The functions G11 and G13 can be calculated algebraically. G33 and G31 are obtained by a 
positive 90°-rotation of G11 and G13 around the z-axis. According to Figure 1, we obtain 

G33  =   Gu I (12) 
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since by a positive 90°-rotation arround the x-axis, a\ is transformed into a3, and 

(13) 
*~" "*'"l90° 

because by the same 90°-rotation, a3 is transformed into — a\. 

A positive 90°-rotation of a function f(m, n) arround the x-axis is described by the transition 

f(m,n) -* f(n,-m). Using the symmetries kG
1

n]_m= -fcG^nand AG£_m = -^G^yields 

and 

p33 _   /->11 

n3l    _     /~>13 

(14) 

(15) 

For calculating the Green's functions Gn and G13, we choose the incident unit impulse 

\°)B = |0; 0,0,0) 

in I' = 0, m! = 0 and n' = 0 at the time fc7 = 0. 

The discrete Green's operator is given by 

(16) 

oo oo 

£     £     £ 
m,m'=—oo n,n'=—oo  A^Jf=—oo 

\k; 0, m, n) (fc'; 0, ml, n'\ 

1   0   •■■   0 
0   0   ■•-   0 

0   0   •••   0 

CO oo oo 

+   £     £     £ 
m,m'= —oo   n,n' =—oo   k,k'= — oo 

•"»13 

|fc;0, m,n) (A;';0,m',n'| 

0   0- •   0 " 

0   0   • •   0 
1   0   ■ -   0 

0   0   • •   0 

0   0   • •   0 

(17) 
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Then, for |6}ß, it yields 

00 OO CO 

\b)B=   £      £      £ 
m=—oo n=—oo jfe=—oo 

/-ill 
fc    "V* 

/-il3 
fc    ">>" |/c; 0, m,n) (18) 

Our result will be the function fcG^,„- The general Green's function is given by the transition 

k—lt? m—m.'tn—n' 

Mapping eqs. (9) with (10) to configuration space by multiplication from the left side with 

{k;l,m, 0|, we obtain the following system of partial difference equations for I = 0,1,2,... ,oo 

and 7n,n = —oo,... ,—1,0,1,...,oo: 

fa 
1 

-67 4- 68 + 611 + &i2]j,m,n k+l L0Ul+l,m,n -     2    * ' 

fc+1N(,m,n=     2   * ^ ~ ** + bn + 6l2Wl,m,n 

Ni+l,m,n=     9    fc fa + fc6 - 69 + Mj.m.» fc+1 

fc+1 

2  *' 

Ml,m,n=   ^  k fa + h + 69 - 6io]J+i,m,n 

. [65],,, fc+l l"5JI,m+l,„ ■ 

2  * 
1 
2  * 
1 

[63 + 64 — 611 4- &12]; 

fc+1 Nj,m-l,n = 2 lb $3 + bi + bu ~ 6l2li,m,n 

fc+! Nj,m+l,n = 2 * l~6l + &2 + &9 + &lo]|,m,n 

Ni,m-l,n= 2 fc ß1 _ ^ + &9 + 6lo],,m,n 

Ml,m,„+1 = Ö t H* + 64 + &7 + ftsLn,, 

fc+1 

jfe+l lw9l!,m,n+l 

*+l ßlo]l,m,n-l 

2    * 
1 

2  * 
1 

k+l l~llil,m,n+l n 

[6lü]i,m,n-l _     " 

[63 - 64 + 67 + &8],>m>„ 

(Ml,m,n+1 =     9    t fa + h ~ h + Ml.m,» 

Jt+1 l""Ji,m,n-l 2    kfa+t>2 + bi~ bsh,m,n (19) 

We have used the abbreviation fc [61 + 62 + H,m,n = k Mj,m,n+* Mi,m>„+fc N,,m,n- The initial 

conditions are given by -0 [6T]0,I,0 = 0 No,-i,o = 0 [6"lo,o,i = 0 [Mo,o,-i = 2^0 Mi,m,n = ° 

463 



for all other I, m, n. The boundary conditions are fc [&i]0,mj„ = k M0,m,n = 0. Furthermore, 

we demand that in the halfspace, the amplitude of exponential increasing solutions must be 

zero. This is equivalent to the Sommerfeld radiation condition. 

The Green's functions for k > 2 are given by 

Ä = \     k_2 h - h + 611 + 6i2]0,m,„ (20) 

and 

Ä = \     k_2 h + h + b9- 610]0,m,n (21) 

respectively. The Green's functions are zero for k = 0,1. 

We solve this system of difference equations by transforming it to frequency- and momentum- 

space. The Green's functions are given by 

k^m.n    =    k+l9m+l,n + /fc+lffm-l,fi — fc+l<?m,n+l — k+l9m,n-l 

+    k-l9m+l,n +k-l9m-l,n —k-l9m,n+l ~ k~igm,n-l (22) 

and 

k^rn.n = fcSm+l,n+l + k9m-l,n-l ~ k9m-l,n+l ~ fc<?m+l,n-l (23) 

The functions jtG"n and *G^n can be expressed by a superposition of one function kg-m.n- 

The symmetries and properties 

*<7m,n = kg-m,n = /fc<7m,-n = k9-m,-n (24) 

k9m.,n = k9n,m (25) 

*Sm,n = 0     for even A; (26) 

*<7m,n = 0     for odd m + n (27) 

save memory and computer-time when performing the convolution process to simulate the 

open halfspace. 

For k > — 1, the function k9m,n is given by 

k+2gm,n   =   £^^(2-<5Ci±±i)i±i_c/(2c+l,-l)m,n 
c=0       S 2 2 

fc-l 

(-1)' +   ELgL(ifi_c/(2c + 2,0)m,„-  4ji_c/(2c+2,-2)m,B) 
=0 

fc-l 

-    £^-l_c/(2c,0)m,n 
c=0       ° 2 
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-1) +   £ i-r^- (i^_c/(2c+ 2, -2)m,„ - 2 i^_c/(2c+ 1, -l)m,n) 
c=0       8 2 2 

t-3 

+   E^r^-c'(2c + 2,-2)m,„ 
c=0 
Jc-5 

+     ^ (»±1/(0, -2)m,n - (1 - &,-l) 4±l/(0, -2)m,n) 

+   ^(-451/(0,-2)^+^/(0,-2),^,) (28) 

For the integral fc/(t, s)m,„, we obtain in case of t = s = 0 

with 

*-i. (i)G+v-"«)<-»'Gr 2« + 2fc   \,   ^/l^"1"2* 

and kmm = maximum {0, \m\ — i}. For all other t and s, we obtain 

kl(t,s)m,n = 
A  /o.\  /t.   1  „•  1   «■   1   i\ 

c=-i-jd=-i-j e=-t V      e/ 

(£(/ + <Z + e,n + c + e) + B(Z + d + e,n + c-e) ) (31) 

with 

5(m,n) = i     (j=^)(j=^)   forevenm-n>t-S (32) 

4 I 0 for even m — n<t — s and all odd m + n 

The algebraic formulae of the Green's functions provides the same numerical values as the 

Green's functions calculated by injecting a unit impulse into a TLM mesh representing the 

open halfspace. 
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IV    Conclusion 

We have presented a method for the algebraic computation of the three-dimensional discrete 

Green's functions. The Green's functions allow a correct formulation of the absorbing bound- 

ary conditions in TLM. 

The absorbing boundary conditions for an open halfspace are described by four Green's fun- 

ctions. Two of them may be derived by using the rotational invariance of the halfspace. The 

Green's functions can be expressed by a superposition of the single function k9m.,n- Due to the 

symmetry of this function, only a minimum of the numerical values have to be stored. The 

convolution process which has to be performed to simulate the absorbing boundary condition 
can be reduced considerably. 
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Abstract 

The Transmission Line Matrix (TLM) method is a time domain method for modeling the 
behaviour of electromagnetic waves. This method is based on Huygens' Principle which, in its 
original form, is a localized recursive definition of electromagnetic wave propagation in the time 
domain. A parallel algorithm for the TLM method results, which is highly suitable for 
implementation on computers with massively parallel processors. 

Introduction 

The theory of the 2D-TLM method is well described in [1], [2] and [3]. The basic building block 
of this method is a node which is formed by connecting four transmission lines together, Figure la. A 
2D-TLM mesh is built by cascading a network of these nodes as shown in Figure lb. To simulate 
electromagnetic wave propagation in the mesh, scattering and transfer of voltage impulses must be 
performed. 

Scattering of impulses is local to each node. Impulses incident from a transmission line are 
scattered into all four transmission lines (Figure 2). Transfer of impulses requires communication 
among adjacent nodes (Figure 3a). This operation needs to be modified if boundaries are to be placed 
between nodes (Figure 3b). 

Both scattering and transfer of impulses are highly localized operations. The former is totally 
localized within each node and the latter is localized within the immediate surrounding region of a 
node, namely its four adjacent nodes. Therefore, scattering of impulses can be carried out in each 
node simultaneously, and transfer of impulses can be carried out in each region simultaneously as 
long as synchronization among adjacent nodes is preserved. In other words, these two operations can 
be carried out in parallel at each node and in the region of each node 
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Figure 1:  (a)  A node, the basic building block of a 
2D-TLMmesh. 

(b) A 2D-TLM mesh formed by a network 
of nodes. 

Figure 2:  Scattering of an impulse at a node. 
(a) An incident impulse. 
(b) The scattered impulses. 

Figure 3: Transfer of impulses between two adjacent nodes. 
(a) When there is no boundary between two nodes. 
(b) When there is a boundary between two nodes. T is the impulse reflection coefficient of the boundary. 

The DECmpp 12000 

The DECmpp 12000 has a master processor and a large amount of parallel slave processors (the 
one we used has 8K). The master processor is called the Array Control Unit (ACU) and the parallel 
slave processors are called the Processor Elements (PE). These PEs have 16K of random access 
memory each and are connected with each other in a rectangular toroidal wraparound fashion [4]. 
MPL and MPF are the two high level languages available for programming the machine. 

MPL is a C-like language. It has serial and parallel instructions which are executed on the ACU 
and PEs, respectively. It also has singular and plural data which are allocated on the ACU and PEs, 
respectively, Figure 4a. Communications among PEs are achieved via the MPL's X-net or global 
router instructions, [4]. Object libraries written in MPL can be called from other popular serial high 
level languages (C, C++ and Fortran) through the MPL callRequest function. In that case the ACU 
and PEs are collectively called the back-end (BE) and the work-station that executes the serial 
module is called the front-end (FE), Figure 4b. 

MPF is a Fortran-77 like language with Fortran-90 array features. Data declared and/or used in 
the Fortran-90 array formats are allocated on the PEs, otherwise on the FE. Instructions written in the 
Fortran-90 array formats are executed on the PEs, otherwise on the FE. The ACU is not available for 
use to MPF programs; the PEs are also transparent to MPF programs. MPF modules cannot be called 
by other languages but they can call MPL modules, Figure 5. 

MPL and MPF have their advantages and disadvantages that depend on the types of applications. 
We have implemented a 2D-TLM and a 3D-TLM simulation module in both MPL and MPF; the MPL 
versions run nearly twice as fast as the MPF versions. 
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Figure 4: The DECmpp 12000 MPL programming 
models. 
(a) Stand-alone MPL programs. 
(b) MPL modules driven by other high level 

front-end languages. 

MPF 

FE 

Fortran-77 array format 
data and instructions 

BE 

PEs"                ; 

Fortran-90 array format ; 
data and instructions       ; 

n 

MPL 

Figure 5: The DECmpp 12000 MPF programming 
model. 

A Parallel 2D-TLM Algorithm 

The plural data and parallel instruction constructs of MPL are two very important features for 
implementing parallel algorithms on the DECmpp 12000. Our MPL 2D-TLM module consists of a 
plural data structure of node to represent a mesh and a set of parallel functions (scatter, 
transf er,...) to operate on the plural data structure, Listing 1. In the object oriented programming 
methodology, such a collection of data and functions is called an object. In other words, our MPL 2D- 
TLM module has a mesh object. Each node of the mesh object is physically located in a PE of the 
DECmpp 12000. Therefore all the nodes of the mesh can perform the 2D-TLM simulation operations 
in parallel. 

The scatter function in Listing 1 shows some parallel features of MPL. The function has no 
do-loop, all the statements in it are parallel statements. An invocation of this function causes all PEs 
in the DECmpp 12000 to perform the same scattering operation in parallel. The transf er function 
in Listing 1 shows some features of the parallel-if and the X-net constructs of MPL. The parallel-if 
statement causes all PEs to perform the same logical operation with their local data; if the result of the 
operation is TRUE then execute the block of statements following the if statement else do-nothing. 
The X-net statements in the transfer function exchange impulses between adjacent nodes if there 
is no boundary between them. 

We have implemented the above algorithm in MPF by using its Fortran-90 array features and 
parallel-if constructs. The MPL version runs nearly twice as fast as the MPF version. The main reason 
is that MPL programs can access the hardware more directly than MPF. But MPF has multi- 
dimensional array features and a higher level of abstraction which make the PEs and X-net 
communication transparent to MPF programs. 
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Performance of the Parallel 2D-TLM Algorithm 

We have combined the above 2D-TLM parallel simulation module with the UNIX version of our 
2D-TLM simulator, [3]. The FE component, Figure 4b, of the simulator, consisting of code for 
graphics and control of general program execution, is written in C, X Windows Xlib and Motif Xm 
libraries. This FE component is the master of the simulator; it receives commands from the user and 
directs the operations on both the FE and BE. 

Table 1 summarizes the execution times of the serial and parallel version of the 2D-TLM 
simulator for a number of test cases. The mesh size used in the simulation is 128 x 64, which is equal to 
the number of PE's available in the DECmpp 12000 that we used. In all the cases, only the execution 
time related to the 2D-TLM simulation, sampling of results and performing Fourier Transform (if 
applicable) is recorded, i.e. execution time related to graphical I/O operations is subtracted from the 
total time. The serial version is executed on the DEC5000 front-end and the parallel version is on the 
DECmpp 12000 with its GUI module executed on the DEC5000 front-end. The number of 
computation steps for all the cases is 1000 and the number of frequency points for cases 2 and 3 is 
100. 

The result in Table 1 shows that the parallel version of the 2D-TLM simulator performs very well 
for plain simulation. The performance of the parallel version starts to decrease when we try to sample 
data form the mesh (case 2) or inject signals into the mesh (case 3). This decrease in performance 
does not appear in the serial version because much of the work is done to perform the 2D-TLM 
simulation; the work for the injection and sampling of data is negilible. In the parallel version, the 
2D-TLM simulation is performed in parallel in the DECmpp 12000 BE while the injection and 
sampling of signal are performed in series in the DEC 5000 FE. A major reason for such a decrease in 
performance when the DEC5000 FE is involved is the overhead of the blockin, blockout and 
call Re quest functions for the FE-BE (front-end-back-end) communication. These functions are 
called before and after each computation step to inject signals into the mesh and sample signals from 
the mesh. Another reason is that the output point causes the FE to do some extra work, such as 
performing a Fourier Transform. The former problem can be solved by keeping the sampled data and 
the input signal in the BE and transferring the sampled data to the FE after the simulation is 
completed. The latter problem can be solved by implementing a parallel Fourier Transform algorithm 
and execute it in the BE. 

Case Simulation Feature Serial (sec.) Parallel (sec.) Speeded up (times) 

1 Plain Simulation 54.5 2.0 27 
2 Impulse, 1 Output Point 54.5 2.3 24 
3 Gaussian, 1 Output Point 54.5 3.0 18 

Table 1: Performance comparison between the serial and parallel versions of the 2D-TLM Simulator. The mesh size is 
128 x 64, which is equal to the number of PEs available in the DECmpp 12000 that we used. The serial version 
is executed on the DEC5000 front-end and the parallel version is on the DECmpp 12000 with its GUI module 
executed on the DEC5000 front-end. The number of computation steps for all the cases is 1000 and the 
number of frequency points for cases 2 and 3 is 100. 
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A Parallel 3D-TLM Algorithm 

We have also implemented the 3D-TLM condensed node algorithm, [5], [6] and [7], in MPL and 
C*. This section shows some important concepts and steps of converting a potentially parallel 
algorithm from its serial implementation to an equivalent parallel implementation. 

Listing 2 shows some code fragment from the 3D-TLM Simulator, [8]. This code fragment shows 
a small but important part of a big program, the 3D-TLM impulse scattering operation. Listing 2a is 
from the serial version of the 3D-TLM Simulator. In the serial version a Mesh class is used to 
encapsulate the 3D-TLM operations; Mesh: : Scatter is one of the member functions and it 
performs 3D-TLM scattering. Listing 2b shows how this function is modified to call the MPL 
Node_Scatter function. Listing 2c depicts in detail the actual MPL implementation. 

The PEs of the DECmpp 12000 are connected with each other in a rectangular toroidal 
wraparound fashion, [4]. Therefore, the physical layout of the PEs can only be used to represented a 
plane, say xy-plane, of a volume in the 3D-TLM mesh. The remaining dimension, say z-direction, 
must be represented by a one-dimensional array in each PE. That is, each PE of the DECmpp 12000 is 
used to represent a column of nodes in the z-direction, Figure 6. This can be done easier if MPF is 
used to implement the algorithm because it has the multi-dimensional array feature of Fortran-90 but 
the drawback is that the MPF module cannot be called by other languages. Unless one is prepared to 
rewrite the whole application in MPF, MPL is a better language to use. C is a very good language for 
applications with multi-dimensional arrays; it offers the flexibility of MPL and the multi-dimensional 
array feature of MPF. C* is supported by Thinking Machine Corporation on their Connection 
Machines. We have implemented a similar algorithm on the CM2 with 8K of processors. 

We have compared the performance of the serial and parallel versions of the 3D-TLM Simulator; 
the result is similar to that of Table 1. 

Sma y ■^£,4 y /PE.5   /FE16     / 

/YE? /VEX0 /PE, s           y 
/   PE,2     jT      yf 

1PE5 / res y "PE,   / 
S                     y^-io      ^r 

PEg        >*       / 
^^ 

/"pEj ,/PEj /PE4 
s*^^-    ^f         ^ yT PEi _/     yfi-* / 

S •-> y ' ■MI   y  ' '"i   y 

y/W-X /*** . /** /vEt /**■* ^    y 
/            /*■!*      / 

y "-4   y> **-"   / -«/   / -^  /   / 
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Figure 6: A hypothetical situation. A 16-PE mpp is used to represent a 64-node mesh. Each PE represents 4 nodes in 

the mesh: PE! represents nodes (1,1,1), (1,1,2), (1,1,3) and (1.1.4), PEj represents nodes (2,1,1), (2,1,2), 
(2,1,3) and (2,1,4), and so on. 
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Conclusion 

We have implemented the two-dimensional TLM method on the DECmpp 12000 in MPF and 
MPL, the three-dimensional TLM method on the DECmpp 12000 in MPL and on the Connection 
Machine CM2 in C . These parallel implementations give more than an order of magnitude of 
improvement in performance when using 8192 processors. 

Since MPL object modules can be called by other popular serial high level languages, the 2D- 
TLM and 3D-TLM MPL modules are combined with the 2D-TLM and 3D-TLM Simulators by using 
mixing language programming technique. The graphical user interface (GUI) components of the 
Simulators are implemented by using C/C++, X Windows Xlib and Motif Xm libraries, and is 
executed in the DEC5000 front-end. The MPL object modules are executed in the DECmpp 12000 
back-end. The GUI components are the masters of the Simulators which control the simulation 
components through the MPL callRequest function. The performances of these simulators are 
compared with their equivalent serial versions, and the result is that the parallel versions are more 
than an order of magnitude faster than their serial versions. 

Some important concepts and steps of converting a potentially parallel algorithm from its serial 
implementation to an equivalent parallel implementation are also outlined in the form of an example. 
The advantages and disadvantages of MPL, MPF and C are also addressed. We feel that massively 
parallel computation is a good way to solve complicated electromagnetic wave problems and it is 
important for the computing engineers to grasp the parallel computing concept. 
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typedef 
float 

float 

float 
float 

struct{ 
vS,vW,vN,v£; 

vL; 

yo,go; 
rNS, r£W; 

int   rNSco,rEWco. 

/* voltages on mesh lines; */ 

/* S: South, W: West */ 

/* N: North, E: East, */ 
/* which is the same as the */ 
/* X-net communication */ 

/* arrangement of the DECrapp * 

/* voltage on the stub */ 
/* material constants */ 
/* reflection coefficients */ 

/* of the boundaries "/ 
/* half-a-delta-1 from the */ 

/* node */ 
;   /* North-South and East-West * 

/* reflection types */ 

/* 0: no boundary, */ 

/* 1: reflection boundary, */ 
/* 2: Johns Matrix. */ 

shunt node  */ 

plural static shunt_node node; /* A 2D-TLK : 

visible void scatter(){ 
register plural float tf; 
register plural double td; 
td = 2.0/(4.0+node.yo+node.go); 

tf = td*(node.vS+node.vW+node.vN+node.vE+ 

node.vL*node.yo); 
node.vS = tf - node.vS; 
node.vW = tf - node.vW; 

node.vN = tf - node.vN; 
node.vE = tf - node.vE; 

node.vL = tf - node.vL; 

} /* scatter */ 

visible void transfer(>{ 

if (node.rNSco==0) /* i.e. no boundary */ 
t = xnets[l].node.vN; 

xnets[l].node.vN = node.vS; 

node.vS = t; 

esh 

if   (node.rEWco==0)   /* 
t  = xnetE[l].node.vW; 
xnetE[l].node.vW = node.vE; 
node.vE = t; 

} 

j  /*— transfer */ 

visible void reflect(){ 

e.  no boundary  */   { 

Listings 

Listing 1: Our MPL 2D-TLM simulation module code fragment. 
Shunt node is the data type definition used to 
collect all the information that is local to a 2D-TLM 
shunt node, node is the actual declaration to allocate 
memory on each PE. Since node is a plural data type, 
there is a node on each PE. In other words, it 
represents a mesh, scatter and transfer are 
functions that perform parallel scattering' and transfer of 
impulses on the mesh. Note that transfer of impulses, 
when there are boundaries among nodes, is handled 
separately by a function named reflect. 
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(a) 

void Mesh::Scatter () { 

int x,y,z; 
fcr (2=0; 2<2__dimension; 2+ + ) 

for (y=0; y<y_dix.ension; y++) 
for (x=0; x<x_dimensior.; x++) 

node (x,y, z)->Scatter () ; 
}/*— Mesh::Scatter  */ 

(b) 

void Mesh::Scatter(){ 

callRequest(Ncde_Scatter, 0); 
}/*  Mesh::Scatter  */ 

(c) 

tvpedef struct{ 
Real U, v, w; /* unit length in the*/ 

/* x,y & z-direction */ 
Real er,ur,dt; /* mat. constants */ 

/* and time sten */ 
Real yx,yy,yz. /* normalized y, */ 

yx,yy,yz. /* z */ 
gx,gy,gz; /* and g values */ 

Real sl,s2,s3, /* scattering */ 
s4, s5, s6. /* coefficients */ 
S7,s8,s9; 

Real rx,ry,rz. /* ref 1. coefficient*/ 
rX,rY,rZ; /* at half-wav between nodes 

Real vl, v2, v3, 
v4, v5, v6, 
v7, v8, v9, 

vlD,vll,vl2, 

vl3,vI4, vl5, 
Vl6,vl7,vl8; 

/* incident voltages*/ 

visible void Node_Scatter()( 

plural Real a,b,c,Jx,Jy,Jz,JxvI6,Jyvl7, 

Jzvl8,Kx,Ky,Kz,üx,üy,üz,Wx,Wy,Kz; 

int 2; 
for   (z=0;z<nznode;2++){ 
a=node[z].vl+node[z].vl2; 
b=ncde[z].v2+node[z],v9; 
üx=a+b+:iode[z] .vl3;   Wx=b-a; 
a=node[z].v3+node[2]. vll; 
b=node[z].v4+node[z]. v8; 
Dy=a+b+node[z].vl4;   Wy=b-a; 
a=node[z] .v5+node[z] .v7; 
b=node[z) .v6-r-node [2] -vlO; 
üz=a+b+node[z].vl5;   Wz=b-a; 
a=ncde[z],v4-node[z]. v8; 
b=node[z].v5-node[z].v7; 
Jx=b-a+node[2].vlfi;  Kx=a+b; 
a=node[z].v6~node[z].vlO; 
b=node[z].v2~node[z].v9; 
Jy=b-a+node[z].vl7; Ky=a+b; 
a=node[2].vl-node[z].vl2; 
b=node[z].v3-node[2].vll; 
Jz=b-a+node [z] .vl8;   Kz=a+b; 
node[z],v!3 = node[z].sl*üx-node[z].vl3 
node[z].vl4  = nodefz].s2*üy-ncde[z]-vi4 
node(2].v!5 = node[z].s3*üz-node[z],vl5 
node[z].v!6 j-~ node [z] .s4*Jx; 
nodefz]-vl"  *= node[z].s5*Jy; 
node[z].vl8 += node[z]-s6*Jz; 
Jxvl6 = Jx+node[z].vl6; Jyvl7 

= Jy+node[z].vl7; JzvlS 
= Jz+node[z].vl8; 

a=üx-(node[z].vl3+node[z] .s7-Dx); 
b=K2+Jzvl8;   c=a+Wx; 
node[z].vl=0.25*(c+b); 
node[z],vl2=0.25"(c-b); 
b=Ky-Jyvl7;   c=a-Wx; 
node[z].v2=0.25*(c+b); 
node[z],v9 =0.25* (c-b); 
a=Uy-(node[z],vl4+node[z] .s8*Dy); 
b=Kz-Jzv!8;   c=a+Wy; 
ncde[z].v3=0.25*(c+b); 
node[z].vll=0.25*(c-b); 
b=Kx+Jxvl6;   c=a-Wy; 
node[z].v4=0.25*(c+b); 
node[zl.v8  =0.25*(c-b); 
a=Oz-(node[z]-vl5+node[z].s9*Cz); 
b=Kx-Jxvl6;   c=a+Wz; 
node[z].v5=0.25*(c+b); 
node[z].v7  =0.25*(c-b); 
b=Ky+Jyv!7;   c=a-Wz; 
node[z].v6=0.25*(c+b); 
node[z].vl0=0.25*(c-b); 
} 

}/* Node Scatter */ 

plural Node  *node; 

Listing2:    (a) The serial scattering function of the 3D-TLM 
Simulator. 

(b) The front-end function in (a) calls the MPL 
scattering function in (c). 

(c) The MPL implementation of the 3D-TLM 
scattering operation called in (b). 
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Abstract 

An improved steady-state frequency-domain TLM algorithm is 
presented. Instead of using the symmetrically condensed 3D node with 
inductive and capacitive stubs to model dielectric and magnetic permeability, 
which led to a symbolic 15-port node scattering matrix, only a 12-port 
symbolic scattering matrix is used. This is possible by eliminating the stubs 
which are necessary in the time-domain to preserve time synchronism, but 
not in the frequency-domain. The efficiency of this approach will be 
illustrated for three typical analysis and design problems. 

Introduction 

The Transmission Line Matrix (TLM) method is known as a versatile 
and general purpose numerical simulation tool for electromagnetic field 
problems (i.e.[l],[2]). Although the TLM is basically a time-domain method, 
frequency-domain data can be obtained from a Fourier transform of the 
impuls response of the network. Therefore, like the FDTD technique, the 
TLM combines the advantages of time-domain and frequency-domain 
analysis in one method. Besides transient analysis and visualization of 
electromagnetic wave phenomena also modelling of passive and nonlinear 
devices can be done with the TLM. 

For many applications, however, steady-state circuit analysis and 
design is required, and usually only a small frequency range -in time-domain 
terms- is of importance (i.e 100MHz to 60GHz). Then, computationally 
(computer memory and CPU-time) and in comparison to some methods 
which work entirely in the frequency-domain, time-domain methods are at a 
disadvantage. This is in particular the case for circuit design problems. 
Furthermore, while the FDTD is complemented by a frequency-domain finite 
difference (FD) scheme, which allows the user to stay within the framework 
of one method, the TLM method was lacking such a frequency-domain 
pendant until recently. In  [3] Hang and Vahldieck have introduced a 
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frequency-domain TLM (FDTLM) algorithm which uses the same space 
discretization network as in the time-domain TLM, but due to a novel impuls 
excitation (impuls train of sinusoidally modulated amplitude), the use of 
complex quantities and network theory, the method works entirely in the 
frequency-domain. Therefore, the FDTLM not only retains the flexibility of 
the time-domain TLM (TDTLM) to analyse arbitrarily shaped circuit 
structures, but eliminates also a number of problems associated with the 
TDTLM approach. In particular frequency-domain circuit design is now 
possible using the same space discretization network as in the time-domain 
but without requiring extensive computer resources. 

In this paper we present an improved FDTLM with even better 
computational efficiency in terms of computer memory and CPU-time than 
the one described in [3]. While in [3] we have still utilized a 15-port symbolic 
scattering matrix for each node, because we have assumed the same 
propagation constant in all space directions. This assumption made it 
necessary to include the stubs to represent the case where Ax#Ay#Az and 8r#l 

and ur#l. In the improved FDTLM we eliminate these stubs by introducing 
different propagation constants in all three space directions. The resulting 12- 
port node is shown in Fig.l. To illustrate the numerical efficiency and 
accuracy of this approach we will analyze three different types of discontinuity 
problems and compare the results with other techniques and measurements. 

Theory 

In [3] the FDTLM approach was still based on the 3D hybrid condensed 
node known from the time-domain TLM. This node was represented by a 15- 
port symbolic scattering matrix, because we have assumed equal propagation 
constant in each of the branches which made the stubs necessary. However, as 
we found out recently, these stubs can be eliminated if we assume different 
propagation constants in each of the branches. Then, by assuming a 
sinusoidally modulated impulse train excitation [3], we can connect the 
incident and reflected voltages between neighboring nodes in the following 
way: 

V' = X C VI 
(1) 

v; = ^ycy
v; (2) 

Cy and Cx are the connection matrices which connect the neighboring 
branches and Xx and \y are the propagation factors in the X and Y directions. 
Defining the z-axis as the propagation direction of the wave, the branches of 
the hybrid node are classified into two types (Fig.l): 
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exterior branches: +zx, +zy, -zx, -zy. 

interior branches: +xy, +xz, -xy, -xz; 

+yz, +yx, -yz, -yx. 

The exterior branches point into the propagation direction of the wave, while 
the interior branches between neighboring nodes are connected through (1) 
and (2). Therefore, a so-called intrinsic scattering matrix can be defined as [3] 

s„  s. 

*y "vf 
*y 

Vx 

yy. 
V 

. y. (3) 

which is the resulting s-matrix, combining the symbolic node matrices with 
which the entire cross-section is discretized. This intrinsic s-matrix can 
represent one or more slices of a three-dimensional mesh. From (1-3) we can 
now find a relationship between the incident and reflected voltages of the 
exterior branches, that are the branches which point in propagation direction: 

V; = [ S„ + XfiJCf ( MS„ + AjMS^C^ ) 

+ A,S„CyQ ( NS^ + A^NS^C^MS^ )] V^ 
(4) 

where 

M = (i - xßacx r3 

N = (1 - AySwCy)-] 

P = (1 - A^MS^CjNS^C,)' 

Q = (l A^^NS^C^S^C,)-' 

This step is necessary to connect subsequent s-matrices (from other 
discontinuities) together to form the overall s-matrix of the 3D structure. 
Once (4) is known, the eigenvalues of a guiding structure can be determined 
and the scattering parameters for two guiding structures connected through a 
discontinuity can be computed. This procedure is described in [3] and for 
further details the reader is referred to this paper. The difference to reference 
[3] and this paper is that here only a 12-port node is involved which leads to a 
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smaller size of matrix (3). This 12-port node is shown in Fig.l and the 
corresponding symbolic scattering matrix is shown in Fig.2. The matrix 
coefficients are derived using the principle of power conservation which 
leads to the well know unitary relation: 

STYS* = Y (5) 

Y denotes the diagonal admittance matrix normalized to the admittance of 
free space. Applying (5) with current and voltage conservation leads to a set 
of nonlinear equations. After some manipulations one finds three solutions 
which correspond to the shunt node, series node and hybrid node, 
respectively. By further assuming that the characteristic admittance of each 
branch is the same and equals the intrinsic admittance of the medium, the 
coefficients of the symbolic s-matrix are reduced to an = c„ =0, bn =dn =1/2, 
which corresponds to P.B.John's node matrix without stubs. The normalised 
propagation constants are also chosen to give 

1 v + w>    vw. 

2 vw      u2 
1     V T W        VW. 

r*=-(— r> 
l.U + W      UW. 

r?=ö(^r-7x> (6) 2   uw      v2 

l.M + V      »V. 

2    uv      w2 
i ,u-r v     uv. 

7z=-(— r> 

where u,v,and w are the dimensions of the node in x,y,and z directions, 
respectively. 

Results 

The following numerical results have been compared with other the 
mode matching method and measurements. At the time this paper was 
written results from a time-domain TLM analysis were not available. We 
have selected three sets of problems which are of practical relevance. The 
first structure (Fig.3) is a planar circuit with composite layers of substrates 
(insulating and semiconducting) and cascaded discontinuities. Such a circuit 
combines a very thin layer of substrate (SiÜ2) with a relatively thick layer of 
substrate (GaAs). The ratio is 1:200. Also the ratio between center conductor 
(lOOum) and slots (20am) is 5:1. Furthermore, the metallization thickness is 
t=5u.m and the structure is enclosed by a metallic box which can support box 
modes. To resolve such a structure with space discretization methods 
generally requires significant computer resources because the discretization 
size is normally determined by the smallest substructure to be resolved. 
Furthermore, since this is a spatially three-dimensional structure, the entire 
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(3D) space must be discretized. Although non-equidistant discretization can be 
used to reduce memory space and CPU-time, this is not easily done (or 
virtually impossible) with time-domain methods, because of stability 
problems which may lead to considerable uncertainties with respect to 
accuracy of the results. 

The new FDTLM method does not suffer from these problems because 
it uses diakoptics to subdivide a large structure into smaller substructures, 
which alleviates the large memory requirements known from other space 
discretization methods significantly. Furthermore, in the FDTLM the 
reference plane for the s-parameter computation is placed directly in the 
interface. No additional line length is required to ensure fundamental mode 
propagation left and right from a discontinuity. The s-matrix of the 
discontinuity contains fundamental and higher order mode interaction 
within the discontinuity plane. This s-matrix can be combined with s- 
matrices of subsequent discontinuities to form the overall s-matrix of a 
cascaded arrangement. Also stability problems known from the time-domain 
TLM in case of extreme non-equidistant discretization are non existent. 
Therefore, the numerical analysis of the structure in Fig.3 was done within 16 
minutes CPU-time on a IBM RS6000 (530). This corresponds to approximately 
lminute and 20 seconds per frequency point. 

The analysis for the structures shown in Fig.4 and 5 is much faster. 
Fig.4 shows an E-plane filter which has been published in [4]. Not only is the 
agreement between the mode matching results [4] and the measurements 
excellent, but the CPU-time was down to 0.23 seconds per frequency point. 
Similar results are obtained for a ridged waveguide structure [5] given in 
Fig.5. Also here the agreement between the mode matching method, 
measurements and the FDTLM are very good. The CPU-time was 0.53 
seconds per frequency point. In particular in the last case the mode matching 
method requires significantly more computation time. The dimensions for 
both structures are given in Table I. 

Table I 

Filter 
Waveguide 
housing 

Number of 
resonators 

Insert thickness 
t(mm) 

11=17 
(mm) 

12=16 
(mm) 

13=15 
(mm) 

14 (mm) 

E-plane metal 
insert filter WR-28 3 0.51 1.009 4.778 3.87 4.796 

E-plane ridge 
insert filter 

WR-62 3 0.90 2.60 8.95 10.25 10.50 
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Conclusion 

We have presented an improved version of the frequency-domain 
TLM method. Instead of using a 15-port symbolic scattering matrix for the 3D 
hybrid condensed node, only a 12-port node is utilized. This is possible by 
introducing three different propagation constants for each of the three space 
directions. The resulting algorithm is approximately 5 times faster than the 
original approach. 
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Fig. 3 Frequency-dependant s-parameters of cascaded 
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Fig. 4 Calculated and measured insertion-loss as a function 
of frequency of a Ka-band metal insert filter 

Fig. 5 Calculated and measured input reflection coefficient ten I 
versus frequency of a simple E-plane ridge-waveguide filter 
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INTRODUCTION 
The symmetrical condensed node TLM (SCN-TLM) method is well established for the 

time domain solution of complex electromagnetic interaction problems in three 
dimensions. Recent improvements to the TLM method such as edge nodes [1], corner 
nodes [2] and thin wire nodes [3,4] have increased both the accuracy and applicability of 
the technique. Still, one of the major limitations of the TLM method is the requirement 
that boundary conditions be enforced either at mesh nodes or at points which lie exactly 
midway between them. This restriction is required in order to preserve time 
synchronization which insures the arrival of voltage pulses at all nodes in the TLM mesh 
simultaneously. As a consequence, problems must be discretized such that all 
boundaries are located at half-integer multiples of the mesh spacing. This requirement 
leads to unnacceptable computational requirements for a large class of problems that 
require an accurate placement of boundary conditions. In addition, the standard cartesian 
mesh requires that curved surfaces be approximated using a stair-casing approximation. 
In many cases, such as the calculation of scattering from complex targets, this stair- 
casing approximation leads to substantial errors, and the use of increasingly finer meshes 
does not converge quickly to the desired result for the continuous curved boundary. 

A method has been proposed by Johns and Slater [5] which allows the link-lines of a 
two dimensional TLM mesh to be adjusted at reflective boundaries in order to achieve 
boundary placement at any point lying between two adjacent nodes. This technique 
requires a modified scattering matrix for the TLM nodes. For the two dimensional series 
and shunt connected TLM nodes, the derivation of this scattering matrix is straight- 
forward. In the case of the three dimensional SCN-TLM node, however, there is no 
equivalent lumped circuit model and so the derivation of the scattering matrix is not so 
simple. 

In order to overcome this difficulty, Muller et. al. have proposed a method which retains 
the usual scattering matrix. In this technique, the affected link-lines are loaded with 
impedance elements to simulate the additional distance to the boundary. The differential 
equations relating the voltage and current at these elements are then replaced by 
difference approximations which yield recursive formulas for updating the voltage pulses 
reflected from the boundary. This requires knowledge of the voltage pulses at the 
boundary not only at the current time step but the previous one as well which must be 
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stored in the computer. In addition, the stability of these recursive formulas only allows 
for the link-lines to be lengthened, and not shortened, to accomodate boundary 
conditions. 

In this paper, the scattering matrix for a general three dimensional SCN with differing 
link-line characteristic impedances is presented. This allows for the application of the 
Johns and Slater technique for adjusting boundaries. The development of this node 
allows for reflective boundaries to be placed at any point on the link-lines connecting two 
adjacent nodes. 

THEORY 
Figure 1 shows a SCN with unequal link-line lengths. By allowing the length of the link- 

lines to vary in this way, the point at which reflective bounday conditions are applied can 
be positioned at any point between adjacent nodes. An example where this capabiliy is 
advantageous is demonstrated by the slanted boundary shown in Figure 2. Using the 
method presented here, the boundary conditions can be applied at the exact points where 
the boundary intersects the link-lines in the mesh. A stepped approximation to the 
boundary resulting from the placement of boundaries at the midpoint between nodes is 
also shown. 

In any TLM simulation, time synchronization must be maintained. One way of 
preserving time synchronism while varying the link-line lengths involves changing the 
characteristic impedance of the lines [5]. Therefore, the scattering matrix for the SCN 
with variable impedance link-lines is required. Because each arm of the node contains 
two link-lines (corresponding to two orthogonal polarizations) there is the possibility of 
having, at most, six different characteristic impedances associated with a single SCN 
since 

M = 'S" '2~ 'V *3= 'e' *7= M2' *8= ^8' '11= MO 

where the original port numbering used by Johns [6] has been used here. 
The scattering matrix for the new node is obtained by applying Maxwell's equations 

along with the conservation condition that the scattering matrix be unitary. Figure 3 
shows the symbolic form of the scattering matrix which is assembled based on symmetry 
considerations [6]. Using arguments similar to Johns' to discretize Maxwell's equations 
in terms of the voltage pulses on the link-lines and by requiring the unitary condition, a 
complicated set of equations results which can be solved, after considerable manipulation, 
for a,b,c,d and e. These values are given by the following: 

>1_(1 
2(V*?     ),      Yl    (1        2Kn+*J    ) 

YI+Y;   Yl+YJ+Yk+Y; Y,+Y;  zl+zrzm*zn 

2V, 
WVr, 
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Figure 1. Symmetrical condensed TLM node with varying link line lengths for the 
arbitrary placement of boundaries. 

Figure 2. A TLM mesh with a slanted boundary modeled using a fitted boundary 
and a stepped boundary approximation. 
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Figure 3. The scattering matrix for the new TLM node. 
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Figure 4. Transmission line equivalents for the placement of a short (or open) 
circuit load, (a) The physical problem, and (b) electrically equivalent 
problem. 
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c=       2Y< 
Yl+YJ+Yk+Y, 

z,+zJ+zm+zn 

Y,+ Y,      Yl+YJ+Y^Yt   Zi+ZtZm+Zn' 

where the subscripts for the admittances and impedances are obtained from Figure 3. 
With the scattering matrix now available, its application to adjustable boundaries must 

be considered. For the standard SCN all link-lines are 8/2 long where 5 is the inter-nodal 
spacing in the coordinate directions. Suppose we wish to apply a boundary condition at 
a point that is <x<5/2 from a node where 0<a<2. A single link-line for this situation is shown 
in Figure 4(a). Clearly, time synchronism is violated. However, if we replace this physical 
situation with the electrically equivalent one shown in Figure 4(b), time synchronism is 
maintained. To see how this is done, note that the input impedance for the case of 
Figure 4(a) is given by 

Znptrf=/Z0tan(-P|*) 

which for small ß8 is 

7    -il P"6 

For the case in Figure 4(b) 

which reduces, for small ß8, to 

,/7'ton/Ml Zvuf=yZ>n(J^) 

7.      =/Z'J^- 
2 

For the two situations to be electrically equivalent we equate the input impedances which 
gives the requirement that 

Zo=aZ0 

for a short circuit (PEC) boundary. For the case of an open circuit (PMC) boundary we 
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find that the required impedance is 

Z, 

a 

Thus, by applying the above properties, it becomes evident how a reflective boundary 
a distance of a8/2 from a node can be simulated by adjusting the characteristic 
impedance of the affected 8/2 link-lines, thus preserving the required time 
synchronization. 

NUMERICAL RESULTS 
The first example is a simple one dimensional resonator built out of a string of 50 

SCN's. The resonator is terminated on one end with a stationary magnetic wall (open 
circuit) and at the other with an adjustable electric wall (short circuit). The enclosing walls 
are terminated using appropriate symmetry conditions. The resonant frequencies for the 
first and fifth resonant modes were calculated for various values of the length parameter 
a and are presented in the figure where good accuracy is observed. For the same TLM 
mesh without adjustable boundaries only the <x=1 solution can be obtained. This example 
demonstrates not only the accuracy of the proposed method, but also the versatility that 
can be achieved with regard to the positioning of boundaries on a sub-cell size scale. 

Next we examine the use of the proposed method for simulating a circular waveguide. 
Due to symmetry only one-fourth of the structure need be considered as shown in Figure 
6. A radius of 58 is used to calculate the cutoff frequencies for several TE modes in the 
guide. The results in Figure 5 are presented for a stepped approximation to the boundary 
and for a fitted boundary using the present method. In all cases except the TE01 mode 
(where the stepped boundary result is very accurate) improvement in the results is 
observed. To investigate the convergence of the resonant frequency with increasing 
mesh resolution, the same waveguide was used to calculate the TE11 cutoff frequency 
for different mesh sizes. The results are shown in Figure7. Overall, the fitted boundary 
yields more accurate answers than the stepped boundary for a given mesh coarseness, 
and approaches the exact result faster with increasingly finer meshes. 

As a final example, the problem of a rectangular waveguide with a slightly off-center fin 
is examined. The geometry is shown in Figure 8. If a mesh size of 1 mm is chosen, 
then the boundary condition for the fin cannot be placed exactly using the usual ungraded 
TLM mesh. The problem has been solved using a 1 mm mesh size using the fitted 
boundary technique and with the standard TLM algorithm by approximating the fin as 
being centered. As a reference solution, the problem was also solved using a fine 
(8=0.5mm) mesh which allows the fin to be placed exactly in a normal mesh. The results 
are shown in the figure for the cutoff frequencies of the first two TE modes. Clearly, an 
advantage is gained from the use of the adjustable boundaries described here. 

CONCLUSIONS 
A method for the accurate positioning of reflective boundaries in the SCN-TLM method 

has been presented. It is based on the earlier work of Johns and Slater, and a newly 
derived scattering matrix for the SCN. Some simple examples have demonstrated the 
advantages of the technique when the accurate placement of boundaries is called for. 
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open 
circuit I H+H-—•+***■ 

-49.5 a« 

Fundamental Mode 

a frfTLM) fr (Exact) %Diff. 

0.0 1.508 1515 0.462 

0.5 1.504 1.507 0.199 

1.0 1.504 1500 0.267 

2.0 1.496 1.485 0.741 

Fifth Resonant Mode 

a frfTLM) fr (Exact) % Diff. 

0.0 7.540 7576 0.475 

0.5 7.524 7.538 0.186 

1.0 7.504 7.500 0.053 

2.0 7.472 7.426 0.619 

I short 
circuit 

Figure 5. One dimensional resonator with the first and fifth resonant frequencies 
calculated using adjustable boundaries. 

\ 
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MODE 
Exact Stepped Fitted 

TE 01 
0.6099 

0.6108 
(0.14) 

0.6283 
(3.02) 

TE11 
0.2930 

0.2833 
(3.31) 

05883 
(1.60) 

TE12 
0.8485 

0.8275 
(2.47) 

0.8392 
(1.10) 

TE21 
0.4861 

0.4517 
(7.08) 

0.4558 
(6.23) 

TE22 1.0673 1.0283 
(3.65) 

1.0392 
(2.63) 

Figure 6. Geometry and cutoff frequencies for various TE modes in a circular 
waveguide using fitted boundaries and a stepped approximation. 
Parenthetical values are percent error. 
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Figure 7. Convergence of the fitted and stepped boundaries for the TE11 mode 
of a circular waveguide. 
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f2 28.31 GHZ 30.02 GHZ 
(6.04) 

27.14 GHZ 
(4.1) 

Figure 8. Finned waveguide geometry and cutoff frequencies of the first two 
TE modes. (Percent difference from fine mesh is in parenthesis) 
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The TLM code GTEC [7] has been modified for the present work. Since GTEC 
implements pre-calculation of the scattering matrices in the mesh, the additional 
computation! expenditure required by the use of adjustable boundaries is in the pre- 
processing stage when these are calculated and is negligible. The technique does, 
however require slightly more memory since more scattering matrices must be stored. 
The actual TLM algorithm remains unchanged. Further work is underway to more fully 
characterize the accuracy of the new method. 
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ABSTRACT 

The high frequency characteristics of a rhombic illuminator under common-mode 
excitation are studied in this paper using the Numerical Electromagnetics Code (NEC-2). 
The electrical length of the overall wire structure ranges from approximately 700 
wavelengths at 500MHz to approximately 1400 wavelengths at 1GHz. Efficient 
segmentation schemes are required to extend the analysis up to 1 GHz. Based on the 
damping characteristic of the rhombic illuminator current at these frequencies, only a 
portion of the wire structure must be modelled. This technique allows one to analyze 
such a structure efficiently at very high frequencies. 

INTRODUCTION 

A rhombic illuminator (RI) is characterized by a rhombic transmission line 
configuration over ground with the ends of the transmission line connected to ground 
through a source at one end and a matched load at the opposite end as shown in Figure 
1. The height of the transmission line above ground rises from the source and the load 
to an apex somewhere in the midsection of the transmission line. The wires on the source 
end of the RI are referred to as the launch wires (wires #1 and #3) with voltage sources 
Vj and V3 driving these wires relative to the ground plane. The wires on the load end are 
referred to as the termination wires (wires #2 and #4) with loads Z2 and Z, connecting 
these wires to the ground plane. These terminations are chosen to be the characteristic 
impedance of the two-wire transmission line over ground. The dimensions of the RI 
considered in this paper are shown in Figure 2. 

The RI is typically designed to produce near uniform fields of a given polarization 
within some specified volume below the conductors. This volume of interest is 
commonly referred to as the working volume. The polarity of the voltage sources relative 
to each other dictates the direction of field polarization within the working volume. The 
common-mode excitation (Vj=V2) generates fields in the working volume which are 
predominately vertically polarized such that Ez is the principal component of the 
transverse electric field. The x-component of the electric field under common-mode 
excitation is designated as the nonprincipal component of the transverse electric field. 
The differential-mode excitation (V1=-V2) generates fields in the working volume which 
are predominately horizontally polarized such that Ex is the principal transverse 
component of the electric field while Ez is the nonprincipal transverse component. 
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Figure 1. Rhombic Illuminator (RI) wire configuration. 
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Figure 2. Dimensions of the Rhombic Illuminator. 
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LOW FREQUENCY PERFORMANCE OF THE RHOMBIC ILLUMINATOR 

At low frequencies, the RI may be modelled as a two-wire transmission line over 
ground [1]. The transverse electromagnetic fields within the working volume may be 
approximated by the fields of the two-wire line TEM mode. The TEM electric fields of 
the two-wire line under common-mode or differential-mode excitation are obtained by 
considering the static fields of equivalent line charges over ground. The principal and 
nonprincipal transverse electric fields under common-mode excitation given a perfectly- 
conducting ground plane are 

E = 
*<\y r 

4?tZ. 

110v 

<?-b) (z-b) (z+b) (z+b) 

(x-af + (z-b)2     (x+a)2 + (z-b)2     (x-af + (z+b)2     (x+a)2 + (z+b)2 

(1) 

4TTZ„. 

(x+a) (x-a) (x+a) (x-a) 
(x-a)2 + (z-b)2     (x-a)2 + (z-b)2     (x-a)2 + (z+b)2     (x-a)2 + (z+b)2 

(2) 

where 2a is the distance between the wire centers, b is the height of the wires above the 
ground plane, V is the wire potential, T]0 is the intrinsic impedance of the surrounding 
medium (modelled here as free-space) and ZOT is the characteristic impedance of the 
common-mode two-wire line given by 

4JI 
In + Vl+(ry lb)2   -rib 

-f: (rib)2   + rfb 

Iln[l+(ö/a)2] (3) 

where r is the radius of the wires. Below approximately 100MHz, the electric field 
distributions defined in Equations (1) and (2) are quite similar to the working volume 
fields obtained using NEC-2. The RI wire current magnitude at 1, 10 and 100MHz is 
shown in Figure 3 where the variable 5 defines the distance along the wires. The current 
distribution along the RI wires at these frequencies, while exhibiting a damped standing- 
wave characteristic from the source to the termination, is relatively constant. Thus, the 
similarity of the field distribution with that of the TEM mode is not surprising. As the 
frequency of operation is increased, the RI becomes a more effective radiator and the 
current decay along the RI wires becomes more pronounced. The standing wave behavior 
of the RI current is attributable to reflections from the wire bends and the terminations. 

HIGH FREQUENCY PERFORMANCE OF THE RHOMBIC ILLUMINATOR 

The high frequency characteristics the given RI are evaluated using NEC-2. The RI 
is excited in the common-mode configuration. The total wire length for the RI is 
approximately 420 meters and the frequency range of interest is 500 MHz to 1GHz. 
Thus, the electrical length of the overall wire structure to be modelled with NEC-2 ranges 
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Figure 3. RI current at 1, 10 and 100MHz. 

from a minimum of approximately 700 wavelengths to a maximum of approximately 1400 
wavelengths. The complexity of the analysis is reduced somewhat by the fact that the RI 
configuration possesses one plane of symmetry. Efficient segmentation schemes [2] are 
required to extend the analysis of the RI up to 1 GHz using a code like NEC-2 which 
utilizes sub-domain basis functions. The segment lengths are increased from a minimum 
at the source (-0.01Ä.) to the specified maximum length (~0.4X) using a 10% increase in 
length from segment to segment. The remaining portion of the launch wire and the 
complete termination wire are divided into uniform segments of maximum allowable 
length (~0.4X). 

The RI current was computed at 500 and 550 MHz using NEC-2 and the segmentation 
technique described above and is shown in Figure 4. At 500MHz, the current magnitude 
is significant along the entire structure. However, at 550MHz, the current decays such 
that the termination wire current becomes negligible over a portion of the wire. At higher 
frequencies (600MHz and higher), the current decays to a negligible magnitude over a 
larger portion of the termination wire. This characteristic allows for analysis of the RI 
at higher frequencies by modeling only the portion of the antenna over which the current 
is significant. The antenna currents from 600MHz to 1GHz at 50MHz intervals are 
shown in Figures 5 through 8. 
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Figure 5. RI current at 600 and 650MHz. 

The principal electric field magnitude is determined along a line normal to the 
antenna axis at both 500MHz and 1GHz for a perfect ground plane and an 
inhomogeneous lossy ground plane consisting of wire radials over a lossy material. The 
ground material properties are assumed to be (8=7.55, a=0.124U/m) at 500MHz and 
(£,=6.4, a=0.258tJ/m) at 1GHz. The plots of the working volume fields are given in 
Figures 9 and 10. 
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CONCLUSION 

The damping coefficient associated with the RI currents increases as the frequency 
increases. A significant change in the current distribution is noted from 500MHz to 
550MHz. Further increases in frequency produce smaller changes in the shape of the 
current by comparison. The peak value of the current, located at the source, shows a 
continual increase with frequency. From the current distribution results given here, we 
find that the terminations wires would have little effect on the basic operation of the RI 
at frequencies above 1GHz. The technique for reducing the actual length of the antenna 
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in the analysis could be applied to the HSI at frequencies above 1 GHz. Such an 
analysiswould yield accurate results assuming the damping characteristics of the antenna 
follow the same trend as seen from 500MHz to 1 GHz. 
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Abstract 

The complex HF antenna installation on the EC-130 aircraft presents an unusual 
opportunity for the study of inter-antenna and antenna-to-airframe coupling. A complex wire-grid 
model of the aircraft was developed for use with the Numerical Electromagnetic Code (NEC) to 
analyze the HF coupling modes on the aircraft. NEC runs were executed as frequency sweeps 
with very fine frequency stepping so that the detailed variations in radiation characteristics can 
be revealed. The numerical results provide a valuable and complete information set which is 
difficult to obtained by experimental measurements. 

I. Introduction 

The EC-130 is a U.S. Navy communication platform which is equipped with five external 
HF wire antennas for long range communication. They include two top mounted antennas that 
run from either side of the forward fuselage to the vertical stabilizer, two symmetrical "dog-leg" 
antennas running from mid-fuselage towards the horizontal stabilizer and then to the vertical 
stabilizer, and one receive antenna, centred on top of the fuselage, aft of the other two longer top 
mounted antennas, as shown in Fig. 1. Such a complex HF antenna installation presents an 
unusual opportunity for the study of inter-antenna and antenna-to-airframe coupling. The coupling 
between the HF antennas gives rise to two main concerns : (1) the magnitude of the induced 
voltage across the feed points of an antenna could be high enough to cause operational 
interference or even damage to the receiver connected to the passive antenna; (2) the radiation 
pattern of each individual antenna could be profoundly altered by the strong currents induced on 
other antennas and/or on the airframe due to phase additions or cancellations. The exact 
frequencies where these strong couplings occur are very difficult if not impossible to identify by 
direct measurements or simplified calculations. Therefore, numerical modelling techniques are 
employed to study the coupling phenomena on this complex structure. The use of numerical 
modelling techniques not only allows one to obtain a complete set of critical frequencies 
associated with strong couplings by fine frequency stepping sweeps, but also to calculate the 
values of the induced voltages at antenna terminals and the currents on any part of the structure, 
as well as the radiated field patterns of the antennas. This paper presents the results obtained 
from running NEC for excitations of two different antennas and three different passive antenna 
loading conditions. Part of the results had been published in the proceedings of ANTEM'92 [1]. 

II. Model Development and Validation 
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A complex wire-grid model of the aircraft consisting of 924 wire segments was developed 
for use with the numerical electromagnetic code (NEC) to analyze the radiation characteristics 
of the aircraft as a whole. The wire-grid model had been carefully designed to minimize the 
difference between the real structure and the model in terms of electromagnetic properties. As 
can be seen in Fig. 5, measures that were taken in the design of the model include a denser wire- 
grid in the antenna feed regions and smooth transition of wire density in regions such as wings 
and stabilizers where the width of the conducting surface is not constant. These two arrangements 
will ensure the continuity of current flows on the airframe. Moreover, the "same surface area" 
rule was applied to calculate the radius of each wire in the model. The calculation of wire radii 
was done systematically using computer programs called "MESHES" and "FNDRAD" [2]. The 
first program identifies all the meshes in the wire-grid model, and the latter one finds the radius 
for each wire based on the area(s) of the mesh(es) to which the wire belongs. For complicated 
wire-grid models such as the one used in this study, the use of a computer program for radius 
calculation eliminates the chance of making mistakes and speeds up the process considerably. It 
is of great concern that the wire-grid model complies with the known modelling guidelines of 
NEC [3] so that meaningful numerical results can be obtained. Thus the program "CHECK" [4] 
was used to detect any violation of NEC guidelines and no errors were reported. The validity of 
the model was further confirmed by the good agreement between the measured and computed 
radiation patterns at selected frequencies [5]. 

in. Antenna Input Impedance Values as Coupling Indicators 

One of the major advantages of using numerical modelling techniques to analyze 
electromagnetic problems is the ease in repeating the analysis for the same problem with different 
parameter values. This allows one to see the detailed variation in the results with respect to a 
parameter such as frequency. In the study of HF coupling, it is desirable to find out the exact 
frequencies in the HF range where strong couplings occur. Strong couplings are revealed by 
abrupt changes in input impedance values of an antenna. If the input impedance curve of an 
antenna is compared with a reference curve which represents the coupling-free input impedance, 
then all the couplings can be found by examining the input impedance curve. With the increase 
in computing power on modern computers, it is possible to complete a frequency sweep on the 
model with very fine frequency stepping in a relatively short period of time. This allows one to 
obtain very high resolution input impedance curves and hence greatly reduces the chance of 
missing some strong couplings occurring over a very narrow frequency band. After obtaining the 
input impedance curve, one can analyze all the couplings present in the HF range. Figures 2 and 
3 show the input impedances of antennas HF1 and HF4, respectively. Compared with the input 
impedance of a dipole antenna in free space, as shown in Fig. 4, it is seen that the input 
impedance curves of HF1 resemble that of the dipole except there are additional peaks and 
valleys at certain frequencies. Due to its special shape and orientation with respect to the 
airframe, the impedance curves of the "dog-leg" antenna HF4 are less similar to that of the 
dipole, but they still possess the typical pattern of open-circuit transmission line impedances. The 
most obvious inter-antenna coupling is observed as a small bump on the resistance curve between 
3.0 and 4.8 MHz. Couplings to the airframe are generally less intense and occur over a wider 
frequency band, they do not show up as spikes or steep edges on the impedance curves as a 
result. 
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The existence of the couplings observed from the impedance curves can be verified by 
examinations of current distributions or the induced voltages across the feed points of the loaded 
passive antennas. Induced voltages are calculated by multiplying the currents at the feed elements 
of the passive antennas by the load impedances, and the results are plotted versus frequency. The 
coupling modes are then investigated by examining the current magnitude and phase on the wire 
antennas and on the airframe as well as the induced voltages at the passive antenna terminals. 
For very practical reasons, the radiation patterns at the critical frequencies will also be plotted 
and compared with the patterns at adjacent frequencies where no strong couplings are observed. 

IV. Analysis of Coupling Modes 

(a) HF1 as the active antenna. 

Compared with the input impedance curve of a dipole in free space, the input impedance 
for the short-circuit and open-circuit conditions exhibit high degree of anomaly at certain 
frequencies, whereas the input impedance for the 50 Q. loading condition basically follows the 
pattern of a dipole antenna in free space with the exception near 4 MHz and weaker indications 
elsewhere. 

In the short-circuit case shown in Fig. 2(a), there is an oscillation of input reactance at 
frequencies near 3.6 MHz. This oscillation was found to be related to the strong couplings 
between the two "dog-leg" antennas (HF4 and HF5) and the active antenna (HF1) by an 
examination of the current distribution at those frequencies. As shown in Fig. 5(c), the 
magnitudes of the currents induced on HF4 and HF5 are comparable to that on the active antenna 
at 3.65 MHz. The notch on the input resistance curve near 4.7 MHz was identified as the 
indication of the coupling between HF1 and HF3, which is shown in Fig. 5(b). It is also observed 
that there is a spike near f = 3.15 MHz and three other notches on the input resistance curve near 
f = 10.4, 17.65, and 24.9 MHz corresponding to couplings between HF1 and HF2. These strong 
couplings occur at the resonant frequencies of HF2, which incidentally are also the resonant 
frequencies of HF1 (HF1 and HF2 are of the same length). This is an important clue to the 
coupling modes between antennas. Fig. 5(a) shows the current distributions on HF1 and HF2 at 
3.15 MHz, where the strongest coupling between HF1 and HF2 occurs. 

In this paper, the frequencies at which the input reactance changes from negative to 
positive are referred to as resonant frequencies, and the frequencies where the input reactance 
changes from positive to negative are referred to as anti-resonant frequencies. The resonant and 
anti-resonant frequencies for the five antennas on the aircraft in the frequency range from 2 to 
30 MHz are listed in Table 1. 

For the open-circuit case shown in Fig. 2(b), it was surprising to find that the input 
resistance and reactance of the active antenna are quite different from those in the short-circuit 
case. First of all, no oscillation of input reactance is found near 3.6 MHz, instead, the oscillation 
occurs at frequencies near 29.2 MFIz. In addition, the notches on the input impedance curve do 
not occur at the resonant frequency of HF2. There is a spike followed by a notch near 9 MHz, 
a small "bump" followed by a shallow notch near 19 MHz, and another spike at 29.2 MHz. The 
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anomalistic points near 9 and 19 MHz are due to couplings between HF3 and HF1, which is 
something unexpected since these frequencies correspond to the anti-resonant frequencies of HF3 
rather than its resonant frequencies. Fig. 5(d) shows the current distributions on HF1 and HF3 
at 9 MHz, HF3 is seen to be at anti-resonance. The spike at 29.2 MHz, which is close to the anti- 
resonant frequencies of both HF2 and HF3, is the result of strong couplings to both HF2 and 
HF3. Besides significant induced currents, strong couplings also result in high induced voltages 
across the feed points of the passive antennas. The voltage values in this case were calculated 
by multiplying the current on the feed element of each antenna by the simulated open-circuit load 
of 1 MQ. Fig. 6 (a) shows the plots of the induced voltages versus frequency. These plots give 
even clearer pictures regarding the bandwidth as well as the magnitude of each coupling. 
Obviously, HF2 and HF3 have much higher induced voltages than HF4 and HF5. This is 
probably due to the fact that these two antennas are farther away from HF1 than the other two 
passive antennas. The highest induced voltage is found at HF3 near 19.0 MHz which is 5 times 
the excitation voltage at HF1. The following inferences were drawn based on a careful 
examination of the frequencies at which voltage peaks occur : 

High induced voltages appear at the terminals of the passive antennas near frequencies 
corresponding to : (1) the resonant frequencies of the active antenna; (2) the anti-resonant 
frequencies of the passive antennas. 

Table 1  Resonant and Anti-Resonant Frequencies of the HF Antennas on the EC-130. 
Antenna Frequency (MHz) 

1st order 2nd order 3rd order 4th order 
Resonant Anti-Res. Resonant Anti-Res. Resonant Anti-Res. Resonant Anti-Res 

HF1 3.2 6.4 10.4 12.8 17.6 21.0 25.0 28.8 
HF2 3.2 6.4 10.4 12.8 17.6 21.0 25.0 28.8 
HF3 4.7 9.0 14.1 19.0 25.0 29.2 
HF4 3.6 7.0 10.8 13.0 17.8 22.0 25.2 27.0 
HF5 3.6 7.0 10.8 13.0 17.8 22.0 25.2 27.0 

With the passive antennas being terminated in 50 Q resistances, the magnitudes of 
couplings are reduced throughout the HF range. The only strong coupling visible on the input 
resistance curve is the one occurring near 3.3 MHz. The induced voltages were obtained by 
multiplying the currents on the feed elements of the passive antennas by 50 Q and were plotted 
versus frequency as shown in Fig. 6 (b). It is noted that the highest induced voltage in this case 
occurs at HF2 near 3.5 MHz and is 1.1 times the excitation voltage at HF1. Voltage peaks are 
found at frequencies close to the resonant frequencies of the active antenna HF1. Unlike the 
open-circuit case, no high induced voltages are found near the anti-resonant frequencies of the 
passive antennas. It is also observed that the magnitude of coupling decreases as the relative 
distance between the active and passive antennas increases. HF2 is closest to HF1, thus it 
experiences strongest coupling. Being the farthest passive antenna from HF1, HF5 has lowest 
coupled voltages among the four. 

(b) HF4 as the active antenna. 

Although HF4 is a bent wire antenna, its input impedance pattern is still comparable with 
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that of a dipole in free space. As shown in Fig. 3, the input impedances for all three passive 
antenna loading conditions are very similar, except near 4.7 MHz where there is tiny notch on 
the resistance curve for the short-circuit case but not for the other two cases. That notch is found 
to be related to a coupling between HF4 and HF3 by an inspection of the current distribution 
shown in Fig. 5 (e). The induced voltages for open-circuit and 50 fl loading are plotted in 
Figures 7 (a) and Fig. 7 (b), respectively. 

For open-circuit loading, the coupling modes observed when HF1 acts as an active 
antenna also apply here. High induced voltages are found near resonant frequencies of the active 
antenna HF4 and near the anti-resonant frequencies of the passive antennas. Compared with HF1 
excitation, the magnitudes of the induced voltages, however, are much lower. 

Similarly, the induced voltages for the 50 Si loading case also fit in the modes described 
for HF1 excitation. High coupled voltages are observed near the resonant frequencies of the 
active antenna HF4. Again, the magnitude of coupling is much lower compared to HF1 
excitation. 

Coupling to the airframe is present throughout the HF range for all three loading 
conditions. There are two major current paths : (1) the path along antenna HF4 and the port (left) 
wing of the aircraft; (2) the path along antenna HF4, port side of the fuselage, and the port 
horizontal stabilizer starting near the feed point of HF4. The magnitude of coupling varies with 
frequency. Strongest couplings to the left wing are found near 4, 12, 20, and 27 MHz. The 
magnitudes of the couplings to the fuselage and stabilizer are also found to be strongest near the 
frequencies mention above, but are less sensitive to frequency change compared to those to the 
wing. As an example, at 6 MHz, the coupling to the wing has diminished whereas the coupling 
to the fuselage and horizontal stabilizer is still strong, as shown in Fig. 5 (f). 

V. Effects of Coupling on Radiation Patterns 

The patterns of radiated fields depend not only on the active antenna but also on the 
passive antennas and the aircraft structure because currents induced on any part of the aircraft 
are radiation sources as well. We are particularly interested in the radiation patterns at 
frequencies where strong inter-antenna couplings are present. At these critical frequencies, 
induced currents on the passive antennas could be so strong that the radiation patterns could be 
entirely different from the patterns at other frequencies. Fig. 8 shows the volumetric radiation 
patterns for two polarizations of the E-field. 

For HF1 excitation under short-circuit loading condition, the patterns at 3.15 and 3.65 
MHz are very different from the patterns at 3.0 and 4.0 MHz, as shown in Figures 8 (a) through 
8 (d). This indicates that the couplings between HF1 and HF2 at 3.15 MHz, and between HF1, 
HF4 and HF5 at 3.65 MHz alter the radiation pattern substantially. Similarly, a comparison 
between the radiation patterns at 4.0 and 4.7 MHz shown in Fig. 8 (d) and Fig. 8 (e) reveals that 
the coupling between HF1 and HF3 at 4.7 MHz also results in significant radiation pattern 
changes. These profound changes in radiation patterns within such a narrow frequency band are 
very difficult to detect by experimental measurements. Changes in radiation patterns are also 
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found for other couplings occurring at higher frequencies and for the couplings present in the 
open-circuit and 50 fl loading cases. 

VI. Conclusions 

It is observed from the numerical results that the most striking couplings on the aircraft 
are those between the HF wire antennas mounted on the airframe, especially between the three 
straight antennas that extend from the top of the fuselage to the vertical stabilizer. Currents 
induced on passive antennas are higher or comparable to the current on the active antenna at 
certain frequencies. When acting as active antennas, the two "dog-leg" antennas can induce 
relatively high current along the wings and the sides of the fuselage due to their special locations 
and orientations. As far as the induced voltages are concerned, voltages as high as 5 times the 
source voltage of the active antenna are observed to be induced across the feed points of a 
passive antenna under the open-circuit condition. Under the 50 Q loading condition, the induced 
voltages are lower, but still can be as high as 1.1 times the source voltage. It is noted that for 
short-circuit and 50 Q termination, strong inter-antenna couplings occur near the resonant 
frequencies of the active and passive antennas , whereas high magnitude couplings are found near 
the resonant frequencies of the active antenna and the anti-resonant frequencies of the passive 
antennas for the open-circuit case. 
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Fig. 1  EC-130 HF Antenna Installation. 
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Fig. 2  HF1 Input Impedance. 

506 



3 
>            -tm- 

;-. 

it   a   H   w   it a» a **  at : 

(a) Passive Antennas Short-Circuited. (b) Passive Antennas Open-Circuited. 

- 

1 ~ 
•'     / * \j      /"■ 

/ 

i i» /     :       j 

s :      :       j 
f 
S 

-- 
\ 

-K- 

:  / : / 
v •-/ 

naMHu»»Ma»a 

(c) Passive Antennas Loaded with 50 £2 Resistances. 

Fig. 3  HF4 Input Impedance. 

/Ik / 

%   / y 

yf' 

\s'' 

Fig. 4  Input Impedance of a 40 m Long Dipole in Free Space. 
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ABSTRACT 

This paper details the evaluation of the pattern degradation due to protruding structures 
for several antennas mounted on a military helicopter tail boom. Models of the antennas under 
investigation and of the helicopter structure were created for use with the Numerical 
Electromagnetic Code - Basic Scattering Code (NEC-BSC) Version 3.1 [1]. To determine the 
effects of the main rotor compartment, the engines, and the tail section on the antennas' patterns, 
two separate models of the helicopter structure were required: a partial aircraft model and a full 
aircraft model. The partial aircraft model did not include the main rotor compartment, the 
engines, or the tail section, while the full aircraft model included these structures. NEC-BSC 
was run using these models to perform the analysis. The pattern degradation due to the 
protruding structures was determined by comparing the antenna patterns resulting from the two 
models. 

INTRODUCTION 

Antenna placement on a military helicopter presents many challenging problems because 
there are a limited number of suitable mounting surfaces and because of the large number of 
antennas required on such a platform. These problems include the necessity for placing antennas 
within close proximity of each other and the likelihood of having protruding helicopter structures 
affect the antennas' intended area of coverage. On a complex military helicopter, such as the 
one shown in Figure 1, one antenna location of choice is on the top of the tail boom. This is 
a good location because not only is there enough area for mounting several antennas with 
adequate spacing, but there is also little helicopter structure to obstruct the antennas. The main 
protruding structures that are likely to affect the patterns of antennas placed on the tail boom are 
the main rotor compartment, the engines, and the tail section. 

Engine 
Main Rotor Compartment 

Tail Section 

Figure 1.  Complex Military Helicopter. 
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The antennas typically placed on the tail boom are associated with electronic systems 
which operate at different frequencies in the range from 100 to 1600 MHz. There is a definite 
need for a technique to analyze the pattern coverage of these antennas as a precursor to a 
measurement program. The analysis can be used to help avoid placing antennas in areas with 
excessive pattern blockage or to compare the placement of antennas in various locations for 
performance trade-offs. 

NEC-BSC can be used for this type of investigation because it is based on the Uniform 
Geometrical Theory of Diffraction (UTD), an approach which is ideal for a high frequency study 
of antennas in which only the most basic structural features of an otherwise very complicated 
structure need to be modeled. This allows for a complex helicopter to be modeled using a small 
number of perfectly conducting plates and cylinders. Because the model need not be very 
complicated, its creation is a relatively easy task and computer run times are short enough to not 
become a major drain on personnel or resources. 

This paper will focus on the analysis of three different antennas operating at three distinct 
frequencies all using the same helicopter models. The first two antennas are blades operating 
at 130 and 1090 MHz, respectively.  The third antenna is a turnstile operating at 260 MHz. 

MODEL DEVELOPMENT 

Antenna Models 

In this investigation, the blade antennas were modeled as vertically polarized half- 
wavelength dipoles. The turnstile antenna was modeled as two orthogonal, horizontally 
polarized, half-wavelength dipoles fed with a 90° phase differential to obtain circular 
polarization. Models for two different orientations of the crossed dipoles were created (rotated 
45° relative to each other) because their true orientation was unknown due to the antenna casing. 

Helicopter Models 

The helicopter structure was modeled using perfectly conducting plates and cylinders. 
Use of UTD generally requires that each plate have edges at least a wavelength long and that 
each antenna be at least a wavelength from all plate edges. Since the lowest operating frequency 
of any of the antennas is 130 MHz, which corresponds to a maximum wavelength of 90.9 
inches, the requirements of UTD could not be met. However, the NEC-BSC's User's Manual 
[1] states that in many cases the wavelength limit can be reduced to a quarter wavelength for 
engineering purposes. Since the helicopter model could be built to conform to the quarter 
wavelength limit, which required a minimum edge length of 22.7 inches, NEC-BSC was used 
assuming this limit was valid. It should be noted that the rotors were not included in the 
helicopter model. The inclusion of the spinning rotors would have a modulating affect on the 
patterns that were generated without them. 

To determine the effects of the protruding structures on the antennas' patterns, two 
separate models of the helicopter structure were created: a partial aircraft model and a full 
aircraft model. A comparison of the antenna patterns of these two models identified the effects 
of the engines, the main rotor compartment, and the tail section. An isometric view of the 
partial aircraft model is shown in Figure 2.   This model conforms to the quarter wavelength 
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limit and contains a total of nine plates; it does not include the engine sections, the main rotor 
compartment, or the tail section. An isometric view of the full aircraft model is shown in 
Figure 3. This model conforms to the quarter wavelength limit and contains a total of eighteen 
plates and two cylinders; it includes the engine sections, the main rotor compartment, and the 
tail section. 

Figure 2.  Partial Aircraft Model. Figure 3.  Full Aircraft Model. 

OUTPUT VISUALIZATION 

The pattern cuts that were used to display the outputs from NEC-BSC were: 1) azimuth 
cut (top view), 2) longitudinal elevation cut (side view), and 3) crosswise elevation cut (front 
view). Three cuts were necessary to examine the entire pattern for each of the antennas. 
Patterns were calculated with one degree increments in the appropriate pattern angle because this 
proved to be a good tradeoff point for pattern resolution versus NEC-BSC run time. 

Four antenna patterns were calculated for each pattern cut. The patterns corresponded 
to the following conditions: 1) the antenna in free space with no aircraft model, 2) the antenna 
mounted on a perfectly conducting horizontal infinite ground plane, 3) the antenna mounted on 
the partial aircraft model, and 4) the antenna mounted on the full aircraft model. The first two 
conditions were selected because their patterns were already known and they proved to be good 
test cases for the antenna models. The third and forth conditions were used to determine the 
degradation due to the protruding structures on the helicopter. 

A computer program was written to convert the results obtained from NEC-BSC into a 
form that could be loaded into GRAFTOOL [2], a commercial scientific visualization package. 
Overlaying the plots of the differing conditions on the same graph provided an easily readable 
method of comparison. 

SAMPLE ANTENNA PATTERNS 

E-field patterns for the blade antenna at 130 MHz are shown in Figures 4 through 9 for 
the following conditions: 1) in free space, 2) mounted on an infinite ground plane, 3) mounted 
on the partial aircraft model, and 4) mounted on the full aircraft model. The blade was placed 
on the tail boom roughly halfway between the main rotor compartment and the tail section and 
slightly off center. For all of these patterns, only the theta (horizontal) component has been 
shown, because the theta component of the field is the dominant component. 
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E-field patterns for the blade antenna at 1090 MHz for conditions 3 and 4 are shown in 
Figures 10 through 12. The patterns for conditions 1 and 2 match those of the blade at 130 
MHz and are not repeated. This blade was placed on the tail boom roughly one third of the way 
from the tail section to the main rotor compartment and slightly off center. Once again, only 
the theta (horizontal) component has been shown. 

E-field patterns for the turnstile antenna at 260 MHz for all four conditions are shown 
in Figures 13 through 16. The turnstile was placed on the tail boom roughly one fourth of the 
way from the tail section to the main rotor compartment and slightly off center. Results for the 
two orientations of the crossed dipoles (rotated 45° relative to each other) gave results within 
1 dB for all patterns, therefore, patterns for only one orientation are given. For this antenna, 
theta and phi components are of the same relative magnitude, so both components are shown. 
Due to space limitations, only patterns for the longitudinal elevation cut are presented. 

CONCLUSIONS 

A technique to analyze the pattern coverage of antennas placed on the tail boom of a 
helicopter using NEC-BSC has been presented. The analysis is centered on NEC-BSC's ability 
to predict far zone patterns of antennas in the presence of scattering structures. This type of 
analysis is helpful as a precursor to a measurement program for several reasons. By using NEC- 
BSC, models of the complex helicopter need only contain its most basic structural features. 
Once the antennas and the helicopter are modeled, trade-off analyses can be easily performed 
by moving the antennas to various locations on the tail boom and re-running the evaluation. 
Comparisons of the outputs of these runs can be used to minimize the effects of the protruding 
structures and maximize antenna coverage. 
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Figure 4.  Blade Patterns at 130 MHz Figure 5.  Blade Patterns at 130 MHz 
Azimuth Cut, Theta Component. Azimuth Cut, Theta Component. 
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Figure 6.  Blade Patterns at 130 MHz Figure 7.  Blade Patterns at 130 MHz 
Long. Elevation Cut, Theta Comp. Long. Elevation Cut, Theta Comp. 
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Figure 8.  Blade Patterns at 130 MHz Figure 9.  Blade Patterns at 130 MHz 
Cross. Elevation Cut, Theta Comp. Cross. Elevation Cut, Theta Comp. 
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Figure 10.  Blade Patterns at 1090 MHz Figure 11.  Blade Patterns at 1090 MHz 
Azimuth Cut, Theta Component. Long. Elevation Cut, Theta Comp. 
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Figure 12.  Blade Patterns at 1090 MHz 
Cross. Elevation Cut, Theta Comp. 
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Figure 13.  Turnstile Patterns at 260 MHz      Figure 14.  Turnstile Patterns at 260 MHz 
Long. Elevation Cut, Theta Comp. Long. Elevation Cut, Theta Comp. 
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Figure 15. Turnstile Patterns at 260 MHz      Figure 16.  Turnstile Patterns at 260 MHz 
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ABSTRACT 

Aircraft are fitted with numerous blade antennas for a 
variety of missions. Equipment additions and system upgrades 
often result in conflicts in locating all the required 
antennas. Frequently, resolving the conflict requires moving 
an antenna system to another fuselage location. Naturally, 
the end user of the platform desires to maintain full 
effectiveness of all on-board systems. 

This article describes an antenna relocation study where a 
blade dipole antenna is moved from a wingtip position to the 
tail. The effect of this move on the antenna radiation 
patterns and another nearby antenna array is determined using 
the Basic Scattering Code (NEC-BSC) from Ohio State, and 
experimentally, verified using a full-scale mockup of the 
airframe. 

INTRODUCTION 

The airframe as modeled in NEC-BSC is illustrated in Figure 1 
along with the relevant antennas and their positions. One 
system's antennas were originally located near each wingtip. 
Recently, a system upgrade was proposed which required 
antennas from another system be located within only a few 
inches of the first. Preliminary analysis revealed that the 
existing system would produce cross-modulation products in 
the new system, seriously degrading its performance; 
therefore, the wingtip antenna would have to be moved to 
another mounting position in order to successfully implement 
the system upgrade. The most obvious place was the high 
horizontal stabilizer of the T-tail assembly. 

However, relocating the wingtip antenna was subject to 
several constraints. The performance of the existing system 
could not be degraded—in particular, it was feared that 
blockage due to the proximity of the vertical stabilizer 
would severely compromise the azimuthal coverage of a tail- 
mounted antenna. Of secondary concern was that the antenna 
pair isolation would be greatly reduced since the antennas 
would have less spatial separation. 

Most critically, the new system location could not result in 
increased coupling to a second antenna array located on the 
bottom of the aircraft fuselage. Very expensive interference 
cancellers were integrated with this array, and increased 
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coupling from the newly tail-mounted system would require an 
even more expensive redesign and retrofit of the interference 
cancellers. 

NEC-BSC [1] was used to predict the effects resulting from 
the relocation of the wingtip antenna system. Azimuthal 
radiation patterns and antenna coupling calculations were 
made for four different antenna positions on the horizontal 
stabilizer. These calculations were later verified using a 
full-scale wood and copper screen mockup of the airframe at 
ESL's outdoor testing facility in Fremont, CA. 

NEC-BSC CALCULATIONS 

NEC-BSC Airframe Model. 

Figure 1 illustrates the NEC-BSC model and antenna positions 
used in the calculations. As the full-scale mockup used 
later has no nose radome, the NEC-BSC model did not include 
that feature. Antenna positions are in inches, and the 
origin of the coordinate system corresponds roughly to the 
center of rotation of the full-scale mockup. 

Two additional features are incorporated in the NEC-BSC 
model. First, the full-scale mockup is actually mounted 
upside down, so the RT command was used initially to build 
the aircraft in that position. Additionally, the outdoor 
test site is not the customary anechoic chamber—ground 
reflections from the earth play a role in the illumination of 
the mockup and antennas. The GP command was used to 
incorporate a lossy half-space ground with parameters eps=4 
and sig=0.005. These ground parameters were estimated from 
ground probe measurements and are consistent with "poor" 
ground as is typically found in low coastal hills [2]. 

Illuminating a Plate on Both Sides. 

A third feature was quickly added to the NEC-BSC model to 
reflect actual measurement conditions. Figure 2 illustrates 
the antennas used to simulate the wingtip mounted system. 
The antenna consists of two monopole blades located on either 
side of the wing (or horizontal stabilizer) , fed with a 
wideband hybrid junction, so that the antenna (now 
essentially a dipole) radiates equally well on both sides of 
the mounting surface. 

However, NEC-BSC considers plates as being illuminated from 
one side only. The illuminated side is defined by the 
ordering of the plate vertices according to the right-hand 
rule. This requirement presents a difficulty in that the 
dipole antenna illustrated in Figure 2 must necessarily 
illuminate both sides of the plate simultaneously. 
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This problem was addressed by defining a second plate 
immediately underneath, with its vertices ordered such that 
its normal pointed away from the first plate. Sample 
calculations with this plate geometry showed that accurate 
dipole patterns were obtainable in this frequency range with 
a spacing between plates of 0.01", and that it was not 
necessary to "short out" the slot between the plate edges or 
otherwise enclose this volume with additional'plates. The 
wing and tail surfaces of the NEC-BSC model of Figure 1 were 
all treated in this fashion. 

The Model Antenna Elements. 

In order to properly normalize the coupling results obtained 
in the NEC-BSC analysis (using the PR command), specific 
characteristics of the experimental antennas need to be 
known. Since a vector network analyzer would be available 
for the experimental portion of this study, it was decided to 
calculate the complex mutual impedance Z12 between antenna 
pairs. In order to perform the calculation, the SG command 
is given the test antenna's postulated current distribution 
and physical length, and the complex current flow on the 
element. Additionally, the PR command is supplied with the 
complex terminal current for the desired antenna pair. 

The non-conventional nature of the test antenna illustrated 
in Figure 2 required some further calculation in order to use 
the correct terms. For each antenna position, two elements 
(sources or receivers) were defined, such that the 
orientation of their current flow was as shown. NEC-BSC 
internally "integrates" these separately defined sources into 
a single antenna. The terminal current (used in the PR 
command) supplied to NEC-BSC was the input current at the 
hybrid junction input port. This current was calculated 
using the known available source power of the vector network 
analyzer and the measured input impedance of the hybrid with 
the antenna elements attached. 

The determination of the individual element currents for use 
in the SG command was more involved. The current input to 
the element is 0.7071 times the (hybrid) terminal current, 
but the current input to the SG command is that portion of 
the element input current which actually flows through the 
radiation resistance. This is found by current division 
between the shunt matching resistor and the input impedance 
of the element measured without the matching resistor. This 
calculation also yields the antenna radiation efficiency 
(neglecting internal hybrid losses) which can be used with 
the PR command in radiation pattern calculations to normalize 
the calculated pattern to dBi. 
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MEASUREMENTS 

Full Scale Model and Outdoor Test Ranos. 

A full scale model was used in the experimental phase for 
NEC-BSC verification. The mockup is mounted atop a 30' high 
wooden pyramid. The skin of the mockup is copper screening, 
and antennas are attached to the aircraft using screws and 
foil shielding tape. The mockup is located on a large 
azimuth turntable capable of turning vehicles as heavy as a 
Bradley Fighting Vehicle. 

An HP 8753C Vector Network Analyzer (VNA) is located inside 
the body of the mockup. The VNA is used as a transmit source 
and a tuned receiver for the generation of antenna patterns, 
as well as for directly measuring the complex antenna-to- 
antenna isolation (S21). Due to the fairly large isolation 
expected _between antennas, the full error-correcting 
capabilities of the VNA must be used to guarantee accurate 
and noise-free data [3] . 

The transmit site for pattern generation is located 
approximately 700 feet downrange. A 25 watt instrumentation 
amplifier is fed by the output of the VNA, and the mockup is 
illuminated with a LPDA at a height of 40 feet. This test 
geometry yields a 3.27 degree constant elevation angle which 
is used in the NEC-BSC pattern calculations. 

Procedure. 

Antenna patterns are measured using the VNA under computer 
control by an HP300 computer system, using software developed 
at ESL for that purpose. Patterns were measured at five 
frequencies in all the positions shown in Figure la. 

Antenna coupling is measured using the VNA and an HP 85047A 
S-Parameter Test Set, using full two-port error correction. 
The use of full two-port calibration compensates for the 
effects of the long coaxial cables used to feed the antenna 
pair under test. Additionally, both scalar and complex 
coupling data can be obtained using the VNA and S-Parameter 
Test Set together. Although the VNA measures scattering 
parameters, these can easily be converted to Z-parameters 
(which NEC-BSC outputs) after measurement [4]. 

Isolation data was taken from the wingtip transmit position 
to the wingtip receive position and each belly array element 
position; from each transmit tail position to the wingtip 
receive position; and from the #7 tail position to each belly 
array position. 
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RESULTS 

Radiation Patterns, 

A representative measured-predicted radiation pattern pair is 
shown in Figure 3, for the wingtip-mounted dipole position. 
Fairly good agreement in the pattern ripple is evident. It 
is particularly interesting how well the pattern ripple 
frequency correlates between experimental and theoretical 
data. Measured and calculated radiation intensity also agree 
fairly well. The discrepancy is largely due to the accuracy 
with which the lossy ground parameters can be measured. The 
measured radiation patterns for the tail-mounted antennas 
showed similar agreement to NEC-BSC predictions. 

The most significant disagreement between theory and 
experiment was that NEC-BSC did not predict the prominent 
broadside null in the wingtip-position radiation pattern. 
This difference was attributed to a lack of modelling 
accuracy, in that the wings on the airframe mockup attach to 
the bottom of the fuselage and sweep up, whereas the NEC-BSC 
model has straight, center-mounted wings. Another source of 
model inaccuracy is in locating the exact center of rotation 
of the mockup. As has been pointed out numerous times by 
other experimenters, model accuracy and attention to details 
is paramount  for fine  scale agreement with NEC-BSC results! 

Mutual   Impedance. 

Figure 4 shows a table of measured and predicted mutual 
impedances and the resultant antenna pair isolation, for the 
wingtip mounted case. Antenna pair isolation can be 
calculated using Z-parameters as I=20*log(z21/(z22+zload)) 
[5] . This method of calculating antenna pair isolation is to 
be preferred as the other coupling normalization options in 
NEC-BSC are valid only for idealized situations (conjugate- 
matched source and load, maximum available gain, or far-field 
conditions). 

Fairly good agreement is shown except for the highest 
frequency. It is believed that the experimental data is in 
error at that point, since the coupling increases so 
dramatically in a small frequency interval. Agreement in 
coupling phase is not as accurate, due to the difficulty in 
precisely locating the experimental antennas on the mockup. 
For the range of frequencies that NEC-BSC is valid, 
experimental placement errors of only a few inches can 
greatly impact predicted coupling phases. Antenna pair 
isolations for the tail-mounted positions showed similar 
agreement to the NEC-BSC predictions. 
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CONCLUSIONS 

NEC-BSC predictions of antenna pair mutual impedance and 
radiation patterns were validated by experimental 
measurements on a full scale airframe mockup. In spite of 
the fact that larger mockups are usually considered as 
potentially more accurate, and this mockup was about as large 
as they get, highly accurate dimensioning is still very much 
a basic requirement. Further, the use of an outdoor test 
range brings the constitutive parameters of the earth into 
play, which are difficult to accurately measure. Finally, it 
is critical in the prediction of antenna coupling using NEC- 
BSC to have fully characterized antennas, especially if 
experimental validation is contemplated. 
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Freq 

Z21: 

Measured Calculated A mag, dB  A phase 

#1 9.597e-3 @-120 11.554e-3 0-153 1.6 -33 

#2 21.846e-3 @-68 27.549e-3 @-34 2.0 34 

#3 34.7e-3   8-100 31.439e-3 @-135 -0.86 -35 

#4 60.466e-3 @173 53.61e-3 @232 -1.04 59 

#5 337.06e-3 8-162 65.378e-3 S-198 -14.25 -36 

Figure 4 - Measured and Calculated Mutual Impedance 
(wingtip-wingtip mounting) 
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ABSTRACT: The purpose of this paper is to present results of an investigation of the 
performance of asymmetric log-periodic dipole array (LPDA) antennas using the 
Numerical Electromagnetics Code (NEC). Asymmetric LPDAs have been shown, both 
theoretically and experimentally, to exhibit anomalous behavior across frequency due 
to unwanted radiation from the feed line of the antenna. For extreme cases of 
asymmetry, this behavior can lead to pattern distortions and boresite gain reductions. 
When using NEC to model asymmetric LPDAs, care must be taken to model the feed 
line of the antenna properly.  This paper establishes the need to model the feed line 
using wire segments instead of using the transmission line option built into the NEC 
program to produce valid results for asymmetric LPDAs. 

INTRODUCTION 

The use of log-periodic dipole arrays (LPDAs) in order to achieve high, and 
relatively constant gain across frequency has long been a popular practice.   When 
using this type of antenna for lower frequencies, however, the size of the array may 
become a cause for concern. This is especially true when the antenna must be 
installed within some limited space. One solution to the installation problem of such 
an antenna is to bend the dipole elements of the array in such a configuration as to 
accommodate the space constraints. This bending however causes the LPDA to 
become asymmetric which may lead to significant degradations in performance of the 
antenna across frequency. 

The existence of very narrow high-Q resonances resulting in side radiation from 
asymmetric log-periodic dipole antennas was described in an article by Balmain and 
Nkeng [1] and expanded upon in later research by Hubert, Tilston, and Balmain [2] and 
Vainberg and Balmain [3].   These resonances involve a net current flowing in the 
transmission line which feeds the dipole elements. This phenomena would not occur 
in a symmetric LPDA because perfectly symmetric LPDAs being fed symmetrically 
would have an equal and opposite current flowing on each of the two wires of the 
parallel wire feed.  In the asymmetric case, however, the currents on the two wires are 
not equal and the net feeder current gives rise to radiation to the side of the antenna. 
In extreme cases, this side radiation can result in the reduction in boresite gain of the 
antenna and some resulting distortion in the radiation pattern. 
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DESCRIPTION   OF   LPDAs   MODELED 

In order to demonstrate the phenomena of such gain reductions and pattern 
distortions arising in asymmetric LPDAs, the Numerical Electromagnetics Code (NEC) 
was used to model both a perfectly symmetric and an asymmetric LPDA. 

The LPDA chosen to be modeled was a 14-element array covering a frequency 
range of 3 octaves mostly residing in the low VHF region. The scaling factor (tau) and 
spacing factor (sigma) for this antenna are .843 and .0592 respectively. The first 
antenna was a perfectly symmetric version of this LPDA, as shown in Figure 1. The 
elements were modeled using wire segments of lengths no greater than .1x, where x is 
the wavelength of the highest frequency of operation for the LPDA, in accordance with 
the guidelines of wire grid modeling. [4] The second antenna was a variation of the first 
with the elements bent into the configuration shown in Figure 2. The asymmetry of this 
second antenna arises from the bending of these bottom elements. The elements for 
this antenna were also modeled using .1x wire segment lengths. 

FIGURE 1 
Symmetric LPDA 

FIGURE 2 
Asymmetric LPDA 

Next the method for feeding the elements of the array had to be chosen. The 
proper way to feed an LPDA is with a crossed transmission line. This means that the 
top half of the first dipole element is at the same potential as the bottom half of the next 
adjacent dipole element. This method of feeding the array provides the necessary 
excitation for each consecutive dipole element in the array. To model the feed line 
using NEC, there are two options which can be employed.  One is the transmission 
line option (the TL card) provided by the NEC code. This option allows the user to 
specify a crossed transmission line merely by choosing the correct parameters for the 
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TL card. The characteristic impedance of the transmission line for the LPDA was 
chosen to be 300 ohms. The second method for feeding the array is to use wire 
segments to connect the elements keeping in mind that the top half of the first dipole 
must be connected to the bottom half of the next consecutive dipole element.  In 
addition the lateral spacing of the parallel wire segments used to feed the array 
elements must be such as to approximate the characteristic impedance of the feed 
line.   Equation 1 describes the characteristic impedance of an air insulated parallel 
wire transmission line. 

(1) Zc = 276tog(2S/d) 

where: 
Zc = characteristic impedance 
S = lateral spacing between the two wires 
d = diameter of the wires 

This equation was used to calculate the lateral spacing needed between the two wires 
of the feed line given a characteristic impedance of 300 ohms and a wire diameter of 
1/8 inch. 

Using the two different transmission line options with the symmetric and the 
asymmetric LPDA designs, four different NEC models were constructed. 

1) A symmetric LPDA (with straight elements) using the transmission line option 
to feed the dipole elements. 

2) An asymmetric LPDA (with bent elements) using the transmission line option 
to feed the dipole elements. 

3) A symmetric LPDA (with straight elements) using a wire segment 
transmission line to feed the dipole elements. 

4) An asymmetric LPDA (with bent elements) using a wire segment 
transmission line to feed the dipole elements. 

RESULTS  OF THE  MODELS 

The radiation patterns resulting from the four antennas over the operating 
frequency range were examined. The boresite gain versus frequency results are 
shown in Figure 3 for each of the antenna configurations. The gains shown in these 
figures represent the gain adjusted to account for the impedance mismatch loss for 
each frequency.  This was accomplished by calculating the average impedance of the 
antenna, seen from the feed point, across frequency and using that average as the 
feed point impedance in calculating mismatch loss. The mismatch loss is calculated 
using equation 2 and is subtracted from the gain predicted by NEC to give the 
adjusted gain. 
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(2) Mismatch loss = 10 log [(S +1 )2 / 4S] 

where: S = VSWR = (l +1 r |) / (1 -1 r |) 

r = (ZL-Zo)/(zL+Zo) 
Zo = Feed point impedance 
ZL = Load impedance (calculated by NEC) 

It is apparent from Figure 3b that the presence of the boresite gain 
reductions/pattern distortions predicted by the research of Balmain et. al are not 
present when the asymmetric LPDA is modeled using the transmission line option to 
feed the dipole elements. This finding is as expected given the premise of the 
asymmetry resonance theory which states that the resonances, which cause the 
reductions in boresite gain and resulting radiation pattern distortions, are a result of a 
net current flowing in the transmission line which feeds the dipole elements. By using 
the NEC transmission line option to model the transmission line, we have effectively 
eliminated the possibility of this net current existing because, this option "neglects 
interactions between the transmission line and the antenna and its environment" and 
its use is "justified only if the currents on the line are balanced", i This means that the 
currents on each wire of the parallel wire system are assumed to be equal and 
opposite when the transmission line option is used. 

Another result of the models that can be examined to further provide support for 
the Balmain et. al research is the frequencies at which the resonance anomalies 
occur.   The previously mentioned papers by Balmain and Nkeng [2] as well as the one 
by Vainberg and Balmain [3] suggest a method of calculating the frequencies at which 
the boresite gain reductions will occur. The papers assert that the resonant half 
wavelength frequency of each distorted "cell" of the asymmetric LPDA will be 
approximately where the anomaly will occur. A "cell" is defined as the length of the 
upper half of the first dipole element plus the length of the lower half of the next 
adjacent dipole element plus the length of the transmission line connecting the two. 
This would suggest that for a 14 element LPDA having 13 cells, that there would be 13 
resonance anomalies (boresite gain reductions). The experimental results studied in 
the Balmain and Nkeng paper however, showed that for most of the antennas the 
number of anomalies was less than the number of cells. This suggests that in general 
a given resonance occupies slightly more than one cell. 

In the NEC results of the 14 element asymmetric LPDA at least 8 anomalies are 
evident. The anomalies are represented as a drop in boresite gain of at least .5 dB in 
one frequency step (1 MHz). A table comparing the frequencies at which the 
anomalies occur using the NEC model and the ones predicted using the resonant cell 
postulate are presented in Table 2. 

i Reference [4] Part I: Program Description - Theory p. 72 
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TABLE 2 
FREQUENCIES AT WHICH BORESITE GAIN ANOMALIES OCCUR 

Theoretical Frequency NEC Predicted Frequency Percent error 
of Anomaly of Anomaly 

f1 0.9718 f1 2.81% 
f2 NOT APPARENT — 
f3 1.0014 f3 0.14% 
f4 1.0189 f4 1.89% 
f5 1.0307 f5 3.07% 
f6 1.0550 f6 5.50% 
f7 1.0640 f7 6.40% 
f8 1.0734 f8 7.34% 
f9 1.0907 f9 9.07% 
no NOTAPPARENT   
f11 NOT APPARENT   
f12 NOT APPARENT   
f13 NOT APPARENT — 

The resonant cell postulate, while not an exact method for predicting the 
frequencies at which anomalies will occur, provides a means to identify approximate 
frequencies at which the antenna may not perform optimally. 

ANGLED   ASYMMETRY 

Further study was undertaken to examine different configurations of the 
asymmetric LPDA which would adhere to the space constraints of the installation while 
endeavoring to reduce or eliminate the asymmetry resonances. One such 
configuration consisted of angled lower elements instead of the sharply bent elements 
of our first asymmetric LPDA. The new angled bottom elements of the LPDA are 
shown in Figure 4. The boresite gain versus frequency performance of this antenna is 
much more consistent across frequency than the asymmetric one with the bent 
elements as demonstrated in Figure 5. 

The angled element LPDA exhibits better performance than the bent element 
LPDA because the currents are coupled to the dipole elements more effectively rather 
than staying on the feed line. By examining the impedance of the different antenna 
configurations across frequency, we can gain insight into this phenomenon. A large 
fluctuation in the impedance indicates that the current is not being coupled to the 
elements at specific frequencies and tends to stay on the feed line. This is what 
causes the resonance anomalies.  Figure 6 shows the impedance variations across 
frequency for the symmetric LPDA, the asymmetric LPDA with bent elements and the 
asymmetric LPDA with angled elements.  It is clear from this figure that the impedance 
varies much less drastically for the symmetric and angled element LPDAs than for the 
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FIGURE 4 
ASYMMETRIC LPDA WITH ANGLED ELEMENTS 
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bent element LPDA. It is also evident that the large spikes in the impedance for the 
bent element LPDA occur at the same frequencies as the boresite gain anomalies for 
this antenna. 

Another way to reduce the impedance fluctuations across frequency of the 
antenna and thus reduce the effect of the asymmetry resonances is to tune the LPDA 
by either removing or adding lengths of wire to the elements which are causing 
problems. This method, however, is probably most effectively accomplished 
empirically using an impedance meter or network analyzer to optimize impedance 
across frequency. 
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ABSTRACT 

With the availability of a significant amount of software for EM education from CAEME 
and other commercial sources, it is important to assess the effectiveness of these new tools in 
classroom teaching and develop procedures that promote their effective use in education. 
Routine classroom teaching is significantly different from computer-based instruction, and 
concerted efforts must focus on developing new teaching techniques. These new procedures are 
intended to help students understand the physical principles underlying results from simulations 
and also help instructors integrate software and simulations in their teaching. 

In this paper, we present the features of four interactive video lessons in EM developed by 
CAEME to aid in the inclusion of computer-based instruction and simulation in the student 
learning process. These lessons include tutorials, simulations from CAEME software and 
videos, and quizzes to evaluate student understanding. The lessons use animated graphics to 
illustrate specific dynamic phenomena and measurement procedures. They also keep a record of 
student quiz scores for instructor use. These, as well as other features of the three developed 
interactive video lessons, will be described. 

INTRODUCTION 

With the proliferation of computers on university campuses, and based on initial 
experiences of many educators, it is generally agreed that computers provide an exciting 
opportunity for boosting engineering education [1]. Animated graphics of dynamic phenomena, 
visualization of abstract and highly mathematical subjects, one-on-one and self-paced tutoring, 
and the ability to mimic often-unavailable and expensive laboratory experiments are among the 
most cited benefits of a computer-based engineering curriculum. As instructors continue to 
integrate computers in their classroom teaching, however, they are beginning to realize more of 
the limitations of using computers in engineering education. For example, it is not clear if 
students will effectively and independently be able to understand basic phenomena from the 
numerical or graphical representations of simulations. Also, avenues for the effective integration 
of simulation, demonstration, and computer-based homework assignments and tests in and 
outside of typical classroom teaching are not clearly defined. Many courses need to be 
restructured and even the role of the university professor needs to be redefined to fit the era of a 
computer-based curriculum. 

Fortunately, this uncertainty in understanding the role of computers and software tools in 
engineering education has coincided with rapid growth in the area of multimedia presentations 
[2]. Interactive video applications integrate the visual power of video, interactivity of software, 
and an ability to structure educational lessons that include tutorials, quizzes, and maintenance of 
scores for the instructor's use. Furthermore, the availability of authoring software such as 
QUEST [3] to help develop these applications, the affordability of the required hardware, and the 
publication of the CAEME software book and videos made the preparation of multimedia lessons 
in electromagnetics is not only justifiable but also an efficient and cost-effective way for using 
software in education. 
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In response to the need to promote the effective use of software in classroom teaching, 
CAEME developed four interactive video lessons using the QUEST authoring software [4]. The 
main features of the developed lessons include 

• Access to and specific assignments from software packages in the CAEME Software 
Book, Vol. I. 

• Access to all or part of the experimental or computer-generated videos distributed by 
CAEME. Portions of these videos have been transferred to two laser discs (30 minutes 
each), and specific frames of the video sections are accessed by QUEST through a 
videodisc player (e.g., Sony LDP 1450). 

• Animated graphics of various dynamic phenomena associated with the topic of the 
lesson. QUEST [3, 5], as well as other authoring systems, provides relatively easy-to- 
use capabilities for creating animated graphics so valuable to the effective explanation 
of dynamic electromagnetic fields. Examples of some of the developed animated 
graphics will be discussed in the following section. 

• Quiz sessions that help evaluate the students' understanding of key topics in the lesson, 
guide students through correct solution procedures, and suggest specific avenues 
(additional reading, software simulation, or video review) to help students in then- 
understanding. In all cases, the multimedia lessons were structured such that results 
from the quiz sessions are reported to the instructor. 

In the following section, features of the four developed EM multimedia lessons will be 
described. 

EXAMPLES OF MULTIMEDIA LESSONS IN ELECTROMAGNETICS 

In all the four multimedia lessons developed by CAEME thus far, the animation, access to 
video, simulation, and quiz features described above were implemented. In each of the following 
examples, however, we will attempt to highlight one of these features. 

Example 1: Electromagnetic Waves 

The objective of this lesson is to introduce the student to basic propagation characteristics 
of traveling and standing waves. The main menu of the lesson is shown in Fig. 1, where it may 
be seen that the lesson provides access to video demonstrations on standing waves [6] and to two 
software packages from the CAEME book [7, 8]. It includes animated graphics and tutorials on 
some basic properties of traveling and standing waves and a quiz session. 

We will use this example to demonstrate the animated graphics and access to video features 
of a multimedia lesson. 

Video Frames of Traveling and Standing Waves 

When this option is selected from the main menu, the screen shown in Fig. 2 is displayed. 
This screen gives the student the option of selecting and focusing on the topic of either traveling 
or standing waves. Let us briefly consider the content of each topic. 

Traveling waves: In this section, the student is introduced to the basic propagation 
properties of a traveling wave and the relationship between the associated electric and magnetic 
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fields. An example screen in this option is shown in Fig. 3, where the electric and magnetic 
fields associated with a plane wave propagating in air are demonstrated dynamically using 
animated graphics. This dynamic presentation of the propagation characteristics of waves makes 
the use of computers far superior to routine textbook static-type teaching. At the end of the 
traveling wave section of the lesson, it is suggested that the student access and perform 
independent simulations of some specified aspects of wave propagation using the CAEME 
software [7, 8]. 

Standing waves: Selecting the standing-wave option in the menu of Fig. 2 offers another 
menu which allows the student to access a short section of video that experimentally 
demonstrates mechanical standing waves, a brief tutorial with animation of standing wave 
characteristics, and additional captured small sections of the video on experimental 
demonstrations of standing electromagnetic waves. The video sections on mechanical waves and 
the electromagnetic waves are included in the video available with the CAEME book [6]. 

The Electromagnetic Standing Waves Tutorial briefly introduces the cause and propagation 
properties of standing waves. An animation that demonstrates the interference between two 
waves of equal magnitude, of the same frequency, and propagating in opposite directions is 
included in this section (see Fig. 4). The basic properties of a standing wave are also 
summarized. Aspects such as distances between successive nulls in electric and magnetic fields 
and locations of nulls from short- and open-circuit terminations of TEM lines are discussed. 
Once again, the animated graphics illustrating the interference between two waves and the 
visualization of the characteristics of the resulting standing wave provide excellent 
demonstrations of the advantages of using computers to teach dynamic electromagnetic fields. 

Example 2: Electrostatic Charges and Coulomb's Law 

The purpose of this lesson is to review basic concepts concerning interactions between 
charged particles. To accomplish this, the student views a video presentation on the measure- 
ment of charge and an experimental verification of Coulomb's law. The main menu of the lesson 
that appears after the student signs his/her name is shown in Fig. 5. This lesson provides access 
to a section of the video on experimental demonstrations for teaching electromagnetic fields and 
energy [6], to CAEME simulation software relevant to the lesson's topic [8-10], and also to 
tutorials on electrostatic charges, their forces, and techniques for their measurement. 

Besides the access to sections of the video on Coulomb's law and measurement of 
electrostatic charges, the lesson provides an attractive computer-based quiz session. This 
includes animated graphic features wherever appropriate and also interactive remediation for 
helping and guiding the student in solving the quiz problems. For example, in quiz problem 
number 3, the student is asked to determine the angle between an electrostatic charge Q and an 
infinitely large plane charged with a charge density ps. If the student clicks on the wrong 
answer, the program will first advise the student that his/her answer is incorrect (see Fig. 6) and 
then will proceed to provide guidance through one aspect of the required analysis. For example, 
in this case, the student will be asked to calculate the electric field associated with the infinitely 
large plane charged with a charge density ps. It will be pointed out that he/she needs to apply 
Gauss' law for the electric field, and to do this a Gaussian surface that takes advantage of the 
symmetry consideration and the resulting direction of the electric field needs to be established 
[11]. The student's selection of the direction of the electric field resulting from an infinitely large 
charged plane is indicated by clicking on the appropriate option as shown in Fig. 7. If a wrong 
selection is made, the student will be guided so as to recognize aspects of the symmetry consid- 
eration, and he/she will even be led to the selection of an appropriate Gaussian surface as shown 
in Fig. 8. Upon the selection of the suitable Gaussian surface and the correct calculation of the 
electric field from an infinitely large charged surface, the student will be asked to attempt a 
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second answer to the quiz. If the answer is still incorrect, the student will receive a second level 
of remediation with the additional analysis needed to answer this question. In particular, the 
analysis concerning balancing the electric and gravitational forces on the suspending string with 
the substitution of the correct value of the electric field, as described in the earlier portion of the 
analysis, should be fairly simple for the student to identify the correct answer to the quiz. 

It should be emphasized that through this example, we attempted to demonstrate the 
integration of the visualization, animation, and interactive features of the multimedia lesson. The 
inclusion of sections of video help visualize experimental aspects of measuring charges, while 
access to CAEME software and interactive guidance of the student through the quiz session 
clearly distinguish multimedia lessons from classical static or textbook-type teaching. 

Example 3: Dielectric and Conducting Materials 

The objective of this lesson is to review the conducting and dielectric properties of 
materials, describe various polarization mechanisms, and quantify the conduction and 
polarization currents as well as the polarization charge that results from the interaction of 
materials with an externally applied electric field. The main menu of the developed lesson is 
shown in Fig. 9, where it may be seen that traditional features such as access to video segments, 
CAEME software, and a quiz session are included. 

This lesson, however, has additional attractive features. This includes interactive 
animations and specific software assignments to help lead students to understand some 
fundamental concepts of the lesson, and also a hypertext type of tutorial whereby key words are 
highlighted and additional explanations are made available to students upon request. 

Regarding the interactive animation feature, let us consider the explanation of the various 
polarization mechanisms. In the lesson, it is initially stated that there are three main polarization 
mechanisms in pure substances, and a menu is provided to access an explanation of each of these 
mechanisms. Upon access of the electronic polarization option, for example, the student is 
shown a classical atomic model of a positively charged nucleus surrounded by a cloud of orbiting 
electrons. The student is then asked to apply an external electric field by clicking the mouse and 
watching the shifts in the centers of the positive and negative charges in opposite directions, thus 
creating the electric dipole. In the orientational polarization case, a color graph of a section of 
material is shown and the permanent electric dipoles are displayed in random motion under the 
influence of their thermal energy. When the student applies an external E-field, he/she watches, 
in real time, the alignment of these dipoles in the direction of the E-field and, although still in 
motion, they maintain their alignment along the field. Figure 10 shows stills that illustrate this 
process. 

Based on these types of animated graphics which provide an avenue for the student to 
interact with the process by applying the E-field or changing the type of material, concepts such 
as polarization and induced polarization currents and charges may conveniently be introduced. 
Their presence is further appreciated by students. 

The other new feature of this lesson is providing students with specific assignments to use 
CAEME software. Figure 11a shows a simulation example that will help students understand the 
reduction of the electric-field strength inside a dielectric material as a result of the material's 
polarization. The first part of the assignment provides access to the ROSEM software [12] and 
shows the student the expected result from their simulation effort "screen display." Upon 
continuing, a second screen with the remaining part of the assignment is shown. Once again, 
access to the software and to a display of the expected results is provided as shown in Fig. lib. 
After performing the simulation, the student is asked to explain the results in an interactive 
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fashion as shown in Fig. 12. Depending on the answer, the student may either be asked to 
carefully compare the results as shown in Fig. 13 or be guided through a detailed, often graphical 
explanation of the expected answer. 

The above discussion provides an example of a specific software simulation assignment 
that may help guide students through an understanding of a physical phenomenon. Other 
examples are available in this as well as other multimedia lessons developed by CAEME. 

Example 4: Tic-Tac-Toe Review Test in Electromagnetics 

The purpose of this multimedia application is to provide a review test of basic concepts in 
electromagnetics. As the student accesses the application and enters his/her name, the overall 
Tic-Tac-Toe board shown in Fig. 14 appears on the screen. The various question categories 
include elements of an introductory course in electromagnetics such as vector algebra, fields, 
Maxwell's equations, EM waves, and dielectric polarization. It may also be noted that the 
question board includes a video category in which the student is shown a short section of a video 
and then asked to answer a question. In addition to the fun nature of this lesson, many of the 
questions include animation; this emphasizes an additional advantage of having this Tic-Tac-Toe 
game played on a computer. The arrangement of the remaining categories is randomized after 
each question to avoid a fixed arrangement of the topics. 

In designing this review test, each question category was divided into subcategories, each 
of which includes several questions. For example, the category on Maxwell's equations includes 
subcategories on general aspects of these equations, Ampere's law, Gauss' law, and Faraday's 
law. Also, the category on vector operations includes subcategories on vector algebra, integral 
operations, and differential operations. An example of the questions in the vector differential 
operation subcategory is shown in Fig. 15, in which the student is asked to identify the 
relationship between the differential vector operations and the flux representations of some 
vector fields. It is difficult to demonstrate in this paper some of the dynamic, animation, and 
interactive aspects of these questions, but it suffices to indicate that students find this lesson fun, 
exciting, and most important, instructionally useful and certainly helpful in solidifying their 
understanding. 

SUMMARY 

In this paper, we presented four examples of multimedia lessons developed for elec- 
tromagnetic education. These lessons provide an attractive avenue for the integration and 
interactive use of motion and still videos, audio, software simulations, and animated graphics in 
tutorials, application exercises, and assessment tools. 

Specifically, each lesson includes tutorials, animations, access to specific topics of CAEME 
software, and access to sections of videos that demonstrate practical applications or experimental 
demonstrations of some aspects of the lesson. Based on instructor and student comments on 
these lessons, it is generally believed that multimedia applications will play a significant role in 
future integration of computers and software tools in classroom teaching. Future developments 
such as the use of CD ROM and digitized video will improve the construction, distribution, and 
accessibility of these new highly interactive and visual lessons. 
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Fig. 1. Main menu of the multimedia 
lesson on electromagnetic waves. The 
lesson includes access to experimental 
video, two CAEME software packages 
[7, 8], animated graphics, and a quiz 
that consists of five questions. 

Fig. 2. A menu that provides access to 
the traveling and standing waves 
topics. 

Captured Frames of Traueling 
and Standing Ulaues. 

ID auoid a lengthy iatrodurtion of traveling and xtandin 
»suet, the nettt few frames are intended to Dive got] a 
summary of roni of the basic rharorteristics of Banal. 

Select either traueling or standing vanes. 

aj Traueling Wanes 

N Standing Wanes 

■   Main Menu 

Ihere is a magnetic field mtssnrtuH,, associatinj an% the isectrir field E,. 
for nsanos propagating in a nmcendurthie nedum rise ratio E./H,,-constant- 
sqrtt»/c )UiamiisnaslhBiin^isscnn|iwnaiKBOtthainaiio^ ■ formawas 
propagating in ah- E./H,-i-sqrttii/« )- 120 tr- 377 ohm. 

^ WZ ContipuB . 

Fig. 3. An example that demonstrates 
the animated graphics capabilities of 
the "electromagnetic wave" 
multimedia lesson. The figure shows 
in phase sinusoidal electric and 
magnetic fields. These fields are 
perpendicular to each other and to the 
direction of propagation (z). 

Fig. 4. Dynamic illustration of the 
concept of standing waves. Two 
sinusoidal plane waves of the same 
frequency and propagating in opposite 
directions (green and purple curves) 
interfere to produce the resulting 
standing wave (white curve). 
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Fig. 5. Main menu of the multimedia 
lesson on electrostatic charges and 
Coulomb's law. 

Fig. 6. An example of the response a 
student receives when a wrong answer 
is selected. Multimedia lessons are 
structured so as to provide remediation 
for helping and guiding the students 
when solving the quiz problems. 
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Fig. 7. A display of a multiple-choice 
question intended to help students 
identify the correct direction of the 
electric field associated with an 
infinitely large charged plane. 

Fig. 8. A schematic demonstrating (a) 
an incorrect and (b) a correct option of 
selecting a Gaussian surface for 
evaluating the electric field associated 
with an infinitely large plane charged 
with a charge density ps. If a wrong 
answer is selected, the student is 
advised to select option B to take 
advantage of simplifications when 
integrating the electric field En over 
the closed surface. 

QUIZ  3(Cont.l 
Hext, me need to construct a suitable Goussian surface to carry out 
the suifuce inteqfotion und determine the resulting electric field 

; H.jSelect a 
Spherical Surface 

A/- 
'!.B..;Select a Cylindrical 

Surface 
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Dielectric and Conducting Materials 
Main Menu J 

■ Introduction to conducting and dielectric «atertals 

M   Conduction current 
■ Dielectric polarization 

■ Reutetü of experimental olden 

■ Simulations using CREIRE software 

■ Applications 

■ Quiz 

■ Score 

M    Exit 

Fig. 9. Main menu of the multimedia 
lesson on dielectric and conducting 
materials. 

Fig. 10. A series of stills that 
illustrates the concept of orientational 
polarization, (a) and (b) show the 
random orientation of permanent 
electric dipoles and their continuous 
motion in the absence of an external 
electric field, (c) Alignment of the 
permanent electric dipoles in the 
direction of the external electric field. 

(a) 

2) Orientational Polarization 
In liquid and goses. electric dipoles olreQdij exist eyen 

In the absence of an externe! field. 

£•0 

fiSH"-"1*^ 
wijggsis::^ 

Polar material (deionized water) 

Rpply E field j 

ntinue   &&'' 

2) Orientational Polarization 
In liquid and gases. Heetric dipoles already exist even 

in the absence of on external field. 

___      £ = 0 

Polar material (deionized mater) 

Rpply E field j 

(b) 

2) Orientational Polarization 
In liquid and gases, electric dipoles already exist euen 

in the absence of an external 1ie)d. 

(c) 
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ROSEM Software 
Lei us use the ROSHT. software to demonstrate on Interesting 
phenoMena. 

fissignmefi^ 
1. Use RQSEm to drau Q parallel plate capacitor of your choice. 

Assign 100 uolts to the top plate and connect the bottom 
plate to ground. 

2. Use the electrostatic soluer and the postprocessor to display 
the "electric field intensity" on your computer screen. 

3. Sour screen display should be similar to the one we obtained. 

"1 
jMite MMW .*»&;; 

Screen Dtsptäu. 

Fig. 11. An example of software 
assignment that helps guide students 
through simulation using CAEME 
software (e.g., ROSEM [12]). (a) 
Simulation example of an electric field 
in a parallel-plate capacitor, (b) 
Simulation of the electric-field 
intensity in part (a) when a dielectric 
slab is inserted between the plates. 

(a) 

(b) 

ROSEM Sof tware r cont.) 
Rsslonttent * Cent. ) 
1.   now. piece o dielectric box (half Ihe height and half the 

width of the parallel plate capacitor) In the middle of the 
capacitor geometry. 

U = 180 IteHs     ^^—— 

U » B Uolts      -^^—— 
5. Repeat steps 1) and 2) 
6. äour screen display should be similar to the one we obtained. 

Continue j iRun ROSEul j Screen Display | 

ROSEM Sof tware i tont. > 
Rsslgnment ( Cant. ) 
7.   Comparing the field Inteslty In the empty capacitor with that 

of the one filled with dielectric we ohserue 

I E I at the location of the center point of the 
dielectric block Is 

Higher Lower    j 

ulth the dielectric block In place. 

Fig. 12. A quiz prepared to evaluate 
students' understanding of the 
simulation results. The electric field 
inside the dielectric is expected to be 
lower than its value before inserting 
the dielectric slab. The student is 
asked to make a selection between the 
two choices. 

Fig. 13. Electric-field intensity in the 
region between the plates of a parallel- 
plate capacitor. Option A is for the 
air-filled capacitor, while option B is 
for the case when the dielectric slab of 
Er = 8 is inserted in a central subregion 
between the plates. 

ROSEM Software (cont. > 
Assignment * Cont.) 
Please compare these two pictures The electric field 
Intensity at the location X is looter In cose B when the 
dielectric material Is In place. 

J Continue 
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Let's Piay 
Tie-Tac-Ttie!! 

tdau mill get 
un X if you 
anauier the 
questions 
correctly or 
on fl it your 
answer is 
ncorrect! 

| DIELECTRIC 
POLRRIZRTION 

FIELDS 

I     UECTOR 
I OPERATIONS 

AMPERE'S 
LRLU 

TVPES OF 
CURRENTS 

UIDEO 
| ELECTRIC RNO 
|   MAGNETIC 
1      FORCES 

EM 
LÜRUES 

\  MHHLUELL'S 
|   EQUATIONS 

Fig. 14. Main menu of the Tic-Tac- 
Toe interactive video lesson. This is a 
review lesson on some basic concepts 
in introductory electromagnetics. 

Fig. 15. An illustration of the type of 
questions included in the Tic-Tac-Toe 
review lesson. Flux representations of 
vector fields are sketched and the 
student is asked to match the flux 
representation with the appropriate 
expression of the vector field. 

Uector Fields Question 1 
1) R Flax representation of vector fields provides a 

visual illustration af the spatial variation ol the 
field qoontltles. 

natch the flox representations given below. 
Mlth the corresponding vector field 

fl=kx.    .    B=k5    .    C=kx2fi 
XX X 

% % V 

CD jT] ED £0 [«] £0 ED CD CO 
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A Generic Finite Element Model for Plane Problems 

Kyran D. Mish 
Imbsen & Associates, Incorporated 

Sacramento, California 

LaDawn Haws 
Department of Mathematics and Statistics 

California State University, Chico 

Abstract 

Much of the effort of developing finite element computational models is independent of the 
particular problem being solved. It is therefore possible to develop a generic finite element solver 
for large classes of problems that can be used for a wide variety of applications with only minimal 
modifications by the programmer/analyst. The authors have developed such an analysis package 
for two-dimensional problems for the Macintosh family of computers, and this generic application 
has been used successfully by hundreds of students. The analysis environment includes modules 
appropriate for static and transient analyses of heat conduction, plane elasticity, plates, flow 
problems, and electromagnerism. The analysis programs are tightly coupled to visualization codes 
that support appropriate graphical displays including color contouring, vector field plots, and 
animation of time-dependent analyses. The overall architecture of these codes will be presented, 
and various forms of output will be demonstrated. 

Overview 

Research and educational applications utilizing finite-element approximation are 
commonly performed on commercial finite-element codes. While such proprietary codes 
are widespread in engineering practice and are well-supported and error-free, 
commercial codes suffer from a few basic flaws. First, since they are generally 
proprietary, the source code is seldom available for study or modification. Many of the 
more successful codes are extensible through the device of standard interfaces for new 
element types, but are not otherwise modifiable by the analyst interested in a new 
formulation, or by the student looking for examples of finite-element coding principles. In 
addition, commercial codes are generally expensive, unless distributed in a low-cost form 
(which is generally a hamstrung version of the full-scale commercial solver). 

There is a definite need for finite-element programs that are "lean and mean", in the 
sense of performing a limited range of problems without modification (which leads to a 
compact code), and performing analyses without all the attendant variety of model 
generation, analysis, and interpretation options available with commercial programs. The 
relatively simple family of finite-element codes described in this document is intended to 
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allow researchers and educators using finite-element approximation to use codes that are 
reasonably advanced (in terms of solution algorithms, code architecture, and solution 
visualization schemes), reasonably efficient, relatively straightforward to use, and very 
simple to modify or extend. The codes presently are optimized for use on the Apple 
Macintosh II and Quadra microcomputer series (since these micros provide the graphical 
support and memory addressing required in system software), but the library of codes is 
being ported by the authors to IBM's OS/2v2.0 operating system and to the range of Unix 
workstations supporting X/Windows. It is anticipated that the codes will ultimately be 
available for computers running Microsoft's Windows/NT operating system once that 
software platform becomes widely available. 

Principles of Program Design 

Most of the components of a finite-element application are completely independent of the 
particular problem to be solved. Commercial codes exploit this fact by collecting a wide 
variety of approximation types into generic element libraries, thus allowing the analyst to 
specify the class of solution interpolant to be used at run-time. As the variety of elements 
and solution schemes available in an application increases, the underlying code complexity 
increases accordingly. An alternative scheme is to limit the class of elements that can be 
used at run-time, while instead making the program source sufficiently easy to modify so 
that the generic element type is simple to change. In the code presented here, the basic 
element type is a four-node bilinear quadrilateral. This element is preferred for many 
problems because it is relatively simple to create arbitrary quadrilateral meshes, because 
this simplest two-dimensional Lagrange element is reasonably accurate for a variety of 
problems, and because it can be made very efficient by using appropriate reduced 
quadrature rules. In addition, its three-dimensional generalization (the eight-node 
trilinear hexahedron) is easily obtained by only minor modifications of an analogous two- 
dimensional analysis program. 

Once a generic element type has been established, the overall code architecture can be 
segregated into two distinct classes of computer procedures and data structures: those 
that depend upon the particular problem to be solved, and those that are independent of 
the problem. In the setting of a static analysis, there are only four tasks that are 
dependent upon the particular problem: 

(1) formation of the element matrices, whose size and composition depends upon the 
number of unknowns defined at each interpolation node, and upon the material data 
of the problem to be solved 

(2) calculation of the derived (i.e., secondary) solution parameters, which are generally 
some form of spatial derivative of the primary unknowns (e.g., simple gradients in 
scalar potential problems; strains or strain rates in solid and fluid mechanics 
applications) 
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(3) input and verification of the material data, whose form and size depends upon the 
problem to be solved 

(4) optionally, the preparation of formatted "verbose" output suitable for printing if a 
graphical solution display is not used 

All other aspects of the problem, including mesh generation, interpolation overhead, 
equation assembly and solution, and most of the postprocessing burden, can then be 
coded so that all dependence on the problem solved is through a set of fundamental 
constants (implemented via the PARAMETER statement of FORTRAN). These 
fundamental constants include the number of solution unknowns to be interpolated at 
each node; the number of nodes, quadrature points, and derived solution parameters per 
element; the maximum sizes permitted for the finite-element mesh and associated 
equation set, and other similar constants. Extension of a root analysis scheme (such as a 
static scalar potential problem) to a new class of problems consists of coding the four 
classes of procedures described above (for which all overhead data structures are 
available through appropriate data structures calculated within the generic part of the 
program), and then modifying all the global problem parameters using a standard "find 
and replace" function of a text editor. Similar modifications can be used to customize the 
accompanying visualization codes to optimize display of results. 

Classes of Analysis Protocols 

There are several standard modules presently available in this application family. At 
present, only linear constitutive models are used in each code, but modification of most of 
the individual codes to account for nonlinear material behavior is straightforward. The 
various classes of analysis methods available are enumerated below: 

» static analyses    Kd=f 

In the linear static case, the analyst must complete procedures for evaluating the 
element stiffness matrices, the element load vectors, reading and verifying 
appropriate material data, and calculation of the secondary solution parameters 
(e.g., determining strains from the displacement field in a mechanics application). 

* quasi-static analyses   Cv + Kd=f 

The analyst must provide all the same parameters as for the static case, but must 
also code a procedure to evaluate element contributions to the damping matrix C. 
A standard one-parameter time-stepping scheme is used to provide a robust 
temporal integration algorithm. 
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• dynamic analyses   Ma + Cv + Kd = / 

The analyst must provide the same parameters as for the quasi-static case, but 
must also code a procedure to evaluate element contributions to the system mass 
matrix M. A standard three-parameter time-stepping scheme is used to provide 
simultaneous optimal error control (i.e. a quadratic convergence rate), and user- 
specified damping control to attenuate high-frequency noise common to discretized 
dynamic problems. 

• eigensolution analyses   Kd = Xd 

Input to this analysis scheme is the same as for the static case, except that no load 
vectors are required. A full eigensolver is used to determine all eigenvalues and 
eigenvectors (which typically takes only several minutes on a current-generation 
microcomputer). The authors will ultimately extend the eigensolution schemes 
available to include forward- and inverse- Lanczos schemes to provide only a 
partial construction of the full matrix spectrum. 

• generalized eigensolution analyses   Kd = XMd 

Input to this analysis scheme is the same as for the standard eigensolver, except 
that element mass routines must be provided. Either the system mass M or the 
system stiffness if must be positive-definite, since in the alternative case, it is not 
possible to guarantee construction of a real diagonal form. 

In each case, representative graphical postprocessing facilities are available to produce 
plots of finite-element results, including mesh drawings, line, grayscale, and color 
contours of the primary and secondary solution parameters, and (in the case of time- 
dependent analyses) animation of the solution history using standard animation file 
formats (e.g. the PICS and QuickTime formats for the Macintosh platform). 

Representative problems that are already coded include thermal analyses, plane elasticity 
problems, incompressible solid and fluid mechanics problems, plate bending analyses, 
and electromagnetic problems involving potential, magnetic, and electric fields. In many 
of the these problems (e.g. incompressible or electromagnetic cases), a divergence-free 
constraint on the primary solution is required, and simple selective/reduced integration 
schemes are easily implemented within the existing code architecture. The analyst 
interested in extending the generic code to solve a new problem can generally start with a 
similar problem by examining the existing classes of implemented schemes available with 
the program distribution. 
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Sample Problems 

Conventional publication technology precludes the inclusion of the sort of color 
visualization schemes that are an essential component of the generic finite-element code 
described above. The results below show only a black, white, and grayscale sample of 
solution behavior from the finite-element application family. Complete results are 
available in the code distribution kit that can be obtained by correspondence with the 
second author. 

The first sample shown arises from a generalized eigensolution scheme appropriate to 
constructing approximate solutions for the scalar Helmholtz equation. The particular 
example is from the preliminary investigation of a four-vane birdcage resonator used in 
medical imaging applications. The eigensolution scheme was used to verify electrostatic 
results which are at present being verified by a full vector Helmholtz analysis of the 
magnetic field in three space dimensions. Figure 1 shows the finite-element mesh used to 
perform the analysis. Figure 2 is a grayscale contour map of the fundamental mode for 
the resonator. 

mesh limits: 

xmin -1.0000E+00 

xmax 1.0000E+00 

ymin 0.0000E+00 

ymax 1.0000E+00 

status data: 

nodes used  170 

elements    144 

conductive elements 

Figure 1: Mesh Used in Scalar Helmholtz Example 
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Mode  Number           2 

tl _;                                                                       min -7.845E-01 
^j^^^^^^^^: ~-V. 

^^dBJL!F~-~- max 7.845E-01 

j^u    (pifwr 
^^H                   HB^^^I^^" +8.7500E-01 

^M                    SSpC'v-''- +7.S000E-01 
^B               Bl»-C +6.2500E-01 
^B                                       Hfc^r^F— +5.0000E-01 

^^1                            {^KHH^'"
1 

+3.7SOOE-01 

^1 +2.5000E-01 
^H                                                                    H^^^ii:: +1.2S00E-01 
^1                                                                    HKHplP^ 5.?s\-:;^.'...             .                  I!! +0.OOOOE+00 
^B                                     tflplIlM -1.2SOOE-01 
^B                                                                        3|I1||§M -2.5000E-01 

■1                                   jff~r~~-£'"-" -3.7S00E-01 
-5.OOOOE-01 
-6.2500E-01 
-7.5000E-01 
-8.75C0E-01 

Figure 2: Grayscale Contours of Fundamental Mode 

Many important physical problems must be solved in the presence of a constraint 
equation, such as the divergence-free condition required by Maxwell's equations on the 
magnetic field. One of the most important advantages of finite-element models is the 
relatively simple incorporation of such constraint equations into the underlying functional 
minimization principle that defines the finite-element approximation. The mathematical 
theory underlying convergence of discrete approximations for constrained problems is 
sufficiently difficult so as to preclude (in most cases) a priori examinations of whether the 
resulting constrained discrete model suffers from any common pathological behavior. 
One of the best ways to determine whether spurious solution behavior is present is to 
draw a visual representation of the solution, which allows the analyst to identify 
anomalous results. For example, in figure 3, the transverse displacement of a plate is 
shown. The square plate is supported only at one point at its center, and loaded out of 
the plane of the paper with a uniform load.  The effect of the naive implementation of the 
appropriate mechanical constraint for this problem is the introduction of a spurious 
oscillatory mode that is immediately apparent from the graph shown in figure 3. A 
related variety of this "hourglass" oscillation is common in magnetic field problems, where 
the naive implementation of a divergence-free condition on the solution results in a 
similar erosion of solution accuracy.   A close coupling between analysis code and 
visualization application helps to identify and rectify such potential solution errors. 
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K 

I 
Figure 3: Contamination of Solution by Hourglass Mode 

Summary 

The simple generic finite-element application presented here is sufficiently concise so that 
it is easily understood by students of finite-element analysis, reasonably easy to modify or 
to generalize to accommodate new types of element approximation, and accurate enough 
to justify its use in research, academia, and engineering practice. The code is available for 
a nominal distribution fee by correspondence with: 

LaDawn Haws 
Department of Mathematics and Statistics 
California State University, Chico 
Chico, California, 95926 

At present, the analysis code runs on virtually any high-performance microcomputer or 
engineering workstation. The graphical visualization applications are presently supported 
only on the Apple Macintosh-II or Quadra series of computers. It is anticipated that the 
visualization codes will be available on most engineering workstations and under OS/2v2 
for IBM and IBM-clones by the end of 1993. 
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ANALYSIS OF ELECTROMAGNETIC FIELDS IN ELECTRICAL MACHINES 
FROM EXPERIMENTAL DATA FOR EDUCATIONAL PURPOSES 

Osama A. Mohammed & Howard Gordon Abd A. Arkadan 
Dept. of Elec. & Comp. Engineering Dept. of Elec. & Comp. Engineering 
Florida International University Marquette University 
Miami, Florida 33199 Milwaukee, Wisconsin 

Abstract: This paper presents a system for the analysis of electromagnetic fields in electrical 
machines and their operational concepts from experimental data. The analysis can be performed 
directly while hands-on experimentation is in progress in the laboratory. The proposed system 
consists of three modules; data acquisition, data control and analysis modules. The analysis module 
contains finite element programs for the numerical analysis of electric machines at no load and at 
various load conditions. The system also includes a laboratory workstation which includes the 
rotating machines, personal computers and a data base for the geometrical, material and electrical 
data of the machines. Operational and control data are sent directly to the analysis programs during 
experimentation using the control and data acquisition modules. 

The presented system is aimed at developing a tool that would help improve the student's 
understanding of electromagnetic field distribution and their use in calculating performance 
measures as well as operational concepts pertaining to the practical study of electrical machines. 
Furthermore, the developed system will help boost student's creativity and increase participation 
in understanding the concepts and theories. The presented system also provides a foundation for 
its implementation on a multi media environment to meet the ever changing need in educational 
tools and electrical engineering curricula. 

INTRODUCTION 

It is a common feeling in electrical engineering education that it is of extreme importance to 
boost creativity and student ability to analyze practical problems under various conditions. The 
ability to compare laboratory results with theoretical expectations concurrently is an important 
step to achieve this goal. Furthermore, the capability of visualizing the concept will certainly 
increase the student's ability to understand the theory and the topics being taught. 

The utilization of computer systems in the study and analysis of electric machines has been 
proposed earlier by energy conversion educators. References [1] to [3] are examples of some 
of the efforts devoted to this area. These papers provided comprehensive analyses on the relevant 
subjects as well as described useful experimental treatments. The presented system adds a 
component providing finite element analysis of electric machines during the hands-on 
experimentation. 

Electric machinery courses and the associated laboratories are requirements for most electrical 
engineering students in many universities. At Florida International University this laboratory 
consists of experiments on various analytical and operational characteristics of electric machines. 
These machines are in the form of separate components and include single- and three-phase 
transformers, three-phase induction machines, three- phase synchronous machines as well as 
single-phase multi-function and universal motors. All of the rotating machines treated here are 
rated at 1/3 hp. In addition to these components, an assortment of measuring instruments and 
other coupling and related components are housed in a mobile unit, which is referred to in this 
paper as the "workstation". For the development of the proposed system, each workstation has 
been upgraded to contain personal computers, a signal conditioner, a printer, a plotter and 
control circuits. The computers are equipped with A/D and D/A cards, a communication 
software, a data base which include magnetic circuit and other relevant manufacturer data, and 
an analysis module which utilize a Finite Element (FE) mesh generator and a set of finite 
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element analysis programs. 
In addition to manually connecting the various components for a given experiment, the student 

is also required to make connections to the signal conditioner, control circuits as well as the 
computers. Once the student sets up the experiment for a given study manually, the data 
acquisition module is used to read and record the data. The menu-driven data acquisition 
software allows the sampling of the exact data points obtained from the experiment. From the 
computers, the student is able to control the operating parameters such as speed, voltage, current 
etc., as well as observe associated changes. The controlled excitation parameters are directly sent 
to the corresponding FE analysis program which performs a field solution for the machine under 

POWER SIGNAL 

WORCSTATION CONDITIONER 

TRANSFORMER 

INDUCTION MACHINE 

SYNCHRONOUS   MACH . 

CAPAClTOO-START 

UMVERSAL   MOTOR 

PEBIBHESALS 

' ' 

IS   CHANNEL 

A/D   CONVERTER 

PERSONAL. 

COMPUTER     1 

' 

6   CHANNEL 

D(A   CONVERTER 

PERSONAL 

COMPUTER    2 

, 
1 1 

' . 
' 

P« 1 NTER 

PLOTTER 

ELECTRONIC CIRCUITRY DATABASE 

FINITE.ELEMENT   SOFTWARE 

F1CAT PONS   OF 

ING   MACHINES 

TRANSFORMERS 

Fig. 1. Schematic block diagram of the system 

test and calculate its performance measures from the machine's model stored in the data base. 
The comparison of experimental and analysis results takes the form of tables and/or graphs 
either on the computer monitors or in hard copy. The corresponding electromagnetic field 
pattern of the machine under study is also generated and displayed for the experimented 
conditions. 

Examples are provided here to illustrate the use of the proposed system. The chosen 
examples are experiments dealing with the analysis of the no-load and load characteristics of 
transformers and rotating machines. 

DESCRIPTION OF THE SYSTEM COMPONENTS 

The main objective of the proposed system is not to eliminate the work involved in the 
laboratory but to clarify doubts or abstract ideas the students may have. It is not intended to 
reduce the amount of work required from students with that of a computer. The proposed system 
was developed in three main modules; (1) The Data Acquisition Module, (2) The Analysis 
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1 SAMPLING MENU 
2 CONTROL MENU 
3 SAMPLING &. CONTROL MENU 
4 DISPLAY DATA 
5 GRAPH DATA 
6 ANALYSIS MENU 
7 EXIT PROGRAM 

Module and, (3) The Control Module. An overall schematic block diagram of the system is 
shown in Fig. 1, giving an outline of the various components involved. 

The Data Acquisition Module: 

In addition to the hardware upgrades described TABLE I. A/D AND D/A TRANSLATE MASTER MENU 
above, this module also consists of a software that 
enables the user to sample data directly from a 
computer keyboard. In addition, this software also 
allows the user to link the entire system. This 
software is known as the Data Acquisition 
Program (DAP). The DAP is used in Personal 
Computer 1, and it is made up of several 
sub-programs. This program was written primarily 
to enable effective sampling and monitoring of the machine. The DAP consists of three main 
routines responsible for the overall data acquisition performance. The programs are; a) data 
acquisition, b) control, and c) data acquisition and control. Two other routines allow the user 
to display and graph the results obtained at any point during sampling. Once the program is 
loaded, a menu appears which allows the user to select the desired part of the program to be 
utilized. The main menu of the DAP is shown in Table I. The DAP allows the user to acquire 
data either through the A/D converter or to store data manually entered from the keyboard. The 
control program enables the user to send messages via the keyboard to the various machines for 
response. The data acquisition and control programs allows the user to simultaneously sample 
data from the machines and relay a command or message to the same machine or some other 
directly related machine. The data display menu allows the user to observe the acquired data in 
the sampling sub-routine. This sub-routine will print the data acquired and/or display it on the 
screen. 

After providing all input information, the program returns to the SAMPLE MENU program. 
At this point, the user may now sample the data for a given experiment or return to the main 
program. The next step is to enable the user initialize the channels and then commence the data 
acquisition procedure. Once the initialization is completed, the sampling takes place by means 
of an A/D converter in Personal Computer 1. By reading the appropriate ports, the sampling 
data is recorded and corrected. Each sample data point stored is read three times and then 
averaged. There are three modes of operation during data acquisition; A/D sampling, manual 
sampling, simultaneous A/D and manual sampling. The A/D sampling takes place when using 
the signal conditioner and the A/D board. The manual sampling is used when there are signals 
that cannot be coupled to the signal conditioner. 

During control, there are two modes of operation; a) control with and 2) control without 
memory. In both cases, the D/A converter is used. The output of the D/A converter is set at a 
range of 0 - 5 volts depending on the maximum output to control. The user needs to provide the 
channel to be controlled and the maximum output for the system. Once the control output 
number is provided, the system will send the information to the D/A converter. The second 
mode of operation is similar to the first mode except for the creation of a file for the control 
outputs. The data acquisition and control system allows the user to acquire data and 
simultaneously control the devices and components involved in the experiments. 

The Analysis Module: 

This module was developed in order to provide the TABLE n. FIRST SUB-MENU OF AMP 
user with a comprehensive tool capable of analyzing the   
behavior   of   the   electromagnetic   fields   in   electric        ]   TABULATION 
machines. All relevant data including manufacturers'        I   S!!^ „_,_„,. .j- ... . ,   ° .   , . 3     FINITE ELEMENTS 
specifications, physical geometnes and material properties        4   QUIT 
are contained within a data base. The Analysis Module   
Program (AMP), shown in Fig. 2, allows the user to 
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analyze any choice of machine(s) under study. The AMP is developed to provide an automatic 
interface with the data acquisition and the analysis modules. The main menu of the analysis 
module permits the user to select one of the following machines to analyze using the FE 
programs; 1) Transformer, 2) Induction Motor, 3) Induction Generator, 4) Synchronous Motor, 
5) Synchronous Generator, 6) Direct Current Motor, and 7) Direct Current Generator. 

Once the user selects one of the options, a sub-menu as shown in Table n. appears. If 
"Tabulation" is chosen, a unit is called which will retrieve all the data files created by the DAP. 
If the user wishes to plot any set of parameters from these data files, then option 2, Table II. 
is selected. The "selection file" unit presents the data files and allows the user to choose which 

N-*! ^ r^l L_J 

NSFOnMEF 
STMCMSONOUS 

CONTROL 

FILE 
SGL ECT 1 ON 

TABULATION 

TE     ELEMEK 

TRIANGUL AT ION 

CHANGE 
PARAMETERS 

Fig. 2. The Analysis Module 

variables are to be graphed. Graphs generated may combine results from experimental data, 
numerical analysis or utilizing information in the data base. 

The third option in Table II. provides the FE analysis menu shown in Table ELI. Option 1, 
Table III., gives the outline of the machine's magnetic circuit cross-section showing the 
constructional features and main geometry as shown in Fig. 3. Option 2, Table III., produces 
the FE grid, Fig. 4, of the machine under study. The third choice, Table III., gives the results 
of the FE analysis and creates the magnetic field 
picture at a particular test instant, Fig. 5. The FE TABLE III. SECOND SUB-MENU OF AMP 
programs used here are base on work presented   
earlier by Mohammed et.al. [4]. The FE solution is 
based the magnetic vector potential (mvp) 
formulation [4]. The numerical solution is then used 
to calculate a variety of performance measures and _ 
produce the corresponding curves for comparison 
with experimental data. 

MAGNETIC CIRCUIT OUTLINE 
GRID GENERATION 
FE ANALYSIS & FIELD PICTURE 
QUIT 
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Fig. 3. Main geometry of the machine 

The Control Module: 

The control module was developed in order to provide the 
user with a way of controlling the rotating machine 
experiments directly from the keyboard. A feedback system, 
which is capable of sensing the speed of rotation, adjusting 
the speed if necessary by making comparisons to a specified 
reference value, and making the results available for 
immediate display, was developed. This module comprises 

Fig. 4. Finite element grid 
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Fig. 6. Block diagram of the Control Module 
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of several main components such as personal computers 1 and 2, Fig. 1, a Motorola's HCMOS 
single-chip microcontroller, stepper motor, stepper motor controller circuit, optoisolator (Omron 
Photo Microsensor with built-in amplifier), and a perforated disk. A direct current motor was 
used to perform all prime moving tasks with respect to the rotating machine experiments. Figure 
6 shows a block diagram of the control module. The Control Module is accessed from the main 
menu by choosing item 2 as shown in Table I. 

The Control Module Program (CMP) was developed to provide speed control and speed 
monitoring of a DC motor. The sequence of operation begins with the perforated disk and the 
optoisolator. As the mounted disk rotates with the shaft of the motor, the ON/OFF signals 
triggered by the light sensors of the sensing section of the optoisolator, are sent to the 
microcontroller in the form of a square wave. The program displays the resulting speed in real- 
time fashion on the computer screen after detecting two consecutive rising edges generated by 
consecutive holes on the perforated disk. The program then finds the difference in time between 
the rising edges and convert it to period, frequency, and revolutions per minute. If the speed has 
to be changed, the desired result is entered from the keyboard, at which point the program 
prompts the step motor to adjust the field rheostat of the DC motor until the desired speed is 
obtained. This system forms a closed-loop feedback controller. The step motor control circuit, 
was modified to operate in both manual and automatic modes. The manual mode is directly 
controlled by the user with the speed control and direction control knobs. 

SAMPLE APPLICATIONS 

Two experiment are selected to show the effectiveness of the proposed system as an 
educational tool. The objectives of the first experiment is to study the electromagnetic field in 
a single phase transformer under no-load and load conditions as well as compare the laboratory 
and analysis data for its performance. The objectives of the second experiment is to study the 
no load and load characteristics of a synchronous alternator. 

The procedures outlined above were implemented and appropriate experimental setups were 
made. The load on the transformer is a resistance varied in six steps from 333 to 2000 fi. The 
produced field distribution is shown in Figs. 7.a-c for no-load, 333 fi and 2000 fl, respectively. 
The efficiency of the transformer under test was calculated from the experiment, and from a set 
of FE solutions. The two results are shown in Fig. 8. 

Fig. 7.a.  Field dist at no load       Fig. 7.b.  Field dist. at 333 0 load    Fig. 7.c. Field dist. at 2000 ß load 

For the second experiment, the synchronous alternator is coupled to a dc motor and 
appropriate connections were made. The field current was varied in steps and the armature 
voltage was measured as well as calculated from the FE field solutions. The no-load 
characteristic of Fig. 9.a shows a comparison between experimental and FE results. A resistive 
load was connected to the synchronous alternator and the motor's field rheostat was adjusted to 
its minimum resistance. The motor is started and the speed is adjusted to 2000-rpm by varying 
the field rheostat. The excitation was controlled simultaneously to maintain the output voltage 
to 220-V from the alternator while the speed is maintained at 2000-rpm. A load test is carried 
out from no-load to approximately 0.35 Amperes. The same test was repeated at 1600-rpm. The 
load characteristics from both experiments and FE solutions are shown in Figs. 9.b-c. The 
magnetic field distribution at no-load, 1600-rpm and 2000-rpm are shown in Figs. 10.a-c. 
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One important aspect of 
the system proposed here is 
the FE and other analysis 
programs. This aspect has 
been reached with the 
currently available 386 
personal computers. One of 
the main objectives of this K 

system is that the user can S 
visualize the change in the | 
field picture inside the E 

machine being tested and 
obtain analytical results 
during experimentation. At 
this time we have been able 
to produce the field picture 
and obtain analysis data 
from the electromagnetic 
field modelling for various 
cases within few minutes of 
processing due to the large 
number of equations being 
solved at each experimental 
instant. A faster computer 
will reduce the processing 
time significantly. We 
believe that the proposed 
additions to the 
conventional energy 
conversion workstation are 
feasible in terms of cost, as 
well as its overall 
educational benefits. 

CONCLUSION 

Efficiency Vs. Secondary Current 

0.1770 0.1485 0.193 0.0895 0.0590 0.03 
Seconder? Current (A) 

*   Experiment -e- FE 

Fig. 8. Efficiencies calculated from experiment and FE solution 

No-Inad Characteristic 

Field Current, (mA) 

■*   Experiment -o- FE 

Fig. 9.a. No load characteristics for the dc motor 

The comparison of 
laboratory results with 
theoretical expectations is a 
crucial step in providing 
knowledge and clarifications 
on the various concepts that students need for laboratory experiments and classroom instructions. 
The system proposed here provides a complete analytical and practical approach to the 
understanding of electrical machines and energy conversion concepts. 

The overall system is designed to be user friendly using menu-driven setups. The system is 
made of three modules; Data Acquisition, Analysis, and Control Modules. A major result of the 
system described in this paper is that an energy conversion laboratory could become an in-depth 
analytical and practical experience in addition to performing the experiments and observing 
associated results. 
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bad Characteristic - 8000 RPM 
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[2] 

[3] 

[4] 
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Fig. 9.b.  Load characteristics at 1600 rpm 
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Fig. lO.b. Field dist. at 1600 rpm 

tad Current, (mA) 

Fig. lO.c. Field dist. at 2000 rpm 

Fig. 9.C.  Load characteristics at 2000 rpm 
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Learning About EM Theory and EM Modeling by Analyzing Printed 
Circuit Boards in an Enclosure 

T. H. Hubing and M. W. Ali 
University of Missouri-Rolla 

Rolla, MO 65401 

Abstract 

Understanding electromagnetic theory requires more than an ability to apply Maxwell's 
equations to specific problems. Students in electromagnetics should be taught to visualize field 
distributions and anticipate solutions to basic problems in electromagnetics. Numerical EM 
modeling codes can be an excellent visualization tool. They also allow students to solve a variety 
of real-world problems that emphasize the relevance of the EM concepts presented in a course. 
This paper shows how simple printed circuit board structures can be used to illustrate basic field 
theory concepts. After modeling a number of these structures, students learn to visualize solutions 
to new structures even before they are modeled. 

Introduction 

Undergraduate electromagnetics classes tend to be among the most difficult courses in an 
electrical engineering curriculum. Students in these classes must be taught vector calculus and leam 
to work in different coordinate systems just to solve the most basic electromagnetic problems. The 
relationship between these basic problems and real-world engineering problems can be difficult for 
students to grasp. 

Because the courses are difficult, many students convince themselves that EM theory is not 
relevant to the type of electrical engineering work they will eventually be doing. Many of them do 
not expect ever to solve another field problem once they have completed the required undergraduate 
EM courses. Electromagnetics instructors may even encourage this attitude among students if the 
classroom examples and demonstrations fail to illustrate applications of EM theory to other areas 
of electrical engineering. Traditional class demonstrations involving tin cans, balloons, ping-pong 
balls, and pendulums are both educational and entertaining, but they do not convince the students 
who are interested in computers or communications that EM theory is relevant to their engineering 
careers. 

Trends in EM Education 

There are two engineering trends that promise to revolutionize electromagnetics education. The 
first trend is the proliferation of high-speed microprocessor circuitry. Microprocessors are found 
in all kinds of electric and electronic appliances including televisions, audio equipment, coffee 
makers, pencil sharpeners, and electric shavers. A new automobile may have dozens of microproc- 
essors and commercial jet aircraft may have hundreds. It is becoming very difficult for graduating 
electrical engineers to find a job that does not require designing or working with high-speed 
microprocessor circuits. It is also becoming much more difficult to get high-speed microprocessor 
systems to function properly and meet electromagnetic compatibility requirements without a basic 
understanding of EM theory. 
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The second trend that promises to have a significant impact on electromagnetics education is 
the increasing availability and sophistication of computer EM modeling techniques. Computer 
modeling enables students to solve problems that are much too complex to solve analytically. This 
means that EM instructors can assign problems that demonstrate applications of EM theory to 
real-world engineering challenges. 

Computer modeling techniques also make it much easier for the student to visualize the solution 
by plotting the results over a region in space. Once a problem has been solved, it is relatively little 
extra work to make minor modifications to a structure and analyze it again. This makes it easier 
for the student to learn what effect various attributes of the structure have on the solution. 

Teaching Electromagnetics 

There are arguably three levels at which students may learn electromagnetic theory, 

1. understanding the math 

2. being able to work the problems 

3. being able to visualize the important parameters. 
For example, a student who understands the algebra and complex number theory necessary to solve 
a simple transmission line matching problem has a level 1 understanding of transmission line stub 
matching. If the student can consistently calculate the correct stub length and location, then level 
2 has been achieved. The student who can visualize the standing wave pattern (perhaps with the 
aid of a few calculations), and then come up with a reasonable estimate for the best stub length and 
location has attained a level 3 understanding of transmission line stub matching. This student can 
probably estimate the bandwidth over which a "reasonable" match will be achieved and is generally 
able to determine the best stub matching solution under various conditions. 

These same three levels of understanding exist for other aspects of electromagnetic theory such 
as field propagation in waveguides, modes in resonant cavities, current distributions on antennas, 
and antenna field patterns. These levels of understanding usually occur in the order presented, 
however it is possible for a student to achieve them in any order. For example, engineering 
technicians who frequently work with radio and microwave frequency hardware, often achieve a 
level 3 understanding of many aspects of electromagnetic theory without ever achieving level 1 or 
level 2. Engineers who rely on computers and numerical methods to do field calculations may not 
be familiar with the mathematics involved in the calculations and yet they still may have a level 2 
and level 3 understanding of the topic. Undergraduate and graduate courses in electromagnetic 
theory must strive to instruct students at all three levels. 

Students who develop just a level 1 or level 2 understanding of EM theory are not likely to apply 
it to real engineering problems and will soon forget most of what they learned. For example, a 
student who is proficient at calculating the length and position of matching stubs may be well 
prepared for situations involving a mismatched line that needs to be matched with a stub. However, 
this particular situation may never arise. The student may encounter a number of similar problems 
(e.g. the need for notch filter) where a stub may be the perfect solution, but the potential for applying 
the theory to these new problems may not be recognized. 

The best way to instill a level 3 understanding in students is to encourage them to plot fields 
and/or currents rather than to ask for a specific numerical answer. Also, students should be asked 
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questions of the form "If this parameter is changed in this way, how will the result be affected?" 
These types of questions get the student to think about physics of the problem. 

While many college instructors already use this approach to teach transmission line theory, it is 
not as common for 3D field theory. The primary reason for this has been that 3D field calculations 
are tedious and there are a limited number of problems that students can be expected to solve. 
However, with the help of numerical modeling codes, it is becoming easier to solve a number of 
interesting EM field problems with real-world applications and quickly plot the results. 

PCB Structures in an Enclosure 

One type of structure that is useful for demonstrating EM field theory concepts, and also has 
practical applications, is the printed circuit board in a metal enclosure. A simple example is 
illustrated in Figure 1. Normally, currents in the circuit are calculated using transmission line or 
circuit theory and the enclosure is ignored. 

As an example of how students can use numerical modeling techniques to help develop a level 
3 understanding of a basic field problem, the structure in Figure 1 was analyzed using the EMAP 
finite element modeling code [1]. The amplitude of the x-component of the electric field in the 
plane of the circuit is plotted in Figure 2 at four frequencies. 

At most frequencies, the circuit behaves like a shorted transmission line and the field is primarily 
confined to the region between the conductors. However, at frequencies away from the circuit 
resonance, the field away from the circuit can be much stronger than the field within the circuit. 
This is especially true at frequencies that excite a resonance of the enclosure. 

These results may not surprise engineers with EM modeling or measurement experience, but 
they make a lasting impression on students in undergraduate electromagnetics classes. Students 
learn to recognize that the fields within the circuit may not be the only fields of importance and that 
under some conditions a circuit's enclosure can have an effect on the operation of the circuit By 
experimenting with various circuit sizes, positions, frequencies, and dielectric materials; students 
can develop a feeling for the way in which different parameters affect the results. Pretty soon, 
students can predict how new configurations will behave without even running the modeling code. 

metal box 

source field - 

dielectric 

Figure 1: Printed circuit board structure in an enclosure 
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k=.60 cm l 

k=.75 cm 1 

k=.70 cm' 

k=. 80 cm 

Figure 2: x-component of electric field at four frequencies 

With two loop circuits placed in an enclosure as shown in Figure 3, it is relatively easy to 
demonstrate how fields from one circuit are coupled to another. With a little practice, students can 
learn to design and orient circuits to maximize or minimize the coupling between them. 

Conclusions 

The availability of easy to use 3D numerical modeling techniques provides instructors of 
undergraduate and graduate electromagnetics classes with a unique opportunity to give students 
hands on experience with electromagnetic field calculations. Using these techniques, students gain 
an awareness of the practical applications of EM theory and develop a feeling for how fields behave 
in different circumstances. Numerical modeling assignments can make the course more interesting 
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metal box 

\ 

dielectric source field 

k = .75 cm' 1 

Figure 3: Two loop circuits in an enclosure 

for the students and at the same time help the student to achieve a level 3 understanding of the topic. 
With a little practice, students can learn to design and orient circuits to maximize or minimize the 
coupling between them. 
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Relativistic Foundation of Electric Current - A Model for Transmission Lines 
by Zvonko Fazarinc 
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Abstract 

A computerizable model of electric current flow in conductors is proposed which holds the potential 
for a seamless curriculum of electromagnetics from the early secondary to late college instruction. The 
model is based on parameters like electron velocity and their relative spacing and is as such intuitively 
accessible to the uninitiated. At the same time it is based on relativistic principles captured in 
Maxwell's equations and represents as such a firm foundation for further analytical development. The 
paper is accompanied by live computer demonstrations. 

1. Introduction 

Teaching of electromagnetics continues to suffer from problems rooted in limitations imposed by 
chronology of mathematical tool acquisition. A case in point: It is unthinkable to teach Maxwell's 
equations or their derivatives like transmission lines and radiation to high school students. The obvious 
reason is that high school students are not expected to be proficient in partial differential calculus. Yet, 
the current flow in conductors which obeys those same natural laws, captured so elegantly in Maxwell's 
equations is being courageously taught by most science teachers in high schools. They can only rely on 
algebra and maybe ordinary differential equations and are therefore forced to resort to fluid flow 
analogies and instantaneous action across space. Delayed space-time relationships are understandably 
being avoided. When computer aids are available, images of current flow that show electrons moving in 
unison along the whole circuit are ususally presented. While this is close to the truth it is not good 
enough to forestall many problems the students encounter later, in college. The price they must pay is 
disproportionately high when we consider that they have to first part with erroneous analogies before 
they can become receptive to the "new ways" in which the electric current behaves. With the image of 
electric current starting simultaneously at all points of the wire it is very difficult for the teacher to 
explain why one wire would be positive and the other negative. The fact that the electron velocity in the 
positive wire is higher than in the negative defies all reasonable expectations. The Ohm's Law, the 
unshakable fortress of "everything electrical" also becomes suspect. Legitimate questions which are 
rarely asked and even less frequently answered are keeping the student in a constant state of 
uncertainty. For many, the true revelation never materializes and the misconceptions imposed in 
secondary school often stand in the way of successful problem solving. Here is one such question that 
persists until the student gains full comprehension of the concept of characteristic impedance and that 
of the reflection, i.e. the comprehension of transmission lines. "If the current does not start 
simultaneously at all points of the wire how does the voltage source V know to send the current V/R 
into the wire even if the resistor R is far away from the source?" The second question may persist well 
into graduation and beyond and one may therefore be tempted to dismiss its importance. Yet, it is at 
the root of understanding the mechanism of electric current flow and as such legitimate to ask: "How 
is it possible that the electric field travels down the wire at nearly the velocity of light, and terminates 
on charges which typically travel ten orders of magnitude slower?" 

We could make the life of students and teachers of electromagnetics much easier if we could, without 
the need for proficiency in partial differential calculus, present a "Maxwell-correct" concept of electric 
current flow to high school students. This paper attempts to do just that and shows, in association with 
a dynamic computer display, how a relativistic model of electric current conveys to the uninitiated 
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Student the answers to the above two questions and to many more. The static nature of the medium in 
which this paper must be published makes it difficult to communicate in a convincing manner the ease 
with which this is accomplished. The paper shows how this same model provides a direct starting point 
for a later development of the transmission line theory without the need for any "midcourse 
corrections". 

2. Relativistic Model of Current Flow. 

The special relativity is based on a single observation of the most straightforward kind. The light, or in 
our case the electric field emanates from a source at constant speed c regardless of the velocity v of 
the source. In our case the source is the electron. Each electron can be viewed as having a spherically 
symmetrical radial field which terminates at infinity. If an electron is jerked into a new position the 
radial field surrounding it must be rebuilt with the new position of the center and the disturbance flows 
outward from the the electron to infinity at speed c. When such disturbance encounters an electron 
this senses it as a force field and is normally put in motion if free to move. The whole radiation and 
antenna theory is based on this concept. We wish to display the effect of propagating force fields on 
adjacent electrons within a conductor. The inability to display moving pictures makes it awkward to 
describe the processes which can be easily followed on a computer screen. We are faced with the task 
of conveying the direction of motion of electrons, the direction of propagation of the force field and of 
the direction of the force on electrons when encountering the field. To this end we have tagged the 
middle electron with the symbol c0 and the reader must infer the direction of its motion from 
successive snapshots by watching its subsequent positions. All the other electrons are moving in the 
same direction or are standing still, as the case may be. The direction of force on a negatively charged 
particle is identified by the symbol "<" or ">". The propagation direction of the force field, on the 
other hand, is indicated with an arrow under the force symbol 

In Fig. 1. we see seven uniformly spaced small dots representing free electrons, and seven larger ones 
representing stationary positively charged atoms. There is no motion possibility beyond the two 
boundaries. 

'   ■**'    ' 
•      >• •        a     a    > 

III 
Jontl 

LI 
Fig. 1 Computer Demo of Interaction Between Accelerated Electrons. 

The snapshot on the left shows the instant of acceleration to the right of the middle electron e0. The 
force field starts propagating away from the electron and the force exerted on an electron when 
encountered is always in the direction of acceleration. The orientation of the force is shown by symbol 
">". The arrow indicates the direction of motion of the respective force field. The other ">" travels to 
the right. The speed of the force field is constant and therefore it takes the same amount of travel from 
the accelerated electron to the one behind it and to the one ahead of it. This is the only relativistic rule 
imposed on our model. The electrons travel at one third of the speed of field in our example. 

The moving electron closes in on the one ahead of it which we will refer to as e +i during the field 
travel time. It also separates from the one behind it, which we denote by e.\, during the field travel 
time. After that the three travel in a new formation which is characterized by a compression in front 
and by a rarefaction behind eo- The acceleration of the two new travel companions sends out new 
disturbances, i.e. force fields which bring two more electrons into the moving formation. These we 
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refer to as e+2 and e.2. The snapshot on the right of Hg.1 shows the moment when the force field 
reaches them and all five are in motion from then on. 

Fig. 2 Computer Demo of Interaction Between Accelerated Electrons (continued). 

As the force field emitted by electron e+2 reaches the electron at the boundary this is accelerated 
forward but because it has no place to go it is immediately decelerated and sends a reverse force field 
toward the approaching electron e +2. This exact moment is captured in the snapshot on the left in Fig. 
2. During the field travel time from the boundary to e+2 the approach continues for a new, further 
reduced spacing. Then the field stops e+2 and its deceleration sends a new force field towards e+i. 
Again e +i has a chance to come nearer the now resting e +2 until it is stopped. The exact instant 
when the decelerating field encounters e0 and stops it is captured in the right-hand side snapshot of 
Fig. 2. The decelerating force field emitted from e0 later stops e.i while the force field arriving from 
the left-hand side boundary catches e.2 at the same time the field from e„-l encounters it. Instead of 
just stopping e.2 this combined action accelerates e.2 to the left. Events similar to those described at 
the beginning and which can be followed very easily on a dynamic computer screen require too many 
words to describe how, in turn, all five electrons are set in motion, this time to the left. Reaching the 
boundaries, the fields reverse again and gradually stop the formation in the original, uniformly spaced 
state. 

3. From Continuous to Relativistic Current Flow Model 

In Fig. 3 we see the electron flow presented with the ratio of field speed and electron velocity of 150 at 
the left and three to one on the right. The positive voltage source terminal is at the bottom. The 
relativistic effects become visible in the second case. The current does not start instantly everywhere 
and results in compression in the top wire and in rarefaction in the lower. 

' StopCont| 

T 
Fig. 3 Current Flow with Different Ratios of Field to Electron Velocity. 

The source keeps pumping against the compressed electrons and leaves behind the rarefied formation. 
The termination does exactly the opposite. It allows the compressed electrons entering the resistor to 
spread out gradually and, with proper termination, they exit with the exact separation demanded by the 
source. A detailed study of collisional interaction with the lattice can explain this quite readily and 
answers another profound question :"What is so special about that one resistor value that produces no 
reflection?" This paper is restricted to ideal conductors and we defer any further discussion of resistive 
effects to another paper. 
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4. Quarter-Wave Resonance Explained With the Relativistic Model 

We can now experiment with the model and choose an open transmission line driven by a pure voltage 
source shown in Figs. 4 and 5. To the microwave engineer this is unmistakenly a resonant structure and 
as such subject of interest. Again the larger dots represent positive atoms and the smaller ones free 
electrons. The upper terminal of the voltage source is negative which means that the source tends to 
crowd electrons there after withdrawing them from the lower terminal The spacing of atoms is 
denoted by D and that of electrons in the lower wire by S. Initially S and D are equal which assures 
neutrality of the conductor. As the sparing of electrons along the wires changes the net charge changes 
accordingly. This is directly proportional to the difference 1/D - 1/S which is plotted in the lower 
graph. For a uniform line geometry this plot represents the voltage. The electron flux is proportional to 
the velocity of electrons V times their density. The latter is proportional to 1/S so the plot of V/S 
below the conductors represents the flux of electrons. The quantities D,S and V are read from the 
simulation of electron interaction along the line as time progresses. 
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Fig. 4 Open Transmission Line Driven by a Voltage Source - First two Passes 

On the left of Fig. 4 we see a snapshot of the dynamic display during the first pass after the voltage 
source has been turned on. The rarefaction of electrons in the lower wire gives rise to a positive net 
charge whose locus travels at the field speed to the right as indicated by the symbol "> >". The electron 
flux travels also at the speed of rarefaction, i.e., at the speed of accelerating field while the electrons 
themselves travel much slower. The second snapshot in Fig.4 was taken after the boundary electron 
has emitted a decelerating field backwards which is gradually bringing the electrons to a standstill 
starting at the open end. The accompanying increased rarefaction (or compression in the upper wire) 
gives rise to a double charge the locus of which is now traveling towards the source. The flux plot shows 
that the motion has been arrested. 
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Fig. 5 Open Transmission Line Driven by a Voltage Source - Third and Fourth Pass 
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In Kg. 5 we see two more snapshots taken after those in Fig. 4. The one of the left shows the state after 
the double charge (double potential) has reached the source (single opposing potential). This forced 
electrons into reverse motion and we see now a tightening of the spacing in the lower wire and a 
relaxation in the upper. The net charge consequently drops back to a single value and the locus travels 
to the right, gradually setting electrons into reverse motion. Finally, when the deceleration starting at 
the boundary propagates towards the source we see the electrons being stopped exactly when they 
reach a mutual separation equal to D. This is commensurate with a neutral state and the line charge 
and flux go to zero. The right-hand side snapshot in Fig. 5 shows the line in the process of being 
cleared. 

The fourth pass ends up with the initial state and if the voltage source is still present another cycle is 
initiated by acceleration of the source electron(s). Thus it took four passes for the pattern to repeat and 
the quarter wave resonance phenomenon can be intuitively understood if attention is paid to what the 
electrons are doing along the line. Observation of say one point in the upper wire would reveal that the 
electron is moving first to the right, then it stops, after which it moves to the left and finally stops again. 
After that the whole cycle repeats itself. 

5. From Qualitative to Quantitative Analysis. 

The electron flux / per unit area is defined as the number of electrons crossing a unit area in a unit of 
time. If we assume that the electrons are moving in only one dimension of the three-dimensional space 
then we can define the flux as the velocity of electrons v in that one dimension divided by their 
density. In a neutral, singly ionized conductor the density of electrons is equal to the density of ionized 
atoms. If the spacing of these atoms is d then the average spacing of electrons in the neutral 
conductor is also d and their respective densities are 1/d3. The electron flux per unit area in a neutral 
conductor is then simply 

/-£ 0) 
If the conductor is not neutral, i.e. it has an excess of positive or negative charges, the density of 
electrons differs from that of the ionized atoms. In our case such deviations are caused by motion of 
electrons in presence of delayed electric fields and consequently the sparing of electrons is affected 
only in the direction of electron motion. If we denote the spacing of electrons along the length of the 
negatively charged wire by sn (less that d), then the electron density in that wire is l/(d2sn). Similarly 
in the positively charged wire we would expect the electron spacing sp to be larger than d and the 
electron density would amount to l/(d*sp). For the continuity of flux / such as expressed in (1) the 
following relationships must be true 

f_JL.Jfe-.J5L. (2) 1 d> d% d\      u 

In (2) v„ and vp are the respective electron velocities in the negatively and positively charged wires. 
The respective net charge densities in the two wires identified by subscripts n and p can be expressed 
in terms of defined quantities as 

and 

<»=z(H>      <3) 

*-F<7T> <4> 
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We take now advantage of our relativistic model to evaluate the spadngs sn and sp. The speed of 
electric field propagation is denoted by c. Consequently the time for the field to traverse a distance d 
amounts to d/c. In the negative wire the electrons are forced against each other to a final spacing s„. 
If the velocity of such an electron is v„ it traverses a distance v„d/c while the field travels from it to 
the neighbouring electron a distance d away. The resulting spacing at that moment is 

W-v.i-dCl-T-) (5) 

Similarly in the positive wire the electrons are forced to separate from each other. If an electron is 
moving at velocity vp away from the neighbouring electron a distance d away it will travel undetected 
for a time d/c before the field disturbance reaches the neighbour. The sparing at that instant is 

W+Vj-7 "*(!-*■) (6) 

During the initial transient the adjacent electrons are set in motion when the field reaches them and 
they continue to move at tie velocity of the originators. We will prove this later on. The spacings s„ 
and sp are consequently established along the whole length of the two wires unless a discontinuity is 
encountered. 

From (2) and (3), using (5) and (6) we can write for the charge densities 

e   (Sn     . =     e   vn/c 
d2sn

(d' >    ' d2   sn «.-^-(-T-l)--^~7-      GO 

and 

^ = /-(f-D = ^ (8) d'-Sp   d d*   sp 

For flux continuity (2) must hold and consequently charges qn and qp are recognized as being the 
negatives of each other. The first important result we can get out of this analysis is the relationship 
between the charge density q and the current density ;. The latter is equal to the electron flux density 
/ multiplied by the electron charge -e. So from (2) combined with (7) and (8), respectively, we find 

Relationship (9) holds for any geometry of conductors as long as it is not re-entrant. For re-entrant 
structures the field disturbance may reach the conductor electrons sooner through the intervening 
space than along the conductor in which case the model does not apply. For non-reentrant structures 
analyzed here the inductance and capacitance per unit length are directly related to each other by 

iC-i (10) 

Expression (9) immediately yields the characteristic impedance of the structure if we can assume a 
uniform geometry for which the linear relationship between the potential and charge applies, such as 
Q=VC. Then (9) multiplied by the cross-sectional area of the conductor in association with (10) 
results in 

VC=-t - V    .   /L 
c I    v   c 
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Let us now take a look at the temporal/spatial relationships between the charge and the flux. To this 
end we expand the notation to a spatial coordinate x and a temporal t. In the sketch below we see 
three electrons with their spacings and velocities identified. 

v(x,t)=B v=8 

e°       .,„ ., ei s(x-4X,t) U s(x,t) 

Fig. 6 Snapshot at time fwhen e0 has been accelerated. 

We know that in absence of discontinuities the spacing reduction and spacing enhancement travel in 
the respective wires at velocity c. We choose the spatial increment Ax and the temporal one At 
such that their ratio is equal to c. Then the spacing enhancement or reduction along the wire can be 
described by the relationship 

s(x,t+At) = s(x-Ax,t) (11) 

which simply states that whatever was at x-Ax at time t will be at x a time At later. 

Referring to Fig. 6 we can find the value of the spacing s(x,t+At) which is created from s(x,t) 
during the field travel from «o to e\. This amounts to 

s(x,t +At)=s (x,l)+v (x)±&$- 

From the above we can find the change of velocity of eo between time t and t +Af. (Recall that 
v (r) started out as v (x,t)=0 and was constant throughout the field travel time s (x,t)/c). 

t   . . A .\       r   .\ t \       S(x,t+At)-S(x,t) 
K(*,f +At)-v(x,t) = v(*) = stxkc 

Divide both sides by s(x,t +At)cd2, substitute (11) for s(x,t+At) and add and subtract 1/d3 to 
obtain 

vfr,r+At)/c-v(i:,t)/c _   1 
d2s(x-Ax,t) d3    d2s(x,t) 

_1 1 
d3 ' d2s{x-Ax,t) 

(12) 

We readily recognize the left-hand side of (12) as the temporal change of flux density and the right- 
hand side as the spatial difference of net charge densities at x and at x - Ax. If we multiply both sides 
by the electronic charge, divide them by Ar, divide and multiply the right-hand side by A*, we obtain 

M. m .C2£a.      (13) 
Ar Ax 

where we have substituted c for Ax/At. In association with (10) the above translates into one of the 
familiar transmission line equations. The other one can be obtained by substituting the current-charge 
relationship (9) into (13). This produces 

Age ^.iMJs. 
At Ax 
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Ai = .AL (14) 
Ar        Ax K   ' 

6. Conclusions 

A computerizable model of electric current flow has been proposed. With the aid of a dynamic display 
the concept of delayed propagation can be conveyed to the uninitiated student and phenomena like 
quarter-wave resonance and reflections on transmission lines can be made understandable to pre- 
partial differential calculus students. Not described in this paper were a number of other phenomena 
that the model can correctly conceptualize for the layman and the professional alike. The concepts of 
inductance and capacitance, the reasons for current-voltage relationships in inductors and capacitors, 
the nature of voltage and current sources, lossy conductors, skin effect and the reason for ejection of 
magnetic field when superconductivity sets in are just a few examples. 

We have restricted our main example to the open line but the model can just as well handle the shorted 
case. As a matter of fact the relativistic nature of the current flow model really stands out when one 
studies the events taking place at the shorted end. There the fluxes from the two wires add up while the 
condensations arriving on the negative wire cancel the rarefactions in the positive wire and vice versa. 
A neutral state is established and the current is being carried by an electron density 1/d3. The 
question is what is the velocity v* of electrons that carry this sum of fluxes. The following relationship 
applies 

When (5) and (6) are substituted respectively for s„  and sp we get after some simple algebraic 
manipulation 

V„+Vp 

1+^ 

The reader will recognize the above as the famous relativistic velocity addition formula that applies 
always when particles which are emitting fields are interacting. It assures that no matter what the 
constituent velocities may be their sum can never exceed that of velocity of emitted field c. 

While the model is intuitive it yields a firm analytical basis from which the mathematical theory of 
conduction can be developed. Examples of characteristic impedance and transmission line equations 
and this last example illustrate the point. 
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ABSTRACT 

Reflector antennas are one of the most frequently used antenna systems for a wide 
range of applications such as radar, communications, and remote sensing. In this paper a 
reflector antenna software package is presented which provides the electromagnetics 
students with an analysis tool to study the performance of realistic reflector antenna 
systems. The use of such software package in an antenna course enables the students to 
gain insights into antenna concepts such as directivity, antenna gain, side-lobe level, 
beamwidth, reference/cross polarization, and near-far field relationship. This software 
package complements the existing Computer Applications for Electromagnetics Education 
(CAEME) array and wire antenna software packages. This software is dedicated to single 
reflector geometry, and designed to be user-friendly with a reasonable turnaround time in a 
PC environment. It can be effectively integrated with reflector antenna chapters in one of 
the standard antenna textbooks. In addition to antenna concepts, this software is designed 
to address some basic computational aspects such as convergence, as well as some 
fundamental electromagnetic concepts such as the Huygens' principle. In this talk several 
examples are presented to highlight various features of this software package. 
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L   Introduction 

Reflector antennas are one of the most frequently used antenna systems for a wide 

range of applications such as radar, communications, and remote sensing. The purpose of 

this project is to provide the electromagnetics students with a software tool to study the 

performance of realistic single reflector systems and gain insights into antenna concepts 

such as directivity, antenna gain, side-lobe level, beamwidth, reference/cross polarization, 

and near-far field relationship. This software package complements the existing Computer 

Applications for Electromagnetics Education (CAEME) array and wire antenna software 

packages. 

Reflector antennas have been the subject of much attention in the past several 

decades. As a result, a wealth of information in the form of antenna handbooks, and more 

recently, software packages are available for design and analysis of complex reflector 

antenna systems. These materials are used primarily by antenna engineers and researchers 

in the field, and their use might be beyond the scope of the interest of undergraduate 

electromagnetics students. In addition, software packages dealing with general multiple 

reflector antenna systems are too large in terms of memory requirement and computational 

time to be useful for educational purposes. In this project, we are focusing our attention on 

single reflector antennas with single feed. The antenna configuration can consist of a 

symmetrical or offset reflecting surface and a feed with arbitrary orientation. Many 

properties and radiation characteristics of reflector antenna systems such as directivity, 

side-lobe level, beamwidth, polarization, scanning, and near-far field relationship can be 

addressed by studying such an antenna system. The software package is designed to be 

user-friendly and has a reasonable turnaround time in a PC environment. This software 

package can be effectively integrated with reflector antenna chapters in one of the standard 

antenna textbooks such as [1-3]. 

This paper is organized as follows. The method of procedure is described in 

section n. Software capabilities are described in section HI, and the concluding remarks 

are given in section IV. 

II.   Explanation of Procedure 

The radiation characteristics of reflector antennas are commonly computed using 

two methods, Equivalent current distribution method and Aperture distribution method [4- 

6]. Both methods produce similar far field radiation characteristics for the main beam and 

nearby side lobes. The far-away lobes are dominantly affected by the reflector boundary 
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and reflector support structure. The treatment of these effects are beyond the scope of the 

interest of the undergraduate electromagnetics students, and are not addressed here. The 

current distribution method makes use of the Physical Optics approximation of the 

equivalent current distribution on the main reflector. This current distribution is then 

integrated over the reflector surface to yield the radiated field. The aperture distribution 

method is based on the computation of the reflector scattered field on an equivalent aperture 

plane perpendicular to the reflector axis. The radiated field is then computed using an 

aperture technique such as the Plane Wave Spectrum (PWS) method. 

In this project, we develop a software which produces the near, Fresnel, and far 

radiated fields. Both the equivalent distribution method and the aperture method are 

implemented for comparison purposes, using the following formulations. 

i. Equivalent Current Distribution Method. The equivalent current 

distribution on the main reflector is 

—M ■ 

J(r) = 2nxH(r) (1) 

-»I A 

where H is the incident field due to the feed, and n is the unit normal vector to the 
reflecting surface. The feed radiation pattern is modeled by a [cos9]°i type feed which can 

control the polarization state and the radiation taper [4]. Realistic feeds such as open-ended 

circular and rectangular waveguides can be represented by proper adjustment of the 

parameters of this feed model [5]. 

Using the current distribution in Equation (1), the radiated field is calculated using 

the Physical Optics integration 

-» -* /—    W \ -» -» 
E(r) = -jo>   I+— A(r) (2a) 

H(7) = -VxA(7) (2b) 

A(r) = £ KrJ^-dr' (2c) 

where k is the wave number, \i is the permeability, r is the position of the current on the 

reflector surface, and R is the distance from the current element to the observation point I 

is the unit dyad. 
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There are various techniques to evaluate this integral in the near, Fresnel, and far 

regions of the antenna system. It is well known that Equation (2) can be simplified in the 
far field region, and becomes 

-»-» ,—   AA  -» -» 

E(r) = -jco[I-rr]A(r) (3a) 

-» -» m A      -* -» 
H(r) = -j-rxA(r) (3b) 

A( r) = £ e* f       J U) tP° ■ ~* dr' (3c) 
wr ^surface 

where r is the distance from a reference point on the reflector antenna system (e.g., 
A 

reflector apex) to the observation point, r is the unit vector in this direction, 03 is the 

operating radian frequency. Equation (3) is the standard equation which is normally 

covered in the undergraduate electromagnetics antenna courses. We use this equation as the 

building block to perform our computations. We compute the field quantities (E and H 

vector fields) by representing the current distribution by 

J^ZZvnW'* (4) 

where P is a mask function which takes on the value 1 when r is within a neighborhood of 
a cell defined around ry, and 0 elsewhere. Simply stated, the original current distribution 

is approximated by a set of current segments. The antenna radiated field is the Cartesian 

vector sum of the fields produced by these current segments, each computed in its local 

coordinate system [6] 

—> —>     T-^   —► -»    -* 

E(r) = 2/E(r-rij) (5) 

where AE(r - ry) is due to the ry.th current segment, evaluated at the observation point 
—» 
r . This particular representation of the current allows the use of Equation (3) for the near 

and Fresnel zones as long as the observation point is in the far field of the current segments 
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even if it is located in the near field of the reflector. This approach avoids some of the 

complicated mathematical manipulations for the computation of (2) in the near and the 

Fresnel zones which are typically presented in the graduate level antenna courses. This 

computational method can be implemented efficiently on a Personal Computer, and 

provides a clear picture of the computational issues in reflector antenna analysis. 

ii. Aperture Integration Method. The aperture field is computed using 

Equations (2-4) by setting the aperture plane as the observation plane. The radiated field 

beyond the observation plane can be computed by the virtue of the Huygens' principle. We 

use the PWS method to perform this computation. The radiated field at any point beyond 

the aperture is 

E(x,y,z) = jl  dkx dky E(kx, kyh-^* V + k*k-W]) (6) 

-* 
where E(kx, ky) is the Fourier transform of the aperture field, and (kx, ky, kj) satisfy the 

dispersion relationship, and kz is 

k, = -Vk2-(kx2+$ <7> 

and specifies the propagating as well as the evanescent spectral components of the aperture 

field. Equation (6) is used to compute the radiated field parallel to the aperture plane. 

These two-dimensional field distributions can be used to animate the field propagation 

away from the radiating structures. 

It will be illuminating for electromagnetics students to compare the two 

computational methods for field computation. In the far field region it can be shown that 

both methods produce the same analytical expressions, starting from an aperture 

distribution. We will provide all the relevant equations to demonstrate this equivalence in a 

chapter for the CAEME book. 

III. Software Package 

This software package consists of an input file, main program and an output file. 

The input file is self-explanatory and is divided into four segments which allow the 

specification of the operating frequency, reflector type, feed parameters, and observation 

points of interest, respectively.   The main program is written is FORTRAN and 
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documented well for clear understanding of the program flow and the employed 

algorithms. The output file is formatted and the output variables are labeled clearly. 

This software package can be used as a design tool for single reflector antennas. 

As such, this software can be used to study various properties of single reflector antenna 

system such as directivity, side lobe level, beamwidth, reference and cross polarization for 

linear, circular and elliptical polarized feeds. Specialized topics such as beam squinting and 

cross-pol rrunimization by feed rotation for offset configurations can also be addressed [7- 

8]. Field quantities in the near and Fresnel zones can also be computed by specifying the 

proper observation surfaces in the input file. These computations illustrate the transition of 

the collimated beam in the near field to far field radiation pattern. Near field computations 

are of importance in applications such as beam waveguide design, and field strength 

evaluations for biological studies. 

Representative numerical results due to an aperture distribution are illustrated in 

Figures 1 and 2. Figure 1 shows the axial field computation for a uniform aperture 

distribution. The PWS method (Equation 6) and the P.O. integration method (Equation 5) 

are used for this computation. Figure 2 shows the three dimensional view of the electric 

field due to a uniform aperture distribution at several observation planes. 

IV. Concluding Remarks 

The objective of this project is to develop a user-friendly educational 

electromagnetics software for analysis and design of single reflector antennas. This 

software computes the near, Fresnel, and far radiated fields by the induced current method 

and the aperture integration method. Both computational methods are included to illustrate 

some fundamental electromagnetics concepts such as the Huygens' Principle, near to far 

field relationship, and the equivalence of the two methods. A flow chart of these methods 

is show in Figure 3. This software can be effectively integrated in an undergraduate 

antenna course to study the characteristics of reflector antennas. 
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Uniform Aperture distribution 
Diameter =10 wavelengths        p.o. 
M    „t Integration"-^./ 
m     Observation 

PWS 

10 

Axial distance (wavelength) 

Figure 1. Axial field due to a uniform aperture distribution. The field is computed using the 
PWS method (Eq. 6) and the P.O. integration (Eq. 5). 

Figure 2. Field due to a uniform aperture distribution at several observation planes, (a) Z=0.1, 
(b) Z=5.0, (c) Z=10.0, (d) Z=20.0 wavelengths from the aperture. 
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Antenna 
Configuration 

Reflector Induced Current 
-> -» A     ->i        -» 
J(r) = 2nxHFeed(r) 

P.O. 
Integration 

Aperture Field 
Computation 

PWS P.O. 
Integration 

Near, Fresnel, and Far Fields 

Figure 3.   Block diagram of the computational methods for calculation of the near, 
Fresnel, and far fields of a reflector antenna. 
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Abstract 

This paper presents a computer graphics aided software that is used for inves- 
tigating the radiation pattern of antennas as functions of their design parameters. 
Electromagnetic field solutions for antenna problems consist of complex mathemati- 
cal expressions, representing a three-dimensional distribution of radiated fields. Con- 
sequently, it is difficult to develop a clear understanding about how the overall shape 
of an antenna pattern depends on its design parameters. A visualization tool that 
can synthesize a radiation pattern in three dimensions will be very useful to study 
the behavior of the pattern as a function of its design parameters. This software will 
first synthesize the radiation pattern of an antenna as a 3D surface, and then it will 
provide numerical information about the pattern characteristics, such as the location 
of the principal maxima, half-power beamwidth, and the main-lobe to side-lobe power 
ratio. The combination of the 3D view and numerical information serves as a useful 
teaching and learning tool for basic antenna patterns. This software is developed 
using a 386-based PC that is equipped with a math coprocessor and a VGA card. 

I. Introduction 

For antenna problems, the electromagnetic (EM) field solutions are mathemati- 
cally complex[l]. Even for simple antennas it is difficult to develop a clear under- 
standing regarding the distributions of the radiation patterns as functions of their 
design parameters. Consequently, a visualization tool [2] that will provide three di- 
mensional views of the radiation pattern of an antenna as functions of its design 
parameters, will be very useful for both teaching and learning. At the University of 
Kansas, we have developed a computer-graphics aided software to enhance student's 
understanding about the characteristics of the radiation pattern of antennas. This 
software allows students to get an interactive learning experience about the affect 
that each antenna design parameter has on the radiation pattern of that antenna. In 
order to run this software, the students should be aware of the theoretical foundations 
behind the design of the antenna of interest. The rest of the paper will be used to 
develop a thorough understanding of the effective usage of this software. 

In Section II, we will present the computer-graphics techniques used to synthesize 
the 3D radiation pattern of antennas. In Section III, the hardware and software 
requirements to run the program will be introduced, and a global view of the different 
stages of software execution will be presented. In Section IV, we will show how this 
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software can be used to learn about the characteristics of the 3D radiation pattern of 
a planar array. In Section V, concluding remarks and future extensions of this project 

will be presented. 

II. Synthesis of the Radiation Pattern of Antennas 

Antennas are basically metallic devices, usually available in the form of wires, 
discs, or horns, whose primary purpose is to receive or transmit electromagnetic 
waves. When used as a transmitter, the antenna will be excited electrically, so it can 
radiate electromagnetic waves out of the antenna into the open space. Depending on 
the specified requirements such as directivities, half power beamwidths, and main- 
lobe to side-lobe power ratio [1], different types of antennas can be selected. The 
geometric and excitation parameters of the antennas can be varied to satisfy the design 
requirements with good precision. Although mathematical expressions are readily 
available to describe the radiation pattern of most antennas, approximate solutions 
are frequently used to describe antenna characteristics. Hence a visualization tool 
aided with numerical results will be useful not only to see the entire pattern in 3D 
space but also to study the affect of the design parameters on the antenna's radiation 

pattern. 
Since the magnitude of the electric field (\E\) radiated from an antenna is ex- 

pressed as functions of the polar (7) and azimuthal angle (S), our next objective will 
be to introduce a modified coordinate system that is widely used for representing 
3D radiation pattern of antennas. Mathematically, the transformation between the 

conventional and modified coordinate system can be given by 

(2.a) 

7T 
■y.cosS (1) 

Q = (?±)7 w (2) 
R=\E\ (3) 

where a is the size of the semimajor axis used for accommodating maximum value of 
the polar angle 7. The points A,B,C,D shown in Fig. (la) will take the positions of 
A', B', C and £>', respectively, in the modified coordinate system shown in Fig.(lb). 
It is clearly evident that the points A', B', C and D' constitutes a surface element 
in the three dimensional space whose projection on the computer screen plane (Q- 
R plane) will be a polygon. At this point we can treat the surface bounded by 
A' B' C", D' as a solid surface and use a conventional shading rule to provide 
a realistic view of the surface element by computing the normal direction to this 
surface element. In this investigation we assumed a backscattering configuration and 
used a shading scheme derived from the full-wave solution of the scattering of the 
electromagnetic waves from metallic surfaces [3]. Using the above procedure, several 
radiation patterns are synthesized in Section-IV. In the next section we will discuss 
the hardware and software requirements that are necessary to synthesize the radiation 

pattern of antennas. 
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III. Hardware and Software Requirements. 

(a). Hardware requirements 

The hardware requirements can be outlined as follows: 
1) Intel's 386 or 486 microprocessor based PC. A math coprocessor will be needed 

if 386 based system is used. 
2) VGA Monitor. 
3) Graphics board with ET4000 chip and 

a) lMeg memory for 1024x768 resolution with 256 colors 

or, 
b) 512K memory for 640x480 resolution with 256 colors. 

Other graphics boards can also be used, but the graphics driver should be com- 
patible with HGRAPH5 graphics library. 

(b). Software requirements 

The software requirements can be given as follows: 
1) Executable program PATTERNS.EXE; the source code is written using Lahey 

FORTRAN and HGRAPH5 graphics Library. 
2) Appropriate driver for the graphics board.    For example, ET256.SCR for 

ET4000 chip. 
3) A screen configuration file SCREEN.CFG, in which the driver and other graphic- 

board parameters are specified. 
4) File BESS.OUT which provides data for the Bessel function of the first kind. 
5) File FRES.COEF which tabulates the values of Fresnel Integrals for arguments 

over the range of 0 to 15. 

(c). Different steps of software execution 

This menu-driven software calculates and plots three dimensional radiation pat- 
terns of various antennas. The program proceeds as follows: 

(1) First the user is prompted for the viewing parameters, such as the direction 
of light incidence, orientation of the pattern, etc. 

(2) After the viewing parameters are entered, the main menu will pop-up.  The 
user will then be required to select a type of antenna from the following list. 

(a) Dipole Antennas, (b) Arrays, (c) Aperture Antennas, (d) Horns, (e) Loop 
Antennas, and (f) Reflector Antennas. 

Within each type, there could be several antennas with different configurations, 
and the user will be required to select one for synthesizing its radiation pattern. 
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(3) Once the desired antenna is selected, a geometrical representation of the an- 
tenna, along with a brief description about that antenna, will pop-up on the next 
screen. At this time the user is prompted to type in the values of the design pa- 
rameters of the antenna. These design parameters are highlighted in the geometrical 

description. 
(4) After the user has typed in all the requested parameters, the program will 

calculate and plot a three-dimensional radiation pattern of that antenna. It usually 
takes between one to three minutes to plot a 3D radiation pattern. 

(5) After a radiation pattern is synthesized, the user will be given the option to 
compute and print out the characteristics of the pattern, such as, location of the 
principal maxima, half-power beamwidth, etc. Then the software will present the 

following options to the user: 
a) Generate a radiation pattern for the same antenna with different design pa- 

rameters, but without altering the viewing parameters. If this option is selected, the 

program returns to step (3). 
b) Select a new antenna without altering the viewing parameters. This option 

will take the program back to step (2). 
c) Select a new antenna and change the viewing parameters. This option takes 

the program back to step (1). 
d) Exit from this program. 

This software has a modular structure. Hence a new antenna pattern can be easily 

added to our collection as follows: 
(i) Write a FUNCTION that calculates the distribution of the magnitude of the 

electric field for a new antenna. 
(ii) Add this antenna as a menu option so that it can be selected in step (2), if 

needed. 
(iii) A call to the FUNCTION is then included in the Case Statement of the 

GETLINE subroutine. 
This software is developed to provide protection against system crashing due to 

the typing of illegal characters and out-of-bound values. 

IV. Pattern Analysis for a Planar Array: An Example. 

The configuration of a planar array is shown in Fig. 2. The magnitude of the 
far-field radiation pattern for such an antenna is given by [1] 

where 
ipx = (k.dx).SinfCosS + a, (5) 

and 
ijjy = (k.dy).SinfsinS + ay (6) 
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In equations (5) and (6), k represents the wavenumber of excitation, and m and n 
represent the number of elements used along the x and y direction. Also 7 and S 
define the polar and azimuthal angle of the far field observation point as shown in fig 
(la). For ax — <Xy = 0; m = n = 7, and for dx = dy = 0.5A, the radiation pattern 
for the planar array is shown in Fig.(3). In this case, the main lobe appears along 
-y = 0, S = 0 direction, and the half-power beamwidth is estimated by the software 
to be nearly equal to 0.14 radians. Next, keeping m,n,dx,dy fixed, we set a, = —2.0 
and ay = —1.0, and the radiation pattern is found to have the principal maxima near 
7 = 45 and S = 30 degrees (see Fig.(4)). For m = n = 11 and ax = Oy = 0, the 
radiation pattern is shown in Fig.(5). Figures(3) to (5) can be used to study the effect 
of the design parameters upon the radiation pattern of a planar array. It is clearly 
visible from Figs.(3) and (4) that the effect of changing progressive phase shifts is 
to change the direction of the main lobe. From Fig.(3) and Fig.(5) we can see that 
by increasing the number of antenna elements in both directions, the main beam can 
be focussed sharply, but at the same time more unwanted minor lobes appear in the 
pattern. 

V. Concluding Remarks and Future Extensions 

In this paper we have presented a computer-graphics aided software that can be 
used for teaching and learning about radiation pattern of antennas. This software is 
modular in nature, and therefore, information about any new antenna can be easily 
added as a new FUNCTION. One of the main drawbacks of running this software 
in a PC environment is that the software does not provide real-time performance. 
However, as a teaching or learning tool, it provides necessary information over a rea- 
sonable time interval (1 to 3 minutes). With the introduction of the next generation 
microprocessors, pattern generation time might be reduced significantly. 
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Figure 3. 3D radiation pattern for a planar array 
m = n = 7, ax = ay = 0 

Figure 4. 3D radiation pattern for a planar array 
m = n = 7,ax = —1.90,ay = —1.11 
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Figure 5. 3D radiation pattern for a planar array 
m = n = 11, ax = a„ = 0 
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INTERACTIVE ANALYSIS OF ANTENNA ARRAYS 
WITH A PERSONAL COMPUTER 

Atef Z. Elsherbeni and Patrick H. Ginn 

Department of Electrical Engineering 
University of Mississippi 

INTRODUCTION 
An antenna array is a group of antennas arranged in such a way to produce a radiated 

field with specific radiation characteristics which cannot be achieved by a single antenna. There 
are several different configurations used for grouping individual antennas into arrays. The most 
common array configurations are linear (uniform, nonuniform, binomial, etc.), two-dimensional 
(circular, rectangular, etc.), and three-dimensional (cubic, spherical, etc.). Different aspects of 
the analysis of antenna arrays have been dealt with in several text books [1-4]. Computer aided 
instructions are also available for selected types of arrays [5-7]. The objective of this software 
package is to provide a comprehensive coverage for the analysis of antenna arrays that can be 
used for undergraduate education. The "ARRAYS" (version 2) software package is designed to 
help students understand, in an interactive and visual procedure, the analysis of many types of 
antenna arrays using the principle of pattern multiplication. Furthermore, this software provides 
a visual response, almost immediately, of the effects of changing any of the antenna parameters 
on its radiation pattern. This feature is important in familiarizing students with the elementary 
patterns of different types of antennas before using them in an array. 

Version 2 of "ARRAYS" is developed as an upgrade of the first version of "ARRAYS" 
[8]. The most important features of this upgrade are: menu windows that can be controlled with 
a mouse or the keyboard cursor keys; multiple planes for calculating and observing the radiation 
patterns (the user can now choose up to three planes of observation which can be toggled during 
the viewing screens); single item editing, (the user can edit a single piece of data instead of re- 
inputing the entire list of data); the ability to save the computed radiation patterns for future 
display and analysis, user-defined data for element patterns and pattern scanning for specific 
levels by two distinct pointers. 

HARDWARE SPECIFICATIONS 
The "ARRAYS" program requires, as a minimum configuration, the following: 8088 

Processor, 512 kbytes of memory, DOS 3.0, EGA Color Display, and One 360k Floppy Drive. 
The performance of the program can be enhanced if any of the following items is available: 386 
or 486 processor, Math co-processor, Microsoft Mouse or compatible, and printer. To make a 
hard copy of any of the screens, the user should execute the command "GRAPHICS.COM" which 
is a part of DOS operating system before executing the "ARRAYS" program. 

This work was supported in part by a grant from CAEME center and by a grant form NASA-Mississippi 
Space Grant Consortium. 
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PROGRAM DESCRIPTION 
The "ARRAYS" program was developed to be as self explanatory as possible. There is, 

however, a need for the user to have a fundamental knowledge of antenna theory to receive the 
full benefit of the program. This section is provided to explain the screens of the program and 
other related parameters. The user should note that all distances and lengths are entered in 
wavelengths, and all phases are entered in degrees. Every screen has an exit option, and the 
function key "F10" may be used at any time in the program to quit. 

Upon starting the program, the user will first see the main menu screen as shown in Fig 
1. In the center of the screen is a menu window. Menu windows are evident by the red pointer 
and highlighted option. This particular menu prompts the user to choose either one-, two-, or 
three-dimensional array, arbitrary arrays, or to retrieve data from a file on disk saved by the 
program in a previous run. The user can use a mouse, if available, or use the up and down arrow 
keys to highlight the option of his or her choice, or press the first character of one of the shown 
options. Once the user has chosen the basic type of the array, a menu window will prompt the 
user to select the specific type of the array which depends on the previous selection. For 
example, if the user chose the three-dimensional array, the next menu would prompt the user for 
either a cubic or a spherical array. The user also has the option to return to the main menu from 
the secondary menu. 

ANTENNA ARRAYS 
Version  2.0 

—►• l-dimensional array 
2-dimensional array 
3-dimensional array 
Arbitrary array 
Retrieve data 
Quit 

Authorized user:   CAEME members December  1992 

Copyright   (c)   1992     Atef  Elsherbeni 
Electrical  Engineering  Department,   University  of Mississippi 

Fig. 1 The main menu screen of the ARRAY program. 

After selecting the array type, the main menu screen will be replaced by the data input 
screen for whichever array was selected. As an example, Fig. 2 shows the input screen for a 
cubic array. A simplified array geometry is displayed on the right side of the screen. The type 
of array is printed at the top of the screen in the title section. On the left side of the screen, the 
user will be prompted to enter the array parameters. Some of the information will have to be 
entered from the keyboard, or the menu windows which have been included whenever possible. 
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FIELD PATTERNS OF A UNIFORM CUBIC ARRAY 

Enter number of elements in x (1-25) 

N o  o      o 
I 

2 o  o      o 
I 
O O // O X 
12      M 

Array geometry 

P levels in 
z direction 

Fig. 2 The input parameters screen for a cubic array. 

If the user choses to continue, after entering all necessary array parameters, the input echo 
screen for the array will be displayed as shown in Fig. 3. The actual array geometry is shown 
on the right side of the screen and the parameters entered during the previous screen are listed 
on the left side of the screen. The options for this screen are displayed at the lower left corner 
of the screen. These options are to edit, continue, return to main menu, or quit. 

CUBIC ARKfiV 

Nuflber of elements in x direction = 2 
y direction = 2 
z direction = 3 

Spacing in x direction = .5 lanbda 
9 direction = .5 lanbda 
z direction = .5 lanbda 

Phase shift in x direction = 45 ° 
y direction = 45 * 
z direction = 0 ° 

Observation plane: x-y 
x-z 

Jl = 98 ° 

f     I 

TL 

Array geonetry 

Press C to contiune 
E to edit data 
H to return to nain nemi 
Q to quit 

Fig. 3 The data verification screen for a cubic array. 
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The edit screen, if selected, will replace the echo screen as shown in Fig. 4. On the right 
side of the screen, the array parameters are displayed. By choosing an option, the user can change 
a single piece of input data and then, when all the editing is finished, can return to the echo 
screen by selecting the end edit option. 

CUBIC ARRAY 

Number of elements 
Spacing 
Phase shift 
End edit 

Number of elements in x = 2 
y = 2 
z = Ü 

Total number of elements = 12 
Spacing in x direction = .5 

y direction = .5 
z direction = .5 

Phase shift in x direction = 45 ° 
y direction = 45 ° 
z direction = 0 ° 

Observation plane:   x-y 
x-z 
0   = 90 

Fig. 4 The editing screen for a cubic array. 

When the user is satisfied with the input parameters, he or she can continue and proceed 
to the antenna element selection screen as shown in Fig. 5. This screen lists the available 
antenna elements in a mouseable window menu. The user should choose the element of 
preference followed by the desired orientation of the antenna element. The length of the antenna 
will be requested next if applicable. Additional parameters will be requested in accordance with 
the chosen antenna. As an example, if the user chooses the finite line source, he or she will have 
the following options for the current distribution on the element: triangular, cosine, or cosine on 
a pedestal. If the cosine distribution is chosen, the user will be prompted to enter n, which 
controls the roll-off. A value of 0 will create a uniform distribution, i.e., no roll-off. 

By selecting the user defined pattern option from the element menu, the user may enter 
the pattern from the keyboard or load a pattern from a disk file (if a pattern was previously 
stored). Note that if a pattern is to be loaded from a disk file, the retrieved pattern must have 
the same number of observation planes as those chosen by the user when imputing the data for 
the array type. Otherwise, the pattern will be invalid and the program will return to the main 
menu. When the pattern is entered from the keyboard, the user will enter the pattern with 
normalized power levels. The user will have the option to save this pattern on a disk file if 
desired. 
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AVAILABLE ANTENNA ELEMENTS 

—►■ Isotropie source 
Hertzian dipole 
Dipole antenna 
Line source 
User defined pattern 
Main menu 

Fig. 5 The antenna element selection screen. 

When the user continues, the element echo screen will appear as shown in Fig. 6. The 
radiation pattern for the element is displayed on the upper right corner of the screen. If the user 
has chosen more than one plane of observation, he or she can view the pattern in the other planes 
by pressing "V". On the lower right corner of the screen, the current distribution on the element 
will be displayed if applicable. Note that the isotropic element will not have a current distribution 
displayed since an isotropic source is simply a point source. On the left side of the screen the 
antenna element type and parameters are listed. The user can choose to try a different element 
by pressing "T" or to continue by pressing "C". 

FIELD PATTERN OF THIN WIRE DIPOLE 

Length of antenna = .45 lanbda 
Antenna oriented parallel to z axis 
Observation plane: x-z 9 = -90° 

180° 
Elenent pattern 

Press C to calculate the array pattern 
I to try another elenent type 
H to return to nain nenu 
U to vieu pattern in next plane 
Q to quit 

-.225 

Current distribution Kz) 

Fig. 6 The element pattern screen for a dipole antenna. 
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After Computing and displaying the element pattern, the program will calculate the array 
factor and the total pattern. The monitor will show a screen similar to the main menu screen 
except that the center of the screen will be flashing the statement "Calculating... please wait" and 
a horizontal bar graph will appear below this message. This bar graph will increase from left 
to right showing the user how far along the calculations are. Note that if more than one plane 
of observation was chosen, the bar graph will run through a complete cycle for each chosen 
plane. 

When the calculations are finished, the final screen will appear as shown in Fig. 7. 
Pertinent information will be displayed at the top left corner of the screen. The element pattern 
will be displayed at the top center of the screen, the array factor will be displayed at the upper 
right corner of the screen, and the total pattern will be displayed at the lower right corner of the 
screen. User options will be listed at the lower left corner of the screen. One can choose to quit, 
return to the main menu, edit array parameters, try different elements, save the data to a disk file, 
or scan any of the displayed patterns. 

FIELD PATTONS OF CUBIC RRRfW B" B" 
Hunber of elements in x = 2 ,■<"    '     '>-. 

9 = 2 ji^^'''Ov/T/''-T"\ «'" Av.-.i-.J"--. 
z = 3 f r~*sJbz -'■■'■■ \ 1    '     •'^SiT4^*^ '■ 

Iota! nunber of elenents = 12 [■ - 4 - -; - -^"v; ■" - ~ ~ '" 
Hajor-to-minor  Lobe level = 15 dB K \ JT ''/T!'," :•'- / ] V  \ £?/'( vv?:*^' 
Observation plane: ^C ■*. ' "y"V "^ .'" s? 

x-z *■■'..   "'" ..-"■'' 
"••V^K^.v-' 

Thin wire dipoie 180° 188" 
Length of antenna = .45    lanbda Element Array Factor 
Antenna oriented parallel to z axis 

e = -80° 
Press M to go to nain nenu 

E to try different elenent 
fl to edit array parameters 
V to view in next observation plane 
S to save data on disk 
P to scan pattern 
Q to quit 

98° 

188° 
Total Pattern 

Fig. 7 The output screen for the patterns of a cubic array of dipoie antennas. 

The scan menu window will allow the user to choose the element, the array factor, or the 
total pattern to be scanned. Once the user chooses one pattern, the pattern scan screen will appear 
as shown in Fig. 8. The chosen pattern will be displayed at the right of the screen. On the left 
side, the angular positions and amplitudes of the scanning dots are displayed. The user can use 
the left and right arrow keys to move the dots clockwise or counterclockwise. By pressing "T" 
the user can change control from one scanning dot to the other one. The user can choose to scan 
a different pattern or return to the main menu. 
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CUBIC ARSA» 

Scanning total pattern 
Observation plane: 

Active dot 
dot 1 

Difference = 

Angle 
22 
338 
52 

Amplitude (dB) 
-IG.69? 
-IB.798 
-5.899 

dotl - dot2 

Current scanning step = 1 ° 

Press I to increase scanning step 
D to decrease scanning step 
I to toggle betueen scan dots 
S to scan a different pattern 
R to return to output screen 
H to return to nain nenu 
-» or > to scan clockuise 
♦ or < to scan counterclockuise 

Fig. 8 The scan screen for the total pattern of a cubic array of dipole antennas. 

If the user chooses to use the save pattern option in the final output screen, another screen 
will appear which will ask for a data drive and a name for the disk file. It is not necessary to 
put an extension to the file name since the program will supply "ARD" as an extension. T o 
retrieve pattern data from the main menu, the program will ask for a data drive and will show 
all files on that chosen drive with the extension "ARD". The user can enter the name of the file 
without using any extension. Once the data is loaded, the program will proceed directly to the 
final screen.  The user can then manage the data normally. 

[1] 

[2] 
P] 
[4] 
[5] 
[6] 
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Computing the Time Domain EM Scattering from 
Large Open-Ended Cavities Using the SBR and GRE 

Ray Shooting Methods1 

Robert J. Burkholder and Prabhakar H. Pathak 
The Ohio State University ElectroScience Laboratory 

1320 Kinnear Road, Columbus, Ohio 43212 

1     Introduction 
The electromagnetic (EM) scattering from electrically large open cavities can be a very 
significant contributor to the overall radar cross section (RCS) of objects containing such 
cavities. In particular, the EM scattering from jet engine inlets and exhausts is often the 
most prominent feature contributing to the RCS of modern jet aircraft. The time domain 
EM scattering from aircraft, i.e., the reflected radar return from a target as a function of 
time, may be used for radar target identification. It is therefore important to understand and 
accurately predict the time domain behavior of EM fields scattered by large cavities, such as 
jet inlets and exhausts. In particular, it is known that open cavities scatter dispersively in 
the time domain, i.e., the reflected radar pulse is distorted and spread out in time, depending 
on the depth, complexity and electrical size of the cavity. This is in contrast to a simple 
scattering mechanism, such as corner diffraction or specular reflection ("glint"), which would 
generally not change the shape of the reflected radar pulse. Therefore, it is important that the 
analysis method be able to predict the time dispersive behavior of cavities. Unfortunately, 
it is generally not possible to obtain an exact solution to this problem, either in closed form 
or by using a numerical technique, due to the size and complexity of these types of cavities. 

Two versatile but approximate high-frequency asymptotic ray shooting methods have 
been developed for calculating the RCS of electrically large arbitrarily shaped cavities: the 
shooting and bouncing ray (SBR) method [1, 2], and the generalized ray expansion (GRE) 
method [2, 3]. It is of interest here to apply these two ray methods for cavity RCS prediction, 
and evaluate their ability to accurately and efficiently predict the time domain response. This 
is achieved by analyzing rectangular and circular open-ended waveguide cavity geometries 
for which there exists a waveguide modal reference solution [4]. The cavities are perfectly 
conducting and terminated by a flat plate (short circuit) at the closed end. Furthermore, the 
cavities are surrounded by free space and have no external supporting structure. Although 
these geometries have nowhere near the complexity of an actual jet engine cavity supported 
by an airframe, they are useful for evaluating the merits of the ray methods for modeling 
the coupling into and propagation of fields inside open-ended cavities. 

'Sponsored by the Air Force Wright Laboratory Target Recognition Technology Branch, Wright-Patterson 
AFB, Ohio, and funded by the AFOSR Summer Research Program. 
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INCIDENT PLANE 
WAVE FIELD GO RAY CAUSTIC 

GO SHADOW 
REGION 

(a) the shooting and bouncing ray (SBR) method. 

5 SUB-APERTURES 

INCIDENT WAVE 

(b) the generalized ray expansion (GRE) method. 

Figure 1: Ray launching methods (shown in 2-D). 

2    The SBR and GRE Ray-Shooting Methods 
This section presents a qualitative description of the SBR and GRE ray-shooting meth- 
ods. Details concerning their implementation may be found [1-3], and a description of the 

waveguide modal reference solution may found in [4]. 
In the SBR method, a dense grid of parallel ray-tubes is launched into the cavity, repre- 

senting the geometrical optics (GO) portion of the incident (illuminating) plane wave which 
is intercepted by the open end, as shown in Figure 1(a). The individual ray-tubes are tracked 
inside the cavity via multiple reflections (or bounces) from the inner cavity walls using the 
laws of GO, until they exit again through the open end (Figure 2). The scattered field is 
obtained by performing an aperture integration over the equivalent Huygen's sources defined 
by the projections (or footprints) of the ray-tubes in the open end as they exit the cavity. 
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Figure 2: GO ray-tube tracked inside a waveguide cavity until it exits through the open end. 

The SBR method is very versatile and easy to apply, but it tracks only the GO field 
inside the cavity, ignoring the fields diffracted into the cavity by the rim at the open end. 
As Figure 1(a) shows, this leaves GO shadow regions which in reality contain the diffracted 
field. The GRE method intrinsically includes these diffracted fields by launching rays in all 
directions into the cavity. Specifically, the aperture at the open end is broken up into a 
small number of subapertures, and ray-tubes are launched radially into the cavity from the 
phase centers of the subapertures, as shown in Figure 1(b). Each ray-tube is weighted by the 
far-field radiation pattern of its subaperture when the subaperture is excited by an external 
field incident on the open end of the cavity. The subaperture far-field radiation pattern 
is obtained by integrating equivalent currents over the subaperture, which are defined by 
the incident field. Once launched in this manner, the ray-tubes are treated in exactly the 
same manner as the SBR ray-tubes, i.e., they are tracked inside the cavity via multiple GO 
bounces and aperture integration is used to obtain the scattered field. 

In the SBR method, a new grid of ray-tubes must be tracked for each plane wave incidence 
angle. An advantage of the GRE method is that only the amplitude weighting of the ray- 
tubes is dependent on the incident field, and not the initial launch directions. Therefore, a 
sufficiently large number of ray-tubes can be launched, tracked inside the cavity, and stored; 
later the rays can be weighted and summed to give the cavity scattered field for any number 
of incidence angles. However, a much larger number of GRE ray-tubes is required compared 
with the number of ray-tubes used in SBR for a single incidence angle. Therefore, SBR is 
generally more efficient than GRE unless a sufficiently large number of incidence angles is 
required (typically, on the order of 100 or more). On the other hand, GRE is expected to 
be more accurate because it includes diffraction effects. 
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3    Numerical Results 
The open-ended waveguide cavities analyzed here are axially straight with square, rectangu- 
lar or circular cross-sections and have a flat plate termination normal to the waveguide axis. 
They are perfectly conducting and only the scattering from the cavity interior is included. 
All external scattering effects are ignored, such as the direct scattering from the rim at the 
open end. The cavities are illuminated by a vertically polarized EM plane wave incident in 
the horizontal plane. The time domain scattering is obtained by inverse Fourier transforming 
the frequency domain RCS in the band from 8 to 12 GHz at 128 equally spaced steps. The 
frequency domain data is weighted with a Kaisser-Bessel windowing function {a - 2) before 
transforming to minimize unwanted sidelobe contamination of the time domain response. 

The result is a "band-limited" time domain impulse response. 
Figure 3 shows the time domain impulse response of an open-ended waveguide cavity 

with a square cross-section. At midband this cavity is 6.67 wavelengths across and 26.67 
wavelengths long. The SBR method predicts well the main impulse, corresponding to the 
GO field return, but misses the side impulses which are dispersed in time. The dispersion 
is due to the fields diffracted into the cavity by the edges at the open end which propagate 
inside the cavity along different paths than the GO field. These paths are shorter or longer 
than the GO paths, and so the diffracted fields may arrive back at the observer advanced or 
delayed in time with respect to the GO field. Notice that the GRE solution predicts both 
the main impulse and the most significant time dispersive effects because both the GO and 
diffracted fields are intrinsically included in the method. However, the amplitudes of the 
peaks are not in perfect agreement because of the approximations associated with the GRE 
ray launching scheme and ray shooting methods in general. 

Figure 4 shows the impulse response for a much larger rectangular cavity2. The dimen- 
sions of this cavity are comparable to an F-15 engine inlet duct. At midband the cavity 
is 30.48 wavelengths high, 20.32 wavelengths wide, and 152.40 wavelengths long. For this 
case the dispersion effect is still noticeable in the modal and GRE results, but is much less 
significant than in the smaller cavity of Figure 3. As before, the SBR method predicts the 

main impulse well, but not the time dispersed impulses. 
Figure 5 shows the impulse response of a very large open-ended circular waveguide cavity. 

Again, the dimensions of this cavity are comparable to an F-15 engine inlet duct. At mid- 
band the cavity is 27.09 wavelengths in diameter and 152.40 wavelengths long. The curved 
walls of this cavity cause the GO fields to diverge as they bounce around inside, giving 
rise to dispersion-like effects in the time domain. So in this case, the SBR method gives 
a more spread out time domain impulse response compared with a rectangular waveguide 
cavity which has planar walls, and agrees very well with the modal reference solution. The 
dispersion caused by diffraction effects is still present in the modal and GRE solutions, but 
these effects are not noticeable on the scale of the plots used in Figure 5. The GRE result 

2In Figures 4 and 5, the time scale is shifted by 30 nanoseconds (ns) due to the particular inverse Fourier 
transform routine used to obtain the time domain response from the frequency domain data. The actual 
times for the impulse responses of Figures 4 and 5 are exactly 30 ns greater than those shown. 
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Figure 5: Cavity impulse response of an F-15 sized open-ended circular waveguide cavity, 
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predicts the peaks in the right location, but the amplitudes of the peaks are in somewhat 

worse agreement. 

4    Conclusions 
It has been shown that open cavities exhibit a dispersive effect on the EM scattering of a 
plane wave in the time domain. This is due to the fields diffracted into the cavity by the rim 
at the open end, which undergo multiple bounces inside the cavity before re-radiating out 
through the open end. This time dispersive effect differentiates open cavities from simple 
scatterers which would exhibit a more localized return in the time domain. 

The SBR method is very versatile and easy to implement, but it does not predict cavity 
time dispersion effects caused by diffraction because the fields diffracted into the cavity by 
the open end are not included. However, it has been shown that for very large cavities the 
diffracted field is much weaker than the GO field, and the SBR method predicts very well 

the dominant time domain return associated with GO. 
The GRE method is versatile and predicts cavity time dispersion effects because the fields 

diffracted into the cavity by the open end are intrinsically included. However, this method 
is not as straightforward to implement as the SBR method because the aperture at the open 
end of the cavity must be gridded up into subapertures. The GRE method is sometimes not 
as accurate as the SBR method for very large cavities because additional approximations 
are introduced by the subaperture gridding. Nevertheless, dispersive effects are expected to 
be very significant for realistically complex jet engine cavities because the engine face will 
diffract strongly, unlike the flat "short circuit" terminations used here; therefore, a method 

such as the GRE which includes dispersion will be required. 
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Target Facetization Level and 
the Effect on Xpatch Predictions 

E. M. Miller, D. J. Andersh, A. J. Terzuoli Jr. 
Air Force Institute of Technology 

Wright-Patterson AFB Ohio 

1 Abstract 

Xpatch V4-0 1 [1] is a Radar Signature prediction code that provides both frequency domain radar 
cross section predictions and time domain results for a flat faceted triangular geometry file. It 
is a fully polarimetric code that performs mono-static and bi-static predictions and provides the 
capability to rotate facets, calculate shadowing and blockage, perform multi-bounce calculations, 
and calculate scattering from radar absorbing materials (RAM). The prediction method is based 
on the Shooting Bouncing Ray method, Physical Optics and the Incremental Length Diffraction 
Coefficient Formulation (ILDC) [2] to obtain the target scattered field. 

This paper2 analyzes the limitations of 3-D model facetization on the radar signature predicted 
by Xpatch. Predictions are compared against exact solutions and different facetizations for two 
primitives and one complex target. A more detailed analysis is available in the thesis, "Validation 
of Xpatch Radar Signature Predictions Using Flat Facet Geometries" [$]. 

2 Introduction 

Before Xpatch is used to predict the radar signature of facetized models, the limitations of the flat facet 
approach must be understood because measurements we use as reference are not always exact. There is an 
uncertainty associated with the target's position when it is put on the rotator in the measurement chamber. 
Depending on the care taken, and measurement equipment used, the target's position could easily be off by 
1° or more in both azimuth and elevation. These small changes in position will effect the measured azimuth 
scans and range profiles. In addition, changing the level of flat facetization on the associated geometry 
file will have an effect on the signature prediction. Therefore, predictions cannot be judged blindly against 
the measured data. To minimize the uncertainty, a target with an exact solution, such as a sphere, is 
an excellent choice for comparison against Xpatch predictions. A test was conducted to evaluate Xpatch's 
frequency response predictions on a set of 6" spheres, each with four different facetization levels. In addition, 
the effect on the azimuth scan of an almond and the range profile of a complex missile are evaluated. This 
paper presents the results of a facetization study performed on these three models. Comparisons are not 
made against measured data, only between predictions. 

2.1    Sphere 

A 6" sphere was chosen to test the frequency response prediction with respect to facetization level. The 
exact Mie series was used for comparison and is shown in Figure 1 along with a curved facet prediction made 

1A High Frequency RCS Computation Code for Flat Patches with Interactions, written by S. W. Lee of the University of 
Illinois 

2This research was sponsored by the US Air Force Wright Laboratory, Avionics Directorate, Target Recognition Branch, 
WL/AARA, ASC WPAFB OH 
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by CADDSCAT [4], on the sphere.  Notice the curved surface model only needed 112 facets to show good 
agreement with the Mie series. 

HIE SERIES VS CURVED FACETED  SPHERE,    .01-50  GHZ 

■Mi*_series* —  ; 
•CAOcurved' . 

1 f*~ 

Figure 1: 6 inch Sphere, 112 Curved Facets at OAZ, OEL 

Four, Advanced Computer Aided Design (ACAD) [5], models were built for the 6 inch sphere by progres- 
sively increasing the number of flat facets in each. The number of facets ranged from 360 to 9,800 as noted 
under the plots. 

Figures 2(a) through 3(d) give a visual representation of the the four facetization levels and their asso- 
ciated test plots. Each sphere is "shown" at the aspect angle of 45° azimuth and 45° elevation. Xpatch 
frequency predictions on each sphere, however, were made, at four different aspect angles. Only one quadrant 
was included since the facetization is symmetric. 

The chosen aspect angles were: 

"0" = 0° AZ and 0° EL 
"90" = 90° AZ and 0° EL 

"9090" = 90° AZ and 90° EL 
"45" = 45° AZ and 45° EL 

Combining two pieces of information, you obtain the legend for the test plots. For example: sph290 is 
sphere #2 at aspect angle 90. 

The fluctuations of the frequency response are a direct result of the number of facets. Sphere #1 has 
the smallest number and the prediction fluctuates wildly over nearly the whole range. The best prediction, 
compared to the Mie series, is the expected sphere #4 since it has the highest number, or smallest facets. 

Figure 4(a) is a plot of the most forgiving aspect angle (45° azimuth and 45" elevation) for each faceti- 
zation level. All predictions were compared against the exact Mie series for the sphere, with the 9,800 facet 
model deviating very little. The error associated with flat facet geometries is most easily seen by comparison 
with the curved model. This is shown in Figure 4(b). While the 45° AZ, 45° EL aspect agrees with the 
curved model and hence the Mie series, the 0° AZ and 0° EL deviates considerably as the frequency increases 
beyond 30 GHz. 

Clearly, the flat faceted model has problems associated with it. The curved faceted model prediction 
was closest to the exact solution and was aspect angle invariant, while, the flat faceted model can fluctuate 
badly with an aspect change. In addition, the curved model uses two orders of magnitude fewer facets then 
its flat counterpart to obtain equal results. If a flat faceted model is to be used in the prediction of a target, 
care must be taken to understand how the facets are laid out. If not, the results could have a larger error 
associated with them than anticipated. 
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(c) Sphere 2 (d) 1520 Facets, 4 Aspect Angles 

Figure 2: Sphere Facetization Effects With Changing Aspect 
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Figure 3: Sphere Facetization Effects With Changing Aspect 
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Figure 4: Frequency Response VS Facetization 

2.2 Almond 

One of the stealthiest of the primitive targets is the almond. The shape and triangular flat facet layout can 
be seen in Figure 5(a). The almond was sized to match the bench marked primitive measurements made by 
China Lake [6]. Therefore the dimensions were: 1= 9.936", h= 1.28", w= 3.842". In order to ensure at least 
five wavelengths over the target as recommended by Knott[7], the prediction was made at 18 GHz. In order 
to have a reasonable facet distribution, the following three levels were used: 

coarse 454 facets 
medium 8,032 facets 
fine 29,394 facets 

Figure 5(b) shows the variations in the Xpatch prediction for each facet level. A good agreement is 
obtained between all three models over the majority of the azimuth range. The tip of the almond is located 
at the 180° point and it is there that the models differ the most. The prediction in the region of the tip 
can't be seriously considered for two reasons. First, the tip itself is not predicted by any code, and secondly 
the RCS value of -60 dBSM is extremely low and could be in the measurement noise floor depending on the 
RCS chamber used. The only other deviation is noted at near broadside where the coarse geometry deviates. 
This model had so few facets, that there were noticeable grooves on both sides of the ACAD model including 
the tip. This segmentation would be expected to give erroneous results. 

The final analysis indicated that 10,000 facets were adequate for predictions made by Xpatch. Any 
increase in the number of facets, increased the run time and did not add to the accuracy. 

2.3 Complex Missile 

To test the effect on time domain range profile predictions, three models were built for the complex missile 
shown in Figure 6. The following facetizations were used: 

coarse 2,758 facets with 294 edges 
medium 4,246 facets with 326 edges 
fine 9,706 facets with 458 edges 

The variations in the predicted range profiles, for each facetization, are shown in Figure 7(a). The 
interesting result is that the amplitudes are not all the same at each scattering center.  Starting from the 
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(a) Triangular Faceted Almond 
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(b) Three Facetization Levels 

Figure 5: Almond Effect Of Facetization Level 
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COMPLEX   MISSlL 

Figure 6: Complex Missile 
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Figure 7: Missile Range Profile and Frequency Response VS Facetization 

616 



left, the first scatterer is off the nose. Notice that the more coarse nose gives the highest return, but, the 
oddity is that the medium faceted nose gave the lowest value. This would be attributed to the layout of the 
facets on the nose. In this case, it was simply coincidence that the facets were facing in a direction which 
yielded a slightly lower return. The reason the hanger and pad at the 19 and 26 inch points did not show 
up is because they are shadowed by the the front hanger when looking directly nose on, as in this case. This 
was also expected and supports Xpatch's ability to account for shadowing. 

Figure 7(b) shows the effect of a change in facetization on the frequency response of the missile. With a 
few exceptions, all three models track very well across the 27-36 GHz band. This is encouraging but shows 
there is a difference in the prediction depending on the facet fidelity of the ACAD model. When comparing 
these predictions against measured data, both these effects must be kept in mind. 

3    Conclusions 

Xpatch V4.0 uses flat faceted geometry files to predict the radar signature. Clearly, the flat faceted model 
has problems associated with it. If this type of geometry is to be used in the prediction of a doubly curved 
target, care must be taken to understand how the facets are laid out on the ACAD model. If not, the results 
could have a larger error associated with them than anticipated. The test results show that a higher number 
of facets gives a better prediction, but, it comes at the expense of CPU time. Since faster run times are 
desired, care must be taken in building the geometry files to strike a balance between speed and accuracy. 
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COMPARISON OF MULTIPOLE AND MULTTFILAMENT TECHNIQUES 

D. REUSTER and M. KAYE 

Department of Electrical Engineering 
University of Dayton 
Dayton, OH 45469 

ABSTRACT 

This paper presents a comparison of the multipole and multifilament techniques as applied 

to the problem of scattering by periodically deformed dielectric cylinders. Comparisons are 

made on the performances of the two techniques with respect to variations of the cylinder's cross 

section. Theoretical development is given for both techniques, along with comments regarding 

the uniqueness of each technique. Comparisons are made with respect to run time, number of 

special function calls, matrix sizes required for convergence, and numerical stability. RCS 

results are presented for dielectric cylinders of various cross sections . Conclusions and general 

rules of thumb are given for the use of each technique. 

I.  INTRODUCTION 

Multipole and multifilament techniques have been used in recent years to solve two 

dimensional electromagnetic propagation and scattering problems for dielectric and metallic 

structures [l]-[4]. In the multipole technique (MPT) the unknown fields are expressed in terms 

of a finite number of multipoles (classical series solutions to Maxwell's equations in cylindrical 

coordinates) situated at one location. In the multifilament technique (MFT) the unknown fields 

are expressed in terms of a finite number of monopoles (first order solutions to Maxwell's 

equations in cylindrical coordinates) distributed around the boundary of the structure. In both 

cases, the unknown expansion coefficients and propagation constants are found by imposing the 

boundary conditions at selected matching points along the boundary, thus forming a linear 

system of equations in terms of the unknown coefficients. Solving the system of equations then 

provides the coefficients for the approximate series solutions. 
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H.  MATHEMATICAL DEVELOPMENT 

Fig.l shows the cross section of an infinitely long homogeneous dielectric cylinder, of 

permeability fa and permittivity ed, with its axis along the £ direction. The region 
surrounding the cylinder is free space with permeability n0 and permittivity e0. In this paper we 

shall consider cylinders with contours described by the following parametric equation : 

J?(<j>)  = a(l+6cos (3<1>)) (1) 

It will be assumed that the cylinder is illuminated by a transverse magnetic (TM) plane wave, 

of unit amplitude, propagating in the x-y plane. 

Region II 

Figure 1   Dielectric cylinder and related coordinate system. 

A)  MULTIPÖLE TECHNIQUE 

Let the electric field inside the dielectric cylinder be expressed by the following series 

expansion: 

From Maxwell's equations, the corresponding magnetic field may be expressed as follows : 

H, =1  £ aaj2(Jtdp)eJ*$-—|—  £ naaJJkdP)e^p        (3) 
id jiTi. TlAjP D«-' 
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where r\d and kd are, respectively, the intrinsic impedance and wavenumber of the 

medium. Similarly, the scattered electric and magnetic fields at an observation point external 

to the dielectric cylinder are given by : 

4.at =  E bnH^2\k0p)e^S (4) 

Hscat = ^  £ bBH^\koP)e^$--j—  £ nbaH<2\k0p)e™p (5) 
•lo n*— Mo^oP no- 

where,   t)0   and   k0   are, respectively, the intrinsic impedance and wavenumber of free space. 

From the boundary conditions, the tangential components of the electric and magnetic 

fields must be continuous across the contour of the cylinder. This leads to the following two 

equations : 

E a^d* (<t>) )e*+ = E V»2' (k0R (<t>) )e** + Einc (6) 

and 

= -^ E b^n2)\kQRW)e^H--j- E iib^2,(Jc0Ä(*))e**tp+#«iae 
Mo n--~ ■lo-'Sjr n=-~ 

(7) 
where f = x^t + Tpß is the unit tangent vector at any point on the contour p = i?(<J>) . 

Approximating the above series by the first 2N+1 terms and enforcing the resulting equations 

at 2N+1 matching points on the contour results in the following matrix equation : 

[Ediel]    [~Escat] 

[Hdlel]    [~Hscat] (8) 

Solving Eq. (8) provides the series expansion coefficients for both the fields inside the dielectric 

cylinder and the scattered fields outside the cylinder. 
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B) MÜLTIFILAMENT TECHNIQUE 

Let the electric field inside the dielectric cylinder be expressed as the superposition of 

the electric fields radiated by N electric line sources located outside the dielectric cylinder and 

radiating in a medium equivalent to that of the dielectric body as shown in Fig. 2. The electric 

field in region I is, therefore, given by : 

M< 
£ aaffo,2,(*dPj* (9) 

where   pn = J(x-xD)2 + (y-yn)2   and   (xn,y„)   is the location of the n* line source. 

• Contour of cylinder 

k/. 

X Line sources 

Figure 2 Geometry for computing fields in region I 

From Maxwell's equations, the corresponding magnetic field in region I is given by: 

*J n-X rn *-> n-1 rn 
(10) 

Likewise, the scattered electric field outside the dielectric cylinder may be expressed as the 

superposition of the electric fields radiated by N electric line sources located inside the dielectric 

cylinder and radiating in free space, as shown in Fig. 3. 
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I 

The scattered electric field in region n is, therefore, given by : 

*0n0 4- 
Ew'^oP^ • (ii) 

From Maxwell's equations the corresponding scattered magnetic field in region II is given 

by: 

*~t " TS  t ^t^^^^^-t ±^H«\kapn)? (12) 
*-'   n=l rn ij n.i HJJ 

Continuity of the tangential field components across the contour of the cylinder leads to  the 

following relationships : 

and 

-M^±a^\kdPn)   -  -M»   £ Vo(2'(*oPa)   + *i. 

77 1/      ö      ffi  (JcoPn)^
+T7 2^ —^—iÄi   *OP)T, 

(13) 

(14) 

Enforcing Eqs.(13) and (14) at N matching points on the contour results in a matrix equation 

for the unknown expansion coefficients a„ and bn . 
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m.      COMPARISONS 

Three periodically deformed dielectric cylinders of radii 0.3X, 1.0X, and 3.OX were 

chosen as test targets for the comparison of the two methods. Each method was applied to the 

three cylinders for deformation constants of 0.0, 0.2, and 0.4 (see Fig. 4). 

5=0.0 6=0.2 5=0.4 

Figure 4 - Periodically deformed test targets. 

Table I presents the run time and matrix sizes required to produce a converged bistatic radar 

cross section plot for each of the scatterers for an incident TM plane wave. All test cases were 

run on an HP 9000 model 730 using double precision and IMSL libraries. It should be noted 

that for some test targets no convergence (NC) was obtained. Figs. 5 and 6 show the 

convergence patterns for each of the methods. 

For targets near circular, the MPT requires smaller matrix sizes than the MFT; however, 

as the target's cross section becomes less circular, the matrix size quickly increases. Limits on 

the maximum allowable matrix size for the MPT are directly related to the minimum electrical 

dimension of the body. If the number of matching points greatly exceeds the minimum electrical 

dimension of the body, numerical problems associated with the behavior of the Bessel functions 

used in the series expansion causes the matrix to become ill-conditioned (see Table II). 

While the MFT does not suffer from an upper bound on the number of matching points 

allowed, it is, in general, slower than the MPT. This is, in part, due to the need for more 

matching points and a greater number of special function calls. For the MFT 2N2 special 

function calls are required, whereas for the MPT only 2N are required. The rate of convergence 

for the MFT is also dependent on the location of the fictitious line sources about the contour of 
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the target. Leviatan [3] suggests that the line sources be placed within 20% of the radius of the 

body. This was found to be generally true; however, as the number of matching points became 

large, it was found that the location of the line sources needed to be moved closer to the body 

in order to keep the matrix from becoming ill-conditioned. This phenomenon again places an 

upper limit on the number of matching points allowed. This limit is much larger than the limit 

on the MPT; hence, making the MFT more versatile than the MPT. As a benchmark, both 

methods were compared to the classical Method of Moments solution [5] for the 0.3X dielectric 

cylinder. Both the MPT and the MFT require a system matrix that is at least five times smaller 

than the Method of Moments matrix with run times correspondingly smaller. 

IV.  CONCLUSIONS 

Comparison of the MPT and the MFT shows a trade off between speed and versatility. For 

bodies suitable for MP analysis, the MPT shows a substantial run time improvement. However, 

the MPT is limited to the class of near circular problems whereas the MFT is capable of 

handling more irregular bodies. Thus, the principle factor when choosing between the two 

techniques is the general shape of the body under analysis. 
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Table I 

Dielectric 

Cylinder 

Approximate matrix size 

for convergence 

Run time in seconds 

Multipole Multifilament Multipole Multifilament 

r=0.3, 5=0.0 30 60 0.2 1.3 

r=0.3, 5=0.2 40 60 0.6 1.3 

r=0.3, 5=0.4 NC 80 NC 2.2 

r=1.0, 5=0.0 70 90 0.4 3.0 

r=l.0, 5=0.2 110 100 1.2 3.4 

r=1.0, 5=0.4 NC NC NC NC 

r=3.0, 5=0.0 120 150 1.5 8.0 

r=3.0, 5=0.2 NC NC NC NC 

r=3.0, 5=0.4 NC NC NC NC 

Table H 

n J.(2.0) 

0 0.223 E00 

10 2.515 E-07 

20 3.918 E-19 

30 3.650 E-33 

40 1.196 E-48 
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Figure 5 Bistatic RCS for periodic deformed dielectric cylinders with 

r= 0.3, e„= 3.0e0, and 5= 0.0, 0.2, and 0.4 . 
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Figure 6 Bistatic RCS for periodic deformed dielectric cylinders with 

r= 1.0, 3.0, ed= 3.0e0, and 5= 0.0, 0.2 . 
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New Thin Wire Expansions for Long Wires 

in the MMP-Code 

Pascal Leuchtmann and Marcel Gnos 
Laboratory of El.-mag. Fields and Microwave Electronics, ETE Zurich 

CE-8092 Zürich, Switzerland 

Abstract: A class of special thin wire expansion functions have been added to the MMP- 
program package. The new functions may be used if thin wires are involved in situations to 
be analysed. The basic concept of the new functions is described and some general remarks 
to the choice of basis functions are given. In the part on the numerical examples, an 
appropriate definition of the percentage error is defined and first experiences with the use 
of the neixi functions are described. Some suggestions are given how to overcome existing 
problems. 

1. Introduction 

The MMP-program package [1,2,7] is a top level tool for computational electromagnetics 
in frequency domain. It is possible to perform rigorous far- and near-field calculations in 
scattering problems, as long as the scatterer(s) is (are) smaller than some wavelengths and 
the materials involved are piecewise homogeneous, linear and isotropic. 

The present version of MMP offers a number of different types of expansion functions. 
(Remember: An MMP-expansion function is a complete solution of Maxwell's homoge- 
neous equations. It consists of six complex space functions, the components of the electric 
field E and of the magnetic field H.) Some of them are specially adapted to certain ge- 
ometrical shapes of the boundaries. In particular, the ordinary multipoles are useful for 
spherelike parts of the boundaries, the thin wire expansions [3] are adapted to long circular 
and relatively thin wires and the line multipoles [4] do the same job for long thick wires 
as well as for edges. 

2. The basic idea of the new expansion type 

This paper deals with a new type of thin wire expansions which have been implemented in 
the MMP-code. The most important difference to the 'old' thin wire expansion [3] is the 
fact that the number of unkowns is significantly reduced. Using the old thin wire expan- 
sion, an arbitrary current distribution along a long wire is modelled using a segmentation 
of the wire, where each segment is (a) short compared to the wavelength A (typically 
shorter than A/20) and (b) short compared to strong current variations (the unknown 
current distribution is actually represented by a (approximately) linear distribution on 
each segment). This second request is necessary due to the matching concept used in the 
MMP-code [5]. The actual unknowns are the currents at the boundaries of the segments. 
In the case of a fine segmentation, this leads to a large number of unknowns. 

The new expansion functions are essentially thin wire expansions with a fine seg- 
mentation (to avoid matching problems [5]) but have a total number of unknowns, which 
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is significantly smaller than the number of segments.   The reduction of the number of 
unknowns is obtained as follows. 

Let z be the coordinate along a particular long wire and I(z) the current distribution 
on this wire. Then 

N 

J(Z) = ^«„/»(Z) + ,(Z) (1) 
n=l 

where fn(z) are suitable functions discussed below, an are unknown parameters and rj(z) 
is a (hopefully!) small error. Obviously, the total number of unknowns to represent the 
current distribution I(z) is JV. This general concept includes the old thin wire expansion, 
which uses essentially^ triangular functions f£(z), defined as follows: Given a certain 
segmentation with 5 segments and cuts at positions z0, z\, zi,. ■.,zs on the wire, it is 

(   z - Zn-\ 

Zn       Zn—1 

/2T M == 

if Zn-1 < z < z„ 

z - zn+1 (2) 
       if Zn < Z < Zn+1 V   ' 
Zn+1 — Zn 

. 0 elsewhere on the wire 

Using functions /ra(z) being nonzero all along the wire, the segmentation is no longer 
needed. However, the evaluation of the electromagnetic field due to the current fn(z) 
requires an integration along the whole wire. It is this integration which makes it necessary 
to introduce again a segmentation. Since the functions in the 'old' thin wire expansion are 
based on current distributions whose electromagnetic field may be evaluated analytically 
[3], it is convenient to use the same current distributions here. Following this idea the wire 
is segmented and all the /„ are actually polygon approximated. Note, that the evaluation 
of the electromagnetic field of the constant and of the linear current distribution has to 
be performed only once for each segment. Hence, the number of segments S becomes 
independent from the number of functions N. It is always N < S. The segmentation is 
adapted to the variation of the /n's in such a way, that the polygon approximation of each 
/„ looks smooth. 

3. The choice of the basic current distributions 

From a general point of view the functions fn{z) in eq. (1) must be chosen in such a 
way, that 'any' current distribution I(z) may be approximated with a small error ri{z). 
In practice, the requirements are less restrictive: Only a class of rather smooth current 
distributions I(z) should be representable. Since in any practical case, the solution of a 
given problem is unique and does exist — this is known from physics — one could even 
ask only for the ability to expand the solution itself (and nothing else!) by the set of the 
/„'s. Since the solution is not known a priori, this gives no practical hints for the choice of 
the functions /„. But we can keep in mind, that this is the point where we could introduce 
a priori knowledge on the solution. 

This is only part of the truth: The constants c and s in the 'linear' current distribution Ii(z) = c + sz 
on each segment are actually weak functions of 2 (c = cosfcz, s = (sin kz)/z where b < 1 on the whole 
segment). 
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From a mathematical point of view the problem is reduced to the following: Give a 
complete set of functions /n(z), which are defined on the finite intervall of length L (the 
length of the wire). Among others, there are powers (/£(z) := zn) and trigonometric 
functions (f„(z) := cosn^ff- or /^(z) := sinn^jf-). The criteria to find a suitable and 
practically useful set of functions are: 

• All the /„ must be linearly independent. This is a strict requirement. Otherwise, the 
degree of freedom is actually less than N, and the MMP-solver results in a singular 
matrix. 

• On the other hand, orthogonality of the fn is not required, even if it is the optimum 
form of independence. Due to the fact that not the current distribution itself but its 
electromagnetic field is used to find the unknowns, it would be more efficient to have 
orthogonal fields rather than orthogonal currents. Unfortunately, this does not fit into 
our general concept of given basis currents. 

• The importance of the terms within the series in (1) should decrease with increasing 
n. This is not strict, but highly recommended. A small increase of the number N 
should not drastically change the solution but just perform some 'fine tuning'. 

• The meaning of the first terms should be physical. This is helpful in the first view 
interpretation of the results. 

• The error should have a similar magnitude along the whole wire. This makes the 
trigonometric functions less useful for all those cases where the currents at the be- 
ginning of the wire is not equal to the current at the end, since a Fourier series has 
very bad convergence at all those places where the function to be expanded is not 
continuous. This effect is known as Gibbs' phenomenon. 

The last criterion eliminates the trigonometric functions /£(z) and f„{z) and favours the 
simple powers zn. Obviously, they are independent, but they turn out to be somewhat 
dependent from each other. This dependency is a purely numerical dependency and can 
be observed in the fact, that the plots of say z6 and z7 look very similar, if only the finite 
interval 0 < z < L is considered. 

A suitable combination of the powers to polynomials of n-th degree make the func- 
tions more independent from each other. One can find several families of orthogonal2 

polynomials \6]. In the interval — 1 < z < 1, the Jacobi Polynomials P„ are orthogonal 
with respect to the weight function w(z) = (1 — z)a(l + z)*3, the Gegenbauer Polynomi- 

als C„ with w(z) — (1 — z2)a-5, the Chebyshev Polynomials of the first kind, T„ with 

w(z) = (1—z2)_2, the Chebyshev Polynomials of the second kind, U„ with w(z) = (1—z2)5 
and the Legendre Polynomials Pn with w(z) = 1. For sake of simplicity we do not consider 

the polynomials P„ and Cn , because this would require a decision for the parameters 
a and ß. All the remaining Chebyshev and Legendre Polynomials seem to be useful for 
our task. One just has to map the interval —1 < z < 1 onto the wire with length L. 

The most simple among the mentioned functions are the Legendre Polynomials. Hence, 
the investigation has been done with this class of functions, the more as a simple recursion 
for them being already implemented in the MMP-code. Beside the Legendre Polynomials, 

Orthogonality depends on a weight function w(z) and an interval a < z < b. Two functions /i (z) and 

h(z) are called orthogonal on the interval a < z <b, with respect to w(z), if J  w(z)fi(z)f2(z) dz = 0. 
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a second class of weighted Legendre Polynomials has been considered as well. Figure 1 
shows plots of the first orders of all the investigated polynomials. In addition to these, 
a sinusoidal half wave has been implemented, in order to study the interaction between 
functions of different classes. 

p0      sll 

-1/V X///1 

/Pi JV Pz P*  * 

Figure 1 The Legendre Polynomials Pn{z) (left) oscillate in the interval — 1 < z < 1. In 
order to obtain more oscillation in the center of the interval and less oscillation 
at its ends, the Legendre Polynomials Pn(z) have been weighted by Associated 
Legendre Functions of the first kind (right, see also eq. (3) for an exact defini- 
tionof/rW). 

4. Numerical Examples 

Two basic types of examples have been studied, (1) a straight wire in free air, illuminated by 
a plane wave and (2) a rectangular loop connected to an infinite ground plane, illuminated 
again by a plane wave. 

All the examples have been calculated both as electrically small objects (overall di- 
mension ss V10) and as electrically large objects (overall dimension ss 2A). 

Comparisons have been made between a current expansion using the conventional 
basic current distribution fn(z), which are defined in eq. (2), the Legendre Polynomials 
fn(z) := Pn(2z/L)s (see fig. 1, left hand side) and the weighted Legendre Polynomials 

/ür« == { 

Pn(2z/L)P:(2z/L) 

Pn(0)Pn"(0) 

Pn(2z/L)PZll(2z/L) 

Pn_1(0)Pn"n1(0) 

if n even 

if n odd 

(3) 

(see fig. 1, right hand side). Both Legendre type current expansions were also examined 
under the addition of the function 

fc(z) := COS(TTZ/L). (4) 

The coordinate z = 0 on the wire is in the center of the wire, i.e., z varies on the wire from —L/2 to 
L/2. 
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Figure 2 The overall percentage error 7/% as a function of the total number of unknowns 
N for a short wire (L = A/10).  Different sets of basic current functions /„ 
show different convergence properties. 

The quality of the solution is measured by the following error definition [7]. Suppose M 
is the total number of matching points, r; is the position vector of the i-th matching-point, 

F;:= \\m)\* + iz*|.|£(f*)ia 
(5) 

is a positive scalar value for the electromagnetic field amplitude (Z = y^ is the impedance 

of the medium (air) and H is the magnetic field amplitude) and r>; := \E{?i) ■ u;| is the 
component of the total electric field along the wire (the error on the i-th matching-point). 

The unit vector u; points parallel to the wire in this point. Then F := jj Si=i -^i *s the 

mean value of the field on the wire and J? := jj ]C;=i Vi 's the mean value of the absolute 
errors. With these definitions, we define the percentage error as 

TO = |l00%. (6) 

Note, that JJ% may be more than 100%. This is due to the factor 6 in (5) — the electro- 
magnetic field has 6 components, but in our particular case the error is composed of only 
one component. 

4-1 The straight wire in the air 

A straight wire with circular cross-section (diameter = 2 mm) of length L = 10 cm and 
pointing intojlirection u is illuminated by a plane wave which is linearly polarized parallel 
to the wire (£jnc = Eou). The situation has been calculated both at a frequency of 300 MHz 
(—> L = A/10) and at a frequency of 6 GHz (—> L = 2A). The two cases are referenced to as 
the short wire (300 MHz) and the long wire (6 GHz) respectively, even when the physical 
dimensions are the same. 

For all the calculations using Legendre Functions the same segmentation of 98 seg- 
ments of equal length has been used and on M = 198 matching-points, the longitudinal 
component of the total electric field is set to zero (in a least squares sense, as usual in 
MMP). For the calculations with the triangular functions /J, the matching points are set 
following the suggestions in [5]. 
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Figure 3 The overall percentage error rj% as a function of the total number of unknowns 
N for a long wire (L = 2A). Different sets of basic current functions /„ show 
different convergence properties. 

In fig. 2 and 3, the error TJ% is shown as a function of the total number of parameters. 
For both the short wire and the long wire, the results from the weighted functions /" are 
always worse than those from the ordinary Legendre Polynomials /„ , and the addition of 
the function fc improves the results significantly. In fact, it is rather hard to model the 
short wire (fig. 2) without fc, whereas the convergence is better at the long wire, even 
without fc. In general, the convergence with the weighted functions /" is bad, even not 
monotonous. Hence, for this particular problem, the use of the /™ is not recommended. 

The comparison with the conventional thin wire expansion using the triangular func- 
tions f£ shows, that the Legendre Polynomials f% do have significant advantages compared 
to the /„ , in particular for a low number of unknowns. 

Figure 4 shows the current distributions for approximately 20 unknowns, which look 
very similar as soon as the error 77% is below 10%. (See also fig. 2 and 3.) Higher error 
values lead to bad results. 

4.2 The rectangular loop over a ground plane 

The second example is a rectangular loop connected to an infinitely well conducting ground 
plane, the x-y-plane (see fig. 5). The excitation consists of a plane wave which is linearly 
polarized in «/-direction. The loop is L = 5m wide and lm high and the diameter of 
the wire is 8 mm. The situation has been calculated both at a frequency of 100 MHz 
(-*• L « 1.7A) and at a frequency of 10 MHz (-> L « .17A). 

Due to symmetry, only one half (y > 0) of the loop has to be modelled, and the ground 
plane is taken into account using the image principle. 

For the horizontal 2.5 m-wire, 164 segments and 328 matching points and for the 
vertical 1 m-wire, 84 segments and 168 matching points have been used. The longitudinal 
component of the total electric field on the surface of the wires is set to zero. For the 
calculations with the triangular functions /J, the matching points are set following the 
suggestions in [5]. 

The investigations have shown that in general, the Legendre Polynomials f% are more 
suitable than the weighted functions f™. The same fact has been observed already in the 
previous example.  But other than there, the convergence is worse in comparison to the 
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Figure I The current distributions I(z) (instantaneous value) on the short (left) and the 
long wire (right) look rather different, if different basic current distributions /„ 
are used. At the very right, the basis functions are indicated.  In all cases, 21 
functions of Legendre type — and in the first two lines additionally the func- 
tion fc — have been used. A comparison with fig. 2 and 3 shows that the ac- 
curacy decreases from top to down. 

conventional thin wire expansions with f%. In this example, the use of the new thin wire 
expansion functions give only small advantage compared to the conventional thin wire 
expansions. 

5. Conclusions and future work 

It has been shown that the new thin wire expansion functions may have significant ad- 
vantages compared to the conventional thin wire expansions (reduction of the number of 
unknowns up to a factor of 10 at the same accuracy). In more complicated situations, the 
advantages are less clear and may even disappear. 

Future work using other basic current distributions such as Chebyshev's Polynomials 
and others, as well as an adaptive segmentation and curved wires will show whether the 
concept will really beat the conventional thin wire expansions. 
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Figure 5 The picture shows the instantaneous values of both the magnetic field (field ar- 
rows mainly in the loop plane) and of the electric field (mainly perpendicular 
to loop plane) on the surface of the wire at x = 4 mm. In the left column, the 
functions f% have been used (41 plus f° for the horizontal (2.5 m-)part and 21 
plus fc for the vertical (lm-)part). The right column shows the results from 
the conventional functions /J (164 horizontal segments and 84 vertical seg- 
ments). At the top the frequency is 10 MHz and at the bottom it is 100 MHz. 
Note that the magnetic fields (=current) are much more equal at left and right 
than the electric fields, in particular for the lower frequency. At the loop cor- 
ners, the oblique electric arrows indicate some errors in the calculation. 
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Abstract 

Much progress has been made in our understanding of the scattering of electromag- 
netic waves from small scale ionization structure. This progress has been made by taking 
advantage of a sequence of approximations which render the random media propagation 
calculations tractable, at least numerically. However, regimes of interest exist for which 
the limits of validity of these approximations axe exceeded and suitable extensions cannot 
be found. Thus, for lack of an alternative, the results of computations performed under 
these approximations are being applied in the invalid regime with the hope that the break- 
down of the approximations is more or less graceful. A tool now exists which can allow 
the limits of validity of the standard random media propagation theory approximations to 
be explored. We have recently shown that the Finite Difference - Time Domain (FDTD) 
method can be extended to account for the effects of temporal dispersion in frequency 
dependent media, and can therefore be applied to ionospheric propagation. The FDTD 
method solves the Maxwell equations directly in the time domain by temporal integration. 
No approximations beyond that of finite differencing are necessary, although the direct 
enforcement of certain approximations is possible. By doing so the method can be used 
to explore the breakdown of the standard random media propagation approximations. We 
present the results of an initial effort toward such an analysis. 

Introduction 

During propagation through ionization, RF signals are subject to dispersion (due to 
the frequency dependent ionospheric index of refraction), absorption, refraction and asso- 
ciated focusing/defocusing. Random structure in the ionization can further cause angular 
signal scatter (spreading the signal in delay and reducing its frequency coherence), pulse 
arrival time wander, and Doppler spreading (or loss of temporal signal coherence). All of 
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these effects have been studied utilizing various approximation methods. However, regimes 
of interest exist for which the standard approximation methods fail and suitable exten- 
sions have not been found. Thus results obtained under the standard approximations are 
speculatively pushed into the invalid regime with the hope that the approximations, when 
violated, do not break down catastrophically but rather degrade gracefully. For example, 
parabolic equation results which are valid at SATCOM frequencies are regularly applied to 
HF propagation with results which are in direct contradiction of assumptions used in the 
calculations themselves (the computed signal correlation lengths are often smaller than the 
field wavelength, while the assumption that l0 > A is specifically made in the theoretical 
development). In this case we have some indication (via analysis of HF channel probe 
data from the disturbed polar ionosphere [Nickisch, 1992]) that this misapplication of the 
standard approximations seems to work fairly well for oblique propagation; yet there is no 
firm proof. Even at UHF and higher frequencies, certain of the standard approximations 
can be violated when propagation along the geomagnetic field is considered (the assump- 
tion that many correlation scales of the propagation medium are traversed by the signal 
is violated, and the Markov assumption is suspect). 

We have recently developed an efficient method for incorporating the dispersive, ab- 
sorptive, anisotropic nature of the ionospheric channel into the Finite Difference - Time 
Domain (FDTD) method [Nickisch and Franks, 1992], and have shown that the method is 
capable of extreme accuracy. Since the FDTD method requires no approximations other 
than that implicit in the finite differencing, it is ideal for the application which we report 
on here, that of examining the way in which the standard random media approximations 
degrade when applied outside their regime of validity. 

FDTD in Ionization 

The basic FDTD methodology introduced by Yee [1966] is now well established. How- 
ever, the treatment of temporally dispersive media within the FDTD formulation has only 
recently received attention. Yet, when considering ionospheric propagation, the dispersive 
nature of the medium is of paramount importance. 

The difficulty in treating dispersive media in the time domain stems from the relation 
of the electric displacement D to the electric field E. It is in the frequency domain that 
the relation D(OJ) = l(u) • J?(u>) holds. The corresponding expression in the time domain 
involves a convolution of the dielectric tensor with the field. Two difficulties arise when 
one attempts to apply this convolution in the FDTD methodology. First the time domain 
dielectric constant must be obtained as the Fourier transform of the frequency domain 
expression. Then the convolution itself must be evaluated at each mesh point for each 
time step, and this convolution requires knowledge of the entire signal history. These 
problems have been dealt with by at least two independent groups for specific dielectrics. 
Bui, et al. [1991] considered a linear, isotropic, homogeneous Debye dielectric for which the 
time domain expression is easily obtained. They were able to obtain a recursive expression 
for the convolution of this Debye dielectric which circumvented the need to store the 
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signal's entire history. Luebbers, et al. [1990,1991] (whose work precedes that of Bui, 
et al.) in addition to Debye dielectrics, considered the dispersive plasma of interest in 
this article. They also showed that for the particular functional form of their temporal 
dielectric, a recursion relation can be obtained which necessitates only the updating of 
certain quantities at each time step to accomplish the convolution. The functional form 
of which they made use, however, diverges as the electron collision frequency goes to zero, 
and hence is restricted to plasmas exhibiting significant absorption. 

Our method [Nickisck and Franke, 1992] avoids the convolution altogether by solving 
the plasma equation of motion for the electric polarization. It applies to collisionless as well 
as absorptive plasmas, as easily incorporates anisotropy, and applies not only to plasmas, 
but to general media by simply altering the medium equation of motion. Joseph, et al. 
[1991] have explored a related technique which supplants the convolution approach with 
the solving of a differential equation relating D to E. Although we developed our method 
independently, we have learned that Kashiwa, et al. [1988] have developed an equivalent 
scheme, but have cast it in the language of the Transmission Line Matrix (TLM) method. 

Rather than dealing with the dielectric tensor, in our approach the equation of motion 
for the ionospheric electrons (from which the dielectric tensor is derived) is solved simul- 
taneously with the FDTD field equations. This dynamical equation, for a charged cold 
plasma, is [Budden, 1985], 

-      1 dp      -        mt  (d
2P        dP\ 

which relates the forces on the charged plasma to the plasma acceleration. We have 
included in (l) the forces on a charge due to the applied field of our wave of interest and 
the external geomagnetic field BE responsible for magneto-ionic splitting. The collisional 
forces responsible for signal absorption are incorporated through the electron collision 
frequency vc in the last term. Equation (1) has been written in terms of the electric 
polarization P. Our approach is to discretize (1) on the FDTD grid and solve for the 
polarization P at the current time step in terms of the polarization and field at previous 
time steps. We then use the relation D = eaE + P in the FDTD versions of the Maxwell 
curl equations (with B = n„H), or, as we tend to prefer, in an FDTD version of the vector 
wave equation, 

3r§ = v'£-v(v.£)-4|. (2) 

The Standard Approximations 

The standard approximations used in the current theory for propagation in randomly 
structured ionization generally follow this progression: First the true vector wave equation 
is reduced to the scalar Helmholtz wave equation by neglecting the polarization coupling 
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contribution (generally valid when the field wavelength is small relative to the ionospheric 
structure scale size). Then it is assumed that the field is dominantly forward scattering; all 
backscattered contributions are ignored. It is further assumed that this forward scattered 
field is scattered through only small angles, resulting in the so-called parabolic approxi- 
mation in which a second derivative contribution in the propagation direction is neglected 
relative to other terms (generally valid when the field correlation length is large relative to 
the field wavelength). From the parabolic wave equation, stochastic equations are formed 
for higher field moments, usually under the assumption the fluctuations in the refractive 
index are small relative to the mean, and the Markov assumption is used (the propagation 
medium is assumed to be delta correlated in the propagation direction). From this point 
further analytical progress is made by assuming that many correlation distances of the 
medium are traversed by the signal. Finally, it is often assumed that the medium can 
be collapsed to one or more thin screens with intervening free space. All of the above 
approximations can be explored using the FDTD technique. 

Preliminary Results 

We have performed some initial random media propagation calculations with our FDTD 
code. Figure 1 displays the time history at a receiver plane of an incident Gaussian pulse 
plane wave after propagation through a slab of ionization irregularities described by Gaus- 
sian statistics. The slab parameters were chosen to provide strong scatter within the com- 
putational grid [Lo = 32 m,£ = ANe/{Nc) = 0.8, </p) = 4 MHz, slab thickness = 320 m). 
The incident pulse width was 0.0267 ßsec at the 1/e point. Extreme dispersion of the pulse 
is evident in the received waveform as the pulse is spread over several microseconds. Angu- 
lar scatter is evident in the contorted wavefronts. In Figure 2 the corresponding frequency 
domain signal is displayed (magnitude only), and illustrates one of the greatest advantages 
of the time domain approach over spectral approaches: In a single calculation we have com- 
puted the response a very large portion of the HF band. Frequency domain approaches 
would have required numerous calculations to obtain such coverage. We note that signal 
absorption due to electron collisions was accounted for in this calculation, and thus much 
of the lower frequency component of the incident signal has been removed by the medium. 

The reader familiar with RF signal propagation in randomly structured ionization will 
note that the calculation parameters associated with Figure 2 (quoted parenthetically 
above) put this calculation way outside the regime of validity of the standard random 
media propagation approximations. It is of interest, then, to see what the theory which 
makes use of all the approximations predicts in this case. To perform such a comparison, 
we computed the two position mutual coherence function (MCF) of the received field across 
the frequency band for several realizations similar to Figure 2, but for varying fractional 
electron variances (£ = 0.2,0.4,0.6,0.8). We then computed the correlation lengths of 
these MCFs and compared them to the results of an analytical calculation which made 
full use of all the standard approximations [Knepp, 1985]. The results are shown in Figure 
3, where the FDTD results are shown as crosses and the standard approximate results 
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appear as solid curves (denoted thin screen PE). We point out that these computations 
were performed with minimal FDTD grid resolution due to the capacity of our current 
computer and are definitely preliminary (the 4 meter grid spacing employed corresponds 
to an adequate 8 points per wavelength near 10 MHz, but corresponds to only 4 grid points 
per wavelength at 20 MHz, which likely accounts for the oscillations and apparent plateau 
evident at the higher frequencies; results at the lower frequencies should be quite good). 
The first thing to note about Figure 3 is the remarkable agreement of the two methods 
considering how far away from the regime of validity the approximate theory was applied. 
The numerical values are at least of the same order of magnitude, and such accuracy is 
often all that is required when considering system performance issues in severely structured 
environments. 

This apparent agreement is deceptive, however. Figure 4 displays a subset of the mu- 
tual coherence functions computed from the FDTD realizations and illustrates the manner 
in which the FDTD coherence lengths were computed to produce Figure 3. The standard 
definition of the coherence length is the l/e point of the mutual coherence function. The 
weaker scatter cases, however, did not actually decorrelate to the l/e point, so we instead 
chose to compute the correlation length as the l/e point of the best fit Gaussian to the 
central peak of the mutual coherence function, as illustrated by the dotted curves of Figure 
4. For the stronger scatter cases this definition proves to be substantially the same as the 
standard definition. For the weaker scattering cases the definitions are markedly different. 
In fact, Figure 4 shows that the field actually does not substantially decorrelate for the 
weakest case, although blind application of the standard theory predicts quite small cor- 
relation lengths. The apparent agreement shown in Figure 3 is actually a true agreement 
for only the strongest scattering cases. The prediction of the approximate theory for the 
weaker cases really only applies to the "initial" decorrelation represented by the central 
MCF peak. The difference could be very important to coherently processing systems such 
as OTH radar whose performance, by the misapplication of the standard theory, would 
be predicted to be severely degraded when, in fact, it could operate in the presence of 
substantially stronger ionospheric structure. 

The above results are very preliminary and certainly do not constitute an analysis, 
but they provide some indication of the potential afforded by FDTD analysis of frequency 
dependent media. We hope in the near future to begin a careful analysis of each of the 
standard approximations described above. An approach for exploring the breakdown of 
the standard approximations is to create a data base of FDTD calculated fields for prop- 
agation through random media with specified statistical characteristics. The data base 
must be created under circumstances appropriate for each test. For example, comparisons 
between FDTD runs including and excluding the polarization coupling terms of the vec- 
tor wave equation can elucidate the relative importance of those contributions to mutual 
coherence functions formed from the data base (we have performed a preliminary test of 
the neglect of polarization coupling and find definite differences in the coherence struc- 
ture of the fields). The limits of viability of the other random media propagation theory 
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approximations can be explored similarly by creating data bases for propagation through 
irregular slabs of varying thickness (or strength, etc.) and comparing the resulting mutual 
coherence functions and stochastic signal structure parameters to those obtained directly 
from propagation theory or by comparison to the results of numerical multiple phase screen 
propagation. 
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Figure 1.  Time history of an intially gaussian plane wave pulse after 
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1.   Introduction 

A ray-based approach is developed to calculate the scattering from inhomogeneous 
dielectric objects. This approach is a natural extension of the "shooting and bouncing ray" 
(SBR) technique developed earlier for calculating the radar cross section of cavity 
structures and complex targets [1],[2]. In this formulation, a dense grid of rays 
representing the incident field is shot toward the scatterer (Fig. 1). The curved trajectory, 
amplitude, phase and polarization of the ray fields inside the inhomogeneous object are 
computed numerically based on the laws of geometrical optics. The contributions of the 
exiting rays to the exterior scattered field are then calculated by using the equivalence 
principle in conjunction with a ray-tube integration scheme. 

This work is initially motivated by our effort to characterize the effect of space plasma 
from an arcjet thruster plume on the performance of microwave reflector antennas on-board 
communication satellites. The ray method is used to compute the ray optics field 
transmitted through the plume. The far field patterns of the reflector in the presence of the 
plume are computed for several plume-to-reflector configurations. For arcjet prototypes in 
the 1-kW class, the plume effect on the antenna performance is small. As the electron 
density increases (corresponding to higher arcjet power), a gradual degradation of the main 
beam and sidelobe level is observed. In addition, the main beam tends to squint away from 
the plume region. The resulting quantitative data are crucial in determining realistic 
constraints on the location and maximum power output of the arcjet for spacecraft 
integration. 

We also generalize the ray approach to characterize the backscattering from 
inhomogeneous objects with well-defined boundaries. At the scatterer boundary, reflected 
and refracted rays are generated due to discontinuity of the medium parameters. Whenever 
the rays cross the scatterer surface, additional reflected/refracted rays are generated and are 
tracked. This process is repeated until the intensities of the refracted/reflected rays become 
negligible and the ray tracing algorithm can be terminated. The extended formulation is 
used to calculate the backscattering from inhomogeneous targets. For circular cylinders 
with simple permittivity profiles, good agreement with the exact series solutions is 
observed in the high frequency range. The ray approach not only complements other low- 
frequency numerical techniques, but also provides a simple physical picture of the 
backscattering mechanisms in penetrable objects. 

2.   Arcjet Plasma Study 

An arcjet thruster is an electrothermal propulsion device being developed by NASA 
and the aerospace industry for stationkeeping and attitude control on future generation 
satellites. Because of its high efficiency, this device could significantly extend die lifetime 
of modern communication satellites.  The operating principle of the arcjet consists of 
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heating a gas mixture (e.g., nitrogen-hydrogen) by means of a high temperature arc 
discharge. The heated propellant is then ejected through a nozzle to produce thrust. One 
important issue which arises in the actual spacecraft integration of arcjet technology is the 
environmental impact of the arcjet plume, especially on microwave communication 
systems. The arcjet produces a weakly ionized plasma, which modifies the free space 
normally surrounding the satellite and causes refraction and attenuation of the microwave 
signals to and from the spacecraft (Fig. 2). This is a primary user concern that must be 
addressed quantitatively before the arcjet technology can be fully accepted by the 
communication satellite industry. In this work, the effect of an arcjet plume on the 
performance of on-board reflector antennas is studied [3]. The arcjet plume is modeled as 
an inhomogeneous scatterer with a smoothly varying index of refraction. The spatial 
distribution of the refractive index is related to the measured electron density data based on 
the cold plasma model. To study the propagation of the microwave signal through the 
inhomogeneous plasma plume, geometrical optics is used. Choosing geometrical optics to 
attack this problem is motivated by several considerations: (a) the plume size of interest is 
more than several wavelengths in extent, (b) the permittivity distribution of the plume is 
smoothly varying, and (c) a ray approach is compatible with existing reflector analysis 
codes. Once the ray optics field transmitted through the plume is found on a near-field 
aperture, the far field performance degradation of the reflector in the presence of the plume 
can be fully characterized. 

Shown in Fig. 3(a) is the geometry of the case under study. The reflector is assumed 
to have a diameter of 60 cm (20 X at 10 GHz) and a 10-dB aperture edge taper. The initial 
ray bundle after reflection from the reflector surface is assumed to be perfectly collimated 
and has perfect linear polarization in the y-direction. Also shown in the figure are ray 
trajectories through a plume with parameter ai=lxl014 cm-1 which corresponds to 
approximately 3 kW of arcjet power. It is observed that the rays tend to bend away from 
the high electron density region near the nozzle. The direction, phase, amplitude and 
polarization of the ray field transmitted through the plume are computed on an exit aperture 
plane. The far field of the reflector in the presence of the plume can be related to the 
transmitted field on the aperture plane through the standard radiation integral. The reflector 
patterns along the two principal planes for the geometry in Fig. 3(a) are computed and 
plotted in Figs. 3(b) and (c). Small but noticeable degradations in the main beam and the 
sidelobe regions are observed. In particular, the main beam is found to squint away from 
boresight in the H-plane. This effect can be interpreted physically if we ignore, to the first 
order, the refraction of the rays through the plume. We can then argue that the rays 
traveling closer to the nozzle must experience a smaller total phase shift than those farther 
away from the nozzle due to the lower permittivity of the inner plume region. 
Consequently, the transmitted field on the exit aperture z=za has a tilted phase distribution 
which leads to the main beam squinting away from the plume region. In this example, the 
beam (beamwidth=3.0°) experiences a 0.75° (0.25 BW) beam squint away from the 
boresight. This translates into a 0.94 dB gain loss. For very narrow beam antennas, this 
effect could become more serious. The E-plane pattern in Fig. 3(c) shows a higher 
sidelobe level than the H-plane pattern, and a noticeable cross polarization level due to the 
plume. The plume effect on reflector performance is strongly dependent on the actual 
plume-to-reflector configuration. An actual case study of the arcjet-reflector configuration 
has been carried out for the General Electric Series-7000 satellite and reported in detail in 
[4]. 

3.   Backscattering from Arbitrary Inhomogeneous Objects 

We next generalize the ray approach to characterize the backscattering from 
inhomogeneous objects with well-defined boundaries. The refractive index of the scatterer 
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is assumed to be smoothly varying, except at the scatterer boundary. To represent the 
incident plane wave, a large number of rays are shot toward the inhomogeneous object. 
The incident rays encounter the scatterer boundary and reflected rays and refracted rays are 
generated, e.g., at point 1 in Fig. 4. The refracted rays propagate inside the object and 
eventually encounter the scatterer boundary (point 2 in Fig. 4). Again reflected rays and 
refracted rays are generated, except this time the refracted rays exit the scatterer while the 
reflected rays bounce off the boundary and remain inside the inhomogeneous object. The 
intensities of the reflected rays should become weaker after every bounce against the 
boundary and this process can be terminated after several bounces. To account for the ray 
reflection and refraction at the curved scatterer boundary, the geometrical optics solution is 
implemented. Whenever a ray exits the scatterer boundary, Sie contribution of the ray to 
the total scattered field is calculated by a ray-tube integration scheme. The integration is 
taken over the projection of the ray tube on an arbitrary Huygens' surface and the fields on 
the surface are approximated by the ray fields (Fig. 5). The detail formulation can be found 
in [5]. 

Scattering results for a radially inhomogeneous circular cylinder are shown in Fig. 6. 
To establish a reference solution, the radially inhomogeneous cylinder can be modeled as a 
cylinder of many layers with different refractive indices. The series expansion solution to 
scattering from a radially multilayered cylinder is implemented and more than 10 layers per 
wavelength are used to approximate the exact solution for the inhomogeneous cylinder. 
This reference solution will be considered numerically exact. Cylinders with the following 
smooth permittivity profile are studied: 

where 

„ 7tp 
er(p) = n2(p) = d + b(l-ccos-^-) (1) 

d-fctt-1   b-1 + fe(0)-d]    c^-k^-fl d-e^a) l,b- 2 , <=-1 + [£r(0)d] 

This profile is an arbitrarily chosen function which varies smoothly between er(0) at the 
cylinder center and er(a) at the outer boundary. Fig. 6 depicts the results for ej(0)=2.1 and 
8r(a)=2.5. Plots of the echo width (normalized with respect to the free space wavelength) 
versus frequency are shown on the left column for the TE polarization. Good agreement 
between the exact series solution and the ray results is observed for koa > 10 (cylinder 
diameter > 3 Xo). In the low frequency range, the ray results deviate from the exact 
solution as expected. It is also observed from the results that there are two types of 
oscillations in the echo width versus frequency plots. These features correspond to 
different scattering mechanisms in the dielectric object and can be easily interpreted in terms 
of the ray picture. The small-scale local oscillations are due to the interference between the 
direct reflected ray and the once internally reflected ray. The large-scale global oscillations 
(with nulls occurring at koa=21 and 39) are due to the interference between the reflected 
rays and the so-called "glory ray." Both types of oscillations as well as the overall echo 
width levels are accurately predicted by the ray formulation. The TM results are shown on 
the right column of Fig. 6. Again, good agreement between the ray results and the exact 
solution is observed. For the case of the TM incidence, the ray tracing data are identical to 
the TE case except for the reflection/transmission coefficients at the scatterer boundary. 
Since the on-axis rays have the same reflection/transmission coefficients for both 
polarizations, the local oscillation which are due to the interference between the on-axis 
rays should be the same for both polarizations. This is indeed the case by a detail 
comparison of the results for the two polarizations. The global oscillations, on the other 
hand, are very different for the TM and TE cases. 
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4. Discussion; 

A numerical ray tracing approach has been presented to calculate the scattering from 
electrically large, inhomogeneous objects. We conclude with several remarks concerning 
the numerical aspect of the ray approach. First, it is found from numerical experimentation 
that launching incident rays from a nonuniform grid is more efficient computationally than 
using uniform ray density. A higher ray density should be used on the outer region of the 
scatterer so that the number of rays per unit perimeter (or in the three-dimensional case, per 
unit surface area) launched toward the scatterer boundary is fixed. Convergence test is 
performed and it is found that more than four rays per wavelength along the scatterer 
boundary are necessary for convergent results. Second, the total scattered field should 
theoretically be independent of the choice of the Huygens' surface where the ray-tube 
integration is carried out. The most natural choice for the Huygens' surface is the scatterer 
boundary. However, when caustic points are located close to the scatterer boundary, the 
geometrical optics fields on the boundary are not accurate and the scattered field calculated 
based on the surface GO fields will not be accurate. This problem can be overcome by 
choosing a Huygens' surface larger than the scatterer boundary so that the caustic points 
are far away from the Huygens' surface where the geometrical optics fields are needed. In 
our calculations, the Huygens' surface is usually chosen to be about 8-10 Xo away from the 
scatterer boundary. Finally, due to the large number of rays which need to be traced in the 
object, the scattering calculation using ray tracing is computationally intensive, especially 
for three-dimensional scatterers. However, since ray tracing is independent of frequency, 
once ray tracing is done for one frequency, the ray data for other frequencies can be 
trivially calculated by proper scaling. In conclusion, it has been shown that the ray 
approach is an effective method for characterizing the electromagnetic scattering from large 
inhomogeneous objects. For objects with smoothly varying medium parameters, the ray 
results agree well with the available exact solutions in the high frequency range. In 
addition, the ray approach provides a simple physical picture of the scattering mechanisms 
in penetrable objects. It serves as a good complement to other low-frequency techniques. 
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Fig. 6. Backscattering from an inhomogeneous cylinder computed from the exact multilayered 
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Introduction 

In this paper, we consider FEM methods applied to complicated 3D structures that arise in borehole 
geophysics. The methodology we present applies to general solutions of Maxwell's equations but for 
notational simplicity we shall restrict ourselves to a scalar fields subject to Helmholtz's equation (or 
Laplace's equation if the problem is DC). We shall suppose that we do not want to use a general purpose 
3D mesh generator in order that we can retain control over the properties of the resulting stifness matrix. 
In particular, we would like to choose basis functions for the finite element solution that will provide 
enhanced structure to the matrix thereby allowing faster solution techniques. A typical example of a 
structured matrix is that stiffness matrix arising from a 3D mesh generated by rotating a 2D triangular 
mesh in p, z mesh about the z-axis. The triangles in the 2D mesh become pentahedra in the 3D domain 
Q. The mesh topology within each azimuthal plane does not change with <# and so the matrix is block 
tridiagonal. Fast methods have been developed for such matrices, most recently on parallel machines 
(e.g., [7]). 

The choice of mesh is intimately related to the choice of basis function. For example, with piecewise 
linear elements on a triangular mesh in p, z then within a triangle with nodes (pi, 21), (pi, z2), (p3,23) 
a scalar field is given as 

(1) «(p, z) = urfl'ip, z) + u2B
f

2
z{p, 2) + U3Sf (P, *), 

where 

,~ Rf"l„A -   (P ~ Pa)(2; - 23) - (p2 - P3){z - z3) 
W X (P' ~  (Pi - Ps)(*2 " H) ~ (P2 - P3)(*l - 23) 

and similarly for B% and B$'. Bf2 can also be denned as that unique piecewise linear function on the 
domain which is 1 on the ith node and 0 on all of the other nodes and we see that «,■ is the value of u at 
the ith node. If the mesh is rotated in ij> then the triangle becomes a prism in cylindrical coordinates with 
triangular faces (p\,z\,4>j), (p2>22,^j). (P3.Z3,^j)for j = 1,2. With respect to this mesh, a scalar 
field u is given as 

3    2 

(3) u = ^E«ysr(p^)s/w 
1To bepresentedat Ninth Annual Review of Progress in Applied Computational Electromagnetics, Mon- 

terey, March 22nd - 26th, 1993. 
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where the Bpz are the basis functions above and 

(4) BtM = £^±,        **(,) = 1Z* 
02 — 91 92 — 01 

This typeof 3D basis is traditionally also called atensorproductand written Bfz®B't'. The corresponding 
approximation space is then written as V£* ® v£ where V£' is the space of piecewise linear functions 
over the mesh in p, z and V* is the space of piecewise linear functions in 0. If the material properties 
are separable then stiffness matrix will also take on a tensor product structure. For example, if we want 
to solve the differential equation 

(5) -V- Vu + iuiii(j>,z)iii{(j>)u = f, 

we can cast this as a Galerkin problem and look for u 6 V£* ® V* such that 

(6) — / vV ■ Vu+ / iufii/12 vu = / vf 
Ja        "1^2 Jn Jn 

for all v 6 V£* ® V*. Applying integration by parts (and assuming appropriate boundary conditions on 
Sfi) gives 

(7) /  Vv -Vv + iu / 0i/i2U=  / vf. 
Jn 0i"i Jn Jn 

In terms of the tensor product basis vectors this reduces to solving for upq such that 

(8) £^>5%>3=/o'       for ally 
pi 

where A<"* = A"' ® M* + M<" ® A* + iuM"z ® M*. Here 

il£ = Jdpdz IvSf • VBf ,        M£ = jdpdz ^Bf ■ B? , (9) 

(10) 

and 

(11) fij = Jdpdzd<j>B?zBff. 

Many techniques exist to solve this, so called, 2 1/2 D problem, typically involving some kind of Fourier 
decomposition in 4 and direct or iterative matrix inversions in pz (e.g., [3],[6]). 

More generally, <r and p will not separate along coordinate directions but may be constant within each 
pentahedral element. In this case, the matrix A still has a block structure but the tensor products must 
be weighted to account for the varying material properties. For such problems, Fourier transforms are 

658 



>< 

(a) (b) 

Figure 1: 2-level hierarchical bases on [0,1] 

inapplicable but good solution techniques are still available such as alternating direction implicit (ADI) 
with appropriately chosen Chebyshev acceleration parameters ([9],[12]). 

For some remaining problems, however, it is not appropriate to suppose the material properties to 
be piecewise constant. For example, the cylindrical mesh will not be aligned with structures which 
are deviated with respect to the cylindrical axis. Such configurations arise in borehole geophysics 
when the borehole has not been drilled perpendicular to bedding planes - an increasingly common 
exploration procedure. There can be sharp variations in conductivity across these dipping beds, or else 
high conductivity deviated fractures can intersect the borehole. Such anomalies will significantly affect 
the response of borehole logging tools. For good accuracy, with as few node points as possible, it has 
generally been accepted that the mesh should be conformal with the bed boundaries and fractures. 

An obvious solution is to use a general purpose mesh generator. Unfortunately, the resulting stiffness 
matrices will be completely unstructured. One node may have few neighbours, another very many. 
Moreover, horribly skewed tetrahedra can result far from the bed boundaries thereby severely degrading 
the accuracy (to the point where one would probably have been better off approximating the bed profiles 
as piecewise constant within a non-conformal mesh). 

Another approach is to include the bed boundary into an existing structured mesh by subdividing appro- 
priate pentahedra or hexahedra into tetrahedra aligned with the discontinuity. This can be performed in 
a straightforward manner but subdividing one face typically implies that the neighbouring element must 
also be subdivided, and so the next, and so on, until one arrives at the mesh of tetrahedra we had tried to 
avoid. 

In the next section we show how to use embedded or hierarchical systems of basis functions to add 
nodes along interfaces without having to subdivide pentahedra far from bed boundaries. Moreover, we 
shall show how the resulting stiffness matrix is well structured allowing the use of advanced inversion 
techniques. 
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Hierarchical Bases 

A sequence of basis vectors is called hierarchical if each basis is a subset of the next. For a simple 
example consider a basis consisting of the two functions defined on [0,1] shown in the top of Figure 
1. The lower figures show two choices of basis for a vector space defined on a mesh 14 which is half 
the diameter of the original mesh. The upper set of basis functions is denoted B^h- Figure la shows 
a non-hierarchical basis, whereas Figure lb shows a hierarchical scheme. In the latter case, the basis 
vectors of Bih are also basis vectors of Bh. Hierarchical bases in FEM offer many of the advantages 
found in nested dissection or substrocturing and their use also drastically improves the stiffness matrix 
condition number ([11]). Such bases also offer intriguing connections with multigrid, ([10]), and with 
the (different) aggregation methods of Chatelin & Miranker ([2]), Chew ([4]), and Douglas ([5]). There 
is also currently interest in the hierarchical properties of wavelet bases (e.g., [8]). 

For a more complicated example of nested basis, consider Laplace's equation with Dirichlet boundary 
conditions 

(12) V ■ irVu = 0,        u = / on du 

discretized using the two meshes shown in Figure 2. We suppose that o is constant above and below the 
diagonal interface, T, shown in Figure 2b. The set of piecewise bilinear basis functions used in Figure 2a 
will be denoted Bi. The basis functions used in Figure 2b will be the linear elements on triangles given 
in equation (2) and denoted B2. We suppose that we do not want to use the triangular basis functions 
over the whole domain, but instead choose B\ U Bi where B~2 denotes those triangular basis functions 
which are zero at any node of Si. In this way, we gain the ability to model sharp changes in the field 
across the interface without changing the basis functions away from the interface. Suppose that Vi is the 
space of functions generated by Bt-, then we want to write the scalar field u as u\ + ui with ut- 6 Vi. 
This decomposition would not normally be unique. We enforce uniqueness by insisting that u^ = 0 on 
all of the nodes of Bi. «2 is thus only non-zero on the area shown shaded in Figures 2a and 2b, which 
we denote Q2. The non-zero nodes of «2 lie only along the ID interface, V? 

At the boundaries of the domain, we suppose that / 6 Vi so that we can set ui = 0 everywhere on the 
boundary QSli. We write Vf for the space of piecewise bilinear functions in V\ which are zero on the 
boundary dQ. We thus obtain a well-defined Galeiün scheme by choosing test functions vi €V° and 
t>2 € V2 such that 

(13) / er'Vvi ■ V(«i + u7) - 0       and        / <rVt>2 - V(ui + u2) = 0 
Ja Ja 

for all vi and vi, with ui = / on dQ and «2 = 0 on dQi. This obviously corresponds to a stiffness 
matrix with block structure 

(14) 
Mil    An\ 
\A\2   An)' 

2In purely formal terms, we can think of u^ being the restriction to T of a function in Hl(&) with 

u2\8a = 0, so that u2 € HI'
2
{T). We have chosen a decompositionHx(fi) = fl* (fi) ®HQ

/2
{T) where H1 (Ü) 

is that space of functions u with (ix,v)r = 0 for all v € HQ' (T). I.e., we have specifically removed from 
firl(fi) those functions which have discontinuous normal derivative across T and put those functions into 
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Figure 2: Meshes on [0, l]2 

An denotes the discretizedLaplace equation using piecewise bilinear functions over ß and J422 represents 
the disCTetized Laplace equation using piecewise linear functions over fl2. ^n produces a function 
whose normal derivative is continuous across T, so that the normal current is discontinuous and leads 
to a charge build up. u2 is the extra contribution needed to make the normal current continuous again. 
The coupling matrix Ai2 will take_ on a similar form to that from Figure lb. One can think of the solid 
triangle being a basis function in B2 and the basis functions B2h C Bh are the Bi. 

This example was a little contrived because on 9ß2, u2 is linear and so could match perfectly against 
a bilinear function defined on the rectangles. A simple strategy would have been to remove the bilinear 
basis functions from ü2 and have a well-defined finite element scheme with triangles inside fi2 and 
rectangles outside. 

This strategy is not possible in 3D. An intersecting plane will result in a mesh of tetrahedra on fi2 and 
give rise to piecewise linear functions defined on the triangles of the boundary SQ2. These would not 
match up against the bilinear elements on the square faces of ö(fi - £22). In effect, «1 + u2 would not be 
continuous. The only ways to enforce continuity are either (i) extend Q2 to encompass the whole domain 
or(ii)setu2 = 0onö£i2. The first case, that of extending fi2 to the entire domain requires a tetrahedral 
mesh everywhere, which was what we had tried to avoid. In the second case, we see that ui + u2 is 
continuous precisely because the zero function is equally well defined as bilinear on a square mesh or 
linear on a triangular mesh. 

Our strategy for 3D meshing is thus to rotate a 2D mesh of triangles to form a mesh of pentahedra. The 
stiffness matrix An will be block tridiagonal. Each bed boundary defines an intersecting plane which 
cuts through the domain. We convert each interesected pentahedra into a sum of tetrahedra, but we only 
subdivide those pentahedra which are actually intersected. We write fi2 for the sum of tetrahedra. We 
solve for 111 + «2 where u2 is defined on the mesh of tetrahedra and, for continuity, ti2 is zero on 9fi2. 
J422 represents Laplace's equation on the tetrahedra. An represents the differential equation relative to 
the original discretization scheme.3 

3 An could also correspond to a finite difference discretization. 

661 



Because the stiffness matrix has retained a rich structure, many iterative and direct inverse methods 
suggest themselves. We shall give examples based on conjugate gradient with suitable preconditioners. 
The preconditioned conjugate gradient algorithm is well known, e.g., see [1], and will not be repeated 

here. 

We shall consider preconditioners based upon 1LU factorization which requires that we decompose the 
stiffness matrix A as LU + C where L is lower triangular with unit diagonals, U is upper triangular. C 
is chosen so that Ly = Utj = 0 if Ay = 0.4 An advantage of this decomposition is that L and U can 
be stored with the same sparse matrix structure as A. The standard (unmodified) ILU algorithm given in 

[l]is 

do r = 1 to JV - 1 
dor=ltoW-l 

d = A(r, r) 
do i = r + 1 to JV 

if A(i,r)# Often 
e = A(i,r)/d 
A(», r) = e 
do j = r + 1 to Ar 

if A(r,j)r£ Often 
if A(«',j)# Often 

A(i,j) = A{i,j)-exA(r,j) 
end if 

end if 
end do 

end if 
end do 

end do 
end do 

At the end of the algorithm, A has been overwritten by L and U with L having unit diagonals which 
are not stored (i.e., the diagonal elements that are stored in A after the ILU algorithm are the diagonal 
elements of U). If A is complex symmetric, C will be also and U = DV for some diagonal matrix D. 
(Clearly, Da = Uu because La = 1.) 

A disadvantage of the ILU algorithm above is that even if A is positive definite then LU need not 
be. Only in some restricted cases (see [1] for references) can the matrix LU be shown to be positive 
definite. Recall that the preconditioned conjugate gradient algorithm generally converges faster if the 
preconditioner is positive definite, although this is by no means a necessary condition. 

We have found that the positivity of LU depends strongly on the node numbering chosen. In particular, 
if we choose a 'natural' ordering, with the overlay nodes listed after the pentahedral nodes then the 
convergence was almost invariably poor. Nor did choosing a profile minimizing scheme such as reverse 

4We are ignoring the blodc structure so here:, j = 1,... ,n where n is the total number of nodes. 
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Point IUU 

Figure 3: Point versus Block ILU Precondiüoniiig 

Cuthill - Mckee help.5  The problem is that we are trying 'point-oriented' preconditioners. We are 
ignoring the block structure of A and that is a mistake. 

A better preconditioner is to write An = LuUn + Cu and A22 = £22^22 + C22 so that 

(15) U2   A„)-{0     L22)\0     Vn) + \A\2 c2) U22-J 

Although the defect matrix, C, is now bigger than it was for point-ILU, the number of iterations will 
be greatly decreased, even if LuUn or L22U22 are not positive definite. A comparison of the two 
preconditioners is shown in Figure 3. This example involved a Dual Laterolog' in a O.Olflm borehole 
with one semi-infinite bed of resistivity lfim beneath another of resistivity 1000m. The interface was 
inclined by 80 degrees. We compare point-ILU preconditioning with block ILU preconditioning. The 
former required 4300 iterations and the latter only 740. For this problem, there were 3329 nodes in each 
of 32 pz planes and an additional 7629 tetrahedral nodes, making a total of 114157 unknowns. For this 
example, if we chose to not add the additional basis functions on the tetrahedra, the number of iterations 
fell to 720 and the accuracy degraded by 8%. 

In conclusion, we have developed a robust method of adding basis functions which are conformal with 
sharp changes in material properties. If appropriate block preconditioners are chosen then these additional 
functions do not cause any significant increase in the number of iterations required for convergence. 

5Moreover, an RCM numbering will destroy the structure of A that we have been trying to maintain! 
trademark of Schlumberger 
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Abstract 
A new algorithm is proposed to solve the volume integral equation where- 

by the scatterer is first divided into N subscatterers. Smaller problems are 
nested within larger problems so that the problem can be solved in logi\T 
steps. The use of Huygens' equivalence principle reduces the number of un- 
knowns at each stage. The resultant algorithm has reduced computational 
complexity whose CPU time is proportional to N1'5 in two dimensions, and 
N2 in three dimensions. Unlike the conjugate gradient method, the solution is 
valid for all incident waves. Hence, effectively, the matrix equation that is re- 
lated to the volume integral equation is inverted with reduced computational 
complexity. 

1. Introduction 
Recently, we have developed a recursive aggregate T-matrix algorithm 

(RATMA) to solve volume integral equation valid for all incident waves with 
reduced computational complexity compared to a direct solution via a matrix 
equation with Gaussian elimination [1-4]. The method has a computational 

complexity of N2 for two dimensional scattering problems (N7?3 for three 
dimensions) where N is the total number of unknowns needed to characterize 
the volume of the scatterer. 

In this paper, we present an algorithm [5] to solve volume integral equa- 

tions valid for all incident waves with computational complexity of JV15 in 
two dimensions and N2 in three dimensions. This is of reduced computational 
complexity compared to RATMA. We shall call this the nested equivalence 
principle algorithm (NEPAL). 

The nested equivalence principle algorithm (NEPAL) is similar to many 
fast algorithms like FFT [6] and the nested dissection ordering approach in 
finite element method [7,8]. The principal idea of this approach is to nest one 

This work was supported by the Army Research Office under contract DAAL03-91-G- 
0339, and the Office of Naval Research under grant N00014-89-J-1286. The computer 
time was provided by the National Center for Supercomputer Applications at the Uni- 
versity of Illinois. 
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algorithm within another so that a smaller problem is solved before a larger 
one. The size of the problem increases by a factor of 2" at each stage where n 
is the dimension of the problem. In this manner, an N unknown problem is 
solved in log2„ N steps. Moreover, the use of Huygens' principle reduces the 
number of unknowns at each stage so that the computational labor is being 
reduced. The resultant complexity is iV1-5 in two dimensions and JV2 in three 
dimensions. 

2. The Volume Integral Equation 

A volume integral equation has the form [4] 

tfica(r) 

rf(r) = «W(r) + I dr'g0(r - r')k2
0[eT(r') - l]^(r') (1) 

or 

*(r) = tinc(r) + j dr'Vgo(r - rOfcrV) - 1] • V'^(r') (2) 
 „  

where go(r — r') is the Green's function. In electromagnetics, the first form 
is for the scattering of Ez polarized waves while the second form is for the 
scattering of Hz polarized waves. 

A usual practice in solving (1) and (2) is to discretize the scatterer into N 
discrete pieces and approximate the integrals in (1) with summations. Hence, 

JV 

*«(r) = ^^(*o,rO-b*, (3) 

where r,- = r — r(, and ip*(k0, r,-) is a row vector containing outgoing-wave 
cylindrical harmonics in two dimensions and spherical harmonics in three di- 
mensions [4, p. 460]. The column vector b; contains the magnitudes of the 
harmonic expansions. For monopole subscatterers, b,- is a one-component 
vector corresponding to the monopole harmonics, while for dipole subscat- 
terers, b; is a three-component vector corresponding to three harmonics. For 
instance, Equation (1) will yield principally monopole subscatterers while 
Equation (2) will yield principally dipole subscatterers. The unknown b; can 
be found by imposing a boundary condition on all the N subscatterers. 

3. The Huygens' Equivalence Principle 

The Huygens' equivalence principle stated mathematically is 

*~(r) = j dS'h ■ [0,M(r')V9o(r - r') - g0(v - r')V>Jca(r')].       (4) 
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It can be used to shift the scattering centers of the subscatterers to the surface 
as shown in Figure 1. In this manner, the number of scattering centers can 
be reduced. If the number of volume subscatterers is 0(n), the number of 

surface subscatterers is then 0(n°'5) in two dimensions, and O(n066) in three 
dimensions. This reduction in the number of scattering centers can be used 
to reduce the computational labor of solving for the scattering solution of a 
volume scatterer as illustrated by NEPAL. 

Source 

n faca(r) NB Subscatterers 

»0o0
0o0

Q°i 

NA Subscatterers 

Figure 1. Huygens' equivalence principle helps to reduce the number 
of scattering centers. 

Mathematically, the reduction in the number of scattering centers can 
expressed as follows. Initially, we have NA volumetric subscatterers as illus- 
trated in Figure 1. The scattered field from these NA scattering centers, in 
the manner of Equation (3), can be expressed as 

NA 

^ca(r) = £vU»r.)-b; (5) 
i=i 

where ip*(k0,ri) represents a column vector of spherical harmonics emanat- 
ing from the center rj. Huygens' principle states that this scattered wave can 
be replaced by wave radiating from equivalence surface sources on a surface 
enclosing the NA subscatterers (see Figure 1). In other words, the NA vol- 
umetric scattering centers can be replaced by NB scattering centers residing 
on the surface. Mathematically, we now have 

NB 

<t>,ca(r) = ]>2 ip\k0, rm) • cm (6) 
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Figure 2. NEPAL—Nested equivalence principle algorithm. 

where now, the wave emanates from r'm residing on the surface S. Since the 
wave equation is linear, a linear relationship exists between cm and b;. This 
relationship can be found via the use of Huygens' principle. Consequently, 
we have 

cm = £hL°)-b,-,        m = l,...,NB (7) 
i=i 

Note that NB « y/T^Ä, so a large reduction in the number of scattering centers 
ensues when NA is large. 

4. Nested Equivalence Principle Algorithm (NEPAL) 

The nested equivalence principle algorithm (NEPAL) is similar in spirit 
to fast Fourier transform [6] and nested dissection ordering in finite element 
method [7,8]. The idea is to divide the original problem into subgroups. The 
subgroups are then further divided into sub-subgroups until the lowest level 
of subgroups is reached. In two dimensions, the lowest level is in groups of 
four (see Figure 2) while in three dimensions, it is in groups of eight. (For 
ID FFT, it is in groups of two.) 

For instance, in two-dimensions, first, at the lowest level, the scatter- 
ing solutions for groups of four subscatterers are solved. Then, at the next 
higher level, the scattering solution from four groups each consisting of four 
subscatterers are solved. Hence, the scattering solution from a group of 16 
subscatterers are known. Then, the Huygens' equivalence principle is used 
to replace 16 scattering centers with 12 scattering centers. Then at the next 
higher level, the scattering solutions for four groups of scatterers each con- 
sisting of 12 subscatterers (i.e. 48 subscatterers) are solved. The process is 
repeated until the scattering solution for the entire scatterer is obtained. 

Because of the use of Huygens' equivalence principle at each stage, the 
number of subscatterers involved or the number of unknowns is reduced by 
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roughly a factor of two at stage i when i is large. Hence, even if Gaussian 
elimination is used at each stage to solve for the scattering solution, reduction 
in computational labor ensues. It shall be shown in the next section that when 
JV gets sufficiently large, this is asymptotically an 0(JV1-5) algorithm in two 
dimensions. 

5. Computational Complexity 

The most important aspect of this algorithm is its reduced computa- 
tional complexity of 0(A^15). This fact can be appreciated even without 
understanding the details of the algorithm. It is the consequence of nesting 
a smaller problem within a larger one and the use of Huygens' equivalence 
principle. 

If a scatterer can be modeled by JV scattering centers, a straightforward 
approach to solve this problem valid for all incident waves is to convert the 
problem into an JV unknown problem with an JV x JV matrix. The matrix 
equation can be solved for all possible right-hand side (equivalent to all pos- 
sible incident waves) by Gaussian elimination, for instance, and this results 

in an 0(N3) solution technique. 
On the other hand, if we use a divide-and-conquer strategy, a more ef- 

ficient algorithm can be developed. Assume that JV = 4L, where L > 2. 
Then, we can first divide the JV subscatterers into groups each containing 16 
subscatterers, resulting in JV/16 groups.* We first solve the 16 subscatterer 

problem using the 0(n3) algorithm mentioned in the previous paragraph, 
making the 16-subscatterer solution valid for all incident waves. This is re- 
peated JV/16 times, which is the number of groups present. Hence, in the 
first stage, the operation count is proportional to 

(16)3 x ^ = 162JV (8) 

The next step is to replace the interior scattering centers of each group 
by surface scattering centers, which is the execution of Equation (7). This is 
a procedure with subdominant operation count compared to (8). With the 
interior scatterers of each group removed now, then we regroup four previous 
groups into one larger group, and solve a new scattering problem involving 
the larger group. Because of the removal of the interior scattering centers, 
the number of unknowns of the new larger group is not 4 x 16, but a number 

* We start with groups of 16 subscatterers at the lowest level because Huygens' principle 
cannot be used to reduce the number of scattering centers for groups of 4 subscatterers 
at the lowest level. 

668 



less than that. (In this case, it is 4 x 12.) Approximately, the use of Huygens' 
principle halves the number of unknowns. Hence, asymptotically, the number 
of unknowns per group doubles when one goes from stage i to stage i+1. (This 
is an approximation at the early stage, but becomes increasingly accurate 
when i becomes large.) However, the number of the larger groups now to be 
solved separately is JV/(16 x 4). Hence, the CPU time in the second stage is 
approximately 

(16x2)3
I^i = 16222iV. (9) 

Hence, repeating the same argument, and assuming that the number of 
unknowns only doubles at each stage, in the t-th stage, the CPU time is 
proportional to 

Ti = 1622'JV (10) 

and the problem is solved in P = log4 N — 1 steps. The total CPU time is 
then 

T = 162N + 16222N + ... + 1622PN 

p 

= 162N ]T 2'' = 162JV(2P+1 - 1) (11) 
t=0 

Since 2P+1 = 2log«JV = VW, when N -* oo, the above becomes 

T as lö2^1-5 (12) 

Hence, it is an (^(iV1-5) algorithm. The reduction in computational com- 
plexity is the result of nesting a smaller problem within a larger one, and 
reducing the number of unknowns by Huygens' equivalence principle at each 
stage. The solution is valid for all incident waves. 

6. Numerical Results and Conclusions 
We have implemented NEPAL to solve volume integral equations (1) 

and (2) and compared the results with directly solving the volume integral 
equations by the method of moments (MOM) [9]. The results are in good 
agreement for both Ez and if2-polarized waves. We illustrate the comparison 
for the Ez and Hz polarized waves in Figure 3. 

We have also studied the growth of computer time with the number of 
unknowns in the problem and found that NEPAL is very competitive with 
RATMA in this preliminary investigation as shown in Figure 4. It is certainly 
more efficient than MOM using Gaussian elimination. Moreover, the solution 
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Figure 3. Comparison of NEPAL with method of moments for (a) 
Ez, and (b) Hz wave scattering. 

it provides is valid for all angles of incident unlike conjugate-gradient-type 
methods [10]. 

The idea of NEPAL can also be used to expedite the calculation of a 
matrix-vector multiplication in the conjugate-gradient algorithm. It can be 
shown that in such a case, the computational complexity of the matrix-vector 
multiplication can be reduced to O(N) from 0(N2). 

REFERENCES 
[1] W. C. Chew, "An N2 algorithm for the multiple scattering solution of N 

scatterers, " Microwave Optical Tech. Lett, vol. 2, no. 11, pp. 380-383, 
1989. 

[2] Y. M. Wang and W. C. Chew, "An efficient algorithm for solution of a 
scattering problem, " Microwave Optical Tech. Lett, vol. 3, no. 3, pp. 
102-106, 1990. 

[3] W. C. Chew and Y. M. Wang, "A fast algorithm for solutions of a scatter- 
ing problem using a recursive aggregate r matrix method, " Microwave 
Optical Tech. Lett, vol. 3, no. 5, pp. 164-169, 1990. 

[4] W. C. Chew, Waves and Field in Inhomogeneous Media, Van Nostrand 

670 



u 
s 

OH u 

102 103 104 105 

Number of Unknowns 

10" 

Figure 4.  Comparison of CPU time of NEPAL with RATMA and 
MOM. 

Reinhold, New York, 1990. 
[5] W..C. Chew and C. C. Lu, "NEPAL-An N1.5 algorithm for solving the 

volume integral equation," IEEE Antennas and Propagation Society In- 
ternational Symposium Digest, pp. 184-187, July 18-25, Chicago, 1992. 

[6] J. W. Cooley and J. W. Tukey, "An algorithm for the machine compu- 
tation of complex Fourier series," Math. Comp., vol. 19, pp. 297-301, 
1965. 

[7] A. George, "Numerical experiments using dissection methods to solve 
n x n grid problems," SI AM J. Numer. Anal, 14, pp. 161-179, 1977. 

[8] A. George and J. W. Liu, Computer Solution of Large Sparse Positive 
Definite Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1981. 

[9] R. F. Harrington, Field Computation by Moment Methods, Krieger Pub- 
-     lishing Co., Malabar, Florida, 1983. 
[10] D. T. Borup and 0. P. Gandhi, "Fast-Fourier-Transform method for cal- 

culation of SAR distributions in finely discretized inhomogeneous models 
of biological bodies," IEEE Trans. Micro. Theory Tech., vol. 32, no. 4, 
pp. 355-360, 1984. 

671 



A CG-FFHT Method for the Solution of EM Field in 
Axisymmetric Inhomogeneous Media 

QING-HUO Liu 
SCHLUMBERGER-DOLL RESEARCH 

OLD QUARRY ROAD 

RIDGEFIELD, CT 06877 

AND 

WENG CHO CHEW 

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

UNIVERSITY OF ILLINOIS 

URBANA, IL 61801 

In this paper, we propose a CG-FFHT method for the solution of elec- 

tromagnetic field in an axisymmetric inhomogeneous medium. This method 

combines the conjugate gradient (CG) method with the fast Fourier trans- 

form (FFT) and the fast Hankel transform (FHT). It is similar in spirit to 

the CG-FFT method in Cartesian coordinate system [1, 2]. 

In an axisymmetric inhomogeneous medium with dielectric constant er(p, z) 

and conductivity a(p,z), a coaxial loop antenna with current I will generate 

a nonzero electric field component E$ governed by 

/did d2      , ,\ _ .   T    ,, 
\Tp^d~P

p +d? + h)E* = -wIirf(p ~ *>)*(* - z°)>        (!) 
where p0 is the radius, and z = z0 is location of the antenna; the magnetic 

permeability is assumed to be a constant fi0. The wavenumber k is related 

to the complex permittivity e = e0(er + ^7-) by k2 = u>2p:0e(p,z). 

The Green's function for a homogeneous background medium with con- 

stant complex permittivity ej (wavenumber ki) can be shown as 

00 00 

g(p,P',z,z') = -i- I dk* J dkS$l'qeS^ KUkpPyk>z.      (2) 
-00        0 

Note that the Green's function is expressed in terms of an inverse Hankel 

transform in p direction and an inverse Fourier transform in z direction. 

Using the definition of the Green's function and the principle of linear 

superposition, one derives the integral equation for the electric current density 

(k2 - k2) 

OO OO 

- J' dz' J dp'g(p, p', z, z')J(p', z') = E™(p, z),     (p, z) e R,   (3) 

672 



where the induced current density is defined as J(p, z) — (k2 — k2)E$(p,z), 

R stands for the inhomogeneous region, and -E™c(p, z) is the incident electric 

field. By substituting Equation (2) into (3), and using the definitions for the 

Hankel transform and Fourier transform, we arrive at 

S(p, z)J(p, z) - TH-1 {iTH [J(p, Z)] } = E™(p, z), (4) 

where TTi and TH~l stand for the forward and inverse Fourier-Hankel trans- 

forms in z and p respectively. In Equation (4), the operator L and function 
S are 

1 1 
£(*"*x)=(*» + *2-fc2)'   s{p'z) = k\P,z)-ki (5) 

Therefore, the integral equation in (4) can be rewritten as 

£J(p,z) = E?(p,z). (6) 

This integral equation can be solved by using the conjugate-gradient method. 
In each iteration of a conjugate-gradient method, the most expensive oper- 
ation is a matrix-vector multiplication, or equivalently, operator-vector ac- 
tion illustrated by the left-hand side of (6). If J(p, z) is discretized into N 

unknowns, the cost of a simple matrix-vector multiplication is 0(N2). How- 

ever, with the use of fast Fourier-Hankel transform (FFHT) [3], the cost of 

this matrix-vector multiplication can be reduced to 0(N \og2 N), greatly re- 
ducing the computation time. Moreover, the memory requirement in a CG 

method is 0(N), much less than the direct solution of the matrix equation 
via Gaussian elimination. 

In order to demonstrate the use of the CG-FFHT method, we show a nu- 
merical example for the application in the electromagnetic subsurface sensing. 
The sensor consists of one loop antenna transmitter and one receiver in the 
measurement along the z axis. The receiver-transmitter spacing is 1.016 m; 
so if the midpoint of the receiver and transmitter is at z, the locations of 
the transmitter and receiver are at z — 0.508 and z + 0.508 respectively. The 
transmitter is operating at an induction frequency 20 kHz. At this frequency, 
the small-loop antennas can be regarded as dipole antennas. The receiving 
antenna measures the electric field, which is then converted into an appar- 
ent conductivity. In the inhomogeneous medium considered here, we assume 
er = 1, and the conductivity a is a function of space since only the conduction 
current dominates at this frequency. 
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The example shown in Figure 1 is a two-body inhomogeneous medium in 

a background of conductivity 1.0 S/m. The conductivities of the two bodies 

are a = 0.01 S/m and a = 2.0 S/m respectively. The calculated real and 

imaginary parts of the current density is shown in Figures 2a and 2b; and 

the apparent conductivity obtained by the CG-FFHT method is shown in 

Figures 3a and 3b. The number of iterations in the CG procedure is less 

than eight for all points. Excellent agreement has been found between our 

result and that obtained by the numerical mode-matching (NMM) method 

In summary, it is shown in this paper that the two-dimensional integral 

equation for the induced current density in an axisymmetric inhomogeneous 

medium can be formulated using the Hankel transform in p and Fourier trans- 

form in z. The CG-FFHT method is developed to solve the integral equation 

for the unknown current density using the combination of the CG method 

and the FHT and FFT algorithms. In each iteration of this method, the num- 

ber of complex multiplications is 0(N log2 N), which is much faster than a 

straightforward MOM solution with Gaussian elimination or the CG method 

with a simple matrix-vector multiplication. 
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Figure 1. Geometry of the example showing the dimension of the inhomo- 

geneous region in meters. The conductivity is in S/m. 
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Current Density ai the Inhomogeneity (transmitter at 2=1.016 m) 

*10-= 

(a) 

Current Density at the Inhomogeneity (transmitter at 2=1.016 m) 

(b) 

Figure 2. The real and imaginary parts of the current density distribution 
obtained from the CG-FFHT method for transmitter at z = 1.016 m. 
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Comparison with NMM Solution for an Invaded 4-Layer Formation 

10 15 

(a) 

Comparison with NMM Solution for an Invaded 4-Layer Formation 

Figure 3. Comparison of apparent conductivity obtained using CG-FFHT 

method and the numerical mode-matching (NMM) method. Solid line: NMM 

result; circles: CG-FFHT result. 
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SCATTERING COMPUTATIONS FOR 
MULTI-REGION CYLINDRICAL OBJECTS 

Michael A. Morgan 
Electrical and Computer Engineering Department 
Naval Postgraduate School, Monterey, CA 93943 

Abstract 
A class of 2-D scattering problems involving sectored and layered regions contain- 

ing penetrable materials, with optional conducting surfaces, is solved using multi-region 
cylindrical harmonic expansions. The numerical approach is easy to implement and pro- 
vides accurate frequency-domain solutions of a wide range of geometrical configurations. 
Solutions programmed using MATLAB are shown for bistatic scattering from: (1) a split 
region circular cylinder; (2) a half circular cylinder, and; (3) a penetrable half-shell. 

Introduction 

Scattering by an infinite length dielectric circular cylinder was first solved using cylin- 
drical harmonics for the electromagnetic case by Lord Rayleigh early in this century [1]. 
Since that time, numerous others have extended the use of cylindrical harmonics to so- 
lutions for scattering by metallic cylinders coated with dielectrics, plasmas and magnetic 
materials, as well as multi-layered dielectric cylinders, as exemplified in references [2-5]. 
Cylindrical harmonics in multiple regions have recently been used to solve for scattering 
by a conducting wedge [6] and for radiation from finite length monopole antennas hav- 
ing a top-hats and dielectric loadings [7-8]. Cylindrical harmonics used in local regions, 
but with variable multipole points, are also employed with the 2-D generalized multipole 
technique (GMT) [9]. The approach here could be considered as a special case of the 
GMT where all multipole expansions are centered at the origin and material boundaries 
are restricted to separable contours, thus providing an exact analytical formulation as a 
starting point for the numerical solution. 

The objective of this paper is to propose and then demonstrate a simple technique 
for extending the use of cylindrical harmonics to scattering problems involving both 
layered and sectored regions of penetrable or conducting material. This formulation is 
theoretically exact, although numerically approximated. It provides a powerful tool for 
simple and accurate analysis of a wide range of configurations which can be modeled under 
the restriction to radial and circumferential material boundaries. An important practical 
application of this method is providing benchmark solutions of multi-region scattering 
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problems for use in the validation of more general 2-D scattering codes which may employ 

finite elements or integral equations to handle arbitrary material configurations. 

Formulation 

Time-harmonic (e-7"' suppressed) plane wave scattering will be considered for 2- 

D circular objects having layered and sectored regions, as illustrated in Fig. 1. These 

regions are each filled with specified homogeneous material or free space. Note that each 

region is labeled with a double index, (l,s), where / = 1,2,... ,L defines the layers and 

s = 1,2,.. -,S(l) corresponds to sectors within the /-th layer. The unbounded outer 

"layer" (outer boundary at r —» oo) has / = 1, with 5(1) = 1, while the inner core layer 

has I = L. 

1 = 1 Layer 

(Unbounded Region) 

%    (TE Case) 

6 - 
E1"0 (TM Case) 

1 = 2 Layer 

with S(2)=3 Sectors 

I = L Core Region 

with S(L)=2 Sectors 

Figure 1     Scattering by a Multi-Region Cylindrical Object 

Both the structure and the fields are invariant to translations in z. Two orthogonal, 

linearly polarized incident plane waves, Ei are considered, corresponding to transverse 

magnetic (TM) and transverse electric (TE), to i, with respective subscripts i=\ and 2. 

All field components can be generated through a knowledge of the z-components 

of E\ and »yo-ÖV These field components will be respectively denoted as V'i(pi^) a11^ 

t/>2(p, 4>) in an effort to consolidate common equations for the TM and TE cases. Apply- 

ing Maxwell's equations in cylindrical coordinates (with z invariance), shows that each 

V'iCPi i>) solves the Helmholtz equation while the transverse (to z) field components are 

given by [10] 
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fj.rk0r d(j> mH„(p,4,) = -^cz-£ (la) 

VoH,(p,<ß)=-j-^ (16) 
fj,rk0  op 

The general solution for ij>i in each of the (/, s) regions which is penetrable can be 
approximated by the truncated cylindrical harmonic expansion 

N 

UP^)=   £  [anJ1/(n)(kp) + bnHlfn)(kp)}e^^ (2) 
zi=-N 

where N and v{n), as well as k = ^/prtrko, are specified in each penetrable region and 
are thus each implicit functions of (l,s). It should be noted that all bn = 0 in the 
core layer L while the an's in the exterior / = 1 layer are known through specification 
of the incident field. For example, a plane wave incident at an angle 0o, with form 
i>i = ^oe-^opcos(^-*„); hag Qo = 0_5^o and fln = ^-ng-j^o^ for n ^ o. 

Note that v(n) = n in the case of the 7=1 exterior layer, or in any other layer having 
only one segment. Periodicity of 2TT in such cases is required so the solution can be 
single-valued. Another special case is with fixed pec or pmc radial boundaries to a given 
sector, say at angles <j>i and <j>2 — 4>i + &<!>• Resultant null conditions on either ^ or tp2 
at both 4>i and <j>2 quantizes the angular frequencies to v(n) = nw/A<j>, with eigenmodes 
of the form sm[i/(n)(<t> — <j>{)]. The summation index in (2) is then forced to run from 1 
toJV. 

Aside from these special cases, v(n) will be of the form na with selection governed 
by the usual rules of Fourier series expansion of an arbitrary function over a domain of 
length A<f>. Such an expansion will be periodic in 2ir/a and this interval must exceed 
A<f>. The usual selection is a = 7f/A<^, which makes the expansion periodic in 2A(f>. 
To simplify the programming in MatLab, which only has intrinsic Hankel functions of 
integer order, we will use v = n in all regions. Since the periodicity of this selection is 
1-K the expansion of an arbitrary function over a narrow interval A<^> could require many 
more terms relative to an expansion using, say v = nn/A<f>. Optimization of numerical 
efficiency by using noninteger i/s is postponed for later efforts. 

Referring to Figure 1, moment equations based on continuity of tangential fields 
around the perimeter of each region are used to define the linear system for the solution of 
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the unknown expansion coefficients. For example, the following integral form is evaluated 
over a perimeter contour of the (/, s) region 

/     Et\c)w^\c)dc= £   f E^'\c')^y\c')dc' (3a) 
JC,,, (j,    ,j  JC,,,UCtiy 

I     H^\c)w^\c)dc = £   I H^'\c')^y\c')dc' (36) 
JC,,, (j,   ,j Jc,,,uc,,,, 

where the RHS includes contributions from all regions (l',s') which are adjacent to (/, s). 
The weighting functions, {wm's (c)} are selected to be asymptotically complete over the 
integration contour. A good choice is the Fourier set over the perimeter path length 
ACits of the form 

The linear equations in (3) relate the cylindrical harmonic coefficients between ad- 
jacent regions and have the form 

£    AM«M+BMe" (S) 

l',3') ^ n'=-N,,iM, ' 

N,,,. 

+ 

where the system coefficients Am,„ and Bm,„ are evaluated as moment integrations, 
weighted by wm(c), of cylindrical harmonic terms involving regional values of either 
Jv(n)(kp)e3''(n^ or H^, Jkp)e3"^n^, as well as radial or azimuthal derivatives of these 
terms depending upon the tangential field values being considered. Specifics can be easily 
derived by substituting the appropriate tangential fields into (3) as either found from (2), 
or via operations on (2) as given in (1). In forming the linear system from the moment 
equations in (5), the terms for I = 1 involving known on's which expand the incident field 
are transferred to the RHS and used as the driving array for the system. 

Truncation estimates for Ni:3 in each region depend upon the Fourier indices vitS 

selected within the region. Using the expedient form v = n employed here, very good 
convergence is obtained using JVj>3 = 2|fc|pj, where k = ko^JeTiir within the region and p\ 
is the outer radius of the 7-th layer. This applies except for the 7=1 exterior region, where 
Ni=2kop2 is used. Good convergence is usually reached when using these truncations 
because the angular frequency (radians per radian in the <j> coordinate) of traveling waves 
within the region is bounded by half this value, \k\pi. For n > \k\pi Bessel and Hankel 
functions within the region will behave as their "small argument" forms indicate, with 
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the series terms dominated by the Neumann functions within the Hn portion. Thus, 
the series terms much beyond \k\pi can be identified as evanescent fields which contribute 
to the reactive storage of energy. With the exception of hi-Q enclosed cavities (with null- 
field boundaries) the contributions of the evanescent field terms diminish rapidly with 
increasing n. Our truncation estimate, which is twice the transition bound \k\pi, thus 
allows a generous surplus of modes in all but hi-Q cavity region cases. 

Once the linear system in (5) is solved, the scattered field is found through use of the 
6n's for / = 1. In the far-zone of the scatterer, defined by the three conditions p 3> A0, 
p> D and p > 2D

2
/\Q, where D is the outside diameter of the scattering object, the 

scattered field may be simplified through use of the large argument approximation to the 
Hankel functions, 

H<?Xhp)^sP^fe-^ (6) 

The resultant far-zone scattered field becomes 

V 2^oP n^Ni 

The 2-D bistatic radar cross section per unit length, also known as the "scattering width", 
is given by 

.M-a^Mg-'   * J2   bnertt+v/*) 
n=-JVi 

(8) 

where the incident field magnitudes of either Ez (TM case) or r]oHz (TE case) axe assumed 
to be unity: |</>j"c| = 1. 

Computations 

Simple examples of the multi-region cylindrical harmonic technique will now be 
shown. These were originally used for validation of a powerful and quite general finite ele- 
ment based 2-D code which allowed conformal (to the object's surface) mesh termination 
using the Field Feedback Formulation (F3), [11]. In fact, the approach described in this 
paper was developed by the author to provide simple but highly accurate computational 
benchmarks incorporating piecewise inhomogeneous scatterers for verification of the F3 

algorithm or other codes. 
The first comparison is shown in Figure 2 for the case of a split-region circular 

cylinder of diameter 2A0 where er=2 in the left half and er=4 in the right half. The 
bistatic scattering width computed using the multi-region cylindrical harmonic (MRC) 
approach agrees very well with the finite element method (FEM) even at angles having 
low scattering. 
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Figure 2     Comparison of Bistatic RCS for a Split-Region Dielectric Cylinder having 2\Q 

Diameter, Left-Half er = 2, and Right-Half £r = 4 
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Figure 3     Comparison of Bistatic RCS for a Half-Circular Dielectric Cylinder having 2A0 

Diameter and er = 4 

By setting er to unity in the left-half region, the split-region cylinder is converted into 

a half-circular cylinder.   Comparison with the finite element method solution is shown 
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Figure 4 Comparison of Bistatic RCS for a Semi-Circular Dielectric Shell with 0.25Ao 

Thickness, Outer Diameter = 2Ao and £r = 4 

in Figure 3, with excellent agreement again obderved. The conversion of the split-region 
cylinder to the half cylinder illustrates the effective removal of regions from the scatterer 
by setting er=l in those regions. It is still necessary to represent the fields within these 
free space regions using the appropriate cylindrical harmonic expansions. 

A final example is shown in Figure 4, where an er=4 dielectric half-shell is constructed 
using a two-sector 1=2 layer (with left half er=l) and a single sector free space L=3 core. 
Quite good agreement is once again demonstrated in comparing to the bistatic patterns 
computed using the finite element method with F3 mesh termination. 

Conclusions 

This paper has introduced the general formulation and demonstrated the utility of 
employing cylindrical harmonic expansions in multiple regions to solve for scattering by 
a special class of inhomogeneous scatterers. The approach is simple to program and has 
been highly accurate for the cases considered. Further, the method is very efficient since 
the basis functions are exact solutions to the field equations in each region and quickly 
converge. Computation times using this technique, when optimized for array processing 
under MatLab 386, averaged over 50 times faster than a highly optimized F3 based finite 
element code compiled under NDP386. 

As mentioned, the multi-region cylindrical harmonic method was developed to pro- 
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vide a suite of benchmark 2-D scattering problems with reliable solution accuracy. The 
approach appears to be highly robust and further validations are planned for additional 
objects which include pec surfaces and lossy material. Comparisons will be made using 
both the F3 code and the generalized multipole technique. 
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COMPUTATION OF ELECTRIC MACHINES PARAMETERS IN THE 
ABC FRAME OF REFERENCE USING FINITE ELEMENT ANALYSIS 

A.A. Arkadan R.H. VanderHeiden 
Electrical and Computer Engineering Department 

Marquette University 
Milwaukee, WI 53233, USA 

Abstract: A computer-aided method which is based on the use of state space models in 
the abc frame of reference and finite element models for the analysis of magnetic fields in 
electric machines is presented. The resulting finite element models are suited for the analysis 
of such machines under any load condition, and account for saturation and space harmonics 
effects due to material nonlinearities and machine geometry. The method is implemented 
to determine the parameters of a synchronous generator. The parameters include the self 
and mutual inductances as well as the armature induced back emfs. A description of the 
modeling approach used as applied to an example synchronous generator is presented. In 
addition, a verification of this modeling approach is presented by comparing simulation 
results to experimental data. 

Introduction 

Before the advent of applying computer-aided methods to the analysis of electric ma- 
chinery, saturation and parameters nonlinearity were accounted for by empirical or semi- 
empirical methods. Also, the state space models describing electrical machines in the abc 
frame of reference were simplified by proper substitution (transformation) of variables and 
using transforms such as the Park's transformation and the resulting dqO frame parameters 
and associated models [1-3]. However, with advances in numerical techniques one can solve 
directly the state space models resulting from modeling electrical machines in the natural 
abc frame of reference [4-6]. 

In this paper, some advantages of using the natural abc frame modeling approach are 
discussed, and the state space model in this frame of reference for a synchronous generator 
is presented. In addition, the machine winding inductances and armature induced emfs 
are determined from series of nonlinear finite element (FE) magnetic field solutions which 
are obtained throughout the machine cross-section for different load conditions. Moreover, 
these computed parameters are compared to measured data for verification. 

Machine State Space Model Description 

A lumped parameter state space model in the natural abc frame of reference for the 
dynamic performance prediction of synchronous generators is presented. An advantage of 
using the natural abc frame modeling approach is that one can easily account for inherent 
harmonics in flux linkages and inductances. Another advantage is that the abc frame 
approach can be used easily to study internal or terminal faults resulting from abnormal 
winding connections as was demonstrated in earlier works [4-7]. Furthermore, the method 
enables one to directly use readily available FE based methods to determine the emfs and 
the nonlinear self and mutual inductances of various machine windings from field solutions. 
These are the key parameters of the state models in the abc frame of reference. Also, the 
method makes it easier to compare simulated results with corresponding test data since 
most of the testing processes on electrical machines lead to measurements of (a), (b), and 
(c) phase and line currents and voltages. Another important advantage of this approach, 
is that it makes it easier to incorporate such abc machine models into an overall modeling 
effort of the machine-load system network including inverter drives or rectifier loads [6,7]. 

The differential equations used to model the dynamic performance of electrical machines 
in general, and 3-phase ac machines in particular, are derived from the interaction between 
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the armature windings, field, and damping circuits. For the synchronous generator under 
consideration, the machine is represented by six windings as shown in Figure (1). The 
windings (a), (b), and (c) represent the armature three phases. The winding (f) represents 
the rotor field winding. In addition, the shorted windings (kd) and (kq) represent the 
damper bars which are embedded in the pole faces of the rotor structure. Accordingly, the 
lumped parameter state space model in the abc frame of reference which is based upon a 
six winding representation is given as follows: 

Y = W + «£fl,}I + l§ (1) 

where 6 is the electrical rotor position angle, measured from a fixed reference, and u is the 
angular speed in electrical rad/s. The array, I represents the currents of the six windings. 
That is the armature phase currents ia, ib, and ic, the field current ij, and the damper 
bars equivalent currents i^d and !&,. Meanwhile, the array V_ represents the voltages of the 
six windings. The diagonal matrix R represents the resistances of the machine equivalent 
windings, and the matrix L represents the machine self and mutual inductance terms. In 
expanded matrix form, this inductance matrix can be written as follows: 

Laa       Lab       Lac       Laf       Lakd       Lakq 
Lba     Li,b     Lbc     Lb;     Lbkd     Lbkq 
Lea Lcb Lcc Lcf Lckd Lckq 
Lja Lfb Lfc Ljf Lfkd Lfkq 
Lkda Lkdb Lkdc LkdJ Lkdkd Lkdkq 

.   Lkqa Lkqb Lkqc Lkqf Lkqkd Lkqkq 

It should be noted that the values of the currents, ia through ikq, in equation (1), can be 
determined numerically for any set of initial conditions and terminal voltages, c„, Vb, and 
vc. As can be appreciated from equation (1), the main parameters of the state model are 
the inductances. Methods for determining the inductances and the armature induced back 
emfs are discussed next. 

Figure (1) Machine Windings Schematic 

Determination of Machine Inductance Profiles 

The self and mutual inductances given in equation (1) are complicated functions of the 
machine winding currents, the nonlinear magnetic characteristics of the material used in the 
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machine construction, and the relative position of its stationary and moving parts. Accord- 
ingly, the profiles of the machine windings self and mutual inductances must be calculated 
at different rotor positions which cover a complete ac cycle for a given load condition. In 
this paper, the values of the inductances for an example synchronous generator are calcu- 
lated from nonlinear finite element magnetic field solutions using an energy perturbation 
technique. A crucial advantage of the energy perturbation method is that it results in all 
winding self and mutual inductances at any given load condition. Thus for a machine with 
(n) windings the method can be used to determine the (nxn) inductance matrix for each 
set of specified winding currents and corresponding rotor positions. 

Based on the energy perturbation method [8-10], the self inductance Ljj and the mutual 
inductance Ljk can be determined from the following energy expressions: 

Ljj = [W(ij - Aij) -2W + W{ij + AijMAij)2 (2) 

Lik   =   [W(ij + Aij,ik + Aik) 

-    W(ij - Aij, ik + Aik) - W{ij + Aij, ik - At*) 

+   W{ij - Aij, ik - Azfc)]/(4 • Aij ■ Aik) (3) 

where ij is the current in winding j, Aij is the perturbation of current ij, and W(ij,ik) is 
the global energy of the machine. In should be noted that the remainder of the machine 
winding currents, ik+1 through in, are not shown in the equations since those are not 
perturbed when calculating Ljj or Ljk. Moreover, it should be mentioned that equations 
(2) and (3) can be used to calculate both apparent and incremental inductances. However, 
for nonlinear problems, depending on the choice of inductances, one must be careful to use 
the proper permeabilities for the energy perturbation [8-10]. In this paper, the apparent 
inductances are calculated. Accordingly, the apparent permeabilities are used. 

In order to numerically compute the self inductance given in equation (2), using the 
results of the finite element field solutions, one calculates the global energy, W, at the 
quiescent (operating) point for a given load condition. In doing so, one needs a field solution 
requiring a complete Newton-Raphson set of iterations. In addition, one needs two more 
perturbed field solutions which are obtained in one iteration for the positive perturbation 
(i + At) and another for the negative perturbation (i — Ai), using the apparent reluctivities 
for all the nonlinear elements in the FE grid. That is, no iterative process is required 
for these perturbed solutions. Meanwhile, to calculate the mutual inductance given by 
equation(3), one needs four perturbed field solutions in addition to the complete solution 
obtained at the quiescent point. Again, the four perturbed solutions do not require any 
iterations. For example, in order to determine the mutual inductance, Lat(6i), for a given 
load condition and rotor position, <?;, one has to calculate the energy at the operating 
point, W(i0,»'i). In addition, one needs to obtain the energies for four perturbed field 
solutions corresponding to four sets of current perturbations which are W(ia + Aia, ij + Aij,), 
W(ia + Aia,it - Aib), W(ia - Aia,it + Aib), and W(ia - Aia,h - Aij). 

As can be seen from the expressions in equations (2) and (3), one needs to calculate the 
energy throughout the machine corresponding to a given current and/or its perturbation. 
Accordingly, these currents should be properly injected in the regions of the FE grid corre- 
sponding to the armature winding, field, and damper bars. The details of determining the 
excitation currents are given below. 

Determination of Excitation Currents for a Load Condition 

The governing equation for magnetostatic field solutions in two dimensions is given as 
follows: 

d , dA.      d , 8A. r .. 

*<"*> +*<"*>—' W 
where A is the z-component of the magnetic vector potential (mvp), v is the magnetic 
reluctivity, and J is the z-component of the excitation current density vector. The excitation 
current density vector values are determined as follows: 
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Field Winding: Using closed form expressions and the associated phasor diagram, Figure 
(2), the dc value of the field current is estimated for a given load condition. Given the value 
for the excitation field current and the number of field turns, the field current density used 
in equation (4) is determined by dividing the ampere-turns product by the area of the field 
winding region in a finite element model. 

Armature Winding: To determine the instantaneous values of the armature winding 
currents, one needs to determine the value of the rotor position angle cro for a given load 
condition. This angle is defined as the angle at time t=0 between the rotor's direct axis, 
and the axis of phase (a). This angle is estimated using the phasor diagram shown in Figure 
(2). Next, the current density in each armature slot in the FE grid is determined as was 
described in reference [11]. 

Rotor Damping Circuits: As shown by Figure (1), the rotor damper bars are repre- 
sented by two equivalent windings (kd) and (kq). In order to compute the self and mutual 
inductances associated with these rotor damping circuits using the expressions of equations 
(2) and (3), one needs to inject currents and/or their perturbations in the rotor damping 
circuits to determine the energy. For instance, the calculation of the inductance £„*, which 
is the mutual inductance between the armature phase (a) and the damping bars q-axis 
equivalent winding, (kq), requires the distribution of the induced damper bars currents in 
a manner that produces a predominant component of damper winding mmf, Fkq{6) along 
the quadrature-axis. This was done by distributing the current in the damper bars from a 
sinusoidally distributed current sheet, Ckq{6), such as shown in Figure (3). For full details, 
reference [10] should be consulted. 

Figure (2) Developed Phasor Diagram 
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Figure (3) Damper Bars Current Perturbation Distribution 
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Synchronous Generator Inductance Calculations 

The results of implementing the approach outlined above to compute the values of the 
self and mutual inductances of a synchronous generator at no-laod and 1.0 per unit (p.u) 
load conditions are given in this section. Using the FE model for the generator, a series of 
nonlinear magnetic field solutions were obtained over a set of rotor positions. This required 
automatic mesh generation with the capability of moving the rotor with respect to the 
Stator. In the case of the generator under consideration, the rotor was stepped forward at 
increments of quarter stator slot pitch to account for ripple effects due to slotting in the 
calculated inductance data. Thus profiles of the variations of the various self and mutual 
inductances with respect to the rotor position, were obtained. Sample plots for the armature 
self inductance Laa and the mutual inductance £„;, versus the rotor position are given here 
in Figures (4) and (5) respectively, for no-load and 1.0 p.u. load conditions. Furthermore, 
the profile for mutual inductance between the armature phase (a) winding and the field 
winding, Laf, is given in Figure (6). Moreover, the resulting inductance profile of Lakq, the 
mutual inductance between phase (a) and the quadrature axis equivalent damping circuit, 
(kq), versus rotor position is given here in Figure (7). As can be appreciated from these 
waveforms, the effects of loading (saturation) and rotor angle are clearly visible. 
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Once the inductance values are calculated, a Fourier analysis of the complete profile of 
these inductances can be obtained. This results in Fourier Series type expressions of the 
form: 

Ljk = a0 + ]T [an cos(nff) + 6„ sin(n0)] (5) 
n=l 

where a0 is the dc value of the inductance, and o„ and bn are the coefficients for the cosine 
and sine terms of the nih harmonic. Doing so will allow one to use the calculated inductances 
in the state model of equation (1) to predict the performance characteristics of the machine 
under different operating conditions [4,5]. 

Determination of Armature EMF Values 

Two approaches for the calculation of the emf waveforms in rotating electrical machines 
using finite element field solutions are presented. The first approach is based on the use of 
the speed voltage concept. The second approach uses the mutual inductance concept. Both 
approaches are applied to predict the emf values for the example synchronous generator. 
Moreover, the computed values are verified by comparison to test results. 

Method #1: Speed Voltage Approach 

The speed voltage approach can be implemented for the calculation of the induced emf 
per phase in the armature winding of a rotating machine. In this method, one utilizes the 
values of the magnetic vector potential (mvp) in the airgap to determine the midgap radial 
flux density waveform. Since two dimensional (2D) finite element analysis is used in this 
work, only the z component of the mvp, A, exists. 

The radial flux density can be calculated from A as follows: 

m) = g (2M-lM2M-i6.n((2M _ 1)c + 72M_i} (6) 
M=l Pmean 

where M is the harmonic counter, £ is the angle measured in a counter clockwise (ccw) 
direction from the machine grid reference which is the (lagging) quadrature axis in our 
case, 72Af-i is the phase shift, NH is the highest harmonic order used, and pmean is the 
radial distance from the axis of the machine to the middle of the armature slot as shown 
by Figure (8). 

Consider a conductor (j) which is located at an angle 8 from the machine stationary 
A-axis reference, Figure (8). The induced emf in a conductor (j) at any 6 location, can be 
written as follows: 

ecj(0) = hvcjBp((cj - 9) (7) 

where lc is the effective embedded length of a stator conductor, £„• is the angle between 
conductor (j) and the lagging q-axis of the machine grid -in-ccw-direGtion, and vcj is the 
linear relative speed between conductor (j) and the magnetic field. By calculating the emf in 
a conductor, and knowing the sequence these conductors are connected and their locations 
in the stator slots, one can find an expression of any phase induced emf. 

The mvp waveform along the airgap was determined for the synchronous generator from 
FE nonlinear magnetic field solutions. Using the approach outlined above, the armature 
induced back emf was determined for different field excitations (ampere turns) at no-load 
condition. The resulting voltage values are given in Figure (9) together with test data for 
comparison. As can be seen from this figure, good agreement exists between the calculated 
and measured values. Moreover, effects of saturation are evident in both curves, as one 
expects. 
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Method #2: Mutual inductance Approach 

In this second approach the waveform of the machines emf is calculated in terms of the 
mutual inductance between the armature phase winding and the field winding, LaS. The 
mutual inductance Laf can be expressed as follows: 

L«fW =  £ Ancos(n0 - V„) (8) 
n=l,3 

where An and tpn are the amplitude and the phase angle of the nth harmonic, respectively, 
and 6 is the rotor angle as defined earlier. Accordingly, the instantaneous value of the 
machine emf can be expressed as follows [12]: 

. dLa,(6) 
ea = wif 

de (9) 

where, a; is the angular frequency in rad/s, and if, is the field current. Using values of 
Laf(6) which were calculated from field solutions using the energy perturbation approach, 
for different field excitations, resulted in the curve shown in Figure (9). As can be seen from 
this curve, the computed values of the emf agree with the test values, and saturation effects 
are clearly evident in both the measured and calculated data. This further demonstrates the 
validity of the computed emf and inductance values and verifies the validity of the modeling 
approach. 

Conclusion 

A computer-aided method for the analysis of magnetic fields in electric machines was 
presented. The method was implemented to determine the machine parameters of a syn- 
chronous generator. The method is based on the use of state space models in the natural abc 
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frame of reference and a series of nonlinear finite element magnetic field solutions through- 
out the machine cross-section. Accordingly, the effects of saturation and space harmonics 
due to material nonlinearities and machine geometry were accounted for in the analysis. In 
addition, a verification of this modeling approach was presented by comparing simulation 
results to experimental data. 
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Abstract — A 3-D mesh generator for finite element analysis of electromagnetic field problems has 
been developed. The software is capable of handling a wide variety of geometries. In addition to 
ease of use, the mesh generator provides the user with good control over many significant 
characteristics of a finite element grid. These include the number of elements and their size in 
different regions, the orientation of these elements, as well as the material type associated with every 
region. The algorithm is capable of modeling complex topologies such as the organs of the human 
body. Also the grid is optimized by performing Delaunay correction to the elements after each node 
insertion. The efficiency of the algorithm is enhanced by the use of digital image processing 
techniques to extract topological information from digital images. 

An application example shows simplified model of the human thorax created using the grid 
generator. It should be noticed that this problem includes most of the difficulties encountered in 3-D 
mesh generation for the finite element method. The 3-D mesh grid generator is easy to use because 
the work to be performed prior to running the program is kept at a minimum level. 

I.  INTRODUCTION 

As far as today's grid generation techniques are concerned, complicated regions such as those 
found in modeling the human body present an exceedingly difficult task. The application 
efficiency of the grid generator algorithms vary with the problem. A method that is useful for 
one type of problem may not be applicable to another type. A prototype grid generator, 
developed by the authors, is quite competent for applications which present rather regular 
geometries which can be represented by simple algebraic equations [1]. Many practical cases, 
however, comprise regions that show no topological regularity. Any object, like the human 
body, that is created naturally possesses this trait. An algorithm that seeks standard shapes for 
modeling becomes futile when used for modeling an irregular geometry. Thus a new algorithm 
that can handle irregularities in complex topologies is necessary. 

For an irregular mesh, the need for the optimization of elements is inevitable. An irregular 
grid, created by node insertion has ill-conditioned elements that result in vital numerical errors. 
However, no ill-shaped elements can be allowed in the final model. In the case of the presented 
algorithm, which follows the node insertion method, the final grid must be optimized. 

II.  THE 3-D GRID GENERATION 

A. Data Preparation 

The first task in modeling the problem is to represent all of its significant features in a format 
compatible with the grid generator. In this section a simple example, shown in Fig. 1, is 
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Region 

Region 2 

provided as various phases of data preparation are described. Determining the various regions 
based on the material types and the desired element size is the first step of the modeling process. 
All parameters that define the topology of the regions, their connectivity, and their material and 
element characteristics are compiled into a data base. 

1) Identification of the regions: The regions in the model can be of any arbitrary shape. A 
boundary can be shared by a number of regions. Its outline can contain convex or concave 
surfaces, however, it can not touch itself. This restriction implies that if the boundary of a 
region touches itself, that region has to be represented by at least two regions. It also denotes 
that a region cannot be located inside the closed boundary of another region. If a region is to 
be defined inside another, the latter needs to be divided into two regions, leaving an empty space 
in between for the former. 

Region 1 is of major importance. It is usually a hexahedral box that is large enough to contain 
the whole geometry of the actual problem. This region defines the initial grid that serves as the 
womb to the actual model. 

Numbering the regions does not follow 
a predefined pattern. If A? is the number of 
regions identified in the problem, then any 
number from 2 to N + 1 can be assigned 
to a region, as long as it is not used 
repeatedly. 

The regions of the sample problem are 
indicated in Fig. 1. With the outer box, 
the hypothetical Region 1, there are three 
regions in the model. 

2) Identification of the initial nodes: All 
region boundaries are defined by initial 
nodes placed on the surfaces of the 
regions. There are no restrictions for 
placing the nodes on the boundary 
surfaces. Any location that serves in 
defining the region is acceptable. The 
number of nodes placed on a boundary surface determines how finely that surface is modeled. 

The numbering of the initial nodes is also done arbitrarily. As long as no duplicates are used, 
any number can be assigned to the nodes. Skipping a number does not constitute a problem in 
this case, however it is not recommended because it sometimes causes confusion. Even though 
the initial nodes are placed without following any predefined convention, slicing the object 
proves to be an efficient method of determining the initial nodes. The initial nodes are placed 
along the outlines of these two dimensional projections. 

For modeling the sample problem, the object is cut by six planes parallel to the x-y plane. 
Fig. 2 shows the outlines of the regional projections on one of these planes. This particular plane 
has cross sections from all three regions. 

3) Coordinates of the initial nodes: Based on the coordinate system the object is placed in, 
the x-, y-, and z-coordinates of all initial nodes are determined and listed in the data base in 
ascending order of the node numbers. 

4) Regional material identifications: For each region specified in the model, a parameter is 
assigned for identifying the material it is made of. There are as many different values for this 
parameter as the number of materials in the actual problem. 

Region 

Fig. 1.  The outlines of the three dimensional regions of the 
sample problem 
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Region 1 

Region 3 

5) Regional element size: The size of a 
tetrahedral finite element is measured by its 
volume. The maximum element size a region 
can have is identified in the input data. 
During grid generation, the algorithm divides 
the elements that are larger than the specified 
maximum size into smaller ones until all 
elements in a region comply with the size 
requirements. 
6) Definition of the regions using the initial 
nodes: The regions in the model have been 
identified by their region numbers, material 
types, element sizes, and boundary node 
numbers. The definition of the region by the 
initial nodes is done by listing all nodes that 

are placed on the boundary surface of a region. For the layering method the two dimensional 
outlines of the region maps are traced by the initial nodes, counterclockwise. 

Region 2 

Fig. 2.   One of the cross sections used for defining the 
problem: It reveals all three regions. 

B.   The initial grid 

The first phase of the automatic 3-D grid generation is to create a grid using all initial nodes. 
To achieve this, each node is inserted into the mesh one by one and after each insertion the grid 
is optimized. The result is an initial grid that is to be used for the refinement process to obtain 
the final model. 

1) Delaunay optimization in three dimensions: Its efficiency and simplicity in 2-D makes the 
Delaunay method a desirable tool to be used in three dimensional applications. In 3-D, the dual 
concepts for a triangle and its circumcircle are the tetrahedron and its circumsphere, 
respectively. Hence, the optimality check for two neighboring tetrahedra is performed by 
determining if the fourth vertex of the second element is located inside the circumsphere of the 
first. Up to this point, the analogy between the 2-D method and the 3-D method works well. 
When it comes to the correction of the elements, however, a major problem is encountered. The 
swapping method for 2-D dictates that the common connection of the two triangles is replaced 
by the other diagonal and two new triangles are created. Following the analogy, it is expected 
that the common connection of the two tetrahedra, their shared face, will be replaced and two 
new elements will be created by the five vertices. For triangles, the replacement is confined to 
the quadrilateral formed by the four vertices and does not place any effect on the sides. Hence, 
the elements surrounding the pair do not get affected. In the tetrahedral application of the same 
idea, however, the replacement is not confined into the polyhedra formed by the faces of the 
original tetrahedron pair. It modifies the outer connections of the polyhedra altering the overall 
geometry. The polyhedra, created by the new tetrahedra, does not occupy the same volume 
anymore. Thus, if the surrounding elements are not corrected accordingly, overlaps or empty 
spaces between the finite elements result. This affect is demonstrated in Fig. 3. 

To avoid the problem described above, a surrogate method is employed for optimizing the 
tetrahedral grid. This method is merely based on the algorithm suggested by Watson and also 
utilized by Cavendish [2, 3]. It forms a polyhedron around a newly inserted node by deleting 
all tetrahedra that are not optimal relative to the new node. Then, connecting the faces of the 
polyhedron to the kernel node, it creates new tetrahedra, which now satisfy the Delaunay 
criterion. 
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Fig. 3. Expansion of the swapping rule to three 
dimensions: The geometry around the element 
pair is altered. 

Optimization is performed every time a 
new  node from  the initial nodes  list is 
inserted or a node is created for refinement. 
In the original algorithm it is stated that the 
entire process starts with a large enough 
tetrahedron to contain all the nodes to be 
inserted. For the method developed for this 
study, the six tetrahedra of Region 1 do this 
job. With the insertion of the new nodes these 
tetrahedra are divided into smaller elements 
to form the mesh. 

2) Insertion of the initial nodes: When a 
new node is inserted, the algorithm locates 
the tetrahedron that contains it. Then, the 
optimization procedure takes over and creates 
the new tetrahedra, satisfying the optimality 
criterion. It is not always the case that a new node is inserted into a tetrahedral element. Three 
different types of degeneracies may occur during the node insertion process. These are 
encountered when a new node is located 1) on a face of a tetrahedron, 2) on an edge of a 
tetrahedron, and 3) on a vertex of a tetrahedron. The first degeneracy is resolved by starting the 
optimization process from a polyhedra that is formed by the two tetrahedra sharing the face on 
which the new node is located. The third form of degeneracy is trivial and should not occur if 
no more than one node is defined at a certain point in space. Only the second degeneracy 
requires special care. When it is encountered, the algorithm slightly perturbs the location ofthat 
node until it is not located on an edge anymore. After the elements are successfully created, that 
node is shifted to its original location in the mesh. 

Currently, the model is in its initial grid state. All regions, including Region 1, are 
discretized. The mesh is optimized in the Delaunay sense. The initial grid is an intact model of 

the problem. There are, 
nevertheless, no internal nodes 
inside the regions. The entire grid 
is made of the initial nodes that 
define the boundaries. Thus, every 
element of the mesh stretches 
between the boundary surfaces. It 
is a correct model, however, for 
computational purposes, 
refinement of the mesh is 
required. This process will 
introduce additional nodes inside 
the closed boundaries of the 
regions and create new elements. 

The sample problem's initial 
grid is exhibited in Figs. 4.a and 
4.b, each separately. Fig. 4. Sample problem's initial grid: (a) Region 2, (b) Region 3. 
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C.  Mesh refinement 

For every element in the mesh, 
comparing this value with the 
specified parameter of the regional 
element size, it determines 
whether the element complies with 
the requirement. If the volume of 
the element is larger than the 
preset maximum element size of 
that region, a node creation 
process is initiated. The new node 
is placed at the center of mass of 
the tetrahedral element. 
Introducing a new node into the 
mesh results in the creation of 
new elements. All elements are 
processed until all tetrahedra 
comply with the size requirements 
of their regions. In Figs. 5.a and 
5.b the model of the problem is 
shown from two different view 
angles with individual regions' 
hidden lines removed. 

the refinement procedure first calculates its volume. By 

Fig. 5.(a), (b). The model for the sample problem viewed from two 
different angles; hidden lines of the individual regions 
are removed. 

D.   Use of Digital Image Processing 

Grid generation is a completely geometrical process. First, 
the topology of the problem needs to be introduced to the grid 
generator. This is done by defining the contours of various 

regions   in   the   problem   by 
assigning   nodes  along   them. 
The coordinates of these nodes 
and the node  sequences  that 
define   the   regions    of   the 
problem have to be identified. 
If the contours of the problem's 
regions cannot be represented 
by    standard     shapes,     an 
automated process which will 
place    nodes    along    the 
boundaries     becomes     a 
challenging task. Digital image 
processing is a powerful tool 
used   at   this   stage   of   the 
modeling.  With  the image for the problem  given,  image 
processing can extract the boundaries of the regions and because 
the problem is already represented by pixels, node placing can 

Original image obtaine 
from CT scan 

Fig. 7. Boundary of the lungs after 
edge detection 
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be done quite easily following contour extraction [4, 5]. 
This method is applied to extract the contour of the right lung in an actual CT scan image. 

The image is scanned from film 
provided by the clinic into a 
179x249 image to include only 
the region that contains the 
lungs. Figure 6 exhibits the 
original image. Gradient of the 
image is computed to detect the 
boundaries. Figure 7 reveals the 
boundary of the regions after 
edge detection is performed. In 
Fig. 8.a, the contour extracted 
from the boundary of the right 
lung is shown. Figure 8.b shows the contour after 3:1 resampling. For the 3-D applications, 
each layer of the CT describing the CT image is processed and the information extracted is 
combined by the grid generator. 

Fig. 8.a.  Contour of the right lung 
without resampling 

Fig. 8.b. Contour of the right lung 
after 3:1 resampling 

III.  MODEL OF THE HUMAN THORAX 

The developed grid generator is used to model a portion of the human thorax. This problem 
presents highly complicated topologies as the grid generator must closely follow the outlines of 
the organs. 

A.   Anatomical Data and Simplifications 

A cross sectional study of the human anatomy is used based on slices 1 or 2 cm thick [6]. 
Images of the sections are 
taken from below so that the 
right side of the body is on the 
reader's left. All of the ten 
sections forming the thorax are 
used. Instead of the entire 
thorax, however, a portion that 
surrounds the heart and its 
close proximity is defined as 
the domain of the model. Data 
is extracted for those regions 
confined to this rectangular 
prism shaped volume. On 
every cut plane, a rectangle, 
representing the cross section 
of the modeling area, is 
placed. As there is no 
reference point provided for 
aligning these sections, after 
the nodal coordinates are 

determined, two dimensional corrections are carried out to straighten the model. 

Fig. 9.  Outlines of the modeled regions on a complete cross section of 
the thorax; M: skeletal muscle, H: cardiac muscle, B: bone, 
T: inner tissue, L: lungs 
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Further simplifications are performed on every cross section. Many superfluous details are 
eliminated from the modeling area. The outline of the regions are smoothed, the thoracic aorta 
and the esophagus are removed, and the heart is reduced to a homogeneous body. From the grid 
generation point of view, the reason for simplifying the problem is to reduce the number of 
nodes in the mesh. For a highly detailed model, more nodes are required in the grid to 
accurately follow the outlines of the various regions of the problem. Figure 9 shows the outline 
of the modeled regions on a complete cross section of the thorax. 

B.  Identification of the regions 

For identifying the regions of the problem, the layering approach is employed. As stated in 
the previous chapter, this method of region and node identification seems to be most efficient. 

Advantageously, the anatomical 
data is also provided in a layered 
format. 

Based on the procedure 
discussed in the section of data 
preparation, each organ or tissue 
is identified as various three 
dimensional regions throughout the 
layers. The location of different 
regions vary in the volume to be 
modeled. For example, the region 
that is identified as the heart starts 
at Layer 5 and stretches up to the 
tenth layer. Both lungs appear on 
each of the layers. The spine also 
goes down through the entire 
model. 

Outside   the   modeling   area, 
another    rectangular    prism    is 
defined as Region 1, which holds 
the auxiliary elements. The heart, 

the right lung, the sternum, and the spine, are modeled as a preliminary test of the application 
of the 3-D grid generator to this particular problem. Several views of this simplified model from 
different angles are shown in Figs. 10 and 11. 

Fig. 10.  Views of the 3-D model showing (a) the heart, (b) the 
sternum, the spine, and the heart. 

IV. DISCUSSION AND CONCLUSION 

For many reasons, the developed algorithm proves to be a powerful tool in three dimensional 
finite element grid generation. First, it is capable of modeling extremely complex geometries 
with great simplicity. The concept of arbitrariness combined with the process of identifying the 
mesh parameters, as the regions, the initial nodes, the element sizes, and the material types, 
provides remarkable flexibility in defining the topology of the model. This flexibility also 
minimizes the effort made for any alterations to the model. Some of the changes that can be 
performed quite easily are redefining the regions, modifying the material types, or changing the 
element size. 

Although a layered type is used for the examples given in this paper, this mode is only an 
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option for data preparation. As 
opposed to many commercial 3-D 
grid generators' data entry 
schemes, a layering of the object 
is not required. The outlines of the 
boundaries can be specified by 
nodes placed anywhere on the 
boundary surface. This feature 
furnishes the algorithm with the 
immense capability of fitting the 
virtual geometry of the problem 
attacked. 

In order to avoid ill-shaped 
elements, the algorithm performs 
optimization on the grid. This is 
an excessively significant 
characteristic of the grid generator 
presented here. Another feature of 
this 3-D grid generator is the error-based refinement mechanism. The separated refinement 
process of this algorithm sustains a potential for an implementation as a corrector step after the 
solution program. 

An implementation of the proposed 3-D grid generator is presented utilizing the human thorax 
with a demonstrated success. 

Fig. 11. 3-D finite element model of the thorax including the right lung 
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Modern numerical techniques for high precision MRI magnet design 

Sergio Pissanetzky. Texas Accelerator Center. 4802 Research Forest 
Drive. The Woodlands, TX 77381. USA 

Abstract. Superconducting magnets for whole body magnetic resonance imaging 
(MRI) of humans are the single largest commercial application of superconductivity. 
Numerical techniques based on an expansion of the magnetic scalar potential or field 
in spherical zonal harmonics, which originated a century ago, are still in use for the 
design of MRI magnets. In the last decade, as the world market became more 
competitive, active and iron shields were introduced, and new, elaborate methods 
were developed to deal with cost minimization and nonlinearity. We review some 
of these techniques, with particular emphasis on the recently introduced structured 
coil methodology, and their impact on the MRI industry. 

1. Introduction 

A typical whole body superconducting MRI magnet has a bore diameter of 90 to 
100 cm, and delivers a field of 0.5 to 4 T, uniform within 10 part per million (ppm), 
in a spherical volume of interest (VOI) of 40 to 50 cm diameter centered in the 
bore. The bore contains a set of pulsed gradient coils, several shim coils which 
improve the homogeneity to better than 1 ppm, and a set of RF coils. The final 
clear opening left for the patient is 60 to 70 cm in diameter. Magnets with fields 
stronger than 2 T are used only for research since current FDA regulations prohibit 
the use of such fields for clinical applications. 

Normal conducting magnets are also used for MRI and are similar, except that 
the field range is from very low to about 0.3 T. Magnets used for nuclear magnetic 
resonance spectroscopy (MRS) are also similar, with fields up to 18.8 T for a proton 
resonance frequency of 800 MHz, and clear bores from 5.4 to 30 cm diameter. In- 
vivo whole body spectroscopy at fields of 2 to 4 T is currently in an experimental 
stage, and will soon become a clinical practice. 

Issues involved in the design of MRI and MRS magnets are cost, field homogeneity, 
stability, shielding, shimming, patient access, patient encapsulation, maintenance, 
weight, power, footprint, and a few others. In the case of superconducting magnets, 
quench protection and cryogenic boil-off rate are also important considerations. 

2. Review of traditional design methods 

An infinitely long solenoid produces a perfectly uniform field. So also does a spher- 
ical winding with current density proportional to cos 9 (Everett and Osemeikhian, 
1966). Neither one is practical, however. The design problem is to create a set 
of coaxial coils of reasonable dimensions, such that the required field strength and 
uniformity in the VOI are realized. If z is the axis, then V2BZ = 0, and Bz can 
be expanded in a series of spherical zonal harmonics with reference to a system of 
spherical coordinates r, 0, phi: 
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Bz = Y,CnrnPn{cose) (1) 
71 = 0 

The expansion is valid in the largest sphere centered at the origin which does not 
contain electric current. A uniform field is obtained when Co is the dominant co- 
efficient, and the remaining coefficients are small and can be considered as field 
errors. The C„'s depend only on the distribution of current, and the question of 
how to calculate them for a given coil geometry is therefore of central importance. 
A. Gray (1892) addressed this question a century ago. Garrett (1951) presented a 
more complete account, giving analytical expressions for the C„'s due to infinitely 
thin loops of current, solenoids of finite axial length but infinitely small radial thick- 
ness, and solid solenoids with finite dimensions both axially and radially. In 1967, 
Garrett presented a fundamental piece of work, listing hundreds of solenoid systems 
with homogeneities of the 6th to the 20th order (re-th order means that the first 
nonzero coefficient is Cn), including solenoids with inside and outside notches. The 
question of coaxial polygonal coil systems, where tesseral harmonic coefficients axe 
also present, has been discussed by Garrett and Pissanetzky (1971), with extensive 
listings of square, hexagonal and octagonal systems with homogeneity of the 4th to 
the 8th order, and comparison with their cylindrical counterparts. These ideas are 
still in use, and some commercial MM magnets available today are based to some 
extent on Garrett's designs. Iron shields were not considered by Garrett, but since 
magnetization is equivalent to current, the same analytical methods can be used 
once the magnetization is known. 

3. Modern methods 

More recently, as the world market became more competitive, active and iron shields 
were introduced, and new, elaborate methods were developed to deal with cost 
optimization and nonlinearity. Many of these methods assume a prescribed set 
of cylindrical coils with rectangular cross section in the p,z plane and a uniform 
current density. The only degrees of freedom are the radial and axial positions 
of the boundaries of the coil cross sections, and the value of the current density. 
The effect of a change in each one of these parameters on the Cn's is numerically 
determined, and the parameters axe systematically readjusted until the undesirable 
coefficients become small. 

Siebold (1988) proposed a method where the coils and iron are discretized into solid 
xings, the magnetization in the iron is calculated by an integral method, and the 
zonal harmonics are obtained by numerical quadrature over a set of field sampling 
points. The coils are then reshaped until the desired spectrum is obtained. The 
field at the sampling points is calculated by Urankar's (1982) elaborate method, 
which could have been avoided if Garrett's simple analytical expressions had been 
used. 

Ogle and D'Angelo (1991) used the finite element (FE) method to obtain the mag- 
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netization in the iron. A set of target points, equal in number to the number of 
degrees of freedom of the system, is chosen in the VOL The contribution from 
the iron is described in terms of a spherical harmonic expansion, with coefficients 
calculated by weighting the magnetization with suitable expansion functions. The 
spherical harmonic expansion is used to calculate the fields at the target points due 
to the iron alone. The contribution from the coils is obtained by subdividing each 
coil into a grid of circular wire loops, and using an elliptic integral to calculate the 
field of each loop. The locations of the coils are then adjusted until the target field 
values are met. The magnetization in the iron is recalculated, and iterations con- 
tinue until convergence is achieved. The elaborate procedure involving the spherical 
harmonics could have been avoided if a grid of circular wire loops had been used to 
represent the magnetization in the iron. 

Thompson (1992) used a combination of numerical techniques and variational ap- 
proach with constraints introduced via Lagrange multipliers to determine optimal 
currents and coil locations. Ishiyama (1987 and 1991) also used the FE method for 
the iron and the boundary element method for field calculations in the volume of 
interest. The FE method is not considered accurate enough for the high precision 
field calculations required in the VOL 

All these methods share three common assumptions: (1) the number of coils is 
prescribed, (2) the cross section of each coil by a p, z plane is a rectangle, and (3) 
the current density is uniform in the cross section. These assumptions appear quite 
reasonable, since a coil is always wound layer after layer into a bobbin, resulting in a 
rectangular cross section and a uniform current density. The assumptions, however, 
are extremely rigid and leave very few degrees of freedom for the optimization to take 
advantage of. In the next Section we examine a new methodology where all three 
assumptions have been removed. The methodology provides practical coil systems 
that can be wound in the traditional way and exhibit a superior performance. 

4. The structured coil methodology 

Coil structure was introduced as a design parameter for the first time by Pissanetzky 
(1992) for coil systems, and by Pissanetzky (1993) for magnets comprising coils and 
ferromagnetic components, with either planar or cylindrical symmetry. In the case 
of a cylindrical MRI magnet, a system of cylindrical coordinates p, z, <p is attached to 
the magnet, and a cross section defined by a p, z, p > 0 half-plane is considered. The 
current density j(p, z) defined in the plane is used to describe the coil system, since 
all electric currents cross the plane normally. In a traditional optimization method, 
the coils are described by a set of rectangles in the plane, and the assumption is 
made that j(p,z) = j, inside rectangle i, and j(p,z) = 0 outside the rectangles. 
The ji's and the dimensions of the rectangles are, then, readjusted for better field 

quality. 

In the structured coil methodology, a tiling is defined in the p, z half-plane, covering 
a region where j(p, z) is allowed to be nonzero, while j(p, z) = 0 is assumed outside 
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the tiling. The tiling has a large number T of tiles, typically several hundred 
to several thousand tiles. No other assumptions are made as to the number of 
coils, or the positions or shapes of their cross sections inside the tiling, and no 
requirement is enforced on j(p, z) to be uniform in any particular region. Instead, 
j(p,z) is described by a set of T independent currents it, t = 1,...,T, one in each 
tile, thus providing T independent degrees of freedom. Constraints are enforced on 
the currents it not to exceed a certain range, usually dictated by critical current 
considerations in a superconducting magnet, or by heat generation considerations 
in a normal conducting magnet. A typical set of constraints is: 

o <;<</,       t = l,...,T (2) 

if negative currents are not allowed, or 

-I<it<I,        t = l,...,T (3) 

when negative currents are allowed, where / must be specified by the magnet de- 
signer. Next, treating each tile as a solid solenoid, Garret's (1967) analytical ex- 
pressions are used to find the zonal harmonic coefficients of the z component of 
the field contributed by the unit current in that tile. If Cnt is the n-th zonal har- 
monic coefficient for tile t, then Cni depends only on the geometry of the tile. The 
coefficients C„ for the expansion of the total field are given by: 

T 

Cn = YuCnti^        n = l,...,N (4) 

where N is the largest order desired by the magnet designer. An objective function 
is now defined as the sum of the squares of the errors expressed in terms of the 
coefficients Cn. For example, if we would like Co = C and Cn = 0 for n > 0 for a 
uniform field, we would define the following objective function: 

F = (Co-C)2 + f;^ (5) 

Function F is quadratic in the tile currents it, since matrix Cnt is given. To ob- 
tain the optimum values for the currents it, F is minimized by Simplex constrained 
quadratic optimization. The properties of the Simplex algorithm with linear con- 
straints play a fundamental role in creating a practical coil. The linear constraints 
define a hyper-polyhedron in the T-dimensional space of the currents it- All feasible 
solutions are inside the polyhedron, but the optimum solutions are on the boundary 
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of the polyhedron, usually at vertices. But the polyhedron is rectangular, and a 
vertex is a point where all it's acquire the value of either the upper or the lower 
constraint, 0 and I if negative currents are not allowed, or —I and / if negative 
currents are allowed (actually, since this is a quadratic problem, one or two of the 
it's may end up having values other than the extremes). Furthermore, tiles with 
like currents coalesce into clusters, resulting in a subdivision of the initial region 
into areas of either one of two types: (1) areas where all tiles have the same current 
I, and (2) areas where all tiles have the same current 0 (or —I if negative currents 
are allowed). Typically, there are two or three areas of each type, and the shape of 
the areas is irregular. Each area with current represents a coil that can be built by 
the traditional procedure of winding wire into a bobbin. Each area without current 
represents space where no winding is necessary. The optimization process deter- 
mines, in one shot, all important parameters: the number of coils and the shapes 
and positions of their cross sections. 

When iron is present, iterations are necessary. An initial guess is made for the 
tile currents it, and a finite element method is used to obtain the magnetization 
M(p, z) in the iron. With M known, Garret's methods are used to obtain the zonal 
harmonic coefficients contributed by the iron alone. These are included in F, and a 
new iteration is performed. For an MRI magnet with a close fit external iron yoke, 
convergence is typically achieved in 7 to 8 iterations. 

The objective function JF can be defined in many different ways. In previous pub- 
lications (Pissanetzky, 1992, 1993) F was defined in terms of field errors at a set of 
target points defined on the boundary of the VOI, which is also a quadratic func- 
tion of the it's. Fringe fields evaluated at target points outside the magnet can also 
be included in F, with appropriate weights, when an actively shielded magnet is 
being designed. Several tilings can be used if there is a need to confine the coils to 
specific regions. The important feature of the structured coil methodology is the 
very large number of degrees of freedom, which results in a better optimization for 
the objective function. Traditional trade-offs such as size, shielding, field quality 
and cost improve significantly, and better designs are obtained, some never tried 
before. 

5. An example 

We present a design example for a 2 T, 1 m bore actively shielded MRI magnet for 
whole body imaging, with a 50 cm diameter VOI centered in the bore of the magnet, 
our internal code ey. Commercial magnets with these characteristics are about 2.5 
to 2.8 m long. A patient introduced into such a long magnet feels encapsulated. 
Besides, access to the patient by medical personnel is severely restricted, and life 
support equipment attached to the patient has to be removed. Therefore, the 
purpose of the optimization is to design a 2 T magnet not much longer than a 
person, say 1.8 m long. To realize how ambitious is this goal, compare with currently 
available actively shielded commercial magnets which provide one-fourth of the field, 
0.5 T, and are 1.6 m long (Hawksworth, 1991). 
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Figure 1 shows a cross section of one quadrant of the p, z plane, where 3 tilings have 
been defined, Ti, T2 and T3. Tiling T\ is the region allocated for the main coils. It 
is divided into 7 divisions horizontally and 20 divisions vertically, for a total of 140 
tiles, with a current density constrained to be between 0 and 30 KA/cm2. Tiling 
Ti has 10 horizontal divisions by 7 vertical divisions, for a total of 70 tiles, and a 
current density in the range -30 KA/cm2. Tiling Tz is divided 7 x 12, and its current 
density is restricted between -30 KA/cm2 and 0. Tilings T2 and T3 contain negative 
coils for flux confinement and active shielding. The current densities are compatible 
with the expected peak fields at the coils for NbTi superconducting wire. 

The commercial program Opus is used for all calculations and plots. The objective 
function F was expressed in terms of target fields, with 21 target points selected on 
the quarter circle at radius 50 cm for field quality, and 11 targets on a quarter ellipse 
of semiaxes 180 and 280 cm for shielding. Since no iron is present, the optimization 
converges in just one iteration. The resulting field lines are shown in figure 1. The 
active shield is very effective, with the 5 G line at 1.5 m from the side of the magnet, 
and 4.7 m from the front, and the field quality in the 50 cm diameter VOI is 12 ppm. 
The total magnetic energy is 12.2 MJoule. Figure 2 shows the current map for the 
three tilings, with currents given in KA per tile. Tiling Ti contains 3 structured 
coils in the region z > 0, which can all be wound on a single bobbin of 58 cm 
radius. This radius has been chosen large enough to accommodate to thickness of 
the bobbin and the cryostat, and still leave a clear bore of 1 m diameter. If the 
bobbin and cryostat could be made thinner, the magnet would be proportionally 
shorter. Tiling Ti has one structured coil with negative current on each side of 
the midplane, and tiling T% has only one negative coil of rectangular cross section 
centered on the midplane. Peak fields, zonal harmonic coefficients and forces on the 
windings have all been calculated by Opus, and found to be acceptable. 
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100. 

Figure 1. Tilings and field lines for the example discussed 
in Section 5 of the text. 
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Figure 2. Current maps for tilings !Z\, T2 and T$ of figure 
1. The currents are given in KA per tile. The structured 
coils have been outlined. 
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Abstract - A neural network based environment for optimization of geometric boundaries of 
electromagnetic devices is presented. The method utilizes Artificial Neural Networks (ANNs) in a 
system which encompasses numerical computations and expert's input for generating a variety of 
ANN training data for different topologies. The environment is aimed at producing the smallest 
possible size of the electromagnetic devices for a specific performance measure. 

The proposed ANN environment is composed of four modules. The input module prepares the 
data based on practical examples for different topologies. The ANN module utilizes a layered type 
perceptron which is trained using the error back propagation algorithm. The optimization module 
utilizes finite element solutions combined with a Hopfield Network and Simulated Annealing. A 
conventional search technique may also be used in the optimization module. The produced optimal 
solution is then adapted by an adaptive ANN module. 

Optimal designs are obtained quickly once the ANN is trained with a variety of topologies. 
Results of implemented examples are provided to show the validity of the proposed mechanism. 

I.   INTRODUCTION 

Optimization of geometric boundaries in electromagnetic devices is receiving widespread 
attention and interest by many researchers. Recently, several design optimization techniques 
have appeared in the literature ranging from evolution strategies to simulated annealing, and 
search techniques for global minima [1-4]. 

During the past few years, ANNs have been successfully applied to many engineering 
problems involving associative operations, search operations, classification and regression, as 
well as pre-processing [5-6]. ANNs can be utilized to provide a parallel computation alternative 
and high speed for a variety of problems in electromagnetics [7-8]. 

The optimal design problem seeks an optimal output (minimum size, best performance, etc.) 
for a given set of constraints (inputs). In order to apply the ANNs to the design optimization 
of electromagnetic devices, consider the optimal design problem as an inverse problem: given 
an output specification ( O), find the input geometries ( /) which satisfy given specification in 
an optimal fashion. Assume that there exists a set of equations, F ( such as the finite element 
equations or the expert's rule), which govern the relationship between / and O such that O = 
F(I). That is, a set of geometries which produces an output specification by the existing set of 
equations, F. It should be noticed that / is the set of geometries which gives the specified 
output, either linear or nonlinear.   The steps involved can be described as follows: 

1. Create N data sets by applying sets of inputs to the set of governing equations F; (7;, OJ, 
i=l,...,N. 

2. Train the ANN with Ox as input and 1-, as desired output of the ANN. 
3. Give the desired performance for which optimal geometry is sought to the ANN. The ANN 

responds with a practical solution which may or may not be the optimal one. 
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4. The ANN output is passed on to the optimization module. This step involves optimization and 
testing till the optimal geometry is found. 

5. The optimal geometry is adapted into the training set of step 2 and the ANN adapted with 
this new data. 

Although the first two steps are computationally extensive, these are done offline. However, 
once trained, the ANN provides a response within a few milliseconds. 

This paper explores the suitability of applying ANNs to the optimal design problem in 
electromagnetic devices. Results obtained from the implemented examples show that using ANN 
is a viable approach with accurate results and quick response time. 

II. DESCRIPTION OF FUNCTIONAL MODULES 

The proposed design environment consists of four modules as shown in Figure 1. The first 
module deals with the preparation of the ANN training data based on a particular topology. This 
procedure is done only at the beginning of the training procedure and could be deemed as a 
system initialization. The second module is the trained ANN. Test examples are given to the 
ANN and the response is fed into the third module which is the optimization module. The 
optimization module responds with an optimal solution. This optimal geometry is later 
incorporated into the ANN training set by an adaptation algorithm. 

A. Input Module 

The input module consists of an example generator and off-line training of the ANN. The 
examples are generated by using equations governing the geometry of the devices and inputs 
from experts. Sufficient examples are generated to adequately train the network for a good 
response. 

An ANN can be defined as a network that resembles the functional architecture of the brain. 
It consists of a highly connected array of elementary processors called neurons. In this paper, 
the multilayer perceptron (MLP) type ANN with back-propagation is considered [6]. 

The MLP type ANN consists of several layers; one input layer, one or more hidden layers, 
and one output layer. Neurons in a layer are generally interconnected to all the neurons in the 
adjacent layer with different weights. Each neuron receives its inputs from the neurons in the 
higher layer through interconnections and propagates its activation to the neurons in the next 
lower layer. Except for the input layer, each neuron receives a signal which is a linearly 
weighted sum of all the outputs from the neurons of the former layer. 

When h hidden layers exist, the layer 0 and layer (h+1) denote the input and output layers, 
respectively.  Then, the activation of a neuron; in the layer k, is defined as: 

, (*) 4s ,(*-!) 
(1) 

where 

J5« 

l 

1 +exp": 

x 

if neuron j is a hidden neuron 

otherwise 
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and i covers all the neurons in the layer (£-1). Note that the activation of the/1 neuron in k* 
layer, uf-' in (1), is only a function of the activations of the neurons in the (k-lf layer and 
weights which connect the f" neuron in k* layer and the neurons in the (k-lf layer. The 
nonlinearity f/x) does not necessarily have to be the sigmoid function (l/(H-exp*)). Other 
monotonic functions which are differentiable in the domain of x can also be used fovf/x). 

The ANN is trained off-line with the geometry of the device as the input and the performance 
as the output. The training is stopped once the ANN gives adequate response to the test data. 
When on-line, the user specifies the desired performance measures as his requirement and the 
output from the network is the geometry for that performance criteria. This is called inverse 
solution. 
B. ANN Module 

The trained ANN is put on-line after the training is complete. The output from the ANN 
is a practical one. This is a safe assumption because the training set consisted of practical 
examples. The ANN serves to reduce the search time encountered in other methods [1-4]. The 
optimization procedure can now be applied on the output from the ANN. 

Input Module ANN Module Optimization Module 

Data 
Preparation 

off-line 
Training 

Fig. 1.   System flow diagram of the design environment 

C. Optimization Module 

The next step is to optimize the results obtained from the ANN. The ANN solution is passed 
on to the finite element solver to obtain the field solutions for the geometry obtained from the 
ANN. This solution will give an indication about the optimality of the geometry after 
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comparison with the specified performance criteria based on an energy function. If the solution 
has been found to be acceptable, then we say that it is the optimal solution. If not, then the 
geometry obtained from the ANN is passed on to the optimization routine. The optimization 
routine can either be a combined Hopfield network/simulated annealing method or a conventional 
search technique [9]. The optimization routine tries to reduce the objective function related to 
the topology of the device under consideration. The objective function could be based on 
specified parameter that is required, core loss value, energy or the mmf values. Other measures 
may also be used. 

In the case of electromagnetic devices implemented here, the main aim is to minimize the size 
for a specified value of flux density. First, the flux density of the geometry obtained from the 
ANN is calculated using the finite element solution. Then, the difference of the calculated flux 
density value and the specified value is minimized in the least square sense to achieve 
optimization. If the value is found to be acceptable, then the geometry is said to be an optimal 
one and is adapted. If not, then the output from this routine is fed back into the finite element 
solver to obtain another geometry (smaller or larger). This loop continues until an optimal 
solution is obtained. Since the ANN solution is a practical one which is near optimal, the 
optimization loop can be completed quickly provided that the ANN is trained with sufficient 
example. The main objective of the optimization loop is to find a smaller size than the one 
obtained by the ANN module. It essentially represents a design perturbation mechanism to check 
if smaller design can be achieved while still satisfying the objective function. More details on 
this module can be found in [9]. 

D. Adaptive Module 

The final stage is the adaptation of the optimal geometry. This is done by appending the 
optimal geometry obtained earlier into the training set of the ANN. The ANN is then trained for 
a few more iterations, and the weights allowed to change, to learn the new data. The adaptation 
is important for obtaining a quicker response from the system whenever a similar performance 
measure or optimal design is required. 

IV. RESULTS AND DISCUSSION 

The above procedure is put into application for the optimal design of two examples. The 
initial geometries and the geometrical variables for a C-core magnetic circuit and a dc motor are 
shown in Figs. 2 and 3. 

For the C-core example, the training set for the ANN module has 140 examples derived 
from the original geometry. The geometrical position of the 10 variables, determining the shape 
of the magnetic circuit, Figure 2, are changed by +5% until a +30% offset from the original 
is reached. Thus different positions for each of the variables are defined and, including the 
original, a total of 145 different geometries are created. After normalization of the training set, 
5 of these examples are picked up as test set and are not used in the training set. This is done 
to check the response of the trained ANN. The remaining 140 examples are used for training 
the ANN. For the optimization module, the objective function is based on a specified value of 
flux density in the gap while reducing the size. 

For the 2-pole dc motor example of Fig. 3, the objective is to obtain the size that would 
minimize the mmf per pole while maintaining uniform flux density. The dc motor magnetic 
circuit is separated into several parts; pole, air gap, rotor, yoke and pole face. The cross 
sectional area, flux density, field intensity, mean length and mmf for each part are calculated. 

715 



Fig. 2.  C-core magnetic circuit example. 

Yoke 

Pole face 

Air gap 

Rotor 

Fig. 3.  2-pole dc motor example. 

For this example, the training set is composed of 145 examples derived from the initial 
geometry. The geometrical position of the 9 variables determining the shape of the dc motor 
magnetic circuit are changed by +5% until a ±30% offset from the initial geometry is reached. 

The input variables of the ANN are derived from finite element solutions for both examples 
representing the performance of the magnetic circuit for the various shapes included in the 
training set. The output variables of the ANN represent coordinate points defining the 
geometries. The input-output pairs are presented to the ANN as examples not including the test 
set which is used to check the performance of the trained ANN. 
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ANN Module 

Optimization Module 

Adaptive ANN Result 

Conventional Search 

Fig. 4.   C-core magnetic circuit 

ANN Module 

Optimization Module 

Adaptive ANN Result 

Conventional Search 

Fig. 5.  Results for the 2-pole dc motor example. 

For the two examples, the results of the ANN module, optimization module and the 
adaptation module are given in Tables I, II and III and are illustrated in Figures 4 and 5. These 
results are shown in comparison with the results obtained from using a conventional search 
technique [4]. The core size of the magnetic circuit (iron only) was determined by adding the 
triangular finite element areas using the FE grids from various solutions. As can be seen from 
these results, the various modules contribute to the improvement of the design and overall shape 
of the device being optimized. The results of the adaptive ANN module show that the ANN has 
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learned new geometry close to the optimal design. More examples appended to the training set 
and used in retraining has contributed to such an improvement. It should be emphasized here that 
continual adaptation will always produce better results than previous adaptation. The response 
time of the proposed ANN environment is much quicker than in conventional training. 

TABLE I. COMPARISON OF OPTIMAL DESIGN RESULTS FOR THE C-CORE EXAMPLE 

Optimization Method 
Design Parameters (Constant Depth) in cm 

W2 W3 W4 W5 W6 W7 W8 h2 h3 *S 

ANN Module 4.182 1.589 1.826 1.725 1.441 1.441 4.013 5.061 3.922 0.305 

Optimization Module 4.203 1.515 1.515 1.531 1.601 1.552 4.202 5.113 3.875 0.257 

Adaptive ANN Module 4.155 1.546 1.553 1.572 1.504 1.501 4.147 5.062 3.841 0.261 

Conventional Search Method 4.120 1.565 1.798 1.681 1.420 1.405 3.953 4.935 3.824 0.297 

TABLE II.   COMPARISON OF OPTIMAL DESIGN RESULTS FOR THE 2-POLE DC MOTOR EXAMPLE 

Optimization Method 
Design Parameters in cm 

Wl W2 W3 W4 W5 W6 W7 W8 si 

ANN Module 0.4623 1.5433 0.1498 1.0074 3.3337 2.5884 1.4293 2.9512 15.0 

Optimization Module 0.45O3 1.5510 0.1501 1.O091 3.3499 2.5625 1.423 3.0471 15.0 

Adaptive ANN Module 0.4623 1.5526 0.1473 1.0169 3.3344 2.5931 1.4311 2.8714 15.0 

Conventional Search Method 0.4781 1.5633 0.1461 1.0172 3.3278 2.6021 1.4312 2.8842 15.0 

TABLE III. COMPARISON OF CORE SIZES (KON CROSS-SECTIONAL AREA
-
 IN CM*) 

OBTAINED WITH DIFFERENT METHODS 

Proposed ANN Optimization Mechanism 
Search Method 

ANN Module Optimization Module Adaptive Module 

C-Core 37.624 37.414 37.152 36.933 

dc Motor 136.361 135.621 135.033 134.792 

Iron area is calculated by adding element areas of associated FE grid. 

In Tables I and II, values for the geometry variables, defining the shape, obtained by the 
proposed method for the two examples are shown in comparison with the dynamic search 
procedure, presented earlier [4]. Table III shows a comparison of the different core sizes 
obtained by the ANN method and the conventional dynamic search method. 
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V. CONCLUSION 

The new method which utilizes ANNs for the optimal design of electromagnetic devices is 
presented. A major advantage of the method is its quite short response time in obtaining the 
optimal geometry. The results of examples implemented in this paper show the excellent 
potential of ANNs in design optimization. The accuracy of the end result depends on the size 
and content of the training data which encompasses the designer's input. The adaptation makes 
it possible to respond even more quickly to new data not present in the training set. 

The solution obtained from the ANN serves as an initial state of a design optimization 
procedure. This significantly reduces the search time required compared with other search based 
methods since the solution from the ANN is already a practical one. 

A combined Hopfield network and simulated annealing procedure is used in the optimization 
module. The suitability of an optimization method depends on the problem under consideration. 
The optimization procedure thus may vary from problem to problem and should not be confined 
to Hopfield networks and simulated annealing. 
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Abstract — This paper presents a sensitivity analysis of the modified hybrid integrodifferen- 
tial finite element - Green's function method. This hybrid formulation is developed for the 
solution of open eddy current problems with exterior sources. It is an efficient alternative to 
existing unbounded eddy current approaches. The Green's function method in this formula- 
tion is based on the concept of fictitious magnetic charges. In this study, the effects of the 
locations of the fictitious charges and the interface upon the accuracy of the computation 
results are examined. The problem solved in this paper is an infinitely long circular cylindri- 
cal conductor under uniform transverse magnetic field. Power losses are obtained and com- 
pared with analytic results. Guidelines are established for locating the fictitious magnetic 
charges. 

Introduction 

The use of the finite element method for the solution of unbounded problems requires 
the employment of special techniques to account for the exterior region. The spectrum of 
these techniques is evident in the literature [1]-[10]. While these techniques make it possible 
for the finite element method to solve unbounded problems, they are limited by various 
shortcomings. The integrodifferential finite element - Green's function method introduced in 
[11] is an efficient method for unbounded eddy current problems. In this formulation, the 
integrodifferential finite element method is used in the interior region and the Green's func- 
tion method is employed in the exterior region. It has been used for the calculation of eddy 
currents due to exterior current sources and uniform transverse magnetic fields [12],[13]. 

Because the Green's function method is based on the concept of fictitious magnetic 
charges, it is desirable to have a clear idea of the effects of the locations of the fictitious 
sources on calculated results. To this end, this paper presents a sensitivity analysis of the 
modified integrodifferential finite element - Green's function method. The sensitivity 
analysis determines how the positioning of the fictitious charges and the interface with the 
exterior region affects the accuracy of the computation results. The study also seeks to clarify 
the effects of conductor skin depths. 

For two-dimensional eddy current problems formulated in terms of the magnetic vector 
potential A, a constraint equation should be added to ensure that the total current in the con- 
ductor cross-section equals the value dictated by the circuit connection. This can be achieved 
through the integrodifferential finite element method [14]. 

Formulation 

In this section, the modified hybrid integrodifferential finite element - Green's function 
method is formulated for the solution of 2D unbounded eddy current problems. The 
unbounded eddy current problem is represented by interior and exterior regions as shown in 
Fig. 1. The modified integrodifferential finite element method is introduced to account for the 

720 



possible inhomogeneity of conductivity. The source field is produced in the exterior region. 

The essential features of the modified integrodifferential finite element - Green's func- 
tion method are as follows: 

(1) The use of the modified integrodifferential finite element method in the interior region 
consisting of conductors and air; 

(2) The use of the Green's function method in the exterior region consisting of air and 
current sources or an impressed transverse magnetic field. 

The following assumptions are made in the formulation that follows: 

(1) The magnetic field is quasistatic and time-harmonic with an angular frequency a>; 

(2) All currents are in the z direction and the field is two-dimensional; 

(3) The conductivity of the conductor and the magnetic permeability are piecewise constant 

The diffusion equation governing eddy currents is expressed as 

—V2At-jwoA, = 0 (1) 

where At is the z-component of the total magnetic vector potential given by 

At=A+Ao     (interior region) (2) 

Here A is the reduced magnetic vector potential and A0 is a constant defined in (5) below. In 
the conductor, the total current density /, corresponding to A, is given by 

/, = -jwoA, =-j aoA -j CDOAO (3) 

The introduction of the constant A o ensures the correct circuit connection for the con- 
ductor. When the conductor carries no net current, (3) can be rewritten as 

I,=-jajoA dS-j<ojaA0dS=0 (4) 

where the integrations are over the conductor cross-section. From (4), we obtain 

\oAdS 
A0=-J-  (5) 

jadS 

The substitution of (2) and (5) into (1) leads to 

1   , \oAdS 
—V2A - jaxsA +jaa ■* = 0 (6) 
^ jadS 

Equation (6) is the modified integrodifferential equation with the condition (4) built in. 

In the exterior region, the field is decomposed into the source field and the reaction field 
which is Laplacian. For the exterior Laplacian field, the magnetic vector potential is 
represented as follows: 

Ae=£C,G(r,r,)--^-Co (7) 
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where M is the number of fictitious magnetic charges, G is the appropriate 2D Green's func- 
tion, C; and r; are the strength and location of the ith fictitious magnetic charge, respectively. 
The fictitious magnetic charges are located inside the interior region. Co is a constant and C; 
satisfies the following condition 

M 
IQ = 0 (8) 

G is expressed as 

G(r,r£)=--g-/«|r-r£| (9) 

The source field is represented by the magnetic vector potential As which is derived 
analytically. The total magnetic vector potential in the exterior region is therefore given by 

A, = Ae+As       {exterior region) (10) 

Equation (6) is transformed into the finite element matrix equation using the Galeritin cri- 
terion. The coupling of the interior and exterior regions is accomplished through the interface 
conditions given by the following constraint equations: 

A+A0 = Ae+As (11) 

d(A+A0)        d(Ae+As) 

dr dr 

The resultant system of equations is written in matrix form: 

'S   V~ 

Q G 

(12) 

(13) 

The matrices in (13) are defined in [11]. The inversion of the matrices yields the solution to 
the problem. 

For transverse magnetic field, the magnetic vector potential As representing the source 
field can be obtained as 

As = -B0RcosQ (14) 

where Bo, R and 0 are shown in Fig. 2. 

Sensitivity Analysis 

The sensitivity analysis of the integrodifferential finite element - Green's function 
method is based on the calculation of eddy current losses in an infinitely long circular cylindr- 
ical conductor under uniform transverse magnetic field excitation as shown in Fig. 2. 

In this section, the effects of the location of the fictitious magnetic charges and the loca- 
tion of the interface of the two regions are examined. Power loss errors with respect to ana- 
lytic losses [15] are obtained. 

Results of the study are depicted in Figures 3 through 6. Power loss errors are plotted 
against the relative distance Kr between the fictitious charges and the interface. Kr is 
expressed as 
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Kr=(R-r0)/R (15) 

where r o is the radius of the fictitious charge circle and R is the radius of the interface circle. 
The relationship between loss errors and relative distances is plotted for three different skin 
depths (frequencies). The variation of the skin depth is expressed by the ratio x of the inter- 
face radius R to conductor skin depth 8: 

t-f (16) 

The power loss errors shown in Figures 3 through 6 correspond to four different materi- 
als under three different frequency excitations (ratio x). It is observed that for all three fre- 
quencies, the errors are very small and almost constant when Kr is between 0.07 and 0.5. The 
errors increase significantly when Kr is very small. For all the cases, the threshold is around 
0.05. It should be kept in mind that the plots in Figures 3 and 4 have the same corresponding 
skin depths even though they have different material constants. 

It can be concluded that the relative distance Kr, in a certain range, may have little 
effect on the solution accuracy. This range is generally between 0.07 and 0.5. Within this 
range, the accuracy for all the different conductors with different skin depths is stabilized. 
The range is larger for problems with smaller ratios x of interface radius to conductor skin 
depth. When Kr is greater than 0.5, the errors may increase or decrease depending on the ratio 
x. When the ratio is large, the error may go up while for small ratios the error may go down 
or stay at the same level. The larger errors in the plots for smaller skin depths are due to the 
discretization. In this study, the dicretization is the same for all three frequencies. 

Note that the interface circle need not be placed far from the conductor surface. Gen- 
erally, it is sufficient to keep the distance between the interface and the conductor surface 
equal to the discretization size or twice the size. It is suggested that the fictitious charges 
should be located such that Kr is 0.1 for most problems. This is a conservative guideline. 
The interface circle can be placed away from the conductor surface at the discretization size 
or twice the size.  The discretization size should be at least a third of the skin depth. 

Conclusions 

This paper presents a sensitivity analysis of the modified integrodifferential finite ele- 
ment - Green's function method. Guidelines for locating the fictitious magnetic charges and 
the interface circle are provided. The study reveals that as long as the relative distance Kr lies 
at a certain range from 0.07 to 0.5, the accuracy of the solution does not depend on the loca- 
tions of the fictitious magnetic charges. The interface circle need not be placed far away 
from the conductor. It is sufficient to keep the interface away from the conductor surface at a 
distance equal to or twice the mesh size. This study also shows that the integrodifferential 
finite element - Green's function method is a robust method since the accuracy is not strongly 
dependent on the locations of the fictitious charges for all the different skin depths. 
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Fig. 1 A general eddy current model in 2D. 
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Fig. 2 A circular cylindrical conductor excited by a TM field. 
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Fig. 3 Loss errors as a function of the relative distance KT. 
o=0.1xl07Sm_1; ^=100. 
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Fig. 4 Loss errors as a function of the relative distance Kr. 
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Fig. 5 Loss errors as a function of the relative distance KT. 
o=6xl075»i_1; \ir=l. 
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Fig. 6 Loss errors as a function of the relative distance Kr. 
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EMI ANALYSIS OF TRANSIENT EVENTS VIA METHOD OF MOMENTS 
ON THE TITAN IV/CENTAUR ROCKET MAIN BATTERIES 

Reinaldo Perez 
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Abstract 

Expendable rockets, like the Titan IV/Centaur, constitute one of 
the main delivery systems used for satellites and other space 
instruments. For the Centaur, the electric power consumption 
during separation (from Titan IV) and ascend is supplied by several 
batteries located within this upper stage. Thermostats within the 
Centaur stage help to keep a constant temperature range within the 
battery during ascent to geosynchronous orbit. The Lithium Chloride 
Active Battery is a new and upgraded battery design for the Titan 
IV/Centaur. Large transient current in the batteries ON/OFF 
switching events can produce significant amounts of conducted and 
radiated Electromagnetic Interference (EMI) which can adversely 
affect the normal operating environment of nearby electronics. This 
paper first conducts a brief review of the physics involved in the 
arcing process. The major portion of the paper will then be devoted 
to modeling the radiated EMI caused by thermostats' transients 
using the Method of Moments (MoM). This paper will also address in 
details the validation of MoM data with obtained measurements. 

1.0  INTRODUCTION 

In the middle 1980's a new and upgraded launch vehicle was acquired 
by the Air Force to deliver larger and heavier payloads to 
geosynchronous orbit (22,000 miles). The 3-stage Titan IV launch 
vehicle contains, as part of its third stage, a Centaur Inertia 
Upper Stage (IUS) responsible for carrying the intended cargo (e.g 
satellite) into the required orbit. As part of a new design for the 
IUS new batteries were developed for supplying the needed electric 
power. The Lythium Chloride Active Battery is a new battery design 
capable of supplying 60 amps of uninterrupted current for up to 5 
hours. The IUS carry four of these batteries and the current demand 
during the first few minutes of IUS ascend can reach up to 75 amps. 
Each battery is made up of nine cells in series, each located 
within its individual cavity in the battery housing. The total 
supply voltage for the battery is 29 volts. 

In order to meet the functional requirements of the Lythium 
Chloride Active Battery four thermostats are installed within the 
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battery housing. Thermostats are needed to keep a constant 
operating temperature during large variations of ambient 
temperature experienced by the battery during ascend of the Titan 
IV/Centaur IUS. The four thermostats are synchronized to operate at 
different temperature ranges as needed. Each thermostats is 
individually connected to a thermally radiating heating element. 
The heating elements are distributed on the walls of eight of the 
nine cavities where the battery cells are installed as shown in 
Figure 1. The heating elements consist of teflon coated (er=2.1), 
gauge 12 copper wiring which are laid out on the interior surface 
of the battery walls. Each thermostat connects to an RC network 
which serve as "arrestor" circuit for suppressing the arcing 
phenomena which occurs during thermostats ON/OFF switching 
operations. The figure also shows the schematic of the thermostats 
and arrestor circuits. 

To Theimostals 
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Side 
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THERMOSTATS 
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FIGURE 1. THERMOSTATS & HEATING ELEMENTS OF BATTERY 
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Each of the four thermostats draws about 1.6 amps of nominal 
current. However, transient currents of up to 4.7 amps can be 
measured across the thermostats during the ON/OFF switching cycles. 
Transient currents constitute one the major sources of conducted 
and radiated Electromagnetic Interference (EMI) [1] which can 
adversely affect the behavior of nearby electronics. Conducted EMI 
is of importance to eliminate because such conducted noise can be 
propagated to other electronic devices which are connected to the 
same battery. Radiated EMI is of importance to eliminate because 
the propagated noise can be pick up by sensitive receiver circuits 
through antennas and other electromagnetic field sensors commonly 
used in spacecraft. While considerable effort has been done in the 
past in analyzing conducted emissions through network 
representation of transient phenomenae and associated circuits [2- 
4], less effort has been invested in analyzing the radiated EMI due 
to transients because of the complex nature of the transient-caused 
radiate emissions phenomenae. There is a need to understand better 
and predict the amount of radiated EMI from transient circuits such 
that the proper electronics can be develop to avoid interferences 
among sensitive spacecraft instruments. 

2.0 RADIATED EMI FROM TRANSIENT EFFECTS. 

Radiated noise from transient current events, such as those found 
in thermostats ON/OFF switching, are the results of two different 
types of events: a) arcing processes (e.g across thermostats 
contacts), and b) "temporal" behavior of transient circuit elements 
as an antenna. 

Arcing occurs is the result of mechanical switches ON/OFF 
operations. When the voltage across the contacts of mechanical 
switches is large enough it can cause the breakdown of the 
intervening gas. This is known as the "long arc". For smaller 
contact spacings, in a vacuum, the arc can be initiated by a 
"field-induced" emissions wherein the electric fields at the 
highest and sharpest points on the cathode liberate electrons. The 
voltage across the contacts divided by the contact spacing exceeds 
the breakdown field strength of the gas. 

In a transient event the resulting transient current is responsible 
for the temporary antenna behavior of the heating elements. Though 
small in duration (only a few microseconds), such transients can be 
large enough to cause significant fields to be radiated as the 
wiring of the heating elements behave as a radiating antenna. In 
this paper we will first discuss briefly the physics of arcing 
phenomena. The major portion of this paper will then be devoted to 
modeling the antenna behavior of the thermostats/heating element, 
during ON/OFF switching operations using the method of moments. 
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2.1  RADIATED EMISSIONS DOE TO ARCING 

In the arcing process the external circuit has a pronounce effect 
on the type of discharge or even whether a discharge occurs. 
Switches are frequently used to interrupt loads that are resistive 
and inductive (e.g heater elements in a thermostat circuit) in 
nature as shown in Figure 2. 

Interruption of these types of circuits leads to an interesting 
phenomena called "showering arc." An inevitable parasitic 
capacitance is in parallel with the inductive load. When the switch 
is closed, a steady-state current I=Vdc/R is established in the 
inductor. When the switch open, the inductor attempts to maintain 
this current. It is therefore diverted through the capacitance, 
charging the latter. The switch voltage V(t) = Vc+Vdc, therefore 
increases. As this switch voltage increases, it may exceed the 
switch breakdown voltage, whereby a short arc forms and the switch 
voltage drops. The capacitor discharges through the switch, with 
the current being primarily limited by the local resistance and 
inductance of the wiring diagram. If the switch current exceeds the 
minimum arc-sustaining current, the arc is sustained. If not, the 
arc is extinguished and the capacitor begins to recharge. The 
switch voltage once again exceeds the switch breakdown voltage, and 
the switch voltage drops again. If the arc is not sustainable, the 
capacitor begins to recharge once again. Eventually the energy 
stored initially is dissipated, and the capacitor voltage decays to 
zero, leaving V=Vdc. This leads to a sequence of rising (as the 
capacitor charges) and rapidly falling (as the switch breaks down) 
voltages across the contact separation, which has been referred as 
the showering arc. 

FIGURE 2. THERMOSTAT SWTCH AND ARRESTOR CIRCUIT 

Showering arcs clearly have significant spectral content, and may 
therefore create EMI problems [6-8]. The wiring carrying these 
currents may cause significant radiated emissions, thereby creating 
interference problems. These signals may also be directly conducted 
along interconnected wiring paths, creating a potentially more 
troublesome effect, since the signal levels that are directly 
conducted to other points will be of the order of the switch 
voltages. Since these potential effects are recognized, various 
suppression measures are usually employed in conjunction with a 
mechanical switch. 

A suppression technique for the arcing process is to prevent the 
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switch voltage from exceeding the breakdown voltage of the switch. 
This can be implemented by placing a sufficiently large capacitor 
in parallel with the inductor, thereby reducing the peak available 
circuit voltage and also reducing the initial rise of the available 
circuit voltage. This scheme has the drawback in that contact 
damage can occur during switch closure because of large capacitor 
charging currents. A solution is to limit the discharge current 
that occur on contact closure by adding a resistor in series with 
the capacitor as shown in Figure 2. The minimum value of R is 
chosen to limit the discharge current during switch closure to 
below the minimum arcing current:Vdc/R < Imin. 

To obtain an estimate of the amount of radiated EMI from arcing a 
thermostat was removed from the battery and place on a wooden 
platform inside a semianechoic room in order to measure the 
radiated emissions for several samples of ON/OFF switching. The 
thermostat was fed from a DC battery and a broadband antenna was 
used for the measurements. A resistive load to simulate the heater 
was used while keeping wiring to a minimum. The small load was 
selected to draw 1.6 amps of continuous current from the 
thermostats. Figure 3 shows the results of arcing-induced broadband 
emissions as compared to MIL-STD-4 61 EMI broadband (BB) emissions 
limits. 

E-FieW (cBuVAn) 

1E4 1E5 1E6 1E7 1E8 
Freqjency (Hz) 

FIGURE 3. E-FIELD EMISSIOSN DUE TO ARCING 

2.2  RADIATED EMISSIONS FROM ANTENNA BEHAVIOR 

One of the major objectives in this work is to simulate the amount 
of radiated electric field emissions from the heater element as it 
behaves temporarily as an antenna from thermostats' ON/OFF 
switching transients. This task will be accomplished by using the 
method of moments for modeling the thermostat switch/heater element 
as a radiating structure. 
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The first step in the analysis of this type of EMI emissions 
problem is to calculate the transient currents and voltages across 
the thermostats switch, hence, across the heater load, using the 
pSPICE network analysis program [5]. Figure 4 shows the pSPICE 
model for two thermostats (S7, S8 in the figure) and the heater 
load (87 ohms). The figure also shows the RC arrestor circuit for 
each thermostat and system's switch. In the calculations it is 
assumed that the system switch in conjunction with one of the 
thermostats are already close at t=0+ before the other thermostat 
switch closes. This is consistent with the fact that during most 
ON/OFF switching cycles at least two thermostats will be conducting 
at a time. In the simulation the first thermostat (S7) closes at 
t=0 with a rise time tr=1.0/iS. The other thermostat switch closes 
at t=40^S (tr=1.0^S also) and stays closed for 30/uS before it 
opens. The parasitic inductances for each of the switches are also 
shown in the figure (Lj S Lj of ljuH) likewise the parasitic 
inductance of the connector between the system switch and the 
thermostat is shown (L1=4/iH) . The terms V3-V4 in the figure are used 
by pSPICE as voltage controllers to simulate the times ON/OFF in 
the thermostats. For the pSPICE run we assume 1*^=0.1 ohms and 
RQP^IOOO Mega-ohms. "Dummy" voltages V5-V6 are used to monitor the 
thermostats' currents when the switch closes (V6-V5) and the current 
toward the heater load. The transient currents can be calculated at 
any point in the circuit. Figure 5 shows the results of simulating 
the transient current and voltages at several locations in the 
circuit. Of special interest is the transient current across the 
thermostat switch, which from the figure can be observed to be of 
magnitude 4.7 amps with a rise time tr=0.2MS. This transient 
current is responsible for the antenna behavior of the heating 
element. By multiplying the magnitude of the transient current by 
the impedance of the heater element we can obtain the equivalent 
transient voltage across the thermostat as a function of time. 

To establish a benchmark for method of moment modeling, a series of 
electric field measurements were made to determine the spectrum 
profile of the radiating structure during ON/OFF switching. Two 
thermostats and a heating element were removed from the battery 
casing for these measurements. The shape of the heater element was 
preserved to be that it had when installed in the battery. The 
thermostats were encased using a shield cover, the shield was 
grounded so that the effects of possible arcing will not become 
part of the recorded spectrum. The two thermostat and heater 
assembly was then positioned on a wooden platform inside an 
semianechoic chamber. Ambient temperature was changed to simulate 
the needed switching cycles. During the ON/OFF switching operations 
a broadband antenna was used for recording the emissions of the 
heater element as it temporarily behaves as an antenna for a period 
of about 1.5/LiS for each ON/OFF switching operation. Measurements 
were made in the lOOKHz-50MHz frequency range using a spectrum 
analyzer. A series of six (6) highest peaks (i.e frequency .vs. 
largest magnitude in dBjiV/m) for the measured electric field were 
recorded. Figure 6 shows the set up obtaining the measurements 
together with the six peaks identified for those measurements. 
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Modeling the radiating structure was accomplished using the method 
of moments. Figure 7 shows a thin-wire representation of the heater 
element. The thermostat switch is represented as a transient 
voltage source. Important information concerning the modeling can 
be described: total length of heater element is 4.52m, number of 
segments used for the radiating structure is 10, length of segments 
(minimum of X/10 criteria was used) is 45 cm, radius of wire 
segments (same as radius of heater element) is 2.03 mm, and 
conductivity is 5.8 x 107 S/m. Furthermore, since the heater 
elements were wrapped with teflon the modeling included an 
insulating dielectric (er=2.1) sleeve around the wire conductor of 
2.0 mm in thickness. Since the measurements were made over a wooden 
platform (1.5m x 1.5m) with a metal ground plane on top, the 
modeling in the Figure 7 also shows a thin-wire representation of 
the ground plane (40 segments) and the image of the radiating 
structure. The transient voltage sources (i.e transient voltage 
magnitude .vs. frequency) shown in Figure 7 were obtained by 
calculating the FFT of the transient current across the thermostat 
in Figure 5 multiplied by the heater elements's impedance. In order 
to calculate the radiated electric field emissions at a particular 
frequency, the corresponding transient voltage at that freguency is 
used as the source input in Figure 7. 

In order to compare the accuracy of the method of moments modeling, 
the six previously identified measured peaks were used as the 
measured values. The transient voltage sources whose frequencies 
match those corresponding to the measured ones were used as the 
driving inputs for the radiating structure of Figure 7 and they are 
given in Table 1. Table 2 shows the calculated values of the 
emitted electric fields at the six frequencies of interest using 
the driving inputs in Table 1. The table shows a comparison between 
the calculated and measured values for the frequencies of interest. 
Comparison of the results show good agreement between the measured 
and calculated data above 24 MHz with about 6 dB difference. For 
frequencies below 24 MHz the difference goes up to 10-12 dB. 

3.0 CONCLUSION 

Radiated EMI in the form of arcing and antenna radiation, due to 
transient events, can contribute significantly to the noise which 
can threatens sensitive receivers in a spacecraft. The method of 
moments can be used for estimating the amount of radiated EMI as a 
result of transient currents produced by circuit elements. Though 
the example described in this paper is for a thermostat circuit and 
its associated heater elements, the modeling principles herein 
discussed are applicable to other types of circuits where 
transients are observable and measurable. Two important principles 
to follow in transient modeling are: a) understand the physics of 
the transient phenomena taking effect for that particular circuit, 
and b) exercise care in the method of moments modeling. 
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FIGURE 5. TRANSIENT RESPONSE OF THERMOSTATS DURING SWITCHING 
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FIGURE 6. MEASUREMENT OF E-FIELD FROM TRANSIENTS 
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Frequency Source Input (volts) 
100KHZ 0.00082 
450KHZ 0.00076 
765KHZ 0.00069 
1.80MHz 0.00066 
24MHz 0.00051 

32MHz 0.00038 

Table 1 

FIGURE 7. METHOD OF MOMENTS MODELING 

Frequency Measure E4iekJ (dBuV/m) Calculated E-field (dBuV/m) 
100KHZ 56.6 45 

450KHZ 52.0 41 

765KHZ 48.5 36 

1.80MHz 42.0 31 

24MHz 23.0 15 

32MHz 18.0 12 

Table 2. 
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Abstract 

A canonical structure, devised by an earlier investigator to simplify the computation of radia- 

tion from small table-top products and their peripherals, was recently analyzed and the results were 

published. The structure involves a 1 meter cable feeding a signal line situated above a large rectan- 

gular plate. In our earlier effort, the structure was modeled, without simplifications, using a powerful 

moment-method code. A more complicated structure that also included a finite-size microstrip trans- 

mission line was studied as well. In this paper, we briefly describe improvements to the analysis code 

that allow the analysis of larger, more complex problems. We then present results obtained on a 

more realistic version of the earlier structure. A relationship is established between common-mode 

current and the radiated field, in agreement with the contentions of other EMI investigators. 

1    Introduction 

In [1], a "challenge" was issued to model the second canonical problem in [2]. The problem involves 

thin metal surfaces and a thin electrically long wire in an unbounded geometry as shown in Fig. 1. 

Inclusion of dielectrics yields a structure that represents a simple, yet realistic EMI source; it includes 

a printed circuit board, a partial metal enclosure, and an attached cable. 

In the last few months, we have analyzed this structure and extensions to it using our electromagnetic 

analysis code. Early results have been described [3j and a brief summary of the results follows. The 

entire canonical structure was analyzed, and very good agreement with measurements was shown. 

Numerical convergence studies indicated that the numerical results were accurate and suggested that 

the differences between measured and calculated results were due to features of the measurement set-up 

that were omitted in the analysis. Though a simplified version of the structure (making the cable solid 
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and placing the source above the plate) was also analyzed, as first done by Hubing [2], results were not as 

good as those obtained by modeling the entire structure; this shows that the value of a powerful analysis 

code lies in its ability to handle structures without having to resort to questionable simplifications. 

The code used to analyze the above structures was a prototype code capable of handling structures 

defined on a non-uniform grid. It was generated by making rather crude modifications to a uniform-grid 

version that was used to generate the results in some of our earlier papers [4]. This prototype code did 

not have a table lookup facility and required inordinately long times to generate the matrix elements. 

Further, the original code was found to be overconservative with regard to the accuracy it employed in 

calculating each matrix element. As described in [4], a matrix element may be calculated using point 

approximations or through the use of Taylor expansions. For matrix elements where source and test 

points are relatively far apart, the faster point calculation may be used. By including a table look- 

up facility, making more extensive use of the point calculations, and optimizing numerical integration 

routines, a dramatic speed-up in the matrix generation was achieved. To further increase the speed, a 

preconditioned conjugate-gradient routine developed by researchers at IBM Haifa Research Center is 

used in place of the standard LU decomposition routine-and this has led to a large increase in speed 

when many frequencies are analyzed. The new code allows us to run more complicated structures, as 

described below. A typical run-time for the original Hubing structure involving 985 current elements 

(matrix size) for analysis of 37 frequency points is 3580 seconds on an RS/6000 model 530 workstation. 

The original structure is made more realistic by the following changes. A cover box is included 

above the plate in order to better represent the actual enclosure in a personal system product. Further, 

apertures are placed in the cover to represent openings such as those required for air flow or for the 

attachment of peripheral devices. We then reanalyze the structure and look for features of the common 

mode current and radiation that may have been missed in the original analysis. We search for, and find, 

a strong correlation between common-mode current and radiated field, one that has been suggested by 

Paul [5]. Paul contends that common-mode current on cables is usually the main culprit for excessive 

far-field radiation from computing devices. Paul's observation is based on measuring the common-mode 

current for a simple device and then showing excellent correlation between the far-field computed using 

this current and the measured field. We support Paul's contention through results based entirely on 

computer simulation. 
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2    Analysis 

The original structure in [2, 3] is shown in Fig. 1. Fig. 2 shows the modified structure. The cable and 

source are exactly the same as in the original structure, but a perfectly conducting cover is placed over 

the plate region. To reduce the number of current elements required to model the structure, the original 

plate is reduced to zero thickness. The height of the cover is 10.7cm. We also investigated the effect 

of apertures of two different configurations. A single aperture having dimensions 2.3x9.0 cm is located 

on one side of the cover transverse to the signal line, or two identical apertures having dimensions 

2.3x7.9 cm are placed on the walls that run parallel to the signal line. The shapes and locations of the 

apertures do not reflect those of any particular personal system, but rather serve as first-pass attempts 

to ascertain the effect of apertures in general. The structures with apertures will also be referred to as 

partially shielded structures. 

The common mode current in the cable of Figs. 1 and 2 is plotted against frequency in Fig. 3 

for the original, the fully shielded, and the aperture structures. Corresponding curves of the maximum 

electric field (maximum among 13 selected points at a distance of 300m) are shown in Fig. 4. One would 

expect the fields to be much smaller for the shielded structures, and, if common-mode currents and and 

electric fields are related, that the currents display the same behavior. Perfectly shielded structures, in 

fact, should display absolutely no radiated fields and exactly zero common-mode current. We observe 

the following. The currents for the shielded and partially-shielded structures are very similar across the 

entire frequency range. The current for the original structure is significantly higher than the others at 

frequencies below about 400 MHz, but comparable above 400 MHz. The maximum field, however, is far 

greater across the entire frequency spectrum for the original structure, with greater variation existing 

between the fully and partially shielded cases. The current and field for the fully shielded structure 

are not zero, and in fact are at times comparable to the unshielded structure. These results can be 

explained as follows. 

The field and currents from the fully shielded structure are nonzero because of inherent errors 

associated with the computer simulations. For an enclosure to perfectly shield a source, the field must 

be exactly zero over each point on the shield; since the matrix solution technique can only enforce 

constraints over a finite number of points, perhaps several thousands, our "numerically generated" 

shield is imperfect and cannot completely shield the source. However, as the numerical grid becomes 

finer, one would expect the numerical shield to be more perfect, and the field to decrease. The structure 

of Fig. 2, in fact, is extremely sensitive to any mathematical leakage of the field because of the long 

cable attached. If even a few roicroamps of current are induced on the cable, which behaves as a long 
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and thus efficient dipole antenna, significant radiation occurs. 

The radiated field and common-mode current are related, but this correlation is obscured by the field 

radiated directly from the horizontal strip segment. We will refer to the radiation from the strip, which 

is not caused by the common mode current on the cable, as differential radiation. Fig. 5 shows the 

computed radiated field from the enclosure when no cable is present; the source is moved from the cable 

near the ground plane to within the enclosure. We observe about a 40 dB reduction in field associated 

with the full shield, with more modest reductions associated with the partially shielded structures. (And 

this indicates that, for the analysis of partially shielded structures with shielding effectiveness that is 

about 40 dB or more, it is necessary to model the structure with a finer grid.) 

The peaks associated with the shielded structures are due to an internal resonance of the rectangular 

box forming the shield. Upon closer inspection, we observe that the differential radiation from the 

original structure accounts for nearly all the field in Fig. 4, except at the resonance located near 34 

MHz. Since the shielded structures do a much better job of containing the radiation, we do see that 

for these structures the resonant peaks in the current (Fig. 3) are well correlated with those in the 

field (Fig. 4). Thus, the common-mode currents and radiated fields show similar behaviors, provided 

the differential fields are sufficiently small. Though the field (Fig. 5) at about 600 MHz for shielded 

structures exceeds that of the original structure, this is not cause for concern and can be explained as 

follows. First, larger currents are drawn at resonance, resulting in larger fields. Second, the current flow 

on the shield must be such that it reduces the far-field produced by the source. However, at resonance, 

there is also a current component on the shield corresponding to the resonant mode of the box or cavity. 

This last current distribution, which physically produces a field only within the cavity, also contributes 

to the external far-field because of the finite grid-size limitations of the code described earlier. 

The correlation between the common-mode current and field can be shown more clearly by modeling 

a structure that does not have differential radiation. If we consider the original structure of Fig. 1, 

remove the cable's inner shield and the horizontal strip, and place the source between the outer shield 

of the cable and the ground plane, we have a pure common-mode structure that consists of a 1 meter 

dipole with a plate at one end. The current and field for this structure are plotted in Fig. 6. The peaks 

in the current are the resonances of the structure, and each is associated with a corresponding peak 

in the field. The plots are smoother than in the previous figures because many more frequency points 

were considered here. For the field curves, since only 13 points were considered, the true maximum may 

have been missed. 

To further investigate the relationship between common-mode current and field, we again consider 
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the original structure, except that the source impedance is set to zero. This introduces a whole series 

of resonances associated with the differential current in the cable (Fig. 7). Looking from the horizontal 

strip toward the source, instead of a perfectly terminated cable (which looks like a resistance), a 1 meter 

stub (the relative dielectric constant is one for the cable in this simulation) with all its resonances is 

seen. The first such resonance is at 72 MHz and corresponds to the quarter wavelength resonance in 

the cable (the horizontal strip represents a loading capacitance that reduces the resonant frequency 

below the expected 75 MHz value). As in circuit analysis, where the poles of a circuit are generally 

observable from any point in the circuit, the resonances introduced above are seen on the cable as peaks 

in the common mode current. Numerous peaks in the field are also observed. Interestingly, for each 

peak in the field, there is a corresponding peak in the common-mode current, but not vice versa. This 

suggests, at least for this structure, that if there is a resonant peak in the field, it is associated (or 

caused) by a peak in the common-mode current. However, by observing the field, some of the peaks in 

the common-mode current may be missed, perhaps because of differential radiation as seen in Fig. 4. 

Further investigations are warranted. 

3    Conclusions 

We have found for the Hubing structure [2] that there is a strong correlation between common-mode 

current and radiated field. Such correlation was observed after properly accounting for differentially- 

generated radiation that obscures the relationship. In the case of practical structures, this means 

that common-mode current cannot always be counted upon to provide EMI decisions. Only when 

the radiation from the signal lines and other differential sources is significantly shielded, so as not to 

dominate the field, does the common-mode current behavior follow that of the field. 

Further, the fundamental constraints in modeling such systems must also be considered; specifically, 

it is not possible to exactly model the shielding efficiency of a perfect shield, and care must be taken to 

extract correct results for partially shielded structures. 

We have observed that resonances within a structure will appear on the "outside" of the structure 

as peaks in the common-mode current. Thus, there exists a coupling between the excited modes within 

an enclosure and those modes associated with the external regions of the enclosure such as the cable. 

Apertures and other imperfections in the shield, physically, must allow such coupling to take place; 

but it also can occur in a computer simulation because of mathematically induced imperfections in the 

shield. 
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Figure 1:    Original Hubing structure. 
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Transverse Aperture 

Figure 2:   Modified structure featuring the shield and apertures. 
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Figure 3:    The common-mode current in the cable for unshielded, fully or partially shielded structure. 
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Figure 4:   Maximum electric field at 300m for unshielded, fully or partially shielded structure. 
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Figure 5:   Maximum electric field at 300m for unshielded, fully or partially shielded "no-cable" structure. 
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Bruce Archambeault 
Rich Mellitz 

Digital Equipment Corporation 
TDA/EPT/STT 
December 1992 

Introduction 

The need to accurately predict the elec- 
tromagnetic emissions from computer 
equipment is more important than ever. 
Goals to reduce time-to-market and 
lower product development cost have re- 
sulted in an increased emphasis in nu- 
merical modeling tools to reduce the 
number of design iterations necessary 
before achieving EMI regulatory compli- 
ance. Typically, 3-5 iterations may be 
necessary for some products with a seri- 
ous first customer shipment delays and 
significant extra development costs. Mod- 
eling can reduce the delays and cost by 
providing design engineers with a tool to 
predict the effect of design changes with- 
out the need to try-it-and-see, or use out- 
of-context equations. 

The Numerical Electromagnetics Code 
(NEC) has been widely used for many 
different applications. The use of NEC 
has been extended to prediction of EMI 
emissions from computer devices towards 
meeting the EMI regulations of the 
FCC/VDE/CISPR, etc. Such modeling 
requires the accurate representation of 
the device's expected test configuration 
(e.g. attached wires, height above a refer- 

ence plane, etc.). Therefore, the model 
must include the attached data and power 
cables. If the computer device is electri- 
cally small, then a simple wire can re- 
place the actual device. However, any 
device with an appreciable size must be 
modeled as a box with attached wires, 
and with a source at the point where one 
of the wires is attached to the box. EMI 
emissions are predicted by merging volt- 
ages, either measured or derived, at the 
wire/enclosure junctions into the NEC 
simulations. 

Solid Plane Inaccuracies 

It has been documented that NEC can 
not accurately handle the case of a solid 
conductor plane with a source at the 
point a wire connects to the plane. This 
causes difficulty for this modeling ap- 
proach since the computer device is re- 
placed with a metal box with attached 
wires and a source at the point where a 
wire attaches to the box. 

This problem was overcome by replacing 
the solid conductor box with a wire frame 
box. Wire frame models have been used 
extensively in other applications, and 
were expected to provide better accuracy 
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in this application. However, the wire 
frame box model introduces a number of 
variables that can affect the model accu- 
racy. This paper describes the effect of 
these variables and compares predicted 
and measured results to validate the se- 
lected model configuration. 

Approach 

There are many, many different wire 
configurations possible. Naturally, as the 
wire frame box configuration becomes 
more complex, more wire segments are 
required, resulting in very large computa- 
tion times. Therefore the goal of this ef- 
fort was to evaluate the errors associated 
with wire frame boxes (in this application) 
by comparing the "best" configuration 
with a set of measured data, and then 
compare the various wire frame configu- 
rations against this benchmark configura- 
tion. Although some errors are inevitable, 
it was found that many configuration op- 
tions did not provide significant errors 
(for this application), allowing the model 
to be reduced to a lower time/complexity 
configuration without significant loss of 
accuracy. 

A number of wire frame box configura- 
tions were examined. A general configu- 
ration is shown in Figure 1 and a listing 
of the various configurations considered 
is given in Table 1. The wire patterns 
were varied independently for the source 
side, adjacent side, and inactive side as 
shown in Figure 1 and Table 1. 

In addition to the wire pattern variations 
described above, other important pa- 
rameters were varied to allow their effect 
to be examined. These parameters in- 
cluded the number of wire segments re- 
quired (within the box wire patterns), the 
box wire diameter, and the source seg- 

ment size. 

Variations in the results are analyzed to 
determine the minimum configuration 
useful over various frequency ranges, al- 
lowing the minimum solution computa- 
tion time. 

Naturally, some determination of overall 
accuracy was needed to insure that the 
errors in the above analysis were mean- 
ingful. The configuration in Figure 1 is 
difficult to measure without affecting the 
parameter we wished to measure. 
Therefore, the full box measurement was 
replaced with a half-box and a single wire 
over a reference plane and rotated 90 
degrees (as shown in Figure 2) These 
measurements were then compared to 
various NEC modeled configurations. 
The source impedance was measured us- 
ing a network analyzer and compared to 
the source impedance from the NEC 
models. The 'benchmark' configuration 
was selected from these results. 
A number of different physical configura- 
tion of the wire half-box were modeled, 
and the results compared to the meas- 
ured case. Once the benchmark configu- 
ration was selected, all evaluations of the 
full box configuration (Figure 1) were 
compared to the benchmark configura- 
tion of the full wire box. 

Relative Error 

At the beginning of this effort, it was de- 
cided to find a model that provided errors 
that are low relative to the errors typi- 
cally expected during open field site 
testing (e.g. FCC testing). This meant 
that errors less than 6 dB (using 20 log 
Magnitude) would be considered accept- 
able. It was recognized that many disci- 
plines would consider a 6 dB error (50% 
error)  to  be  unacceptable.     However, 
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within the commercial EMI discipline, er- 
rors greater than 6 dB are routine and a 
model with less than 6 dB error would be 
useful. 

Model Verification 

It was considered important to verify that 
the model correctly predicted the effect 
of the RF voltage at the point of the ca- 
ble or wire point of contact to the metal 
enclosure. Unfortunately, it is physically 
very difficult to measure the radiated field 
strength over the entire range of receive 
antenna locations, while maintaining the 
proper RF voltage on the cable. Source 
impedance is relative to the total radiated 
field strength therefore it was decided to 
use the source impedance as the unit of 
measure to show the relative goodness of 
the wire frame box models. 

Although the true Open Area Field Site 
(OAFS) measurement typically contains 
the device under test (DUT) with the at- 
tached cables (similar to a box with a ca- 
ble on opposite sides), this configuration 
was difficult to measure the source im- 
pedance without corrupting the measure- 
ment with cables leading to the network 
analyzer, etc. Therefore, it was decided 
to measure the source impedance of a 
half box with a single wire above a refer- 
ence plane. (See Figure 2.) The effect of 
the measurement cable was minimized by 
placing the cable under the box. Al- 
though this changed the DUT configura- 
tion (because of the image, there would 
be two sources), this allowed accurate 
measurements to be made and allowed 
modeling using NEC. A number of con- 
figurations of wire frame half-boxes were 
modeled and compared to the measured 
data to determine the best configuration, 
or benchmark configuration. 

The half-box model and test system were 
frequency scaled by a factor of three to 
make the physical size of the measured 
test set more manageable. 

[Note: Due to space limitations in this 
document, complete details of the meas- 
ured data, and the half-box models are 
not included here. Please contact the 
authors for a report containing all data.] 

The segment size of the wires within the 
box, wire configuration, wire diameter, 
and source segment length were all ex- 
amined individually. The configuration 
with the least error from the measured 
results were used in the full box configu- 
rations. 

Full Box Optimization 

As mentioned earlier, the primary inter- 
est was in determining the necessary wire 
frame configuration for the full box DUT 
while maintaining the deviation at an ac- 
ceptable level and minimizing computa- 
tional time. Since the full box perform- 
ance could not be conveniently meas- 
ured, the half box was used to find a 
benchmark configuration and then the 
various full-box wire frame configurations 
were compared against the same bench- 
mark configuration. No frequency scal- 
ing was used during the modeling of the 
full wire frame box configurations. The 
frequency range of 30 - 1000 MHz was 
modeled. 

Table 1 summarizes the results of the 
various full box wire frame configura- 
tions. [Note: specific plots of the data 
comparisons are ommitted due to space 
limitations in this document. Please con- 
tact authors for complete copy of the re- 
port.] There are three types of box sides; 
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source side, lateral side, and inactive side 
as shown in Figure 1. Each type of side 
was varied and the deviation listed. Note 
that although both the maximum antenna 
impedance deviation and the maximum 
horizontal and vertical polarization spec- 
tral deviations are listed, the verti- 
cal/horizontal received signal strength de- 
viation is of greater interest. 

The received signal strength is the maxi- 
mum signal for antenna heights of 1 to 4 
meters, at a distance of 10 meters, with 
the DUT rotated throughout 360 degrees 
(as required for typical FCC tests). The 
deviation listed in Table 1 compares this 
maximum signal strength for the bench- 
mark case against the maximum signal 
strength for the case under consideration. 

As can be seen from Table 1, the source 
side of the box should remain with the 
full radial (spoke) configuration shown. 

The inactive side (opposite the source 
side) has much less effect on the accuracy 
of the received signal strength. Only 2-4 
dB of additional deviation is added under 
these configurations. 

The lateral side variation has a significant 
effect if the primary current direction 
(source to inactive sides) is interrupted. 
The case of 'box 10' has the least addi- 
tional deviation since it maintains this pri- 
mary current flow. 

The best overall case is shown in Table 1 
as 'box 5-10'. This configuration was se- 
lected as the best configuration since it 
provided the best compromise between 
accuracy and computation time. The de- 
viation (when compared to the bench- 
mark configuration) for this case are 
shown in Figure 4. Note that the devia- 
tion is less than 1 dB over most of the 

frequency range except in the 400-700 
MHz frequency range. 

Run Time 

The time to run these models is of great 
concern. It is common knowledge that 
Method of Moment (MoM) programs 
(such as NEC) can take very long times to 
run when the problem includes many 
segments. For these modeling cases, the 
number of segments is listed in Table 1. 
The CPU run time is listed per frequency 
since the number of frequencies will vary 
depending upon the application. For all 
the cases in this effort, frequencies of 30 
MHz to 1 GHz were used (using 5 MHz 
steps), so that no resonance effect would 
be missed. All modeling was performed 
on a VAX8800 cpu. Therefore cpu run 
times will have to be adjusted accordingly 
for the actual cpu in use. However, the 
percent time savings by optimizing the 
wire frame box configuration will remain 
constant. 

Users are encouraged to determine the 
maximum amount of error that is accept- 
able, and then determine the minimum 
configuration that provides that total er- 
ror. 

Notice that the errors/deviation are not 
constant across the frequency range. Al- 
though the maximum error is displayed in 
the various tables (for clarity), over most 
of the frequency range the er- 
ror/deviation is less than listed in the ta- 
bles. It should also be noted that the de- 
viation is at a minimum at resonant fre- 
quencies (where radiation would be 
greatest). 
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General NEC Guidelines 

The general NEC guidelines were used to 
create the initial half-box benchmark con- 
figuration. Care was taken to not violate 
any important standard guideline. Wire 
segments were maintained between .001 
and .1 times the wavelength. All wires 
must connect/cross only at wire segment 
ends. 

The full box configuration use many more 
wire segments than the half box configu- 
ration. It was decided to limit the total 
number of segments to 300 to avoid ex- 
cessive computation times so the guide- 
line for segment length (relative to the 
wavelength) had to be violated. In this 
case, the segments along the axial spokes 
were 118 mm long (about 1/2.5 lambda 
at 1 GHz) and non-spoke wires were 125 
mm long (about 1/2.4 lambda at 1 GHz). 
The test results indicate good accuracy 
(for this application) even with the long 
segments. The final recommended con- 
figuration is shown in Figure 3. 

Summary 

A number of different wire frame box 
configurations were considered for use in 
EMI modeling. The errors/deviation be- 
tween the various configurations and 
measured data were shown. The configu- 
ration that minimized the errors (to an ac- 
ceptable level for this application) and that 
minimized the computation time was se- 
lected as the best overall wire frame box 
configuration. 

751 



Figure 1 General Configuration (Full Box) 
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THE APPLICATION OF DIFFERENT MESHING TECHNIQUES 
TO EMC PROBLEMS 

J L Herring and C Christopoulos 
University of Nottingham, UK 

Abstract 

The transmission-line modelling (TLM) method and its application to EMC type problems are 
described with particular reference to issues regarding its efficient implementation and different 
meshing techniques. Results are presented for improving the description of open boundaries and 
calculating the current induced on a wire attached to a thin plate. 

Introduction 

A particular aspect of the numerical modelling of electromagnetic compatibility problems is the 
requirement to simultaneously represent both fine features and large volumes which sometimes 
extend to infinity. A regular uniform mesh can be used for this purpose, with the advantages of 
simplicity and low dispersion, but with the serious disadvantage that storage and run-time 
requirements are excessive since they are determined by the finest feature of interest. A practical 
alternative is to use a fine mesh only where it is required and a coarse mesh elsewhere. These so- 
called variable mesh schemes suffer from the disadvantages of more complicated problem 
definition and data input and also introduce additional dispersion. In the area of transmission- 
line modelling, schemes have been developed for a single graded mesh using both the 
symmetrical condensed node with stubs (stub-loaded node) and the hybrid node, as well as a 
multigrid technique. Before describing these methods, implementation issues common to all 
methods will be discussed. Finally, some examples will be presented. 

Run-time efficiency 

In a TLM calculation most of the run-time is taken up in the scattering procedure. The procedures 
for connect, boundaries and outputs are much less computationally intensive. It is therefore 
advantageous to optimise the scattering algorithm as far as possible. Further gains can be made, 
particularly when there are large regions of empty space, by implementing several procedures of 
increasing generality since, for example, the scattered pulses for a standard 12-port node can be 
computed much more quickly than those for a node with stubs. The decision on which procedure 
to use can be made on a per node basis as the calculation proceeds. 

The scattering procedure for the hybrid node will now be derived from first principles so that an 
efficient algorithm can be directly obtained. A similar method may be used for the stub-loaded 
node. Although based on knowledge of the scattering matrix originally obtained by Johns 1987, 
the conditions imposed are reasonable and give insight into the physical characteristics of the 
node. 

In the hybrid node, as described by Scaramuzza and lawery 1990, the link-lines are allowed to take 
different impedances such that they incorporate all of the required inductance. Three distinct 
impedances are used (at each node) and these are assigned to the three sets of link-lines 
contributing to the magnetic field in each of the coordinate directions. The capacitance associated 
with the link-lines is chosen to maintain synchronism and open-circuit stubs are added at the 
node to make good any deficit The connect procedure is modified to take into account any 
difference in impedance of link-lines from adjacent nodes. 

In the following derivation, the numbering scheme originally used by Johns is abandoned in 
favour of more meaningful port names. For the link-lines, a three character suffix is used: the first 
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character gives the direction parallel to the link-line, the second is 'n' or 'p' for the port on the 
negative or positive side of the node and the third gives the polarisation. For the stubs, a two 
character suffix is used: the first character is 'o', 'e' or %' for open-circuit, electric loss or magnetic 
loss stubs and the second gives the polarisation. Superscript T or Y is used to denote voltage 
pulses incident upon or scattered from the node and, if omitted, the total voltage is assumed. If 
and Z' are used to denote link-line admittance and impedance with T' and "7! used for 
normalized quantities. Superscript's' is used for stub admittance. 

0» 

 L* x\ °- 
Z: 
Vzm, 

Z* 
Vvnz 

Fig. 1 - Transmission-lines contributing to the x-components of (a) electric field and (b) magnetic field 

i)   Conservation of charge 

Consider the ports contributing to the x-component of the electric field, as shown in fig. la. 
Voltages Vy„ and Vy^ on link-lines each of capacitance |YzYcAf • 
Voltages Vsa and V^ on link-lines each of capacitance jYy YoAf. 
Voltage V& on open-circuit stub of capacitance |"VlYoAf. 
Let Vx be the voltage across the total capacitance (V» E C; = X VjC,). 

Vx = 
2Y„ + 2Y2 + YJ 

(1) 

Let the total incident charge be equal to the total scattered charge 

%{VL + V^) + Y2(V^ + V^) + %VT
m + &XVL 

Yy(vL + vy + YZ{V^ + Vl
m) + rxvL (2) 

Vx may be expressed solely in terms of incident pulses (which are known) by substituting the 
scattered pulses from (2) into (1) and writing V«L = V, (no incident pulse from loss stub). The 
pulse scattered into the open-circuit stub may be obtained directly from V^ = Vx - V^ 

ii) Conservation of magnetic flux 

Consider the ports contributing to the x-component of the magnetic field, as shown in fig. lb. 
Currents I^a, Jw, 1^ and Imy on link-lines each of inductance \ZxZoM. 
Let lx be the current through the total inductance Qx X L, = ZW,-). 

1* = -rzr [{Vra - v^) + {ym - vQ - (vj. - v^) - {viy - VI (3) 
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Let the total flux linked with the incident pulses equal the total flux linked with the scattered 
pulses. 

V'^ + V^-V^- v^ + VL = -{v^ + vij, - v^ - vLg) (4) 

Ix may be expressed in terms of incident pulses by substituting the scattered pulses from (4) into 
(3) and writing V£ = %Mi- 

iii) Continuity of electric field 

Consider the x-component of the electric field. Make the electric field due to pulses on link-lines 
parallel to the y-axis equal that due to pulses on link-lines parallel to the z-axis. 

V^ + V^ + V^, + V^ = VL + VL, + V^ + V^ (5) 

iv) Continuity of magnetic field 

Consider the x-component of the magnetic field. Make the magnetic field due to pulses on link- 
lines parallel to the y-axis equal that due to pulses on link-lines parallel to the z-axis. 

(vL, - VLy) - K - vQ = (vj. - v^) - (vj„ - VJo) (6) 

Solving equations (2), (4), (5) and (6) and the corresponding equations for the other directions 
yields the required scattering matrix. Naylor and Ait-Sadi 1992 have found that the scattering 
procedure is most efficiently implemented by first calculating the total voltages (V,, Vy, VJ and 
the total currents Qx, lv lz) from the incident pulses. The voltage pulses scattered into stubs can 
then be directly obtained and voltage pulses scattered into the link-lines can be found from 
expressions of the form Vy„ = V* - Zof2 - V^,. 

The scattering procedure for the standard 12-port node requires 36 additions/subtractions and 12 
multiplications by a constant The new algorithm would require 42 additions/subtractions and 6 
multiplications by a constant. The most efficient algorithm will depend on machine architecture 
and on whether floating-point or fixed-point arithmetic is used. For a fully featured stub-loaded 
node, with both electric and magnetic losses, the new requirement is for 54 additions/ 
subtractions and 12 multiplications, provided that two scattering coefficients are stored for each 
node type. The new algorithm is therefore more efficient than that proposed by Tong and Fujino 
1991 in which 6 multiplications, 66 additions/subtractions and 12 divisions by 4 are required. 
When implementing the hybrid node, which is generally used for graded meshes, the storage 
required to store scattering coefficients at every node is excessive and it may be necessary to 
recalculate the coefficients at each iteration. A choice also has to be made as to whether the link- 
line and stub admittances are stored or recalculated. As a rough guide, the total run-rime for the 
authors' code, written in C (single-precision) and running on a Hewlett-Packard 710 workstation, 
is 63 0s/node/iteration for the 12-port node and 13 /is/node/iteration for the hybrid node with 
no losses (in which only link-line and stub admittances have been stored). 

Storage Eff iciency 

In the implementation of the TLM method, particularly with graded meshes, there is an obvious 
tradeoff between space and speed efficiency as regards the scattering coefficients. For the hybrid 
node, if storage is required for both the link-line and stub admittances, mis leads to a total of 21 
quantities per node. The situation is less severe for a uniform mesh in which there are only a 
small number of different material properties to be considered since the scattering coefficients 
need only be stored for each material type rather than for each node. This method can also be 
used with the graded mesh provided that the total number of distinct node sizes is small. 
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Space savings may be made by only allocating storage for stubs on nodes which actually require 
them. These savings will be significant for systems in which a large part of the volume is free- 
space. The disadvantage is that it becomes necessary to keep track of stub storage for each node. 
A compromise solution is to divide the problem space into a number of cuboid meshes in which 
stub storage is allocated on a per mesh basis. 

In principle, virtual memory systems can be used to run problems where the storage requirement 
exceeds the available physical memory. If the code is written in a straightforward manner (e.g. 
scatter for all nodes then connect for all nodes) then the entire mesh must be brought into 
memory several times during each iteration. A more efficient approach is to divide the mesh into 
a number of overlapping regions each of which will fit into physical memory. A number of 
iterations are then performed in each region before the next region is processed. The interface 
between any two regions is moved within the overlap to take account of the temporary loss of 
connectivity. There is very little overhead involved in using this method although the code does 
become more complicated. Particular care must be taken when dealing with features which 
intersect the overlap. A significant reduction in page faults and hence in elapsed time can be 
made even when relying on the default paging mechanism built into the operating system. For 
example, by introducing two regions with an overlap of 10 nodes into a problem requiring 19 
Mbyte of storage, the CPU time was reduced from 87 to 62 minutes and the elapsed time was 
reduced from 308 to 79 minutes on a VAXstation 3100 (VMS 54) with a working set limit of 18 
Mbyte. Greater savings would be expected if custom paging routines were used. 

Graded mesh 

In the graded mesh technique, the node size is varied so that high resolution is applied only in 
areas where it is needed. The grading is uniquely defined by the node dimensions along each of 
the coordinate axes. The time taken for a voltage pulse to travel between any two nodes is kept 
constant and so the bulk wave must be slowed down with stubs. To ensure that all stub 
impedances are positive there is an upper limit on the timestep. Originally, the stub-loaded node, 
as described by Johns 1987 was used. The maximum timestep is determined by satisfying 
inequalities of the form 

2c   Ax 2c   Ax 

for all three directions and for all nodes. The required open-circuit stub admittances and short- 
circuit stub impedances are then given by expressions of the form 

yl=^
A^_4and^ = ^^^-4 

c   AfAx c   AfAx 

The stub-loaded node has now been largely superseded by the hybrid node which has the 
advantage of fewer stubs and can sometimes be operated with a larger timestep. It also appears to 
have better dispersive properties. Further details can be found in papers by Scararmaza and 
Christopoulos 1991 and Scaramuzza et al 1991 The maximum timestep is determined from 
inequalities of the form 

* <^i/-^*: 
/2Ä1/2 + 2Ä2? 

The link-line and stub admittances are then obtained from equations of the form 

2cAtAx ..      2Er AyAz 4cAf     ,. ,     ,a yx =   and Y» = — -2 (Ay2 + Az2) 
fir&y&z cAf   Ax      ft-AxAi/Az 
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The main disadvantages of the graded mesh technique are that the fine mesh often extends into 
regions where it is not required, the same small timestep must be used for all nodes and increased 
dispersion due to the presence of stubs. 

Multigrid technique 

In the multigrid technique, the principles of synchronism and connectivity are violated so that 
separate meshes of different spatial resolution can be connected together to form a complete 
system. The restrictions are imposed that the meshes are ungraded and are defined in the same 
coordinate system. At the interface between these meshes there is an abrupt change in both mesh 
size and timestep. The transfer of pulses across the interface must ensure continuity of fields as 
well as minimizing any delay. Further details about the conversion process may be found in 
papers by Herring and Christopoulos 1991 and Christopoulos and Herring 1991A general formula for 
the conversion of pulses from mesh 2 to mesh 1 is given by 

«2 <1 ; m 1 

where h link-lines from mesh 1, in each direction, are to be connected to l2 link-lines in mesh 2 
and «2 is the total number of pulses to be taken from mesh 2. 

The advantages of the multigrid technique over the graded mesh are that fine mesh regions can 
be completely localised, larger timesteps can be used in coarse mesh regions and there is no need 
for stubs unless they are required for material properties. A standard 12-port node can therefore 
be used with savings in run-time and storage as well as a reduction in dispersion. The 
disadvantages are that there are problems with applying large reduction ratios and there is an 
inevitable loss of energy when converting pulses from the fine mesh to the coarse mesh (although 
this is only at high frequencies). Conversion schemes can be devised in which there is no loss of 
energy but the storage requirement is increased and there is no significant improvement in 
results. 

Open boundaries 

Open boundaries may be approximated by terminating the link-lines adjacent to the boundary 
with a matched load. This method works perfectly when a plane wave is normally incident upon 
the boundary but works less well for waves incident at an angle. In this section the graded mesh 
and multigrid techniques will be used to increase the modelled volume so that the boundaries are 
distant from the region of interest. This method may also be applicable when improved open 
boundary descriptions are used and high accuracy is required. 

Fig. 2a shows a quarter section of the field profile around a point source (in the bottom left comer) 
at frequencies of 100MHz and 200MHz for a 403 uniform mesh with a node spacing of 10cm. The 
lines, which are contours of constant electric field magnitude, should be a set of concentric circles 
but distortion is apparent in the top right corner. This distortion is worse at the higher frequency. 
Fig. 26 shows the same area but with the multigrid technique used to embed the 10cm mesh 
inside a 403 mesh of 40cm node spacing. The boundary was therefore moved away by 12m. The 
distortion has effectively been removed at 100MHz although some distortion is still apparent at 
200MHz. In fig. 2c, a graded mesh, utilizing the hybrid node, has been used to increase the node 
dimensions by 2cm for each successive node beyond the 4CP uniform region. A mesh of 503 nodes 
was used so that the total number of nodes was the same as for the multigrid case. The results are 
slightly worse. Extremely bad results were obtained when the node spacing was increased to 
40cm. A comparison of the computer requirements is shown below. 
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Mesh Relative storage Relative run-time 
403A/=10cm 1-00 1-00 

403 AZ=10cm, 4tf A/=40cm 1-95 1-28 
5tf)A/=10,...,10/12,14,16/18,20,22^4/26^8/30cm 3-15 3-78 

fig. 2 - field profile around a point source (a) uniform mesh (b) multigrid (c) graded mesh 

Currents induced on wires attached to opposite sides of a thin plate 

In this section, different meshing techniques will be applied to the problem of determining the 
currents induced on wires attached to opposite sides of a thin plate, as described by Hubing 1990, 
in the ACES book of canonical problems. The system consists of a lm vertical wire attached to a 
thin plate measuring 504x29-4cm2 above a ground plane. Above the plate, a wire either extends 
vertically by 15-8cm or is bent so that it measures 2-3cm vertically and 13-5cm horizontally. The 
metal of the structure was modelled with short-circuits at the mid-point of link-lines and the 
wires were modelled with a single node cross-section. Symmetry was not exploited and the open 
boundary conditions were approximated by matched boundaries. The source, which was used to 
connect the plate to the top wire, was modelled by four impulse voltage sources, each with 200Q 
series resistance, arranged around the centre node. The output was taken as the current at the 
base of the long wire, normalized to 1 volt source potential. 2000 iterations were performed (with 
respect to the coarse node spacing) to allow the signal at the output to reach a steady state. 

The multigrid models were based on a 90x90x45 node coarse mesh, with a node spacing of 10cm. 
The boundaries were therefore 3-3m away from the nearest part of the structure. Two fine mesh 
regions, measuring 04x0-4x0-9m3 and 1-Oxl0x04m3 were used. Fig. 3a shows typical results for 
current (measured in dB above VtA) against frequency for the straight wire. Comparisons with 
experiment are shown in fig. 4, for both the the straight and bent wires, when an additional very 
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fine mesh region was placed around the top wire. There is reasonable agreement, at higher 
frequencies, considering the fact that the wire diameters and plate thickness were not modelled 
accurately. 

The graded mesh models were based on a mesh of 81x81x57 nodes with 10cm as the largest node 
dimension. The size of the nodes was reduced, gradually, near to the plate and the wires to 
provide a better description. Typical results are shown in fig. 3b for minimum node dimensions 
around the wire of 2cm and 1cm. These results are similar to those obtained with the multLgrid 
method. A comparison of the computer resources required (on a Hewlett-Packard 710 
workstation), for all of the examples, is given below. 

Mesh 
90x90x45(10cm) 

90x90x45(10cm), 8x8xl8+20x20x8(5cm) 
90x90x45(10cm), 16xl6x36+40x40xl6(2-5cm) 

Storage (Mbyte) 
16-8 
18-4 

19-9 

Run-time (min.) 
77 
93 
119 

90x90x45(10cm), 16xl6x36+40x40xl6(2-5cm), 
32x8xl6(l-25cm) 20-2 123 

81x81 x57 hybrid node, graded A?„„=2cm 30-2 

81 x81 x57 hybrid node, graded A/^n=lcm 30-2 1612 

uniform 
2:1 multigrid 
4:1 multigrid 

0L^_ 

uniform 
5:1 graded 
10:1 graded 

0 20        40        60        80       100 
Frequency (MHz) 

20        40        60        80       100 
Frequency (MHz) 

Fig. 3 - Current induced on wire modelled at different resolutions (a) multigrid (b) graded mesh 

Conclusions 

In the examples shown, the multigrid technique has been found to be the most efficient method. 
The graded mesh technique should not, however, be immediately discounted. There are many 
ways in which to mesh a given system and issues such as the maximum frequency of interest and 
proximity of matched boundaries will have differing importance in different situations. A graded 
mesh may well become more efficient when large reduction ratios or non-cubic nodes are used. In 
addition, the graded mesh can just as easily be defined in cylindrical or spherical coordinates, as 
in Cartesian coordinates. Ultimately, a combined graded and multigrid technique may provide 
the best solution. 
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fig. 4 - Current induced on wire: comparison with experiment (a) straight wire (b) bent wire 
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Optimization of FDTD for EMI Modeling 
Applications 

Bruce Archambeault Louise Lemaire 
EMI Consultant Engineer Principal Software Engineer 
Digital Equipment Corporation Digital Equipment Corporation 

1 Introduction 

The use of the Finite-Difference Time-Domain (FDTD) numerical modeling technique has be- 
come widespread among a large number of disciplines requiring the solution of Maxwell's 
equations. The FDTD technique offers wide flexibility for applications and provides a solution 
in the time domain, allowing wideband frequency response with a single model execution. The 
FDTD technique often requires simulation of a large number of time steps, so the total model 
run time can be significant. This paper describes two opportunities to save run time and main- 
tain model accuracy by adapting the boundaries of the computational space during run time. 

2 Background 

When using the FDTD technique, the computational domain is divided into a grid. FDTD 
solves Maxwell's equations directly by converting the differential equations into difference 
equations and then solving the Electric (E) and Magnetic (H) fields at all grid locations within 
the computational domain for a single time step. The time is then incremented, and the E and H 
field values recomputed. This time stepping and E and H field solution continues until the 
simulation has completed a sufficient number of time steps for the application. A more com- 
plete description of the FDTD numerical modeling technique can be found in a number of ex- 
cellent papers. [1][2][3] 

The size of each cell in the grid must be kept small relative to the smallest wavelength being 
considered. It is common, therefore, to have computational domains with hundreds of grid seg- 
ments on each side. The time domain pulse must be given sufficient time to propagate through- 
out the computational domain and include all reflections from conducting surfaces. It is com- 
mon to run a FDTD model for many thousands (or even millions) of time steps. Depending on 
the application and the speed of the computer, a model simulation may run for many hours or 
even days. 
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3 EMI Modeling Using FDTD 

The use of the FDTD technique for modeling Electromagnetic Interference (EMI) applications 
is gaining popularity. Shielding performance of apertures in a conducting wall [4], coupling 
between conductors within a partially or fully shielded enclosure, and radiation from a metallic 
structure are among the applications for FDTD which can utilize the flexibility of the technique. 
The time domain solution allows a wideband frequency response to be obtained by using a Fast 
Fourier Transform (EFT). 

FDTD can be used to perform EMI modeling in either two or three dimensions. One example 
of a two-dimensional model would be to analyze the shielding performance of an air vent panel 
in a shielded enclosure [4]. The largest dimension of the vent openings will be the greatest con- 
tributor to the shielding performance so the vent panel can be reduced to a two-dimensional 
cut-away view of the vent panel as shown in Figure 1. With this model, the effect of varying 
the vent hole size, hole spacing, vent hole thickness, and source wire location can be deter- 
mined simply without the added complexity of the third dimension of an enclosed shielded box. 
In this example, the computational boundaries are absorbing boundaries so no reflections from 
the computational boundary occur. The remainder of this paper will deal with an optimization 
of 2-dimensional EMI modeling. 

Monitor Points:   :•: 

jVeht Model; ■ ■ a 
:•: 

: Source 

Figure 1   - Air Vent Model Example 
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4 Computational Domain Optimization 

There are two opportunities to save computation time. Either or both techniques can be used 
depending on the structure and content of the model. Both techniques take advantage of the 
fact that many of the FDTD grid locations have zero (or near-zero) field values during much of 
the computational time. There is no need to waste CPU time recomputing a zero electric and 
magnetic field during those times when nothing computationally interesting is occurring at 
those cell locations. 

One optimization technique is to expand the computational domain in front of the advancing 
time domain pulse. Figure 2 shows an example of the computational domain expanding in 
steps during the computational time. Although there is a slight added overhead to the program 
to determine when the computational domain must expand to the next size, the CPU time saved 
due to the smaller computational domain far exceeds the extra overhead. 

Figure 2   - Expanding Computational Domain Boundaries 

The second optimization technique is to retract the computational domain behind the decaying 
time domain pulse. Figure 3 shows an example of the computational domain retracting. Note 
that care must be taken to insure the computational domain is not made smaller before the time 
domain pulse has completely passed through an area. In the example of Figure 1, once the 
pulse has completely passed through the air vent area, the bottom of the computational domain 
can be moved up past the air vent, since there are no more conductors to reflect the pulse. If 
additional reflections are expected, however, then the computational domain can not be made 
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smaller. The amount of shrinkage allowable at any time step is determined by the error toler- 
ance required by the application. 

Tj=f$O0-ro:enö- 

T:=-$0Ö'tö:9üi)' 

T^700"tö:8üD' 

T:=60Gtcr7C!0 

T;=5oortö;60'cr 

■r-=ot(>soo- 

Figure 3   - Retracting Computational Domain Boundaries 

5 Examples of Computational Domain Optimization 

An example of both an expanding computational domain and a retracting computational domain 
FDTD model will be presented. Although the techniques are applied to a two dimensional 
model, the techniques apply to three dimensional problems as well. The two dimensional 
shielded air vent model described earlier will be used to illustrate this example. Figure 1 shows 
the general model. 

5.1 Allowable Error 

Different applications have different accuracy requirements. In many electromagnetic model- 
ing applications tenths of a dB are important. However, in the field of EMI, typical measure- 
ment uncertainty is 6-10 dB. If an EMI modeling tool is able to predict the performance of a 
product to within 6 dB, the tool is considered very accurate for this application. The examples 
shown base their allowable error on the EMI application. 

For the examples used in this paper, the error is calculated for frequencies in the range from 
1.0E+08 Hz to 3.0E+10 Hz.   There is not enough energy in the source pulse for frequencies 
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greater than 30 MHz to produce reliable simulation results. The frequency domain for the 
source pulse is shown in Figure 4. 

5.2 Expanding Computational Domain 

Figure 2 shows the expansion of the computational domain at specific time steps. The number 
of time steps before the advancing time domain pulse reaches a given point is computed so that 
the computational domain is always large enough to contain all active grid locations. 

Figure 4 shows the frequency domain results for the base case. For each frequency, it shows the 
maximum amplitude over all monitor points, and the source amplitude.. 
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Figure 4   - Frequency Response for Base Case and Source Pulse 

The frequency response curves for the expansion examples are virtually indistinguishable from 
the base case curve, because the of the extremely small difference between them. Table 1 shows 
the comparative run times for different examples. In all cases, the expanding edge of the com- 
putational domain was kept out ahead of the advancing time domain pulse. The variable in the 
examples was the number of time steps in between recalculation of the boundaries of the active 
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computation space. The table data supports the selection of 25 time steps as a recalculation in- 
terval that yields good performance without adding undue recalculation overhead. 

Recalculation 
Interval 

Run 
Time 

Percentage 
Savings 

Maximum 
Error 

N/A (Base case) lh. 24 m. 8.4 s. N/A N/A 

10 57 m. 30.93 s. 31.64% 0.001 dB 

25 56 m. 42.43 s. 32.6 % 0.002 dB 

50 57 m. 38.74 s. 31.49% 0.002 dB 

75 58 m. 27.46 s. 30.52 % 0.003 dB 

100 1 h. 13.28 s. 28.43 % 0.003 dB 

Table 1   - Expansion Optimization Results 

The typical time savings for these examples was approximately 30% over the base case run 
with no optimization. These models were run on a VAX6000-440 system. Although the time 
savings will vary from computer to computer, the percentage time savings will remain constant. 

5.3 Retracting Computational Domain 

Figure 3 shows the retraction of the computational domain at specific time steps. The number 
of time steps lapsed before the computational domain is retracted is calculated based upon the 
amount of allowable error for the particular EMI application. 

When the E field values were observed in space by taking a cut-away view through the center 
of the computational domain, the trailing edge of the pulse did not resemble the Gaussian shape 
of the source pulse. Where the source pulse is a symmetric curve with relatively steep rise and 
fall slopes, the E field value curve does not rapidly converge to zero. As the computational 
domain is retracted, a portion of the trailing edge of the E field value curve will be truncated, 
causing a modeling error especially at lower frequencies. The accuracy requirements of a par- 
ticular model will control the amount of truncation allowed and the speed at which the compu- 
tational domain can be retracted. 

Table 2 shows the comparative run times for different retraction examples. In all examples, a 
recalculation interval of 25 time steps was used. The variable in the examples is the number of 
time steps used as a delay before retracting the computation space. A delay of 100 time steps 
means that the computation space was not retracted to a cell location until 100 time steps after 
the trailing edge of the pulse had passed through the cell location. Thus the time delay directly 
translates to the amount of time that the E and H field values in the cell are given to decay after 
the pulse energy has passed by. This relates directly to how much of the tail of the pulse energy 
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is truncated. The typical time savings for these examples was approximately 20% over the base 
case run with no optimization These models were run on a VAX6000-440 system. 

Retraction 
Delay 

Run 
Time 

Percentage 
Savings 

Maximum 
Error 

N/a (base case) 1 h. 24 m. 8.4 s. N/A N/A 

100 1 h. 2 m. 32.87 s. 25.66 % 4.250 dB 

125 1 h. 5 m. 30.82 s. 22.14% 2.692 dB 

150 1 h. 9 m. 40.32 s. 17.20 % OdB 

175 1 h. 9 m. 34.94 s. 17.30 % OdB 

Table 2   - Retraction Optimization Results 

5.4 Combining Expanding and Retracting Computational Domains 

The two optimization techniques are independent, and can be used separately or together for 
greater time savings. Table 3 shows the time savings possible with a combination of the two 
optimization methods. 

Retraction 
Delay 

Run 
Time 

Percentage 
Savings 

Maximum 
Error 

N/A (base case) 1 h. 24 m. 8.4 s. N/A N/A 

125 37 m. 27.48 s. 55.48 % 2.692 dB 

135 38 m. 14.39 s. 54.55 % 0.194 dB 

145 38 m. 16.66 s. 54.51 % 0.002 dB 

155 39 m. 42.87 s. 52.80 % 0.050 dB 

Table 3   - Combined Expansion and Retraction 
Optimization Results 

6 Summary 

This paper has presented two techniques to optimize EMI models using the FDTD numerical 
technique. The computational space can be expanded in front of an advancing time domain 
pulse, and the computational space can be retracted behind the decaying time domain pulse. An 
example is given with the errors introduced due to the expansion and retraction of the computa- 
tional domain. 

When the basic model allows the use of these techniques, significant run time reductions of the 
order of 50% are possible. 
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Applications of MiniNEC to EMI 
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Digital Equipment Corporation 
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Abstract 

MiniNEC is a code specifically designed for modeling wire antennas and so may be directly 
applied to the analysis of EMI problems involving cable radiation. In addition, MiniNEC can 
be used for much broader analysis from enclosures down to the component level. This paper 
explores some of these applications of MiniNEC for EMC system design and analysis. 

Introduction 
The main reasons for using MiniNEC [1] are availability and ease of use. Many EMI engineer- 
ing tasks do not require a highly accurate initial model (within 6 dB is often adequate) but 
rather an understanding of the sensitivity of the system to different factors. MiniNEC models 
can be quickly and easily modified to provide radiation characteristics and similar information 
to the EMC engineers designing new computer systems [2]. 

It is important to consider the starting point and time frame for many commercial EMC designs. 
Commonly, during the concept phase of product development, EMC issues will arise that need 
to be resolved, often within a week. In most cases these issues are addressed based entirely 
upon the experience of the responsible EMC engineer. Since this is generally relative informa- 
tion, anything that can help quantify the situation is helpful. It is often known that "A is better 
than B" but usually it is not known by how much. To use MiniNEC in these applications it is 
necessary to produce a geometry that models the portion of the system being considered, mak- 
ing certain it is as simple as possible, focusing on a single element of concern. The data result- 
ing from the MiniNEC analysis also has to be evaluated in light of the operating environment 
Extra geometry variations may be needed to account for such effects. 

Five cases involving EMI related problems were examined using MiniNEC. They are listed be- 
low. 

prediction of radiated emissions for a simple system 
I/O cable position effects on radiation 
heatsink influence on radiated emissions 
effects of the test unit on the measurement antenna 
design of a reference antenna 
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The use of MiniNEC was similar in many of the cases. Initially, the problem geometry was 
defined and the terminal impedance was calculated. Then, changes were made to the geometry 
to simulate variations that could be expected in the real application. Whenever significant 
changes were found, further study was required: first to ensure that the initial models were ade- 
quate, and second to determine which geometry changes were most important to the system be- 
havior. Once the reason for the sensitivity was determined, it could be controlled in the final 
application. 

The input impedance was chosen as the working data set rather than the radiated field distribu- 
tion, in most cases. This is because the terminal impedance of an antenna can be used in con- 
junction with circuit analysis to determine the total energy that is radiated. For most EMC ap- 
plications, the radiation pattern is unimportant since it is influenced by the presence of other 
conductors attached to the equipment under test (EUT). In cases where the pattern is of inter- 
est, it can be estimated from a knowledge of the system geometry. 

Prediction of System Level Radiated Emissions 

To aid in product design, an experiment was planned to measure the radiated emissions coupled 
from a source inside an enclosure to an I/O cable. MiniNEC was used to identify and separate 
the resonances observed in the measured data, into those due to the antenna and those due to the 
source and/or coupling mechanism. 

The enclosure was selected to be relatively thin, so a two dimensional model could be used to 
represent the enclosure and I/O cable. The geometry of the test was simplified to facilitate both 
modeling and measurement accuracy. The enclosure was bonded to the test site groundplane 
and the I/O cable positioned vertically. Measurements were made from 200 MHz to 1 GHz. It 
is important to note that only the frequencies of maximum radiation were calculated, not the 
amplitudes. 

Good correlation was obtained to about 600 MHz as shown in Figure 1. At this time, no work 
was done to improve the MiniNEC model; however, the confidence gained in obtaining these 
results led to its use for more complex EMI problems such as those covered in this paper. 

Interface Cable Position Effects On Radiated Emissions 

When making EMI measurements, some agencies require that cable and/or peripheral place- 
ment is varied to ensure that the maximum emission level is achieved, while others require that 
a given fixed position is used. There is much in favor of a fixed geometry. It simplifies testing 
greatly, aids repeatability and ensures consistency between different test houses. In conse- 
quence, there was much interest in determining just how closely the fixed position method 
matched with the maximum emission method [2, 3]. 

To model this, the problem was eventually simplified to a single cable above a ground plane. It 
took a number of steps to show that this was a sufficient representation to show how the radia- 
tion varied with cable position. Using MiniNEC, the orientation and shape of the radiating ca- 
ble was varied and its terminal impedance was tabulated against the geometry. 
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The results obtained from MiniNEC indicated that the specified fixed position would provide 
the highest levels of emissions in many cases. However, as expected, repositioning the cable 
was effective in maximizing levels in other cases, particularly if there was a peripheral attached. 
This information has brought a better understanding of the differences in the EMI test methods. 

Heatsink Influence on Radiated Emissions 

With computer speeds increasing to greater than 200 MHz, there comes a point when the 
heatsink becomes significantly large relative to low harmonic frequencies of the clock. Two 
questions were raised. What is the influence of the heatsink on radiated emissions, and could 
the heatsink be made large enough to cool a number of devices? Due to product constraints, the 
time available to resolve these questions was limited to only three weeks, so it was not possible 
to look to more complex analysis tools. 

From the modeling standpoint, there is only one model needed as the effects of larger vs. 
smaller heatsinks can be considered as a shift in the frequency response. There were, however, 
a number of other factors that needed to be evaluated. These included adjacent PC boards with 
groundplanes and the proximity of an enclosure side wall. 

The heat sink was initially modeled as a 3D wire frame above a smaller wire frame representing 
the module groundplane. This was simplified, step by step, to a single monopole the height of 
the heatsink with four long horizontal elements, modeling the length and width, over a small 
radial groundplane. To account for the proximity of adjacent planar conductors, the model was 
evaluated both with and without an infinite groundplane, and at various heights. These models 
are shown in Figure 2. 

The results of this work enabled the selection of the various heatsinks to be made in a way that 
would not cause EMI problems on the current design and was compatible with future upgrade 
plans. At a later stage this approach was compared to a FDTD code [4]. Consistent differ- 
ences of about 6 dB in total radiated power were found but, for the application, this was quite 
acceptable. 

Influence of the Test Unit on the Measurement Antenna 

It has become apparent to the EMC community that during site attenuation measurements the 
direct coupling between transmit and receive antennas has to be taken into account. This is re- 
flected in the ANSI procedures [5]. However, for real emission measurements, the transmit an- 
tenna is effectively replaced by the EOT which can range from very small to being spread 
across a 1.5 m x 1 m table and extend from the groundplane to 1.5 m or more in height. 

To analyze these situations, a series of models were developed [6, 7]. These models included 
looking at the antennas alone at various heights above a groundplane for both vertical and hori- 
zontal polarizations. A further set of models were used that put various arrays of conductors at 
the location of the EOT. These cases included both horizontal and vertical conductors, with 
both grounded and ungrounded cases being examined, and simulated the interconnect and 
power cables as well as the EOT system components. 
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It was clear from the results obtained that different antennas, or similar antennas with different 
baluns, responded differently and so produced diverse results. Further, the results obtained 
from MiniNEC made it possible to estimate the magnitude of these effects and the frequency 
range and test distances at which they were most important. 

Reference Antenna Design 

The design of a simple, well characterized, electrically short dipole was needed for use as a ref- 
erence antenna. A number of designs were quickly compared using MiniNEC for the influence 
of element length and diameter. After initial measurements of the antenna factors, the design 
was fine tuned to the best practical dimensions and the final antenna analyzed. 

MiniNEC was used to calculate not only the terminal impedance and current distribution but 
also to determine the effect that nearby objects would have on the antenna factor. The effects 
of concern included the test site ground plane and the presence of a source antenna or, in the 
case of emissions measurements, the equipment under test. This enabled an estimate of the 
calibration uncertainty to be obtained. 

This work is not complete; however, the results obtained so far are well within experimental 
error. As part of this project a series of different segment selections will be compared to help 
determine exactly what part of the design uncertainty can be attributed to MiniNEC. 

Conclusions 

MiniNEC has been used for a wide variety of EMI modeling tasks. Some were accurate while 
others were just approximations, but in all cases the information derived provided valuable de- 
sign inputs and permitted a faster time to market with lower design risk. 

For greater in-depth analysis, NEC or FDTD codes would be more appropriate; however, these 
require far greater computer resources than a basic PC, as needed for MiniNEC. 

While MiniNEC may not be custom built for this type of work it can be used to provide a sur- 
prising range of design information. It is most important to realize that MiniNEC has to be 
used carefully; an experienced engineer is needed to ensure that the results obtained are not er- 
roneous. However, its speed and simplicity make MiniNEC a valuable EMI design tool. 
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Nonlinear Effects Errors Encountered In Performing 
Interference Analysis Using An RF Circuit Analysis Code. 

Frank E. Walker and Sperry H. Goodman 
Boeing Defense and Space Group; Seattle, WA 

Abstract 

This effort was to analyze the effects of 
electromagnetic (EM) environments upon Monolithic 
Microwave Integrated Circuits (MMIC). This paper 
will discuss the results of analyzing an S-band MMIC 
RF receiver amplifier circuit operating in the 2 to 4 
GHz range. Intermodulation and 1 dB compression 
effects of in-band and out-of-band CW interference are 
modeled. The analysis attempts to predict circuit 
susceptibility to EM environments by calculating 
nonlinear effects for a two-stage RF receiver circuit 
model. Modeled data were compared with measured 
data to determine the accuracy of die computed results. 

Introduction 

As high-frequency amplifiers that employ 
MMIC designs are developed, there is a need to 
evaluate electromagnetic effects on these designs. 
Traditional techniques of EM environmental testing at 
the end of development prohibit effective incorporation 
of EM effects mitigation into the design phase. 

Prior work to investigate EM effects on MMIC 
devices is based on the results of laboratory testing. In 
these efforts, references 1 and 2, testing methodology is 
recommended to identify EM effects, and interference 
measurements are conducted to determine EM 
susceptibility. The investigation reported in this paper 
is directed, m part, to develop an analytical approach to 
EM susceptibility prediction for RF devices. This 
effort is sponsored by Rome Laboratory, under contract 
F30602-89-C-0004, entitled, "Electromagnetic Effects 
Mitigation Techniques for Advanced Arrays*. 

As computational radio frequency (RF) circuit 
analysis software development progresses, we are 
tempted to use these codes to investigate EM 
susceptibility effects while designing the circuit. In 
this effort the EEsof software system Academy and the 
nonlinear RF circuit analysis code libra were used to 
model and analyze the circuit model response to 
interference level signals. Without knowledge of 
circuit detail, the RJF port circuitry was modeled in 
Touchstone from measured S parameters. Libra was 
then used to model circuit performance with various 
combinations of normal and interference signal power 
levels and frequencies. Although the development of 
reliable EM effects analysis software seems imminent, 
the high-frequency analysis codes currently available 
are hard pressed to analyze circuits accurately when 
they are driven into saturation with high power levels 
characteristic of EM susceptibility. 

The modeling results were reasonably accurate 
for functional performance but did not agree well with 
test results for intermodulation distortion. The 
modeling performed with the use of commercial RF 
circuit analysis software did not account for small signal 

suppression associated with amplifier desensitization 
for two or more input signals. The modeling did not 
accurately predict power limitations in the amplifier 
that should result in suppression of the primary signal 
with the introduction of a second, high-power, in-band 
signal. The nonlinear distortion error in the modeling 
analysis is most probably the result of incomplete 
circuit modeling. 

Linear Analysis of RF Amplifier Equivalent 
Circuit Model 

In our effort to model the RF receiver we were 
unable to obtain detailed circuit design parameters 
from the module developer, Raytheon. This was due 
to the proprietary nature of the design. In order to 
approximate the design we matched measured device 
S-parameters to model circuit S-parameters and 
iterated the model design until the model S-parameters 
closely matched those of the original design. This is a 
practical approach because actual design data is often 
unavailable, and rapid modeling is needed.. 

In this modeling effort we employed a simple, 
two-stage RF amplifier model The circuit of figure 1 
is a two-stage FET amplifier with a bandpass from 2 to 
4 GHz. This model was created with the EEsof 
Touchstone software. The linear S-parameter plots of 
input impedance, (Sll), shown in figure 2 and gain, 
(S21), shown in figure 3 are compared with measured 
data for the RF receiver amplifier. This first model 
confirmed that a two-stage model was adequate to 
model the amplifier, but improvement in S-parameter 
match between measured and modeled performance 
was necessary. 

The simple model of figure 1 was improved 
with the use of a parameter matching routine in 
Touchstone. This optimizing routine produced the 
more detailed two-stage amplifier model of figure 4. 
Modeled Sll and S21 data from the improved RF 
amplifier circuit model are compared to measured data 
in figures 5 and 6, respectively. In these comparisons 
there is good agreement between the modeled and 
measured data. 

Nonlinear Modeling of Receiver Amplifier 
Susceptibility 

With this improved, two-stage RF circuit 
model we were able to perform EM susceptibility 
modeling. In order to do this we modeled the 1 dB 
compression point of the circuit at various frequencies. 
We then evaluated the effect on the 1 dB compression 
point of introducing a second signal. This interfering 
signal could be either in- or out-of-band. The 
nonlinear RF circuit analysis was performed with the 
use of the EEsof software Libra. 
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Figure 1: Simple Two-Stage Model of RF Receiver       Figure 4:  Improved Model of RF Receiver Amplifier. 
Amplifier. 

Ftequency, GHa 

Figure 2:  Input Reflection Coefficient (Sll) of Simple       Figure 5:  Input Reflection Coefficient (Sll) of Improved 
RF Amplifier Model Versus Measured Data. RF Amplifier Model Versus Measured Data. 

Uodded dau—y 

10% tanäwkrtri 

Figure 3: Gain (S21) of Simple RF Amplifier Model 
Versus Measured Data. 

The 1 dB compression testing of the receiver 
port was intended to identify the threshold at which the 
receiver goes  into  nonlinear  operation. Test 
measurements were made to allow comparison with 
modeled data for single-frequency and two-frequency, 
1 dB compression modeling. 1 dB compression curves 
were measured at both ont-of-band and in-band 
frequencies. 

Single Frequency 1 dB Compression 
Modeling 

Comparisons of modeled versus measured 
single-input gain are plotted in figures 7,8,9, and 10 for 
03, 2,3, and 4 GHz respectively. For the model data 
at low levels, the curve of the output power (P(out)) to 
the input power (P(m)) is linear. As higher input 
power levels are applied, the modeled output curve 
begins to depress (1 dB compression).     As the input 

Figure 6:  Gain   (S21)   of  Improved  RF Amplifier 
Model Versus Measured Data. 

level is increased further, the modeled curve plateaus. 
This seems to indicate simulation of FET saturation. 
The results are similar for the measured data. The 
model data exhibits greater gain above approximately 
05 GHz (figures 7 and 8) while measured data goes 
into saturation earlier (figures 9 and 10). 

For single-frequency operation, test and 
modeled results are in reasonable agreement. 
Modeled in-band gain is greater in magnitude and 
linearity than measured data. Gab is linear at low 
output levels up to the vicinity of compression, as 
expected. For in-band signals, 1 dB compression is 
measured to be approximately -21 dBm at the input. 

Negligible gain is measured below 23 GHz, 
-67 dB at 300 MHz (figure 7), and -40 dB at 2 GHz 
(figure 8). Measured gain at 3 and 4 GHz (figures 9 
and 10) indicates amplifier bandwidth is greater than 
the design specification of 33 GHz +/_ 5%, or 3.135 to 
3.465 GHz. 
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RF receiver circuit oaln at 304 MHz 

Input power, <J8fli 

Figure 7:  Comparison of Modeled Versus Measured 
RF Receiver Circuit Gain at 03 GHz. 

Figure 8:  Comparison of Modeled Versus Measured 
RF Receiver Circuit Gain at 2 GHz. 

At 300 MHz (figure 7), out-of-band gain is much 
greater for measured data than for the model. 

At or above 1 GHz (figures 8, 9, and 10), out- 
of-band gain is greater for the model This result 
primarily reflects inaccuracies in the staged amplifier 
model. Modeling predicts saturation for out-of-band 
gain whereas measured data indicates negligible out-of- 
band gain and therefore no associated gam suppression. 

Measured compression is not observed for 
below-band inputs (figures 7 and 8) while compression 
does occur at 4 GHz (figure 10). This duplicates the 
high pass characteristics observed in the modeled data 
at these frequencies. 

Two-Frequency, 1 dB Compression Modeling 

More interesting results are found in our 
comparison of modeled and measured two-frequency, 
1 dB  compression  data. In   our  two-frequency 
modeling, the primary signal is held at constant 
frequency and amplitude, (typically -30 dBm), while the 
fixed-frequency interfering signal amplitude is swept 
from   a   low  input  amplitude to beyond   the  1 dB 

RF racawcr drcuK oakt at 3 GHz 

_J 1_ 

Figure 9:  Comparison of Modeled Versus Measured 
RF Receiver Circuit Gain at 3 GHz. 

Figure 10:  Comparison of Modeled Versus Measured 
RF Receiver Circuit Gain at 4 GHz. 

compression point, (typically -50 to +10 dBm). In the 
data presented in figures 11 through 17, various 
combinations of primary and secondary frequencies are 
used to investigate the effects of both in-band and out- 
of-band EM susceptibility. In each case the primary 
or intended frequency is designated F2, following the 
convention established with the use of the EEsof 
analysis software, while the interfering input is 
designated FL In each plot the output power of F2 is 
compared with the input power of FL As the 
interfering input power (abscissa) is increased, the RF 
receiver amplifier output (ordinate) is monitored at the 
primary frequency with a spectrum analyzer. 

Figure 11 shows both modeled and measured 

RF receiver cbcult 1 OB output compression wBt 2 tapua 
Ft (Interference atonal) "JO to BO same 300 Mtct 
F2(T/Rstgnal)z:L0GHxe-30dS<n 

Ft Input power, oSot 

Figure 11: Comparison of Modeled Versus Measured 
Receiver 1 dB Compression With Inputs at 
F2 = 3.0 GHz and Fl = 03 GHz. 
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data for a primary signal (F2) of 3 GHz and an 
interfering signal (Fl) at 300 MHz. In this case the 
interfering signal is out-of-band and has negligible 
effect upon the amplifier performance from -50 to 
+ 10 dBm. The measured and modeled data match 
well in the linear region. Note the modeled increase 
in primary signal gain (Fl) with increasing interfering 
signal input (F2) above 20 dBm. This is a nonlinear 
error in modeling amplifier saturation. 

In figure 12 the Z0 GHz interfering signal does 
not appear to have a substantial effect upon the 
measured primary signal (F2) gain up to 0 dBm input 
(Fl). This is in contrast to the increase in output 
signal gain predicted by the modeling. In figure 12 we 
observed an attenuation of the measured output for an 
interfering signal input greater than 0 dBm. This 
phenomenon was observed in testing whenever the 
interfering signal strength exceeded the primary signal, 
as shown in figures 13 and 14. In the case of figure 12, 
the effect is delayed because the interfering signal (Fl) 
is out-of-band. 

In figure 13 the test primary signal, F2, was 
applied at a higher level (-20 dBm instead of -30 dBm) 
in order to determine if an increase in primary signal 
strength would delay the attenuation effect. A 
comparison of figure 13 with figures 14 and 15 seems to 
indicate that the onset of primary signal reduction is 
delayed with an increase in primary signal strength. In 
addition, a comparison of figures 14 and 15 seems to 
indicate that the effect is delayed by input signal 
attenuation as the interfering signal moves out-of-band. 
In contrast, the modeled response for each case 
predicts positive gain with the application of the 
interfering signal. 

=ßs== 

RF receiver drei* 1 dB output compression with 2 Inputs 
Fl 0nMrterenMtifjnaf)=-flO to lOOdBm 6 2.0 GHz 
F2 (T/R signal)« 3.0 GKi @ -30 dBm 

Fl Input power, dBm 

Figure 12: Comparison of Modeled Versus Measured 
Receiver 1 dB Compression With Inputs at 
F2 = 3.0 GHz and Fl = 2.0 GHz. 

Fl Input power. d8m 

Figure 14: Comparison of Modeled Versus Measured 
Receiver 1 dB Compression With Inputs at 
F2 = 3.0 GHz and Fl = 33 GHz. 

RF receevar circuit 1 dB output 
Cornpresalon west 2 Inputs 
Ft piuttmnc* nonarja.so to so dBm @ 4.0 GHz 

.   F2 (T/R (tonal)*3.0 GHz @-30 dBm 

Figure IS: Comparison of Modeled Versus Measured 
Receiver 1 dB Compression With Inputs at 
F2 = 3.0 GHz and Fl = 4.0 GHz. 

In figure 16, as the interfering signal is out-of- 
band and substantially attenuated through the 
amplifier, the attenuating effects of the interfering 
signal are not observed. The primary signal is 
observed to increase slightly in gain with increasing 
interference signal strength, as predicted by the 
modeling. The error in model predicted primary 
signal gain and measured gain with increasing 
interfering signal power (figure 16) is about 20 dBm. 

In a comparison of the modeled and measured 
data the results are notably different Out-of-band 
gain, for two frequencies, is greater for modeled data. 

RF recefrer droit t dB output compretelon wBn 2 tnp 
Fl (Mertcr«nc«tignirfB.5oto100c!Bm©2.5GHi 
F2 [T/R Uonal) ■= 3.0 GHz @ -20 dBm 

Modeled data 

Ft Input power. dBm 

Figure 13: Comparison of Modeled Versus Measured 
Receiver 1 dB Compression With Inputs at 
F2 = 3.0 GHz and Fl = 2£ GHz. 

power, 
dBm 

RF receiver circuit 1 dB output compression wttn 2 tnpuis 

F2 pTR signal) = 4.0 GHz Q -30 dBm 

Fl Input power, dBm 

Figure 16: Comparison of Modeled Versus Measured 
Receiver 1 dB Compression With Inputs at 
F2 = 4.0 GHz and Fl = 2.0 GHz. 
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In the modeled data the primary signal rolls off into 
compression but does not decrease as in the measured 
data. The measured data indicates a reduction in 
primary signal gain as the interfering signal input power 
approximates or exceeds the primary signal input power 
(figures  13,   14,  and   15). The  modeled  data 
underestimates the effects of the interfering signal 
when the interference signal power is greater than the 
primary signal, This is most likely due to small signal 
suppression and gain compression in the amplifier that 
is the nonlinear result of the high-power interference 
signal. 

In an effort to investigate further this apparent 
conflict between measured and modeled response we 
repeated the measured response of figure 14, reducing 
both signals by 20 dBm. In this manner we hoped to 
determine if amplifier saturation was contributing to 
the lack of positive gain response to the interfering 
signal. The results of these measurements are shown 
in figure 17. Note in figure 17 that the output power 
of the primary signal (F2) of the first test is scaled on 
the left vertical scale, whereas the -20 dBm response of 
the second test is scaled on the vertical scale on the 
right of the plot. 

i— 6 F1 (Werteren«signal) = -SOW +6dBm©3.5GHi 
/          F2 (T/R signal) = 3.QGKi®-30t»Bm 

F2          0 
/               r-0 Fl pnteffercnc* tfgnal) « -70 to + Cd8m@UGHi 

■      1               /        F2 tJ/R Hflntf) - 3.0 GHz @ -50 dBm 
Output 
powar, 
08m,© 

\\ 

Output 
power. 

Fl k^ut power, dBm 

Figure 17: Comparison or Measured RF Receiver 
Response (with inputs at F2 = 3.0 GHz 
and Fl = 3.5 GHz) for -20 dBm Variation 
in Input Power. 

Attenuation of the output at the primary frequency was 
identical at the reduced power levels. The results lead 
us to believe that amplifier saturation is not the cause 
of the observed gain reduction. This observation 
tends to support the small signal suppression theory as 
an explanation for the observed gain loss. 

Intermodulation Effects 

The observed nonlinear effects of EME 
susceptibility are more complex than straightforward 
saturation or intermodulation. The effects observed in 
test measurements include amplifier desensitization and 
small signal suppression. These effects appear to be 
related to power limiting in the amplifier stages but 
have been observed to occur at power levels below 
compression. 

In order to better understand these effects it is 
useful to investigate the distortion products of two- 
frequency intermodulation. If we treat the amplifier 
output, O, in terms of the input, I, we can begin with 
the following simple assumption about the nonlinear 
performance of the amplifier: 

O = G(I)xI     where     G(I) = iq-K-jI2 

Now if we look at the two-signal case: 

If I  = Ai+A2 forA2>>A1 
where   Aj = lAjIcoswit 

A2 =   lA2l eosW21 
then 

O  = [Ki - K2(AX + A2)2] (Ai + A2) (eqn. 1) 

O  =  F^Ai - K2A1(A1
2 + 2AXA2 + A2

2) + 

KXA2 - K2A2(A!2 + 2AXA2 + A2
2) 

O  = K1A1-K2A1
3-2K2A1

2A2-K2A1A2
2 + 

iqAz - KJA^AJ - 2K2A1A2
2 - K2A23 

O = KiAi - 3K2A2
2AX - K2AX

3 + KXA2 - 

SKJA^AJ-K^ 

The terms in this expression may be examined to 
determine   the   distortion   products. In   this 
examination, it will be useful to note that: 

A]2 = 1/2+ l/2(cos2wjt) 
and 

A2
2 = 1/2+l/2(cos2w2t) 

In equation 1 the terms KJAJ and K^A2 are 
the linear output terms. The terms -K2Aj3 and 

-K2A2
3 give rise to both third-order harmonic 

distortion and self-compression at the fundamental 
frequencies. The terms -3K2A2

2A]_ and -3K2Aj2A2 

are the normal third-order intermodulation products. 
In addition these terms give rise to a compression at 
frequency wj due to the strength of the signal at w2 and 
a compression at frequency w2 due to the strength of 
the signal at wj. It is these cross-compression terms 
which can be identified with the phenomenon called 
"desensitization". 

Small-signal suppression is related to power 
limiting in which multiple signals being amplified by the 
amplifier stages are subject to gain suppression while 
none of the input signals by themselves would cause the 
amplifier to go into compression. Small-signal 
suppression may be the phenomenon observed in the 
experiment in figure 17 in which a 20 dBm reduction of 
the input signals did not alter the gain loss of the 
primary signal, F2, as the interfering signal power, Fl, 
was increased. 

Nonlinear Modeling Errors 

In our investigations, we have noted that as the 
input power to the model amplifier continues beyond 
the point of 1 dB compression, the curve begins to 
climb again in a linear fashion. This second linear 
increase, illustrated in figure 18 for a single 4 GHz input 
and figure 19 for two inputs at Fl = 2 GHz and 
F2 = 4 GHz, does not appear to be a realistic FET 
saturation effect. 

It should be noted that the input levels for this 
analysis are absurdly high. This modeling does not 
represent real world conditions. This analysis is useful 
to investigate the model response to abnormally high 
input   levels   that   are  characteristic  of  some  EM 
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Figure 18: Modeled RF Receiver Amplifier Circuit 
Gain at 4.0 GHz. 

Figure 19: Modeled RF Receiver Amplifier Circuit 
Gain with Inputs at 4.0 GHz and 2.0 GHz. 

environments. Real world exposure to these levels 
would result in circuit damage. We did not test real 
devices to abnormally high input power levels because 
we did not want to risk damage to our developmental 
test samples. 

This secondary gain behavior of the model was 
reviewed with the developers of the analysis software 
(EEsof Inc). One potential explanation for the 
observed linear increase beyond the nonlinear gain 
compression plateau is a phenomenon known as "gain 
expansion" in  the  FETs. Gain  expansion,  or 
resurgence of gain in the nonlinear operating region of 
the amplifier, has been observed in real-world FET 
circuits. Another  possible  explanation  is  that 
nonlinear gain can have a multiple-stage effect in which 
the second stage of the model is providing gain after the 
first stage has saturated. This would require that the 
input signal bypass the saturated stage. A bypass 
mechanism has not been identified. The EEsof 
analysts believe that the observed gain expansion effect 
is due mainly to "re-biasing" of the transistors in the 
model. As the large signal swing is input to the device, 
the gate is biased positively with respect of the source, 
causing the gain expansion effect. In short, the 
software should correctly model the actual response of 
the circuit if breakdown effects are included in the 
device model. This limitation in the device modeling 
accuracy at interference signal levels is problematic in 
the evaluation of real-world EM environments effects. 

Findings and Recommendations 

Modeled predictions for functional 
performance   and   single-frequency   operation   were 

reasonably accurate for the models used. Modeled 
predictions for intermodulation distortion did not agree 
with test results. Receiver two-frequency, 1 dB 
compression and receiver intermodulation test results 
indicate that there are discrepancies in modeled 
responses  to  in-band  interference. Measured 
intermodulation effects indicate primary signal 
attenuation whereas the modeling predicted only gain 
compression. Evaluation of the measured primary 
signal attenuation leads us to conclude that as the 
interfering signal becomes greater than the primary 
signal, the amplifier exhibits a signal discrimination 
characteristic This observed small-signal suppression 
is believed to be associated with amplifier 
desensitization for two or more input signals. 

The modeling performed with the use of 
commercial RF circuit analysis software did not account 
for power limitations in the amplifier which should 
result in a suppression of the primary signal output with 
the introduction of a second, high-power, in-band 
signal. The nonlinear distortion error m the modeling 
analysis could be the result of incomplete circuit 
modeling or of limited device model accuracy for 
nonlinear gain computation. 

Improved modeling of the RF amplifier is 
necessary in order to accurately predict out-of-band 
gain, in-band signal discrimination, and nonlinear 
distortion effects. The modeling can be improved with 
more precise circuit design detail. The high-input- 
power, nonlinear effects may require modifications to 
the analysis software as weÜ as improvements to the 
circuit model The typical RF circuit analysis software 
is not designed to accurately predict circuit behavior in 
response to high-energy input signals. As a result, 
excursions far into the nonlinear region or into 
saturation are not always accurate. Reliable 
prediction of operation in this region is necessary in 
order to represent coupled, high-level EM interference. 
Improved susceptibility prediction to EM environments 
can be achieved with more accurate circuit modeling 
and with more accurate computation of device 
nonlinear behavior. 
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I. INTRODUCTION 

Rotationally symmetric radomes are frequently used in missile and aircraft ap- 
plications for aero-mechanical reasons. They often shield flat-plate arrays (slotted 
waveguides) or paraboloids. Because of severe design requirements imposed by the 
operating environment, the electrical performance of the radome may be of secondary 
importance to the mechanical performance. The effects of the radome on the antenna 
radiation pattern include loss in gain, defocusing of the beam, increase in sidelobe 
levels, and beam pointing errors. 

Ray tracing is the most common method of analyzing radomes of arbitrary shape. 
Typically the incident wave is assumed to be locally planar so that Fresnel reflection 
coefficients can be used. This requires the radome to be in the far field of the an- 
tenna. Furthermore, when the antenna scans off of the axis of symmetry of a curved 
radome many multiple reflections occur that make a significant contribution to the 
total field. Consequently many rays must be summed and the bookkeeping becomes 
overwhelming. Finally, if an aperture is reconstructed from the transmitted rays, the 
resulting aperture distribution (and therefore radome scattered field) varies with the 
location of reconstruction. 

In this paper a method of moments (MM) solution for rotationally symmetric 
radomes is described. It is an extension of the Mautz and Harrington body of revolu- 
tion code that has been modified to handle thin-shell dielectric radomes. The antenna 
is modeled as a planar circular aperture that is centered on the axis of symmetry, but 
can be phase-scanned. All three spherical electric field components (Er,Eg,E$) are 
considered in calculating the MM excitation vector. Thus the radome can be located 
in the near field of the antenna. 
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Figure 1: Antenna and radome geometry. 

II. THE METHOD OF MOMENTS SOLUTION 

The radome and antenna geometry of interest is shown in Figure 1. The feed is 
a circular aperture with a specified amplitude and phase distribution. The radome 
surface is a rotationally symmetric body with respect to the z axis. Thus the radome 
is a body of revolution (BOR) and the MM formulation developed by Mautz and 
Harrington [1] can be applied. The solution proceeds as if the radome were a perfect 
conductor, and then a correction term is added latter to account for the dielectric 
material properties [2]. The basis functions for the surface are: 

(1) 

(2) 
f 

Tiit) is the triangle function (which extends over two segments, i and i + 1) and 
Pi(t) is the pulse function. A point on the surface of the radome is specified by the 
coordinates (t,<f), where t is an arclength variable along the BOR generating curve. 
The distance of a point from the z axis is given by the cylindrical variable p. Ns is 
the number of surface generating points. A discussion leading to the choice of these 
basis functions is given in [1]. Finally, the surface current is expressed as a weighted 
sum of all the basis functions 

ft   _ lTi\t)   -jn<t> Jni-t   p   e n = 0,±1,. . ± CO » = 1,2,. .,Ns-2 

Jt = ^e-i«* n = 0,±l, .. ± 00 i = l,2,. ■;N.-1 

£ 
JV»-2 AT.-l 

EP    P    4-   V    J*   ft pn"pn   '      / '   *qn"qn (3) 

Equation (3) is used in the E-field integral equation and the MM testing procedure 
applied using Galerkin's method (testing functions, W£ = (JJJ,-)* where p = t or <j>). 
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The result is a matrix equation for the unknown current coefficients for each azimuthal 
mode, L». The current coefficients for each mode can be solved for independently 

In = Z?Vn. (4) 

Z„ is the impedance matrix for mode n, which can be partitioned into blocks associ- 
ated with the vector directions t and 6 

(5) 

The first superscript corresponds to the test function direction and the second to the 
expansion function direction. V„ is the excitation vector and is defined in the next 
section. The detailed equations and the steps involved in obtaining equation (4) are 
described in [3]. 

The azimuthal index n runs from -oo to oo, but must be truncated at some finite 
value, say N. The value of JV for a converged solution depends on the maximum 
radii of the antenna and radome as well as their spacing. Since the radome may be in 
the near field of the antenna, the current can vary rapidly and therefore more modes 
must be included than for a radome in the far field. 

III. THIN-SHELL APPROXIMATION 

The thin-shell approximation for dielectric bodies yields a correction term for the 
MM impedance matrix of a perfect electric conductor of the same shape [2]. Thus 
the impedance matrix in equation (4) becomes 

Z„ = ZMMn + ^Ln (6) 

where ZMM is the MM impedance matrix for the perfectly conducting surface and 
the elements of ZT,„ are given by 

[ZL\Z = // Ml ■ JlZsds      (p, q = t,<f>). (7) 
s 

Orthogonality of the vectors t and <j>, requires that p = q 

lZL}Z = JJw?n-JfnZsds. (8) 
s 

The correction matrix will be tridiagonal for the ZH block in equation (5) and diag- 
onal for the Z^ block. 
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The radome impedance 

Zs = .  , 1     .. (9) 
]<X>(t-t0)t 

depends on the thickness of the shell i, the dielectric constant e (which may be 
complex) and the frequency u) = 2TT/. A more convenient form of (9) is 

fin 
Zs = nx[j(^-l) + eTt^S] (10) 

where n\ = t/X, eT is the relative dielectric constant of the radome and tan 8 is 
its loss tangent. If the radome material is an imperfectly conducting sheet then Zs 

is purely real (surface resistivity); if the radome is lossless then Zs is purely imaginary. 

IV. CALCULATION OF THE EXCITATION VECTOR 

The excitation vector is determined from the antenna radiation field 

V?n = JjW[n-E°ds     (p = t,4>). (11) 
s 

The electric field E" can be found by integrating the known current J; on the antenna. 
For a x polarized, uniformly excited aperture lying in the xy plane, with a linear phase 
applied to scan the beam in the direction 6S (<j>s = 0) 

Ji = xJ0e-jkx'siae-. (12) 

Thus the Cartesian components of the electric field are [4] 

-JVoJo 

s* 

—JVoJo 

Ex = -|^ jjiGr + (p cos <p-p' cos ^GJ^/^^^H)/^'        (13) 

Ey = -j?jl JJ{pcos <j>- p'cos <t>')(psin 4,- p'sm <j>')G2e
ik{','cx4''A*e>-R)p'dp'd<j>' 

s„ 
(14) 

and 

Ez = ^lz jj{pcos <t>- p' cos ^'fzGie^'^'^'-^p'dp'd<j>'. (15) 
So 

In the above, the primed coordinates refer to source (antenna) quantities and the 
unprimed to the observation (radome) quantities. The distance between the two 
points is 

R: 
\ 

(p - p'Y + z* + App' sin2   Z—Z- (16) 
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and 

Gl = &  (17) 

°2 = R*  (18) 

where k = 2?r/A. The spherical components (ET,Eg, E$) of the antenna are obtained 
from the transformation 

ET = Ex sin 9 cos <f> + Ey sin 0 sin $ — £2 cos 6 
Ee = -Ei cos 6 cos </J + £v cos Ö sin ^ — Ez sin 0 (19) 

E<f, = —Ex sin <f> + Ey cos (/>. 

Using the spherical components in equation (11) yields expressions for the excita- 
tion elements that can be integrated numerically 

2TT  «;+2 

V 

2-JT   ti+1 

;',. = f  J T;(t)e-^[sin(ut - 0)Ee + cos(*>, - 9)ET]dt d<f>, (20) 

V% = J  J PMe-^E^dtd*. (21) 
0      i; ^' 

The quantities i;,- and £,- are defined in Figure 2. Note that at every integration point 
in equations (20) and (21), equations (13) through (15) must be evaluated. 

V. CALCULATED RESULTS AND DISCUSSION 

The radiation patterns of antennas looking through various radome shapes and 
impedances were examined and compared to the antenna free space radiation pat- 
terns. A comparison gives the degradation in sidelobe level, increase in beam pointing 
error, and loss in gain. Figure 3 shows a typical result for a uniformly illuminated 
antenna radiating through an ogive-shaped radome. The specific values of the pa- 
rameters are: 

• Surface impedance, Zs = 0 + j'1700fi 
• Number of azimuthal modes, N = 20 
• Antenna radius, a = 2A 
• Radome base radius, b = 3A 
• Ogive parent circle radius, r0 = 7.5A 

The results for other shapes are given in references [3] and [5]. Figure 4 compares 
the patterns obtained using the complete antenna field expressions to the far-field 
approximation. 
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Figure 2: Geometry definition and notation. 

The antenna radiation pattern is assumed to be zero in the rear hemisphere, and 
the radome base is open. A closed-back radome can be modeled by simply adding 
more segments behind the antenna that extend from the axis of symmetry to the 
radome edge. Note that any interaction between the antenna and radome is ignored. 
This should be small for a well designed radome, and primarily affect the VSWR 
looking into the antenna terminals. 

Equation (10) was derived based on a solid homogeneous radome material of con- 
stant thickness. Radome materials that consist of multi-layers can be represented 
by a solid material with an equivalent dielectric constant. Radomes whose dielectric 
constant and thickness vary along the surface can be analyzed by a stepped index 
and thickness; er, tan<5 and t can be specified independently on each segment of the 
generating curve. 
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Figure 3: Radiation patterns of a 4A antenna with and without radome. 
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Figure 4: Radiation patterns with and without near-field terms. 
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Abstract 

This paper presents an exact formulation for the vector potential and 
corresponding electric fields associated with a uniform current cylindrical dipole. 
A mathematically exact representation of the vector potential has not previously 
been available for cylindrical antennas with arbitrary radius and uniformly 
distributed current. The exact formulation given in this paper is completely 
general and independent of the usual restrictions involving the wavelength, field 
point distance, dipole radius and length. The derivation of an exact expression 
for the uniform current vector potential depends upon finding an exact 
representation for the kernel as well as an integral of the kernel. A new 
expression for the exact kernel along with an exact representation for the integral 
of this kernel will be presented in this paper. It will be demonstrated that the 
integral of the kernel may be expressed in terms of a series which involves a 
generalized exponential integral and higher-order associated integrals. A 
numerically stable forward recurrence relation for the higher-order associated 
integrals will be presented. Various techniques will be discussed for the 
evaluation of the initial three terms (integrals) required by the recurrence relation. 

I.  The Cylindrical Wire Vector Potential 

The derivation of an exact expression for the uniform current arbitrary 
radius cylindrical wire vector potential will be outlined in this section. The 
geometry for the cylindrical antenna under consideration is illustrated in Fig. 1. 
The length of this antenna is 2h and its diameter is 2a. The cylindrical 
coordinates of the source point and field point are (a, <|/, z') and (p, 4>, z), 
respectively. If the current is assumed to be uniformly distributed over the 
surface of the antenna, then the vector potential may be expressed in the form [1] 
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Vp.z) = 2h.   f KCz-z^dz' 
-n 

(1) 

where 

1     7 B-W 

2*   J      R' 
(2) 

represents the cylindrical wire kernel, and 

R' = \Z(z-z02 + p2 + a2 - 2 pa cos(<!>-<|>/) (3) 

An exact expression for the cylindrical wire kernel was recently found by Wang 
[2] and later modified by Werner [3]. The exact form of the kernel obtained in 
[3] is given by 

KCz-zO = 
00     ^ ^2„^2n 

,2n+k 

(4) 

where 

A* 
(W| (2ii-l) 
W    (2i)k 

D(njc) (5) 

Ö 
x(x-l) (x-2)---(x-m + l) 

m! 

1 

, m > 0 

, m = 0 

(6) 

D(n,k) = (2n+k)! 
k! 2n! (2n-k)! 

(2n)! 
k = 0 

k 
(7) 

(2n-k)!JM1ij J 
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R = yjiz-z'f + d2 W 

d - /^T^ m 

This representation of the exact kernel has the advantages that it is easier to work 
with from the analytical point of view and more amenable to numerical 
evaluation. 

Substituting the exact kernel (4) into the expression for the vector potential 
(1) yields 

A2(p,z) = - 4*°  £    £   A* (ß'pa)* En
k(p,z) (10) 

4n
  n=Ok=0 

where 

h 
En

k(p(Z) =   f   «^ —L- dz' (I« 
L   R   (PR)2"*" 

constitute the well-known generalized exponential integral E0(p,z) and higher- 
order associated integrals. A numerically stable three-term forward recurrence 
relation may be derived which provides a computationally efficient method for 
evaluating the integrals in (11). The recurrence relation is given by 

1= l 

(m-1) (pd)2 

PC.e^       Pde-1"*' 

(piy1-1      (ßRjr-1 <12) 

+ i ^.3 + 0n-2)I„.2 - i (Pd)2!^]   ,   m ;> 3 

where 

h 
,-m     i 

f - — dz'  for m = 0, 1, 2, ...               (I3) 
4    R    (PR)m 

d = -h - z (14) 

C2 = h - z (15) 
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R, = l/tf + d2 (I«) 

R2   = V^2  + d 

Exact solutions to the initial three integrals (Io, It and Ij) required by the 
recurrence relation (12) may be derived by using a Maclaurin series expansion of 
the complex exponential function. Before expanding the integrands it is 
advantageous to express Io, I] and I2 in the form 

^ = e-i3R„ I e ^ dc (18) 

d    R 

T = e-
ißs° 1 r ° dc <l9> 

L = e-ißRo -1  f ^ - dC <20> ^L      R3 

where 

Ro = Vz2 + d2 (21) 

A term by term integration of the series expansion for the exponential function 
contained in these integrals yields 

T   _ „-W. f   V    HPfOPKJ"" F <22> 
n=0 k=0      k! (n k)! 

-.,«. iff    HPfGPV* (23) 
ß£o£b   k!<n-k»    l"2 
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L - e^ -iff    ™*W*J** 
ß2£b£o       k'(n-k)! k 

(24) 

where 

j* RmdC (25) 

Closed form solutions can be obtained for the integrals F.3, F_2, F.! and F0 while 
a recurrence relation can be used to determine the higher order integrals Fm for 
m > 1.  That is, 

(26) 1 
3  d* 

[<2           C,l 

h    Ri) 

F_, = tan' ,K tan" ik (27) 

F., = in [C»**»] 
[d + Ri] 

F0 = 2h 

1 \r p P - r l »m*mii 

(28) 

(29) 

(30) 

Numerical integration schemes may also be employed to evaluate IQ, I, and 
I2. However, these integrals are difficult to evaluate directly using numerical 
techniques because their integrands are sharply peaked. This problem can be 
avoided by extracting the "singularity" from these integrals. Following this 
procedure results in 

\ = F-i + / 

-iPR  _  1 
dz' (31) 
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"->+i / e-^+ipR-ldz/ 

R2 
(32) 

^ ß2      '3 P      "2        2      -' p2   lh R3 

(33) 

The integrals contained in (31), (32) and (33) may be more efficiently and 
accurately evaluated numerically since their integrands are much smoother. The 
remaining terms appearing in (31)-(33) correspond to integrals which have sharply 
peaked integrands but may be evaluated in closed form. Exact Bessel series 
expansions of Io, Ii and I2 have also been obtained in [3]. 

n.  The Cylindrical Wire Electric Fields 

The exact expression for the kernel (4) and vector potential (10) may be 
used to find corresponding exact expressions for the electric fields produced by 
a uniform current cylindrical wire antenna of arbitrary radius. The electric field 
components associated with the cylindrical antenna depicted in Fig. 1 may be 
expressed as 

Ep(p,z) = .   "" ^-K(z+h) -^-K(z-h) 
öp op 

(34) 

Ez(p,z) 
i4irue 

^-K(z+h)--|-K(z-h) 
dz öz 

- iu A,(p,z)    (35) 

For the uniform current cylindrical wire antenna of arbitrary radius, it can be 
shown that [3] 

—K(z±ti)=—- E E A*(ß2pa)H-^lü —^—F—^-^-\ 
öP ß2P   R±

3 £>M l (l*J** J 
(36) 

-|-K(z±h) =(z±h)^— 
dz R3 

»K oo   2n 

E £ A*(PW 
n=0 k=0 

J(2n+k+l) + ißR± 

|      (ßR,)2»* 
(37) 

797 



where 

R± = v'(z±h)2 + d2 <38) 

and the exact expression for A2(p,z) is given in (10). These expressions for the 
electric field components are mathematically exact in the sense that no 
assumptions or approximations have been made in their derivation. 
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Abstract 

Numerical techniques have been developed to analyze the performance of log-periodic 
dipole antennas (LPDAs), which are complicated structures for with no closed form 
solution. Ma [1] and others [2] have approximated the current distribution on a wire to 
determine the performance of an LPDA. This paper describes a more straightforward 
and equally accurate approach which uses a single term (sine wave) approximation to the 
current distribution. Self- and mutual impedances are computed for each element and 
are combined with transmission line admittances to form a matrix equation. The solution 
to this equation gives the relative current and phase at the feed point of each LPDA 
element. These values are used to determine the driving-point impedance and the 
electric field pattern generated by each element in the array. The total radiated field is 
then computed as the superposition of the electric field vectors from these elements. This 
approach significantly decreases the computation time over other method of moment 
techniques and greatly reduces the need for complicated numerical modeling. Execution 
times on a PC (486/33) for a 12-element LPDA are on the order of 7 seconds. This 
paper describes a simplified LPDA modeling approach and presents comparisons of 
model results with corresponding results from the Numerical Electromagnetics Code 
(NEC) [3]. Power gain patterns are within 1.5 dB and the radiation resistance is within 
17% of NEC-generated results. 

Introduction 

Many applications require the use of broadband, directional antennas. Unfortunately, 
these requirements conflict and thus force the designer to trade-off gain and directivity for 
bandwidth. It is easy to design and manufacture omni-directional, broadband antennas or 
high-gain, narrowband antennas. It is, however, very difficult to satisfy the broadband and 
directional requirements simultaneously. The LPDA provides a good compromise, with 
reasonable gain over a wide frequency band. 

One example of an application which requires broadband, directional antennas is HF 
automatic link establishment (ALE) radio. These radio systems are growing in popularity 
due to their robust adaptation to the HF skywave channel. In ALE systems, the radio 
automatically adjusts the radio frequency to optimize HF link performance for the existing 
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propagation conditions. Because the operating frequency must be varied over a wide 
range, nominally 1 to 30 MHz, a broadband antenna is required. Other applications which 
require broadband antennas include spread spectrum radio for personal communications 
and multi-media communications employing a single antenna system. 

It is well known that antenna designs which specify the geometry of the structure entirely 
in terms of angles will exhibit frequency-independent characteristics [2, 4, 5, 6]. Rumsey 
was the first to postulate this theory which is based upon the principle of similitude [7]; 
the underlying concept that supports scale model design of antenna systems. If the 
dimensions of a given antenna are increased by a constant factor and the operating 
frequency is decreased by the same factor, then the performance of the antenna will remain 
unchanged. Of course, the permittivity, conductivity, and permiability of any media that 
affects the performance of the original antenna system must also be scaled. Consider a 
structure composed of an infinite number of adjacent cells, each of which is a scaled 
version of its neighbor. The structure extends to infinitely at the low frequency end and 
forms a vertex at the high frequency end. Because of its infinite extent and the 
relationship between adjacent cells, the antenna will be frequency independent with its 
geometry specified by a single angle. 

DuHamel and Isbell [8, 9] used the single-angle principle to develop the LPDA in 
common use today. DuHamel began by considering a planar structure consisting of slots 
and teeth cut into a bi-fin. The width of adjacent slots and teeth were related by a 
constant scale factor and the geometry of the structure was repeated with the logarithm of 
the distance from the apex. This antenna produced a horizontally polarized, bi-directional 
radiation pattern. Isbell modified DuHamel's design to produce a uni-directional pattern 
by folding the structure at its apex. He then replaced the teeth of the structure with thin 
wire elements to produce the modern LPDA. 

The LPDA is treated principally from a design perspective in the majority of the existing 
antenna handbooks [5, 10, 11]. Curves of directivity vs. c and x are typically provided to 
assist the engineer in selecting optimum LPDA design parameters. This data is sufficient 
to design an LPDA but it is not sufficient to analyze its performance. Since no closed- 
form solution exists, numerical techniques must be used to obtain the key design 
parameters, that is, the driving-point impedance and the directivity. Although several 
authors have solved the resulting numerical problem, their work has received relatively 
little attention. 

Carrel's [2] approach employed the parallel connection of two N-terminal circuits; the feed 
system and the dipole elements. This approach led to a matrix equation involving the 
impedance matrix of the dipole elements and the admittance matrix of the feeder system. 
Solving the matrix equation yielded the relative base currents of the dipole elements which 
was then used to obtain the driving-point impedance and the radiation pattern for the 
LPDA. Carrel assumed a sinusoidal current distribution on each of the dipole elements 
and created the impedance matrix using the induced-EMF method. This assumption leads 
to a tractable solution.  With the limited computing capacity available in 1960, however, 
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execution times were excessive. As a result, the model could not be used to perform 
extensive LPDA analysis. 

In a more recent work, Ma [1] expanded upon Carrel's approach by assuming a three-term 
approximation of the current distribution. Although this approach improved the accuracy 
of the solution, it also greatly increased both the complexity of the implementation and the 
execution time of the model. The many complex integrals, with their convergence and 
singularity problems, make Ma's approach difficult to implement even with modern 
computer systems. Ma's approach provides a relatively small increase in accuracy over the 
single-term approximation with a significant increase in numerical complexity. 

The approach presented in this paper is similar to the approach used by Carrel in his 
doctoral thesis in 1961. The primary difference between the two approaches is in the 
determination of the mutual impedance between dipole elements. Other differences 
include the numerical techniques used to handle convergence and singularity problems. 
Since Carrel's LPDA analysis technique has received little attention in modern antenna 
handbooks, this paper presents a practical implementation of his approach for modeling 
and analysis of the LPDA 

The remainder of this paper is divided into two sections. The first section describes the 
approach used to model the LPDA, while the second presents results of a comparison 
between predictions produced by this approach and those produced by NEC. 

Modeling Approach 

The LPDA model described in this paper is one component of a comprehensive 
Electromagnetic Antenna Modeling (EAM) and analysis tool developed by Science 
Applications International Corporation (SAIC). EAM is a Windows-based program 
which includes pre- and post-processors for NEC and NEC-BSC [12] as well as a Quick- 
Look antenna analysis package which uses closed form solutions to compute the 
performance of many simple antennas. The LPDA model is one of 20 antenna models 
which are included in the Quick-Look software package. Among the outputs provided by 
the Quick-Look program are: azimuth and elevation patterns, peak gain, 3-dB 
beamwidth, and driving-point impedance. 

The LPDA shown in Fig. 1 consists of a geometric progression of linear elements. The 
ratio of the length (/,.) of adjacent elements is defined as the inverse of the geometric ratio 
x. This ratio also defines a similar relationship between the radius (a,.) and distance (d) 
between each element and a fixed reference point. Symbolically, this is represented as: 

1 = '•'  = "■       di 

x    li-i    a,-i    di-, 
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Figure 1 LPDA Geometry 

admittance matrix of the feeder system and Vf and If 
corresponding voltage and current on the feeder system, then 

The antenna elements are fed 
by a transmission line located 
in the center of the structure 
that connects each element 
with a 180-degree phase shift 
relative to its neighboring 
elements. 

To analyze the performance 
of the LPDA, the antenna 
system is broken down into 
two N-terminal circuits; the 
feeder system and the dipole 
elements. If Yf is the 
are vectors representing the 

Similarly for the dipole elements: 
If = YfVf 

Id = YdVd 

Adding these equations while noting that the voltages (Vr and Vd) are equal yields the 
total input current: 

I =If + L = (U +YfZd)L (1) 

where U is the identity matrix and Id is a vector representing the dipole base currents to be 
determined. The antenna is driven at one end and only the relative current on each dipole 
element need be determined. Thus define: 

"1" 

I = 

and use matrix techniques to solve for I,,. 

The classical formulation of the two-port network is used to obtain values for the 
admittance matrix elements. These expressions can be found in Ma [1]. To compute the 
impedance matrix, the induced-EMF method is applied with two key assumptions. First, a 
sinusoidal current distribution is assumed to exist on the dipole elements. Second, the 
mutual impedance is computed as if the two elements were the same length. Clearly, this 
second assumption will produce the greatest error when used to compute the mutual 
impedance between elements with vastly different lengths. In the LPDA large differences 
in element length are accompanied by large separation distances. This convention 
combined with the fact that the mutual impedance decreases with increasing element 
separation offsets inaccuracies caused by the assumption of equal element lengths.   The 
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self-impedance referred to the current maximum is computed using a sinusoidal current 
distribution and is given in Balanis [5] as: 

T] 
C + ln(kl )-G(«) + jsin(ü)[&(2«)-2S («)]' 

2K -cos(A/) C + lnfy) + G(2*/)-2Ci(*/) 

2Si(«) + cos(*/)[2&(«)-Si(2*/)] 

4% -sin(«) 2G(«)-C,U«)-G[^-) 
• 

(2a) 

(2b) 

where C = 0.5772 is Euler's constant, a is the element radius, / is the element's length, and 
C; and S; are the familiar sine and cosine integrals [7]. Solving Eq. 2 and referring these 
values to the feed point yields the main diagonal elements of the impedance matrix (Zd). 
The off-diagonal elements are mutual impedance values which are computed using [7]: 

2{2 + cos{kl))d{kl) 

-4cos 

Bt = - 
30 

-(f) 
(ki)\Ci[k^d! +f -/))+Ci(*(Vrf2 +i2 +/)) 

+sin(w) 

s{k{4dr+F+i)ysl(k{4d2 
+i2 -i 

** = ■ 

30 

**(? 

■2&f|(V^J +l2 +/)] + 2&f|(V^ +l2-l) 

-2(2 + cos(«))s,(«) 

&(*(Vrfr +/-' -/))+&(*(V^ +/' + /)) 

G (*( v^TT7+/)) - c, [k{4dr7¥ - /)) 

+4005* I — 

-cos{kl) 

+sa\{kl) 

where <i is the distance between the elements in question and / is their length. 
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After computing the Zd and Yf matrices, Eq. 1 can be solved to obtain the base currents of 
the dipole elements. These values are used to calculate the driving-point impedance and 
the electric fields radiated by the structure. The driving-point impedance is computed 
using [1]: 

Zdrtwing -   = Vl = Zlllld + Znhd^ ^ZINIIU Q) 
II 

Where the driving current, /„ was set to 1 A and Iid are the dipole base currents. 

The electric field radiated by the entire structure is the sum of the fields radiated by the 
individual dipole elements. Individual dipole fields are computed by assuming a sinusoidal 
current distribution and integrating the fields produced by a hertzian dipole over the length 
of the dipole. For a vertically oriented dipole, this integration yields: 

£«(9) = ^ 
-jkr 

2w 

sfyCOs(e)j-COsfyj 

sin(e) 

(4) 

where £ei is the 0 component of the electric field generated by the ft1 element and Iu is the 
base current of the dipole under consideration (i.e., one element of the Id vector which was 
computed above). Of course, the phase difference between elements must be considered 
when the fields are added. The base currents are complex values which reflect the 
amplitude and phase relationship between elements and directly determine the total electric 
field at a distant point. The path length differences between rays arriving from different 
elements results in phase differences which must also be included. The total field radiated 
by the LPDA is then given by: 

£e(e,<i») = Z£ei(eyUsi'<9W*) 

'=' (5) 

Once the electric field radiated by the LPDA has been obtained, the time averaged 
Poynting vector and the power gain pattern may be computed. 

This approach includes two approximations which may significantly affect the 
performance of the model: the use of a sinusoidal current distribution applied to each 
element and the assumption of equal-length elements in the calculation of the mutual 
impedance. A comparison with NEC-generated results was performed to investigate the 
impact of the sinusoidal current approximation on the performance of the model. Figures 
2a and 2b illustrate the current distribution predicted by the NEC model for element 
lengths of 0.2, 0.5, 1.0, 1.5, and 2.0 wavelengths. Superimposed on these plots are the 
corresponding sinusoidal distributions assumed by the LPDA model. The similarity 
between these curves suggests that the assumption of a sine-wave current distribution may 
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be adequate for many antenna modeling applications. The primary difference between the 
curves occurs when the length of the element is a multiple of one wavelength. For these 
cases, there is a dramatic difference in the feed-point current. In an LPDA, however, 
elements longer than about one-half wavelength will be in the unexcited region. These 
elements have negligible base currents and therefore do not contribute significantly to the 
radiated fields. 
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Model results 

A detailed set of comparisons between NEC model results and the Quick-Look approach 
has been performed to analyze the performance of the Quick-Look LPDA model. Quick- 
Look predictions of impedance and peak gain are compared with corresponding NEC [3] 
predictions as a function of frequency for a 12-element LPDA. Quick-Look and NEC 
predictions of radiation patterns and dipole base currents are also provided for 
comparative purposes. 

Figures 3a and 3b are plots of the driving-point impedance (radiation resistance and 
reactance, respectively) as predicted by NEC and the Quick-Look LPDA modeling 
approach. The plots show agreement between the two models, with an rms deviation of 
21 Q for the radiation resistance and 19 Q for the reactance. The maximum difference in 
the radiation resistance over all frequencies is less than 62 D (17 %). 

Figure 4 plots the peak gain as a function of the excitation frequency for the same 12 
element LPDA. The plot illustrates that although there is a nearly constant difference of 1 
to 1.5 dB between the NEC and Quick-Look predictions, they both exhibit the same 
behavior. Both curves are relatively flat across the frequency band with a slight decrease 
at the band edges. These flat curves are characteristic of frequency-independent antennas. 

Figure 5 illustrates the radiation patterns produced by NEC and the Quick-Look LPDA 
approach. Note the good agreement in the three dB beamwidth (azimuth and elevation) 
and in the front to back ratio. 
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Figures 6a, 6b, and 6c are plots of the normalized dipole base currents generated by NEC 
and the Quick-Look model. The curves are parametric in frequency to best exhibit the 
behavior of the LPDA. Note the three distinct regions in these plots known classically as 
the transmission region, the active region, and the unexcited region. In the transmission 
region, the dipole elements are very short at the excitation frequency and therefore the 
base currents are small. In the active region, the dipoles are very nearly one-half 
wavelength long and are therefore excited by the driving signal. Because this region has 
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the largest base currents, it is the primary contributor to the LPDA radiation pattern. In 
the unexcited region, the currents are almost non-existent because most of the energy in 
the input signal has been dissipated by elements in the excited region. Again, note the 
agreement between the NEC and Quick-Look predictions. 

As an example of Quick- 
Look LPDA model 
accuracy, the radiation 
resistance (computed using 
Eq. 3 above) was compared 
with the corresponding value 
predicted by integrating the 
radiation pattern over a 
closed sphere. The two 
values differed by less than 
0.25 dB over the entire 
frequency band and were 
nearly equal at the high- 
frequency end. The greatest 
discrepancy was observed at 
low frequencies, which is 
readily explained through an 
analysis of Eq. 3. This 

equation relates the dipole base currents, and the mutual impedance between element 1 
(i.e., the shortest element) and every other element. Figures 6a through 6c demonstrated 
that most of these currents are negligible with only a few of the dipoles contributing to the 
input impedance. Recall that equal-length elements were assumed in the calculation of the 
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mutual impedance between elements. This assumption may produce inaccurate results 
when used to compute the mutual impedance between the first (shortest) and the last 
(longest) elements. It is the long elements that contribute most at low frequencies, where 
the discrepancy in radiation resistance is greatest and the assumption becomes invalid. At 
higher frequencies, on the other hand, the assumption is valid and there is a much smaller 
discrepancy. 

Figure 7 is a plot of the Quick-Look model execution time as a function of the number of 
elements. The run times were measured on a 486-33 PC with 8 Mbyte of memory and a 
128 kbyte cache. The Quick-Look LPDA algorithm is a Turbo Pascal program written 
under Microsoft Windows version 3.1. 
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Summary and Conclusions 

The majority of antenna handbooks treat the LPDA from a design perspective and ignore 
the formidable task of analyzing its performance. The engineer who needs more insight 
into LPDA performance is forced to rely on rigorous and time-intensive analysis tools like 
NEC. Although NEC is a very useful analysis tool, it is somewhat cumbersome and often 
difficult to use. For applications such as a log-periodic antenna, an approach similar to the 
one described in this paper may provide a useful alternative. With execution times on the 
order of 10s, numerous LPDA cases could be examined in the time required to generate 
and execute a single NEC LPDA model. 

A numerical approach to analyzing the performance of the LPDA was presented as an 
alternative to NEC and other commonly used techniques. The simplified approach was 
implemented on a 486 PC and several comparisons with NEC were provided. In general, 
the Quick-Look predictions showed fairly good agreement with the corresponding NEC 
model, with peak gain values differing by less than 1.5 dB and radiation resistance values 
differing by less than 17%. This degree of accuracy is sufficient for link power budget 
analysis where uncertainties in other system parameters will dominate the errors induced 
by the Quick-Look model. Uncertainties in the background noise level, for example, 
almost always exceed 1.5 dB. In meteor burst communication systems [13], the statistical 
nature of meteor arrivals will dominate prediction accuracy. In HF performance 
predictions, the constantly changing ionosphere introduces prediction uncertainties that 
will again dominate prediction accuracy. Although the Quick-Look LPDA model is not 
sufficiently accurate for careful antenna analysis, it is generally effective for radio link 
performance predictions. 
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PHASED ARRAY RADIATING ELEMENT DESIGN SOFTWARE 

H.K. Schuman 
ARC Professional Services Group 

1721 Black River Boulevard 
Rome, New York 13440 

1. Introduction 

Several of the computer programs developed under the USAF's Rome Laboratory 

direction have proven useful as tools in radar systems analysis and design. One 

such program is the Parametric Antenna Analysis Subsystem (PAAS). PAAS contains 

detailed phased array antenna models and radar clutter mapping models. Detailed 

radiating element design is a particularly powerful function of PAAS; the Mutual 

Coupling Antenna Analysis Subsystem (MCAAS) encompasses the software for this 

function. 

A new version of PAAS (Version 1.16) [1] was recently created.  For this 

version, MCAAS was substantially revised to permit greater modeling accuracy and 

efficiency, to accommodate an extended set of radiator and array types that can 

be accurately analyzed, to facilitate the means of defining element geometry, to 

provide geometry verification graphics, and to provide output data graphics. 

2. Overview of MCAAS 

The mutual coupling analysis software in PAAS forms the basis of a powerful 

radiating element design and analysis tool.  It enables detailed evaluation of 

radiating element performance in several environments:  isolated element, 

infinite planar array or array lens, and finite array or array lens.  The 

radiators can be of the thin conductor type (i.e., dipoles) or microstrip patch 

type.  The environments and types are listed in Table 1.  The arrays can be 

either of the constrained feed type or space feed (array lens) type.  The 

constrained feed array excitations are assumed to be uniform amplitude and 

progressively phased Thevenin equivalent sources connected to the radiating 

elements via amplitude and phase adjust modules imbedded in an optional 

perfectly conducting, infinite ground plane.  The array lens is assumed to be 

excited via a plane wave arbitrarily incident on the "feed side." The feed side 

(illuminated side) array is connected to the target side (shadow side) array via 

modules imbedded in a perfectly conducting, infinite ground plane.  Microstrip 

This work was supported by the USAF Rome Laboratory. 
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TABLE 1 
PAAS/MCAAS RADIATOR MODEL OPTIONS 

• ENVIRONMENT 
- ISOLATED 
- ARRAY (INFINITE PLANAR OR FINITE PLANAR) 

• GENERAL RECTILINEAR LATTICES (RECTANGULAR OR 
TRI ANGULAR'7) 

• INTERARRAY MUTUAL COUPLING 
- PHASED ARRAY LENS (INFINITE PLANAR OR FINITE PLANAR) 

• INTERCONNECTING AMPLITUDE/PHASE ADJUST MODULES 
t INTERARRAY AND INTRAARRAY MUTUAL COUPLING 

• TYPE 
- THIN CONDUCTOR 

• SIMPLE DIPOLE VARIANTS (BENT OR CURVED ARMS, ETC.) 
• FOLDED DIPOLE VARIANTS 

• FEEDLINE BALUN 
• FEEDLINE SCATTERING 
• PARASITIC SCATTERERS 
• CURVED FEEDLINES 
• MULTIPLE LOAD PORTS 

- MICROSTRIP PATCH 

0 RECTANGULAR, CIRCULAR, ELLIPTICAL 
• PIN FEED (ARBITRARILY LOCATED) 
0 EDGE FEED (ARBITRARILY LOCATED 
• DUAL FEED WITH "1"  COMBINER 
t SHORTING PINS (ARBITRARILY LOCATED) 
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patch radiators always are associated with perfectly conducting, infinite ground 

planes in the MCAAS modeling. 

Thin wire finite antenna and infinite array (plane wave expansion) moment 

methods underlie the radiating mode and mutual coupling mode modeling; the 

moment method permits a great deal of flexibility in radiator geometry. 

Efficient methods of combining transmission line mode and other nonradiating 

mode effects, such as occur with folded dipoles and with balun feed dipoles, 

also underlie the modeling.  An efficient iterative procedure for accurately 

analyzing finite arrays is included in the modeling as well.  Microstrip patch 

elements are modeled as appropriate cavities coupled to edge slots.  The slots 

are modeled, via duality, as equivalent magnetic currents radiating in free 

space. The basic references for modeling details of MCAAS are [1], [2]. 

The recent enhancements to MCAAS (for PAAS Version 1.16) were made in the 

following areas [1): 

1. Accurate and flexible treatment of moment method wire junctions 

for analysis of thin conductor type radiating elements; 

2. Automated generation of radiating mode (moment method) geometry 

and automated decomposition into radiating mode and transmission 

line mode parts; 

3. Efficient, accurate iterative analysis of finite arrays and array 

lenses; and 

4. Graphics. 

The graphics enhancement provides for graphical display of principal data. 

Radiating mode geometry, feed port parameters (impedance, SWR, etc.), radiating 

mode current distribution, and gain patterns are automatically stored in files 

that are compatible for display via standard PAAS graphics routines. 

It is noted, in particular, that the MCAAS "combined mode" modeling options 

for facilitating the analysis of complex radiators such as folded dipoles with 

integrated balun feeds have been redesigned at the user specification level.  A 

new set of parameters has been defined that greatly facilitates the 

specification of a radiator of interest.  The user, in fact, upon invoking these 

options will not need knowledge of the peculiarities related either to model 

decomposition into radiating mode and transmission line mode parts or to moment 

method segmentation.  The decomposition and segmentation will be automatically 

performed in the software.  The user need only specify the physical sizes and 

properties of the radiator.  The dipole arms can be simple or folded; they can 

be inclined with respect to the array plane; and they can be composed of 
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circular cross section conductor or thin strip conductor.  The feedlines can be 

balanced or, if unbalanced, contain integrated baluns; they can be bent in a 

general shape; and they can be composed of circular cross section conductors or 

thin strip conductors. 

The enhanced MCAAS is accessible to the PAAS user through six PAAS 

procedures:  WIRE, MICRO, ISOLATED, CONSTRAN, LENSFED, and FINITE. 

WIRE and MICRO are invoked for defining thin conductor or microstrip patch 

radiating elements, respectively.  A graphical display of the segmentation for 

moment method computation of radiating mode performance is provided as part of 

the output.  A radiator definition file is created within which all pertinent 

data for subsequent analysis is stored.  The remaining MCAAS commands invoke 

routines which draw upon data within these files.  Thus, the same radiator 

definition is used for analysis of a radiator in isolated, infinite constrained 

feed array, infinite array lens, or finite array (constrained feed or lens type) 

environments.  The user need not redefine the radiator for redoing an analysis 

in a different environment. 

ISOLATED is invoked for analysis of an isolated radiator. Port parameters, 

such as impedance, and pattern data, such as gain, are available for plotting 

over a range of frequencies. The radiating mode current distributions also are 

available for plotting. In addition, pertinent data is stored for later use as 

a potential first approximation in the efficient iterative procedure underlying 

the procedure FINITE for detailed analysis of large but finite arrays. 

CONSTRAN is invoked for analysis of an infinite planar array of identical 

radiators in a regular lattice.  The lattice may be rectangular or triangular. 

The radiating elements are excited in uniform amplitude and progressive phase 

commensurate with a beam steering angle.  Output data is similar to that of 

ISOLATED except that "active" impedance, etc., replace the corresponding port 

data, and "element" gain, etc., replace the corresponding pattern data. 

Pertinent data also is stored for later use as an alternative first 

approximation within FINITE.  In addition, the nominal current distribution is 

available also for computation of element patterns in WELEMPAT or MELEMPAT 

wherein array factors are combined with element patterns to yield approximations 

to finite array directive gain patterns. 

LENSFED is invoked for analysis of an array lens.  Two infinite planar 

arrays sandwiching an infinite ground plane within which are imbedded amplitude 

and phase adjust modules comprise the lens.  The illumination is a plane wave 

from a user specified direction.  Two radiator definition files are required, 
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one pertaining to the illuminated side array and the other to the shadow side 

array.  (Both files must be created by the same command, either WIRE for 

conducting radiator lenses or MICRO for microstrip patch lenses, but otherwise 

can pertain to quite different radiators.) The illuminated side array (array a) 

and shadow side array (array b) port voltages, currents, and impedances, etc. , 

and radiating mode current distributions are provided on output. Port 

parameters also are available for each transit mode of energy, i.e., energy 

rereflected through the modules and back as a consequence of impedance mismatch. 

All transit mode port and radiating element data is available for later use in 

FINITE.  The "single transit" mode data is available also for use in WELEMPAT or 

MELEMPAT. 

FINITE is invoked for detailed analysis of a finite array, either 

constrained feed type or lens type.  The effects of the array boundary, 

subarrays, and rings of terminated elements on mutual coupling dependent 

parameters can be assessed.  Port parameters, such as active impedance, at each 

element is made available.  FINITE requires data resulting from ISOLATED, 

CONSTRAN, or LENSFED in order to initiate an iterative procedure.  The array 

boundary selection includes circular, elliptic, or polygonal.  The only 

limitation to polygonal is that the interior angles at vertices be less than 

180°. 

Realized element gain is computed in CONSTRAN and LENSFED.  This quantity 

is a particularly appropriate performance measure for large, near uniformly 

spaced arrays.  In particular, "vector" realized element gain accounts for 

polarization mismatch, mutual coupling (resulting in impedance mismatch], 

surface waves, grating lobe loss, projected aperture loss, and any other 

incidental scattering loss.  By comparing the principal polarization (vector) 

element gain with the ideal element gain, the performance of the radiating 

element is determined because the ideal element gain is the best conceivable 

element gain commensurate with the lattice.  A third form of element gain, the 

scalar realized element gain, is an approximation to the total (polarization 

matched) realized element gain within the scan range for which no grating lobes 

enter visible space.  The three forms of element gain are standard output with 

MCAAS. 

3.  Example 

The enhanced software was applied to analyzing large field of view lattice 

phased arrays of circular cross section conductor dipoles with integrated balun 
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feedlines.   Figure 1 shows the radiating element and lattice.  Figure 2 shows 

the match efficiency (negative of mismatch loss) attained by scanning the array 

in the E-plane.  Each curve corresponds to a different feedline/balun 

separation.  A severe mismatch, thought to be a consequence of feedline 

scattering, is evident in each case.  The mismatch moves closer towards 

broadside scan with increasing separation.  Figure 3 shows the E-plane scan 

match efficiency corresponding to a 30° inclination angle.  Evidently, the 

impedance match is substantially improved by inclining the dipole arms.  Similar 

behavior had been observed experimentally in the development of the PAVE PAWS 

radar phased array antenna radiating element.  (The element was designed by 

General Electric and the radar was built by Raytheon.) 

4.  References 

1. H.K. Schuman, et. al., "Upgrading of the VAX Based Rome Laboratory 
Phased Array and Reflector Antenna Modeling Codes PAAS and ARCREF 
1990-1992," ARC Professional Services Group Final Report, Contract 
F30602-89-D-0028 with USAF Rome Laboratory, @ 1993. 

2. H K. Schuman, T.A. Lyon, and G.A. Bright, "SBR RF ANALYSIS/VALIDATION SBR 
Phased Array Radiating Element and Modeling Evaluation," RADC-TR-86-198 
Vol. Ill, Final Technical Report, December 1986. 

-GROUND SCREEN 

COAXIAL 
FEED 

"A 

.00'iX ^_ 

Q S  0.5 x 

_J .37» L 

-0.251- 

Figure 1. Dipole/Balun Array 

818 



H 
a 

a 
o 
CD 

ffl 

(ap) xotraioiüs HOI^H 

819 



a 

en    o o 

W <fr- <o op 

820 



SPECTRAL-DOMAIN ANALYSIS OF PATCH RADIATORS 
ON LOSSY FERRITE SUBSTRATES 

Zhenglian Cai and Jens Bornemann 

Laboratory for Lightwave Electronics, Microwaves and Communications 
(LLiMic) 

Department of Electrical and Computer Engineering 
University of Victoria, Victoria, B.C. Canada V8W 3P6 

Abstract A spectral-domain analysis for patch radiators on lossy ferrite substrates is pre- 
sented. The theoretical model includes the losses of the substrate as well as different direc- 
tions of applied d.c. magnetic bias. Moreover, the conductivity of the patch and its finite 
thickness is taken into account by incorporating a complex resistive boundary condition. 
The influence of direction and magnitude of the magnetic bias on resonance frequency 
and Q factor is investigated. It is demonstrated that comparable dependencies are obtained 
for square patches while, in the rectangular case, a bias in the narrower direction of the 
patch yields slightly less tunability. In applications on relatively thin ferrite substrates, the 
Q factor can be increased by one order of magnitude - without significantly affecting the 
resonance frequency - if the conventional conductor is replaced by superconducting mate- 
rial. 

I. INTRODUCTION 

Patch radiators are well known for their excellent performance in light-weight and 
low-cost array architectures. Many dielectric substrates commonly used to support patch 
radiators exhibit a significant amount of anisotropy that can either degrade the performance 
of printed circuits and antennas or, alternatively, have a beneficial effect once it is fully in- 
cluded in the design procedure [1]. Consequently, a substrate, whose material parameters 
can be influenced by outside parameters, offers - to a certain degree - the potential for tun- 
ing capabilities. Patch antennas on anisotropic media have been studied before, e.g. [2]-[3]. 
More recently, microstrip antennas on biased ferrite substrates with emphasis on linearly 
and circularly polarized radiation have been investigated [4], [5]. However, the field theo- 
retical models presented neglect effects due to the finite thickness and the finite conductiv- 
ity of the radiating patch and the losses of the ferrite substrate, which play an increasingly 
important part in the design of microstrip-integrated antenna systems. 

Therefore, this paper focuses on a technique to analyze finite-thickness as well as 
finite-conductivity patch radiators on lossy ferrite substrate material. The theoretical model 
allows the d.c. magnetic bias to be applied in any direction of the cartesian coordinate sys- 
tem. The influence of magnitude and direction of the magnetic bias on resonance frequen- 
cies and Q values is investigated. A modified spectral-domain immittance approach is used 
to formulate the three-dimensional characteristic equation system. A decoupling procedure 
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for the electric and magnetic field leads to closed form impedance dyadic Greens functions 
in the spectral domain. As required and as is necessary and essential for reliable modem 
integrated circuit design, the theoretical model includes the loss properties of the ferrite ten- 
sor elements, the finite metallization thickness of the patch as well as its finite conductivity. 
The flexibility of the approach allows the patch to be realized as conventional, e.g., copper 
conductors or as superconductors in order to improve the radiation efficiency [6]. 

II. THEORY 

The geometry of a patch radiator with an imperfect conductor on lossy ferrite sub- 
strate is shown in Fig. 1. The general form of the ferrite tensor in the case of magnetization 
in y, z and x direction can be expressed as 

(?) = K 
M-   0 jK |i   jK  0 »x o ol 
o^o <£> = K -jK \i   0 <£> = Vo 0    n   jK 

-jK   0   U._ 0   0 u. 0  -jK \l 

(1) 

respectively, where pi, Hx,y,z> and K may be complex quantities to account for the losses in 
the material [7], [8]. 

x 

Fig. 1 Geometry of patch radiator. Fig^ Transform of coordinate systems. 

By using the concept of the spectral-domain immittance approach [9], the six-component 
electromagnetic field considered in a coordinate system (x,y,z) can be decomposed into 
TM-to-y and TE-to-y waves in a (u,v,y)-system (Fig. 2). 

u = zsin5-jccos8 
v = zcos5 + xsin8 

o = arcc~"' 
7a2 + ß: 

(2) 

(3) 

(4) 

The complex elements of the permeability tensor are incorporated into Maxwell's 
equations which are readily applied in the transformed domain. This leads to decoupled 
TE and TM waves and directly yields the wave immittances of TE and TM waves with 
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their associated propagation constants yme. For magnetic bias in y direction, we obtain 

v2  - -k^L + c^ + ß2 

TJ= -^(-k2£^±+a2 + ß2) 
V-- 

(5) 

(6) 

where k0 is the free-space wave number, a, ß are the propagation constants in x, z direc- 
tions, respectively, and 

H± = (^2-K2)/|i (7) 

Consequently, the the related admittances are given by 

jcoe _. Ye 
YTAf _ Y7E _ 

Following the same steps for a magnetic bias in z direction, we find 

(ß2Hx + a2\i2) ye + anzK (a2 + ß2) /\x 
Yrc _ 

jcono^jix(ß2+a2) 

Y
TM = ■>coe„e/Y„ 

(8) 

(9) 

(10) 

U c       2 

2    '^("2 ■V + t/Ä-'f+C^T-') .S^-5(^)2
+(E^£)2 

with 
qm = 2a3/27-ab/3 + c 

q, = -k2|izerKa/|i 

pm = b-aV3 

Pe= (k2uzer-a2-ß2n/ti) 

_ i,2v 

(ID 

(12) 

(13) 

a = -k2erK/2      b = kXer- a2 - ß2      c = k^K£r (a
2 - \izer) /a   (14) 

For a biasing field in the x direction, the positions of a, ß are exchanged in (9), (10), \iz is 
replaced by \ix, and 

qm = k2K6rß/2 

q* = ^Kerß/n 

P» = k2nIer-«2-ß2 

pe = k2er-a2/^-ß2 

(15) 

(16) 

in (11). 
The finite thickness and conductivity of the conducting patch is taken into account 
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by utilizing the complex resistive boundary condition [10] which is capable of modelling 
conventional metal as well as superconductors. After applying Galerkins procedure and ex- 
panding the tangential current densities in sets of Bessel functions, the complex resonance 
frequencies coc=cor+/cO; are given by the roots of the characteristic equation which is eval- 

uated using numerical integration techniques [2]. Once coc is determined, the Q factor of 
the patch antenna is calculated as the ratio ay/a»;. 

DDL. RESULTS 

The influence of a change in magnitude and direction of the d.c. magnetic bias on 
the resonance frequency and the Q factor of a rectangular patch radiator on ferrite substrate 
is shown in Figs. 3. As expected, the resonance frequency increases with the external field 
(Fig. 3a). The tuning range for z-direction bias is almost identical to that in y direction while 
the x-direction bias offers a lightly lower tuning range. A similar behavior is observed for 
the Q factor (Fig. 3b) which also increases with magnetic bias. This effect considerably 
changes the bandwidth of the patch while being tuned and needs to be considered by design 
engineers. 

0.11 0.12 0.13 

Magnetic bias (T) 

0.15   0.09 0.11 0.12 0.13 

Magnetic bias (T) 

Fig. 3 Influence of direction and amplitude of magnetic bias on (a) resonant frequency and 
(b) Q-factor of a rectangular patch. Parameters: er=16.6, tan5=10"^, W=2.5mm, L=8.0mm, 
h=1.0mm, t=0.2mm, c=40S/nm, HS=0.16T. 

For comparison with Figs. 3, Figs. 4 show the same parameters for a square patch. 
The resonance frequencies are slightly lower due to the enlarged patch area. The main dif- 
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ference, however, is that identical tuning ranges are obtained for the three investigated di- 
rections of magnetic bias (Fig. 4a). Consequently, the Q factor does not significantly 
depend on the direction of bias either (Fig. 4b). 

0.09 0.10 0.11 0.12 0.13 0.14 0.1S        0.09 0.10 0.11 0.12 0.13 0.14 0.15 

Magnetic bias  (T) Magnetic bias (T) 

a b 
Fig. 4 Influence of direction and amplitude of magnetic bias on (a) resonant frequency and 
(b) Q-factor of a square patch (W=L=8.0mm, other parameters as in Fig. 3). 

The effect of the substate thickness on the resonance frequency and Q factor are 
shown in Figs. 5 with different conductors as parameter. The resonance frequencies de- 
crease with increasing substrate height, as expected, and are relatively insensitive to the dif- 
ferent conductor materials considered (Fig. 5a). The differences with respect to the Q factor 
are obvious (Fig. 5b). The superconducting patch comes close to the ideal case, and the Q 
factor decreases as the amount of losses contributed by the ferrite increases. The Q factor 
behavior of the copper patch, however, seems to be reversed. This is due to the fact that the 
conductor thickness is of the same order of magnitude as the substrate. Consequently, the 
conductor losses contribute overproportionally to the low Q factor. With further increasing 
substrate height, the solid curve in Fig. 5b shows a behavior similar to those of the ideal 
and superconductor since the substrate material then carries the majority of losses. For the 
relatively small substrate thicknesses displayed, however, the difference between a copper 
and a superconducting patch is one order of magnitude in Q-factor. 

rv. CONCLUSIONS 

An analysis technique for patch radiators on lossy ferrite substrates is presented. 
The method is based on a modified spectral-domain approach which allows the finite patch 
thickness as well as its finite conductivity to be taken into account. The tuning 
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■ i— i                     i 
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a b 
Fig.5 Effect of patch material and substrate thickness on (a) resonant frequency and (b) Q- 
factor. Copper: t=0.2mm, o=40S/ujn; superconductor: t=0.4jim, on=200S/mm, T/Tc= 0.5, 
Ä.eff=1500A; ideal case: t=0, a -> ~; other parameters as in Fig. 3. 

ranges and Q factors of square patches are found to be comparable for different directions 
of applied d.c. magnetic bias. A comparison between conventional and superconducting 
patches shows that the Q factor in the latter case can be improved by one order of magni- 
tude. The influence of the conducting material on the resonance frequency is found to be 
extremely low. 
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ABSTRACT 

This paper describes ABC finite elements used to simulate infinite space on 3D and 2D finite element 
models for frequencies ranging from DC to the GHz range and beyond. ABC stands for asymptotic 
and/or absorbing boundary condition. The ABC finite elements fill no new non-zero terms in the fi- 
nite element matrices, and hence retain matrix sparsity and attendant fast CPU times. Examples of 
ABCs are presented for electrostatics, steady current flow, magnetostatics, and microwave antennas; 
in all categories the results are shown to be accurate. 

INTRODUCTION 

The finite element method has the capability of analyzing low frequency and high frequency electro- 
magnetic devices of a wide range of geometries and materials, but special techniques are required to 
model open boundaries extending to infinity. Techniques such as hybrid boundary elements [1] and 
ballooning [2] all fill in many new nonzero matrix terms and hence destroy the advantageous sparsity 
of finite element matrix equations. 
A fairly recent technique for simulating open boundaries on finite element models is called ABCs. The 
method was first applied to high frequencies, where the letters stand for Absorbing Boundary Condi- 
tion [3]. More recently similar techniques have been applied to magnetostatic problems, where the let- 
ters stand for Asymptotic Boundary Condition [4],[5]. ABC finite elements fill no new non-zero terms 
in the finite element matrices, and hence retain matrix sparsity and attendant fast CPU times. 

This paper describes ABC finite elements used to simulate infinite space on 3D and 2D finite element 
models for frequencies ranging from DC to the GHz range and beyond. First presented will be static 
ABCs, which will be demonstrated on electrostatic, current flow, and magnetostatic examples. None 
of these examples has been published before, and electrostatic and current flow ABCs have not been 
discussed before. Then dynamic ABCs will be discussed in the frequency and time domain, and new 
examples of ABCs on finite element antenna models will be presented. 

THEORY 

The finite element analysis software used here, MSC/EMAS™[4], based upon the potential vector {u} 
made up of magnetic vector potential A and time -integrated electric scalar potential ij), has three ma- 
trices making up its equation [6]: 

[M](ü} + [B](ü} + [K]{u> = jjj (1) 

which can be solved for static, time domain, and frequency domain excitation vectors {J}. The deriva- 
tion of (1) is based upon the energy variational equation [6]: 

8w =       dv {8we, + öw^g + 6w,oss - 8win} 
Jvol _ 

I    ds     dt{5A • (H x n)   - 8t|)[(fi • (J + 5)1 I   + ds 6i|> (ri • 5) 
Jail JL •'surf 

+ = 0        (2) 

<='n 
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where the volume integral accounts for electric, magnetic, loss, and input energies respectively. The 
electric energy is proportional to permittivity and contributes to [M] of (1), the loss is proportional to 
conductivity and contributes to [B] of (1), and the magnetic energy is proportional to reluctivity and 
contributes to [K] of (1). The input energy contributes to {J} of (1). 

The three surface integrals in (2) account for magnetic energy, power, and electric energy respectively 
flowing through the boundaries of the finite element model. To implement ABCs for static problems, 
surface integral terms are added to the three matrices depending on the type of static problem. ABC 
terms are added to the [M] matrix for electrostatic problems, to the [B] matrix for current flow prob- 
lems, and to the [K] matrix for magnetostatic problems. The [K] matrix contributions have been 
derived recently for three dimensional problems [4] and for two dimensional planar problems [5]. In 
the two dimensional planar case, Poisson's equation is obeyed for all three types of static problems, so 
that the [B] and [M] matrix contributions are similar to those for [K]. However, in three dimensional 
and axisymmetric cases, the static ABCs for [B] and [M] differ from those for [KJ. 

In dynamic (frequency domain or time domain) problems with high frequency content, the preceding 
[M], [B], and [K] matrix ABC contributions are supplemented by an additional [B] matrix contribution 
[7,8] that accounts for radiated power. Assuming that the ABC surface for 3D models is that of a sphere 
of radius r, then this additional radiation contribution can be derived from (2) to be [8]: 

ds \bA • (3 x n)} = ds fiaÄ • (V x A) x r)} 
J surf J surf (3) 

ELECTROSTATIC EXAMPLE 

To demonstrate three—dimensional electrostatics with open boundaries, we choose a problem given 
in a textbook by Jackson [9]. A sphere of radius a=0.5 meter is divided into two conducting hemi- 
spheres. The hemispheres are separated by an infinitesimally thin air gap and are surrounded by air 
extending to infinity. The northern hemisphere is at +1 volt and the southern hemisphere is at -1 volt. 

Figure 1 shows the finite element model of a 10 degree sector of one hemisphere. The model is made 
up of 47 three-dimensional isoparametric finite elements, including both hexahedrons and pentahe- 
drons. Nine open boundary finite elements are placed at a radius of 1 meter. 

Figure 1 also displays the voltage contours computed by MSC/EMAS. Note that they intersect the outer 
model surface at arbitrary angles, which agrees with expectations. The computed voltages can be 
checked by comparing them with those of the classical formula along the z axis [9]: 

r         (z2-a*)  I 
4> = V  1 ==  (4) 

where the applied voltage V is here 1 volt. Figure 2 is a graph of the classical voltage <))(z) of (2) versus 
the MSC/EMAS voltage <|)(z). The agreement is between 0.18% and 3.77%. The finite element results 
are somewhat in error due to the use of only 47 finite elements and due to the necessity of modeling 
a finite gap between the hemispheres. 

STEADY CURRENT FLOW EXAMPLE 

As an example of a steady current flow problem with open boundaries, consider two perfectly conduct- 
ing cylinders buried in earth that extends to infinity. The conductivity o of the earth is assumed to be 
1 S/m. Figure 3 shows the cylinders, which are of radius a=l meter and which are separated by d=4 
m center—to—center. The cylinders have voltages of +1 and —1 volt, respectively. 

The finite element model of Fig. 3 consists of 300 two-dimensional isoparametric finite elements, in- 
cluding both quadrilaterals and triangles. 24 ABC open boundary finite elements are placed at a radius 
of 6 m. 

Figure 3 also displays the voltage contours computed by MSC/EMAS. The resistance between the cylin- 
ders is given by the classical formula [10]: 
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Fig. 1. Finite element model of a 10 
degree sector of one hemisphere at 1 
volt, with ABC boundaries at twice 
the hemisphere radius of 0.5 m. The 
computed electrostatic voltage con- 
tours are also shown. 

- - - -finite element 
-theory 

-| 1 1 1 1 1 1 \ 1 1 1 1 1 1 1  |  "  i  i  i  | 

0 .1 .2 .3 .4 .5 
Distance above sphere - tn 

Fig. 2. Voltage versus distance along z axis of Fig. 1. Finite element and theoretical results are shown. 

Fig. 3. Two buried cylinders and the 
computed voltage contours for the 
current flow between them. 
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In 
ö + J^-4a') 

d-/(d2-4a2) 

R 2S5  W 

which obtains R = 104.80 milliohms. MSC/EMAS obtains R=105.11 milliohms, which agrees within 
0.296%. 

NONLINEAR MAGNETOSTATIC EXAMPLE 

To demonstrate ABCs in three dimensional magnetostatic problems, we analyze a permanent magnet 
surrounded by air. The permanent magnet material is Alnico 8 with a nonlinear magnetization curve. 
This nonlinear behavior can be calculated by inputting its nonlinear B-H relationship as a B-H table, 
and by inputting its coercive force Hc of 115,387.3 A/m as a permanent magnetization excitation. The 
magnetic flux densities computed near the magnet will be compared with experimental results. 

Only one eighth of the magnet is modeled because of its symmetry, as illustrated in Figure 4. Air is 
modeled around the outer edges of the magnet to a radius of 25 mm, where ABC open boundary ele- 
ments are placed to simulate free space extending to infinity. 

This 1/8 model is built with 2,192 first-order 3D hexahedron elements, 228 first—order ABC open 
boundary elements and 2,640 grid points. The magnet is built with 144 hexahedrons. The air surround- 
ing the magnet is modelled out to a radius of 25 mm, accounting for the other 2,048 hexahedrons. Figure 
4 illustrates the finite element mesh and boundary conditions. 

Figure 5 shows the magnetic flux density values calculated with MSC/EMAS as a function of distance 
from the magnet, directly above the center of the north pole of the magnet. Experimental results, with 
an error of ± 5%, are shown for comparison. There are small discrepancies between MSC/EMAS re- 
sults and experimental values, ranging from 2.1 % to 9.7%. These could be attributed to both the mea- 
surement error and variations in the B-H curve for the permanent magnet material. This finite ele- 
ment model converted to second order isoparametric elements obtains similar values, so the mesh 
density for this model is adequate. 

ANTENNA EXAMPLE 

A simulation of a waveguide-fed slot antenna is presented here which demonstrates the use of ABCs 
in the frequency domain. In this example, two and three-dimensional finite elements of first and se- 
cond order are intermixed to obtain the radiation patterns and the input impedance of the simulated 
antenna. The radiation patterns obtained from the simulation are validated against theoretical data 
[11]. 

The slot antenna, shown in Figure 6, contains one narrow slot oriented along the broad side of the top 
waveguide wall and resides on an infinite groundplane. Effects of the 0.068K waveguide wall thickness 
are also considered in the the simulation. The waveguide is excited with a TEio mode at f/fc = 1.083 
where f,; is the waveguide cutoff frequency. The waveguide is terminated in a matched impedance. 

Due to the geometrical symmetry of the antenna and the field symmetry of the modal excitation, only 
one half of the device is simulated using approximately 7900 3D and 550 2D finite elements. A hidden- 
line view of the finite element mesh is shown in Figure 7. All three-dimensional elements represent 
air; the air in the waveguide, through the finite thickness slot aperture, and above the groundplane out 
to a radius of 2.2X. from the center of the slot. ABC open boundary elements coat the outer surface of 
the air above the groundplane to simulate the air extending to infinity. Two-dimensional elements 
with the conductivity of copper coat the shell of the upper waveguide wall and the shell of the finite 
thickness slot aperture. The high conductivity of the copper elements simulates near perfect electric 
conductors without the use of Dirichlet boundary conditions. Two—dimensional elements are also used 
to terminate the waveguide in a matched impedance. Second order elements are used through the slot 
aperture and out to a radius of 3V8 from the slot to capture the high field gradients throughout this 
region. Figure 8 illustrates the mesh detail at the slot. Four second order hexahedral finite elements 
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25 mm 

Fig. 4. Finite element mesh of one octant (2.92x2.92x6.48mm) of the magnet and air out to a 
radius of 25 mm. The boundary conditions properly model the symmetric flux pattern of this 
device. 

10C 

80- 

60- 

B (milliT) ; 
 Experiment 

 MSC/EMAS 

-"I- 1" h 

"I- 

i-x-t- —1— —f 
L       I " 

I        I r  i 

r—I— ■~r- —f 

1 2 3 4 5 6 
Distance from top of magnet (mm) 

Fig. 5. Magnetic Flux Density values above the center of the north pole of the magnet, from 
MSC/EMAS and experimental results. 
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are used along the 0.068X dimension of the slot to obtain a finite element solution free of distortion in 
this region. The mesh then transitions out to approximately 10 first order elements per \ out to the open 
boundaries. 

The radiation pattern for an infinitely thin slot antenna is well-known and has an easily defined classi- 
cal solution. The electric field in the E-plane is uniform at at constant radius. The electric field at 
a given radius in the H—plane is given as: 

E{6)n.plane = 20log£n 

cos((f)cos(0 + 90)) - cos(f) 

cos(e) (6) 

where / is the slot length and X. is the free space wavelength. 

Figure 9 depicts a graph of the electric field magnitude vs. the angle 6 in the E and H planes at a radius 
of 1.95 X from the slot. The field strength in the E-plane is indeed close to uniform. The computed 
field strength in the H-plane is in excellent agreement with Equation 6. The characteristic impedance 
at the input port measures 1003 Q, 2% higher than theory. The magnitude of Sn measures -12.16 dB. 

plane of 
symmetry 

thickness of wall at 
aperture = 0.55 mk 

Figure 6. Slot antenna dimensions. 

ABC open-boundary 
elements at 2.2 X radius 

Figure 7. Finite element mesh of the air inside the waveguide and above the 
groundplane. 
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slot aperture enlarged to show 
2-D conducting elements 
Not to scale 

Figure 8. The finite thickness of the waveguide wall at the aperture 
is modeled as a shell of 2-D highly conductive elements. The 3-D 
elements are removed for clarity. 

Electric Field (dB) at 1.8 m 

LEGEND 
 E Plane cut - - MSC/EMAS 
— H Plane cut - - MSC/EMAS 
 H Plane cut - - Theoretical 

-^"^""^Thet^deg^sj"^ ÖE+°1 

Figure 9. Computed electric field patterns in the E 
and H planes. The H-plane pattern is compared to 
Equation 5. 
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CONCLUSIONS 

ABC finite elements have been shown able to accurately model infinite space in a wide variety of static 
and dynamic electromagnetic problems. An electrostatic example has obtained a voltage distribution 
that agrees closely with classical theory. A steady current flow example has obtained a resistance that 
agrees closely with a classical equation. A nonlinear magnetostatic example has obtained a magnetic 
field that agrees closely with measurements. Finally, a microwave antenna model has been discussed 
in detail, and it obtains radiation patterns that agree closely with classical theory. 
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ABSTRACT 

A finite element method for the solution of Maxwell's equations is presented. The coupling problem is addressed by 
solving augmented equations with consistent second order space and time derivatives. A special comer treatment is 
introduced and the results are generated for cylinder and NACA 0012 airfoil. 

1. INTRODUCTION 

Lately, there is a trend to transfer existing technology from computational fluid dynamics to computational 

electromagnetic (CEM). Most of the technology shift entails finite difference schemes. While differencing schemes 

may be adequate for problems involving simple geometry on Cartesian grids, finite elements treat easily problems 

with complex configuration. Although methods such as the Chimera overset gridding scheme (see Benek, Buning 

and Steger [1]) can be applied, presently they are not widely used for CEM. The difficulties arise from the 

interpolation errors and the implementation of the method. The interpolation between grids with different speeds of 

wave propagation on different grid sizes contaminates the CEM calculations. Differencing schemes also suffer from 

the handicap of having material boundaries not always located on grid points. On the other hand, in the finite 

element method grid points can be placed at material boundaries. Many CEM finite element methods have been 

developed for the frequency domain. For the time domain, Lee and Madsen [2] use separate shape functions for the 

electric and magnetic fields to create the effect of a staggered grid. Also, a method based on the second order wave 

equation has been developed by Lynch and Paulsen [3]. 

2. METHOD 

Maxwell's equations will be solved as a system of first order hyperbolic partial differential equations on 

unstaggered grid. The governing equations are: 

3ft 

Vxl = ~ VD = p D = £E 

dt 
VxH = -^ + J VB = 0 B = piH (1) 

where E is the electric field, H is the magnetic field, D is the electric displacement, 8 is the magnetic induction, J is 
the current density, p is the charge density, £ is the material dielectric constant, and (1 is the material permeability. 
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For propagation in lossless and source free media, J = 0, p = 0, and V • B = 0 are automatically 

satisfied on the differential level. 

In two dimensions, the equations decouple into the transverse electric (TE) and transverse magnetic mode 

(TM). In the present method, the TM mode is solved. 

d(eEi) = day   ar     W)^._  de       dW) - &' (2) 
dt dx       dy dt dy dt dx 

Application of standard Galerkin fine element will lead to grid decoupling (see S. Ray [4]). In the present 

method, weighted time balanced coupling terms are introduced in the same manner discussed in previous work by 

the authors [5]. 

d(eE')    dW    dH*s,    d2E*    d2E*    d2E\ 
\       =^r —+ d(ji£^-r r-j TT-) 
dt dx      dy dt2       dx2      dy2 

d(pH*)       dE*     _,     d2W    d2W    d2K\ 

dt dx       ^    dt2       dx2       dy2 

Where 6 is a small parameter of order of the element area. The coupling terms do not vanish on the discrete level 

thus joining adjacent nodes without the drawback of contaminating the solution with high artificial viscosity 

dissipation and without the complexity of having to manage two sets of shape functions. At solid walls and far field 

boundaries, the extra terms are dropped. 

On the boundary of a perfect electric conductor (PEC), the electric field tangential to the surface is zero, 

and the component of the magnetic field normal to the surface vanishes. 

Ez = 0        Bn = 0 (4) 

In the far field an absorbing boundary condition is imposed to allow the wave to travel out of the solution 

domain without significant reflection. 

§ = -VQn Q = 
dt 

E1 

Hy 

(5) 

Q is approximated with piece wise continuous elemental functions 
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where <K*,y) are bilinear quadrilateral shape functions. With the second order terms integrated by parts, equations 

(3) are spatially integrated over the solution domain using the Galerkin finite element method. 

The field components can be separated into scattered, 0s, and incident, QS fields. Regions in the solution 

domain where the incident field (forcing function) is subtracted out are referred to as the scattered field zones. 

Regions where both the incident and scattered field exist are known as total field, Q , zones. Integration across 

different zones requires addition or subtraction of the incident component for consistency. 

QT = QS + QI (7) 

The elemental contributions are: 

M,, 

j] oM>TdA 0 0 

0 JJ/i*<|>TdA 0 
Q 

0 0 JjMMTdA 
K.1« 

dfy o      _jj,a ^ ^ dA 

1*S -    ° 

k2=ffj_r^^T3^Tk K 
k2 0 0" 

0 k* 0 

0 0 kj 
(8) 

Assembling the elemental contributions results in the following system of equations: 

M^ = K1Q + 5fM^-K2Q (9) 

where M is the mass matrix and Ki and K2 are stiffness matrices. A lumped mass matrix is then formed by adding 

the off diagonal terms into the diagonal and then zeroing the off diagonal terms. Mass lumping results in a scheme 

which allows efficient solution of the equations via explicit time marching. 

At the boundary of the PEC, the normal component of the magnetic field vanishes. This boundary condition 

was implemented by rotating the two magnetic equations based on Cartesian coordinates (2) to normal and 

tangential coordinates local to the boundary element 

JM^V(x,y)dl = J|>(x,y)dl JM^V(x,y)dl = - |#V(x,y)dl 
da xi sa xi 

(10) 

where \|/(x, y) is the shape function of the linear one dimensional boundary element, and the partial derivative with 

respect to 9 is the partial derivative in the tangential direction. Since the normal component of the magnetic field is 

0, only the equation for the tangential magnetic field needs to be solved. 
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Ji!iax=LV(x,y)dl= Jf-V(x)y)-nx(x).y)dl+ J^-y(x,y)ny(x,y)dl (11) 

where nx and ny respectively are the x and y components of the normal vector evaluated from the surface normal 

vectors specified at the boundary nodes. The solution for the tangential magnetic field is then rotated back to 

Cartesian coordinates so the values would be available for integration over Q. The tangential electric field boundary 

condition is imposed by setting Ez on the boundary to zero. 

The far field boundary condition (5) is imposed with: 

J^S(()(X)y)di = .Jf<j)(x)y).nx(X,y)dl- {§ <|>(x,y)-ny(x,y)dl (12) 

3. CORNER SINGULARITY 

While the scatterer boundary condition described in the above section is adequate for smooth surfaces, 

special treatment must be applied to comers to account for discontinuity and singularity in the magnetic field. 

Improper treatment of corners will result in unacceptable contamination and instability. In the present method 

comers are modeled as a segment of an infinitesimal cylinder. In the limit as the radius goes to zero, the cylinder 

segment shrinks to a single point 

Using figure 2 as a reference, the comer point is modeled as two linear elements, B1-B2 and B2-B3. The 

locations of B1 and B3 were chosen such that elements A-B and B-C are tangent to the infinitesimal cylinder. Since 

edge B-E is a common edge between two elements the location of the point, B2, on the cylinder for the edge must be 

the same point for the two common elements to maintain continuity between edges. The location of B2 is chosen 

such that in the limit as the radius of the cylinder shrinks to zero, the infinitesimal elements B1-B2, and B2-B3 

approach the comer location at the same rate. The location of B2 is therefore the bisector of the circumference 

between Bl and B3. Accompanying the location of each point Bl, B2, B3, is a normal and tangential vector to the 

surface of the cylinder which is used to compute the Cartesian components of the tangential magnetic field. 

Figure 1 Physical comer. Figure 2 Corresponding model of the comer 
an infinitesimal cylinder segment 
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The tangential magnetic field at the comer (B) is calculated as stated in section 2 according to the model of 

figure 1. The result for node B is then rotated to Cartesian components for nodes Bl, B2, B3 using the tangential 

vectors at the locations on the cylinder. Note that the nodes Bl, B2, B3 which represent the corner has the same 

tangential magnetic field, but differ in Cartesian components. 

The actual calculations for the element A-B-E-D shown in figure 1 are done using the values of the 

Cartesian components at B as the average of the corresponding quantities Bl abd B2. Similarly for the element B-C- 

F-E, the average of the Cartesian components of the tangential H at B2 and B3 is used. 

4. TIME INTEGRATION 

The equations are advanced in time by a centered difference scheme. On non-orthogonal grids, the solution 

may be distorted due to the mass lumping. To correct for the distortion, the implicit equation (9) could be solved 

using Jacobi iteration or by the metheod developed by Donea [6] and used by Lee and Madsen [2]. Only three or 

four iterations may be needed. 

MLQ°0
+) = f ° for the initial prediction. 

MLQ°^+!) = f° - (M - ML )Q£ for subsequent iterations. (13) 

5. RESULTS 

Scattering from a circular cylinder was used as a test case. For a practical test of the method, scattering 

was also computed for a NACA 0012 airfoil. For all cases unless stated otherwise, a plane wave coming from the 

left side of the mesh is incident on the scatterer. 

5.1 Circular Cylinder Results 

For the circular cylinder, a grid of 126 points circumferentially and 75 points radially was used. The 

incident wave was of electrical size ka=5. The far field was 3.18 wavelengths away from the body. Contours of the 

fields, surface current density, and bistatic radar cross section (RCS) were generated after 5.97 wavelengths had 

elapsed (see fig. 3). 

The contours of the circular cylinder were very smooth. The current density and the RCS are in good 

agreement with series approximation results. 

5.2 NACA 0012 Airfoü Results 

For the airfoil, a grid of 100 points circumferentially and 100 points radially was used. The wavelength 

was 0.2*PI of the chord length. Contours of the fields, surface current density, and bistatic radar cross section (RCS) 

were generated after 7.16 wavelengths had elapsed (see fig. 4). 
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S3 NACA 0012 Airfoil with Wave incident from Bottom 

In order to compare with published results, a computation of a NACA 0012 airfoil with a wave incident 

from the bottom. The incident wavelength was 10 percent of the chord length. Bistatic RCS was generated after 15 

wavelengths had ellapsed. The grid had 100 nodal point on the body and 100 points radially. 

The bistatic RCS (fig. 4) was compared with the results of Vinh [7]. The results matched well except at 0 

and 180 theta. This deviation could be due to the RCS being caculated from the surface current density with a 

singular point represented by a finite value or due to grid density. The singularity will affect the RCS. The forward 

and backward scattering are practically in good agreement. 

6. CONCLUSION 

The results show that the present finite elements scheme can be used for CEM problems. The method is 

simple since only one mesh is needed for the E and H fields. Applications to more complex geometry using 

unstructured grids are under progress. 
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Abstract - A time domain finite element method is employed in conjunction with the planar 
circuit model to analyze microstrip discontinuities. By simulating the wave propagation in 
the circuit using the leap-frog scheme with appropriate boundary conditions enforced along 
the circuit periphery, the method is able to efficiently calculate the fields and scattering 
parameters for a variety of microstrip circuits. 

Introduction 

In microstrip circuits, a discontinuity arises whenever there is an abrupt variation from 
a straight and homogeneous line structure. This can be in the form of a bend, a step in width, 
a T junction, or even a change in the dielectric constant [2-4]. Though structurally simple, 
these discontinuities are the basic building blocks of many microstrip integrated circuits such 
as the microstrip filters, branch line couplers, and even patch antennas. Hence, the accurate 
analysis and characterization of microstrip discontinuities remains as an important and 
ongoing issue in microwave integrated circuit design [1,2]. 

Conventional analyses use one-dimensional transmission line models and lumped 
elements [2-4]. These approaches, however, are based on quasistatic approximations, and 
therefore their results are accurate for relatively low frequencies only. A better approach 
would be to simulate the wave propagation and scattering phenomena so that the results are 
also valid at higher frequencies. This idea is reflected in the recent development of the time 
domain finite difference methods [5,6]. The advantage of these methods over frequency 
domain methods such as the spectral-domain approach [7] and the moment method [8,9] is 
that both the time domain and the frequency domain data is readily available. However, due 
to the nature of finite differences, the implementation of these methods to discontinuities of 
arbitrary shape is difficult. 

This paper describes a point-matched time domain finite element method [10] to solve 
microstrip discontinuities using the planar circuit concept [11,12]. This method has the 
advantage of the time domain analysis and yet it is more versatile than the finite difference 
method. To illustrate its validity and flexibility, the method is implemented on several 
examples of microstrip discontinuities. 

Planar Circuit Model 

The general concept of a planar circuit was introduced by Okoshi and Miyoshi [11] 
as an electrical component that has two dimensions comparable to the wavelength and a third 
dimension that is much smaller than the wavelength. A microstrip circuit is an example of 
a planar circuit because when the substrate thickness is small compared to the wavelength, 
the field variation in the vertical direction can be neglected. As a result, the fields can be 
assumed to vary only in the horizontal conductor plane (xy plane). This idea has been proved 
to be effective and practical because it allows the analysis of microstrip circuits of arbitrary 
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shape within a relatively short computation time [4,6,13-16]. 

In the planar circuit model, the fields inside the circuit are characterized by the 
following pair of two-dimensional time-dependent partial differential equations [6,16] 

mx,y.t)-lLd*rix.y.t) (1) 
at 

v-JU.y, t)-4 3v^>y-» (2) 
a at 

with proper boundary conditions along the circuit periphery. In the above equations, V is the 
voltage wave function, / is the surface current density vector in the plane conductor, d is the 
substrate thickness, and e and (j. are the permittivity and permeability of the substrate 
material, respectively. 

Time Domain Finite Element Method 

The time domain point-matched finite element method [10,19] is chosen to solve the 
above pair of equations. Because it is well suited to model the irregular boundaries of 
microstrip circuits. Unlike the time domain finite difference method [5,6], where stepped 
approximations are used to model the curved boundaries, the time domain finite element 
method allows a smoother approximation. 

In the finite element method, the region of interest (xy plane) is discretized into a 
finite number of regions called elements. Each element has several points called interpolation 
nodes.  As a result, the continuous functions V and / can be approximated by 

V(x,y, t)-^*i(jf,y)Vi(t) (3) 

Jix.y, t)-£Y.,(x,y)J.,(fc) (4) 
>i 

where M and N are the number of nodes of the V and J finite element grids, respectively, and 
<t>,0t,y) and \|//JE,V) are the basis functions which interpolate the field within each element 
using the values at the interpolation nodes. In this paper, the linear isoparametric 
quadrilateral element will be used [17,18]. 

To further simplify the computation, a pair of complementary grids as shown in Fig. 
1 are used. Note that the voltage grid is slightly larger than the current density grid. This 
means that the microstrip circuit will be modeled with some errors. However, the advantage 
of doing so is that each voltage element contains an interpolation node for the current density 
and each current density element also contains an interpolation node for the voltage. As a 
result, (1) and (2) can be approximated by 
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dJAt) 
£r---k'£+>l*>'ywt) (5) 

^r-'-itw^yw» (6) 
■ j-i 

where /=1,2,...,JV, i=\,2,...M, and K=A in this case. 

The time derivatives are approximated by finite differences in the leap-frog scheme 
with V and J discretized in time as follows: 

Vn-V(fc-flAt) (7) 

«r-1/2=j-(t=fa-i/2}At) (8) 

where n=0,l,2,...  Hence, the time derivatives in (7) and (8) can be expressed as: 

(9) 

(10) 

dJj 
ü&t*1 

or 1/2    _n-l/2 

dt At 

dv± 

dt (n+l/2)At At 

As a result, (5) and (6) can be written as follows: 

J.n*l/2_ -n-1/2     At\^_t     ,„     „ , „a (11) 

e   i-1 

for n=0,l,2,.... Once the initial conditions for V at *=0 are known, (11) and (12) can be used 
alternately to simulate the wave propagation in the microstrip circuit. 

Boundary Conditions 

The boundary conditions along the circuit periphery where there are no external 
connections are the homogenous Neumann type since current flow must be tangential. In the 
finite element method, the elements are distorted to model the circuit boundaries and the 
homogeneous Neumann boundary condition can be satisfied by interpolating the voltage fields 
along the inward normal directions within the boundary elements. This is illustrated in Fig. 
2. At each time step, instead of using (11) and (12), the interior voltage values are used to 
update the open boundary nodes of the microstrip circuits. 
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At the coupling ports of the microstrip circuit, absorbing boundary conditions are used 
because the open circuit relation is no longer valid. At these boundaries, the waves must be 
allowed to propagate out of the ports and at the same time the incident source voltage waves 
must also be allowed to propagate into the ports. To achieve these conditions, Taflove's first 
order absorbing boundary conditions are used [20]. 

Fringing Fields of Microstrip Circuits 

To account for the complicated nature of the fringing fields of microstrip circuits, the 
permittivities and widths of the microstrip lines are adjusted according to the Wheeler, 
Schneider and Hammerstad formulae [21]. The authors find that this model is adequate for 
most applications. However, a more accurate representation based on the planar waveguide 
model of the microstrip lines [22] can be used in the case where the frequency dependence 
of the effective widths and effective permittivities must be accounted for. 

Stability Considerations 

The two partial differential equations in (1) and (2) constitute a hyperbolic system. 
For a uniform square grid with an element size of h, it has been proven [23] that the solution 
to the leap-frog scheme is stable if the relationship given by «Ar < h is satisfied everywhere 
inside the grid iu denotes the velocity of propagation). For the case of a grid with distorted 
elements, Cangellaris et. al. have pointed out that this stability criterion can still be used 
provided that "each of its irregular elements is large enough to contain a regular element of 
the grid" [10]. 

Excitations 

The frequency response of the microstrip circuit can be obtained by applying a sine 
wave at the excitation port until steady-state is observed at the output port. Another approach 
would be to use a Gaussian pulse to excite the microstrip circuit, and from the transient 
response at the output port to extract the frequency response using the Fourier transform. 
This approach has the advantage that the results for a wide range of frequencies can be 
obtained using one computation as demonstrated in [5,24]. However, for simplicity, the sine 
wave approach is used in this paper. 

Results 

The method described above was implemented as a user-friendly package which 
includes: (1) a pre-processor which allows the user to specify the grid points as well as the 
boundary conditions, (2) a solver that simulates the wave propagation using the leap-frog 
scheme and enforces the assigned boundary conditions, and (3) a post-processor which 
displays the spatial waveforms at various time steps. 

Figures 3(a) and (b) show the dimensions of a single and double open stub 
discontinuity, respectively. Both circuits have a dielectric constant of 9.9 with a substrate 
thickness of 0.254 mm. In the finite element models, the single stub was modelled with 
square elements of size h = 0.046 mm, and the double stub structure was modelled with h = 
0.02875 mm. Figures 4(a) and (b) show the transmission magnitude as a function of 
frequency in the range from 6 to 26 GHz in comparison with the calculated and measured 
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results from Giannini et. al. [25]. As can be seen in the figures, the finite element method 
is able to predict the field behaviour within a reasonable accuracy at lower frequencies. The 
large discrepancies at high frequencies seem to suggest the need for a grid with finer spatial 
subdivisions. 

One of the disadvantages of the finite difference method is that a stair-stepped 
approximation must be used to model a curved boundary. It has been shown that the errors 
due to this approximation may contaminate the field calculations significantly if the grid is 
not fine enough [26]. The finite element method, however, overcomes this limitation by 
allowing the elements to be distorted to model the boundary. Fig. 5(a) shows the 
dimensions of a microstrip annular ring which had been analyzed and measured by D'Inzeo 
et. al. using a modal expansion technique [27]. For finite element calculations, the widths 
have been adjusted according to the Wheeler, Schneider and Hammerstad formulae [21]. 
Note that by taking advantage of the symmetry, only half of the problem needs to be solved. 
Fig. 5(b) shows the grid that was used for the finite element calculations. 

Figures 6(a) and (b) show calculated frequency responses along with the results from 
[27]. By comparing the results, one finds that there is a slight shift in dip frequencies of 
about 6% in the return loss of the finite element calculation. This is probably due to the fact 
that in the modal expansion analysis of D'Inzeo, effective parameters based on the planar 
waveguide model [22] were employed at each frequency, whereas in our analysis, the 
effective parameters were computed using the Wheeler, Schneider and Hammerstad formulae 
only at one frequency. 

Conclusions 

The paper has presented a time domain finite element method for calculating the 
frequency dependent scattering parameters of microstrip discontinuities. In this method, the 
elements are allowed to be distorted to model the circuit boundary, thus avoiding the stair- 
stepped approximation. In addition, this formulation does not require the evaluation and 
storage of a matrix of unknowns. Hence, the method is feasible for solving a large number 
of unknowns. However, the stabilty of the algorithm for the case of non-uniform grid must 
be further defined. Experimentation with the method reveals that the method seems to work 
well when the finite element grids are distorted in a conformal way. However, when this is 
not the case, the results will be unstable even though it appears to satisfy the criterion ^iAt<h. 
Hence, more work has to be done in investigating the stability of the method in relation to 
the necessary grid generation for the case of non-uniform grid. 
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Flg. 2  Example of a Neumann boundary approximation. 
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Fig. 5(a)  A microstrip annular ring. 

Fig. 5(b)  Finite element grid for the 
problem shown in Fig. 5(a). 
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1     Introduction 
Differential equation techniques are rapidly becoming the preferred solution 
methods for the computation of electromagnetic scattering and radiation 
from inhomogeneous, three-dimensional geometries [1-2]. In the finite ele- 
ment method, the computational domain is at first discretized using node- 
based or edge-based finite elements. Edge-based elements are more desirable 
for representing electromagnetic fields since they exhibit tangential continu- 
ity and normal discontinuity across inter-element boundaries and material 
discontinuities. Moreover, they can treat geometries with sharp edges and 
are divergenceless. The outer boundary of the finite element mesh is now 
artificially truncated at some distance from the target using an absorbing 
boundary condition (ABC). ABCs are essentially differential equations cho- 
sen to suppress non-physical reflections from the boundary, thus ensuring the 
outgoing nature of the waves. They are approximate boundary conditions 
but have the important advantage of retaining the sparsity of the matrix 
system. 

In our implementation, we use an edge-based finite element formulation 
coupled with vector ABCs on conformal boundaries to compute scattering 
from three dimensional structures having boundaries satisfying impedance 
and/or transition conditions. The limiting factor in dealing with three- 
dimensional geometries is usually the number of unknowns and the corre- 
sponding demands on storage and solution time. Solution techniques which 
have O(N) storage and feasible solution times are, therefore, the only way 
that three-dimensional problems can be solved with the available computer 
resources. This is one of the principal reasons for the popularity of par- 
tial differential equation techniques over integral equation (IE) approaches 
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which lead to dense matrices or hybrid methods which lead to full sub- 
matrices. As the body becomes large, the IE and hybrid methods (both 
need 0(N'),l < I < 2 storage) quickly become unmanageable in terms of 
storage and solution time. Another concern while solving problems having 
more than 100,000 unknowns - a scenario that can be envisioned for most 
practical problems - is to avoid software bottlenecks. The algorithmic com- 
plexity of any part of the program should increase at most linearly with the 
number of unknowns. 

Owing to the local nature of the ABCs, the finite element matrix is very 
sparse resulting in O(N) storage requirement. The number of unknowns is 
further reduced since the artificial boundary needs to be truncated only a 
fraction of a wavelength from the target. The sparse, symmetric matrix is 
initially stored in a modified ITPACK format [3] and then stored as a long 
vector in the main routine for reasons to be outlined later. The linear equa- 
tion solver employs a preconditioned biconjugate gradient (BCG) algorithm. 
The preconditioned used here are a simple diagonal preconditioner and a 
modified version of the incomplete LU (ILU) preconditioner with zero fill-in. 
The trade-offs between the two types of preconditioners will be shown later. 
The preconditioned BCG solver was also parallelized on the KSR1 (Kendall 
Square Research) shared-address space distributed-cache architecture with 
substantial speedup. 

2    Finite element discretization 
The scattered electric field functional -F(ES)- to be discretized for the FE- 
ABC scheme is given in [1]. The computational volume V is subdivided into a 
number of small tetrahedra, each occupying the volume Ve (e = 1,2, • ■ ■, M), 
where M denotes the total number of tetrahedral elements. Within each 
element, the scattered electric field is expressed as 

m 

Ee = ]T E]W° = {Wc}T{£e} = {£e}T{We} (1) 
;=1 

where WJ are the edge-based vector basis functions [4], Ej denote the expan- 
sion coefficients of the basis and represent the field components tangential 
to the jth edge of the eth element, m is the number of edges making up 
the element and the superscript stands for the element number. The basis 
functions used in our implementation have zero divergence and constant curl. 

The system of equations to be solved for E? is obtained by a Rayleigh- 
Ritz procedure which amounts to differentiating F(ES) with respect to each 
edge field and then setting it to zero. On substituting the basis expansion 
into the expression for the functional, taking the first variation in F(ES) and 
assembling all M elements, we obtain the following augmented system of 
equations 

\hi\ = X>EK£e} + EWS}{ES} + Em = 0 (2) 
\Urj   ) e=l s=l »=1 

856 



In this, Ms denotes the number of triangular surface elements on Sk and S0 

whereas Mp is equal to the sum of the surface elements on Sk, Sd and the 
volume elements in V<j. The elements of the matrices [Ae], [Bs] and {Cp} are 
given in [1]. The final system can be expressed as 

[A]{x}   =   {b} (3) 

where {x} is the unknown vector representing the weighting coefficients of 
the basis functions. 

The imposition of boundary conditions on the finite element mesh is usu- 
ally quite simple. No special treatment is required at material discontinuities; 
the mere identification of surface elements lying on material discontinuities 
or inhomogeneities kicks in the contribution from the surface integrals in 
F(ES). For perfectly conducting scatterers, the interior region is not meshed 
since the electromagnetic wave does not penetrate inside the scatterer. If the 
surface element lies on the pec boundary, a simple modification is carried out 
on the element matrix to preserve the symmetry of the matrix system. 

2.1 Numerical considerations 

The finite element code (to be referred as FEM-ATS from now on) can be 
classified into four main categories: 

• Input/output 

• Right-hand side vector (b) generation 

• Finite element matrix (A) generation 

• Linear equation solver 

A look at Table 1 reveals that the most time-consuming portion of the code 
is the linear equation solver taking up approximately 90% of the CPU time. 
On a vector computer like the Cray YMP, it is possible to vectorize only the 
equation solver. The finite element matrix generation consists of too many 
subroutine calls and highly complex loops to permit any significant speedup 
through vectorization. Generating the right-hand side vector (b) as well as 
input/output take up a negligible portion of CPU time. 

2.2 Matrix generation 

The finite element mesh was usually generated using a commercial package, 
SDRC I-DEAS. The matrix systems arising from I-DEAS were very sparse: 
on the average, the minimum number of non-zero elements per row was 9 
and the maximum number of non-zeros per row was 30. As stated earlier, 
the matrix generation was carried out using a modified ITPACK storage 
scheme and then stored in a long vector. The storage requirement for the 
entire matrix was approximately 15N to 16Ar, where N is the number of 
unknowns. 
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The ITPACK storage scheme is attractive for generating finite element 
matrices since the number of comparisons required while augmenting the 
matrix depends only on the locality of the corresponding edge and not on 
the number of unknowns. However, on using the ITPACK storage scheme for 
our application, almost half the space is lost in storing zeros. The modified 
ITPACK scheme does alleviate this problem to a certain degree; however, 
30% of the space is still lost in zero padding. The best trade-off between 
storage and speed for our application is obtained by storing the non-zero 
matrix elements in a long complex vector, the column indices in a long integer 
vector and the number of non-zeros per row in another integer vector. This 
data structure is referred to as the Compressed Sparse Row (CSR) format. 
In our implementation, a map of the number of non-zeros for each row is 
obtained through the modified ITPACK algorithm. The main program stores 
the matrix in CSR format, thus minimizing storage and sacrificing a bit of 
speed. The required storage is 157V complex words plus integers for X and 
PC, respectively, and jV integers for the array containing the pointers to the 
rows' data. 

2.3    Linear equation solver 

For three dimensional applications, it is essential to have solvers whose mem- 
ory requirements are a small fraction of the storage demand of the coefficient 
matrix. This necessitates the use of iterative algorithms instead of direct 
solvers in order to preserve the sparsity pattern of the finite element ma- 
trix. Especially attractive are iterative methods that involve the coefficient 
matrices only in terms of matrix-vector products with A or A . The most 
powerful iterative algorithm of this type is the conjugate gradient algorithm 
for solving positive definite linear systems[5]. In our implementation, the 
system of linear equations is solved by a variation of the CG algorithm, the 
biconjugate gradient (BCG) method. This scheme is usually used for solv- 
ing unsymmetric systems; however, it performs equally well when applied 
to symmetric systems of linear equations. The conjugate gradient squared 
(CGS) algorithm [6] is usually faster than BCG but is more unstable since 
the residual polynomials are merely the squared BCG polynomials and hence 
exhibit even more erratic behaviour than the BCG residuals. The CGS al- 
gortihm also fails to exploit the symmetry of the matrix system. Moreover, 
there are cases where CGS diverges, while BCG still converges. 

In our implementation, the biconjugate gradient algorithm requires 1 
matrix-vector multiplication, 3 vector updates and 3 dot products per it- 
eration. The solution scheme requires only three additional vectors of length 
N. The vector updates and the dot products can be carried out extremely 
fast on a vector Cray machine like the Cray YMP, reaching speeds of about 
190 MFLOPS. However, the matrix-vector product, which involves indi- 
rect addressing and short vector lengths, runs at about 45.5 MFLOPS on 
1 processor of the 8-processor Cray YMP. As a rule of thumb, the bicon- 
jugate gradient algorithm with no preconditioning consumes 4.06 microsec- 
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onds/iteration/unknown on the Cray YMP. 

2.3.1 Diagonal preconditioner 

The simplest preconditioner that was used in our implementation was the 
diagonal preconditioner. It consists of a vector containing the reciprocal of 
the diagonal element for each row. The algorithm with the diagonal precon- 
ditioner converged in about 35% of the number of iterations required for the 
unpreconditioned case. This suggested that the finite elment matrix in our 
implementation was diagonally dominant since the reduction in the number 
of iterations was so spectacular. The diagonal preconditioner is also easily 
vectorizable and consumes 4.1 microseconds/iteration/unknown, a marginal 
slowdown over the unpreconditioned system. 

2.3.2 Modified ILU preconditioner 

The next step was to use a better preconditioner to improve the condition 
number of the system resulting in faster convergence. The traditional ILU 
preconditioner [7] was employed with zero fill-in; however, the algorithm took 
a greater number of iterations than the diagonal preconditioner to converge 
to a specified tolerance. Higher values of fill-in were not attempted since the 
preconditioner already occupied space equal to that of the coefficient matrix. 

A modified version of the ILU preconditioner was then tried by elimi- 
nating the inner loop of the traditional version. The algorithm is outlined 
in the Appendix and basically scales the off-diagonal elements in the lower 
triangular portion of the matrix by the column diagonal. Since the matrix 
is symmetric, it retains the LDLT form. This preconditioner is less expen- 
sive to generate and converges in about 1/3 the number of iterations taken 
by the diagonal preconditioner. It has been tested with reliable results for 
N < 50000. However, the time taken by the two preconditioning strategies 
is approximately the same since each iteration of the ILU preconditioned 
system is about three times more expensive. The forward and backward sub- 
stitutions carried out at each iteration runs at 26.5 MFLOPS on the Cray 
YMP and proves to be the bottleneck since they are inherently sequential 
processes. It is, however, expected that as matrix systems grow larger, the 
improvement in the condition number would reduce the iteration count by a 
factor greater than 3 and lend viability to this type of preconditioner. 

2.4    Parallelization 

The parallelization of the code was carried out almost entirely on the KSR'l 
parallel machine. The programming model of the machine is thread-based, 
but it is possible to bind a thread to a processor. Parallel constructs are 
expressed as compiler directives that are processed by the KSR Fortran com- 
piler but ignored by other Fortran compilers. Low-level parallelism is ex- 
pressed through threads while high-level parallelism is implemented through 
parallel regions, parallel sections and tile families. 
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The solver was the first in line to be parallelized since it consumed about 
90% of the CPU time. Since each vector operation is implemented as a loop, 
the program is parallelized by tiling these loops. In order to parallelize the 
application using P processors, the vectors are divided into P sections of N/P 
elements. Each processor is assigned a section of the vector based on the pro- 
cessor ID. Such partitioning of the data attempts to reduce communication 
while balancing the load on each processor. Significant inter-processor com- 
munication was required for the matrix-vector multiplication and the search 
vector update. Other vector operations needed little or no interprocessor 
communication since each processor used only those vector elements that 
they already owned. 

Figure 1 shows the speedup for three versions of the sparse solver with 
diagonal preconditioning as the number of processors is increased from 1 to 
28. The benefits of prefetching and poststoring are offset by the overhead of 
processing the prefetch and poststore instructions. The maximum speedup 
for 28 processors is about 19. The solver, therefore, runs about 3.25 times 
faster on the 28-processor KSR1 than on the single processor Cray YMP. 

3 Results 
The parallelized code was run for a 1.5AxlAxlA pec inlet and the backscatter 
echo-area for the VV-polarization compared with measured data. For the 
results shown in Figure 2, the outer boundary was enclosed in a sphere of 
radius 1.35A. The discretized geometry had 224476 unknowns and converged 
in an average of 5000 iterations on the KSR1. The agreement is quite good 
for most of the incident angles. 

4 Appendix 

In this appendix, we present the algorithm for modified ILU preconditioning. 
It is assumed that the data is stored in CSR format and that the column 
numbers for each row are sorted in increasing order. The sparse matrix is 
stored in the vector X and the column numbers in PC. SIG(i) contains 
the total number of non-zeros till the ith row. The locations of the diagonal 
entries for each row are stored in the vector D.L4.G.The preconditioner is 
stored in another complex vector, LU. 

for i=l  step 1 until n-1 do 
begin 

lbeg=diag(i) 
lend=sig(i) 
for j=lbeg+l step 1 until lend do 
begin 

jj=pc(j) 
ij=srch(jj ,i) 
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if (ij.ne.O) then 

begin 

lu(ij)=lu(ij)/lu(lbeg) 

end 

end 

end 
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TABLE I 
TIMING INFORMATION ON CRAY YMP TABULATED AGAINST THE 

NUMBER OF UNKNOWNS 

Type      Number of Time (sec) Iteration 

unknowns      I/O     Matrix gen.     Solver        count 

c 31563 3.992 7.255 46.571 359 
C-R-D 50488 6.267 11.8 123.015 595 
C 48123 6.135 11.265 80.697 408 
C 40483 4.911 9.555 74.360 448 
C 33239 4.138 7.571 51.587 379 
C 20033 2.515 4.673 34.211 414 
C 32767 4.087 8.307 60.679 452 
D 18319 2.29 4.24 89.976 1200 

D 11705 1.424 2.702 57.631 1200 

C = conductor; R = resistive sheet; D = dielectric 

30 0 S 10 15 20 
Processors 

Figure 1: Speedup curves for the linear equation solver on the KSR1 

CO 
•o 
e 

"•< 
b 

Observation Angle 8m, deg. 

Figure 2: Backscatter pattern of pec rectangular inlet (1A x 1A x 1 5A) for 
VV polarization. The blade dots indicate data obtained from the KSR1 for 
the FE-ABC code and the solid line represents measured data. 
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Abstract - The Measured Equation of Invariance (MEI) concept, proposed recently by K.K. Mei, 
for the numerical solution of time-harmonic electromagnetic wave scattering by perfectly con- 
ducting bodies in unbounded regions, is extended to handle two-dimensional penetrable scatter- 
ed Two different approaches for developing the MEI-based truncation conditions are compared. 
The first approach is based on Huygen's principle while the second relies on equivalence prin- 
ciple arguments. Several representative numerical examples of scattering by two-dimensional 

penetrable targets are presented. 

I.    Introduction 
The Measured Equation of Invariance (MEI) is a new concept proposed by Mei et al [1] 

to develop accurate local boundary conditions for the truncation of the numerical grid used for 
finite element/finite difference (FE/FD) modeling of time-harmonic electromagnetic scattering 
by perfectly conducting targets. An MEI is a numerically derived discrete, linear equation 
which relates the field at a given boundary node to the field values at neighboring nodes. Given 
such a condition for each boundary node, a computationally efficient and accurate FE/FD grid 
truncation can be achieved. Since the derivation of the MEI is not based on any assumptions 
about the far-field behavior of the scattered field, the truncation boundary may be placed very 
close to the target surface. This results in superior computational efficiency compared to finite 
element methods that utilize radiation-type boundary conditions for grid truncation. 

Initial applications of the MEI concentrated on the finite-difference solution of electromag- 
netic scattering by two- and three-dimensional conducting targets in free space, as well as to 
scattering by perfectly conducting discontinuities in waveguides [1]. More recently, the MEI con- 
cept was also used to develop local mesh truncation conditions for the finite element modeling 
of electromagnetic scattering by penetrable scatterers [2]. 

In this paper, we compare two possible approaches for developing MEI-based truncation 
conditions for use in FE/FD modeling of electromagnetic scattering by penetrable targets. The 
first approach, which is based on Huygen's principle, was introduced in [2]. The second approach 
is based on equivalence principle arguments, traditionally used for the development of integral 
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equation formulations for electromagnetic scattering by penetrable bodies. This second approach 
is computationally less demanding than the Huygen's principle approach. Several representative 
numerical examples of scattering by two-dimensional penetrable targets are provided to facilitate 
the comparison between the accuracy of the two approaches. 

II.     The Measured Equation of Invariance 
The problem of time-harmonic electromagnetic wave scattering from a two-dimensional 

target is used to illustrate the MEI concept and its application. Let us define a coordinate 
system in which the axis of the scatterer lies along the z-axis. If we assume an excitation which 
is invariant in z, Maxwell's equations decouple into two sets: transverse magnetic (TMZ ), with 
an axially-directed electric field and a magnetic field which is transverse to z; and transverse 
electric {TEZ ), with an axially-directed magnetic field and an electric field which is transverse 
to z. In either case, the scattered field <f>(r) must satisfy the scalar Helmholtz equation 

(V? + fc2)cHf) = 0 (1) 

where <j> = Ez in the TM, case, <p = Hz in the TEZ case, and V? = d2/dx2 + d2/dy2. The 
wavenumber k is related to the angular frequency u and the velocity v of light in the surrounding 
medium as k = u/v. The solution to (1) may be found using either the finite difference or the 
finite element method. In both cases, the numerical approximation of (1) takes the form 

N 

X><f>; = 0 (2) 
;=i 

where the number of nodes, N, and the values of the coefficients, a,'s, are functions of the order 
of the discretization and the grid. Let us define D to be the finite difference or finite element 
approximation to the operator V? + k2. Then any two-dimensional wave of angular frequency 
u belongs to the nullspace No of D (within the accuracy of the discretization scheme). 

Mei [1] considered the possibility of constructing a different operator Ds with a nullspace 
No,, a subspace of No, consisting of all two-dimensional waves which are obtained as scattered 
waves from a specific target under arbitrary excitation conditions. The operator Ds would be 
defined through the expression 

n+l 

E<w = ° (3) 
which describes a linear relationship between the field value at the node identified as i = 1 
and the field values of its n nearby node neighbors. For each node, a separate equation would 
exist. These equations would be different than the FD/FE equations, but would ideally give 
the same solutions to the problem of scattering by the specific target under arbitrary excitation 
conditions. Each discrete equation in (3) is referred to as an MEI and can be used to relate 
the field at a given boundary node to the field values at neighboring nodes to produce a grid 
truncation condition. Of course, these conditions are not truly excitation invariant, but rather 
are limited by the finite accuracy of the approximation in (3) which is dependent on the number 
n of nodes clustered together and the proximity of these nodes to one another. 
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Our general problem consists of a penetrable scatterer in free space with its axis parallel 
to the 2-axis and its boundary in the st/-plane described by the contour Cs- We denote the 
unbounded region exterior to the scatterer as Q0 and the interior region as ft;. The interior 
region is characterized by a magnetic permeability p(x,y) and a dielectric permittivity ((x.y), 
which may be complex if losses are present. For the TMZ case, we have E = zEz(x,y) and 
H = iHx(x,y) + yHy(x,y). Assuming time-harmonic fields with eJurt dependence, we can 
evaluate the scattered electric field at a point f = xx + yy in ü0 by applying Huygen's principle. 

where k0 = Uy/Ji^, G(r,r') = (-j/4)H^\k0\r- r'|) is the free space Green's function, and 
the normal derivative is taken in the direction pointing out of ü0. For the TEZ case, a similar 
expression can be written for Hlc(r) in ti0. We see that independent pairs of Ez and dEz/dn 
on Cs are required. As discussed in [2], from the uniqueness theorem we know that the values 
of Ez and dEz/dn for a particular pair cannot be chosen independently of one another. 

To obtain the MEI for a local grid truncation condition involving a cluster of n+1 nodes, we 
require n independent functions, /;,i = 1,. ..,n. We let dEz/dn = U on Cs and solve the ith 
interior boundary value problem from which we obtain Ez on Cs- By solving n such boundary 
value problems, we get the n pairs of Ez and dEz/dn on Cs which may be used in (4) to evaluate 
the scattered field at the n + 1 nodes. By forcing these field values to satisfy (3), we produce 
a linear system of n equations which we solve for the unknown coefficients ä,-,i = 1,2,...,n. 
Repeated application of the above procedure to clusters of nodes along the outer boundary of 
the grid results in a set of discrete equations which are satisfied by fields scattered by the specific 
target and thus can be used as localized grid truncation conditions. 

In the second approach for developing the MEIs, instead of evaluating the scattered field 
of our two-dimensional problem using Huygen's principle, we use an equivalent source integral 
statement 

Esc{f)= I  Je(f')G(F,F')dl' (5) 
Jc, 

where G(f,r') is again the free space Green's function and Jc represents an equivalent electric 
current. We recall that in the equivalent source integral formulation of scattering problems Je is 
postulated to be an electric current distribution on C„ which when radiating in a homogeneous 
medium having constitutive parameters identical to those of the unbounded exterior region 
(ßo, «o), produces the correct scattered field in the exterior region. This is the approach presented 
by Harrington in the electric current formulation used for the development of boundary integral 
equations [3]. In our development, we are not interested in actually formulating an integral 
equation and solving for the values of the equivalent currents. We simply employ this form in 
order to generate the scattered fields to be used in (3). Once again, we require n independent 
functions, f{,i = l,...,n. We let Jc = /,■ and solve for Efc,i = l,...,n. These field values 
are forced to satisfy (3) in order to develop the linear system of n equations from which we can 
determine the coeffidents of the MEI. For the TEZ case, an expression similar to (5) can be 
written for Hz

c(r ) in terms of an equivalent magnetic current Me. In terms of computational 
savings, the equivalent source formulation is obviously preferable because we do not have to 
solve the interior problem repeatedly for the independent pairs of {Ez, ^) as in the Huygen's 
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Figure 1: (a) Plane wave incident on square dielectric cylinder; (b) Boundary node and 
five of its nearby node neighbors. 

formulation. On the other hand, it is clear that, except for the shape, the particular material 
composition of the scatterer is not taken into account in the generation of the scattered fields 

via (5). 

III.    Numerical Examples 
The first example to be considered is that of a square dielectric cylinder (Fig. 1) having 

characteristic dimension a = 1A where A is the wavelength in the dielectric. The plane wave is 
incident on the cylinder at an angle of 0;. The TEZ polarization case is shown in Fig. la. For 
our finite element problem we employ a uniform cartesian grid with cell size Ah = 0.1A and 
eight-node quadratic quadrilateral elements, a situation which translates to a density of 20 nodes 
per wavelength. We examine the field on the boundary of the cylinder C,. The field is plotted 
as a function of s, defined to be the distance along the perimeter of the cylinder normalized such 
that the total perimeter corresponds to a distance of s = 1. 

Since an analytic solution to this problem is unavailable, we compare our results to those 
obtained using the bymoment method [4]. The bymoment method results presented herein 
are unpublished and were obtained by personal communication [5]. We consider a dielectric 
cylinder with a relative permittivity of er = 4 excited by a TEZ polarized plane wave incident 
at 0; = 0°. Each mesh truncation condition employed is based on an MEI relating a specific 
boundary node B to five of its nearby node neighbors as shown in Fig. lb. Therefore, at least 
five independent functions fiti = l,..-,5, are required. The mesh is truncated four cells from 
the cylinder surface, which translates to a distance of 0.2Ao- 

In Fig. 2, the magnitude and phase of the total field on the surface of the cylinder are plotted 
from the forward-scattered direction (0 = 0°, or s = 0) to the back-scattered direction (0 = 180°, 
or s = 0.5). Excellent agreement is observed. As a measure of this agreement, we consider the 
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Figure 2: Total field along perimeter of square dielectric cylinder (er =4) excited by TE 

polarized plane wave incident at #; = 0°. 

relative RMS error denned as 

■LT77 

_ ffc.\FR-F\*dsY/2 

■■-\    fCi\FR\*ds    j (6) 

where FR is the reference field value and F is the calculated field value. Because of the previous 
success of the bymoment method, we consider it to be the established method. We use the 
results obtained with the bymoment method as our reference with which to compare the field 
values calculated using the MEI-based truncation scheme. Comparing the results from the 
Huygen's principle (HP) approach to the results using the bymoment method, we find that 
EHP = 1.4%. For the equivalent source (EQ) formulation, the agreement is also extremely 
good with Egg, = 4.4%. 

Next we consider a cylinder of the same electrical size 1A x 1A , but with a relative permit- 
tivity of er = 9. In this case, the wavelength in the dielectric becomes A = A0/3, where A0 is the 
free-space wavelength. The cell size is again chosen as Aft = 0.1A to ensure 20 nodes per wave- 
length. For the HP approach we truncate the mesh four ceEs beyond the scatterer's boundary as 
before. However, for the EQ approach we find that truncating four cells away does not produce 
acceptable results. This seems to indicate that the MEI method as originally proposed using 
Huygen's principle permits mesh truncation very close to the scatterer, a few elements from the 
surface, because the composition of the scatterer is taken into account. In contrast, the material 
properties of the scattering object do not enter into the EQ formulation. In order to improve 
the accuracy of the EQ formulation the distance between the scatterer and the mesh boundary 
was adjusted to be 0.2A0, the same with the one used for the er = 4 cylinder. In this example 
the wavelength A, and thus the cell size, have decreased by a factor of 2/3 as the permittivity 
increased to er = 9. Therefore, in order to maintain the same distance to the mesh boundary, 
we increase the number of cells in this direction as the inverse of this factor (4 cells x § = 6 cells). 
Obviously, it is assumed here that it is desirable to maintain the uniformity of the finite element 
grid. Thus, the choice of 0.1A for the cell size in accordance with the smallest wavelength in 
the computational domain is maintained over the entire grid. Results for a TEZ incident plane 
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Figure 3: Total field along perimeter of square dielectric cylinder (er = 9) excited by TE 

polarized plane wave incident at #,- = 0°. 

wave scattered by the square dielectric cylinder of permittivity er = 9 are shown in Fig. 3. The 
agreement is extremely good with E?Z = 2.7% and E?£, = 2.0%. 

As a second test problem geometry, we consider a substantially larger scattering object, a 
5A x 1A rectangular dielectric cylinder having a perimeter of 12A. The problem is identical to 
that shown in Fig. la except that the cross section of the cylinder is increased in the y-dimension 
to 5A. For the case of eT = 9, the cylinder has a perimeter of 4A0. A cartesian FE mesh with 
uniform cell size Ah is utilized. As before, the mesh is truncated four cells away from the 
scatterer for the HP approach and six cells away for the EQ approach. Results are shown in 
Fig. 4. In the TEZ case, we find E%£s = 29.1% and E?£, = 9.7%. If we increase the distance 
between the mesh boundary and the scatterer to six cells for the HP approach, we observe a 
marked improvement with E?J?S = 11.2% (labeled "HP 6h" in Fig. 4). We recall that for the 
1A x 1A case with er = 9 a four cell separation used with the HP approach provided comparable 
results to the EQ approach with a six cell separation. The fact that this is not true for the 
5A x 1A body would suggest that the minimum separation distance depends to some extent on 
the size of the scattering object. Even for the relatively large 5A x 1A cylinder though, the 
distance to the mesh boundary is only one fifth of the free space wavelength. 

In order to further test the observation that the minimum separation distance between the 
scattering object and the grid truncation boundary may depend on the size of the object, we 
consider the problem of plane wave scattering by a perfectly conducting circular cylinder. The 
plane wave is normally incident on the cylinder at an angle of 180°. Let us assume that the 
MEI truncation conditions, each of which clusters together six nodes (n = 5) near the boundary 
(Fig. lb), will be used with a uniform polar grid in which 20 nodes per wavelength has been 
ensured and the aspect ratio of the outer elements of the mesh is approximately one. We examine 
the residual of the MEI (the left side of (3)), which ideally should be zero, using the known series 
solution for the scattered fields <f>i at the six nodes. Then we normalize by the scattered field at 
the center boundary node (node B in Fig. lb). We fix the separation distance at four elements 
and let the radius of the cylinder increase. Along the boundary at an observation angle of 85° 
in the TMZ case, we find that this normalized residual increases from 0.016 at a radius of 5A to 
0.027 at 20A. Thus, as the scattering object size increases, we observe that the error introduced 
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by the MEI-based grid truncation increases if the distance to the truncation boundary remains 
constant. Acknowledging the fact that this study is favorably biased, since the exact solution 
is used, we conclude that, as observed in the previous example, it is necessary to increase the 
separation distance for a larger scatterer. 

As a final example we consider a concave scatterer, namely, the problem investigated by 
Eichmond [6] of a circular dielectric half shell with a dielectric constant of er = 4, an inner 
radius a = 0.25Ao, and an outer radius b = 0.3A0. Eight-node elements are used and the cell 
size is chosen to ensure approximately 20 nodes per wavelength. A conforming mesh which is 
truncated four cells from the cylinder surface is used. As before, each mesh truncation condition 
is based on an MEI involving a cluster of six nodes (Fig. lb). 

As shown in Fig. 5, results for the TEZ case obtained using MEI-based grid truncation (with 
the HP approach) compare favorably with those obtained by Lee using the bymoment method 
[7]. However, the MEI-based and bymoment results do not agree well with Richmond's results in 
the back-scattered direction {4> = 180°). This same disagreement in the back-scattered direction 
for the TEZ case was also reported by Yuan et al. [8]. 

IV.    Summary 
We have demonstrated that the development of the MEI for penetrable scatterers is as 

straightforward as for the case of perfectly conducting ones, and can be used as an accurate local- 
ized truncation condition in conjunction with finite-element/nnite-difference grids that extend 
only a few cells away from the surface of the scatterer. An alternate approach for construct- 
ing the MEI based on equivalence principle concepts, which is computationally less demanding 
than the direct application of Huygen's principle, was introduced. Results from several numer- 
ical examples showed very favorable agreement between MEI-based grid truncation usmg both 
approaches and the use of other hybrid finite element and/or integral equation techniques. Pre- 
liminary results also suggest that the minimum separation distance between the grid boundary 
and the surface of the scattering object depends on the size of the scatterer. 
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Figure 5:  Echo width for dielectric circular half shell obtained with HP approach, TE 
case (solid line = MEI, triangles = Richmond, squares = bymoment). 
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I. INTRODUCTION 

Although a number of papers on the scattering by cylindrical structures of normally incident plane waves have 
appeared in the literature, relatively few have been published on the scattering by such structures of obliquely 
incident fields. Rqjas [1] presented a coupled integral equation formulation in which the unknowns are all six field 
components. Michielssen, Peterson, and Mittra [2] presented a coupled integral equation formulation in which the 
axial components of the electric and magnetic fields are used as unknowns. Cangellaris and Lee [3] also presented a 
formulation based on the use of the axial components of the electric and magnetic fields as unknowns, but used a 
finite element technique along with the bymoment method to solve the resulting equations. 

Like [3], this paper presents a finite element solution based on an Ez-Hz formulation; but in the technique 
presented here we employ an impedance boundary condition (TBC) to truncate the mesh at the surface of the lossy 
scatterer and an absorbing boundary condition (ABC) to model the fields at the outer boundary of the mesh. The 
concept of the impedance boundary condition has been used extensively in numerical techniques based on integral 
equation formulations. In those cases where the IBC closely approximates the exact boundary condition, its use can 
result in a dramatic reduction in the number of unknowns needed in the numerical solution procedure. In this paper 
we discuss the use of the IBC concept in a partial differential equation formulation. At the outer boundary of the 
mesh, rather than using the bymoment method or some hybrid boundary condition, we employ an absorbing 
boundary condition based on an asymptotic expansion for the scattered fields [4]. 

This technique is particularly attractive for problems in which both inhomogeneous and large, lossy objects are 
in the problem domain; the presence of the inhomogeneous objects makes the use of the finite element method 
advantageous; the use of the IBC at the surface of the large lossy objects obviates the extension of the finite element 
mesh into the interior of these objects and thus dramatically reduces the number of unknowns; and the use of the 
ABC allows mesh truncation without an increase in the bandwidth of the finite element matrix. 

II. FORMULATION 

We assume that all field quantities vary in time as expQat). The incident field is a plane wave; the wave vector 
of this plane wave makes an angle 8mc with the positive z-axis and <(>inc with the positive x-axis. Thus, the 
incident field, and likewise the scattered field, vary in the z-direction as exp(-jßz) where ß=k0cos(8jIlc). In order to 
derive the equations that will be solved using the finite element method, we first consider the behavior of Ez and Hz 

inside a single element, A. Since the material properties, £ and u, are assumed to be constant within each individual 
element, the equations governing Ez and Hz inside A can be written as 

^k* > (1) 

and 
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VII-^Vä +|iHx=0 

^        ) (2) 

where 

ox       dy 

If we multiply (1) and (2) by a testing function T and use the fact that f VfVt g = Vf(f Vt g) -Vt f-Vt g, we 
obtain the weak forms of the equations governing Ez and Hz inside A, 

?t1 -TTV'E-   " 4vtT-Vft+flE, = 0 

and 

V,f -TTVft ] - ivj-Vft + HTHZ = 0. 

If these equations are integrated over A and the divergence theorem is used, we obtain 

(3) 

(4) 

(5) 

and 

3H, 
f f iLvtT-V,HzdA- f f nTHzdA= J- f  ^rT— <U 
JJ4k? JJA JwJaA k?     da '3A  l£ 

(6) 

where dA is the area element on A, 3A is the boundary of A, and the partial derivative with respect to n denotes the 
outward normal derivative along 3A. If we let x denote the tangential direction around 3A defined by 

and use Maxwell's equations to express the transverse components of E and H in terms of Ez and Hz, we find that 

s s (7) 

and 
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icoe ^z      iß „ T-H=-V^-fVtHz'x- s s (8) 

When (7) and (8) are substituted into (5) and (6) the resulting equations are 

ff-7VtT-V&aA-[f£TEzdA+-i-[ £TV,Hz-T dl = - i-[ Tx-Hdl 
JJAkf JJA J»J8Ak? JmJaA s -s (y) 

and 

f [ "TV,T-V,H2dA- f f HTH2 dA- J- [ 4TVtEJ-T dl = -i- f Tx-E dl. 

If we use Stokes's theorem to replace the boundary integrals on the left hand side of each equation with area 
integrals, we obtain 

f f-lv.T-V&dA- [ fETEzdA+ (* f-LvtTxVtH2zdA = -i-f Tx-Hdl 
JJAk~ JJA JJAcok; J^A 

and 

f f -TV«T"Vft dA - f f nTH, dA - f f -!-VtTx V,EZ- z dA = ^ f Tx-Edl. 

These equations describe the behavior of Ez and Hz inside a single element When we put together all the 

elements to form the entire meshed region, I", we note that the area integrals on the left hand sides of these equations 
simply add together to form the corresponding area integrals over I\ Because the tangential components of E and H 
are continuous across any source-free interface, the boundary integrals on the right hand sides of these equations will 
cancel along any interior edges; all that will remain are integrals along the inner boundary, 31"^, and the outer 
boundary, 3rout. Thus, the equations governing Ez and Hz inside T are identical to (11) and (12) except that A is 

replaced by I". If we make this replacement, substitute (7) and (8) into the boundary integrals on the right hand side 
of each equation, and multiply through by oo, we obtain 

ff    E, ffEj (•(• COste;,,,,) - f     COs(9inc) 
IJ —7VtT-v&«»A- I! -TEzdA+I I  —V.TxVft-zdA- I     —TVft-xdl 

r     cos(9illc) -        f      Ej     3E, f       Er     3E, 

-J —f-TVflz**-] -hi-zr**}  JTTifdl 
Jar      k Jar. n k     ™        J3r  n k     on 

and 
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coste^ nTlJi.                       re                      er costÄ-J                  -          e    cost.«:. J 
,—V.T-VA dA - J J^TH, dA - J Jr—^— V,T x V&- z dA + J^ —TV,E2-1 dl 

loMr   SHs 1WV_»t (•       COSWinc; . e     TloM,    ÖJtL, f       TloMx    <»«z 
-         __TVtE2-xdl=       —T— dl+        —T— 
Jar„,    k? J3r,. kf     ™        Jar„, k?     ™ 

(14) 

Note that Stokes's theorem cannot be used to rewrite the boundary integrals on the left hand side of each of these 

equations. The reason for this is that the integrands are not continuous over all of I". But this is no cause for 
concern; since these boundary integrals involve only the tangential derivatives of Ez and Hz along the boundaries of 

the mesh, they pose no difficulty in the finite element solution procedure. However, the boundary integrals on the 
right hand side of each equation are a different matter, their evaluation requires knowledge of the normal derivatives of 
the unknowns along the boundaries. Along the inner boundary, we solve this difficulty by turning to the impedance 
boundary conditions, 

E2=-HTMHT 

and 

(15) 

nrE (16) 

Algebraic manipulation of the equations that are obtained through substitution of (15) and (16) into (7) and (8) 
yields 

3n : 

3Hz     K 
-k0cos(9inc)—-■—E2 

ÖX TlTM      ) (17) 

and 

3HZ 1        [ 3E2 •> 
-T- =    kocostt^)- ik^TA]. 
dn       CDU^iijV. dx ' 

(18) 

Thus, through use of the impedance boundary conditions (15) and (16) we are able to rewrite the normal 
derivative terms that appear in the inner boundary integrals in (13) and (14) in terms of the unknowns and their 
tangential derivatives. Substitution of (17) and (18) into (13) and (14) yields 

n-   6. ff e. ff cos(ftn<J - C     cos(8inc) 
_VtT.VtEzdA-JJ-TEzdA + JJr^-VtTXVtH,2dA-^-^-TVtH; 

+ f    -i-TEzdl=f     A 
Jar,, Mm JKMT\0K 

,-xdl 

3E, 
T dl 

.2    3n 
(19) 

and 
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f f 'HoMr                               f f                              f f COsWinc*                        -             T       «»©ine) 
J | —VtTVtHz dA - J J r^TH, dA - J J  — VtT x V,EZ- z dA + J       — TV,EZ1 dl 

out        *»-s 

f      JThE f       1A     «fj 
+       THzdl=       __T—dl. 

Jar.  k0 Jar   v2     dn 
»   ° «" ** (20) 

The only remaining difficulty is the presence of the normal derivative terms in the outer boundary integrals. If 
we let kso be the value of ks at 3rout, which lies in the free space region outside the scatterer, and if 3rout is 
circular and sufficiently far from the scatterer, then, along this boundary the normal derivative of u, where u 
represents the scattered part of either Ez or Hz, is, to a good approximation: 

du       / •>      »,,3» — = a(p)u + ß(p)—. 
dr. 7J1 

(21) 

where 

1 J 1 
a(p) = -Jkso-T- 

2P     8kS0P 
2       o,.2   3 

and 

ß(p) = 
2ksop2     2l£p3' 

This is the mathematical expression of the absorbing boundary condition. The derivation is explained in detail 
in [5]. Note that the normal derivative of u has been written solely in terms of u itself and a tangential derivative of 
u. Thus, the use of this boundary condition does not increase the bandwidth of the finite element matrix. As was 
stated above, u represents the axial component of the scattered electric or magnetic field. Thus, the absorbing 
boundary condition expressed by (21) can be used in (19) and (20) to obtain the final equations that are solved using 
the finite element method, 

(•ft ff t ff cosCGi,..) „ c     cos(6illc) 
 -VtTVftdA-      —TEzdA+        — VtTxVtHz-zdA-         —TVtHztdl 

JJrn0k2 JJr1l0 
JJr    k2 «kr,»,    k2 

J    -jj—TEzdI-f    -!iIJa(P)Ez + ß(p)-^dl = f    -5 
k2 

dEf   ( d^T) 
T\-^--   a(p)Er+ß(p> 

a»     {   r   z    rdx2) 
dl 

(22) 

and 
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J J — V'T"VtH* ^ - J J ^oUr™, dA - J I VtT x V,EZ- z dA + J TV,EZ- x dl 
ks r «T     KJ ör^j     kj 

"k, ko -fen,, k?   I dx2 J    hrM k?   I   3"      V dx2 
dl. 

(23) 

In these equations, those field components having no superscript refer to the total field while those with the 
superscript "inc" refer to the incident field. 

m. NUMERICAL RESULTS 

As an example of the application of this technique, we consider the problem shown in Fig. 1. Along the 
surface of the circular cylinder of radius a=0.32Xo we enforce the impedance boundary conditions (15) and (16) where 
T|xM=180-j40£i and TITE=200-J20Q. The finite element mesh is truncated at a radius of 0.5^Q, i.e., 0.18Xo from 
the surface of the scatterer. The obliquely incident field is TM to z. The z component of the incident electric field 
is: 

E?c(x,y,z) = sin(e. 1e"Jko<sin(ei»)cos(,i,ii>+sfa(ea>™('Uy+<***%J*> 

where ei£,c=135.0o and <j>inc=180.0°. Figure 2 presents a comparison of the numerically determined values of the 
magnitudes of Ez and T|0HZ with the analytical values for these quantities; fig. 3 shows the comparison of the 
phases. In both figures, the circles and rectangles represent the numerically determined values of Ez and T|0HZ, 
respectively, while the diamonds and cross marks show the analytical values of Ej and T|0HZ, respectively. Clearly, 
there is excellent agreement between the numerically determined and analytical values. 

IV. CONCLUSIONS 

In this paper, we have presented a finite element method that employs impedance boundary conditions and an 
absorbing boundary condition to determine the electromagnetic scattering by lossy cylindrical structures that are 
illuminated by an obliquely incident plane wave. These structures may be located in the presence of materials that 
are inhomogeneous in both E and u.. We have presented the Ez-H2 formulation that has been used in this procedure 
and have shown how the impedance boundary conditions and absorbing boundary condition are incorporated into the 
analysis. The method has been used to solve the problem of a circular impedance cylinder illuminated by an 
obliquely incident plane wave. The numerical results have been shown to be quite accurate. 

REFERENCES 

[1] R. G. Rojas, "Scattering by an inhomogeneous dielectric/ferrite cylinder of arbitrary cross-section shape-Oblique 
incidence case," IEEE Trans. Antennas Propagat., vol. 36, pp. 238-246, Feb. 1988. 

[2] E. Michielssen, A. F. Peterson and R. Mittra, "Oblique scattering from inhomogeneous cylinders using a 
coupled integral equation formulation with triangular cells," IEEE Trans. Antennas Propagat., vol. 39, pp. 485- 
490, April 1991. 

[3]  A. C. Cangellaris and R. Lee, "Finite element analysis of electromagnetic scattering from inhomogeneous 
cylinders at oblique incidence," IEEE Trans. Antennas Propagat., vol. 39, pp. 645-650, May 1991. 

[4] J. J. Bowman, T. B. A. Senior and L. E. Uslenghi, ed., Electromagnetic and Acoustic Scattering by Simple 
Shapes, North-Holland, Amsterdam, 1969. 

876 



[5] R. K. Gordon and J.-F. Lee, "A finite element method that employs an absorbing boundary condition for 
determining the electromagnetic scattering by inhomogeneous cylindrical structures that are illuminated by an 
obliquely incident field," to appear in IEEE Trans. Magnetics. 

Finite Element Mesh (Triangular elements are used.) 

Mesh truncation at 

surface of cylinder 

through use of IBCs 

at a=0.32 X 

Obliquely Incident 

Plane Wave 

Mesh truncation at outer boundary 

through use of ABC at a radius of 0.5 X 

Fig. 1. Diagram of problem 

0 45 

-E (BQ 

(IBC) z 

Ü.7 1 i— Normalized H 
z 

(Analytical) 

|                    j 

I         j 
^^      I 

N[^         \    : 

!   ^=^^\ 

0.1 - ; j 1  i : 

135 180 

Fig. 2. 

90 

Phi (degrees) 

Comparison of numerically determined values of magnitudes with analytical values 

877 



-e— E (IBC) 
z 

-B—Normalized H (IBC) 
z 

~*—E (Analytical) 

-X—Normalized H (Analytical) 

45 90 

Rii (degrees) 

Fig. 3. Comparison of numerically determined values of phases with analytical values 

878 



NUMERICAL ANALYSIS OF MICROWAVE CAVITIES WITH 
ANISOTROPIC MATERIALS 

Shirley Min Jin-Fa Lee Richard Gordon 
Medtronic Worcester Poly. Inst.       U. of Mississippi 

Minneapolis, MN55432    Worcester, MA01609    University, MS38677 

Abstract 
The application of edge-elements for modeling three-dimensional cavities with 

anisotropic materials is presented in this paper. To make the computation efficient, 
various numerical techniques have been employed in the formulation. For example, 
analytical expressions for the element matrices to assemble the final finite element ma- 
trices, the minimum degree of reordering scheme to result in best unknown numbering 
scheme, the quasi-minimal residual (QMR) method for solving matrix equations, and 
the Lanczos algorithm for the solution of large-sparse generalized eigenmatrix equa- 
tion. 

1 INTRODUCTION 

The analysis of three-dimensional inhomogeneously-filled cavities using edge-elements has 
been presented by Lee and Mittra [1]. The current contribution is the extension of reference 
[1] to include the anisotropic effects of the material properties which are often presented in 
real-life cavity structures. 

The paper is organized as follows: Section 2 describes the variational formulation of 
three-dimensional cavities with anisotropic materials. The solution procedure of the vari- 
ational formulation in a finite-dimensional space, or the finite element implementation, is 
presented in Sec. 3. Finally, numerical results of a finline cavity, and a microstrip cavity 
with anisotropic substrate are shown in Sec. 4. 

2 VARIATIONAL FORMULATION 

The basic equations that govern EM fields in source-free, time-harmonic regions are the 
Maxwell equations 

Vxi   =   -jufiH (1) 

Vx#   =   ju[e]E (2) 

where [e] and fi are the permittivity and permeability, respectively. In this paper, the 
permeability \i is assumed to a scalar, and the permittivity [e] a diagonal tensor. The 
extension to most general case is straightforward and is currently under development. We 
note that, with u> ^ 0, Eqs. (1) and (2) imply that 

V • /J? = 0 (3) 

V • [c]E = 0 (4) 
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The substitution of E from Eq. (2) into (1) and of H from (1) into (2) yields the vector 
wave equations 

V x —V x E = k2[eT]E (5) 

V x [^-»V x H = k2firH (6) 

where k2 = u2//oeo) £o, ßo are the permittivity and permeability of air, respectively. In view 
of the similarity between Eqs. (5) and (6), the analysis in this paper will be presented in 
terms of the electric field E. 

It is well known that the field solution in a three-dimensional cavity can be formulated in 
a variational form [2]. If the cavity contains only lossless materials, the variational functional 
in terms of E can be written as 

F(E) = [- V x £ f -k2E • [er]Edn (7) 

From the functional (7), we note that both V x E and E need to be square integrable. 
Consequently, the solution is sought from the function space £2^ri(n), which is defined by 

Llrl(U) = {EeL2(Ü):VxEeL2(Ü)} (8) 

where L2(Q) is the linear space of square-integrable vector fields defined on the problem 
domain fl. 

3    FINITE-DIMENSIONAL DISCRETIZATION 
The variational formulation in the previous section seeks the solution in the function space 
£^,.((0) which is infinite-dimensional. In order to solve a three-dimensional cavity problem 
on a digital computer, we need to convert the original continuum problem into a discretized 
version. This can be accomplished by using the finite element method. The basic idea 
of FEM can be described as follows [3]. First, we formulate the corresponding variational 
functional and the admissible function space, for example, L^^Cl) as in previous section. 
Then restrict the class to a smaller, finite dimensional function space W(ti), which can be 
described by a finite number of parameters (the degrees of freedom). If this constraint is 
imposed properly, stationarity will occur at a point which is in the neighborhood of the 
true solution. Finally, imposition of the stationarity condition leads to a finite number of 
equations with respect to the degrees of freedom. 

The approximate solution Eapp of (7) in the function space W(fl), where iy(fl) C 
i^r/(n), is the stationary point of the functional (7) in W(Q) with respect to the vari- 
ations of E. Whatever the choice of the function space VF(fi), the functional F{E) in VF(fi) 
may be expressed in a matrix form as 

F(E)=1-et[S]e-^-et[T}e (9) 
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Here, e is the coefficient vector and the square matrices [S] and [T] are given by 

PL»   =   lj-(Vxam).(Vxan)dn (10) 

PL»   =   jncTm,[er}andÜ (11) 

where ajs are the vector functions that are used to span the vector function space W(ti). 
In the present approach, the problem domain fi is broken into tetrahedra within which 

the material properties [tT] and fir are constant, although they may be discontinuous across 
the element boundaries. In each tetrahedron, the electric field is expressed as a linear 
combination of edge-elements, i.e., we write 

£ = Ew (12) 
«i 

where wij = A.VAj — AjVA;, A; is the barycentric function of node i, is the Whitney 1-form 
associated with edge{i,j} [7]. 

3.1    Element Matrices 

In the finite element method, the global matrices [S] and [T] of Eq. (9) are the assembly of 
the element matrices, [S]e and [T]e, i.e. 

[s] = Eisi (13) 
e 

[T] = Em. (") 
e 

The constructions of the element matrices, [S]e and [T]e, depend on the choice of the finite 
dimensional function space W(H). In the present approach, W(Q) is spanned by edge- 
elements on a tetrahedral mesh. The analytic expression of the element [S]e using edge- 
elements has been shown in reference [1] and, therefore, we will not repeat the derivation 
here. However, since the relative permittivity [er] is now a tensor, the element matrix [T]e 

has to be modified. 
The geometrical identities that are useful in the derivation, given below are: 

VA,-   =   A (15) 

-. 3V •   - 
AiXAj   =    -ys(-ir-*W 

s   =   sgn (tit2 x i*i,3 • h,o) (16) 

for i < j. Here, Ai is the area normal of the triangular face {j, k,l} pointing into the 
tetrahedron, V is the volume of the tetrahedron, tkj is a vector from node k to node /, 
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and {k,l} = {0,1,2,3} - {i,j}, with k < I. With these identities, the [T]e matrix is then 
modified as 

180V 

PWo. 

2(/oo- 
Ioi + hi) 

loo — loi 
—Io2 + 2/l2 

Wo,l 

W0,2 

W0,3 

t"2,3 

[fr] [ Wo,l     Ü^0,2  ^0,3 «>1,2  «^1,3 W2,3  j ^0 

2(/oo- 
I02 + ^22) 

7oo — 7oi   ^00 — 7o2   2(7oo— 

-io3 + 2/l3  ~7o3 + 2^23  7Q3 + ^33) 

7oi —hi 
—27o2 +112 

I01 — In 
—27o3 + 7i3 

2/oi — I12 
—I02 +122 

I01 —113        2(7JI— 
—7o2 + 723   7i2 + 722) 

7oi — 7i2  27oi — 7x3 
—7o3 + 723  — 7o3 + 733 

7n — 7i2   2(7n— 
-7i3 + 2723 7j3 + 733) 

7o2 - 7i2        7o2 — 722      2702 — 723      712 - 722      27J2 — 723     2(722- 
-703 + 7i3    -2703 + 723   -7o3 + 733   -2713 + 723   -713 + 733   723 + 733) 

(17) 

where Uj = Ai • A'j, and A'x = [er]A,-. 

3.2    Transformed Generalized Eigenmatrix Equation 

The stationary points of the functional F(E) in (9) correspond to the solutions of the 
following generalized eigenmatrix equation 

[S]e = k2[T]e (18) 

Note that the global matrices [S] and [T] are semi-definite and positive-definite real-symmetric 
matrices, respectively. Despite their sparse nature, the dimension of the generalized eigen- 
matrix equation is large and, hence, only iterative methods can be used to solve (20). The 
Lanczos algorithm [4] has been used, with much success, to solve symmetric generalized 
eigenmatrix equations. However, since in Eq. (20) the more dominant mode corresponds to 
smaller eigenvalue k2, the direct application of the Lanczos algorithm may converge rather 

882 



slowly. This problem can be circumvented, however, and a computationally efficient algo- 
rithm can be derived by rewriting (20). To this end, we first find an estimate k%, the lower 
bound of the physical modes, which can be approximated from the largest dimension and 
the material properties inside the cavity. We then rewrite (20) as 

[A]x = \[B]x (19) 

where [A] = [T],A = p^J and [B] = [S] + k][T]. The advantage of using (21) is that, 
except for the null vectors of the curl operator, the more dominant modes correspond to the 
larger eigenvalues of this equation. Due to the nature of the Krylov subspace iteration, the 
larger eigenpairs almost always converge faster. Therefore, by rearranging the generalized 
eigenmatrix equation into Eq. (21), the resonant modes of the cavity can be computed more 
or less in the order of dominance. 

The convergence of the Lanczos algorithm for the dominant mode, with k2 ^ 0, can 
be improved drastically by selecting an initial vector which is orthogonal to the null (k = 
0) eigenpairs [5]. To result in a practical computer simulation tool for modeling three- 
dimensional cavities with anisotropic materials, various numerical techniques have been 
incorporated in the computer codes thus developed. The flowchart of the current imple- 
mentation is shown in Fig. 1. In the application of the Lanczos algorithm for the solution 

Symbolically number 
the unknown using 
jninimum degree of 
reordering 

r     > 

'                             • 

—» eigenmatrix equation 

[A]\ = Mn]x 
- 

Asv/mhli- 

CS3,[T} '                           < 

- 
Figure 1: Computer implementation of the proposed method. 

of a generalized eigenmatrix equation 19, each iteration step involves the matrix equation 
of the form 

v = [B]-^ (20) 

where v is the updated Krylov vector generated through iteration upon y.   This matrix 
equation can be efficiently solved by using the quasi-minimal residual algorithm [6]. 

4    NUMERICAL RESULTS 

4.1    Finline Cavity 

Shown in Fig.  2 is a finline cavity whose dimensions are: a = 20 mm; b = 15 mm; c = 
10 mm; s = 1 mm; and d = 4 mm. The relative permittivity of the dielectric material is 
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er = 2.22 Figure 3(a) summarizes a few descriptions of the finite element mesh that is used 

Figure 2: A finline cavity. 

for the simulation. The computed resonance frequency of the dominant mode is compared 
with spectral-domain analysis (S.D.A) [7], variable mesh TLM [7], transmission-line method 
(TLM) [8], and time-domain finite-difference method (TDFD) [8] in Fig. 3(b). 

element size 2mm 

#of edges 7661 

#of tetrahedra 5889 

#ofnodes 1273 

# of unknowns 6053 

Saguet Choi etc. 

Dominant 

Frequency 

(GHz) 

S.D.A. 
V.M. 

TLM TDFD TLM FEM 

10.77 10.14 10.74 10.74 10.37 

(a) (b) 

Figure 3:   (a) Finite element mesh information; and, (b) Numerical result compares to 
various methods. 

4.2    Microstrip Cavity with Anisotropie Substrate 
Figure 4 shows a microstrip cavity with anisotropic substrate. The dimensions and the 
permittivity of the substrate are: a = 6.5 mm; b = 3.5 mm; h = 1.5 mm; w = 1.5 mm; 
exx = 9.4; eyy — 11.6; and tzz = 9.4. The numerical results for different values of c are 
compared to the TDFD and TLM methods. As evidenced from Fig. 5, the FEM results are 
closer to the TLM results than the TDFD ones. 
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Figure 4: A microstrip cavity with anisotropic substrate. 

c(mm) 3 4 5 7.5 10 

TLM (GHz) 15.72 12.24 10.14 7.14 5.46 
TDFD (GHz) 14.64 11.52 9.54 6.78 5.28 
FEM (GHz) 15.23 12.04 10.02 7.16 5.63 

Figure 5: Numerical results for different c values. 
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The Electromagnetic Modeler's Workbench for GEMACS 

by 

Edgar L. Coffey 
Advanced Electromagnetics 
Albuquerque, New Mejdco 

Robert Fisher 
Science & Engineering Associates, Inc. 

Albuquerque, New Mexico 

The Electromagnetic Modeler's Workbench lets GEMACS [1] users manage data, create 
command and geometry inputs, and extract data for analysis using a user-friendly 
graphical interface. Developed for the IBM OS/2 Presentation Manager, the Modeler's 
Workbench is a seamless application that greatly leverages the ability of the GEMACS 
user to create complex simulations, store all observables in a common database, and 
retrieve data for printing and plotting from any combination of GEMACS runs, 
parameters, or excitations. 

The purpose of this paper is to describe the important features of the Modeler's 
Workbench and to illustrate how it is used in day-to-day GEMACS operations. 

file   Edit   Project   Run   Analyze   Help 

Overview of the Workbench 

The Electromagnetic Modeler's Workbench (EMW) is the ultimate electromagnetic 
analyst's tool. It has been specifically designed to operate with GEMACS but is general 
enough to be applied to other analysis programs such as NEC or BSC with simple 
additions and modifications. Its 
operation and use are made 
straightforward through the 
graphics-based implementation in 
OS/2's Presentation Manager: 

The EMW provides support for 
all your GEMACS analytic needs. 
You can create new run files 
easily from commands and 
geometry lists which provide full 
syntax reference for each state- 
ment. Check your old and new 
run files with a built-in syntax 
and statement sequence checker. 
Manage your projects easily with 
the structured subdirectory 
format for file handling. 

4IMPORT.F0L 
♦SCRIPTJOL 
■TCSTfOL 

SPHEREJU» 
BlGOIRftUN 
DIP1.RUH 

3BL 

BAHD 
BXI 
CHKFHT 

J-JU..BilHI.HT 
- Construct Bande 
- BXI Solution FT 
- Checkpoint COM £ 
• Ground Conduct iC 

AF-CH 
AF-F1 
AF-FT 
AT 

- Aperture Fro« PrT| 
- Aperture on a Pit 
- Aperture Gives bK 
- Attach Opera ticmE 

a ,. 1W.«LpUmia 

DIPOIE EXAMPLE FOR THE PC VERSIOH OF CEKACS 
reiTTEH ST:  E.   L. COFFEY 
DATE: 16 FEB «8 

S    BEOPIRES:     IHFHT.  BOH- SOU.  AHD OOTFuT HOOTIES 

FMMmger OSCRlSotcn 

This work was sponsored in part by the U.S. Air Force Phillips Laboratory under 
contract F29601-89-C-0074. 
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You can create and manage large numbers of projects, folders, and runs with EMW. As 
you build up a database of files, keyword and class-word entries associated with each 
run will allow you to automatically sort through the large amount of data quickly and 
efficiently to extract information from a single file or group of related files for analysis. 

Project Management 

The massive amount of data accumulated in any numerical analysis can be both 
cumbersome to store and difficult to sift through for relevant information The 
Modeler's Workbench lets you create Projects and Folders to contain the GEMACS files 
that will be run for that Project. Once you have begun your database, the Workbench 
helps you organize and select the files with which you want to work. You can even 
import GEMACS files which were not created with the Workbench. As you import a 
file it is automatically checked for proper syntax and then written to the Workbench 
database in standard format. If errors are encountered, the imported file can still be 
used with the Workbench by editing it in the Run window (see below). 

GEMACS Input Creation 

Imagine creating a complex GEMACS input stream without having to refer to your old 
manuals! The EMW provides you a run window with all available commands and 
geometry statements listed for selection. You don't remember the correct syntax? The 
EMW does the work. Every time you make a selection from the Commands or 
Geometry lists, an information dialog box pops up with the description of the command 
and its proper syntax. 

 ■ 
Edit   Project   Run   Analyze  Help 

- Forward Elimination. Back Substitution 

BACSUB DS1 *SDS = 0S2 
BACSUB causes the solution vector for a previously 
decomposed matrix. DS1. to be found for the excitation 
vector. 0S2 and stored as SOS. 

^°"'^°"j   For Example: 

COHD ■ 
EPSK  ' 
FEQ  - 
BACSUB : 
BHDZIJ 

2M = LUD[Z1JMAT| 
BACSUB ZM * SOLI = SRC1 

LZZ1 • 
Input Geot 

1.   C2 
1.  GM_ 

jCancell 

IP 1. PI 
AP 1. PL 
AP  1.   PT 

.   3.   4.   S.   3.   11. 

.   3.   4.   S 
.2.   3.   3.   EC 4.   4. 

When you have completed your run file entry, or imported a GEMACS file, you can run 
the EMW file integrity and syntax checking software (CHEKLIST) from the Run menu. 
CHEKLIST provides you not only information on the errors in syntax that may be in 
your file; it also checks for completeness. Any errors that are found are flagged so that 
you can then make the corrections in the Run file list window. 
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File   Edit   Projca   Hun   Analyze   Help 

BACSUB - 
BAND 
BKI 
CHKPHT 

.coro 
&= 
Inpot COIF 

Checklist - Errors 

5:NO MATCH FOUND FOR SYMBOL 
S:NO MATCH FOUNO FOR SYMBOL           Z1JMAT 
7:NO MATCH FOUNO FOR SYMBOL           LUOZLI 
70£FT OVER INFO IN COMANO AFTER PARSE 
H:NO MATCH FOUNO FOR SYMBOL G1 

com ■ 
EPSK ' 
FRO ■ «5.3 
BiCSOB ZS • SOU - SEC1 
BHDIIJ - BiHPfZIJHATi. BKDJ ■ 50 

\ Done | 

Input Geometry   

4P 1. Cr 2. 2.. 2.. 3.. 4.. 5.. -90. 
AP 1. GHDiTi HFTTO. 3. EC. 4 
IP 1. PL 2. 3. 4. S. 3. 11. 2 
IP 1. PL 2. 3. 4. S 
AP 1. FT 2.2. 3. 3. EC 4. 4. 

Execution Management 

You can also run GEMACS directly from the EMW. Simply select the modules that you 
wnat to execute and click on the OK button. Your GEMACS run is on its way to 
execution, but you can continue to work, either within EMW or by using OS/2's multi- 
tasking features with another program, while GEMACS runs in background. 

After the run is complete, the GEMACS symbols can be annotated with text so that 
you'll remember just what it was that "IX2FCT" stood for. You can also annotate the 
entire run file set with comments, keywords, and classifications so that they can be 
accessed by the ANALYZE option. 

Results Analysis and Hard Copy 

Ever wish you could view your GEMACS currents and fields immediately? The EMW 
ANALYZE feature provides immediate feedback by displaying the results of any 
solution or field plotted against any GEMACS parameter. Multiple GEMACS runs? No 
problem. ANALYZE searches your entire Project database for all runs that meet your 
search criteria: date, run class, and keyword list. You the user then get to selectively 
pick which data are to be plotted from lists automatically displayed by ANALYZE. 

As an EMW user you have much more control over GEMACS than you would otherwise. 
The EMW can add lists of keywords and classes to each run, annotate GEMACS symbols 
with your definitions and memory joggers, and parameterize the output data before 
running GEMACS. These features are used by ANALYZE to search and correlate 
output data and to plot it however you the user desire. 

890 



El By Dale Stort Date: f)T-I0-8gj   End Date: P>13-9;[ 

AKTEKNA |i| E By Class Classes: 

El By Keyword      Keywords: 

OK 

na 

Extracting data is always much harder than generating it, but ANALYZE makes this 
process virtually painless. First, the EMW displays a list of runs that meet your search 
criteria. You select a run from the list, and ANALYZE displays a list of all your 
GEMACS symbols associated with the run. 

File   Edit  Project   Run  Analyze   Help 

Fil. 

HUT.I 

Symbols 

Commands Symbols 

FSQ: 
COHD: 
iHGlE: 

Excitation frequency 
Ground plane conductivity 
Radar look angle 

| Parameters... | 

location of Trap fl 
Dipole feed point 
Location of Trap *2 

|  Cancel 

You select the symbol whose data you're interested in, and ANALYZE lists all 
combinations of parameters (e.g., frequency, conductivity, look angle, or any other 
symbol you've defined) for which data has been generated. After selecting a parameter 
combination, you are asked which data points you want to select for plotting, or by 
default you can select all the data. 
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m                                                            GEMCOP ndi 
fFirc   Frtit   Prnied   Run   Analyze   Help -H 

I                                              Symbols =JJ Ei 
Parameters 

Symbol:    CUR                                              Parent Geometry: 

Attributes:  SOLUTION,                                                  flows: 

COMPLEX                                           Columns: 

DIPOLE 

1 

11 

FRO.          (ANGLE       |COND        |                1                1 

n 

100.0              10.                   0. 
100.0              20.                   0. 
100.0              30.                   0. 

|       OK       1             E    Cancel    |          (Retri cve.~ | 

1 □ 
L sd / * 

The process can be repeated as many times as needed to generate many different 
displays from the same data. One plot might be current .vs. frequency with conductivity 
as a parameter. Using the same data (without re-running GEMACS), a second plot 
might be current vs. conductivity with frequency as a parameter. Or perhaps you have a 
great circle pattern cut you want transformed into conical cuts. 

The EMW give the user lots of control over the appearance of the plot. Multiple data 
files can be overlaid for comparison purposes. Data can be plotted with linear, 
logarithmic, or polar scales. Either linear or dB data can be entered. Axes can be 
labeled and a plot title generated. 

Rle  Edit  Pfojed   flun   Analyze   Help 

T 
Symbol 

Attribut« 

100.0 
1D0.Q 
100.0 

Solution Vector 

Symbol:     CUP. 
Attributes:    SOLUTION. 

COMPLEX 

Parent Geomeöy:    DIPOLE 
Rows:    1 

Columns:    11 

FRO 
200.0 

ANGLE 
10.0 

COND 
0.0 

Solution Number 

E Select All] 

I Add» | 

Unknown List 

 H 

[Remove! 

t  Cancer 

1 
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Summary 

This paper has described just a few of the features incorporated into the Electro- 
magnetic Modeler's Workbench. The EMW is a commercial product of Advanced 
Electroagnetics and Science & Engineering Associates. It is available from the authors at 
nominal charge. 

References 

1        E L Coffey and D. L. Kadlec, General Electromagnetic Model for the Analysis of 
'      Complex Systems (GEMACS), Volumes I-III (Version 5), Rome Air Development 

Center Technical Report RADC-TR-90-360,  December 1990. 

893 



Recent Enhancements to GEMACS 52 

by 

Edgar LCoffey 
Advanced Electromagnetics 

5617 Palomino Dr. NW 
Albuquerque, New Mexico 87120 

A number of new features has been added to the GEMACS (General Electromagnetic 
Model for the Analysis of Complex Ssystems) computer program since the release of 
version 5.0 in late 1990 [1,2]. In addition Advanced Electromagnetics has developed a 
much more efficient version of GEMACS as a commercial product [3]. The purpose of 
this paper is to describe the modifications made to the program and how these changes 
benefit the GEMACS user. 

Array Sources 

GEMACS could always model an array as a series of ESRC commands or by modeling 
the individual array elements and exciting them with VSRC commands. Beginning with 
version 5.1, GEMACS lets the user define an array as a database which can be referred 
to by a single ESRC command. This greatly speeds up code execution at the price of 
lumping all the array elements into a single "stiff source.   (More on this later.) 

The GEMACS 5.1 array antennas are described by a number of elemental radiators 
located and oriented arbitrarily in a local coordinate system (x^,y ,z^). This allows the 
user to model any antenna, including arrays with unequally spaced elements, nonplanar 
arrays, and arrays of mixed element types, as well as standard, planar, equally-spaced 
arrays. 

The array description is placed in an ASCII text file. More than one array 
description may reside on the same file as each description is named uniquely. The 
general format of the file is: 

Mo. of databases on file (integer) 
Mame of database #1 (GEMACS 6-eharacter symbol name) 
No. of elements in database #1 (integer) 
Element #1 for database #1 (see below) 
Element #2 for database #1 (see below) 

Element m for database #1 (see below) 
Name of database #2 (GEMACS 6-character symbol name) 
No. of elements in database «2 (integer) 
Element #1 for database #2 (see below) 
Element #2 for database #2 (see below) 

Element #N for database #2 (see below) 
(etc.) 

This work was sponsored in part by the U.S. Air Force, Rome Laboratory, RL/ERPT, 
Griffiss Air Force Base, NY under contracts F30602-92-C-0060 and F30602-92-C-0072. 
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The description for each element contains the following data: 

Element type (integer) 
Element excitation «real and imaginary) 
Element position <x,y,z> (meters) 
Element's x-axis direction cosines (tx,ty,tz) 
Element's y-axis direction cosines (tx,ty,tz) 
Element length (meters) 
Spare (set to 0.) 

Below is a portion of a database that describes a 30A array with a Taylor line source 
distribution (SIX = -60 dB, nbar = 16). 

1 
TAYLOR 
60 
1 .0006701 .00 .00 -14.75 .00 .0 .0 1.0 1.0 .0 .0 .5000 .0 

.0 1 .0008163 .00 .00 -14.25 .00 .0 .0 1.0 1.0 .0 .0 .5000 

1 .0011102 .00 .00 -13.75 .00 .0 .0 1.0 1.0 .0 .0 .5000 .0 

1 .0015436 .00 .00 -13.25 .00 .0 .0 1.0 1.0 .0 .0 .5000 .0 

1 .0020978 .00 .00 -12.75 .00 .0 .0 1.0 1.0 .0 .0 .5000 .0 

1 .0027615 .00 .00 -12.25 .00 .0 .0 1.0 1.0 .0 .0 .5000 .0 

1 .0304516 .00 .00 -i'.h .00 .0 .0 \'.'o ÜÖ .0 .0 .5000 .0 

1 .0318015 .00 .00 -2.75 .00 .0 .0 1.0 1.0 .0 .0 .5000 .0 

1 .0329657 .00 .00 -2.25 .00 .0 .0 1.0 1.0 .0 .0 .5000 .0 

1 .0339238 .00 .00 -1.75 .00 .0 .0 1.0 1.0 .0 .0 .5000 .0 

1 .0346585 .00 .00 -1.25 .00 .0 .0 1.0 1.0 .0 .0 .5000 .0 

1 .0351559 .00 .00 -.75 .00 .0 .0 1.0 1.0 .0 .0 .5000 .0 

1 .0354067 .00 .00 -.25 .00 .0 .0 1.0 1.0 .0 .0 .5000 .0 

1 .0354067 .00 .00 .25 .00 .0 .0 1.0 1.0 .0 .0 .5000 .0 

1 .0351559 .00 .00 .75 .00 .0 .0 1.0 1.0 .0 .0 .5000 .0 

(etc) 

The array consists of 60 elements each of type 1 (electric dipole). The excitation is 
expressed as a complex number. For example, the first element's excitation is seen to be 
0.006701 + j+0. Next comes the element's location within the array; element #1 is at 
(0,-14.75,0).   The element's tangents and lengths follow. 

The database is accessed by the GEMACS ESRC command with the new AS ("Array 
Source") excitation field.  To retrieve the database above we would use 

SRC=ESRC(»geometry"> AS = 1.0,0.0 R = 0. THETA = 0. PHI = 0. 
* LU = 55, F1LEID = TAYLOR 
* TANG1 = 90.,0. TANG2 = 90.,90. 

The overall array excitation is 1 +J0 (AS field).   It is located at (rM) = (0,0,0).   The 
data are read from the file on FORTRAN unit #55, and that file is to be searched for 
the database named TAYLOR   The antenna is oriented according to the TANG1 and 
TANG2 fields.   TANG1 rotates the array's x-axis to the direction defined by 6 = 90 
and <t> = 0°.  Likewise, TANG2 rotates the array's y-axis according to its entries. 

The GEMACS symbol SRC now refers to the entire collection of elements in the 
database as a single source. This source may be used just like any other GEMACS 
ESRC source. For example, we may find the far-field pattern of the array m free space 
by using the inputs listed below.  The results are plotted in Figure 1. 

DISPLA ON LU=0 
NUMF1L=17 
FRO, = 300.0 
SETINT El 
[Listing Continues on Next Page] 
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GKDATA = FSPACE 
SRC=ESRC(FSPACE) AS = 1.0,0.0 R = 0. THETA 
» LU = 55, FILEIO = TAYLOR 
* TANG1 = 90.,0. TANG2 = 90.,90. 
FFLD = EFIELD(FSPACE) P1=0. P2=180. T1=0. OT=0.25 T2=90 
END OF COMMANDS 
S FREE SPACE HAS HO GEOMETRY ELEMENTS 
END OF GEOMETRY 

-^ -20 

PHI  = 0. 

5 
ui 
o=  -60 

-BO 
-30 

"  / 

\                      SO ELEMENT 30X ARRAY 

\                   TAYLOR LINE SOURCE 

\                 SLL = -60 dB 

\                15 =  16 

; 

ffffffll 1 lllllff 
ANGLE  FROM  BROADSIDE (DECREES') 

Figure 1.  Far-Field Pattern from Taylor Line Source Array 

The primary limitation of the array source excitation is that all array elements are 
lumped together as one source. When this source is used for GTD/UTD calculations, 
there is only one ray per path, regardless of how many elements are in the array. 
Hence, blockage and path length effects (e.g., phase) will cause pattern distortion if 
scattering centers are not in the far field of the entire array. This limitation canbe 
overcome by creating several "subarrays" from a single large array so that potential 
scattering centers are in the far field of each subarray even though they may be in the 
near field of the entire array. Each subarray would then be associated with its own 
ESRC command.   All subarray data could reside on the same peripheral file, however. 

Pattern Sources 

A second new source type for GTD and MOM/GTD hybrid problems is the pattern 
source command (PSRC). Pattern sources like array sources create an antenna pattern at 
a point in space. However, pattern sources work with patterns not array elements. 
There are four common antennas in the present implementation of PSRC: dipole, slot, 
horn, and parabolic dish with dipole feed. Others may be added at will. Each antenna 
has parameters which the user controls via the GEMACS command stream. For 
example, a slot with length of 6 cm and width of 3 cm would be entered as 
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SRC=PSRC(»geometry") SLOT = 1.0,0.0 X=0.50 Y=0.333 Z= 
« TANG1 = 90.,0. TANG2 = 90.,90. 
* LENGTH=0.006 UIDTH=0.003 

The second type of pattern data that PSRC can handle are actual pattern data stored on 
a peripheral file. These data can be measured data, analytic data, or data generated by a 
previous GEMACS simulation. For instance, say that GEMACS produced far-field 
patterns for an antenna that is to be placed on a large structure. The pattern data were 
stored on peripheral file #60 with the GEMACS symbol name ANTENA. PSRC 
retrieves these field data to be used as a source for the large structure with the following 
command sequence. 

DISPLA ON LU=0 
NUMFIL=10 
FRQ = 8000.0 
SETINT GTD ES El ORDER=0-2 
GHOATA = LARGE 
SRC=PSRC<LARGE) V = 1.0,0.0 X=0.50 Y=0.333 Z=-0.2 
* TANG1 = 90.,0. TANG2 = 90.,90. 
• LU=60 FILEID=ANTENA 
FFLD = EFIELD(LARGE) P1=0. P2=180. T1=0. DT=0.25 T2=90. 
END OF COMMANDS 
$ URGE STRUCTURE GEOMETRY ELEMENTS GO HERE 
END OF GEOMETRY 

The limitations described for the array source also apply to PSRC. The most important 
one is to realize that the pattern, perhaps created by a moderate to large antenna, is 
being placed at a single point. Thus ray blockage and ray path length effects may 
invalidate the simulation under some circumstances unless care is taken to minimize 
these effects. 

GTD Scatterer Selection 

The third enhancement made to GEMACS adds no new physics to the code. Rather, it 
allows the user more control over the GTD/UTD rays that will be traced. Consider the 
structure in Figure 2 which shows a portion of a GEMACS ship model for GTD/UTD 
computations. There are a number of edges that are present in the model but do not 
diffract, e.g., those that touch the deck from the superstructure. Though GEMACS will 
discard rays traced to these elements, it is more efficient for the user to a priori "hide" 
these scatterers from GEMACS. 

To implement the screening process we have added a HIDE command to the GEMACS 
geometry processor, as well as an UNHIDE command. The HIDE command removes 
scattering elements (surfaces, edges, corners, and creeping waves) from the GTD 
calculations, though not from the ray blockage (shadowing) processor. For example the 
command 

HIDE    PL 3    ED 4    ED 6    CN 3    SF 

hides edges 4 and 6, corner 3, and the entire reflective surface of plate #3. If a 
particular scatterer is to be singled out, the user may enter, for example, 

HIDE ALL 
UNHIDE    PL 3    ED 4 
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Figure 2.   Illustrating Non-Scattering Elements in a GTD Problem 

which will hide the entire geometry, except for edge #4 of plate 3.    Hidden elements 
may be duplicated via the GEMACS macro geometry operations (e.g., RX, XL, RF) thus 
creating a powerful  tool to give the GEMACS user control  over selecting specific 
interactions to model. 

MOM-MOM Multi-Region Hybrids 

The development of a MOM-MOM multiple region hybrid was motivated by necessity. 
In a typical GEMACS hybrid, the exterior is modeled with GTD elements while the 
interior is modeled with finite difference (FD) elements. Difficulties arise when the 
object to be modeled is too small for GTD (exterior) yet too large for FD (interior). 
Frequently there is only a small frequency range over which the MOM-FD hybrid can 
work reliably. 

With the development of a MOM aperture element it is possible to link MOM geometries 
with GTD and/or FD geometries. It is even permissible to link on MOM geometry with 
another. 

The MOM aperture element is quite simple: it turns a MOM patch (PA) into an aperture 
basis function (AP). This allows boundary conditions to be enforced from one region to 
the next.  Figure 3 shows the transformation process. 

To illustrate the process, a MOM-only grid of surface patch elements was created to 
model a large ground plane like the one in Figure 3. An aperture was placed in the 
otherwise solid plane by transforming some of the patches into apertures. The object 
was excited with a plane wave incident from the left. Figure 4 shows the field strength 
on the right side of the patch grid. The MOM aperture predictions agree well with 
MOM-GTD predictions and even time-domain methods. 
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Figure 4.  Results of the MOM Aperture Simulation 

GEMACS-plllS 

Finally it is now possible to run GEMACS as a single module on larger computers. 
GEMACS-pto is a product developed internally by Advanced Electromagnetics for 
Microsoft Windows, IBM OS/2, various UNIX work stations (Sun, Motorola Silicon 
Graphics), VAX/VMS, and DEC Alpha. It contains all the features of GEMACS 5.2 as 
well as a rewritten file and data manager.   This as well as the single module restructur- 
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ing of GEMACS gives tremendous execution time speed-ups, as much as 30:1 for 
parametric problems (e.g., sweeping frequency).   More typical are factors of about 2:1. 

Looking at the Future 

The future of GEMACS has always been driven by user requirements. We are now 
looking at true 64-bit versions, rewriting the input processor to accommodate more 
general commands and inputs, rewriting the data manager to avoid much of the file I/O, 
parallel and distributed processing versions, and various physics upgrades. 

Your comments are always welcome and much appreciated. It is from your input that 
decisions will be made concerning AE's work with GEMACS. 
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An "Object-Oriented" Approach to GTD/UTD Modeling 

by 

Edgar L. Coffey 
Advanced Electromagnetics 

5617 Palomino Dr. NW 
Albuquerque, New Mexico 87120 

When the GTD/UTD capabilities of GEMACS 5.0 were redesigned in 1986-89 [1], 
Advanced Electromagnetics took the opportunity to restructure the computational 
approach to one that resembles what today is called "object-oriented programming" or 
OOP [2]. While not a formal OOP implementation with encapsulation, inheritance, etc., 
GEMACS does treat each potential GTD/UTD scatterer, ray bounce, and ray path as 
"objects" and manipulates those objects to obtain fields for multiple bounce interactions. 

This paper describes the implementation of GTD/UTD in GEMACS using the OOP 
paradigm. It discusses the advantages and disadvantages of the OOP approach for 
GTD/UTD in the hope that others may find fresh ideas in structuring their own 
computer codes. 

What is an "Object"? 

Tradition computational electromagnetic (CEM) programming, especially FORTRAN 
program has been task oriented. That is, the software sequences through a well-defined 
set of tasks in order to produce a desired results. For example, GEMACS 3.0 and 4.0 
defined its GTD/UTD tasks as: (1) compute all single plate reflections, (2) compute all 
plate-plate reflections, (3) compute all plate edge diffractions, etc. In GEMACS 5.0, 
the structure was changed to emphasize collections of data, not enumeration of tasks. 
Hence, in GEMACS 5.0, the approach is to (1) select a source point and 
observation point from a collection of sources and field points, (2) select combinations 
of potential scatterers from a "bag" of geometery elements, compute ray paths between 
each pair of scattering centers, and manipulate the scatterer-to-scatterer bounces into a 
path that obeys the laws of GTD physics (Fermat's principle, Snell's law, etc.). 

Each of the data-related entities described is a potential GTD/UTD "object": 

1. Each source point (field source, MOM basis function, aperture, etc.) 

2. Each observation point (field point, MOM basis function, aperture, etc.) 

3. Each potential geometry scatterer (surface, edge, corner, etc.) 

This work was sponsored in part by the U.S. Air Force, Rome Laboratory, RL/ERPT, 
Griffiss Air Force Base, NY under contracts F30602-86-C-0183 and F30602-92-C-0060. 
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4. Each ray path between collections of scatterers 

5. Each complete ray path from source to field, including intermediate bounces. 

This seemingly cumbersome division of the problem into somewhat artificial categories is 
what gives the OOP approach its advantages. It also lets the software designer extend 
the original GTD/UTD capability to hybrids with other methods such as MOM and 
aperture coupling. Finally, this approach lets several aspects of a complex GTD/UTD 
problem be formulated so that the same software can be used for each problem. 

Source Point Objects 

A source point object is any entity that can be the beginning of a GTD ray path. 
Naturally, field sources are source point objects, but MOM basis functions and apertures 
can also be thought of as source points in a MOM/GTD or aperture coupling hybrid. 

The characteristics of a source point object are its source type, excitation, position, 
orientation, and perhaps a few source-specific parameters (dipole length, slot width, 
etc.). A source point object must also be able to generate near and far fields at any 
observation point. 

With a data structure that can be used for every source (no matter the type), all sources 
can be manipulated identically by the software, and the source code for all sources can 
be localized to one routine. In addition, source derivatives (for slope diffraction) can 
all be computed in the same fashion. 

In GEMACS, all sources, including MOM basis functions, etc. may be found in a single 
subroutine NEWSRC. To modify a source or to add a new source (as was done for 
GEMACS 5.1 and 5.2) it is only necessary to modify or add code to NEWSRC, ignoring 
user input command processing for the moment. 

Observation Point Objects 

An observation point object is any entity that can be the terminus of a GTD ray path. 
Far-field and near-field observation points are natural choices, but MOM weighting 
functions and aperture points can also be observation point objects for MOM/GTD. 

The characteristics of an observation point are its position (or far-field direction) its 
field type (electric or magnetic), and its field components. For instance, a far-field 
object would have £ and $ electric field components while a surface patch weighting 
function might have  ? and r  magnetic field components. 

In GEMACS, all observation points, including MOM weighting functions, etc. are 
accessed by the single subroutine GETFLD. Thus, the GTD/UTD physics code does not 
have to know about a field point's orientation, tangent vectors, etc. That information is 
obtained from GETFLD. 
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Geometry Element Objects 

Though it may at first seem unnatural, the basic GTD/UTD geometry element objectis 
not a GTD/UTD modeling element (plate, cylinder, etc.). Instead, the total GTD 
smicture is decomposed into a collection of potential scattering centers such as plate 
urfaces, plate edges, corners, end cap rims, etc. The GEMACS user still enters his 

geometry with the modeling elements, and GEMACS performs the decompostion into the 
basic scatterers. The scatterers are also linked together at this time (e.g every edge 
bounds two surfaces, every edge is terminated by two corners, etc.) so that the G1D 
physics code does not have to repeatedly search for this information. 

There are six basic scatterer types in GEMACS 5: 

1. Flat surface reflection (plates, end caps) 
2. Straight edge diffraction (plates, conductivity areas) 
3. Corner diffraction (plate, conductivity corners) 
4. Curved surface reflection (cylinders) 
5 Creeping wave diffraction (cylinders) 
6.    Curved edge diffraction (end cap rim, curved conductivity edges) 

The decomposition of geometry elements into combinations of these is for the most part 
straightforward. A single four-sided plate is decomposed into one flat surface, four 
straight edges, and four corners. A end cap rim, on the other hand, cannot be 
decomposed into a single curved edge because of the possibility of multiple scattering 
centers Thus, GEMACS divides the rim into six curved segments. The corners 
connecting the segments are hidden from GEMACS since they are artificial entities. 

The quantities associated with each geometry object are the most numerous for it is the 
geometry objects that the GEMACS GTD drivers manipulate the most. Obviously, each 
geometry object must specify position, orientation, and size data. Objects also point to 
their host elements (e.g., a plate edge object is hosted by a plate geometry element). 
There may also be auxiliary data associated with an object, such as conductivity or 
reflection coefficient. 

In addition to the simple geometry quantities there are several functions associated with 
each object. An object must be able to compute a valid path for its interaction 
(reflection, diffraction, etc.) given a source point object, observation point object, and 
object parameters. That path must obey the physics laws of the object (e.g., Snell s law 
for reflection). Each geometry object must also supply a ray blockage routine that will 
detect if a ray will be shadowed by it. Some objects (edge, corner) do not shadow rays 
and hence have a null routine for blockage. Finally, each geometry object must have a 
physics routine that computes scattered field for given source and observation point 
objects. 

There is really nothing new in the list of functions enumerated above. Any GTD code 
must perform the same functions. What is different is that the functions are associated 
with the geometry objects instead of being separate tasks for the program to perform. 

903 



Ray Path Objects 

A ray path object is a collection geometry objects, a source object, an observation 
object, and the single interaction ray bounces among the geometry objects along a path. 
For example, Figure 1 shows a third order interaction with four path segments. Thus, 
this ray path object is composed of the source object, the field point object, the three 
geometry objects, and the four ray paths. 

INTERACTION 

FIELD   POINT 

Figure 1.  Third Order Interaction Example 

Each path segment is computable by the geometry objects, but the ray path object 
provides the mechanism for connecting the paths together (Fermat's principle). It also 
determines ray blockage (if any) and the fields produced at the observation point (if the 
ray is not blocked). 

Computation of Fields 

With the objects defined as described above it is straightforward to compute the fields 
for any collection of sources and any collection of geometry elements. The geometry 
elements are decomposed into basic scatterers and placed into a table. For given source 
and observation points, all possible combinations of scatterers are formed by pulling the 
scatterer objects out of the table. (In a practical problem, "all" is limited to some 
number of bounces, say 2 or 3). One particular combination forms a ray path object. 
The ray path object is used to find the path, check the path validity, and compute the 
requested fields. 

The path is computed by an iterative method that minimizes path length (Fermat's 
principle). The iterative technique changes the interaction points on each scatterer 
(e.g., specular reflection point) as it minimizes the path length. It then calls each 
geometry object to recompute its single-bounce path with this new source and 
observation point data.  Iterations continue until the path length stops changing. 
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The path thus computed becomes a "candidate" path. Shadowing is performed by 
calling all geometry objects to see if any portion of the path is blocked. If so, the 
candidate path is discarded and zero fields returned. 

If the path is valid, then the geometry objects are called to step-by-step computed the 
field at the observation point. 

Computation of Interactions 

The above procedure described a typical GTD-only scattering problem. Much of the 
power of GEMACS lies in its ability to hybridize dissimilar physics methods to obtain 
self-consistent solutions. One such hybrid is combining method of moments (MOM) 
with GTD. The MOM formalism requires computing an interaction matrix [Z] and an 
excitation vector [V] from which currents [I] may be found by solving 

[Z][I]  =  [V] 

After currents are known, the fields can be found by 

[F]  =  [GF] [I] + [Einc] 

where [F] are the. total fields, [GF] is a "Green's function matrix" generated for unit 
currents, and [Elnc] is the directly incident field due to the source(s). For the 
MOM/GTD hybrid, these quantities include not only the direct line-of-sight paths 
associated with MOM but also the indirect reflections, diffraction, etc. associated with 
GTD, as shown in Figure 2. 

FIELD   POINT 
EU 

ESRC 

MOM 

GTD,    ES 

ZGEN EFIELD    [GF] 

Figure 2.   MOM/GTD Ray Direct and Indirect Ray Paths 

There are four matrices to compute: [Z], [V], [GF], and [Ejn ]. By defining source points 
and observation points appropriately, the same GTD routines used for a GTD-only 
problem can be re-used for MOM/GTD. 
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For [Z], the source objects are the MOM basis functions, and the observation objects are 
the MOM weighting functions. The geometry objects are the GTD scatterers, as is true 
for the other three cases. 

For [V], the source objects are the field sources (e.g., GEMACS ESRC or PSRC 
commands), and the observation objects are the MOM weighting functions. 

For [GF], the source objects are the MOM basis functions, while the observation objects 
are the near-zone and far-zone field points. 

For [E. ], the source objects are the field sources, and the observation points are the 
near-zone and far-zone field points. 

Software Maintenance and Expansion 

Why go to the trouble to restructure an existing software program into object-oriented 
style? It became necessary to do so when GEMACS 5.0 was required to compute higher 
order interactions among any possible combination of GTD elements. The old style used 
in GEMACS 3.0 and GEMACS 4.0 would have required us to write a separate driver 
routine (task paradigm) for each combination of elements. For example, the second 
order interaction of double plate reflection would have required one driver, while the 
second order interaction of double plate edge diffraction would have required a separate 
driver. This is a manageable approach for a few geometry types and one or two 
bounces, but it quickly became unrealizable for more geometry types and higher order 
interactions. 

In GEMACS 5.0 (OOP paradigm), there are only object drivers, not task drivers. For 
example, for plates only three drivers are required: reflection, edge diffraction, and 
corner diffraction no matter how many bounces are to be implemented. A fourth order 
interaction for plate reflection, then corner diffraction, next plate edge diffraction, and 
finally plate reflection calls the three basic drivers as needed. This concept can be 
extended to any number of interactions. (A tenth order plate reflection problem was run 
with GEMACS 5.0 for a parallel plate waveguide with very good results.) 

Maintenance and troubleshooting are greatly simplified with this approach. Since all the 
activity associated with a function is to be found at just one location in the software, 
that function can be easily and quickly debugged, or even replaced if needed, without 
modifying the rest of the code. 

Expansion of the code becomes straightforward though not trivial. To add, for example, 
a cone frustum to GEMACS 5.0, one would merely have to define the cone frustum 
geometry object and its associated functions. Once implemented for the single bounce 
case, the cone frustum physics becomes available to all higher order interaction cases as 
well. 

Summary 

The greatest disadvantage to using object-oriented thinking with computational electro- 
magnetics is the amount of effort to re-orient our minds towards working with data 
(objects) instead of tasks (functions).    However, for software maintenance efficiency, 
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porting to other systems, parallel and distributive processing, such a way of thinking is 
mandantory. 

The greatest benefit to the OOP approach is not in the physics. The physics are the 
same. It is in the re-use of software and the isolation of physics and ray path functions 
to specific routines. This aids in debugging and validation of the final product as well 
as provides a relatively painless expansion path for the future. 
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Abstract 
Previously, making computer tutorials for electrodynamics has been a highly specialized 

task requiring advanced programming skills that have severely limited the number and 

range of computer-based tutorials developed to date. However, there have been several 

developments that have drastically changed this state. First, the Center for Computer 

Applications in Electromagnetics Education (CAEME) has sponsored the development of 

many programs that produce simulations of electromagnetic phenomena and the 

mathematics of vector fields. These programs while having tutorial value in themselves, 

can function as a set of tools that allow one to easily generate various simulations or 

problems. A suitable authoring package can import these simulations or problems allowing 

a complete exercise to be assembled in a short amount of time. Thus, the second major 

development is the existence of powerful inexpensive authoring packages on the IBM and 

Macintosh platforms. The exercises constructed using an authoring system can consist of 

simulations, compressed computer animated movies, video from laser disks, or even 

posing a question and launching the appropriate program to allow the student to configure a 

solution that satisfies the conditions of the posed question. In short, the CAEME software 

when coupled with authoring software allows instructors to construct computer tutorials 

without using advanced programming skills. We will demonstrate how an interactive 

computer-based tutorial can be constructed on the Macintosh. 

Introduction 
In the 1960's video was the technology that was going to revolutionize teaching, and in the 

1980's the personal computer played a similar role. Both have not yet reached the heights 

envisioned by proponents perhaps for opposite reasons. Video is easy to operate and 

works well at depicting temporal phenomena; however, it is a linear mode of learning, 

sequencing events in a chain. Most importantly, straight video is not interactive. A student 
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cannot pose a question and receive an answer. Computer simulations on the other hand are 

extremely interactive, but have not played a major role in education because they tend to be 

difficult to use. Students can become easily lost, and often they lack the skills to 

adequately interpret the output which causes them to become frustrated. The challenge put 

forward by CAEME has been to find new and successful ways to use the computer in 

electromagnetics education. The first round of programs is available in Volume 1 of the 

CAEME software book. The software runs the gamut from full-blown computer 

simulations to menu-driven tutorials. However, much of the CAEME software and video 

tapes, are not just end products. These programs are also tools and resource material for 

producing new computer-based instructional software. In this presentation we will 

demonstrate how the CAEME software, when combined with an authoring software 

package and tools such as video capture hardware and software, can be used to make 

interesting interactive classroom exercises. 

A Model For Instructional Computer Use 
To make successful computer based exercises, like any mode of teaching, takes time to 

plan and implement. A successful development program should also make long-range 

plans to improve the lessons as the technology improves, and should address the needs of 

the student. This will include initial tutorials on how to use the computer, followed by 

tutorials that address the physics, i.e., those that help the student to interpret the output 

from the computer simulations. These tutorials should develop simple models that help the 

student to interpret more complicated phenomena that the student will generate in a 

simulation. The tutorials might consist of discussions of the graphs that might be 

encountered in a simulation program, including computer animations or digitized video in 

the form of Apple's QuickTime movies or Microsoft's Video for Windows. An example of 

a tutorial on superposition and the electrostatic potential is shown in Figure 1. A laser disk 

might also be accessed by the authoring software. The graphs can be dynamically linked to 

the mathematics as is done in the Electrocard software from CAEME. 

The classroom or computer laboratory exercises should allow the student to pose "what if 

questions perhaps with an initial exercise asking a question the student will need to run on 

the simulation program. These simulations can be launched directly from the tutorial 

program providing a very neat package that will help prevent students from breaking their 

concentration on the physics to deal with the host computer's operating system to navigate 

between simulations. In Figure 2, the "Exercise" buttons take the student to questions that 

require the student to run a simulation. In the exercise shown, the program SilverHammer 
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which is field modeling program for point charges is used. The students runs the program 

by clicking the mouse when the cursor is over the "SilverHammer" button. The simulation 

in SilverHammer is shown in Figure 3. The "what if component is very important because 

it allows students to work problems that are bothering them and it can play an important 

role in their education. The less inventive students can get started by simulating homework 

problems, often sparking questions they can explore further. 

We have found that there also needs to be a human component that can be in the form of a 

Teaching Assistant available during the lab to answer questions and help with simulations. 

It also helps to have students turn work into the TA or have the TA check the students' 

work at various milestones. Some students find that working alone at a computer terminal 

or PC is advantageous because they can proceed at their own pace. However, others need 

the human interaction that a traditional discussion section or lab provides. Both of these 

points can be addressed by having the students run the tutorials by themselves and then pair 

up for the simulations. 

Another advantage is that students can take the programs with them on floppy disks when 

they leave the lab and run them on their own computer at home. We have had students 

come in during the summer, after they have completed the course, with questions from 

simulations they have run, showing that the learning does not end when the course ends. 

The result is that if the course is designed to effectively integrate computers, they can be a 

highly successful educational tool. 

Using CAEME Software 
With the development of emulation programs, many of the CAEME programs can be run 

on a Macintosh microcomputer. Simulations can be used to show time-domain 

electromagnetic processes. The individual frames can be copied to the Macintosh 

Scrapbook, and using a program called "Movie Converter" that is part of the "QuickTime 

Starter Kit", they can be compiled into an animated QuickTime movie. This allows you to 

quickly put together a movie using the output of any graphics program. The resulting 

movie can be transferred to an authoring system or word processor. The movie can also be 

played without change under the Windows operating system on a PC by using the 

QuickTime extension for Windows. We will demonstrate how to make QuickTime movies 

and how to incorporate them into HyperCard based tutorials. The process is so simple that 

we have students compiling their own QuickTime movies in the classroom exercises. 
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Conclusion 
The ability to run applications across computer platforms and compile animated sequences 

that may then be used in multimedia tutorials could well make the educational use of video 

and computers equal the claims of their proponents. It will, however, rely on experienced 

educators to accomplish this feat. The computers and the tools are important, but it is the 

vision and creativity of the educators that will ultimately decide their role. The computer 

based multimedia tools are becoming easy to use, powerful, and flexible. To be effective 

in education, though, these tools need to be applied by imaginative teachers to develop 

creative exercises. They are not ends in themselves. 
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EMAG: Electromagnetic Software Development at Rose-Hulman 
Institute of Technology 

Jovan E. Lebaric and Roger P. Manke, Jr. 
Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803 

Introduction 
EMAG is a new electromagnetic software package developed at Rose-Hulman Institute of 
Technology that allows students to solve electrostatic and magnetostatic field problems. 
EMAG has been developed with the intention to assist in teaching electromagnetics at 
undergraduate level and also to offer to students and other users opportunities to modify 
the software, customize it to their needs, or simply be creative and add new features. 
EMAG, unlike most EM software packages, can be easily modified and further developed 
by users familiar with MATLAB since EMAG has been written in MATLAB 
programming language and all of EMAG source code is available to all users. Important 
features of EMAG are a graphical user interface and visual display of potentials and field 
solutions that help students in developing an intuitive feel for electrostatic and 
magnetostatic fields while learning the field theory concepts and its mathematics. EMAG 
can solve electrostatic and magnetostatic 2-D problems: 
• Electrostatic 
Media: Linear, Inhomogeneous, Isotropie, PEC (Perfect Electric Conductor) 
Sources: Voltage Sources, Charges 
Boundary Conditions: Open, Dirichlet; 
• Magnetostatic 
Media: Linear, Inhomogeneous, Isotropie, PMR (Perfect Magnetic Reluctor) 
Sources: Magnetic Potential, Currents 
Boundary Conditions: Open, Dirichlet 
EMAG solves Poisson's equation for either electric or magnetic potentials, using both 
direct and iterative techniques. The solution domain can be inhomogeneous (different 
permittivities and permeabilities), and can have Perfect Electric Conductors (PEC's) and 
Perfect Magnetic Reluctors (PMR's). The PMR material is defined as an ideal "anti- 
magnetic" material with infinite reluctivity (zero permeability). Sources in EMAG 
include: PEC's raised to fixed electric potentials and line charges for electrostatic 
problems; and PMR's raised to fixed magnetic potentials and line currents for 
magnetostatic problems. An open boundary condition is simulated by the Transparent 
Grid Termination (TGT) technique. 

Brief Review of Theory 
EMAG solves electrostatic and magnetostatic Poisson equation, subject to Dirichlet 
boundary conditions, on a uniform square grid. Starting equations are the equations of 
Maxwell (because of duality only one is given below): 

$D-dS = Jp/v. (1) 
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When applied to the geometry in Figure 1, equation (1) can be discretized as 

DjA2 + DBA2 + DLA2 + DÄA2 = Qenclosed = P/> c (A) (2) 

Charge is enclosed in this 
Ax by Ay cell 

Ax=Ay=Az=A 
Az is out of the paper 
E1A3,4 are relative 
permittivities 
pi is a line charge (C/m) 

Figure 1:   Geometry for interface of four arbitrary dielectrics 

E e El + E2      $C~$T o: 

(4: 

(5: 

(6: 

Equations (3) through (6) express the flux density in terms of potentials. Ihe "averaging" 
of the permittivity results from variations of D from one dielectric material to another for 
the same potential difference, or E-field in the region. When equations (3) through (6) are 
substituted into equation (2) and solved for §Q, the resulting equation is 

\c ei+£2 E3+e4 £l+£3 £2 + £4 A£ + ^r(JT-2)+^(^T-*)+^(J^-J)+0Ä(-?_*) 

♦<r £j + e2 + e3 + e4 
(7) 

Equation (7) is a discretized version of the Poisson's equation for electrostatics 
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The magnetostatic duals to equations (7) and (8) are 

(8) 

lr Vl+V2 V3+V4 Vl+V3 V2 + V4 

Ac = 

and 

Vl+V2+V3+V4 
(9) 

(10) 

respectively, with magnetic reluctivity defined as v =  l/(x. The duality between 
electrostatics and magnetostatics is summarized in Table 1. 

Table 1: Dual Quantities 

Electric Magnetic 

Potential ♦ Az 

Media e W 
Source Pi Jz 

Ideal 
Media 

Perfect Electric 
Conductor (PEC) 

Perfect Magnetic 
Reluctor (PMR) 

Transparent Grid Termination 
The boundary condition implemented in EMAG is a homogenous Dirichlet boundary with 
zero potential on the boundary. However, the solution domain does not extend all the way 
to the Dirichlet boundary, but rather occupies a very small portion of the grid inside the 
Dirichlet boundary, within another boundary we refer to as the TGT boundary. The 
relative sizes of the EMAG's Dirichlet and the TGT boundaries are shown in Figure 2. The 
Dirichlet boundary, with potential set to zero on this boundary, has been placed 
sufficiently far away so that the solution within the TGT boundary is not strongly affected 
by the Dirichlet boundary. The solution for the nodes within the TGT boundary has 
exactly the same accuracy as the solution for the much larger number of nodes within the 
Dirichlet boundary, although the number of calculations for the nodes within the TGT 
boundary is much smaller. This means that one can move the Dirichlet boundary as far as 
desired away from the TGT boundary and increase the accuracy of the solution without 
increasing the size of the solution domain, required memory, and the computational time. 
In order to accomplish that special equations have been developed for the nodes on the 
TGT boundary. These equations link each node on the TGT boundary to the nodes just 
outside the TGT boundary and to the nodes on the Dirichlet boundary. The coefficients of 
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these special TGT equations are only calculated once for a selected pair of Dirichlet and 
TGT sizes and results of these calculations are saved as a matrix of coefficients. The same 
set of coefficients can be used to solve any problem defined within the TGT boundary. 
Since the Dirichlet boundary can be moved as far away as desired (at the expense of a 
massive one-time calculation), the error incurred by setting the potentials to zero at the 
Dirichlet boundary can be made negligible. The TGT makes accurate solutions of 
electrostatic and magnetostatic problems feasible on a PC within reasonable time and 
without extensive memory requirements. 

803 by 803 nodes- 
far Dirichlet boundary 

i^_ 

f Shaded region is ^p 
■v free spaceeo, H„  J 

'M49 by 49 nodes- \ 
".A TGT boundary J 

Figure 2:  Relative size of the Dirichlet boundary and the TGT boundary 
Listed below are the steps that can be used to generate the TGT coefficients for an N by N 
Dirichlet boundary and an M by M TGT boundary: 

1. Define a rectangular grid (see Figure 3) of N by N nodes (N=803 for EMAG); 

2. Number the grid nodes using the spiraling scheme (Figure 3), from 1 to N , 
3. Write the homogeneous, source-free, discretized equations for nodes 4N-3 

through node N2-M2 (M=49 for EMAG). 
A matrix equation describing the steps 1 through 3 above looks like, 

_ o    e    tn    i\ =  [0], (11) 

where the subscripts of the Äs indicate the nodes each submatrix A is 
associated with and the o, e, m, and i indicate the nodes shown in Figure 3. 

4. Use forward substitution to form the upper triangular matrix for the sub-matrix 
[Ae A„J updating all rows of the system matrix when forming the upper 
triangular matrix, 
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5. Finally, use back substitution to make the last 4(M+1) rows of Am into the unity 
matrix /. These entries are associated with the 4(M+1) nodes on the "m" layer. 

The results of steps 4-5 should appear as a matrix equation (12) 

1 

4N-4 3   #^4N-3|#j N2-M2-4(M-1) 

2   3   ... N 
n o o i) o o ooo 

N+l 

O o: nodes on far Dirichlet boundary 

# e: nodes to be eliminated 

9 m: nodes on the EMAG boundary 

% i: nodes on the TGT boundary 

2N-1 
3N-2 

spiral-numbering scheme 

Figure 3:   Spiral number scheme and terminology for nodes 

'1 c2 c3 c4 

-OUT 0   / -IN 

t 

♦/ 

=  [0], (12) 

where the C,*s are leftovers from the forward substitution but of no interest. The 
last 4(M+1) rows of matrix equation (17) which contain OUT, I, and IN can be 
re-written as 

kJ = INbt) + OUTty, (13) 
where I ) indicate that §m, «j>0, and % are column vectors. Equation (13) 
expresses the EMAG boundary nodes (<!>,„) as a function of the Dirichlet 
boundary nodes (%) and the TGT boundary nodes (fy). 

The steps 1 through 5 can also be represented in matrix form as follows. Rewrite equation 
(11) as 
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(1) AeAm\ 
'm 

+ \AA\ 
4>.- 

= [o]- (14) 

Now one can write, 

(2) 
-1, 

=-MJ M ♦,■ 

? ? 
OUTIN] 

(15) 

Note that the matrix formulation involves an inverse, while the method described on the 
previous page does not require the formulation of the entire inverse matrix. The "?' denote 
that these parts of the matrix are not needed to implement the TGT boundary condition. 
The TGT coefficients are used (see Figure 3) to calculate the potentials <|>m (nodes just out- 
side the TGT boundary) in terms of potentials % at the TGT boundary and the potentials 
on the Dirichlet boundary ty0, using equation (13). If the potentials on the far boundary are 
set to zero (<(>0= 0), then equations (13) or (15) simplify to 
tyj =  [IN] kt>f>- (16) 

Equation (16) expresses the potentials of the nodes just outside the TGT boundary as a 
function of the TGT boundary nodes! Matrix equation (16) is combined with equations for 
the nodes within the TGT boundary (equation (7)) to yield a set of equations which can be 
solved directly or iteratively. The advantage of the TGT over a Dirichlet boundary of the 
same size is illustrated in Figures 4 and 5 which show equal-potential lines for a point 
charge placed in a corner of the computational grid with Dirichlet and TGT boundary 
conditions imposed at the edges of the grid, respectively. The equal potential lines are 
circles, as they should be, for the TGT boundary while the proximity of a Dirichlet 
boundary at zero potential greatly distorts the solution. 

.,..--.--:.   .1 ...    - ;       ..;...;...; !          I 
■ BJMB^^^--: • ■ ■ - *           

1 JBfcVx '■ 
vWßfyy--\\{-   ;.■■] ;i' 
l-^Fr "!/■:   ; ■: 

1  i^Zi^f i:   :   ; 
i     •:      :      i      ;       •:  "      ; . .:.   .;. ;j 

i_.U..:....r..i....-:.._.--1; ~r!-7r:rr 

7l 
L -:.—..:.!—'::--..".:—..'..:!.: .:.iu:..:,-: 

'-  . -j 

L- .i.:..:i:.i.:lj..;. • .^.JJJ.::.-.L:::-..1 

Figure 4: Line charge in corner with TGT 
Boundary Condition 

Figure 5:  Line charge in comer with 
Dirichlet Boundary Condition 
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Brief Description of EMAG Program 
2-D electrostatic and magnetostatic problems are formulated in EMAG in terms of 
discretized Poisson's equations for electrostatic and magnetostatic potentials. EMAG uses 
two different grids: a coarse grid and a fine grid. Two TGT matrices were thus generated, 
one for the coarse grid and one for the fine grid. The Dirichlet boundary for the coarse grid 
has 267 nodes on each side and the TGT boundary has 15 nodes on each side. Fine grid 
has the Dirichlet boundary with 803 nodes on each side and the TGT boundary with 49 
nodes on each side. The generation of the TGT matrices for EMAG's coarse and fine grids 
was done "externally" (on an HP 700 series computer) and EMAG only reads them from a 
file each time a problem is solved. Two geometry solution "modes" are available (coarse 
and fine) for the problem geometry is drawn using a mouse. The "drawing pad" that is 
employed to define the problem geometry is a square of 51 by 51 square cells, with a cell 
being the smallest geometric unit The system of equations corresponding to the "coarse" 
problem geometry (a program-generated 17 by 17 cell approximation of the actual 
geometry drawn by the user) is solved directly by Gaussian elimination. The system of 
equations for the 51 by 51 cell "fine" geometry is solved iteratively using a modified 
Jacobi method, since a direct solution (not exploiting sparsity) would require too much 
memory. The coarse grid solution can serve, if so selected, as the initial guess for the fine 
grid solution. Once the desired solution has been obtained, the results can be displayed as 
mesh plots of potentials, equal-potential plots, or field plots indicating field magnitudes 
and directions. (Electrostatic and magnetostatic fields in EMAG are obtained from their 
corresponding potential solutions.) Users may also calculate such quantities as the 
enclosed charge per unit length or the enclosed current, for a user-specified region. EMAG 
calculates flux integrals of electric flux density and closed line integrals of magnetic field 
to obtain the enclosed charge per unit length and the enclosed current, respectively. The 
program can also generate printouts of problem geometries and their various solutions 
mentioned above. Although EMAG is menu- driven and highly intuitive, a 60-page User's 
Guide has a number of examples to assist in using EMAG. The validity of EMAG 
solutions has been verified by comparing EMAG numerical solutions of electrostatic and 
magnetostatic problems with solutions available in the literature. EMAG has been used in 
a junior level electromagnetics class for electrical engineers. 

Sample Results 
Several examples are presented here to illustrate EMAG capabilities. Figure 6 shows the 
geometry of a single microstrip line and the corresponding equal-potential lines. The 
charge distributions for the strip and the ground plane are shown in Figure 7, with the 
characteristic charge peaks at the edges of the strip. Figure 8 shows the field lines of a bar- 
shaped permanent magnet, modelled using two sheets of current. Finally, Figure 9 shows 
magnetic field lines for a coil-driven, highly permeable core with an air gap (a "magnetic 
circuit"). 

NOTE: A new version of MATLAB called MATLAB 4.0 has sparse matrix algebra 
capabilities and significantly improved graphics capabilities (including animation). It is 
our intention to "port" EMAG to run under MATLAB 4.0, using its new features to further 
improve EMAG. 
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Figure 6:   Equi-potential Lines for a 
Microstrip 

Figure 7:  Charge Distributions for the 
Source Strip and Ground 

"0 0.2 0.4 0.6 0.8 1 0 0.02 0.04 0.06 0.08 0.1 

Figure 8:  Magnetic Field Lines for a Per- Figure 9: Magnetic Field Lines for a Core 
manent Magnet with an Air Gap 
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CURRENT DISTRIBUTION TOMOGRAPHY FOR DETERMINATION OF 
INTERNAL CURRENT DENSITY DBTRD3UTIONS 

Paul C. Gailey 
Oak Ridge National Laboratory 

Abstract 

A method is presented for determination of current densities inside a cylindrical object using 
measurements of the magnetic fields outside the object.  The cross section of the object is 
discretized with the current assumed constant over each defined region.  Magnetic fields 
outside the object are related to the internal current densities through a geometry matrix 
which can be inverted to yield a solution for the current densities in terms of the measured 
fields.  The primary limitation of this technique results from singularities in the geometry 
matrix that arise due to cylindrical symmetry of the problem.  Methods for circumventing the 
singularities to obtain information about the distribution of current densities are discussed. 

Introduction 

Public concern about the possibility of health effects resulting from exposure to power 
frequency electric and magnetic fields has grown rapidly during the past decade, and 
biological research to study this question is underway.  An issue that has been largely 
overlooked in this research is dosimetry.  Laboratory researchers typically specify the 
exposure fields used in a study with little further indication of dose.  Unfortunately,  there is 
no simple relationship between the external exposure fields and the internal fields experienced 
by various cells or tissue types.  Internal fields vary with body or sample size, shape, and 
grounding, as well as the complex variations in electrical properties throughout the organism 
or sample under study. If effects are detected in these studies, a lack of accurate dosimetric 
information makes it difficult to develop mechanistic theories explaining the effects or to 
generalize the findings to other exposure situations. 

Methods for predicting internal currents and fields have been developed and used extensively 
for dosimetry of radiofrequency fields, and are now being applied at power frequencies 
(Gandhi, 1993).  This modeling provides valuable information about internal fields, but is 
necessarily limited by knowledge of tissue electrical properties.  Data currently available 
about such properties is derived from measurements performed on excised tissues which may 
differ from the in situ properties.  Discretization requirements of the model also result in 
averaging of the electrical properties over regions, which, although small, may contain 
materials with widely different properties such as bone and muscle.  There has been no way 
to validate the modeling results for other than analytic shapes such as spheres or cylinders 
with known electrical properties. 
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The availability of a measurement method as an adjunct to these modeling techniques is 
clearly desirable.  Invasive techniques for internal field and current measurements can be 
imagined, but have the disadvantage of perturbing the system, and are not acceptable for 
human subjects.  The technique described here, current distribution tomography (CUT), is 
designed for determination of internal current densities using measurements of the external 
magnetic field distribution.  It is non-invasive, and relatively simple to implement.  Although 
related to a more general study of magnetic imaging which has been used to investigate 
endogenous currents in the brain and other parts of the body (Sato, 1990), CDT is restricted 
to currents either applied directly or induced by exposure to an external field.  The 
formulation described in this paper is further restricted to roughly cylindrical objects such as 
an arm, leg, or human torso.  Generalization to other shapes is possible. 

Measurement of total (time-varying) current passing through a conductor is easily 
accomplished using a current probe.  These probes surround the conductor with either a 
toroidal coil or a magnetic core with windings.  In either case, the windings respond to the 
time rate of change of magnetic flux passing through them according to Faraday's law.  The 
response of the probe to the magnetic field of the conductor is easy to visualize in the case of 
a single, long, homogeneous current for which the magnetic field strength is given by 

ff= —±— (1) 
2xx 

where I is the current, and r is the perpendicular distance from the conductor to the 
measurement point.  The field is a vector quantity and is directed along the tangent of a circle 
centered around the conductor.  The magnitude of the field will be constant at all points along 
the circle.  If more than one conductor carrying current is present, such as in a cable, the 
magnetic field at any point will be the vector sum of the fields from each conductor.  The 
magnetic field will now vary at different points along a circle around the cable, in contrast to 
the single-conductor case.  This variation in magnetic field magnitude and direction contains 
information about the current density distribution inside the cable.  When current probe 
measurements are made, this information is lost by the summing properties of the probe.  To 
visualize this effect, note that each turn of the toroid responds to the magnetic field at a 
specific location around the cable.  Because the turns are connected in series, the probe as a 
whole responds to the additive sum of the currents in the cable.  CDT preserves the 
information available in the field variations around the cable and uses it to compute the 
current density distribution inside the cable. 

Multiple Line Source Approximation 

The field distribution described by equation 1 is generally used for long conductors, but is 
reasonably accurate for measurements taken very close to short conductors.  In the present 
analysis, it is assumed to be adequate, and the problem is reduced to two dimensions.    A 
cross-sectional view of the cable would show the conductors as point sources with the field 
from each source obeying equation 1.   Calculation of the total fields around the cable can be 
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accomplished by establishing an origin at some point inside the cable (typically at the center) 
and adding the vector field from each source. At a single point the equation for the magnetic 
field is 

Hp=I,*Gpl + I2*Gp2 + I3*Gp3 + 14*0,4 + ... 

where H„ is the magnetic field at point p, 
Gm is the geometrical factor relating wire m to point p, and 
I„ is the current flowing in wire m. 

Choosing the number of field measurement points equal to the number of conductors in the 
cable results in a solvable set of linear equations. 

37 = i? (2) 

Grm~ 

sin(-|-a) 
2Tl-J?m 

(3) 

a=sin r-j—s .   sin(em-6p) 
/Am   Jm 5 (4) 

SpW U„-xp) 2+ (ya-yp)' (5) 

ep=tan"1 6m=tan"1 (6) 

where x,, yp  = x and y coordinates of measurement point p 
and x,,,, ym = x and y coordinates of wire m. 

Once the measurement data is obtained, the system can be solved for the unknown currents. 

G^ H= I (7) 
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This matrix solution appears at first glance to be solvable for any distribution of currents 
because the number of measurements equals the number of unknowns. However, it is in 
general a poorly-conditioned matrix, and for systems of only 50 conductors may have a 
condition number of 100,000 or more. With such high condition numbers, the system is 
extremely sensitive to measurement errors. Random magnetic field measurement errors of 
0.1%, for example, may result in completely useless current predictions with errors of 
1000%.  It is possible to improve the accuracy of the predictions by taking more 
measurements (overdetermination), and performing a least squares fit of the data. 

A more fundamental issue is whether or not this point source approximation is useful for 
estimating currents in biological tissues.  In reality, biological tissues will have a more or less 
continuous distribution of current rather than a set of point sources as in the case of a cable. 
Approximating this current distribution as a set of point sources can lead to completely 
erroneous results even though an apparent solution to the matrix equation may be found.  The 
reason for this result is an inherent singularity in the problem which will be discussed later. 
Evidence for this problem can be found by performing a mathematical experiment.  First, 
assume that a cylinder is divided into eight sectors as shown in Figure 1, and that the current 
density is constant within each sector.  For a point source approximation, the current in each 
sector can all be assumed to be Concentrated at a point at the centroid of the sector.  Using 
this approximation, the magnetic field at any point outside the cylinder can be calculated with 
equation 2.  Assume that this approach is used to calculate the fields at four points around the 
cylinder.  Next, combine each pair of sectors to form four large sectors.  The current must 
now be approximated as point sources located at the centroids of the new large sectors. If 
equation 7 is now used to calculate the current densities in the four large sectors, the expected 
result is the weighted average of the current densities in the two original sectors (to conserve 
total current).  However, a completely erroneous result is obtained indicating that point 
sources are not a good approximation for continuous distributions in this formulation. 

Constant Current 
Density Sector 

Centroid 

Combined Sector^ 

New Centroid,, 

Figure 1.  Point source approximation of regions with constant current density. 
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Constant Current Density Region Approximation 

A refinement of CDT can be obtained by assuming that the current density is constant within 
specified regions and integrating across these regions to calculate the field values at the 
measurement points. 

'J-(r) H-Lf(*M-dA (8) 

where J(r) is the current density and r is the distance from the integration point to the 
measurement point. Because the magnetic field from each point is a vector quantity, the form 
of the integral will depend on the component of the field measured. Good results are often 
obtained by placing the origin near the center of the current distribution and measuring the 
component of the magnetic field in the theta direction (cylindrical coordinates).  Then, 

1  ff rp± -r-cosiOpt -6) _ 
(?,-,• = -rr^ll — — rdrdd (9) 13     2nJJ r2+rD,2-2TTD-cos(6D,-e) r2 + rp/ -2-r-xp-cos {Qp±-Q) 

where rp and ©p are the coordinates of the measurement points, and the integration limits are 
determined by the boundaries of the constant current regions.  In this form, the matrix 
equation relates the measured field values to the current density in each region. 

S7 = 3? (10) 

Singularities in the Matrix Solution 

The G matrix formed using equation 8 produces an exact relationship between the current 
densities and fields if the current densities are assumed constant within the specified regions. 
This result contrasts with the point source approximation of equations 2-7 which was shown 
to be a poor representation of the same constant current density regions. The reason for the 
errors and ill-conditioning of the point source formulation now becomes clear—the G matrix 
formed using equation 8 is singular. It does not contain enough information to solve for the 
current density distribution inside the cylinder. 

It is important to distinguish clearly between the two cases. When localized currents (such as 
in a multi-conductor cable) are considered, the point source formulation is accurate and is 
generally not singular. Although it typically produces an ill-conditioned matrix, least-squares 
fitting can usually be applied to obtain a solution. Using point sources as an approximation of 
constant current regions, however, introduces an intrinsic error because the exact formulation 
is singular. It is possible to find a solution to the point-source approximation problem that is 
completely erroneous. 
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The singularity occurring in the exact formulation represents a fundamental property of 
equation 1 rather than simply a numerical challenge.  Consider a coaxial cable with current 
flowing in the same direction through both the inner conductor and outer shield.  The 
magnetic field distribution around the cable will be constant just as in the case of a single 
conductor.  It is impossible to determine, using magnetic field measurements outside the 
cable, how much current is flowing on the inner conductor and how much is flowing on the 
outer conductor.  For example, 3 amps on the inner conductor and 2 amps on the outer 
conductor will produce exactly the same magnetic field distribution outside the cable as 1 amp 
on the inner conductor and 4 amps on the outer conductor.  Any cylindrical symmetry in 
current distribution or conducting medium represents a singularity in the matrix equation.  A 
point-source approximation for the coaxial example could be developed, but would only be 
solvable because it fails to represent the complete symmetry of the problem. 

Solution Methods 

Solution of equation 10 in the above form was shown above to be impossible.  More 
information is required before the system can be solved for the unknown current densities. 
Shown below is the matrix equation for a cylinder split into four pie-shaped regions with four 
measurement points outside the cylinder. 

9n 9i2 913  9u 'Jl X 
921   922    923    924 J2 "2 

931   932    933    934 J3 #3 

941   942   9«   944. kl kl 
(11) 

Current densities are constant within each 
pie-shaped region, but may differ from one region 
to the next 

Figure 2.  Cylinder divided into four or eight pie-shaped regions of constant current density 
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The singularity in the G matrix can be circumvented in this case if the total current flowing 
through the conductor is known.  This information can be obtained using a current probe or a 
field measurement at a large distance. Substituting an equation for the total current in place 
of one row of the matrix equation removes the singularity. For this example, assume that the 
total current is ITOT. and that the areas of the pie-shaped regions are A^ A2, A3, and A4. 

9ii 9i2 Sis 9i4 

921 922 923 924 

93l 932 933 934 

■^1 ^2 ^3 ^4. 

[jll -»i' 

*2 «2 

J3 "z 

k .JOT. 

(12) 

The method shown here can be used for any number of pie-shaped regions such as those 
shown in Figure 2 .  Varying the location of the measurement points will vary the condition 
number of the matrix in equation 12 which will be called G'. In general, the condition 
number of G' increases as the number of regions increases, but overdetermination and least- 
squares fitting can be used to obtain accurate results. 

An obvious limitation of the above technique is that pie-shaped regions may not offer a 
reasonable discretization of a particular problem.  Smaller regions in more compact shapes 
are generally desired.  The best method for defining better regions while maintaining 
awareness of the singularity problem is to use concentric rings to subdivide the pie-shaped 
regions (Figure 3 ).  It is important to note that the number of singularities in the G matrix is 
equal to the number of groups of concentric regions.  The case shown in Figure 3 has two 
sets of concentric regions resulting in two singularities.  Equation 12 illustrates a technique 
for eliminating one of the singularities, but not both.  As described earlier, any singularities 
resulting from concentricity or cylindrical symmetry are fundamental to the field equation, 
and cannot be circumvented numerically. 

The eight regions shown 
represent two concentric 
groups 

Figure 3.  Eight regions of constant current density comprising two concentric groups 
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Before discussing a technique for examining the range of possible solutions, it is worthwhile 
to revisit the meaning of the singularity. Each group of concentric regions may carry some 
amount of concentric current or current that occurs equally in all regions of the group. This 
concentric current is equal to the minimum current that occurs in any region of the group. 
The sum of concentric currents from all groups is exactly the amount of indeterminacy of the 
problem.  For example, if the region with minimum current in the inner group carries 2 amps 
while the region with minimum current in the outer group carries 3 amps, the problem will 
have a total concentric current of 5 amps.  Using only field measurements outside the 
cylinder, it is impossible to tell what fraction of this concentric current occurs in the inner 
and outer groups of regions.  CDT as a technique is only capable of determining the amount 
of concentric current and the distribution of non-concentric current. 

Important information about the distribution of non-concentric current can be obtained by 
further modifying the G matrix.  For the case of two concentric groups of regions, the matrix 
will still be singular after modification to the G' form of equation 12.  If an assumption is 
made about the total amount of current flowing in the outer group of regions, a new equation 
can be included in the G' matrix equation to remove the remaining singularity.  This current, 
IOTOT> 

can onty assume values between zero and ITOT.   IOr0T can be varied in the G" 
matrix equation below to examine the range of possible solutions. 

9n 9iz ffl3 9l4 9l5 9l6 9n 918 

92i 922 923 924 925 926 927 928 

931 932 933 934 93S 936 937 938 

9u 542 943 944 945 946 947 948 

95i 952 953 954 955 956 957 958 

96i 962 963 964 965 966 967 96B 

0 0 0 0 As ^6 A, ^8 

Al *2 ^3 A4 As ^6 A, ^8 

[Jl '  »i  ' 

J2 H2 

J3 *3 

JA Ht 

Js #5 

Je #6 

Ji I®TOT 

W TOT, 

(14) 

Equation 14 yields a wide range of possible solutions for J.  The range can be narrowed by 
making the assumption that current in all regions is positive.  This assumption is valid in 
many cases including current injection or currents induced by unidirectional electric fields. 
For currents induced by magnetic fields, a different approach must be taken which is not 
discussed here.  The positive current assumption is used by eliminating all solutions which 
produce any negative current density values.  This approach reduces the indeterminacy to 
exactly the total amount of concentric current flowing in the cylinder (see Figure 4).  If at 
least one region in each group of concentric regions has zero current density (no concentric 
current), then there will be only one non-negative solution and it will represent the actual 
current distribution in the cylinder.  This technique can be generalized for any number of 
groups of concentric regions, but preserving the symmetry of the problem is important so that 
the singularities can be systematically removed. 
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negative values can 
be eliminated so that 
the range of solutions 
is equal to the 
amount of concentric 
current. Variations 
are larger for the inner 
regions because the 
concentric current is 
concentrated in a 
smaller area. 

All concentric current located in outer region 
Concentric current divided between inner and outer region 
Actual Solution 
Concentric current divided between inner and outer regions 
All concentric current located in inner region 

Region number 
(0-3 are an inner 
groupwhile4-11 
are an outer group) 

Figure 4.  Range of possible solutions for a twelve region case with 2 A of concentric current 

Discussion 

The CDT technique described here can be used to obtain information about inhomogeneities 
in the current distributions in various objects, and may serve as a valuable adjunct to 
computational techniques.  Although the absolute magnitude of the current densities cannot be 
determined in most cases, information about the relative magnitudes can be found. In some 
instances, case-specific assumptions about the distribution of concentric current can be used to 
further narrow the range of possible solutions.  Current Distribution Tomography offers the 
distinct advantage of being non-invasive and relatively easy to implement. 
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