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Chapter 1 

Introduction 

1.1 Statement of Objectives 

Satellite orbit maintenance can be broadly defined as the process of executing small 

corrections to the motion of a satellite to keep that satellite within parameters required to 

meet mission objectives. Since satellites today are manufactured to operate exclusively 

in their designed orbit, their performance may be severely degraded if that orbit cannot be 

achieved or maintained. This fact makes the science of keeping satellites "on-station" for 

their designed lifetime critically important to all applications that involve the use of space 

vehicles. 

Station-keeping is important for other reasons as well. Constant improvement in many 

space technologies is redefining what determines the lifetime of a satellite system. 

Efficient solar panels, long life batteries, modern materials, state of the art 

communications equipment, and advanced computer processors have removed the 

traditional lifetime constraints. Increasingly, onboard fuel is becoming one of the 

defining factors for the lifetime of a modern satellite. This trend implies that for a given 

amount of fuel, the efficient operation of the station-keeping system directly affects the 

lifetime of the satellite. 

The station-keeping challenges faced by the controller of a satellite are produced by the 

environment the satellite operates in.   The space environment can vary based on many 
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factors and often is difficult to predict accurately. The job of a satellite station-keeping 

system is to reject disturbances which move a satellite away from a small range, in the 

orbital elements, of its nominal trajectory. It usually accomplishes this task with the use 

of impulsive thrusters. However, the limited amount of onboard fuel requires that orbit 

corrections be small, infrequent, and effective. 

A recent trend in space based applications is the increased use of satellite constellations. 

A constellation is simply two or more satellites that operate together to accomplish a 

mission. Unfortunately, the complexity of a constellation does not increase linearly with 

the number of component satellites. For a constellation station-keeping system, not only 

is knowledge of each satellite's individual position important, but so is each satellite's 

relative position and velocity. Solving this problem is often compared to choreographing 

an intricate celestial dance involving hundreds of dancers. 

The broad objective of this thesis is to study this special satellite choreography. In 

particular, the objective is to develop and test new approaches for a station-keeping 

system with the use of an adaptable, scaleable computer simulation, which automatically 

maintains the orbits of satellites in a constellation. The system is designed to support the 

future development of autonomous satellite operations. Real world satellite dynamics, 

which incorporate complicated perturbation models, are used in order to produce an 

accurate simulation to test the different strategies. In addition, the simulation has the 

capability of operating in parallel on a distributed network of processors. 

1.2 The Station-Keeping Problem 

The design of any satellite's orbit is driven primarily by its mission requirements.   An 

orbit designer is able to tailor the five slowly varying orbital elements to create an orbit 

34 



which has characteristics suitable to the tasks assigned to the satellite. Since satellite 

missions range widely, the scope of the orbits that can be designed to meet the 

requirements is also wide. Table 1.1 lists general orbit types and characteristics that are 

useful for some common satellite applications. 

Table 1.1: Specialized Orbit Designs [37] 
Orbit Characteristic Application 

Geosynchronous maintains nearly fixed position over 
equator 

communications, weather 

Sun synchronous orbit plane rotates to maintain constant 
orientation with respect to Sun 

Earth resources, weather 

Molniya biases coverage to northern latitudes high latitude communications 

Frozen orbit minimizes changes in orbit parameters any orbit requiring stable conditions 

Repeat ground 
track 

subsatellite trace repeats any orbit requiring constant viewing 
angles of ground locations 

Satellite orbits are designed with the expectation that their orbital elements will be 

maintained for the duration of the mission. However, several factors related to the space 

environment can affect a satellite over time and have a detrimental affect on the favorable 

characteristics of its orbit. These factors, called perturbations, include non-spherical 

Earth geopotential, atmospheric drag, solar radiation pressure, third body point mass 

disturbances, and several other smaller scale effects. The task of maintaining the orbit of 

a satellite in the presence of perturbations is assigned to the station-keeping system. 

A station-keeping system for a satellite does not necessarily aim to maintain a 2 body 

orbit - the orbit that excludes the affects of all perturbations. In several cases, the motion 

of the orbit due to a perturbation is essential to its design. An example of this is the Sun 

synchronous orbit listed in table 1.1. The rate of change of the ascending node of a Sun 

synchronous orbit is caused by the oblateness of the Earth, which is modeled as the J2 
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zonal harmonic of the geopotential. It is an essential component of the orbit design and 

should not be counteracted. Therefore, a station-keeping system attempts to track a 

nominal orbit, or the orbit that includes all favorable perturbations, and not necessarily 

the 2 body orbit. 

The station-keeping problem does not scale easily from a single satellite to a satellite 

constellation. Because all the satellites in a constellation must work together to 

accomplish the constellation mission, their orbits must also be maintained relative to one 

another. One simple way to accomplish this is to treat each satellite in the constellation 

individually and maintain it within a very strictly defined set of six orbital elements at all 

times. This approach, while only requiring a linear scale up in the control resources, does 

not take advantage of the distributed nature of the new problem. Since each satellite has 

two neighbors in its plane, and since each plane has neighboring planes, a common 

drifting in some of the orbital elements can be allowed if it does not degrade the ability of 

the constellation to address its mission. This approach of addressing relative orbital 

parameters has the potential for significant savings in fuel expenditure. Of course, its 

drawback is its increased complexity. 

It is important to note that while this thesis only addresses the station-keeping problem, 

there are actually several flight dynamics processes that must be considered for satellites 

and constellations. They include 

• transfer from launch conditions to mission orbit, 

• orbit determination, 

• attitude determination and control, 

• telemetry uplink / downlink, 

• satellite collision avoidance, 

• maneuver planning / repositioning, and 

• end-of-life deorbit. 
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1.2.1 Satellite Constellations 

The most important reason to treat several satellites as one unit, or a constellation, is their 

functionality. Certain missions are best addressed with the use of multiple satellites 

working together. The most notable example of this is the Global Positioning System 

(GPS). It is an integrated system of 24 identical satellites which beam signals down to 

the Earth for the purpose of precise position determination. Since the method of 

determining position relies on signals originating from multiple dispersed sources, a 

single satellite cannot accomplish the task alone. Another example is the Molniya 

communications constellation. Three satellites in inclined, highly elliptical orbits are used 

with appropriate phasing to insure that at least one satellite is always visible from the 

high latitudes of the former Soviet Union. 

The design of a constellation differs from the design of a single satellite orbit. Several 

important design factors, their effects, and the way they are resolved are listed in table 

1.2. 

Table 1.2: Constellation Orbit Design Factors [37]   

Factor Effect Selection Criteria 

Number of principle cost and coverage driver minimize number to meet coverage and 
Satellites performance plateau requirements 

Altitude coverage; launch & transfer cost typically system-level trade of cost vs. 
performance 

Number of flexibility; coverage plateaus, growth minimize number of planes consistent with 
Orbit Planes and degradation coverage 

Inclination determines latitude distribution of 
coverage 

latitude coverage vs. launch cost 

Phasing determines uniform coverage select best coverage among discrete set of 
Between Planes phasing options 

Eccentricity mission complexity, achievable normally zero unless driven to another 
altitude, and coverage vs. cost value by mission needs 
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One of the most exciting applications of satellite constellations in recent times is the 

global personal communications system (GPCS). Several companies are racing to 

establish a system that will open up direct satellite based communications to virtually the 

entire planet. While these systems differ in their scope and specific applications, they are 

similar in that they each propose to launch and operate a multiple satellite system to 

provide communications on demand to a global market. Despite having similar goals, all 

the systems proposed to date have selected significantly different constellation designs. 

Table 1.3 lists several characteristics of some of the most prominent GPCS systems. 

Note that the orbital element values provided in table 1.3 are only approximations to be 

used for a coarse level comparison. Precise orbital designs are often considered 

proprietary information. 

Table 1.3: Comparison of GPCS Systems* [31] 

Ellipso Globalstar Iridium Odyssey Teledesic" 
Borealis/Concordia 

Orbit Type SSFLA LEO LEO MEO LEO 

Altitude (km) 520-7846 / 8063 1401 785 10354 695 to 705 

Eccentricity 0.35/0.0 0.0 0.0013 0.0 0.00118 

Inclination (deg) 116.6/0.0 52.0 86.4 55.0 98.2 

Period (hr) 3.0/4.67 1.9 1.68 5.98 1.66 

Number of Sats 10/7 48 66 12 840 

Number of Planes 2/1 8 6 3 21 

Number of Sats Per Plane 5/7 6 11 4 40 

Coverage Claim 90°N to 55°S global global global global 

Min Elev Angle Claim (deg) 25/10 10 8.2 22 unk 

'This table contains values that are more up to date than those available in the original reference. 
"This is the original Teledesic constellation design. It has since changed to a 288 satellite design. 
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The constellation chosen for analysis in this thesis is the Ellipso Mobile Satellite System. 

It was chosen over the others because of its combination of size, orbit design, and 

coverage pattern. A constellation of smaller size is favorable because of the fixed 

computing capability available for this project. An execution of the station-keeping 

simulator on the 840 satellite Teledesic constellation, while possible, would require 

significantly more processors than available to the author to complete in the same time as 

a simulator execution on a smaller constellation. The unique orbits of Ellipso are 

particularly important. They allow the simulation to demonstrate that it is applicable to 

more than just circular orbits. The more complex coverage claim for Ellipso also allows 

the simulator to demonstrate that its coverage utility is able to adapt to different 

requirements. 

1.2.2 Ellipso Mobile Satellite System 

The Ellipso constellation, proposed by Mobile Communications Holdings Inc., intends to 

achieve near global coverage using two low/medium altitude sub-constellations in 

tandem. The first consists of two critically-inclined, eccentric orbit planes. It is 

complemented by a circular, equatorial sub-constellation. This concept, developed and 

patented by Castiel, Draim, and Brosius [11], is supported by a study that shows that 

medium altitude elliptical orbits are more efficient than traditional low Earth orbit (LEO) 

or geostationary Earth orbit (GEO) systems in balancing the dual demands of global 

coverage and transmission power [20]. The Ellipso constellation is displayed in figure 

1.1. 

The two critically inclined orbit planes are known as the Ellipso Borealis sub- 

constellation.   The Borealis orbit planes are aligned 180° apart in ascending node and 
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operate in a manner similar to Molniya orbits. They provide 24 hour coverage of the 

northern hemisphere with four spacecraft and one spare in each orbit. The orbits 

themselves are Sun synchronous with a frozen line of apsides (SSFLA). 

Figure 1.1: Ellipso Mobile Satellite System Orbits [10] 

This implies that the ascending nodes of the planes will remain at noon and midnight 

throughout their lifetime. An orbit analysis of the Borealis sub-constellation is available 

in Sabol's master's thesis [51] and in a paper by Sabol, Draim, and Cefola [52]. The 

precise orbital elements for the 5 satellites of each the two Borealis planes at 1 January, 

1997 are listed in table 1.4. 

Table 1.4: Borealis Sub-Constellation Orbital Elements (81:10 RGT) 

Element Node at Noon Plane Node at Midnight Plane 

a 10472.201 km 10472.200 km 

e 0.32652 0.32662 

i 116.583° 116.582° 

co 270° 270° 

Q 280° 100° 

M 0°, 72°, 144°, 216°, and 288° 0°, 72°, 144°, 216°, and 288° 

Epoch Midnight, Jan 1 1997 Midnight, Jan 1 1997 

52] 
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The elements listed in table 1.4 represent the most refined state of the Borealis orbits to 

date, and are for an 81:10 repeat ground track. Sabol, Draim, and Cefola demonstrated 

that this configuration results in significantly reduced station-keeping fuel costs while 

maintaining essentially the same coverage compared to the original 8:1 repeat ground 

track configuration [52]. 

The medium altitude circular equatorial orbit is the Ellipso Concordia sub-constellation. 

Concordia consists of 6 satellites with one on-orbit spare. It provides coverage around 

the tropical and southern latitudes. The apogee radius of the Borealis and Concordia 

orbits are approximately the same to insure that the same communications equipment can 

be used for every satellite in the constellation. The orbital elements for the 7 satellites of 

the Concordia plane are listed in table 1.5. 

Table 1.5: Concordia Sub-Constellation Orbital Elements [53] 

Element Concordia Plane 

a 14440.137 km 

e 0.0 

i 0.0° 

CO 90° 

Q 0.0° 

M 0°, 51.43°, 102.86°, 154.29°, 
205.71°, 257.14°, and 308.57° 

The two sub-constellations of Ellipso give it unique flexibility in how it covers the globe. 

The design is based on the distribution of land and population by latitude [12]. The two 
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Borealis planes cover the northern hemisphere, where much of the customer base for the 

mobile communications system is projected, with the use of elliptic orbits. The 

Concordia complements the Borealis planes by providing coverage to the population and 

land masses in the equatorial and southern hemispheric zones. Since all relevant land 

masses lie above the southern 55th parallel, no requirement for satellite coverage is stated 

below this line. Figure 1.2 illustrates the minimum elevation angles achievable by the 

Concordia and Borealis planes. 

a 
< 
Z o 

-10 -L 

LATITUDE (DEG) 

Figure 1.2: Minimum Elevation Angles As Function of Latitude: 6 and 7 Satellite 
Concordia Arrays, and 4 and 5 Satellite Borealis Arrays [21] 

The current plan is to use 5 satellites in each Borealis plane, and 7 satellites in the 

Concordia plane. This allows Ellipso to meet its coverage requirements with a 10° 

minimum elevation angle in the southern hemisphere and a 25° min elevation angle in the 

northern hemisphere. 

1.2.3 The Automated Station-Keeping Approach 

The on-orbit control of a satellite constellation poses challenges that do not exist in the 

control of individual satellites.   Control methodologies which address these challenges 
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must be able to derive control commands based upon constellation level metrics and not 

just individual satellite positions and velocities. A certain level of autonomy is also 

desired to minimize ground station activity and to allow for quick, responsive solutions to 

on-orbit failures. In addition, the control methodologies must be flexible, reliable, and 

efficient. This thesis will study three different control methods with the use of a 

constellation wide station-keeping simulation. 

The Automated Station-Keeping Simulator (ASKS), created for this project, considers the 

station-keeping status of every satellite in a constellation simultaneously. It implements 

this approach on a distributed process architecture using the Message Passing Interface 

(MPI) [27,56] on a network of UNIX workstations. Every satellite operates as its own 

process on the network and communicates with other satellites in the constellation 

through a master process known as the "ground station". Using this architecture, the 

entire constellation progresses through time as an integrated unit, which shares 

information and maintains its constellation level mission, while still allowing satellites to 

individually accomplish the station-keeping task. 

Each satellite process looks upon the station-keeping task as a trajectory tracking 

problem. The nominal trajectory is defined as the flight path, in state space, that is 

associated with totally achieving the mission's orbital requirements. For a 

communications constellation, having every satellite perfectly on its respective nominal 

trajectory implies achieving the optimum coverage and minimum elevation angle design 

specifications. The six element state space "point" along the nominal trajectory at a 

specified time is the nominal state at that time. The actual trajectory is the state space 

flight path followed by a satellite that also experiences disturbing accelerations not 

incorporated into the orbit design. The "point" along the actual trajectory at a specified 

time is the actual state at that time. The tracking problem, then, is to maintain the actual 
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trajectory within a small region of the nominal trajectory. This is analogous to keeping 

the actual state within the specified state space limits of the nominal state at every time in 

a time iterated loop. If the time step of the loop is kept small, it is reasonable to assume 

that the limits will not be violated between successive iteration times. The maximum 

allowable state deviation from the nominal state is the amount beyond which mission 

capability is degraded. The deviation in each of the elements is usually determined by the 

constellation designer. 

There are two ways to consider the trajectory tracking problem in the context of a 

constellation of satellites. The first is simply to treat all the satellites individually. For a 

constellation, however, the angular spacing requirements between neighboring satellites 

in a plane, and nodal spacing requirements between orbit planes, cannot be ignored. To 

assure that these spacing requirements are not violated, the orbital element limits for each 

satellite must be very strictly defined, particularly in the mean anomaly and ascending 

node. This method of separately maintaining each satellite within a tight limit of its 

nominal state is often referred to as absolute station-keeping, or the "box" method. It is 

similar to the approach used by the GPS constellation and is the method proposed for the 

Iridium constellation [26]. 

The second method, is to address.the relative spacing of the mean anomaly and ascending 

node, rather then their actual values. This method requires communication across the 

satellites in a plane and across the planes in a constellation at each time step in the 

iterated loop. While this may be tedious, it allows all the satellites in the plane to drift in 

mean anomaly at the same rate and all the planes in the constellation to drift in ascending 

node at the same rate. With this method, often called relative station-keeping or 

"formation flying", there is a potential for significant savings in station-keeping fuel with 
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no accompanying loss in mission capability. ASKS offers the user a choice of which 

station-keeping method to use. 

Another critical part of the station-keeping problem is what to do when the actual state 

lies outside the orbital element boundary limits of the nominal state. The approach taken 

by ASKS is to 1) determine a target state for the next iteration time step, and 2) execute 

an orbit transfer from the current actual state to the future target state over the intervening 

time step. The calculation of the target state is determined by the control law being used. 

Three different control laws are currently incorporated into ASKS. To minimize the 

amount of station-keeping fuel used for the orbital transfer, an optimal n-impulse transfer 

is calculated using the principles of Primer Vector theory [32]. In addition to being 

optimal, the timed series of impulses, called the burnlist, is also accurate enough to insure 

that the target state will always be achieved. 

One of the most important components of ASKS is its orbit propagator. The Draper 

Semi-Analytic Satellite Theory (DSST) standalone orbit propagator was chosen for this 

role. This efficient tool has been applied previously to real world flight dynamics 

applications such as the mission support system of the Canadian Space Agency Radarsat 

system [15]. DSST is capable of incorporating burnlists, modeling realistic satellite 

dynamics, including complex perturbations, and producing state rate information. The 

nominal state is propagated at every iteration time using central body gravitation and only 

those perturbations that are incorporated into the orbit design. The actual satellite is 

propagated using all perturbations, and with a burnlist when a transfer trajectory to a 

target state is required. 

The constellation used for all simulation executions is the Ellipso Mobile Satellite 

System. The simulation test plan for Ellipso was designed to address three goals: 
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• demonstrate   that   ASKS   produces   reasonable   lifetime   station-keeping 

estimates 

• investigate the advantage of using the "formation flying" approach rather than 

the "box" approach to constellation station-keeping 

• demonstrate that ASKS can be used to analyze constellation orbit designs 

A fully functional station-keeping simulation such as ASKS provides an excellent method 

for accurately estimating lifetime fuel requirements for a constellation of satellites. It can 

also be used by constellation designers as a tool to determine optimal constellation orbit 

parameters. The ASKS approach is unique in that it combines an optimal n-impulse 

rendezvous element to provide automated station-keeping for a constellation of satellites 

using realistic satellite dynamics calculations on a distributed network of workstations. 

1.3 Thesis Overview 

The intent of this chapter was to provide an introduction to the constellation station- 

keeping problem and an explanation of how it will be addressed in this thesis. The 

remainder of the document includes a description of background theories, proposed ideas, 

implementation, and analysis involved in developing and executing the station-keeping 

strategies and simulation. 

Chapter 2 is primarily an overview of Primer Vector theory and its application to optimal 

orbital transfers. It also includes a description of how some parts of the preexisting 

theory had to be modified to suit the station-keeping transfer problem. Chapter 3 

includes a review of the fundamentals of orbit propagation, the development of semi- 

analytic satellite theory, and a discussion of the specific orbit propagator used in the 

46 



Simulation. Chapter 4 includes an overview of Lyapunov non-linear control theory. 

While control laws based upon this theory are not incorporated into the current version of 

ASKS, several Lyapunov control based strategies are proposed and developed. Chapter 5 

provides a description of the software and hardware implementation of the Automated 

Station-Keeping Simulator (ASKS). Chapter 6 contains a description of the three control 

methods developed in this project. Chapter 7 includes a description of the simulation 

executions on the Ellipso constellation and an analysis of the results. And finally, 

Chapter 8 gives the final conclusions of the project and some ideas for future work 

related to this topic. 
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Chapter 2 

Primer Vector Theory 

2.1 The Optimal N-Impulse Rendezvous Problem 

The time fixed, two point boundary value problem has received much attention in both 

classical and modern times. Originally, its solution was required to determine the orbital 

trajectories of planets and comets from observational data. According to Battin [3], 

Leonhard Euler was the first to address this problem for parabolic orbits. However, he 

did not pursue the study for elliptical or hyperbolic orbits. Johann Heinrich Lambert is 

generally accredited with having addressed the problem for general orbits. It was 

henceforth known as Lambert's problem. 

In modern times, a solution to Lambert's problem is essential to calculating rendezvous 

trajectories for satellite and missile applications. The orbit connecting two position 

vectors for a fixed time of travel is the solution to Lambert's problem. If the position 

vectors reside on separate trajectories then the Lambert orbit connecting them is also the 

two-burn fixed time of rendezvous solution. For modern applications, however, 

successful rendezvous is not the only criterion. A solution which uses less fuel by 

allowing the transfer trajectory to contain multiple burns is desired. The problem is that 

of finding an optimal n-impulse rendezvous trajectory to a target state at a given future 

time. Other constraints, such as the maximum individual burn magnitude, are also 

important factors to consider. 

49 



An optimal n-impulse rendezvous to a target state is precisely what is required for the 

Automated Station-Keeping System. The determination of target states and times 

depends on the method being used. For the simplest method, the future target state will 

be the nominal state at the next iteration time. More complicated methods will generate 

target states depending on state rate information, strategies which consider the coupled 

nature of the orbital elements, and the states of neighboring satellites. Each of the 

methods, however, requires that the targeted state be achieved to a high degree of 

precision if continuous control of a satellite is to be maintained. 

A broad survey of rendezvous trajectory planning was conducted in 1991 by Jezewski, 

Brazzel, Prust, Brown, Mulder, and Wissinger [33]. They divide the various approaches 

into three general categories: primer vector, finite thrust, and cooperative rendezvous. In 

the current work, the primer vector theory is used to calculate a solution to the optimal n- 

impulse rendezvous problem. This theory was chosen because it deals with impulsive 

burns and because it is adaptable to non-linear cases. Its theoretical basis was first laid 

down by Lawden in the 1950's [38]. While no past use of primer vector theory for 

station-keeping or orbital repositioning was found, the principles behind it apply to this 

problem just as well. 

A short overview of the basic concepts of primer vector theory is provided next. It is 

recommended that the reader desiring intimate knowledge of the following derivations 

consult some of the items listed as references. Following the theory, a short overview of 

solving Lambert's problem is also provided. Finally, the author's approach to utilizing 

primer vectors in the calculation of near optimal transfer trajectories is outlined. 
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2.2 Development of Primer Vectors 

The development of primer vector theory can be attributed to many people. Its 

theoretical basis was first stated by Lawden in the form of necessary conditions which, if 

met, assure that an impulsive trajectory is optimal [38]. In 1968, Lion and Handelsman 

developed a method by which one can determine if the addition of an interior impulse to a 

given impulsive trajectory will decrease the total fuel expenditure [40]. Soon after, 

Jezewski and Rozendaal [34] developed an efficient method of calculating optimal two- 

body n-impulse trajectories by applying the Lion and Handelsman work in the framework 

of a computational search scheme. The result was the development of the Optimal Multi- 

Impulse Rendezvous (OMIR) software package [32]. Further work on the subject was 

accomplished by Prussing [47] and a series of his students. They applied primer vector 

theory for orbital transfers involving path constraints [57], circular orbits [48], 

cooperative transfers [49], and direct ascent rendezvous [28]. Carter and Brient further 

improved on primer vector theory by applying it to non-circular Keplerian orbits [9]. 

Each refinement and addition was significant to primer vector theory, but they all were 

formed on the basis of two basic assumptions - impulsive burns, and linear or linearized 

equations of motion. The impulsive burn assumption states that the corrective burns 

provided by the satellite thrusters can be modeled as near zero duration, high impulse 

burns. Essentially this allows an instantaneous change in velocity while maintaining 

continuity in position. This assumption is very good for burns of small magnitude. For 

actual satellite corrections, it is possible to accurately translate an impulsive burn at a 

given time into the short duration continuous thrust that would actually occur. Linearized 

equations of motion result from calculating the dynamics about a known reference 

trajectory. This assumption is generally good for small deviations from the reference, but 

can be problematic elsewhere. 
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For the purposes of this study, a software package similar to the OMIR program was 

developed for the determination of optimal n-impulse rendezvous solutions as applied to 

station-keeping. While the impulsive burn assumption is maintained, the requirement for 

accurately modeling true satellite dynamics means linearization can not be used. The non- 

linear nature of the problem is dealt with by using the DSST orbit propagator for all 

dynamics calculations. This inherent non-linearity, and other alterations to the method 

made to suit the station-keeping problem, mean that the software package created for this 

application can only claim to provide near optimal solutions. The optimality of the 

solutions produced by the primer vector code is addressed further in section 2.4. 

2.2.1 The Primer Vector 

The equations and general flow of the explanation to follow are a summary of primer 

vector theory as explained in references 32, 34, and 40. However, departures occur from 

the traditional application of primer vector theory at several points for the purposes of 

addressing the station-keeping problem in particular. All changes will be noted. 

The equations of motion for a satellite are described by 

R = V 

y = ^£ + G (2.1a,b,c) 
m 

m = ß 

where R is the position vector, V is the velocity vector, G is the gravity vector, £ is the 

direction cosine vector of the thrust, ß is the mass flow rate, c is the characteristic 

velocity, and m is the mass of the satellite. The constraints on the direction cosine vector 

and mass flow rate are 
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ß(ßmm-ß) = a2>0 (22) 

where a is a slack variable. A slack variable of a=0 implies that the mass flow rate will 

be zero or maximum. This is the equivalent of a bang-bang controller. 

It is desirable to minimize a cost function J using the control variables £ (t), a(t), and ß(t) 

subject to the algebraic (equation 2.2) and differential (equation 2.1) constraints. The 

Hamiltonian function for this problem is 

,rl'/fc ' H = X \—l + G 
m J 

+ <pTV_T?ß_^iTi_ly^ß(ßmax_ßya2y (23) 

The vectors X and cp and the scalars u.„ \x,2, and r\ are time varying Lagrange multipliers. 

Variational calculus states that the necessary conditions for the trajectory which 

optimizes the cost function J are 

•T.       dH T 
XT=-— = -<pT (2.4a) 

■r       oH T oG 
<pT = -—- = -AT— (2.4b) 

dH    ßc   T 77 = -^7=    2^  ^ (2.4c) an    m 

dH       ßc   T T 
0 = -— = -—AT + 2Mie

T (2.4d) 
o£ m 

° = -% = -JtÄTi + Tl + ^™-2P) (2-4e) 

dH 
0 = -— = -2jU2a (2.4f) 

da 
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A good introduction to the use of Hamiltonian functions, variational calculus, and 

optimal control theory is available in reference 36 by Kirk. 

The term primer vector was introduced by Lawden to describe the vector X. It is the 

vector whose components are the three Lagrange multipliers related to the velocity 

vector. It is also a costate vector in the costate equations (equations 2.4a, 2.4b, and 2.4c) 

for the optimization problem. One of the important properties of the primer vector is 

evident in equation 2.4d. If there is a burn (ß * 0) and it has a distinct direction (n, * 0), 

then the primer vector is parallel with the direction cosine vector of the burn. 

Furthermore, application of the Weierstrass condition yields 

Ä 

or that an optimal burn occurs only when it is aligned with the primer vector. Note that if 

ß is allowed to go to infinity and the duration of the burn is assumed to be zero, then the 

solution to problem described above is an impulsive burn trajectory. 

For another interpretation of the primer vector, consider the case of a coasting arc - a 

trajectory where there are no intervening burns. Since ß is zero for this trajectory, the 

equations of motion become 

R = v „ * J N (2.1d,e) 
V = G = VU(R,t) 

where V is the gradient operator and U is the potential in a central force field. If 

differences are taken about a reference trajectory such that 8R represents the difference 

between the perturbed position R' and the reference position R, then the linearized 

equations of motion about the reference trajectory are 
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SR 
= F 

'SR' 

5v\ [öV\ 
(2.5) 

where 

F 
0     / 

dG 

Ji ° 

Here, 5G/5R is the gravity gradient matrix and I is the matrix identity.   The system of 

equations adjoint to equation 2.5 is 

= -F' 0 

-/ 

fdG"T 

KCKJ OR. 
0 

(2.6) 

where cp and X are the vectors adjoint to 8R and 5V, respectively. Therefore, the primer 

vector is also the vector adjoint to the velocity difference vector. Note that adjoint 

equations of motion of equation 2.6 are identical to the costate equations of motion for a 

coasting arc given by equations 2.4a and 2.4b. 

Given that the gravity gradient matrix is symmetric in a central force field, equations 2.5 

and 2.6 written in second order form become 

SR 

A = 

dG_ 

dR 
SR 

^G^T 

KdR. 
dG 

dR 

(2.7) 

Equation 2.7 states that the primer vector and its derivative are propagated in time using 

the same equations of motion as are 5R and 5V. This implies that the state transition 

matrix, O, defined by 
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'SR(t)' 

5V(t) 
■O(t,t0) 

~SR(t0) 
(2.8) 

applies in the same manner to X and A = -<p  so that 

MO 
MO 

®(t,t0) 
'Mt.) 

MO 
(2.9) 

Equation 2.9 is important, because the state transition matrix will be the manner by which 

the primer vector and primer vector rate histories along a coasting arc (non thrusting 

trajectory) are determined. Another important relation is the adjoint equation. 

AT SV - ÄT SR = const (2.10) 

Since equation 2.10 has the same value along any given coasting arc, it can be used to 

relate the boundary conditions ofthat arc. The boundaries of a coasting arc are occasions 

where impulsive burns occur. If t0 and tf are the beginning and end times of a coasting arc 

such that AV0 and AVf are the respective impulsive burns at those times, then by 

definition, 

MO = K 

Mtf) = lf = 

Wo 

(2.11) 

AVf 

2.2.2 Lawden's Necessary Conditions 

In 1963, Lawden applied variational calculus to the problem of impulsive rendezvous to 

derive four conditions which must be met for the rendezvous solution to be optimal [38]. 
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His cost function was the characteristic velocity, or the sum of all the impulses in the 

solution. These conditions, known today as Lawden's conditions, are 

1) The primer vector and its first derivative are continuous everywhere. 

2) Whenever an impulse occurs, the primer vector is aligned with the 

impulse and has unit magnitude. 

3) The primer vector magnitude must never exceed unity on a coasting 

arc. 

4) The time derivative of the primer vector magnitude must be zero at all 

interior junction points separating coasting arcs. 

If t0 is the initial time, tf is the final time, and t; are the times of all interior impulses, then 

the necessary conditions can be expressed as 

A(r) = A(t+)   and   Ä(r) = Ä(t+)   ,t0<t<tf 

W\ (2.12a-d) 

\Ä(t)\<\   ,t0<t<tf 

A(/,) = 0   ,V/. 

where V denotes 'for all'.    A typical two impulse optimal primer vector magnitude 

history is displayed in figure 2.1. 
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Figure 2.1: Optimal Two-Impulse Primer Vector Magnitude History [34] 

If the two impulse trajectory were a non-optimal transfer, then the primer vector history 

would resemble figure 2.2. 

TIME 

Figure 2.2: Non-Optimal Two-Impulse Primer Vector Magnitude History [34] 

Note that the primer vector magnitude exceeds unity along some portion of the arc. It 

will be shown later that the addition of an impulse of appropriate magnitude at any time 

at which the primer vector magnitude exceeds unity along a coasting arc will result in a 

three impulse transfer trajectory with a lower characteristic velocity. The addition of an 

impulse at time ^ in figure 2.2 could result in the primer vector magnitude history shown 
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in figure 2.3 if the optimal number of burns for this transfer were three and t,,, was the 

optimal time for the interior impulse. 

1.0 ■ 

2 w 

si 
W O 

— s 

TIME 

Figure 2.3: Optimal Three-Impulse Primer Vector Magnitude History [34] 

Note that if t,,, was not the optimal time to add an interior impulse, the resulting 

characteristic velocity would still be reduced, but not to its minimum value for a three 

impulse solution. If ^ was not the optimal time to add a third impulse, or if this transfer 

required more than three burns to be optimal, then the addition of an impulse at t^ could 

change the primer vector history from that displayed in figure 2.2 to that displayed in 

figure 2.4. 

TIME 

Figure 2.4: Non-Optimal Three-Impulse Primer Vector Magnitude History 
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The first recourse at this point would be to change the time of the t,,, burn until the lowest 

resulting characteristic velocity is achieved. This would be the optimal three impulse 

solution, but not the optimal n-impulse solution. If figure 2.4 represented the optimal 

three impulse solution, then reducing the characteristic velocity further would require 

another interior impulse. Note that no additional fourth impulse between t,„ and tf can 

improve this three impulse solution. The fourth impulse should be applied in the region 

between t0 and t^ where the primer vector magnitude exceeds unity. 

Two important procedures dictate the success of the primer vector process. The first is 

choosing the correct time of an interior impulse. The best choice is the one that results in 

the maximum decrease in characteristic velocity. The second choice is the magnitude of 

the interior impulse. It turns out that the two choices are intimately tied to one another. 

2.2.3 Improving Transfers With Interior Impulses 

To appreciate the addition of an interior impulse to a transfer trajectory between two 

orbits, consider the following problem. Let [R0, VJ and [Rf, Vf] represent the initial and 

final states of the transfer from initial time t0 to final time tf. Finding the orbit which 

connects these two states over the time interval At = tf -10 is the solution to Lambert's 

problem. If the velocity of the Lambert transfer orbit is V, at time t0 and V2 at time tf, 

then the two impulse transfer is defined by figure 2.5. 
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Perturbed Trajectory 

Reference Trajectory 

<Ro'to 

'Initial Orbit 

Figure 2.5: Two-Impulse Trajectory Perturbed at t,,, [32] 

Consider the two impulse Lambert transfer orbit to be the reference trajectory. To 

improve upon this trajectory with an interior impulse, we must find a perturbed trajectory 

such that at time tm, the position vector on the reference trajectory, R,,,, is perturbed by an 

amount SR^. The existence of an impulse at R™ + 8R,,, implies that there are now two 

coasting arc trajectories. If Lambert transfer orbits are calculated between the following 

position vectors on the perturbed trajectory 

1) [Ro.tJ-^+öR^tj 

2) [Rm+5Rm,tJ->[Rf,tf] 
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then the velocity vectors on the perturbed trajectory differ from those on the reference 

trajectory by the following amounts: 

8V0 at time t0 

SVm at time V 

5Vm
+attimeC 

5Vf at time tj 

First, we attempt to show that the addition of an interior impulse at a time where the 

magnitude of the primer vector is greater than unity results in a transfer from t0 to tf with a 

reduced characteristic velocity. The cost of the reference and perturbed trajectory, 

respectively, are 

J= AVJ + AV, (2.13) 

J'= AV+W \ + \SV:-5V-\ + m m AVf-5Vf (2.14) 

The cost increment of adding an interior impulse is 

dJ = J'-J (2.15) 

At this point, Jezewski subtracts equation 2.13 from 2.14 and expands the result into an 

infinite series. If we assume that 

\5V„\« \AV\   and 

SVf « AV, 
(2.16a,b) 

then we can ignore higher order terms and show that to first order 
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AVT SV     , ,    AVj SV, 
d/=   ,°    ° + sv:-sv;\-  f    s 

\AV. 
m m 

AV. 
(2.17) 

or 

dj = ÄT
0sv0+\sv:-sv-\-ÄT

fsvf (2.18) 

Recall the adjoint equation (equation 2.10). If it is applied over the two coasting arcs of 

the perturbed trajectory, we have 

AT
0 SV0 -i

T
0 SR0=(A-m)

T SV- -(t)T SR~m 

(KY SV: -{K)
T
 OK=4 svf -i] SRJ 

(2.19a,b) 

Recognizing that since A, and A are evaluated on the reference trajectory yields 

m m m 

(2.20) 

Requiring continuity in position, 

SRo=0 

5Rf =0 

SR+ = SR~ 

(2.21) 

and substituting equations 2.19a and 2.19b into equation 2.18, we obtain 

d/= SV: -SV; -Al (SV: -SV;) (2.22) 

If c and the unit vector ic are defined as 
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c = \W*-W~\    and 

5V1-5V- (2.23a,b) 
i„ = 

they can be interpreted as the magnitude and direction of an impulse at time t^. 

Substituting into equation 2.22, the cost increment becomes 

dJ=c(l-AT
mic) (2.24) 

Equation 2.24 shows that to first order, if the magnitude of the primer vector at time tm is 

greater than one, then the cost increment can be made negative with the addition of an 

interior impulse. This in turn implies that the resulting three burn trajectory will have a 

lower characteristic velocity while still achieving the terminal state in the same amount of 

time. In addition, we can also state that to first order, the best improvement in cost is 

achieved by applying the interior impulse in the direction of Xm, at the time where \Xm | is 

a maximum. 

Having obtained a good approximation for the time of an additional impulse, the next 

step is to determine what the magnitude of that impulse should be. At first glance, 

equation 2.24 suggests that if ic is parallel to X,m, then a larger value for c decreases cost 

the most. Large values for c, however, invalidate the first order assumption made in 

obtaining equation 2.17. We must determine c using another method. In pursuit of this 

goal, we begin by first developing a relation between the interior impulse magnitude, c, 

and the difference in position from the reference trajectory at the time of the impulse, 

8R». 

Applying the state transition matrix relation first seen in equation 2.8 across the two arcs 

of the perturbed trajectory, we obtain 
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SRI' m 

5V~ -      m _ 

= ®(tm,t0) 
'SR; 

Wo. 

~SR+' m 

m 

= <*>('«>'/) 
~ÖRf~ 

(2.25a,b) 

Note that these state transition matrices can be partitioned into four constituent matrices 

such that 

0>(r,r) = 
(Pu (t,r)   (pn(t,t) 

p2l(t,r)   (p21(t,T)_ 
(2.26) 

Applying equation 2.26 to equations 2.25a and 2.25b and using the continuity relations in 

equation 2.21, it can be shown that if (p\\ {tm, t0) and q\]_ (tm, tf) exist, then 

SV'm = <Pv(tm,t0) <Pn(tm,t0) SRm    and 

W:=(p12(tm,tf)<p^(tm,tf)5Rm 

(2.27a,b) 

Subtracting equation 2.27a from 2.27b and applying the definitions of c and ic from 

equation 2.23, we have that 

c-i =SV1-SV: =A8R m m (2.28) 

where 

A = (p12 (tm, // ) <Pn (tm ,tf)- (p22 {tm, t0) <p~2 (tm, t0) (2.29) 

If the interior impulse is applied in the direction of Xm then 

SR„, = c A~x i=c A 
>L -1    '"m 

u„ 
(2.30) 
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Having resolved a relation between c and 8R™, we now consider the cost increment 

directly to determine a good value for c. From our previous discussion of costs, we have 

that the cost increment is defined by 

dJ = \AV0 +SV0\-\AV0\ + AVf -8V, - AVf +c (2.31) 

To help determine c, Jezewski uses the same expansion for equation 2.31 as was used to 

obtain equation 2.17, except that this time second order terms are retained as well. 

However, this method still relies on the assumptions in equation 2.16a and 2.16b. These 

assumptions are good for most cases, particularly for large orbital transfers, but they do 

not suffice for some basic station-keeping cases. For example, if the only difference 

between the initial and final states is a small change in inclination, then the addition of an 

interior impulse at a nodal crossing can entirely negate the initial and final burns. In this 

case, 8V0 and AV0 will be of equal magnitude and opposite direction. An alternate form 

of the cost increment, which does not rely on assumptions 2.16a and 2.16b, was 

developed for the station-keeping transfer calculation. It is 

.      , .        SV0
T AV0    SVj 5V0 

&J = \AV„\ fl + 2   ,°    ,,    +   ,      ,,    + 
AK \AV\ 

AV, 
SVj AVf     5Vj SVf . 

11 + 2    f     /+     f    / +c-\AV„ 
AV. AV, 

AV, 

(2.32) 

Note that equation 2.30 and equations 2.25a and 2.25b yield 

SV0 = <Pi2 ('»,OM„=c<*   and 

5Vf=ri(tm,tf)ÖRm=cß 
(2.33a,b) 

where 
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Kl 
ß=ri(tm,tf)A-^ 

M-„, 

and 

(2.34a,b) 

Substituting for SV0 and 8Vf, equation 2.32 becomes 

dJ= AV\   l + 2c- 
a   AVn      . a   a 

-^ + c2 + 
AF \AV„ 

AV, ß   AVf  ,   2/?r/> l + 2c 
AF, 

+ c + C-AF- AF, 
AVf 

The best improvement in cost occurs for the value of c at which 

(2.35) 

ddJ _    (2cqf+pf)rf     ^     (2cq0+p0)r0 

3c      2^c2qf+cp/+l     2^c2q0 + cp0+l 
+ 1 = 0 (2.36) 

where 

0ccT AV0 
P0  ~ 2    1            12 

\AVo\ 

- ßT  W, 
Pf -   2 

AVf 

2 

T a   a 

\AVo\ 

ßT ß 
qf = 

AV, f 

rr = AV, 

(2.37) 

67 



Note that the appropriate c can be determined from the Jezewski's 2nd order equivalent 

of equation 2.36 analytically. Evaluating equation 2.36, however, requires a numerical 

search scheme. The function itself is rather complicated with quick rises followed by 

long plateaus. However, the authors experience using this method is that the solution for 

c exists and is unique when |A.J>1. 

2.2.4 Optimizing The Trajectory 

In the preceding sections good estimates for the time, magnitude, and direction of an 

interior impulse were determined. A three impulse trajectory resulting from the addition 

of such an impulse will have a continuous primer vector magnitude trajectory where the 

magnitude is unity at the times of the impulses and less than one elsewhere. However, 

this does not necessarily imply that this three impulse solution is optimal. Note that all of 

Lawden's conditions have to be met to insure optimality. In particular, at this point, the 

continuity and value of the primer vector rate at burn times may not meet Lawden's 

conditions. Such a situation would result in the primer vector magnitude history having a 

cusp at the interior impulse point. This is illustrated in figure 2.6 

TIME 

Figure 2.6: Non-Optimal Three-Impulse Trajectory with Cusp at t,„ [32] 
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To resolve this problem, Jezewski defines the non-optimal three impulse trajectory as the 

reference and attempts to find a variation of it that meets Lawden's conditions. The 

independent variables in the variation are ^ and 8R™ [32]. Jezewski uses a first order 

determination of the cost increment to create a gradient vector on the cost function. 

Using gradient vector information, a numerical search scheme quickly determines the 

optimal combination of t^ and OR,,,. 

The use of a first order cost increment to determine the gradient does not work for the 

station-keeping problem. Analysis of cost functions from test cases show that they do not 

resemble near quadratic functions. Gradient search methods work best for quadratic 

functions because they can search for only local minima. The station-keeping functions 

are very sensitive to any changes in the components of SR^ Even very small deviations 

in the components of 5Rn, results in large increases in the cost function. This sensitivity 

results in cost "walls" around good solutions, thus preventing improvement of the initial 

guess with the use of a gradient. Since the global minimum is isolated, a gradient search 

scheme using Jezewski's gradient determination does not alter the non-optimal because it 

can not direct the search away from the local minimum. 

A multivariable search over a large search space for a function with isolated minima 

where no gradient information is available requires a search scheme such as a genetic 

algorithm. However, implementation of a genetic algorithm also requires more 

computing capability and computing time than is feasible for this project. The author 

decided to adopt another approach which results in near-optimal solutions determined 

over reasonable time periods. 

The solution is to reduce the search from four variables for every interior impulse to one. 

The time of the interior impulse remains the only independent variable in the search. The 
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cost function on only the time variable proves to be smooth and near quadratic. 

However, the possibility for a handful of minima still exists. To deal with this situation, 

a better method of choosing the initial guess for the search is also developed. This 

approach allows the use of a conventional non-gradient search scheme. The author 

choose to use the classical Powell's Method [45]. 

To reduce the number of search variables from the original four to only the time of the 

interior impulse, a method for determining the unique, best solution for the perturbed 

position, given the interior time, is required. To try to maintain near-optimality, as many 

assumptions as possible need to be removed in the determination of the interior impulse 

itself 

We begin by developing a better method for determining an initial estimate for the 

interior impulse time. Equation 2.24, restated as equation 2.38, shows that, to first order, 

adding an interior impulse at the time associated with the maximum value of \XJ results 

in the greatest decrease in the cost. 

dJ=c(l-ÄT
mic) (2.38) 

It is desirable to remove this first order dependence. This is done by creating a 

discretized time grid between the initial and final times, and then evaluating what the cost 

increment of adding an interior impulse at each of these times is. Instead of letting tm be 

the time of |A.|max occurrence, we assign 1^ as the time of |J+dJ|min occurrence. In a 

situation where there are multiple cost wells, this approach tends to find the correct one to 

pursue optimization on if the time period is discretized sufficiently. 

Equation 2.24 also states that to first order, an interior impulse should be added in the 

direction of A,m. Jezewski relies on the multivariable optimization process to correct this 
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initial choice of direction to the optimal direction. For our problem, however, analysis 

shows that the accurate determination of c, the magnitude of the interior impulse, is more 

important once a good estimate of the direction is known. Because of this, no change is 

made and the direction of the interior impulse is left to be the direction of A.m. 

This leaves the determination of an accurate value of c. Recall that Jezewski uses a 

second order approximation of the cost increment to calculate an initial estimate for c. 

Once again, he relies on the multivariable search scheme to converge to the optimal value 

of c. For our determination of c we use equations 2.35, 2.36, and 2.37. No truncation of 

higher order terms are required because no series expansion takes place. Therefore, 

Jezewski's assumptions are no longer applicable. Note that we are calculating the 

optimal magnitude of the interior impulse for a given time and direction. 

All that remains is to determine 8R,,,, the perturbed position at time t„,. For this we recall 

equation 2.30. It is restated as equation 2.39 below. 

SR„ =cA~] i =cA~] T^ (2.39) 
\Am\ 

Having already accepted ic to be in the direction of Xm, we now have a method of 

calculating a unique 8R,,, for a given t^. This link leaves us free to execute a non-gradient 

search on only time for the minimum cost of a three impulse trajectory. 

The major difference which removes us from true optimality is the use of the first order 

assumption in accepting the direction of the interior impulse to be the direction of the 

primer vector on the reference trajectory at the time of the interior impulse. However, 

this assumption, made only once in this approach, allows the use of a much simpler 

search scheme which can compute a near-optimal trajectory much quicker than a full 
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fledged general multivariable search. One future area of research is to obtain a more 

complicated form of equation 2.24/2.38 which results from the cost increment displayed 

in equation 2.32, where no first order truncation is made, rather than Jezewski's first 

order cost increment of equation 2.17. 

The other contributor to near-optimality is the non-linear nature of the application. One 

of the project goals is to incorporate accurate satellite dynamics. The Draper SST, the 

orbit propagator used for prediction, gives us this capability, but it also preserves the non- 

linearity of the dynamics. Therefore, primer vector theory can provide optimal solutions 

only as well as its linearized equations model the non-linear nature of the dynamics. 

Since the accuracy of the linearized equations is reduced in the presence of satellite 

perturbations, so is the ability of primer vector theory to produce true optimal solutions. 

One of the consequences of near-optimality is that more than the optimal number of 

interior impulses are required to bring the entire primer vector magnitude to a value less 

than or equal to one. While the burnlist generated from this approach may not be ideal 

for actual satellites to execute, it does provide total burn magnitudes which are 

surprisingly close to the optimal solutions. Section 2.4 contains examples which 

demonstrate how close the computed solutions are to the theoretical optimal. 

2.3 Lambert's Problem 

The problem of finding the time fixed transfer orbit connecting two positions in space is 

known as Lambert's problem. In his book, An Introduction to the Mathematics and 

Methods of Astrodynamics, Battin devotes an entire chapter to the development of 

different solutions to Lambert's problem [3].   The following section borrows heavily 
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from Battin's discussion. In fact, the method chosen by the author to solve Lambert's 

problem is Gauss' Method modified by Battin to assure rapid convergence and eliminate 

singularities. 

Lambert recognized that the transfer orbit was dependent on only one orbital element. 

His findings are summarized in the well known Lambert's Theorem: 

The orbital transfer time depends only upon the semi-major axis, the sum of the 

distances of the initial and final points of the arc from the center of force, and the length 

of the chord joining these points. 

In formula notation, Lambert's theorem is equivalent to equation 2.40 

Jjl(t2-t) = F{a,rx+r2,c) (2.40) 

where a is the semi-major axis, r, and r2 are the respective distances of the body from the 

central force, and c is the chord. The transfer problem is displayed in figure 2.7. 

Figure 2.7: Lambert Problem Illustration 
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The quantity 9 is the transfer angle between the two radii. If we let s be the 

semiperimeter of the r„ r2, c triangle and am be the semi-major axis of the minimum 

energy orbit connecting r, and r2 then 

s = -am = rl+r2 + c (2.41) 

Lagrange's form of the time transfer equation is 

i 

J/j(t2 - fj) = a'2[(a- since) -(ß- smß)\ (2.42) 

where 

a = 0+y/ ß= <f>-ys 

¥ = \{E2-EX) (2.43) 

cos^ = ecos—\E2 +EX) 

E, and E2 are the eccentric anomalies at ix and t2, respectively. 

The biggest drawbacks of equation 2.42 are: 1) the transfer time is a double valued 

function of the semi-major axis, and 2) there is a singularity at 9=180°. The double 

valued nature of the function can result in two solutions for Lambert problem, only one of 

which is correct for our application. Jezewski faces this problem in his solutions of 

Lambert's problem [34]. He conducts decisions on which one of the two solutions to 

pursue at each step. Battin solves this problem by substituting for a, a new variable x 

such that 

x = cos—a and x2 -1-—— (2.44) 
2 a 
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Note that the range of x for elliptic orbits is -Kx<l. x is negative valued when the 

transfer time is greater than half the period of the transfer orbit, and positive valued 

elsewhere. 

Battin continues his analysis of Lambert's problem by discussing Gauss' Method. The 

transfer time equation for Gauss' Method is 

3 _1_ 

J/j(t2-t^ = a2(2y/-sin2if/) + 2Asa2siny/ (2.45) 

where 

As = Jr^ cos— 0 (2.46) M'2 

It can be applied simply in an iterative convergence scheme to calculate an orbital 

solution. However, Gauss' Method also suffers from a singularity at 0=180° and is slow 

to converge to a solution. 

To produce a method which is rapidly convergent and immune to any singularities, Battin 

combines aspects of Gauss' and Lagrange's approaches to develop a third, better method. 

It is based on the invariance of the mean point and the introduction of a free parameter in 

Kepler's equation. The result is the Improved Gauss Method. This method is outlined in 

section 7.5 of reference 3. It rapidly produces the semi-major axis and eccentricity of the 

transfer orbit given two radial vectors and the transfer time between them. 

The last step in the solution of Lambert's problem as related to trajectories is to calculate 

the velocity vectors at the two endpoints. Once again, Battin has a clean and compact 

formulation. 
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r.-.i^ 
' a. 

"-Jf 

V M 
(2.47) 

where j, and j2 are the directions of the minimum energy orbit velocity vectors at the 

initial and final points, and i, and i2 are unit vectors which form the coordinate pairs i„ j, 

and i2, j2. Finally, y is a positive valued quantity defined by 

y = V- 
s-c 

(!-*>) (2.48) 

Since the velocity vectors defined by equation 2.47 are formed from a geometric 

interpretation, they face a problem in the small neighborhood around 6=180°. Since the 

two input position vectors are nearly parallel at that point, determination of the transfer 

orbit plane becomes problematic. This can be solved by adapting the plane of the either 

the input or exit state to be the transfer orbit plane. 

The solutions to Lambert's problem discussed so far are all effective, but they are also all 

two-body solutions. A two burn solution to the two-body Lambert problem will 

significantly miss the target state if the satellite is propagated incorporating perturbations 

such as non-spherical gravity, drag, solar radiation pressure and lunar/solar point masses. 

To obtain a Lambert solution in the presence of perturbations, Battin describes a method 

of iteratively correcting the two-body solution to fit a full perturbation model. The 

solution is guaranteed to hit the target state of the transfer to the same precision of the 

tolerance in the convergence algorithm. 

One of the important drawbacks of the Lambert methods described above is that they are 

limited to solutions where the transfer trajectory cannot be greater than one orbital period. 
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A method exists for multiple revolution transfer orbits, but unfortunately the number of 

solutions increases with the number of revolutions allowed. To avoid the confusion of 

having to choose from multiple Lambert trajectories, multiple revolution transfers are not 

considered in this application. The limitation caused by this decision is that the iteration 

time step of the control loop cannot be greater than one orbital period of the satellite. 

Note that this decision does not constrain the time step of the integrator in the orbit 

propagator in any way. 

The Improved Gauss Method of solving Lambert's problem, and the iterative 

convergence algorithm to correct for errors induced by perturbations, were both coded for 

this project. The combined utility proved to be quick, reliable, and quite useful for 

applications other than its originally intended use. 

2.4 Near Optimal N-Impulse Rendezvous 

This section outlines the use of primer vectors in the context of the software package 

created to calculate near-optimal n-impulse trajectories for the purpose of station-keeping. 

The goal of the primer vector software is to calculate an n-impulse burnlist that will 

transfer the initial state to a targeted final state in the defined transfer time. The 

maximum number of impulses allowed for each transfer is an input parameter. A burnlist 

is a time history, from the initial to the final time, of the magnitude and direction of all 

burns needed for the transfer. 

For the software to be useful, it has to meet two targeting criteria. These criteria were 

developed after a preliminary round of test runs of the nascent code failed to hit the 

intended target altogether.   The criteria set a standard which helped focus the effort to 
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improve the methods and code. All elements of the project documented in this thesis 

represent the furthest refinement to date. The first criterion is that the final state must be 

achieved to a level of precision at least two orders of magnitude better than the orbital 

parameter limits of the satellite. For example, if the satellite limit on semi-major axis 

deviation from the nominal trajectory is 1 km, then the software must assure that the 

actual semi-major axis achieved after applying the indicated burnlist is at most only 10 m 

off of the target state semi-major axis. The second criterion is that the cost of the burns in 

the calculated burnlist must be within 25% of the idealized optimal burnlist. The first 

requirement is checked by simply differencing the actual achieved final state from the 

targeted final state. The second requirement, however, is difficult to gauge because the 

idealized optimal transfer cost is not always calculable, particularly when more than one 

orbital element is targeted in the presence of multiple perturbations. 

A flowchart which illustrates the process of calculating the burnlist is shown in figure 

2.8. The process begins with the two impulse trajectory determined by solving for the 

Lambert orbit from the initial to the target position vector. Since the two burn times are 

specified and fixed, this solution is likely to be a very expensive transfer in terms of 

characteristic velocity. This is because the location of the burn in the orbit has a 

significant impact on the magnitude of the burn required to achieve the transfer. For 

example, an inclination correction is usually executed at a nodal crossing while semi- 

major axis and eccentricity are usually corrected with burns at apogee and perigee. 

Inclination, semi-major axis and eccentricity corrections can be accomplished with burns 

elsewhere in the orbit, but at the expense of valuable on board station-keeping fuel. 

To improve on the two impulse solution, the addition of an interior burn is considered. 

First the primer vector magnitude history from the initial to the final time is determined. 

Interior burns will only result in an improvement in the total cost if the primer vector 
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magnitude (\X\) is greater than unity at the time of the interior burn. To determine the 

best time for the addition of the interior burn, a cost analysis is made at each of the time 

grid points eligible for an additional burn, instead of simply 

initial state final state 

calculate Lambert trajectory 
connecting initial and final states 

determine 2-element burnlist 

n = 2 

calculate primer vector magnitude 
history over discretized time grid 

from t to t, 

n = n+1 

n-impulse 
near-optimal 

burnlist 

calculate new total cost of adding (n+1) st burn 
at each time grid point where | J.| > 1 

find grid point time of 
minimum total cost 

optimize total cost over 
interior burn times 

detemine (n+1) 
element burnlist 

Figure 2.8: Primer Vector Process Flowchart 

choosing the time at which \k\ has its largest value greater than one. A test point is 

eligible for a burn only if |A,| > 1 at that time grid point. At each test point the software 

calculates an estimate of the new characteristic velocity of a three impulse trajectory such 
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that the interior burn is at that test point. The test point which results in the minimum 

new total characteristic velocity is chosen as the initial time estimate for addition of the 

interior impulsive burn. 

Since the initial time estimate comes from a discretized grid, and because there is the 

possibility of cusps in the new primer vector magnitude history, an optimization 

algorithm must be run to find the optimal time for adding the interior impulse. The 

optimization algorithm is really a function minimization algorithm since "optimality" is 

determined purely by minimizing the characteristic velocity on time and not by meeting 

Lawden's conditions. For this reason, only near-optimality can be achieved. The 

function minimization algorithm used is Powell's method. 

After calculating the optimal time for addition of the interior impulse, the primer vector 

history over the new three impulse trajectory is calculated. If \X\ is less than unity across 

the entire time span of the transfer trajectory, then no additional interior impulses will 

reduce the characteristic velocity further, and the process is complete. If \X\ > 1 for any 

section of the trajectory, then further reduction in cost is possible and the process is 

repeated with the addition of a second interior impulse. Note that Powell's method will 

find the minimum characteristic velocity by varying all interior burn times. Therefore, it 

is a multivariable search if more.than one interior impulse is required. 

Repetition of this loop in figure 2.8 results in a near-optimal n-impulse burnlist. 

Several controlled test cases were executed to determine how well the primer vector code 

operates. Only one of the cases is described in detail below, but some general discussion 

about the others is provided. 
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For station-keeping, and orbital re-positioning in general, some of the most expensive 

burns are those which correct inclination. Therefore, it is important for the primer vector 

code to work in a case that involves a pure inclination change. Special consideration 

must be taken in setting up a test case because of the existence of perturbations such as 

zonal harmonics, tesseral harmonics, atmospheric drag, lunar/solar effects, and solar 

radiation pressure. We begin with an element set which describes an elliptic orbit 

inclined 5.00° with the satellite at the ascending node. This element set is propagated 

back in time for 15% of its orbital period to produce the initial state. Then the same 

element set, except this time with an inclination of 5.01° degrees, is propagated forward 

in time 35% of the orbital period to produce the target state. Therefore we have a station- 

keeping problem which requires that the inclination of an orbit be changed by 0.01° 

within the span of 50% of the orbital period. The initial state and target state are listed in 

table 2.1. 

Table 2.1: Inclination Test Case Initial and Target States 

Initial State Target State 

SMA 10000.000 km 10000.000 km 

ECC 0.200000 0.200000 

INC 5.00017° 5.00960° 

LAN 0.03849° 359.91018° 

AP 269.92332° 270.17892° 

MA 35.96255° 216.08737° 

The transfer time for the problem is 4976.002 seconds, or half of the period. Note that 

the element sets are not idealized because of the effects of perturbations. Since the case is 

run with realistic perturbations turned on, idealized element sets cause the primer vector 
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software to actual simulate the effects of the perturbations with burns, thus skewing the 

total characteristic velocity. 

The ascending node crossing occurs 1492.801 seconds into the orbit. This is about the 

time we expect an interior burn to occur. If this were a 2-body case with no 

perturbations, then a AV of is 0.0011469 km/sec accomplishes a 0.01° degree plane 

change at the ascending node of this orbit. However, the initial and final inclinations 

expressed in table 2.1 suggest a plane change of only 0.009434°. This translates into an 

ideal AV of 0.0010819 km/sec for a 2-body orbit. As stated before, it is difficult to pin 

down exactly what the "optimal" transfer for trajectories in the presence of significant 

perturbations. The difference between the two versions of "ideal" is fairly significant. 

Therefore, we expect a AV solution from the primer vector code which is roughly within 

25% of approximately 0.001100 km/sec. 

The first step is to calculate the two-impulse transfer determined from the orbit 

connecting the initial and final positions. The burnlist for this clearly non-optimal two- 

impulse transfer is listed in table 2.2. 

Table 2.2: Non-Optimal Two-Impulse Burnlist 

Burn Time (sec) AVX (km/sec) AVy (km/sec) AV2 (km/sec) |AV| (km/sec) 

1 

2 

0.000 

4976.002 

-0.000001 

-0.000000 

-0.000217 

-0.000107 

0.002476 

0.001216 

0.002485 

0.001220 

Total 0.003705 

Analysis of the primer vector and cost of adding an additional burn is done next. Figure 

2.9 contains plots summarizing this analysis. The first plot is of the primer vector 

magnitude on the discretized time grid of the trajectory. By definition, |X| is equal to one 

82 



at the terminal points, where burns occur. The maximum value of \X\ on the coasting arc 

is 4.7302 and occurs at t = 2261.819 seconds. The second plot is of the cost, or 

characteristic velocity, resulting from the addition of the interior impulse at the respective 

time grid point. The minimum cost is 0.0011321 km/sec and occurs when an interior 

impulse is added at t = 904.738 seconds. This clearly demonstrates that the first order 

relation (equation 2.24/2.38) stating that the largest reduction in cost occurs by adding the 

interior burn at the time of |A,|max is not accurate. 
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Figure 2.9: Primer Vector Magnitude and Total Resulting Cost of Adding An Interior 
Impulse on Non-Optimal Two-Impulse Trajectory Discretized Time Grid 

The three-impulse trajectory resulting from adding an interior impulse at 904.738 seconds 

is not optimal. This is because the time was determined from a time grid rather than 

allowing for any time on the time line. To make the interior burn time optimal, Powell's 

method is applied with the characteristic velocity as the function and the interior burn 

time as the variable.   Figure 2.10 contains the plots for the non-optimal and optimal 

primer vector magnitude and primer vector rate magnitude. 
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Figure 2.10: Primer Vector Magnitude and Primer Vector Rate Magnitude for Three- 
Impulse Trajectories 

The interior impulse time for the optimal trajectory is t = 865.790 seconds. Note that the 

non-optimal \X\ history has a section which is greater than one.  However, optimization 

results in \X\ history which does not have any value greater than one. Note also that the 

\i\ history for the "optimal" trajectory has a discontinuity. While the optimal time to add 

an interior impulse has been found, not all of Lawden's conditions have been met. Since 

no more interior impulses can be added and since any change in the interior burn time 

will increase the total characteristic velocity, we are forced to accept this "near-optimal" 

solution. The burnlist for the "optimal" three-impulse trajectory is listed in table 2.3. 

The burns at the initial and final times have both become zero as expected. However, the 

interior burn does not occur at the ascending node (t^ = 1492.801 sec), as expected for a 

2-body only orbit. The orbital element variations caused by perturbations account for this 

effect.   As stated previously, the ideal 0.01° inclination correction for a 2-body only 
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Situation is approximately 0.0011 km/sec.    The 0.001125 km/sec transfer trajectory 

calculated by the primer vector code is only 2.27% greater than the ideal. 

Table 2.3: Optimal Three-Impulse Burnlist 

Burn Time (sec) AVX (km/sec) AVy (km/sec) AV2 (km/sec) |AV| (km/sec) 

1 0.000 0.000000 0.000001 0.000001 0.000001 

2 865.790 -0.000001 -0.000099 0.001119 0.001124 

3 4976.002 0.000000 0.000000 0.000000 0.000000 

Total 0.001125 

The only remaining concern is to compare the actual final state, or the state produced by 

propagating the initial state with the calculated burnlist, to the target state. Table 2.3 

tabulates the actual final state, the target state, and their difference. The differences 

indicate that using the two order of magnitude requirement stated previously, semi-major 

axis can be maintained for a limit as small as 20 meters and for virtually any eccentricity 

or angular element limit. The magnitude of the differences is directly related to the 

tolerance condition for convergence to the target position in the Lambert algorithm. This 

test indicates that that tolerance does not need to be tightened up. 

Table 2.4: Inclination Test Case Initial and Target States 

Actual Final State Target State Difference 

SMA 10000.000250 km 10000.000087 km 0.000163 km 

ECC 0.200000 0.200000 0.000000 

INC 5.009603° 5.009603° 0.000000° 

LAN 359.910177° 359.910178° 0.000001° 

AP 270.178940° 270.178922° 0.000018° 

MA 216.087352° 216.087375° 0.000023° 
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Similar test cases were conducted for a variety of targeting scenarios that resemble 

station-keeping situations. The characteristic velocities for burnlists to correct semi- 

major axis and eccentricity tended to be within 10% of their ideal 2-body solutions. The 

transfer trajectories for the remaining elements could not be analyzed quite as accurately 

for two reasons. The first is the aforementioned difficulty of calculating the true optimal 

transfers for these elements in the presence of perturbations. The second reason is the 

requirement to conduct the transfer to the targeted state within the span of one orbital 

period. For example, corrections to mean anomaly are generally accomplished by 

slightly adjusting the semi-major axis for the span of multiple orbits. Mean anomaly is 

never adjusted directly within the span of one orbit. Requiring this results in burns which 

are technically correct, but much larger than what can be achieved through other means. 

The solution to this problem is to place some additional intelligence in the targeting 

strategies so that, for example, they direct a correction to the semi-major axis when the 

mean anomaly variation from the nominal trajectory approaches its limit. 

As a whole, the primer vector code produces solutions which are entirely acceptable for 

making station-keeping strategy decisions for a satellite. 
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Chapter 3 

Orbit Propagation 

Orbit propagation can be defined as the problem of predicting the future position and 

velocity of an object in space given its current position and velocity. The same principles 

applied centuries ago to predict the motion of heavenly bodies, are used today by modern 

space systems to carry out critical operational functions. For example, ballistic missile 

control systems rely on knowledge of their predicted trajectory to hit their targets, while 

satellite systems need trajectory information to carry out virtually any function, from 

communication with a ground station to overflight of specific target locations on the 

Earth to rendezvous with other spacecraft. 

This chapter begins with a review of the motion of artificial satellites. The general two 

body equations of motion are developed and followed by a study of significant orbital 

perturbations. This is followed by a summary of different approaches taken to solve the 

orbit propagation problem. A closer analysis is provided for semi-analytical theory, the 

approach used in this project. Finally, the specific software implementation of the orbit 

propagator chosen for this project is discussed. New capabilities, modifications, and 

limitations are identified. 
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3.1 Satellite Motion 

Detailed derivations for the equations of motion and accompanying perturbations needed 

to accurately describe satellite motion are included in numerous texts. The following 

explanation is a compilation of material from Roy's Orbital Motion [50], Battin's An 

Introduction to the Mathematics and Methods of Astrodynamics [3], Chobotov's Orbital 

Mechanics [16], and Bate, Mueller, and White's Fundamentals of Astrodynamics [2]. To 

maintain commonality, Battin's notation is used whenever possible. 

3.1.1 Orbital Elements 

The first requirement for describing the location and motion of a spacecraft in orbit is a 

convenient inertial reference frame. This type of frame provides fixed axes upon which 

to form a coordinate system and define variables which change over time. For orbits 

about the sun, the heliocentric-ecliptic frame is chosen. The fundamental plane of this 

sun-centered system is the plane defined by the orbit of the Earth about the sun, or the 

ecliptic plane. For satellite motion about the Earth, however, the geocentric-equatorial 

system is the appropriate choice. The fundamental plane of this system is the Earth's 

equator, while the origin is the geocenter. The principal direction for both systems is the 

vernal equinox, or the direction of the line of intersection of the ecliptic and equatorial 

planes at the time the sun appears to cross from the southern to the northern hemisphere. 

The x-axis of the geocentric-equatorial coordinate system is in the principal direction. 

The z-axis is in the direction of the north pole. The y-axis completes the right-handed 

xyz orthogonal triplet. 
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Six independent quantities are required to uniquely define the position of a satellite in a 

specific orbit with respect to the coordinate system. A minimum of two of these values is 

required to describe the size and shape of the orbit. Only one quantity is required to place 

the satellite in the orbit. Finally, a minimum of three values are needed to orient the orbit 

with respect the reference frame. 

The classical set of six orbital elements, known as the Keplerian element set, is listed in 

table 3.1. The semi-major axis and eccentricity define the size and shape, respectively, of 

the orbit. The longitude of the ascending node, inclination, and argument of perigee are 

the three Euler angles which uniquely orient the orbit with respect to the inertial 

coordinate system. If the periapsis direction is defined as the direction from the occupied 

focus to the position in the orbit of the lowest altitude, then the true anomaly is the angle 

between the periapsis direction and the position vector of the satellite at any given time. 

Table 3.1: Keplerian Element Set 

Element Symbol Element Name 

a semi-major axis 

e eccentricity 

i inclination 

CO argument of perigee 

Q longitude of the ascending node 

V true anomaly 

Figure 3.1 illustrates the angular Keplerian elements. In the figure, ix, iy, and iz are the 

unit vectors along the axes which define the geocentric-equatorial coordinate system, r is 

the position vector of the satellite, ie is the unit vector in the periapsis direction, i„ is the 
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unit vector in the direction of the line of nodes, or the line defined by the intersection of 

the equatorial and orbital planes, and ih is the unit vector normal to the orbital plane 

equatorial _, - " 
plane 

Figure 3.1: Keplerian Orbital Elements 

It is often more convenient to describe the location of the satellite in its orbit as a function 

of the time since periapsis passage. To accomplish this, a replacement element for v, 

called the mean anomaly M, is defined. 

M = ^(t-T) = nAt (3.1) 

In equation 3.1, n, called the mean motion, is the average angular rate of the motion of 

the satellite about the focal point, u is the gravitational constant of the Earth, and x is the 

time of perigee passage. If t is the current time, then At = t - x is the time since perigee 

passage. Therefore, the mean anomaly M is an angular expression of the average angular 

motion of the satellite in its orbit. Note that it has no geometrical interpretation, and thus 

cannot be viewed in the picture of an orbit. 

The Keplerian element set of table 3.1 experiences two significant singularities. The first 

is caused by circular orbits, or orbits of zero eccentricity.  Since the radial distance from 
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the geocenter is constant for these orbits, the periapsis direction becomes undefined and 

removes the reference for the mean anomaly and the argument of perigee. The second 

singularity is caused by equatorial orbits, or orbits of zero inclination. In this case, the 

line of nodes is undefined. 

More importantly, the method of the variation of parameters (to be discussed in section 

3.2.1) cannot be applied for these singular orbit cases. Because of this, orbits with small 

initial inclination and eccentricity can be very troublesome for an orbit propagator using 

Keplerian elements. Since perturbations cause the elements to vary with time, special 

checks are required in these propagators to guard against straying into a region of 

singularity. To avoid this problem, we consider the equinoctial elements, an element set 

originally developed by Lagrange which does not experience these singularities. The 

equinoctial element set also resolves the special case of 90° inclination. Defined in terms 

of the Keplerian elements, the equinoctial elements are 

a = a 

h = e sin(<y + IQ) 

k = e cos(<2) + IQ) 

fi\ 
P = :tany 

ll) SinQ 

q = tan7| £cosQ 
(3.2a-f) 

A= M + co + Q 

where I is the retrograde factor which assumes the following values 

[ 1,       for   0 < i < n 

\-1,       for    0 < i < n 

91 



If I = 1, the resulting element set is known as the direct equinoctial elements. If I = -1, 

then the element set is known as the retrograde equinoctial elements. This formulation 

was introduced because the direct elements experience a singularity at i = IT and the 

retrograde elements experience a singularity at i = 0. When equinoctial elements are 

needed in this project, only the direct equinoctial elements are used. This is because none 

of the constellation orbits to be studied have an inclination near n. 

In the 1970's Broucke and Cefola [4] derived the partial derivatives of the position and 

velocity vectors with respect to the elements, the state transition matrix, and the Lagrange 

bracket matrix corresponding to the equinoctial elements. Together, Broucke, Cefola, 

and later the Russians Lidov and Yurasov[59], derived the analytic equations required to 

build a propagator entirely in the non-singular equinoctial element set. This made the 

element set useful for application to both special and general perturbation methods. 

Both the Keplerian and equinoctial element sets are used in this project. The Keplerian 

elements are more convenient for visualizing the variations caused by perturbations in 

propagated orbits. For this reason, and the fact that all satellite orbital information is 

published in Keplerian elements, the top level code, as well as all the input and output, is 

structured for Keplerian elements. Equinoctial elements, though, are more convenient for 

the DSST orbit propagator. Therefore, any interface with the propagator is conducted in 

equinoctial elements. The simulation's users are never exposed to the conversion 

between elements. 
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3.1.2 Equations of Motion 

Newton's Law of Gravitation states that any two masses experience an equal and 

opposite attractive force, along the line connecting their centers, proportional to the 

product of their masses and inversely proportional to the distance between them. Thus 

the total force f; affecting the i* mass in an n-mass system is 

f.-^-Z^-r,) (33) 

where G is the universal gravitational constant, i-j and ij are the position vectors, in an 

inertial coordinate system, to the i* and j* masses, respectively, and ry is the distance 

between the i* and jth masses. 

For systems with only two relevant masses, the equations describing the forces affecting 

the masses are 

m 
d2r,      _m-lm m,nu i \ 

= G-f-3i(r2-rI) 
12 (3.4a,b) 

 l2 
m2     2 

dt rn 

Since we are interested in the motion of one mass with respect to the other, differencing 

the equations 3.4a and 3.4b yields 

d2r     M ,~, rs w+s"« (3-5) 

where 

r = r2-r, (3.6) 
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is the position vector of the second mass with respect to the first, r is its magnitude, and u 

= G(m! + m2). Equation 3.5 is often referred to as the two body equation of motion 

because it discounts the effects of any other masses and accelerations due to other causes. 

If we define the velocity vector as 

v = 
dr 

dt 
(3.7) 

then equation 3.5 can be restated as the following system of equations 

r 0      I r 
= -4 o r V V 

(3.8) 

Since the two body equations of motion are non-linear, solving equation 3.8 explicitly is 

extremely difficult. No closed form solution exists for r(t) and v(t) for general 2 body 

orbits. 

Another important relation is the gravitational potential of a mass. For a mass m; in an n- 

mass system, the gravitational potential is defined as 

7-1 rij 

(3.9) 

For the 2 body case, the gravitational potential of a satellite in the Earth-satellite system 

is 

'2body ~ "~ 

m. 
G- 

. m, + mr E 
r 

(3.10) 
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where me is the mass of the Earth and msat is the mass of the satellite, p. is the universal 

gravitational constant times the sum of the masses, and r is the distance from the 

geocenter to the satellite. Note that since me» msat, u. is often approximated as (i = Gme. 

One of the important properties of the gravitational potential is that the gradient of V; is 

the acceleration experienced by mass nij due to the other masses in the system. Thus we 

have 

f,T = m, dt2 m,^- (3.11) 

To relate the motion of the n-mass system in energy terms, we introduce a new function 

U, called the force function. 

U = \i,m,Vl (3.12) 
*■ 1=1 

U is equivalent to the total work required to bring the n-mass system from a relative 

distance of infinity to the current configuration. Therefore, -U is known as the potential 

energy of the system. The force function U is related to the force vector f; by 

T       dU 
f,r=— (3.13) 

Using the definitions above, the force function for the two body system is 

Ulbody=G^ (3.14) 
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3.1.3 Satellite Perturbations 

The two body approximation used to derive equation 3.5 is sufficient to gain a general 

appreciation of the motion of artificial satellites about the Earth, but is not accurate 

enough for orbit propagation over any significant period of time. Accelerations which are 

not apparent in the 2 body model, but which are present for actual satellites, are known as 

perturbing accelerations. In general they are small and are significant only over longer 

periods of time. The primary exception to this general rule is the J2 zonal harmonic, 

which results in significant deviations within one orbital period. The time spans of the 

orbit analyses done for this project are based on the projected lifetimes of the 

constellation systems. Since these lifetimes range from 5 to 12 years, orbital 

perturbations cannot be ignored. 

Orbital perturbations will generally cause three types of variations in the orbital elements: 

secular, short period, and long period. Figure 3.2 illustrates the differences between the 

three. Secular variations result in monotonically increasing or decreasing changes in the 

orbital elements. Short periodic variations generally cause smaller amplitude, high 

frequency changes. If the acceptable limits on the variations of the orbital elements 

entirely encompass the short period variations, then they can generally be ignored in the 

context of station-keeping. Finally, long period variations result in lower frequency 

changes of the elements. In general, variations with longer periods tend to be of greater 

magnitude as well [13]. Note from figure 3.2 that the frequency dividing line between 

short and long periodic variations is a relative matter. Generally, the orbital period of the 

satellite, or some multiple thereof, is used to determine the border between the two. 
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Long Periodic 

Time 

Figure 3.2: Secular, Short Periodic and Long Periodic Variations 

The Earth's geopotential, atmospheric drag, solar radiation pressure and third body 

accelerations are regarded as the four most significant perturbations. Of the four, 

geopotential and third body effects result in conservative perturbing forces. Conservative 

forces are those that do not change the energy of the orbit. The remaining two, solar 

radiation pressure and atmospheric drag are non-conservative forces, which change the 

energy of an orbit. It is possible to model solar radiation pressure as a conservative force 

if the satellite is always sunlit [16]. Examples of perturbations of lesser magnitude than 

the four listed above are solid Earth tides and albedo pressure. 

The relative effect of each of these perturbations is dependent on the orbit and the 

physical characteristics of the spacecraft. For example, orbits of low altitude or high 

eccentricity will spend more time within the Earth's atmosphere, and thus face greater 

drag effects, while satellites with large solar panels provide a greater surface area for the 

effects of solar radiation pressure. Table 3.2 compares, at different altitudes, the 

accelerations caused by the four major perturbations and the central gravity acceleration 

of the Earth for a satellite with an area to mass ratio of 0.0212 m2/kg [58,51]. 
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Table 3.2: Accelerations Experienced by Spacecraft At Varying Altitudes [58,51] 

(m/sec2) 150 km Altitude 750 km Altitude 1500 km Altitude Geosynchronous 

Central Gravity 9.35 7.85 6.42 0.22 

Geopotential 

Zonals 

h 30xl0"3 20xl0"3 14 x 10"3 16xl0"6 

h .09xl0"3 .06xl0"3 .04xl0"3 8xl0"9 

J4 .07 x 10"3 .04xl0"3 .02xl0"3 1 x 10"9 

Tesserals 

^2,2 .09 x 10"3 .07xl0'3 .04xl0"3 0.05 xlO"6 

Atmospheric Drag 3 x 10"3 0.1 x lO"6 negligible negligible 

Solar/Lunar Third Body 1 x 10"6 1 x 10"6 1 x 10"6 7xl0'6 

Solar Radiation Pressure 0.1 x 10-6 0.1 x 10"6 0.1 x 10"6 0.1 x 10"6 

Perturbations can have varying affects on different orbital elements. Table 3.3 describes 

the type of variations caused by the four primary perturbations on each of the orbital 

elements [58,51]. 

Table 3.3: Varying Types of Perturbation Effects [58,51] 

Semi-major 
Axis 

Eccentricity Inclination Ascending 
Node 

Argument 
of Perigee 

Mean 
Anomaly 

Geopotential 

Even Zonals 

All Zonals 

Tesserals 

periodic 

periodic 

periodic 

periodic 

periodic 

periodic 

periodic 

periodic 

periodic 

secular 

periodic 

periodic 

secular 

periodic 

periodic 

secular / per 

periodic 

periodic 

Atmospheric 
Drag 

secular 
decrease 

secular 
decrease 

periodic periodic periodic periodic 

Solar/Lunar 
Third Body 

periodic periodic periodic secular / 
periodic 

secular / 
periodic 

periodic 

Solar 
Radiation 
Pressure 

secular / 
periodic 

secular / 
periodic 

secular / 
periodic 

secular / 
periodic 

secular / 
periodic 

secular / 
periodic 
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It is important to note that not all perturbations from the 2 body orbit are unwanted. Sun 

synchronous satellites maintain an inclination which causes a l°/day secular drift in the 

ascending node due to the J2 geopotential perturbation. This allows the orbit plane to 

rotate about the Earth at the same rate that the Earth revolves around the Sun. The result 

is that the orbit plane maintains a constant orientation with respect to the Sun - a very 

valuable feature for solar panels. 

3.1.3.1 Geopotential 

Geopotential perturbations are caused by the fact that the Earth is not a perfect sphere 

with a constant density. These two assumptions were required to treat the Earth as a 

point mass for the two body equations. The consequence of a non-spherical non-constant 

density Earth is reflected in the potential function for the satellite in the Earth-satellite 

system. For a complex geopotential model, this function can be represented by 

V = V2hody+R (3.15a) 

where V2body is the gravitational potential function described in equation 3.10, and R is the 

disturbing function representing the change from the 2 body model. This form is useful 

because it readily leads to the equations of motion of the disturbed satellite. Applying the 

property of the gravitational potential function displayed in equation 3.11, the 

acceleration of the satellite about an Earth with a complex geopotential is 

dfT    dV    dVlbody    dR        n T 

* -^-~^r+^-^r +r- (3-15b) 
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where r is the vector from the geocenter to the satellite, r is its magnitude, and 

rdisl 

dR 

dx 
(3.15c) 

is the disturbing acceleration caused by geopotential variations from a spherical, constant 

density Earth. 

To calculate R, consider the Earth to be composed of n-1 masses of the same order of 

magnitude as the mass of the satellite, the n* mass. Then by equations 3.9 and 3.11, the 

acceleration experienced by the satellite can be expressed as 

d2
r

T     d ^    m 

^5>7^ <3-16) dr       dx%   r,„ 

Since the n-1 mass objects of the Earth are clustered extremely close together, and n is 

large, the summation in equation 3.16 can be expressed as a volume integral over the 

planet. 

jgy=jgrjr        Gdm (3.i7) 
dt drJJJ^r

2
+p

2+2rpcosy 

In equation 3.17, p is the radial distance from the geocenter to the mass element dm, and 

y is the angle between the vector from the geocenter to the satellite and the vector from 

the geocenter to the mass element. From equation 3.10 we see that the integral of 

equation 3.17 is the gravitational potential for the satellite. 

V=jtil2      f*" (3.18) 
■^r  + p +2rpcosy 
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The form of equation 3.18 lends itself to a special substitution. The generating function 

for a Legendre polynomial is 

Vl-2vx + x2 =2i,
Jk(v)x* (3.19) 

*=0 

where Pk(v) is the k,h order Legendre polynomial.   Incorporating Legendre polynomials 

into equation 3.17 yields 

K = — JJj[—J   Pk(cosr)dm (3.20) 

If axial symmetry of the mass of the Earth is assumed, then the solution to equation 3.20 

is 

Gm„ 
V = - 

(R V 

k=2        V  r y 

(3.21) 

where (f> is the satellite latitude, Re is the radius of the Earth, and Jk are constants that are 

determined through accurate measurements of perturbed satellite trajectories. Equation 

3.21 describes the potential function of the 2 body system corrected by disturbances 

caused by zonal (constant across longitude) harmonics. Some of the initial Jk constants 

are [3] 

J2 =0.00108263 

J3 = -0.00000254 

J4 = -0.00000161 

From the value of these constants, we see that the term corresponding to the J2 correction 

is the dominant source of disturbance. This is confirmed by the comparison in table 3.2. 
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A general solution of equation 3.20, which does not rely on axial symmetry, is obtained 

by treating the geopotential as a boundary value problem and using Laplace's equation 

[51]. If the geocenter is used as the origin of the coordinate system, this method results in 

an expression for the geopotential of the form [51,25,6] 

V = V 1 + E E ( —)     Pn   (Sin #(C C0SmÄ + S*   SinmÄ) 
n=2 m=0 r J 

(3.22) 

where X is the satellite longitude, and Pn
m is the Legendre function of the first kind of 

degree n and order m such that 

Pn
m(v) = (l-v2ym — Pn(y) (3.23) 

In equation 3.22, Cn
m and Sn

m, are known as the spherical harmonic coefficients. They 

have been determined through high values of n and m with the use of satellite 

measurements. When m = 0, equation 3.22 reduces to equation 3.21 so that it represents 

only the zonal harmonics with Jn = -Cn°. Tesseral harmonics are defined when n > m and 

m * 0. While zonal harmonics tend to be the most dominant of the spherical harmonics, 

tesseral harmonics become important for cases when satellites have repeat ground tracks. 

Since the satellite trajectory repeatedly brings it over the same region of the Earth on a 

fixed schedule, the effects of the tesserals build up in a manner similar to resonance. In 

these situations, the resulting perturbation is called tesseral resonance. 

By changing equation 3.22 to the form of equation 3.15, we find that the general 

disturbing function R due to the Earth's geopotential is 

R = 
V 

n-2 m-0 

R V 

E E    —       Pn   (Sil1 ^)(C" C0S mX + S»   Sil1 mÄ) r J 
(3.24) 
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3.1.3.2 Atmospheric Drag 

For satellite orbits whose perigee altitude is below 1000 km, a significant perturbation 

which cannot be ignored appears - atmospheric drag. The particles of the Earth's 

atmosphere collide with the cross sectional area of the satellite exposed to the direction of 

motion. The net effect of this interaction is a reduction in the energy of the orbit. For 

this reason, drag is considered a non-conservative perturbing force. The primary affect 

on the orbital elements is a secular decrease in the semi-major axis and eccentricity. 

Since satellites in elliptical orbits experience the largest drag forces at perigee passage, 

the tendency for these orbits is to circularize over time. If allowed to go unchecked, 

atmospheric drag will eventually cause the satellite to reenter the lower atmosphere. 

The rate of decay of the orbit depends on three primary factors: atmospheric density, 

orbital velocity, and satellite ballistic coefficient. The atmospheric density decreases 

rapidly with increased altitude, but its precise value varies with time and geographic 

position and can only be estimated with the use of atmospheric models. The ballistic 

coefficient is equal to the sea level weight W of the spacecraft divided by the product of 

the cross sectional area A exposed to the atmospheric particles and the coefficient of drag 

CD [16]. The coefficient of drag is a dimensionless value which depends on the shape of 

the vehicle, its attitude with respect to the velocity vector, and whether it is spinning, 

tumbling, or is stabilized. Above 200 km, the drag coefficient varies from 2.2 for a 

sphere to 3.0 for a cylinder [16]. However, it can take on values as high as 11.0 

depending on the satellite [13]. The drag force exerted on the spacecraft is linearly 

proportional to the atmospheric density, inversely proportional to the ballistic coefficient, 

and proportional to the square of the orbital velocity. The equation for the drag force is 
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Fdras=-\pg0V
2^ (3-25) 

where p is the atmospheric density, g0 is the Earth's gravitational acceleration at sea level 

and V is the velocity of the satellite. The disturbing acceleration on the spacecraft due to 

drag is 

rdrag ~      r~.P \rsc/atm\rsc/atm {J.ZO) 
1      m 

where m is the spacecraft mass and rsdalm is velocity vector of the spacecraft with respect 

to the moving atmosphere. 

The most difficult part of equation 3.25 to determine is the atmospheric density. The 

precise density at a point is function of the altitude, exospheric temperature, and 

geographic location. Since the temperature of the atmosphere is affected by the 11 year 

solar flux cycle, the atmospheric density is also an implicit function of time. Due to the 

complex nature of the density function, estimates of the atmospheric density are generally 

obtained from atmospheric density models. The density model used for this project is the 

Jacchia-Roberts model. It uses an empirical temperature profile to solve the diffusive 

equilibrium equations and determine the atmospheric density at a given altitude [6]. A 

study of different semi-empirical models conducted by Cox, Feiertag, Oza, and Doll 

suggests that while newer models outperform the Jacchia-Roberts model for special 

orbits, it is still the best model for general orbits over short arcs [51,18]. In the absence 

of a comparable study for long arc predictions, Jacchia-Roberts is still retained. 
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3.1.3.3 Solar Radiation Pressure 

The third significant perturbation, solar radiation pressure, is caused by the interaction of 

the satellite with charged particles ejected from the Sun. The force exerted by the 

resulting transfer of momentum is in the direction of the vector from the Sun to the 

satellite, rvs. The magnitude of the force is proportional to the effective surface area A of 

the satellite normal to the sun vector, the surface reflectivity n, and the luminosity LD of 

the sun, and is inversely proportional to speed of light c and the square of the distance rvs 

to the sun [6]. 

L,(\ + ri)A 

Anrjc 
F^-T^TT <3-27> 

If the coefficient of reflectivity is defined as 

then the disturbing acceleration due to solar radiation pressure is 

?  _v££*iiw (3.28) 
srp        c    m   r 

where 

_       L. 
Anr 

is the mean solar flux at one astronomical unit, and v is the eclipse factor. The eclipse 

factor scales the magnitude of the solar radiation pressure induced acceleration based 

upon the shadow status of the satellite. It is defined as 
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v = 0 : satellite in umbra (full shadow of Earth) 

v = 1 : satellite in sunlight 

0 < v < 1 : satellite is in penumbra (partial shadow of Earth) 

While solar radiation pressure affects all the elements, the typical effect on satellite orbits 

is a long periodic variation in eccentricity. Since the force defined in equation 3.28 

results in a change in the energy of the orbit, solar radiation pressure is a non- 

conservative perturbation. In contrast to atmospheric drag, however, the energy of the 

orbit is not always reduced. The Borealis orbit planes of the Ellipso constellation 

demonstrate that solar radiation pressure can occasionally boost the energy of an orbit 

[52]. The satellites of one of the Borealis planes actually increase their semi-major axis 

over time due to solar radiation pressure! While this behavior is not common, it 

demonstrates that the effects of solar radiation pressure are significant and quite 

dependent of the orbit and satellite being studied. 

3.1.3.4 Third Body Point Mass 

Third body perturbations are caused by the gravitational influence of distant celestial 

bodies, modeled as point masses, on the motion of spacecraft in the vicinity of Earth. As 

the altitude of an orbit increases, the variation caused by this external influences increase 

in such a manner that it cannot be ignored for orbit predictions over long time intervals. 

The two masses with the most significant affect on satellite motion about the Earth are 

the moon and the sun. 

To determine how distant bodies can affect satellite motion, recall from section 3.1.2 that 

the total force fj affecting the i* mass in an n-mass system is 
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d2ri     JL    m.m a  Y.      «—>     m,m, i \ 

<*       M      r„ 
J*' 

If me is the mass of the Earth, ms is the mass of the satellite, and m, is the mass of the 

third body, then the equations of motion for the Earth and satellite are 

d2re     „mems ( \   ^.^W \ 

(3.29a,b) 
d rs     ^ msme ( x       msmt , s 

ul 'se 'si 

where rs, re, and rt are the vectors from the origin of an inertial reference frame to the 

satellite, Earth, and third body, respectively and rab represents the distance from mass a to 

mass b. Since the motion of the satellite with respect to the Earth is of primary interest, 

differencing equations 3.29a and 3.29b yields 

d2x       G(me+m,)      Gm. ,         >.    Gm. , \ ,„-rt. £Zr + __L(rr_rJ ^(r,-rj (3.30) 
dt1 r 

where r = rs - re is the vector from the geocenter to the satellite and r = rse is its 

magnitude. Equation 3.30 indicates that the disturbing acceleration due to the 

gravitational influence of the mass of a third body is 

f, = Gm, 
r — r      r — r *;      'J       */      '« 

r 3 r 3 
'si 'el 

(3.31) 

Since the third body perturbations are conservative, equation 3.31 has a related disturbing 

function. It is 
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Rt - Gmt 

r\       P 
V*     r„j 

(3.32) 

The combined effects of lunar and solar third body perturbations typically cause long 

period and/or secular variations in orbit eccentricity, inclination, ascending node, and 

argument of perigee. For example, geosynchronous satellites experience a long period 

variation in inclination that causes roughly a l°/year increase for about 10 years until a 

maximum variation of 15° is reached at 27 years [16]. The period of the total inclination 

motion for geosynchronous satellites is approximately 53 years. 

3.2 Orbit Propagation Methods 

The non-linear nature of the 2 body equations of motion implies that no general closed 

form analytical solution exists for r(t) and v(t) in terms of elementary functions. This, 

however, does not preclude analyzing the resulting motion. Recognizing that the orbits 

which result from equation 3.5 must be conic sections reveals enough to fully 

characterize the motion of a 2 body system. If the Keplerian elements are used, we see 

that five of the six elements, a, e, i, co, and Q, are fixed over time while the sixth element, 

the mean anomaly M, varies at a constant rate which is a function of only the fixed semi- 

major axis. So while the equations are not solvable, the resulting motions can still be 

studied. 

Unfortunately, the 2 body equations are not adequate to describe artificial satellite motion 

in the presence of real world perturbations. As early as the 1700's, astronomers 

attempted to develop mathematical methods for orbit prediction which included 

perturbations.     One the most successful  of these methods was the Variation of 
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Parameters. In recent history, several newer approaches have been implemented to 

address perturbed dynamics. Put together, they form an area of study called perturbation 

theory. 

3.2.1 Variation of Parameters 

The Variation of Parameters (VOP) is a method originally developed by John Bernoulli 

to solve linear differential equations. In the late 18th century, it was adapted by Euler and 

Lagrange for the problem of disturbed orbital motion. It is used to develop analytical 

expressions which describe the variations in the orbital elements due to disturbing 

potential functions. The following is summary of the VOP equations, Lagrange planetary 

equations and Gauss' form of the variational equations as presented by Battin [3]. 

3.2.1.1 VOP Equations 

Applying equations 3.11 and 3.15a, the equations of motion of a body in the presence of a 

conservative and non-conservative perturbations are 

d2r    ß 
2 +—r = a„c + 

dt1     r 

dR 

dr 
(3.33) 

where R is the disturbing potential function for all conservative perturbations, dR/dr is 

the acceleration due to R, and anc is the acceleration due to all non-conservative 

perturbing forces. Expressed in terms of position and velocity, the equations are 
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dx 

lit 
and 

dx    ju 

dt 
+ -rr = a„ + 

dR 
dx 

(3.34) 

The solutions to the undisturbed 2 body equations can be expressed as r(t,e) and v(t,e) 

where e is a six element set of integration constants. The vector e can also be interpreted 

as the set of orbital elements. Note that e in this context is not to be confused with the 

eccentricity vector. As with the method of variation of parameters for linear differential 

equations, the 'constants' of e are allowed to vary in order to obtain a solution for the 

non-homogenous system of equations 3.34. The solutions e(t) to the new differential 

equations have the property that they are only affected by the perturbing accelerations and 

not the central gravitational acceleration. 

Since e(t) is constant for undisturbed motion, the partial derivatives of r and v with 

respect to time are the solutions to the homogenous 2 body system. Therefore 

dx 
— = v       and 
dt 

—+ ^-r = 0 
dt    r3 

(3.35) 

This is equivalent to saying that the velocity vectors for the disturbed and undisturbed 

motion are the same at any given time, or that 

dx    dx 

dt ~ dt 
(3.36) 

By the definition of a derivative, we have that 

dx    dx    dx de 

dt ~ dt     de dt 
(3.37) 

Substituting equation 3.36 into 3.37 yields 
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dx de 

de dt 
(3.38) 

Applying the definition of a derivative to velocity, we have that 

dv    d\    dv de 

dt ~ dt    de dt 
(3.39) 

Applying equations 3.34 and 3.35, we find that 

d\ de 
de dt 

= a„„ + 
dR 

dx 
(3.40) 

Equations 3.38 and 3.40 represent the 6 differential equations which must be solved to 

obtain a solution for the orbital elements e(t). 

3.2.1.2 Lagrange's Planetary Equations 

In 1782, Lagrange developed a series of equations to describe the motion of comets in 

elliptical orbits. These equations are the solutions to the differential equations 

dx de 
de dt 

d\ de 
de dt 

0 

dR 

dx 

(3.38) 

(3.41) 

Notice that equation 3.41 is different from equation 3.40 in that it does not include the 

acceleration due to non-conservative forces. Lagrange's only requirement was to 

consider the third body effects of the planets on comet trajectories.  Gauss' formulation, 
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discussed in the following section, does not distinguish between the origins of the 

perturbing accelerations. 

If equation 3.38 is multiplied by [5v/5e]T and equation 3.41 is multiplied by [3r/3e]T then 

their difference can be expressed as 

de 

dt 
-i dR 

dx 
(3.42) 

where the 6 x 6 skew-symmetric matrix 

L = 
' dx' 

de 

Tdv 

de 

' d\ 

_de_ 

dx_ 

de 
(3.43) 

is the Lagrange matrix. The ij element of the Lagrange matrix, [ei5 ej], is equal to 

ei>ej 

d\J dx    d\T dx 

dej det     det dej 
(3.44) 

and is called a Lagrange bracket. It has the following properties 

[e„e,] = 0 

[e,>ej] = -{ej>e] 

dA " J 

An alternate form of equation 3.42 can be obtained which avoids an inverted matrix. 

Define a state vector s such that 

s = 
r 

v 
(3.45) 
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Then the Lagrange matrix can be expressed as 

L = 
d%_ 

de de 
(3.46) 

where the matrix J is defined as 

J = 
0     I 

-I   0 
(3.47) 

The matrix 3s/3e is known as the Jacobian matrix of the transformation from element 

space to state space. The inverse of the Jacobian matrix, 3e/3s, is known as the matrizant 

of the 2 body problem [3]. Since J2 = -I, if we define the matrix P as 

de de 

ds 

IT 

(3.48) 

then we see that 

PL = -I and P = -L-! 

The matrix P is called the Poisson matrix. Its elements, known as the Poisson brackets, 

have the same properties as that of the Lagrange brackets. Since the L is skew 

symmetric, the relation between the Lagrange and Poisson matrices can also be expressed 

as 

Pr=L-' 

Using this relation, equation 3.42 can be rewritten as 

(3.49) 
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de       T 

dt 

dR 
(3.50) 

To determine the Poisson brackets, an element set must be chosen. If the Keplerian 

elements are considered, then PT is singular for an eccentricity of zero and one, or for and 

inclination of zero. Equation 3.50 cannot be solved for an orbit which exhibits any of 

these singularities. For equinoctial elements, PT is singular when the inclination is n for 

the direct elements or when the inclination is zero for the retrograde elements [3]. 

Therefore, when using the variation of parameters, a more general solution for the motion 

of the orbital elements is available when equinoctial elements are used. Lagrange's 

planetary equations in equinoctial elements are available in reference 4 by Broucke and 

Cefola. 

3.2.1.3 Gauss' Form of the Variational Equations 

The process Lagrange used to obtain Lagrange's planetary equations (equation 3.42/3.50) 

is valid when considering any type of accelerations. If we define the disturbing 

acceleration 

a„„ + 
dR 

dx 
(3.51) 

to be the sum of all the conservative and non-conservative perturbing accelerations, then 

the equations of motion for the orbital elements are 

dr de 

de dt 
(3.38) 
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d\ de 

~de~~dt=*d (3.52) 

As in the previous section, multiply equation 3.38 by [9v/3e]T and equation 3.52 by 

[9r/3e]T to obtain 

de 
dt 

■ = L~ 
dr_ 

de 
(3.53) 

Substituting for the Lagrange matrix yields 

de 

dt 
= P3 dx_ 

de 
(3.54) 

Solving for each element of the vector [Sr/3e]T ad yields Gauss' form of the variational 

equations. They are analytic expressions which describe the rates of change of each of 

the orbital elements in terms of the components of the disturbing accelerations. Equation 

3.54 can also be represented as 

de     de 
dt     d\ 

(3.55) 

which is the classical form of the Gaussian Variation of Parameters equations. 

3.2.2 Perturbation Theory 

Perturbation theory traditionally was divided into two parts. The first included all the 

procedures that use the method of general perturbations. These procedures attempted to 

obtain analytical expressions to describe the variation of the elements from their 2 body 
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solutions. The second part included the procedures that use the method of special 

perturbations. These procedures attempted to numerically integrate equations of motion 

which included specific terms for the perturbations. There are distinct advantages and 

disadvantages to the both of these methods. More recently, a third approach has formed. 

Called semi-analytic theory, it attempts to do a mixture of analytical and numerical work 

in order to capitalize on the advantages of both. 

3.2.2.1 General Perturbations 

The method of general perturbations is based on the concept that a gravitational potential 

function for a satellite in a complex system can be described by 

V = V2body+R (3.15a) 

where V2body is the potential function due to the Earth treated as a point mass, and R is a 

disturbing potential function due to other massive bodies, or irregularities of the Earth 

from its point mass representation. The effect of R must be an order of magnitude 

smaller than V2body for general perturbations to be valid [50]. This is because the theories 

rely on an assumption that the motion caused by V2body will only change slowly due to R. 

General perturbation theories use the conic section solution of the 2 body problem and 

determine the variations in the orbital elements caused by perturbations. An orbit history 

which includes the short period, long period, and secular variations caused by 

perturbations is called the osculating orbit. 

One of the important steps in the process is obtaining analytic expressions for R which 

accurately represent the effect of perturbations. From the previous sections, though, we 

saw that disturbing functions exist only for conservative forces.   This is one of the 
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limitations of using general perturbations. Note, however, that some general perturbation 

theories do incorporate the effects of non-conservative forces [5]. For example, the 

HANDE satellite theory, developed by Felix Hoots, incorporates atmospheric drag effects 

with a dynamic atmospheric model that uses Jacchia 1970 atmospheric tables [51,29]. 

When analytic expressions for conservative disturbing functions are determined, they are 

often expressed as infinite series in powers of a small parameter. While some accuracy is 

lost, these series must be truncated at low orders to reduce calculation time. 

The principal advantage to general perturbations is in the small computation time 

required to carry out the orbit propagation calculations. Because analytic expressions are 

used throughout the process, the time of calculation is independent of the propagation 

time. Accuracy can be maintained if the expansions of the analytic equations are not 

truncated at low orders. However, retaining higher order terms can significantly increase 

the computation time. In practice, series truncation and the assumptions made to 

incorporate non-conservative perturbations reduce the accuracy of the results for large 

prediction times and practical physical cases [13]. 

3.2.2.2 Special Perturbations 

The class of orbit propagators that directly integrate the equations of motion form the 

method of special perturbations. Given a spacecraft's current position and velocity, and 

equations of motion which express the influence of central body gravitation as well as all 

relevant perturbations, the effect of all the resulting forces can be computed over a short 

time period so that a new position and velocity at a future time are obtained. When this 

process is repeated to produce an orbit trajectory, each repetition is called a step and the 

time period between successive steps is the step size. 
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There are two primary types of error in applying special perturbations: round off and 

truncation error. Round off error occurs because only a finite number of significant digits 

are carried through the calculation. This limit forces the computer to round off the results 

of every calculation at the end of the significant digits. Round off error accumulates with 

the number of calculations performed. The net result of repeated steps of the orbit 

propagator can be an error in the last few significant digits of a calculated value [50]. 

One method of reducing round off error is increasing the number of significant digits. 

Another is reallocating more bits in the memory storage of a number to the mantissa from 

the exponent [13]. A more reasonable solution is to simply increase the step size of the 

propagation so that fewer calculations take place. 

The maximum value of the step size, however, is limited by the truncation error. 

Consider the solution to the future position of a satellite expressed in terms of a Taylor 

series expansion 

dr 
r(.t) = r0+(t-t0)— + (t-t.r d

ix 
2!      dV 

+ (t-t.Yd'r 
3!      df 

+ (3.56) 

where r0 is the position of the satellite at initial time t0. Truncation error is caused by 

limiting the number of terms of the Taylor expansion used in the numerical integration. 

The order of the method used describes how many terms of the Taylor expansion are 

maintained. For example, a 4th order Runga-Kutta integrator carries terms up to and 

including (t-t0)
4. Because an increase in the step size t-t0 causes the value of the higher 

order terms to increase, truncation error limits the maximum value of the step size in 

order to maintain a given accuracy requirement. 

In 1973, Merson identified five major factors in special perturbation problems [50]. They 

are 1) the type of orbit, 2) the operational requirements, 3) the formulation of the 
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equations of motion, 4) the numerical integration method, and 5) the available computing 

facilities. The type of orbit is important because it directly affects the modeling of the 

perturbations. A orbit propagator which works well for circular orbits may not produce 

accurate trajectories for highly elliptical orbits. The operational requirements are usually 

the desired accuracy in the elements and the amount of time available for computation. 

The formulation of the equation of motions deals with the order of the equations being 

used. For example, the Lagrange planetary equations are a first-order set. The numerical 

integration method usually concerns whether the integrator uses previously computed 

values as inputs into the current value. If previous values are used, the method is 

considered multistep. The fifth factor, available computing facilities, have seen dramatic 

improvements in recent years. It has allowed numerical integration to become an option 

to every type of user. One additional factor, not mentioned by Merson, that must also be 

considered is the articulation of the physical models. These models attempt to quantify 

variables associated with physical systems such as the Earth's atmosphere, or the activity 

of the Sun. The accuracy and complexity of these models have a significant impact on 

the operation and function of orbit propagators. 

One of the most widely applied special perturbation theories is Cowell's Method. 

Originally developed by Cowell and Crommelin in 1908 to investigate the motion of 

Jupiter's eighth satellite moon [50], this method makes no distinction between the central 

and disturbing functions and uses differential equations of motion expressed in 

rectangular coordinates. The Fixed Cowell approach is applied to low eccentricity orbits 

with a fixed time step of approximately 100 to 200 steps per revolution [13]. The Time 

Regularized Cowell approach is used for medium and high eccentricity orbits where the 

step size is tied to evenly spaced true anomaly values [13]. 
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Numerical integration enjoys the advantage of being extremely accurate. In fact, the 

process can be tuned to the accuracy requirements of the problem at hand. The most 

stringent implementation of special perturbations to date has been for the Ocean 

Topography Experiment (TOPEX) spacecraft. The TOPEX spacecraft required 3 cm 

radial accuracy to support the processing of laser ranging altimeter data for ocean 

circulation models [8,13]. Unfortunately, the price for accuracy is large amounts of 

computation time. The choice between the use of special or general perturbation theory 

for orbit propagation usually takes many factors into account. Computing resources, 

orbit type, and accuracy requirements are only some of these factors. 

3.2.2.3 Semi-Analytic Methods 

Semi-analytic methods were devised in order to combine the accuracy of special 

perturbations with the elegance and quick computation time of general perturbations. 

Semi-analytic methods accomplish this task by applying the Generalized Method of 

Averaging (GMA) to the Variation of Parameters equations of motion. This allows the 

orbit propagator to decompose the osculating satellite equations of motion into a part 

which contains the secular and long periodic effects, and a part which contains only the 

short periodic effects [22]. Figure 3.3 illustrates the process used by most semi-analytic 

methods. 
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Figure 3.3: The Semi-Analytic Method [24] 

The secular and long period components form the mean element equations of motion. 

Since all high frequency terms have been removed, the step size for the mean equations is 

constrained by the period of the shortest long period effect. In practice, this step size is 

several orders of magnitude larger than that required for the osculating equations. In fact, 

the step sizes can often be so large that interpolation is required to determine mean 

element sets at request times that fall between interval times. The short periodic 

equations are usually represented as a Fourier series in the satellite's "fast" variable. To 

achieve closed form expressions, multiple orbital longitudes are employed as the fast 

variable. The fast variable can be the eccentric longitude, Greenwich hour angle, mean 

longitude, or true longitude depending on the short periodic equation being considered. 

The coefficients of the Fourier series are slowly varying functions of the slowly varying 

elements, and thus can also be evaluated with interpolation. The short periodic variations 

are solved numerically or analytically and added to the mean elements at the request 

times to produce an osculating element history. 
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3.2.3 Semi-Analytic Satellite Theory 

The following section provides an overview of the concepts of semi-analytic theory as it 

is presented in McClain's A Semianalytic Artificial Satellite Theory [44]. A more 

complete analysis is available in this reference and in a technical report completed at the 

Naval Postgraduate School, Semianalytic Satellite Theory (SST): Mathematical 

Algorithms [19]. 

3.2.3.1 The Method of Averaging 

Semi-analytic orbit propagation techniques are based on the application of the Method of 

Averaging (MOA) to the variation of parameters equations of motion. This is done in an 

effort to increase the step size of the numerical integration of the equations of motion. In 

general, the maximum step size for the numerical integration of a set of differential 

equations is constrained by period of the highest frequency term in the equations. The 

MOA removes these high frequency (short periodic) terms. The resulting equations, 

called the mean element equations of motion, describe only the secular and long period 

motions. The orbital elements corresponding to the mean element equations are called 

the mean elements. The short periodic equations of motion describe only the high 

frequency short periodic effects. 

The Method of Averaging can be applied in two ways, numerically and analytically. The 

analytical approach, developed first, only applies when conservative perturbing forces are 

considered. This is because it relies on Lagrange's formulation of the equations of 

motion. The numerical averaging approach applies for any type of perturbing force. It 

removes the high frequency terms with the use of a quadrature around an appropriate 
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formulation of the osculating equations of motion [44]. Numerical averaging has been 

successfully applied and shown to be significantly more efficient than high-precision 

orbit generators. Its largest drawback is that the force models must be evaluated at each 

step of the quadrature rather than once per time step as with analytical averaging. The 

computation of mean element rates is also more precise with analytical averaging [44]. 

The Draper Semi-analytic Satellite Theory (DSST) orbit propagator uses analytic 

averaging for conservative perturbations and numerical averaging for non-conservative 

perturbations. 

3.2.3.2 Averaged VOP Equations of Motion 

In the remainder of this section, the osculating equations of motion will be separated into 

the mean equations and the short periodic equations. We start with a formulation of the 

osculating equations which is readily related to both Lagrange's planetary equations of 

equation 3.50 and Gauss' form of the variational equations of equation 3.54. 

-^- = sFi(a,l)       fori = 1,2,.. .,5 (3.57a) 
at 

jt=n(ax) + sF6(2i,l) (3.57b) 

In equation 3.57, / is the fast variable orbital element, the vector a consists of the 

remaining five slow varying elements, s is a small parameter, n is the mean motion , and 

Fj(a,/) are perturbating functions which we assume to be 2TI periodic in /. For 

conservative perturbations, the perturbing function are constructed by the relation 
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6 dR 
**;-(a,0 = -2>/>ßj)-r- (3-58) 

>1 ^fl7 

where (a^a,) is the ij Poisson bracket and R is a disturbing potential function such as that 

obtained for the spherical harmonic perturbations in equation 3.24. Examples of the 

small parameters, then, are J2 and J3 for zonal harmonics and CD, the coefficient of drag, 

for atmospheric drag. 

The fast variable / is separated from the remaining elements because it is a linear 

combination of the time with an element such that 

l = nt + a6 (3.59) 

This modification is required in order to avoid mixed secular terms [3,44]. 

We now assume that the osculating elements and osculating element rates can be 

expressed as asymptotic expansions of the mean elements and element rates, respectively, 

plus higher order terms. 

If the mean elements are denoted with bars, then the near identity transformation from 

(a,/) to (ä,/) is assumed to be 

a, = a,. + £ e'ritjiWj) + 0(sN+l)    i = 1,2,... ,5        (3.60a) 
7 = 1 

l = l+Y*eJri6J{*~l) + 0{eN+l) (3.60b) 
j-i 

where the functions r^ are 2TC periodic in /. The presence of the small parameter s is 

important to the Method of Averaging because it forms the basis of later series 

expansions that need to be truncated. 
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One of the goals of the Method of Averaging is to describe the mean equations of motion 

in terms of only the slowly varying elements. Thus the mean equations are assumed to 

take the form 

^=fj£
JAiJ(z) + 0(eN+]) (3.61a) 

"' 7 = 1 

dl —       N - 
— = n{a,) + £ eJA6J(ü) + 0(sN+1) (3.61b) 
<*l 7 = 1 

Equation 3.61 is complete with expressions for the functions Ay. These functions are 

obtained by resolving both sides of equation 3.57 and then eliminating the fast variable 

dependence. 

Left Hand Side 

We can resolve the left hand side of equation 3.57 by first taking the time derivative of 

equation 3.60. The resulting expressions relate the osculating element rates to the mean 

element rates. 

%-%-+±''±%±^Ols>«) (3.62a) 
dt        dt      ~~,     77, oak    dt 

dl     dl + ±«±^+0^ 
dt     dt     7=1      k=} dak    dt 

(3.62b) 

where a6 means / for the summation in equation 3.62b. 

Substituting equation 3.52 into equation 3.53 and rearranging the summations yields 
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da 

dt 
L=E 

7 = 1 

       ffjl &    7-1      ßft 

Aij(2L) + n{a,)—^- + yy A.   (a)—^ + 0(s"+l) (3.63a) 

d!_ 

dt 
= n(a1) + Yds

J 

7-1 'J "dl      tl^t   *>/A '   dak 

+ 0(e"+i) (3.63b) 

In equation 3.63b, the summation over p is not performed for j = 1. Note that both the A;j 

and riij functions are unknown at this point. To obtain expressions for them, we now 

address the right hand side of equation 3.57. 

Right Hand Side 

A related expression for the right hand side of equation 3.57 is obtained by first 

expanding the perturbing functions in a Taylor series about the mean elements and then 

rearranging the series components as a power series in the small parameter s. This 

process yields the following representation of the perturbing function 

Fi(z,l) = ZeJfiJ(aJ) + 0(£N+l) 
7=0 

(3.64) 

where 

6 dF, 

k-\ 

6    ( 

da. 

r   _V dF>     1 V 
Ji,2   ~  2-1      ^k,2    o  +  0 2-1 "Hktfm, 

wV da,     2 m = l 

d1Fl 

dakdah 

(3.65) 

and so forth. 
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The mean motion in equation 3.57b can also be expanded in a Taylor series about the 

mean element a, and rearranged in a power series in the small parameter s. The resulting 

expression for the mean motion is 

where 

n(a]) = YJe
jNk(zj) (3.66) 

N0 = n(ax) = n 

2a, 

3« 15»      2 (3.67) 
N2 = -7= 71,2 + 7=7 ft,i 2a, 8fl, 

3« 15« 35« 
^3 = - r= 7i,3 + -=7 M,2 - 77=7 7i,i 

2a, 4a 16a, 
3 

and so forth. 

Substituting equations 3.63, 3.64 and 3.66 into equation 3.57 allows us to equate like 

powers of s to determine the j* order contribution to the osculating element rates. 

_     fin 6   J~l _   ßn   

^y(») + »(«,)-7f+Zi;^(")^^- = /ij-.(».0 (3.68a) 

^W + ^^I^WT^^.^Ö + AH^') (3-68b) 
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Removing Fast Variable Dependence 

Note that equation 3.68 remains a function of the fast variable / because the functions ny 

are 2% periodic in /. To obtain expressions for the functions Ay in equation 3.61, the fast 

variable dependence must be removed. This is accomplished by integrating both sides of 

equation 3.68 over the fast variable I on the interval [0, 2iz\. This process, called the 

averaging operation, is defined as 

1 
2/r 

2n 

Since the functions n.y are 2% periodic in /, 

tf(a,/))- = — \H(z,l)dl (3.69) 

n*$f) = 0 (3.70) 

Note that applying the averaging operator to equation 3.62 yields 

da. \      da; dl\      dl 

\ dt I j      dt \dtI j     dt 

and 

(3.71) 

J x = 0 (3.72) 
dak I] 

These constraints result in the following expressions for the j* order contribution to the 

mean element rates 
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^j(») = \/u-i(«,0/7 (3.73a) 

A>) = (#,(«,/)). + (/6J_I(ä,7)). (3.73b) 

Substituting equation 3.71 into equation 3.61 yields the averaged equations of motion 

expressed in terms of the perturbing function and the mean mean motion. 

^r = hJ(f,A^)+0(s^) (3.74a) 
at     j=x - 

^- = n(ä1) + fjs
J(f6j_^,I) + Nj) +0(sN+l) (3.74b) 

at J=x - 

Short Periodics 

The short periodic contributions to equation 3.60 are determined by solving for the 

functions r^. Subtracting equation 3.73 from 3.68 yields 

„-%=/v,_££4 »f* p 

dl £?£?    '     dak (3.75a) 

öl „.IM oak (3.75b) 

where the superscripts is used to indicate the short periodic part of a function such that 

f 'J-i ~ Jij-l ~ \Ji,j-\ )j (3.76) 

Substituting equation 3.75 into equation 3.60 completely specifies the near identity 

transformation. 

129 



I     N 

a, =ä, + — ^Js' J 
n 

>i 

6    >1 

/ij-ifeO-ZZ^ 
*»1 I>-1 

dl+o{eN+]) (3.77a) 

1  w 

7-1 *_1     n_1 C/Ut *-l   /J=l 

a+0(sN+1)      (3.77b) 

Practical Application 

Equation 3.74, represents the j* order contribution to the mean element rates. Admitting 

up to only second order contributions, equation 3.74 becomes 

da. 
^ = s{Ao(äj))1+^(f,^J))1+0(^ (3.78a) 

4- = » +e{f6fi(H,l)+N1)1 +^(/6>1(a,/) + iV2}.+0(^3) (3.78b) 

Further simplification yields 

da, dF&jy 
dt L = £{mJ))j+£^^J)^f^     +^3) 

U=i da k    n 

dl 
— = n+s(F6^J))I+s2(YJTjkl(äJ) 

,^F6(ä,/) ,15 n    , ^ 

(3.79a) 

<fr U-1 <?aA 8 a, + ^<l(ä,/)    +0(^) 
/'" (3.79b) 

Note that the second order contribution to the mean element rates requires knowledge of 

the first order functions r\^. This implies that the computation must be done on an order 

by order basis. 

In addition, the effects of multiple perturbing functions must be considered for practical 

applications.    The equations developed to this point only consider one perturbation 
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source. To first order in the small parameters, the equations of motion for the case of two 

perturbing functions is 

-j- = eF,(a,/) + vG,(a,/)       for i = 1,2,...,5 (3.80a) 
at 

^ = K + £F6(a,/) + vG6(a,/) (3.80b) 
at 

Equation 3.80 only represents the first order superposition.   Mixed terms in the small 

parameters appear when considering higher order combinations. 

3.3 DSST Orbit Propagator 

In 1979, the Draper Laboratory initiated development of a general semi-analytical 

satellite theory [14]. The products of this venture were incorporated into a large software 

utility called the Research and Development Goddard Trajectory Determination System 

(R&D GTDS). Today GTDS is a package which provides a litany of orbit utilities and 

contains subprograms which execute general perturbation, special perturbation, and semi- 

analytic theories. In 1984, the semi-analytic theory was transplanted from GTDS to a 

medium sized standalone propagator called the Draper Semi-analytic Satellite Theory 

Orbit Propagator (DSST). 

A 1995 study conducted by Barker, Casali, and Wallner [1] of the Kaman Sciences 

Corporation compared the accuracy and run times of DSST and several other semi- 

analytic and general perturbation theories. Orbit propagation by a full model special 

perturbation theory was used as a baseline. The study concluded that of all the 

propagators considered, DSST contained the most complete perturbation models, and 
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thus performed best in terms of accuracy for all four different types of orbits studied. In 

addition, for orbits where drag was not a major factor, DSST gave accuracy results 

comparable to the special perturbation baseline while only requiring 50 to 100 percent 

more CPU time than the strictly general perturbation theories. 

The remainder of this section discusses the specific implementation of DSST used for this 

project. First, the capabilities and limitations of the standalone propagator are outlined. 

Then the software interface that was modified/developed for use with the constellation 

station-keeping code is reviewed. This is followed by a short explanation of why only 

the mean equations of motion are used. Finally, one of the limitations of DSST, which is 

important in the context of this project, is explored in greater detail. 

3.3.1 Capabilities / Limitations 

The standalone DSST propagator includes the following perturbations in the mean 

equations of motion [22] 

• Central body gravitational spherical harmonics of arbitrary degree and order 

• J2
2 second order effect. An explicit analytical expression, truncated to the 

first power of the satellite eccentricity, is used for the mean element rates of 

change 

• Third body point mass effects. 

• Atmospheric drag on a spherical satellite. Both Jacchia-Roberts and Harris- 

Priester atmospheric density models are available. 

• Solar radiation pressure on a spherical satellite with eclipsing. 
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The following perturbations are included in the short-periodic variations [22] 

• Central body gravitational zonal harmonics of arbitrary degree. 

• Central body gravitational  m-daily  sectoral  and tesseral  harmonics  of 

arbitrary degree and order. 

Lunar/solar perturbations to the short periodic variations have been added in a new 

version of DSST standalone[13]. 

All of the perturbation models listed above can be turned on or off by the user. The user 

must also define the epoch time, epoch state, output request times, and physical 

properties of the spacecraft. At each request time, the orbit generator calculates the 

following values 

• mean equinoctial elements 

• osculating equinoctial elements 

• position and velocity vectors 

• mean equinoctial element rates 

• J2 mean element state transition matrix 

The coordinate system for the input epoch state must be either the Mean of 1950 

reference frame or the true of date reference frame. The choice of integration reference 

frame is limited to the Mean of 1950 frame and the true of reference frame. Since no 

special output frame option exists, the output frame is the same as the integration frame. 

Note that true of date output is not available in the current version. This limitation is 

discussed in section 3.3.4. 
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3.3.2 Software Interface 

Developing a versatile software interface to interact with the existing DSST orbit 

generator routines was a critical element of this effort. The interface had to meet several 

specific requirements of the parallel processing environment and the primer vector code. 

Rather than starting from scratch, an interface developed earlier by Scott Wallace at 

Draper Laboratory [58] was adopted. This old interface, called sat_prop, had the 

following capabilities functioning 

• Keplerian and equinoctial element input/output 

• use of a time interval with step size for definition of output request times 

• orbit propagation forward in time 

While Wallace's interface was developed with parallel propagation in mind, it did not 

enable all the functionality that existed in the DSST orbit generator. Subroutine 

satjprop was modified in order to meet the requirements of this project. The 

modifications were incorporated into a new subroutine called sat_prop_mod, which 

retains essentially the same structure as satjyrop, but also includes the following 

capabilities 

• position and velocity vector input 

• orbit propagation backward in time 

• option of including a burnlist of time specified velocity vectors 

• output of J2 based state transition matrix in position and velocity 

• output of Keplerian or equinoctial element rates 
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3.3.3 Mean Element Theory 

While the DSST orbit propagator is capable of calculating the short periodic variation of 

the elements, this option is not utilized in this project. Eliminating the short periodic 

variations implies that the mean elements, and not the osculating elements, are used by 

the station-keeping control laws to determine when and how much to correct the 

trajectory. It also indicates that only the mean equations of motion are integrated in the 

orbit propagator. This procedure of using only the mean elements is not unusual for 

station-keeping applications. In fact station-keeping planning done on real satellites also 

avoids including the short periodic motions [46]. This is because the mean elements 

reveal the long term trends in the motion of the elements better than the osculating 

elements. For example, consider the case of targeting nodal crossing. Because of short 

periodic motion, the osculating element set varies for the nodal crossing at each 

revolution [46]. Therefore, a mean element set must be used to target the nodal crossing. 

When station-keeping requirements which involve precise positioning over the ground 

are not considered, the mean element trajectories provide a good basis for determining the 

total number and size of station-keeping corrections. 

3.3.4 Reference Frame Issues 

In section 3.1.1, we defined the geocentric-equatorial coordinate system as an inertial 

reference frame, i.e. it remains fixed in space over time. In reality, however, this is not 

the case. Since the coordinate system is based on the Earth's equatorial plane, it 

undergoes a slow change with time due to the gravitational influence of the Sun, Moon, 

and planets. This change is primarily composed of two parts, precession and nutation. 

Precession is a steady rotation of the coordinate axes about the vector perpendicular to the 
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Earth's orbital plane. This rotation has a 26,000 year period, but the angle between the z- 

axis of the frame and the vector perpendicular to Earth's orbital plane, also known as the 

obliquity of the ecliptic s, remains approximately constant at 23.5° [55]. Nutation is a 

periodic variation from the precession which is caused by the "nodding" of the z-axis of 

the geocentric-equatorial frame [55]. The period of nutation is approximately 18.6 years. 

Figure 3.4 illustrates the effects of precession and nutation. 
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Figure 3.4: Precession and Nutation of the Equatorial Plane [2] 

Because of the motion of the geocentric-equatorial coordinate system, every satellite state 

defined in that frame must be tagged with a specific time. At each time, there are two 

geocentric-equatorial coordinate systems available. The first, called the true-of-date 

frame, is influenced by both the nutation and precession effects on the equatorial plane, 

and thus represents the true location of the plane in time. The second, called the mean-of- 

date frame, is moved only by precession effects. In a sense, it 'averages' out the nutation 

effect. Common practice for Earth centered orbit determination is to use one inertial 

reference frame for the integration of the equations of motion. The mean-of-date frame 

that occurred at 1950.0 is chosen as the standard. This frame is more often referred to as 

the Mean of 1950 reference frame. 

136 



However, if satellite trajectories that involve some association with the ground (such as 

communication with Earth-based receivers) are needed, then the output of the orbit 

generator must be in the true-of-date frame of the time of interest. To meet this 

requirement, the output of the integrator must be transformed from the Mean of 1950 

frame to the true of date frame at each request time. This transformation consists of two 

parts. The first transforms the position vector of the satellite in Mean of 1950 coordinates 

to the position vector in the mean-of-date coordinates at the request time with the use of 

the rotation matrix A such that 

^mean-of-date  = ^ *Mean-of-1950 (i.ölj 

The second rotation matrix N transforms the mean-of-date position vector to the true-of- 

date position vector. 

* true-of-date ~ ™ ^mean-of-date \p.o2.) 

If the two rotation matrices are multiplied such that C = NA, then the full transformation 

in one step is 

1'tnie-oj-date  = ^ TMean-of-1950 (3-°3) 

The transformation of the velocity vector is determined from the derivative of equation 

3.83. 

dC 

dt ^true-of-date  ~ ^ VMean-of-1950 +     if  *Mean-of-1950 (3.o4) 

In practice, the time derivative of C is often ignored.   The maximum error that results 

from this is only 0.005 cm/sec at one Earth radius [55]. 
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We noted in section 3.3.1 that the version of DSST used for this project does not have the 

capability of outputting orbital elements in the true-of-date reference frame. This would 

be a severe limitation if the ephemerides produced by the orbit generator were required 

for interaction with specific locations on the Earth. Fortunately, this does not occur 

anywhere in the project. In fact the ephemerides themselves are only used in the 

calculations of global coverage. Aside from that, only the differences in the ephemerides 

are used. Since the percent coverage of the Earth is not affected by the rotation 

transformations described in equations 3.83 and 3.84, the Mean of 1950 ephemerides are 

acceptable for this application. 

The station-keeping controllers utilize the differences of the actual satellite states 

(propagated in the presence of perturbations) from nominal satellite states. Since the 

nominal trajectories themselves are propagated and output in Mean of 1950 coordinates, 

our only concern is to ensure that the differences between the actual and nominal 

trajectory in the Mean of 1950 coordinates are the same as the differences between the 

actual and nominal trajectory in true-of-date coordinates. This condition is verified by 

executing a test run on the version of SST available in the GTDS software package. 

GTDS/SST is able to output elements in the instantaneous true-of-date frame. 

The test case involves one satellite of the Ellipso Borealis constellation plane. Two 

executions of the GTDS code are required. The first calculates the difference between the 

actual and nominal satellite states in the Mean of 1950 frame. The second calculates the 

difference between the two trajectories in the true-of-date frames of the corresponding 

comparison times. The nominal trajectory includes only the zonal geopotential field 

model to 21st degree. The actual satellite trajectory includes a full 21x21 geopotential 

field, tesseral resonance, solar radiation pressure, atmospheric drag, and solar/lunar third 

body effects.   The GTDS input decks for both of these runs and difference plots in 
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Keplerian elements are located in Appendix A. A summary of the radial, cross track and 

along track differences are tabulated in table 3.4. 

Table 3.4: Comparison of Mean of 1950 and True of Date Differences 

RadalDiffenenoeM Qoss-Tra* DieratE (krr> Along-Tnack Qffererces {krr} 

Dale M=ancf1950 THE of Date Delia Maanof1950 Trie of Date Delia Man cf 1950 True of Date Delta 

1-Ja>S6 4.61634&03 4.61634&03 O.CCOO0&O0 -a53596&00 •3.53598&00 0.00000&00 1.24410&O4 1.24410&O4 O.OO000&O0 

1^Jarv99 7.33585&03 7.33585&03 0.00000&00 6.79117&00 6.79117&00 O.CO00O&OC 6.993O4&03 6.99304&03 0.00000&00 

WanCO 5.49901&O1 5.49901B01 0.00000&OC a61351&00 8.61351&00 O.0OO00&OG 4.88708&03 4.88708&03 O.0CO0C&O0 

1-Jar>01 1.77929&05 1.77929&05 O.0OO0C&O0 288769&02 288769&02 0.00000&00 3.61889&03 3.61889&03 0.00000EO0 

1-JanCE 1.34257&03 1.34257&03 oooooo&oo -a«606&Q2 -3.W606&02 O.C0000&O0 8.41482&03 8.41482&03 0.00000&00 

The orbital element difference plots for the Mean of 1950 output and true of date output 

are identical in all respects. The data in table 3.1 agrees with the plots. It shows that the 

differences are identical down to at least 10 m in the radial direction, 1 m in the cross- 

track direction, and 1 m in the along track direction. The differences produced in the two 

different reference frames were so close that this case was rerun to guard against any 

errors. The conclusion is that the difference of the actual and nominal trajectory in the 

Mean of 1950 reference frame is the same as the difference in the true of date frame, for 

at least 5 years. Therefore, using Mean of 1950 state differences as the basis for 

determining control commands is acceptable. 
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Chapter 4 

Lyapunov Control 

4.1 History of Lyapunov Control Methods 

In the late 19th century, the Russian mathematician Alexandr Mikhailovich Lyapunov 

developed general approaches for studying non-linear motion. Lyapunov's work, 

published in 1892, contains two methods which are still considered to be the most useful 

approaches for the stability analysis of non-linear systems [54]. The first, called the 

linearization method, develops conclusions about the local stability of a non-linear 

system from the stability properties of its linear approximation. The second, called the 

direct method, determines the stability of a non-linear system by analyzing an energy- 

type function developed from the system variables. Lyapunov's work went largely 

ignored outside of Russia until the 1960's. According to Slotine and Li [54], however, 

the linearization method has since become the justification for linear control and the 

direct method is now considered to be the most important tool for non-linear system 

analysis and design. 

Since satellite motion is by its nature non-linear, consideration of Lyapunov control 

theory for the problem of station-keeping was inevitable. This chapter explains the 

design for several Lyapunov controllers designed for satellite station-keeping. First, it 

begins with a summary of the important definitions and theorems which form the basis of 

Lyapunov control theory. An approach for developing discrete controllers is also 

reviewed.     Finally  three  different  controllers,  each  corresponding  to  a  different 
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formulation of an artificial potential function, are proposed.    The following chapter 

details the ideas and approaches taken; implementation is left to be pursued at a later date. 

4.2 Fundamentals of Lyapunov Control Theory 

The following summary of the fundamental concepts of Lyapunov control theory is 

composed of two parts. The first part, covering sections 4.2.1 to 4.2.5, is the 

mathematical basis for Lyapunov control. The overview of this material borrows heavily 

from Slotine and Li's Applied Non-Linear Control [54]. This reference provides an 

excellent introduction to general non-linear control theory. The second part, sections 

4.2.6 and 4.2.7, introduces artificial potential functions and outlines how they are used to 

apply the theorems and definitions covered in the first part. 

The first of Lyapunov's methods, linearization, is based upon the idea that a non-linear 

system will behave like a linear system in the local region about a point when small 

motions are considered. While this method is valid for many systems, it has limitations. 

The first is that it can only provide information about the local stability of the system. 

Finding the point at which the linearization assumption is no longer valid can be difficult. 

For satellite motion which incorporates the effects of multiple significant disturbing 

perturbations, the linearization assumption can be tenuous. For these reasons, the 

approach taken with this project is to delay having to linearize the equations of motion 

until absolutely necessary for developing a control solution. Therefore, only Lyapunov's 

second, direct method is pursued further. 
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4.2.1 Equilibrium Points and Autonomy 

A general n* order non-linear system of equations can be expressed by the vector relation 

i = f(x,0 (4.1) 

where x is an n x 1 vector containing the state variable of the system, t is time, and f is a 

non-linear vector function describing the motion of the state variables x„ x2,..., x„. While 

the vector x describes n values, it is still considered a 'point' in state space. The solution 

to equation 4.1 is the curve in state space described by the vector function x(t). The 

solution over time is often called the state trajectory. For non-linear systems of 

equations, determining x(t) explicitly as a closed form solution in terms of elementary 

functions is not always possible. When x(t) is not available directly, an analysis of the 

stability of the system described by equation 4.1 can be conducted to determine the 

motion about the system equilibrium points. 

If equation 4.1 describes the dynamics of a system which includes a closed-loop feedback 

controller, then it can also be written as 

x = f(x,u,0 (4.2) 

where the control law is some function of the state and time. 

u = g(x,r) (4.3) 

The stability properties of a closed-loop feedback system tell us how well the control law 

addresses the goals of the control problem. 

If the system dynamics are linear, equation 4.1 can also be expressed as 
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x = A(0 x (4.4) 

where A is an n x n matrix. 

Linear systems are divided into two categories, time-varying and time-invariant. If all 

the components of the matrix A in equation 4.4 were constant, then the associated system 

would be time-invariant. The non-linear analogs to time-varying and time-invariant are 

non-autonomous and autonomous. Slotine and Li define a non-linear system to be 

autonomous if the vector function f does not depend explicitly on time. An autonomous 

system can be described by 

x = f (x). (4.5) 

All systems with time dependent vector functions are non-autonomous. For a system 

which describes closed loop dynamics to be autonomous, both the vector function and the 

control law must be explicitly independent of time. Therefore, 

x = f(x,u) (4.6) 

is autonomous only if u is explicitly independent of time, or 

u = g(x). (4.7) 

The motion of satellites without orbital perturbations is dependent only on the orbital 

elements, and thus is autonomous. However, when perturbations which depend on the 

location of other bodies, such as solar/lunar third body affects and solar radiation 

pressure, or perturbations which depend on the intensity of the sun, such as atmospheric 

drag, are included, the system of equations becomes time dependent and thus non- 

autonomous. But, if we assume that the equations describing satellite motion vary slowly 

with time, or 
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dt 
-.0 (4.8) 

then the system can once again be considered to be autonomous. Slotine and Li point out 

that all real physical systems are technically non-autonomous since none of the dynamic 

characteristics can be time invariant. In practice, though, if system properties change 

slowly change with time, the time variation can often be neglected with little meaningful 

error. 

An examination of the stability of non-linear systems is done around special points called 

equilibrium points. An equilibrium point, x*, is defined as a point in state space where 

f(xV) = 0       Vt>t0. 

This is equivalent to saying that once the system reaches an equilibrium point, it will 

always remain there unless disturbed. 

4.2.2 Tracking Nominal Motion 

Not all dynamic control problems can be defined as trying to maintain a state space 

equilibrium point. In some cases, the desire is to maintain the motion of the system. 

Maintaining the trajectory of an airplane in the presence of wind gusts is an example of 

this type of problem. The stability of such systems is concerned with how well the 

motion of a trajectory modified by small perturbations will track the original motion 

trajectory. 

Slotine and Li show how this class of problem can be transformed into an equilibrium 

point stability problem. The system resulting from the transformation, however, is always 
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non-autonomous regardless of whether the original system was autonomous or non- 

autonomous. To illustrate this process, consider the autonomous system described by 

equation 4.5. Let x*(t) be the solution to equation 4.5 corresponding to the initial 

condition x*(0) = x0. Call the trajectory defined by x*(t) the nominal motion trajectory. 

Then, if equation 4.5 is solved for a slightly perturbed initial condition such that 

x(0) = x0 + 5x0, 

the resulting perturbed trajectory, x(t), will not follow the original nominal trajectory. 

Define the difference between the two trajectories at any time t > t0 as the motion error 

e(0 = x(0-x*(0 (4.9) 

Perturbed 

Nominal 

Figure 4.1: Nominal and Perturbed Trajectories [54] 

Since both trajectories satisfy the system of equations, 

x*=f(x*),       x(0) = xo 

x = f (x), x(0) = x0 + SxB 

(4.10a,b) 

Then e(t) satisfies the following non-autonomous differential equation. 
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e = f(x*+e)-f(x*) = h(e,0 (4.11) 

with initial condition e(0) = 5x0. Since e(t;) = 0 for a time tj > t0 implies e(t) = 0 and 

h(e(t),t) = 0 for all t > ti; the new dynamic system with e as the state and h as the non- 

linear, non-autonomous vector function has an equilibrium point at the origin of the new 

state space. Therefore, a controller which can drive e directly to or near its equilibrium 

point over a time period in the presence of disturbances will also control a perturbed 

trajectory so that it converges to the nominal trajectory in the same manner. Note that the 

controller can only affect the error from the nominal trajectory by adjusting the perturbed 

trajectory. The stability characteristics of a satellite system, which includes a controller 

and disturbances, about its equilibrium point define how well the controller performs its 

function. 

4.2.3 Stability 

To study the stability characteristics of non-linear systems, we must first define the 

concepts of stability. When some system is said to be stable, the statement being made is 

that the system trajectory will remain within a certain bound of its equilibrium point if the 

trajectory's initial point is sufficiently close to that equilibrium point. Stated 

mathematically, the equilibrium state x = 0 is stable at t0 if, for any R > 0, there exists an 

r(R,t0) > 0, such that |x(0)| < r implies |x(t)| < R for all t > t0. The equilibrium point is 

locally uniformly stable at t0 if r can be chosen independently of the initial time t0. Since 

autonomous systems are time-invariant, stability and uniform stability for these systems 

are synonymous. 
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An equilibrium point is said to be asymptotically stable if it is stable and the trajectory 

will eventually move closer to the equilibrium point as time continues given that the 

initial point of the system trajectory is sufficiently close to the equilibrium point. Stated 

mathematically, an equilibrium point 0 is asymptotically stable at t0 if it is stable and if 

there exists an r(t0) > 0 such that |x(0)| < r implies that x ->■ 0 as t -» oo. As before, the 

equilibrium point is locally uniformly asymptotically stable if r can be chosen 

independently of t0. 

In the context of satellite station-keeping, asymptotic stability implies that not only will a 

satellite perturbed from its nominal trajectory remain in the vicinity of the nominal 

trajectory, but that the control input and natural motion of the satellite will combine to 

drive the satellite back to the nominal trajectory. This is the stability characteristic which 

is the goal for any Lyapunov controlled system of equations. 

4.2.4 Lyapunov Functions 

Lyapunov's direct method is based on the idea that if the energy is continually dissipated 

from a system, then it must eventually reach an equilibrium point. Thus, the stability 

characteristics of a system can be determined by examining the behavior of a scalar 

function which describes the 'energy' ofthat system. 

Slotine and Li illustrate this energy relationship with the autonomous mass spring/damper 

system shown in Figure 4.2. The equation of motion which describes this system is 

mx + bxlxl + k^ + k^x3 = 0 (4.12) 
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where bx\x\ is the non-linear dissipation, or damping, and (k0x + &,x3) is the non-linear 

spring term. The closed form solution to equation 4.12, x(t), cannot be determined in 

terms of elementary functions. However, examining the behavior of the system energy 

does reveal information about the motion of the system. Equation 4.13 represents the 

total mechanical energy of the system. 

1 x 111 
V(x) = -mx2 + j(k0x + k^x3) dx = -mx2 + -k0x

2 +~k]x* (4.13) 
o 

The following conclusions can be drawn: 

1. Zero energy corresponds to the equilibrium point (x = 0, x = 0) 

2. Asymptotic stability implies the convergence of mechanical energy to 

zero. 

3. Instability is related to the growth of mechanical energy. 

non-linear 
spring and 
damper 

 AAA^ 

^ 

m 

Figure 4.2: Non-linear Mass Spring/Damper System [54] 

Therefore, we see that the value of the mechanical energy is directly related to the state of 

the system at any time. The rate of change of energy for this is 

V(x) = mxx + [k0x + k^jx = x(-bx\x\) = -b\x\' (4.14) 

Equation 4.14 suggests that the energy of the system is continuously dissipated until the 

mass settles to its equilibrium state.  Therefore, by examining the form of the energy of 
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the non-linear system of figure 4.2, we can make conclusions about its stability 

characteristics even though we cannot explicitly solve the system equations of motion. 

One of the important properties of energy functions is that they must be positive definite. 

A time-invariant scalar function V(x) is said to be locally positive definite if V(0) = 0 and 

in a ball BRo, x * 0 implies V(x) > 0. The notation BRo denotes the spherical region, or 

ball, defined by |x| < R0 and centered at the equilibrium point x = 0 in state space. If the 

positive definiteness holds over the entire state space, then the function is globally 

positive definite. If V(0) = 0 and V(x) > 0 for all x * 0, then the scalar function V(x) is 

said to be positive semi-definite. 

A time-varying scalar function V(x,t) is said to be locally positive definite if V(0,t) = 0 

and there exists a time-invariant positive definite function V0(x) such that V(x,t) > V0(x) 

for all t > t0. This last requirement is the same as saying V(x,t) dominates V0(x). A time- 

varying scalar function V(x,t) is decrescent if V(0,t) = 0, and if there exists a time- 

invariant positive definite function V,(x) which dominates it. 

Any scalar function V(x) [V(x,t)] is negative definite if -V(x) [-V(x,t)] is positive 

definite. 

The typical shape of a time-invariant positive definite function is shown in figure 4.3. 
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v4>v3>v2>y 

Figure 4.3: Positive Definite Function V(x) 

One of the critical elements involved in the analysis of the mass spring/damper system of 

figure 4.2 is the rate of change of the scalar energy function. The energy function is an 

implicit function of time, and assuming that it is differentiable, it can generally be 

determined by the chain rule, or 

.     dV(x,t)     dV    dV       3V    rTr/   ,r     x 
(4.15a) 

where VJ>r(x)is the gradient of the energy function.   If the scalar function V is time- 

invariant, then 

dV 

dt 
= 0 and V = [VF(x)ff (x) (4.15b) 

Energy-like functions whose derivatives display the behavior demonstrated in the mass 

spring/damper example form the basis of Lyapunov's direct method, and are given the 

name Lyapunov functions. Any scalar function V(x,t) with continuous partial derivatives 

is a Lyapunov function if it meets the following criteria: 
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1) V is positive definite. 

2) V exists and is negative semi-definite. 

4.2.5 Lyapunov Theorem For Stability 

The core of Lyapunov's direct method lies in how Lyapunov functions reveal the stability 

of non-linear systems. This relationship is stated in Lyapunov's Theorem for Local 

Stability. 

For autonomous systems, the theorem is as follows. If, in a ball BRo, there exists a scalar 

function V(x) with continuous first partial derivatives such that 

• V is positive definite (locally in BRo) 

• V is negative semi-definite (locally in BRo) 

then the equilibrium point 0 is locally stable. If V is locally negative definite, then the 

system is asymptotically stable at the equilibrium point. 

For non-autonomous systems, the theorem is the same except that the scalar function can 

be of the form V(x,t). Furthermore, if V is decrescent, then the system is uniformly 

asymptotically stable at the equilibrium point. 

Note that there is no requirement that the Lyapunov function for a non-autonomous 

system be time-varying. Since a time-invariant scalar function V(x) is constant with 

respect to time, it is dominated by itself. Therefore, if this scalar function is positive 

definite, it is also decrescent. This means that when a time-invariant Lyapunov function 

is used for a non-autonomous system, if the system meets the conditions for being 

asymptotically stable, it also meets the conditions for being uniformly asymptotically 

stable. 
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The two critical steps in the procedure to determine the stability of a non-linear system 

using Lyapunov's direct method are to choose a positive definite scalar function and to 

determine if that scalar function meets the conditions which qualify it to be a Lyapunov 

function. The second step is generally accomplished by analyzing the time derivative of 

the scalar function. 

Note that many Lyapunov functions can exist for the same system. Slotine and Li 

demonstrate that if V is a Lyapunov function for a given system, then so is 

Vx=pVa (4.16) 

where p is any strictly positive constant and a is any scalar greater than 1. Multiple 

Lyapunov functions for the same system are not limited to the relationship shown in 

equation 4.16. They can be of different forms altogether. While different choices of 

Lyapunov functions will not produce contradictory stability conclusions, some choices 

may reveal more about the system than others. 

4.2.6 Artificial Potential Functions 

Lyapunov functions for simpler non-linear systems can be obtained from a purely 

mathematical approach. As long as the conditions for a Lyapunov function are met, 

Lyapunov's theorem still applies. Purely mathematical approaches for determining 

Lyapunov functions for complex non-linear systems, however, become extremely 

complicated. Instead, physical insight into the dynamics of the system can be used to 

generate functions which not only work, but reveal the nature of the stability in an elegant 

fashion. 
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The example of a robot arm control is used by Slotine and Li to demonstrate this point. A 

robot arm is composed of a series of joints connected by links. The control inputs are the 

motor torques applied at each of the joints. The dynamics of an n-joint robot arm can be 

expressed as 

H(q)q + b(q,q) + g(q) = T (4.17) 

where q is an n-dimensional vector describing joint positions, x is the vector of input 

torques, g is the vector of gravitational torques, b represents the Coriolis and centripetal 

forces caused by motion of the links, and H is the n x n inertia matrix of the robot arm. 

Note that the "state" for this system is the 2n element vector containing the components 

of q and q. The traditional control law used for robot arms is to use proportional and 

derivative feedbacks with a gravity compensation element, as shown in equation 4.18. 

x=-KDq-K,q + g(q) (4.18) 

Here KP and KD are positive definite n x n matrices. 

If a 5-link or 6-link robot arm is considered, equation 4.17 suddenly contains hundreds of 

terms. A trial and error approach for finding a Lyapunov function for such a system will 

not work. Instead, an appreciation for the physical nature of the problem is used. Since 

H must be positive definite for any vector q, the following scalar function is proposed 

F(q,q) = ^[<fHq + qrKPq] (4.19) 

The first term represents the kinetic energy of the manipulator and the second term 

represents an 'artificial potential energy' since the elements of KP can be interpreted as 

mimicking a combination of springs and dampers. 
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The energy theorem in mechanics states that the rate of change of kinetic energy is equal 

to the power provided by the external forces. Using this understanding, the derivative of 

the proposed scalar function becomes 

F = qr(T-g) + qrK?q (4.20) 

Substituting equation 4.18 into equation 4.20, we have 

F = -qrKDq (4.21) 

Since KD is positive definite and q cannot be zero at any point other than q = 0, equation 

4.21 is always negative definite. 

Therefore, we have demonstrated that the control law from equation 4.18 causes the robot 

arm to be asymptotically stable about its equilibrium point with the use of a Lyapunov 

function obtained only from appreciating the physical properties of the problem. When 

terms which simulate an energy-like property of the problem, like qrKpq in equation 

4.19, are used, the resulting Lyapunov functions are often called potential functions or 

artificial potential functions. As shown, they can work remarkably well for complex 

systems. 

4.2.7 Discrete Control Approaches 

In all of the examples and equations considered so far, the control input into the system of 

equations has always been a continuous function of the state (equation 4.7), or a 

continuous function of the state and time (equation 4.3). For the station-keeping system, 

however, the planned control inputs are impulsive burns.   To address this problem we 
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turn to an approach developed by Mclnnes which allows the use of discrete controllers 

with Lyapunov control theory [41,42,43]. 

If a time-invariant positive definite scalar function is used as a candidate for the 

Lyapunov function of a system, then the time derivative ofthat function is of the form 

V = [VV(x)]T±. (4.22) 

According to Lyapunov's theorem for stability, equation 4.22 must be negative definite 

for the equilibrium point to be asymptotically stable.   We can insure that Fwill be 

negative by defining switching times for the application of a discrete control, such as 

V(t)<0   =>   w(0 = 0 
(4.23) 

V(t)>0   =>    i/(0 = l 

In equation 4.23, u(t) = 1 indicates that the controller is activated.  The next question is 

what instantaneous change must the control event produce? Consider figure 4.4. 

*  f(x(t+)) 

V(x) = const 

Figure 4.4: Gradient of Potential Function and State Velocity Vector [39] 

In this figure, t" and   f are defined as the times immediately before and after an 

instantaneous control event, respectively.   f(x(t")) is the state velocity vector before the 
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control event, or x(f). Note that equation 4.22 is positive only when the state space 

'angle' between f(x(t")) and the gradient of the potential function, dV/dx, is less than 90°. 

V will be negative after the control event if the angle separating the state velocity vector 

and the gradient vector is greater than 90°. In fact, the largest reduction in the value of 

the potential function after the control event occurs if the state velocity vector after the 

control event, f(x(t+)) or x(t+), is in the direction opposite to the gradient vector. This is 

defined as the steepest approach method of determining the control event. Therefore, we 

wish to execute an instantaneous control event Ax such that 

i(f+) = x(r) + Ax = -K(x,x(r)) j^| (4.24) 

where K is a positive scalar function of the state and state rate before the control event. If 

x(t+) can be achieved as defined in equation 4.24, then the rate of change of the scalar 

function immediately after the control event is 

F(0 = -£(x,x(0)|W| (4.25) 

Equations 4.23 and 4.25 together insure that the rate of change of the proposed scalar 

potential function will always be negative definite. Then by Lyapunov's stability 

theorem, we can conclude that the system with the controller defined by equation 4.24 is 

asymptotically stable at the equilibrium point. 

One of the implicit assumptions made in using the discrete controller above is that 

continuity in state is maintained across the discrete control events. Mathematically, this 

implies that 

x(O = x(O = x(0. (4-26) 

157 



Continuity of the state also insures continuity of the gradient of the potential function 

across the control event.   If equation 4.26 is not enforced, then an interesting situation 

may develop where the discrete control events implemented to insure that V(t+) remains 

negative also moves the state away from the equilibrium point in discrete steps. If this 

occurs, the system may not be asymptotically stable. 

Another assumption is that the controller has control authority to change the elements 

defined in equation 4.24. For example, a satellite using impulsive burns only has control 

authority to implement instantaneous changes in its velocity vector. Instantaneous 

changes in position and acceleration vectors, are not possible. But, it may be possible to 

simulate instantaneous changes in elements over which the controller has no authority by 

executing a series of control events over a finite time. The time must be finite, and 

preferably small, for the system to be asymptotically stable. 

The effort to simulate changes in elements for which the controller has no instantaneous 

authority, by applying multiple control events over finite periods of time, was developed 

for this project. Since its implementation is dependent on the particular artificial 

potential function being used, it will be explained in more detail in the following section. 

It is important to note, however, that since the following methods were not coded or 

tested in this project, a validation of this procedure does not existat this time. 

4.3 Lyapunov Control for Station-Keeping 

In the following section, three different approaches for implementing Lyapunov control 

in the context of satellite station-keeping are proposed. Each of the approaches is defined 
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by a unique artificial potential function which is used to derive the control law. All three 

approaches are designed to control the station-keeping of only one satellite. 

Each of the three approaches is designed to be used in the context of a control scheme 

which checks the station-keeping status of the satellite at evenly spaced times during the 

satellites trajectory. The time between checks on the satellite state is the iteration step 

size for the governing control loop. All the methods also assume the capability of 

achieving a calculated target state at the next iteration time step. This orbital transfer 

problem was solved in chapter 2 using primer vector theory. Recall from chapter 2 that 

the calculation of an n-impulse near-optimal transfer trajectory required the transfer time 

to be shorter than one orbital period. Because of this limitation, the iteration step size of 

the governing control loop must also be shorter than one orbital period. 

The first artificial potential function contains only the position difference from the 

nominal orbit as the state. This is done to conform to constraints imposed by lack of 

control authority. The second and third potential functions attempt to circumvent this 

constraint by applying multiple burns over the following iteration time interval. The 

second potential function contains all 6 elements required to uniquely define a satellite's 

orbital state. It is implemented with the orbital elements rather than position and velocity 

vectors. The third potential function attempts to expand upon the second by including the 

state rates in the potential function as well. To accomplish this, however, some 

assumptions need to be made. The control goal of all three functions is to track the 

nominal reference trajectory. 

Some new vector comparison operators are introduced for use in the sections to follow. 

If a and b are n element vectors, then 
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>b   :   if üj >bt V/ e(l,..w) 

>b   :   if3ie(l,..n)   3 ai>bi 

(4.27) 

4.3.1 Potential Function with Position Vector State 

The following notation is used in this section, 

actual position vector 

nominal position vector 

actual velocity vector 

nominal velocity vector 

maximum parameter limits on position 

deadband parameter limits on position 

maximum parameter limits on velocity 

deadband parameter limits on velocity 

positive definite shaping matrix (3x3) 

p 

rv 

or, 

or, 

8r, 
5r, 

M 

max, p 

db,p 

max, v 

db,v 

The elements of 5rmax   and 8rmax v are the maximum deviations of the respective vector 

beyond which mission capability is degraded. The minimum goal of the control system, 

then, is to insure that the position and velocity vectors of the actual satellite never violate 

the following requirements 

fc-*0*xi*fc+*0    and 

{< - ^«,, )*xl*(r:+ <*Cv)       M i = U,3' 
(4.28) 

The real goal, of course, is to drive the difference of the actual and nominal position and 

velocity vectors to nearly zero, or in other words, to have the actual trajectory track the 

nominal trajectory. For this purpose, we define the differences as . 
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.,(0-.,(0-r,(0       anä 

r,(/) = s,(<)-r,(0 

Attempting to maintain absolute zero difference in zp and zY would require an impulsive 

burn at every time step. This is possible, but is not worth the fuel expenditure when small 

errors from the nominal are acceptable. For this reason, deadband limits are introduced. 

If the elements of zp and zv lie within the deadband regions defined by 6rdb p and 8rdb v 

then there is no reason to execute a correction to the actual state of the satellite. 

Now define the artificial potential function as 

2' 
V = -zp

TMxp (4.30) 

Since M is a positive definite matrix, equation 4.29 is a positive definite function. Note 

that we are defining the 'state' in this example to include only the position. The 

limitations of taking this step are discussed below. 

The gradient of the potential function is 

dV 
VV = -— = Mzp (4.31) 

dzp 

The time derivative of the potential function is 

^ = ^ = [VF]rz,=z/MZ/,=z/Mzv (4.32) 

By Lyapunov's stability theorem, the system will be asymptotically stable about the 

equilibrium point at the origin if V is always negative definite. To insure that this is true 

along the state trajectory, we define the following impulsive thruster firing function 
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u{t) = 
1,   V(t) > 0, and 

0,   elsewhere 

(zp(t) > £ixj or (zv(0 > tf>dÄ v) 
(4.33) 

where the deadband limits discussed previously have been incorporated. The 

introduction of the deadbands allows the possibility that V may be zero or positive for 

times when the actual satellite is within the deadband region of the nominal trajectory. 

But if the equilibrium 'point' is redefined to mean the entire region in state space within 

the deadband limits, then we can still claim that the resulting system is asymptotically 

stable about the deadband region. Within the deadband region, we are not concerned 

about the value of the state. 

Using the method of steepest descent (explained in section 4.2.7) the control input when 

u(t) = 1 is 

Av = Azv(0 = zv(r+)-zv(r) = -^VF-zv(r") = -i:Mzp-zv(r)       (4.34) 

Note from equation 4.34 that the control input for this potential function is an 

instantaneous change in velocity only. An impulsive thruster is capable of performing 

this control. Since impulsive burns do not affect the position vector, state continuity and 

gradient continuity are maintained across the burn, or 

zp(t+) = zp(r) = zp(t) 

VV(t+) = VV(f) = VV(t) 

The time derivative of the potential function immediately following the impulsive burn is 

V(t+) = -K\VV\2 (4.35) 

Since K is a positive valued function, equation is assured to be negative definite. 
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For the control law defined by equation 4.34 there is state (position) feedback and state 

rate (velocity) feedback to the system dynamics. This implies that oscillations in 

difference of the actual and nominal position trajectories will be damped. However, such 

a conclusion cannot be made about the relative velocity trajectories. The possibility that 

the controller will enforce convergence of the position trajectories by radical maneuvers 

that leave a large difference in velocity between the actual and nominal trajectory exists. 

One way to correct for this is to reduce the magnitude of the corrections as the position 

error, z , approaches the origin. To do this, we introduce a new scalar function L into the 

control law so that now 

Av = zv(/+) -z¥(f ) = -K(zp,z;)Mzp - L(zp)z; (4.36) 

Recall that K is a positive scalar function of the state and state rate prior to the control 

input. In a similar manner, let L be a positive scalar function of the state such that 

m 
L(zp) = £zp (4.37) 

The values of £ and m are left as a parameters to be optimized. While the introduction of 

the function L may help reduce large corrections when the position error is small, it is not 

a complete fix. Since the potential function ignores errors in velocity, the possibility of 

large velocity oscillations still exists. One solution to this problem is to expand the 

potential function to include velocity elements. 

4.3.2 Potential Function with Full 6-Element State 

The following notation is used in this section: 
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X 

r 

5rraa> 

5rdb 

M 

actual satellite vector (orbital elements) 

nominal trajectory vector (orbital elements) 

maximum orbital element parameter limits 

deadband orbital element parameter limits 

positive definite shaping matrix (6 x 6) 

Since a minimum of six parameters are needed to uniquely define the orbital state of a 

satellite, the state vector for the potential function in this section contains 6 elements. 

Orbital elements are used instead of the position and velocity vectors to take advantage of 

the versatility of the shaping matrix M. The use of M is explained shortly. 

First, define the state of the system as the difference between the actual orbital elements 

of a satellite and the orbital elements of the nominal trajectory 

z(r) = x(0-r(0 (4.38) 

The motion of the state is described by 

z(0 = x(/)-r(0 (4.39) 

Now define a potential function V as 

F = -zrMz (4.40) 
2 . 

Since M is a positive definite matrix, equation 4.40 is assured to be a positive definite 

function. Note that the eigenvectors of the shaping matrix M determine what the 7- 

dimensional plot of the potential function is. The shape is particularly important when 

using the method of steepest descent to determine control inputs. This method causes the 

state trajectory to converge to the origin using a path that depends on the 'shape' of the 

function V. If M is a diagonal matrix, then increasing the i* component of the diagonal, 

whose values have already been scaled to balance the units of the different elements, 
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causes a 6-dimensional 'valley' to form in the direction of the i* component. Valleys in 

the potential function can be created to make the controlled system reduce the error in 

certain orbital elements before addressing others. Adjusting the components of M is left 

as a direction to explore once a Lyapunov controller is fully implemented. 

The gradient and time derivative of the potential function are 

dV 
W = — = Mz (4.41) 

OZ 

JT7 

V = —- = [VF]rz = zrMz (4.42) 
at 

respectively.    To insure that V   is negative definite, the following discrete control 

function is introduced 

jl,   V{t)>Q,andz{t)>8rdb 

10,   elsewhere 

Using the steepest descent method, the instantaneous control input must be 

Az = z(t+)-z(r) = -KVV -z(r) = -KMz-z(r) (4.44) 

If this control input can be executed, the time derivative of the potential function 

immediately after the control input becomes 

V(t+) = -K\VV\2 (4.45) 

which is clearly negative definite. The conditions for Lyapunov asymptotic stability have 

been theoretically obtained. The next step is to ascertain whether the control input is 

feasible. 
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Equation 4.44 suggests that the control input must cause an instantaneous change in the 

difference of the orbital element rates while maintaining continuity in the difference of 

the orbital elements. Since the reference trajectory is unaffected by disturbances or 

control inputs, 

r(f+) = r(f) = r(0        °r       Air = ° • (4-46) 

Applying equation 4.39, the control input becomes 

Az = A± = -KMz-z(r) (4.47) 

which correctly implies that only the actual satellite executes the control. The required 

control input, then, is an instantaneous change in the orbital element rates of the satellite 

with no accompanying change in the orbital elements themselves. Clearly, this can not 

be accomplished with a single impulsive burn. Therefore, the system does not have 

enough control authority to execute this maneuver as an instantaneous change. 

The application of the potential function of equation 4.40 can be salvaged by taking 

advantage of the manner in which the control system is implemented. As explained in 

the introduction of section 4.3, the state of the satellite with respect to the nominal 

trajectory is sampled only at iteration time steps. Control inputs are also only 

contemplated at these times. Let t0 be the time of the current iteration time step and t0+At 

the time of the next iteration time step. If the satellite had enough control authority to 

execute the required maneuver, no further maneuvers could be contemplated until the 

next time step anyway. Therefore, if we can apply a series of impulsive burns, over the 

time span from t0 to t0+At, that cause the satellite to attain the state that it would have 

attained by implementing the original instantaneous maneuver, then we will have 
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successfully simulated that instantaneous maneuver. The following paragraphs explain 

how this simulation is accomplished. 

First, propagate the nominal state and actual satellite state to the next iteration time 

assuming no control input at the current time. Note that the propagation of the nominal 

trajectory does not include unwanted perturbations that are treated as disturbances. The 

state difference at t0+At is 

W.+ A') = w.+ A') - W-+ Ar) (4-48) 

where the subscript 'prop' refers to element sets determined through orbit propagation of 

the original state and state rate at time t0. For a small At, we can assume that 

7 
prop (t0+At)*z(to) + [z(t0)]At (4.49) 

This formulation neglects second order effects on the orbital elements. Since At must be 

less than one orbital period, equation 4.49 is a valid estimate. 

Now, if an instantaneous  Az had been applied at time t0 such that there was no 

accompanying Az, then to first order, the perturbed state difference at time t0+At would be 

Zperl (t0+At) = z(t0) + [z(t0) + Az]At (4.50) 

where the subscript 'pert' refers to element sets determined through orbit propagation of 

the original state and perturbed state rate at time t0. Substituting equation 4.49 into 4.50 

results in 

ZpeAt0+&)*zpr0p(t„) + [Ai]At (4.51) 
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Since no control measures affect the nominal trajectory, 

i> (t0 + At) = rprop (t0 + At) (4.52) 

Using equation 4.52, equation 4.51 can be restated as 

*perl (t. + Ar) « xpn>p (t0) + [Az]At (4.53) 

If x(t0) is considered the initial state and Xpert(t0+At) is considered the target state, then 

primer vector theory can be applied to calculate a near-optimal n-impulse transfer 

trajectory. Allowing the actual satellite to follow this transfer trajectory brings it to the 

same state as would have been obtained if an instantaneous change Ax had been possible 

at time t0. It is important to note that this process simulates the effects of an 

instantaneous change in state rate (Ax) on the state, but not on the state rate itself. If 

second order information is available, then a similar procedure can be constructed to 

estimate the effects on the state rates as well. 

The use of this procedure, which simulates an instantaneous Ax control input over the 

following iteration time interval, retains the stability properties defined by meeting 

Lyapunov's conditions for stability. There is still some important information which 

remains unused, however. The DSST orbit propagator generates satellite orbital elements 

and orbital element rates. The use of these rates in the potential function may improve 

the performance of a Lyapunov controller. 
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4.3.3 Potential Function with Full State and State Rate 

The variable notation for this section is the same as for the previous section with a few 

exceptions. M is now the 6 x 6 positive definite shaping matrix for z, and a new 6x6 

positive definite matrix, N, is the shaping matrix for z. 

To incorporate state rate information into the control process, define a new potential 

function 

F = -zrMz + -zrNz (4.54) 
2 2 

Note that this potential function does not reach a value of zero when the nominal and 

actual trajectories are the same. This is because z(t) * 0 when z(/) = 0. In fact, because 

disturbing perturbations are always present, z(7) does not equal 0 for any time t. 

However, this potential function may qualify as a Lyapunov function for an equilibrium 

point described by 

zrMz = -zrNz (4.55) 

To be sure, we need to show that the gradient of V at the equilibrium point of equation 

4.55 is zero. 

Begin by first calculating the partial derivatives of the potential function. The partial 

derivative of V with respect to the state difference, z, is 

dV 
—— = Mz + 

dz_ 

dt 

T 

N z (4.56) 
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The partial derivative of z with respect to z is essentially the matrix of partial derivatives 

which defines the dynamics of z. Sometimes it is also referred to as the force matrix. If 

A,-- (4.57) 

then 

= A, «>,(/, r) (4.58) 
dt 

where 0(t,x) is the state transition matrix for z such that 

z(0 = ®(r,r)z(r) (4-59) 

To find the components of A,, take the partial derivative of the two sides of equation 

4.39. This results in 

d%     dx dx    dr dr 

dx    dx dx    dx dz 

Taking the partial derivative of equation 4.38 with respect to x and r, results in the 

following equations. 

*    I-£ (4.61) 
ox ox 

dz    dx .. ... 
— = —-I (4.62) 
or    or 

Since the motion of x and r are independent of each other 
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dx dx 
— = 0       and       — = 0 (4.63a,b) 
dx ox 

Substituting equations 4.61, 4.62, 4.63a, and 4.63b into equation 4.60 yields 

dx    dx    dx 
A  = — = — -— (4.64) 1    dx    dx    dx y      } 

which is equivalent to 

A  = A,-Ar (4.65) 

The formulation of Az in equation 4.65 is convenient because the DSST orbit propagator 

analytically calculates the Ax and Ar matrices for 2-body + J2 geopotential dynamics in 

the process of propagating the x and r states, respectively. Since the perturbation caused 

by the J2 geopotential is three orders of magnitude greater than the effect of the next 

largest geopotential term, and the time interval between iteration time steps is less than 

one orbital period, using the A matrices provided by the propagator is an acceptable 

approximation. 

Having solved for dx/dx, equation 4.56 becomes 

dV 
— = Mz+A/Nz (4.66) 
dx 

The partial derivative of V with respect to the state difference rate, z, is 

dV 
— = Nz + 
dx 

dx 

dx 

T 

Mz=Nz+A "rMz (4.67) 

Since A^ is the result of subtracting two matrices which describe very similar motions, it 

is likely to be singular or near-singular.   Trying to find its inverse could be a very 
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difficult task if it is possible at all. Instead, consider what d z Id z means. It represents 

the affect on the state of changing the state rates. This analogous to second order terms 

such as z. If we assume that z varies very slowly through the course of an orbit, then 

we can ignore all second order terms and dzldz. This assumption may not be valid for 

highly eccentric orbits or those orbits heavily affected by atmospheric drag. If such an 

assumption is made, though, equation 4.67 becomes 

dV 
— = Nz 
dz 

(4.68) 

Having expressions for the partial derivatives, the gradient of the potential function is 

VV = 

~ dV~ 

dz 
dV 

_dz_ 

= 

Mz + A/Nz 

Nz 
(4.69) 

The control input needed to follow the steepest descent method results in the following 

motion 

z(0 
z(0 

= -K[VV(t+)] = -K 
Mz(t+) + Az(t

+)TNz(t+) 

Nz(0 
(4.70) 

As with the previous potential functions, the satellite orbital element state x must be 

constrained so that it is continuous across the control input. Since the trajectory is 

unaffected by the controls, the state difference, z, and its associated force matrix, A^, 

must also be continuous across the control event. 

z(t+) = z(t ) = z(r)        and 

Az(O = Az(O = Az(0 
(4.71a,b) 
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Ignoring the second order requirements and incorporating the continuities defined by 

equations 4.71a and 4.71b, equation 4.70 becomes 

z(0 = -£[Mz + A/Nz(7+)] (4-72) 

Solving for z(7+) yields 

z(t+) = -K[l + KAz
TN]~1Mz (4.73) 

Since z is continuous and second order terms with z are ignored, the control input must 

be 

Az = z(r+) - z(r) = -z(r) -K[I + KA/ N]"
1
 M Z (4.74) 

A impulsive thruster cannot achieve the change in state difference rates required by 4.74. 

Therefore, the method of simulating an instantaneous change in state difference rates 

through with the use of a series of impulsive burns over the following iteration time 

interval, described in section 4.3.2, must be used. The resulting control system 

incorporates orbital elements and orbital element rate information to track a nominal 

trajectory. Note that the existence of the first order assumption needed to go from 

equation 4.70 to equation 4.72 may restrict the type of orbits this controller is good for. 

To appreciate how state difference rate information changes the control law, recall the 

control law obtained from the previous potential function which did not include the state 

difference rate. This control law is restated as equation 4.75. 

Az=-z(t')-KMz (4.75) 

173 



The state rate contribution is introduced with the KA,N term of equation 4.74. Since A, 

is a sparse matrix, the instantaneous control inputs defined by equations 4.74 and 4.75 are 

nearly parallel. The effectiveness of each of the control laws can be determined by 

implementing them on a simulation like the one developed for this project. 
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Chapter 5 

Automated Station-Keeping Simulator 

The Automated Station-Keeping Simulator is a technology demonstration software 

product which combines an accurate satellite orbit propagator and an optimal impulsive 

rendezvous planner to test different control methodologies for the constellation station- 

keeping problem in a parallel computing environment. This unique combination of 

functions has been assembled as a tool for the orbit designer as well as the orbit 

maintainer. For the designer, it provides a detailed and accurate analysis of the 

performance of a constellation's orbit over long time spans. And for the maintainer, it 

provides a method for easily testing different station-keeping controllers and measuring 

their comparative performance. 

This chapter begins with a summary of the capabilities of the simulator. Section 5.2 

contains an overview of the operations and data flow at all levels of the software. Section 

5.3 outlines some of the important data structures in the code and the software features of 

many of the routines. Section 5.4 contains a description of an input file. Section 5.5 

describes the networking environment used for this thesis project. Section 5.6 lists the 

current location of the ASKS source code and output of the simulation runs conducted for 

this project. And finally, several areas for future improvements are discussed in section 

5.7. 
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5.1 Capabilities 

The Automated Station-Keeping Simulator (ASKS) was designed to be an accurate, 

useful tool that can be applied to virtually any type of satellite constellation. Special care 

was taken throughout the development process to avoid making assumptions about the 

constellations to be considered, thus making it as generally applicable as possible. ASKS 

is also a work in progress. It is expected that more functionality will be added in the near 

future. The capabilities of the current version of ASKS are summarized below. 

ASKS can operate on constellations of any size. The number of satellites in the 

constellation defines the number of processes that will execute simultaneously to solve 

the problem. Therefore, given a fixed amount of computing capability, it takes longer to 

run for a larger constellation. But since ASKS operates in a parallel processing 

environment, computing capability can be added by simply adding more workstations to 

the parallel network, and distributing the workload. When using the Message Passing 

Interface (MPI), this is as easy as adding the names of the additional workstations onto a 

list. This capability allows for the use of several standard workstations rather than 

requiring one more powerful machine when dealing with larger constellations. 

ASKS is capable of studying satellite orbits of virtually any type: LEO, MEO, HEO, 

GEO, etc. There is also no requirement for the orbits to be circular or near-circular. The 

DSST orbit propagator has demonstrated accuracy with medium and highly eccentric 

orbits [1,23]. Since equinoctial elements are used in the propagation, the singularities 

traditionally faced with circular and equatorial orbits don't exist. However, ASKS is not 

capable of dealing with parabolic or hyperbolic trajectories. None of the generated 

impulsive burns will transfer the satellite out of elliptical orbit. 
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In addition to accepting general orbits, the simulation includes accurate perturbation 

modeling. The user has the option of switching on the following perturbing effects in 

both the nominal and actual satellite trajectories: 

• spherical harmonics to arbitrary degree and order 

• solar radiation pressure 

• atmospheric drag, and 

• solar/lunar third body point mass disturbances 

A Jacchia-Roberts atmospheric density model, which incorporates monthly solar flux and 

geomagnetic indices provided by Schatten [7], is used in the determination of the drag 

effects. All perturbation models are implemented within the DSST orbit propagator. In 

comparison tests with other general perturbation and semi-analytic propagators, DSST 

proved to be an excellent compromise between computational efficiency and prediction 

accuracy [1]. 

One of the most adaptable aspects of ASKS is the way it deals with station-keeping 

controllers. In its current version, there are four controllers available. Each of these is 

discussed in greater detail in the following chapter. For any of the controllers, however, 

the user is able to define the orbital element limits of the satellites, as well as the way and 

amount in which each of the elements are to be corrected. Note that the orbital element 

limits must apply to every satellite in the constellation. Adding more control 

methodologies only requires modification of one subroutine, target. 

During a run, ASKS stores the nominal state, nominal state rate, actual state, actual state 

rate, and their respective differences at each iteration time step. In addition, it calculates 

and stores the magnitude, direction, and time history of the sequence of optimal n- 

impulse transfers required to stay within the user defined orbital element limits.   The 
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Simulation also provides the coverage of the satellite constellation at each time step. N- 

way coverage information is available for different latitude bands across the Earth. This 

option is included for communication constellations that have coverage requirements over 

only populated areas. 

5.2 System Design 

The operating architecture of the ASKS design includes two functional categories: 

ground station and satellite. This architecture was chosen to emulate the operation of a 

real constellation. All communication between the functional elements is analogous to 

communication between two satellites or between satellite and ground station. All the 

duties of the ground station are executed by one process while each satellite in the 

constellation executes on its own process. Therefore, for an n satellite system, there are 

n+1 simultaneous processes executed for a run. These processes communicate 

information to each other using the Message Passing Interface (MPI) [27,56]. MPI is a 

list of communication protocols common across a distributed network of workstations. 

Actual constellations will include a capability called crosslink. This means that 

neighboring satellites in the constellation can communicate with each other independent 

of the ground station. While MPI allows independent communication between 

subordinate processes, the current version of ASKS requires all communication to go 

through the ground station first. Note that in the following sections, the terms 'ground 

station' and 'satellite' are often used to designate the computer processes that simulate 

their actions. 
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5.2.1 Ground Station Operation 

The ground station process duties include obtaining the constellation profile from the 

input file, transmitting the appropriate satellite state and nominal state to each satellite 

process at startup, updating the nominal mean anomalies and ascending nodes of each 

satellite at each time step, calculating coverage at each time step, and storing all the 

constellation data at each time step in an output file. Figure 5.1 illustrates the process in 

flowchart form. All boxes with bars at the sides symbolize actions that involve 

communication with multiple satellite processes. 

obtain constellation data 
from input file 

determine length of 
execution 

(# of frames) 

transmit satellite specific 
data to each 

satellite process 

receive current M and 
Q from each satellite 

detemine new nominal M 
and Q. for each satellite 

transmit new nominal M 
and n to each satellite 

update tcurr 

to next time step 

output frame data to file 

calculate constellation 
coverage 

receive frame data from 
each satellite 

Figure 5.1: Ground Station Process Flowchart 
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The term used to define all the operations in one time step is the frame. The frame 

number is important for synchronizing communications with the subordinate satellite 

processes. For example, when collecting the mean anomaly and ascending node from 

each of the satellites at a time step, it is important to use only information from that time 

step alone. This is done by tagging the transmitted information with the frame number of 

the time step. Therefore, when collecting information from the multiple satellite 

processes, the ground station will only access communication packets that are tagged 

with the frame number of interest. 

The mean anomaly M and the ascending node Q for the nominal trajectories of the 

satellites are recalculated at each time step to take advantage of the M and Q motions of 

the actual satellites, which are common across the planes and constellation. For example, 

there is no need to correct the mean anomaly disturbance of a satellite from its nominal 

value if the remaining satellites in the same plane experience the same disturbance. Since 

relative mean anomaly spacing is the factor of interest, the nominal mean anomaly values 

for each satellite in a plane are updated at each time step so that the sum of the square of 

the difference between the actual and nominal M values are minimized. This method 

requires the least amount of correction for the entire constellation. A similar procedure is 

applied for the relative spacing of the ascending nodes of the planes in the constellation. 

Global coverage is calculated using a software package developed by Brian Kantsiper 

[35]. This package analytically calculates the n-way coverage of a constellation, 

averaged over one orbital period, using the inclusion-exclusion principle. It allows for 

the use of elliptical orbits and has the capability of applying latitude restrictors so that 

coverage at particular latitude bands can be analyzed. This coverage utility was chosen 

because calculating coverage analytically is significantly more efficient than using 

numerical techniques for constellations of less than approximately 50 satellites [35]. 
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5.2.2 Satellite Operation 

Each satellite process is responsible for continuously propagating the nominal and actual 

states of the satellite assigned to it by the ground station. A satellite process operates on 

the same satellite throughout the run. 

receive satellite specific 
info from ground station 

transmit current M and 
Q to ground station 

receive new nominal 
Mand Q from 
ground station 

calculate differences between 
nominal and actual states 

and state rates 

calculate target state for 
next iteration time 

update t    to next time step 

transmit frame data to 
ground station 

propagate nominal state to 
next iteration time 

propagate current state to 
next iteration time 

propagate current state to 
next iteration time applying 

the calculated burnlis 

DSST 

calculate optimal n-impulse 
transfer from current state to 

target state 

Primer Vector 
l  _ _ _ _ ' 

Targeting Method 

Figure 5.2: Satellite Process Flowchart 
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Figure 5.2 below illustrates all the major functions involved. As in figure 5.1, boxes with 

bands at the sides indicate functions which involve communication with the ground 

station. 

The operations involved in each time step are divided into three major functions. The 

first, defined by the targeting method, compares the difference between the actual state 

and the nominal state to the orbital element limits of the satellite in order to determine if a 

correction needs be made in this time step. Note that this comparison is made using a 

nominal state whose mean anomaly and ascending node has already been modified by the 

ground station based on the states of the other satellites in the constellation. If a 

correction is required, the appropriate target state for the actual satellite at the next 

iteration time step is calculated based on the control law. The second function, which 

applies Primer Vector theory, calculates the near-optimal n-impulse transfer trajectory to 

the future target state. The transfer trajectory is defined by the impulsive burns that form 

the burnlist. The third function, orbit propagation, is executed by the DSST interface. If 

a controlled transfer trajectory is required, then the current actual state is propagated with 

the burnlist included. If no correction is required, then the actual state is propagated 

freely. The nominal state is always propagated freely. 

The calculation of the transfer, or rendezvous, trajectory and the operation of the DSST 

orbit propagator interface are outlined in the following two subsections. 

5.2.3 Rendezvous Trajectory Planner 

The rendezvous trajectory planner is responsible for calculating a near-optimal n-impulse 

transfer between a given initial and final state over the defined transfer time.    It 
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accomplishes this task by implementing the principles of Primer Vector theory described 

in Chapter 2. The entire operation of the trajectory planner, outlined in figure 5.3 below, 

falls into the "Primer Vector" box of figure 5.2. 

near-optimal n- 
impulse burnlist 

calculate terminal position and 
velocity vectors 

establish state and primer vector 
trajectories between initial and 

final state 

determine 2-burn burnlist 

find maximum value of primer 
vector magnitude 

determine estimate of time where 
addition of an intermediate burn 
results in lowest aggregate AV 

Yes 

optimize the n-burn solution over 
the aggregate cost 

determine n-burn burnlist 

establish state and primer vector 
trajectories between terminal and 

final state 

Figure 5.3: Rendezvous Trajectory Planner Flowchart 
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The optimization algorithm used is Powell's method [45]. This is a direction-set 

algorithm which finds the minimum of a multidimensional function without using 

derivatives. It operates by minimizing the function along a series of multidimensional 

directions until global minimization occurs. The function value in this application is the 

characteristic velocity, or total AV. The independent variables are the intermediate burn 

times. 

The maximum number of impulses allowed in each transfer, n^, and the discretization 

size of the time grid between the initial and final state times are both defined by the user 

in the constellation input file. The minimum allowable value for n^ is 2. Increasing 

n,^ will result in a lower total delta-V expenditure. However, since optimization and 

recalculation of the primer vector and state trajectories are computationally expensive, the 

minimum value of n^ that yields acceptable burn magnitudes should be used. In 

practice, increasing n^ past 4 or 5 results in only marginal improvement in the 

characteristic velocity. Note that the flowchart in figure 5.3 identifies n < n,^ and |X,|max > 

1 as the only conditions for exiting the control loop. In actuality, if the improvement in 

the cost with the addition of the (n+l)st burn is not greater than a specific tolerance value, 

then the extra burn in not included and the loop is terminated. 

The output of the trajectory planner algorithm is an n-element burnlist containing the 

impulsive velocity vectors to apply and the times to apply them. 

5.2.4 Orbit Propagator 

The orbit propagator is used for many different purposes in this project.   Figure 5.4 

illustrates the flow of the DSST software interface algorithm. 
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Figure 5.4: Orbit Propagator Operation Flowchart 

The interface is capable of extracting the state and state rate at all request times, and the 

state transition matrix from the epoch time to all request times. It can output the state and 
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State rate in equinoctial or Keplerian element set notation. The state transition matrix 

contains the partial derivatives of the Cartesian position and velocity at the request time 

with respect to position and velocity at the epoch time and includes only the central body 

gravitation and J2 zonal harmonic. 

For input, the interface can accept the epoch state in equinoctial elements, Keplerian 

elements, or even inertial position and velocity vectors. The request times are defined by 

an initial request time, final request time, and a time step size. The bumlist must include 

the time of each burn, in seconds since the epoch time, and the impulsive velocity vector 

in inertial coordinates. Other inputs which must be specified are the direction of the 

propagation (forward / backward), the number of burns in the burnlist, and the 

perturbation models to use. 

Note that the averaged orbit integrator reinitializes the integrator parameters and force 

models every time there is an impulsive burn. Therefore, the propagation time is 

significantly lengthened when there is a burnlist involved. The run time also increases 

with the addition of perturbations, particularly drag. 

5.3 Software Implementation 

The following section outlines the structure of the ASKS code. Because of the 

complexity and layers of operation, the outline is broken up into four distinct functional 

groups: constellation level, satellite level, optimal n-impulse transfer, and DSST 

interface. These groups roughly correspond to the flowcharts in the four subsections of 

section 5.2. 

186 



5.3.1 Constellation Level 

The constellation level is the top level execution of the ASKS, n+1 copies of program 

const Jceep are begun with the UNIX MPI executable command: 

mpirun  -np XX const_keep 

where XX is the number of processes specified by the user. This number must be one 

more than the total number of satellites specified in the input file. The extra process is for 

the operation of the ground station function. The n+1 copies of const Jceep are each 

assigned a task id number, ranging from 0 to n, by MPI. Process 0 assumes the role of 

the ground station. Processes 1 to n assume the role of satellites 1 through n, whose 

numbers are defined in the input file. If a process recognizes itself as the ground station, 

it ignores the satellite portion of the code and executes only the ground station functions. 

The constellation level software structure is illustrated in figure 5.5. The box grnd_stat 

has a dotted line because it does not exist as its own routine. Instead, it is embedded in 

the constjceep routine. If a process recognizes itself as a satellite, it will ignore the 

grounds station portion of constjceep and initiate the call to routine sat Jceep, which 

includes all satellite operations. This level of the code is discussed in the next subsection. 

const_keep 

J  

:    grnd_stat    : 

 f  
1 | 

getlnput coverage 

sat_keep gblcomm 

Iclcomm 

gs_sat_comm 

■— new ref comm 

MPI Communication Routines 

Figure 5.5: Constellation Level Software Structure 
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The four MPI communication routines are called upon by each of the different copies of 

const_keep to communicate with each other. Routine gblcomm allows the ground station 

to broadcast data that is relevant to all the satellites as a global communications packet. 

Routine Iclcomm is used when the ground station must communicate satellite specific 

data to a particular satellite. Routine gssat_comm is used by the individual satellites to 

transmit frame data to the ground station at each iteration time. And routine 

new_ref_comm is used in the process of updating the nominal mean anomaly and 

ascending node of each satellite at each iteration time. Since these last two routines are 

needed at each time step, they are also called within the satellite process. 

5.3.2 Satellite Level 

The satellite level is entered from const_keep by each of the satellite processes when the 

satellite number, epoch nominal state, epoch actual state, run time, and orbital element 

limit information is known. All communication with the ground station is executed 

through routines new_ref_comm and gs_sat_comm. 

sat_keep 

potterms target getref 

sat_prop_mod getBurnlist 

new ref comm 

i—   gs_sat_comm 

MPI Communication 
Routines 

Figure 5.6: Satellite Level Software Structure 
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The software structure, shown in figure 5.6, is closely linked with the satellite operations 

flow shown in figure 5.2. The calculation of the state and state rate differences is 

conducted in routine potterms. The name for this subroutine is a concatenation of the 

phrase 'potential function terms'. When a Lyapunov based controller is installed, this 

routine will be expanded to include the calculation of the artificial potential function. 

The calculation of the target state for the next iteration time is conducted in routine 

target. Currently, there are four targeting options. Additional targeting options, 

including Lyapunov based control laws are to be added to this subroutine. 

The calculation of the optimal n-impulse trajectory is conducted in routine getBurnlist. A 

more detailed explanation of its structure is provided in the following subsection. 

Routine sat_prop_mod is used to propagate the actual state of the satellite, with or 

without an attached burnlist. It is explained further in subsection 5.3.4. The nominal 

state is propagated to the next iteration time by routine getref. This is done differently to 

allow multiple ways to define the nominal trajectory. For example, getref currently 

contains an option to propagate the nominal state using fixed element rates defined in the 

input file. This method bypasses the orbit propagator. Note, however, that this fixed 

rates method is not valid if the actual state output is in the Mean of 1950 frame. This 

capability will become useful only after the orbit propagator has been modified to output 

in the current true of date frame. 

5.3.3 Optimal N-Impulse Transfer 

Routine getBurnlist contains all the programming required to calculate a near optimal n- 

impulse orbital rendezvous to a target state in a defined time. This routine, and all of its 

dependencies, can readily be extracted from the const_keep program and used elsewhere 
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for the same function. Because it involves the iterated use of an optimization scheme, it 

is also the most computationally demanding part of the overall program. If the user limits 

the number of burns for the transfer to two, then the solution defined by the Lambert 

trajectory connecting the initial and final state is quickly output. Any number greater 

than two requires the execution of the Primer Vector theory code. Figure 5.7 contains the 

structure of the getBurnlist routine. 

setarc 

getBurnlist 

getCmin p owe 11 func 

sat_prop_mod matinv flspos lambert full 

lambert 2bod sat_prop_mod 

Figure 5.7: Transfer Trajectory Planner Software Structure 

initial orbit / final orbit 

Figure 5.8: 4-Impulse Transfer Trajectory 
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One of the first tasks addressed by getBurnlist is establishing data structures that make 

the analysis of the transfer trajectory and the primer vector trajectory connecting the 

terminal states easier. Consider the n-impulse transfer trajectory connecting the initial 

and final state to consist of (n-1) coasting arcs, or periods where there are no burns. 

An example of a 4-impulse transfer is shown in figure 5.8. (r^vj and (rB,vB) are the 

initial and final position/velocity vectors, respectively, corresponding to the initial and 

final state. Each of the three coasting arcs is defined by the position, velocity, and time of 

its start and the position, velocity, and time of its end. If there are j coasting arcs 

connecting the initial and final state, then a j x 18 element matrix, with components as 

defined in table 5.1, completely describes the transfer trajectory. This matrix variable is 

called coast_arc. For the 2 burn solution, it has only one row. Every additional 

intermediate burn adds one more row while, but the total time span (ie the transfer time 

defined by tB-tA) remains the same. 

Table 5.1: coast arc Matrix 

Element Data Item Description 

0,1) ''O^date date of beginning of coasting arc j (YYYYMMDD.O) 

(j,2) *"OJ,time time of beginning of coasting arc j (HHMMSS.SSSS) 

0,3) ^(oj)-epoch time since beginning of first coasting arc (sec) 

0,4-6) roJ 
position vector at beginning of coasting arc j (km) 

0,7-9) V°j 
velocity vector at beginning of coasting arc j (km/sec) 

0,10) Hj.date date of end of coasting arc j (YYYYMMDD.O) 

0,11) Tj.time time of end of coasting arc j (HHMMSS.SSSS) 

0,12) At(fj)-epoch time since beginning of first coasting arc (sec) 

0,13-15) rfJ 
position vector at end of coasting arc j (km) 

0,16-18) Vfj 
velocity vector at end of coasting arc j (km/sec) 
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For every coasting arc in the state trajectory, there is a corresponding arc in the primer 

vector trajectory. In Chapter 2, we demonstrated that the state transition matrix operates 

on the primer vector and its derivative as it does on the position and velocity deviations 

from a reference trajectory. To calculate the primer vector history between burn times, 

then, the primer vector and its rate must be known at the terminal times of each of the 

corresponding coasting arc. To store this data, a data structure similar to coastjxrc, 

called lamda_arc, was developed. It is described in table 5.2. 

Table 5.2: lam da arc Matrix 

Element Data Item Description 

0,1) '■oj.date date of beginning of coasting arc j (YYYYMMDD.O) 

0,2) ^oj,time time of beginning of coasting arc j (HHMMSS.SSSS) 

0,3) (oj)-epoch time since beginning of first coasting arc (sec) 

0,4-6) ** 
primer vector at beginning of coasting arc j 

0,7-9) [d^/dt]oJ primer vector rate at beginning of coasting arc j 

0,10) 4j,date date of end of coasting arc j (YYYYMMDD.O) 

0,n) nj.time time of end of coasting arc j (HHMMSS.SSSS) 

0,12) At(fj)-ep°<* time since beginning of first coasting arc (sec) 

0,13-15) ^fj 
primer vector at end of coasting arc j 

0,16-18) [dA./dt]fJ 
primer vector rate at end of coasting arc j 

Routine setarc establishes the coast arc and lamdajxrc matrices and fills them with the 

2-burn transfer trajectories. These matrices are expanded each time an interior burn is 

added within the loop in figure 5.7. 

Routine getCmin conducts the coarse grain search for the time to add an interior burn. It 

begins by calculating the primer vector trajectory on a discretized time grid over all the 

coasting arcs.   If the primer vector magnitude, |A,|, is greater than one on any of these 
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trajectories, then an additional interior burn is required. For every grid point where \X\ is 

greater than one, getCmin calculates the characteristic velocity of the transfer that results 

from adding an interior burn at that grid point time. The minimum characteristic velocity 

at all of these points is Cmin. The grid point time associated with Cmin is a coarse 

approximation of the best time to add another interior burn. 

Since the time on the discretized grid is not entirely accurate, an optimized time is 

determined by routine powell, which implements Powell's function minimization. The 

function to be minimized is the total characteristic velocity of the impulsive transfer. 

Note that powell varies all the interior impulse times to find the minimum, not only the 

newly added impulse time. 

For a given set of interior burn times, routine func calculates the resulting characteristic 

velocity, matinv, a preexisting routine, is used to calculate the inverse of the A matrix 

described in equations 2.29 and 2.30. It executes the Moore-Penrose generalized inverse 

algorithm. Routine flspos is also a preexisting routine. It executes a binary search for the 

roots of a given equation. In this context, it is used to find the optimal magnitude of an 

interior impulse given its firing time. It finds the root of equation 2.36, which defines the 

impulse magnitude that causes the biggest improvement in the cost function. 

Routine lambertjull is used to calculate precise Lambert trajectories connecting any two 

states. It incorporates non-2 body motion with the use of a targeting correction 

algorithm. The targeting error of a 2 body Lambert trajectory is repeatedly fed back to 

correct the target state until convergence to the original target is achieved. This 

procedure is similar to a sharp shooter purposely aiming a rifle off target to account for 

wind along the path. The 2 body Lambert trajectory is calculated by lambert_2bod. The 

targeting error is determined with the use of the orbit propagator, which is accessed 
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through the sat_prop_mod interface. The difference of the final transfer orbit state 

obtained through a full perturbation model propagation and the 2 body transfer orbit final 

state is the error. The correction process is repeated until the required accuracy is 

obtained. This process is explained further in reference 3. 

The final result of routine getBurnlist is an n-element burnlist which describes the time, 

magnitude and direction of all the burns. The array which holds all the burn information 

is called burnlist and is described in table 5.3. Note that the j* and (j+l)* burns 

encompass the j* coasting arc of table 5.1. 

Table 5.3: burnlist Array 

Element Data Item Description 

(lj) 4>urnj time of j* burn (sec since epoch) 

(2-4 j) AV, j* delta-V vector in inertial coordinates (km/sec) 

5.3.4 DSST Software Interface 

Every call to the orbit propagator must invoke the interface routine satjyropjnod.  The 

software structure of the DSST interface is illustrated in figure 5.9. 
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Figure 5.9: DSST Interface Software Structure 
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For the input epoch state, satjpropjnod is capable of accepting mean Keplerian 

elements, mean equinoctial elements, or their equivalent Cartesian position and velocity 

vectors. Routines eqnkep and equin are used to convert the Keplerian elements and the 

position / velocity vectors, respectively, to the equinoctial elements for use by the orbit 

propagator. The interface can output the orbit state, state rates, and the J2 state transition 

matrix at each request time. 

The epoch time, epoch state vector, and satellite physical properties are input with the 

satopt_dbl array. All the elements of this array are double precision real variables. The 

format of the satopt_dbl array is described in table 5.4. 

Table 5.4: satopt_dbl Array 

Element Data Item Description 

1 *epoch,date date of epoch state (YYYYMMDD.O) 

2 ''epoch.time time of epoch state (HHMMSS.SSSS) 

3 a* semi-major axis* (km) 

4 e* eccentricity* 

5 i* inclination* (deg) 

6 Q' ascending node* (deg) 

7 CO* argument of perigee* (deg) 

8 M' mean anomaly* (deg) 

9 CD coefficient of drag 

10 Pi atmospheric density correction factor 

11 mSc mass of spacecraft (kg) 

12 Asc 
area of spacecraft perpendicular to direction of 
motion (km2) 

13 At, step size for averaged orbit integrator (sec) 

'elements can be equinoctial or position/velocity as well 

The orbit propagator also needs to know the perturbations to use in the propagation. This 

is accomplished with the satoptjnt array. All of its elements are integers. 
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Table 5.5: satoptjnt Array 

Element Data Item Description 

1 Retro retrograde factor: 
1 = direct equinoctial elements 

-1 = retrograde equinoctial elements 

2 Atmos Mdl atmospheric model: 
1 = Jacchia-Roberts 

3 Potent Mdl potential model for spherical harmonics: 
4 = JGM2 

4 Nmax maximum degree of central body spherical 
harmonics 

5 Mmax maximum order of central body spherical 
harmonics 

6 Izonal zonal harmonic averaging option: 
1 = analytical averaging 
2 = numerical averaging 
3= off 

7 IJ2J2 first order J2
2 effect: 

1 = On          2 = Off 

8 Nmaxrs maximum resonant degree 

9 Mmaxrs maximum resonant order 

10 Ithird solar/lunar third body effects: 
1 = analytical averaging 
2 = numerical averaging 
3 = off 

11 Ind Drg atmospheric drag effects: 
1 = On          2 = Off 

12 Iszak J2 height correction for atmospheric drag: 
1 = On          2 = Off 

13 Ind Sol solar radiation pressure effects: 
1 = On          2 = Off 

14 Nstate output state transition matrix? 
0 = No          6 = Yes 

Note that the 14th element of satoptjnt, Nstate, is the switch for producing the J2 state 

transition matrix. 
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Rather than passing through an exhaustive list of the request times for the orbit 

propagator, sat_prop_mod uses the intervals array. Only the initial request time, final 

request time and time step are needed. The format of the intervals array is shown in table 

5.6. Routine crrequestjimesjnod produces the actual list of request times from the 

intervals array. Routine sort timesjnod takes these request times and the burn times 

defined in the burnlist array and sorts them to produce the integrator times. Each 

integrator time is tagged with a logical variable which indicates whether it is an output 

request time or a burn time. 

Table 5.6: intervals Array 

Element Data Item Description 

1 ^star^date date of beginning of request interval (YYYYMMDD.O) 

2 ■-start, time time of beginning of request interval (HHMMSS.SSSS) 

3 ^end,date date of end of request interval (YYYYMMDD.O) 

4 ^end.time time of end of request interval (HHMMSS.SSSS) 

5 At time step (sec) 

All interaction with the DSST orbit propagator code is accomplished through three DSST 

routines. Routine intanl transforms the mean elements at epoch from the input coordinate 

system into the integrator coordinate system and initializes the generator force models. 

Routine beganl starts the semi-analytic orbit generator. It must be told which direction 

the propagation is to follow. Routine orbanl integrates the equations of motion to the 

current request time and produces the requested output. 

The state and state rate output of sat_prop_mod is placed into array satdata. Its format is 

described in table 5.7. 
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Table 5.7: sat data Array 

Element Data Item Description 

0,k) Mate,k output date of k"1 request time (YYYYMMDD.O) 

(2,k) nime.k output time of k* request time (HHMMSS.SSSS) 

(3,k) a* semi-major axis* (km) 

(4,k) e* eccentricity* 

(5,k) i* inclination* (deg) 

(6,k) Q* ascending node* (deg) 

(7,k) CO* argument of perigee* (deg) 

(8,k) M* mean anomaly* (deg) 

(3,k) [da/dt]* semi-major axis rate* (km/sec) 

(4,k) [de/dt]* eccentricity rate* (1/sec) 

(5,k) [di/dt]' inclination rate* (deg/sec) 

(6,k) [dQ/dtf ascending node rate* (deg/sec) 

(7,k) [dco/dt]* argument of perigee rate* (deg/sec) 

(8,k) [dM/dt]* mean motion* (deg/sec) 

'elements and rates can be equinoctial as well 

The default element set is equinoctial. However, if Keplerian elements and rates are 

requested, routine rateconv calculates them from the equinoctial elements and rates. The 

state transition matrix, when requested, is output as four 3x3 matrices at each request 

time. The four matrices at each request time are of the form 

<MO req > 

req,l°) = ~^(tJ 
Mtreq) 

*r(0 

WO 
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5.4 Input Deck 

All information required for an ASKS run is input from one source file, called the input 

deck. The ground station process constjceep reads all the input information and 

eventually passes out the appropriate data to each satellite process. The first section lists 

the run information applicable throughout the constellation. The remainder of the deck 

list planar control parameters and individual satellite epoch information. The format of 

an input deck for a constellation with m planes of n satellites each is illustrated in figure 

5.10. 

Run Information 

4 
I 'lane 1 Control Parameters 

Satellite 1 

Satellite 2 

******************************* 
Plane 2 Control Parameters 

Satellite n+1 

I 

******************************* 

******************************* 
5lane m Control Parameters 

Satellite (m-l)n + 1 

Satellite mn 

a ****************************** 

Figure 5.10: Input Deck Format 
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Note that planes are separated by a row of asterisks and satellite blocks within a plane a 

separated by a row of hyphens. 

The elements of the run information block of the input deck define what type of ASKS 

run is to be executed. An example run information block is listed below as figure 5.11. 

Number of Planes     :     3 
Stat-Keep Method    :     0  (0«box; 1-formation) 

Targeting Method 
Power 
kmax 
max burns 

0 
1.00 
100 

2 

Epoch Date: 19970101.0 Epoch Time: 0.0000 
Final Date: 20020101.0 Final Time: 0.0000 
Iteration Time Step  :        0.1296000000000000D+07  sec 

Figure 5.11: Sample Control Parameter Block of Input Deck 

The first line simply defines the number of planes in the constellations. The second line 

defines the type of station-keeping method, box or formation flying, is to be used. These 

two methods are explained in the following chapter. The third line deals with the 

targeting method being used. The Power, kmax, and max_burns settings are active 

inputs for only specific choices of Method. For example, method 0 indicates that no 

corrections are to be considered. With this setting, the inputs for Power, kmax, and 

max_burns are ignored, but are still required in the input deck. The remaining lines 

concern the timing of the run. The dates are in YYYYMMDD.O format. The times are in 

HHMMSS.SSSS format. The iteration time step can be any value when no control is 

implemented, but must be less than one period of the orbit in the constellation with the 

smallest semi-major axis when a control method is implemented. 

The plane control parameters section lists the plane number, the number of satellites in 

that plane, and the orbital element limits for satellites in that plane. Figure 5.12 lists an 

example plane control paramter section. The maximum parameter limits are the orbital 

elements values which are not to be exceeded. The outer limit scale is the percentage of 
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the maximum limit that defines the real border at which a violation is considered. This 

safety factor is added to insure that the actual limits are never violated. Note that placing 

any angular limit above 360° implies that that element is not be controlled. The 

deadband parameter limits defines the orbital element value below which no corrections 

is to be made. This option is included to avoid correcting small acceptable deviations 

from the nominal trajectory. The maximum overshoot limits deal specifically with 

method 2 and are discussed in the following chapter. 

Plane :    1 
Sats In This Plane  :    5 

Maximum Parameter Limits:     1.O00OOOOOO0OOOO0OD+OO 
Keplerian Elements:        0.0010000000000000D+00 

0.7200000000000000D+03 
0.7200000000000000D+03 
0.0010000000000000D+03 
0.7200000000000000D+03 

Scale (outer limits) :  0.98 
Deadband Parameter Limits:    0.9500000000000000D+00 

Keplerian Elements:        0 . 0009500000000000D+00 
0.7200000000000000D+03 
0.7200000000000000D+03 
0.0009500000000000D+03 
0.7200000000000000D+03  deg 

Maximum Overshoot Limits :     0 . 9800000000000000D+00 
O.OOOOO0000000OO0OD+O0 
0.9800000000000000D+00 
0.9800000000000000D+00 
O.OOOOO00O00OOOO00D+0O 
0.9800000000000000D+00 

Figure 5.12: Sample Plane Control Parameter Section of Input Deck 

A satellite block contains all the information needed for the nominal and actual 

trajectories. A sample satellite block is listed below as figure 5.13. After initially 

identifying the satellite number, the block is split up into two parts, the actual satellite 

and the reference satellite. For the input deck, 'reference' is synonymous with 'nominal'. 

The format and units for the input of the element set and physical characteristics of the 

satellite are the same as identified in table 5.4. The format for the force models and the 

perturbation list is the same as identified in table 5.5. Note that the nominal (reference) 

section has an option of whether to use DSST or the method of fixed rates is to propagate 

km sma 
ecc 

deg mc 
deg Ian 
deg ap 
deg ma 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg ma 

frac sma 
frac ecc 
frac inc 
frac Ian 
frac ap 
frac ma 
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the nominal trajectory. If fixed rates is chosen, then the force model and perturbation list 

is ignored for the nominal satellite trajectory. 

Satellite Number    : 7 

actual State: 
Keplerian Elements: 0.1047220000000000D+05 

0.3266200000000000D+00 
0.1168395808400000D+03 
0. 0994212449500000D+03 
0.2700524204900000D+03 
0.0720000000000000D+03 

km 

deg 
deg 
deg 
deg 

sma 
ecc 
inc 
Ian 
ap 
ma 

CD:                  2. 
S/C Mass:         700. 
Integrator Step: 43200. 

20000000 Rho One: 
00000000 S/C Area: 
00000000 

0.00000000 
0.00002500 

Retro:     1 Atmos Mdl 
Nmax:     21 Mmax: 
Nmaxrs:   21 Mmaxrs: 
Ind Drg:   1 Iszak: 

.:   1  Potent Mdl: 
21  Izonal: 
21  Ithird: 
2  Ind Sol: 

4 
1 
1 
1 

IJ2J2 : 1 

Reference State: 
Keplerian Elements: 

Reference Switch     : 
Reference State Rates: 

Keplerian Rates: 

0.1047220000000000D+05 km sma 
0.3266200000000000D+00 ecc 
0.1168395808400000D+03 deg inc 
0.0994212449500000D+03 deg Ian 
0.2700524204900000D+03 deg ap 
0.0720000000000000D+03 deg ma 

(0=DSST, 1-Fixed Rates) 

O.OOOOOOOOOOOOOOOOD+OO 
0.000O0OO00000OOO0D+OO 
O.OO0OOOOOOOO0O00OD+OO 
1.1407711610000000D-05 
0.000OO0O00OO0O0OOD+O0 
3.3338114140000000D-02 

km/sec sma 
1/sec ecc 
deg/sec inc 
deg/sec Ian 
deg/sec ap 
deg/sec ma 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
700.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00002500 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
2 Mmaxrs: 
2 Iszak: 

Potent Mdl: 
Izonal: 
Ithird: 
Ind Sol: 

IJ2J2: 

Figure 5.13: Sample Satellite Data Block of Input Deck 

5.5 Network Environment 

For this thesis project, the ASKS simulator was executed on a network of three UNIX 

Sun workstations. The machines, taz, porky, and petunia, form the Software Process 

Improvement (SPI) cluster. All three machines are Sun SPARCstation 20 MPs with two 

processors each, taz and porky have 64 MB RAM while petunia has 80 MB RAM. The 
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SPI cluster uses the Sun OS Ver. 5.4 / UNIX System V 4.0 operating system. A central 

storage device (file server), named toaster, serves as a common high density disk, toaster 

is composed of an array of seven 4 GB storage units. Since one of the units serves as an 

error check and backup, the total storage capacity of the system is 24 GB. The local 

network environment is displayed in figure 5.14. The computers of the SPI Network 

used to be part of the ACME lab network that was used by Wallace in his study of 

parallel orbit propagation [58]. While many of the names remain the same, the 

processors, available software, network connections, physical locations, and 

administration have changed. 

Other 
*• Network 

Connections 

Figure 5.14: SPI Network Environment 

toaster, petunia, and porky are connected by a FDDI fiber optic network interface that 

allows communication between the three to occur at 100 Mbits/sec.  taz is connected to 

the remainder of the system through an Ethernet network interface which allows 

communication at 10 Mbits/sec. daffy is a Pentium 100 MHz desktop PC which was used. 

as the platform for remote logins to the SPI network machines.   Its processor was not 
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involved in any of the simulation executions. Common practice was to use taz as the host 

when initiating any large ASKS run. 

5.6 ASKS Source Code Location 

The source code for the ASKS is located under the home directory of the author on the 

SPI cluster's common file server. The highest level directory is 

/home/nqs2145/thesis 

The location of each of the source code files is listed in figure 5.15. 

x 
develop 

binsrch 

cfunction.for 

flspos.for 

flsparbd.for 

optimal 

costfor 

getymdhms.for 

func2.for 

dsst src 

primer 

getbumlistjjptimal.for 

getcmin2.for 

J: 
sat_prop 

sat_prop_mod2.for 

setdafjnod.F 

set_satopt_mod.F 

crrequest_times_mod.F 

sort_times_mod.F 

include_burn_eci.for 

rateconv.for 

lambert 

lambert_full2.for 

lambert_2bod.for 

unttize.for 

dot.for 

elorb.for 

i 

recipes 

src 

powell_db.f 

linmin_db.f 

brenf_db.f 

f1dim_db.f 

mnbrakjJb.f 

mafli src mpi lib 
libdsst.a 

libvecmat.a 

libbum.a 

const_keep_mpi5.for 

getinput5.for 

gblcomm.for 

Iclcomim.for 

gs_sat_com5.for 

new_ref_com.for 

potterms.for 

outdata3.fcr 

getref.for 

sort_ang.for 

targetfor 

sat_keep5.for 

analy8c_4-14.c 

trig.c 

include 

bparams.cmn 

cparams.cmn 

analytic.h 

limits.h 

trig.h 

machine.h 

array_sizes.h 

array_sizes_for.h 

Figure 5.15: ASKS Source Code Location 

Directory dsst_src contains all the source code for the DSST Standalone Orbit 

Propagator. Directory math_src contains the source code for several vector and matrix 

manipulation subroutines used throughout the ASKS,    libdsst.a is the library file 
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containing the object code for the DSST Standalone, libvecmat.a is the library file 

containing the object code for the vector and matrix manipulation subroutines, libbwn.a 

is the library file containing object code for the DSST Standalone propagator plus all the 

ASKS code under the develop and recipes directories. 

The UNIX makefile which creates the libburn.a library file is located in directory 

develop. The UNIX/MPI makefile which creates the ASKS executable is located in 

directory mpi. The command to make the Ellipso ASKS executable is 

make  const_keep_ellip 

Directory mpi is also the location where the ASKS runs are executed. The input deck and 

all the DSST binary data files must be located in this directory during execution. The 

command to execute an ASKS run on the full 17 satellite Ellipso constellation is 

mpirun   -np  18  const_keep_ellip 

After starting one ground station process and 17 satellite processes, the program will 

query the user for the name of the file containing the input deck. Upon entering the input 

deck file name, the program begins full execution in parallel. 

Three different simulations, each with multiple runs, were executed for this thesis. All 

information related to these simulations is stored on the Pentium PC computer daffy. The 

top level data directory is 

c: \naresh \thesis \data \ellipso \ 

Each run directory includes its associated input decks, output files, and Microsoft 

Powerpoint presentation slides containing the plots of the coverage and element 

difference histories. The location of each run directory is outlined in figure 5.16. 
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ellipso 

I 

Sim1 Sim2 Sim3 

I I I 

Run1 Run1 Run2 Run1 Run2 

Run3 
I I 

Run3 Run4 

Figure 5.16: Location of Input Decks, Output Files, and Plot Files 

5.7 Future Improvements 

Some areas for future improvements to the ASKS are 

• removal   of  reinitialization   requirement   in   DSST   orbit   propagator   for 

consecutive executions using the same epoch state and time 

• removal of DSST requirement to re-read all binary data files for every call of 

sat_prop_mod 

• enabling output in the true-of-date frame, and. 

• inclusion of Lyapunov based control methods. 
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Chapter 6 

Targeting Methods 

A targeting method determines a 6 orbital element target state for the next iteration time 

step when the station-keeping controller in the satellite process determines that a 

correction needs to be made to one or more of the orbital elements. Therefore, each 

targeting method, coupled with the criteria for determining when a correction needs to 

occur and which elements need to be targeted, forms a pseudo-control law. This chapter 

outlines the correction determination, the criteria used for choosing which elements need 

to be targeted, and each of the three targeting methods developed in this project. 

6.1 Implementing Corrections 

The decision on whether to implement a correction is based on the difference between the 

actual state and nominal state at the current iteration time, called the state difference. The 

difference between the actual state rate and nominal state rate at an iteration time is called 

the state difference rate. The state difference and state difference rate are analyzed with 

respect to prescribed orbital element boundary limits. The maximum limit in each orbital 

element is the largest amount that an element can vary from its nominal value before 

mission capability begins to degrade. For communication satellites, this usually means 

the amount past which the coverage specifications can no longer be guaranteed. The 

maximum limits for the satellites of the sub-constellations of Ellipso are listed in table 
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6.1 and table 6.2. To insure that the maximum limit is never reached, a safety zone is 

created with the establisment of a new boundary, called the outer limit. It is the 

maximum operationally acceptable deviation in the orbital element. ASKS sets this value 

as a common percentage of each of the individual maximum limits. 

Table 6.1: Borealis Maximum Orbital Element Limits [17] 

Element Max Limits 

a 1.0 km 

e 0.001 

i 0.05° 

CO 1.0° 

Q 0.2° 

M 0.05° 

Table 6.2: Concordia Maximum Orbital Element Limits [17] 

Element Max Limits 

a 0.1km 

e 0.0003 

i 0.05° 

co NA 

Q + M 0.02° 

The deadband limit in each orbital element is the amount below which element difference 

corrections are not required. The deadband limit must be less than or equal to the outer 

limit. The concept of a deadband was added to stop the controller from correcting small, 

acceptable deviations from the nominal trajectory. In practice, the deadband limit in each 

element should be set at a value such that any element difference less than it is 

operationally acceptable. 
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The determination of whether a correction is required at an iteration time is simple. If 

any of the six elements is greater than its respective outer limit, then a correction must 

occur and a target state must be formed for the next iteration time. A correction should 

not occur under any other circumstance. Once one of the elements has approached its 

outer limit, ASKS allows for the possibility of correcting multiple elements by including 

them in the target state for the next iteration time. This feature was incorporated to take 

advantage of any fuel savings that may exist when a near-optimal transfer is calculated 

for multiple elements together rather than separate transfers for each element 

individually. 

6.2 Element Targeting Criteria 

The criteria for choosing which elements are to be targeted can be condensed into four 

statements 

• if an element is at its outer limit, it is targeted 

• if an element is within the deadband limit of its nominal value, it is not 

targeted 

• if an element is moving toward its nominal value (the element difference 

between actual and nominal is decreasing), it is not targeted 

• if an element is between its deadband and outer limit, and it is moving away 

from its nominal value (the element difference is growing), then it is targeted 

From these four criteria, we note that if the deadband limit is the same as the maximum 

limit, then only one element will be targeted at each iteration time step. 
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If an element is targeted, then the target state value of that element is determined by the 

targeting method. If an element is not targeted, then the target value of that element is 

the value it would have assumed had the current state been propagated freely to the next 

iteration time. 

6.3 Method 0 

Method 0 is not a real targeting method by the definition provided above. It is only used 

as a switch setting for executing ASKS runs where no corrections are desired. Since an 

optimal transfer trajectory is never calculated, the constraint on the iteration step size of 

one orbital period, imposed by the Primer Vector code, does not apply. Therefore, for 

ASKS runs that only analyze the uncontrolled decay of a constellation's orbits, the 

iteration step size can be set to any value. This significantly reduces the time it takes to 

execute these runs. 

6.4 Method 1: Shooting the Nominal 

Targeting Method 1 sets the value of a targeted element equal to its nominal value at the 

next iteration time. This is equivalent to bringing the difference between the actual and 

nominal state in that element to zero at the next iteration time. For example, if the 

inclination of the actual state had deviated to its outer limit while the remainder of the 

elements remained within their respective deadband limits, then the target state, using 

Method 1, would include the nominal value of the inclination while maintaining the 

deviation in the other elements. This method can also be described as "shooting" for the 

nominal. 
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Figure 6.1 displays some Method 1 targeting scenarios. Note that the axes, z, and Zj, 

represent the state differences in the first and second elements. Therefore, the origin of 

the plot is the nominal state. Note that a true satellite scenario would include differences 

in six dimensions, one corresponding to each orbital element. The solid exterior box 

represents the maximum limits in two dimensions while the dashed line represents the 

outer limits. The light gray area signifies the state space region where one element is 

within its deadband limit while the other element is not. The dark gray area signifies the 

state space region where both elements are within their respective deadband limits. The 

empty circles represent the actual state at the current iteration time and the solid circles 

represent the target state at the next iteration time. 

z-: element i difference from nominal 
max limit 
outer limit 
deadband 

Figure 6.1: Targeting Method 1 
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If the actual state of a system is not at the outer limit for any of the elements, no 

correction is made. In scenario A, the actual state is at the outer limit of element 1, but 

within the deadband limit of element 2. Thus, element 1 is targeted and brought to its 

nominal value at the next iteration time step, while element 2 is not targeted. Scenarios B 

and C are similar to each other in that, for both cases, element 1 is at its outer limit and 

element 2 is between its deadband and outer limit. In this situation, the control system 

queries the state rate difference for element 2, signified by the arrows. In scenario B, 

element 2 is moving towards its nominal value, and so it is not targeted. In scenario C, 

element 2 is moving away from its nominal, and therefore is targeted. Note that when all 

elements are targeted, the actual and nominal states at the next iteration time are equal. 

In Method 1, corrections bring the elements back to their nominal values. This is the 

logical decision when information about the motion of the elements within the state space 

region defined by the maximum limits is not available. However, the possibility exists 

that there is a state space point such that if the actual state were moved there, it would 

move towards the nominal state over time. From the scenarios of figure 6.1, we see that 

such a point may exist in the quadrant diagonally opposed to the one from which the 

outer limit violations occur. Targeting Method 2 attempts to take advantage of this 

possibility. 

6.5 Method 2: Overshooting the Nominal 

Targeting Method 2 sets a targeted element equal to a value beyond its nominal value on 

the state space difference plane. This procedure can be perceived as "overshooting" the 

nominal. An overcorrection is made with the expectation that the element by element 

motion of the actual state with respect to the nominal state will remain essentially the 
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same throughout the state space region within the maximum limits. This is analogous to 

assuming that the second order effects on the state difference are slowly varying in the 

state space region bounded by the maximum element limits. 

As an example, consider the affect of atmospheric drag on the semi-major axis of a 

satellite. A controller using targeting Method 1 would constantly correct for a low semi- 

major axis by bringing its value back up to the nominal value. A Method 2 controller, 

however, can reduce the frequency of burns, and possibly save station-keeping fuel, by 

correcting the semi-major axis to a value greater than its nominal, but not greater than its 

outer limit on the positive difference end. Note that the assumption about the disturbing 

influence being the same everywhere in the small element region about the nominal is 

correct for the drag / semi-major axis case, but may not be correct for other disturbing 

force / orbital element combinations. If an overcorrection is made and a new disturbing 

force pushes the targeted state away from the nominal, then more harm has been done 

than good. This situation could lead to repeated corrections back and forth across the 

nominal value. 

Figure 6.2 contains the same scenarios as considered with Method 1 earlier, but with the 

corresponding Method 2 corrections displayed. In scenarios A and B, where only the 

violating element is targeted, note that the overcorrections never reach the outer limit on 

the opposing side of the state space difference domain. This is because each element i (i 

= 1,2,..6) has a maximum overshoot limit (a;) associated with it. The maximum overshoot 

limit for each element is specified by the user in the input file. a; defines the percentage 

of the distance from the nominal value to the outer limit of the element that the targeted 

value of the ith element should be at. Note that setting a; equal to zero causes the ith 

element to revert to a Method 1 control scheme. Therefore, targeting Method 1 is a 

special case of targeting Method 2, where a; = 0 for all elements i. 
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JkZ2 

z, 

IPO  a' 

Z:: element i difference from nominal 
max limit 
outer limit 
deadband 

Figure 6.2: Targeting Method 2 

When more than one element is targeted using targeting Method 2, not all the elements 

are overcorrected to their respective Gj defined values. This feature of the ASKS 

controller is called scaled corrections. In general, an element which violates its outer 

limits, is likely to be the element with the largest element rate difference between actual 

and nominal. Because of this, the violating element is always overcorrected fully to its af 

value. All other accompanying targeted elements are not critical because they have not 

violated their respective outer limits. To save on station-keeping fuel, these elements are 

only fractionally brought to their a{ values. Therefore, for scenario C, element 1 is 

brought all the way to its a{ value while element 2 is brought only part way to its a; value. 

The amount secondary targeted elements are corrected depends on how far from their 

nominal value they are when they were chosen for targeting, and on a user defined 
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variable called power. If Zj(tcun.) is the current difference of the i* element and z^t^,) is 

the difference of the ith element associated with the targeted state at the next time step, 

then the target state is chosen such that 

Zi(f text) = -<TiZl(t oar) 
Ziitcurr) 

on,»* 

power 

(6.1) 

where 5^ out is the outer limit of the i* element. 

6.4 Method 3: Directed Corrections 

In methods 1 and 2, due to the iteration time step restriction imposed by the Primer 

Vector code, all target element differences are corrected within the time span of one 

orbital period. This approach yields reasonable transfer delta-V's for semi-major axis, 

eccentricity, and inclination corrections. These three elements are traditionally corrected 

with one or more burns within one orbital period. However, correcting the longitude of 

the ascending node Q, the argument of perigee co, or the mean anomaly M, within a one 

orbital period time span is not advisable. This is because the transfer trajectories for these 

corrections contain large delta-V maneuvers. 

Consider the example of a mean anomaly difference. A full correction within one orbital 

period would require a transfer orbit with a significantly different semi-major axis. 

However, if the semi-major axis were changed only slightly and the transfer orbit 

maintained for multiple revolutions, then the same mean anomaly difference could be 

resolved with significantly less fuel expenditure. In addition, the transfer orbit requiring 

the smaller semi-major axis burns is much less likely to violate the semi-major axis 
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element limits. Similar multi-orbit transfer trajectories exist for the ascending node and 

argument of perigee. 

To determine how to correct for Q, co, and M deviations without targeting them directly, 

consider the following element plots of a satellite in the Ellipso Borealis Node at Dawn 

orbit plane for an 8:1 repeat ground track. The three plots were generated by an ASKS 

run using a Method 2 controller for a, e, and i only. Q, ©, and M were allowed to vary 

freely, and were never targeted. Figure 6.3 shows the motion of the semi-major axis and 

mean anomaly differences from nominal. Figure 6.4 shows the motion of the 

eccentricity, inclination, and ascending node differences from nominal. And figure 6.5 

shows the motion of the inclination and the argument of perigee differences from 

nominal. 
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Figure 6.3: Controlled SMA and Floating MA Differences from Nominal 

In figure 6.3, we see that a Method 2 correction to the semi-major axis across its nominal 

value, which is depicted as an instantaneous change upon reaching its limit of 1 km, also 

changes the mean anomaly difference rate to the negative of its original value. Therefore, 
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targeting the semi-major axis across its nominal value when the mean anomaly violates 

its limits is an option for a mean anomaly controller. In effect, the semi-major axis is 

changed just enough to reverse the phasing bias between the actual and nominal 

trajectories. This approach only works if the semi-major axis difference is negative when 

the mean anomaly difference is at its positive limit; and vice-versa. In addition, if the 

mean anomaly is at its negative outer limit while the semi-major axis rate is negative, 

then no correction should be made even if this means violating the negative MA outer 

limit. This is because the negative semi-major axis rate will eventually reduce the semi- 

major axis enough for the mean anomaly to return within its outer limit. This approach is 

implemented to avoid implementing corrections which lower the energy of an orbit, since 

atmospheric drag accomplishes this result anyway. 

ECC, INC. and LAN Diff from Ref 

x1Cf 

0 700 100      200      300      400      500      600 
Days Since Epoch (Epoch: 1 Jan 97) 

Figure 6.4: Controlled ECC and INC, and Floating LAN Differences from Nominal 

Figure 6.4 illustrates that changes in both the eccentricity and the inclination affect the 

ascending node difference rate. Of the two, eccentricity corrections are generally far 

cheaper in terms of transfer delta-V's.   However, eccentricity corrections will not be 
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effective if a significant eccentricity change (ie across the nominal value, as in figure 6.4) 

is not possible at the time of a Q outer limit violation. In this situation, the inclination 

must be targeted instead. Therefore, the eccentricity is targeted to its outer limit on the 

other side of its nominal value, scaled by its maximum overshoot percentage. If the 

ascending node difference is at its negative difference limit when the eccentricity 

difference is positive and the inclination difference is negative, or vice-versa, then the 

inclination is targeted to its opposite outer limit, scaled by the ascending node maximum 

overshoot value. If a situation develops where both the eccentricity and inclination 

differences are the opposite sign of the ascending node difference at the time of a Q outer 

limit violation, then the ascending node is allowed to violate until either the eccentricity 

or inclination differences change signs. In practice, this situation rarely develops because 

the frozen orbit design of Ellipso ties the motion of the inclination and ascending node. 

Inclination and Argument of Perigee Diff From Ref 

"0        100      200      300      400      500      600      700 
Days Since Epoch (Epoch: 1 Jan 97) 

Figure 6.5: Controlled INC and Floating AP Differences from Nominal 

Figure 6.5 demonstrates that only an inclination change affects the argument of perigee 

difference rate.    The inclination difference must be negative when the argument of 
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perigee difference is at its negative limit for this type of correction to work. Once again, 

the relationship between the inclination and argument of perigee almost always assures 

this situation for Ellipso Borealis satellites. As with the ascending node case, the 

inclination is corrected to its opposite outer limit value, scaled by the argument of perigee 

maximum overshoot percentage. 

Therefore, targeting Method 3 treats the semi-major axis, eccentricity, and inclination the 

same a targeting method 2. However, it targets a combination of eccentricity and 

inclination to correct ascending node deviations, the inclination to correct the argument of 

perigee, and the semi-major axis to correct mean anomaly differences. Since corrections 

to Q, co, and M are directed at different orbital elements, this method is called the method 

of directed corrections. It is important to note that while targeting Methods 1 and 2 are 

applicable to any satellite constellation, targeting Method 3 was designed specifically for 

the Ellipso Borealis 8:1 repeat ground track subconstellations. 
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Chapter 7 

Simulations 

The ASKS simulations described in this thesis are done to meet three main objectives. 

These objectives are: 

1. Validate the AV statistics calculated by the Automated Station-Keeping 

Simulator for maintaining the orbits of a satellite constellation. 

2. Investigate the advantage of controlling a constellation as a whole as 

opposed to controlling each satellite individually. 

3. Demonstrate that the ASKS can be used to analyze new constellation orbit 

designs. 

One series of simulation runs is executed for each objective. Variations of the Ellipso 

Mobile Satellite System constellation are used for the sample constellation orbits. The 

first simulation attempts to validate the ASKS AV generator by comparing its results to a 

study conducted by Chris Sabol [51] for a previous design of the Ellipso Borealis sub- 

constellation. The second compares the two year coverage histories and AV budgets for 

the absolute and relative mean anomaly station-keeping methods on the current Ellipso 

design. Targeting method 3 is used for both station-keeping options. And finally, the 

third simulation compares four different Ellipso orbit designs using coverage histories 

from uncontrolled ASKS runs. Before any of the simulations, however, a brief 

description is provided of the different Ellipso orbital designs proposed to date. 
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7.1 Ellipse* Variations 

Several different versions of the Ellipso constellation orbit design are used in the 

following simulations. The differences involve only the Borealis sub-constellation. 

While there are multiple options for the Concordia sub-constellation as well, only the 

circular orbit, whose mean orbital elements are listed in table 7.1, is used. The Mean of 

1950 elements are provided because they are used in the ASKS input decks. Note that 

the conversion from the true of date frame to the Mean of 1950 frame changes the 

inclination by the rotation discussed in section 3.3.4. This same rotation shifts most of 

the argument of perigee to ascending node because of the near-circular nature of the orbit. 

Table 7.1: Concordia Sub-Constellation Orbital Elements [53] 

Element True of Date Mean of 1950 

a 14440.137 km 14440.137 km 

e 0.00001 0.00001 

i 0.00001° 0.26180° 

CO 90° 0.29389° 

ß 0.0° 89.10379° 

M 0°, 51.43°, 102.86°, 154.29°, 0°, 51.43°, 102.86°, 154.29°, 
205.71°, 257.14°, and 308.57° 205.71°, 257.14°, and 308.57° 

The variations in the Borealis sub-constellation consist of nodal placement, repeat ground 

track, number of satellites, and argument of perigee placement. Each of the variations, 

however, maintains the Sun synchronous frozen line of apsides (SSFLA) characteristic of 

Borealis. 
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Nodal Placement 

There are two designs for the placement of the ascending nodes of the Borealis planes. 

The first places the nodes at the dawn and dusk positions on the Earth's equator. Because 

the orbits are Sun synchronous, they will remain oriented so that their line of nodes is 

always perpendicular to the vector from the geocenter to the sun. This is the orientation 

studied by Chris Sabol in his master's thesis refinement of the original Borealis element 

sets. The 8:1 repeat ground track node at dawn and dusk mean element sets for the epoch 

at 0000 hours on 1 Jan 1997, refined in the presence of the zonal harmonics through 

degree 21, solar/lunar point masses, and solar radiation pressure, are listed in Table 7.2. 

Table 7.2: Borealis 8:1 Mean Element Sets for Node at Dawn/Dusk [51] 

Element Node at Dawn Plane Node at Dawn Plane Node at Dusk Plane Node at Dusk Plane 
True of Date Mean of 1950 True of Date Mean of 1950 

a 10559.257 km 10559.257 km 10559.2604 km 10559.2604 km 

e 0.3453 0.3453 0.34587 0.34587 

i 116.5747° 116.6212° 116.5538° 116.5067° 

CO 270° 269.7119° 270° 270.2878° 

Q. 10° 9.2687° 190° 189.5262° 

M 0°, 72°, 144°, 216°, 0°, 72°, 144°, 216°, 0°, 72°, 144°, 216°, 0°, 72°, 144°, 216°, 
and 288° and 288° and 288° and 288° 

Epoch Midnight, Jan 1 1997 Midnight, Jan 1 1997 Midnight, Jan 1 1997 Midnight, Jan 1 1997 

The orbit refinement process implies that the element sets in table 7.2 will maintain their 

SSFLA characteristics, to negligible errors over five years, if they are propagated only in 

the presence of the zonal harmonics through degree 21, solar/lunar point masses, and 

solar radiation pressure [51]. 
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The second design places the ascending nodes of the Borealis planes at the noon and 

midnight positions on the Earth's equator. These planes remain oriented so that their 

angular momentum vectors are always perpendicular to the vector from the geocenter to 

the Sun. The 8:1 repeat ground track, with ascending nodes at noon and midnight, is the 

current design for the Borealis planes. The epoch mean element sets for this design, 

refined in the presence of the zonal harmonics through degree 21 and solar/lunar point 

masses, are listed in table 7.3. The effects of solar radiation pressure on satellites of the 

node at noon and midnight orientation of Borealis are too great to incorporate into the 

refinement process. 

Table 7.3: Borealis 8:1 Mean Element Sets for Node at Noon/Midnight [52] 

Element Node at Noon Plane Node at Noon Plane Node at Midnight Node at Midnight 
True of Date Mean of 1950 True of Date Mean of 1950 

a 10559.271 km 10559.271 km 10559.270 km 10559.270 km 

e 0.345705 0.345705 0.345675 0.345675 

i 116.565° 116.3074° 116.565° 116.8226° 

CO 270° 269.9478° 270° 270.0524° 

Q 280° 279.3744° 100° 99.4212° 

M 0°, 72°, 144°, 216°, 0°, 72°, 144°, 216°, 0°, 72°, 144°, 216°, 0°, 72°, 144°, 216°, 
and 288° and 288° and 288° and 288° 

Epoch Midnight, Jan 1 1997 Midnight, Jan 1 1997 Midnight, Jan 1 1997 Midnight, Jan 1 1997 

Repeat Ground Track 

Following the analysis done in his thesis, Sabol, with the assistance of Cefola and Draim 

[52] discovered that a slight change in the frozen orbit geometry of Borealis could result 

in significant savings in station-keeping fuel. This change involved extending the repeat 
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ground track cycle from 8:1 to 81:10, or 81 revolutions every 10 days. Doing so moves 

the orbit from deep resonance to shallow resonance. The epoch mean element sets for the 

81:10 repeat ground track node at noon and midnight Borealis orbits, refined in the 

presence of zonal harmonics through degree 21 and solar/lunar third body effects, are 

listed in table 7.4. As with the 8:1 node at noon/midnight elements, the effects of solar 

radiation pressure are too large to include in the orbit refinement. 

Table 7.4: Borealis 81:10 Mean Element Sets for Node at Noon/Midnight [52] 

Element Node at Noon Plane Node at Noon Plane Node at Midnight Node at Midnight 
True of Date Mean of 1950 True of Date Mean of 1950 

a 10472.201 km 10472.201 km 10472.200 km 10472.200 km 

e 0.32652 0.32652 0.32662 0.32662 

i 116.583° 116.3254° 116.582° 116.8396° 

CO 270° 269.9478° 270° 270.0524° 

Q 280° 279.3744° 100° 99.4212° 

M 0°, 72°, 144°, 216°, 0°, 72°, 144°, 216°, 0°, 72°, 144°, 216°, 0°, 72°, 144°, 216°, 
and 288° and 288° and 288° and 288° 

Epoch Midnight, Jan 1 1997 Midnight, Jan 1 1997 Midnight, Jan 1 1997 Midnight, Jan 1 1997 

The 81:10 Borealis orbits have a lower semi-major axis than their 8:1 counterparts. 

Despite this, Sabol's analysis shows that coverage and minimum elevation angles are not 

affected significantly [52]. 

Number of Satellites 

To meet the coverage requirements described in section 1.2.2, the Ellipso constellation 

needs only four satellites in each of the Borealis planes and six satellites in the Concordia 
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plane. The operational plan for Ellipso, however, calls for the placement of one on-orbit 

spare in each of the three planes. Each spare is to function just like the remaining 

satellites in the plane. Because of this, the element sets of tables 7.2, 7.3, and 7.4 include 

five mean anomaly positions and table 7.1 includes seven mean anomaly positions. In 

the event of a satellite failure, the functioning satellites in the plane are required to 

reposition themselves, over time, to provide uniform spacing in mean anomaly. 

Therefore, the worst case scenario of a 4-4-6 component satellite constellation is also 

studied. 

Argument of Perigee Placement 

One of the options available to the node at noon / midnight Borealis orientation is biasing 

of coverage to the daylight hours. Because of its SSFLA design, reducing the argument 

of perigee of the node at noon plane, and increasing the argument of perigee of the node 

at midnight plane, tilts the planes so that the apogees are always in sunlight. This implies 

that, on average, each satellite will spend more time over the sunlit Earth. This option is 

important because it offers Ellipso the chance to bias its coverage to daytime market 

demand. In studying this special case, the argument of perigee is set to 260° for the node 

at noon plane and 280° for the node at midnight plane. 

The Ellipso constellation is different from other constellations in that the mean anomaly 

is the only candidate element for relative station-keeping across satellites. In 

constellations such as Indium and Globalstar, there are no real restrictions against 

controlling the relative ascending node between planes, and allowing the nominal semi- 
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major axis of all the satellites in a plane to reduce together while their relative mean 

anomaly is maintained. For Ellipso, however, the SSFLA characteristics of the Borealis 

planes restrict most of the elements to a small locus of points. Since the required sun 

synchronous nodal rate is caused by maintaining the critical inclination, both the 

inclination and the ascending node are removed as candidates for relative control across 

the planes. In addition, the semi-major axis, eccentricity and argument of perigee must 

remain fixed values to maintain the frozen orbit. Because of this, the mean anomaly is 

the only option for relative station-keeping. Relative mean anomaly station-keeping is 

implemented by resetting the nominal mean anomaly value of each satellite in the plane 

to the value that results in the lowest sum of the squares of the mean anomaly differences 

at each iteration time step. Using this approach allows the entire plane to have a common 

mean anomaly motion, and yet not require any corrections. If absolute mean anomaly 

station-keeping is implemented, then the nominal mean anomaly for each satellite is 

determined by the propagation of its nominal elements. 

7.2 Simulation 1: Validation of ASKS 

The purpose of Simulation 1 is to produce a station-keeping AV budget for the satellites 

of the 8:1 node at dawn/dusk Borealis planes. Comparing these results to the estimated 

AV budget analytically obtained by Sabol [51] serves as an important step in validating 

the ASKS AV generator. If the ASKS generated AV history produces results similar to 

Sabol's, then an argument can be made for the suitability of the Primer Vector optimal 

transfer theory to the station-keeping problem, and the general implementation of the 

control methods used in this thesis. 
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The objective of Sabol's thesis was to investigate the stability and station-keeping costs 

of the Borealis SSFLA orbits, and to refine the original orbit design to incorporate several 

perturbations. His product was a set of elements for the Borealis node at dawn and dusk 

planes that maintain SSFLA characteristics, for the five year projected life span of Ellipso 

satellites, in the presence of zonal harmonics through degree 21, solar/lunar point masses, 

and solar radiation pressure, without requiring any maneuvers. These refined element 

sets are listed in table 7.2. Sabol predicted that station-keeping maneuvers would only be 

required to counteract the effects of drag and tesseral resonance. He determined that 

three different types of maneuvers - drag, eccentricity, and inclination control - would 

maintain the Borealis satellites within the limits defined in table 6.1. Sabol's estimates of 

the 5 year AV and fuel mass requirements for the three control maneuvers for the worst 

case satellite are listed in table 7.5. 

Table 7.5: 5 Year Predicted AV and Fuel Budget for Worst Case Borealis 8:1 Node at 
Dawn / Dusk Satellite [51] 

Mission Lifetime: 5 yrs AV (m/s) mf(kg) 

Drag Control 34.673 8.531 

Eccentricity Control 0.655 0.161 

Inclination Control 26.897 6.618 

Total 62.225 15.31 

To test the AV generator, the ASKS execution for Simulation 1 must resemble Sabol's 

test conditions as accurately as possible. Therefore, targeting method 2 is used with 

absolute station-keeping for the node at dawn and dusk satellites defined by the element 

sets listed in table 7.2. The run will execute semi-major axis corrections to simulate drag 

control, and eccentricity and inclination corrections to simulate their respective controls. 
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Note that the ascending node, argument of perigee, and mean anomaly are not controlled 

directly. Sabol predicted that the three control maneuvers seen in table 7.5 would 

maintain all the elements either directly or indirectly. 

The refined Borealis orbit elements are correctly applied only if the nominal trajectory 

experiences the same perturbations over which the element sets are refined. To simulate 

this, the zonal harmonics through degree 21, solar/lunar point masses, and solar radiation 

pressure are all turned on for the nominal (reference) trajectory. The actual satellite 

trajectory contains the perturbations of the nominal trajectory plus tesseral resonance and 

atmospheric drag. Therefore, the corrective maneuvers will be based on the state 

differences caused by only the tesseral resonance and atmospheric drag. The assumption 

that the refined elements maintain the SSFLA characteristics is supported by analysis 

provided in Sabol's thesis [51]. 

To insure that the drag effects in the ASKS run are calculated the same way as in Sabol's 

estimation, the satellite characteristics must be set the same. Sabol's study uses a 700 kg 

satellite with a cross-sectional area of 35 m2, a drag coefficient of 2.0 and a reflectivity 

coefficient of 1.2 [51]. The only difference in the ASKS run is that the area is set to 25 

m2. This is a revised value determined by MCHI after Sabol's thesis [52]. Rather than 

executing the ASKS run with the older area value, Sabol's drag make-up control output 

will be scaled by 25/35 in the comparison. This approach allows future work on the 

Borealis satellites to use the results of this work without rescaling. In addition to the 

satellite characteristics, the ASKS run also applies the same Jacchia-Roberts atmospheric 

density model, with Schatten's "hot" solar flux predictions, as used by Sabol. 

The input deck for the ASKS run and the resulting orbital element difference plots for the 

satellites of both planes are provided in Appendix B. Note that these plots are for a two 
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year duration, and not the five year time span considered by Sabol. For the satellites of 

both planes, the Method 2 a, e, and i controller executes corrections for violations of the 

outer limits in these elements. All corrections cause the violating elements to target a 

value on the opposite side of its nominal. While no corrections are made to Q, co, and M 

directly, their rates are altered by corrections to a, e, and i. These directed corrections, 

which form the basis of the Method 3 controller discussed in section 6.4, are noticeable 

and fairly effective in containing the Q and co variations. In general, a, e, and i 

corrections keep the Q, co, and M differences from increasing without bounds. The 

argument of perigee co is not violated in the node at dawn plane, and is only violated by 

the 1st (initial M=0°) and 5th (initial M=288°) satellites in the node at dusk plane. The 

ascending node Q is kept within 0.5° for satellites in both planes. The mean anomaly M, 

however, is not maintained well at all. The maximum M deviation is 40° in the node at 

dawn plane and 25° in the node at dusk plane. 

The 2 year plots in Appendix B show that while the drag, eccentricity, and inclination 

controls proposed by Sabol maintain a, e, and i within the prescribed limits, they are not 

sufficient for the full control of the satellites in the Borealis sub-constellation. This is not 

an entirely unexpected result. Sabol's analysis was based only on the deviations observed 

in the elements. Correcting these deviations along the trajectory has significant effects on 

the element difference rates. These rates in turn affect the future motion of the elements 

for the duration of the trajectory following the correction. The motion caused by the 

changed rates cannot be observed if the elements themselves are not changed. The orbit 

propagation tool used by Sabol was not able to analyze the orbits in this manner. Since, 

the ASKS was specifically designed for this purpose, it is better able to track the motion 

of repeatedly corrected element trajectories. 
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The comparison of AV statistics between the ASKS run and Sabol's calculated values 

must take many factors into account. The first is the change in the cross sectional area of 

the satellite, as discussed above. To account for this, Sabol's drag control AV estimates 

are to be scaled by a factor of 25/35. Another factor is the duration and time span 

considered. Since the solar flux activity varies over time, simply scaling up the AV 

budget of a shorter duration run is not acceptable. To avoid executing a full 5 year 

controlled execution of the ASKS, however, we take advantage of the fact that the 

Schatten solar flux maximum occurs at the center of the Jan 1997 to Jan 2002 time span 

considered in Sabol's analysis, and that it is essentially symmetric about the maximum 

value. This implies that the semi-major axis and eccentricity controls can be assumed to 

be the same in the first half and second half of the Jan 1997 to Jan 2002 five year time 

span. From the inclination plots (figures B.2 and B.9) we see that the inclination rates 

remain steady throughout the 2 year run. Therefore, we can take half the magnitude of 

the five year AV statistics estimated by Sabol and compare them to the AV statistics 

produced by a 2V2 year run of the ASKS from Jan 1997 to July 1999 without losing 

accuracy. The AV statistics for each of the 10 Borealis satellites for this 2V2 year ASKS 

run, and their percent differences from the Sabol's twice scaled AV estimate of 25.159 

m/s, are listed in table 7.6. 

The ASKS AV budgets for each satellite are systematically greater than the worst case 

AV budget predicted by Sabol. The differences range from 10.47% to 114.91%, with the 

largest occurring for the node at dusk satellite which starts at M=72°. This discrepancy is 

partly due to the fact that some small eccentricity and semi-major axis perturbations were 

neglected in Sabol's study [51]. The main reason, though, is because of the differences in 

approaches used to determine the AV history. 

231 



Table 7.6: 2 V2 Year ASKS / Sabol AV Comparison For Node At Dawn / Dusk Borealis 
Satellites 

Satellite Node At Initial M AV (m/s) %Diff from Sabol 

1 Dawn 0° 31.587 + 20.75% 

2 Dawn 72° 35.142 + 34.34% 

3 Dawn 144° 27.793 + 10.47% 

4 Dawn 216° 36.129 + 43.60% 

5 Dawn 288° 34.122 + 35.63% 

6 Dusk 0° 39.575 + 57.30% 

7 Dusk 72° 54.068 + 114.91% 

8 Dusk 144° 38.418 + 52.70% 

9 Dusk 216° 48.442 + 92.54% 

10 Dusk 288° 31.666 + 25.86% 

Sabol analyzed the maximum deviations in each element for the entire time span, and 

then estimated AV corrections using the equations resulting from the integration of 

Gauss' form of the variational equations [51]. In doing so, the effect of the corrections on 

the element rates were not considered. For example, it was noticed that the difference 

between the actual and nominal inclination rate at epoch stays constant if the semi-major 

axis and eccentricity are maintained within their maximum limits. This implies that 

continually correcting a and e repeatedly drives the inclination difference to violate its 

limits. If the semi-major axis and eccentricity are allowed to vary, as in Sabol's analysis, 

then the inclination rate difference begins to oscillate, causing the inclination difference 

to taper off before reaching the maximum limit boundary. Therefore, not incorporating 

the effects of the corrections on the element rates results in fewer than the actually 

required number of impulses being included in the AV history. The ASKS actually 

simulates every correction with an orbital transfer. This approach preserves the effects of 
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the corrections on the element rates, and produces a much more accurate representation of 

the element difference history and AV history. 

Because the ASKS approach is better able to model corrected trajectories, we can state 

that its AV budgets represent a more accurate, yet conservative, upper bound on the actual 

AV required for station-keeping the Borealis node at dawn and dusk satellites, if only 

semi-major axis, eccentricity, and inclination are to be controlled to their table 6.1 limits. 

Maintaining the argument of perigee, ascending node, and mean anomaly to their table 

6.1 limits, however, will require additional corrections, and consequently, a larger AV 

budget. 

7.3 Simulation 2: Absolute vs. Relative Mean Anomaly Control 

The purpose of Simulation 2 is to produce orbital element difference histories, coverage 

histories, and AV budgets for the control of the Ellipso constellation. The Ellipso 

constellation used includes the 8:1 node at noon/midnight Borealis planes with 5 satellites 

each and the Concordia plane with 7 satellites. This simulation consists of three different 

runs. The first is a Method 0 uncontrolled 2 year execution of ASKS. This run provides 

a general understanding of the element variations and the baseline coverage 

characteristics of the Ellipso constellation. The second run is a two year Method 3 ASKS 

execution using absolute station-keeping for all the elements. The third run is a two year 

Method 3 ASKS execution using relative station-keeping for the mean anomaly. 

Comparison of the coverage histories from Run 2 and Run 3 to Run 1 will reveal whether 

the Method 3 controller is able to meet the Ellipso coverage requirements. Comparison 

of the Run 2 and Run 3 AV budgets will reveal whether there is a fuel cost incentive for 
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the Ellipso satellites in a plane to be controlled using relative mean anomaly station- 

keeping. 

The element sets for the Borealis satellites in all three runs are those refined by Sabol, 

Draim, and Cefola [52]. They are listed in table 7.3. Since these element sets are refined 

in the presence of zonal harmonics through degree 21 and solar/lunar point masses, those 

are the two perturbations activated for the nominal (reference) trajectories. The actual 

satellite trajectories will experience these perturbations plus solar radiation pressure, 

tesseral resonance and atmospheric drag. The element sets used for the Concordia 

satellites are listed in table 7.1. 

Runl 

The input deck, one to four-way coverage plots, and element difference plots for Run 1 

are located in section C.l of Appendix C. Note that coverage is calculated for the entire 

northern hemisphere and for the southern hemisphere above 55°S latitude. The northern 

hemispheric coverage assumes a 25° minimum elevation angle. The southern 

hemispheric coverage assumes a 10° minimum elevation angle. This same type of 

coverage calculation is used for all three runs. These coverage specifications are defined 

byMCHI[12]. 

The maximum northern and southern hemispheric coverages occur at the epoch as 

expected. Note that the epoch southern hemispheric coverage from 0°-55°S latitude is 

not 100%, as it is for the northern hemisphere, but approximately 97.7%. This is 

supported by the minimum elevation requirement plot of figure 1.2. It suggests that to 

obtain 100% coverage from 0°-55°S latitude using a 7 satellite Concordia plane, the 
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minimum elevation angle requirement must be reduce to 5° from the current 10°, or the 

southernmost latitude line for 10° minimum elevation angle must be raised to 50°S from 

55°S. 

For the northern hemisphere, the one-way coverage degrades from 100% to a minimum 

of 92% after 475 days (-16 months) before recovering to 99% at the end of two years. 

The two-way coverage begins at 85.3% and degrades to 63% after 325 days (-11 months) 

before recovering to about 75% at the end of two years. This coverage variation is clearly 

caused by the large deviations of the Borealis satellites from their nominal orbital 

elements. The uneven drag induced semi-major axis decay for the satellites in both 

Borealis planes drives the errors in the mean anomaly spacing. The variations in 

eccentricity and argument of perigee demonstrate that the frozen orbit characteristics are 

slowly degrading as well. Tesseral resonance, caused by the 8:1 repeat ground track, 

makes the element variations in each of the elements different for satellites in the same 

plane. These combined effects leave no choice but to implement a controller for each of 

the elements of the Borealis satellites. 

In sharp contrast, the southern hemispheric one-way and two-way coverage does not 

degrade at all over the two year span of this run. This is reflected in the small deviations 

of the elements of the Concordia satellites, which provide coverage to the southern 

hemisphere. Since the Concordia satellites do not experience tesseral resonance, their 

element differences are the same irrespective of initial mean anomaly placement. The 

semi-major axis and inclination variations do not violate the table 6.2 limits. Note that 

while the eccentricity variation does violate its limit of 0.0003, with a maximum of 

0.0012, the deviation is periodic and does not have an impact on the coverage. Because 

there is no loss of coverage due to element variations from the nominal for the Concordia 

satellites, the Concordia planes in Runs 2 and 3 will not be controlled. 
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Runs 2 and 3 

The input deck, one to four-way coverage plots, and element difference plots for Run 2 

and 3 are located in sections C.2 and C.3, respectively, of Appendix C. As explained 

above, no attempt is made to control the satellites of the Concordia plane since we have 

shown that their element variations over two years are not significant enough to affect the 

southern hemispheric coverage. For the Borealis satellites, the mean anomaly maximum 

limit of 0.05° was deemed too strict and would require too many directed semi-major 

corrections. Thus the mean anomaly maximum limit for the Borealis satellites was set to 

5° for both runs. 

The one and two-way northern hemispheric coverage values remain at their epoch values 

for both runs. Thus, one-way coverage stays at 100% and two-way coverage maintains 

an average of 85.3% with a very small standard deviation. The small deviations in the 

two-way coverage are more likely due to noise in the coverage calculation than to any 

physical disturbance. These plots demonstrate that the Method 3 controller applied with 

both the absolute and relative mean anomaly station-keeping is successful at maintaining 

the optimal coverage of the Ellipso constellation. 

The semi-major axis, eccentricity, and inclination variations for the Borealis satellites of 

both runs are kept within their respective maximum limits by targeting Method 2 control 

procedures. At many points along the two year trajectory, however, corrections are made 

to these elements when they are not at their outer limits. These corrections are directed 

by outer limit violations in the ascending node or mean anomaly, as per the Method 3 

controller. Note that the argument of perigee never reaches its outer limit of 0.98° for any 

Borealis satellite in both runs. 
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One of the interesting aspects of the element difference plots of Run 2 and Run 3 is with 

the mean anomaly. The mean anomaly plots are figures C.32 and C.38 for absolute 

station-keeping, and C.48 and C.54 for the relative station-keeping. Note that the mean 

anomaly outer limit violations drive the semi-major axis corrections until about 600 days 

(-20 months) into the 2 year run. At that point, the solar flux induced drag affect on the 

semi-major axis becomes large enough so that the semi-major axis degrades to its 

negative outer limit of -1.0 km before its corresponding mean anomaly can reach its 

positive outer limit of +5.0°. The semi-major axis violation induced semi-major axis 

corrections still have the requisite effect of reversing the motion of the mean anomaly 

variation. Therefore, after 600 days, the mean anomaly is actually maintained tighter 

than the 5° specified maximum limit purely by the requirements placed on the semi-major 

axis. Since the northern hemispheric coverage does not ever stray from a value of 100%, 

this behavior suggests that the semi-major axis limit for Borealis is too tight for the 

specified coverage requirement. 

Figure C.54, the mean anomaly differences for the node at midnight plane for Run 3 

displays an interesting situation that develops with the combination of relative mean 

anomaly station-keeping with directed semi-major axis corrections (Method 3). Note first 

that negative mean anomaly outer limit violations are not considered to require semi- 

major axis directed corrections if the semi-major axis rate difference is negative at the 

time of the violation. This feature was built into the controller to avoid enacting burns 

which lower the energy of an orbit. The negative semi-major axis rate difference implies 

that the negative mean anomaly violation will eventually turn around on its own and 

cross back into the acceptable region. This approach works for individual mean anomaly 

station-keeping, as seen for the node at midnight satellites of Run 2 (figure C.38). 

However, when the nominal mean anomaly value for a satellite is allowed to vary based 
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upon the mean anomaly motions of the other satellites in the Borealis plane, as with the 

relative station-keeping method, then the combined tendency of the remaining satellites 

to move ahead in mean anomaly (due to drag) causes the negative mean anomaly 

violating satellite to push further into the negative violating region. In figure C.54, we 

see that satellite 2 (initial M=72°) is caught in the negative violating region after having 

strayed too far into it because of the controller restriction against lowering orbit energy. 

Since this violation did not affect the northern hemispheric coverage, the restriction 

against reducing orbit energy was retained. In other constellation cases, though, this 

particular behavior of relative station-keeping may pose a problem that requires special 

attention in the control method. 

Table 7.7: 2 Year AV Budgets For Node At Noon / Midnight Borealis Satellites Using 
Method 3 Controller With Absolute and Relative Mean Anomaly Station-Keeping 

Satellite Node At Initial M Absolute SK 
AV (m/s) 

Relative SK 
AV (m/s) 

Difference 
AV (m/s) 

1 Noon 0° 39.001 31.412 - 7.589 

2 Noon 72° 43.742 37.433 - 6.309 

3 Noon 144° 31.113 35.698 4.585 

4 Noon 216° 37.928 41.732 3.804 

5 Noon 288° 35.864 38.891 3.027 

6 Midnight 0° 24.043 25.031 0.988 

7 Midnight 72° 38.018 37.348 -0.670 

8 Midnight 144° 23.143 15.535 -7.608 

9 Midnight 216° 36.667 33.524 -3.143 

10 Midnight 288° 27.875 31.007 3.132 

The 2 year AV budgets for the Borealis satellites using the Method 3 controller with 

absolute and relative station-keeping are listed in table 7.7.  The maximum satellite AV 
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requirement is 43.742 m/s with absolute station-keeping and 41.732 m/s with relative 

mean anomaly station-keeping. On average, the per satellite reduction in AV using 

relative mean anomaly station-keeping is only 0.978 m/s, or 2.90%. Once an engineering 

safety factor is added to the AV budgets, this small improvement essentially disappears. 

Therefore, there is no significant fuel reduction caused by implementing relative station- 

keeping for the 8:1 Borealis orbit satellites. 

7.4 Simulation 3: 81:10 Ellipso Coverage Analysis 

The refined 8:1 repeat ground track orbits are the currently accepted design for Borealis. 

Recently, however, MCHI has begun considering the adoption of a modified design with 

an 81:10 repeat ground track cycle. Sabol, Draim, and Cefola showed that this new 

design moves the Borealis from deep resonance to shallow resonance without having a 

significant impact on the minimum elevation angle specifications [52]. By their 

calculations, satellites in the 81:10 orbits, which don't experience the uneven tesseral 

resonance disturbances, require only 5.2 kg of station-keeping fuel for a 5 year mission as 

opposed to 14.8 kg for the current design [52]. This new design presents an opportunity 

to demonstrate that the ASKS can be used to analyze new constellation designs even 

without implementing controlled runs. 

The purpose of this simulation, then, is to study the coverage and element difference 

histories of four possible versions of the Ellipso constellation with 81:10 Borealis orbits. 

All the runs are Method 0 uncontrolled and last for 5 years. Run 1 is on the standard 5-5- 

7 satellite 81:10 Ellipso constellation. The epoch element sets for this run are listed in 

table 7.4. Run 2 is on the 4-4-6 satellite configuration. This means that each Borealis 

plane will have 4 satellites, and the Concordia plane will have 6 satellites. Runs 3 and 4 

239 



will be the same as Runs 1 and 2, but with the arguments of perigee of the two Borealis 

planes rotated to bias coverage to daylight hours. These runs use the same element sets 

as Runs 1 and 2, but with a 260° node at noon argument of perigee and a 280° node at 

midnight argument of perigee. Note that all four runs use relative mean anomaly station- 

keeping. Since no control method is applied, this is done only to clarify mean anomaly 

difference plots. 

The input deck, one to four-way coverage plots, and element difference plots for Run 1 

are located in section D.l of Appendix D. Since the Concordia satellites have not been 

modified, they display the same element motion seen in Simulation 2. The element 

difference plots for the Borealis satellites, however, are strikingly different from their 

Simulation 2 counterparts. All the satellites in a Borealis plane now have a common 

semi-major axis, eccentricity, inclination, and ascending node differences over the five 

years. The argument of perigee differences diverge somewhat, but not significantly with 

respect to its maximum limits. Since the nominal mean anomaly is adjusted at each time 

step to allow for relative station-keeping in this element, the mean anomaly differences 

do diverge, but only to 5.5° over the 5 year time span. While the semi-major axis decays 

8 km for the node noon satellites and almost 35 km for the node at midnight satellites, the 

one-way northern hemispheric coverage remains at 100% for the entire 5 year span with 

the exception on one small duration deviation. The two-way northern hemispheric 

coverage displays a gradual secular decrease from an epoch value of 83.2% to about 

82.5% at the 2 year point. The southern hemispheric one-way coverage remains steady at 

97.9% throughout the time span of the run. The southern hemispheric two-way coverage 

average is steady at 82.3%, but experiences a higher standard deviation. As a whole, 

these plots reveal that station-keeping expenditure is not required to maintain one-way 
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coverage for the 5-5-7 81:10 Ellipso constellation, but is required to maintain two-way 

coverage. 

The one to four-way coverage plots and element difference plots for Run 2 are located in 

section D.2. Since tesseral resonance is not as predominant as in the 8:1 case, the four 

satellites of Run 2 Borealis planes exhibit the same element difference motion as the five 

satellites of the Run 1 Borealis planes. Initial satellite mean anomaly location is not a 

significant factor in the presence of shallow resonance. For the northern hemisphere, the 

one-way coverage begins to deviate more often from 100% than with Run 1. The two- 

way coverage begins at 66% and degrades to 65% in two years. Notice that this is 

significantly less than the approximately 82% two-way coverage exhibited by the 5-5-7 

constellation. In the southern hemisphere, the one-way coverage remains steady at 97.2% 

while the two-way coverage averages to 65% but ranges from a low of 64.4% to a high of 

67.5%. Both the one-way and two way coverage values are lower than their 5-5-7 

counterparts. From these coverage plots, we see that the 4-4-6 81:10 Ellipso constellation 

needs control to maintain both one-way and two-way coverage, and that two-way 

coverage is more sensitive than one-way coverage to the on-orbit failures of Ellipso 

satellites. 

The one to four-way coverage plots and element difference plots for Run 3 are located in 

section D.3. The element difference plots for the Run 3 Borealis planes, with rotated 10° 

argument of perigee, are essentially the same as the Run 1 plots. None of the element 

variations are significantly affected by the change in perigee locations. In terms of 

coverage, the largest change is in the two-way coverage values. For the northern 

hemisphere, the two-way coverage starts at 82.1% and increases slightly to 82.3% in 2 

years. In Run 1, this coverage was approximately 83% and decreasing. For the southern 

hemisphere, the two-way coverage is slightly higher at 82.6% than its Run 1 value. This 
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behavior is explained by the fact that rotating the planes toward sunlight brings the edge 

of the Borealis coverage pattern further into the equatorial region where Concordia's 

coverage pattern is dominant. 

The one to four-way coverage plots and element difference plots for Run 4 are located in 

section D.4. As with Run 3, the element difference plots of Run 4 are not changed by the 

10° rotations in argument of perigee. For the northern hemisphere, the one-way coverage 

deviates even more frequently than in Run 2 (4-4-6 with standard co) from 100%, but only 

for short durations and a maximum drop of 0.1%. For the southern hemisphere, the one- 

way coverage is steady at 97.2%, the same value as with Run 2. The two-way coverage 

exhibits the same shift as in Run 3. The two-way northern coverage is smaller at 64.5% 

while the two-way southern coverage is higher at 65.7%. 

These four runs reveal some preliminary information about the nature of the proposed 

81:10 Ellipso constellation. They verify Sabol, Draim, and Cefola's results about the 

elimination of the 8:1 deep resonance effects. In addition, they provide the initial 

coverage analysis for each of the configurations. For a more in-depth analysis, however, 

coverage histories which distinguish between sun-lit and shadow times are needed to 

ascertain the true coverage advantage of rotating the Borealis planes. While this 

capability does not exist in the current coverage utility used by the ASKS, it is an area for 

future development of the system. In addition, further analysis of the 81:10 Ellipso using 

controlled ASKS executions is required. These runs can help provide the upper bounds 

on the station-keeping AV budgets for the 81:10 satellites. 
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Chapter 8 

Conclusions and Future Work 

This work develops and tests a system for the automated station-keeping of satellite 

constellations. The system treats constellation station-keeping as an integrated trajectory 

tracking problem. It simultaneously maintains all satellites of a constellation within the 

defined orbital element limits of their nominal trajectories. The system can take 

advantage of the distributed nature of constellations by controlling satellites and planes 

relative to their each other rather than independently. The control law consists of three 

components: correction implementation criteria, a function which chooses which orbital 

elements to correct, and a targeting method which determines a future target state. The 

system is flexible in that it allows for different targeting methods. The targeted state is 

achieved with the use a multi-impulse near-optimal orbital transfer calculated using 

Primer Vector theory. 

The Automated Station-Keeping Simulator (ASKS) is the software product created for 

this project. It is a flexible scaleable computer program which simulates the station- 

keeping of an entire constellation. There are no restrictions on the type of orbits, plane 

configurations, or number of satellites that can be considered. The ASKS uses the DSST 

Standalone Orbit Propagator for its orbit calculations. DSST is an efficient and accurate 

tool which uses semi-analytic satellite theory to predict state and state rate information. It 

is capable of incorporating impulsive transfers and accurately modeling several 

perturbations, including spherical harmonics, tesseral resonance, solar radiation pressure, 
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solar/lunar point mass disturbances, and atmospheric drag. The ASKS software also uses 

the Message Passing Interface (MPI). This allows the simulation to operate in parallel on 

a distributed network of workstations. 

Three different targeting methods are developed in this thesis. The ASKS is designed so 

that additional methods can quickly and easily be added in the future. The first targeting 

method simply brings elements that are identified for correction back to their nominal 

element values. The second targeting method attempts to correct the elements beyond the 

nominal values in an attempt to reduce the frequency of orbital corrections. The third 

targeting method, called direct corrections, directs changes in the ascending node, 

argument of perigee, and mean anomaly element rates with corrections to the semi-major 

axis, eccentricity, and inclination. In addition to these three conventional methods, three 

detailed Lyapunov non-linear control strategies are proposed. 

Finally, three simulations were conducted to analyze the control and coverage 

characteristics for the Ellipso constellation. In the first simulation, the AV generator was 

validated with a comparison to an Ellipso study conducted by Sabol [51]. The second 

simulation investigated the advantage of controlling the Ellipso planes as a whole rather 

than as separate satellites. The third simulation analyzed the coverage characteristics of 

different orientations of the proposed 81:10 Ellipso constellation orbits. 

The remainder of this chapter lists some specific conclusions and identifies some areas of 

future work related to the ASKS and automated constellation station-keeping 

methodology. 
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8.1 Conclusions 

Primer Vector Theory 

There are two conclusions related to using Primer Vector Theory for the problem of 

station-keeping. 

First, the method for determining the optimal magnitude of an interior burn, without 

invoking first order assumptions, is to use a binary search scheme to solve for the root of 

the following equation 

3dJ _    (2^/+P/)rf (2cg0+p0)r0    +i_^ 

dc      2^jc2 qf +cpf+\     2^c2 q0 +cPo + \ 

This equation is the partial derivative of the cost increment dJ with respect to the 

magnitude of the interior impulse c. The definitions of p, q, and r are listed in equation 

2.37 in Chapter 2. The graph of this equation is characterized by alternating steep rises 

and plateaus. Despite its complicated nature, there is always one solution for the 

magnitude of the interior impulse. 

Second, Powell's method can be used to optimize the time of the interior impulse. This 

replaces the gradient search on the interior burn time and position displacement used by 

Jezewski and Rozendaal [34]. This approach greatly simplifies the search for the 

minimum characteristic velocity, but the resulting burnlist can only be considered to be 

near-optimal. 
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ASKS/Ellipso 

The following conclusions are related to the ASKS simulations run on variations of the 

Ellipso constellation. 

The 2'/2 year AV budgets calculated by the ASKS for the 8:1 Borealis satellites in the 

node at dawn and dusk configuration are listed in table 8.1. Only the semi-major axis, 

eccentricity, and inclination are controlled with targeting Method 2. 

Table 8.1: Average and Maximum 2V2 Year AV Budgets for Borealis Node at Dawn / 
Dusk Satellites 

avg AV (m/s) max AV (m/s) 

Node at Dawn 32.955 36.129 

Node at Dusk 42.434 54.068 

On average, these ASKS AV budgets are 28.96% greater for the node at dawn plane and 

68.66% greater for the node at dusk plane than the equivalent maximum AV budget 

estimated by Sabol in his study of these orbits [51]. Since the ASKS simulates every 

correction and determines its effects on each of the elements, rather than analytically 

estimating corrections from uncontrolled element histories, these AV budgets represent a 

more accurate, yet conservative, upper bound on the actual AV budgets of the Borealis 

node at dawn and dusk satellites, if only semi-major axis, eccentricity, and inclination are 

to be controlled. The ascending node, argument of perigee, and mean anomaly violate 

their orbital element limits. Therefore, additional fuel is required for the control of all the 

elements. 

The 2 year AV budgets for the 8:1 Ellipso satellites in the node at noon and midnight 

planes are listed in table 8.2. No control expenditure is required in the Concordia plane to 
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maintain coverage. The ASKS runs associated with this simulation use targeting Method 

3 with a modified 5° maximum limit on the mean anomaly. For the time span from Jan 

1997 to Jan 1999, the worst case AV budget for the 8:1 Borealis node at noon/midnight 

satellites is 43.742 m/s. On average, the per satellite reduction in AV using relative mean 

anomaly station-keeping is only 0.978 m/s, or 2.90%. Once an engineering safety factor 

is added to the AV budgets, this small improvement essentially disappears. Therefore, 

there is no significant fuel reduction caused by implementing relative mean anomaly 

station-keeping for the 8:1 Borealis orbit satellites. 

Table 8.2: 2 Year AV Budgets for Borealis Node at Noon / Midnight Satellites Using 
Absolute and Relative Mean Anomaly Station-Keeping 

Absolute SK 
avg AV (m/s) 

Absolute SK 
max AV (m/s) 

Relative SK 
avg AV (m/s) 

Relative SK 
max AV (m/s) 

Node at Noon 37.530 43.742 37.003 41.732 

Node at Midnight 29.949 38.018 28.489 37.348 

Some other conclusions can be drawn from this 8:1 Ellipso analysis as well. First, 

targeting Method 3 is able to maintain all the orbits of the constellation, and the epoch 

one-way and two-way coverage, without any unexpected violations of the element limits. 

The negative mean anomaly limit is violated briefly by some satellites in order to avoid 

burns which reduce orbit energy. Second, if coverage is the only determining factor, the 

current 1 km semi-major axis limitation for the 8:1 Ellipso should be increased. Finally, 

the use of targeting Method 3 with relative mean anomaly station-keeping can result in an 

anomalous situation where one satellite's mean anomaly is forced to remain outside the 

maximum limits for an extended duration. 
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The coverage analysis of the 4-4-6 and 5-5-7 satellite 81:10 Ellipso constellations, with 

and without adjustment of the argument of perigee for biasing towards daylight coverage, 

yields multiple conclusions. First one-way coverage for the standard 5-5-7 satellite 

Ellipso constellation can be maintained for 5 years without any station-keeping. 

Maintenance of two-way coverage, however, requires station-keeping. Second, a 10° 

rotation in argument of perigee for the 81:10 Borealis planes does not have a significant 

impact on the coverage characteristics. Finally, the element difference plots for all the 

configurations verify Sabol, Draim, and Cefola's results about the elimination of the 8:1 

deep resonance effects. 

8.2 Future Work 

ASKS 

Some areas of future work that relate to the expansion of the functionality in the 

Automated Station-Keeping Simulator are 

• expansion of the ASKS to include station-keeping via electric propulsion and 

finite burn models 

• incorporation of a genetic algorithms  (GA) package  for the purpose of 

optimizing orbital element limits and control parameter settings 

• development and integration of Lyapunov control targeting methods; to include 

exploration of the use of the shaping matrix M and the scalar functions K and L 

• removal of the one orbit period constraint on the iteration time step of the 

controlling loop 
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incorporation of a sectoral coverage analysis capability into the global coverage 

package 

development of a revised Method 3 targeting strategy that allows the restriction 

against burns that lower orbit energy when using relative mean anomaly station- 

keeping 

derivation of a new equation for the cost increment dJ which does not rely on 

first order assumptions 

application of control algorithms developed in this thesis to the problem of 

automatically rephasing the operational satellites in a plane following an on- 

orbit failure 

modification of the communications architecture between ASKS processes to 

allow crosslink between satellites rather than routing all communication 

through the ground station 

DSST 

Certain improvements to the operation of the orbit propagator will allow the ASKS to 

incorporate control strategies that require accurate positioning with respect to the Earth. 

Other improvements promise significant reductions in the run time of ASKS executions. 

These improvements are 

• enabling of true-of-date state and state rate output 

• removal   of orbit   integrator  re-initialization  requirement   for  consecutive 

executions using the same epoch state 

• removal of DSST requirement to re-read all binary data files for every call of 

sat_propjnod 
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incorporation of 50 x 50 potential field model and J2000 inertial reference 

frame for precise mean element propagation 

Test Cases 

There are also several areas of study open to investigation with the ASKS. Some of these 

are 

• the study of larger constellations such as the 66 satellite Indium using more 

workstation platforms or computers with large scale symmetric multi- 

processing capability 

• the study of relative station-keeping with the semi-major axis and ascending 

nodes, as well as mean anomaly 

• determination of AV budgets for the different configurations of the 81:10 

Ellipso constellation 

The study of station-keeping presented in this thesis is one part of a larger initiative being 

pursued by the Astrodynamics Applications business area at the Charles Stark Draper 

Laboratory. Building upon a solid foundation of satellite flight dynamics research, 

software tools, and operational systems, the goal of the initiative is establish a knowledge 

base and develop innovative concepts for constellation flight dynamics. This expansion 

of scope from individual satellite level to constellation level is spurred by the ongoing 

development of constellations for global personal communications. Other areas of study 

in the initiative include distributed processing for flight dynamics software and orbit 

determination based on GPS and crosslink ranging navigation concepts. 
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Appendix A 

Mean of 1950 / True of Date Output Comparison 

This appendix contains all the plots related to the test case executed to show that the 

orbital element differences, between the actual and nominal states, are the same in the 

Mean of 1950 and the instantaneous true of date frames. It involves two runs of the 

GTDS/SST propagator. In both runs, the nominal trajectory is propagated with a 21 x 0 

geopotential force model (zonals only) while the actual trajectory includes a full 21 x 21 

force model, tesseral resonance, solar radiation pressure, atmospheric drag, and 

solar/lunar third body point masses. Each run is 5 years long from Jan 1997 to Jan 2002. 

In Run 1, the output is in the Mean of 1950 reference frame. In Run 2, the output is in 

the instantaneous true of date frame. The differencing and plotting was done with a Tel 

routine developed by Brian Kantsiper [35]. 

Section A.l contains the GTDS input deck used for Run 1, and the orbital element 

differences in the Mean of 1950 reference frame. Section A.2 contains the GTDS input 

deck for Run 2, and the orbital element differences in the instantaneous true of date 

reference frame. Note that the two sets of plots are identical. This is supported by the 

radial, cross-track, and along track differences listed in table 3.4. The conclusion is that 

the differences in the Mean of 1950 and true of date frames are identical. 
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A.l Run 1: Mean of 1950 Element Differences 

CONTROL EPHEM ELLIPSO xxxxxx 
EPOCH 970101.0 000000.000000 
ELEMENT1 2 6 1 10472.201D0 0.342652D0 116.583 
ELEMENT2 280.0 270.0 0.0 
OUTPUT 1 2 1 1020101.0 000000.DO 864000. 
ORBTYPE 5 1 1 86400. 1.0 
OGOPT 
DRAG 1 2.0 
NCBODY 1 
ATMOSDEN 1 
SCPARAM 2.5D-5 700.0D0 
MAXDEGEQ 1 21. 
MAXORDEQ 1 0. 
POTFIELD 1 19 
SOLRAD 1 2.0 
OUTOPT 1 970101000000. 1020101000000.0 86400. 
END 
FIN 
CONTROL EPHEM ELLIPSO xxxxxx 
EPOCH 970101.0 000000.000000 
ELEMENT1 2 6 1 10472.201D0 0.342652D0 116.583 
ELEMENT2 280.0 270.0 0.0 
OUTPUT 1 2 1 1020101.0 000000.DO 864000. 
ORBTYPE 5 1 1 86400. 1.0 
OGOPT 
DRAG 1 1.0 
NCBODY 1 2 3 
ATMOSDEN 1 
SCPARAM 2.5D-5 700.0D0 
MAXDEGEQ 1 21. 
MAXORDEQ 1 21. 
POTFIELD 1 19 
SOLRAD 1 1.0 
OUTOPT 21 970101000000. 1020101000000.0 86400. 
END 
FIN 
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Difference in Semi-Major Axis vs Time 
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Figure A.l: Semi-major Axis Differences in Mean of 1950 Frame 
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Figure A.2: Eccentricity Differences in Mean of 1950 Frame 
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Difference in Inclination vs Time 
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Figure A.3: Inclination Differences in Mean of 1950 Frame 
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Figure A.4: Ascending Node Differences in Mean of 1950 Frame 
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Difference in Argument of Perigee vs Time 
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Figure A.5: Argument of Perigee Differences in Mean of 1950 Frame 
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Figure A.6: Mean Anomaly Differences in Mean of 1950 Frame 
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A.2 Run 2: Instantaneous True of Date Element Differences 

CONTROL EPHEM ELLIPSO XXXXXX 
EPOCH 970101.0 000000.000000 
ELEMENT1 2 6 1 10472.201D0 0.342652D0 116.583 
ELEMENT2 280.0 270.0 0.0 
OUTPUT 9 2 1 1020101.0 000000.DO 864000. 
ORBTYPE 5 1 1 86400. 1.0 
OGOPT 
DRAG 1 2.0 
NCBODY 1 
ATMOSDEN 1 
SCPARAM 2.5D-5 700.0D0 
MAXDEGEQ 1 21. 
MAXORDEQ 1 0. 
POTFIELD 1 19 
SOLRAD 1 2.0 
OÜTOPT 1 970101000000. 1020101000000 .0 86400. 
END 
FIN 
CONTROL EPHEM ELLIPSO XXXXXX 
EPOCH 970101.0 000000.000000 
ELEMENT1 2 6 1 10472.201D0 0.342652D0 116.583 
ELEMENT2 280.0 270.0 0.0 
OUTPUT 9 2 1 1020101.0 000000.DO 864000. 
ORBTYPE 5 1 1 86400. 1.0 
OGOPT 
DRAG 1 1.0 
NCBODY 1 2 3 
ATMOSDEN 1 
SCPARAM 2.5D-5 700.0D0 
MAXDEGEQ 
MAXORDEQ 

1 
1 

21. 
21. 

POTFIELD 1 19 
SOLRAD 1 1.0 
OUTOPT 21 970101000000. 1020101000000. .0 86400. 
END 
FIN 
CONTROL COMPARE 
COMPOPT 
CMPEPHEM 1102102 970101000000.0 1020101000000. 0 1440. 
CMPPLOT 3 2.0 
HISTPLOT 1102102 970101000000.0 1020101000000. 0 86400.0 
END 
FIN 
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Difference in Semi-Major Axis vs Time 
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Figure A.7: Semi-major Axis Differences in Instantaneous True of Date Frame 
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Figure A. 8: Eccentricity Differences in Instantaneous True of Date Frame 
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Difference in Inclination vs Time 
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Figure A.9: Inclination Differences in Instantaneous True of Date Frame 

Difference in Longitude of Ascending Node vs Time 
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Figure A. 10: Ascending Node Differences in Instantaneous True of Date Frame 
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Difference in Argument of Perigee vs Time 
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Figure A. 11: Ascending Node Differences in Instantaneous True of Date Frame 
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Figure A. 12: Mean Anomaly Differences in Instantaneous True of Date Frame 
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Appendix B 

Simulation 1 Plots 

This appendix contains all the plots related to Simulation 1. The purpose of this 

simulation is to validate the ASKS AV generator. This is done by comparing the 

calculated per satellite AV required to maintain the satellites of the dawn/dusk Borealis 

planes to analytic AV values estimated by Sabol for this case [52]. The analysis of the 

results is located in section 7.2. Simulation 1 includes only one run. 

B.lSiml/Runl 

This run is conducted on the node at dawn/dusk configuration of the Borealis planes. 

Absolute (box) station-keeping is used with targeting method 2. The maximum parameter 

limits for the semi-major axis, eccentricity, and inclination are set according to the 

Ellipso requirements listed in table 6.1. The maximum limits for the remaining element 

are set to 720°, indicating that no attempt to control them is to be made. The deadband 

parameter limits are set to between 90% to 95% of the maximum limits. This is done to 

avoid combined element burns. The maximum overshoot limits for the method 2 

controller are set to 98% for the controlled elements. 

The epoch orbital elements for this run are listed in table 7.2. The nominal (reference) 

trajectory is propagated in the presence of zonal harmonics through degree 21, solar/lunar 

radiation pressure, and solar/lunar point masses.    The actual satellite trajectory is 
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propagated with the perturbations of the nominal trajectory plus tesseral resonance and 

atmospheric drag. 

Section B.l.l contains the input deck for runl. Sections B.1.2 and B.1.3 contain the 

orbital element difference plots for the node at dawn and node at dusk planes, 

respectively. 

B.l.l Input Deck (Sim 1 / Run 1) 

The following list is the input deck for run 1 of simulation 1. Only the information for 

one satellite per plane is depicted for brevity. The satellites in the plane are evenly 

spaced at epoch. 

Number of Planes 
Stat-Keep Method (CNbox; l=formation) 

Targeting Method 
Power 
kmax 

2 
1.00 

50 
max burns 4 

Epoch Date: 19970101.0 
Final Date: 19990101.0 
Iteration Time Step  : 

Epoch Time:      0.0000 
Final Time:      0.0000 

0.1030000000000000D+05 

****************************************** 
Plane :    1 
Sats In This Plane   :     5 

Maximum Parameter Limits: 
Keplerian Elements: 

1.0000000000000000D+00 
0.0010000000000000D+00 
0.0000500000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 

Scale (outer limits) :  0.9E 
Deadband Parameter Limits: 

Keplerian Elements: 

Maximum Overshoot Limits : 

9500000000000000D+00 
0009500000000000D+00 

0.0000450000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 

0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.OOOO00000O000000D+0O 
O.OOOOOOOOO0000000D+OO 
O.O00O0O00O0O00O0OD+0O 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg ma 

km sma 
ecc 

deg mc 
deg Ian 
deg ap 
deg ma 

frac sma 
frac ecc 
frac inc 
frac Ian 
frac ap 
frac ma 

262 



Satellite Number    : 

Actual State: 
Keplerian Elements: 0.1055925700000000D+05 km 

0.3453000000000000D+00 
0.1166211836800000D+03 deg 
0.0092686759000000D+03 deg 
0.2697118636300000D+03 deg 
O.OOOOOOOOOOOOOOOOD+03 deg 

sma 
ecc 
inc 
Ian 
ap 
ma 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
700.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00002500 

Retro: 1 Atmos Mdl: 1 Potent Mdl: 4 
Nmax: 21 Mmax: 21 Izonal: 1 
Nmaxrs: 21 Mmaxrs: 21 Ithird: 1 
Ind Drg: 1 Iszak: 2 Ind Sol: 1 

IJ2J2: 

Reference State: 
Keplerian Elements: 

Reference Switch    : 
Reference State Rates: 

Keplerian Rates: 

0.1055925700000000D+05 
0.3453000000000000D+00 
0.1166211836800000D+03 
0.0092686759000000D+03 
0.2 697118636300000D+03 
O.OOOOOOOOOOOOOOOOD+03 

! (0=DSST, l=Fixed Rates) 

O.OOOOOOOOOOOOOOOOD+OO 
O.OOOOOOOOOOOOOOOOD+00 
O.OOOOOOOOOOOOOOOOD+OO 
1.1407711610000000D-05 
O.OOOOOOOOOOOOOOOOD+OO 
3.3338114140000000D-02 

km 

deg 
deg 
deg 
deg 

sma 
ecc 
inc 
Ian 
ap 
ma 

km/sec sma 
1/sec ecc 
deg/sec inc 
deg/sec Ian 
deg/sec ap 
deg/sec ma 

CD: 2.20000000 Rho One: 
S/C Mass: 700.00000000 S/C Area: 
Integrator Step: 43200.00000000 

Retro: 1 Atmos Mdl:   1  Potent Mdl:  4 
Nmax: 21 Mmax:       0  Izonal:     1 
Nmaxrs: 2 Mmaxrs:     2  Ithird:     1 
Ind Drg: 2 Iszak:      2  Ind Sol:     1 

0.00000000 
0.00002500 

IJ2J2: 

****************************************** 
Plane 
Sats In This Plane 

Maximum Parameter Limits: 
Keplerian Elements: 

Scale (outer limits) :  0.96 
Deadband Parameter Limits: 

Keplerian Elements: 

Maximum Overshoot Limits : 

1.0000000000000000D+00 
0.0010000000000000D+00 
0.0000500000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 

0.9500000000000000D+00 
0.0009500000000000D+00 
0.0000450000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 

0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800O0000O000000D+00 
O.OOOOOOOOOOOOOOOOD+00 
O.OOOOOOOOOOOOOOOOD+00 
O.OOOOOOOOOOOOOOOOD+OO 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg ma 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg ma 

frac sma 
frac ecc 
frac inc 
frac Ian 
frac ap 
frac ma 
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Satellite Number 

Actual State: 
Keplerian Elements: 0.1055926040000000D+05 km sma 

0.3458700000000000D+00 ecc 
0.1165067373000000D+03 deg inc 
0.1895262563400000D+03 deg Ian 
0.2702878487500000D+03 deg ap 
0.0000000000000000D+03 deg ma 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
700.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00002500 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
1 Iszak: 

1 
21 
21 
2 

Potent Mdl: 
Izonal: 
Ithird: 
Ind Sol: 

IJ2J2: 

Reference State: 
Keplerian Elements: 

Reference Switch    : 
Reference State Rates: 

Keplerian Rates: 

0.1055926040000000D+05 km sma 
0.3458700000000000D+00 ecc 
0.1165067373000000D+03 deg inc 
0.1895262563400000D+03 deg Ian 
0.2702878487500000D+03 deg ap 
0.OOOOOOOOOO0O0O00D+O3 deg ma 

(0=DSST, l=Fixed Rates) 

0000000000000000D+00 
O00OOOOOO0OOOOOOD+O0 
OOOOO0OOO0OOO0OOD+O0 
1407711610000000D-05 
0000000000000000D+00 
3338114140000000D-02 

km/sec sma 
1/sec ecc 
deg/sec inc 
deg/sec Ian 
deg/sec ap 
deg/sec ma 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
700.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00002500 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
2 Mmaxrs: 
2 Iszak: 

Potent Mdl: 
Izonal: 
Ithird: 
Ind Sol: 

IJ2J2: 
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B.1.2 Method 2 (a,e,i) Borealis 8:1 Node at Dawn Orbital Element Difference Plots 

Semi-major Axis Diff From Ref 
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Days Since Epoch (Epoch: 1 Jan 97) 

Figure B.l: Semi-major Axis Difference From Nominal Trajectory 
(Method 2 (a,e,i) Borealis 8:1 Node at Dawn) 
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Figure B.2: Eccentricity Difference From Nominal Trajectory 
(Method 2 (a,e,i) Borealis 8:1 Node at Dawn) 
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Inclination Diff From Ref 
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(Method 2 (a,e,i) Borealis 8:1 Node at Dawn) 
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Figure B.4: Ascending Node Difference From Nominal Trajectory 
(Method 2 (a,e,i) Borealis 8:1 Node at Dawn) 
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Argument of Perigee Diff From Ref 
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Figure B.5: Argument of Perigee Difference From Nominal Trajectory 
(Method 2 (a,e,i) Borealis 8:1 Node at Dawn) 
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Figure B.6: Mean Anomaly Difference From Nominal Trajectory 
(Method 2 (a,e,i) Borealis 8:1 Node at Dawn) 
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B.1.3 Method 2 (a,e,i) Borealis 8:1 Node at Dusk Orbital Element Difference Plots 

Semi-major Axis Diff From Ref 
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Figure B.7: Semi-major Axis Difference From Nominal Trajectory 
(Method 2 (a,e,i) Borealis 8:1 Node at Dusk) 
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Figure B.8: Eccentricity Difference From Nominal Trajectory 
(Method 2 (a,e,i) Borealis 8:1 Node at Dusk) 
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Inclination Diff From Ref 
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Figure B.9: Inclination Difference From Nominal Trajectory 
(Method 2 (a,e,i) Borealis 8:1 Node at Dusk) 
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Figure B.10: Ascending Node Difference From Nominal Trajectory 
(Method 2 (a,e,i) Borealis 8:1 Node at Dusk) 
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Figure B.l 1: Argument of Perigee Difference From Nominal Trajectory 
(Method 2 (a,e,i) Borealis 8:1 Node at Dusk) 
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Figure B.12: Mean Anomaly Difference From Nominal Trajectory 
(Method 2 (a,e,i) Borealis 8:1 Node at Dusk) 
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Appendix C 

Simulation 2 Plots 

This appendix contains all the plots produced in Simulation 2. The purpose of this 

simulation is to investigate the advantage of controlling a constellation as a whole over 

controlling each satellite individually. The Ellipso constellation, including the Borealis 

8:1 node at noon/midnight planes, is used as the test constellation. All the runs in this 

simulation assume 5 satellites in each Borealis plane and 7 satellites in the Concordia 

plane. To provide a basis for comparing the coverage differences, the first run is of an 

uncontrolled 2yr execution. The second and third runs both use the targeting method 3 

controller developed in Chapter 6. The second run treats each satellite separately with 

absolute station-keeping, while the third run accomplishes relative station-keeping by 

updating the nominal mean anomaly of each satellite at each time step for even spacing in 

the plane. The analysis of the results is located in section 7.3. 

C.l Sim 2 / Run 1 

This run is an uncontrolled execution of the ASKS on the 8:1 node at noon/midnight 

configuration of the Borealis planes and the Concordia plane of the Ellipso constellation. 

Absolute (box) station-keeping is used with targeting method 0. Method 0 indicates that 

all control related components of the input deck are ignored. 
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The epoch orbital elements for this run are listed in tables 7.1 and 7.3. The nominal 

(reference) trajectory is propagated in the presence of zonal harmonics through degree 21, 

and solar/lunar point masses. The actual satellite trajectory is propagated with the 

perturbations of the nominal trajectory plus solar radiation pressure, tesseral resonance 

and atmospheric drag. 

Section C.l.l contains the input deck for runl. Sections C.1.2 contains the one, two, 

three, and four-way coverage of the constellation over the 2 year time span. Note that 

coverage is provided for the entire northern hemisphere and for the southern hemisphere 

above 55°S latitude. The northern hemispheric coverage assumes a 25° minimum 

elevation angle. The southern hemispheric coverage assumes a 10° minimum elevation 

angle. Section C.1.3 contains the orbital element difference plots for the Concordia 

plane. Sections C.1.4 and C.1.5 contain the orbital element difference plots for the node 

at noon and node at midnight planes, respectively. 

C.l.l Input Deck (Sim 2 / Run 1) 

The following list is the input deck for run 1 of simulation 2. Only the information for 

one satellite per plane is depicted for brevity. The satellites in the plane are evenly 

spaced at epoch. 

Number of Planes     :     3 
Stat-Keep Method : 0      (0-box;   Information) 

Targeting Method 
Power 
kmax 
max burns 

0 
1.00 

50 
4 

Epoch Date: 19970101.0 Epoch Time: 0.0000 
Final Date: 19990101.0 Final Time: 0.0000 
Iteration Time Step  :        0.1728000000000000D+06  sec 
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************************************* 
Plane 
Sats In This Plane 

Maximum Parameter Limits: 
Keplerian Elements: 

Scale (outer limits) :  0.98 
Deadband Parameter Limits: 

Keplerian Elements: 

Maximum Overshoot Limits 

l.OOOOOOOOOOOOOOOOD+00 
O.OOlOOOOOOOOOOOOOD+00 
0.0000500000000000D+03 
0.0002000000000000D+03 
0.0010000000000000D+03 
0.0050000000000000D+03 

9500000000000000D+00 
0009500000000000D+00 

0.0000450000000000D+03 
0.0001800000000000D+03 
0.0009500000000000D+03 
0.0047000000000000D+03 

0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.6500000000000000D+00 
0.9800000000000000D+00 
1.2500000000000000D+00 

km sma 
ecc 

deg ine 
deg lan 
deg ap 
deg ma 

km sma 
ecc 

deg ine 
deg lan 
deg ap 
deg ma 

frac sma 
frac ecc 
frac ine 
frac lan 
frac ap 
frac ma 

Satellite Number    : 

Actual State: 
Keplerian Elements: 0.1055927100000000D+05 km 

0.3457050000000000D+00 
0.1163074000600000D+03 deg 
0.2793744530100000D+03 deg 
0.2699478224900000D+03 deg 
O.0OOOOOOOO0O0000OD+03 deg 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
700.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00002500 

sma 
ecc 
ine 
lan 
ap 
ma 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
1 Iszak: 

1 
21 
21 
2 

Potent Mdl: 
Izonal: 
Ithird: 
Ind Sol: 

IJ2J2: 

Reference State: 
Keplerian Elements: 

Reference Switch    : 
Reference State Rates: 

Keplerian Rates: 

0.1055927100000000D+05 
0.3457050000000000D+00 
0.1163074000600000D+03 
0.2793744530100000D+03 
0.2699478224900000D+03 
O.OOOO0000O0OOOOOOD+03 

! (0=DSST, l=Fixed Rates) 

km 
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lan 
ap 
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O.OOOOOOOOOOOOOOOOD+OO 
O.OOOOOOOOOOOOOOOOD+00 
0.0O0O000O00000OO0D+00 
1.1407711610000000D-05 
O.OOOOOOOOOOOOOOOOD+OO 
3.3338114140000000D-02 

km/sec sma 
1/sec ecc 
deg/sec ine 
deg/sec lan 
deg/sec ap 
deg/sec ma 

CD: 2.20000000 Rho One: 
S/C Mass: 700.00000000 S/C Area: 
Integrator Step: 43200.00000000 

0.00000000 
0.00002500 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
2 Mmaxrs: 
2 Iszak: 

Potent Mdl: 
Izonal: 
Ithird: 
Ind Sol: 

IJ2J2: 

****************************************** 
Plane : 2 
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Sats In This Plane 

Maximum Parameter Limits: 
Keplerian Elements: 

Scale (outer limits) :  0.9E 
Deadband Parameter Limits: 

Keplerian Elements: 

Maximum Overshoot Limits : 

1.0000000000000000D+00 
0.0010000000000000D+00 
0.0000500000000000D+03 
0.0002000000000000D+03 
0.0010000000000000D+03 
0.0050000000000000D+03 

0.9500000000000000D+00 
0.0009500000000000D+00 
0.0000450000000000D+03 
0.0001800000000000D+03 
0.0009500000000000D+03 
0.0047000000000000D+03 

0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.6500000000000000D+00 
0.9800000000000000D+00 
1.2500000000000000D+00 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg ma 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg ma 

frac sma 
frac ecc 
frac inc 
frac Ian 
frac ap 
frac ma 

Satellite Number    : 

Actual State: 
Keplerian Elements: 0.1055927000000000D+05 km 

0.3456750000000000D+00 
0.1168225808500000D+03 deg 
0.0994212275300000D+03 deg 
0.2700524126200000D+03 deg 
0.0000000000000000D+03 deg 

sma 
ecc 
inc 
Ian 
ap 
ma 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
700.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00002500 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
1 Iszak: 

1 
21 
21 
2 

Potent Mdl: 
I zonal: 
Ithird: 
Ind Sol: 

IJ2J2: 

Reference State: 
Keplerian Elements: 

Reference Switch    : 
Reference State Rates: 

Keplerian Rates: 

0.1055927000000000D+05 
0.345 6750000000000D+00 
0.1168225808500000D+03 
0.0994212275300000D+03 
0.2700524126200000D+03 
0.00OOOOO0O0O00000D+03 

km 

deg 
deg 
deg 
deg 

(0-DSST, 1-Fixed Rates) 

sma 
ecc 
inc 
Ian 
ap 
ma 

.OOOOOOOOOOOOOOOOD+OO 

.OOOO00OOOOOOOOO0D+OO 

.0000000000000000D+00 

.1407711610000000D-05 

.O0000OOOOOOOO0O0D+OO 

.3338114140000000D-02 

km/sec sma 
1/sec ecc 
deg/sec inc 
deg/sec Ian 
deg/sec ap 
deg/sec ma 

CD: 2.20000000 Rho One: 
S/C Mass: 700.00000000 S/C Area: 
Integrator Step: 43200.00000000 

0.00000000 
0.00002500 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
2 Mmaxrs: 
2 Iszak: 

Potent Mdl: 
I zonal: 
Ithird: 
Ind Sol: 

IJ2J2: 

****************************************** 
Plane 
Sats In This Plane 
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Maximum Parameter Limits: 
Keplerian Elements: 

Scale (outer limits) :  0.9E 
Deadband Parameter Limits: 

Keplerian Elements: 

Maximum Overshoot Limits 

O.lOOOOOOOOOOOOOOOD+00 
0.0200000000000000D+00 
0.0000600000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 

0.1000000000000000D+00 
0.0200000000000000D+00 
0.0000600000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 

0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 

km sma 
ecc 

deg ine 
deg lan 
deg ap 
deg ma 

km sma 
ecc 

deg ine 
deg lan 
deg ap 
deg ma 

frac sma 
frac ecc 
frac ine 
frac lan 
frac ap 
frac ma 

Satellite Number 11 

Actual State: 
Keplerian Elements: 0.1444013700000000D+05 

O.OOOOlOOOOOOOOOOOD+00 
0.0002618026600000D+03 
0.08 91037880400000D+03 
0.0002938944900000D+03 
0.000OO00000000000D+03 

km 

deg 
deg 
deg 
deg 
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ecc 
ine 
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ap 
ma 

CD: 2.20000000 Rho One: 
S/C Mass: 700.00000000 S/C Area: 
Integrator Step: 43200.00000000 

0.00000000 
0.00002500 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
1 Iszak: 

1 Potent Mdl: 4 
21 Izonal: 1 
21 Ithird: 1 
2 Ind Sol: 1 

IJ2J2: 

Reference State: 
Keplerian Elements: 

Reference Switch    : 
Reference State Rates: 

Keplerian Rates: 

0.1444013700000000D+05 
O.OOOOIOOOOOOOOOOOD+OO 
0.0002618026600000D+03 
0.0891037880400000D+03 
0.0002938944900000D+03 
O.OOOOOOOOOOOOOOOOD+03 

km 

deg 
deg 
deg 
deg 

! (0=DSST, l=Fixed Rates) 
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ecc 
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ap 
ma 

0.00OOOO00O0000000D+00 
0.0000000000000000D+00 
O.OOOOOOOOOOOOOOOOD+OO 
1.1407711610000000D-05 
O.OOOOOOOOOOOOOOOOD+OO 
3.3338114140000000D-02 

km/sec sma 
1/sec ecc 
deg/sec ine 
deg/sec lan 
deg/sec ap 
deg/sec ma 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
700.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00002500 

Retro:     1 Atmos Mdl: 1 Potent Mdl: 4 
Nmax: 21 Mmax: 21 Izonal: 1 
Nmaxrs: 21 Mmaxrs: 21 Ithird: 3 
Ind Drg:   2 Iszak: 2 Ind Sol: 2 

IJ2J2: 
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C.1.2 Coverage Plots (Sim 2 / Run 1) 
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Figure C.l: Ellipso One-Way Coverage 
(Uncontrolled Borealis 8:1 Node at Noon/Midnight and Concordia) 
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(Uncontrolled Borealis 8:1 Node at Noon/Midnight and Concordia) 
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Figure C.3: Ellipso Three-Way Coverage 
(Uncontrolled Borealis 8:1 Node at Noon/Midnight and Concordia) 
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C.1.3 Uncontrolled Concordia Orbital Element Difference Plots 
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Figure C.5: Semi-major Axis Difference From Nominal Trajectory 
(Uncontrolled Concordia) 
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Figure C.6: Eccentricity Difference From Nominal Trajectory 
(Uncontrolled Concordia) 
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Argument of Perigee Diff From Ref 
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Figure C.9: Argument of Perigee Difference From Nominal Trajectory 
(Uncontrolled Concordia) 
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C.1.4 Uncontrolled Borealis 8:1 Node at Noon Orbital Element Difference Plots 
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Figure C.12: Eccentricity Difference From Nominal Trajectory 
(Uncontrolled Borealis 8:1 Node at Noon) 
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Figure C.13: Inclination Difference From Nominal Trajectory 
(Uncontrolled Borealis 8:1 Node at Noon) 
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Figure C.14: Ascending Node Difference From Nominal Trajectory 
(Uncontrolled Borealis 8:1 Node at Noon) 
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Figure C.15: Argument of Perigee Difference From Nominal Trajectory 
(Uncontrolled Borealis 8:1 Node at Noon) 

Mean Anomaly Diff From Ref 

—-satl 
— sat 2 
x sat 3 
-- sat 4 
— sat 5 

200 400 600 800 
Days Since Epoch (Epoch: 1 Jan 97) 

Figure C.16: Mean Anomaly Difference From Nominal Trajectory 
(Uncontrolled Borealis 8:1 Node at Noon) 
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C.1.5 Uncontrolled Borealis 8:1 Node at Midnight Orbital Element Difference Plots 
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Figure C.17: Semi-major Axis Difference From Nominal Trajectory 
(Uncontrolled Borealis 8:1 Node at Midnight) 
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Figure C.18: Eccentricity Difference From Nominal Trajectory 
(Uncontrolled Borealis 8:1 Node at Midnight) 
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Figure C.20: Ascending Node Difference From Nominal Trajectory 
(Uncontrolled Borealis 8:1 Node at Midnight) 
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Figure C.21: Argument of Perigee Difference From Nominal Trajectory 
(Uncontrolled Borealis 8:1 Node at Midnight) 
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Figure C.22: Mean Anomaly Difference From Nominal Trajectory 
(Uncontrolled Borealis 8:1 Node at Midnight) 
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C.2Sim2/Run2 

This run is an execution of the ASKS on the 8:1 node at noon/midnight configuration of 

the Borealis planes and the Concordia plane of the Ellipso constellation. Absolute (box) 

station-keeping is used with targeting method 3. Note that the satellites of the Concordia 

are left uncontrolled by defining the maximum limits in plane 3 of the input deck higher 

than the largest values observed in the plots of section C. 1.3. The maximum limits for all 

the elements, except the mean anomaly, for the two Borealis planes are set as listed in 

table 6.1. The mean anomaly maximum limit is set to 5°. The deadband limits are set 

just below the maximum limits to avoid multiple element burns. 

The epoch orbital elements for this run are listed in tables 7.1 and 7.3. The nominal 

(reference) trajectory is propagated in the presence of zonal harmonics through degree 21, 

and solar/lunar point masses. The actual satellite trajectory is propagated with the 

perturbations of the nominal trajectory plus solar radiation pressure, tesseral resonance 

and atmospheric drag. 

Section C.2.1 contains the input deck for run 2. Sections C.2.2 contains the one, two, 

three and four-way coverage of the constellation over the 2 year time span. Coverage is 

provided for the entire northern hemisphere and for the southern hemisphere above 55°S 

latitude. The northern hemispheric coverage assumes a 25° minimum elevation angle. 

The southern hemispheric coverage assumes a 10° minimum elevation angle. Since the 

Concordia plane is not controlled, its orbital element difference plots are the same as in 

section C.1.3. Sections C.2.3 and C.2.4 contain the orbital element difference plots for 

the node at noon and node at midnight planes, respectively. 
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C.2.1 Input Deck (Sim 2 / Run 2) 

The following listing is the input deck for run 2 of simulation 2. Only the information for 

one satellite per plane is depicted for brevity. The satellites in the plane are evenly 

spaced at epoch. 

Number of Planes 
Stat-Keep Method 

Targeting Method 
Power 
kmax 
max_burns 

Epoch Date: 19970101.0 
Final Date: 19990101.0 
Iteration Time Step  : 

0  (0=box; Information) 

3 
1.00 

50 
4 

Epoch Time:     0.0000 
Final Time:     0.0000 

0.1030000000000000D+05 

****************************************** 

Plane :     1 
Sats In This Plane  :    5 

Maximum Parameter Limits: 
Keplerian Elements: 

Scale (outer limits) :  0.96 
Deadband Parameter Limits: 

Keplerian Elements: 

Maximum Overshoot Limits 

1.0000000000000000D+00 
0.0010000000000000D+00 
0.0000500000000000D+03 
0.0002000000000000D+03 
0.0010000000000000D+03 
0.0050000000000000D+03 

0.9500000000000000D+00 
0.0009500000000000D+00 
0.0000450000000000D+03 
0.0001800000000000D+03 
0.0009500000000000D+03 
0.0047000000000000D+03 

0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.6500000000000000D+00 
0.9800000000000000D+00 
1.2500000000000000D+00 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg ma 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg ma 

frac sma 
frac ecc 
frac inc 
frac Ian 
frac ap 
frac ma 

Satellite Number     : 

Actual State: 
Keplerian Elements: 0.1055927100000000D+05 km sma 

0.3457050000000000D+00 ecc 
0.1163074000600000D+03 deg inc 
0.2793744530100000D+03 deg Ian 
0.2699478224900000D+03 deg ap 
0.0OOOO000OOOOOO0OD+O3 deg ma 

CD: 2.20000000 Rho One: 
S/C Mass: 700.00000000 S/C Area: 
Integrator Step: 43200.00000000 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
1 Iszak: 

1 Potent Mdl: 
21 Izonal: 
21 Ithird: 
2 Ind Sol: 

0.00000000 
0.00002500 

IJ2J2: 

Reference State: 
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Keplerian Elements: 

Reference Switch    : 
Reference State Rates: 

Keplerian Rates: 

,1055927100000000D+05 km sma 
.3457050000000000D+00 ecc 
,1163074000600000D+03 deg inc 
.2793744530100000D+03 deg Ian 
.2699478224900000D+03 deg ap 
,O0O0OOOOOOO0O0O0D+O3 deg ma 
! (0=DSST, l=Fixed Rates) 

O.OOOOOOOOOOOOOOOOD+00 
O.OOOOOOOOOOOOOOOOD+00 
O.OOOOOOOOOOOOOOOOD+00 
1.1407711610000000D-05 
0.0000O0000000OO00D+00 
3.3338114140000000D-02 

km/sec sma 
1/sec ecc 
deg/sec inc 
deg/sec Ian 
deg/sec ap 
deg/sec ma 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
700.00000000 S/C Area: 

43200.00000000 

Retro:     1 Atmos Mdl: 1 Potent Mdl: 4 
Nmax: 21 Mmax: 0 Izonal: 1 
Nmaxrs:    2 Mmaxrs: 2 Ithird: 1 
Ind Drg:   2 Iszak: 2 Ind Sol: 2 

0.00000000 
0.00002500 

IJ2J2: 

*** **************************** *** ******** 
Plane 
Sats In This Plane 

Maximum Parameter Limits: 
Keplerian Elements: 

Scale (outer limits) :  0.98 
Deadband Parameter Limits: 

Keplerian Elements: 

Maximum Overshoot Limits : 

1.0000000000000000D+00 
0.0010000000000000D+00 
0.0000500000000000D+03 
0.0002000000000000D+03 
0.0010000000000000D+03 
0.0050000000000000D+03 

0.9500000000000000D+00 
0.0009500000000000D+00 
0.0000450000000000D+03 
0.0001800000000000D+03 
0.0009500000000000D+03 
0.0047000000000000D+03 

0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.6500000000000000D+00 
0.9800000000000000D+00 
1.2500000000000000D+00 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg ma 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg ma 

frac sma 
frac ecc 
frac inc 
frac Ian 
frac ap 
frac ma 

Satellite Number 

Actual State: 
Keplerian Elements: 1055927000000000D+05 

3456750000000000D+00 
0.1168225808500000D+03 
0.0994212275300000D+03 
0.2700524126200000D+03 
0.00O0000000000OO0D+03 

km 

deg 
deg 
deg 
deg 

sma 
ecc 
inc 
Ian 
ap 
ma 

CD: 2.20000000 Rho One: 
S/C Mass: 700.00000000 S/C Area: 
Integrator Step: 43200.00000000 

Retro: 1 Atmos Mdl:   1  Potent Mdl:  4 
Nmax: 21 Mmax:      21  Izonal:     1 
Nmaxrs: 21 Mmaxrs:    21 Ithird:     1 
Ind Drg: 1 Iszak:      2  Ind Sol:    1 

0.00000000 
0.00002500 

IJ2J2: 

Reference State: 
Keplerian Elements: 0.1055927000000000D+05 

0.3456750000000000D+00 
km sma 

ecc 
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Reference Switch    : 
Reference State Rates: 

Keplerian Rates: 

0.1168225808500000D+03 deg inc 
0.0994212275300000D+03 deg Ian 
0.2700524126200000D+03 deg ap 
0.0000000000000000D+03 deg ma 

(0=DSST, l«Fixed Rates) 

O.OOOOOOOOOOOOOOOOD+00 
O.OOOOOOOOOOOOOOOOD+00 
O.OOOOOOOOOOOOOOOOD+00 
1.1407711610000000D-05 
O.OOOOOOOOOOOOOOOOD+OO 
3.3338114140000000D-02 

km/sec sma 
1/sec ecc 
deg/sec inc 
deg/sec Ian 
deg/sec ap 
deg/sec ma 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
700.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00002500 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
2 Mmaxrs: 
2 Iszak: 

Potent Mdl: 
I zonal: 
Ithird: 
Ind Sol: 

IJ2J2: 

*********************************** 

Plane :     3 
Sats In This Plane   :     7 

******* 

Maximum Parameter Limits: 
Keplerian Elements: 

Scale (outer limits) :  0.9E 
Deadband Parameter Limits: 

Keplerian Elements: 

Maximum Overshoot Limits : 

0.1000000000000000D+00 
0.0200000000000000D+00 
0.0000600000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 

0.1000000000000000D+00 
0.0200000000000000D+00 
0.0000600000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 
0.7200000000000000D+03 

0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg ma 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg ma 

frac sma 
frac ecc 
frac inc 
frac Ian 
frac ap 
frac ma 

Satellite Number 11 

Actual State: 
Keplerian Elements: 0.1444013700000000D+05 km sma 

0.0000100000000000D+00 ecc 
0.0002618026600000D+03 deg inc 
0.0891037880400000D+03 deg Ian 
0.0002938944900000D+03 deg ap 
0.OO00O0OOO00OOO00D+O3 deg ma 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
700.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00002500 

Retro:     1 Atmos Mdl: 1 
Nmax:      21 Mmax: 21 
Nmaxrs:    21 Mmaxrs: 21 
Ind Drg:    1 Iszak: 2 

Reference State: 
Keplerian Elements: 

Potent Mdl: 
I zonal: 
Ithird: 
Ind Sol: 

IJ2J2: 

0.1444013700000000D+05 km sma 
0.0000100000000000D+00 ecc 
0.0002618026600000D+03 deg inc 
0.0891037880400000D+03 deg Ian 

290 



0.0002938944900000D+03 deg   ap 
O.OOOOOOOOOOOOOOOOD+03 deg   ma 

Reference Switch    :    0   ! (0=DSST, l=Fixed Rates) 
Reference State Rates: 

Keplerian Rates: O.OOOOOOOOOOOOOOOOD+00 km/sec sma 
O.OOOOOOOOOOOOOOOOD+00 1/sec  ecc 
O.OOOOOOOOOOOOOOOOD+00 deg/sec inc 
1.1407711610000000D-05 deg/sec Ian 
O.OOOOOOOOOOOOOOOOD+OO deg/sec ap 
3.3338114140000000D-02 deg/sec ma 

CD: 2.20000000 Rho One:        0.00000000 
S/C Mass: 700.00000000 S/C Area:       0.00002500 
Integrator Step: 43200.00000000 

Retro:     1 Atmos Mdl: 1 Potent Mdl: 4 
Nmax: 21 Mmax: 21 Izonal: 1  IJ2J2:   1 
Nmaxrs: 21 Mmaxrs: 21 Ithird: 3 
Ind Drg:   2 Iszak: 2 Ind Sol: 2 
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C.2.2 Coverage Plots (Sim 2 / Run 2) 
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Figure C.23: Ellipso One-Way Coverage 
(Method 3 Borealis 8:1 Node at Noon/Midnight and Uncontrolled Concordia) 
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Figure C.24: Ellipso Two-Way Coverage 
(Method 3 Borealis 8:1 Node at Noon/Midnight and Uncontrolled Concordia) 
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Figure C.25: Ellipso Three-Way Coverage 
(Method 3 Borealis 8:1 Node at Noon/Midnight and Uncontrolled Concordia) 
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Figure C.26: Ellipso Four-Way Coverage 
(Method 3 Borealis 8:1 Node at Noon/Midnight and Uncontrolled Concordia) 
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C.2.3 Method 3 Borealis 8:1 Node at Noon Orbital Element Difference Plots 
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Figure C.27: Semi-major Axis Difference From Nominal Trajectory 
(Method 3 Borealis 8:1 Node at Noon) 
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Figure C.28: Eccentricity Difference From Nominal Trajectory 
(Method 3 Borealis 8:1 Node at Noon) 
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Inclination Diff From Ref 
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Figure C.29: Inclination Difference From Nominal Trajectory 
(Method 3 Borealis 8:1 Node at Noon) 
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Figure C.30: Ascending Node Difference From Nominal Trajectory 
(Method 3 Borealis 8:1 Node at Noon) 
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Argument of Perigee Diff From Ref 
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Figure C.31: Argument of Perigee Difference From Nominal Trajectory 
(Method 3 Borealis 8:1 Node at Noon) 
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Figure C.32: Mean Anomaly Difference From Nominal Trajectory 
(Method 3 Borealis 8:1 Node at Noon) 
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C.2.4 Method 3 Borealis 8:1 Node at Midnight Orbital Element Difference Plots 
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Figure C.33: Semi-major Axis Difference From Nominal Trajectory 
(Method 3 Borealis 8:1 Node at Midnight) 
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Figure C.34: Eccentricity Difference From Nominal Trajectory 
(Method 3 Borealis 8:1 Node at Midnight) 

297 



Inclination Diff From Ref 
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Figure C.35: Inclination Difference From Nominal Trajectory 
(Method 3 Borealis 8:1 Node at Midnight) 
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Figure C.36: Ascending Node Difference From Nominal Trajectory 

(Method 3 Borealis 8:1 Node at Midnight) 
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C.3 Sim 2 / Run 3 

This run is an execution of the ASKS on the 8:1 node at noon/midnight configuration of 

the Borealis planes and the Concordia plane of the Ellipso constellation. Relative mean 

anomaly (formation) station-keeping is used with targeting method 3. As with run 2, the 

satellites of the Concordia are left uncontrolled by defining the maximum limits in plane 

3 of the input deck higher than the largest values observed in the plots of section C.1.3. 

The Borealis limits are also the same as with run 2. 

The epoch orbital elements for this run are listed in tables 7.1 and 7.3. The nominal 

(reference) trajectory is propagated in the presence of zonal harmonics through degree 21, 

and solar/lunar point masses. The actual satellite trajectory is propagated with the 

perturbations of the nominal trajectory plus solar radiation pressure, tesseral resonance 

and atmospheric drag. 

Section C.3.1 contains the input deck for run 3. Sections C.3.2 contains the one, two, 

three and four-way coverage of the constellation over the 2 year time span. Coverage is 

provided for the entire northern hemisphere and for the southern hemisphere above 55°S 

latitude. The northern hemispheric coverage assumes a 25° minimum elevation angle. 

The southern hemispheric coverage assumes a 10° minimum elevation angle. Since the 

Concordia plane is not controlled, its orbital element difference plots are the same as in 

section C.1.3. Sections C.3.3 and C.3.4 contain the orbital element difference plots for 

the node at noon and node at midnight planes, respectively. 
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C.3.1 Input Deck (Sim 2 / Run 3) 

The following listing includes only the run information block of the input deck for run 3 

of simulation 2. The remainder of the input deck is the same as for run 2 of simulation 3. 

The only change is that "formation", or relative mean anomaly spacing, is set as the 

station-keeping method instead of "box", or absolute mean anomaly spacing. 

Number of Planes 
Stat-Keep Method 

Targeting Method 
Power 
kmax 
max burns 

(0=box; l=formation) 

3 
1.00 

50 
4 

Epoch Date: 19970101.0 Epoch Time: 0.0000 
Final Date: 19990101.0 Final Time: 0.0000 
Iteration Time Step  :        0.1030000000000000D+05 
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C.3.2 Coverage Plots (Sim 2 / Run 3) 
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Figure C.39: Ellipso One-Way Coverage 
(Method 3 / Relative M Borealis 8:1 Noon/Midnight and Uncontrolled Concordia) 
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Figure C.40: Ellipso Two-Way Coverage 
(Method 3 / Relative M Borealis 8:1 Noon/Midnight and Uncontrolled Concordia) 
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Figure C.41: Ellipso Three-Way Coverage 
(Method 3 / Relative M Borealis 8:1 Noon/Midnight and Uncontrolled Concordia) 
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Figure C.42: Ellipso Four-Way Coverage 

(Method 3 / Relative M Borealis 8:1 Noon/Midnight and Uncontrolled Concordia) 
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C.2.3 Method 3 / Relative M Borealis 8:1 Node at Noon Element Difference Plots 
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Figure C.43: Semi-major Axis Difference From Nominal Trajectory 
(Method 3 / Relative M Borealis 8:1 Node at Noon) 
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Figure C.44: Eccentricity Difference From Nominal Trajectory 
(Method 3 / Relative M Borealis 8:1 Node at Noon) 
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Figure C.45: Inclination Difference From Nominal Trajectory 
(Method 3 / Relative M Borealis 8:1 Node at Noon) 
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Figure C.46: Ascending Node Difference From Nominal Trajectory 
(Method 3 / Relative M Borealis 8:1 Node at Noon) 
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Argument of Perigee Diff From Ref 

—- sat 1 
— sat 2 
x sat 3 
-- sat 4 
— sat 5 

200 400 600 800 
Days Since Epoch (Epoch: 1 Jan 97) 

Figure C.47: Argument of Perigee Difference From Nominal Trajectory 
(Method 3 / Relative M Borealis 8:1 Node at Noon) 
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Figure C.48: Mean Anomaly Difference From Nominal Trajectory 
(Method 3 / Relative M Borealis 8:1 Node at Noon) 
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C.2.4 Method 3 / Relative M Borealis 8:1 Node at Midnight Element Difference Plots 
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Figure C.49: Semi-major Axis Difference From Nominal Trajectory 
(Method 3 / Relative M Borealis 8:1 Node at Midnight) 
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Figure C.50: Eccentricity Difference From Nominal Trajectory 
(Method 3 / Relative M Borealis 8:1 Node at Midnight) 
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Figure C.51: Inclination Difference From Nominal Trajectory 
(Method 3 / Relative M Borealis 8:1 Node at Midnight) 
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Figure C.52: Ascending Node Difference From Nominal Trajectory 
(Method 3 / Relative M Borealis 8:1 Node at Midnight) 
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Figure C.54: Mean Anomaly Difference From Nominal Trajectory 
(Method 3 / Relative M Borealis 8:1 Node at Midnight) 
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Appendix D 

Simulation 3 Plots 

This appendix contains all the plots produced in Simulation 3. The purpose of this 

simulation is to demonstrate that the ASKS can be used to compare different constellation 

orbit designs. The Ellipso constellation, with the Borealis 81:10 node at noon/midnight 

planes, is used as the test constellation. All the runs in this simulation are Method 0, 

uncontrolled. They are also all run with relative mean anomaly station-keeping. To 

provide a basis for comparing the coverage differences, the first run is a 5yr execution of 

the standard 5-5-7 satellite 81:10 Ellipso configuration. The second run will be the same 

as the first, except with only a 4-4-6 satellite configuration. The third and fourth runs 

will be of the 5-5-7 and 4-4-6 configurations, respectively, but with the arguments of 

perigee of the Borealis planes rotated 10° to bias coverage to daylight hours. The 

analysis of the results is located in section 7.4. 

D.l Sim 3 / Run 1 

This run is a 5 year uncontrolled execution of the ASKS on the 5-5 satellite 81:10 node at 

noon/midnight configuration of the Borealis planes and the 7 satellite Concordia plane of 

the Ellipso constellation. There are 5 satellites in each of the Borealis planes and 7 

satellites in the Concordia plane. Relative mean anomaly (formation) station-keeping is 
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used with targeting method 0. Method 0 indicates that all control related components of 

the input deck are ignored. 

The epoch orbital elements for this run are listed in tables 7.1 and 7.4. The nominal 

(reference) trajectory is propagated in the presence of zonal harmonics through degree 21, 

and solar/lunar point masses. The actual satellite trajectory is propagated with the 

perturbations of the nominal trajectory plus solar radiation pressure, tesseral resonance 

and atmospheric drag. 

Section D.l.l contains the input deck for runl. Sections D.I.2 contains the one, two, 

three and four-way coverage of the constellation over the 5 year time span. Note that 

coverage is provided for the entire northern hemisphere and for the southern hemisphere 

above 55°S latitude. The northern hemispheric coverage assumes a 25° minimum 

elevation angle. The southern hemispheric coverage assumes a 10° minimum elevation 

angle. Section D.I.3 contains the orbital element difference plots for the Concordia 

plane. Sections D.I.4 and D.I.5 contain the orbital element difference plots for node at 

noon and node at midnight planes, respectively. 

D.l.l Input Deck (Sim 3 / Run 1) 

The following list is the equivalent input deck for the current version of the ASKS that 

will produce the plots for run 1 of simulation 3 shown in the following subsections. This 

run was originally executed with an older version of the ASKS that used an input deck 

with data provided in a different order. The numbers in the input deck shown below are 

the same values as used for the original input deck. Only the information for one satellite 

per plane is depicted for brevity. The satellites in the plane are evenly spaced at epoch. 
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Number of Planes 
Stat-Keep Method 

Targeting Method 
Power 
kmax 
max_burns 

Epoch Date: 19970101.0 
Final Date: 20020101.0 
Iteration Time Step  : 

3 
1 

0 
.00 
50 
2 

(0=box; l=formation) 

Epoch Time:     0.0000 
Final Time:     0.0000 

0.1296000000000000D+07 

****************************************** 
Plane : 
Sats In This Plane   : 

Maximum Parameter Limits: 
Keplerian Elements: 

Scale (outer limits) :  0.98 
Deadband Parameter Limits: 

Keplerian Elements: 

Maximum Overshoot Limits : 

O.00000O0OOOO00000D+OO 
0.000000O0O0O00O00D+OO 
O.OOOOOO0OO0OOOOO0D+O3 
O.OO00000OOOOO0O00D+O3 
O.0O0O0OOOOOOOOOOOD+O3 
O.0000000OO0OOO000D+03 

O.OOOOOOOOOOOOOOOOD+OO 
O.0OO0OOOOOOOO0O00D+OO 
0.00000000O00000O0D+O3 
O.00OOO000O00O0OOOD+O3 
0.000000OOO00000O0D+03 
0.0000000000000000D+03 

0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.98O0000000OO0O00D+00 
0.9800000000000000D+00 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg ma 

km sma 
ecc 

deg mc 
deg Ian 
deg ap 
deg ma 

frac sma 
frac ecc 
frac mc 
frac Ian 
frac ap 
frac ma 

Satellite Number 

Actual State: 
Keplerian Elements: 0.1047220100000000D+05 km sma 

0.3265200000000000D+00 ecc 
0.1163254000500000D+03 deg inc 
0.2793744347300000D+03 deg Ian 
0.2699478143800000D+03 deg ap 
O.00O0O0OOOOO00OOOD+O3 deg ma 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
700.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00002500 

Retro: 1 Atmos Mdl: 1 Potent Mdl: 4 
Nmax: 21 Mmax: 21 Izonal: 1 
Nmaxrs: 21 Mmaxrs: 21 Ithird: 1 
Ind Drg: 1 Iszak: 2 Ind Sol: 1 

IJ2J2: 

Reference State: 
Keplerian Elements: 

Reference Switch    : 
Reference State Rates: 

Keplerian Rates: 

0.1047220100000000D+05 km sma 
0.3265200000000000D+00 ecc 
0.1163254000500000D+03 deg inc 
0.2793744347300000D+03 deg Ian 
0.2699478143800000D+03 deg ap 
O.OOOOOOOOOOOOOOOOD+03 deg ma 

(0=DSST, l=Fixed Rates) 

O0O0OOOOOOOOO0OOD+OO 
0OO0000O0O0OOOO0D+O0 
0000000000000000D+00 
1407711610000000D-05 
OO0O0OOOOOO0OOOOD+OO 

3.3338114140000000D-02 

km/sec sma 
1/sec ecc 
deg/sec inc 
deg/sec Ian 
deg/sec ap 
deg/sec ma 

CD: 2.20000000 Rho One: 
S/C Mass: 700.00000000 S/C Area: 
Integrator Step: 43200.00000000 

0.00000000 
0.00002500 
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Retro: 1 Atmos Mdl: 1 Potent Mdl: 4 
Nmax: 21 Mmax: 0 Izonal: 1 
Nmaxrs: 2 Mmaxrs: 2 Ithird: 1 
Ind Drg: 2 Iszak: 2 Ind Sol: 2 

IJ2J2: 

****************************************** 
Plane 
Sats In This Plane 

Maximum Parameter Limits: 
Keplerian Elements: 

Scale (outer limits) :  0.98 
Deadband Parameter Limits: 

Keplerian Elements: 

Maximum Overshoot Limits : 

0.0000000000000000D+00 
0.0000000000000000D+00 
O.OOOOO0OO0OOOO00OD+03 
O.OOOOOOOOOOOOOOOOD+03 
O.O0O0OOOO00O000OOD+03 
O.OOOOOOOOOOOOOOOOD+03 

O.00O00OO0O000O0OOD+0O 
O.0OOOOO0O00OOO00OD+OO 
O.OOOOOOOOOOOOOOOOD+03 
O.OOOOOOOOOOOOOOOOD+03 
O.OOOOOOOOOOOOOOOOD+03 
0.0000000000000000D+03 

0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 

km sma 
ecc 

deg mc 
deg Ian 
deg ap 
deg ma 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg ma 

frac sma 
frac ecc 
frac inc 
frac Ian 
frac ap 
frac ma 

Satellite Number 

Actual State: 
Keplerian Elements: 0.1047220000000000D+05 km sma 

0.3266200000000000D+00 ecc 
0.1168395808400000D+03 deg inc 
0.0994212449500000D+03 deg Ian 
0.2700524204900000D+03 deg ap 
O.OOOOOOOOOOOOOOOOD+03 deg ma 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
700.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00002500 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
1 Iszak: 

1 
21 
21 
2 

Potent Mdl: 
Izonal: 
Ithird: 
Ind Sol: 

IJ2J2: 

Reference State: 
Keplerian Elements: 

Reference Switch    : 
Reference State Rates: 

Keplerian Rates: 

1047220000000000D+05 
3266200000000000D+00 

0.1168395808400000D+03 
0.0994212449500000D+03 
0.2700524204900000D+03 
O.OOOOOOOOOOOOOOOOD+03 

! (0=-DSST, l=Fixed Rates) 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg   ma 

O.OO0OOOOOOOO00O0OD+OO 
O.O0000O00O0000000D+OO 
O.0O0OOOO0O0O0O0OOD+OO 
1.1407711610000000D-05 
0.0000000000000000D+00 
3.3338114140000000D-02 

km/sec sma 
1/sec ecc 
deg/sec inc 
deg/sec Ian 
deg/sec ap 
deg/sec ma 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
700.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00002500 

Retro: 
Nmax: 
Nmaxrs: 

1 Atmos Mdl: 
21 Mmax: 
2 Mmaxrs: 

Potent Mdl: 
Izonal: 
Ithird: 

IJ2J2: 
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Ind Drg: 2 Iszak: 2  Ind Sol: 

****************************************** 
Plane :    3 
Sats In This Plane  :    7 

Maximum Parameter Limits: 
Keplerian Elements: 

Scale (outer limits) :  0.9E 
Deadband Parameter Limits: 

Keplerian Elements: 

Maximum Overshoot Limits : 

O.000OOOOO00OOOOOOD+OO 
O.OOOOOOOOOOOOOOOOD+00 
O.000OOOOOOO0OOOOOD+O3 
O.O0OOOOOOO0O0OO0OD+O3 
0.0000000000000000D+03 
O.OOOOOOOOOOOOOOOOD+03 

O.OOOOOOOOOOOOOOOOD+00 
0.OO00O0O000000000D+O0 
0.0O0000O000000000D+O3 
O.OOOOOOOOOOOOOOOOD+03 
O.OOOOOOOOOOOOOOOOD+03 
O.OOOOOOOOOOOOOOOOD+03 

0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 
0.9800000000000000D+00 

km sma 
ecc 

deg mc 
deg Ian 
deg ap 
deg ma 

km sma 
ecc 

deg inc 
deg Ian 
deg ap 
deg ma 

frac sma 
frac ecc 
frac mc 
frac Ian 
frac ap 
frac ma 

Satellite Number 11 

Actual State: 
Keplerian Elements: 0.1444013700000000D+05 km 

0.0000100000000000D+00 
0.0002618026600000D+03 deg 
0.0891037880400000D+03 deg 
0.0002938944900000D+03 deg 
O.OOOOOOOOOOOOOOOOD+03 deg 

sma 
ecc 
inc 
Ian 
ap 
ma 

CD: 2.20000000 Rho One: 
S/C Mass: 700.00000000 S/C Area: 
Integrator Step: 43200.00000000 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
1 Iszak: 

1 
21 
21 
2 

Potent Mdl: 
I zonal: 
Ithird: 
Ind Sol: 

0.00000000 
0.00002500 

IJ2J2: 

Reference State: 
Keplerian Elements: 

Reference Switch    : 
Reference State Rates: 

Keplerian Rates: 

0.1444013700000000D+05 
0.0000100000000000D+00 
0.0002618026600000D+03 
0.0891037880400000D+03 
0.0002938944900000D+03 
O.OOOOOOOOOOOOOOOOD+03 

km 

deg 
deg 
deg 
deg 

(0=DSST, l=Fixed Rates) 

sma 
ecc 
inc 
Ian 
ap 
ma 

O.OOOOOOOOOOOOOOOOD+00 
0.OO000OO0000000O0D+0O 
0.0000000000000000D+00 
1.1407711610000000D-05 
O.OOOOOOOOOOOOOOOOD+00 
3.3338114140000000D-02 

km/sec sma 
1/sec ecc 
deg/sec inc 
deg/sec Ian 
deg/sec ap 
deg/sec ma 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
700.00000000 S/C Area: 

43200.00000000 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
2 Iszak: 

1 
21 
21 
2 

Potent Mdl: 
Izonal: 
Ithird: 
Ind Sol: 

0.00000000 
0.00002500 

IJ2J2: 
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D.1.2 Coverage Plots (Sim 3 / Run 1) 
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Figure D.l: 5-5-7 Ellipso One-Way Coverage 
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9.5 r 

9- 

Four-way Coverage - Ellipso 81:10 

5 -"h-.-i-r 

® 7 c: en I .b 

\ — s- 
7' 

— Northern Hemisphere 0-9JM deg 
-- Southern Hemisphere 0-55S deg 

-Ji 

i n!' i ■■i'.l"1"' 

■      '   ''I*     ll;>1   ' \        i     ill     '     <il'     , l 

- + "h 
.,J..i).1j..üÜ 

2000 500 1000 1500 
Days Since Epoch (Epoch: 1 Jan 97) 

Figure D.4: 5-5-7 Ellipso Four-Way Coverage 
(Uncontrolled Borealis 81:10 Noon/Midnight and Concordia) 
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D.1.3 Uncontrolled Concordia Orbital Element Difference Plots 
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Figure D.5: Semi-major Axis Difference From Nominal Trajectory 
(Uncontrolled 7 Concordia) 

,x10' Eccentricity Diff From Ref 

0 2000 500 1000 1500 
Days Since Epoch (Epoch: 1 Jan 97) 

Figure D.6: Eccentricity Difference From Nominal Trajectory 
(Uncontrolled 7 Concordia) 
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Figure D.7: Inclination Difference From Nominal Trajectory 
(Uncontrolled 7 Concordia) 
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Figure D.8: Ascending Node Difference From Nominal Trajectory 
(Uncontrolled 7 Concordia) 
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Figure D.9: Argument of Perigee Difference From Nominal Trajectory 
(Uncontrolled 7 Concordia) 
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Figure D.10: Mean Anomaly Difference From Nominal Trajectory 
(Uncontrolled 7 Concordia) 
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D.1.4 Uncontrolled Borealis 81:10 Node at Noon Element Difference Plots 
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Figure D.l 1: Semi-major Axis Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 81:10 Node at Noon) 
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Figure D.12: Eccentricity Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 81:10 Node at Noon) 
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Figure D.13: Inclination Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 81:10 Node at Noon) 
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Figure D.14: Ascending Node Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-581:10 Node at Noon) 
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Figure D.15: Argument of Perigee Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 81:10 Node at Noon) 
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Figure D.16: Mean Anomaly Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 81:10 Node at Noon) 
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D.1.5 Uncontrolled Borealis 81:10 Node at Midnight Element Difference Plots 
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Figure D.17: Semi-major Axis Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 81:10 Node at Midnight) 
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Figure D.18: Eccentricity Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 81:10 Node at Midnight) 
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Figure D.20: Ascending Node Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 81:10 Node at Midnight) 
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Figure D.21: Argument of Perigee Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 81:10 Node at Midnight) 
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Figure D.22: Mean Anomaly Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 81:10 Node at Midnight) 
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D.2 Sim 3 / Run 2 

This run is a 5 year uncontrolled execution of the ASKS on the 4-4 satellite 81:10 node at 

noon/midnight configuration of the Borealis planes and the 6 satellite Concordia plane of 

the Ellipso constellation. There are 4 satellites in each of the Borealis planes and 6 

satellites in the Concordia plane. Relative mean anomaly (formation) station-keeping is 

used with targeting method 0. Method 0 indicates that all control related components of 

the input deck are ignored. 

The epoch orbital elements for this run are listed in tables 7.1 and 7.4. The nominal 

(reference) trajectory is propagated in the presence of zonal harmonics through degree 21, 

and solar/lunar point masses. The actual satellite trajectory is propagated with the 

perturbations of the nominal trajectory plus solar radiation pressure, tesseral resonance 

and atmospheric drag. 

An input deck is not provided for this run since the only difference between it and the 

input deck for run 1 seen in section D. 1.1 is the number of satellites in the plane, and their 

initial spacing. Sections D.2.1 contains the one, two, three and four-way coverage of the 

constellation over the 5 year time span. Note that coverage is provided for the entire 

northern hemisphere and for the southern hemisphere above 55°S latitude. The northern 

hemispheric coverage assumes a 25° minimum elevation angle. The southern 

hemispheric coverage assumes a 10° minimum elevation angle. Since the Concordia 

plane does not experience tesseral resonance, the 6 satellites in the plane for this 

configuration have the same orbital element plots as the 7 satellites of the 5-5-7 

configuration of section D.I.3, and thus are not repeated. Sections D.2.2 and D.2.3 

contain the orbital element difference plots for the node at noon and node at midnight 

planes, respectively. 
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D.2.1 Coverage Plots (Sim 3 / Run 2) 
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Figure D.23: 4-4-6 Ellipso One-Way Coverage 
(Uncontrolled Borealis 81:10 Noon/Midnight and Concordia) 
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Figure D.24: 4-4-6 Ellipso Two-Way Coverage 
(Uncontrolled Borealis 81:10 Noon/Midnight and Concordia) 
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Figure D.25: 4-4-6 Ellipso Three-Way Coverage 
(Uncontrolled Borealis 81:10 Noon/Midnight and Concordia) 
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Figure D.26: 4-4-6 Ellipso Four-Way Coverage 
(Uncontrolled Borealis 81:10 Noon/Midnight and Concordia) 
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D.2.2 Uncontrolled Borealis 4-4 81:10 Node at Noon Element Difference Plots 
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Figure D.27: Semi-major Axis Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 81:10 Node at Noon) 
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Figure D.28: Eccentricity Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-481:10 Node at Noon) 
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Figure D.29: Inclination Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-481:10 Node at Noon) 
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Figure D.30: Ascending Node Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-481:10 Node at Noon) 
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Figure D.31: Argument of Perigee Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-481:10 Node at Noon) 
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Figure D.32: Mean Anomaly Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 81:10 Node at Noon) 
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D.2.3 Uncontrolled Borealis 4-4 81:10 Node at Midnight Element Difference Plots 
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Figure D.33: Semi-major Axis Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 81:10 Node at Midnight) 
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Figure D.34: Eccentricity Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 81:10 Node at Midnight) 
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Figure D.35: Inclination Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 81:10 Node at Midnight) 
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Figure D.36: Ascending Node Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 81:10 Node at Midnight) 
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Figure D.37: Argument of Perigee Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 81:10 Node at Midnight) 
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Figure D.38: Mean Anomaly Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 81:10 Node at Midnight) 
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D.3 Sim 3 / Run 3 

This run is a 5 year uncontrolled execution of the ASKS on the 5-5 satellite 81:10 node at 

noon/midnight configuration of the Borealis planes, with argument of perigee rotated 10°, 

and the 7 satellite Concordia plane of the Ellipso constellation. There are 5 satellites in 

each of the Borealis planes and 7 satellites in the Concordia plane. The argument of 

perigee is 260° for the Borealis node at noon plane, and 280° for the node at midnight 

plane. Relative mean anomaly (formation) station-keeping is used with targeting method 

0. Method 0 indicates that all control related components of the input deck are ignored. 

The epoch orbital elements, with the exception of co, for this run are listed in tables 7.1 

and 7.4. The nominal (reference) trajectory is propagated in the presence of zonal 

harmonics through degree 21, and solar/lunar point masses. The actual satellite trajectory 

is propagated with the perturbations of the nominal trajectory plus solar radiation 

pressure, tesseral resonance and atmospheric drag. 

The input deck for this run differs from the one shown in section D.l.l only in the 

argument of perigee values of the satellites in the Borealis planes. Sections D.3.1 

contains the one, two, three and four-way coverage of the constellation over the 5 year 

time span. Note that coverage is provided for the entire northern hemisphere and for the 

southern hemisphere above 55°S latitude. The northern hemispheric coverage assumes a 

25° minimum elevation angle. The southern hemispheric coverage assumes a 10° 

minimum elevation angle. The Concordia element difference plots are the same as shown 

in section D.I.3. Sections D.3.2 and D.3.3 contain the orbital element difference plots for 

the node at noon and node at midnight planes, respectively. 
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D.3.1 Coverage Plots (Sim 3 / Run 3) 
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Figure D.42: 5-5-7 10© Ellipso Four-Way Coverage 
(Uncontrolled Borealis 81:10 Noon/Midnight and Concordia) 
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D.3.2 Uncontrolled Borealis 5-5 lOco 81:10 Node at Noon Element Difference Plots 
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Figure D.43: Semi-major Axis Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 lOco 81:10 Node at Noon) 
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Figure D.44: Eccentricity Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 lOco 81:10 Node at Noon) 
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Figure D.45: Inclination Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 10© 81:10 Node at Noon) 
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Figure D.46: Ascending Node Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 lOco 81:10 Node at Noon) 
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Figure D.47: Argument of Perigee Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 10© 81:10 Node at Noon) 
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Figure D.48: Mean Anomaly Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 10© 81:10 Node at Noon) 
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D.3.3 Uncontrolled Borealis 5-5 10© 81:10 Node at Midnight Element Difference 
Plots 
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Figure D.49: Semi-major Axis Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 10© 81:10 Node at Midnight) 
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Figure D.50: Eccentricity Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 10© 81:10 Node at Midnight) 

342 



Inclination Diff From Ref 
0.12 

0.1 

0.08 - 

0.06 
CD 
0> 

■o 

Sfc 

Q 
O 0.04 
z 

0.02 

-0.02 

 r. 1_-_--.--------r 

"0 

—- sat 1 
— sat 2 
x sat 3 
-- sat 4 
— sat 5 

2000 500 1000 1500 
Days Since Epoch (Epoch: 1 Jan 97) 

Figure D.51: Inclination Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 10© 81:10 Node at Midnight) 
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Figure D.52: Ascending Node Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 10© 81:10 Node at Midnight) 
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Figure D.54: Mean Anomaly Difference From Nominal Trajectory 
(Uncontrolled Borealis 5-5 lOco 81:10 Node at Midnight) 
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D.4 Sim 3 / Run 4 

This run is a 5 year uncontrolled execution of the ASKS on the 4-4 satellite 81:10 node at 

noon/midnight configuration of the Borealis planes, with argument of perigee rotated 10°, 

and the 6 satellite Concordia plane of the Ellipso constellation. There are 4 satellites in 

each of the Borealis planes and 6 satellites in the Concordia plane. The argument of 

perigee is 260° for the Borealis node at noon plane, and 280° for the node at midnight 

plane. Relative mean anomaly (formation) station-keeping is used with targeting method 

0. Method 0 indicates that all control related components of the input deck are ignored. 

The epoch orbital elements, with the exception of oo, for this run are listed in tables 7.1 

and 7.4. The nominal (reference) trajectory is propagated in the presence of zonal 

harmonics through degree 21, and solar/lunar point masses. The actual satellite trajectory 

is propagated with the perturbations of the nominal trajectory plus solar radiation 

pressure, tesseral resonance and atmospheric drag. 

The input deck for this run differs from the one shown in section D.l.l only in the 

argument of perigee values of the satellites in the Borealis planes and the number of 

satellites in each of the planes. Sections D.4.1 contains the one, two, three and four-way 

coverage of the constellation over the 5 year time span. Note that coverage is provided 

for the entire northern hemisphere and for the southern hemisphere above 55°S latitude. 

The northern hemispheric coverage assumes a 25° minimum elevation angle. The 

southern hemispheric coverage assumes a 10° minimum elevation angle. The Concordia 

element difference plots are the same as shown in section D.I.3. Sections D.4.2 and 

D.4.3 contain the orbital element difference plots for the node at noon and node at 

midnight planes, respectively. 
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D.4.1 Coverage Plots (Sim 3 / Run 4) 
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Figure D.55: 4-4-6 10© Ellipso One-Way Coverage 
(Uncontrolled Borealis 81:10 Noon/Midnight and Concordia) 
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Figure D.56: 4-4-6 lOco Ellipso Two-Way Coverage 
(Uncontrolled Borealis 81:10 Noon/Midnight and Concordia) 
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Figure D.57: 4-4-6 10© Ellipso Three-Way Coverage 
(Uncontrolled Borealis 81:10 Noon/Midnight and Concordia) 
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Figure D.58: 4-4-6 10co Ellipso Four-Way Coverage 
(Uncontrolled Borealis 81:10 Noon/Midnight and Concordia) 
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D.4.2 Uncontrolled Borealis 4-4 10© 81:10 Node at Noon Element Difference Plots 
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Figure D.59: Semi-major Axis Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 10© 81:10 Node at Noon) 
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Figure D.60: Eccentricity Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 10© 81:10 Node at Noon) 
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Figure D.61: Inclination Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 10co 81:10 Node at Noon) 
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Figure D.62: Ascending Node Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 10© 81:10 Node at Noon) 
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Figure D.63: Argument of Perigee Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 10© 81:10 Node at Noon) 
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Figure D.64: Mean Anomaly Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 lOco 81:10 Node at Noon) 
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D.4.3 Uncontrolled Borealis 4-4 lOco 81:10 Node at Midnight Element Difference 
Plots 
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Figure D.65: Semi-major Axis Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 10© 81:10 Node at Midnight) 
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Figure D.66: Eccentricity Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 lOco 81:10 Node at Midnight) 
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Figure D.67: Inclination Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 10© 81:10 Node at Midnight) 
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Figure D.68: Ascending Node Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 10© 81:10 Node at Midnight) 
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Figure D.69: Argument of Perigee Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 10© 81:10 Node at Midnight) 
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Figure D.70: Mean Anomaly Difference From Nominal Trajectory 
(Uncontrolled Borealis 4-4 10© 81:10 Node at Midnight) 
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