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Abstract

Computational  Fluid  Dynamics  (CFD)
predictions are compared with the wind-tunnel tests for a
missile consisting of ogive-nose cylindrical body, four
wings and four in-lined tail panels at nominal supersonic
Mach Nos. 2, 3, 4 and 5 and at angles-of-attack ranging
from O to 35 deg with and without a lateral jet thruster
with thrust ratios of 1 and 4. Comparisons also include
roll angles that lead to asymmetric missile configuration
with the thruster jet. Excellent comparisons of the
predicted normal force, side force, pitching moment,
yawing moment and rolling moment coefficients with the
measured data are shown. CFD computed flow-field is
then utilized to show that the lateral thruster jet
effectiveness diminishes as the jet thruster is gradually
rolled towards the windward side of the missile. Flow-
physics associated with this phenomenon and possible
mechanisms to alleviate this effect is discussed.

Nomenclature

AF Amplification Factor,
1+ (CNjet - CNyooje)/(T/q @ S)
Alpha Angle-of-Attack (deg)
Clm  Rolling Moment Coefficient,
Mx/(qe S ® X)
Cm Pitching Moment Coefficient,
My/(q e S ® Xep)
CN Normal Force Coefficient, CN = (N/q » S),
Airframe only
CY Side Force Coefficient, FY/(q ® S)
CYm  Yawing Moment Coefficient,
Mz/(q e S e X,)
dp Pressure Differential,
dp = (Pjet - Pno—jet)/(Gamma i Pinf)
Gamma Ratio of Specific Heats
FY Side Force (N, 1b)
M Freestream Mach Number
Mx Rolling Moment
My Pitching Moment
Mz Yawing Moment
N Normal Force (N, 1b)
P Pressure (N/m?, 1b/ft%)
Phi Azimuth Angle (deg)
q Dynamic Pressure, q = 1/2 pv?
S Missile Cross-Sectional Area (m?, ft)
T Jet Thrust (N, 1b)
v Velocity (m/sec, ft/sec)

Greek

o Angle-of-Attack (deg)

p Density

¢ Azimuth Angle (deg)

Subscript

inf Freestream condition

jet Condition with jet (excluding Jet Thrust

Coefficient)
no-jet  Condition with no jet
Xref Reference Length for Normalization

Introduction

For short range air-to-air missiles, high
maneuver requirements at launch and in the homing
phase (terminal engagement) is necessary for tactical
advantage in air combat engagements. Missile
maneuvers up to 60 to 90 deg may be required to defend

‘against threats. Conventional methods of improving the

aerodynamic control maneuver are limited due to the
weight and drag requirements of the overall missile.
Advanced concepts are currently under study for
enhancing the high angle-of-attack performance of the
current and next generation missiles. Reaction control
jets may be ideal for such applications due to its rapid
response time as well as its ability to perform at all
speeds and altitudes. Additional benefits include reduced
size of wings and fins that can overcome the weight
penalty of the reaction control system. Similar benefits
are likely for surface-to-air combat scenario.

A successful effort based on the reaction jet
controls, however, must develop a rational basis for such
design factors as the jet size, locations, number of jets,
thrust levels, effect of jet temperature, jet angle and most
importantly its interaction with the missile external flow.
The problem of jet interaction with the external flow,
under conditions of varying flight numbers and angles-
of-attack, is extremely complex in nature and an
understanding of this interaction is important to achieve
optimal missile performance. A large volume of
experimental and analytical studies related to lateral jets
dating back to the sixties are currently available in the
literature. However, in spite of these studies, numerous
related issues need to be addressed.
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Due to the complexity of the flow involved in
this interaction process, a viable approach to address
some of these issues is to judiciously combine the wind
tunnel testing and CFD simulations to evolve a validated
design and analysis tool. The former provides a valuable
data base for CFD validation while the latter provides a
means for parametric design evaluation. This approach
also offers a methodology to synthesize the physical
complexity of the flow in an effort to identify the key
controlling parameters by sequentially increasing the
physical complexity of the model in a CFD simulation.
At Raytheon, our design team has adopted this approach,
i.e., scaled model testing, CFD validation, and design
trade-off studies using validated CFD tools.

Our previous efforts for this topic dealt with
CFD simulation and validation for a symmetric missile
with wings and tail panels at several (17) flow conditions
corresponding to the wind-tunnel tests'***,  More
specifically, validations were performed at a nominal
Mach Number of 3.94, angles-of-attack ranging from 2 to
25 deg, three different wing planforms and lateral jet
thrust ratios of 1 and 4. These studies show excellent
comparisons of the CFD predicted normal force and
pitching moment coefficients with the wind-tunnel data.
For symmetric cases, need however, exists to extend the
validation range to other supersonic Mach Number e.g.,
2 to 5 and higher angles-of-attack e.g., to 75 deg.
Likewise, validations for asymmetric missile orientations
for similar Mach Number and angles-of-attack range
need to be performed to establish a credible design and
analysis tool.

The present paper deals with several additional
validation studies corresponding to the wind-tunnel tests,
specifically for asymmetric missile orientations with and
without lateral jets. A total of 16 symmetric wind-tunnel
cases and an additional 17 asymmetric wind-tunnel cases
are compared with the CFD predictions. The
computational results with reaction jets are then analyzed
to show that the reaction jets do not perform well in the
windward orientation. In this orientation, the intense
interaction between the incoming freestream and the jet
causes a blockage effect that wipes out the normal forces
on the windward wing and tail panels leading to
deterioration of the missile performance. Possible design
variations that can circumvent this deficiency associated
with the reaction jets are outlined.

The paper is divided in several sections. The
next section briefly outlines the previous work in this
area using CFD approaches. The details of the
computational methodology, geometry, grid related issues

and boundary conditions of the CFD applications are
discussed later. Our previous paper’ presented a large
number of validation cases with the wind-tunnel data
with and without divert thrusters. Further validation
cases at several Mach Numbers for symmetric and
asymmetric missile configurations are discussed in the
section that follows. The bulk of the technical discussion
related to the effect of divert thruster location on the
missile performance is discussed in the section after this.
A later section presents the summary and conclusions
based on these computational studies.

Background

The topic of jet interaction with an external
supersonic flow dates back to the mid-1960>°, when a
large number of generic experimental data were
generated and related correlation techniques were
developed.  Emergence of hypersonic interceptors,
maturity of CFD and the advent of supercomputers
revived these activities in the late 1980s”''. Several
investigators have performed CFD studies for the
fundamental problem of jet interaction in relation to
adaptive  gridding'?,  turbulence  models®, grid
refinements”, and the impact of artificial viscositylz.
These studies range from Euler to Navier-Stokes
computations'®., Of these studies, particular reference is
made to the studies reported by Dash et.al.'® and York
et.al.'® because much of the current CFD effort is derived
from their mature technical expertise in this area.
Further details of the methodology and related research
work can be obtained from the references cited.

While a vast number of numerical studies have
been performed using controlled jet interaction studies
for methodology development, efforts to simulate missile
surfaces have been rather limited. More recently, Chan
et.al.'’” performed a series of studies that lead to the
simulation of a full missile surface with control surfaces
and jet interaction. Qin and Foster'® also performed
similar studies using a Navier-Stokes approach for an
inclined jet on an ogive/cylinder body. These results
depict the remarkable flow details obtained using CFD
approaches, which ultimately result in making judicious
choices for flight vehicles design and further wind tunnel
testing. Srivastava® performed Full Navier-Stokes (FNS)
studies for generic missile bodies with/without leeward
and windward jets but without wing or tail panels.
Comparisons with the wind-tunnel data, however, was
not direct because the tests were conducted with tail
panels while computations were performed without tail.
Removal of the tail load from the wind-tunnel data by an
approximate method introduced uncertainties that were
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not fully quantified. This deficiency in the CFD model
was eliminated later by Srivastava® showing direct
comparison of the CFD predictions with the wind-tunnel
data by modeling all geometrical aspects of the wind-
tunnel missile geometry and the divert thruster.

Computational Methodology

PARCH', which is a FNS code with plume/mis-
sile airframe steady-flow predictive capability, is being
used for our current studies. PARCH code utilizes
formulations based on the NASA/Ames ARC
aerodynamic code and the AEDC propulsive extension,
PARC. This code is particularly suited for missile
surfaces due to its grid patching capability which is
useful for treating embedded surfaces in a flow field.
Patching, that is accomplished in mapped computational
coordinates, is automatically constructed from boundary
inputs. Boundary conditions are applied along the outer
computational boundaries and relevant embedded
surfaces. The code utilizes diagonalized Beam-Warming
numerics with matrix-split finite rate chemistry. Several
versions of the K-E turbulence model are available in the
code that were specifically developed for jet interaction
and propulsive studies. We are currently using the
capped low Reynolds number formulation of Chien’s K-E
model’® for the current simulations. Further details of
the code capability can be found in Reference 10.

Typical boundary approaches for the current
application (supersonic flows) are specified supersonic
freestream conditions at the inlet and outer boundaries.
Extrapolation procedures are employed at the exit
boundary. Surface conditions are appropriate to viscous
flows with adiabatic wall condition.

Surface jet boundary condition is the specified
jet nozzle supersonic exit conditions. The circular area
of the jet in the wind-tunnel test is approximated by a
square aperture in the CFD simulation.

Fig. (1) shows a sketch of a generic Missile
geometry. The wing in Fig. (1) is the baseline
configuration which is 6.3 body diameters long and its
leading edge starts at 4.85 body diameters from the
missile nose. The jet thruster is located at 5.6 body
diameters from the nose. The full CFD simulation
geometry is shown in Fig. (2) for this configuration.

CFD simulations were performed on a single
grid consisting of 230*51*137 axial, normal and
circumferential grid. A grid patching procedure was
used to apply the relevant boundary conditions on the

surfaces. All angles-of-attack for a given configuration
were simulated on a single grid consistent with the
minimum desired Mach Number and maximum desired
angle-of-attack. This allows us to minimize on the grid
effort. The grids were generated through “GRIDGEN®,
with geometry models developed within “GRIDGEN""’.

Our current studies for divert jet were performed
for a nominal flow Mach Number of 4 with an angle-of-
attack ranging from 3 to 20 deg for several peripheral jet
orientations.

Comparison with Wind-Tunnel Tests

Test cases with Divert Jets

A large number of symmetric configuration test
cases with divert jets were presented in our previous
papers™® showing excellent comparisons with the wind-
tunnel data at a nominal Mach Number of 4, and an
angle-of-attack of 20 deg. These comparisons were
restricted to symmetric cases due to limited availability of
the computing resources. It has now been possible to
simulate the asymmetric configuration using parallel
processing on our 6-Processor Digital Alpha-8400
computing resources. These results are discussed next.

Asymmetric cases

Asymmetric test cases were performed at the
same nominal Mach Number of 4.0 and an angle-of-
attack of 20 deg. Divert jet location was kept fixed with
missile rolled around its axis to achieve several different
location of the divert jet relative to the freestream. The
results for these cases for a jet thrust of 175 lbs and 50
Ibs are presented next.

175 1bs Jet Thrust Cases

Figs. (3) to (8) show the comparisons of the
CFD results with the wind-tunnel data for several roll
angles which represent divert jets in windward to leeward
orientations. Fig. (3) shows the computed results for a
case that is rolled by about 181.33 deg clockwise from
the vertical axis, such that the jet center line makes an
angle of 136.62 deg as shown in this figure. This
orientation is nearly a plus configuration with a
windward jet orientation. This figure shows the pressure
distribution on the jet center plane (a plane surface
normal to the body and passing through the jet on the
wind side) and on the missile surfaces such as body, wing
and tail panels. In this view, an observer is placed
between the positive y-axis and the jet center line. Notice
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from this figure that due to the intense interaction
between the jet and the freestream, the jet streams make a
parabolic shape away from the missile surfaces and in the
process create a blockage effect that wipes out the
favorable pressure on the windward wings. The table in
this figure shows the comparison of the computed results
with the wind-tunnel data for all the force and moment
coefficients. The excellent comparisons are noteworthy.

Fig. (4) shows a computation with missile rolled
by 136.14 deg such that the divert jet is now positioned at
an angle of 91.14 deg from the vertical axis, a side thrust
situation. The pressure contours are once again on a
plane containing the jet and the missile surfaces. In this
view, the observer is looking from the wind side, between
the two windward wing panels showing pressure load
recovery of these panels from the blockage effect of the
divert jet that was seen in Fig. (3). The computed force
and moment coefficients, once again show excellent
agreement with the data.

Fig. (5) shows a computation with missile rolled
by 109.9 deg with jet center line positioned at 64.9 deg
from the vertical axis, this time a leeward jet situation.
The pressure contours shown in this figure show the
wing and tail loads, which are free from interference of
the divert jet. The comparison of the CFD predictions
with the wind-tunnel data is also excellent.

Compare the results of Fig. (5) with that shown
in Fig. (6). The later case is at nearly same orientation as
in Fig. (5) but at a lower angle-of-attack of 9.4 deg. The
pressure contours show the decline in surface loads that
are also reflected in the lower force and moment
coefficients. The comparisons of the CFD predicted
results and the wind-tunnel data is excellent even at this
lower angle-of-attack. Figs. (7) and (8) show two more
cases for this thrust jet thrust level. Fig. (7) is at the
nearly same angle-of-attack as in Fig. (6) (9.4 versus 9
deg) but with missile rolled to 76.17 deg. Notice that for
this case, the coefficients change sign as compared to
those in Fig. (6). CFD results predict all coefficients very
well except roll moment coefficient. The main reason for
this difference is the wind tunnel balance accuracy for
moment coefficients which are projected to have
measurement inaccuracies of 10.1. The wind-tunnel data
shown in this figure is well below this limit. Fig. (8)
show the computed results for a 2.3 deg angle-of-attack.
Notice that the coefficients have now larger negative
magnitudes which are well predicted by the CFD
approach.

In summary, for this jet thrust level the CFD
predictions are excellent for a large number of missile
roll angles and angles-of-attack at a supersonic Mach
Number of 4.0. We are currently exploring available
data bases for other supersonic flow conditions.

50 Ibs Jet Thrust Cases

Three more cases are discussed to show the
effect of reduced jet thrust on missile performance as well
as for CFD validation. Figs. (9) to (11) show these
results. The computational result in Fig. (9) is for an
angle-of-attack of 20 deg and a missile roll angle
orientation of 108.6 deg. In this missile orientation, the
jet center line makes an angle of 63.6 deg with the
vertical axis. Notice a reasonably good comparison of
the CFD predictions with the wind-tunnel data. These
comparisons are, though, not as good as earlier cases.
Causes for such differences are unknown. However, for
the next case, as shown in Fig. (10) at a lower angle-of-
attack of 9.8 deg, the computational predictions are again
in excellent comparison with the data. Similar
comparisons are seen in Fig. (11), which is at a 3.1 deg
angle-of-attack. =~ Notice that the rolling moment
coefficient for this case is below the measurement
accuracy and hence the comparisons for this coefficient is
not suitable. CFD results for such cases are projected to
be more reliable.

Test Cases without Jets

Asymmetric Cases

We have wind-tunnel data for the nominal Mach
Number of 4.0 without divert jets at several missile
orientations and angles-of-attack. In an effort to
establish a validation base, we picked cases at missile roll
angles of nearly 76 and 109 deg at 20, 10 and 3 deg
angles-of-attack. These cases are similar to jet cases,
even though not exact. These results are shown in Figs.
(12) to (16).

Fig. (12) shows the computed results for a case
with missile roll angle of 75.22 deg and an angle-of-
attack of 20 deg without the divert jet. The computed
pressure contours show high wing and tail loadings on
the windward side, as anticipated. = The overall
comparisons of the CFD predictions and the wind-tunnel
data is excellent, as shown in the table in this figure.
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Fig. (13) shows a similar case for a missile roll
angle of 109.42 deg at an angle-of-attack of 20 deg. This
case can be compared to the case in Fig. (5) with a jet
thrust of 175 Ibs and also with the case in Fig. (9) with a
jet thrust of 50 Ibs. Comparative evaluation of the
pressure contours highlight the effects of the divert thrust
at a high and low jet thrust.

Fig. (14) shows a computation corresponding to
the missile roll angle of 76.6 deg, as in Fig. (12) but at a
lower angle-of-attack of 9.93 deg showing good
comparisons with the data. A similar computational
result is shown in Fig. (15) at a different roll angle of
110.7 deg at nearly the same angle-of-attack of 9.92 deg
showing good comparisons with the data. Finally Fig.
(16) shows the result at a lower angle-of-attack of 3.1 deg
but a roll angle of 76.6 deg. Notice from these figures
that the comparisons between the CFD predictions and
the data deteriorates as the magnitudes of these quantities
become small. This is consistent with the measurement
accuracy issues.

Symmetric Cases for M=2, 3, 5

Additional symmetric cases without jets were
computed at several other Mach Numbers i.e., M=2.0,
3.0, 4.0 and 5.0 for angles-of-attack up to 30 deg for the
same missile geometry corresponding to a wind-tunnel
test conducted at a different site. The computed and
wind tunnel normal force and moment coefficients are
tabulated in Table I. These tabulated results are plotted
in Figs. (17) and (18). The computational results in
these figures are plotted against the corresponding
experimental values with a 45 deg line drawn to show
differences between the two. Any deviation from this 45
deg line shows the degree of error between the two.
These figures also contain an error bar representing +5
percent of the local value. Notice from Fig. (17) that the
normal force coefficients are predicted well within five
percent of the wind-tunnel data. However, the pitching
moment coefficient as seen in Fig. (18) shows larger than
expected error. These differences are currently being
examined primarily relative to the data base from two
different wind-tunnel tests and possible model
differences.

Overall Asymmetric Results

All the computational and experimental results
for asymmetric cases can also be put together in a
graphical and tabular form, as for the symmetric cases
above. This is done in Tables IT and IIT and Figs. (19) to
(23). The computational results in these figures are

again plotted against the corresponding experimental
values with a 45 deg line drawn to show differences
between the two. Any deviation from this 45 deg line
shows the degree of error between the two. These figures
also contain an error bar representing 5 percent of the
local value. These results show an excellent comparison
of the computed results with the wind-tunnel data, close
to around +5 percent. There are isolated points in all
figures that give larger than +5 percent error between
CFD predictions and the wind-tunnel data, as is seen
from these figures. There appears to be no pattern on
these differences but the overall results show excellent
predictive ability of the CFD approach with and without
divert jets at several angles-of-attack and roll angles.
Notice also that these results for the moment predictions
are significantly better than the symmetric cases
discussed above.

Discussion

The results presented above encompass a large
number of cases with and without jets at several angles-
of-attack and missile roll angles. All of these computed
cases show excellent comparisons with the wind-tunnel
data allowing us to develop an understanding of the jet
interaction process by examining the complex details of
the computed flow field. Some of these conclusions are
outlined next.

Effect of Roll Angle

Previous efforts'* have discussed the jet
interaction process as the missile is rolled to move the
divert jet from the leeward plane to windward plane (only
symmetric cases were computed before). Using the
current full asymmetric simulations, those observations
can now be confirmed i.e.:

(1) Normal Force Amplification factor
reduces to a very low value as the
missile is rolled to bring the divert jet
from leeward to the windward side.
This process is reversed as the roll
continues to bring the divert jet from
the windward to the leeward side.

(2) The physical effects that cause these
phenomenon are:

(a) Blockage effect of the jet on the
windward side that wipes out the
windward wing and tail panel
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loadings. The degree of block-
age is dependent on the azi-
muthal location of the jet on the
missile body.

(b) Jet wrap-around effect that
produces unfavorable pressure
on the opposite side of the
missile body and lifting surfaces.
These effects can be reduced by
multiple jets on the missile body
but its magnitude is small
compared to the item in (a).

(c) Favorable high intensity pressure
zone ahead of the divert jet is
very narrow to circumvent the
negative effects outlined above.

(d) These conclusions are now being
confirmed based on a full 3-D
asymmetric missile with/without
divert jet simulations using CFD.

Jet Location Selection

Jet location selection, to alleviate low force
amplification factor in windward orientation, is an
important design parameter for the enhancement of
missile performance. Based on the studies presented
here, wing panels forward of the divert jet alleviates the
force amplification factor but only at the cost of lost tail
effectiveness (see Reference 4 for more details). We
propose wing-tip mounted divert jets to alleviate all
acrodynamic problems. This, however, requires an
appropriate  engineering development to address
packaging and structural integrity issues.

Summary and Conclusions

Asymmetric missile configuration at a nominal
flow Mach Number of 4.0, angles-of-attack ranging from
3 to 30 deg and several missile roll angles with and
without divert jets, are studied using FNS computational
methodology to show excellent comparisons of the
predicted force and moment coefficients with the
available wind-tunnel data. Based on these studies,
several earlier observations of the jet interaction effects
based on symmetric CFD simulations are confirmed.
Additionally, CFD computed results were examined to

first determine the causes and then recommend means to
alleviate the low force amplification factors observed for
windward oriented jets.
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