
UNCLASSIFIED

BRASSBOARD DEMONSTRATION OF AN ADVANCED PROCESSOR TECHNOLOGY FOR
MULTISENSOR DISCRIMINATING INTERCEPTOR SEEKER

James A. Fabunmi
AEDAR Corporation, Landover MD

Abstract

The data throughput and algorithm intensity requirements of multisensor discriminating interceptor
seekers call for new processor technologies which are massively parallel, compact and low power. The
Extended Logic Intelligent Processing System (ELIPS) is an advanced processor technology which is
being developed to meet these challenges. The ELIPS seamlessly integrates four massively parallel
modules into a programmable architecture. These modules are derived from the four main paradigms of
artificial intelligence: Feed-Forward Neural Networks, Recurrent Neural Networks. Fuz2y Logic and
Expert Systems. These paradigms not only generalize existing signal processing mapping commonly used
in digital signal processors, but also introduce additional mappings which capture signal processing
concepts directly. This results in significant reductions in algorithm overhead as well as increased
parallelism. The processing tasks of multisensor discriminating seekers such as: Target Acquisition,
Multitarget Tracking, Feature Extraction, Target Discrimination, Aim Point Selection etc., are formulated
as combinations of these functions, operating on data from sensors, memory and/or communications. This
paper presents the principles of operation of the ELIPS along with the processor brassboard design. The
brassboard implementation utilizes a configurable computing platform which consists of field
programmable gate array processing elements and associated interfaces for programmed control by a host
processor.

C\J

Introduction

The critical processing functions of the
Discriminating Interceptor Technology Program
(Drrp)1 requires processor architectures which
are radically different from any that presently
exist. The development of an interceptor which
will autonomously discriminate lethal targets
from decoys and various other penetration aids,
is not a simple matter of upgrading the
components of a non discriminating interceptor.
The transition from non-discrimination to
discrimination capabilities imposes new
standards for processing throughput as well as
the mix of algorithms which are required to
perform the high frame rate image
understanding necessary for discrimination
functions. The Extended Logic Intelligent
Processing System (ELIPS) is being developed
in response to the challenges posed by the
requirements of the discriminating interceptor.

Approved for Public Release; Distribution is unlimited.

The ELIPS is an advanced processor technology
for on-board interceptor sensor fusion and
discrimination. The hardware architecture of the
ELIPS will be based on low-power, low-weight
compact VLSI-CMOS electronics. The system is
an electronically reconfigurable advanced seeker
processor, capable of implementing massively
parallel algorithms for multisensor detection,
tracking, discrimination, feature extraction,
situation awareness and sensor management.
ELIPS algorithms will seamlessly integrate
fuzzy logic, neural network and expert system
paradigms. The ELIPS hardware design is
modular, such that stacks of ELIPS multichip
modules can be assembled as a co-processor to a
host CPU.

The ELIPS is implementable in three different
technologies, based on the application.
ELJPS/SW is a software implementation of the
ELIPS using high level programming language
such as C, C++, Matlab, FORTRAN etc. All the
ELIPS functionalities are implemented as
function calls or subroutines. This

UNCLASSIFIED Page(l) [i)KC QUALXTlf INSPECTED 2

UNCLASSIFIED

implementation is suitable for exploratory
development of ELIPS approaches to a given
application. When the specialized ELIPS
functions are implemented using dedicated
digital co-processors (e.g. FPGA boards), we
obtain the ELIPS/DF (digital firmware). A
significant speed up in the execution times is
achieved by the ELIPS/DF over the ELIPS/SW.
Maximum execution speeds as well as minimum
power consumption and minimum processor
size is achievable by implementing the ELIPS in
a hybrid (analog/digital) architecture. The
resulting implementation is the ELIPS/HF
(hybrid firmware). This paper addresses the
design and demonstration of the ELIPS/DF
which is a brassboard for the hybrid, compact,
low-power ELIPS/HF. The principles of
operation of the ELIPS is first presented,
followed by descriptions of the digital designs
for the computational engines of the ELIPS
modules. An assessment of the implementation
of one of the ELEPS modules, the programmable
feedforward neural network (PFN) using a
commercially available virtual computer board
which is based on the Xilinx 6000 series FPGA
is then discussed. Preliminary tests already
demonstrate a 40-fold increase in processing
speed for the implementation of a 64x64 synapse
array, when compared to Pentium CPU.

Principles of Operation of the ELIPS

Computational Mappings

In a most general sense, signal processing is the
mapping of a set of measured numbers on to
another set of numbers which represent derived
information based on the measured numbers.
The intermediate processes within this overall
mapping, are themselves also mappings of
numbers onto numbers. The reasoning behind a
given signal process is usually captured by a
system of equations. If the output numbers are
related to the input numbers via some functional
relationship, we can consider such a process to
be a functional mapping. Functional mappings
can be linear or non-linear. Linear functional
mappings are represented by equations wherein
the output numbers are linear combinations of
the input numbers. Examples are transforms,
convolutions and matrix multiplications. When
viewed this way, it can be seen that today's
computational engines, including digital signal
processors (DSP), are really only meant for

linear mappings. Because of the huge success of
these engines, fueled by the technology of VLSI
electronics, most signal processing tasks are first
reduced to series of linear mappings, which are
subsequently coded to run on DSPs.

When the output numbers in a functional
mapping cannot be represented by a linear
combination of the input numbers, we have what
can be considered a non-linear functional
mapping. Technically speaking, if the functional
relationship between the output and input is
known explicitly, such a functional mapping can
be approximated by a series of linear mappings.
This is in fact what we do when we program
today's computers to execute algorithms for
effecting non linear functional mappings. What
if the functional relationship is not known
explicitly (i.e. only exemplar input-output
relationships are available)? How do we capture
such mappings? What if the functional
relationship is known explicitly, but it is
inefficient for the mapping to be approximated
by linear mappings? How do we accomplish
this? This is where artificial neural networks
have come to the rescue. Theory holds that
multilayer feedforward artificial neural networks
can capture the mapping between input and
output, so long as sufficient training exemplars
are available.

There are signal processing tasks where the
input numbers are merely initial states of a
process governed by systems of temporal
differential equations. The output numbers in
such cases are the final states of the relaxation
of the dynamical process. For want of a better
terminology, lets refer to these mappings as
"relaxational" mappings. Generally the systems
of temporal differential equations can be cast in
to a form wherein the instantaneous rate of
change of the state vector is a function of the
most recent values of the state vector. In other
words, the rate of change of the state vector is a
functional mapping of the most recent values of
the state vector itself. If this functional mapping
is a linear mapping, we have a familiar state-
space representation of the dynamical process. A
more general situation arises when the
functional mapping is non linear.

Besides functional mappings and relaxational
mappings, there can also be fuzzy mappings and
heuristic mappings. Fuzzy mappings are used to

UNCLASSIFIED Page(2)

UNCLASSIFIED

derive memberships of the measured numbers in
fuzzy sets defined by heuristic notions of what is
being measured. For example, if the measured
numbers represent temperature readings from a
thermocouple, it may be of interest to assign
membership values to fuzzy sets of cold, warm
or hot objects. Subsequent signal processing
could then be based on reasonings about these
linguistic classes. Again, using today's
computational engines, this mapping can be
accomplished by approximation via series of
linear mappings. Heuristic mappings are used to
map input facts (coded into numbers) on to
output conclusions (also coded into numbers) via
sets of expert rules. Linear mappings are useless
against these types of signal processes. On
today's computers, heuristic mappings usually
involve the generation of instructions based on
high-level computer languages. The
involvement of high level programming
language has been a major obstacle in the
development of signal processors that could
incorporate expert reasoning. On today's
computational engines, the most successful
approaches to the employment of expert rules in
signal processing, has been via the fuzzy logic
paradigm.

The ELIPS technology is a bold attempt to
capture the mappings of any signal processing
task as efficiently as possible by employing
computational engines which are best suited to
the task. The ELIPS consists of four
computational engines - Programmable Feed-
forward Neural-network (PFN); Programmable
Recurrent Neural-network (PRN), Fuzzy Set
Processor (FSP) and the Multistage Expert Rules
Processor (MERP). Fig. 1 illustrates the
correspondence of the ELIPS engines to the
mappings involved in signal processing. The
PFN engine is programmable to perform both
linear and non linear functional mappings. As a
linear functional mapping engine, the PFN is a
massively parallel digital signal processor. Such
engines are most efficient when utilized to
capture such signal processing concepts as
Filtering, Transforms, Convolutions and Matrix
Operations. A point of reference is to note that
the linear digital PFN is equivalent to an array
of what is today known as Digital Signal
Processors (DSP). The "ANTE" portion of
BMDO's "VIGILANTE" program is equivalent
to a 3-D implementation of an analog linear
PFN. As a non-linear functional mapping

engine, the PFN is a multistage feed forward
artificial neural network Examples of signal
processing concepts which could be captured
directly by the non linear PFN are Function
Approximations, Non Linear Classification,
Regression, Extrapolations, Forecasting and
Non Linear Estimation. In this regard, the PFN
alone represents a significant advancement in
the development of computational engines.

The PRN engine is programmable to perform
relaxational mappings. Its structure is similar to
that of recurrent artificial neural networks. Its
programmability allows the feedback of the
network to be either a linear or non linear
functional mapping. Search algorithms
involving Gradient Descent, Optimizations and
Non Linear Adaptation can be programmed
directly using the PRN. In addition, the PRN
could be programmed to emulate dynamical
systems whose equations have been cast in the
state-space form. This type of processing is very
useful for optimal control of unknown or poorly
defined dynamical systems. The FSP is
programmable to perform fuzzy mappings.
Natural signal processing performed by humans
involves the manipulation and reasoning with
sets of data which are referenced by linguistic
terms, e.g. temperature could be processed as
cold, warm, hot etc. Although the equations for
accomplishing these linguistic fuzzy mappings
can be ultimately coded into DSP processes, the
FSP provides a computational engine which
accomplishes these fuzzy mappings directly.
Input sensor measurements are immediately
mapped on to fuzzy set membership functions.
In addition to fuzzy set mappings, the FSP is
also a generalized way of performing such
operations as Data Normalization, Signal
Thresholding and Linguistic Classification.

Finally, the MERP is programmable to perform
heuristic mappings based on expert rules. When
an expert derives a certain conclusion from a set
of facts, the expert has examined a finite set of
rules or conditions which are necessary for
reaching the chosen conclusion. The expert
rules could be provided in a variety of forms,
including Rule Trees, If-Then statements etc.
On a conventional computer, higher level
languages have been developed to translate the
expert rules in to forms which allow the
computer to process the mapping of input facts
on to output conclusions. Because of the need to

UNCLASSIFIED Page(3)

UNCLASSIFIED

first interpret these high-level languages before
the computational engine could be engaged, it
has been difficult to incorporate expert

reasoning in algorithms designed for real time,
high speed image understanding.

FUNCTIONAL! FUZZY I

Filtering
Transforms

Convolutions
Matrii Operations

Gradient Descent
Optimization

Systems Modelling
NX. Adaptation

Function Approx.
N.L. Classification

_ Regression
Extrapolation
Forecasting

NX. Estimation

Fuzzy Set Memberships
Data Normalization
Signal Thresholding

Linguistic Classification

Decision Memberships
(based on Expert Rules)

Competition (WTA, LTA)

NOTES:
(1) DIGITAL LINLAR PI-TM COMPUTATIONAL MAPPING IS EQUIVALENT TO THAT OF A VliCTORIZUD DSP
(2) ELIPS COMPUTATIONAL MAPPINGS CAPTURE SIGNAL PROCESSING AT CONCEPTUAL LEVEL
(3) ALGORITHMIC OVERHEAD IS KEPT TO MINIMUM BY EMPOYING ELIPS MAPPING ENGINES

Fig. 1 ELIPS Computational Mappings for Signal Processing

Digital Engines

The terminology of "engines" in a
computational context is used to represent
functional modules which are used to
accomplish mappings of input numbers to
output numbers at the hardware level. Digital
engines are composed exclusively of digital
logic blocks which operate on digitized input
numbers to produce digitized output numbers.
The input numbers into an engine can be the
signal data or configuration data. Signal data
are numbers which are part of the stream of data
under process. Configuration data are numbers
which are used to define the mathematical
function that is being performed within the
engine.

Linear Mapping Engine (LME~)

The linear mapping engine has two input ports
and one output port (see Fig. 2). The two input
ports feed numbers into a multiplier block and
then into an accumulator. The accumulator adds

the result of the multiplication to the most recent
value in its register.

W
Input 2

ft

e Output

u
Input 1

5; u
<

Fig. 2 The Linear Mapping Engine (LME)

The Linear Mapping Engine (LME) is the
fundamental engine suitable for performing
computations such as matrix multiplication,
filtering, transforms and convolutions. An
illustration of how an array of LME are used to
perform a matrix-vector multiplication is shown
in Fig. 3.

UNCLASSIFIED Page(4)

UNCLASSIFIED

Non-Linear Mapping Engine (NME)

The non-linear mapping engine (NME), like the
LME also has two input ports and one output

W(l,i); i=l,2,...M

X(i); i=l,2,...M

W(2,i); i=l,2,...M

LME(l)

LME(2)

Y(l)

-►Y(2)

D

D

W(N,i); i=l,2,...M >
LME(N) -►Y(N)

Fig. 3 Parallel Matrix-Vector Multiplication:
{Y}=[W]{X}.

port (see Fig. 4). The NME generalizes the LME
by inserting a look up table (LUT) between the
output of the accumulator and the final output of
the mapping engine.

Input 2
3
5
■e

s
u u <

w
a

O
O

Output

r z
Examples of LUT Functions

Sigmoidat Step

Fig. 4 The Non-Linear Mapping Engine
(NME)

The generalization of the NME over the LME is
clear from the fact that if the LUT is
programmed to be linear, the NME is reduced to
an LME. By programming different types of
LUT, the NME becomes the fundamental
computational engine needed for implementing
any feed-forward neural network. An illustration
of how an array of NME are used to implement
a typical layer of a feed forward neural network
is shown in Fig. 5. Theory holds that a
multilayer feed-forward neural network can

always be trained to emulate any arbitrary
functional mapping, provided that a sufficient
number of neurons and synapses are available
for the adaptation process. This implies that a
succession of arrays of NME can be adapted to
represent the functional mapping of any set of
input numbers on to the required set of output
numbers.

W(1,i); i=l,2,...M

X(i);i=l,2,...M

W(2,i);i=1,2,...M

W(N,i); i=l,2,...M

NM£(1)

NME(2)

a
a

NME(N) -►Y(N)

Fig. 5 Typical Stage of a Feed-Forward
Neural Network: {Y}=f(W]{X}).

Fuzzy Set Mapping Engine

The fuzzy set mapping engine (FME) has five
input ports, and one output port. One of the
input ports feeds in the sensor measurement, the
other four input ports feed in the parameters of
the fuzzy set membership. The output port
produces a fuzzy set membership according to
the following equations:

no-

0; X(s(i))<M(i,l)

X{s(i))-M(i,X) fM(i,l) < X(s(i)) < M(i,2)

M(i,2)-M(i,l)' { M(i,l)*M(i,2)
_ X(s(i))-M(i,3) [A/(/,3) < X(s(i)) < M(i,4)

M(/,4)-M(/,3) [M(i,3)*M(i,4)
1; M(/,3) > X(s(i)) > M{i,2)

0; X(s(i)) > M(i,4)

The functional relationships required by these
equations are used to generate look up tables in
order to expedite the operation of the engine (see
Fig. 6). A graphical representation of the
mapping performed by the FME is illustrated in
Fig. 7.

Heuristic Mapping Engine (HME)

The heuristic mapping engine (HME) is
illustrated in Fig. 8. The HME has five input

UNCLASSIFIED Page(5)

UNCLASSIFIED

ports and two output ports. One of the input
ports is used to feed the array of numbers which
represent the fuzzy set membership values for a
particular sensor. Two other input ports carry
encoded rules which are used to select operands
for the conjunctive and disjunctive operations.

Vmtxf Srt ftnmttKt lapsta

M(IJ> M(U)

M(U> M(L4|

Fig. 6 Fuzzy Set Mapping Engine (FME)

M(i.l) M(U) M(M) M(M)

Fig. 7 Graphical Illustration of FME
Mapping with Linear Look Up Tables.

The remaining two input ports carry residual
conjunctions and disjunctions from preceding
HME in architectures where multiple HME are
connected. The two output ports are used to pass
forward the results of conjunctive and
disjunctive operations performed by the HME.
In the most general case, an expert rule can
always be reduced to a sequence of disjunctive
and conjunctive operations, acting over a set of
input facts. For example, the degree of truth of
the jth conclusion D(j) can be computed as:

D(j) = max(min(j,l),min(j,2), min(j,Nj))

where.

min(j,k) = min(fact(j,k,l), fact(j,k,2),
.....factCJ,k,Mjk))

and fact(j,k,m) is the mth fact membership
operand of the kth conjunctive operand in the jth
disjunction which defines the value of D(j). The
selection of the fact membership operands as
well as the conjunctive operands are encoded
into binary streams which are used to select the
correct operand for a given expert rule.
Considering that a fact membership appearing
in a particular expert rule can itself be the
negation of an input measured fact membership,
it is necessary to compute an array of numbers
corresponding to the negative memberships of
each measured fact membership. This negative
membership is computed as the maximum value
of the array of fuzzy set memberships measured
from the same sensor, excluding the fact
membership in question. The physical meaning
of this calculation is as follows: Suppose the
measured data from a given sensor is assigned
memberships in fuzzy sets s(j), j=l,2,...N. The
fact of a measurement belonging to set s(k) is
established to a degree given by the fuzzy set
membership. On the other had, the fact of a
measurement not belonging to set s(k) means
that the measurement could belong to any other
set - s(l) or s(2) ors(n), excluding s(k).

hipit
CoajurtM*

Vector of ~™
Fumy Sri Mcnhcrakipi

tnpMl _
Dtsjnctioa

I
ll _ l

Ws«l«(»r I

Fig. 8 Heuristic Mapping Engine (HME)

ELIPS Brassboard (ELIPS/DF)

The ELIPS/DF is based on commercially
available virtual computer boards consisting of
FPGA processing elements and PCI interface
with the host computer. Fig. 9 and Fig. 10 are
pictures of boards marketed by Giga Operations
Inc, and Virtual Computer Corporation
respectively.

UNCLASSIFIED Page(6)

UNCLASSIFIED

PFN/DF Architecture

The programmable feed-forward neural network
(PFN) is the component of the ELEPS which is
designed to perform functional mappings. The
computational engine which drives the PFN is
the non-linear mapping engine (NME) shown in
Fig. 4. The PFN/DF can be realized on a
Reconfigurable Computer (RC) via the
implementation of three functions, callable by
software (e.g. C, C++) running on the host CPU.

Fig. 9 The G900 Reconfigurable Interface
Card.

Fig. 10 The PCI-XC6200 Virtual Computing
Development System.

1. Function PFNSTP(ns, NI(ns x 1), NO(ns x 1),
NLF(ns x 1)) configures the RC with predefined
registers (for storage of weights) and arithmetic
blocks (bitstream adders and multipliers and
look up tables for neuronal transfer functions),
as well as addresses for the passing Input/Output
(I/O) data, (ns) is the number of stages of the
PFN/DF, NI is a ns-element vector of the
dimensions of the input data into each stage, NO
is a ns-element vector of the dimensions of the
output data out of each stage. NLF is a ns-
element vector of the indices specifying the
transfer functions of the neurons of the ns-stage
of PFNSTP. There should be a check that the
number of outputs of a given stage should match
the number of inputs of the succeeding stage.
The result of invoking this function is the

reconfiguration of the RC logic blocks,
interconnections and registers. As a practical
issue, configurations of the RC for preset values
of the parameters ns, NI and NO would have
been stored in some RAM. When a run time call
for PFNSTP is made, a determination of the
preset values which are available, and large
enough to accommodate the run time call is
made. That means that the actual
reconfiguration will be done with preset
parameters which are at least as large as the
run-time values. Fig. 11 illustrates the stages of
the PFN. Each stage is similar to the
architecture shown in Fig. 5.

I,w
STAGE 1

o, =
^

STAGE 2

0,= I,
I
■■ -►STAGE

0„

Fig. 11 Multiple Stages of the PFN/DF

2. Function PFNCFG(WTS(nwts x 1))
configures the RC by loading values of weights
into the appropriate registers as defined by
PFNSTP. WTS is the array of weights; nwts is
the size of the array of weights. For a PFN with
no bias weights, the value of nwts is determined
by the sum of the product of input and output for
all the stages of the PFN. Again we note that the
actual values will correspond to the preset
architecture from memory which accommodates
the run-time values. The registers for the unused
weights are defaulted to zeros.

3. Function PFNRUN(I,0) accomplishes the
actual data processing using the RC. The
parameters I, O specify the addresses of the data
which are input and output respectively. In other
words, external input data is applied at the
addresses specified by the parameter I. The
output of PFN/DF is passed to the address
locations specified by the parameter O.

PRN/DF Architecture

The programmable recurrent neural network
(PRN) is the component of the ELIPS which is
designed to perform relaxational mappings The

UNCLASSIFIED Page(7)

UNCLASSIFIED

implementation of the PRN is analogous to that
of the single-stage PFN. The main difference is
that in the PRN, there is feedback of the
neuronal outputs in to the input, with a unit
delay (see Fig. 12).

FSP/DF Architecture

The fuzzy set processor is the component of the
ELIPS which is designed to perform fuzzy
mappings. The computational engine which
drives the FSP is the fuzzy set mapping engine
(FME) shown in Fig. 6. The digital firmware
implementation of the FSP is done on a
reconfigurable computer (RC) per the following
specifications: The RC board interfaces with a
PCI slot in a desk top personal computer. The
functions to be performed by the RC board are
seamlessly callable from a C++ and/or Matlab
programming environments. FSPSTP(LC) is a
call to configure the RC to perform the fuzzy
mapping process. FSPCFG(M) is a function call
to specify the elements of the matrix M. Output
= FSPRUN(Input) shall be a call to compute the
Ouput vector of dimension (nf x 1), given an
Input vector of dimension (I x 1).

W(14); M,2_M ■
NME(!)

W(2,L)i i=l,2_.M
NME(2)

D
a

W(MJ); i=U_M ►
NME(M>

X(i,t-I);1=!A- M
ll.it

OeUy

■>• X(l,t)

-► X(J,I)

-► X(M,()

Fig. 12 Architecture of the PRN/DF

MERP/DF Architecture

The multistage expert rules processor (MERP) is
the component of the ELIPS which is designed
to perform heuristic mappings. The
computational engine which drives the MERP is
the heuristic mapping engine (HME) shown in
Fig. 8. The MERP/DF is implemented on a
reconfigurable computer using arrays of
heuristic mapping engines, combined to
implement the encoded expert rules (see Fig.
13). Depending on the computational resources

available on the chip, several HME could be
connected in parallel. Otherwise, each HME
would be used to process multiple inputs.

IN1»UT(1)

INPUT(2)

DfPUT(lV)

—ic o-
►VFSM(l) 0-
FERD C

-'°C

—I
ERC

HME
)oc-

—OOD ■

 IC
►VFSM(2)
EERD

ERC

1
HME

Doc-

—OOD

a
a

 IC
VFSM(N)
■—ERD

r-

-j—
ERC

HME
Ooc-

—OOD

Fig. 13 Architecture of the MERP/DF

Programming and Adaptation

There are two distinct aspects of programming
the ELIPS processor. The first aspect is the
determination of the sequence and selection of
mappings required to accomplish a given signal
process. The outcome of this step is the
specification of mapping stages and the
sequence of those stages. A signal process may
require any and all combinations of the four
mapping stages of the ELIPS. The same
mapping stage may appear multiple times with
different configurations. Some mapping stages
may be omitted altogether. This aspect of the
programming is intimately connected with the
physical concepts underlying the signal process.
The ELIPS signal processing approach
encourages massively parallel formulation of the
signal process. The way to maximize the
effectiveness of the ELIPS is to parallelize the
problem as much as possible, and then select the
minimal sequence of the mapping stages needed,
to yield the desired outcome.

UNCLASSIFIED Page(8)

UNCLASSIFIED

The second aspect of programming the ELIPS
processor is the determination of the
configuration parameters required for each
mapping stage. Depending on the nature of the
signal process, these parameters could be
specified explicitly or implicitly. Explicit
specification simply implies the creation of
appropriate data files with the numbers
corresponding to the required parameters.
Implicit specification involves an adaptive
process, in which the ELIPS is "trained" to
create those parameters. This is a powerful
aspect of the ELIPS in that if a mapping is
required for which only examples of such
mappings are known, and not the parameters of
the mapping, a training algorithm can be folded
around the ELIPS to "teach" it the proper
parameters for such a mapping. This is typically
what is called for when the PFN is being used to
approximate a non-linear function. The known
function is used to generate training data
(input/output pairs). The mapping parameters
are then adjusted using a suitable adaptation
scheme, in order to match the exemplar training
data. Once a satisfactory set of parameters have
been obtained, they can be saved in a
configuration file which is subsequently invoked
in order to engage the ELIPS signal process. It
should be noted that nothing prevents the
adaptations scheme from being implemented
using ELIPS mapping stages. As a matter of
fact, this is strongly encouraged, since then one
would end up with a self contained ELEPS
system which could be reprogrammed on-line.

ELEPS Program Development Environment

The program development environment required
by the ELEPS processor must facilitate the two
aspects of ELEPS programming as discussed in
the preceding paragraphs. It turns out that both
the ELEPS/SW and ELEPS/DF are ideal for this.
Since both implementations of the ELEPS
operate in conjunction with a host digital
processor, any additional resources needed from
the host environment could be readily accessed.
The ELEPS/SW is implementable on any
desktop computing environment, and is suitable
for scaled down exploration of the signal process
in order to confirm the selection and sequence of
the mapping stages required by the process. If
the target ELEPS system is an ELEPS/HF, then
the programming should include simulations of

the hardware constraints such as bit resolution,
noise, pin numbers etc.

Preliminary Results

The ELEPS approach offers three levels of
opportunity for improving the speed and data
throughput of the signal processor. First, by
providing appropriate computational engines for
capturing the signal process directly, it
eliminates a considerable amount of algorithm
overhead which would otherwise be unavoidable
using conventional processors. Secondly, each
module of the ELEPS has a massively parallel
computational architecture. Thirdly, the hybrid
implementation of the ELEPS will perform the
arithmetic operations of multiplication and
addition using analog components. This offers a
significant increase in computational speed,
when compared to digital approaches. The
results obtained so far have confirmed the first
level.

Using the PCI-XC6200 virtual computer board,
a 64x64 PFN/DF was implemented. Because of
the limited computational resources on the chip,
the parallelism was limited. It was only possible
to input two pairs of 14-bit numbers at a time
into the multiply/accumulate cycle. The look up
table for the neuronal transfer function was done
using the on-board SRAM. With all these
limitations, the FPGA board was still 40 times
faster than the host pentium CPU, in performing
the same 64x64 synapse single stage PFN/DF
process.

Acknowledgments

This effort was supported in part by a contract
funded by the Ballistic Missile Defense
Organization (BMDO). The United States
Government is authorized to reproduce and
distribute reprints for governmental purposes
notwithstanding any copyright notation herein.

References

1. Figie, B., Kinashi, Y., Johnson, B.,
Linderman, R., Fabunmi, J., 1996,
"Discriminating Interceptor Technology
Program (DITP): Sensor Fusion for Improved
Interceptor Seekers", 1996 AIAA/BMDO
Missile Sciences Conference, Monterey CA

UNCLASSIFIED Page(9)

