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1 Introduction

The long-range goal of this work is to couple computer technology and human exper-
tise with the objective to improve accuracy and consistency of mammogram readings
while reducing the cost. Specifically, this work is concerned with the problem of de-
tecting early cancerous changes by comparing temporal sequences of mammograms
of a same patient. An advantage of considering mammogram sequences relative to
analyzing a single mammogram is that it involves comparison, using the older mam-
mogram as a reference, and thus, is likely to reduce the high rate of false positives
associated with many computer-based methods. More importantly, following subtle
changes may provide for very early cancer detection. However, automating mam-
mogram sequence analysis is a very complex task, and it requires solving a number
of subproblems, including standardizing screening procedures, registering mammo-
grams, and characterizing minor changes in texture patterns. The present work
focuses on the initial step of mammogram registration. The specific goals of the
on-going study are to develop and test digital image processing methods that register
mammograms (acquired in regular screenings) and provide for regional mammogram
comparison with the objective of detecting early cancerous changes. These methods
are envisioned as an integral part of a computer-based aid for mammogram screening
which draws the attention of medical experts to suspicious regions in mammograms.

The problem of mammogram registration was encountered early in digital mam-
mography, initially in attempts to compare the same view of the two breasts and
search for asymmetries [31]. Some researchers have registered mammogram pairs
under the assumption that they are related by translation [6], [23]. Alternatively,
registration was performed either manually [29], using control points extracted from
the breast outlines [11], or by using optimization procedures involving rotation [25],
combined rotation and translation [30], or 2-D unwarping [20]. The view taken in this
work is that the precise mammogram registration is intractable. This is due to the
fact that these images correspond to compressed, elastic 3-D objects and the images
differ primarily due to the fact that there are variations in positioning and compres-
sion. These variations are in essence changes in viewpoint, and 2-D transformations
can not countereffect 3-D changes in viewpoint. This work concentrates on devel-
oping an alternative to precise registration by defining corresponding regions in two
images, as is done by medical experts. These regions can then be analyzed for changes
indicative of cancer. The first step in defining regions is establishing landmarks in a
mammogram pair and establishing their correspondence. An important advantage of
this approach is that it avoids interpolation inherent in detailed registration and thus
provides for meaningful comparison between temporally spaced screenings.

The focus of the work in the past year has been on the problem of extracting the
landmark points, also referred to as the potential control points, and establishing their




correspondence. Some aspects of this work are described in our recent publications
[27], [28]. Detecting and matching landmark points is resolved in two steps. First,
each image is analyzed independently and two sets of landmark points are identified.
An intersection of elongated structures is considered to be a landmark point. Next,
correspondence between a common subset of landmarks is established by using accu-
mulator matrices which tally all possible matches. The likely matches are determined
using similarity criteria. Two criteria are considered: one measuring similarity in the
geometry of the elongated structures and the other measuring local textural charac-
teristics. The algorithms were evaluated first on synthetic images where ROC curves
were used to study performance under controlled conditions. Next, the algorithms
were applied to 31 pairs of mammograms, and the results were visually evaluated by
three observers.

The overall approach is described in Section 2. The algorithm for extraction of po-
tential control points is detailed in Section 3, and the matching procedure using both
criteria is detailed in Section 4. The evaluation protocols and results are described in
Sections 5 and 6, corresponding to synthetic images and archived film, respectively.

2 Approach

The premise behind the solution to the registration problem proposed in this work is
that there is no rational basis to develop registration techniques that counter-affect
3-D positioning differences by 2-D image registration. In view of this, we propose an
alternative approach which surmounts the problem of precise mammogram registra-
tion and performs regional registration instead. In this approach, mammograms are
compared regionally, and each pair of regions is defined based on location relative to
a set of control points. In order to reduce the effects of variations in breast tissue
density on the subsequent analysis, the regions are selected such that each region con-
tains primarily a single tissue type. For this purpose, we utilize image partitioning
and constrain regions to belong to a single partition. In order to compensate for 2-D
rotational distortions arising from digitization, we match circular regions. Each circle
is defined by the location of its center relative to the control points and its radius,
which is determined by segmentation of the older mammogram. Both mammograms
are covered, without gaps, by corresponding overlapping circles. The procedure used
to define circular regions is illustrate in Figure 1(a), and an example of obtained re-
gions is shown in Figure 1(b). The segmentation of the older mammogram, shown
in Figure 1(c), is based on our earlier work described in [2]. Regions are compared
in terms of their intensity statistics and texture characteristics. The algorithm for
mammogram covering is presently under development.




MAMMOGRAM 1 MAMMOGRAM 2

\

A;, B;, G, D; = CONTROL POINTS i=1,2
P; = CIRCLE CENTERS i=1,2
AR=AP, BR=BP, CR=GCP

(a)

Figure 1: Regional correspondence between mammograms: (a) illustration of proce-
dure, in this case the centers of the regions are determined by distances relative to the
three closest control points, (b) examples of regions determined following this proce-
dure and using control points established using method described in this work and
segmentation of the older mammogram, (c) segmentation of the older mammogram
used to determine region extent.
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3 Extraction of potential control points

Considering that mammograms are weakly-structured texture patterns and that the
relationship between two images cannot be modeled, establishing regional correspon-
dence requires at least determining a set of landmarks common to both images. These
landmarks can be used as reference points in establishing locations and geometry of
corresponding regions. An approach to defining regions is described in [27], whereby
corresponding circular regions are formed by defining centers based on distance from
the control points and radii based on tissue characteristics.

Based on the fact that the only distinct elements appearing in practically any
mammogram are elongated structures, the most prominent of which correspond to
milk ducts and blood vessels, we select the intersections between these structures to
be the landmarks. After extracting their intersections in both images, we establish
correspondence between the common subset of points. In order to make establishing
correspondence practical, we consider only the intersections that are the most likely
to appear in both mammograms; consequently, we limit the extraction to the inter-
sections between the most prominent elongated structures. The obtained points are
referred to as the potential control points. Locations of the potential control points
may vary in two images due to minor positioning differences and changes in compres-
sion; however, these variations are in most cases minor and this study concentrates
on such cases.

3.1 Rationale for the proposed algorithm

The study of the intensity profiles of elongated structures, [4], shows that the intensity,
2(z), changes across the structure cross-section as

i(z) =C1 —CyVa? — 2%, —a<z<a, (1)

where a is the width of the cross-section; constant C; models the effects of film, anti-
scatter grid and x-ray tube; and constant C3 models compression and attenuation
effects. Effectively, Equation (1) shows that the cross-sections of elongated structures
are characterized by roof edge profiles. Consequently, extraction of the elongated
structures is, in essence, a task of identifying peaks of the roof edge profiles. Similar
tasks are encountered in other applications, e.g., in fingerprint analysis, line drawing
understanding, and digital angiography. Many researchers have investigated this
problem and have proposed appropriate methods, e.g., [5], [9], [19]. The emphasis
of these approaches is on detailed image analysis, extraction of every roof edge with
the objective of retaining continuity of the structures. Mammograms are complex
images with many intensity variations; thus, extraction of every roof edge yields
overwhelming detail. Instead, we propose an alternative algorithm which identifies
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only the most prominent roof edges. Specifically, we limit the identification to the
widest roof edge profiles.

3.2 Detection of the intersection points

The intersections are detected by first identifying the elongated structures using the
modified monotony operator. Prior to applying the operator, images are smoothed
using the multi-pass Gaussian filter. The filter is approximated by a 5 x 5 kernel,

. . . . . 2 .
as described in [3]. Convolving a Gaussian function g(z) = ——ewp(—47) with
Equation (1) gives the new intensity profile 7, of form

+1 1 212

in(z) = i(z) * g(2) = /_1 (1-vVI— tz)\/2_7we_£272)_dt 2)
(Equation (2) is shown in a simplified form since the objective here is only to discuss
the form of smoothed roof edge profiles.) Obtaining values for 7, requires numerical
computation, but the form of the equation indicates that the shape of the profile is
retained. Therefore, smoothing removes minor intensity variations and does not in
effect change the intensity profiles. The effects of smoothing are discussed in detail
in Section 5.

Prominent roof edges are extracted using the modified monotony operator. Orig-
inally, the monotony operator was proposed in [10] to identify points which were
used to derive displacement vector fields in image sequences. The monotony operator
compares the gray level of an image pixel with that of its eight neighbors and assigns
a value of 0-8 to it, according to the number of neighbors that have a smaller gray
value than that of the central pixel. Points of interest, such as edges and corners, are
determined by selecting pixels which are assigned specific values. In this work, the
concept of the monotony operator is modified as follows:

e The modified monotony operator considers two concentric neighborhoods of
different size, a large neighborhood m x n and a small neighborhood & x .

e The modified monotony operator assigns a value to an image pixel by counting
the pixels in the large neighborhood that have intensity values smaller than the
smallest intensity value in the smaller neighborhood.

The output image is binary and is obtained by thresholding the output of the monotony
operator. Selection of the specific threshold value, T, as well as, parameters m,n, k,
and [ is discussed in the next section.

The operator is applied in two steps, one that extracts predominantly horizontal
structures and the other that extracts predominantly vertical structures. The elon-
gated structures in arbitrary directions are obtained by combining the two results
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by the logical OR operation, and their intersections are obtained by combining the
two results by the logical AND operation. The centroids of obtained binary objects
(typically smaller than 10 pixels) constitute the set of potential control points, Figure
2.

3.3 Parameter selection

The parameters m,n, k, [ employed by the monotony operator are selected such that
in one case the operator detects predominantly horizontal structures and in the other
predominantly vertical structures. The specifications are as follows:

e Detection of elongated vertical structures: m =11, n =1, k = 3,1 =1, and

T =05.

e Detection of elongated horizontal structures: m =1, n =11, k =1,1=3, and

T =25.

The parameters m (in the case of vertical structures) and n (in the case of horizon-
tal structures) need to ensure incorporation of the complete width of an elongated
structure. This, in turn, is determined by the resolution of input images and level
of Gaussian blurring. Parameters k and [ ensure incorporation of the central part of
the profiles, which may be flat and few pixels wide, in blurred images. The selection
of threshold, T, is guided by the objective of extracting only the central pixels. Con-
sidering the selection of specific values for m, n, k, [, the largest value is assigned to
the central pixel and it is (m x n) — (k x [) = 8. If the operator is moved one location
away from the central pixel, it generates value 5 or 6, depending on the profile shape.
Since the objective is to extract only the central pixel and its immediate neighbors,
the threshold is set to T' = 5.

4 Establishing control point correspondence

Given two sets of potential control points, the objective of the correspondence algo-
rithm is to identify the common subset and within it individual point correspondences.
Most of the point pattern matching algorithms assume that the form of mapping re-
lating the two sets of points is known; e.g., it may involve translation, rotation, or
affine transformation. Since the relation between the two images in the case of mam-
mograms is unknown, it is necessary to use a model-free matching algorithm.
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Figure 2: An example of extracted elongated anatomical structures and detected
potential control points: (a) original image, (b) extracted elongated structures and
potential control points (shown enlarged).
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4.1 Correspondence algorithm

The locations of corresponding points differ in their local coordinate systems; how-
ever, their relative positions within images are the same'. Matching is attempted
between a point p(z,,¥,) in the older mammogram and a point ¢(z,, y,) in the newer
mammogram only if point g lies in a region likely to provide a match® This region
is determined using a pair of reference points o(z,,y,) and n(zn,y,) in the old and
new mammogram, respectively. The correspondence between o and n is established
accurately as described in Section 4.2. Point ¢ is a match of point p if it lies in the
neighborhood & x [ centered at z.,y. determined by the intersection® of the line

.._yo
y=2"% 0 _z.)+y, (3)

Tp — T

and the circle
(@ = 2a)* + (y = 9n)" = (w0 — )" + (4 — )" (4)
Values k and [ are determined by expected differences between the two mammograms

and in this work they are set to 60.
The correspondence is established using

o Accumulator matriz This matrix tallies votes for possible matches. Given a
set of N, potential control points in the older mammogram, M,, and a set of
N, potential control points in the newer mammogram, M,, the accumulator
matrix is an N, X N,, where entry e(p, ¢) corresponds to points labeled p and
q in M, and M, respectively. Entry e(p,q) is updated each time a possible
match between points p and ¢ is established.

o Similarity criterion This is the basis of establishing a match between a pair
of points. The criterion measures similarity between the neighborhoods of two
candidate points. Two types of criteria are considered based on (i) geometry of
elongated structures and (ii) texture characteristics. The methods of character-
ization and the criteria are discussed in Section 4.3.

The entries of the accumulator matrix are formed in three steps:

o Step 1: Location test For each point in the old mammogram any potential
control point in the new mammogram that satisfies the location criterion, i.e.,
it lies in the neighborhood k x [ centered at (x.,y.) determined by Equations
(3) and (4), is considered.

1We consider the cases where the tissue is not twisted in either of the acquisitions.

’In principle, the proposed algorithm does not require limiting point locations, but constraining
the search to image subregions significantly speeds up the processing time.

3There exist two points of intersection and the one of interest lies in the area of breast tissue
since the reference point is the tip of the nipple.
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o Step 2: Matriz updating If a matching criterion between a point p in the old
mammogram and a point ¢ in the new mammogram is satisfied, the accumulator
entry ¢(p, q) is updated. In the case that no match is established, return to Step
1; otherwise, proceed to Step 3.

o Step 8: Processing the remaining points If points p(zp,y,) and g(z4,y,) are
matched in Step 2, then for each remaining point in the old mammogram,
r(z,, ), a neighborhood of size Ay x Ag of point (2, y;) in the new mammogram
is examined for a possible match. The coordinates (z.,y.) are determined by
the intersection of the line

Yr — Yp _
=L s) 4y, )
and the circle
(3: - xq)z + (y - yq)2 = (mT - xp)2 + (yr - yp)Q' (6)

Each time a matching criterion is satisfied, the appropriate accumulator entry
is updated. After considering all possible matches return to Step 1.

At the end of the matching process, the entries which correspond to true matches
tend to have high values while the ones that correspond to wrong matches are small.
The wrong matches are eliminated by thresholding. A good threshold value provides
high values both for sensitivity (or the fraction of the established matches computed
relative to the all possible matches) and specificity (or accuracy of the established
matches). The emphasis of this work is on high specificity and, therefore, in some
cases the number of established matches is relatively small.

Two approaches to thresholding the accumulator matrix were considered. The
first one is a modification of the optimum thresholding algorithm described in [18].
The second one, used to obtain results discussed in Sections 5 and 6, uses the fixed
threshold value of 80% of the maximum entry. The rationale for this value is discussed
in Section 5.3.2.

After thresholding, the accumulator matrix is scanned and the most likely matches
are determined. Scanning is done by first examining rows and then columns of the
accumulator matrix. If there is more than one non-zero entry in a particular row, then
the point in the new mammogram which corresponds to the largest accumulator entry
is selected as the best match. The rest of the entries in the same row are set to zero.
Columns are scanned in a similar fashion. After scanning, the accumulator matrix
contains non-zero entries only at positions which correspond to the final matches.
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4.2 Identifying reference points

Term reference points pertains to a pair of points whose correspondence is established
accurately in a mammogram pair. The correspondence may be established manually
or automatically and may utilize points intrinsic to the breast or defined by external
markers used during the screening process. In principle, detection of reference points
is independent of detection of potential control points. The reference points are used
by the correspondence algorithm to identify possible matches among the two sets of
potential control points.

The natural selection, i.e., a point existing in practically every mammogram and
independent of view point, is the tip of the nipple, and in the following we describe
the procedure used to identify automatically this point in two mammograms. Under
normal screening conditions, the tip of the nipple lies approximately on the extrema
point of the breast outline. In this work, this point is identified by finding the extrema
of the Least Mean Square Error (LMSE) approximation of the breast outline by a
quadratic function. The outline is initially determined by the optimum thresholding
procedure, [18], applied to the blurred mammograms. The procedure was tested on
29 mammogram pairs, and visually it was confirmed that the reference points were
identified consistently. It is pointed out that the same procedure was applied to both
the medio-lateral and the cranio-caudal views without adjustments.

4.3 Similarity measures and criteria
4.3.1 Signatures

The objective of this approach is to capture local arrangements of dominant elongated
structures in the neighborhood of potential control points. The algorithm elegantly
and efficiently resolves the inherent compromise between accurate modeling and han-
dling local distortions and yields considerably higher number of control points that
the alternative described in [27]. The idea behind the approach can be best explained
when considering the retino-cortical projection, i.e., a geometrical transformation de-
scribed as a conformal mapping of the polar (p, 8) plane onto the Cartesian (log(p), )
plane. A point z(p,8) = pe?’ in the retinal plane maps onto the point w(u,v) = u+jv
in the cortical plane as*

w = log(z) = log(p) + j(0 + 27k), k=0,%1,£2,... (7)

The transformation may be implemented efficiently in a form of smart sensor, [21],[22].

4When taking into account only the principal branch of the logarithmic function, the represen-
tation of a cortical projection point is u = log(p), v=~0.
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Signature vectors are obtained from the cortical images by integrating the images
along the p axis in intervals Af. It is necessary that the sampling rates along the 8
axis provide for local deviations from linearity; through experimentation the sampling
rate is selected to be Af = 20°. The high values in a signature correspond to the
elongated structures forming the intersection. Typically, a signature has 2-4 maxima.
The locations of these maxima are encoded by thresholding the signature entries.
Assuming that the length of an elongated structure encoded by the signature is [ and
its average width is w, the threshold value is selected to be (I x w). Coefficient } is
due to the fact that the signature encompasses a wedge which covers approximately
one half of the rectangular area that may be encompassed by the elongated structure.
Thus, with w = 4, and [ = 10, the threshold is set to 20.

The most fundamental issue in using the signatures is verifying that (i) control
points are characterized by unique signatures, and (ii) signatures are preserved in
subsequent screenings. Since the signatures in effect capture the orientation of the
elongated structures it is necessary to show that the two properties hold for the orien-
tations. Considering that there is no “ground truth” corresponding to mammograms,
we have studied the distribution of orientations of elongated structures at potential
control points in mammogram pairs. Ideally, the distributions should be uniform in
order to provide for signature uniqueness and the corresponding distributions should
be identical to provide for signature preservation. The analysis of 31 mammogram
pairs has shown that both conditions are satisfied.

Similarity criterion

Two signatures S = [si] and Sy = [s4], k=1,2,.., 2’%%—0 match if r > ¢, where
3600/A48
r=355%= Y. sisi (8)
k=1

and ¢ is the threshold. Since the signatures are binary vectors, the similarity criterion
given by Equation (8) counts the number of 1’s that appear at the same positions in
two signature vectors. Assuming that at least two parts of elongated structures are
captured by a signature, we select ¢ = 2.

4.3.2 Texture characterization

Texture may be modeled in various ways, e.g., using descriptors derived from co-
occurrence matrices, fractal measures, or Markov random field descriptors. Based on
the work of other researchers in digital mammography, e.g., [8], [17], [20], we have
adopted Laws measures as the descriptors of textural properties.

Laws’ texture measures are formed in two steps [12]. In the first step, correlation
between small masks (usually of size 5 x 5) and the image pixels of interest is per-
formed. Each of the masks is designed to respond to a specific texture characteristic
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(e.g., gray level, ripple, edge, spot, or their combinations). The result of the corre-
lation between the input image and a particular mask is referred to as the feature
plane of that mask. In the second step, macrostatistics are computed over a larger
neighborhood (15 x 15) in the feature planes. These macrostatistics typically involve
standard deviation or its approximation (such as the absolute average). The macro-
statistics are referred to as the Laws’ texture features or texture energy features. We
have used the entire set of 15 invariant® features to form feature vectors.
Similarity criterion

If a point p in the old mammogram and a point ¢ in the new mammogram are
characterized by the Laws feature vectors LV, and LV, respectively, then ¢ is a match
for p it

1LV, — LV,|| _ VZE (T — 177
1LV ] i ()

where ||.|| denotes the length of the vector and ¢ is the threshold. Thus, the match
between vectors LV, and LV, is established if the Euclidean distance between vectors
LV, and LV, is less than some prespecified fraction ¢ of the length of LV,. We point
out that the criterion is robust with respect to ¢ and stable results are obtained for ¢
in the range [0.25 : 0.4]; we use t = .3.

<t, (9)

5 Evaluation: Synthetic images

Evaluation of the proposed algorithms was initially carried out using synthetic im-
ages designed to evaluate independently the algorithm for extraction of elongated
structures and the correspondence algorithm. In the following we first summarize
characteristics of images used in the study and then describe the evaluation proto-
cols.

5.1 Material selection

The synthetic images were designed to evaluate the algorithms’ sensitivity to vari-
ations in orientations of elongated structures, their contrast relative to background,
background characteristics, noise and parameters employed by the algorithms. The
underlying model in generating the elongated structures was the Poissonian model,
which randomly distributes linear structures [16]. In practical terms, the Poissonian
model assumes a network of intersecting straight lines with random positions and
orientations. The linear structures were deformed using the deflected elastic beam
model, [24].

5The term invariant refers to the gray level; for details see [12].
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5.2 Evaluation: detection algorithm
5.2.1 Experiment description

The objective of these experiments was to determine the effects of width of linear
structures, their contrast relative to background, background type, and noise on al-
gorithm’s performance. Ten patterns of elongated structures were generated, and
each was used to form eight images by changing the width and the intensity of struc-
tures. Four of the images contained structures of width 1, 3, 5, and 7 pixels and
intensity 255. Four images had structures of constant width of 3 pixels and inten-
sity 100, 150, 200 and 220, respectively. The structures were superimposed on the
following backgrounds

e Case 1 Two types of backgrounds were used: (1) five images with noisy back-
ground formed by the Gaussian random process of mean p = 200 and standard
deviations 10, 20, 50, 80, 200, respectively, and (2) ten images with texture back-
grounds selected from [1]. In both cases, images were quantized to 256 gray
levels. These backgrounds combined with eight patterns formed 8 x 10 x 15
images. Examples of synthetic images generated in this manner are shown in

Figures 3 (a) and 3(b).

e Case 2 In this case, backgrounds were obtained using patches from mammo-
grams. A total of 25 samples was used: 10 radio-lucent, 10 mixed, and 5
radio-opaque (for characteristics of each, see Section 6.1). These backgrounds
combined with the eight patterns formed 8 x 10 x 25 images. Examples of
obtained images are shown in Figure 3(c).

5.2.2 Results

Case 1

In this case, the receiver operating characteristics (ROC) curves were used. A ROC
curve is determined by a set of points (FPF,T PF) which are obtained using different
thresholds [14], [15]; TPF and F PF stand for true positive fraction and false positive
fraction, respectively. In this experiment, the T'PF' is the fraction of pixels belonging
to the linear structures that are correctly identified by the algorithm as “positives”.
The FPF is computed as FPF =1 —TNF, where TNF (true negative fraction) is
the fraction of pixels that do not belong to linear structures that are correctly identi-
fied by the algorithm as “negatives”. The TPF and T'NF represent sensitivity and
specificity, respectively. For the modified monotony operator, the range of possible
thresholds is [1:8], which means that each ROC curve was determined by computing
eight points, i.e., eight TPF and FPF values.
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Figure 3: Examples of images used in evaluation of the detection algorithm: back-
ground and superimposed elongated patterns. (a) Case 1-noisy backgrounds (b) case
1-texture backgrounds, and (c) case 2-mammogram backgrounds.
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Figure 4: ROC curves generated when considering noisy backgrounds and Gaussian
smoothing is performed in (a) one, (b) two, and (c) three passes. Elongated structures
were 1 (square), 3 (triangle), and 5 (cross) pixels wide.

In the following we discuss the algorithm’s sensitivity to the width of elongated
structures, level of Gaussian blurring and type of background. The details of other
experiments are described in [26], including the experiments on sensitivity to contrast
which have shown that the operator is capable of detecting very low contrast roof
edges and its performance is satisfactory as long as the elongated structures have
higher intensity than the local average of the background (thus, for noisy backgrounds,
intensity 220 of elongated structures yielded good results). In the current work,
we show two sets of ROC curves. The first set, Figure 4, shows the algorithm’s
performance on noisy background, and the second set, Figure 5, shows the algorithm’s
performance on texture backgrounds. In both cases, the effects of Gaussian blurring
on the results are shown, indicating that the three-pass Gaussian filtering used on
archived film yields good results. Different ROC curves were obtained by changing
the width of the elongated structures.

From these results it follows that the operator using parameters discussed in Sec-
tion 3.3 provides consistent results for a range of structure widths. Poorer perfor-
mance of the algorithm for one-pixel wide structures is attributed to Gaussian filter-
ing, which tends to eliminate the thin structures. Figures 4 and 5 also show that :
(i) the sensitivity and specificity are not affected by the type of background (noisy or
textured) and (ii) the best compromise between sensitivity and specificity of the algo-
rithm is obtained for the threshold value of five, which is in agreement with theoretical
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Figure 5: ROC curves generated when considering textured backgrounds and Gaus-
sian smoothing is performed in (a) one, (b) two, and (c) three passes. Elongated
structures were 1 (square), 3 (triangle), and 5 (cross) pixels wide.

considerations discussed in Section 3.3.

Case 2
In this case, the background images contained linear structures generic to mammo-

grams; therefore, the F'PF' could not be determined, which precluded using the ROC
curves. However, the TPF can be determined and the algorithm was evaluated only
with respect to sensitivity. The results are summarized in Table 1 for threshold T' = 5.

The following conclusions can be drawn from these experiments. The algorithm
is insensitive to mammogram type. The algorithm is also insensitive to change in the
structure’s width for structures wider than one pixel. By comparing the results from
the two experiments, it is evident that the algorithm’s performance is not affected by
the type of the background.

5.3 Evaluation: correspondence algorithm

Due to the fact that there is no objective way of simulating appropriate texture
patterns, this evaluation includes only the signature-based approach. The purpose of
the tests is to determine the robustness of the correspondence algorithm with respect
to parameters employed by the algorithm.
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lucent | mixed | dense | width | level of smoothing
99.5 | 99.8 | 99.9 1 1
98.0 | 98.9 | 99.5 1 2
85.0 89.0 83.4 1 3
99.9 | 99.9 | 99.9 3 1
99.9 99.9 100 3 2
98.0 98.0 98.0 3 3
97.8 | 98.2 | 97.9 5 1
99.9 100 100 5 2
99.2 99.2 | 99.5 3 3

Table 1: True positive fraction (in percent) computed for Case 2 using 1" = 5.

5.3.1 Experiment description

In this experiment, we have tested the performance of the matching algorithm with
respect to A; and Ay. The results are summarized in the form of ROC curves.
For each test, a set of 100 image pairs was generated. Each image pair comprised
an original and a corresponding deformed pattern. Then, the matching algorithm
was run and, depending on the threshold, different points on the ROC curve were
generated. Each ROC curve was determined by ten points, which were obtained by
thresholding the accumulator array at 0, 10, ..., 90 percent of the maximum value in
the array.

5.3.2 Results

Two sets of ROC curves, Figure 6, summarize the results. The following conclusions
can be drawn from the curves. Figure 6(a) indicates that the algorithm is insensitive
to change of parameter A;. Also, the performance is not affected by A, (Figure
6(b)). Note that combining, e.g., Ay of 100 and A, of 100 produces a search area
of 200 x 200 pixels which covers practically the whole image. This implies that each
potential control point in one image is matched against the whole other image and the
algorithm’s performance remains stable. It should be noted that both good specificity
and sensitivity of the algorithm can be achieved, since for TP F' of about 97% F'PF is
smaller than 5%. Figure 6 shows that the accumulator matrix threshold can always
be determined to accommodate for high specificity, and thresholds of 80% of the
maximum accumulator entry are always a good selection. We have also investigated
the algorithm’s performance in terms of maximum distortion which is a parameter in
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the deflected elastic beam model. In general, the algorithm’s performance decreases
with the increase in distortion, but even for high levels of distortion a working point

with low FPF can be achieved for T=5, [26].

6 FEvaluation: Archived film

6.1 Material selection

Each case used in the study was represented by mammograms of two screenings in
standard cranio-caudal and medio-lateral views. In order to determine the effects of
breast tissue characteristics on the method’s performance, the selected cases reflected
three groups

e Radio-opaque/dense cases (type labeled DY by Wolfe, [32]). These images are
very bright and low-contrast, have no distinctive regions, and there is very little
structure to their texture patterns. The human visual system is limited the
most in evaluating these images due to lack of ability to differentiate details at
these intensity levels.

o Radio-lucent cases (N1 type according to Wolfe, [32]). These patterns have
structure and contrast.

o Mized cases (labeled P1 and P2 by Wolfe, [32]). These cases are characterized
by two types of texture patterns, the very bright dense patterns (characteristic
of DY types) and structural texture patterns (characteristic of N1 type).

The algorithms developed in this study were tested on 31 mammogram pairs. Based
on tissue characteristics, 16 pairs had predominantly radio-lucent characteristics, 10
pairs contained mixed tissue types, and 5 pairs had predominantly radio-opaque char-
acteristics. Spatial resolution varied from .1mm to .5mm, and only mammogram pairs
showing visual similarity were used in the study.

6.2 Experiment description

Due to lack of ground truth regarding control points, the evaluation was performed by
visual inspection. Validation was made independently by three unbiased observers,
i.e., observers who had no knowledge about the algorithm: an experienced radiologist
and two untrained observers.

The validation experiment was conducted as follows. Each observer was shown
a mammogram pair, where the older mammogram contained highlighted points se-
lected by the algorithm. The observer was then asked to identify the corresponding
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Figure 6: (a) ROC curves generated for Ay 20 (square), 40 (triangle), 60 (cross), and
100 (circle); (b) ROC curves generated for A, 20 (square), 40 (triangle), 60 (cross),
and 100 (circle).
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points in the newer mammogram. Observers were also asked to assign a “level of
confidence” to the established matches. Namely, if a match was established with a
high degree of certainty, the confidence level was “sure”; if a match was determined
with a lower degree of certainty, the confidence level was “not sure”; in the case when
no match could be assigned, a point was labeled “don’t know”. No time limit was im-
posed upon observers during the validation experiment. The observers were trained
and encouraged to use enhancement techniques in the experiment (e.g., histogram
equalization).

6.2.1 Analysis of consistency of human performance

The basic issue in involving human subjects in an experiment is establishing consis-
tency of their performance and presence of bias. In order to validate the results used
in the study, two untrained observers were presented three pairs of mammograms
eight times. The older mammogram in each pair contained highlighted control points
determined by the computer. In each presentation the observers recorded correspond-
ing points in the new mammogram. In the first four presentations, the observers were
shown the identical mammogram pair. In the fifth, sixth, and seventh presentations,
the mammograms were flipped around z axis, around y axis, and around both z and
y axes, respectively. In the eighth presentation only a portion of the mammograms
that contained points of interest were shown, i.e., the images contained no visible
breast outline. This was done to check if the human perception of control points is
affected by landmarks such as image borders and/or breast outline. The obtained
results were then compared using statistical tests.

The three mammogram pairs were classified as “easy”, “not-so-easy”, and “diffi-
cult”, corresponding to radio-lucent, mixed, and radio-opaque, respectively. Statisti-
cal analysis was used to determine if the two tested sets of data (or two populations)
had the same mean. The statistical hypotheses were as follows:

Hy : The two populations have equal means

H, : The two populations have dif ferent means.

The objective was to determine if there is enough statistical evidence to reject the
null hypothesis.

We have utilized five statistical tests, one multivariate and four univariate. Based
on the fact that data is two-dimensional,® multivariate tests are more suitable. The
univariate tests were adapted to test multidimensional data. The adaptation was
done as follows. Each of the random variables z and y (the coordinates of the points
determined by the observers) was tested separately utilizing univariate tests. The null
hypothesis was rejected if either of the hypotheses for univariate data was rejected.

SEach point contains two coordinates, z and y, which are considered to be independent random
variables.
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I I observer 1 I observer 2 |

observer 1 | (100,100,66) | (66,20,100)
observer 2 | (66,20,100) | (100,83,100)

Table 2: Result of T? test.

[ I observer 1 | observer 2 ]

observer 1 | (100,83,100) | (83,66,100)
observer 2 | (83,66,100) | (100,100,100)

Table 3: Result of t-test (equal variances).

Consequently, if the univariate tests are performed with the levels of significance
a, and ay, for z and y respectively, the overall level of significance o« for the two-

dimensional data is
a=1—(1-a;)(1—aqa). (10)

In the study we have utilized the following tests: the Hotelling 7' test, two t-tests,
the Kolmogorov-Smirnov test, and the rank sum test. All of these are standard and
can be found in books of mathematical statistics (e.g., [7], [13]). The results of the five
statistical tests are summarized in Tables 2-6. Each entry in the table is represented by
a triplet of numbers (X,Y, Z) which represent the percentage of points in agreement
between tested populations for “easy”, “not-so-easy”, and “difficult” mammogram
pairs, respectively. Thus, the entry (observer 1,0bserver 2)=(66,20,100) in Table
2 means that observer 1 agreed with observer 2 in 66% of points when considering
“easy” mammogram pair, in 20% of points when considering “not-so-easy” mammo-
gram pair, and in 100% of points when considering “difficult” mammogram pair using
the Hotelling T'? test. Similarly, the entry (observerl, observerl) = (100,83,100) in
Table 3 means that observer 1 was always consistent when considering “easy” and
“difficult” mammogram pairs and was consistent in 83% of points when considering
“not-so-easy” mammogram pair using the univariate t-test (variances equal and un-
known). The number of points considered in the “easy”, “not-so-easy”, and “difficult”
mammogram pairs was 6, 6, and 3, respectively.

Several conclusions can be drawn from Tables 2 - 6. The Wilcoxon-Mann-Whitney
rank sum test indicates that an observer has always consistent perception of control
points regardless of the mammogram type. However, the t-tests indicate that this
is not always the case. Since the Wilcoxon-Mann-Whitney rank sum test does not
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{ | observer 1 | observer QJ
observer 1 | (100,100,66) | (66,16,100)
observer 2 | (66,16,100) | (100,83,100)

Table 4: Result of t-test (unequal variances).

=

| observer 1

\ observer 2 ‘

observer 1

(100,100,100)

(100,100,100)

observer 2

(100,100,100)

(100,100,100)

Table 5: Result of the Kolmogorov-Smirnov test.

|

| observer 1

‘ observer 2

observer 1

(100,100,100)

(100,50,100)

observer 2

(100,50,100)

(100,100,100)

Table 6: Result of the Wilcoxon-Mann-Whitney rank sum test.
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‘ I algorithm | radiologist ‘ observer 1 ‘ observer 2 |

algorithm - 91 71 75
radiologist - - 83 82
observer 1 - - - 78

Table 7: Result of validation when using signatures and considering only “sure”
points. Entries represent the percentage of points “in agreement”.

impose any restrictions upon data and the t-based tests assume normal distributions,
we conclude that the data generated by the observers are not probably normally dis-
tributed. The T? test also makes the assumption about the normal distribution of
data which means that this test may not be also appropriate. Kolmogorov-Smirnov
test has never failed, which means that in the statistical sense there is not enough
evidence that the tested populations ever came from different distributions. The
Wilcoxon-Mann-Whitney rank sum test failed in 50% of the cases when two popula-
tions generated by two observers were tested for the “not-so-easy” mammograms.

In summary, regardless of the mammogram type the human perception is con-
sistent. This consistency is our justification of using observers in evaluation of the
algorithms’ performance on archived film. In addition, the human perception is not
affected by landmarks such as the breast outline.

6.3 Results: signatures

Based on the spatial resolution, the algorithm and an observer were considered to
be in agreement if the distance between the two points was less than 10 pixels. The
algorithm established correspondence between 11 pairs of points on average; this is
in contrast to the earlier work, [27], that was establishing correspondence between 5
pairs on average. Figures 7(b) and 8(b) show two examples of detected control points
using signatures.

Table 7 summarizes the validation results when only points labeled “sure” were
considered. Each entry in the table represents the percentage of points “in agree-
ment”. For example, the entry (algorithm,radiologist) = 91 indicates that 91% of
“sure” control points determined by the radiologist are “in agreement” with corre-
sponding points determined by the computer. Table 8 includes both “sure” and “not
sure” points.

In order to test the sensitivity of the algorithm to breast tissue characteristics,
results pertaining to 16 pairs of mammograms exhibiting a high degree of radio-
lucency were analyzed separately. The validation results in this case indicate that the
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Figure 7: Extracted points on a pair of radio-lucent mammograms (a) potential
control points, (b) matched points using signatures, (c) matched points using Laws’
descriptors, (d) result of combining signatures and texture descriptors.
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Figure 8: Extracted points on a pair of mixed tissue type mammograms (a) potential
control points, (b) matched points using signatures, (c) matched points using Laws’
descriptors, (d) result of combining signatures and texture descriptors.
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‘ ‘ algorithm | radiologist ] observer 1 ‘ observer 2 |

algorithm - 86 72 69
radiologist - - 78 7
observer 1 - - - 67

Table 8: Result of validation when when using signatures and considering both “sure”
and “not sure” points. Entries represent the percentage of points “in agreement”.

[ | algorithm | observer 1 | observer 2 |
algorithm - 93 81
observer 1 - - 90

Table 9: Result of validation of the algorithm based on Laws texture measures.

conclusions drawn for the whole set of mammograms remain valid for this subset as
well, thus showing that the algorithm’s performance does not depend on mammogram
characteristics.

6.4 Results: Laws’ texture measures

The matching algorithm utilizing Laws’ measures was run on the set of 31 mammo-
gram pairs, and the established matches were validated by visual inspection involving
two observers. The algorithm establishes a relatively large number of matches (14
points on average) with good accuracy (over 81% of the established pairs were evalu-
ated to be correct). Two examples of established matches are shown in Figures 7(c)
and 8(c). The validation results are summarized in Table 9.

In the search for more accurate matching we have combined signatures and Laws
texture features by simultaneously comparing both signatures and Laws feature vec-
tors and tallying the votes for only those pairs that satisfy both the signature (Equa-
tion (8)) and Laws vector similarity criterion (Equation (9)). Two examples of es-
tablished matches are shown in Figures 7(d) and 8(d). We ran the algorithm on 31
mammogram pairs and the results are as follows. It established on average 10 pairs
of points per mammogram pair with the accuracy of at least 90%). The results are
summarized in Table 10.
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| | algorithm | observer 1 | observer 2 |

algorithm - 95 90
observer 1 - - 95

Table 10: Result of validation of the algorithm based on Laws texture measures and
signatures.

7 Conclusions

The focus of this work is on identifying landmarks and establishing their correspon-
dence in temporal pairs of mammograms. The motivation of the work is automation of
analysis of mammogram sequences. Two algorithms were developed and tested. The
first algorithm identifies potential control points in mammograms, and it was evalu-
ated on synthetic images and was shown to be robust to changes in width of elongated
structures, background complexity, and presence of noise. The second algorithm es-
tablishes correspondence between potential control points, and it was evaluated both
on synthetic images and archived film. One of the major challenges of the work was
developing evaluation protocols because no “ground truth images” exist. The bulk of
the evaluation involved human subjects, and it was necessary to evaluate reliability
of performance of an observer and to quantify consistence of the observer’s visual
perception of control points selected by the algorithm. The study has shown that
visual perception of the control points selected by the algorithm is consistent for a
single observer. The most important conclusions are that there is the agreement in
90% of cases between the algorithm and the medical expert and that the algorithm’s
performance is not affected by the mammogram type. Both of the criteria developed
for measuring similarity of potential control points yield good results, and the most
reliable results are obtained by combining signature and texture-based approaches.

Our present research focuses on using the control points to define corresponding
regions. The appropriate region size and geometry are under study. The ultimate
test of performance will be in the next stage of development when the complete
system performance, including characterization of corresponding regions, is compared
to results of biopsies.
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