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ABSTRACT

Localization of plastic deformation in the form of shear bands is a very common
failure mode in many materials. At high strain rates plastic deformation becomes nearly
adiabatic which leads to the local heating of a material and, as a consequence, to the
softening and formation of the adiabatic shear bands. At impact velocities of the order of
100 m/s the Critical Impact Velocity (CIV) in shear occurs. The superposition of adiabatic
shear banding and adiabatic plastic waves in shear is the main interest in this Report.

A numerical study of impact shearing of a layer has been performed by the FE code
ABAQUS. It was intended to verify available experimental results for VAR 4340 steel,
~52 HRC, obtained by direct impact on the Modified Double Shear specimen, [1]. In
particular, the numerical study has been focussed on the effect of the impact velocity
including the phenomenon of the Crirical Impact Velocity in shear. An infinite thin layer
fixed at one end and with a small geometrical imperfection in the middle of its height was
considered. The layer was submitted in the other end to different shear velocities, from
quasi-static to impact, up to 180 m/s.

Two modes of shear deformation of the layer have been found: in the first mode all
deformation concentrates in the middle of the layer, and in the second near the surface
where the shear velocity is imposed. The CIV could be defined as a transition between
those two modes. It has been shown that impact velocities higher than the CIV leads to a
substantial reduction of the localization energy.

All FE calculations have been performed with constitutive relations specially
developed to reflect behavior of VAR 4340 steel. Thermal coupling, strain hardening and
rate sensitivity are accounted for. Introduction of the temperature-dependent strain
hardening exponent has demonstrated the importance of the proper formulation of the
constitutive relations for all thermal instability problems.

Overall good corellation with experimental results and physical intuition have been

achieved.
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1. INTRODUCTION

Recent experiments with the technique of impact shearing, [1], have confirmed
existence of the Critical Impact Velocity in shear, caused by adiabatic localization of shear
superimposed on plastic shear waves, [2,3]. Experimental confirmation of CIV in shear is
quite recent, [2], but a preliminary numerical analysis for a simple case was reported
earlier, [4].

Numerical studies of adiabatic shear banding are quite numerous and they will not
be discussed here, however, only few studies are focussed on adiabatic instability and
localization at wide range of the nominal strain rates in shear, [5,6,7]. With the imposed

shear velocity V on the layer of thickness hg, but without definition how this velocity is

applied to the layer, it is impossible to numerically find the CIV in shear. The final result

of such calculations is limited to the statemant that an increase of the nominal strain rate in

shear, iy 1=V/hg, may lead to the minimum of the instability strain at specific nominal strain
rate, fnz103 s’ for a mild steel [5,6], and that the difference between the instability strain

and the strain of the final localization increases as a function of the nominal strain rate fn.

In order to analyse the effect of the more realistic boundary conditions in velocity
imposed on the thin layer, that is the velocity starts from ZERO at one end and reaches its
final value V after a short rise-time, it was decided to perform a systematic FE study.

Thus, numerical investigations were carried out in order to gather more information

on the phenomenon of adiabatic shear banding from one side and CIV from the other. FE
program ABAQUS was chosen for that purpose. The version used was equipped with all
necessary tools to conduct the non-linear, dynamic, temperature-coupled analysis.
It was intended to demonstrate on a simple model of a thin layer with geometrical
imperfection the existence of CIV in shear. The layer analysed, shown in Fig. 43, was
assumed as made of VAR 4340 steel, ~52 HRC, and was subjected to the imposed velocity
V with a specific rise-time on the upper surface, while being constrained at the bottom. A
small geometrical imperfection was assumed in the middle height of the layer.
Demonstration of the FE modeling can be found in Chapter 4, whereas results of
calculations and further discussion are presented in Chapters 5 and 6.

Constitutive relations applied in the problem were specially developed to model

experimental results for VAR 4340 steel, [8,9], as well as some data for similar materials,




[10,11]. They reflect very well temperature coupling and strain rate sensitivity.
Constitutive relations are thoroughly discussed in the next Chapter, in return, remarks

about thermal coupling are assembled in Chapter 3.
2. CONSTITUTIVE RELATIONS

It is known that a precise constitutive relation is the main demand in the numerical
codes. A model chosen reflects later the final results. [n order to approximate adiabatic
instabilities, localization and wave effects, constitutive relations must include strain
hardening, rate sensitivity and a wide range of temperatures.

A constitutive relation was sought to reflect plastic behavior of VAR 4340 steel,
~52 HRC, at high strain rates and wide range of temperature. The following general form

was chosen
1= {(T)[H(DEI) + £ (T, T) | )

where 7 is the shear stress, and f; are functions of plastic strain in shear [, shear strain rate

I and absolute temperature T. Relation (1) is treated as the first approximation to
constitutive modeling. Further analyses have shown that the strain hardening rate 3t/0l is
temperature dependent, for example [12]. The final general form of the constitutive

relation used in majority of calculations is
= {(D[H(DEC,T) +£4(5,7)] )

The explicit expressions for eqs (1) and (2) are assumed as follows

Do TY e T 5"
T:H—L(I.O—ZI:B(T;) (I"0+I'p) +T0(1—']310g?0] :l

where B, Lo, v, n, m are, respectively, the modulus of plasticity, the shear modulus at




T=300 K, the temperature index, the strain hardening exponent and the logarithmic rate

sensitivity, To, [ and I, o are normalization constants, and (T) is given by
WM =, (1-AT -CT™%);, T =T-300 (4)

It should be noted that application of eq. (3) is restricted to T>300 K.

Both relations are distinguished by different form of the strain hardening exponent
n. In the first approach, eq. (1), n was assumed as a constant throughout the analysis,
whereas in the second approach, eq. (2), n(T) became a decreasing function of temperature
in the form, [12]

T
n(T) =n, 1—*1:* (5)

m

where n,, is the strain hardening exponent n at T=0 K, and Ty, is the melting temperature.

This modification was found essential because of the high rate of strain hardening
represented by a constant, temperature-independent n which is not true for steels, including
VAR 4340. The structure of the constitutive relation, eq. (3), has some elements based on

the materials science approach. First of all the level of stress is normalised by u(T)/u,

which takes into account the thermal softening of the crystalline lattice. The first
expression in the brackets is simply the internal stress and the second one is the rate and
temperature- dependent effective stress, [13].

Total number of constants in the egs (3) is ’1.2 and they é:re assernbled in Table 1.
Results of numerical simulations are mainly obtained with the modified version of the
constitutive relation with n(T), however, some results with the constant value of n were
also produced, mainly, in order to make comparison of the FE results where both relations
are used. All FE results are included in this Report. It should be noted that modification of
the constitutive equation by n(T) changes only certain temperature-dependent terms

(shadow boxes in Table 1), for instance both constitutive relations have identical strain

rate sensitivity.




Table 1
Constant Value Value Unit
n = const n(T)
B 1493.1 1493.1 MPa
Lo 80769.0 80769.0 MPa

2.7763

m 2.7763 -
To 300.0 300.0 K
To 1.6-103 1.6-10-3 -
I, 1.932-104 1.932-10+ 57!
5.047-104 5.047-10-4 K-l
C 1.036-10-7 1.036-10°7 K-2
D 29142 29142 K
o 622.0 622.0 MPa

All constants were obtained to fit existing experimental results [8-11], for example
Figs 1 and 2 show experimental curves for VAR 4340 steel, ~52 HRC, and Fig. 3 shows
curves together with those obtained from eq. (3). In order to better illustrate the
constitutive relation used, the constitutive surface is presented in 3D as the shear yield
stress in function of temperature and logarithm of shear strain rate. The constitutive
surface is shown in Fig. 4. Of course, the surface for the yield stress is practically the same
for both cases of strain hardening. The effect of temperature and strain rate on stress is
more intense at lower temperatures and at higher strain rates, this is typical behavior for

steels. In order to demonstrate completely the stress-strain behavior at different
temperatures and strain rates the series of cross-sections of the 'C(F,f,T) surface is shown in
the form of ()1 in figures from Fig. 5 to Fig. 10. The cross-sections at increased
temperatures rtepresent the constitutive relation with the constant strain hardening
exponent (n=const, Table 1). The effect of temperature, also for n=const, is shown at
different levels of plastic strain, 0<I'<1.0, in figures from Fig. 11 to Fig. 16. Finally, the
effect of strain rate at different temperatures is shown in figures from Fig. 17 to Fig. 22.
This set of curves has been calculated for the constant strain hardening exponent n. It is

demonstrated in figures (') calculated for temperatures higher than T=600 K, Figs 8 to




10, that the strain hardening rate seems to be too high which is against experimental
observations, [12]. Normally the strain hardening exponent n must be a decreasing
function of temperature, [12]. Consequently, the second approach to modeling of VAR
4340 steel represents a linear decrease of n as a function of temperature, [12]. The
comparison between these two cases is shown in Fig. 23 for n(T) assumed in the form of
eq. (5). For example, for T=1000 K and I'=1 the difference in the flow stress is ~30 %.
When temperatures are increased, changes of n(T) as a function of temperature do not
introduce much change of the yield stress in comparison to n=const, as it is shown in Fig.
24.

A complete set of the cross-sections of the constitutive surface I(T,f ,T) has been
repeated for the assumed temperature-sensitive n(T), eq. (5). The results are shown in Figs
25 to 42; Figs 25 to 30 show (I) curves in the range of temperatures 300 K < T < 800 K
Figs 31 to 36 show t(T) curves within the range of plastic strains 0<I'<1.0; Figs 37 to 42
illustrate r(logf ) within the range of temperatures 300 K < T < 800 K.

3.  THERMAL COUPLING

Since a large part of the plastic work is converted into heat, the deformed material
heats up. The increase of temperature as a function of strain due to adiabatic heating is
discussed for example in [2,14]. If the flow stress t is assumed in the form of eq. (1), then

it follows from the energy conservation law

(g) [1-aC D[ BME (T, T)+£(5,T)]
dh )y~ Ipo (TCy (D) ©®)

where §(T',T) is the coefficient representing stored energy in the lattice, J is a conversion
factor of mechanical energy into heat, p,(T) is the density of the metal, and CV(Tj Is its
specific heat at constant volume. The stored energy of cold work is usually a small fraction
of the total plastic work, [15], and the value of & does not exceed ~0.1. Thus, the

coefficient of conversion B is defined as follows

p=1-&I.T); (7

B is assumed constant in the present calculations.




Since py(T) is only weakly dependent on temperature, it can be taken as a constant.
Although exact expression for the specific heat C,(T) is temperature-dependent, for

example [17], at temperatures higher that T=300 K it may be also assumed as a constant.

The balance of energy with the heat conduction leads to the following relation

or aT . 3*T
BT§=PCv§—7~? (3)

where y is the axis of the heat conduction and A is the heat conductivity (Fourier constant).

Material constants associated with the process of thermal coupling are shown in Table 2.

Table 2
Constant Value Unit
B 0.9 -
A 38.0 W/mK
) 7890.0 kg/m3
Cy 460.0 JkgK
Th 1812.0 K

The characterization of thermal coupling given above permits for numerical
analyses of all temperature-coupled problems as purly adiabatic as well as with a heat

conduction.

4. FINITE ELEMENT MODELING

The main target of the numerical analysis was to explain differences between
experiment of impact shearing by the Modified Double Shear, [1], and previous numerical
calculations by the finite difference scheme where the initial conditions were not precisely
specified, [5,7]. More exactly, it was not specified in the previous calculations of how the
imposed velocity was applied to the layer analysed. Although the inertia effect was
accounted for in [5] and [7], the final result was that the instability shear strain as well as
the final localization strain have increased as a function of the imposed velocity, even for

very high nominal strain rates of the order 5-104 s-1 (V=100 m/s for the layer height hy=2.0

mm). On the contrary, experiments with MDS specimens by direct impact have shown




existence of the Critical Impact Velocity in shear [2,3]. In case of VAR 4340 steel, ~52
HRC, the CIV was estimated around ~140 my/s or the nominal strain rate T A7 104 s U Tt

appears that plastic deformation trapping near the impact surface is due to superimposed
effects of adiabatic shear banding and plastic shear waves, [4]. It is impossible to find the
CIV numerically when the initial boundary conditions do not reflect exactly the real
situation met in experiment.

It was intended to analyse the CIV triggered by the shear banding phenomenon with
a simple geometry in the form of an infinite layer in x-direction and 2 mm high, attached at
the bottom surface, and submitted to the shear velocity V in x-direction at the top surface.
Fig. 43 illustrates the problem considered. In fact, only a part of the infinite layer was
modeled, that is 0.5 mm along the direction of impact (x-direction). Those dimensions
were found quite sufficient to approximate the real behavior of an infinite layer. This
simplification has helped considerably to reduce the computation time.

The geometrical imperfection was defined using equation

W(y) = W{1 +8y sm(%—- 21%)} %)

where 8,,=0.005 is the geometry parameter, which constitutes the imperfection of 1 %, and
W,, is the mean width of the layer.

Numerical analyses were performed by the FE numerical code ABAQUS Standard.
The code ABAQUS offers dynamic analysis options for both linear and nonlinear
problems which can be coupled with temperature. Dynamic integration operators are
characterized as implicit or explicit. ABAQUS Standard uses implicit integration for non-
linear dynamic simulations. The time step for implicit integration is chosen automatically
on the basis of the "half-step residual” by monitoring the values of equilibrium residuals at
t+At/2 once the solution at t+At has been obtained. The accuracy of the solution may be
assessed and the time step adjusted appropriately, [16].

In general, two finite element models were applied: 2 dimensional (2D) and 3
dimensional (3D). The plain strain behavior was assumed in both models. The plain strain
condition was satisfied by imposing no displacement in the perpendicular direction (z-
direction) in 3D model, and by using available "plain strain" elements in 2D model. Taking
into account the fact of two expected shearing modes, two kinds of meshing were used for

each case: the first one for shearing in the mid-layer, Fig. 44 for 3D and Fig. 46 for 2D, and
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the second one for plastic shearing trapped at the upper surface, Fig. 45 for 3D and Fig. 47
for 2D. The model in 3D has rather a coarse mesh, whereas 2D model is a refined version

of the 3D. Fig. 48 presents comparison of numerical resuits for V=20 m/s obtained in the
form of to(T,) at y=0 (top of the layer) for both meshes. A good agreement is found

(except the highly advanced localization states) which means that the coarse model (much
more economic) predicts well the instability deformation [';, however, a refined mesh
should be used to carry out simulation which leads to a more precise analysis of the shear
banding. The height of elements in the region of expected shear band should be based on
experimental results for quenched and tempered VAR 4340 steel, the estimate the shear
band thickness was of about 20 pum, [17].

Depending on the imposed velocity at y=0, the problem was considered either with
heat conduction or adiabatic. The latter case leads to the modification of equation (8) due
to disparition of the last term (A=0). ABAQUS provides both type of analysis, however,
certain restrictions are imposed. Thus, in the analysis with heat conduction (fully coupled
temperature-displacement problem) the inertia effects are neglected, on the other hand, the
analysis with wave effects is assumed adiabatic.

Table 3 gives data for performed tasks. The impact velocity V was increased from
V=2-10-5 m/s up to 160 m/s by 8 steps. All calculations in this series were performed for
the temperature-dependent exponent, n(T).

In case of the quasi-static loading, treated with heat conduction, 15t degree thermal

conditions were imposed at the bottom and top surfaces, that is a constant temperature of

300 K was assumed.
Shear velocity V(t) at y=0 is applied in the specific manner: from value of 0 to
maximum Vg, The total rise-time ty, is chosen according to the Gaussian cumulative

distribution function depending on the impact velocity V. The mathematical form of the

rise-time function is represented by eq. (10)

Tl (X -m)* 10
F(x)= J ———exp| ———— |X (10)
: 2mG? 20

Schematic representation of the rise-time function is shown in Fig. 49. Assumed

rise times were as follows: t;=10-2 s for V<1 m/s, t,;=106 s for 1<V<20 m/s, and t,=10"7s

for V=20 m/s. Values of parameters m and o in eq. (10) are m=0.5, c=0.125.
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Table 3

‘ Impact | Nominal Nature Type of Type of
velocity | strain rate of analysis mesh element
V [mv/s] fn s 2D 3D 2D 3D

2-10°3 10-2 heat conduction | Fig. 46 | Fig. 44 | CPE4T | C3DS8T
0.2 102 adiabatic Fig. 46 | Fig. 44 | CPE4R | C3D8R
20.0 104 adiabatic Fig. 46 | Fig. 44 | CPE4R | C3D8R
60.0 3.104 adiabatic Fig. 46 | Fig. 44 | CPE4R | C3D8R
80.0 4.104 adiabatic Fig. 46 | Fig. 44 | CPE4R | C3D8R
120.0 6-104 adiabatic Fig. 47 | Fig. 45 | CPE4R | C3D8R
130.0 6.5-104 adiabatic Fig. 47 | Fig.45 | CPE4R | C3D8R
140.0 7.104 adiabatic Fig. 47 | Fig. 45 | CPE4R | C3D8R
160.0 8-104 adiabatic Fig. 47 | Fig. 45 | CPE4R | C3D8R

Legend to Table 3:

C3D8T - 8-node thermally coupled brick;
C3D8R - 8-node linear brick, reduced integration,
CPE4T - 4-node plain strain thermally coupled quadrilateral, bilinear displacement and
temperature, reduced integration;
- CPE4R - 4-node plain strain quadrilateral, reduced integration.

5. RESULTS OF CALCULATIONS

This part of the Report presents the final results obtained from the ABAQUS
simulations. The graphs were chosen to be representative for observed phenomena. They
are thoroughly discussed in Chapters 5 and 6.

Fig. 50 defines position of the analysed cross-sections called A and B which

behavior is studied in some graphs. In addition, the keywords appearing in the graphs are

explained below:

1. Nominal shear strain I';=Ax/h,, where Ax is the displacement of the top surface (at
y=0) in x-direction, and hy is the height of the layer (hy=2 mm);

. Plastic shear strain I" is the current shear strain determined in the cross-section A;

1i. Plastic shear strain I'g is the current shear strain determined in the cross-section B,
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iv. Critical shear strain I is the strain corresponding to the condition dta/ol=0
(maximum stress) and can be estimated from the curves to(T',);

V. Tp 1s the shear stress at y=0, usually determined in experiments.

The complete series of calculations was focused on analyses of the instability point
as determined by dt,/0I=0 and conditions of localization for both cases of constitutive
relation, n=const and n(T). The main parameter in those calculations was the imposed
velocity V. Ten values of V have been assumed: from V|=2-10-5 m/s which gives the
nominal strain rate I',;=10-2 s" up to V10=180 m/s and respectively I';=9-104 s-1. All

values of V along with the nominal strain rates and modifications in constitutive relations

are given in Table 4.

Table 4
N° Impact Nominal n | n(T) | Crtical strain | Critical strain
velocity strain rate | const n=const o(T)
V [m/s] I, [s)] e Le
Vi 2-10-3 10-2 + + ® w0
A\ 02 102 - + 0.346
V3 20.0 104 + + 0.228 0.163
Vg 60.0 3.104 - + 0.135
Vs 80.0 4.104 - + 0.201
Vs 120.0 6-104 + + ~0.003 ~0.002
V7 130.0 6.5-104 - + ~0.002
Vg 140.0 7.104 - + ~0.002
Vo 160.0 8-104 + + ~0.003 ~0.002
Vio 180.0 9.104 + - ~0.003

In addition, calculated values of the instability strain I'; are given for each velocity.
In order to compare the effect of strain hardening exponent n on the instability strain T,

both cases of constitutive relations, that is n=const and n(T), were analysed. The
comparisons were done for four velocities as it is indicated in Table 4 by the positive

signs. The most important differences were found, as expected, between the final




localization strain. The thermal softening manifested by decrease of n(T) leads to much
higher rate of localization. The comparison is given for V=20 m/s in Figs 51 and 52, the
ratio of localization strains is of the order ~1.7. Fig. 53 demonstrates that due to
geometrical imperfection the localization occurs in the middle of the layer, that is in the
cross-section B in Fig. S0. Although the nominal strain rate is ;=104 s1 (V=20 m/s) the
displacement field, distributions of strain rate and temperature, Figs 54 and 55, are
typically found during quasi-static loading. The Marciniak plot given in Fig. 56 confirms
entirely this statement. Evolution of the local strain rates in cross-sections A and B as a
function of the nominal shear strain I, is shown in Fig. 57, again this figure confirms the
hipothesis of quasi-static-like deformation field. It is interesting to note that the
temperature rise in the cross-section B is quite substantial, about 400 K. The next
calculations for n=const and n(T) were completed for V=120 m/s (T=6-1O4 s 1). Figs 58

and 59 show ta(t) and to(I',) curves at y=0. Again there is a considerable difference in

values of localization strains for n=const and n(T), about ~0.36 and ~0.16. The most

important observation is that the t5(I',) curve changes substantially its shape. The
maximum occurs at very small nominal strain, I, is about 0.002, and the final stage of

localization occurs at I'=0.16. Thus, the instability point is reached almost instantaneously

with an extended process of localization. The most important is the COMPLETE change in
the displacent field shown in Fig. 60. Besides more or less uniform deformation along the
layer, large deformations occur NEAR the impact end. The change of the cross-sections
from B to A where the localization occurs is clear demonstration of the existance of the
Critical Impact Velocity in shear, or thermoplastic wave trapping. Figs 61 and 62 show
strain rate and temperature distributions along the height of the layer (y-direction). The
transition between the deformation fields from the cross-sections B to A is quite obvious.
Strain rate near y=0 reaches very high values of the order ~7-105 s-! at the latest stage of
localization. The increase of temperature is the highest also near y=0, the order of 500 K.
The Marciniak plot changes its shape, Fig. 63. After initial destabilization near cross-

section B, the localization occurs in cross-section A (y=0). This is also visible in Fig. 64
where strain rates fA and I B are plotted as a function of the nominal strain I,

If the impact velocity V is still increased, for example up to 160 m/s, Figs 65 and

66, the shape of the t4(t) and to(T',,) curves change completely, this occurs for both cases:
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strain is completely localized near cross-section A, and displacements along the height of
the layer are very small. This is characteristic displacement field as it is shown in Fig. 67,
when the CIV is exceeded.

The case of V=180 m/s was studied only for n=const. The distribution of strain
rates along and near cross-section A is shown in Fig. 68 for three instants. The
distributions of temperature is shown in Fig. 69 for the same time intervals. All
deformations localize with a very high strain rate near y=0 (cross-section A). This process
leads to a very high increase of temperature near y=0, for example at t=0.162 pus the
temperature exceeds 900 K. The behavior shown in Figs 68 and 69 is typical for the post-
critical response of a layer or specimen during impact shearing. The distribution of strain
rates and local velocities is similar to that reported in [4].

The Marciniak plot for V=180 m/s shown in Fig. 70 differs much in comparison to
the quasi-static strain evolution shown in Fig. 56. Deformation begins in cross-section A
with a high strain rate, whereas deformation in cross-section B develops very slowly.
Evolution of strain rates in A and B shown in Fig. 71 indicates that near the impact end the
local strain rate exceeds value 4-106 s-1. The figures from 72 to 75 show results of
consecutive deformation stages of the layer loaded by different velocities. This evolution is
reflected in the shape of the to(t) curves, Figs 72 and 73, and also in the shape of t5(I'y)
curves, Figs 74 and 75.

The next part of this Report depicts evolution of particular variables as a function

of the imposed velocity V.

6.  ANALYSIS AND DISCUSSION

The sequence of previous figures clearly demonstrates a substantial evolution of
shear stress, determined at y=0 (the impact cross-section) as a function of time or the
nominal shear strain I';=V/hgy when the impact velocity is increased. Such curves can be
determined from the MDS tests, [1]. It is of interest to compare such curves, that is To(T'p,),
obtained numerically for nine different impact velocities. The comparison is shown in Figs
72 and 73 as a function of time, and in Figs 74 and 75 as a function of the nominél strain

I',. The curves shown in Figs 74 and 75 can be compared directly with experiments. Of

course, in case of curve 1 the adiabatic instability does not occur because practically all
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heat generated by plastic deformation is dissipated by thermal conduction. Beginning from

V,=0.2 m/s (fn=100 s71) the adiabatic instability and localization are well defined. When

the impact velocity is increased the instability point, (0ta/0L )y=¢=0, ;=1 , translates

ny=
into smaller strains, but the strain difference between instability and localization strains
increases, this has been also found in [7]. Above impact velocities ~50 m/s a competition
between two mechanisms of localization occurs as it is shown in Figs 53 and 54 and Figs
60 and 61. This combination of mechanisms is manifested by the first peak of stress, a
minimum and typical localization. Such behavior is clearly visible in Figs 72 and 74 for

V4=60 m/s and V=80 m/s. It is interesting to note that for velocities higher than ~50 m/s
the initial slopes of the t5(I',) curves are not equal to the elastic shear modulus p. The

slopes found above 50 m/s are much steeper than p. The range of high impact velocities is
shown in Fig. 75. Since within this range of impact velocities the localization occurs near
y=0 the first peak of stress is associated with the instantaneous localization, or in other
words, with the adiabatic wave trapping. The localization strain decreases rapidly when the
impact velocity exceeds 110 m/s. The CIV for VAR 4340 steel estimated from
experiments is ~140 m/s, [8]. The curve t5(I'y) for Vg=140 m/s resembles the

experimental curve shown in Fig. 2. The highest velocity analysed with the complete
constitutive relation was 160 m/s. The curve t5(I',) for Vg appears as a sharp maximum
with almost infinite slope, Fig. 75. This is the post critical behavior of adiabatic wave
trapping when observed with the MDS tests.

The next step in the numerical analysis was to demonstrate how particular
parameters, for example the local strain rate or temperature, change in cross-sections A
and B as a function of the impact velocity V. Changes of the local strain rate in cross-

sections A and B are shown in Figs 76 to 79 for different levels of the nominal strain [,

At impact velocity V=20 m/s (fn =104 s-1) the local strain rates do not differ much,

however, when the impact velocity exceeds ~100 m/s the local strain rates increase
substantially in cross-section A in comparison to the cross-section B. When the impact
velocity exceeds the CIV, estimated as ~110 m/s for n(T) and ~120 m/s for n=const, the
local strain rates are extremely high in cross-section A and diminish to zero in cross-

section B for larger nominal strains I';,. It is also interesting to compare the increments of

temperature in A and B for increasing impact velocities. This is shown in Figs 80 to 83. Of




-16 -

course, for the impact velocity V=20 m/s and in cross-section B, the temperature increase

begins from ~330 K at [,=0.1 and ends ~570 K at [,=0.7, Figs 80 and 83. In this cross-

section the increases of temperaure are even higher in comparison to the cross-section A.
When the impact velocity approaches the CIV the increments of temperature in A are quite

high, from T ,=580 K for [';=0.1 to more than 900 K for higher values of [, Figs 81 to 83.

The effect of the impact velocity on the post-critical behavior of the layer is shown
in Figs 84 and 85. The level of inercy of the layer is so high that the slope of the initial part

of the curves 14(I',) determined in cross-section A is not any more equal to the elastic

slope u. The slope normalised by p, the shear modulus, is shown in two scales, logV in
Fig. 84 and in the linear one, Fig. 85. The normalised slope diminishes starting from the
impact velocity ~25 m/s. The slope of almost zero appears when the velocity exceeds the
CIV.

The most important demonstration of the consequtive phases of the layer
deformation is shown in Figs 86 and 87. Within the region of relatively low velocities,
called Zone 1, practically all localization occurs in the middle of the layer (cross-section
B). The critical strain I'; diminishes rapidly from infinity for the isothermal case to finite
values due to thermal coupling. Within Zone 2 there is a competition between deformation
in the cross-sections A and B caused by the propagation of plastic shear waves. It is
interesting to note that for velocities higher than ~75 m/s the critical strain I'; slightly
increases. This 1s caused by the interaction of plastic deformation around the geometrical
defect with plastic waves emmited from the cross-section A.

Finally, when the CIV is reached localization occurs exclusively within the cross-
section A, and at higher velocities the critical strain I'; approaches very small values.
Adiabatic shearing occurs almost instantaneously in A.

Experiments performed with MDS specimens made of VAR 4340 steel, [8], clearly
indicated on a decrease of the fracturing energy when the impact velocity was increased. In
order to estimate this effect by the FE method the energies up to the constant value of the

negative slope 0t,/0 = ~7000 MPa were calculated for increasing impact velocities. The
results are shown in Figs 88 and 89. The energies were calculated as integral of t(I',)

curves for nine impact velocities V. A considerable reduction of deformation energy

occurs when the impact velocity exceeds the CIV. In Fig. 89 are shown the energies as a
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function of the logarithm of the nominal strain rate r =V/h,. Of course, the shape of the

curves is similar to that of Fig.88. The drop of the energy is so high that a different scales
should be used to show the energy level for velocities exceeding the CIV. The calculated
ratio of the energy drop before and post CIV reaches value about ONE HUNDRED.

In conclusion, the effect of the CIV in shear must be taken into account in all
fragmentation processes developed by impact, [18]. When the local velocity of sliding
exceeds the CIV for a particular material the energy of fragmentation or perforation should
diminish rapidly by interaction of the Adiabatic Shear Banding and the Critical Impact
Velocity in shear. It has been demonstrated in this study that the FE technique is advanced
enough in order to find more details on the mechanisms of fast plastic deformation

coupled with temperature and plastic waves.




-18 -

REFERENCES

(1]

(4]

(5]

6]

(7]

(8]

(%]

(10]

[11]

[12]

J.R Klepaczko, An experimental technique for shear testing at high and very high
strain rates. The case of mild steel, Int. J. Impact Engng. 15 (1994), 25.

J.R Klepaczko, Plastic shearing at high and very high strain rates, Proc. Conf.
EURODYMAT 94, J. de Phys., IV, Coll. C8, (1994), C8-35.

J. R Klepaczko, Recent Progress in Testing of Materials in Impact Shearing, in:
Dynamic Fracture, Failure and Deformation, PVP-Vol. 300, ASME, NY (1995),
165.

F.H.Wu and L.B.Freund, Deformation Trapping due to Thermoplastic Instability in
One-dimensional Wave Propagation, J. Mech. Phys. Solids, 32 (1984), 119.

J.R Klepaczko, P.Lipinski and A.Molinari, An analysis of the thermoplastic
catastrophic shear in some metals, in: Impact Loading and Dynamic Behavior of
Materials, DGM Informationsgesellschaft Verlag, Vol. 2 (1988), 695.

J R Klepaczko, Some results and new experimental technique in studies of
adiabatic shear bands, Arch. Mech., 46 (1994), 201.

J R Klepaczko and B.Rezaig, A numerical study of adiabatic shear banding in mild
steel by dislocation mechanics based constitutive relations, Mech. of Materials,
(1996), accepted.

J R Klepaczko, Experimental Investigation of Adiabatic Shear Banding at Different
Impact Velocities, Final Technical Report, US Army European Res. Office, Contr.
DAJA49-90-C-0052 (Jan. 1993). |

J.G.Cowie, The Influence of Second-phase Dispersions on Shear Instability and
Fracture Toughness of Ultrahigh Strength 4340 steel, US Army Mat. Tech. Lab.
Report, MTL-TR 89-20 (March 1989).

L.W.Meyer and E.Staskewitsch, Mechanical Behaviour of Some Steels under
Dynamic Loading, in: Impact Loading and Dynamic Behaviour of Materials, DGM
Informationsgesellschaft Verlag, Vol. 1, (1988), 331.

S.Tanimura and J.Duffy, Strain Rate Effects and Temperature History Effects for
Three Different Tempers of 4340 Steel, Brown Univ. Div. of Engng. Tech. Report
N° DAAG 29-81-K-0121/4, Providence (1984).

J.R.Klepaczko, A practical stress-strain-strain rate-temperature constitutive relation

of the power form, J. Mech. Working Technology, 15 (1987), 143.




[14]

[13]

[16]
[17]

[18]

-19-

J R Klepaczko, Modeling of structural evolution at medium and high strain rates,
FCC and BCC metals, in: Constitutive Relations and Their Physical Basis, Proc. 8-
th Risé Mater. Symp., Ris6 (1987), 387.

J.R Klepaczko and J.Duffy, Strain Rate History Effects in Body-Centered-Cubic
Metals, in: Mechanical Testing for Deformation Metal Development, ASTM STP
765, ASTM (1982), 251.

M.B.Bever, D.L.Holt and A L.Titchener, The Stored Energy of Cold Work, in:
Progress in Materials Science, Vol. 17, Pergamon Press, Oxford (1973).

ABAQUS Manual, Version 5.4, Hibbitt, Karlsson and Sorensen, Inc. (1994).

J H Beatty, L.W.Meyer, M. AMeyers and S Nemat-Nasser, Formulation of
Controlled Adiabatic Shear Bands in AISI 4340 High Strength Steel, in: Shock
Waves and High-Strain-Rate Phenomena in Materials, Marcel Dekker Inc., N.Y.
(1992), 645.

D.C.Erlich, D.R.Curran and L.Seaman, Further Development of a Computational
Shear Band Model, Report AMMRC-TR-80-3, SRI International, (March 1980).




-20 -

FIGURE LEGENDS

Fig.1

Fig?2

Fig.3

Fig4

Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11
Fig.12
Fig.13
Fig.14
Fig.15
Fig.16
Fig.17

Fig.18

Fig. 19

Fig.20

Experimental curves for VAR 4330 steel at strain rates: [=7.1 104 sl and
=315l

Experimental curves for VAR 4330 steel at strain rates: =1.12 104 s-! and
=1.97-104 s°L.

Comparison of experimental T=t(I") curves with the constitutive relation applied in
ABAQUS.

Surface of yield shear stress as a function of temperature and logarithm of strain
rate, the case of the constant strain hardening exponent n.

Shear stress vs. plastic strain for different strain rates at T=300 K; n=const.

Shear stress vs. plastic strain for different strain rates at T=400 K; n=const.

Shear stress vs. plastic strain for different strain rates at T=500 K, n=const.

Shear stress vs. plastic strain for different strain rates at T=600 K; n=const.

Shear stress vs. plastic strain for different strain rates at T=700 K n=const.

Shear stress vs. plastic strain for different strain rates at T=800 K; n=const.

Shear stress vs. temperature for different strain rates at I p=0; n=const.
Shear stress vs. temperature for different strain rates at I';=0.05; n=const.
Shear stress vs. temperature for different strain rates at I';=0.1; n=const.
Shear stress vs. temperature for different strain rates at ',=0.2; n=const.
Shear stress vs. temperature for different strain rates at Fp=0.5; n=const.
Shear stress vs. temperature for different strain rates at Fp=1.0; n=const.

Shear stress as a function of logarithm of strain rate for different levels of plastic
strain at T=300 K; n=const.
Shear stress as a function of logarithm of strain rate for different levels of plastic
strain at T=400 K; n=const.
Shear stress as a function of logarithm of strain rate for different levels of plastic
strain at T=500 K; n=const.

Shear stress as a function of logarithm of strain rate for different levels of plastic

strain at T=600 K; n=const.




Fig.21
Fig.22

Fig.23

Fig. 24

Fig.25
Fig.26
Fig.27
Fig.28
Fig.29

Shear stress as

221 -

a function of logarithm of strain rate for different levels of plastic

strain at T=700 K; n=const.

Shear stress as

a function of logarithm of strain rate for different levels of plastic

strain at T=800 K; n=const.

Comparison of t=t(I') curves for both constitutive relations, n=const and n(T).

Yield shear stress vs. temperature; comparison of both constitutive relations,

n=const and n(T).

Shear stress vs.
Shear stress vs.
Shear stress vs.
Shear stress vs.
Shear stress vs.
Shear stress vs.

Shear stress vs.
Shear stress vs.
Shear stress vs.
Shear stress vs.
Shear stress vs.
Shear stress vs.

Shear stress as

plastic strain for different strain rates at T=300 K; n=n(T).
plastic strain for different strain rates at T=400 K; n=n(T).
plastic strain for different strain rates at T=500 K; n=n(T).
plastic strain for different strain rates at T=600 K; n=n(T).
plastic strain for different strain rates at T=700 K; n=n(T).
plastic strain for different strain rates at T=800 K; n=n(T).

temperature for different strain rates at I' p=0; n=n(T).
temperature for different strain rates at Fp=0.05; n=n(T).
temperature for different strain rates at I';=0.1; n=n(T).
temperature for different strain rates at I',=0.2; n=n(T).
temperature for different strain rates at Fp=0.5; n=n(T).
temperature for different strain rates at I';=1.0; n=n(T).

a function of logarithm of strain rate for different levels of plastic

strain at T=300 K n=n(T).

Fig.38 Shear stress as a function of logarithm of strain rate for different levels of plastic
strain at T=400 K; n=n(T).

Fig.39

Fig.40

Fig.41

Fig.42

Fig.43

Shear stress as

a function of logarithm of strain rate for different levels of plastic

strain at T=500 K; n=n(T).

Shear stress as

a function of logarithm of strain rate for different levels of plastic

strain at T=600 K; n=n(T).

Shear stress as

a function of logarithm of strain rate for different levels of plastic

strain at T=700 K; n=n(T).

Shear stress as

a function of logarithm of strain rate for different levels of plastic

strain at T=800 K; n=n(T).

The infinite layer in x-direction with geometrical defect in the middle.




Fig.44

Fig.45

Fig.46

Fig.47

Fig.48

Fig.49

Fig.50

Fig.51

Fig.52

Fig.53
Fig.54

Fig.55

‘Fig.56

Fig.57
Fig.58

Fig.59

Fig.60
Fig.61

22 -
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Distribution of temperature along the height of the layer at different times
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Strain rates in cross-sections A and B vs. logarithm of shear velocity for nominal
strain [, = 0.7; n=const.
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