
UNCLASSIFIED 

HYBRID NEIGHBORING-OPTIMAL-CONTROL 
AND LAMBERT-BASED INTERCEPTOR 

BOOST-PHASE GUIDANCE 

John A. Lawton and Craig A. Martell 
Naval Surface Warfare Center, Dahlgren Division, Dahlgren, Virginia 

Abstract 

Finding guidance methods that efficiently and effectively handle the problem of directing the 
boost-phase portion of an exoatmospheric tactical ballistic missile interceptor is an active area 
of research. This paper presents a candidate method that is a hybrid combination of three 
algorithms. The chief method, used throughout the majority of the flight, is a minimum-time 
neighboring optimal control scheme. As demonstrated through Monte Carlo simulations, 
perturbations in the predicted intercept point (caused by boost-phase updates of the target 
state estimate received from an exogenous radar) are corrected for in a smooth manner which 
preserves performance. Even large corrections are handled with low angles of attack, and less 
than one percent changes in burnout velocity relative to theoretical open-loop optimal control 
values. Near the end of the booster burn, the guidance scheme switches over to two Lambert- 
based guidance methods, which have the effect of taking out residual velocity errors, thus 
putting the interceptor on a nearly exact intercept path to the latest estimate of the target 
trajectory. The total scheme, while being somewhat computationally complex in pre- 
deployment development, is actually computationally simple for on-board computations, and 
has a small computer memory requirement. Therefore, the robust performance combined 
with the light computational burden provided by this hybrid algorithm make it a competitive 
candidate for boost-phase interceptor guidance. 

Introduction 

The problem of finding a boost-phase 
guidance method for the exoatmospheric 
interception of tactical ballistic missiles is a 
challenge. The flight environment starts where 
the atmospheric density is the highest, and ends 
where it is negligible. At boost-phase burnout, 
the interceptor must be put on a path that 
intercepts the target after a coast of up to minutes 
in duration. Furthermore, it must be able to 
handle large redirections, as boost-phase updates 
are received from an exogenous radar filter, 
without losing appreciable performance. 

For these reasons, neighboring optimal 
control is investigated as a candidate guidance 
algorithm1,2'3,4. Optimal control, by its very 
nature, must preserve performance in order to 
meet the optimization criterion (which is 
minimum intercept time in this case). 
Neighboring optimal control, which is a closed- 
loop guidance method based on open-loop 
optimal control solutions, preserves the optimal 
flight path when the interceptor state and the 
target state are perturbed from the nominal path. 

1 

As the burnout time approaches, however, 
the neighboring optimal control scheme has some 
residual errors that amount to on the order of one 
kilometer of intercept error. While this error 
level may seem small by some measure, when 
combined with all other error sources, it makes a 
nontrivial     contribution. Therefore,     two 
algorithms that are based on the solution to 
Lambert's problem, of classical orbital mechanics 
origin, are used at the end of the boost phase to 
efficiently drive the intercept errors to 
approximately zero5,6,7. 

The hybrid combination of these methods 
yields an algorithm that achieves all of the goals 
listed above. This hybrid algorithm is derived in 
detail in this paper, and representative results 
from Monte Carlo simulations are used to 
illustrate its performance. 

Guidance Methods 

The total guidance scheme proposed in this 
paper is comprised of three methods. The first 
method is neighboring optimal control1,2'3,4. It is 
the primary guidance method, being used for the 
majority   of   the   controlled   segment   of   the 
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interceptor flight. As is typical with neighboring 
extremal methods, the gains become unstable as 
the burnout time of the booster approaches. At 
this point, a switch is made to a combination of 
two methods that are based on Lambert's 
problem5. 

The first Lambert-based guidance algorithm 
is the classical velocity-to-be-gained method6. 
For short burn times outside of the atmosphere, 
velocity-to-be-gained guidance is nearly optimal, 
so it moves the intercept vehicle in a path that is 
consistent with the optimal control path for the 
last few seconds of flight. It is designed to zero 
out the residual errors in the interceptor velocity, 
so that it puts the interceptor on a nearly-exact 
collision course with the target (to within the 
target state estimate accuracy). 

Velocity-to-be-gained guidance has a couple 
of problems at the extreme end of the burn time. 
First of all, it may be that the amount of rocket 
burn time remaining is slightly shy of that 
required to zero out all of the residual errors. 
Second, if the residual errors go to zero before 
the burn time is up, then classical velocity-to-be- 
gained requires the thrust to be terminated; if the 
rocket motor has solid propellant, it generally 
cannot be terminated at will. For such purposes, 
matched-characteristic-velocity (MCV) guidance, 
an offshoot of velocity-to-be-maintained 
guidance, was derived7. At about one-half to one 
second time to go, the guidance switches over to 
MCV guidance to obtain and maintain a more 
precise intercept solution. 

Open-Loop Optimal Control 

The closed-loop neighboring optimal control 
scheme is based on open-loop optimal control 
solutions. In the open-loop problem statement, 
the interceptor vehicle is launched from the 
Earth's surface, then flies through the atmosphere 
with thrust, gravitational, and aerodynamic forces 
acting on it. Burnout of the rocket motor occurs 
at a point where the aerodynamic forces have 
become negligible, at time *bo > after which the 
interceptor coasts under the influence of gravity 
to the intercept point. The intercept point, fT, is 
fixed for this open-loop problem; the closed-loop 
neighboring optimal control problem has a 
moving intercept point, since the target vehicle 
position is a function of the intercept time, which 
is continuously updated in the closed-loop 
guidance mode. The goal of the optimization 
problem is find the pitch and yaw history of the 

missile body that minimizes the time of intercept, 
t,. 

In the optimal control problem, the state is 
comprised of the position and velocity vectors in 
launch-centered Earth-fixed (LCEF) coordinates: 

The LCEF coordinates are centered at the launch 
point of the interceptor, with the z-axis in the 
vertical direction, the y-axis in the plane 
containing the nominal intercept point, and the z- 
axis out of plane. The controls are non-standard 
pitch and yaw angles, 6 and ip, defining the 
direction of the longitudinal axis of the 
interceptor missile, ej. ip is the angle between et 
and the x-y plane, and 6 is the angle between the 
projection of ej onto the x-y plane and the x- 
axis. Therefore, 

e-b 

cos ip cos 6 
cosV> sin# 

sin^ 

The governing differential equations are 

and 

where 

A + N + g + T , 

2      gSCA(h,v)^ 
A = — eb m(t) 

is the axial aerodynamic acceleration, 

-        q S CNaOiT ^ N —  —— n 
m(t) 

is the normal aerodynamic acceleration,^ is the 
inverse-square gravitational acceleration, and 

T = 
m ge Is** - p(h) AK 

m(t) 
eb 

is the thrust acceleration. In these expressions, 

q= -p(h)v2 

is the dynamic pressure, S is the reference area, 
CA(II,V) is the axial force coefficient, m(t) is 
the vehicle mass, CNC is the normal force curve 
slope, 
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n ■■ eb x 
et x v 

|e& x v\\ 

is the normal force direction, 

aT — cos e&- 

is the total angle of attack, p(h) and p(h) are the 
atmospheric pressure and density, h is the 
altitude, Ae]tn is the motor nozzle exit area, IsPvx. 
is the vacuum specific impulse of the motor, and 
ge is the gravitational acceleration at the Earth's 
surface. Axial force coefficient data is fit, via a 
least-squares method, to the functional form 

CA = ci+ c2tan 1(c3 + cAM) 
I        c6+c7M        \ 

+ c5evc8+c9M+cioM2/ 

where M — \\v\\/a(h) is the Mach number (and 
a(h) is the speed of sound at the current altitude, 
h). p(h) and a(h) are polynomial fits in h to the 
1962 Standard Atmosphere, and p(h) is 
calculated with 

p(h) = p(h) 
a{hf 

1.4 

The solution method chosen for this problem 
is to discretize the control variables at N node 
times, t\, ...,tff, linearly interpolate between the 
nodes, then solve for the optimal set of 27V + 1 
control and flight time parameters 0\, ..., Off, 
ipi, ..., ipff, and tj, that minimize the intercept 
time, tr. The chief constraint on the resulting 
parameter optimization problem is that the 
interceptor must hit the target point at time tt, 
r(tr) — rT = 0 (which is really 3 constraints). 
Other constraints are operational, such as launch 
angle constraints, angle of attack constraints, and 
dynamic pressure limits. 

One advantage of this method is that a wide 
variety of operational constraints can easily be 
imposed, whereas a variational solution method 
would require re-formulation for most constraint 
types. In an operational environment, this is an 
important consideration, since various facets of 
the system architecture frequently impose 
constraints on the problem that the dynamicist 
would never dream of. Another advantage is that 
the complete trajectory is specified by a low 
number of data points (TV is typically between 10 
to 15), with an exact intercept (to within the 
modeling accuracy) being permitted with such a 
low number of data points. This also means that 

the memory-requirement to hold the gain data is 
low. Besides, the full two-point boundary value 
problem resulting from the variational 
formulation has been solved to compare with this 
proposed approximate method using the 
techniques in refs. 8 and 9, and the intercept time 
difference is on the order of only a tenth of a 
second. 

Neighboring Optimal Control 

For any perturbed trajectory in the vicinity 
of the reference trajectory, let 6x(t) represent the 
perturbed optimal state solution minus the 
reference solution. Similarly, let 6u(i) represent 
the difference in the control history, 6rT the 
difference in the final intercept position, and 6t{ 

the difference in the intercept time. Then the 
gain functions G(t) and H(t) are defined 
through the relation 

6u(t) 
6t, 

[G(t)    H(t)} 
6x(t) 
SrT 

(1) 

G(t) is an (m + 1) x n matrix, and H(t) is an 
(m + 1) x 3 matrix, where m is the number of 
controls (2 in this case), and n is the number of 
state variables (6 for this problem). They are 
computed at the nodes used in the optimization 
problem, and approximated as linear functions 
between the nodes. 

The gains are computed by taking numerical 
partial derivatives. In lieu of re-starting the 
optimal solution at each node, one trajectory is 
flown for each finite difference perturbation in 
x(0) and in rT, for a total of (n -t- 3) perturbed 
solutions3,4. For the first n of these solutions, 
this is accomplished by first perturbing the kth 
element of x(0) by e^ from the reference initial 
condition (while the rest of x(0) is the same as 
the reference initial condition), then solving the 
optimal control problem again. The initial 
perturbations are chosen such that the whole 
perturbed optimal solution is sufficiently close to 
the reference optimal solution to yield good 
numerical derivatives at all of the node values. 
The last three solutions are with only the target 
point perturbed by e^ , k = n + 1, ..., n + 3 (as 
before, with care taken to keep the whole 
trajectory sufficiently close to yield good 
derivatives). Next, for each node time t, a group 
of n + 3 solutions from Eq. (1) are collected into 
one matrix equation: 
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\G(t)    H(t)\ 
Sx^t) 

Sri 
Sxn+3(t) 

Su\t) 
Stj 

Sr, 

Sun+\t) 
St?+3 

■n+3 

•(2) 

Since for the first n solutions the target point is 
unperturbed from the reference solution, 
Sfk, = 0,k=l,...,n. With this, the right-hand 
matrix on the left side of the equal sign in Eq. (2) 
can be partitioned in the form 

A   B 
0    C 

where A is an n x n matrix, and C is a 3 x 3 
matrix. Now, 

A    B 
0    C 

so that, since 

A-1 

0 
A~lBC~l 

c-1 

e„+i      0        0 
c = 0      en+2      0 

0        0      e„+3 

5 

straightforward matrix manipulations yield 

G(t) = [(' 
~ul{t)\            (Su 
stj J   -   { s t? J 

Sxn\ 

and 

H(t) = 
' (Sun+l(t)\ 

A ^+1 ) 
l fSun+3(t)\ 

■ { tr3 ) 
.      1 

£n+3 

-G(t) Sxn+l _       1 

£n+3 

These gains, having been pre-computed in 
this manner, are used in Eq. (1) in real time to 
continuously modify the intercept path. 

Intercept Time Updates 

Throughout the neighboring optimal control 
segment of the interceptor trajectory, the estimate 
of the intercept time, tr, is continuously 
updated. Picking off the last row of Eq. (1) at 
any time t, 

St^GsSx + HsSTriSt,) (3) 

where the "3" subscripts on the gain matrices 
denote the third row of each matrix.    6rT is 

denoted as a function of Str (or, more explicitly 
as a function of t* + St,) because the ballistic 
target is moving in time, so each new intercept 
time requires a new target position.   Hence, Eq. 
(3) is not solved for any arbitrary value of St,. 
Eq. (3) is, however, in the form of a fixed point 
iteration method, and experience has shown that 
it converges. 

When large changes are made to the estimate 
of the threat trajectory, such as occur when an 
update is received from the exogenous radar 
filter, the fixed point iteration can require 20 or 
more iterations. Therefore, a Newton's method is 
used to solve Eq. (3). Subtracting St, from the 
right side of Eq. (3) creates a function that is zero 
at the solution point; using this function in a 
Newton's method yields the following iteration 
scheme: 

W+i-sjj     G3Sx + H,SrT(6f,)-6ti 
Öt'    ~Ötl HsMW-1 () 

where vT is the target velocity. This method 
typically converges, to a tolerance of less than a 
microsecond, in two to six iterations for large 
changes in the threat state estimate. The update 
occurs on the order of once every half of a 
second, at what will be called the target-adjust 
frequency. This occurs more frequently than the 
target updates from the exogenous radar, but less 
frequently than the guidance cycle. 

Alternatively, Eq. (4) can be used as a single 
update (that is, non-iteratively), once every 
target-adjust cycle, because it implicitly 
converges as time moves forward at small 
increments. In other words, the relative 
geometries, the values of the gains, etc., are 
changing more slowly than the rate at which Eq. 
(4) is converging in this mode. The control and 
trajectory results are almost identical to those 
where Eq. (4) converges to a tight tolerance each 
target update cycle. 

To summarize, Eq. (4) is computed once 
each target-adjust cycle, and the resultant St, is 
used to compute 6rT . This value of SrT is then 
held constant until the next target-adjust time. 
Between target-adjust cycles, St, does vary 
through Eq. (1), but with 6rT held fixed. 

Velocity-to-be-Gained Guidance 

Velocity-to-be-gained guidance is based on 
the solution to Lambert's problem. One version 
of Lambert's problem can be stated as follows: 
given a source position, a target position, and a 
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time of flight, find the initial velocity vector that 
yields an orbit that traverses from the source to 
the target in the given time of flight. At any time, 
t, in the interceptor's flight, denote the velocity 
vector that is the solution to Lambert's problem 
as the required velocity, vr. The inputs to the 
solution of vr are the current interceptor position, 
r(t), the position of the threat state estimate at 
time t[ (where t, is held constant at the last value 
given by the neighboring optimal control 
scheme),    fT{t;),    and    the   time    of   flight, 
T = t,-t. 

The difference between the required velocity 
and the current interceptor velocity is termed the 
velocity to-be-gained: 

Vg(t) — Vr(t) - v(t)  . 

The goal of velocity-to-be-gained guidance is to 
drive vg to zero. The version of this method used 

this  hybrid  algorithm  is  to  thrust  in  the in 

direction of vg. Although more advanced 
methods exist, such as cross-product steering6, 
experience has shown that thrusting along vg is 
just as effective for the short burn times used in 
this hybrid guidance scheme. 

Matched Characteristic Velocity Guidance 

The problem that velocity-to-be-gained 
guidance has with not converging to an intercept 
solution at exactly the right time (that is, at thrust 
cut-off time), can be handled by letting the 
intercept time, t,, vary. Each intercept time 
yields a different velocity to-be-gained vector, so 
the idea behind MCV guidance is to choose the 
intercept time such that the velocity to-be-gained 
approximately equals the amount of velocity 
increase that can be achieved with the amount of 
remaining thrust. Classically, the amount of 
velocity that can be achieved by a given amount 
of thrust if instantaneously applied is termed the 
characteristic velocity. Therefore, let the 
effective characteristic velocity, vc, denote the 
velocity increase under the remaining finite burn 
time, incorporating the other accelerations as 
well. The magnitude of the velocity to-be-gained 
vector at the adjusted intercept time must match 
Vc- 

Letting t, be the current estimate of the 
intercept time, and At, be the amount that the 
intercept time is to be changed, the new velocity 
to-be-gained vector is approximated by 

vg{t, + A*,) = vg(tr) + ^H^At, .  (5) 

The partial derivative can be analytically 
computed by the method given in the appendix of 
Ref. 7. Now, in order for the magnitude of 
Vg(t; + At,) to be matched to vc, first take the 
dot product of the right hand side of Eq. (5) with 
itself, subtract off v\, and equate the result to 
zero, yielding 

dvr 

~dt, 
Atf + 2v„ 

dvr 

~dt, 
At,+ II-.  ||2 

-U, 0. 

Solving this, 

At, b± 62- 
~vt) 

>    (6) 

where 

_ u9   at, 
2   • 

The sign in Eq. (6) is chosen such that \At,\ is 
smallest. This value of At, is then added to the 
previous estimate of t, to obtain the current t,, 
which in turn is used to calculate the current vr 

by solving Lambert's problem, and thence the 
current vg. As with velocity to-be-maintained, 
the thrust direction is along vg . 

All that is left undone is the determination of 
vc. Assuming thrust and gravity are the only 
forces acting on the interceptor, its acceleration 

9 + 
mue    -  c 

m0 — rht (7) 

where the gravity vector 

ue — Isp ■ ge is the equivalent exhaust velocity, 
m0 is the initial vehicle mass, m is the (positive) 
mass flow rate, d is the direction of the thrust, ß 
is the gravitational parameter, 
R = f + [ 0 0 RE }T, and RE is the Earth's 
radius. Assuming that g and d are nearly 
constant over short burn times, both sides of Eq. 
(7) can be integrated to yield 
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At; = fftrem + Ueln )d , 
\"H*bo)/ 

where ibo is the burnout time of the rocket motor, 
and trem = *bo — t. The magnitude of this vector 
is vc. Therefore, taking the dot product of At; 
with itself, 

vc =9 tTtm-2gtiemue\n 

Generally, a fudge factor of 0.6 to 0.8 is applied 
to vc to account for inaccuracies in this 
estimation. This also has the effect of slightly 
underestimating the thrust capacity, which is the 
conservative approach, causing MCV guidance 
to tend to convergence as trem-^O. (whereas 
overestimating tends to lead to burnout before 
convergence, whence nontrivial residual errors 
occur). 

Simulation 

A TBM interceptor will typically be 
launched based on a threat target state derived 
from an exogenous sensor, such as a radar. One 
important design issue in such a system is the 
decision as to when to launch the interceptor 
after the target is in track of the radar. For the 
simulation results presented herein, the 
interceptor is launched very early, about three 
seconds after detection, when the radar filter 
velocity error drops just below 300 m/s. With 
the approximately 150 s interceptor flight time 
for the configuration presented below, this means 
typical initial predicted intercept point (PIP) 
errors will be on the order of 45 km. 

As the interceptor flight progresses, the 
exogenous radar filter will continue to improve 
the target state, so the PIP will move appreciably. 
The guidance algorithm must be able to handle 
such large changes in the PIP without degrading 
performance. 

In the case presented, the radar is modeled 
with a 4mrad angular error, and about a 50 m 
range error. The filter associated with the radar 
is an extended Kaiman filter of the same design 
as presented in Ref. 10. After the square root of 
the trace of the velocity covariance of the filter 
drops below 300 m/s, the interceptor is launched 
and the filter update rate is dropped to once 

every 5 s. Updates on the target state are passed 
to the interceptor at this same 5 s cycle. 

The target is a hypothetical 1000 km 
minimum-energy ballistic missile trajectory, with 
the gravitational acceleration being modeled with 
an oblate-Earth model. The target ground track is 
depicted in Fig. (1), along with the interceptor 
launch point and trajectory. The exogenous 
radar is co-located with the interceptor launch 
point. 

The resultant interceptor trajectory from one 
of the Monte Carlo set of runs is depicted in 
Fig. (2). The trajectory labeled "1" is the initial 
flight path that would have been flown if no 
target state updates were received from the radar 
filter. Similarly, the trajectory labelled "2" is the 
path that would have been flown after the first 
update was received, but no later updates were 
received. "3" is the trajectory after two updates, 
and so forth. None are shown after "8" because 
they all lump together in the same region. The 
endpoints of these trajectories, which are 
essentially the various PIP points, are projected 
onto all three planes. 

Fig. (3) contains the same endpoints 
projected onto the three planes, only magnified, 
with each of the axes on the same scale, to give a 
better feel how the PIPs migrate. Lines connect 
adjacent endpoints, so only the first two 
endpoints are labelled. The total PIP migration 
is 46 km for this particular case. 
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Figure 2. Interceptor Trajectories 

Figure 3. Magnification of the Endpoints. 

The corresponding control perturbations for 
this trajectory are plotted in Figs. (4) and (5), and 
the intercept time perturbations are plotted in 
Figs. (6) and (7). In Fig. (7), the flat portion of 
the curve occurs when the velocity to-be-gained 
guidance is used, since the intercept time is held 
constant with that scheme. The portion of the 
curve between about 64.1 and 64.6 s is when 
MCV guidance is active. After an initial 
adjustment into the region of — 0.8 s, a damped 
oscillation ensues, as MCV guidance converges 
on the appropriate intercept time. Similar 
oscillations are seen in the controls in Fig. (5). 
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Figure 4. Control Perturbations. 
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Figure   5.      Zoom-in   on   MCV   Portion   of  Control 
Perturbation Plot. 

Finally, the total angle of attack, aT, is 
shown in Fig. (8). Notice the relatively benign 
angle of attack history, especially in the 
neighboring optimal control segment, even for 
the large adjustments in the PIPs. The target 
update times are at 5 s, 10 s, etc. This low angle 
of attack history is typical for neighboring 
optimal control. Another performance indicator 
is burnout velocity, which typically changes by 
less that one percent relative to the open loop 
optimal trajectories, when large perturbations are 
imposed. Since it knows the future optimal path, 
as well as the current, the neighboring optimal 
control method reacts with mild corrections to 
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Figure 6. Intercept Time Perturbations. 
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Figure 7. Zoom in on MCV Portion of the Intercept 
Time Perturbations. 

large PIP changes. More precisely, it models the 
whole trajectory as one entity, so that current 
control perturbations take into account the future 
path. This is something that simpler "local" 
guidance schemes (that is, those that are based on 
satisfying certain equations that are essentially 
functions only of the current state and the target 
point) cannot do. For that reason, the local 
guidance schemes tend to react more strongly to 
large PIP changes. 

When all of the interceptor errors are turned 
off (that is, there are zero heading and velocity 
errors, and the interceptor has perfect knowledge 
of  its   own   state), the RMS error from this 
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Figure 8. Resultant Total Angle of Attack. 

guidance scheme over 100 Monte Carlo runs is 
35 m (relative to the last known target state). 
Even very small interceptor errors would yield 
propagated errors to the PIP point on the order of 
about 1 km. Taking the RSS of this and 35 m 
yields an increase of less than 1 m to the 1 km. 
In other words, the contribution by the guidance 
scheme to the total errors that must be taken out 
by the midcourse corrections and the terminal 
homing is essentially zero. The residual errors in 
the target state estimate add even more errors to 
this. Having the boost-phase guidance contribute 
nearly zero errors to the total error budget is an 
important goal, since the lower the total error is, 
the higher the probability of successful intercept. 

As a final note, it should be mentioned that 
one reference trajectory and one set of gains 
were used for the whole trajectory. The 
reference trajectories are available at every 5 km 
by 5 km in downrange and altitude; so, the initial 
PIP is rounded to the nearest 5 km by 5 km to 
select the reference trajectory. This is an 
arbitrary choice of gridding that works; all 
indications are that less dense gridding will work 
just as well. The gains are even more sparsely 
populated. They are required only every 50 to 
100 km in downrange and altitude (more densely 
at the lower altitudes). In fact, only a total of 10 
to 12 sets of gains are needed for the whole battle 
space. Then, at fire control time, only one 
reference trajectory with accompanying reference 
controls and one set of gains (about 2 Kbytes of 
data) need to be loaded onto the interceptor flight 
computer. 
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Conclusions 

A hybrid guidance scheme, which mainly 
relies upon neighboring optimal control 
guidance, with Lambert-based guidance schemes 
used at the end of the burn to zero out residual 
errors, has been shown to be a robust and 
effective guidance method for tactical ballistic 
missile exoatmospheric interceptors. While 
generating the reference trajectories and gains for 
the neighboring optimal control method is 
computationally intensive, this is all 
accomplished before the deployment of the 
missile, and supplied to the fire control computer 
and to the interceptor missile in the form of look- 
up tables. The actual fire control solution 
process and onboard guidance calculations are 
computationally simple. Furthermore, the data 
storage requirements are light. 

The method handles large variations in the 
predicted intercept points, while yielding 
essentially zero guidance errors when compared 
to all error contributions. Furthermore, the 
method tends to preserve performance, as 
indicated by such measures as relatively low 
angles of attack and small changes in burnout 
velocities relative to open-loop optimal levels, 
even when large intercept point changes are 
imposed by target state updates received from the 
exogenous radar. 

In closing, the ability of the method to 
handle large intercept point corrections has at 
least two important system-level implications. 
First, this allowance for large intercept point 
corrections means that the radar does not need to 
revisit the target at a high frequency, so the radar 
resources can be spread to other targets and other 
priorities. Second, this permits the interceptor to 
be launched early relative to target detection (that 
is, while large target state estimate velocity errors 
remain), so that more battle space can be 
attained, and more assets can be defended. 
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