
UNCLASSIFIED 

BRASSBOARD DEMONSTRATION OF AN ADVANCED PROCESSOR TECHNOLOGY FOR 
MULTISENSOR DISCRIMINATING INTERCEPTOR SEEKER 

James A. Fabunmi 
AEDAR Corporation, Landover MD 

Abstract 

The data throughput and algorithm intensity requirements of multisensor discriminating interceptor 
seekers call for new processor technologies which are massively parallel, compact and low power. The 
Extended Logic Intelligent Processing System (ELIPS) is an advanced processor technology which is 
being developed to meet these challenges. The ELIPS seamlessly integrates four massively parallel 
modules into a programmable architecture. These modules are derived from the four main paradigms of 
artificial intelligence: Feed-Forward Neural Networks, Recurrent Neural Networks. Fuz2y Logic and 
Expert Systems. These paradigms not only generalize existing signal processing mapping commonly used 
in digital signal processors, but also introduce additional mappings which capture signal processing 
concepts directly. This results in significant reductions in algorithm overhead as well as increased 
parallelism. The processing tasks of multisensor discriminating seekers such as: Target Acquisition, 
Multitarget Tracking, Feature Extraction, Target Discrimination, Aim Point Selection etc., are formulated 
as combinations of these functions, operating on data from sensors, memory and/or communications. This 
paper presents the principles of operation of the ELIPS along with the processor brassboard design. The 
brassboard implementation utilizes a configurable computing platform which consists of field 
programmable gate array processing elements and associated interfaces for programmed control by a host 
processor. 
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Introduction 

The critical processing functions of the 
Discriminating Interceptor Technology Program 
(Drrp)1 requires processor architectures which 
are radically different from any that presently 
exist. The development of an interceptor which 
will autonomously discriminate lethal targets 
from decoys and various other penetration aids, 
is not a simple matter of upgrading the 
components of a non discriminating interceptor. 
The transition from non-discrimination to 
discrimination capabilities imposes new 
standards for processing throughput as well as 
the mix of algorithms which are required to 
perform the high frame rate image 
understanding necessary for discrimination 
functions. The Extended Logic Intelligent 
Processing System (ELIPS) is being developed 
in response to the challenges posed by the 
requirements of the discriminating interceptor. 

Approved for Public Release; Distribution is unlimited. 

The ELIPS is an advanced processor technology 
for on-board interceptor sensor fusion and 
discrimination. The hardware architecture of the 
ELIPS will be based on low-power, low-weight 
compact VLSI-CMOS electronics. The system is 
an electronically reconfigurable advanced seeker 
processor, capable of implementing massively 
parallel algorithms for multisensor detection, 
tracking, discrimination, feature extraction, 
situation awareness and sensor management. 
ELIPS algorithms will seamlessly integrate 
fuzzy logic, neural network and expert system 
paradigms. The ELIPS hardware design is 
modular, such that stacks of ELIPS multichip 
modules can be assembled as a co-processor to a 
host CPU. 

The ELIPS is implementable in three different 
technologies, based on the application. 
ELJPS/SW is a software implementation of the 
ELIPS using high level programming language 
such as C, C++, Matlab, FORTRAN etc. All the 
ELIPS functionalities are implemented as 
function      calls      or      subroutines.      This 
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implementation is suitable for exploratory 
development of ELIPS approaches to a given 
application. When the specialized ELIPS 
functions are implemented using dedicated 
digital co-processors (e.g. FPGA boards), we 
obtain the ELIPS/DF (digital firmware). A 
significant speed up in the execution times is 
achieved by the ELIPS/DF over the ELIPS/SW. 
Maximum execution speeds as well as minimum 
power consumption and minimum processor 
size is achievable by implementing the ELIPS in 
a hybrid (analog/digital) architecture. The 
resulting implementation is the ELIPS/HF 
(hybrid firmware). This paper addresses the 
design and demonstration of the ELIPS/DF 
which is a brassboard for the hybrid, compact, 
low-power ELIPS/HF. The principles of 
operation of the ELIPS is first presented, 
followed by descriptions of the digital designs 
for the computational engines of the ELIPS 
modules. An assessment of the implementation 
of one of the ELEPS modules, the programmable 
feedforward neural network (PFN) using a 
commercially available virtual computer board 
which is based on the Xilinx 6000 series FPGA 
is then discussed. Preliminary tests already 
demonstrate a 40-fold increase in processing 
speed for the implementation of a 64x64 synapse 
array, when compared to Pentium CPU. 

Principles of Operation of the ELIPS 

Computational Mappings 

In a most general sense, signal processing is the 
mapping of a set of measured numbers on to 
another set of numbers which represent derived 
information based on the measured numbers. 
The intermediate processes within this overall 
mapping, are themselves also mappings of 
numbers onto numbers. The reasoning behind a 
given signal process is usually captured by a 
system of equations. If the output numbers are 
related to the input numbers via some functional 
relationship, we can consider such a process to 
be a functional mapping. Functional mappings 
can be linear or non-linear. Linear functional 
mappings are represented by equations wherein 
the output numbers are linear combinations of 
the input numbers. Examples are transforms, 
convolutions and matrix multiplications. When 
viewed this way, it can be seen that today's 
computational engines, including digital signal 
processors (DSP), are really only meant for 

linear mappings. Because of the huge success of 
these engines, fueled by the technology of VLSI 
electronics, most signal processing tasks are first 
reduced to series of linear mappings, which are 
subsequently coded to run on DSPs. 

When the output numbers in a functional 
mapping cannot be represented by a linear 
combination of the input numbers, we have what 
can be considered a non-linear functional 
mapping. Technically speaking, if the functional 
relationship between the output and input is 
known explicitly, such a functional mapping can 
be approximated by a series of linear mappings. 
This is in fact what we do when we program 
today's computers to execute algorithms for 
effecting non linear functional mappings. What 
if the functional relationship is not known 
explicitly (i.e. only exemplar input-output 
relationships are available)? How do we capture 
such mappings? What if the functional 
relationship is known explicitly, but it is 
inefficient for the mapping to be approximated 
by linear mappings? How do we accomplish 
this? This is where artificial neural networks 
have come to the rescue. Theory holds that 
multilayer feedforward artificial neural networks 
can capture the mapping between input and 
output, so long as sufficient training exemplars 
are available. 

There are signal processing tasks where the 
input numbers are merely initial states of a 
process governed by systems of temporal 
differential equations. The output numbers in 
such cases are the final states of the relaxation 
of the dynamical process. For want of a better 
terminology, lets refer to these mappings as 
"relaxational" mappings. Generally the systems 
of temporal differential equations can be cast in 
to a form wherein the instantaneous rate of 
change of the state vector is a function of the 
most recent values of the state vector. In other 
words, the rate of change of the state vector is a 
functional mapping of the most recent values of 
the state vector itself. If this functional mapping 
is a linear mapping, we have a familiar state- 
space representation of the dynamical process. A 
more general situation arises when the 
functional mapping is non linear. 

Besides functional mappings and relaxational 
mappings, there can also be fuzzy mappings and 
heuristic mappings. Fuzzy mappings are used to 
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derive memberships of the measured numbers in 
fuzzy sets defined by heuristic notions of what is 
being measured. For example, if the measured 
numbers represent temperature readings from a 
thermocouple, it may be of interest to assign 
membership values to fuzzy sets of cold, warm 
or hot objects. Subsequent signal processing 
could then be based on reasonings about these 
linguistic classes. Again, using today's 
computational engines, this mapping can be 
accomplished by approximation via series of 
linear mappings. Heuristic mappings are used to 
map input facts (coded into numbers) on to 
output conclusions (also coded into numbers) via 
sets of expert rules. Linear mappings are useless 
against these types of signal processes. On 
today's computers, heuristic mappings usually 
involve the generation of instructions based on 
high-level computer languages. The 
involvement of high level programming 
language has been a major obstacle in the 
development of signal processors that could 
incorporate expert reasoning. On today's 
computational engines, the most successful 
approaches to the employment of expert rules in 
signal processing, has been via the fuzzy logic 
paradigm. 

The ELIPS technology is a bold attempt to 
capture the mappings of any signal processing 
task as efficiently as possible by employing 
computational engines which are best suited to 
the task. The ELIPS consists of four 
computational engines - Programmable Feed- 
forward Neural-network (PFN); Programmable 
Recurrent Neural-network (PRN), Fuzzy Set 
Processor (FSP) and the Multistage Expert Rules 
Processor (MERP). Fig. 1 illustrates the 
correspondence of the ELIPS engines to the 
mappings involved in signal processing. The 
PFN engine is programmable to perform both 
linear and non linear functional mappings. As a 
linear functional mapping engine, the PFN is a 
massively parallel digital signal processor. Such 
engines are most efficient when utilized to 
capture such signal processing concepts as 
Filtering, Transforms, Convolutions and Matrix 
Operations. A point of reference is to note that 
the linear digital PFN is equivalent to an array 
of what is today known as Digital Signal 
Processors (DSP). The "ANTE" portion of 
BMDO's "VIGILANTE" program is equivalent 
to a 3-D implementation of an analog linear 
PFN.   As   a   non-linear   functional   mapping 

engine, the PFN is a multistage feed forward 
artificial neural network Examples of signal 
processing concepts which could be captured 
directly by the non linear PFN are Function 
Approximations, Non Linear Classification, 
Regression, Extrapolations, Forecasting and 
Non Linear Estimation. In this regard, the PFN 
alone represents a significant advancement in 
the development of computational engines. 

The PRN engine is programmable to perform 
relaxational mappings. Its structure is similar to 
that of recurrent artificial neural networks. Its 
programmability allows the feedback of the 
network to be either a linear or non linear 
functional mapping. Search algorithms 
involving Gradient Descent, Optimizations and 
Non Linear Adaptation can be programmed 
directly using the PRN. In addition, the PRN 
could be programmed to emulate dynamical 
systems whose equations have been cast in the 
state-space form. This type of processing is very 
useful for optimal control of unknown or poorly 
defined dynamical systems. The FSP is 
programmable to perform fuzzy mappings. 
Natural signal processing performed by humans 
involves the manipulation and reasoning with 
sets of data which are referenced by linguistic 
terms, e.g. temperature could be processed as 
cold, warm, hot etc. Although the equations for 
accomplishing these linguistic fuzzy mappings 
can be ultimately coded into DSP processes, the 
FSP provides a computational engine which 
accomplishes these fuzzy mappings directly. 
Input sensor measurements are immediately 
mapped on to fuzzy set membership functions. 
In addition to fuzzy set mappings, the FSP is 
also a generalized way of performing such 
operations as Data Normalization, Signal 
Thresholding and Linguistic Classification. 

Finally, the MERP is programmable to perform 
heuristic mappings based on expert rules. When 
an expert derives a certain conclusion from a set 
of facts, the expert has examined a finite set of 
rules or conditions which are necessary for 
reaching the chosen conclusion. The expert 
rules could be provided in a variety of forms, 
including Rule Trees, If-Then statements etc. 
On a conventional computer, higher level 
languages have been developed to translate the 
expert rules in to forms which allow the 
computer to process the mapping of input facts 
on to output conclusions. Because of the need to 
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first interpret these high-level languages before 
the computational engine could be engaged, it 
has   been   difficult   to    incorporate    expert 

reasoning in algorithms designed for real time, 
high speed image understanding. 

FUNCTIONAL! FUZZY I 
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NOTES: 
(1) DIGITAL LINLAR PI-TM COMPUTATIONAL MAPPING IS EQUIVALENT TO THAT OF A VliCTORIZUD DSP 
(2) ELIPS COMPUTATIONAL MAPPINGS CAPTURE SIGNAL PROCESSING AT CONCEPTUAL LEVEL 
(3) ALGORITHMIC OVERHEAD IS KEPT TO MINIMUM BY EMPOYING ELIPS MAPPING ENGINES 

Fig. 1 ELIPS Computational Mappings for Signal Processing 

Digital Engines 

The terminology of "engines" in a 
computational context is used to represent 
functional modules which are used to 
accomplish mappings of input numbers to 
output numbers at the hardware level. Digital 
engines are composed exclusively of digital 
logic blocks which operate on digitized input 
numbers to produce digitized output numbers. 
The input numbers into an engine can be the 
signal data or configuration data. Signal data 
are numbers which are part of the stream of data 
under process. Configuration data are numbers 
which are used to define the mathematical 
function that is being performed within the 
engine. 

Linear Mapping Engine (LME~) 

The linear mapping engine has two input ports 
and one output port (see Fig. 2). The two input 
ports feed numbers into a multiplier block and 
then into an accumulator. The accumulator adds 

the result of the multiplication to the most recent 
value in its register. 

W 
Input 2 

ft 

e Output 

u 
Input 1 

5; u 
< 

Fig. 2 The Linear Mapping Engine (LME) 

The Linear Mapping Engine (LME) is the 
fundamental engine suitable for performing 
computations such as matrix multiplication, 
filtering, transforms and convolutions. An 
illustration of how an array of LME are used to 
perform a matrix-vector multiplication is shown 
in Fig. 3. 
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Non-Linear Mapping Engine (NME) 

The non-linear mapping engine (NME), like the 
LME also has two input ports and one output 

W(l,i); i=l,2,...M 

X(i); i=l,2,...M 

W(2,i); i=l,2,...M 

LME(l) 

LME(2) 

Y(l) 

-►Y(2) 

D 

D 

W(N,i); i=l,2,...M > 
LME(N) -►Y(N) 

Fig. 3 Parallel Matrix-Vector Multiplication: 
{Y}=[W]{X}. 

port (see Fig. 4). The NME generalizes the LME 
by inserting a look up table (LUT) between the 
output of the accumulator and the final output of 
the mapping engine. 

Input 2 
3 
5 
■e 

s 
u u < 

w 
a 

O 
O 

Output 

r z 
Examples of LUT Functions 
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Fig. 4 The Non-Linear Mapping Engine 
(NME) 

The generalization of the NME over the LME is 
clear from the fact that if the LUT is 
programmed to be linear, the NME is reduced to 
an LME. By programming different types of 
LUT, the NME becomes the fundamental 
computational engine needed for implementing 
any feed-forward neural network. An illustration 
of how an array of NME are used to implement 
a typical layer of a feed forward neural network 
is shown in Fig. 5. Theory holds that a 
multilayer feed-forward  neural   network  can 

always be trained to emulate any arbitrary 
functional mapping, provided that a sufficient 
number of neurons and synapses are available 
for the adaptation process. This implies that a 
succession of arrays of NME can be adapted to 
represent the functional mapping of any set of 
input numbers on to the required set of output 
numbers. 

W(1,i); i=l,2,...M 

X(i);i=l,2,...M 

W(2,i);i=1,2,...M 

W(N,i); i=l,2,...M 

NM£(1) 

NME(2) 

a 
a 

NME(N) -►Y(N) 

Fig. 5 Typical Stage of a Feed-Forward 
Neural Network: {Y}=f(W]{X}). 

Fuzzy Set Mapping Engine 

The fuzzy set mapping engine (FME) has five 
input ports, and one output port. One of the 
input ports feeds in the sensor measurement, the 
other four input ports feed in the parameters of 
the fuzzy set membership. The output port 
produces a fuzzy set membership according to 
the following equations: 

no- 

0;    X(s(i))<M(i,l) 

X{s(i))-M(i,X)     fM(i,l) < X(s(i)) < M(i,2) 

M(i,2)-M(i,l)'    {       M(i,l)*M(i,2) 
_ X(s(i))-M(i,3)     [A/(/,3) < X(s(i)) < M(i,4) 

M(/,4)-M(/,3)      [       M(i,3)*M(i,4) 
1;   M(/,3) > X(s(i)) > M{i,2) 

0;   X(s(i)) > M(i,4) 

The functional relationships required by these 
equations are used to generate look up tables in 
order to expedite the operation of the engine (see 
Fig. 6). A graphical representation of the 
mapping performed by the FME is illustrated in 
Fig. 7. 

Heuristic Mapping Engine (HME) 

The heuristic mapping engine (HME) is 
illustrated in Fig. 8. The HME has five input 
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ports and two output ports. One of the input 
ports is used to feed the array of numbers which 
represent the fuzzy set membership values for a 
particular sensor. Two other input ports carry 
encoded rules which are used to select operands 
for the conjunctive and disjunctive operations. 

Vmtxf Srt ftnmttKt lapsta 

M(IJ>   M(U) 

M(U> M(L4| 

Fig. 6 Fuzzy Set Mapping Engine (FME) 

M(i.l) M(U) M(M) M(M) 

Fig. 7 Graphical Illustration of FME 
Mapping with Linear Look Up Tables. 

The remaining two input ports carry residual 
conjunctions and disjunctions from preceding 
HME in architectures where multiple HME are 
connected. The two output ports are used to pass 
forward the results of conjunctive and 
disjunctive operations performed by the HME. 
In the most general case, an expert rule can 
always be reduced to a sequence of disjunctive 
and conjunctive operations, acting over a set of 
input facts. For example, the degree of truth of 
the jth conclusion D(j) can be computed as: 

D(j) = max(min(j,l),min(j,2), min(j,Nj)) 

where. 

min(j,k) = min(fact(j,k,l), fact(j,k,2), 
.....factCJ,k,Mjk)) 

and fact(j,k,m) is the mth fact membership 
operand of the kth conjunctive operand in the jth 
disjunction which defines the value of D(j). The 
selection of the fact membership operands as 
well as the conjunctive operands are encoded 
into binary streams which are used to select the 
correct operand for a given expert rule. 
Considering that a fact membership appearing 
in a particular expert rule can itself be the 
negation of an input measured fact membership, 
it is necessary to compute an array of numbers 
corresponding to the negative memberships of 
each measured fact membership. This negative 
membership is computed as the maximum value 
of the array of fuzzy set memberships measured 
from the same sensor, excluding the fact 
membership in question. The physical meaning 
of this calculation is as follows: Suppose the 
measured data from a given sensor is assigned 
memberships in fuzzy sets s(j), j=l,2,...N. The 
fact of a measurement belonging to set s(k) is 
established to a degree given by the fuzzy set 
membership. On the other had, the fact of a 
measurement not belonging to set s(k) means 
that the measurement could belong to any other 
set - s(l) or s(2) or ....s(n), excluding s(k). 

hipit 
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Vector of     ~™ 
Fumy Sri Mcnhcrakipi 
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ll _ l 
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Fig. 8 Heuristic Mapping Engine (HME) 

ELIPS Brassboard (ELIPS/DF) 

The ELIPS/DF is based on commercially 
available virtual computer boards consisting of 
FPGA processing elements and PCI interface 
with the host computer. Fig. 9 and Fig. 10 are 
pictures of boards marketed by Giga Operations 
Inc, and Virtual Computer Corporation 
respectively. 
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PFN/DF Architecture 

The programmable feed-forward neural network 
(PFN) is the component of the ELEPS which is 
designed to perform functional mappings. The 
computational engine which drives the PFN is 
the non-linear mapping engine (NME) shown in 
Fig. 4. The PFN/DF can be realized on a 
Reconfigurable Computer (RC) via the 
implementation of three functions, callable by 
software (e.g. C, C++) running on the host CPU. 

Fig. 9 The G900 Reconfigurable Interface 
Card. 

Fig. 10 The PCI-XC6200 Virtual Computing 
Development System. 

1. Function PFNSTP(ns, NI(ns x 1), NO(ns x 1), 
NLF(ns x 1)) configures the RC with predefined 
registers (for storage of weights) and arithmetic 
blocks (bitstream adders and multipliers and 
look up tables for neuronal transfer functions), 
as well as addresses for the passing Input/Output 
(I/O) data, (ns) is the number of stages of the 
PFN/DF, NI is a ns-element vector of the 
dimensions of the input data into each stage, NO 
is a ns-element vector of the dimensions of the 
output data out of each stage. NLF is a ns- 
element vector of the indices specifying the 
transfer functions of the neurons of the ns-stage 
of PFNSTP. There should be a check that the 
number of outputs of a given stage should match 
the number of inputs of the succeeding stage. 
The result of invoking this function is the 

reconfiguration of the RC logic blocks, 
interconnections and registers. As a practical 
issue, configurations of the RC for preset values 
of the parameters ns, NI and NO would have 
been stored in some RAM. When a run time call 
for PFNSTP is made, a determination of the 
preset values which are available, and large 
enough to accommodate the run time call is 
made. That means that the actual 
reconfiguration will be done with preset 
parameters which are at least as large as the 
run-time values. Fig. 11 illustrates the stages of 
the PFN. Each stage is similar to the 
architecture shown in Fig. 5. 

I,w 
STAGE 1 

o, = 
^ 

STAGE 2 

0,= I, 
I 
■■ -►STAGE 

0„ 

Fig. 11 Multiple Stages of the PFN/DF 

2. Function PFNCFG(WTS(nwts x 1)) 
configures the RC by loading values of weights 
into the appropriate registers as defined by 
PFNSTP. WTS is the array of weights; nwts is 
the size of the array of weights. For a PFN with 
no bias weights, the value of nwts is determined 
by the sum of the product of input and output for 
all the stages of the PFN. Again we note that the 
actual values will correspond to the preset 
architecture from memory which accommodates 
the run-time values. The registers for the unused 
weights are defaulted to zeros. 

3. Function PFNRUN(I,0) accomplishes the 
actual data processing using the RC. The 
parameters I, O specify the addresses of the data 
which are input and output respectively. In other 
words, external input data is applied at the 
addresses specified by the parameter I. The 
output of PFN/DF is passed to the address 
locations specified by the parameter O. 

PRN/DF Architecture 

The programmable recurrent neural network 
(PRN) is the component of the ELIPS which is 
designed to perform relaxational mappings The 
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implementation of the PRN is analogous to that 
of the single-stage PFN. The main difference is 
that in the PRN, there is feedback of the 
neuronal outputs in to the input, with a unit 
delay (see Fig. 12). 

FSP/DF Architecture 

The fuzzy set processor is the component of the 
ELIPS which is designed to perform fuzzy 
mappings. The computational engine which 
drives the FSP is the fuzzy set mapping engine 
(FME) shown in Fig. 6. The digital firmware 
implementation of the FSP is done on a 
reconfigurable computer (RC) per the following 
specifications: The RC board interfaces with a 
PCI slot in a desk top personal computer. The 
functions to be performed by the RC board are 
seamlessly callable from a C++ and/or Matlab 
programming environments. FSPSTP(LC) is a 
call to configure the RC to perform the fuzzy 
mapping process. FSPCFG(M) is a function call 
to specify the elements of the matrix M. Output 
= FSPRUN(Input) shall be a call to compute the 
Ouput vector of dimension (nf x 1), given an 
Input vector of dimension (I x 1). 

W(14); M,2_M ■ 
NME(!) 

W(2,L)i i=l,2_.M 
NME(2) 

D 
a 

W(MJ); i=U_M ► 
NME(M> 

X(i,t-I);1=!A- M 
ll.it 

OeUy 

■>•    X(l,t) 

-►    X(J,I) 

-►   X(M,() 

Fig. 12 Architecture of the PRN/DF 

MERP/DF Architecture 

The multistage expert rules processor (MERP) is 
the component of the ELIPS which is designed 
to perform heuristic mappings. The 
computational engine which drives the MERP is 
the heuristic mapping engine (HME) shown in 
Fig. 8. The MERP/DF is implemented on a 
reconfigurable computer using arrays of 
heuristic mapping engines, combined to 
implement the encoded expert rules (see Fig. 
13). Depending on the computational resources 

available on the chip, several HME could be 
connected in parallel. Otherwise, each HME 
would be used to process multiple inputs. 

IN1»UT(1) 

INPUT(2) 

DfPUT(lV) 

—ic o- 
►VFSM(l) 0- 
FERD C 

-'°C 

—I  
ERC 

HME 
)oc- 

—OOD ■ 

 IC 
►VFSM(2) 
EERD 

ERC 

_1_ 
HME 

Doc- 

—OOD 

a 
a 

 IC 
VFSM(N) 
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HME 
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Fig. 13 Architecture of the MERP/DF 

Programming and Adaptation 

There are two distinct aspects of programming 
the ELIPS processor. The first aspect is the 
determination of the sequence and selection of 
mappings required to accomplish a given signal 
process. The outcome of this step is the 
specification of mapping stages and the 
sequence of those stages. A signal process may 
require any and all combinations of the four 
mapping stages of the ELIPS. The same 
mapping stage may appear multiple times with 
different configurations. Some mapping stages 
may be omitted altogether. This aspect of the 
programming is intimately connected with the 
physical concepts underlying the signal process. 
The ELIPS signal processing approach 
encourages massively parallel formulation of the 
signal process. The way to maximize the 
effectiveness of the ELIPS is to parallelize the 
problem as much as possible, and then select the 
minimal sequence of the mapping stages needed, 
to yield the desired outcome. 
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The second aspect of programming the ELIPS 
processor is the determination of the 
configuration parameters required for each 
mapping stage. Depending on the nature of the 
signal process, these parameters could be 
specified explicitly or implicitly. Explicit 
specification simply implies the creation of 
appropriate data files with the numbers 
corresponding to the required parameters. 
Implicit specification involves an adaptive 
process, in which the ELIPS is "trained" to 
create those parameters. This is a powerful 
aspect of the ELIPS in that if a mapping is 
required for which only examples of such 
mappings are known, and not the parameters of 
the mapping, a training algorithm can be folded 
around the ELIPS to "teach" it the proper 
parameters for such a mapping. This is typically 
what is called for when the PFN is being used to 
approximate a non-linear function. The known 
function is used to generate training data 
(input/output pairs). The mapping parameters 
are then adjusted using a suitable adaptation 
scheme, in order to match the exemplar training 
data. Once a satisfactory set of parameters have 
been obtained, they can be saved in a 
configuration file which is subsequently invoked 
in order to engage the ELIPS signal process. It 
should be noted that nothing prevents the 
adaptations scheme from being implemented 
using ELIPS mapping stages. As a matter of 
fact, this is strongly encouraged, since then one 
would end up with a self contained ELEPS 
system which could be reprogrammed on-line. 

ELEPS Program Development Environment 

The program development environment required 
by the ELEPS processor must facilitate the two 
aspects of ELEPS programming as discussed in 
the preceding paragraphs. It turns out that both 
the ELEPS/SW and ELEPS/DF are ideal for this. 
Since both implementations of the ELEPS 
operate in conjunction with a host digital 
processor, any additional resources needed from 
the host environment could be readily accessed. 
The ELEPS/SW is implementable on any 
desktop computing environment, and is suitable 
for scaled down exploration of the signal process 
in order to confirm the selection and sequence of 
the mapping stages required by the process. If 
the target ELEPS system is an ELEPS/HF, then 
the programming should include simulations of 

the hardware constraints such as bit resolution, 
noise, pin numbers etc. 

Preliminary Results 

The ELEPS approach offers three levels of 
opportunity for improving the speed and data 
throughput of the signal processor. First, by 
providing appropriate computational engines for 
capturing the signal process directly, it 
eliminates a considerable amount of algorithm 
overhead which would otherwise be unavoidable 
using conventional processors. Secondly, each 
module of the ELEPS has a massively parallel 
computational architecture. Thirdly, the hybrid 
implementation of the ELEPS will perform the 
arithmetic operations of multiplication and 
addition using analog components. This offers a 
significant increase in computational speed, 
when compared to digital approaches. The 
results obtained so far have confirmed the first 
level. 

Using the PCI-XC6200 virtual computer board, 
a 64x64 PFN/DF was implemented. Because of 
the limited computational resources on the chip, 
the parallelism was limited. It was only possible 
to input two pairs of 14-bit numbers at a time 
into the multiply/accumulate cycle. The look up 
table for the neuronal transfer function was done 
using the on-board SRAM. With all these 
limitations, the FPGA board was still 40 times 
faster than the host pentium CPU, in performing 
the same 64x64 synapse single stage PFN/DF 
process. 
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