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ABSTRACT 
VIGILANTE is an ultrafast smart sensor testbed 

for generic Automatic Target Recognition (ATR) 
applications with a series of capability demonstration 
focussed on cruise missile defense (CMD). 
VIGILANTE'S sensor/processor architecture is based 
on next-generation UV/visible/IR sensors and a tera- 
operations per second sugar-cube processor, as well 
as supporting airborne vehicle. Excellent results of 
efficient ATR methodologies that use an 
eigenvectors/neural network combination and 
feature-based precision tracking have been 
demonstrated in the laboratory environment. 

INTRODUCTION 
The past 30 years have witnessed tremendous 

improvements in sensors and processors for solving 
the Automatic Target Recognition (ATR) problem 
[1]. Recent advances in microprocessor and parallel- 
processor hardware provide hope for automated 
scene interpretation that mimics human visual 
intelligence. Since the first 0.06 MIPS computer-on- 
a-chip introduced by Intel in 1971, today's 
microprocessors have grown to contain many 
millions of transistors and crunch numbers 
approaching 1000 MIPS [2]. Despite of these 
advances, we continue to struggle with design of a 
deployable system for ATR in real-time. 

VIGILANTE is a new sensing/processing 
architecture [11] comprised of the next-generation 
UV/visible/IR sensors and a high-speed, low-power 
sugarcube-sized processor and offers hope of 
achieving a robust, real-time ATR system in a small 
package. Using the core computing engine 
developed under the BMDO 3-dimensional artificial 
neural network (3DANN) program [12]-[13], 64 
parallel convolution operations using up to a 64x64 
kernel size can be carried out at tera-operations per 
second (1012 OPS). This new processing possibility 
creates a larger set of feature images from one raw 
image and fuses this set of data to arrive at the final 
interpretation of the scene in real-time; this is 
unthinkable in conventional digital and optical 
processing medium. Excellent results have already 
been demonstrated using a hierarchy of eigenvector 
templates and 3-layer feedforward neural network 
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classifier to fuse these projections of the input scene 
into 64 eigenvector components [14]. Experiments 
with a geometrically constrained feature-based 
algorithm for precision tracking also yield promising 
results. 

The sensors are the Quantum Well Infrared 
Photodetector (QWIP), the Active Pixel Sensor 
(APS), and the delta-doped ultraviolet charge- 
coupled device (UV CCD). These three sensors 
cover the wavelength ranges 8 to 9, 0.5 to 0.9 and 0.3 
to 0.7 p.m., respectively. VIGILANTE's sensors can 
be queued to assist in the ATR functions of detection, 
classification, and precision tracking. For example, 
UV wavelengths (0.3 to 0.7 urn) can be used for 
plume detection, IR (8 to 9 urn) is suitable for cold- 
body sensing/ classification, and the visible 
wavelengths (0.5 to 0.9 urn) can provide close-up 
tracking for aim-point selection in the end-game. 
Eventually, the VIGILANTE sensors may be used for 
simultaneous fusion of the data from all wavelengths. 

VIGILANTE will provide a complete 
multisensor and processing system in a small 
package that is suitable for ATR and pave the way 
for unique onboard, real-time processing of sensor 
images for autonomous interceptors and general- 
surveillance systems. Real-time target recognition 
will be demonstrated through a series of 
ground/airborne experiments using real target 
images. 

WHAT'S UNIQUE ABOUT VIGILANTE 
VIGILANTE approaches the target recognition 

problem from a new angle with specialized 
processing hardware to do the job. 

Computer vision today: Classical techniques 
generally solved this problem by template 
matching[3]. By creating a template (or mask) of an 
intensity profile that represents the target and 
scanning it across the image, the region that was most 
similar to the previously specified template was then 
declared "winner." The required scanning process 
for locating the target anywhere in the scene was 
computationally cumbersome, requiring as many 
steps as the product of the number of pixels in the 
image times the number of pixels in the template. 

Optoelectronics designers have tried to speed 
up   the    process    of   cross-correlation    (template 
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matching) by using the fact that correlation can be 
performed in the frequency domain by multiplying 
the Fourier transforms of the target image and the 
template image. In inverse Fourier transform is then 
performed on the output image to locate the match. 
Optical correlators provide high-speed template 
matching [4], and continuing advancements in spatial 
light modulators and binary phase-only filters [5] 
have made the packaging of optical correlators much 
more practical for real-time use. However, because 
the target can be viewed from many angles, ranges, 
and lighting conditions, generating and using a 
family of templates to cover all possible distorted 
views of the target is computationally intractable, 
even with the optical processing alternative. To 
avoid the requirement of cycling through millions of 
templates for each target, composite filter designs 
have been proposed [6]. This attempt to synthesize 
the "silver bullet" template faces many performance 
and system issues, such as signal-to-noise, 
discrimination ability, programmability and 
limitations of available spatial light modulators, post- 
processing of correlation outputs, and packaging. All 
of these prevent the realization of a flexible, robust 
optical processor for ATR. 

Computer vision researchers have made some 
progress by systematically breaking the target 
recognition task into a lengthy processing-step 
sequence consisting of scene-enhancement 
preprocessing, target-background segmentation, 
geometric/texture feature extraction, and knowledge- 
based recognition [7]-[8]. Repeated iterations reduce 
raw-pixel data into smaller sets of feature points for 
interpretation involving both linear and nonlinear 
filtering operations. Often, large main frame 
computers and specialized supercomputer systems 
are needed here. Today's specialized parallel 
processor systems [9]-[10] developed for real-time 
image processing are still limited to small-kernel 
convolutions and can not meet the processing 
demands of real-time ATR. Defense systems have 
focused on high-performance infrared, millimeter 
wave, and other wavelength sensors with the hope of 
simplifying ATR processing requirements by 
reducing background clutters (in addition to being 
able to "see" through weather and darkness). Finally, 
assuming that simple architectures can get beyond 
target detection (and perhaps classification), eventual 
target recognition and aim-point selection still 
demand the heavy-computation machinery that is not 
suitable for deployment. 

VIGILANTE'S contribution: The 
VIGILANTE processing architecture makes the most 

of whatever imagery it is presented, whether 
monochromatic, multispectral, motion or still through 
the use of an architecture modelled after the human 
visual system. The VIGILANTE view of image 
recognition processes is to break them down into four 
stages: collection of imagery, generation of synthetic 
imagery, image fusion, and semantic interpretation. 
Figure 1 shows a simplified model of the eye-brain 
system. 
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Figure 1: Notional eye-brain process architecture 

It could be argued that the brain uses synthetic 
imagery to analyze scenes by comparing 
corresponding pixels among the various imagery 
types. This is essentially a "rich pixel" concept, 
where the brain becomes a data fusion machine at a 
pixel level before analyzing the scene in a semantic 
way. Enriching pixels could be seen as a way of 
improving evidence used in properly classifying each 
pixel of the image. Simply put, rich pixel processing 
consists of the following steps: 

1. Generating synthetic images that augment raw 
images with additional information 

2. Fusing all images 
3. Interpreting the fused images 

VIGILANTE'S philosophy, therefore, is to 
create a machine whose fundamental data type is an 
entire image plane, rather than more basic data types 
such as integer or floating point numbers. By 
breaking down complex image recognition tasks into 
a series of regular operations, VIGILANTE maps 
these functions to a relatively small set of special- 
purpose hardware that can implement a wide variety 
of algorithms. In VIGILANTE, synthetic image 
generation tasks (e.g. spatial filtering, motion, and 
correspondence) use special-purpose hardware, 
namely the 3DANN-M convolution device. Pixel- 
level fusion, although less regular than most image 
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generation tasks can be performed on regular parallel 
architectures such as SIMD arrays. Semantic 
analysis seldom presents a significant computational 
bottleneck compared to the other functions. This task 
can normally be handled with general-purpose 
hardware. This mapping concept is illustrated in 
Figure 2. 
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Figure   2:   Classes   of processing primitives for 
VIGILANTE's rich-pixel processing 

SYSTEM DESCRIPTION 
VIGILANTE consists of the Viewing 

Imager/Gimballed Instrumentation Laboratory 
(VIGIL) and Analog Neural Three-dimensional 
processing Experiment (ANTE). VIGIL is an 
airborne telescope serving the dual functions of data 
acquisition for target recognition experiments and 
testing of novel active and passive focal plane 
imagers. The telescope will ultimately consist of a 
self-contained 15-cm Cassegrain unit, a gimbaled 
mirror,   and   channels   for  multiband  sensors.   A 

schematic diagram of the VIGILANTE system is 
shown in Figure 3. 
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Figure 3: A schematic diagram of the VIGILANTE 
system. VIGIL is an integrated optical system that 
splits/transmits the incoming light (steered by a 
gimbaled mirror) detected by the respective 
IR/visible/UV sensors. ANTE is the processing 
system that selects each sensor channel for 
processing that is done by a commercial frame buffer 
and host processor and carries out real-time ATR by 
means of specialized, analog neural networks 
(3DANN-M) and a point operation processor (POP). 

ANTE is a prototype image-processing/target- 
recognition computer architecture based upon 
technology developed under the ongoing 3- 
dimensional artificial neural network (3 DANN) 
program. 3DANN is a sugar-cube-sized, low-power 
neuroprocessor with its IC stack mated to an IR 
sensor array. ANTE uses a modified version of the 
3DANN referred to as 3DANN-M (or commercially 
known as TeraCon). The special modifications to 
3DANN allow VIGILANTE to accept data from any 
sensor of arbitrary size and format. More 
importantly, the 3DANN-M cube can be used for 
general image convolutions. 

The general ATR process flow is depicted in 
Figure 2. A frame buffer holds the image and feeds a 
column or row of a 64x64 subwindow to CLIC every 
250 ns.  The 3DANN-M network then  produces 64 
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inner-products (each with two 4096-element vectors) 
every 250 ns, thus accomplishing 64 convolutions of 
a 256x256 image with 64x64 masks in 16 ms. The 
64 analog values generated by 3DANN-M are 
converted to 8-bit digital values and passed along to 
the Point Operation Processor (POP) for data fusion. 
Currently, the feedback memory and POP are 
implemented in four Adaptive Solutions' CNAPS 
array processor boards (each board containing 128 
SIMD processors and 32 megabytes of memory)— 
providing flexibility to program different point 
operations. In the future, a custom VLSI 
implementation of POP may be designed and 
fabricated. POP takes the output from the 3DANN- 
M and performs the desired target recognition 
functions. Command and control of VIGILANTE 
operations (e.g., detection/classification/tracking 
mode command, loading of templates, point 
operation functions, data recording, etc.) are done 
though the P6 motherboard (shown as the 
processor/memory block in Figure 4). 

P6 Motherboard 

64 templates % 
(64x64 sizeft 

Figure 4: The VIGILANTE processing architecture 
that orchestrates the data flow from sensor through 
neural processor also serves as the basis for 
developing methodologies for ATR applications. 

classification, and tracking of targets like cruise 
missiles with great efficiency. 

Flight, ground-based, and laboratory 
experiments will help make VIGILANTE available 
sooner for missile defense (NMD/TMD/CMD) 
applications. Since it is difficult to accurately 
simulate spectral responses of sensors and targets 
from desired vantage points, inexpensive flight 
experiments will provide a realistic environment for 
shakedown of autonomous interceptors and 
surveillance platforms. 

Because of the ambitious 
scope/schedule/budget of VIGILANTE, a very 
lightweight helicopter (ATI Ultrasport 496) with a 
modified seat structure was selected as the airborne 
platform, see Figure 5. This compact, low- 
maintenance, easy to transport, and fast turnaround 
platform can operate both in the piloted and UAV 
mode for a purchase price of $200K and an operating 
cost of $8/hr. The unmanned mode will be employed 
for tests when the helicopter will be in the "line of 
fire" or at high altitudes (between 12,000 and 20,000 
ft). These experiments will demonstrate real-time 
ATR from detection through precision tracking (aim- 
point selection). 

PLANNED EXPERIMENTS 
A simulated CMD test scenario was selected for 

a series of experiments planned for VIGILANTE 
during 1997-1998 period. Because of the small radar 
cross section and unpredictable low altitude flight 
path of cruise missiles, new approaches to CMD 
other than conventional radar detection/tracking 
should be investigated. The unprecedented 
processing speed of ANTE processor and multiple 
spectral  sensing  of VIGIL  will  allow  detection, 

Figure 5: The VIGILANTE piloted/UAV helicopter 
developed by ATI is capable of 12,000 ft altitude, 
hovering to 98mph, 2 hrs flight time, and 500 lb load. 

In addition to the ATI helicopter, a radio- 
controlled, reusable target, the VIGILANTE Target 
Vehicle (VTV)—a sub-scale model of a nominal 
cruise missile—serves as the cruise missile target for 
data collection and mock tests, see Figure 6. 
Although VIGILANTE piggybacks on actual cruise 
missile tests at NAWC, China Lake, the VTV gives 
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greater flexibility in terms of controlled flight paths 
and test scheduling. 
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Figure 6: The VIGILANTE Target Vehicle (VTV)—8 
ft long with 4 ft wing span—is a remotely piloted, 
turbine engine aerial vehicle capable of reaching 
25,000 ft altitude and 117 mph. 

Both the helicopter and the VTV are equipped 
with GPS receivers and transmit their position 
information at 10 Hz. Figure 7 depicts a typical 
flight profile and associated ground communication 
protocols planned for VIGILANTE. In September 
1997, Experiment 1 (a down-looking, hovering 
experiment) will fly the sensor payload of IR and 
visible imagers with a gimbaled mirror on an active- 
isolation optical bench and use the GPS information 
to steer the gimbaled mirror and transmit image data 
to the ground for ANTE processing. In December, 
1997, Experiment 2 will have the pilot fly the 
Experiment 1 sensor payload in a mock intercept 
flight path with the VTV as the target. Onboard 
sensing/processing with image-based tracking will be 
demonstrated for the first time in this experiment. 
Experiments 3 and 4, planned for 1998 will involve 
UAV operations of the ATI helicopter to provide 
closer looks at the end-game scenario and employ the 
next build of sensor/processor package, which will be 
more compact and integrated to provide simultaneous 
boresighted data rather than frame-dithered 
information. 

Figure 7: VIGILANTE flight experiments will 
demonstrate the smart sensing capability of 
VIGILANTE in a simulated CMD scenario with 
appropriate ground communication and protocols for 
experiment monitoring and subsequent data analysis 

Lab experiments of various ATR methodologies 
also demonstrate the VIGILANTE smart sensing 
capability. We have set up a "model shop" to permit 
data collection of target models in many orientations, 
ranges, and illuminations, see Figure 8. Cluttered 
input scenes are produced to make the scenes more 
realistic. 
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Figure 8: The VIGILANTE model shop equipped with 
different target models and automated image data 
collection system: (a) a setup to collect target 
imagery and (b) example input scene. 

CURRENT RESULTS 
Sensors: A series of field experiments to 

characterize the sensors were performed prior to 
integrating VIGILANTE sensor payload into the 
helicopter. Two field experiments (February and 
May 1997) piggy-backed on cruise missile testing at 
China Lake were conducted, see Figure 7. The first 
yielded visible (CCD camera) and IR (JPL QWIP 
camera) data of a fighter plane and missile. The 
second which has a completed setup of UV, visible, 
MWIR, and LWIR cameras did not provide desired 
target data because the cruise missile failed. A 
similar test setup to observe VTV is planned for 
September, 1997. 

)m 
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(a) (c) 

(b) (d) 

Figure 9: Field experiment setup at China Lake:  (a) 
UV,  visible,  MWIR,  and LWIR cameras on M45 

mount, (b) observation site at China Lake, (c) visible 
imagery, and (d) IR imagery. 

Rich Pixel Algorithms: While efforts to 
integrate and test VIGILANTE are underway, 
progress continues in the development of ATR for 
real-time recognition and tracking of cruise missiles 
and other military targets using laboratory data. 
These experiments have focused on validating the 
design team's view of processing based upon "rich- 
pixel" processing, an approach which is particularly 
well suited to architectures similar to VIGILANTE's. 

Eigenvector based hierarchical classification: 
Since conventional brute-force template matching is 
usually unreliable in highly cluttered environments 
(such as in Figure 10), we have investigated a 
hierarchical neural-network approach based on 
eigenvectors, see Figure 11. Figure 12 and Figure 13 
show the top-level results of applying the 
eigenvectors of all the objects in the target library 
(300,000 images of helicopter, missile, and plane in 
various orientations). Preliminary results are 
promising (over 90% success rates), and it appears 
that, using the selected sensor/processor architecture 
with the 16 msec frame rate, a robust, real-time target 
recognition/tracking system will be realized. 

TEMPLATE MASKS 

Figure 10: The brute-force template matching with a 
template mask of the target in a slightly different 
angle, although provide local maximum 
corresponding to the target location in the 
correlation image, generates a false positive result 
when seeking absolute maximum. 

The excellent performance of the eigenvector 
and   neural-network   combination   can   easily   be 
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explained in terms of having multiple-composite 
filter design options. In 3DANN, up to 64 composite 
filters can be operated in parallel on the original 
scene, each of which may address different 
discriminability/distortion-invariant characteristics. 
A neural-network classifier then fuses each filter 
output, point-by-point, thus greatly reducing the high 
dimensionality of nonlinear classification problems. 
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Figure 11: Hierarchical eigenvector/neural network- 
based target recognition synthesizes multiple 
composite filters using eigenvectors generated from 
the object library for 3DANN-M processing and 
classifies corresponding output value with a 
feedforward neural network (which can be done in 
POP). The hierarchy is established by returning the 
object library after achieving classification to reload 
class-specific eigenvector sets. 
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Figure 12: An example of the eigenvector/neural 
network output using the top-level eigenvector set 
generated from all the helicopter, missile, and plane 
images (300,000 total) in all various orientations. 
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Figure 13: Performance of the eigenvector/neural 
network using the top-level 64-eigenvector set tested 
on highly cluttered scenes (5000 samples). 

Hierarchical   classification   and   tracking:    The 
eigenvector approach permits a hierarchical 
recognition technique where a filter set is 
successively refined, permitting detailed 
classification of the target. The approach works as 
shown in Figure 14: 

1. A very large set of general-purpose templates is 
used to generate 64 eigenvectors that 
discriminate between potential targets and 
nontargets. These templates are used to separate 
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3. 

4. 

pixels that may contain targets from pixels that 
don't. 
Generate a new set of 64 eigenvectors that only 
discriminate among broad classes of targets to 
classify the features detected in step 1. 
Use  increasingly  restrictive  template  sets  to 
generate a set of eigenvector templates that 
locate the scale and orientation and more precise 
classification of the target. 
Pass the results from the eigenvector matcher to 
the precision-tracking algorithm for precision 
tracking and final identification. 
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Figure  14:  Hierarchical target classification and 
precision tracking 

Precision tracking: By properly classifying the 
target and estimating its scale/orientation to 
reasonable precision, precision tracking of selected 
target points can be then achieved. The algorithm 
works by imposing geometric constraints on 
correlation outputs of the target's feature set (e.g., 
nose, wings, and tail), achieving near-zero error 
tracking. The algorithm works via the following 
steps (shown in Figure 15): 

1. A series of images are generated by convolving 
the input image with a set of templates for 
detecting individual features of the object (such 
as the nose, left wing, etc.) The output of this 
step is a set of gray maps whose intensity 
corresponds to the likely presence of that feature 
(with a lot of false alarms). During the 
convolution operation, the images are shifted 
such that the features would overlay if they were 
present in the correct geometry, given the 
orientation and scale of the object. 

2. The aligned images from Step 1 are fused to 
form a new gray map where intensity 
corresponds to the likelihood of a match. The 
example shown was fused using a winner-take- 

4. 

all behavior on the sum across all feature images. 
Neural network fusion has also been attempted. 
The output image of Step 2 is multiplied pixel- 
by-pixel with the shifted convolution outputs 
from Step 1, resulting in new gray-maps for 
features which have been weighted by the 
likelihood that those features appear with 
reasonable geometry. 
The outputs from step 3 are thresholded and 
shifted back out to their original locations. 
These feature points represent the final match. 

The performance of the algorithm is shown in several 
cases in Figure 16. 

Step 1: Generate shifted convolution 
Nose R. Winq       L. Winq Tail Fuse Weapons 
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step 1, these are the 
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Figure 15: Precision tracking algorithm works by 
combining evidence, point-by-point, from shifled 
convolution images 
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Figure   16:   Performance   of precision   tracking 
algorithm on a variety of samples 

CONCLUSIONS 
VIGILANTE will provide an ultrafast smart 

sensor testbed and demonstrate an end-to-end 
detection/recognition/tracking in real-time through a 
series of flight experiments. During 1996-97, 
excellent progress has been made in 
design/development of system architecture, airborne 
platform and target vehicles, ATR methodologies, 
and field data collection. More results are anticipated 
in 1997-98 when the VIGILANTE payload will be 
integrated and its real-time/onboard smart sensing 
capability demonstrated in a simulated CMD 
scenario. VIGILANTE is a fast-pace, low-cost 
program providing technological breakthroughs to 
serve NMD and TMD needs. 
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