
r 
UNCLASSIFIED 

COMPARISON OF FOUR FILTERING OPTIONS FOR A 
RADAR TRACKING PROBLEM 

C\J 

John A. Lawton, Robert J. Jesionowski 
Naval Surface Warfare Center, Dahlgren Division, Dahlgren, Virginia 

and 
Paul Zarchan 

Charles Stark Draper Lab, Cambridge, Massachusetts 

Abstract 
Four different filtering options are considered for the problem of tracking an 

exoatmospheric ballistic target with no maneuvers. The four filters are an alpha-beta filter, 
an augmented alpha-beta filter, a decoupled Kaiman filter, and a fully-coupled extended 
Kaiman filter. These filters are listed in the order of increasing computational complexity. 
All of the filters can track the target with some degree of accuracy. While the pure alpha-beta 
filter appreciably lags the other filters in performance for this problem, its augmented version 
is very competitive with the extended Kaiman filter under benign conditions. Perhaps the 
most surprising result is that under all conditions examined, the decoupled (linear) Kaiman 
filter, which is at least an order of magnitude less computationally complex, performs nearly 
identical to the coupled, extended Kaiman filter. 

Introduction 

Kaiman filtering became immediately 
popular when it was first introduced in the 
1960's, even though the initial journal papers 
were incomprehensible to many experienced 
engineers1,2. This new filtering technique was 
popular in the academic community because it 
could be shown that the Kaiman filter was 
optimal in some sense, and, in addition, Kaiman 
filtering was also popular in industry because its 
form was ideal for implementation on a digital 
computer. After three decades, applications of 
Kaiman filtering have proliferated to the point 
where today many younger engineers do not even 
know the existence of other types of filters3,4. 

In some applications today, because of 
the availability of computational plenty, the 
standard approach is often to implement a fully 
coupled Kaiman filter without consideration of 
simpler implementations or even other types of 
filters. In this paper, we will consider several 
types of filters, ranging from an alpha-beta filter 
(non-Kalman) to a fully coupled Kaiman filter, 
for an application in which a ship radar is 
tracking an exoatmospheric target. It is assumed 
that the target is not maneuvering, and that the 
filter must estimate the position and velocity of 
the target based on range and angle 
measurements. 

Four different types of filters will be 
compared in terms of the quality of their 
estimates, and in terms of their computational 
complexity. The filters will be first compared 
under benign conditions in which all the 
measurement data is available, and then 
compared under conditions in which large 
portions of the measurements are lost. 

Contrary to popular opinion, it will be 
shown that under benign conditions for this 
exoatmospheric tracking problem all filters yield 
approximately the same performance. Under 
these circumstances an alpha-beta filter can yield 
excellent performance at orders of magnitude 
less computational complexity than a fully 
coupled Kaiman filter. Under conditions in 
which there are large blackout periods, it will be 
shown that a decoupled Kaiman filter can yield 
performance similar to that of a fully coupled 
filter at an order of magnitude less computational 
complexity. 

Filter Formulations 

Four different filter designs will be 
presented. The first three are all decoupled 
filters, meaning that the whole six-dimensional 
state is broken up into three two-dimensional 
states, which are updated in the filter equations 
independently. Each two-dimensional state is 
comprised of position and velocity along one of 
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the Earth-fixed Cartesian coordinate directions in 
an East-North-Up (ENU) coordinate system 
centered at the sensor. 

The first filter is an alpha-beta filter, which 
can be derived as a steady state two-dimensional 
Kaiman filter5. Since alpha-beta filters have 
constant gains (for a given sensor to target 
range), and it is well known the Kaiman filter's 
typically steadily decreasing gain is optimal (for 
a linear problem), a simple design is to tack onto 
the alpha-beta filter a "growing-memory" filter 
during the settling portions. That is, a growing- 
memory filter (which is actually a zero-process- 
noise Kaiman filter) is used during the initial 
portions of the observation of the target6, and the 
alpha-beta filter is used after the initial settling is 
finished. This hybrid filter will be called the 
growing-memory/alpha-beta (GMAB) filter. The 
third filter is just a decoupled Kaiman filter - 
that is, it is three independent two-dimensional 
Kaiman filters, one for each coordinate direction. 

The fourth filter is a multiple coordinate 
system, fully coupled extended Kaiman filter. 
The state and covariance propagations are done 
in an Earth-centered inertial (ECI) coordinate 
system, and the measurement updates are done in 
a range/direction-cosine coordinate system. The 
dynamics model is Keplerian motion. 

The Decoupled Filters 

All three of the decoupled filters are 
designed with a nominally zero acceleration 
model. Hence, each two-dimensional state x, 
with the first component of x being position and 
the second component being velocity, is assumed 
to have the following discrete-time dynamics, 
propagating the state from the time of the fcth 
measurement, tk, to that of the (k + l)st: 

xk+i - $(fc + 1, k) xk + wfc (1) 

where 

$(h+l,k) A 1    T 
0    1 

T = tfc+i — tk , 

and Lük is the process noise, with 

E(wfc) = 0, and   E(wfc u%) — Q . 

Since the position vector is measured by a radar, 
the scalar measurement is 

where 

z = H x + v , 

#=[1    0] 

and  v  is  a  white  noise  disturbance random 
variable, with 

E(i/) = 0, and   E(z/2) = R = a2
m . 

For all of the decoupled filters, the measurement 
standard deviation, am, will be estimated by 

where p is the current estimated range to the 
target, and aa is the angular error of the radar. 

All of the decoupled filters used for this 
study have process noise predicated upon a 
piecewise constant white acceleration model7. 
Hence, 

Q = 
T4/4: 
T3/2 

T3/2 
T2 • e (2) 

where in practice e is a parameter used to tune 
the filter. 

While the filter theory has its dynamics 
predicated on Eq. (1), the decoupled filters 
actually use a piecewise constant acceleration 
model for the propagation of the state vector 
from the kth measurement to the (k + l)st 
measurement. The total acceleration vector, 
denoted by a— [ae an au] (e, n, and u 
represent East, North, and up, respectively), is 
the sum of the inverse-square gravity 
acceleration, Coriolis acceleration, and 
centripetal acceleration, computed at time tk- So, 
with Xk representing the filter's estimate of the 
state at time tk before measurement (for any of 
the three coordinate directions), and Xk 
representing the estimate at time tk after 
measurement, 

Xk+i = $(h+l,k)xk + (3) 

where a< (with i e {e, n, u}) is the component 
of acceleration in this particular direction, a is 
computed by 

g + c + p 

where 

i?3 R , 
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and 

C —   —2GJY.V   , 

p= — Co x (to x r) 

with r = [re    rn    ru]   and v — [ve    vn    vu} 
being the position and velocity vectors in ENU at 
time tk, 

R = 
0 
0 

RE 

and to is the angular motion of the Earth in ENU. 
Denoting the latitude of the sensor by <j), and the 
rotation rate of the Earth by WE, 

ui = WE 

0 
COS(f> 

sin</> 

which yields 

and 

- 2O>E(VUCOS <f> — ^sin (j>) 
c — — 2 WE ve sin <fi 

2uiEVe cos 4> 

w2
Ere 

— ijj\{ru cos <f> — rnsin (/>)sin <f> 
w|(r„ cos ^ — r„sin 0)cos (/> 

The components of c and p are used in Eq. (3) to 
propagate to the next measurement time. 

The only difference between the three 
decoupled filters in this study is the choice of the 
values used in the 2 x 1 gain matrix K, for use in 
the usual update equation: 

x = x + K (z — Hx). (4) 

Alpha-Beta Filter 

The name of the alpha-beta filter comes 
from the parameters alpha and beta (a and ß), 
which are defined such that the gain matrix is 

K 
a 

ß/T 

Defining the so-called maneuvering index 

P-Oa 

a and ß can be computed with5 

a ■ - i (A2 + 8A - (A + 4)\/A2 + 8A) (5) 

and 

ß = - (A2 + 4A - A\/A2 + 8A) . 

Hybrid Growing-Memory/Alpha-Beta Filter 

The alpha-beta part of this hybrid filter is the 
same as described in the previous subsection. 
Bar-Shalom and Li show that the gains can be 
expressly written as a function of k, the 
measurement update number (or time index), for 
the case of a zero-process-noise Kaiman filter (a 
Kaiman filter with Wk = 0) with the dynamics 
given in Eq. (I)6. The result is 

K = 
ik+i 

(fe+l)(fc+2) 
6 

(fc+l)(fc+2)T 
(6) 

These gains monotonically decrease with time, 
because the larger amount of data incorporated 
(or "stored") in the state estimate from past 
measurements indicates that state needs to be 
altered less and less based on an individual 
measurement. That is, the "memory" (or 
"information") resident in the state estimate is 
growing — hence this is also called a growing- 
memory filter. For small k, these gains are much 
larger than the alpha-beta gains. Also, for small 
k, these gains are very similar to Kaiman filter 
gains (with nonzero process noise), because they 
are more dominated by the large decreases in the 
state covariance due to additional measurement 
updates than by the process noise. These gains 
tend to zero for large k, however, because of the 
no-noise assumption. Hence, it is advantageous 
to transition to the steady-state Kaiman filter (the 
alpha-beta filter) for some judiciously chosen 
value of k. For this study, the simple strategy is 
used of switching to the alpha-beta filter when 
the position gain (the 1,1 element of K) from Eq. 
(6) is smaller than a of Eq. (5). 

Decoupled Kaiman Filter 

The Kaiman filter approach is to keep track 
of an estimate of the state errors in the 
covariance matrix, P, and the covariance of the 
so-called "innovation" or "residual," S, then 
compute the gain as the "ratio" between these 
two matrices: 
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K = PHTS~ (7) 

The innovation is the (z — Hx) term in Eq. (4); 
Hx could be labeled z since it is the estimate of 
the measurement before measurement, so the 
difference is the measurement residual, also 
called the innovation because it is the mechanism 
for injecting new information into the state 
estimate. The covariance of this innovation is 

S = HPHT + R. (8) 

The   state   covariance   is   propagated   between 
measurements by 

Pk+1 = $(jfe + l,k)Pk$T(k + l,k) + Q (9) 

and is updated at measurement time by 

=dfc+i p*+1_Ä-*+iS*+i(.K-fc+i)r.  (io) 

Since P is symmetric, the 2x2 matrix for this 
problem has only three unique terms. For 
Eq. (9), these are 

p\tl = Pn + 2P'i2T + Pk
22T' Qn 

12 P12 + P22T + Q 12 

and 

jfc+i 
22 22 Q22   • 

The elements of Q come from Eq. (2).    The 
innovation covariance is 

Sk+1 = Pk+l + Rk+1 . 

Eq. (10) becomes 

pk+i _ P^Rk+l 

jfc+i 
12 

P^R^1 

Sk+i 

and 

22 22 

(pktiy 
12 

Sk+i 

Finally, the Kaiman gain, Eq. (7), is 

Kk+1 = 
pk+l/Sk+i 

Pj2
+1/5fc+1 

Coupled Kaiman Filter 

The coupled Kaiman filter is by far the most 
complex of the four filters. The 6-dimensional 
state is 

where r and v are the position and velocity 
vectors of the target in ECI coordinates. The 
state is propagated forward in time using 
analytical Keplerian motion equations, which are 
the solution to the problem of motion under 
inverse-square gravity8. As for $(fc + 1, k), it is 
computed with numerical partial derivatives of 
the Keplerian solutions of the state: 

$(k + l,k) = 
dx(tk+i) 
dx(tk) 

The process noise covariance, Q, is the same as 
Eq. (2), except that each term is multiplied by the 
3x3 identity matrix. Given these, Eq. (9) is 
used to propagate the state covariance forward in 
time to the next measurement. 

In order to effect the measurement update, 
the state and covariance are transformed from the 
ECI to the RUV space. The RUV state is 
defined to be 

where r is the range from the sensor to the target, 
u is the direction cosine of the range vector with 
respect to the :r-axis of the floating frame, and v 
is the direction cosine with respect to the y-axis 
of the floating frame. The floating frame is a 
Cartesian frame defined at each measurement 
update time, with z pointing toward the estimated 
position at the update time, x is in the vertical 
plane (generally "up" — that is, having a non- 
negative projection onto any vector which is 
purely vertical at the sensor), and y is in the 
horizontal plane. The measurement is taken to 
be 

r 
u 
v 

so that 
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H=[I   0] . 

The     measurement     covariance     matrix 
approximated well by 

R = 0 
0 0 

(ID 

nonlinear 
Then  at 

Let      g(x)      represent      the 
transformation  from ECI to RUV. 
update-time index k, 

Vk = S(zfc) 

is the state transformation. To transform the 
state covariance, first the Jacobian of the 
transformation is analytically computed at Xk'. 

J = 
dg(x) 

d: 
(12) 

Then, denoting the covariance of y by Py 

Pk = JPkJT 

At this point, the state and its covariance are 
updated in the usual manner in the RUV space. 
The innovation covariance, Eq. (8), and the 
Kaiman gain, Eq. (7), are computed using R and 

Py , whence the state update and the state- 
covariance update are performed using Eq. (4) 
and Eq. (10), respectively (with y being used in 
place of a; in Eq. (4)). 

The final step is to effect the inverse 
transformation from the RUV space to the ECI 
space: 

Xk ''(Vk) 

and 

p" = j-ip*'*-"T 

(J-1) 

(with J having been evaluated again at x/.). 
With this, a full measurement cycle, from 
propagation to measurement update, is complete. 

Filter Initialization 

All of the filters are initialized in essentially 
the same manner. The state is initialized with the 
position vector equal to the first measurement (or 
the first measurement transformed to ECI for the 
coupled Kaiman), and the initial velocity is set to 
zero. 

The Kaiman filters need their covariances 
initialized also. For the decoupled Kaiman, 

P0 = 0 

with L set to 5 km2/s . For the coupled Kaiman, 

J-xR{J-l)T      0 
0 L-I 

where I is the 3 x 3 identity matrix, and R and J 
are as defined in Eqs. (11) and (12). 

Other initialization methods are possible, 
such as initializing the velocity with the 
difference between the first two measurements 
divided by the time between the measurements. 
It can be shown, however, that this yields 
significantly degraded performance for the first 
several measurements for the ballistic missile 
problem (because excellent upper bounds are 
known for ballistic missiles, which can be taken 
advantage of in the covariance initialization)9. 
On the other hand, it can also be shown that after 
the first few seconds, the differences in the 
performance of the different initialization 
methods is totally negligible. 

Computational Complexity 

The issue of computational complexity is 
important to this study. The two alpha-beta 
filters are the least complex by far because, first 
of all, the computations for the gains are simple. 
More importantly, the alpha-beta filter gains can 
be computed via a table look-up, as a function of 
the maneuvering index. Similarly, the growing 
memory filter can also be computed via table 
look-up. 

The decoupled Kaiman filter is also very 
competitive in having low complexity. It is 
propagated with the same equations as the alpha- 
beta filters, and the whole covariance process 
and gains calculations for one cycle has only 
seven additions, one subtraction, eight 
multiplications, and five divisions. That is 
hardly a computational burden! In fact, it is even 
slightly less of a computational load than the 
alpha-beta filter if the alpha-beta filter were 
computed on-line as opposed to via table look- 
up. 

The coupled Kaiman filter, on the other 
hand, is full of matrix inversions, matrix 
multiplications, and, for the specific variety 
examined  here,   nonlinear  transformations  and 
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trigonometric     evaluations, 
computationally complex. 

Results 

It    is     quite 

The target trajectory used for the numerical 
results is a 1000 km, minimum energy ballistic 
missile trajectory created with a rotating earth 
model, using oblate-earth gravity. The ground 
track of this trajectory is plotted in Fig. 1, and the 
ground-range/altitude profile is shown in Fig. 2. 
The two sensor locations used are also shown, 
along with vectors to the first detection point on 
the trajectory from each of these locations. 
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Figure 1. Target and Sensor Geometries. 

For Sensor 1, the detection range is 550 km, 
the angular error on the radar is 3 mrad, and the 
range error is 25 m. The measurement rate is one 
measurement every quarter of a second. Both of 
the Kaiman filters have the process noise 
parameter e = 1 m/s2, as does the alpha-beta 
portion of the GMAB filter. Each of the error 
curves are the RMS values of the true errors from 
100 Monte-Carlo realizations. 

The first results to be presented are the 
position and velocity errors of the alpha-beta 
filter at sensor position 1, for three different 
levels of e, compared with the coupled Kaiman 
filter, shown in Fig. 3 and Fig. 4. For higher 
values of the process noise, the alpha-beta filter 
responds much more rapidly. That is, the errors 
drop down to near their steady state value more 
rapidly. The e = 100 m/s case responds almost 
as rapidly as the coupled Kaiman. On the other 
hand, the lower the value of e is, the lower the 
steady state errors are. For example, the e = 1 
m/s case settles as low as the Kaiman, but it 
requires nearly the whole trajectory to do so. 
e = 10 m/s is a compromise that yields a 
reasonable balance between the settling rate and 
the steady-state error level. 

This example demonstrates the general trend 
of pure alpha-beta filters for ballistic trajectories: 
you can have fast settling, or low settling, but not 
both. Of course, the alpha-beta filter will 
perform better if varying levels of gains are 
chosen, starting high, and ending low. This, 
however, is precisely what the GMAB and the 
Kaiman filters are designed to do automatically. 

900 

800 

700 

600 

(B 

3   400 

300 

200 

100 

0 

3000 

2500 

£ 
-   2000 

LÜ 

o   1500 
; '55 

O 

co   1000 
5 

; 
DC 

500 
y 

0    100 200 300 400 500 600 700 800 900 

Ground Range from Burnout (km) 

Figure 2. Target Vertical Plane Profile. 
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Figure 3. Position Errors for Alpha-Beta Filter. 
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Figure 4. Velocity Errors for the Alpha-Beta Filter. 

Fig. 5 and Fig. 6 show the results of the 
GMAB and the Kaiman filters for the same case 
as presented above. All three of the filters 
behave nearly the same. In fact, the differences 
between the GMAB and the decoupled Kaiman 
cannot be discerned on the plots. And both of 
these decoupled filters behave nearly the same as 
the fully coupled extended Kaiman filter. 
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Figure 5. Position Errors for GMAB and Kaiman Filters 
at Sensor Position 1. 
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Figure 6. Velocity Errors for GMAB and Kaiman Filters 
at Sensor Position 1. 

Next, consider a totally different geometry. 
At sensor position 2, the detection range is 250 
km, so the transverse linear error is smaller for 
the same 3 mrad angular error, and the direction 
is nearly vertical (since the apogee height of the 
trajectory is nearly 250 km), as opposed to the 
nearly horizontal position vector of the Sensor 1 
case. In other words, the geometry is quite 
different from the first case. The relative results 
between these three variable-gain filters, 
however, is the same, as can be seen in Fig. 7. 
(For the sake of brevity, only the velocity curves 
will be shown for most of the subsequent cases, 
since the position and the velocity curves show 
basically the same relative performance.) The 
results are also qualitatively the same in Fig 8, 
which is the Sensor 1 case again except the 
measurement update rate is one measurement 
every four seconds instead of every quarter of a 
second. The conclusion from these cases is that 
the three filters behave similarly for a variety of 
geometries and measurement update rates. 
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Figure 7. Velocity Errors for GMAB and Kaiman Filters 
at Sensor Position 2. 
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Figure 8. Velocity Errors for GMAB and Kaiman Filters 
at Sensor Position 1, with 4 seconds between 
measurements. 

These cases were all run with a constant 
measurement rate. Consider now the case when 
there are data loss periods. These could occur 
for a variety of reasons. First, the ballistic object 
could have a radar cross section which is 
changing in time due to changing angular 
orientation relative to the line-of-sight vector, so 
that the target could be fading in and out of track. 
In this case, the data loss periods are short 
enough that there is a high probability of 
reacquiring the target within one beam-width of 

the predicted target position based on the 
estimated state from the last measurement. A 
logical strategy for ballistic targets, since their 
dynamics are well known (assuming no thrusting 
periods which would effect orbit changes), is to 
continue to attempt to reacquire the target until 
the probability that the target is within one beam 
width is low. 

The second class of causes for data loss 
would be intentional on the part of the sensor 
operator. For example, with a phased array 
radar, operational considerations could cause 
other targets to be of such a high priority that no 
looks at the target of interest would be scheduled 
for some period of time. Whatever the cause, 
data-loss periods are a real consideration for real 
ballistic missile tracking considerations. 

Fig. 9 depicts what happens when one 
blackout period of 50 second duration occurs 
after the filters have settled significantly, starting 
at time 250 seconds. Notice the flat velocity 
curves between 250 and 300 seconds, due to lack 
of measurements. Again, the filters behave very 
similarly. 
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Figure 9.    Velocity Errors for One Data Loss Period, 
After Settling. 

When the target fades in and out, however, 
with the data losses occurring early and 
frequently, a different story emerges. Consider 
again the original Sensor 1 case, except that 
fading in and out of data occurs, starting 5 
seconds after detection for a 20 second duration, 
followed by subsequent periods of 20 seconds of 
data, then 20 seconds of loss, and so on, until the 
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end of the trajectory. The results are depicted in 
Fig.s 10 and 11. In this case, the GMAB filter 
has significantly degraded performance relative 
to the Kaiman filters. 
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Figure 10. Position Errors for Frequent Data Loss. 
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Figure 11. Velocity Errors for Frequent Data Loss. 

Conclusions 

Four different filtering options have been 
considered for the problem of tracking an 
exoatmospheric ballistic target with range and 
angle measurements. All four filters, when 
properly designed and tuned, are able to track the 
target with some degree of accuracy.  The pure, 

constant-gain alpha-beta filter does lag 
significantly the other three filters in being able 
to simultaneously drop the errors rapidly and to 
settle to a low error value. An augmented alpha- 
beta concept, the second filtering option 
considered, performs about the same as the 
coupled extended Kaiman filter, for all typical 
scenarios. When    data-loss    periods    are 
introduced, however, its performance is degraded 
appreciably compared to the two Kaiman filter 
designs. 

Perhaps the most surprising of all is that the 
decoupled Kaiman filter performs very 
competitively with the fully coupled extended 
Kaiman filter, for all of the different scenarios 
examined. Its computational complexity is even 
competitive with a pure alpha-beta filter (if the 
alpha-beta gains are generated in real time as 
opposed to via a table-lookup), while it has at 
least an order of magnitude less complexity than 
the coupled Kaiman filter. 

References 

'Kaiman, R. E., "A New Approach to Linear 
Filtering and Prediction Problems," Trans. 
ASME, J. Basic Engineering, March, 1960, pp. 
34-45. 

2Kalman, R. E., and Bucy, R., "New Results in 
Linear Filtering and Prediction Theory," Trans. 
ASME, J. Basic Engineering, March, 1961, pp. 
95-108. 

3Morrison, N., Introduction to Sequential 
Smoothing and Prediction, McGraw-Hill, New 
York, 1969. 

"Kalata, P. R., "The Tracking Index: A 
Generalized Parameter for Alpha-Beta-Gamma 
Target Trackers," IEEE TRAns. Aerospace and 
Electronic Systems, March, 1984, pp. 174-182. 

5Bar-Shalom, Y., and Li, X.-R., "The Alpha-Beta 
Filter for Piecewise Constant Acceleration 
Model," Estimation and Tracking: Principles, 
Techniques, and Software, Artech House, 
Norwood, MA, 1993, pp. 275-281. 

6Bar-Shalom, Y., and Li, X.-R., "Explicit Filters 
for Noiseless Kinematic Models," Estimation 
and Tracking: Principles, Techniques, and 
Software, Artech House, Norwood, MA, 1993, 
pp. 270-271. 

UNCLASSIFIED 



UNCLASSIFIED 

7Bar-Shalom, Y., and Li, X.-R., "Direct Discrete 
Time Kinematic Models," Estimation and 
Tracking: Principles, Techniques, and Software, 
Artech House, Norwood, MA, 1993, pp. 266- 
269. 

8Bate, R. R., Mueller, D. D., and White, J. E., 
"Position and Velocity as a Function of Time," 
Fundamentals of Astrodynamics, Dover, New 
York, 1971, pp. 177-226. 

9Minter, C. F., and Lawton, J. A., "Comparison 
of Kaiman Filter Initialization Methods," 
NSWCDD/TR-97/150, 1997. 

10 

UNCLASSIFIED 


