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von WISPR FAMILY PROCESSORS: VOLUME 1 

1.0 INTRODUCTION 

The philosophical approach that is taken in this document and in all of the fluctuation-based 
processing research that is reported herein is that there is an important class of signal processing 
situations of interest to the Navy where the signal of interest fluctuates in amplitude and phase less 
than other signals that are not of interest (clutter) and noise. A signal processor, or signal process- 
ing algorithm, that discriminates against (or attenuates) the highly fluctuating signals and noise less 
than the signals that have much smaller fluctuations can be of considerable value to the Navy. The 
von WISPR (Wagstaff's Integration Silencing PRocessor) Family Processors perform in that man- 
ner, and their potential value to the Navy (as well as the signal processing community in general) 
is, in a small part, reflected in this document. The significance of this processor family is that 
previously unimaginable gains in signal processing performance are achieved through exploitation 
of a new or third signal processing dimension. This new dimension is essentially independent of 
the two dimensions of frequency binwidth resolution (spectral domain) and aperture size (spatial 
domain) which have in many cases already been exploited to practical limits. As a result, some of 
the signal processing needs not currently met by techniques limited to the two dimensions of the 
spectral domain and spatial domain, may be satisfied when fluctuation gains are added. Addition- 
ally, the size of the von WISPR Family Processors presented herein is evidence that there is more 
than one way to exploit fluctuations and that the area of fluctuation exploitation is fertile territory 
for new techniques, methods, and applications. 

A cogent example of the von WISPR Family Processors' capabilities is provided by the data 
in Fig. 1.1. Processing for both plots in that figure is for the conventional average power, top-curve 
designated average power processor (AVGPR); one of the von WISPR Family Processors, middle- 
curve designated FILTER; and the submerged source detector, designated DETECTOR. The left 
plot (projector on surface) has fluctuations characteristic of High Fluctuation Amplitude Tonals 
(HIFAT) or surface ship clutter signals and noise. The right plot (projector submerged) has fluc- 
tuations characteristic of Low Fluctuation Amplitude Tonals (LOFAT) from a submerged source. 
The detector curve will approach 0 dB (usually less than 1.5 dB) on the DETECTOR curve when 
a submerged source is present. This occurs near "A" in the projector submerged plot, indicating a 
submerged source, whereas no detection of a submerged source is indicated in the projector on 
surface plot, just as it should have been. In all aspects, the two projectors and the environmental 
conditions were identical with the exception that one projector was near the surface and the other 
was submerged. 

1.1 Essence of the von WISPR Family Processors 

The essence of the von WISPR Family Processors is embodied in Fig. 1.2. The objective of 
the measurement for which the results in Fig. 1.2 correspond was the unalerted detection and 
identification (i.e., classification) of a projected tonal from a distant submerged source. 
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Figure 1.2a contains the beam number versus frequency plot from about 2 min of data acquired 
by a towed array. Beam numbers are along the x-axis and frequency is along the y-axis. The 
frequency range is 0 to 20 Hz. The color scale at the right of the plot gives the relative average 
power levels. Sounds arriving at the array from broadband sources such as ships will appear along 
vertical lines at a given beam number. There are at least five distinct sources (i.e., ships) in this 
plot (e.g., along beam numbers 2, 26, 80, 128, and 256). There are considerably more individual 
sources in the data, but this frequency beam number plot is not the best format for detecting them. 
However, it does give a qualitative representation of the signals and noise at the time of the 
measurement. There are many local maxima in this surface plot which could be the projected tonal, 
but from this plot there is no way of determining which one of them it could be. 

Figure 1.2b is a plot that is similar to the frequency beam number plot in Fig. 1.2a, except 
instead of the average power level being plotted, the location in frequency beam number space is 
plotted for signals identified to be from submerged sources. Identification is based on an appropri- 
ately thresholded value of the difference between the average power level and the WISPR filter 
result (Aoi processing, explained more fully in Sec. 2.0). The single dot at 15 Hz and beam number 
101 is the only frequency beam number bin of the 5 x 104 bins covered by the plot that has been 
classified by the Aoi processor, one of the von WISPR Family Processors, as being a bin that 
contains a signal from a submerged source. Hence, Fig. 1.2b is a zero clutter display that eliminates 
all clutter, not just suppresses it. 

Figures 1.2c and 1.2d give processing results for a horizontal cut across the average power 
level surface in Fig. 1.2a at 15 Hz and a vertical cut along beam 101. The top curves in each of 
these plots are the corresponding power level versus beam number and frequency curves, respec- 
tively. The middle curves in these two plots are the corresponding WISPR Filter (one of the von 
WISPR Family Processors) results. When these two WISPR Filter curves are compared with the 
corresponding average power curves, there is an obvious suppression or vertical displacement to 
lower levels for the WISPR Filter curves than for the average power level curves. That suppression 
can be the source of gain if it is greater for noise than for signals. Such is the case for stable or 
submerged source signals, of which one is clearly evident at 15 Hz in the spectral plot of Fig. 1.2d. 
The submerged source signal at 15 Hz has nearly the same level at beam 101 in the average power 
level curve (top) as it has in the WISPR Filter curve (middle), while the other areas of the WISPR 
curve are suppressed about 8 dB. Hence, there is a signal-to-noise ratio (SNR) gain for the submerged 
source signal at 15 Hz of about 8 dB. 

The WISPR Filter curve (middle curve) in Fig. 1.2c shows higher resolution than the average 
power level curve (top curve) and provides an average suppression level of about 9 dB, except near 
the peak at beam number 101 where the two curves nearly touch. It is interesting that the single, 
large peak in the average power level results, which ranges from about beam numbers 75 to 105, 
is divided into four smaller and narrower peaks in the WISPR Filter results. This demonstrates a 
significant enhancement in spatial resolution of the WISPR Filter processor when compared to the 
AVGPR. Similar enhancements in spatial resolution are evident at other beam numbers in this plot. 
There are corresponding enhancements in frequency resolution in the frequency spectrum plot in 
Fig. 1.2d, but because of the frequency scale, they are not as noticeable as they are in the beam 
results in Fig. 1.2c. 

The bottom curves in Fig. 1.2c and d are the submerged source curves that identify the beam 
number (Fig. 1.2c) and the frequency (Fig. 1.2d) at which there is a signal from a submerged 
source. The indicator that identifies those submerged source signals is the location on the plots 
(e.g., beam number or frequency) where the submerged source curves are less than 1.5 dB. That 
happens in Fig. 1.2c at beam number 101 and in Fig. 1.2d at a frequency of 15 Hz. Correspondingly, 
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the submerged source signal is plotted as a dot in the "A0i submerged sources" plot in Fig. 1.2b 
at the frequency and beam coordinates of 15 Hz and beam 101. 

The submerged source is not visible in the frequency beam number average power level surface 
plot in Fig. 1.2a, even though the exact coordinates are now known (15 Hz, beam 101). Similarly, 
knowing the exact beam number of the submerged source signal does not aid in locating it in the 
average power level curve of Fig. 1.2c. There is no visual evidence in that curve of the existence 
of a local maximum near beam 101 that could be a signal. Obviously, the SNR is too small (i.e., 
below the minimum detectable level). However, the resolution-enhancing character of the WISPR 
Filter has divided the largest maximum (between beams 75 and 105) into four local maxima, the 
farthest one on the right (beam 101) being the submerged source signal. 

The particular processor of the von WISPR Family Processors that was used in this example 
(the WISPR Filter) has identified a submerged source signal, both reduced and eliminated all of the 
clutter (all other signals from surface ships), increased the resolution, and provided a SNR gain 
enhancement of about 8 dB. The techniques, equations, and algorithms that were used to produce 
those results are presented and discussed in various sections of this report. In addition, there are 
other members of the von WISPR Family Processors that are introduced and discussed within this 
report, many of which produce even more impressive results than those in Fig. 1.2. 

1.2 Fluctuation-Based Processors 

The specialized branch of science and technology, underwater sound, has received the attention 
of many investigators, each with varied objectives. In regard to the practical objectives of the Navy, 
much attention has been devoted to the development of techniques involving processing algorithms 
and hardware that can classify, detect, and locate signal sources in operational environments con- 
taminated by noise from myriad sources. Much emphasis has been placed on methods that can 
achieve better spectral and spatial resolution, and gain improvements in the SNR. There are many 
such methods, e.g., large hydrophone arrays, averaging over time, deconvolution with matched 
filters, several types of coherent processing, and matched-field processing. The SNR gains that can 
be achieved by many current methods quickly reach practical limits as a result of signal time 
instabilities, signal spatial incoherence, operational impracticality, and insufficient knowledge of 
environmental information upon which many sophisticated signal processors are necessarily based. 
Therefore, any technique that can provide additional gain and resolution, particularly in conjunction 
with existing methods, can be expected to find a wide range of applications. "Fluctuation- 
based processors," a term derived from their unique response to fluctuating signals as opposed to 
relatively stable ones, offer just such a technique. 

Once it was realized that certain forms of processing can strongly attenuate fluctuating signals 
in favor of the steady signals, thus giving a gain, work was undertaken to demonstrate this for 
signal magnitude fluctuations in many different environments and myriad applications. It was later 
realized that fluctuations in signal phase also offer additional opportunities for exploitation. Work 
exploring this area quickly generated the understanding that the fluctuation processor summations 
would, of necessity, require preprocessing to ensure that the steady, tonal signals were in phase. 
This has given rise to a class of coherent, fluctuation-based processors. Although all of these 
processors are particularly important for the detection of submerged signal sources, they are certainly 
not limited to this area. They will find applications in any situation that produces differentiated 
fluctuation levels between signals and noise. 
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This report is intended to provide a reasonably comprehensive overview of investigations that 
have been made demonstrating the viability, capability, and features of fluctuation-based processors 
in a wide range of applications. The comprehensive nature of this report has required an abridged 
presentation of the original investigations that have been conducted. The reader interested in more 
detail about some of the topics addressed may refer to the publications listed m App. B (these are 
not specifically cited otherwise in this report). It is believed that study of this report will reveal that 
several of the applications presented have required imagination to determine that fluctuation-based 
processors are applicable. Indeed, it is quite possible that many other such applications await 
discovery limited only by the research community's familiarization with and acceptance of these 
processors and by its time and resources. One of the chief obstacles to acceptance of these processors 
by the signal processing community is their utter simplicity, which appears to lack appeal to the 
sophisticated tastes of that community. 

Many new and exciting results have been obtained by these potentially important processors, 
typified by WISPR which improves SNR gain of signals from submerged sources as depicted in 
the cartoon shown in Fig. 1.3. Analysis of acoustic data from literally all over the world, obtained 
from real operational environments, support this view. In a limited number of cases, to have better 
knowledge of the characteristics of the data, simulations have been used. However, as most con- 
clusions reached rely on observations with real data, the capabilities described can be expected to 
function in real environments that are strategically and tactically important to the Navy. 

To classify, detect, and locate sources of interest and to minimize the number of analysis errors, 
signature signals must be efficiently extracted from among the ambient noise, much of which may 
be present at signature frequencies. One type of information more or less independent of frequency 
and signal magnitude, encoded by nature at the time of generation and during transit to a receiver, 

Fig. 1.3 —WISPR Filter improvement depth range 
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is Signal fluctuation. Fortunately, for the purpose of classification, detection, and location of 
submerged sources, fluctuation level is strongly associated with the source depth. In fact, signals 
arriving from multiple distant surface sources, such as commercial shipping, have sufficiently high 
fluctuation levels that they are easily removed (through suppression or outright elimination) 
by fluctuation-based processors. More than 20 examples are presented throughout the course of this 
report. 

One way of stating an objective that is strategically important to the Navy is that conditions 
arise wherein it is highly desirable to increase the signal excess or SNR gain of LOFAT signals 
relative to the background noise and HIFAT clutter signals and noise. The cartoon shown in Fig. 1.3 
illustrates qualitatively that this occurs at mid-range depths. Insufficient research has been com- 
pleted up to now to provide quantitative definition of the depth dependence of signal fluctuation 
levels. However, qualitatively, sufficient depth dependence has been observed to indicate that 
future investigation of this area could be quite productive, at least in well understood environments. 
One observation of importance, somewhat surprising in view of the manner in which fluctuations 
are induced, is that these processors have been shown to produce favorable results for some types 
of data even in what is generally considered to be shallow-water environments (e.g., 150 m). 

1.3 Fluctuation Processing: Signal and Noise Suppression 

A visual representation of how the WISPR Filter exploits fluctuations to achieve gains is 
provided by the two data sequences in Fig. 1.4. The top sequence represents seven power levels that 
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will be used to represent a LOFAT signal, in that the spread in the data points is relatively small 
suggestive of low fluctuation amplitudes. The conventional averaging processor (AVGFK) and 
WISPR levels are designated at the appropriate locations relative to the power level axis. The lower 
sequence of seven points is much more spread out and is used to represent a HIFAT signal or 
typical noise The AVGPR and WISPR levels are also designated at the appropriate locations 
according to the power level axis. For this example, the data points have been chosen in such a 
manner as to have equal AVGPR values. That being the case, the SNR gain of the WISPR processor 
would simply be the decibel difference between the WISPR suppression level relative to the AVGPR 
level for the noise (48 dB) minus the corresponding WISPR suppression level for the signal (9 dB), 

or 39 dB. 

Although gains achieved with actual data may be somewhat less than in this hypothetical 
example the anticipated results should be clear. The signal and noise data sets may have any 
consistent origin, e.g., the spectra from Fourier transforms of sequential data sets, a series of 

beamformer outputs, etc. 

1.4 Organization of the Report 

This report is intended as a survey of the results of several years of ongoing efforts in the 
development of fluctuation-based processors. Various nomenclature which may have been used 
earlier has been standardized to clarify the presentation. The nomenclature is introduced in Sec. 2.0 
along with the definition of most processors, devoid of unnecessary developmental details. Most ot 
Sec 2 0 is repeated in App. A where more detail is presented relating to the origin, rationale, and 
mathematical properties of these processors. In that appendix, quantitative results are presented 
relating to a wider range of processors than the semi-quantitative presentation of Fig. 1.4. Sec. 10.0 
contains a discussion relating to evaluation techniques for these processors, and during that discus- 
sion, another rather convincing example is provided showing how these processors differentiate 
between the fluctuation levels of steady tonals and fluctuating signals and noise. 

The initial presentation in Sec. 3.0, centered on the WISPR Filter, explains the motivation to 
pursue the development of the WISPR Filter and related processors. Examples for mechanisms that 
produce acoustical fluctuations in the ocean are discussed along with a rationale for their distribu- 
tion in depth. Quantitative processor response to the fluctuation level of noise and steady tonals is 
provided through simulations wherein the data set statistical properties are known, followed by 
several examples of detection of steady tonals from known submerged sources. The most important 
properties, such as SNR gain and resolution enhancement, are demonstrated. 

The concept of fluctuation processor order, k, is introduced for the Advanced WISPR SUMmation 
Filters (AWSUMk) and demonstration of their abilities for acoustic as well as nonacoustic data is 
presented A method for data presentation and interpretation that allows a robust determination of 
the detection threshold setting is presented with numerous examples which show that known sub- 
merged sources are actually detected, often at multiple frequencies, even in the presence of noise 
at levels nearly equal to the submerged source signal strength. The fluctuation statistic, standard 
deviation may be used in conjunction with the WISPR Filter to produce additional SNR gain. 
Examples' for this new class of filters, the WISPR IIk Filters, are presented for several types of data 
and for the AWSUM4 Ilk Filters. Dramatic suppression of noise produced by the clutter tonals 
associated with surface shipping is presented. 

Although the detection of submerged sources has been presented as one of the main motivations 
for WISPR and related filter development, additional applications of merit are described and 
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demonstrated including tolerance to masking by intermittent, high-level electronic noise; tolerance 
to transients such as seismic prospecting; and compensation for fluctuations introduced at the 
receiver, e.g., from receiving array meanders during towing. These topics are treated in the section 
describing typical WISPR Filter applications. Several advanced applications of the WISPR Filter 
show how it may be coupled with other well known forms of processing, such as matched-field 
processing, matched filtering, and active barrier detection. WISPR processing is illustrated as a 
preprocessor substitute for noise spectrum equalization (NSE) algorithms and in conjunction with 
tactical decision aids such as the gram chart. These topics provide a feel for the breadth of the 
applications that should benefit from the utilization of fluctuation-based processors. 

Coherent processing is described in Sec. 8.0 for two types of beamforming. One is a WISPR 
preprocessor to a cross-spectral density matrix beamformer (WCSDM) and the others are the unique 
beamformer post processors and the WISPR IIIk processors. These processors exploit the fluctua- 
tion content of the phase information as well as the magnitude. In Sec. 9.0, WISPR processing is 
shown to enhance the performance of two other processors that were independently developed to 
improve beamformer spatial resolution, the Wagstaff-Berrou (WB2) and the Directivity Improved 
Estimate Technique (DIET) algorithms. DIET, in combination with the WISPR Filter (denoted the 
DIET WISPR algorithm), is an especially good example of a signal processing gem that is quite 
obscure. It is unlikely that such applications will be developed universally until the properties and 
advantages of fluctuation-based processors are widely distributed, understood, and universally accepted 
by the signal processing community. 

Finally, in Sec. 10.0, the detection index (DI) and receiver operating characteristic (ROC) 
curves are investigated as measures of fluctuation-based processor SNR gain. When evaluated for 
data having the types of distribution actually associated with ocean acoustic noise, each of these 
measures indicates that the WISPR and related fluctuation-based filters perform considerably better 
than the AVGPR processor. The rationale for this is presented, along with an explanation of why 
(under some conditions) they both fail to produce results that can be interpreted meaningfully. The 
failure is associated with the low SNR levels of approximately 0 dB and less—the very region 
where the WISPR filter can detect submerged sources that are simply not indicated at all by the 
AVGPR processor. For this reason, the signal excess of fluctuation-based processors (e.g., WISPR 
Filter) is believed to be a better measure of the SNR gain. In any case, for the evaluation of 
fluctuation-based processors, better measures of performance are needed than historical benchmarks 
such as the DI and ROC curves. 

2.0 EQUATIONS FOR SEVERAL RELATED AND EFFECTIVE PROCESSING ALGORITHMS 

2.1 Introduction 

To interpret data, particularly when in the form of rapidly acquired real-time data streams, it 
is both reasonable and necessary to develop methodologies (algorithms) that reduce the original 
data to more easily interpretable (derived) quantities. The statistical community commonly com- 
putes familiar quantities, such as measures of central tendency (e.g., average), standard deviation, 
and higher order statistics. A somewhat more detailed development of the relationships introduced 
below is given in App. A. The equations presented here are all for power in the original data units. 
Subsequently, in this report, for effective plotting and other reasons, the symbols defined here will 
be used interchangeably when the values are convertered to decibels (note divisions become sub- 
tractions when these quantities are in decibels). It is intended that the context in later discussions 
will enable the reader to make the appropriate distinction. 
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Some of the computational methods pertinent to this report are evolved from the generalized 

function 

M =Mr(a) = 
J = n 

1    v      r 
— 2s a. (2.1.1) 

Where the data stream is the sequence, a 

a = (ai,a2,a3,...a„), aj > 0. (2.1.2) 

Because of the possibility of numerical overflow, use of Eq. 2.1.1, when r < 0, is restricted to 
nonzero data values. Two practical approaches that avoid numerical overflow are: (1) to force 
nearly zero values to a small, numerically convenient value, or alternatively (2) to simply delete 
any data less than a small, numerically convenient value from the original data set. The latter 
approach is preferred as it also provides for automated removal of data from periods of time where 
the data acquisition system is malfunctioning or otherwise unavailable without biasing the results 
obtained from the data actually processed. As analog to digital (A/D) converters are not usually 
significant in the lowest order bits, a logical choice is to set this minimum value of a,- to the value 
implied by some small multiple of the A/D converter least-significant bit. 

Equation 2.1.1 can be used quite generally, and for particular choices of r, defines several 
familiar statistical quantities.1 For example, compare 

When r = 1, the average is: aavg = M,= 
j = " 

-I«; 
y=i 

when r = 2, the root mean square is: arms = M2 = 

j = n 
1 V     2 
- L a 

when r = -l, the harmonic mean is: aharm = M_\ = 

J -n 1 v   -1 
- 2, a 

Though not obvious from the above, the geometric mean, ageom, is identically equal to Afn. 

2.2 Magnitude Order in Decibels 

It can be shown1 that the magnitude order in decibels with the original data in power is 

dB(aharm) < dB(ageom) = dB(aavg in dB) £ dB(aavg) < dB(arms) . (2.2.1) 

Similarly, the decibel magnitude order is preserved for other values of r, a property which is 
extensively utilized by fluctuation-based processors. 
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2.3 The Conventional Processor/Filter (ÄVGPR) 

The average power is referred to as the conventional processor or filter. Thus, when the sequence, 

a, is power, average power is 

AVGPR = M\. (2.3A) 

2.4 Fluctuation-Based Processors/Filters Equal to Mr 

2.4.1 The WISPR Filter 

When the sequence, a, is power, then 

WISPR = M-\. (2A1) 

It may be noted that WISPR is notationally equivalent to AWSUM\ below. 

2.4.2 The AWSUMk Filters 

Usually, for k = 2, 3, or 4, when the sequence, a, is power, then 

AWSUMk = M-k . (2-4.2) 

2.5 Fluctuation-Based Processors/Filters Derived from Mr 

Several processors that are related to the Mr class may be obtained by simple combination of 
those described previously. 

2.5.7 The Aok Processors 

Examples for Aok processors, for k = 1 and 4, are 

Aoi = AVGPR/WISPR = Mi/M_i , (2.5.1) 

Ao4 = AVGPR/AWSUM4 = Mi/M_4, (2.5.2) 

or more generally 

A0k = AVGPR/AWSUM4 = Mi/M-k. (2.5.3) 

2.5.2 The Ajk Processors 

The Ajk processors, for j =1 and k > 1, are defined as 

A\k= WISPR/AWSUMk = M-\/M-k, (2.5.4) 

and for j > 1 and k > j are defined as 

Ajk = A WSUMj/AWSUMk = M_,-/W_* . (2.5.5) 
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3.0 FUNDAMENTAL CONCEPTS OF FLUCTUATION-BASED PROCESSORS 
nXUSTRATED WITH WISPR 

3.1 Introduction 

The terminology, "fluctuation-based processors/filters," stems from their unique response to 
fluctuating signals as opposed to relatively stable ones. One motivation to pursue development of 
filters that exploit fluctuations to enhance the performance of signal processors is provided by the 
results from a relatively simple experiment which dramatically demonstrates the nature and presence 
of signal fluctuations. Figure 3.1 illustrates two different types of fluctuations in a sonar system 
output. The left side of the plot shows the amplitude time series from a narrow-band processor 
during a time period when a signal from a deep underwater sound projector was being received by 
a deep sensor. The total amplitude excursion is approximately 2 dB during the time required to 
collect the 68 samples designated as "signal." Only ambient noise was present beyond sample 69 
after the projector had been turned off. The difference in the character of the amplitude fluctuations 
of the remaining signal (ambient noise) should be of great interest. The excursions in the amplitude 
during the noise period are approximately 7 dB and are of a much more erratic character than 
those during the previous signal part, even though the underlying ambient noise was still present. 

Figure 3.2 illustrates one mechanism that generates fluctuations in signals that originate near 
the sea surface from such sources as ships. As ray paths reflect off the moving sea surface, the 
reflection angle will change, causing ray bundle splitting and different ray paths with different 
lengths. As the split-off ray paths travel through a cycle and return to the surface, they will be 
varying degrees out of phase and constructively or destructively interfere when recombined. The 
result will be the generation of fluctuations. There are other mechanisms such as internal waves, 
multiple path interference, etc., that also contribute to fluctuations. 

Another interesting example of fluctuations is provided by time histories from six contiguous 
beams due to a double FFT (Fast-Fourier Transform) beamformer shown in Fig. 3.3. The top and 
bottom traces are dominated by ambient noise. The third trace from the top is dominated by a 
relatively stable signal, and the others correspond to varying degrees of signal and noise. The scale 
along the bottom of the plot corresponds to time, and the vertical scale is relative levels. Statistics 
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Fig. 3.1 —Example of sonar system output 
when a tonal is received from a deep 
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RANGE 

Fig. 3.2 — Illustration of ray-path interaction with a moving irregular 
sea surface as a source for generating amplitude fluctuations 

that correspond to each trace are given above each trace. The average power level is AVGPR. The 
WISPR level is designated WISPR. The standard deviation is SIGMA, and DELTA is the average 
power level minus the WISPR level (Aoi = AVGPR - WISPR). The beam number (BEAM) associated 
with each trace is also indicated. 

When considering the temporal character of the traces in Fig. 3.3, the extreme difference 
between the pure signal (beam 70) and pure noise (beams 67 and 72) is remarkable. The noise 
traces have numerous deep fades, while the signal does not. These fades are the fluctuations that 
are caused by the various mechanisms operating on the noise that is radiated by moving ships and 
other sources near the sea surface. The parameter DELTA is a measure of the extent of the fluc- 
tuations. In the case of the signal beam (beam 70), the DELTA is 0.3 dB. The corresponding values 
for the two beams of pure noise is 14 and 10 dB. The DELTAs for the beams adjacent to the signal 
beam are 1.0 and 0.4 dB. Their relatively low values suggest that they are dominated more by the 
signal than by the noise. The reduction in the magnitudes of the fades is indicative of a bottom 
threshold or "floor" being established by a stable signal. 

The two examples just presented should be sufficient to establish that fluctuation levels do vary 
significantly. In this section, several fluctuation mechanisms affecting signals of interest to the 
Navy are presented. There are many contributors to these variations. It is important to firmly 
establish that fluctuation-based filters achieve their benefits through the differentiated effect on 
data in relation to its fluctuation magnitude. The discussions that follow are intended to provide an 
insight into the importance and effectiveness of processors which can robustly differentiate between 
sources having different fluctuation levels. 

The results of investigations utilizing field data, demonstrating myriad applications of these 
filters will be presented in subsequent sections. Here, some of their attractive general properties 
are illustrated by the WISPR Filter, defined by Eq. 2.4.1. The results of WISPR processing of 
synthesized data, of acoustic data from a single phone of a towed line array, and of the FFT 
beamformed output of a horizontal sonar line array are discussed. 

3.2 Fluctuation Amplitude 

If all signal and noise had identical statistics, fluctuation-based processors would be of little 
benefit. However, environments important to the Navy exist that contain signals of very different 
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characteristics. As an example, one characteristic that has been used to distinguish spectral lines 
due to submerged sources from spectral lines, due to sources at the ocean surface, is the amplitude 
of their temporal fluctuations. This is possible since the amplitude fluctuations of spectral lines 
from submerged sources are generally small compared to those of many types of noise and of 
spectral lines from sources near the ocean surface, especially noise from distant shipping. 

3.2.1 Surface Source Fluctuation Mechanisms 

Exclusive of fluctuations induced at the receiver, there are several mechanisms responsible for 
amplitude fluctuations of the sound pressure received from sources located at the surface. Depending 
upon local condition, these may include: 

(a) rocking dipole effect of the radiation directivity pattern of a ship at the sea surface, 

(b) ray-path and wave-front reflection from the moving irregular sea surface, 

(c) interference from multipath arrivals, 

(d) variability in sound generation as the components of the engineering plant of a ship underway 
interacts with seas containing swells, 

(e) variable sea surface height above the source due to sea surface motion, 

(f) source vertical motion, and 

(g) other. 

A discussion of two of these should be sufficient to focus attention on the sea surface as a very 
significant source of acoustic signal fluctuations. The upper subplot in Fig. 3.4 illustrates fluctuations 
that occur from ships at two different locations on the ocean surface, or from the same ship at two 
different times when the surface shapes are different. The temporal history of the sound from these 
surface ships received on a deep sensor is presented in the top insert plot. It shows a fluctuation 
range from 36 to 66 dB. 

The rocking dipole mechanism is illustrated by the radiation patterns (represented by the two 
circles at the stern of each ship) shown in Fig. 3.4. The radiated noise level from each ship 
increases as the radiation angle measured from the tangent to the sea surface increases, being 
maximum perpendicular to the surface and nearly zero parallel to it. As the ship rocks with the 
passing waves and the sea surface changes shape (and reflection angles), amplitude fluctuations are 
induced upon a signal that may already have fluctuations due to other factors, such as an unsteady 
generation mechanism (e.g., motor). Hence, the shape of the sea surface and the response of ships 
to the sea surface could make a substantial contribution to the fluctuation content of sound received 
from sources near the surface. Following this line of logic, one might predict that as the sea surface 
becomes calmer, or as the ship becomes longer, more stable, and has a deeper sound radiation point 
(e.g., propeller), the fluctuations induced due to the ocean surface would decrease. This suggests 
that small ships ought to induce higher fluctuation amplitudes than supertankers. 

Another mechanism is illustrated in Fig. 3.2, where the ray path interacts with a moving and 
irregular sea surface. At one instant of time, the surface has a given reflection angle and speed. At 
a small time later, both the reflection angle and the speed have changed. This results in ray-path 
splitting with a different ray path and Doppler shift for the signal that travels the split-off path. Signals 
arriving together at the surface will have traversed paths of slightly different acoustic length. There 
will be either a constructive or destructive interference that will be compounded with increasing 
range and number of surface interactions. 
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Fig. 3.4 — Noise/signal source fluctuation generation 

3.2.2 Submerged Sources 

A submerged source is also illustrated in Fig. 3.4 with its sound propagation path to the 
receiver. In a typical summer deep-ocean situation, that path would be by continuously refracted 
propagation. In the case of long distances, only those would be detectable. The other paths that 
interact with the ocean surface or bottom would be attenuated too severely to be detectable. The 
corresponding measured time history trace for a submerged source is presented in the bottom inset 
plot of Fig. 3.4. The amplitude fluctuations range from about 78 to 88 dB, a very small temporal 
variation. Because of the greater attitude stability of a submerged source (lack of interaction with 
surface waves), its radiation pattern should be more stable over time than surface ships. 

3.2.3 Fluctuations Resulting from Sensor Motion 

Fluctuations are also induced by mechanisms occurring at the sensor. These mechanisms should 
cause additional fluctuation in signals received, contaminating the signals from both submerged and 
surface sources. The apparent SNR will be decreased by these mechanisms. However, the original 
difference in fluctuation level would still persist. 
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Surface effects - If the sensor is near the surface of the ocean and within the surface decoupling 
range, vertical motion of the sea surface relative to the sensor will change the level of the received 
sound with the change in the decoupling associated with variable sensor depth below the sea 
surface. However, this only applies within the decoupling range, which is about two wavelengths 
(about 300 m at 10 Hz). This depth includes most sonobuoys and sometimes towed arrays. 

Signal angle of arrival at the array - Another form of sensor-motion-dependent fluctuations 
that can affect signals received on arrays, is due to the relative time variation of the signal arrival 
angle at the array, varying as a result of the array motion. Consider the effects that would occur 
as illustrated with the cartoon representation of this situation in the figures used for the following 
discussion. In the case of vertical or horizontal line arrays, the motion may be caused by water flow 
past the array (i.e., towing or currents). The beamformer response to the signal changes as the 
signal arrival angle relative to the array changes, inducing fluctuations in the received signal. 

The two signals, S\ and 52 (as shown in Fig. 3.5), are being received by the array whose beam 
response pattern is given for one configuration as the array moves on a meandering path through 
the water. The azimuthal variability of the sources, in the present context, is considered to be only 
due to the array motion (rotation or distortion, or both). As the relative arrival angles of the sources 
change, the signals received from them traverse regions of the beam response curve that have 
different levels of response. This will induce fluctuations in the received signal that has magnitudes 
that depend on the locations of the signals relative to the beam response curve. For example, signal 
S\ and S2 are at different locations on the response curve. For the small change in angle, A02 of 
52, a larger range in response level is traversed than for the signal Si as it changes in angle A0j. 
This is illustrated by the time history plots in Fig. 3.5 that correspond to the beamformer output 
signals from these two sources. 

As a result of the mechanism of array motion, one would project that the magnitude of the 
fluctuations induced by array motion would increase as the source angle off-beam boresight increases, 
increase with the magnitude of the relative motion and distortion of the array, and decrease as the 
width of the beam increases (aperture or frequency decrease). These effects could be quantified 
theoretically and experimentally. 

3.2.4 Fluctuation Amplitude versus Signal-to-Noise Ratio 

Experience and the previous discussion suggests that the signal from a submerged source will 
have smaller amplitude fluctuations than the signal from a source near the surface. Thus, signals 
originating from a surface source or a submerged source, if free of noise, could be distinguished 
by measurement of the fluctuation magnitude of spectral lines that are not shared. However, noise 
composed of spectral clutter originating from distant shipping (surface sources) and other sources 
is also present. When the submerged source signal amplitude fluctuations are small and the noise 
amplitude fluctuations are large, the magnitude of the combined fluctuations will depend on the 
relative magnitude of the signal energy compared to the noise energy or SNR. To illustrate the SNR 
effect, varying degrees of SNR are shown in Fig. 3.6. In that figure, the addition of signal and noise 
should be interpreted only qualitatively. The signal is shown with small fluctuation amplitude. The 
noise is shown with a much larger amplitude of fluctuation. Four different levels of SNR are depicted, 
from that of being nearly all noise (signal well below the noise) to signal dominated (noise level 
well below the signal level). As the SNR increases, the fluctuation amplitude approaches that of the 
pure signal case. Conversely, as the SNR decreases, the fluctuation amplitude approaches that 
of pure noise. Hence, even though a submerged signal is present, it cannot be identified from a 
consideration of amplitude fluctuations alone. 
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Fig. 3.6 — Fluctuation amplitude versus SNR 

3.2.5 Fluctuation Depth Dependence 

In the case of surface-decoupling-induced fluctuations or those induced as a result of the source 
approaching the surface, it should be possible to estimate the depth of the source (assuming a 
sufficiently high initial SNR). The diagram shown in Fig, 3.7 schematically illustrates this fluctuation 
depth dependence. In principle, in defined environments, it should be possible to develop quantitative 
relationships between the WISPR SNR enhancement, source depth, and source frequency, such as 
is shown schematically in Fig. 3.8. With this information in hand, in addition to determining that 
a source is submerged, it may be possible to estimate its depth as well. In extremely well characterized 
environments, it may be possible to determine the approximate depth of the source, even at low SNR. 

3.3 Fluctuation Modeling 

One mechanism for generating fluctuations is the selective attenuation of acoustic signals (and 
noise) as the ray path proximity to the surface decreases. There are several specific mechanisms 
that behave this way. One is the forward and out-of-path scattering when bubble clouds are encoun- 
tered just below the sea surface. Another is the actual reflection from the moving, irregular sea 
surface. The combined sea and swell can account for more than 4 m change in the elevation of the 
sea surface. Patches of thermal inhomogeneities and internal waves are other possible causes. 

The combined effects due to these fluctuation generators were modeled in an ad hoc manner 
by starting with a broadband signal that was measured by a sensor that was well within a deep 
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Channel of the Northeast Pacific Ocean. Embedded in that broadband signal was a narrow-band 
tonal at 45 Hz. The remainder of the broadband signal was typical of the noise that might be 
measured by a hydrophone in the deep sound channel. Figure 3.9a shows the amplitude time series 
of the measured broadband acoustic pressure. There are several high amplitude transient events that 
are of no consequence for the present discussion. Figure 3.9c shows the spectrum of the broadband 
signal that is represented in Fig. 3.9a. The narrow-band tonal at 45 Hz is clearly evident. In this 
case, the SNR of the tonal is approximately 15 dB. 

Figures 3.9b and 3.9d give ray-trace diagrams for a receiver depth of 100 m and for source 
depths of 6 m and 100 m, respectively. The bottom depths are denoted by the double horizontal 
lines near 5200 m, and the sound speed profiles are to the right of the ray diagrams. Only enough 
ray paths have been included in these figures to give an idea of the characteristic differences 
between ray paths that correspond to the two different source depths. Basically, the most important 
difference is that the ray paths for the 6-m source depth begin near the surface and return to the 
surface after traveling through the water column, at least as deep as a particular ray path goes. On 
the other hand, the ray paths for the 100-m source start well below the surface (100 m) and a large 
number of them do not ever reach the surface during a complete ray cycle. Those latter ray paths 
are the ones that will not be attenuated as much as will the former ones that approach within a few 
meters of the sea surface or reflect from it. It turns out that the ray paths that get near the sea 
surface or reflect from it are the main ones responsible for the fluctuations. 

Figure 3.10a shows the amplitude spread that has taken place in the signal that was originally 
as shown in Fig. 3.9a when the amplitudes of the signal that travel the various ray paths from the 
source at 6-m depths to a receiver at 100-m depth are selectively attenuated, with the severity of 
the attenuation increasing with the increasing proximity of the ray paths to the sea surface. On the 
other hand, the time history of the signal transmitted from the source at 100-m depth and received 
on a sensor at 100-m depth is given in Fig. 3.10c. This figure indicates that there is almost no 
change in the amplitude spread from that shown in Fig. 3.9a. Figures 3.10b and 3.10d give the 
spectra that results from the broadband time histories in Figs. 3.10a and 3.10c, respectively. Of 
particular importance in these two figures is the fluctuation-induced attenuation that has taken place 
in the 45 Hz signal in the 6 m result (Fig. 3.10b), but not in the 100 m result (Fig. 3.10d). The SNR 
of the tonal measured by the sensor at 6-m depth has decreased about 5 to 10 dB, while the SNR of 
the tonal measured by the sensor at 100-m depth has not decreased. Furthermore, the ambient noise 
background in the spectrum for the 6-m depth sensor is more erratic (noisy) than it is in the 
corresponding spectrum for the 100-m depth sensor. The added noisy appearance is a result of 
the fluctuations that were induced by the ray paths that were selectively attenuated as the ray path 
distance to the sea surface decreased. 

Here a minor digression from the point of this section is made to assist a reader unfamiliar with 
interpretation of fluctuation-based processor results. There is a tendency when studying the type of 
plots depicted in Figs. 3.1 la and 3.1 lb for the first time to lose sight of what is actually important. 
One may be initially somewhat overwhelmed by the noisy appearance of the data, especially the 
difference between the AVGPR and the WISPR curves, shown at the bottom of those figures. It is 
precisely the interpretation of this difference that is critical to understanding. Only steady signals 
with low fluctuation can produce nearly convergent results for the AVGPR and WISPR processors. 
This is a direct result of their mathematical properties, discussed in detail in App. A. Therefore, the 
most important detail to observe is the location of those positions where the differences are almost 
zero, rather than being distracted by what appears at first glance to be an unruly data set. 

Figures 3.11a and 3.11b give the results that compare WISPR processing (middle curves) with 
AVGPR (top curves) for a 6-m source depth and a 100-m source depth, respectively. The curves at 
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the bottom of each plot are the differences between the two other curves in each plot. In Fig. 3.1 la, 
the WISPR curve is on the average less than the power average curve. However, at some frequen- 
cies, the differences between the two results are very small. The difference curve at the bottom of 
that'plot indicates that average difference between the average power levels and the WISPR levels 
is about 7 dB. In Fig. 3.11b, for the sensor at 100 m, the average difference is also about 7 dB. 
However, the curves for the average power result and the WISPR result are easily identifiable as 
two separate curves, whereas they are not as well separated in the plot for the 6 m result. Further- 
more, the difference curve in the 100 m result clearly shows that the 45 Hz tonal can be attributed 
to a submerged tonal, while in the 6 m result it cannot. 

This example serves to illustrate that selective attenuation can be a source of fluctuations. In 
this case, signals traveling near the sea surface a subjected to more variability of attenuation than 
those traveling at greater depths. Even though the actual mechanisms were not modeled, this example 
provides some insight into how some of the mechanisms might be handled in a modeling situation 
when attempting to account for the overall effects of fluctuations on a signal processor. 

3.4 An Example of WISPR Response to a Submerged Shallow-Water Tonal and Noise 

A clear example of the way fluctuation processors function is provided by a shallow-water test 
conducted near the Juan de Fuca Strait, off the coast of the state of Washington, in an area where 
the depth is about 145 m and the bottom relatively flat. Steady pilot tonals were produced by a 
moored source at 61-m depth and recorded by the sensors in a vertical array at 100-m depth 
separated from the source by 14.7 km. The acoustic data included tonal and ambient noise. Figure 3.12 
illustrates the temporal history of suppression by the WISPR Filter in shallow water. The left plot 
is noise suppression versus time for a noise frequency bin and the right plot is the pilot tone 
suppression versus time for the tonal frequency bin. Note the difference in the suppression scale 
of each plot. The noise plot has a much larger scale than that of the signal plot. The suppression of 
the pilot tone is sufficiently small so that if it were plotted with the same scale as the noise 
suppression, the details would be obscured. 

The pilot tonal is an example of a signal whose fluctuation level is very small. For all practical 
purposes, the suppression of the pilot tone is negligible, only about 0.001 to 0.015 dB. However, 
the ambient noise, having much greater fluctuations, is significantly suppressed, approximately 4 to 
15 dB. In this case, it follows that the SNR enhancement would be determined almost entirely by 
the magnitude of the noise suppression and be nearly equal to it (i.e., 4 to 15 dB). 

3.5 Gain Improvement Illustrated Using Synthesized Data 

The SNR performance of the WISPR Filter is determined by the fluctuation amplitudes of the 
spectral time series of the signal and the noise. Since the WISPR Filter produces an attenuated 
estimator, with the severity of the attenuation increasing as the fluctuation amplitudes increase, a 
SNR enhancement can be expected when the fluctuation amplitudes of the signal are less than the 
fluctuation amplitudes of the noise. 

Log-normal illustration - To illustrate the SNR enhancement capability of the WISPR Filter, 
consider the case of a propagation medium in which the signal has small amplitude fluctuations in 
the spectral time series. Such a spectral time series can be generated by a log-normal random 
number generator with a mean of any arbitrary value and a standard deviation indicative of a signal 
from a submerged source of about 2 dB. The three plots in Fig. 3.13 correspond to that time series 
for 25,000 points. 
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The right plot in Fig. 3.13 shows the first 300 points of the 25,000 points in the series, the left 
plot is the corresponding histogram of the series, and the center plot is the cumulative distribution 
function (CDF). The mean, standard deviation, skewness, kurtosis, AVGPR, and the WISPR value 
(all in decibels) are listed at the top of the plots. The two diamonds on the CDF plot at 70 and 52% 
correspond to the AVGPR and the WISPR levels, respectively. In this case, the plot and the 
tabulation above the plot indicates that the AVGPR level is about 1 dB more than the WISPR level. 
Hence, a processor that utilized the AVGPR filter would provide an average signal level 1 dB 
greater than one that utilized a WISPR Filter. 

Now consider a similar case in which the fluctuations correspond to something representative 
of ambient noise with, for example, a standard deviation of about 5.7 dB. In this case, the AVGPR 
level obtained from a similar time series of 25,000 points, Fig. 3.14, is about 127 dB, near the 
80percentile level, and the WISPR level is about 119 dB, near the 28 percentile level. Hence, a 
processor that utilized the AVGPR filter would produce an average ambient noise level 8 dB 
greater than one that utilized the WISPR Filter. 

When the results in Fig. 3.13 are considered to be the signal and the results in Fig. 3.14 are 
considered to be the noise, the corresponding SNR for a processor that utilizes AVGPR in decibels is 

(S - N)AVGPR= 128.56 - 126.83= 1.73 dB, 

and for the WISPR Filter in decibels it is 

(S - N)wiSPR = 127.61 - 119.27 = 8.34 dB. 

Hence, the WISPR enhancement over conventional, AVGPR processing is 

8.34 - 1.73 = 6.61 dB. 

The SNR enhancement is independent of the absolute level of the signal or the noise. Although 
only an imprecise estimate of the noise and signal fluctuation level can be obtained for real data, 
in this synthesized case, the two different standard deviations used guarantees that the fluctuations 
are at two different levels. Therefore, as was shown, the controlling quantity of interest is the 
amplitude of the fluctuations, and the SNR gain result is a direct consequence of that difference. 

Chi-squared illustration - A similar test was conducted for Chi-squared distributions for both 
signal and noise. In this case, a signal-like standard deviation (about 2 dB) was achieved with 4° 
of freedom, and a noise-like standard deviation (about 5.8 dB) was achieved with 34° of freedom. 
As before, 25,000 points in each time series were generated. The resulting histogram plots, CDF 
plots, and plots of the first 300 points of the time series are presented in Figs. 3.15 and 3.16. The 
diamonds show the locations of the AVGPR levels and the WISPR levels and their values, along 
with other statistics tabulated above the plots. The SNR determined from the AVGPR in decibels is 

(S - N)AVGPR = 4.56 - 38.63 = -34.07 dB. 

The SNR of the WISPR Filter in decibels is 

(S - N)wiSPR = 3.59 - 30.63 = -27.04 dB. 

Hence, the SNR enhancements of the WISPR processor compared to the AVGPR processor is 

-27.04 - (-34.07), or 7 dB. 
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Comparison - Figures 3.13 through 3.16 for the two different distributions presented show that 
the WISPR level is less than the AVGPR level. The reason for this, discussed in App. A, Sec. A.l, 
is that the AVGPR calculation is biased upward by the high levels in the distribution and are 
relatively insensitive to the low levels, while the WISPR level calculation is biased downward by 
the low values in the time series and is relatively insensitive to the high levels. 

The tendency of WISPR to bias toward low values versus AVGPR to bias toward high values 
can be further visualized by examining Figs. 3.17, 3.18, and 3.19, which are the same as Figs. 3.13, 
3 14 and 3.16 except for additional annotations. Two horizontal lines have been added to the plots 
and two corresponding statistics have been added to the statistics tabulation above the plots. The 
top and bottom lines indicate the boundary where data cutoffs produce WISPR and AVGPR values 
within 90% of the values that would be calculated using all of the data. Since these are CDF plots, 
the percent of data discarded can be obtained directly from the abscissa. Table 3.1, prepared from 
these figures, clearly shows this bias. The same effects are denoted on the figures by the arrows 
marked 90% range of XXX domination, where XXX is either AVGPR or WISPR. 

An additional important observation is that the amount of bias is strongly influenced by the 
type of distribution, e.g., almost half of the data can be discarded in the case of the Chi-squared 
distribution, affecting the result by only 10%, while the change is about proportional to the amount 
of data discarded for the log-normal distribution. One would therefore anticipate that the level of 
signal gain between WISPR and AVGPR processing depends on the underlying distribution. 

3.6 Influence of the Type of Distribution Function on WISPR Processing, Illustrated with 
Data from a Shallow-Water Environment 

The WISPR Filter result has been compared to the AVGPR result to evaluate or quantify its 
performance. Such things as SNR gain and spectral and spatial resolution are typical examples. 
Such comparisons, when actual acoustic data are used, still require careful interpretation. The 
reason is that the average power level is a statistic that depends upon the distribution function of 
the data from which it was derived. Similarly, the WISPR level also depends on the distribution 
function. For example, consider the four CDF plots in Fig. 3.20. The left plot in the top row is an 
ambient noise CDF plot for sensor 1 near the top of the hydrophone string in a shallow-water area 
that has a depth of approximately 140 m. The scale on the y-axis is percentile arranged according 
to a normal or Gaussian probability distribution. The x-axis is signal (or noise) level in decibels. 
A log-normal distribution would appear as a straight line on this type of plot. The top two plots 
are for noise in frequency bin 4. In the single-sensor noise plot (bin 4), the curve bows downward, 
which indicates that the ambient noises on these sensors are not log-normally distributed. When all 
of the CDF results for each noise bin are suitably normalized to remove mean level differences 
from sensor to sensor and are plotted together, the top right composite plot is for the noise on about 
26 sensors at various depths. The close agreement in the noise CDF curves among the various 
sensors is significant and establishes both the creditability of the results for the individual sensor 
to the left in Fig. 3.20, and also indicates that the type of the distribution function of the noise does 
not significantly change over the depth of the hydrophone string. 

The bottom two plots in Fig. 3.20 correspond to the same sensors, but the frequency bin 
contains a stable tonal with a sufficiently high SNR for it to be essentially dominated by the tonal. 
In this case, the individual CDF curve, as well as those for all sensors combined, form nearly 
straight lines, at least over the majority of the percentile range (excluding the extremes at the high 
and low percentiles). As mentioned previously, a straight line indicates that the probability distribution 
of the signal is log-normal. Hence, the CDF plots of the signal are significantly different from the 



von WISPR Family Processors: Volume I 33 

T-ooe 

«or- 
""! °? 
oi cd 
CM C\J 

o c 
I 

o 

o 
Q. 

O o o_ 
>n 

0. 

es 

L    J 
(GP)T3A313SI0N 



34 
Wagstaff, Leybourne, and George 

in oo 
CM <o 
c-^ oo 
CM t- 

II   II 

o 
o 

DC 
HI 

UJ O 
CJJ-' 
<CE 
CCQ- 
UJW 

Si 
oo 

i 

♦♦ 

o 
'-CM 

o   ■ 
II II 

CO 
coco 
w</5 

IP 
HI EC 

COM 

-rOOS 

"002 

"001 

HI 

KTTT4-0 

f§>^ 
<D- 

cc < £ 

C5 >  O 
en < Q 

11111111111111111111 

■ 

■ 

\ 

<*H 

TTTT+TTTT+TTTT 

SocSf 
.sco 5. 

gfe8 

-co 

o 
oo 

o 
(O 

.. o 
CM 

o 
c 

E 
i. 
o c 
M 
O 

O 
D. 

o" 
o 
c 
CO 

E 
.o 

a. 

00 

pi 

si 

o 
in 

IO 
CO 

o 
CO 

to 
CM CM       »- 

to 
O 

O o 

(8P)13A313SI0N 

0 

too* 

f 008  E 
m 

002 i | 

0091 

0002 



von WISPR Family Processors: Volume! 35 

CM "W »•»- 
0 0) 
■«■CM 

II   II 

_^ 
SS o 
o> •»-* 
cc 
Ul 
5 

°-cS 
tu oj 
CD — 
<oc 
tro. 
LUCO 

Si 
oo 

eo co 
gtOCO 
«=oöd 
rtcoco 
II  II  II 

er 

2 
UJ 

ZOCQ. 

♦♦ 

CM 
CM CO,- 
0OC5     • 

•     -O 
U} O   • 
II    II    II 

CO 
■^COCO 

o^g 
QUJCC 

coco*: 

T-ooe 

E 
o 

T3 

O c 

o 
D. 
o o o 
es 

05 

t/3 

ON 

(BP)l3AJ13SI0N 
J-0081 



36 
Wagstaff, Leybourne, and George 

Table 3.1 

FIGURE 
NO. 

AVGPR 
USING ALL 

DATA 

% LOW 
VALUES 

DISCARDED 

FINAL 
AVGPR 
VALUE 

WISPR 
USING ALL 

DATA 

% HIGH 
VALUES 

DISCARDED 

FINAL 
WISPR 
VALUE 

3.17 

3.18 

3.19 

128.6 

126.8 

38.6 

22 

10 

44 

129.4 

127.3 

40.8 

127.6 

119.3 

30.6 

23 

11 

45 

127.0 

118.7 

29.1 

ambient noise CDF plots in the first two rows of Fig. 3.20. The steady tonal for which the results 
in Fig 3 20 correspond originated from a mid-depth source (about 78 m) at a distance of 14 km. 
The bottom along the sound propagation path was approximately flat and level between the source 
and the sensors. It is interesting to note that the signal has a log-normal (straight line) CDF, while 
the shallow-water ambient noise CDF has a line that bows downward. The significance of such a 
difference for a fluctuation-based signal processor such as WISPR is that because of the downward 
bow in the CDF curves, the WISPR suppression (AVGPR minus WISPR level) will be large, while 
for the log-normal CDF of the signal, the WISPR suppression will be small. Since the SNR gain 
of the WISPR processor, relative to the conventional (AVGPR) processor, is equal to the level of 
the noise suppression minus the level of the signal suppression, the SNR gain will be even larger 
than when the noise and signal are from the same distribution, as was shown in Sec. 3.5 using 

simulated data. 

The magnitude of the SNR gain of the WISPR Processor, for the shallow-water environment 
from which the data in Fig. 3.20 were obtained, is quantified in Tables 3.2 and 3.3. Table 3.2 gives 
various statistics calculated on 240 samples of noise frequency bin number 4 for each of the 
46 hydrophones in the hydrophone string. Hydrophones 32, 36, and 45 were anomalous and should 
be ignored The rows in each table include, in the following order, the hydrophone numbers (PHONE) 
the average power level (AVGPR), the WISPR level (WISPR), the mean level (MEAN), the standard 
deviation (STDEV), the Skew (SKEW), the Kurtosis (KURTOS) and the 10, 25, 50, 75, and 
90 percentile levels. The focus of this discussion will be on the AVGPR level, the WISPR level 
(WISPR) and the percentile levels. Of particular interest is the noise suppression level determined 
by the difference, AVGPR - WISPR (A0i processing), the total SNR gain, and the approximate 
location within the percentile range that the WISPR level and the AVGPR level fall. 

As a typical example, consider hydrophone 20. The AVGPR is 35.90 dB, WISPR is 29.76 dB, 
and the difference is 6.14 dB. That difference is the WISPR noise suppression gain relative to the 
conventional processor (AVGPR). When comparing the values to the percentiles in the distribution, 
it is seen that the WISPR level generally falls somewhere between the 10 and 25 percentile levels, 
while the average power level, AVGPR, lies between the 50 and 75 percentile levels. The greater 
the spread between these two, the greater the noise suppression gain will be. 

A similar comparison to that above for the signal data in Table 3.3, shows that the differences 
between the AVGPR and the WISPR levels (i.e., the signal suppression levels) are generally less 
than 0 3 dB and in many cases, less than 0.1 dB. Furthermore, both the WISPR level and the 
AVGPR level are within 0.1 dB of the 50 percentile level. Hence, in this case, the SNR gain of 
the WISPR processor, relative to the AVGPR is dominated by noise suppression. The distribution 
function of the noise compared to the distribution function of the signal has a much more pronounced 
low-level tail. This results in even greater noise suppression than would arise from the fluctuation 
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Table 3.2 — Statistics for NOISE (Bin No. 4), 240 Samples for a 46-Element Hydrophone Array 

PHONE     AVGPR     WISPR     MEAN    STDEV    SKEW     KURTOS     10%      25%     50%      75% 90% 

1 35 88 27.84 33.19 5.63 -0.83 3.94 25.22 30.14 33.75 37.36 39.33 

2 33 30 20.65 30.59 5.88 -1.38 7.17 23.12 27.28 31.02 34.77 36.85 

3 33.47 22.06 30.81 5.96 -1.42 6.48 24.58 28.47 31.58 35.47 37.03 

4 39.74 28.99 34.87 7.21 -0.19 2.48 25.05 29.61 34.78 40.25 45.42 

5 3300 24.53 30.36 5.80 -1.08 4.24 22.19 27.76 31.59 34.37 36.46 

6 31.75 26.03 29.68 4.83 -0.82 3.87 23.99 27.06 30.41 33.20 35.71 

7 30.73 23.91 28.52 5.25 -1.05 4.06 21.05 25.55 29.75 32.15 34.25 

8 34 96 25.62 32.63 5.42 -1.22 5.67 25.30 29.46 33.62 36.64 38.53 

9 33.83 24.36 31.22 5.70 -1.11 5.04 24.37 28.44 31.77 35.47 37.32 

10 31.66 18.07 29.42 5.44 -1.66 9.16 22.41 26.78 30.28 33.34 35.09 

H 33.21 23.06 30.79 5.63 -1.38 6.13 24.28 27.84 32.20 34.57 36.55 

12 35.83 30.34 34.17 4.47 -1.28 5.59 28.09 31.86 35.05 36.79 39.11 

13 32J1 21.86 29.54 5.80 -1.24 5.47 22.05 26.19 30.34 33.36 35.62 

14 35.30 27.81 32.94 5.44 -1.05 4.17 25.78 30.05 34.01 36.45 38.89 

15 32.63 24.81 30.14 5.43 -0.97 4.50 22.94 27.43 31.22 33.98 36.05 

16 38.97 29.44 36.72 5.44 -1.37 6.18 29.41 33.77 37.76 40.66 42.48 

17 3703 31.21 35.07 4.84 -1.01 4.14 28.00 32.66 35.67 38.68 40.33 

18 3340 23.57 30.67 6.03 -1.19 4.80 21.93 27.85 32.03 34.81 36.90 

19 30.49 9.84 27.89 6.20 -2.06 11.53 20.29 25.48 29.12 31.71 34.31 

20 35.90 29.76 34.14 4.70 -1.31 5.47 27.49 31.77 35.47 37.18 38.89 

21 33.80 24.97 31.30 5.62 -1.20 5.20 24.86 28.28 32.04 35.12 37.17 

22 33.78 24.89 31.08 5.69 -1.01 4.83 24.47 28.03 31.94 34.79 37.28 

23 37.76 31.16 35.70 4.90 -0.96 4.53 29.37 32.90 36.44 39.32 41.25 

24 32.67 21.69 30.11 5.88 -1.43 6.26 23.35 27.61 31.09 34.58 36.12 

25 32.28 24.92 29.79 5.49 -0.91 3.80 22.03 26.56 30.79 33.81 35.62 

26 34^60 26.97 31.98 5.64 -0.88 3.70 23.88 28.77 33.09 35.97 38.56 

27 33.45 26.16 31.04 5.19 -0.83 4.50 24.08 27.69 31.62 34.58 36.87 

28 34.83 28.46 32.68 5.03 -0.95 4.14 25.67 30.18 33.28 36.38 38.64 

29 34.40 27.73 32.06 5.23 -0.86 3.80 25.19 29.27 33.08 35.52 37.97 

30 44.18 29.67 42.09 5.59 -2.06 10.56 34.18 40.17 43.17 46.16 47.45 

31 37.09 29.89 35.16 4.99 -1.42 6.06 29.10 32.43 35.77 38.80 40.01 

32 63.80 63.64 63.72 0.82 -0.05 2.49 62.71 63.10 63.80 64.31 64.90 

33 34.68 25.88 32.09 5.61 -0.98 4.50 24.17 28.96 33.02 36.34 38.19 

34 36.27 28.05 33.42 5.90 -0.83 3.43 24.98 29.90 34.82 37.45 40.07 

35 34.93 28.57 32.55 5.25 -0.70 3.05 25.11 29.10 33.38 36.80 38.51 

36 35.90 28.33 33.49 5.46 -1.00 4.13 26.57 30.06 34.82 37.67 39.25 

37 35.57 28.43 33.05 5.52 -0.88 3.47 25.15 29.90 34.35 37.03 38.81 

38 35.76 26.65 33.17 5.76 -1.09 4.60 25.23 29.84 34.46 37.30 39.43 

39 37.00 22.93 34.35 6.20 -1.70 7.70 27.00 31.81 35.74 38.80 40.11 

40 32.98 25.79 30.78 5.12 -1.07 5.03 24.82 28.20 31.27 34.65 36.80 

41 36.13 28.53 33.53 5.48 -0.87 4.12 26.17 30.71 33.95 37.51 40.10 

42 46.58 40.67 44.54 4.87 -0.92 4.03 37.20 41.47 45.46 48.03 50.31 

43 33.94 24.01 31.40 5.80 -1.34 5.68 24.04 28.39 32.37 35.26 37.44 

44 34.21 16.18 31.37 6.31 -1.73 9.28 23.97 27.99 32.51 36.02 38.03 

45 55.57 49.44 53-40 5.14 -0.90 3.36 45.70 50.49 54.52 57.29 59.05 

46 39.75 28.89 37.56 5.45 -1.62 7.65 30.56 35.26 38.78 40.73 43.47 
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Table 3.3 — Statistics for SIGNAL (Bin No. 6), 240 Samples for a 46-Element Hydrophone Array 

PHONE AVGPR WISPR MEAN STDEV SKEW     KURTOS 10% 25% 50% 75% 90% 

1 7156 71.42 71.49 0.78 -0.08 2.38 70.39 70.91 71.51 72.10 72.49 

2 7250 72.38 72.44 0.73 -0.05 2.53 71.50 71.91 72.48 72.99 73.30 

3 73.46 73.39 73.43 0.52 -0.29 2.80 72.69 73.11 73.39 73.81 74.09 

4 74 67 74.64 74.66 0.39 -0.46 3.01 74.10 74.40 74.61 75.01 75.09 

5 74 11 74.08 74.09 0.38 -0.32 2.75 73.60 73.91 74.11 74.39 74.59 

6 74 55 74.51 74.53 0.43 -0.48 2.91 73.90 74.30 74.51 74.91 74.99 

7 73 92 73.83 73.88 0.61 -0.16 2.70 73.11 73.39 73.91 74.29 74.69 

8 72 24 67.59 70.80 4.23 -1.37 5.23 64.74 69.16 71.49 73.59 75.22 

9 7494 74.89 74.92 0.49 0.07 2.59 74.29 74.59 74.89 75.21 75.59 

10 74 73 74 42 74.58 1.16 -0.62 2.33 72.99 73.58 75.00 75.59 75.79 

11 68 49 64.18 67.08 4.04 -1.17 5.19 61.77 65.01 67.50 69.74 71.73 

12 76.57 76.55 76.56 0.29 -0.21 2.10 76.21 76.30 76.60 76.81 76.90 

13 77.14 77.12 77.13 0.32 -0.20 2.22 76.70 76.89 77.10 77.40 77.60 

14 77 02 76.99 77.01 0.34 -0.33 2.52 76.50 76.71 76.99 77.30 77.40 

15 77.20 77.18 77.19 0.35 -0.20 2.44 76.71 77.00 77.20 77.40 77.60 

16 7717 77.15 77.16 0.35 -0.13 2.32 76.70 76.90 77.21 77.40 77.59 

17 75.83 75.80 75.81 0.37 -0.11 2.49 75.30 75.50 75.81 76.10 76.30 

18 74.23 74.20 74.22 0.40 -0.01 2.53 73.70 73.89 74.20 74.50 74.69 

19 71.27 71.23 71.25 0.40 0.15 2.69 70.70 71.00 71.20 71.51 71.79 

20 70.96 70.91 70.93 0.46 -0.35 2.71 70.30 70.59 71.00 71.31 71.50 

21 69.08 68.98 69.03 0.66 -0.15 2.61 68.08 68.60 69.01 69.49 69.91 

22 66.07 65.90 65.98 0.88 0.44 2.28 64.89 65.32 65.79 66.61 67.41 

23 65.30 65.06 65.18 1.01 -0.04 2.74 63.91 64.50 65.10 65.91 66.61 

24 64.30 63.98 64.15 1.17 -0.80 3.21 62.61 63.41 64.38 65.12 65.42 

25 63.35 62.99 63.18 1.25 -0.31 2.32 61.30 62.31 63.32 64.22 64.78 

26 63.05 62.75 62.90 1.15 -0.12 2.06 61.22 62.00 62.88 63.92 64.39 

27 64.13 63.98 64.05 0.78 -0.05 2.54 63.01 63.52 64.10 64.69 65.11 

28 63.95 63.80 63.87 0.82 -0.17 2.24 62.78 63.30 63.90 64.50 64.90 

29 66.65 66.48 66.57 0.84 -0.05 2.50 65.40 65.91 66.69 67.12 67.58 

30 69.52 69.39 69.45 0.77 0.45 2.77 68.50 68.88 69.42 69.91 70.52 

31 73.59 73.56 73.57 0.41 -0.21 2.64 73.00 73.29 73.61 73.90 74.09 

32 73.88 72.85       73.40 2.14 -0.39 1.84       70.18 71.41 73.79 75.43 75.92 

33 73.70 73.66       73.68 0.38 -0.16 2.39       73.19 73.39 73.70 74.00 74.20 

34 73.54 73.51        73.53 0.39 -0.05 2.44       73.00 73.19 73.50 73.80 73.99 

35 73.45 73.42       73.43 0.38 -0.12 2.30       72.90 73.10 73.49 73.70 73.90 

36 73.11 73.07       73.09 0.38 -0.14 2.49       72.59 72.79 73.10 73.40 73.60 

37 74.41 74.38       74.39 0.38 -0.21 2.65       73.89 74.09 74.40 74.70 74.90 

38 73.12 73.08       73.10 0.39 -0.40 2.92       72.61 72.80 73.09 73.41 73.60 

39 7346 72.77       73.18 1.71 -1.52 5.11       70.77 72.29 73.89 74.42 74.69 

40 73.94 73-89       73.91 0.44 -0.36 2.66       73.29 73.59 73.89 74.21 74.49 

41 73.10 73.05        73.07 0.46 -0.36 2.57       72.40 72.79 73.10     73.41 73.61 

42 54.08 53.53        53.83 1.55 -0.73 3.37       51.72 52.94 53.99    55.03 55.81 

43 73.67 73.61        73.64 0.51 -0.25 2.38       72.91 73.29 73.70     74.01 74.30 

44 73.10 73.04       73.07 0.51 -0.20 2.55       72.39 72.71 73.10    73.41 73.69 

45 72.81 72.75        72.78 0.52 -0.21 2.75       72.10 72.39 72.80    73.10    73.39 

46 73.46 73.40       73.43 0.53 -0.09 2.62       72.81 73.01 73.41     73.81    74.21 



40 
Wagstqff, Leybourne, and George 

level alone. Since the signal suppression is negligible and the noise suppression is large, the SNR 
gain due to WISPR processing of approximately 6 dB is obtained. 

Similar results to those discussed above were obtained in two other shallow-water areas. However, 
in those cases, the receivers were sonobuoys at 90 and 400 ft, and the source was being towed away 
from the sonobuoys at approximately 4 kt. The separation between the source and the sonobuoys 
at the time of the measurement was greater than 5 nmi. The bottom depths were 400 m (Fig. 3.21) 
and 150 m (Fig. 3.22), respectively. The time history traces for the signal channel (left side) and 
the noise channel (right side) are given for the sonobuoys at 90 ft (top set of plots) and 400 ft 
(bottom set of plots) in each of Figs. 3.21 and 3.22. The time history characteristics of the signal 
and noise data can easily be compared in these plots, and the statistics that are displayed are the 
signal or noise suppression levels denoted DELTA (AVGPR-WISPR in the previous discussion 
regarding Tables 3.2 and 3.3) and the standard deviation denoted SIGMA (STDEV in Tables 3.2 
and 3.3). Of considerable significance is the relatively low values of DELTA for the signal and 
relatively high values for the noise. The differences between the two, for a given sensor depth 
and site, indicate that the SNR gain of the WISPR processor relative to AVGPR ranges from about 
5 to 12 dB. Such results combined with the previous results suggest that substantial SNR gain can 
be achieved from WISPR processing of shallow-water data. Furthermore, some of that gain comes 
from the differences in the probability distributions of the signals and the noise, where the long, 
low-level tails on the ambient noise bias the WISPR processor to significantly lower levels than are 
achieved by the average power processor, and by the signal being of a different probability distribution, 
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Fig. 3.21 —Shallow-water (400 m) sonobuoy noise data, sensor depths (a) 90 ft and (b) 400 ft 
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Fig. 3.22 —Shallow-water (150 m) sonobuoy noise data, sensor depths (a) 90 ft and (b) 400 ft 

one for which the WISPR and the average power levels are not significantly different. In other 
words, the distribution function of the noise significantly increases WISPR suppressions relative to 
the distribution function of the signal. The net result, relative to the AVGPR processor, is a SNR 
enhancement of about 6 dB for the WISPR processor in shallow water. 

3.7 Gain Improvement, Illustrated Using Single-Channel Data from a Towed Line Array 

Data were obtained from a single channel of a towed line array for a time period when a 
submerged source was projecting several tonals. Tonals were also being radiated by the projector 
ship as a natural consequence of its being there and towing the source. Figure 3.23, prepared using 
these data, has three plots illustrating several attractive properties of the WISPR filter. The WISPR 
processing and conventional processing (AVGPR) plots are for the same data. The other plot con- 
tains a superposition of the AVGPR and WISPR results. To facilitate comparison, the WISPR 
results have been shifted a small amount in frequency. The tonal and broadband structures are quite 
similar, but some significant differences are also apparent: 

(a) Some of the tonals are about the same magnitude in both results. This suggests that the 
WISPR Filter does not attenuate tonals that were emitted by the submerged source. 

(b) The broadband noise background has been reduced by about 8 dB by WISPR. The property 
of not attenuating signals from submerged sources while attenuating the broadband noise by about 
8 dB results in a SNR enhancement of 8 dB for signals from submerged sources. 
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Fig. 3.23 — WISPR SNR improvements 

(c) The tonals at the two highest frequencies originated from the source ship and not the 
submerged source. They have been attenuated by WISPR from 3 to 9 dB. Since surface ship tonals 
represent narrow-band clutter, this demonstrates that WISPR reduces clutter. 

(d) The very low frequency (VLF) broadband noise in the WISPR result below about 30 Hz is 
suppressed about 15 dB compared to the AVGPR result. This suggests that WISPR has an even 
greater noise suppression capability at VLF than at the higher frequencies, even though the 8 dB 
achieved at those frequencies is rather impressive. 

(e) Finally, the increased filter roll-off observed in the WISPR results at frequencies above 
375 Hz is more indicative of the low-pass filter response of the antibiasing filter than is the output 
of the conventional processor. This suggests that WISPR is reducing the noise due to the antibiasing 
filter that adversely affects the AVGPR processor. 

3.8 Enhancing Resolution of a Horizontal Sonar Array FFT Beamformer 

One common technique for increasing the resolution of a signal processor is to decrease the 
size of the resolution cells. Examples of that are decreasing the frequency binwidth by increasing 
the size of an FFT and adding more elements of an array to increase its spatial aperture and, thus, 
decrease its beamwidths. These and other techniques work well in some applications, but they do 
not work in all situations. For example, there may be engineering, technology, monetary, or size 
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constraints that prevent unlimited expansion of the array in the spatial dimension as a means 
for achieving the desired beamwidth and spatial resolution, or the data may not extend in time 
long enough or be sufficiently stationary to allow a long FFT to be performed to increase the 
spectral resolution. In such cases, an alternate, independent approach would be valuable. Achieving 
enhanced resolution through fluctuation-based processing is one possibility for achieving the needed 
resolution in both the spatial and the spectral domains. 

Fluctuation-based processing provides another dimension that can be exploited that is independent 
of both the frequency domain (i.e., spectral resolution) and the spatial domain (i.e., beamwidth). In 
a manner that is similar in both of these domains, fluctuation-based processing can differentiate the 
fluctuation in one bin (e.g., frequency bin and beam number) from those in another, and then 
enhance the one bin output relative to the other to achieve improved resolution. Such a case is 

illustrated by the plot in Fig. 3.24. 

The plot in Fig 3.24 contains three beam response curves. The top curve is the response of an 
undersea horizontal line array sonar, with an aperture of lx (a given number of wavelengths) to 
the noise and signal field in the ocean. The abscissa is beam number from an FFT beamformer. The 
ordinate is the output level for each beam. The local maxima indicate concentrations of high-level 
signals and noise in beam number space. The middle curve is the corresponding FFT beamformer 
output when the number of elements in the array and the aperture have been increased by a factor 
of four (4x aperture) to increase the spatial resolution. The enhanced spatial resolution of the larger 
array (middle curve) is demonstrated by the appearance of additional local maxima and the apparent 
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Pig  3,24 — WISPR filter: enhanced spatial resolution 
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separation of clumps of signal and noise that are combined in the previous lower resolution results 
(lx aperture) of the top curve. Some of the local maxima that are in the middle curve are not 
resolved by the lx aperture array (top curve). 

The bottom curve in Fig. 3.24 is the result of performing WISPR processing on the FFT time 
history data in each beam number resolution cell that was processed by the conventional technique, 
AVGPR, to give the lx aperture result (top curve). The curve has been plotted at a lower average 
level to minimize the confusion that might be introduced if the various curves have numerous 
intersections. 

The rationale for superimposing the three curves in Fig. 3.24 is that the top curve is a 
low-resolution output (lx). The middle curve came from an array with four times the aperture, and 
therefore has four times the resolution (4x). Finally, the bottom curve (WISPR operating on the 
lx data), judging from its appearance, has the greatest resolution of the three curves. The credibility 
of these' high-resolution WISPR processor results can be judged, to some degree, by comparing 
them to the results for the 4x aperture (middle curve). Many of the peaks in the WISPR curve have 
a direct correspondence with peaks in the 4x results, although some have no correspondence. 
However, this is also the situation when the 4x results and the lx results are compared. For 
example/the signal near beam number 70 in the 4x aperture results does not have a corresponding 
peak in the lx aperture results. Even though the signal was present when the lx aperture data were 
taken, only the largest aperture, 4x, was able to resolve it using AVGPR. However, when the 
lx aperture data were processed by the WISPR Processor, the LOFAT from a submerged source 
was resolved, and many other signals were also resolved, several of which are evident in the 
4x results and some that are not. 

Based on the comparison of the three beam response plots in Fig. 3.24, it is evident that the 
WISPR Processor is providing significantly greater resolution than conventional processing on 
the lx aperture data, and even greater than the corresponding 4x aperture results. Perhaps a rough 
estimate of the enhanced resolution that is being achieved by the WISPR processor is about a factor 
of 6 to 10 in equivalent increased aperture length (i.e., 6x to lOx aperture). 

3.9 Summary 

(a) Signal fluctuation content is important to the successful operation of fluctuation-based 
processors as opposed to the actual level of the signal. Several environments have been illustrated 
which generate significant differences between signal fluctuations arriving from them. In particular, 
signals from nearby surface ships can be expected to have greater fluctuation than those from 
submerged sources at approximately the same distance. Signal clutter from more distant shipping 
sources should contribute significantly to the noise background, with fluctuations typical of those 
from surface sources. Fluctuations from distant surface sources may be even greater than from 
those nearby due to mutual signal interference and a greater likelihood for the signal to be affected 
by medium inhomogeneities, etc. 

(b) Through an analysis of signal ray-trace paths and their associated attenuations, it was shown 
that the origin (depth) and path taken by acoustic signals strongly influences the fluctuation level. 
Those signals that travel near the surface typically have greater fluctuation level than signals 
traveling at greater depths. This is consistent with the observation that signals generated at the 
surface tend to have greater fluctuation levels than those originating from submerged sources. 

(c) Using synthesized data of known characteristics, the conventional processor (AVGPR) was 
contrasted to the WISPR Filter, demonstrating that AVGPR is biased toward the high values, 



45 von WISPR Family Processors: Volume I : .  

whereas the WISPR Filter is biased toward the lower values, giving rise to WISPR gain improvements. 
Similar effects would be expected for distributions other than those presented, even though the 
specific levels of gain obtained would be affected. It should be expected that WISPR processing 
can achieve additional improvements in gain when the noise probability distributions have a longer 
low-level tail than the one for signal. This situation often arises with acoustic data of interest to 

the Navy. 

(d) Utilizing acoustic data from a single phone, it was shown that WISPR achieves significant 
gain improvement over the AVGPR processor. 

(e) Using FFT beamformed output from a horizontal array, AVGPR and WISPR processing at 
lx aperture were compared to show the WISPR capabilities. The WISPR's spatial resolution at lx 
aperture even exceeded that achieved by AVGPR processing of concurrently obtained 4x aperture 

data. 

(f) Although perhaps a little premature to mention here, it will later be shown that difference 
(gain) between the AVGPR and WISPR (Mi and A/_i) Filters, c.f., App. A, Sec. A.l, extends as a 
continuum for other filter pairs based upon Mr, e.g., for r = -4, -3, -1, 0, 1. Though all choices 
of r do not necessarily produce useful results in all situations, a number of combinations have been 
investigated with much success for many types of data, including data of nonacoustic origin. 

4.0 ADVANCED WISPR SUMMATION PROCESSORS (AWSUMk) 

4.1 Introduction 

Why not simply utilize the WISPR Filter, which has already been shown to be an effective 
processor? Examined in this section are results comparing orders of processing (as designated by k) 
for the AWSUMk fluctuation-based filter algorithms as defined by Eq. 2.4.2. What will be shown 
is that additional gain can be achieved with the higher order filters. Several different types of data 
are used to show the versatility of these processors for a variety of cases and to provide guidance 
as to how processor order can be varied/combined to achieve optimal results. Before proceeding to 
the more advanced processors, Sec. 4.2 will present an in-depth example of AWSUMj (WISPR) 
processing. Capabilities of the advanced processors generally arise from the same principles as 
those in evidence for the WISPR Filter. Final interpretation of gain results generally utilize the 
processors in pairs, e.g., using power, the gain ratio of processors A0i and A04 is defined by 
Eqs. 2.5.1 and 2.5.2, respectively. For convenience, these ratios are commonly converted to decibels 
where the decibel differences are used. 

Equation 2.1.1 defines the generalized filter, Mr. An important property, more fully discussed 
in App A, is that Mr increases strictly monotonically with increasing r for nonzero data. The 
additional gains that are achieved by the higher AWSUMk processors are fundamentally related to 

this property. 

4.2 Demonstration of WISPR Processing 

Hypothetical data and preprocessing - Hypothetical shallow-water data are shown in Fig. 4.1a. 
These data might, e.g., represent a frequency-time sequence of many successive spectral realiza- 
tions (perhaps the'transformed output from an FFT of each time domain realization). Those spectra 
contain both LOFAT (f2 and/3) and HIFAT (f\ and/4) signals and background ambient noise (/„). 
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Fig 4i_ Fluctuation-based processing: SNR gain and stable signal (submerged source) identification based strictly 
on fluctuation content: (a) unprocessed frequency-time surface, F(f,t), (b) normalized-detrended frequency-time surface, 
G(f,t\ and (c) submerged source curve, S(f), resulting from the AVGPR-WISPR difference (A01 processing) 

If the spectral realizations in a given frequency bin for all time increments are passed through 
a filter that removed the temporal trends and normalized the average to a given level (e.g., zero 
decibel), a flat surface with a rough texture would result such as that depicted in Fig. 4.1b. The 
texture of the surface is caused by the fluctuation content that is preserved by the filter, while 
the trend is removed and the mean is normalized. In addition, none of the tonals would be iden- 
tifiable by their signal excess after filtering, as they are in Fig. 4.1a, because the normalization 
makes the average values of all frequency bins equal. With the exception that the fluctuation 
character of signal plus noise in a particular bin may change as the SNR changes, the flat rough 
surface in Fig. 4.1b could represent a realistic case of what often happens in the real world. For 
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example, consider the case where a submerged source is entering a shadow zone or traveling away 
from the sensor. At some point, the signal will go from a positive SNR to a negative SNR (in 
decibels). Somewhere in between, a case will exist for which the surface in Fig. 4.1b is a reasonable 

representation of reality. 

4.2.1 WISPR Filter Processing 

Now if the data that comprise that averaged and normalized surface are processed with a 
conventional processor, AVGPR, a flat response across frequency would be the result, the same as 
before (the previously averaged and normalized values). There would be no SNR excess to indicate 
that tonals are present, whether they are LOFAT or HIFAT as this was already removed by the 
normalization of each bin to, e.g., zero decibel. Thus a second application of the AVGPR processor 
does not give additional SNR gain. On the other hand, if the same data were processed by the 
WISPR Filter, additional gain would be achieved. The amount of the SNR gain would depend on 
the differences in fluctuation amplitudes between the LOFAT on one hand and the HIFAT and 
background noise on the other hand. 

The differences between the WISPR outputs and the corresponding outputs from the conventional, 
AVGPR, processor are shown in Fig. 4.1c. The broad scatter of the curve in this figure is due to 
the non'uniform fluctuation content in the HIFAT signals and the background noise as measured 
by the differences between the high degree of fluctuation sensitivity of the WISPR processor compared 
to the relative insensitivity of the conventional processor to fluctuations. The two lines at /2 and 
/3 that extend downward to nearly zero reflect the difference responses to a LOFAT signal. The 
difference is expressed in terms of suppression level of the signals. A difference or suppression 
level of less than an arbitrary level of 1.5 dB may be interpreted in this example as a LOFAT signal 
from the submerged source. Referring to Fig. 4.1a, note that the surface ship tonal at/i is a HIFAT 
signal as is the tonal at /4 that is not steady in frequency and all of the background noise such as 
that in frequency bin/„. The effective SNR gain (or signal excess) for the LOFAT signals is limited 
by the large variability in the difference that results more from the WISPR processing than from 
the conventional processing. However, that variability has a relatively uniform lower end that 
usually does not interfere with the detection of the LOFAT signals that extend below it (i.e., the 
signal excess of the line component that extends below the broad scatter of the difference background). 

In Fig. 4.1c, the submerged source display that is normally produced whenever Aoi processing 
of the data from a single beam or a single sensor is used to obtain the differences between the 
average power (AVGPR) levels and the WISPR Filter levels. This particular example could be for 
a single sensor, such as a sonobuoy, or even a single beam of a multibeam beamformer output. A 
corresponding surface would be obtained when the data for all beams of the beamformer are 
displayed simultaneously. 

4.2.2 Real Shallow-Water Data 

Figure 4.2 represents data for a real shallow-water environment when there is one HIFAT 
signal and one LOFAT signal. Plots 2 and 3 are produced using the same processing described for 
the previous figure. In plot 3, the bottom curve lowered 60 dB for display purposes, is the Aoi 
difference curve that corresponds to the single curve in Fig 4.1a. The top curve is the AVGPR curve 
for the surface in plot 2, and the center curve is the corresponding WISPR Filter output. This latter 
curve has also been lowered by 10 dB for display purposes. Note the identification and SNR 
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Fig. 4.2 — Fluctuation-based processing: SNR gain and stable signal (submerged source) identification based 
strictly on fluctuation content 

enhancement of the LOFAT signal at 180 Hz in plot 3 and the elimination of the cluttering response 
of the HIFAT signal at a slightly higher frequency. 

4.2.3 Discussion 

The similarity of the results obtained for the assumed data where the character of signals can 
be generated with confidence and the results for the real-world case demonstrates that the hypo- 
thetical case presented has a basis in reality. Thus, it may be concluded that the WISPR Filter 
functions as a fluctuation-based signal processor that enhances the detection, identification, and 
SNR of LOFAT signals (e.g., tonals from submerged sources). It accomplishes that by attenuating 
HIFAT signals (e.g., tonals from surface ships) and background ambient noise more than the 
LOFAT signals. In addition, by thresholding the differences between the AVGPR and WISPR levels 
at some low value, based on experience with successful detection (e.g., AVGPR - WISPR <1.5 dB), 
it is possible to identify a submerged source as a consequence of enhancing the SNR of the LOFAT 
signals and eliminating the clutter due to the HIFAT signals. 

These attractive capabilities may be attributed to the unique property of the WISPR Filter as 
being driven entirely by the fluctuation character of the various signals and noise. The actual levels 
of the signals and the noise have little direct bearing on the resulting SNR enhancement (except at 
very low SNR) as contrasted to conventional processors. 
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4.3 Comparison of AWSUM Orders 1 and 4 at Five Levels of Spectral Resolution 

The data set for the example presented here is a little more complex than those discussed 
previously. However, the additional gain achieved by AWSUM4 compared to WISPR is vividly 
shown. This gain improvement, typically two to three times greater than the WISPR Filter, is 
consistently achieved at five levels of spectral resolution, which offers a system designer a number 

of useful alternates. 

Figure 4.3 illustrates the suppression of both signal and noise for three different frequency 
resolutions that range from 0.2 Hz to 0.012 Hz. Time history sequences are included for the 
20-Hz noise bins in the first column. The third column contains time histories for a 45-Hz signal 
bin. The frequency resolution is improved down each column from 0.2 Hz at the top of the figure 
to 0.012 Hz at the bottom. The sample rate of the original data was approximately 205 Hz. Approxi- 
mately 160,000 data points were used, and 400 FFTs were calculated to produce each sequence in 
Fig. 4.3. To keep the sequences of FFT outputs in Fig. 4.3 a constant length of 400 each, the FFTs 
were overlapped by increasing amounts as the size of the FFT increased. The results shown at the 
top of each subplot in that figure are summarized in Tables 4.1 and 4.2, along with the companion 
results for an FFT sizes of 2048 and 8096. Table 4.1 gives the FFT size, the percentage of the 
overlap, the frequency binwidth, AVGPR, the WISPR level, and the differences (A0i) between those 
two (AVGPR - WISPR) for the two sets of noise sequences (20 and 35 Hz) and the set of signal 
sequences (45 Hz). Table 4.2 presents similar results for AWSUM4 (plus AVG A04, which is A04 
averaged over all frequency bins). 

There are several features of the sequences in Fig. 4.3 that are interesting. The most obvious 
is that as the percentages of overlap and FFT sizes increase (going down each column), the sequences 
become progressively smoother. However, the dynamic range in level remains relatively constant. 
The increase in smoothness is a result of the FFTs being less independent as the overlap percent- 
ages increase, which increases overlap as the FFT size increases. The A01 difference between the 
AVGPR and the WISPR level is a measure of the dynamic range of each sequence. As can be seen 
in the last column of Table 4.1, the A0i difference for WISPR processing ranges from about 5.7 
to 15.6 dB for the noise (20 and 35 Hz) and from about 0.9 to 0.2 for the signal (45 Hz) as the 
frequency binwidth changes. The corresponding results for AWSUM4 processing in Table 4.2 are 
13 dB to 33 dB for noise and 4.0 to 0.4 dB for signal. Less variability would be expected if the 
results were averaged over more time periods or more frequency bins. That has been done for 
the AWSUM4 case in Table 4.2, and the result for the noise (AVG A04) is about 21-22 dB. 

As the frequency binwidth is reduced by a factor of 2, the average power level of the noise in 
the 20- and 35-Hz bins decreases by 3 dB as expected. This average power reduction does not occur 
in the 45-Hz signal bin because the signal is narrower than the binwidth. Therefore, reducing 
the binwidth of the signal bin does not decrease the signal level. When normalized for binwidth, the 
signal level will appear to increase by 3 dB each time, while the noise level remains constant. In 
reality, without binwidth normalization, the noise decreases while the signal remains constant. 
In either case, the SNR increases by 3 dB each time the binwidth is cut in half. 

The A01 level for the 45-Hz signal in Table 4.1 decreases from 1.0 dB at 0.2-Hz binwidth to 
0.2 dB at 0.012-Hz binwidth. The results in Table 4.2 are similar for AWSUM4 processing. In this 
case, the signal is narrower than the binwidth. By reducing the binwidth, the signal is not being 
decreased but the noise is being stripped away. Hence, there is progressively less noise in the same 
bin with the signal to contaminate it with noise-induced fluctuations. 
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Table 4.1 — WISPR Processing of the Signal Sequences in Fig. 4.3 

A01= AVGPR -WISPR 

FFT 
SIZE 

BINWIDTH 
(Hz) 

OVERLAP 
(%) 

FREQ. 
(Hz) 

AVGPR 
(dB) 

WISPR 
(dB) 

Aoi 
(dB) 

20 32.6 23.4 9.2 

1024 0.2 56 35 
45 

32.0 
44.1 

23.4 
43.1 

8.6 
1.0 

20 32.3 24.5 7.8 

2048 0.1 78 35 
45 

31.7 
46.9 

23.8 
46.4 

7.9 
0.5 

20 31.6 16.0 15.6 

4096 0.05 89 35 
45 

31.1 
49.9 

21.2 
49.5 

9.9 
0.4 

20 31.4 25.7 5.7 

8192 0.025 95 35 
45 

31.2 
52.8 

25.3 
52.6 

5.9 
0.2 

20 31.7 20.5 11.2 

16384 0.012 97 35 
45 

31.5 
55.8 

23.0 
55.6 

8.5 
0.2 

Table 4.2 — AWSUM4 Processing of the Signal Sequences in Fig. 4.3 

A04 = A VGPR - A WSUM4 

FFT BINWIDTH OVERLAP FREQ. AVGPR AWSUM4 A04 AVG A04 

SIZE (Hz) (%) (Hz) (dB) (dB) (dB) (dB) 

20 32.6 11.3 21.3 

1024 0.2 56 35 32.0 11.6 20.4 22.5 

45 44.1 40.1 4.0 

20 32.3 14.4 17.9 

2048 0.1 78 35 31.7 11.8 19.9 22.5 
45 46.9 45.3 1.6 

20 31.6 -1.6 33.2 

4096 0.05 89 35 31.4 6.1 25.3 22.6 

45 49.9 48.9 1.0 

20 31.4 18.3 13.1 

8192 0.025 95 35 31.2 15.8 15.4 22.3 

45 52.8 52.2 0.6 

20 31.7 11.1 20.6 

16384 0.012 97 35 31.5 12.5 19.0 21.0 
45 55.8 55.4 0.4 
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4.4 Comparison of AWSUM Orders 1 and 4 for Nonacoustic Data 

Figure 4 4a-d illustrates the results of fluctuation-based processors operating on a time segment 
of nonacoustic data. It is known by other means that tonals from the source exist at several 

harmonics of 2 Hz. 

4.4.1 Power Level Standard Deviation Frequency Plot Locates Frequencies 
with the Lowest Fluctuation 

Figure 4 4a shows the standard deviation of the power of each frequency bin (about 0.1-Hz 
binwidth) using 87% overlap in the time domain data and 15 averages of the spectrum-analyzed 
results for all bins in the band from 0 to 10 Hz at 31 min into the processing. The abscissa is 
frequency in hertz and the ordinate is the magnitude of the standard deviation (0-12 dB) in each 
bin The average standard deviation is approximately 4.25 dB with excursions from about 0.25 to 
8 3 dB The relatively low levels for harmonics of 2 Hz (2, 4, 6, 8, and 10), marked with a circle, 
are of particular interest because the values are all less than 0.8 dB, significantly below the average 
of all of the others. It can be concluded that these tonals that were known to exist have relatively 

low-level fluctuations. 

4.4.2 Power Level Standard Deviation Time Plot at 2 Hz Locates Time Period 
with the Lowest Fluctuation 

Figure 4 4b shows the time history of the standard deviation in the 2-Hz bin for a time interval 
of over 30 min (minutes 20 to 50). The results at 2 Hz in Fig. 4.4a correspond to minute 31 in 
Fig 4 4b. That time occurs after the standard deviation has reduced from the relatively high values 
prior to minute 28 and before the standard deviation rapidly increases after about minute 40. Based 
on the relatively low standard deviations between minutes 28 and 40, one would suspect that period 
of time to be when the nonacoustic source was at its closest point of approach (CPA). 

4.4.3 Detection of Amplitude Stable Tonals Gleaned through WISPR and AWSUM4 Processing 

Figure 4 4c shows processing results for a nonacoustic source that are reasonably typical for 
fluctuation-based processing of acoustic data. At the top of the figure are three power spectrum 

curves: 

1. AVGPR processing - solid curve 

2. WISPR processing - dashed curve 

3. AWSUM4 processing - dot dashed dot curve 

At the bottom of the figure are two inset plots each having a baseline of 0 dB with an ordinate 
otherwise of the same scale as the main figure. The upper of these plots is for Ani processing, i.e., 
AVGPR - WISPR. The lower of these plots is for A04 processing, i.e., AVGPR - AWSUM4. 

In Fig. 4.4c, none of the tonals at the harmonics of 2 Hz, which were obvious in Fig. 4.4a, are 
particularly significant in the curves produced by any of these processors. However, a significant 
feature of these three curves is that at the harmonics of 2 Hz, all three of the processors produced 
nearly equivalent results. This is obvious in the two lower plots where the values are less than 
0 05 dB at the harmonics of 2 Hz. In this case where the tonals are known to exist and have low 
fluctuations, c.f., Fig. 4.4a and b, all three processors have produced nearly the same value. It may 
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be concluded that the steady tonals were not suppressed by the fluctuation-based processors, whereas 
the fluctuating noise was significantly depressed. This again demonstrates that gain is achieved by 

fluctuation-based processors. 

4.4.4 Interpretation of the AQ\ and A04 Plots 

Analysis of the A0i and A04 plots takes some mental adjustment as the identification of low 
fluctuation signals is associated with the lowest positions on the curves. Persons who are more 
accustomed to detection based on peaks standing out from the noise background may initially find 
this a little awkward. They may feel more comfortable by turning the plots upside down. However, 
the form of presentation in which the low values are pointing down has a distinct advantage. The 
zero baseline is always in a fixed position. Detection can be associated with any value that is below 
a threshold value that experience with the type of data and particular processor chosen has been 
shown to indicate detection. Thus, a reasonable equivalent to complex statistical analysis and 
interpretation is automatically built in once the processing method and threshold value has been 
chosen. This alone can be a very substantial advantage when real-time interpretation is required in 
the field. It also facilitates automated detection schemes. Here, as in the previous section where 
acoustic data were examined, the A04 processor has at least twice the gain of the A0i processor. 

4.4.5 Extending the Time of Detection 

Figure 4.4d gives the time history of the power level of the 2-Hz tonal for the time interval 
from minute 20 to 50. Recall that Fig. 4.4a and c was for minute 31 in that time history. In this 
case, the time history is the input data for the same five processors whose outputs were plotted in 
Fig. 4.4c. The curve for each processor is identified as previously explained for Fig. 4.4d. Of 
particular significance is the apparent stability, or lack of fluctuations, of the signal during the same 
time interval identified previously from minute 28 to 40 when the CPA of the source occurred. It 
is apparent that if either the A0i or A04 processor is used, that with a properly set threshold, 
the interval of detection can reasonably be judged to span from minute 26 to 39, broken only for 
a short interval near minute 28. However, using average power results alone, it is difficult to define 
any significant interval during which the source could be declared detected with confidence 

4.5 AWSUMk: Submerged Source Identification 

Figure 4.5 illustrates the capability of AWSUM for submerged source identification in the 
presence of masking as a function of two different percents of FFT overlap. The left column 
corresponds to normal data (no masking) and the right column corresponds to a time period when 
the data were being masked by drop-outs in the sonobuoy radio frequency (RF) carrier. The top 
row of plots are for 50% overlap in the FFT and the bottom row is for 90% overlap. The total 
time durations of the data are approximately 240 s for the 50% overlap case and 50 s for the 90% 

overlap case. 

The top curve in each plot is the conventional power average of 240 FFT outputs The middle 
curves are the AWSUM2 results for the same data as were used in the generation of the top curves. 
The bottom curves are for five times the difference (in decibels) of the curves for AWSUM2 and 
AWSUMi, i.e., 5(AWSUMi - AWSUM2). 
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Fig. 4.5 —AWSUM: submerged source identification, FFT size 2048: (a) and (b) 50% overlap, (c) and (d) 90% 
overlap. The spectra in (b) and (d) are contaminated by high-level transients. 

Comparing the 50% overlap results in Fig. 4.5a with the 90% overlap results in Fig. 4.5c 
reveals several important features listed below: 

(a) The overall SNR is about 15.7 for AWSUM2 and 9.2 for AWSUM]. 

(b) Because of the shorter time for the 90% overlap results, the SNR of the bin 2 tonal 
component is approximately 0.2 dB greater than for the 50% overlap results, and there is less 
frequency smearing of the doublet at bin 48, also of other tonals. 

(c) The bin 48 doublet shows up as a submerged source at 90%, whereas at 50%, only the bin 2 
signal shows up as a submerged source. The reason is probably due to the amplitude of the 
fluctuations being small for 50 s (90% overlap) but not for 240 s (50% overlap). 

(d) The SNR for the bin 48 doublet is about 14.6 dB for AWSUM2 for 90% overlap and about 
5 dB for 50% overlap. 

For the case in Fig. 4.5b and d where the masking is present, the following is observed: 

(a) AWSUM2 and AWSUM i gains changed little going from 50% to 90% overlap. 
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(b) The gains were about 18.6 dB for AWSUM2 at 90% and 18.0 dB for 50%. They were 12 dB 
for AWSUMi at 90% and 11.3 dB at 50%. 

(c) In both cases, the bin 2 tonal is designated as coming from a submerged source based on 
the criteria that the (AWSUMi - AWSUM2) difference is less than 1.5 dB. 

The preceding analyses justify the following general observations which apply to the 

identification of submerged sources. 

(a) AWSUMi minus AWSUM2 can be used to determine if a source is submerged at low SNR 
when the power average is not a good basis for comparison. The same is true in the presence of 

masking. 

(b) 90% overlap gives better gain than does 50%; more overlap is better. 

(c) 240 s (average of 240 FFTs at 50% overlap) is too long for these data to remain stable in 

amplitude. 

4.6 AWSUMR: Performance for Low SNR 

Figure 4 6a presents a beam noise level versus beam number plot for 26.9 Hz. The top curve 
corresponds to the average power level for each of 128 beams from a discrete Founer transform 
(DFT) beamformer. The half wavelength design frequency of the array was 30 Hz and the number 
of hydrophones was 50. Since the hydrophones were uniformly spaced, the beamwidths near broadside 
were approximately 5°. The bandwidth of the data is 0.2 Hz; 400 time segments were overlapped 
95% an FFT performed on them, and then each spectral bin was averaged over the 400 results. The 
middle curve is the result obtained from AWSUM4 when the input data are the same 400 spectral 
estimates that produced the top curve. The bottom curve is the difference between the two previous 
curves It has been truncated at 10 dB to prevent it from interfering with either of the two previous curves 
and complicating the interpretation of the results. Only a small segment shows near beam number 68. 

The curve for the AVGPR results (top) shows the presence of high-level signals or noise. There 
are three peaks that are very prominent at beam numbers 15, 30, and 75, as well as several others 
that are less prominent. It is not clear from these results whether these high levels are from one 
source each or multiple sources within a beam summed together due to the relatively broad beamwidths 
(>5 deg) of the 50-element array. 

The middle curve, which corresponds to the AWSUM4 results, shows considerably more resolution 
than the previous curve. In fact, the number of local maxima has increased by a factor of approxi- 
mately 4 5 (36 versus 8). It is not possible from these results to determine whether or not the apparent 
increased resolution is real and is actually an enhancement in the resolving power of the AWSUM4 

processor compared to the AVGPR processor. The additional peaks in the AWSUM4 results suggest 
that it is resolving more sources than the conventional processor. Perhaps the most significant 
feature in the AWSUM4 results is the maximum at approximately beam number 68. There is no 
corresponding maximum, or even a local maximum, in the power average results. A tonal was being 
projected by a submerged source at this frequency at the approximate bearing of beam number 68. 
The SNR is sufficiently low to be undetectable by the average power processor (top curve). On the 
other hand, it is clearly indicated with a SNR of approximately 19 dB in the AWSUM4 results. 

The differences between the two curves at the top of Fig. 4.6a are truncated at 10 dB and 
plotted at the bottom of this same plot. The resulting difference curve only appears on the plot near 
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0.2 Hz, 100 s of data and 400 FFTs at 95% overlap. 
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the beams where the AVGPR - AWSUM4 curve is minimum. The differences are all greater than 
about 5 dB. Over most of the beam numbers, the differences range from about 15 to 25 dB. The 
differences increase as the amplitudes of the fluctuations increase. The maxima in the AWSUM4 
results correspond to beams for which the amplitudes of the fluctuations are much less than those 
of the other beams. Such character is indicative of signal or noise that has few interactions with 
the nonuniform, nonsteady sea surface. The least amount of fluctuations would correspond to a 
stable tonal traveling along a completely submerged path. 

The results in Fig. 4.6a, if verified, show that the AWSUM4 processor significantly enhances 
the spatial resolving power of the array, is capable of identifying stable tonals from submerged 
sources, significantly enhances the SNR (>18 dB), and can detect tonals that have SNR too low for 
the AVGPR processor to detect. 

Given a set of data, it is often possible to verify the enhanced performance of a processor by 
various means. One way is to process the data with a narrower frequency binwidth. Another way, 
which is more appropriate for this case, is to increase the number of sensors, or in other words, 
increase the aperture of the array. Fortunately, data for up to 198 hydrophones were available. 
These data were processed in exactly the same manner as was done to produce Fig. 4.6a, except 
100 and 198 hydrophones were used. Figs. 4.6b and 4.6c for 100 and 198 hydrophones, 
respectively, were produced. Each has the same three different types of curves as discussed earlier. 

The average power curves (top curves in Fig. 4.6c) show the presence of a signal at beam 
number 68. It is barely discernible in the results of the 100-element array in Fig. 4.6b. The AWSUM4 
curves in these two plots show maxima at the same beam numbers as they occurred in Fig. 4.6a. 
In addition, the difference curves clearly show the signal to be from a submerged source (<1.5 dB). 
This suggests that the minimum in the difference curve of Fig. 4.6a was identifying the signal as 
being from a submerged source, even though the minimum in the difference was about 5 dB. Such 
a large difference results from the signal being undetectable in the AVGPR results. Hence, it does 
not make sense to make the submerged source determination based on the AVGPR. In this case, 
the smaller amplitude fluctuation of the submerged signal was the essential factor that enabled 
detection. 

Some, but not all, of the enhanced spatial resolution (increased number of local maxima) can 
be verified by comparison with the corresponding results for increased aperture. The first and most 
important one is the maximum near beam number 68. It is readily identified in the 198 hydrophone 
results of Fig. 4.6c, where there is a local maximum of approximately 3 dB. This suggests that 
in the output of the beamformer and the level of the signal and the noise are approximately equal. 
In other words, the output SNR is 0 dB. When the number of hydrophones is reduced to 100 
(Fig. 4.6b), the output SNR of that signal is approximately -3 dB. The local maximum of the 
average power, in this case, is about 1 dB. When the number of hydrophones is further reduced to 
50, the output SNR must then be approximately -6 dB. Hence, AWSUM4 processing detected a 
source that was undetectable by the power average processor at -6 dB output SNR and gave 
a resulting SNR greater than 19 dB. This represents a gain over the conventional summation processor 
of approximately 25 dB. 

It should be noted that the AWSUM4 processor does not produce gain in the usual signal 
processing sense. Instead, it gives a selective attenuation, c.f., App. A, Figs. A. 1.1 and A. 1.2. 
Fortunately, the magnitude of the fluctuations of the noise that is generated near the ocean surface 
will be greater than the magnitude of the fluctuations of the stable signals that have a small number 
of interactions or no interaction with the irregular, moving sea surface. Hence, the noise will be 
attenuated more by AWSUM4 than will the stable signals. 
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4.7 AWSUMk: Performance for k = 1 and k = 4 for Sonobuoy Data Using 
Overlapped Processing 

A direct comparison can be made for AWSUMk processors of different orders by processing 
data sets at different orders. This has been done for a sequence of sonobuoy data at orders 1 and 
4, i.e., Ä: = 1 and it = 4, at several different percentages of overlapped processing. The results in 
Fig.'4.7 are for Aoi processing where the noise suppression has been determined from the average 
difference between the AVGPR and WISPR processors. Similarly, the results in Fig. 4.8 are for A04, 
the average difference between the AVGPR and AWSUM4 processing. Comparing the results in 
these two figures, AWSUM4 processing produced noise suppression at least 3 dB more than the 
AWSUMi (WISPR) processing and, depending upon the number of averages and the percentage 
overlap, this suppression increases to five times that amount. This important result is consistent at 
all percentages of overlap and number of averages (from 10 to over 1000). An additional observation 
is that additional noise suppression resulted from the inclusion of a greater number of averages at 
any particular percentage of overlap as might be anticipated. An understanding of these two figures 
leads one to realize that if charts of this type are carefully prepared for conditions similar to those 
that might occur in the field, the expected level of noise suppression can be estimated quantitatively. 
Using particular combinations of processing parameters, the charts can be used to easily estimate 
suppression prior to actual tactical employment in the field. 

4.8 Summary 

(a) A detailed example of how the A0i and A04 processor plots may be interpreted has been 
presented. The interpretation technique takes a little mental adjustment from conventional presentations 
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Fig. 4.7 — WISPR (A01) processing of sonobuoy data showing the effects of percentage 
overlap and the number of temporal data sets averaged (no. of FFTs) 
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Fig. 4.8 — AWSUM (AM) processing of sonobuoy data showing the effects of percentage 
overlap and the number of temporal data sets averaged (no. of FFTs) 

where the signal is expected to stand out as peaks. However, several advantages of this form of 
presentation are discussed. 

(b) Several examples were provided where it could be determined that the signals of interest 
had low fluctuation levels relative to the noise. In one case, through a normalization process, the 
bin magnitude in each bin was equalized, thus removing any signal excess that may have originally 
existed. SNR gain was then shown to be associated with the difference between fluctuation levels 
of the LOFAT signals and the combined noise/HIFAT signals. 

(c) The higher order A04 processor was shown to achieve additional SNR gain over that of the 
Aoi processor by 2 to 3 dB. This is achieved through the increased sensitivity of the higher order 

filters to fluctuations. 

(d) To achieve even greater sensitivity, higher orders could be used, eventually at the expense 
of producing processor instability. In fact, the AWSUMk order can be increased to absurdity. Order 
4 (k = 4) appears to achieve a reasonable compromise between fluctuation sensitivity and processor 
stability for many of the types of data that have been investigated, only a sample of which has been 

presented here. 

(e) The A0i and A04 processors were also shown to be applicable to nonacoustic data, 
implying the generality of these processors for fluctuation-based signal processing. 

(f) Signals present in the acoustic and nonacoustic examples presented were known to be from 
submerged sources. Though not the principle point of this section, this provides another confirmation 
that these processors are effective for the identification of signals from submerged sources. 
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5 0 ADDITIONAL SNR GAIN FOR THE WISPR AND AWSUM4 FILTERS USING STANDARD 
DEVIATION OF THE TIME SERIES: THE WISPR Hk AND AWSUM4 Hk FILTERS 

5.1 Introduction 

Some cases exist that are strategically important to the Navy in which it is highly desirable to 
increase the signal excess and SNR of LOFAT relative to the background noise and HIFAT. As 
mentioned in previous sections, an example of that is the detection of a LOFAT signal from a 
submerged source among HIFAT signal clutter from surface ships and the ambient noise back- 
ground The A01 and A04 processors discussed in Sec. 3.0 were shown to produce significant SNR 
gain through suppression of HIFAT signals while having little effect on LOFAT signals. 

When data exist in the form of a power spectrum time series, an additional statistic that can 
be used to achieve gain is a modified form of the temporal standard deviation, o„ of the time series, 
a. For the ith spectral bin, where the time series a is in decibels, 

a = (aua2,a3,...an), aj > 0, (2.1.2) (repeated here for convenience) 

and 

o,= 
j = n 

—r X (aj-aavgY 
"-'J-I 

2 
(5.1.1) 

with aavg = M\ as defined by Eq. 2.1.1 for the ith spectral bin. 

There is a distinct advantage of computing the standard deviation of the signal and noise in 
decibels rather than in power. Fluctuation-based processors achieve gain nearly independent of the 
signal and noise power levels. Calculation of this modified form of the standard deviation generates 
values that are indicative of the fluctuation levels, more or less independent of its absolute power level. 

The concept utilized to obtain additional gain through use of the standard deviation of the 
signal time series, although perhaps not particularly obvious, is based upon a rather straightforward 
extension of fluctuation-based filter concepts. Its rationale is initially presented for the AVGPR 
processor then extended in a natural way to the more advanced processors. Examples are presented 
comparing the WISPR and AWSUM4 Filters to the WISPR IIk processor. Thus far, tests have not 
been undertaken for the other AWSUM4 IIk processors. However, the rationale presented 
will demonstrate that they are additional processors that may find useful applications for some 

types of data. 

5.2 Signal Gain Improvement Rationale for the AVGPR Processor 

5.2.1 Using the LOFAT and HIFAT Standard Deviations 

Observe that LOFAT or HIFAT signals can be associated with certain spectral bins, e.g., let 

<5L = temporal standard deviation that is typical of LOFAT signal bins 

and 
G// = temporal standard deviation that is typical of HIFAT signals and background ambient 

noise bins. 
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Using the values commonly observed for these quantities, the decibel difference of the 
standard deviation of high- and low-level fluctuations that might be anticipated is 

O//-OL = 4 dB. 

Extending the concept a little further, for k > 0, 

(O//-OL)* = 4* dB. (5-2J) 

Clearly, a significant gain is achieved if either of these results were used to amplify the 
ÄVGPR. Note that a choice of k in Eq. 5.2.1, within reasonable limits, implies that the gain can be 
set to an arbitrary level. Therefore, suppression can be increased (or conversely SNR gain 
can be improved) by an appropriate choice of k. 

5.2.2 Generalization to All Spectral Bins 

During signal processing, it is not known, a priori, which are LOFAT or HIFAT bins. Therefore 
an equivalent method is required. The following procedure exemplifies just such a process: 

(a) The LOFAT signal excess YL, stipulating that * > 0, in LOFAT signal bins is 

k°l) 

YL = AVGPRL/10\w I, <5-2-2) 

(b) and similarly, HIFAT signal excess and/or background noise excess (where o is 
approximately the same for these two), Yfj is 

YH = AVGPR H / m W }. (5-2-3) 

(c) Combining these last two equations yields 

YL     UVGPRA [     [U'H-'L] 
AVGPRH\\ 'I 

\ 

(5.2.4) 

The last factor in Eq. 5.2.4 utilizes Eq. 5.2.1. Therefore, even though processing is on a bin-by-bin 
basis, the same gain is realized on the spectrum plots. 

(d) Generalizing to the ith spectral bin, the bin statistic's excess, Yt (whether LOFAT signal, 
HIFAT signal, or noise), may be expressed for plotting purposes as 

Yi=AVGPRi/10\ 10 j, 

or on dropping the subscript i, as this is understood to apply to all bin-wise filters, 
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Y = AVGPR/\0 

ka] 
10   . (5.2.5) 

(e) Note that when the AVGPR is for a bin having a large standard deviation, Y is suppressed 
more than for a bin having a small standard deviation. Thus, Eq. 5.2.5 depicts an AVGPR filter that 
uses the statistic, modified standard deviation, to achieve additional gain through increased relative 

suppression. 

5.3 Signal Gain Improvement for the WISPR Filter: WISPR Ilk 

The technique just developed for the AVGPR processor, Eq. 5.2.5, can be applied to the WISPR 
Filter in an analogous manner. Letting WISPR be the WISPR Filter output (a given spectral bin), 

then WISPR Ih becomes 

N WISPRIlk = WISPR/ 10\ 10 j. (5.2.6) 

5.4 Signal Gain Improvement for the AWSUM4 Filter: AWSUM4 IIk 

The technique just developed for the AVGPR processor, Eq. 5.2.5, can also be applied generally 
to higher order processors. As an example of this, for the AWSUM4 Filter in an analogous manner, 
letting AWSUM4 be the AWSUM4 Filter output for the ith spectral bin, then AWSUM4 IIk for that 

bin is 

N 
AWSUM4IIk = AWSUMAI 10\10/ • (5-2-7) 

At the present time, evaluation studies have not been conducted with these processors. From 
the examples that follow for the WISPR IIk processor, by analogy, improvements can be anticipated 
at least qualitatively. Additional gain would be expected in those situations where AWSUM4 is the 
appropriate fluctuation discriminator to utilize. 

5.5 Gains Achieved for WISPR Ilk Processing 

The WISPR II Filters are illustrated for data from a sonobuoy, Fig. 5.1, and data from the 
broadside beam of a vertical line array, Fig. 5.2. 

5.5.7 Sonobuoy Data 

In the case of the sonobuoy data in Fig. 5.1, there are three plots, each having three curves. 
The top curve is the spectrum that results from AVGPR processing. The middle curve in the plots 
from left to right is the spectrum results from WISPR, WISPR II1, and WISPR II2. The bottom 
curve is the difference in decibels between the upper and middle curves. 

(a) WISPR Filter 

The bottom curve is the A0i = (AVGPR - WISPR) processor. The SNR gain of the WISPR 
processor, compared to AVGPR, is 7.9 dB. The signal at bin 64, clearly visible in all three curves, 
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Fig. 5.2 —Fluctuation-based signal processing: SNR and submerged tonal identification for broadside beam of a 
vertical line array 

can be designated a LOFAT signal, as it was not suppressed by the WISPR Filter. It could also be 
declared that a submerged source has been detected, since the Aoi curve drops below the empirical 
1.5 dB submerged source threshold detection level. Paragraph 4.4 provides a more detailed explanation 
of the interpretation of this style of plot. 

(b) WISPR Hi 

The noise is suppressed by approximately 14 dB and the signal by about 1 dB, resulting in an 
added SNR gain of 5 dB over the WISPR Filter. Hence, the total SNR gain of the WISPR III Filter 
is approximately 12 dB more than the AVGPR processor on these data. The bottom curve is the 
difference (AVGPR - WISPR IIi). Again, the LOFAT signal at bin 64 passes the test for a LOFAT 
signal that originates from a submerged source. 

(c) WISPR II2 

Finally, the third plot contains similar results, but for (AVGPR - WISPR II2). Again, an addi- 
tional SNR gain of 5 dB has been achieved to make the total about 17 dB. However, the LOFAT 
signal at bin 64, using the present detection threshold, narrowly misses passing the 1.5-dB threshold 
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for   detection   of   a   submerged   source.   Perhaps   a   different   threshold   would   be   more 

appropriate for WISPR Ü2- 

(d) Setting the detection threshold 

Upon initial reflection, it may seem strange that even though greater gain has been achieved, 
the threshold detection level appears to need increasing as the WISPR IIk order, k, is increased. It 
is inappropriate to interpret this as a failure of these filters to perform as expected. It can be 
demonstrated that the detection threshold level should be increased systematically as the order 
increases to achieve equivalent detection. In fact, with a sensible ^-dependent threshold, improved 

detection can be expected. 

Recall that the WISPR and the other fluctuation-based processors discussed thus far identify 
submerged source signals by their unique property of suppressing fluctuating signals more than 
stable ones Therefore, signals that are nearly stable produce mean values that are almost the same 
for AVGPR and fluctuation-based processors. When the difference is determined, a value near zero 
is the result. This small difference is what permits setting a detection threshold. 

Referring to the previous development of the WISPR Ilk Filters: 

.        \Off-Oi 
recall the gain factor, 10 \10 

I ka 

and the filter equation, WISPR IIk= WISPR 110\10, 

The gain only becomes apparent when all spectral bins are plotted together (since LOFAT and 
HIFAT bins are unknown, a priori.) This is an excellent feature for visual data presentation, as a 
dramatic increase in separation of the top two curves is achieved by the increased gams. Division 

by 10\iö)deflates the plotted value for WISPR Ilk, which naturally results in the increased differ- 

ence (bottom curve). Compared to the WISPR plot, the same difference as in the first plot would 

f- 
be achieved if the WISPR IIk bin value was multiplied by 10W. In decibels, this is equivalent 

to adding ka dB to the final difference that is being compared to the threshold value. Rather than 
make this somewhat awkward accommodation, a more reasonable approach is to simply add this 
amount to the detection threshold value; e.g., in this case, the new threshold value would become 

New threshold detection value in decibels = 1.5 + ka dB, 

where 

a = the modified standard deviation associated with stable submerged tonals. 

5.5.2 Broadside Beam of a Vertical Line Array 

In the case of the broadside beam data in Fig. 5.2, there are four main plots, each having three 
curves with a subplot below it. The top curve is the spectrum that results from AVGPR processing 
of the beam data. The middle curve is the WISPR Filter results. The third curve in that sequence 
is the curve that corresponds to the WISPR IIk processing results. The order, k =1, 2, 4, and 8 is 
indicated at the top of the main plots as NUM = 1, NUM = 2, MUM = 4, or NUM = 8. 
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In the mam plots, the increase in SNR gain is quite obvious as the order is increased 
culminating at order, k = 8, with noise and HIFAT suppression of approximately 50 dB and with LOFAT 
signal suppression of approximately 25 dB. The associated SNR gain is approximately 25 dB. 

The subplots contain only one curve, the WISPR IIk suppression curve. These curves (e g if 
k 4, AVGPR - WISPR II4) could be used to indicate detection of submerged sources whenever 
the appropriate detection thresholds are crossed. As stated in the example in Sec. 5 5 1 in this 
sequence of plots, it is obvious that it is quite reasonable to use k dependent detection thresholds 
that increase as k is increases. It is also clear that order £=8 has achieved sufficient gain to 
produce a clear separation from the AVGPR curve and that little is to be gained by its further 
increase. 

Finally, it could be noted that any order could be utilized that provided sufficient separation 
from the AVGPR curve to enable reasonable interpretation. These discussions presented a reasonable 
basis for adapting a successful WISPR detection threshold to the higher order processors This was 
done primarily to provide insight as to how these detection thresholds interrelate. In practice 
the detection threshold for the processor order chosen should be based on the value found to 
optimize detection without excess false alarms. 

5.6 Removal of Clutter Tonals with WISPR II4 Processing 

Examples have already been provided illustrating the improvements in SNR gain over AVGPR 
processing that accrue to the WISPR and AWSUM4 processors. Here, an example is shown where 
the additional gain achieved enables almost complete elimination of clutter tonals. The information 
P<r,m Flg- 53 rePresents 125 consecutive 2048-point temporal FFTs (0.1-Hz binwidth) for each 
ol 256 beams. The AVGPR conventional processor shows a prominent peak near beam number 119 
^rom this curve it is impossible to determine if this represents the signal received from a nearby 
surface ship, multiple combined high-level tonals due to surface ship clutter, or if there are 
submerged sources near this beam. 

A submerged source tonal is known to be at beam 122, but it is not resolved in the AVGPR 

WTCIS; ^Ven th°Ugh the effeCtS °f the submerSed source tonal are evident at beam 122 in the 
WISPR Filter curve, at this gain level it is difficult to justify the conclusion that either of these 
peaks represents a submerged source. Proceeding systematically in the order AVGPR WISPR 
AWSUM4, to WISPR II4, the separation of the two tonals (clutter and submerged source) becomes 
much more pronounced. Of even greater importance is that as the suppression power of the pro- 
cessor for fluctuating tonals is increasing, the left peak at beam 119 receives more suppression than 
the peak at beam 122. The strong peak still remaining at beam 122 is strong evidence that a 
submerged source is in the direction of that beam. 

The test for detection is made (previously discussed in Sees. 4.4.3 and 4.4 4) where that curve 
(bottom of the plot) approaching the zero decibel axis indicates the beam at which the submerged 
source tonal is found. In this case, it is beam number 122. 

5.7 Comparison of WISPR II4 Performance with WISPR and AWSUM4 
for Specific Signals 

The frequency domain is where clutter is most easily identified and seems to pose the most 
challenging problem. It is one thing to reduce the magnitude of the clutter signals, thereby increasing 
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Fig. 5.3 — Fluctuation-based signal processing: SNR gain and submerged tonal identification 

the SNR of stable submerged source signals, and it is another thing to eliminate them entirely. The 
WISPR, AWSUM, and WISPR II4 filters do both. For example, consider Fig. 5.4 for WISPR, 
AWSUM, and WISPR II4 processing. Those results correspond to the spectrum-analyzed beam 
outputs for a given beam from a long array. Only a small segment in frequency has been plotted 
for a beam that received signals simultaneously from a submerged source and a surface ship. The 
top curves are the AVGPR spectrum-analyzed results for a narrow-frequency binwidth, 75% over- 
lap, and 50 averages; about 125 s of data. The middle curves are the corresponding WISPR, 
AWSUM4, and WISPR II4 results. The bottom curves are the identifiers of stable signals (normally 
interpreted as coming from submerged sources) at the frequencies for which the curves are less than 
1.5 dB. The first identifier in Fig. 5.4a is the difference between the AVGPR level and the WISPR 
level, designated the A01 processor. 

The bottom curve in Fig. 5.4b is the difference between WISPR and AWSUM4, designated the 
A14 processor. It also signifies a stable signal from a submerged source when it is less than 1.5 dB. 
The bottom curve in Fig. 5.4c, designated Aon, is the difference between AVGPR and WISPR II4 
plus 10 dB. An appropriate submerged source threshold has not yet been determined for Aon 
processor. 

There are two known signals from a submerged source in Fig. 5.4, designated SI and S2. Some 
of the more prominent clutter signals have been designated Cl, C2, C3, etc. The SNR enhancement 
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of the WISPR, AWSUM4, and WISPR II4 filters are easily seen in Fig. 5.4 by comparing the 
levels of the clutter signals to the levels of the submerged source signals in each curve. For example, 
in the AVGPR results, SI is about 2 dB lower in level than Cl, while it is about 8 dB greater in 
the WISPR results, about 13 dB greater in the AWSUM4 results, and about 26 dB greater in the 
WISPR II4 results. That represents an increase or enhancement in the level of SI relative to Cl of 
about 10, 15, and 28 dB for WISPR, AWSUM4, and WISPR II4, respectively. Similarly, for S2 and 
C3, which have a 6-dB difference in the AVGPR results, S2 is clearly larger in the WISPR, 
AWSUM4, and WISPR II4 results, representing an enhancement in SNR of about 11, 15, and 
28 dB, respectively. These observations are summarized below. 

SNR Enhancement (dB) SNR Enhancement (dB) 

Filter SI Relative to Cl SI Relative to C6 

WISPR 10 10 

AWSUM4 15 17 

WISPR II4 28 31 

The SNR enhancements for S2 and C3 are 11, 15, and 28 dB for WISPR, AWSUM4, and 
WISPR II4, respectively, and for S2 and S6, the corresponding SNR enhancements are 10, 18, 
and 33 dB, respectively. These observations are summarized below. 

SNR Enhancement (dB) SNR Enhancement (dB) 

Filter S2 Relative to C3 S3 Relative to C6 

WISPR 11 10 

AWSUM4 15 18 

WISPR II4 28 33 

The bottom curves indicate submerged source signals at frequencies SI and S2. Both signals 
are believed to be from a submerged source that was participating in the measurement exercise at 
a range of about 300 km from the receivers. The complete absence of the clutter signals in the A01, 
A14, and the Aon curves is rather remarkable. Such behavior of detecting stable submerged source 
signals and eliminating clutter is worthy of consideration for use as an automatic detection device. 
An obvious application would be in autonomous detection systems. 

The reason for utilizing a detector like A14 instead of A01 is to enhance the low SNR operation 
and to increase robustness against high-level transients and some forms of impulsive system or 
environmental noise degradation. 

5.8 Summary 

It has been shown that the temporal standard deviation of the time sequence, a direct measure 
of signal fluctuation level, can be utilized in conjunction with other fluctuation-based filters to 
achieve additional gain. When the results are displayed visually, this additional gain is directly 
observable, thus aiding analysis and interpretation. A reasonable technique was developed for 
adjusting the detection level associated with these processors as the order k is increased. Additional 
gains possible with the WISPR II4 processor were demonstrated to be at least 25 dB. 
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6.0 TYPICAL WISPR FILTER APPLICATIONS 

6.1 Introduction 

The general properties of the WISPR Filter and related filters have already been introduced in 
previous sections. Here, a number of applications using real acoustic data to demonstrate their 
versatility and robustness will be presented. A few of those applications are: the ability to achieve 
SNR gain even in adverse environments containing harsh transients as occurs near Arctic ice packs; 
enhanced resolution of peaks that have been masked by fluctuating noise; tolerance to loss of 
carrier and signal breakup during transmission, as often occurs with sonobuoy data; reduction 
of masking by off-axis noise; emulation of increased array aperture; and enhancement of spectral 
resolution. 

6.2 Robustness to Harsh Transients and Intermittent High-Level Noise 

6.2.1 Detecting Tonals in an Arctic Environment Containing Many High-Level Transients 

Figure 6.1 illustrates SNR gain improvements for the WISPR Filter in an adverse ambient noise 
environment. The data are from the broadside beam of an array that was suspended from an ice 
cover in the Arctic. The data were acquired during a time when the background ambient noise 
contained many transient events that caused the standard deviation to range from about 8 to 10 dB. 
By comparison, the standard deviation for typical deep-water ambient noise, when it is dominated 
by deep-water shipping, is usually about 6 dB. 

Each plot in Fig. 6.1 contains two curves. The top curves correspond to the AVGPR levels in 
each spectral bin from more than 100 consecutive FFTs. Similarly, the bottom curves correspond 
to the WISPR Filter output. The binwidths are given in the upper right corners of the plots. The 
binwidth is 0.6 Hz for the plot in the upper left corner. The binwidth increases by a factor of two 
for each additional plot, i.e., 1.2 Hz in the upper right corner plot, 2.4 Hz in the lower left corner 
plot, and 4.8 Hz in the lower right corner plot. The local maxima at 43, 65, and 80 Hz identify 
tonals from a projector under the ice that was at a range of approximately 40 mi. 

In the upper left plot, the local maxima for AVGPR are about 5 dB above the noise background. 
On the other hand, the SNR of the corresponding local maxima range from 15 to 20 dB above noise 
background using WISPR processing. This represents a 10 to 15 dB gain over the 5 dB observable 
for the AVGPR processor. 

Reasoning similar to that above can be used to determine the net SNR for the other three plots 
in Fig. 6.1. By doing that, SNR gains due to WISPR processing of 14 dB are obtained for the upper 
right plot, 13 to 15 dB for the lower left plot, and 5 to 16 dB for the lower right plot. Such results 
are well in excess of what would be expected for stable tonals in normal ambient noise. Approxi- 
mately 7 to 9 dB of SNR gain would be normal. However, in this case, where the source is under 
an ice cover, the SNR gain is coming mostly from the noise suppression. The noise suppression is 
more than would be the case for normal ambient noise because of the impulsive nature of the ice 
noise. On the other hand, the rough undersurface of the ice causes fluctuations in the received 
signal from a moving projector that to some extent reduces the WISPR Filter output. In this case, 
the tonals have been suppressed by as little as 3 dB (80 Hz in the upper left plot) and as much as 
10 dB (43 Hz in the lower right plot). The suppression of a stable tonal in ice-free water is 
normally less than 1.5 dB. Even though this excess signal suppression due to the rough underice 
surface lessens the total amount of SNR gain that can be achieved in a noise environment that has 
high-level transient ice noise events, the gain improvement under these conditions should still 
allow more robust target identification. 
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Fig. 6.1 —WISPR processing: SNR gain for low SNR signals versus BW (Arctic data) 

6.2.2 Improving Spatial Resolution in the Presence of Seismic Prospecting 

The WISPR processor is robust to masking that results from high-level transients, such as the 
periodic explosions due to seismic prospecting and the frequent loss of the sonobuoy carrier signal, 
which results in high-level transient noises in the sonobuoy electronics. Figure 6.2 gives an example 
of results for seismic prospecting. The ordinate is spectrum level in decibels, and the abscissa is 
the beam number. The plotted data are beamformed output from a towed horizontal line array in 
about 250 m of water. The top curve, labeled conventional output, was obtained by power averaging 
(AVGPR) consecutive spectral samples in a given frequency bin during a time period when explosions 
from seismic exploration were being received every 10 s. The two peaks in the curve are believed 
to be ambient related, but are contaminated to some degree by the explosions. It is uncertain how 
much of the remainder of the spatial spectrum is due to the ambient and how much is the effect 
of the contamination. The bottom curve is the WISPR output for the same data that produced the 
top curve. The WISPR result shows a spatial structure that is indicative of the ambient noise 
environment and has magnitudes that are considered to be contamination-free ambient noise at the 
measurement location. In these more correct results, the WISPR Filter suppression of the masking 
effects ranges from 14 to 30 dB. 
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Fig. 6.2 — WISPR robustness to geophysical prospecting (periodic explosions) in shallow water 

6.2.3 Identifying a Tonal in the Presence of Masking by Interference from Sonobuoy Electronic 
Noise 

Figure 6.3 illustrates a similar situation as in Fig. 6.2 except the sensor is a sonobuoy. The 
masking is due to electronic noise when the signal from the sonobuoy is lost. As in the previous 
case, the top curve is for conventional processing (AVGPR), and the one immediately beneath 
it is the AWSUM4 output. The difference between the top two curves, what would be A04 processing, 
is about 20 dB. This represents a reduction in masking of about 12 dB over most of the frequency 
range. The tonal at location B is evidence that the masking was indeed suppressed. In fact, near the 
frequency of the tonal, the suppression was approximately 50 dB, which left the tonal exposed with 
a SNR of 30 dB. However, the A04 processor result (not shown) would have been too contaminated 
by the transients for the difference at tonal location B to approach zero, the characteristic of a 
viable detector. In fact, at tonal location B, the A04 processor result would have been about 23 dB. 

The versatility of the Ajk processors (Eq. 2.5.5) can be illustrated with these data. The bottom curve 
is five times the difference between AWSUM2 (curve not shown) and AWSUM4 or 5 (A24 processor). 
Clearly, the tonal at location B approaches zero, which would enable a reasonable submerged 
source detection threshold to be set for this data set masked by sonobuoy electronic noise. 

6.2.4 Identifying a Submerged Source Beam at Low SNR in the Presence of High-Level, Off-Axis 
Masking 

Figure 6.4 illustrates the identification of a submerged source when the SNR is low in the 
presence of off-axis masking. The top curve is the AVGPR result, the middle curve is the WISPR 



74 Wagstaff, Leybourne, and George 

i—i—i—i—i—|—i—i—i—i—i—i—i—i—i—i—i—i—i—'—i—'  <   ■   ■   i  ■  '  ■  ■  r 
25 50 75 100 

FREQUENCY BIN 

Fig. 6.3 — Noise suppression using higher order AWSUM processors 

result, and the bottom curve is the Arji processor result in decibels (noise suppression). In this 
example, a signal could be easily verified at beam 21 by the beam response pattern at a frequency 
different from the one shown (40 Hz) where little masking was present. At 40 Hz, the signal is 
masked by the high-level, off-axis noise of source/sources on approximately beam 28. WISPR 
processing indicates a signal near beam 21, since the Arji noise suppression curve is nearly zero there. 

The AVGPR curve shows no peak at beam 21. In this case, the signal location could be easily 
identified at other frequencies, but this is not always possible. The advantage of being able to even 
partially eliminate the masking by off-axis tonals should find useful applications. 

6.3 Improvement in Spatial Resolution - A Substitute for Increased Array Aperture 

6.3.1 Aperture Enhancement with the WISPR Filter 

In addition to identifying a submerged source signal, as just demonstrated in Sec. 6.2.4, Fig. 6.4 
illustrates the spatial resolution enhancement characteristics of WISPR. The top curve is the con- 
ventional processing (AVGPR) results for a horizontal line array of approximately 36 wavelengths. 
The middle curve corresponds to the WISPR results for the same data. The increased resolution of 
the WISPR results compared to the conventional results is rather dramatic. The amount of detail 
that is resolved by WISPR processing suggests that the effective aperture after processing is considerably 
greater than what one would expect for that aperture. The aperture magnification appears to be greater 
than a factor of 3, i.e., 3x. 
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Fig. 6.4 — Identification of a submerged source in the presence of high-level, off-axis masking 

Other tests conducted by successively increasing or decreasing the aperture and comparison of 
the AVGPR and WISPR beam responses indicates that the improved spatial resolution of WISPR 
is real and not a processing artifact. 

6.3.2 A Calibrated Examination of Spatial Resolution Enhancement by the WISPR Filter 

The sketch, Fig. 6.5, summarizes the method utilized in acquiring and processing of beamformed 
data from the NATIVE-1 towed line array data as the aperture of this horizontal line array is 
successively changed by increasing the number of sensors used from 14 by factors of 2 to 108 sensors. 
The frequency is 9 Hz, the binwidth is 0.6 Hz, and the number of averages is 30. The increase in 
resolution obtained as the array aperture is increased (obvious in the sketch) is as expected based 
on experience and theory. 

The original plots from which the sketch in Fig. 6.5 was prepared are shown in Fig. 6.6 where 
the DI, actual number of sensors, N, and the wavelength, X, are shown. The abscissa is beam 
number from 1 to 128. The ordinate on each plot is a relative decibel level that can be made 
absolute by adding the decibel amount indicated at the lower left of each plot (add: X). The acoustic 
beams steered into real space are those between the two vertical dashed lines on each plot; those 
outside that region are nonacoustic or virtual beams. During the acquisition of these data, there was 
a submerged source along the bearing of beam number 62. It is identifiable only in the lower right 
plot, wherein the aperture and the spatial resolution are the greatest. Even at this large aperture, 
from the AVGPR plot, one would expect to find more prominent sources at the bearings indicated 
by beam numbers 55 and 70. 
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Fig. 6.6 — Spatial resolution versus aperture for power averaging at 9 Hz, 512-point FFT (BW = 0.6 Hz), the source 
data presented in Fig. 6.5, 5= signal (N, #X, and DI are the number of hydrophones, number of acoustic wavelengths, 
and the directivity index, respectively) 
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In Fig. 6.7, the WISPR performance is plotted just below that of the AVGPR processor curve 
in all four plots. The source along the bearing of beam number 62 shows up as a local peak or 
maximum of approximately 3 or 4 dB in the AVGPR results. The WISPR results show the source 
to have about the same level, an indication that it is a submerged source. The relative maxima at 
beams 55 and 70 are significantly reduced, an indication that their signals contain significant 
fluctuations and are probably from either surface or transient sources. An additional gain of about 
7 to 8 dB over the AVGPR results was achieved. 

When the aperture/number of hydrophones is reduced in half (N = 54), a local peak corresponding 
to the known source is no longer evident in the AVGPR results, while it is clearly evident in the 
WISPR results. The local peak is from 2 to 6 dB. With two more successive factors of 2 reduction 
in aperture/sensors (N = 27 and N = 14), the source is also not visible in the AVGPR results, but is 
visible in the WISPR results. The peak is about 4 to 6 dB for the 27-element aperture and about 
1 to 2 dB for the 14-element aperture. In all cases, the signal is discernable in the WISPR results, 
but it is discernable only for the conventional processor results for the largest aperture (N= 108 and 
SNR = 0). The theoretical difference in the SNR gain for the three factors of 2 would be 10 log 8, 
or 9 dB. If the SNR of the signal-to-noise beam is 3 dB for the maximum aperture, there must be 
as much noise as signal or 0 dB SNR, and it must be about -9 dB SNR for the smallest aperture, 
-6 dB SNR for the next largest, and -3 SNR dB for the second-largest. 
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Fig. 6.7 — Spatial resolution versus aperture for power averaging (top) and WISPR processing (middle) at 9 Hz, 
512-point FFT (BW = 0.6 Hz) 
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The bottom curve in Fig. 6.7 gives the average SNR gain of WISPR, about 7 dB in each case, 
and also indicates whether the WISPR processor can identify the source as being submerged. It 
does so only in the largest aperture case, where the SNR is about 0 dB. In the other cases where 
the SNR is equal to -3, -6, and -9 dB, it does not identify them as being submerged. However, 
it almost does for the -3 dB SNR case. An environmentally and processor-sensitive improved 
submerged source threshold could be devised for low SNR signals to designate submerged source 
signals as coming from submerged sources. That is a possibility for future research. 

6.4 Spectral/Spatial Resolution Enhancement and Compensation 
for Array Misalignments and Instabilities 

In the previous section, it was shown that WISPR processing achieved improvements in spatial 
resolution analogous to that achieved by increased array aperture. In that case, the comparison was 
rather straightforward, as data sets were of equal time. It may appear upon initial reflection that 
also claiming an additional increase in spectral resolution and SNR gain is an overstatement of the 
WISPR Filter properties. Clearly, separating these aspects of its performance quantitatively is 
difficult. However, it is believed that the following examples will show that each of these improvements 
is possible and that these benefits occur together. 

6.4.1 Spectral Resolution Improvements for Nonoverlapped Processing 

Section 6.3 was devoted exclusively to improvements in spatial resolution that can be achieved 
by WISPR processing. It was shown that for signals of low-fluctuation amplitude, the resolution 
that could be achieved is analogous to an increase of the array aperture. Here, the effect of reduced 
binwidth (BW) in the frequency domain is contrasted to WISPR processing. Figure 6.8 illustrates 
the resolution enhancement of WISPR compared to conventional processing for four different BWs. 
Sixty consecutive data segments were processed to obtain the results shown in these plots. The 
BW decreases by factors of 2 from 2.4 Hz in plot (a) to 0.3 Hz in plot (d). It is known that there 
is a signal source in the direction of beam 64. 

The top curve in each plot is beam response versus beam number from FFT beamforming using 
the AVGPR summation. The presence of a source at beam 64 becomes progressively more obvious 
as the BW is decreased. Knowing that this is the signal location, the SNR determined from the 
AVGPR curve increases by 3 dB each time BW is halved; from -6 dB in the first plot to 3 dB in 
the last plot. For example, in the case of plot (c), the local maximum at the known signal location 
is approximately 3 dB. This indicates that the signal is about the same magnitude as the noise 
(SNR = 0 dB). To place the preceding remarks in perspective, consider for the moment a narrow- 
band tonal. A familiar feature of an FFT is that most of the tonal's power will be determined to 
be in the spectral bin whose upper edge is nearest to the tonal frequency; thus, the result is almost 
unaffected by the BW. On the other hand, the noise power in each spectral bin of noise distributed 
across the spectrum is proportional to the BW. Thus, when processing statistically independent 
realizations, each reduction in the BW by a factor of 2 would give a SNR gain of approximately 
3 dB and improve spectral resolution as was just noted for the example presented. 

The lower curve in each plot is the corresponding WISPR result. Comparing the WISPR result 
with the AVGPR result in plot (c) in the vicinity marked "A," the peak magnitudes are both about 
10 dB above the local minima. Therefore, the WISPR Filter has had about the same effect on gain 
as a reduction of the BW by a factor of 2. Furthermore, the signal has been better localized in 
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Fig. 6.8 — Spatial resolution versus bandwidth (BW) for power averaging (top) and WISPR processing (bottom). 
5 = signal that is "unmasked" by improved spectral resolution. 

azimuth space or beam number at the same time. This is consistent with the enhancement of spatial 
resolving power observed for the examples presented in the previous section. 

In plot (d), where the BW is decreased by a factor of 2 to 0.3 Hz, and the SNR = 3 dB for the 
conventional results, the local maximum is about 6 dB and 20 dB for the conventional and WISPR 
results, respectively. As the BW decreases from plot (d) (BW = 0.3 Hz) to plot (a) (BW = 2.4 Hz), 
the spatial resolution capability of the conventional processing degrades rapidly. There are three 
identifiable local maxima evident in all of the conventional results. Additional peaks are resolved 
in the WISPR results in that four to six local maxima are visible in the same region. Furthermore, 
the sources have been localized better in azimuth (beam number) with a considerable enhancement 
in spatial (beam number) resolution. From these data, the improvement in spatial resolution resulting 
from the WISPR processing seems to exceed the conventional results versus BW by more than a 
factor of eight (8x). That is to say that the spatial resolution in real beam space (i.e., the beam space 
between the vertical dotted lines) of the WISPR results for a BW of 2.4 Hz exceeds the spatial 
resolution of the conventional results for 0.3 Hz. Similarly, the WISPR 0.3-Hz BW results might 
be expected to exceed the conventional results for a considerably narrower BW (say 0.04 Hz). This 
represents a capability for improved spatial/spectral resolution equivalent to that obtained with the 
greater FFT lengths. Thus, the longer times required to achieve the number of averages required 
otherwise can at least be partially avoided. 
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6.4.2 WISPR and AWSUM Gain and Spectral Resolution Improvements for Time Domain 
Overlapped Processing 

The data cited in this section, the results in Figs. 6.9 and 6.10, are from sonobuoy data. They 
have been averaged over 361 consecutive frequency bins (40 to 400) to improve the confidence of 
the results. 

Making a case for improvement in spectral resolution and gain over that shown in Sec. 6.4.1 
is a little more complex. Since the time available for data acquisition (target position stability, 
source stability, etc.) is limited, the data set is of finite length. Since the number of statistically 
independent realizations available for processing is inversely proportional to the FFT length chosen 
which affects the FFT BW, optimal data utilization implies that tradeoffs are required. For example, 
when too few realizations are available, even estimates of the standard deviation become unreliable. 
WISPR and AWSUM processing provides a natural means for utilization of the BW gain and 
spectral resolution that can be achieved through overlapped processing (which produces narrower 
BWs), while at the same time enabling the identification of stable, submerged sources. The straight 
line in Figs. 6.9 and 6.10 represent this idealized BW gain. The rationale for this is discussed in 
paragraph two of Sec. 6.4.1. 
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Fig. 6.10 — AWSUM4 sonobuoy processing versus FFT size (binwidth), data length in contiguous FFT time periods 

One way of evaluating the gains of the WISPR and AWSUM processors is to compare the noise 
gain that can be achieved from a given length of data on the basis of simply decreasing the 
frequency BW. The alternative would be to use the same data to calculate a series of overlapped 
spectral outputs that have coarser frequency resolution than can be processed by WISPR and 
AWSUM to achieve the gain. If one thinks in terms of spectral output that is generated by FFTs, 
the fundamental unit would be the length of data sufficient for one FFT. With that as the reference 
length, the next size FFT would be twice the size, which would yield a BW of one-half of the size 
of the reference length FFT. On the other hand, the same lengths of data could be used in WISPR 
processing to achieve gain instead of using the data to decrease the BW to get BW gain. For 
example, if the second length of FFT was used to calculate 100 more FFTs that are overlapped 
99%, a total of 101 data points could be used in WISPR processing. The result, given as the top 
(dotted) curve in Fig. 6.9, shows that the WISPR processing of those 101 data points in two FFT 
lengths would exceed the BW gain for twice the FFT size by approximately 2.5 dB. The WISPR 
processing continues to exceed the straight line that represents BW gain for a time equal to about 
seven FFT lengths. Beyond that length, the BW gain exceeds the WISPR gain. Corresponding 
results are given for 0, 1, 50, 90, 95, 97, and 98% overlaps. 

A similar comparison to that of Fig. 6.9 is given for AWSUM4 in Fig. 6.10. In this case, the 
gain advantage at 99% overlap over that obtained by cutting the BW in half is about 8 dB. Furthermore, 
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all of the curves for overlaps of 50% and more exceed the BW gain line from about 1.7 dB (50%) 
to 12 dB (99%). In fact, the maximum total gain for the AWSUM4 processing at 99% overlap is 
about 27 dB for approximately 32 FFT lengths (about 32 s in the case of the sonobuoy data in 
Fig. 6.10). When little or no overlap is involved (0 and 1%), the AWSUM4 results are about the 
same as the BW results. 

The results of processing four data sets from sonobuoy 4 data are presented in Fig. 6.11. These 
results can be utilized to obtain a somewhat better feel for the effect of the number of FFTs 
available for processing and FFT size (which controls BW). The FFTs were performed, all using 
90% overlap, for data lengths of 1024, 2048, 4096, and 8192 points. Therefore, the effect of 
percentage overlap is constant for these data, in contrast to that effect just discussed in Figs. 6.9 
and 6.10. Four fairly distinct sets of curves can be identified, one for each of processors A01, A02, 
A03, and A04 (see Sec. 2.5 for the definition of these processors). Because of the constraints of 80 s 
of data and 90% overlap, both low and high ends of the number of averages scale have only one 
datum (8192 at the low end and 1024 at the high end). 

The noise suppression increases systematically with the number of averages and the processor 
order numbers 1 through 4 with a maximum achieved of about 25 dB for A04 with 791 averages. 
Additional gain can probably be achieved at higher order numbers and even more averages. How- 
ever, the gain increase can be expected to reach a point of diminishing returns for several reasons. 
First, a greater number of averages requires greater data lengths if the percentage overlap is held 
constant, which may exceed the temporal stationarity limit of the data; second, as may be observed 
in Fig. 6.11, even though the amount of gain is systematically increasing, the gain increase (in 
decibels) with each increase in order number is only about 70% of the previous increase; and third, 
statistical instabilities will probably occur if the order number becomes too high, since an ever- 
increasing amount of data is, in effect, rejected as the order number is increased (c.f., Sec. 3.5 and 
App. A, Sec. A.l). 

Perhaps an even more important observation is that suppression level is only weakly influenced 
by the FFT size, if at all. The BW decibel gain discussed earlier is common to the AVGPR and 
AWSUMk filters and is, therefore, removed from the suppression level when the differences are 
taken. For example, notice that at the number of samples equal to about 100, 200, and 390, there 
are multiple estimates for the suppression level which agree quite well, differing by as little as 
1 dB. Careful examination of these multiple estimates will show that the suppression level is not 
distributed systematically in FFT size order. For completeness, it should be mentioned that even 
though the data are all from a common origin, at the points where multiple estimates occur, the data 
are from slightly different time periods due to the differences in FFT sizes. 

Figure 6.11 provides more than the suppression levels of the Aot, k=\ to 4 processors. Since 

AWSUMQ 
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Fig. 6.11 —Summary of suppression level results for overlapped processing with AWSUM Filters 

Thus, in decibels, with k > j, 

Aß in dB = (AQJC in dB) - (AQJ in dB). 

Hence, the decibel differences (i.e., the spread) between the curves in Fig. 6.11 gives the suppression 
level as a function of the number of averages for combinations of the four processors. 

6.4.3 Spatial Resolution Dependence on Beam Response Overlap 

Families of curves have been generated for the WISPR and AWSUM Filters that give the noise 
suppression gains as a function of the number of averages and the percentage of overlap of successive 
FFTs in the time domain. The noise suppression gains were as much as 10 dB for WISPR processing 
and 27 dB for AWSUM processing. Such gains are significant because after a given amount of 
overlap, the conventional AVGPR does not give a significantly different result. The reason for this 
is that the dependence between samples is too great, yet the WISPR and AWSUM processors still 
provide additional gain up to and including overlaps of 99%. Hence, the dependence among the 
consecutive FFTs does not increase as rapidly as the overlap increases in the fluctuation-based 
processors (e.g., WISPR and AWSUM) as it does for the AVGPR processor. 

The increased fluctuation-based processor (e.g., WISPR and AWSUM) gain due to overlap 
processing is not unique to the temporal domain. There is a corresponding analogy in the spatial 
domain. Consider, for example, Fig. 6.12. The three curves plotted in Fig. 6.12a are the AVGPR 
curve (top), the WISPR Filter curve (middle), and the Aoi submerged source curve (bottom). These 
results are for 125 averages and 90% overlap of the FFTs in the time domain. The Arji curve 
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indicates that there is a submerged source signal at approximately beam number 122. That signal 
is evident in the WISPR curve, but it is not evident in the AVGPR curve. The submerged source 
signal is obviously below its minimum detectable level. 

Figure 6.12b gives corresponding curves for the three processors (AVGPR, WISPR, and Aoi), 
but there is one important difference. The number of beams that is calculated (steered) to cover the 
same acoustic space is different. There are 63 beams in Fig. 6.12a and 252 beams in Fig. 6.12b. 
That constitutes an oversampling of the beams in azimuth space for the Fig. 6.12b results by 
approximately a factor of four. That constitutes a case of consecutive beam response pattern overlap 
in the spatial domain that is analogous to 75% overlap of consecutive FFTs in the time domain. The 
effects of the high degree of beam overlap in the spatial domain can be seen by comparing the various 
curves between the low overlap case in Fig. 6.12a and the high overlap case in Fig. 6.12b. The only 
effects that are apparent in the AVGPR curve in Fig. 6.12b that are due to increased beam overlap 
are that some of the straight-line segments between the consecutive beam output values of Fig. 6.12a 
are more rounded in Fig. 6.12b due to the increased quantization (or interpolation) of the larger 
number of beams; otherwise, the results are identical. On the other hand, there are significant 
differences in the WISPR and the Aoi curves between the two plots. The spatial resolution has 
increased substantially in the overlapped case in Fig. 6.12b. The prominent peaks of signal and 
noise in the AVGPR curves between beam numbers 112-123 in Fig. 6.12a and between beam 
numbers 67 and 105 in Fig. 6.12b are divided into four local maximum in the overlapped case and 
into only two in the nonoverlapped case. Furthermore, the location of the submerged source in the 
higher resolution results of Fig. 6.12b corresponds with the fourth local maximum at beam 103. 

The spatial resolution in the overlapped case (Fig. 6.12b) has improved over the nonoverlapped 
case (Fig. 6.12a) sufficiently to localize the source to a much finer degree. Furthermore, it is 
obvious that the effective beamwidths of the overlapped results are significantly narrower than 
those of the corresponding nonoverlapped results, perhaps by a reduction factor of as much as two. 

6.4.4 Compensation for Array Misalignments and Instabilities 

Some of the mechanisms arising at the sensor that are responsible for increased fluctuations of 
signals and noise alike are discussed in detail in Sec. 3.2.3 (also refer to Fig. 3.5). Two of these 
occur with towed line arrays, as the relative orientation of signal sources to portions of the array 
vary through array path meanders and depth variations. The spatial resolution enhancement due to 
WISPR processing in the time domain can be interpreted as the result of stripping highly fluctu- 
ating noise components away from the more stable signal components. The portion of this improvement 
that can be attributed to the selective attenuation of the fluctuations due to array misalignments and 
instabilities partially compensates for errors in arrival angle localizations generated at the sensors. 
No experimental data are currently available that clearly delineate this effect. However, if such 
fluctuations were added through simulation, such a result would clearly be demonstrated. What 
should be kept in mind is that fluctuations that are added at the sensor are added to the fluctuating 
signals and steady signals alike. Thus, fluctuation-based processors can still partially distinguish 
the difference in fluctuation levels originally present upon arrival. 

6.5 Summary 

Several interesting applications of WISPR processing have been presented that demonstrate its 
general utility for processing signals that are differentiated with respect to their fluctuation levels. 
Spatial resolution, spectral resolution, and SNR gain may be obtained. Reduction of signal masking 



86 . Wagstqff, Leybourne, and George 

from transients, carrier loss, and associated signal intermittent noise; elimination of directional 
masking from high-level, off-axis noise or surface sources; and even partial compensation for 
sensor (array) induced noise are possible under favorable conditions. WISPR and AWSUM filters 
can uniquely take advantage of overlapped processing. In addition to the recovery of signal power 
ordinarily lost by data windowing that is usually recovered by overlapped processing, improvements 
in spectral resolution and SNR gain are also achieved. 

7.0 ADVANCED WISPR FILTER APPLICATIONS 

7.1 Introduction 

Several typical applications of the WISPR and related filters have been described in previous 
sections. Here, a number of advanced applications will be presented that require imagination to 
realize that fluctuation-based processors are applicable. It is quite possible that many other such 
applications await discovery, limited only by researchers' familiarization with these processors, 
time, and resources. There are several tactical decision aids (TDA) commonly used in the Fleet that 
might benefit from fluctuation-based processors. One of those, the Gram (time history display of 
spectral tonal content), will be shown to perform with a high level of robustness to masking. 
Widely used to improve the performance of some TDAs are various noise spectrum equalization 
(NSE) algorithms. An illustration of WISPR and AWSUM4 to achieve NSE is illustrated for the 
Gram TDA. Extension of this NSE algorithm to two-dimensional applications is shown to be 
computationally straightforward. 

7.2 Multifrequency Matched-Field Processing 

One problem of current interest in matched-field processing (MFP) is the occurrence of relatively 
high sidelobes in range and depth. It is often very difficult to identify, with high confidence, the 
true depth and range peak from the multiplicity of range-depth peaks due to range and depth 
sidelobes. One method of getting around that problem is to generate ambiguity surfaces for many 
frequencies and then to average them on a range-depth cell basis. The rationale for doing that is 
that the locations of the sidelobes in range and depth will change with the frequency, but the true 
range and depth of the target will be the same no matter what the frequency is. Hence, averaging 
multiple ambiguity surfaces, for different frequencies on a bin-by-bin basis, should not affect the 
true range and depth peak, but it should reduce the average due to sidelobes by averaging the high 
levels at some frequencies, with the low background levels at other frequencies. The result should 
be a reduction in the high sidelobes that tend to confuse a detector. 

Through simulations of MFP, cases were generated for SNR levels of -5 and -8 dB, with 
ambiguity surfaces produced at eight frequencies for each SNR level. Those two SNR cases were 
processed through the AVGPR and WISPR processors. The upper plots in Fig. 7.1 (-5 dB SNR 
case) and Fig. 7.2 (-8 dB SNR case) are for AVGPR processing, and the lower plots are for WISPR 
processing. The peak that corresponds to the target range and depth of 50 km and 110 m, respec- 
tively, is clearly evident as the largest peak in each of the plots in those figures. Comparing the 
background levels in the upper two plots, it is visually lower for the -5 dB SNR case as would be 
anticipated. Comparing the background in the upper plot of Figs. 7.1 and 7.2 with the correspond- 
ing lower plots, it is visually lower in the WISPR-processed plots. Notable visually, the background 
level for the -8 dB SNR case from WISPR processing is almost equivalent to the AVGPR -5 dB 
SNR result, an improvement at least. 
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AVGPR PROCESSING 

P,MU, SIGMA: 
P-MUVMU 
P-MU)/SIGMA 

26.27, 4.34, 
= 7.04 dB 
= 12.90 dB 

1.13 dB 

WISPR PROCESSING 

P, MU, SIGMA: 
P-MUWMU 
P-MU /SIGMA 

26.22, 3.30, 0.81 dB 
= 8.42 dB 
= 14.52 dB 

Fig. 7.1 ■ Multifrequency matched-field processing, SNR -5 dB, target depth 
target range 50,000 m 

10 m, 

The results of these two processors can be compared quantitatively by comparing the levels of 
the target range-depth peak (P), the mean level of the background excluding the peak and its nearest 
neighbors (Mu), and the standard deviation of the background levels (Sigma). In both of these cases 
the peak, P, of the AVGPR and the WISPR Filter results are about the same. However, Mu gen- 
erated by the WISPR Filter is about 1.0 to 1.1 dB less than the one generated by AVGPR, and 
Sigma is less by about 0.3 to 0.4 dB. In fact, the reduction in Mu and Sigma is greater for the lower 
SNR case, a very desirable feature. 
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AVGPR PROCESSING 

P, MU, SIGMA: 
(P-MU)/MU 
P-MU /SIGMA 

16.32,4.50, 1.25 dB 
= 4.24 dB 
= 9.80 dB 

WISPR PROCESSING 

P,MU, SIGMA:       16.21, 3.34, 0.85 dB 
(P-MUWMU =5.85 dB 
(P-MU)/SIGMA     =11.82 dB 

Fig. 7.2 — Multifrequency matched-field processing, SNR -8 dB, target depth 110 m, 
target range 50,000 m 

Two other quantitative comparisons can also be made: 

(a) The processor output SNR ratio: SNR = (P - Mu)/Mu 

(b) The processor output detection index: DI = (P - Mu)/Sigma 

In both cases, the WISPR results outperforms the AVGPR results by about 1 dB and 2 dB for 
the SNR and DI, respectively. This suggests that the use of the WISPR Filter in place of the linear 
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average (ÄVGPR) can be expected to provide a significant enhancement in identifying the location 
of targets. Even better results (though not presented herein) were achieved using the AWSUM4 
Filter instead of the WISPR Filter. It is anticipated that processing of real data, where the effects 
of natural fluctuations of the medium are also present, would additionally magnify the improvements 
just discussed. 

7.3 WISPR Applied to Frequency Domain Matched Filtering 

When the replica signal is sufficiently long in time to generate time histories of narrow-band 
spectral output, a WISPR-type frequency domain matched filter approach can be taken to detect the 
returning signal among the reverberation and noise. In doing that, the WISPR Filter equation can 
be written in the more general form of a path integral: 

W(f,t,0) = B-lOlog U 10K 
'CJC 

G(f,t,e)ldz (7.3.1) 

where 

A, B = constants dependent upon data type, 

/= frequency, 

t - time, 

0 = steering angle, 

C = integration path, 

Lc integration path length,     dz, 

G(f,t,Q) = frequency/time/beam number surface. 

Using the modifications indicated below, Eq. 7.3.1 also applies to the following cases: 

(a) Passive sonobuoy: 

C=C(t), 

G(f,t,Q) = G(f,t); 

(b) Passive sonar array: 

C = C(t) for CW, 

c = c(f,t) for transient matched filter, 

/= h(t) transient waveform function; 

(c) Active sonar array: 

C=C(f,t), 

f= h(t) signal waveform function. 

The application of Eq. 7.3.1 is fairly straightforward and will be discussed in terms of an active 
sonar array, which involves the most complex form for which this type of processing has been done 
thus far. 
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The approach to perform frequency domain fluctuation-based matched filtering for an active 
sonar array will be demonstrated with a linear frequency modulated (LFM) waveform that is 
a frequency ramp that increases with time and extends over time for 8 s as it increases linearly in 
frequency over 16 frequency bins (235 to 250). The surface in Fig. 7.3a is a time after ping 
versus frequency bin number plot. The time ranges from 0 s after ping at the top to 580 s after ping 
at the bottom. Frequency bin number increases from left to right. There are three return pings in 
that plot. The first one is a continuous wave (CW) signal that covers about four frequency bins near 
bin 253 and arrived at approximately 50 s after start of recording. The next arrival in time is a 
broadband (BB) signal that extends over frequency bins 235 through 277 at approximately 340 s. 
The last arriving signal is the LFM return signal that extends from frequency bins 235 to 250 and 
over time from about 350 to 360 s. These known characteristics can be used to define a matched 
filter along path C in time frequency space. The path designated LFM SWEEP RETURN in Fig. 7.3c 
ending at about 351 s coincides with the return of the LFM signal. At each time instance, there are 
other paths parallel to this one that coincide with the processing paths "C." Of course, they would 
not all coincide with the LFM signal return. 

Now suppose the objective is to detect the LFM signal and to discriminate against all other 
signals and noise. If one does conventional (AVGPR) processing on the frequency time-of-arrival 
domain that has been transformed to coincide with path C, the result in Fig. 7.4a is obtained. In 
that plot, the CW, LFM, and BB signals are clearly evident along with the reverberation (REV). 
The power average processor has not been able to enhance detection of the LFM signal by reducing 
the other two to any discernable degree. However, that is not the case for the WISPR frequency 
domain matched-filter results in Fig. 7.4b. In this case, the matching to the path enabled the WISPR 
Filter to attenuate everything except the LFM signal. In fact, there is no remaining trace of the BB 
signal and only a small remnant of the CW signal. Furthermore, the reverberation has been reduced 
on the average about 8 dB. The LFM signal has been reduced about 3 dB, but there is no doubt 
that its detectability has been greatly enhanced by the WISPR frequency domain matched filter. 

7.4 WISPR and the Active Barrier 

One possible means of detecting a submerged target in shallow water is to ensonify a vertical 
plane between a source and a vertical string of sensors and to identify abnormalities in the received 
signals that are caused by the target passing through the plane. Such a concept was tested in Dabob 
Bay. Figure 7.5 shows the plot of the bay where the experiment was conducted and the locations 
of the source and receivers and the track of the target. Figure 7.6 shows a cross-section of the bay 
along a vertical plane containing the source and the receiver. The signals from the hydrophones 
were recorded during the time the projector was operating, which included times before, during, 
and after the target passed through the ensonified plane between the source and hydrophones. The 
SNR was always greater than 20 dB. 

The signals from each hydrophone were spectrum analyzed to obtain the time series of the 
power in each source frequency bin. The AVGPR and WISPR Filter results were computed, treating 
the data for groups of hydrophones at the same instant of time as the data sequence (a vertical 
spatial sequence in this case as opposed to the time sequences used in most of the earlier examples). 
The running difference between these two levels (Aoi processing) was determined. In Fig. 7.7, the 
time history of the result is compared to the track of the target passing through the ensonified plane 
using hydrophones 1 through 24. The peak in this figure corresponds to the approximate time that 
the target passed through the plane. At all other times, the Aoi level is nearly zero. Similar results 
were obtained using hydrophones 36 to 48 near the bottom, Fig. 7.8, and also using only three 
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Fig. 7.5 — Target track during Dabob Bay active barrier experiment 
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Fig. 7.6—Dabob Bay profile transverse to the active barrier experiment track 

hydrophones, Fig. 7.9. These results suggest that in some shallow-water environments, the WISPR 
Filter can be used in an active barrier situation to detect the passage of a target. 

7.5 WISPR Time History (Gram) Performance/Robustness to Masking 

Robustness to masking using WISPR processing will be illustrated with two cases of sonobuoy 
data. A well-behaved sonobuoy will be used to provide a comparison baseline to data from a 
sonobuoy during a time when the signal is partially masked by periods where the sonobuoy is 
operating erratically. 

7.5.1 Data from a Weil-Behaved Sonobuoy 

Figure 7.10 presents some of the analysis products that illustrate WISPR performance for 
sonobuoy systems. The plot in Fig. 7.10a is the broadband time history trace of a sonobuoy output 
that covers the time period from approximately 5 min (300 s) after the beginning of data acquisition 
to about 6.5 min (400 s). The time history trace is "reasonably well behaved." This indicates good 
data from a well-functioning sonobuoy. The one small "glitch" about two-thirds the way across the 
trace would have almost no effect on conventional data processing. 

The curves in Fig. 7.10c correspond to the first 50 s of data in the time history plot. The spectra 
were obtained for 23 FFTs (0.25-Hz BW with 50% overlap). The top and middle curves are the 
AVGPR and WISPR results. The spectral lines and broadband noise are evident in both of these 
curves. The broadband noise component of the WISPR spectrum is approximately 6 dB less than 
the AVGPR result. The bottom curve is the Aoi processor result. When this curve is very close to 
zero (usually less than 1.5 dB), there exists a stable tonal in the data at that frequency which is 
characterized as one originating from a submerged source. This happens at the frequencies marked 
A, B, C, D, and E. 
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Fig. 7.7 — Dabob Bay active barrier processing results, hydrophones 1 
through 24 

Figure 7.10b and d contains gram-type time histories of the AVGPR and WISPR result for the 
first 20 min (labeled 1 to 21 min). The spectral lines appearing on the gram displays are those that 
pass a particular threshold above the background level after passing the spectral data through an 
NSE algorithm. Those spectral lines that persist in time appear as linear traces on these grams. Both 
grams are rich with line structure. The AVGPR results have more lines in the middle 
range of frequencies, while the WISPR result has more lines in the frequency regime below 
approximately 30 Hz. Overall, the WISPR results have more line components. Many of the lines 
the two processors have in common have longer time durations in the WISPR results. Thus, the 
WISPR processor permits tracking the lines longer and perhaps farther in range due to the 6- to 
8-dB SNR enhancement and noise suppression capability of the WISPR Filter. 

Figure 7.11 contains two grams. Figure 7.11a is identical to Fig. 7.10b. The gram in Fig. 7.11b 
was obtained from the AQI processor; plotted are only those periods when the submerged source 
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Fig. 7.9 — Dabob Bay active barrier processing results, hydrophones 4, 20, and 36 
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threshold is exceeded for a given frequency. The Aoi gram indicates that a submerged source was 
radiating spectral lines marked at A, B, C, and D for a significant part of the 20 min, and also at 
a few other frequencies for lesser periods of time. The AVGPR gram possesses more lines than the 
WISPR difference gram, but using it alone, there is no means to determine which are from submerged 
sources and which are from surface noise clutter sources. 

Some of the lines that occur in the A0i results are also in the AVGPR results, but when they 
are of small duration in the AVGPR results, they are smaller yet in the Aoi results. One reason for 
this is that for a line to exist in the Aoi result it must first exist in the AVGPR result. Therefore, 
it would be unusual to have an Aoi line that exceeded the time duration of the corresponding line 
in the AVGPR result. Another reason is that as the line begins to disappear from the AVGPR result, 
the noise begins to dominate and the spectral line output takes on the fluctuation character of the 
noise. In other words, this occurs when the initial SNR is not sufficient to identify the source as 
one that originated from a submerged source. 

7.5.2 Data from a Sonobuoy with Intermittent Noise Masking 

Figs. 7.10 and 7.11 correspond to a time period when the sonobuoy system was functioning 
well. Unfortunately, this is not always the case. It is not unusual for a large percentage of the data 
to be severely degraded as a result of one or more of the many faults or casualties that can occur. 
Examples include sonobuoy antenna wash-over due to high seas and loss of transmitted signal due 
to the aircraft being out of range, or the aircraft being in a turn and shielding its own antenna from 
the line-of-sight path to the sonobuoy antenna. When things like this happen, the fault appears as 
a telemetry problem that induces high-level fluctuations in the results. This is illustrated by the time 
history plot in Fig. 7.12a. One segment of time during which the fluctuations were particularly 
numerous, identified by the word "masking," was processed to illustrate the power of WISPR to 
suppress or eliminate the effects of masking or jamming. This was not the only time period of 
masking, but it was the worst period in the data. These data are a continuation of the previous data 
in Figs. 7.10 and 7.11 for times when telemetry problems occurred. A spectral plot similar to the 
one in Fig. 7.10c was obtained by processing the data for the time period identified as the masking 
segment. (Note: all times after the beginning of the segment identified for illustration were degraded 
due to the same type of masking.) In this case, there is a large difference between the AVGPR curve 
and the WISPR curve at the lower frequencies. It is much more than the 6 to 8 dB that might 
otherwise be expected for the difference. In fact, at one point near the axis, the AVGPR result is 
about 80 dB and the WISPR result is about 40 dB, a suppression of the masking effects of 40 dB. 
Furthermore, the line components at these low frequencies are not evident in the AVGPR results, 
but they are still present in the WISPR results. In other words, WISPR reduced the contamination 
by 40 dB to leave a low-frequency line sticking up 15 dB above the background ambient noise. 

The difference curve in Fig. 7.12c designates only the line component very close to the axis 
as originating from a submerged source. WISPR processing uncovered other lines above that one. 
They do not appear in the Aoi curve even though they were so designated before the onset of 
masking. The reason for this is that the Aoi processor requires reasonable results from both the 
AVGPR and WISPR filters. In this case, most of the AVGPR results are completely destroyed by 
the masking. In such a case, one would have to rely on a WISPR gram and conventional gram 
reading techniques. At least with a WISPR gram this is still possible, while with AVGPR gram it 
is not. 

Figures 7.12b and 7.12d give gram representations of the data for the time period immediately 
before and after the onset of masking. The top gram (Fig. 7.12b) is from the AVGPR processing 
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and the bottom one (Fig. 7.12d) is from the WISPR processing. The AVGPR gram shows only the 
extremely low frequency line and small traces of two others above it. The WISPR gram shows 
the first two as continuous, the other one as nearly continuous, and a small trace at much higher 
frequency. Higher frequencies did not appear in either the AVGPR or the WISPR results. These 
results clearly demonstrate the value of the WISPR gram in increasing SNR and reducing or 
eliminating the effects of masking. 

Figure 7.13 contains curves similar to Fig. 7.11 except for the masking time period. Figure 7.13a 
is identical to Fig. 7.12b and has been reproduced to facilitate comparison with the WISPR differ- 
ence gram in Fig. 7.13b. Lines that appear in the WISPR difference gram are designated as originating 
from submerged sources. It is interesting to compare the AVGPR gram and its sparse line information 
with the WISPR difference gram, which contains a wealth of line information at the lower frequencies, 
all of which have passed the submerged source threshold test. 

7.6 Noise Spectrum Equalization (NSE) via Fluctuation-Based Processing 
to Enhance Submerged Source Detection and Classification 

The detection of signals is often determined by the signals exceeding a predetermined threshold. 
Setting such a threshold, when the background noise has significant variations in level across the 
frequency band, can be a difficult challenge. That is particularly true in the case of undersea 
ambient noise, where the noise can vary more than 40 dB across the frequency band from a few 
hertz to a few kilohertz. The problem is considerably less complicated when the spectrum is 
prewhitened before the threshold is applied. Such a process removes the large level excursions in 
the background noise without altering the SNR of the signals that are embedded in the noise. Such 
algorithms are often called NSE algorithms. It is much easier to set sensible detection thresholds 
for data that have been prewhitened by an NSE algorithm than data that have not been prewhitened, 
so much so that it is almost a universal procedure for undersea acoustic data prior to displaying the 
frequency content on gram displays (time histories of the spectrum analyzed signal data). 

There are many different NSE algorithms, each with its advantages and disadvantages. Sometimes 
the choice of an NSE algorithm is determined by the personal preference of the researcher or by 
some unique feature or attribute of the algorithm. Here, a new class of fluctuation-based NSE 
algorithms is introduced that may be more attractive for some applications. The WISPR and AWSUM 
filters will be used to demonstrate the method of doing this new type of NSE and to illustrate some 
of the unique and interesting characteristics of the results. 

The two new WISPR and AWSUM NSE algorithms are based upon the Arji and A24 processors, 
Eqs. 2.5.1 and 2.5.5. Expressed in decibels they become 

A01 = AVGPR - WISPR 

and 

A24 = AWSUM2 - AWSUM4 . 

An example of an AVGPR curve, the corresponding WISPR curve, and the resulting Arji (dif- 
ference or NSE) curve is given in Fig. 7.14. The AVGPR curve is the top one, the WISPR curve 
is in the middle, and the A01 curve is at the bottom. Notice that both the AVGPR curve and the 
WISPR curve are nonwhite (not spectrally flat). However, the AQI curve is relatively flat, at least 
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the bottom part of the envelope is reasonably flat except at the location of the tonal at A. Hence, the 
final result, Aoi, is a "white" (flat) curve with a peak extending down from its envelope. The peak 
at A is significant because it identifies the corresponding signal in the AVGPR spectrum as a highly 
stable tonal, i.e., a tonal from a submerged source. If the source had not been submerged, the tonal 
would have been acted upon by the fluctuation generation mechanisms near the surface, and it would 
have been amplitude modulated and would have had relatively large amplitude fluctuations. In such 
a case, it would have fallen within the lower amplitudes of Aoi and been indistinguishable from the 
noise. Hence, not only did Aoi processing accomplish the NSE function, it also eliminated the other 
signals that fluctuated nearly as much as the noise and classified signal A as an amplitude stable, 
or submerged source, signal. 

Figure 7.15 illustrates a case similar to that in Fig. 7.14 except the AVGPR curve is contaminated 
by high-level transients that occurred during the measurements. The result of the contamination is 
that there are no tonals visible in the AVGPR spectrum (top curve). The middle curve is the 
corresponding AWSUM4 result. In this case, the AVGPR and AWSUM4 curves are not separated 
by a nearly constant amount across the frequency band. Hence, a curve for A04 would not be 
approximately constant. Therefore, A04 cannot be used here for NSE. However, a tonal is present 
in the AWSUM4 curve that is not present in the AVGPR curve. That indicates that something useful 
can be obtained by using a fluctuation-based signal processor. The bottom curve in Fig. 7.15 is, for 
display purposes, five times the A24. In this case, the NSE function has been accomplished by the 
A24 NSE algorithm. Furthermore, the A24 NSE algorithm was able to identify the tonal at B as one 
that is highly stable and, therefore, must have originated from a submerged source. 

Some very attractive features of the two NSE algorithms (Aoi and A24) discussed above include: 

(a) these NSE algorithms are computationally very efficient, 

(b) fluctuating tonals (clutter signals from sources at the sea surface) are eliminated, 

(c) tonals from submerged sources are detected and classified as being from a submerged source, 

(d) the A24 processor provides an NSE algorithm, robust to masking from high-level transients, and 

(e) the Ai4 processor has also been successfully used in many applications and is generally 
preferred over the A24 processor. Because of its greater magnitude, a multiplier is not 
required for display purposes as is necessary with the A24 processor. 

Spectral plots such as those in Figs. 7.14 and 7.15 show results for a single averaging period. 
When the results from multiple averaging periods are displayed in a gram type of format, after 
appropriate NSE, a trace across frequency at a particular time is obtained. Figure 7.16 gives the 
AVGPR, WISPR, and Aoi results for a submerged source for a particular time during which grams 
of the three different statistics (or signal processors) were generated. There are numerous tonals 
present. Some are from the submerged source and some are from surface ship clutter. Not all 
tonals from the submerged source are stable enough in amplitude to exceed the submerged source 
Aoi <1.5 dB threshold. There are five such tonals, whereas only one would be sufficient to detect 
the presence of a submerged source. 

Along with the clutter, it is possible that some of the submerged source signals were also 
eliminated because of fluctuations or instabilities in amplitude that were temporary, being induced 
by either the medium or the temporary instability of the source generation mechanism. Such insta- 
bilities come and go with time and are readily apparent when the results are displayed as a gram 
that covers a significant time period. 
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The top three plots in Fig. 7.17 give the gram results for the AVGPR processor (top plot) the 
WISPR processor (second plot), and the Aoi processor (third plot). Frequency is on the x-axis and 
time is on the y-axis. The total time covered is 30 min. Both the AVGPR plot and the WISPR 
plot show major tonals at a number of frequencies and many minor ones. However, the WISPR plot 
shows more of each. That is because of the increased resolution of the WISPR processor. The 
number of tonals plotted can be changed by modifying the threshold level to achieve fewer or more 
threshold crossings. The previous results to which the WISPR gram are compared were produced 
using one of the prewhitening filters commonly used to produce a gram. 

The Aoi gram in the third plot is unique as a gram, since it contains only those lines (i.e., 
tonals) that have passed the submerged source tonal threshold. As a result, the number of lines on 
the gram are few compared to the many that exist in the previous two grams for the AVGPR (top 
plot) and the WISPR (second plot) processors. However, each line in the Aoi plot has a high 
probability of being from a submerged source. An independent evaluation of the submerged source 
spectrum by qualified personnel using other analysis products and methods (not included herein) 
have confirmed that the lines in the Aoi gram are indeed from a submerged source. 

The bottom plot in Fig. 7.17 gives the percent of time that a particular line was present in the 
Aoi gram. From that plot, as well as an "eyeball analysis" of the Aoi gram, it is apparent that some 
of the tonals received from the submerged source enter and leave periods of high stability. Hence, 
at any one time, some of the tonals from the submerged source will be amplitude stable and some 
will not. The time history display provided by the gram format significantly increases the likelihood 
of detecting an amplitude stable tonal from a submerged source. In addition, the submerged source 
gram (Aoi gram) effectively eliminates the clutter and simplifies the detection and classification of 
the submerged source tonals. 

The Aoi and A14 NSE algorithms can be generalized to two dimensions with no change in the 
nature of the computations with just an increase in the number of cells (or bins) that the equations 
are applied to. For example, there were 512 frequency cells within which the equations were 
applied to arrive at the 512 results that made either the Aoi or the A14 curves. Analogously, the 
beam number spectral surface in Fig. 7.18 contains 200 frequency bins in the vertical (0.1-Hz BW 
resolution) and 256 beam bins in the horizontal, or about 5 x 104 beam frequency cells. It is then 
a simple matter to threshold the corresponding Aoi and A14 surfaces generated, as was done in the 
three previous examples (Figs. 7.14, 7.15, and 7.16) to identify the signals from submerged sources 
and to eliminate the numerous signals from the surface ships (clutter) that would otherwise dominate 
the display, as is the case of the top two plots in Fig. 7.17. The result of that thresholding for the 
Aoi surface is given in Fig. 7.19. The dot at about 15 Hz, beam number 101, and the bar (a spread- 
out dot) at 5.2 Hz, beam number 249, correspond to the tonals that are identified as having originated 
from submerged sources. Indeed, this was independently confirmed to be the case. All of the other 
signals from the numerous surface ships (see Fig. 7.18) that constitute a considerable clutter problem 
for other NSE algorithms have been eliminated. Identical results have been obtained by the A14 
algorithm. The authors know of no other two-dimensional NSE algorithm. 

One extremely attractive feature of these NSE algorithms is their simplicity. Normally, one 
would expect the computational load and the complexity of an NSE algorithm to increase with the 
square of the dimension. In the case of Aoi and A14, the computational load increased by that 
factor, but the complexity didn't increase. Furthermore, they both have the capability of identifying 
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Pig 7 i9 — A two-dimensional representation of the result of A0, processing for 
noise spectrum equalization (NSE) when applied to the beam number/spectral surface. 
Results are plotted for only those instances passing the submerged threshold test. 
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tonals from submerged sources, although Au is more robust to contamination than is A0i as 

discussed earlier. 

7.7 Summary 

These advanced applications presented should provide insight into the far reaching applications 
of fluctuation-based processors. It is quite possible that these processors can be applied with excellent 
results in many areas that have not been considered at the present time. 

8.0 WISPR FILTER COHERENT PROCESSING APPLICATIONS, WISPR IIIk AND AkCSDM 

8.1 Introduction 

All of the applications developed in earlier chapters have applied the WISPR and related 
processors to time sequences of spectral power. In those applications, the spectral results from FFTs 
or DFTs were converted to power (magnitude squared) before processing. Therefore, the applica- 
tions discussed earlier were not capable of exploiting information contained in the phase information. 
Two techniques incorporating the WISPR philosophy that utilize the phase information are the 
WISPR IIIk and the AWSUM Cross-Spectral Density Matrix (AkCSDM) processors. The WISPR IIIk 

processors achieve coherent summation utilizing a specialized algorithm for phase correction; whereas, 
the AkCSDM processors achieve coherent summation through the properties of the cross-spectral 

density matrix. 

8.2 The WISPR IIIk Processor 

The WISPR Filter, Eq. 2.4.1, is an incoherent signal processor that exploits the fluctuations in 
amplitude to achieve enhanced performance. The WISPR IIIk processor is an analogous processor 
that has been developed to exploit fluctuations present in the signal phase information as well. The 
difference between the two is that instead of using only the time histories of the magnitudes as 
the WISPR Filter does, the time histories are treated as vectors, and thus WISPR IIIk utilizes 
both the magnitude and phase histories. Successive realizations of the vector quantities, shifted 
appropriately in phase, are added to achieve coherent gain and divided by their magnitude to get 
fluctuation gain. Powers other than 1 for the magnitude may be used to produce higher order WISPRk III 
processors, analogous to extending the WISPR Filter to obtain the higher order AWSUMk Filters. 

One of the key tasks associated with this processor is to determine an appropriate phase shift. 
Typically, complex spectra from an FFT or DFT of temporal sample sets, or the result from a 
beamformer, are obtained where each is offset by a fixed time, Ar, which is a function of the sample 
rate, temporal FFT size, and the percentage overlap. In general, for steady tonal sources, i.e., those 
tonals with a steady frequency-generating mechanism, the initial phase of the tonal will systemati- 
cally advance or delay at the beginning of each temporal sample set, a signal processing artifact 
associated with the discrete sampling. The complex spectral results for those frequency bins nearest 
to a particular tonal will also partially reflect the systematic phase shift of the tonal. Therefore, to 
avoid cancellation of out-of-phase segments of the same tonal during a complex summation, any 
systematic phase shift must be removed from the complex spectral value nearest the tonal fre- 
quency. This is necessary regardless of the type of coherent summation that is performed; the 
conventional summation or ones based on the WISPR philosophy. One method for accomplishing 
this task is described by George and Wagstaff.2 In WISPR IIIk processing, an algorithm is invoked 
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to remove the systematic phase shift artifact, enabling subsequent coherent processing. The residual 
variations in phase constitute the phase fluctuations utilized by this processor. 

8.2.1 The WISPR IHk Processor Definition 

T et the set \z } (n = 1 2 3, ..., AO denote the phase shifted (to ensure coherent tonal summation) 
complex spectral values from a single hydrophone or a single beam at a particular frequency; and 
let L denote the shifted phase values. The estimate of a signal corresponding to a particular 
frequency bin for that sample period is represented by 

z„ = (r„ cos <Dn + jr„ sin <D„) . C8-2-1) 

The set average value, savg, is 

savg 

N 
1    y   Zn 

N  L    * 
(8.2.2) 

Using these results, the WISPR IIIk processor is defined by 

WISPR IIIk = 
(8.2.3) 

Note: The above three equations are developed in App. A.7 where all terminology 

is fully defined. 

One important feature of the averaging of the WISPR Uli processor is that the weighted phase 
factors znlr\ from all N samples lie on the unit circle and contribute equally to the average, 

gard^ss of"'the original sample amplitudes, rn. This minimizes the feet of large amplitude 
fluctuations in the noise, allowing the phase factors (due to random noise) to add mcoherently and 
cause significant cancellations of each other. In contrast, as a result of preprocessing to achieve 
coherent addition of the nearly stable tonal, the phase factors will be relatively constant. 
This coherent addition will yield a value closely representative of the stable tonal. 

In the case of the more general WISPR IIIk processor (k > 1), the phase factors, z„/rk
n, are 

weighted even more heavily in favor of low amplitudes, rn. This is expected to provide an even 
greater selection for the noise phase components and to generate additional noise reduction^ This 
approach still needs to be investigated and offers potential for additional SNR gain through higher 
suppression of fluctuating signals and noise. 

8.2.2 An Example of Processing Using WISPR III, as a Beamformer Post Processor 

The present formulation of the WISPR Uli Filter is valid for beamformed output as a post 
processor similar to the WISPR Filter. This is illustrated by Fig. 8.1 which contains four plots 
comparing the WISPR Filter and WISPR Uli Filter results at two different frequencies. Plots (a) 
and (c) are for the lower frequency, whereas plots (b) and (d) are for the higher frequency. The top 
curve in each plot is the output of the AVGPR processor. The middle curve in the top two plots is 
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the WISPR Filter result, and in the bottom two plots the WISPR Uli Filter result. The average SNR 
gain is obtained from the bottom curves, which is the difference between the other two curves in 
the same plot. At the lowest frequency, the SNR gain of the WISPR Filter (plot (a)) is 
about 6 dB while for the WISPR Uli Filter (plot (c)) it is about 15 dB, an improvement in gain 
of about 9 dB due to the coherent nature of the WISPR Uli Filter. The corresponding gain at the 
higher frequency is about 6 dB. There was another rather interesting result. At the low frequency, 
the WISPR III, Filter noise attenuation caused the stable signal to remain as the sole prominent 
peak in plot (c). The results at the higher frequencies in plot (d) were similar but less dramatic. 

The excellent noise fluctuation suppression characteristic of the WISPR Uli Filter suggests that 
it would make a very attractive automated detection algorithm. As a result of the very high gam 
achieved, the submerged source detection threshold could probably be set at higher levels than is 
possible with other processors without generating excessive false alarms. 

8 3 The AWSUM Cross-Spectral Density Matrix, AkCSDM Processor, and the WISPR 
Cross-Spectral Density Matrix, WCSDM - AiCSDM Processor 

Many forms of signal processing for multiple sensors strive to achieve coherent processing 
through the properties of the cross-spectral density matrix (CSDM). Successive realizations of the 
CSDM are averaged to obtain statistically stable results. One application of the CSDM is to form 
spatial beams with reduced noise and ultimately increased SNR. If an improved CSDM average can 
be devised it should be possible to enhance results of processing that is dependent upon the CSDM. 
This can be accomplished with the AkCSDM processor, which has objectives similar to those of the 
WISPR Illk processor previously described. The rationale for the need to ensure that summations 
of complex spectral values are coherent, presented in App. A.7 for the WISPR IIIk processor 
applies equally to the AkCSDM processor. However, coherent processing, in this case, is accommodated 

via the CSDM formalism. 

8.3.1 Processor Definition 

Initially consider the quantity, Zlm, the averaged value ordinarily used by a CSDM beamformer 
just before beam steering and power summation. This quantity for the simplest (conventional) type 

of average may be defined as 

-ll,m 
1  / = T 

= - I z, 
T 

i'=l 

l,m,i 
(8.3.1) 

The AkCSDM processor is defined by 

AkCSDMUm = I r k 
l,m,i 

i = T 

2->  ^l,m,i r 
l,m,i 

i=\ 

(8.3.2) 

Note: The above two equations are developed in App. A.8 where all terminology is 

fully defined. 

The AkCSDM processor, for order k (typically, 1, 2, 3, or 4), is accomplished by the simple 
replacement of the quantity, Z/,m, with the new average AkCSDM^, prior to beam steering and 
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summation to form the beam output. WCSDM is the special case for k= 1, i.e., A\CSDMl<m, 
analogous to the WISPR Filter equalling AWSUMj as explained in Sec. 2.0. 

8.3.2 Comparison of A\CSDM (or WCSDM) with CSDM Beamforming 

One case used to compare the AiCSDM (or WCSDM) processor with conventional averaging 
for a CSDM beamformer was generated by the simulation of a 50-channel horizontal array. 
The signal from an actual single hydrophone was used as the output from all channels to simulate 
a signal on broadside. Figure 8.2a and b present the conventional CSDM and WCSDM beamformed 
results for this case, respectively. These results are overlaid in the inset plot in the second figure. 
The large peak at beam number 125 corresponds to the broadside beam, which is "captured" by the 
broadside signal. In Fig. 8.2a, the first few sidelobes are evident near the broadside beam and 
disappear in the relatively uniform noise of the system. The peak sidelobe response is 32 dB down 
from the main beam arrival, typical of Hann shading. The WCSDM results presented in Fig. 8.2b 
show the same broadside beam response, but the sidelobes near the main lobe and the system noise 
are different. The sidelobes near the main lobe are better defined, and the self noise has been 
significantly reduced along all beam number segments, and more dramatically along some. What 
remains appears to be some form of sidelobe structure that is well below the conventional results, 
quite obvious in the inset plot. 

In a second case, a similar set of figures was made where the original hydrophone data (without 
artificially injecting one hydrophone's data as in the previous case) were used. Figure 8.3a and b 
give the results for the conventional CSDM and the WCSDM, respectively. An insert is likewise 
included in Fig. 8.3b of the superposition of the two plots. The high-level distributions of energy 
at the right hand sides correspond to the signal. Although it is not as "clean" as in the previous case, 
where an identical signal was injected into all channels, the results generated from the WCSDM 
show that there is substantial reduction in the noise, but not in the signal. Hence, the result is 
generally an increase in SNR of more than 8 dB, and in particular regions, more than a 20 dB 
decrease in the noise. 

8.3.3 Comparison of WCSDM Beamforming with WISPR and AWSUM4 Processing 

Figure 8.4 compares the SNR gains while beamforming with three levels of WISPR 
type processing. The first column of figures corresponds to WISPR and conventional (power averaging) 
processing of 144 channels of array data at 29 Hz (top plot) and 13 Hz (bottom plot) for a time 
when a signal was near broadside (near beam number 128). The top curve in each plot corresponds 
to the average power level across the array for a 4096-point FFT and a sample rate of approximately 
200 Hz. The bottom curve in each plot is the corresponding WISPR curve. The middle column of 
plots gives similar results for AWSUM4 processing. The last column of plots corresponds to the 
same 144 channels of hydrophone data that were used to get the previous two sets of plots, but 
instead, those data were beamformed using a WCSDM beamformer that had the same steering 
angles as in the two previous columns of plots. As before, the top curve in each row of plots is the 
average power level. It is identical in all three sets of plots of a given row. The lower curves in 
the third column of plots, which appears to be a series of signal and noise level spikes, is the 
corresponding WCSDM result. 

There are several important features that these three columns of plots illustrate. First, the signal 
level (near beam number 128) is about the same for the two different types of processing contained 
in each of the six plots. Hence, the signal suppression of each of the processors (WISPR, AWSUM4, 
and WCSDM) compared to the AVGPR is small. Second, the noise is suppressed much more than 
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the signal, which gives a SNR gain to the processors (WISPR, AWSUM4, and WCSDM bottom 
curves) compared to the AVGPR. In the case of WISPR processing (first column of plots), the SNR 
gain is approximately 9.6 dB. For the AWSUM4 processing (second column of plots), it is about 
19 6 dB However, for the WCSDM processing (third column of plots) it is difficult to estimate 
because most of the WCSDM curve is suppressed more than 100 dB and does not show on the plot. 
It appears that the majority of the noise is being cancelled by the WCSDM processing, rather than 

merely being suppressed. 

Finally, the overall noise suppression, or elimination capability of the WCSDM processor, is 
very impressive There are broad regions in beam number space (related to regions in azimuth) in 
which the noise is virtually gone. It is especially evident in the 13-Hz results in which approxi- 
mately 57% of the beams are in the nonacoustic domain. In this example, all of the nonacoustic 
noise has been eliminated. This characteristic was also the case for other frequency resolutions 
(0.2 to 0.025 Hz) and other apertures (9, 18, 36, 72, and 128 elements). 

9.0 COMBINING THE WISPR FILTER WITH OTHER HIGH-RESOLUTION PROCESSORS 

9.1 Introduction 

Several algorithms have been developed for the specific purpose of increased resolution in 
beam number space. Two of these, the Wagstaff-Berrou Broadband (WB2)3 signal processor and 
the newly developed Directivity Improved Estimation Technique (DIET)4 can be further enhanced 
when combined with fluctuation-based processors such as the WISPR Filter and other closely 
related processors to achieve additional SNR gain. Since each of the above techniques are described 
in detail elsewhere, only the results will be presented here. 

9.2 High Gain and Resolution with the Combined WB2 and WISPR Processors 

Combining the WB2 signal processor algorithm with the WISPR processor simultaneously 
increases the spatial resolution and SNR gain. The four plots presented in Fig. 9.1 provide inter- 
esting examples of this capability. Each plot contains two curves. The top curve represents AVGPR 
processing results from 200 consecutive outputs from a'64-beam double FFT beamformer. The real 
acoustic space is contained between beam numbers 32 and 48. The nonacoustic, or virtual, domain 
lies outside that region. The bottom curves in each plot, labeled WB2, WISPR, WISPR(WB2), and 
AWSUM4(WB2), correspond to processing results of these same data by those processors. Each of 
these four plots illustrates specific characteristics of the processors: 

(a) Upper left plot - The WB2 gain achieved for the signal was only about 5 dB. However, that 
gain is actually a result of confining the source power to a smaller region in beam (or azimuth) 
space and not a result of a gain against the general background. 

(b) Upper right plot - Little spatial resolution enhancement was achieved by WISPR processing 
near beam number 34, though the SNR gain improvement is obvious, approximately 7 dB. Even 
though the definition of some of the sources in the background noise has improved slightly, WISPR 
is far from qualifying as a high-resolution processor. Unlike WB2, the gain of WISPR is due to 
suppressing the background noise, not from enhanced resolution. In Sec. 6.3.1, the WISPR Filter 
was shown to enhance spatial resolution over AVGPR for low SNR signals, equivalent in some 
cases to arrays of 2x aperture. The spatial resolution enhancement in that case resulted from 
suppression of fluctuations caused by interference of closely spaced arrivals. This particular example, 
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relatively free from this effect, with a strong single arrival dominating the lobe at beam 34, was 
selected to enable easy identification of the impact of WB2 when used in combination with WISPR. 

(c) Lower left and lower right plots - A signal processor that provides both high gain and high 
resolution ought to be an attractive processor for some underwater sonar applications. Since WB 
provides high resolution and WISPR provides high gain, it seems that the combination of the two 
could produce high resolution and high gain. This concept was tested on the same data previously 
discussed, by first forming 200 WB2 high-resolution estimates and then passing those through 
either the WISPR Filter or the AWSUM4 Filter. This was done on a beam angle basis, since the 
original 64 discrete beams are expanded to about 1024 beam noise density points in the WB2 

output. The results for WISPR (WB2) and AWSUM4 (WB2) are included as the lower curves in the 
left and right plots, respectively. In the case of the WISPR (WB2) result, the SNR gain is about 
15 dB, 3 dB better than WISPR (7 dB) plus WB2 (5 dB), and the resolution is also better than it 
is for WB2 alone. The same is true for the AWSUM4 (WB2) result, but the gain is enhanced by an 
additional 10 dB over the WISPR (WB2) result. 

Figure 9.2 shows similar results to those of Fig. 9.1 for an array with an aperture approximately 
2.5 times longer than the previous one. Hence, the beamwidths are reduced by the same factor. In this 
case, the corresponding gains go from about 4 dB for WB2 alone to about 14 dB for WISPR (WB2) 
and to about 22 dB for AWSUM4 (WB2). As the aperture increases and the beamwidths get nar- 
rower, the gain achieved by WB2 is less. That accounts for the WISPR (WB2) and AWSUM4 (WB2) 
gains being less for this case than the previous one. However, it is still rather impressive. 

9.3 High Gain and Resolution with the Combined DIET and WISPR Processors 

Figure 9.3a gives the temporally averaged output power of the beamformer in decibel levels 
(designated AVGPR). The x-axis is beam number and the y-axis is decibel level. There are at least 
six identifiable local maxima, which are due to various sources in the acoustic environment, most 
likely surface ships. There are two arrows at approximately beam number 480. They mark 
the location in beam number space of a signal that is due to a submerged source. Given only the 
AVGPR curve, it would not be possible to detect the presence of the signal or to identify its location 
in beam number space. Figure 9.3c contains the same AVGPR curve that is in Fig. 9.3a and the 
arrows that mark the location of the signal. The other curve, labeled WISPR, is the 
corresponding result from the WISPR processor. The difference between the two curves is 
the WISPR suppression relative to the average power (AVGPR) that results from WISPR processing. 
It is referred to herein as the Arji algorithm, and its result is plotted in Fig. 9.3b. The source 
location may be determined from the Arji curve. When the Arji curve approaches the x-axis (y = 0 dB) 
within 1.5 dB, the signal is considered to be sufficiently stable in amplitude to have come from a 
submerged source. 

When the WISPR curve in Fig. 9.3c is compared to the AVGPR curve in the beam number 
region near the arrows, it is evident that the WISPR processor has separated the signal from among 
the noise and has achieved substantial SNR gain in the process. Furthermore, the spatial resolution 
of the signal has improved to the point that it can be identified as a separate entity, something that 
is not the case in the AVGPR curve. However, although the WISPR result provides improved 
resolution for the signal, it still cannot be considered high gain. 

Figure 9.3d contains three curves. One is the AVGPR curve and the other two involve the WB2 

high-resolution algorithm. The top curve is the one that is due to WB2. The improvements in the 
resolution at the location of some of the peaks in the AVGPR curve are obvious in the WB2 result, 
and the modest amount of gain is also obvious. Unfortunately, the resolution (identification) and 
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Fig. 9.3-High gain-high resolution algorithms: WISPR (WB2) and DIET WISPR 

the SNR gain of the buried signal have not been improved by WB2. Notice the lack of change in the 
immediate region of the two arrows that identify the location of the submerged source signal. 

The bottom curve in Fig. 9.3d, designated WISPR (WB2), was obtained by combining the 
WISPR and the WB2 algorithms. That was accomplished by generating a WB2 curve for every FFT 
output and then applying the WISPR algorithm across the set of WB2 curves at each resolution 
point across the beam number plot. (Note that the resolution of the WB2 ^^ 
a factor of four greater than the resolution in beam number.) In this case, the WISPR (WB ) curve 
has about the same resolution as the WB2 curve, but some of the peaks are at different places than 
in either the AVGPR curve or the WB2 curve. The reason for this is that the WB   and AVGPR 
algorithms are not sensitive to the fluctuations, while the WISPR (WB2) algorithm is sensitive to 
fluctuations. Hence, when a submerged source signal fluctuates less than clutter signals and noise, 
it will be attenuated less by the WISPR processor than will the clutter signals and the noise. The 
net effect is that there will be an enhancement in the SNR and a more accurate localization of 
the stable (i.e., less fluctuating) submerged source signals. For example, the peak in the WB   result 
that is close to the two arrows is actually co-located with the peak in the AVGPR curve. On the 
other hand, the peak in the corresponding WISPR (WB2) curve is at the exact location of 
the arrows where it needs to be. In addition, it has the approximate magnitude (level) that it should 
have  Furthermore, the SNR for the real submerged source signal peak (at the arrows) has been 
increased dramatically by the WISPR (WB2) algorithm, compared to the AVGPR result where it is 
not visible at all The SNR of the submerged source signal in the AVGPR result is obviously <0 dB. 
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It is still not readily identified in the WISPR results of Fig. 9.3c, but the main peak in the noise 
beam has been suppressed by about 15 dB. Furthermore, the level of the peak may not be much 
Sent from the WISPR result in Fig. 9.3c, but the resolution in the WISPR (WB2) result has 

been significantly enhanced. 

Figure 9.3e provides a comparison of a new algorithm called the DIET via the WISPR algorithm 
(DIET WISPR) with the AVGPR result. In this case, the location of the stable signal is identified 
correctly and the SNR gain has been increased sufficiently to produce a well defined peak where 
it should be When the DIET WISPR curve in this figure is compared with the corresponding curve 
for WISPR (WB2) in Fig 9.3d, considerable similarities can be seen. The most important are that 
the signal has been correctly localized and the SNR gain enhancement has been sufficient to 
produce a well identifiable peak where there is not a peak in the AVGPR curve. 

The similarities between the curves for the WISPR (WB2) and the DIET WISPR algorithms are 
rather remarkable. Both algorithms are fluctuation-based signal processors. In other words, both 
algorithms have been devised or modified to exploit the fluctuations to enhance those algorithms 
performances for signals that have lower fluctuation amplitudes. Furthermore, both algorithms 
correctly localize the stable signal and provide sufficient SNR gain to make it clearly identifi^le. 
The similarity is even more remarkable when the AWSUM4 algorithm is used instead of WISPR to 
produce the DIET AWSUM4 algorithm. When that is done, the results, presented m Fig. 9.4, are 
very similar in SNR as the WISPR (WB2) results, but the resolution is significantly greater. The 
DIET AWSUM4 results are also enhanced compared to the DIET WISPR results in Fig. 9.3e. 

The results in Figs 9 3 and 9.4 illustrate the important role that fluctuations can play in 
detecting, identifying, localizing (Figs. 9.3 and 9.4), and enhancing the resolution and SNR of 
stable signals among clutter signals and background noise. 
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Fig. 9.4 _ A comparison of DIET AWSUM4 processing with conventional processing 
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10.0 MEASURES OF WISPR PROCESSOR PERFORMANCE 
10.1 The Problem with the DI as a WISPR Performance Measure 

10.1.1 Introduction 

Throughout this report, the SNR gain increase has been defined as the signal excess of the 
fluctuation-based processors (e.g., WISPR, AWSUM, and WISPR II) compared to the signal excess 
that is achieved by the AVGPR processor. Some signal processing researchers may attempt to put 
round pegs into square holes," e.g., try to evaluate an unconventional nonlinear processor such as 
WISPR according to standards developed to test conventional linear processors. An example is the 
measurement of the SNR gain of WISPR. A benchmark method that has become accepted by many 
signal processors for determining the SNR gain improvement of one processor relative to another 
is the DI, defined in Sec. 10.1.2. The relative SNR gain by this procedure is defined simply as the 
ratio of the DIs for the two systems to be compared. For example, with A and W for AVGPR and 
WISPR respectively, the SNR gain of WISPR compared to AVGPR would be 

SNR{Gai„:W/A) = DIW/DIA (10.1.1) 

The main fallacy of this method is that it is incapable of reasonably accounting for gain 
achieved through differences in signal fluctuations. In fact, when fluctuation gain must be taken 
into account, this index (at low SNR) can be shown to produce absurd and unusable results. 
Although not obvious, the evenly distributed noise assumption (locally white noise in the vicinity 
of the signal) is tacitly required by its definition. In addition, no distinction is made between signals 
which have variation in fluctuation levels. The main cause of failure is the structure of the index 
itself. It arises as a direct result of its definition in terms of expectations and implied statistical 

distributions. 

10.1.2 Definition of the Detection Index 

Detection Index, DI, as used herein, is 

DI = 
<S+N>-<N> 

3/ 
(10.1.2) 

where 

< > = expectation operator, 

N = noise power, 

5 = signal power, 

G/= is the power standard deviation, across a group of frequencies, centered around the frequency 
of signal 5, exclusive of itself. It is usually estimated by 

°r n-\ 

;=/-! 7=/+H/2 

I       (Xj-Xavg?+      I 
;=/-(«/2) ;'=/+i 

(Xj - xavgf) (10.1.3) 
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;=/-i 

_/=/-(«/2) 

Wagstaff, Leybourne, and George 

j=f*nl2 

xj + I   x, 
j=f+l 

(10.1.4) 

where 

n = in this case, an even number of values in the vicinity of the /th item, 

j = the index of a spectral bin, 

Xj = thtjth spectral power, taken in the vicinity of the/th frequency, excluding itself. 

Other ad hoc ranges thought to be more typical of the ambient noise could be used with some 

loss of objectivity for this index. 

10.1.3 Discussion of the DI Calculation 

If the acoustic local white noise frequency domain world was from a statistically perfect universe, 
it could be assured that the <N> and <S + N> (expectations) could be determined easily. With a 
sufficiently large number of time realizations, by simply taking averages over noise frequency bins, 
the average would converge to <N>. Since the idealized world is locally of white noise, the average 
for noise in a signal bin would also have to converge to <N>. Additionally, the average for a 
purported signal bin should converge to <S + N>. Close examination of Eqs. 10.1.2, 10.1.3, and 
10.1.4 reveals that these conditions must be at least approximately true to obtain reasonable estimates 

for <S + N> and <N>. 

The authors are not trying to convince anyone that this is reality; clearly it is not. Yes, noise 
generated in the sea by many natural processes is broadly distributed in frequency. Yes, transient 
events whose time domain signals are processed through the Fourier transform, also produce 
results'broadly distributed in frequency (though hardly ergodic). Man-made signals obviously have 
some broadband structure. However, many signals of interest generated at power levels sufficient 
to reach distant receivers are chiefly discrete tonals. Admittedly, some of their power shows up 
after Fourier transformation as sidelobes in the frequencies near to the tonal frequency. In spite of 
all this there is still plenty of opportunity for noise (on the average) to not be absolutely evenly 
distributed. Thus, some spectral bins may contain much less noise than that indicated by the 

estimated average value. 

10.1.4 Detection Index Fluctuation-Based Performance Study for WISPR Processors 

To demonstrate just what the DI would show for typical acoustic data of known characteristics, 
noise and tonal data have been artificially generated. The result of this simulation is shown in 

Table 10.1.1. 

10.1.4.1 Data Set Generation Method 

Typical signal and noise power levels, normally distributed in decibels (equivalent to a 
log-normal distribution before conversion to decibels), were generated separately for a mean of 
70 dB and with the standard deviations (sigma) indicated in Table 10.1.1 (3, 4, 5, and 6 dB) for 
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Table 10.1.1 —WISPR Class Processor Detection Index Simulation Study 

N-Avg. 

% Noise in Bin % Noise in Bin 

10 40 70 100 10 40 70 100 

Across Total Power in DI Ratio, 

Processor Freq. Tonal Bins, dB Processor/AVGPR 

AVGPR 69.98 70.4 71.5 72.4 72.9 1 1 1 1 

WISPR 67.92 70.4 71.4 72.1 72.5 50 8 5 4 

AWSUM2 66.90 70.4 71.3 72.0 72.3 63 8 5 3 

AWSUM3 65.95 70.4 71.2 71.9 72.2 56 7 3 2 

AWSUM4 65.14 70.4 71.2 71.8 72.1 52 6 3 2 

Time Sequence Noise Standard Deviation, 3 dB-Time Sequence Tonal Standard Deviation, 1 dB 

N-Avg. 
Across 

% Noise in Bin % Noise in Bin 

10 40 70 100 10 40 70 100 

Total Power in DI Ratio, 

Processor Freq. Tonal Bins, dB Processor/AVGPR 

AVGPR 70.00 70.4 71.6 72.4 73.0 1 1 1 1 

WISPR 66.32 70.3 71.3 71.8 72.2 297 23 12 8 

AWSUM2 64.55 70.3 71.2 71.6 72 328 22 11 7 

AWSUM3 63.04 70.3 71.1 71.5 71.8 327 20 9 6 

AWSUM4 61.90 70.3 71.0 71.4 71.7 375 22 10 6 

Time Sequence Noise Standard Deviation, 4 dB-Time Sequence Tonal Standard Deviation, 1 dB 

N-Avg. 
Across 

% Noise in Bin % Noise in Bin 

10 40 70 100 10 40 70 100 

Total Power in DI Ratio, 
Processor Freq. Tonal Bins, dB Processor/AVGPR 

AVGPR 69.98 70.4 71.3 72.3 72.7 1 1 1 1 

WISPR 64.30 70.4 71.0 71.6 71.9 767 102 33 26 

AWSUM2 61.70 70.3 70.9 71.4 71.7 799 98 29 22 

AWSUM3 59.76 70.3 70.9 71.3 71.5 1030 122 34 26 

AWSUM4 58.45 70.3 70.8 71.2 71.4 1424 164 45 33 

Time Sequence Noise Standard Deviation, 5 dB-Time Sequence Tonal Standard Deviation, 1 dB 

N-Avg. 
Across 

% Noise in Bin % Noise in Bin 

10 40 70 100 10 40 70 100 

Total Power in DI Ratio, 
Processor Freq. Tonal Bins, dB Processor/AVGPR 

AVGPR 70.01 70.5 71.2 72.4 73.2 1 1 1 1 

WISPR 61.82 70.4 70.9 71.3 71.7 2201 427 107 58 

AWSUM2 58.37 70.4 70.8 71.2 71.4 2914 538 126 66 

AWSUM3 56.10 70.3 70.8 71 71.2 4884 879 200 102 

AWSUM4 54.66 70.3 70.7 70.9 71.1 7496 1325 295 149 

Time Sequence Noise Standard Deviation, 6 dB-Time Sequence Tonal Standard Deviation 1 dB 
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300 time realizations. (This data set can be considered to apply to any frequency range, since the 
maximum frequency of real data would be determined by the time domain digital sampling rate.) 

(a) The dB values generated were converted to arithmetic power levels and stored. 

(b) The noise generated for each of 1024 frequency bins was averaged across time for each bin. 

(c) The single tonal generated was averaged across time. 

(d) The power level for the entire data set was adjusted so that the noise and tonal arithmetic 
averages when converted back to decibels would equal 70 dB, an initial SNR of 1.0. 

(e) The arithmetic power level for the noise in bins 100, 400, 700, and 1000 was adjusted to 
10%, 40%, 70%, and 100% of the former values, respectively. 

(f) The single tonal set was then added to the noise in bins 100, 400, 700, and 1000. Note 
that only bin 1000, with 100% noise, has a 70-dB noise level and a 70-dB signal level, an initial 

SNR= 1.0 (0 dB). 

10.1.4.2 Discussion 

The results of processing these simulated data utilizing the AVGPR, WISPR, AWSUM2, AWSUM3, 
and AWSUM4 processors are shown in Table 10.1.1. Several observations can be made concerning 

these results: 

(a) The reduction in the processor result (Col. 2) systematically decreases as the noise sigma 
is increased from 3 to 6 dB and systematically decreases as the AWSUM processor order number 
increases, just as would be anticipated from the previously described properties of these processors. 

(b) In contrast to observation (a), there is practically no suppression of the tonal in the 10% 
noise bin (Col. 3) and only 0.8- to 2.1-dB suppression of the tonal in the highest noise case, the 

100% noise bin (Col. 6). 

(c) The WISPR DI ratio (SNR gain from Eq. 10.1.1) progresses dramatically upward as the noise 
content in a signal bin is reduced, e.g., for the 5-dB noise case, the WISPR DI ratio at 100% 
noise is 26, increasing to 767 at 10% noise. In instances where the average noise and signal are 
approximately equal, but noise in a particular instance is not manifest in the signal bin, the numera- 
tor of Eq. 10.1.2 would become zero when the AVGPR processor is used, producing DIA ~ 0. Since 
the fluctuation-based processors will dramatically suppress the noise (estimated <N>) in all bins, 
but not the steady tonal (estimated <S + N>) in the signal bin, this numerator would be far from 
zero Therefore, the SNR gain would approach infinity, a very unreasonable result. One may think 
this cannot occur in reality. Examples demonstrating this possibility will be presented shortly for 

real data. 

(d) In any case, an interpretation of the DI results from this data set, constructed to intentionally 
show its weakness for the evaluation of fluctuation-based processors, leaves one with the question, 
"Now that I have calculated the DI, how can it be used under similar field conditions in any 
reasonable manner to evaluate the processors being compared?" The implications are probably 
more subtle than a reader unfamiliar with these processors is initially willing to admit. 

10.1.5 Processor DI Performance for Real Ocean Acoustic Data 

10.1.5.1 The Fallacy of AVGPR when SNR - 1 (0 dB) for Real Data 

From the point of view of fluctuation-based processors, any fluctuating signal is noise; whereas, 
steady tonals are viewed as those from submerged sources. In essence, the question to be answered 
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is, "How well do these processors identify those steady tonal submerged sources?" Note, as 
discussed earlier, that as a practical matter, the theoretical values for <5 + N> and <S> are never 
known for real data but may only be estimated. With real data, calculation of the DI resorts to a 
determination of <S + N> as the averaged value (determined with the processor under consideration) 
in that spectral bin where a signal is purported to be present. Then, from other nearby spectral bins 
where noise only is purported to be present, <N> is estimated as the average for those bins of the 
value that was obtained by the processor, e.g., as determined by Eqs. 10.1.3 and 10.1.4. 

Example 1: (Note: The figure referred to in the next paragraph was presented in Sec. 4.0) 

Clearly, in Fig. 4.6a (with only 50 elements of the array), calculating the detection index for 
the signal near beam 68 for the AVGPR processor, <S + N> * <S>, which yields from Eq. 10.1.2 
that DIA - 0. Any reasonable person, examining the AWSUM4 curve in that plot, would conclude that 
<S + N> is about 42 dB and the <N> is about 30 dB. Therefore, for the WISPR type processor, 

AWSUM4 in this case 

DI w 
DI, 

<S+N>-<N> 

42-32 
J/ 

/ 
<S+N>-<N> 

= 0 
J/ 

w 

= ->oo, 

3/ 

an absurd result. The signal peak at beam number 68, visible on the AWSUM4 curve, is not visible 
on the AVGPR curve. However, it is difficult to deny that the two curves are actually quite 
reasonably related. That this peak actually exists, as indicated by the AWSUM4 processor, is 
ultimately shown in the AVGPR curve when the number of array elements is increased to 100 and 
to 198 as shown in Fig. 4.6b and c. 

Example 2: 

Figure 10.1 identifies three tonals that are embedded in background noise at 43, 65, and 80 Hz. 
The top curve is for AVGPR, the middle curve is for WISPR, and the bottom curve is the difference 
between the previous two curves (noise suppression Arji), truncated at 10 dB. Where this last curve 
(or set of curves) approaches 0 dB, it indicates the presence of three tonals that are known to have 
been projected from submerged sources. For the signals at 43 and 65 Hz, it would be possible to 
calculate the DI. At those frequencies, DI may or may not (dependent upon the actual detailed 
values) numerically indicate that the AVGPR processor is superior to the WISPR processor. The 
situation is somewhat different at 80 Hz where there is no discernible signal in the AVGPR curve, 
but there is in the WISPR result. In this case, the ratio of the DIs approaches infinity as described 
in Example 1 just presented, indicating that WISPR is far superior. How does one reconcile this 
ambivalence using the ratio of the DIs for evaluating the two processors? One can't; he/she must 
simply conclude that the DI definition does not make much sense when applied to fluctuation-based 
processors; processors that can achieve gain through properties of signals and noise that simple 
conventional processors fail to utilize. WISPR is clearly better, but the ratio of the DIs can't 
quantify exactly how much better, or even that it is better. 
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11 21 31 41 51 61 
FREQUENCY (Hz) 

71 81 91 

Fig. 10.1 — WISPR processing: SNR <0 at 80 Hz 

10.1.6 Summary 

It should be obvious from the simulation study and the two examples using real data that if the 
SNR is too low for the tonal to be detected by the conventional processor, the ratio of the DIs are 
not valid and cannot be used to compare the two processors. That being the case, the question 
naturally arises as to when can the ratio of the DIs be used? Furthermore, if it is not 11 valid measure 
at low SNR what then makes it a valid one at higher SNR, and how high must it be? Until those 
questions are answered, it seems that other criteria need to be devised; criteria that recognize the 
uniquely different nature of the WISPR processor compared to classical/conventional processors. In 
devising such criteria, the most important thing to keep in mind is that the WISPR processor is 
driven by the magnitude of the fluctuations. The actual magnitude of the tonal, for the most part, 
is not a relevant parameter for the fluctuation-based processors such as the WISPR processor. By 
contrast, conventional signal processors are driven by the magnitude of the tonal and completely 
discard a key source of classification information encoded by nature in the acoustical fluctuations 

of signals and noise. 

10.2 WISPR Performance Measured by ROC Curves and the Relationship to DI 

Receiver Operating Characteristics (ROC) curves were generated to measure the performance 
of the WISPR Filter in noise that has a Gaussian distribution in power and in noise that has a 
Gaussian distribution in the log of power (a log-normal distribution). Figure 10.2, containing plots 
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(a)   (b)   (c)   and (d), illustrates the results for the AVGPR (the solid curves), the WISPR Filter 
results (the 'dashed curves), and the AWSUM4 Filter results (the dashed-dot curves). 

Figure 10 2 plot (a), illustrates the process of generating the ROC curves and the regions under 
the noise and the signal plus noise curves that are important in the calculations. The mean noise 
power is u,v and the mean signal plus noise is Hs+/v. The signal is assumed to be an ideal steady 
tonal with a standard deviation (variously labeled o, SIG, or SIGMA) of zero and power at. The 
boxes show the type of shading under the noise and signal plus noise probability density curves that 
correspond to the areas that represent the probability of detection (PD) and the probability of false 
alarm (PFA). In this case, the signal plus the noise is five units of power more than the noise. 

Figure 10 2 plots (b), (c), and (d), give the ROC curves for the three different methods when 
the standard deviations (units of power) are 9, 5, and 13, respectively. In each case, the WISPR 
Filter outperforms the AVGPR processor by achieving a larger DI (c.f., Sec. 10.1.2 for the defini- 
tion of DI) and the AWSUM4 Filter outperforms both of them. For example, in plot (b) the DIs are 
0 31 0 52 and 1 00 for the AVGPR processor, the WISPR Filter, and the AWSUM4 Filter, respectively. 
The'trend'is for the DI of the WISPR Filter to exceed that of the AVGPR processor differences to 
grow as the standard deviation of the noise increases. 

The previous illustration shown in Fig. 10.2 was for a highly idealized case where the equivalent 
standard deviation ranged from about 0.6 dB (plot (c)) to 1.5 dB (plot (d)). The standard deviations 
of noise in the ocean normally range from about 4.5 to 7 dB, and the probability density curves for 
the signal and the noise are more nearly log-normal than Gaussian (c.f., Fig. 3.20 and the discussion 

of that figure). 

Results for the AVGPR processor and the WISPR Filter are given in the left and right plots in 
Fig. 10.3, respectively, for a mean noise level of 70 dB, a standard deviation of 6 dB, and for three 
different signal levels. The SNRs range from -5 dB to 1 dB. 

The results in Fig. 10.3 indicate, as in Fig. 10.2, that the performance of the WISPR Filter, as 
measured by the DI, exceeds the performance of the AVGPR processor by substantial amounts for 
all three signal levels (and also SNR). The improvement is approximately a factor of 18 (12.8 dB), 

o 

AVGPR 

S:65dB 

S:68dB 

S:71 dB 

0.8 

!       1 

2.63 ; 

i     ' 
j  1.43 

;    J   0.68 (DETECTION INDEX) 

1.0 0.4 0.6 

PFA 

wispR : 

S:65dB 

S:68dB 

S:71 dB 

0.8 1.0 

Fig   10 3 -Sonar system performance for tonal (S) in log-normal noise (A0: WISPR (right) versus conventional 
(AVGPR) processing (left), N: 70 dB, SIGMA: 6 dB 
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11 (10 dB), and 7 (8.5 dB) for signal levels of 71, 68, and 65 dB, respectively, and for SNR of 1, 
-2, and -5 dB, respectively. For the case of a steady tonal in noise that is characteristic of undersea 
ambient noise'(Fig. 10.3), the gains in WISPR processing are of the order of 8 to 12 dB for SNR 
from 1 to -5 dB. However, when the standard deviations are small (Fig. 10.2) and the noise is 
normally distributed, not at all like the undersea noise, the gains are small enough to be considered 
insignificant. However, that turns out to be an advantage, since the distribution of an actual sub- 
merged tonal has a rather small standard deviation such as the "noise" in Fig. 10.2, and the 
attenuation by the WISPR Filter would also be small, less than about a decibel. 

There is an important point that needs to be made in regard to the ROC curves in Figs. 10.2 
and 10.3. They were produced with the assumption that the signal and the noise added in an 
incoherent manner. For some signals and noise that would not be a valid assumption and a coherent 
addition would be more appropriate. 
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Appendix A 

PROCESSING ALGORITHMS AND RELATED EQUATIONS 

A-1.0 INTRODUCTION 

To interpret data, particularly when in the form of rapidly acquired real-time data streams, it 
is both reasonable and necessary to develop methodologies (algorithms) that reduce the original 
data to more easily interpretable (derived) quantities. The statistical community commonly com- 
putes familiar quantities, such as measures of central tendency (e.g., average), standard deviation, 
and higher order statistics. 

Some of the computational methods pertinent to this report are evolved from the generalized 

function 

Mr = Mr(a) = (A.1.1) 

where the data stream is the sequence, a 

a = (ai,a2,a3,...an), aj > 0. (A. 1.2) 

Because of the possibility of numerical overflow, use of Eq. A.1.1, when r < 0 is restricted to 
nonzero data values. Two practical approaches that avoid numerical overflow are: (1) Force values 
near zero to a small numerically convenient value. As A/D converters are not usually significant 
in the lowest order bits, a logical choice is to set this minimum value of aj to the value implied 
by some small multiple of the A/D converter least significant bit. (2) Simply delete any data less 
than a small numerically convenient value from the original data set. This latter approach is pre- 
ferred as it also provides for automated removal of data from periods of time where the data 
acquisition system is malfunctioning or otherwise unavailable without biasing the results obtained 
from the data actually processed. 

Eq. A. 1.1 can be used quite generally and for particular choices of r defines several familiar 
statistical quantities. For example, compare: 

When r = 1, the average is: aavs = Mx = 

j = n 

- X at 
M J 

7=1 

133 
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when r = 2, the root mean square is: ams = M2 = 

j = n 
1   v     2 

—  X a. 

when r = -1, the harmonic mean is: a ^^ = M_ \ = 
1 v   -1 

Consider Eq. A.l.l's relationship to the geometric mean 
1 

1 

lgeom 

j = n 

II a j = M.^n= 1™ 'r-»0 
r-»0 

./ = » 
i«; (A. 1.3) 

Thus, though not initially obvious, the geometric mean, ageom, is identically equal to M0. 

Another important property that can be shown by mathematical induction1 is that Mr increases 
strictly monotonically with increasing r. This is illustrated in Fig. A. 1.1 using the arbitrary data 

sequence a = (l, 2, 3, ..., 10). It follows that 

M-\ <MQ<M\ < Mi,  i.e.,  aharm ^ <*geom ^ °avg ^rms ■ 

The value of Mr for any particular sequence, a, ctj > 0, is also bounded 

Mr _>oo —> amax and Mr _»_ «> -» a«(n • 

(A. 1.4) 

(A.1.5) 

In Fig. A. 1.1, it is fairly obvious that Mr_>«„ approaches 10, the maximum value, and M 

approaches 1, the minimum value. 

#•-*- 

10 

Mr 
/ 
/ 

-12 -10 -8-6-4-20246 

Index, r 

Fie. A.1.1 —The effect of index r on the sequence, a = (l, 2, 3, 4, 5, 6, 7, 8, 9, 10) 

8 10 12 
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Index, r 

Fig. A. 1.2 —The effect of index r on the sequence, a = (101, 102, 103, 104, 105, 106, 107) 

The linearly distributed data shown used to prepared Fig. A. 1.1 is not particularly representative 
of ocean acoustic data. Even though the trend is obvious, the example does not adequately illustrate 
what happens when data are distributed over a broad range in power. The logarithmically distrib- 
uted data sequence a = (101, 102, 103, 104, 105, 106, 107) used to prepare Fig. A.1.2 provides an 
example of what occurs for this type of data. With data distributed in this fashion, the negative 
order (exponent) processor results are almost captured (very strongly influenced) by the smallest 
two values, 101 and 102, whereas the positive order processor results are almost captured (very 
strongly influenced) by the largest two values, 106 and 107. It is quite simple to verify that if there 
is no variation in the data, i.e., there are no fluctuations, the result for Mr of all orders, r = -4, 
_3> _2, -1, 0, 1, 2, 3, 4 will be equal. In other words, the greater the fluctuation level, the greater 
that the negative order filters, Mr, will suppress the final result, whereas, nonfluctuating signals are 
not suppressed. It is this interpretation of the properties of these fluctuation-based processor 
algorithms/filters that is the key to successfully understanding the unusual and often very impressive 
results they achieve on actual measured data. 

A.2.0 AVERAGING IN LOGARITHMS OR DECIBELS 

A.2.1 Logarithms 

Let Xj correspond to the original data values in power, then if 

a-j = log(X;), 
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and noting that aavg = M\, this particular average yields 

aavgin log 

J = n 
I   I   \ogXj 

Thus, from Eq. A. 1.3 

-1 
log    (fiavginlogi- 

j=l 

j = n 

Uxj — \"-geom' 

) 

Upon taking the logarithm again 

davg in log - l°g (Xgeom) ■ (A.2.1) 

A.2.2 Decibels 

Following the same steps for averaging in decibels, let Xj correspond to the original data values 

in power, then if 

o/ = dB(X/)=10 log (Xj), 

and noting that aavg = M\, this particular average yields 

lavg in dB 

j = n 

- £  10 log X,- 

j=l 

= 10 i 2 logX: 
nj*i 

Thus, from Eq. A. 1.3 

l°g     (aavg in dB> ~ 

I i\ 
j = n 

Uxj 
n 

\\j'i   \ 1 

10 

\A-geom' 
10 

Upon taking the logarithm again and using the result from Eq. A.2.1 

aavg in dB = 10 log {Xgeom) = \0aavg in log ■ (A.2.2) 

These results are important computationally, since the obstacles that M0 cannot be calculated 

j = n 

directly and the product, I~I Xj, can easily produce numerical overflow when n is large, are avoided. 

7 = 1 
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A.2.3 Magnitude Order 

The magnitude order is preserved in decibels, i.e., with the original data in power 

dB(aharm) £ dB(age0m) = dB(aavg in dB) = ^0aavg in log $ dB(aavg) < dB(a„™) .        (A.2.3) 

Similarly, the decibel magnitude order is preserved for other values of r, a property that is 
extensively utilized by fluctuation-based processors. 

A.3.0 THE CONVENTIONAL PROCESSOR - FILTER 

The average power is referred to herein as the conventional processor or filter. Thus, when the 

sequence, a, is power, average power is 

AVGPR = M\. (A.3.1) 

A.4.0 FLUCTUATION-BASED PROCESSORS/FILTERS EQUAL TO Mr 

A.4.1 The WISPR Filter (WagstafTs Integration Silencing PRocessor) 

When the sequence, a, is power, then 

WISPR = M-i. (A.4.1) 

It may be noted that WISPR is notationally equivalent to AWSUMj below. It is also known in 
the literature as the harmonic mean. 

A.4.2 The AWSUMk Filters (Advanced WISPR SUMmations), Usually for k = 2, 3, or 4 

When the sequence, a, is power, then 

AWSUMk = M_k . (A.4.2) 

A.5.0 FLUCTUATION-BASED PROCESSORS/FILTERS, DERIVED FROM Mr 

Several processors that are related to the Mr class may be obtained by simple combination of 

those previously described. 

A.5.1 The AQIC Processors 

Examples for Ao* processors, for k = 1 and 4, are 

Aoi = AVGPR/WISPR = M\IM-\, (A.5.1) 

A04 = AVGPR /AWSUMA = Mi /M_4, (A.5.2) 
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or more generally, 

A0k = A VGPR/A WSUMA = M\IM-k. (A.5.3) 

A.5.2 The Ajk Processors 

The Aik processors for j = 1 and k > 1 are defined as 

A ik = WISPR/A WSUMk = M-\ IM-k , (A.5.4) 

and for ;' > / and k > j are defined as 

Ajk = AWSUMj/AWSUMk = M-j/M-k ■ (A.5.5) 

A.6.0 THE WISPR IIk PROCESSORS 

When the data exist in the form of a decibel power spectrum series, an additional statistic that 
can be used to achieve gain is the modified temporal standard deviation, c, of the sequence, a, for 
the ith spectral bin. Care must be taken during overlapped processing to use only the results of the 
independent time series, i.e., only the nonoverlapped segments should be used to estimate aj, 
otherwise the values will be correlated and a value that is lower than the true standard deviation 
will be found. In particular, G is for a in decibels 

0 = 
1    J = n 

"-1,-! 

Z (aj-aavgY (A.6.1) 

Using this definition for the standard deviation, WISPR Ilk becomes 

■  ka 

WISPR IIk = WISPR I lOl 10 j . (A.6.2) 

A detailed rationale for this processor was developed in Sec. 5.0. 

A.7.0 WISPR mk PROCESSOR OF ORDER k 

The WISPR IIIk processor has been developed to exploit fluctuations present in the signal 
phase information. Typically, complex spectra are obtained from an FFT or DFT on temporal 
sample sets where each is offset a fixed time, Ar, which is a function of the sample rate, FFT size, 
and the percentage overlap. In general, for steady tonal sources, i.e., those tonals with a steady 
frequency-generating mechanism, the initial phase of the tonal will systematically advance or delay 
at the beginning of each temporal sample set, a signal processing artifact associated with discrete 
sampling. The complex spectral results obtained by FFTs or DFTs for those frequency bins nearest 
to a particular tonal will reflect that systematic phase shift of the tonal. Therefore, to avoid 
cancellation of out-of-phase segments of the same tonal during a complex (or coherent) summation, 
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any systematic phase shift must be removed from the complex spectral value nearest the tonal 
frequency This is necessary regardless of the type of coherent summation that is used; the conven- 
tional summation or ones based on the WISPR philosophy. In WISPR IIIk processing, great care 
is taken to ensure that the processing is coherent. Once the systematic phase shift has been removed, 
the residual variations in phase are then considered to be fluctuations. 

When a steady tonal, £, is generated, with time, t, equal to zero at the beginning of the first 
data set, it may be represented (even though several mechanisms may subsequently generate 
fluctuations in amplitude and phase prior to reaching a hydrophone) as 

£ = r0e 
;(0O + 2TC/O (A.7.1) 

where 

/ is the time since the onset of sampling, 

/ is the tonal frequency in Hz, 

ro is the tonal hypothetical steady magnitude, and 

©0 is the phase at the onset of sampling. 

Alternatively with time, x, equal to zero at the beginning of each temporal data set 

^ = r0e 
jl 0O + 2nf(n - 1 )Ar + 2nfi 

= r0e 
j(en + 2*fz) 

(A.7.2) 

where 

x is the time since the beginning the temporal data set, 

At is the sample offset time (time between temporal data sets), and 

0„ is the phase at the beginning the temporal data set. 

Defining signal summation as the addition (in the time domain) of the sampled tonal, after a 
sufficient number of samples, the summation would result in zero due to out-of-phase summations, 
not a very useful result. Even if fluctuations in magnitude and phase have been generated prior to 
reaching the sensor that samples the tonal, on the average, the effect of out-of-phase cancellations 
is still present. Coherent summation avoids the effect of cancellation by shifting the phase of the 
sample segment to 0O, i.e., by subtracting (2Tt/(n-l)Af from 0„. Normally, the actual phases 
would all be reduced numerically modulo 2JT. 

Discrete numerical operations, equivalent to those just presented, are more conveniently 
accomplished in the frequency domain. A somewhat subtle, and sometimes overlooked point, is that 
the complex spectral values generated by an FFT or DFT of even noise-free data, in general, 
(1) do not have bin boundaries that correspond exactly to the tonal frequencies actually present; 
thus, the tonal frequencies are not known exactly and (2) do not reproduce the phase of the tonal 
itself at the beginning of the temporal sample set, but rather the phase of the frequency corresponding 
to the frequency at the upper bin boundary. Therefore, it is not possible to achieve coherent 
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processing by simply using the frequency of the nearest spectral bin boundary to calculate the 

offset. 

If the BW is sufficiently narrow to isolate tonals, the systematic phase shift of the tonal is 
reflected closely (though not exactly) for the frequencies of the nearest spectral bins. Any algorithm 
used must be capable of extracting a reasonable estimate of the required phase shift ever, m the 
face of these obstacles and in the presence of noise. Although the success of the WISPR IIIk 

processor, at least in part, depends on removal of the phase shift discrete sampling artifact thetactual 
technique used to determine the correct shift has little bearing the development of the WISPR IIIk 

processor and, thus, is omitted from this discussion. 

The discussion just presented from the point of view of time series data from a hydrophone 
would also apply to output from a beamformer with only minor modifications in terminology. Let 
the set fv } (n = 1 2 3 N) denote the shifted phase (to ensure coherent summation) complex 
spectra values from a single hydrophone or a single beam at a particular frequency. Let 0>„ denote 
the new phase values determined by a suitable phase-shifting algorithm, then the estimate of the 
signal corresponding to a particular bin frequency for that sample period is represented by 

v„ = r„e 
jten + 2nft (A.7.3) 

and has the Fourier transformed value 

Zn = (rn cos4>„ +jrn sinO>„) . (A.7.4) 

The set average value, savg, is 

1 n = Nz 
savg = Tr   ^   T 

n=\r„ 

Using these results, the WISPR III* processor is defined by 

WISPR IIIk = 
savg savg (A.7.5) 

A.8.0 WISPR CROSS-SPECTRAL DENSITY MATRIX BEAMFORMING, AkCSDM OF 
ORDER* 

Beamformers that are based upon the cross-spectral density matrix (CSDM) are referred to as 
CSDM beamformers. Input data required are the complex spectral values for each hydrophone from 
FFTs or DFTs at several sequential temporal realizations. Let the complex spectral value for a 
particular frequency bin for hydrophones / and m, at time index, i, be represented by 

Zl,i = */,/ + jyi.i and Zm.i = xm,i + jym.i 
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then the CSDM quantity, Z/>m,/ for hydrophones / and m, is 

Zl,m,i = Zl,iZm,i = (XU + JyiMxm,i ~ jym.i)  • 

The typical CSDM beamformer uses averages of these complex data according to some specific 
procedure prior to beam steering and summation to form the beam output; e.g., the simplest average is 

i = T 
z, m = - £ n _ i_ 

l,m~ j  **  *-l,m,i 

The AkCSDM beamformer utilizes a new average resulting from the WISPR philosophy, 
substituting this "average" for the conventional ones. Let the magnitude of Z/>m>1- be r/jW>1-, i.e., 

rl,m,i = +\JZlMZl,m4  ■ 

The AkCSDM beamformer, for order Jt (typically, 1, 2, 3, or 4), is accomplished by the simple 
replacement of the quantity, Z/,m, with the new average AkCSDMlm, prior to beam steering and 
summation to form the beam output. AkCSDMittn is defined as 

AkCSDMUm = T  ^     l,m,i 

-1 

1 %TZUm,j 
T ^     k 

i = l r IjnJ 

(A.8.1) 

WCSDM beamforming is the special case for k =1, i.e., A]C5DM/,m, analogous to WISPR being 

equivalent to AWSUMi. 

A.9.0 TIME AND FREQUENCY DOMAIN WISPR MATCHED FILTERS 

These applications simply use the standard WISPR Filter processors. The only difference is the 
type of data that are actually processed. A description of the type of data processed is provided in 

Sees. 7.2 and 7.3. 

A.10.0 WISPR(WB2) 

The WB2 processor1 is a processor that utilizes an iterative technique to enhance the spatial and 
spectral resolution from the output of a conventional processor. It is possible to enhance this 
technique by utilizing the output of other processors, e.g., the fluctuation-based processors 
described herein. When combined in this manner, the resulting processors are referred to as 

WISPR(WB2) , 
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or more generally for the AWSUM higher order processors as 

AWSUMk(WB2) . 

This application is discussed in Sec. 9.2. 

A.11.0 DIET WISPR AND DIET AWSUMk 

The DIET AWSUMk processor of order k is a self-consistent, high-resolution, high-gain 
estimate of the spatial density. The special case where k = 1 is referred to as DIET WISPR . The 
generalized form of the unnormalized processor is defined as 

DIET AWSUM k(xi) s 
T     J 

I    I 
r=U=l 

B 'j,,'RjAxi)}~ (A.ll.l) 

where 

j is the spatial density index, 

j is the beam number index, 

t is the time index, 

k is the processor order, k > 0, 

XJ is the spatial density variable, 

Bjj is the beamformer output powers for the yth beam for time sample t, 

Rjj(xi) is the beam power spatial response of the ;th beam at the ith location 

in spatial density space for time sample t, 

J is the number of beams, and 

T is the number of time samples. 

To compare the output of this processor to other accepted standards, normalization is required. 
However, as this process (though a little tedious numerically) is straightforward, it is omitted from 

this discussion. 

The form of the DIET WISPR processor presented here applies to spatial beamforming 
applications similar to those described in Sec. 9.3. Using a rationale parallel to that which has 
resulted in defining Eq. A.l 1.1, a similar equation can be developed for improved spectral resolution. 
This remains an area needing additional research to fully develop its capability. 
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